Science.gov

Sample records for 3-ketoacyl-coa synthase kcs

  1. Increase in nervonic acid content in transformed yeast and transgenic plants by introduction of a Lunaria annua L. 3-ketoacyl-CoA synthase (KCS) gene.

    PubMed

    Guo, Yiming; Mietkiewska, Elzbieta; Francis, Tammy; Katavic, Vesna; Brost, Jennifer M; Giblin, Michael; Barton, Dennis L; Taylor, David C

    2009-03-01

    Nervonic acid is a Very Long-Chain Monounsaturated Fatty Acid (VLCMFA), 24:1 Delta15 (cis-tetracos-15-enoic acid) found in the seed oils of Lunaria annua, borage, hemp, Acer (Purpleblow maple) and Tropaeolum speciosum (Flame flower). However, of these, only the "money plant" (Lunaria annua L.) has been studied and grown sparingly for future development as a niche crop and the outlook has been disappointing. Therefore, our goal was to isolate and characterize strategic new genes for high nervonic acid production in Brassica oilseed crops. To this end, we have isolated a VLCMFA-utilizing 3-Keto-Acyl-CoA Synthase (KCS; fatty acid elongase; EC 2.3.1.86) gene from Lunaria annua and functionally expressed it in yeast, with the recombinant KCS protein able to catalyze the synthesis of several VLCMFAs, including nervonic acid. Seed-specific expression of the Lunaria KCS in Arabidopsis resulted in a 30-fold increase in nervonic acid proportions in seed oils, compared to the very low quantities found in the wild-type. Similar transgenic experiments using B. carinata as the host resulted in a 7-10 fold increase in seed oil nervonic acid proportions. KCS enzyme activity assays indicated that upon using (14)C-22:1-CoA as substrate, the KCS activity from developing seeds of transgenic B. carinata was 20-30-fold higher than the low erucoyl-elongation activity exhibited by wild type control plants. There was a very good correlation between the Lun KCS transcript intensity and the resultant 22:1-CoA KCS activity in developing seed. The highest nervonic acid level in transgenic B. carinata expressing the Lunaria KCS reached 30%, compared to 2.8% in wild type plant. In addition, the erucic acid proportions in these transgenic lines were considerably lower than that found in native Lunaria oil. These results show the functional utility of the Lunaria KCS in engineering new sources of high nervonate/reduced erucic oils in the Brassicaceae. PMID:19082744

  2. Presumed hyposecretory/hyperevaporative KCS: tear characteristics.

    PubMed Central

    McCulley, James P; Shine, Ward E; Aronowicz, Joel; Oral, Deniz; Vargas, Jose

    2003-01-01

    PURPOSE: To characterize patients with ocular surface drying and a diagnosis of keratoconjunctivitis sicca (KCS). METHODS: Patients with a prior diagnosis of KCS and symptoms of dryness or foreign-body sensation who also had vital staining of the interpalpebral fissure ocular surface in the absence of lid and ocular surface inflammation were entered into the study along with normal controls. Patients were segregated into those with "classic" KCS, who did not have concomitant meibomian gland dysfunction (MGD), and those with KCS and MGD. The latter had slit-lamp evidence of difficult-to-express or turbid meibomian secretions upon expression. Patients and normal controls were evaluated for tear volume, flow, and turnover using fluorophotometry; meibomian gland dropout by meibography; evaporation by evaporometry; and tear production by the Schirmer 1 test. RESULTS: All patients with KCS had decreased tear volume, flow, and Schirmer 1 values as well as increased meibomian gland dropout. None of the patient groups were found to have increased tear evaporation compared with normals or other disease subgroups. No correlation between degree of meibomian gland dropout and evaporation was found. The degree of total vital staining or presence of corneal staining correlated with a more severe aqueous deficiency. CONCLUSIONS: Patients with ocular surface drying in the absence of inflammation have decreased tear volume, flow, and Schirmer 1 values as well as increased meibomian gland dropout. The role of meibomian gland dropout or slit-lamp MGD in disease is unclear and in our study specifically did not correlate with increased tear evaporation. PMID:14971572

  3. Genome‐scale analysis of the cotton KCS gene family revealed a binary mode of action for gibberellin A regulated fiber growth

    PubMed Central

    Xiao, Guang‐Hui; Wang, Kun; Huang, Gai

    2015-01-01

    Abstract Production of β‐ketoacyl‐CoA, which is catalyzed by 3‐ketoacyl‐CoA synthase (KCS), is the first step in very long chain fatty acid (VLCFA) biosynthesis. Here we identified 58 KCS genes from Gossypium hirsutum, 31 from G. arboreum and 33 from G. raimondii by searching the assembled cotton genomes. The gene family was divided into the plant‐specific FAE1‐type and the more general ELO‐type. KCS transcripts were widely expressed and 32 of them showed distinct subgenome‐specific expressions in one or more cotton tissues/organs studied. Six GhKCS genes rescued the lethality of elo2Δelo3Δ yeast double mutant, indicating that this gene family possesses diversified functions. Most KCS genes with GA‐responsive elements (GAREs) in the promoters were significantly upregulated by gibberellin A3 (GA). Exogenous GA3 not only promoted fiber length, but also increased the thickness of cell walls significantly. GAREs present also in the promoters of several cellulose synthase (CesA) genes required for cell wall biosynthesis and they were all induced significantly by GA3. Because GA treatment resulted in longer cotton fibers with thicker cell walls and higher dry weight per unit cell length, we suggest that it may regulate fiber elongation upstream of the VLCFA‐ethylene pathway and also in the downstream steps towards cell wall synthesis. PMID:26399709

  4. Interactions of phospholipids with the potassium channel KcsA.

    PubMed

    Williamson, Ian M; Alvis, Simon J; East, J Malcolm; Lee, Anthony G

    2002-10-01

    The potassium channel KcsA from Streptomyces lividans has been reconstituted into bilayers of phosphatidylcholines and fluorescence spectroscopy has been used to characterize the response of KcsA to changes in bilayer thickness. The Trp residues in KcsA form two bands, one on each side of the membrane. Trp fluorescence emission spectra and the proportion of the Trp fluorescence intensity quenchable by I(-) hardly vary in the lipid chain length range C10 to C24, suggesting efficient hydrophobic matching between KcsA and the lipid bilayer over this range. Measurements of fluorescence quenching for KcsA reconstituted into mixtures of brominated and nonbrominated phospholipids have been analyzed to give binding constants of lipids for KcsA, relative to that for dioleoylphosphatidylcholine (di(C18:1)PC). Relative lipid binding constants increase by only a factor of three with increasing chain length from C10 to C22 with a decrease from C22 to C24. Strongest binding to di(C22:1)PC corresponds to a state in which the side chains of the lipid-exposed Trp residues are likely to be located within the hydrocarbon core of the lipid bilayer. It is suggested that matching of KcsA to thinner bilayers than di(C24:1)PC is achieved by tilting of the transmembrane alpha-helices in KcsA. Measurements of fluorescence quenching of KcsA in bilayers of brominated phospholipids as a function of phospholipid chain length suggest that in the chain length range C14 to C18 the Trp residues move further away from the center of the lipid bilayer with increasing chain length, which can be partly explained by a decrease in helix tilt angle with increasing bilayer thickness. In the chain length range C18 to C24 it is suggested that the Trp residues become more buried within the hydrocarbon core of the bilayer. PMID:12324421

  5. A single amino acid gates the KcsA channel

    SciTech Connect

    Hirano, Minako; Okuno, Daichi; Onishi, Yukiko; Ide, Toru

    2014-08-08

    Highlights: • pH-dependent gating of the KcsA channel is regulated by the CPD. • E146 is the most essential amino acid for pH sensing by the KcsA. • The protonated-mimicking mutant, E146Q, is constitutively open independent of pH. • Minimal rearrangement of the CPD is sufficient for opening of the KcsA. - Abstract: The KcsA channel is a proton-activated potassium channel. We have previously shown that the cytoplasmic domain (CPD) acts as a pH-sensor, and the charged states of certain negatively charged amino acids in the CPD play an important role in regulating the pH-dependent gating. Here, we demonstrate the KcsA channel is constitutively open independent of pH upon mutating E146 to a neutrally charged amino acid. In addition, we found that rearrangement of the CPD following this mutation was not large. Our results indicate that minimal rearrangement of the CPD, particularly around E146, is sufficient for opening of the KcsA channel.

  6. Evolution of the KCS gene family in plants: the history of gene duplication, sub/neofunctionalization and redundancy.

    PubMed

    Guo, Hai-Song; Zhang, Yan-Mei; Sun, Xiao-Qin; Li, Mi-Mi; Hang, Yue-Yu; Xue, Jia-Yu

    2016-04-01

    Very long-chain fatty acids (VLCFAs) play an important role in the survival and development of plants, and VLCFA synthesis is regulated by β-ketoacyl-CoA synthases (KCSs), which catalyze the condensation of an acyl-CoA with malonyl-CoA. Here, we present a genome-wide survey of the genes encoding these enzymes, KCS genes, in 28 species (26 genomes and two transcriptomes), which represents a large phylogenetic scale, and also reconstruct the evolutionary history of this gene family. KCS genes were initially single-copy genes in the green plant lineage; duplication resulted in five ancestral copies in land plants, forming five fundamental monophyletic groups in the phylogenetic tree. Subsequently, KCS genes duplicated to generate 11 genes of angiosperm origin, expanding up to 20-30 members in further-diverged angiosperm species. During this process, tandem duplications had only a small contribution, whereas polyploidy events and large-scale segmental duplications appear to be the main driving force. Accompanying this expansion were variations that led to the sub- and neofunctionalization of different members, resulting in specificity that is likely determined by the 3-D protein structure. Novel functions involved in other physiological processes emerged as well, though redundancy is also observed, largely among recent duplications. Conserved sites and variable sites of KCS proteins are also identified by statistical analysis. The variable sites are likely to be involved in the emergence of product specificity and catalytic power, and conserved sites are possibly responsible for the preservation of fundamental function.

  7. Molecular cloning and characterization of a KCS gene from Cardamine graeca and its heterologous expression in Brassica oilseeds to engineer high nervonic acid oils for potential medical and industrial use.

    PubMed

    Taylor, David C; Francis, Tammy; Guo, Yiming; Brost, Jennifer M; Katavic, Vesna; Mietkiewska, Elzbieta; Michael Giblin, E; Lozinsky, Sharla; Hoffman, Travis

    2009-12-01

    Nervonic acid 24:1 Delta15 (cis-tetracos-15-enoic acid) is a very long-chain monounsaturated fatty acid and exists in nature as an elongation product of oleic acid. There is an increasing interest in production of high nervonic acid oils for pharmaceutical, nutraceutical and industrial applications. Using a polymerase chain reaction approach, we have isolated a gene from Cardamine graeca L., which encodes a 3-ketoacyl-CoA synthase (KCS), the first component of the elongation complex involved in synthesis of nervonic acid. Expression of the Cardamine KCS in yeast resulted in biosynthesis of nervonic acid, which is not normally present in yeast cells. We transformed Arabidopsis and Brassica carinata with the Cardamine KCS under the control of the seed-specific promoter, napin. The T(3) generations of transgenic Arabidopsis and B. carinata plants expressing the Cardamine KCS showed that seed-specific expression resulted in relatively large comparative increases in nervonic acid proportions in Arabidopsis seed oil, and 15-fold increase in nervonic acid proportions in B. carinata seed oil. The highest nervonic acid level in transgenic B. carinata lines reached 44%, with only 6% of residual erucic acid. In contrast, similar transgenic expression of the Cardamine KCS in high erucic B. napus resulted in 30% nervonic acid but with 20% residual erucic acid. Experiments using the Lunaria KCS gene gave results similar to the latter. In both cases, the erucic acid content is too high for human or animal consumption. Thus, the Cardamine KCS: B. carinata high nervonic/highly reduced erucic transgenic seed oils will be the most suitable for testing in pharmaceutical/nutraceutical applications to improve human and animal health.

  8. Substrate specificity of Arabidopsis 3-ketoacyl-CoA synthases

    SciTech Connect

    Blacklock, Brenda J. . E-mail: blacklock@chem.iupui.edu; Jaworski, Jan G.

    2006-07-28

    The very long chain fatty acids (VLCFA) incorporated into plant lipids are derived from the iterative addition of C2 units provided by malonyl-CoA to an acyl-CoA by the 3-ketoacyl-CoA synthase (KCS) component of a fatty acid elongase (FAE) complex. Mining of the Arabidopsis genome sequence database revealed 20 genes with homology to seed-specific FAE1 KCS. Eight of the 20 putative KCSs were cloned, expressed in yeast, and isolated as (His){sub 6} fusion proteins. Five of the eight (At1g71160, At1g19440, At1g07720, At5g04530, and At4g34250) had little or no activity with C16 to C20 substrates while three demonstrated activity with C16, C18, and C20 saturated acyl-CoA substrates. At1g01120 KCS (KCS1) and At2g26640 KCS had broad substrate specificities when assayed with saturated and mono-unsaturated C16 to C24 acyl-CoAs while At4g34510 KCS was specific for saturated fatty acyl-CoA substrates.

  9. Natural Variation in Seed Very Long Chain Fatty Acid Content Is Controlled by a New Isoform of KCS18 in Arabidopsis thaliana

    PubMed Central

    Jasinski, Sophie; Lécureuil, Alain; Miquel, Martine; Loudet, Olivier; Raffaele, Sylvain; Froissard, Marine; Guerche, Philippe

    2012-01-01

    Oil from oleaginous seeds is mainly composed of triacylglycerols. Very long chain fatty acids (VLCFAs) are major constituents of triacylglycerols in many seed oils and represent valuable feedstock for industrial purposes. To identify genetic factors governing natural variability in VLCFA biosynthesis, a quantitative trait loci (QTL) analysis using a recombinant inbred line population derived from a cross between accessions Bay-0 and Shahdara was performed in Arabidopsis thaliana. Two fatty acid chain length ratio (CLR) QTL were identified, with one major locus, CLR.2, accounting for 77% of the observed phenotypic variation. A fine mapping and candidate gene approach showed that a key enzyme of the fatty acid elongation pathway, the β-ketoacyl-CoA synthase 18 (KCS18), was responsible for the CLR.2 QTL detected between Bay-0 and Shahdara. Association genetics and heterologous expression in yeast cells identified a single point mutation associated with an alteration of KCS18 activity, uncovering the molecular bases for the modulation of VLCFA content in these two natural populations of Arabidopsis. Identification of this kcs18 mutant with altered activity opens new perspectives for the modulation of oil composition in crop plants. PMID:23145136

  10. Crystal structure of full-length KcsA in its closed conformation

    SciTech Connect

    Uysal, Serdar; Vásquez, Valeria; Tereshko, Valentina; Esaki, Kaori; Fellouse, Frederic A.; Sidhu, Sachdev S.; Koide, Shohei; Perozo, Eduardo; Kossiakoff, Anthony; UC; Genentech

    2009-05-21

    KcsA is a proton-activated, voltage-modulated K(+) channel that has served as the archetype pore domain in the Kv channel superfamily. Here, we have used synthetic antigen-binding fragments (Fabs) as crystallographic chaperones to determine the structure of full-length KcsA at 3.8 A, as well as that of its isolated C-terminal domain at 2.6 A. The structure of the full-length KcsA-Fab complex reveals a well-defined, 4-helix bundle that projects approximately 70 A toward the cytoplasm. This bundle promotes a approximately 15 degree bending in the inner bundle gate, tightening its diameter and shifting the narrowest point 2 turns of helix below. Functional analysis of the full-length KcsA-Fab complex suggests that the C-terminal bundle remains whole during gating. We suggest that this structure likely represents the physiologically relevant closed conformation of KcsA.

  11. Visualizing KcsA Conformational Changes upon Ion Binding by Infrared Spectroscopy and Atomistic Modeling

    PubMed Central

    2015-01-01

    The effect of ion binding in the selectivity filter of the potassium channel KcsA is investigated by combining amide I Fourier-transform infrared spectroscopy with structure-based spectral modeling. Experimental difference IR spectra between K+-bound KcsA and Na+-bound KcsA are in good qualitative agreement with spectra modeled from structural ensembles generated from molecular dynamics simulations. The molecular origins of the vibrational modes contributing to differences in these spectra are determined not only from structural differences in the selectivity filter but also from the pore helices surrounding this region. Furthermore, the coordination of K+ or Na+ to carbonyls in the selectivity filter effectively decouples the vibrations of those carbonyls from the rest of the protein, creating local probes of the electrostatic environment. The results suggest that it is necessary to include the influence of the surrounding helices in discussing selectivity and transport in KcsA and, on a more general level, that IR spectroscopy offers a nonperturbative route to studying the structure and dynamics of ion channels. PMID:25861001

  12. KCS1 deletion in Saccharomyces cerevisiae leads to a defect in translocation of autophagic proteins and reduces autophagosome formation

    PubMed Central

    Taylor, Jr., Robert; Chen, Po-Hao; Chou, Chia-Ching; Patel, Jasmin; Jin, Shengkan V.

    2012-01-01

    Inositol phosphates are implicated in the regulation of autophagy; however, the exact role of each inositol phosphate species is unclear. In this study, we systematically analyzed the highly conserved inositol polyphosphate synthesis pathway in S. cerevisiae for its role in regulating autophagy. Using yeast mutants that harbored a deletion in each of the genes within the inositol polyphosphate synthesis pathway, we found that deletion of KCS1, and to a lesser degree IPK2, led to a defect in autophagy. KCS1 encodes an inositol hexakisphosphate/heptakisposphate kinase that synthesizes 5-IP7 and IP8; and IPK2 encodes an inositol polyphosphate multikinase required for synthesis of IP4 and IP5. We characterized the kcs1Δ mutant strain in detail. The kcs1Δ yeast exhibited reduced autophagic flux, which might be caused by both the reduction in autophagosome number and autophagosome size as observed under nitrogen starvation. The autophagy defect in kcs1Δ strain was associated with mislocalization of the phagophore assembly site (PAS) and a defect in Atg18 release from the vacuole membrane under nitrogen deprivation conditions. Interestingly, formation of autophagosome-like vesicles was commonly observed to originate from the plasma membrane in the kcs1Δ strain. Our results indicate that lack of KCS1 interferes with proper localization of the PAS, leads to reduction of autophagosome formation, and causes the formation of autophagosome-like structure in abnormal subcellular locations. PMID:22889849

  13. Interactions of anionic phospholipids and phosphatidylethanolamine with the potassium channel KcsA.

    PubMed

    Alvis, Simon J; Williamson, Ian M; East, J Malcolm; Lee, Anthony G

    2003-12-01

    Fluorescence quenching methods have been used to study interactions of anionic phospholipids with the potassium channel KcsA from Streptomyces lividans. Quenching of the Trp fluorescence of KcsA reconstituted into mixtures of dioleoylphosphatidylcholine (DOPC) and an anionic phospholipid with dibromostearoyl chains is more marked at low mole fractions of the brominated anionic phospholipid than is quenching in mixtures of dibromostearoylphosphatidylcholine and nonbrominated anionic lipid. The quenching data are consistent with two classes of binding site for lipid on KcsA, one set corresponding to annular binding sites around KcsA to which DOPC and two-chain anionic phospholipids bind with similar affinities, the other set (non-annular sites) corresponding to sites at which anionic phospholipids can bind but from which DOPC is either excluded or binds with very low affinity. The binding constant for tetraoleoylcardiolipin at the annular sites is significantly less than that for DOPC, being comparable to that for dioleoylphosphatidylethanolamine. Tetraoleoylcardiolipin binds with highest affinity to the non-annular sites, the affinity for dioleoylphosphatidylglycerol being the lowest. The affinity for dioleoylphosphatidylserine decreases at high ionic strength, suggesting that electrostatic interactions between the anionic phospholipid headgroup and positively charged residues on KcsA are important for binding at the non-annular site. The effect of ionic strength on the binding of phosphatidic acid is less marked than on phosphatidylserine. The value of the binding constant for the non-annular site depends on the extent of Trp fluorescence quenching following from binding at the non-annular site. It is suggested that the non-annular site to which binding is detected in the fluorescence quenching experiments corresponds to the binding site for phosphatidylglycerol detected at monomer-monomer interfaces in x-ray diffraction studies. PMID:14645072

  14. An improved method for the cost-effective expression and purification of large quantities of KcsA.

    PubMed

    Tilegenova, Cholpon; Vemulapally, Spandana; Cortes, Doris M; Cuello, Luis G

    2016-11-01

    KcsA, the bacterial K(+) channel from Streptomyces lividans, is the prototypical model system to study the functional and structural correlations of the pore domain of eukaryotic voltage-gated K(+) channels (Kv channels). It contains all the molecular elements responsible for ion conduction, activation, deactivation and inactivation gating [1]. KcsA's structural simplicity makes it highly amenable for structural studies. Therefore, it is methodological advantageous to produce large amounts of functional and properly folded KcsA in a cost-effective manner. In the present study, we show an optimized protocol for the over-expression and purification of large amounts of high-quality, fully functional and crystallizable KcsA using inexpensive detergents, which significantly lowered the cost of the purification process. PMID:27393071

  15. Prospects for the formation of ultracold polar ground state KCs molecules via an optical process

    NASA Astrophysics Data System (ADS)

    Borsalino, D.; Vexiau, R.; Aymar, M.; Luc-Koenig, E.; Dulieu, O.; Bouloufa-Maafa, N.

    2016-03-01

    Heteronuclear alkali-metal dimers represent the class of molecules of choice for creating samples of ultracold molecules exhibiting an intrinsic large permanent electric dipole moment. Among them, the KCs molecule, with a permanent dipole moment of 1.92 Debye still remains to be observed in ultracold conditions. Based on spectroscopic studies available in the literature completed by accurate quantum chemistry calculations, we propose several optical coherent schemes to create ultracold bosonic and fermionic KCs molecules in their absolute rovibrational ground level, starting from a weakly bound level of their electronic ground state manifold. The processes rely on the existence of convenient electronically excited states allowing an efficient stimulated Raman adiabatic transfer of the level population.

  16. Probing the energy landscape of activation gating of the bacterial potassium channel KcsA.

    PubMed

    Linder, Tobias; de Groot, Bert L; Stary-Weinzinger, Anna

    2013-01-01

    The bacterial potassium channel KcsA, which has been crystallized in several conformations, offers an ideal model to investigate activation gating of ion channels. In this study, essential dynamics simulations are applied to obtain insights into the transition pathways and the energy profile of KcsA pore gating. In agreement with previous hypotheses, our simulations reveal a two phasic activation gating process. In the first phase, local structural rearrangements in TM2 are observed leading to an intermediate channel conformation, followed by large structural rearrangements leading to full opening of KcsA. Conformational changes of a highly conserved phenylalanine, F114, at the bundle crossing region are crucial for the transition from a closed to an intermediate state. 3.9 µs umbrella sampling calculations reveal that there are two well-defined energy barriers dividing closed, intermediate, and open channel states. In agreement with mutational studies, the closed state was found to be energetically more favorable compared to the open state. Further, the simulations provide new insights into the dynamical coupling effects of F103 between the activation gate and the selectivity filter. Investigations on individual subunits support cooperativity of subunits during activation gating.

  17. The potassium channel KcsA and its interaction with the lipid bilayer.

    PubMed

    Williamson, I M; Alvis, S J; East, J M; Lee, A G

    2003-08-01

    The crystal structure of the K+ channel KcsA explains many features of ion channel function. The selectivity filter corresponds to a narrow region about 12 Along and 3 A wide, lined by carbonyl groups of the peptide backbone, through which a K+ ion can only move ina dehydrated form. The selectivity filter opens into a central, water-filled cavity leading to a gating site on the intracellular side of the channel. The channel is tetrameric, each monomer containing two transmembrane a helices, M1 and M2. Helix M1 faces the lipid bi-layer and helix M2 faces the central channel pore; the M2 helices participate in subunit-subunit interactions. Helices M1 and M2 in each subunit pack as a pair of antiparallel coils with a heptad repeat, but the M2 helices of neighbouring subunits show fewer interactions, crossing at an angle of about -40 degrees. Trp residues at the ends of the transmembrane a helices form clear girdles on the two faces of the membrane, which, together with girdles of charged residues, define a hydrophobic thickness of about 37 A for the channel. Binding constants for phosphatidylcholines to KcsA vary with fatty acyl chain length, the optimum chain length being C22. A phosphatidylcholine with this chain length gives a bilayer of thickness about 34 A in the liquid crystalline phase, matching the hydrophobic thickness of the protein. However, a typical biological membrane has a hydrophobic thickness of about 27 A. Thus either the transmembrane a helices of KcsA are more tilted in the native membrane than they are in the crystal structure, or the channel is under stress in the native membrane. The efficiency of hydrophobic matching between KcsA and the surrounding lipid bilayer is high over the chain length range C10-C24. The channel requires the presence of some anionic lipids for function, and fluorescence quenching studies show the presence of two classes of lipid binding site on KcsA; at one class of site (nonannular sites) anionic phospholipids bind more

  18. Designer and natural peptide toxin blockers of the KcsA potassium channel identified by phage display.

    PubMed

    Zhao, Ruiming; Dai, Hui; Mendelman, Netanel; Cuello, Luis G; Chill, Jordan H; Goldstein, Steve A N

    2015-12-15

    Peptide neurotoxins are powerful tools for research, diagnosis, and treatment of disease. Limiting broader use, most receptors lack an identified toxin that binds with high affinity and specificity. This paper describes isolation of toxins for one such orphan target, KcsA, a potassium channel that has been fundamental to delineating the structural basis for ion channel function. A phage-display strategy is presented whereby ∼1.5 million novel and natural peptides are fabricated on the scaffold present in ShK, a sea anemone type I (SAK1) toxin stabilized by three disulfide bonds. We describe two toxins selected by sorting on purified KcsA, one novel (Hui1, 34 residues) and one natural (HmK, 35 residues). Hui1 is potent, blocking single KcsA channels in planar lipid bilayers half-maximally (Ki) at 1 nM. Hui1 is also specific, inhibiting KcsA-Shaker channels in Xenopus oocytes with a Ki of 0.5 nM whereas Shaker, Kv1.2, and Kv1.3 channels are blocked over 200-fold less well. HmK is potent but promiscuous, blocking KcsA-Shaker, Shaker, Kv1.2, and Kv1.3 channels with Ki of 1-4 nM. As anticipated, one Hui1 blocks the KcsA pore and two conserved toxin residues, Lys21 and Tyr22, are essential for high-affinity binding. Unexpectedly, potassium ions traversing the channel from the inside confer voltage sensitivity to the Hui1 off-rate via Arg23, indicating that Lys21 is not in the pore. The 3D structure of Hui1 reveals a SAK1 fold, rationalizes KcsA inhibition, and validates the scaffold-based approach for isolation of high-affinity toxins for orphan receptors. PMID:26627718

  19. Designer and natural peptide toxin blockers of the KcsA potassium channel identified by phage display

    PubMed Central

    Zhao, Ruiming; Dai, Hui; Mendelman, Netanel; Cuello, Luis G.; Chill, Jordan H.; Goldstein, Steve A. N.

    2015-01-01

    Peptide neurotoxins are powerful tools for research, diagnosis, and treatment of disease. Limiting broader use, most receptors lack an identified toxin that binds with high affinity and specificity. This paper describes isolation of toxins for one such orphan target, KcsA, a potassium channel that has been fundamental to delineating the structural basis for ion channel function. A phage-display strategy is presented whereby ∼1.5 million novel and natural peptides are fabricated on the scaffold present in ShK, a sea anemone type I (SAK1) toxin stabilized by three disulfide bonds. We describe two toxins selected by sorting on purified KcsA, one novel (Hui1, 34 residues) and one natural (HmK, 35 residues). Hui1 is potent, blocking single KcsA channels in planar lipid bilayers half-maximally (Ki) at 1 nM. Hui1 is also specific, inhibiting KcsA-Shaker channels in Xenopus oocytes with a Ki of 0.5 nM whereas Shaker, Kv1.2, and Kv1.3 channels are blocked over 200-fold less well. HmK is potent but promiscuous, blocking KcsA-Shaker, Shaker, Kv1.2, and Kv1.3 channels with Ki of 1–4 nM. As anticipated, one Hui1 blocks the KcsA pore and two conserved toxin residues, Lys21 and Tyr22, are essential for high-affinity binding. Unexpectedly, potassium ions traversing the channel from the inside confer voltage sensitivity to the Hui1 off-rate via Arg23, indicating that Lys21 is not in the pore. The 3D structure of Hui1 reveals a SAK1 fold, rationalizes KcsA inhibition, and validates the scaffold-based approach for isolation of high-affinity toxins for orphan receptors. PMID:26627718

  20. A jojoba beta-Ketoacyl-CoA synthase cDNA complements the canola fatty acid elongation mutation in transgenic plants.

    PubMed

    Lassner, M W; Lardizabal, K; Metz, J G

    1996-02-01

    beta-Ketoacyl-coenzyme A (CoA) synthase (KCS) catalyzes the condensation of malonyl-CoA with long-chain acyl-CoA. This reaction is the initial step of the microsomal fatty acyl-CoA elongation pathway responsible for formation of very long chain fatty acids (VLCFAs, or fatty acids with chain lengths > 18 carbons). Manipulation of this pathway is significant for agriculture, because it is the basis of conversion of high erucic acid rapeseed into canola. High erucic acid rapeseed oil, used as an industrial feedstock, is rich in VLCFAs, whereas the edible oil extracted from canola is essentially devoid of VLCFAs. Here, we report the cloning of a cDNA from developing jojoba embryos involved in microsomal fatty acid elongation. The jojoba cDNA is homologous to the recently cloned Arabidopsis FATTY ACID ELONGATION1 (FAE1) gene that has been suggested to encode KCS. We characterize the jojoba enzyme and present biochemical data indicating that the jojoba cDNA does indeed encode KCS. Transformation of low erucic acid rapeseed with the jojoba cDNA restored KCS activity to developing embryos and altered the transgenic seed oil composition to contain high levels of VLCFAs. The data reveal the key role KCS plays in determining the chain lengths of fatty acids found in seed oils.

  1. Ion conduction in the KcsA potassium channel analyzed with a minimal kinetic model.

    PubMed

    Mafé, Salvador; Pellicer, Julio

    2005-02-01

    We use a model by Nelson to study the current-voltage and conductance-concentration curves of bacterial potassium channel KcsA without assuming rapid ion translocation. Ion association to the channel filter is rate controlling at low concentrations, but dissociation and transport in the filter can limit conduction at high concentration for ions other than K+. The absolute values of the effective rate constants are tentative but the relative changes in these constants needed to qualitatively explain the experiments should be of significance. PMID:15783362

  2. Ion conduction in the KcsA potassium channel analyzed with a minimal kinetic model.

    PubMed

    Mafé, Salvador; Pellicer, Julio

    2005-02-01

    We use a model by Nelson to study the current-voltage and conductance-concentration curves of bacterial potassium channel KcsA without assuming rapid ion translocation. Ion association to the channel filter is rate controlling at low concentrations, but dissociation and transport in the filter can limit conduction at high concentration for ions other than K+. The absolute values of the effective rate constants are tentative but the relative changes in these constants needed to qualitatively explain the experiments should be of significance.

  3. A new quantum gas apparatus for ultracold mixtures of K and Cs and KCs ground-state molecules

    NASA Astrophysics Data System (ADS)

    Gröbner, M.; Weinmann, P.; Meinert, F.; Lauber, K.; Kirilov, E.; Nägerl, H.-C.

    2016-10-01

    We present a new quantum gas apparatus for ultracold mixtures of K and Cs atoms and ultracold samples of KCs ground-state molecules. We demonstrate the apparatus' capabilities by producing Bose-Einstein condensates of ? and ? in a manner that will eventually allow sequential condensation within one experimental cycle, precise sample overlap and magnetic association of atoms into KCs molecules. The condensates are created independently without relying on sympathetic cooling. Our approach is universal and applicable to other species combinations when the two species show dramatically different behavior in terms of loss mechanisms and post laser cooling temperatures, i.e. species combinations that make parallel generation of quantum degenerate samples challenging. We give an outlook over the next experiments involving e.g. sample mixing, molecule formation and transport into a science chamber for high-resolution spatial imaging of novel quantum-many body phases based on K-Cs.

  4. In vivo monitoring of the potassium channel KcsA in Streptomyces lividans hyphae using immuno-electron microscopy and energy-filtering transmission electron microscopy.

    PubMed

    Hegermann, Jan; Overbeck, Jens; Schrempf, Hildgund

    2006-09-01

    The previous discovery of the Streptomyces lividans kcsA gene and its overexpression followed by the functional reconstitution of the purified gene product has resulted in new strategies to explore this channel protein in vitro. KcsA has evolved as a general model to investigate the structure/function relationship of ion channel proteins. Using specific antibodies raised against a domain of KcsA lacking membrane-spanning regions, KcsA has now been localized within numerous separated clusters between the outer face of the cytoplasm and the cell envelope in substrate hyphae of the S. lividans wild-type strain but not in a designed chromosomal disruption mutant DeltaK, lacking a functional kcsA gene. Previous findings had revealed that caesium ions led to a block of KcsA channel activity within S. lividans protoplasts fused to giant vesicles. As caesium can be scored by electron energy loss spectroscopy better than potassium, this technique was applied to hyphae that had been briefly exposed to caesium instead of potassium ions. Caesium was found preferentially at the cell envelope. Compared to the DeltaK mutant, the relative level of caesium was approximately 30 % enhanced in the wild-type. This is attributed to the presence of KcsA channels. Additional visualization by electron spectroscopic imaging supported this conclusion. The data presented are believed to represent the first demonstration of in vivo monitoring of KcsA in its original host.

  5. Conformational heterogeneity in closed and open states of the KcsA potassium channel in lipid bicelles.

    PubMed

    Kim, Dorothy M; Dikiy, Igor; Upadhyay, Vikrant; Posson, David J; Eliezer, David; Nimigean, Crina M

    2016-08-01

    The process of ion channel gating-opening and closing-involves local and global structural changes in the channel in response to external stimuli. Conformational changes depend on the energetic landscape that underlies the transition between closed and open states, which plays a key role in ion channel gating. For the prokaryotic, pH-gated potassium channel KcsA, closed and open states have been extensively studied using structural and functional methods, but the dynamics within each of these functional states as well as the transition between them is not as well understood. In this study, we used solution nuclear magnetic resonance (NMR) spectroscopy to investigate the conformational transitions within specific functional states of KcsA. We incorporated KcsA channels into lipid bicelles and stabilized them into a closed state by using either phosphatidylcholine lipids, known to favor the closed channel, or mutations designed to trap the channel shut by disulfide cross-linking. A distinct state, consistent with an open channel, was uncovered by the addition of cardiolipin lipids. Using selective amino acid labeling at locations within the channel that are known to move during gating, we observed at least two different slowly interconverting conformational states for both closed and open channels. The pH dependence of these conformations and the predictable disruptions to this dependence observed in mutant channels with altered pH sensing highlight the importance of conformational heterogeneity for KcsA gating. PMID:27432996

  6. Preparation of uniformly isotope labeled KcsA for solid state NMR: Expression, purification, reconstitution into liposomes and functional assay

    PubMed Central

    Bhate, Manasi P.; Wylie, Benjamin J.; Thompson, Ameer; Tian, Lin; Nimigean, Crina; McDermott, Ann E.

    2013-01-01

    We report the expression, purification, liposome reconstitution and functional validation of uniformly 13C and 15N isotope labeled KcsA, a bacterial potassium channel that has high homology with mammalian channels, for solid-state NMR studies. The expression and purification is optimized for an average yield of ~ 35–40 milligrams per liter of M9 media in a time-efficient way. The protein purity is confirmed by gel electrophoresis and the protein concentration is quantified by UV-Vis absorption spectroscopy. Protocols to efficiently reconstitute KcsA into liposomes are also presented. The presence of liposomes is confirmed by cryo-electron microscopy images and the effect of magic angle spinning on liposome packing is shown. High-resolution solid-state NMR spectra of uniformly isotope labeled KcsA in these liposomes reveal that our protocol yields to a very homogenous KcsA sample with high signal to noise and several well-resolved residues in NMR spectra. Electrophysiology of our samples before and after solid-state NMR show that channel function and selectivity remain intact after the solid-state NMR. PMID:23916531

  7. Pseudouridine synthases.

    PubMed

    Hamma, Tomoko; Ferré-D'Amaré, Adrian R

    2006-11-01

    Pseudouridine synthases are the enzymes responsible for the most abundant posttranscriptional modification of cellular RNAs. These enzymes catalyze the site-specific isomerization of uridine residues that are already part of an RNA chain, and appear to employ both sequence and structural information to achieve site specificity. Crystallographic analyses have demonstrated that all pseudouridine synthases share a common core fold and active site structure and that this core is modified by peripheral domains, accessory proteins, and guide RNAs to give rise to remarkable substrate versatility.

  8. The interfacial lipid binding site on the potassium channel KcsA is specific for anionic phospholipids.

    PubMed

    Marius, Phedra; Alvis, Simon J; East, J Malcolm; Lee, Anthony G

    2005-12-01

    Lipid binding to the potassium channel KcsA from Streptomyces lividans has been studied using quenching of the fluorescence of Trp residues by brominated phospholipids. It is shown that binding of phospholipids to nonannular lipid binding sites on KcsA, located one each at the four protein-protein interfaces in the tetrameric structure, is specific for anionic phospholipids, zwitterionic phosphatidylcholine being unable to bind at the sites. The binding constant for phosphatidylglycerol of 3.0 +/- 0.7 mol fraction(-1) means that in a membrane containing approximately 20 mol% phosphatidylglycerol, as in the Escherichia coli inner membrane, the nonannular sites will be approximately 37% occupied by phosphatidylglycerol. The binding constant for phosphatidic acid is similar to that for phosphatidylglycerol but binding constants for phosphatidylserine and cardiolipin are about double those for phosphatidylglycerol. Binding to annular sites around the circumference of the KcsA tetramer are different on the extracellular and intracellular faces of the membrane. On the extracellular face of the membrane the binding constants for anionic lipids are similar to those for phosphatidylcholine, the lack of specificity being consistent with the lack of any marked clusters of charged residues on KcsA close to the membrane on the extracellular side. In contrast, binding to annular sites on the intracellular side of the membrane shows a distinct structural specificity, with binding of phosphatidic acid and phosphatidylglycerol being stronger than binding of phosphatidylcholine, whereas binding constants for phosphatidylserine and cardiolipin are similar to that for phosphatidylcholine. It is suggested that this pattern of binding follows from the pattern of charge distribution on KcsA on the intracellular side of the membrane. PMID:16199503

  9. Specific interactions between alkali metal cations and the KcsA channel studied using ATR-FTIR spectroscopy

    PubMed Central

    Furutani, Yuji; Shimizu, Hirofumi; Asai, Yusuke; Oiki, Shigetoshi; Kandori, Hideki

    2015-01-01

    The X-ray structure of KcsA, a eubacterial potassium channel, displays a selectivity filter composed of four parallel peptide strands. The backbone carbonyl oxygen atoms of these strands solvate multiple K+ ions. KcsA structures show different distributions of ions within the selectivity filter in solutions containing different cations. To assess the interactions of cations with the selectivity filter, we used attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectroscopy. Ion-exchange-induced ATR-FTIR difference spectra were obtained by subtracting the spectrum of KcsA soaked in K+ solution from that obtained in Li+, Na+, Rb+, and Cs+ solutions. Large spectral changes in the amide-I and -II regions were observed upon replacing K+ with smaller-sized cations Li+ and Na+ but not with larger-sized cations Rb+ and Cs+. These results strongly suggest that the selectivity filter carbonyls coordinating Rb+ or Cs+ adopt a conformation similar to those coordinating K+ (cage configuration), but those coordinating Li+ or Na+ adopt a conformation (plane configuration) considerably different from those coordinating K+. We have identified a cation-type sensitive amide-I band at 1681 cm−1 and an insensitive amide-I band at 1659 cm−1. The bands at 1650, 1639, and 1627 cm−1 observed for Na+-coordinating carbonyls were almost identical to those observed in Li+ solution, suggesting that KcsA forms a similar filter structure in Li+ and Na+ solutions. Thus, we conclude that the filter structure adopts a collapsed conformation in Li+ solution that is similar to that in Na+ solution but is in clear contrast to the X-ray crystal structure of KcsA with Li+. PMID:27493853

  10. Mechanism of activation gating in the full-length KcsA K[superscript +] channel

    SciTech Connect

    Uysal, Serdar; Cuello, Luis G.; Cortes, D. Marien; Koide, Shohei; Kossiakoff, Anthony A.; Perozo, Eduardo

    2012-10-25

    Using a constitutively active channel mutant, we solved the structure of full-length KcsA in the open conformation at 3.9 {angstrom}. The structure reveals that the activation gate expands about 20 {angstrom}, exerting a strain on the bulge helices in the C-terminal domain and generating side windows large enough to accommodate hydrated K{sup +} ions. Functional and spectroscopic analysis of the gating transition provides direct insight into the allosteric coupling between the activation gate and the selectivity filter. We show that the movement of the inner gate helix is transmitted to the C-terminus as a straightforward expansion, leading to an upward movement and the insertion of the top third of the bulge helix into the membrane. We suggest that by limiting the extent to which the inner gate can open, the cytoplasmic domain also modulates the level of inactivation occurring at the selectivity filter.

  11. (+)-Abscisic Acid Metabolism, 3-Ketoacyl-Coenzyme A Synthase Gene Expression, and Very-Long-Chain Monounsaturated Fatty Acid Biosynthesis in Brassica napus Embryos1

    PubMed Central

    Qi, Qungang; Rose, Patricia A.; Abrams, Garth D.; Taylor, David C.; Abrams, Suzanne R.; Cutler, Adrian J.

    1998-01-01

    Microspore-derived embryos of Brassica napus cv Reston were used to examine the effects of exogenous (+)-abscisic acid (ABA) and related compounds on the accumulation of very-long-chain monounsaturated fatty acids (VLCMFAs), VLCMFA elongase complex activity, and induction of the 3-ketoacyl-coenzyme A synthase (KCS) gene encoding the condensing enzyme of the VLCMFA elongation system. Of the concentrations tested, (+)-ABA at 10 μm showed the strongest effect. Maximum activity of the elongase complex, observed 6 h after 10 μm (+)-ABA treatment, was 60% higher than that of the untreated embryos at 24 h. The transcript of the KCS gene was induced by 10 μm (+)-ABA within 1 h and further increased up to 6 h. The VLCMFAs eicosenoic acid (20:1) and erucoic acid (22:1) increased by 1.5- to 2-fold in embryos treated with (+)-ABA for 72 h. Also, (+)-8′-methylene ABA, which is metabolized more slowly than ABA, had a stronger ABA-like effect on the KCS gene transcription, elongase complex activity (28% higher), and level of VLCMFAs (25–30% higher) than ABA. After 24 h approximately 60% of the added (+)-[3H]ABA (10 μm) was metabolized, yielding labeled phaseic and dihydrophaseic acid. This study demonstrates that (+)-ABA promotes VLCMFA biosynthesis via increased expression of the KCS gene and that reducing ABA catabolism would increase VLCMFAs in microspore-derived embryos. PMID:9662540

  12. Kinetic modeling of ion conduction in KcsA potassium channel

    NASA Astrophysics Data System (ADS)

    Mafé, Salvador; Pellicer, Julio; Cervera, Javier

    2005-05-01

    KcsA constitutes a potassium channel of known structure that shows both high conduction rates and selectivity among monovalent cations. A kinetic model for ion conduction through this channel that assumes rapid ion transport within the filter has recently been presented by Nelson. In a recent, brief communication, we used the model to provide preliminary explanations to the experimental current-voltage J-V and conductance-concentration g-S curves obtained for a series of monovalent ions (K+,Tl+, and Rb+). We did not assume rapid ion transport in the calculations, since ion transport within the selectivity filter could be rate limiting for ions other than native K+. This previous work is now significantly extended to the following experimental problems. First, the outward rectification of the J-V curves in K+ symmetrical solutions is analyzed using a generalized kinetic model. Second, the J-V and g-S curves for NH4+ are obtained and compared with those of other ions (the NH4+ J-V curve is qualitatively different from those of Rb+ and Tl+). Third, the effects of Na+ block on K+ and Rb+ currents through single KcsA channels are studied and the different blocking behavior is related to the values of the translocation rate constants characteristic of ion transport within the filter. Finally, the significantly decreased K+ conductance caused by mutation of the wild-type channel is also explained in terms of this rate constant. In order to keep the number of model parameters to a minimum, we do not allow the electrical distance (an empirical parameter of kinetic models that controls the exponential voltage dependence of the dissociation rate) to vary with the ionic species. Without introducing the relatively high number of adjustable parameters of more comprehensive site-based models, we show that ion association to the filter is rate controlling at low concentrations, but ion dissociation from the filter and ion transport within the filter could limit conduction at high

  13. Modeling the concentration-dependent permeation modes of the KcsA potassium ion channel

    NASA Astrophysics Data System (ADS)

    Nelson, Peter Hugo

    2003-12-01

    The potassium channel from Streptomyces lividans (KcsA) is an integral membrane protein with sequence similarity to all known potassium channels, particularly in the selectivity filter region. A recently proposed model for ion channels containing either n or (n-1) single-file ions in their selectivity filters [P. H. Nelson, J. Chem. Phys. 177, 11396 (2002)] is applied to published KcsA channel K+ permeation data that exhibit a high-affinity process at low concentrations and a low-affinity process at high concentrations [M. LeMasurier et al., J. Gen. Physiol. 118, 303 (2001)]. The kinetic model is shown to provide a reasonable first-order explanation for both the high- and low-concentration permeation modes observed experimentally. The low-concentration mode ([K+]<200 mM) has a 200-mV dissociation constant of 56 mM and a conductance of 88 pS. The high-concentration mode ([K+]>200 mM) has a 200-mV dissociation constant of 1100 mM and a conductance of 500 pS. Based on the permeation model, and x-ray analysis [J. H. Morais-Cabral et al., Nature (London) 414, 37 (2001)], it is suggested that the experimentally observed K+ permeation modes correspond to an n=3 mechanism at high concentrations and an n=2 mechanism at low concentrations. The ratio of the electrical dissociation distances for the high- and low-concentration modes is 3:2, also consistent with the proposed n=3 and n=2 modes. Model predictions for K+ channels that exhibit asymmetric current-voltage (I-V) curves are presented, and further validation of the kinetic model via molecular simulation and experiment is discussed. The qualitatively distinct I-V characteristics exhibited experimentally by Tl+, NH+4, and Rb+ ions at 100 mM concentration can also be explained using the model, but more extensive experimental tests are required for quantitative validation of the model predictions.

  14. Kinetic modeling of ion conduction in KcsA potassium channel.

    PubMed

    Mafé, Salvador; Pellicer, Julio; Cervera, Javier

    2005-05-22

    KcsA constitutes a potassium channel of known structure that shows both high conduction rates and selectivity among monovalent cations. A kinetic model for ion conduction through this channel that assumes rapid ion transport within the filter has recently been presented by Nelson. In a recent, brief communication, we used the model to provide preliminary explanations to the experimental current-voltage J-V and conductance-concentration g-S curves obtained for a series of monovalent ions (K(+),Tl(+), and Rb(+)). We did not assume rapid ion transport in the calculations, since ion transport within the selectivity filter could be rate limiting for ions other than native K(+). This previous work is now significantly extended to the following experimental problems. First, the outward rectification of the J-V curves in K(+) symmetrical solutions is analyzed using a generalized kinetic model. Second, the J-V and g-S curves for NH(4) (+) are obtained and compared with those of other ions (the NH(4) (+) J-V curve is qualitatively different from those of Rb(+) and Tl(+)). Third, the effects of Na(+) block on K(+) and Rb(+) currents through single KcsA channels are studied and the different blocking behavior is related to the values of the translocation rate constants characteristic of ion transport within the filter. Finally, the significantly decreased K(+) conductance caused by mutation of the wild-type channel is also explained in terms of this rate constant. In order to keep the number of model parameters to a minimum, we do not allow the electrical distance (an empirical parameter of kinetic models that controls the exponential voltage dependence of the dissociation rate) to vary with the ionic species. Without introducing the relatively high number of adjustable parameters of more comprehensive site-based models, we show that ion association to the filter is rate controlling at low concentrations, but ion dissociation from the filter and ion transport within the filter

  15. Kinetic modeling of ion conduction in KcsA potassium channel.

    PubMed

    Mafé, Salvador; Pellicer, Julio; Cervera, Javier

    2005-05-22

    KcsA constitutes a potassium channel of known structure that shows both high conduction rates and selectivity among monovalent cations. A kinetic model for ion conduction through this channel that assumes rapid ion transport within the filter has recently been presented by Nelson. In a recent, brief communication, we used the model to provide preliminary explanations to the experimental current-voltage J-V and conductance-concentration g-S curves obtained for a series of monovalent ions (K(+),Tl(+), and Rb(+)). We did not assume rapid ion transport in the calculations, since ion transport within the selectivity filter could be rate limiting for ions other than native K(+). This previous work is now significantly extended to the following experimental problems. First, the outward rectification of the J-V curves in K(+) symmetrical solutions is analyzed using a generalized kinetic model. Second, the J-V and g-S curves for NH(4) (+) are obtained and compared with those of other ions (the NH(4) (+) J-V curve is qualitatively different from those of Rb(+) and Tl(+)). Third, the effects of Na(+) block on K(+) and Rb(+) currents through single KcsA channels are studied and the different blocking behavior is related to the values of the translocation rate constants characteristic of ion transport within the filter. Finally, the significantly decreased K(+) conductance caused by mutation of the wild-type channel is also explained in terms of this rate constant. In order to keep the number of model parameters to a minimum, we do not allow the electrical distance (an empirical parameter of kinetic models that controls the exponential voltage dependence of the dissociation rate) to vary with the ionic species. Without introducing the relatively high number of adjustable parameters of more comprehensive site-based models, we show that ion association to the filter is rate controlling at low concentrations, but ion dissociation from the filter and ion transport within the filter

  16. Fourier-transform spectroscopy and potential construction of the (2){sup 1}Π state in KCs

    SciTech Connect

    Birzniece, I.; Nikolayeva, O.; Tamanis, M.; Ferber, R.

    2015-04-07

    The paper presents an empirical pointwise potential energy curve (PEC) of the (2){sup 1}Π state of the KCs molecule constructed by applying the Inverted Perturbation Approach routine. The experimental term values in the energy range E(v′, J′) ∈ [15 407; 16 579] cm{sup −1} involved in the fit were based on Fourier-Transform spectroscopy data obtained with 0.01 cm{sup −1} accuracy from the laser-induced (2){sup 1}Π → X{sup 1}Σ{sup +} fluorescence spectra. Buffer gas Ar was used to facilitate the appearance of rotation relaxation lines in the spectra, thus enlarging the (2){sup 1}Π data set and allowing determination of the Λ-splitting constants. The data set included vibrational v′ ∈ [0, 28] and rotational J′ ∈ [7, 274] quantum numbers covering about 67% of the potential well. The present PEC reproduces the overall set of data included in the fit with a standard deviation of 0.5 cm{sup −1}. The obtained value of the Λ-doubling constant q = + 1.8 × 10{sup −6} cm{sup −1} for J′ > 50 and v′ ∈ [0, 6] is in an excellent agreement with q = + 1.84 × 10{sup −6} cm{sup −1} reported in Kim, Lee, and Stolyarov [J. Mol. Spectrosc. 256, 57-67 (2009)].

  17. Conformational Dynamics in the Selectivity Filter of KcsA in Response to Potassium Ion Concentration

    PubMed Central

    Wylie, Benjamin J.; Tian, Lin; McDermott, Ann E.

    2010-01-01

    The conformational change in the selectivity filter of KcsA as a function of ambient potassium concentration is studied with solid state NMR. This highly conserved region of the protein is known to chelate potassium ions selectively. We report solid-state NMR chemical shift fingerprints of two distinct conformations of the selectivity filter; significant changes are observed in the chemical shifts of key residues in the filter as the buffer potassium ion concentration is changed from 50 mM to 1 µM. Potassium ion titration studies reveal that the site-specific Kd for K+ binding at the key pore residue Val 76, is on the order of ∼7 µM and that relatively high sample hydration is necessary to observe the low K+ conformer. Simultaneous detection of both conformers at low ambient potassium concentration suggests that the high K+ and low K+ states are in slow exchange on the NMR timescale (kex < 500 s−1). The slow rate and tight binding for evacuating both inner sites simultaneously, differ from prior observations in detergents in solution, but agree well with measurements by electrophysiology, and appear to result from our use of a hydrated bilayer environment. These characteristics rule out participation of the low K+ state on the timescale of ion transmission, which has been assumed to involve interchange of states where one of the inner binding sites is always occupied. On the other hand, these kinetic and thermodynamic characteristics of evacuation of the inner sites certainly could be compatible with participation in a control mechanism at low ion concentration, such as C-type inactivation, a process that is coupled to activation and involves closing of the outer mouth of the channel. PMID:20600123

  18. Discovery and characterisation of a novel toxin from Dendroaspis angusticeps, named Tx7335, that activates the potassium channel KcsA.

    PubMed

    Rivera-Torres, Iván O; Jin, Tony B; Cadene, Martine; Chait, Brian T; Poget, Sébastien F

    2016-01-01

    Due to their central role in essential physiological processes, potassium channels are common targets for animal toxins. These toxins in turn are of great value as tools for studying channel function and as lead compounds for drug development. Here, we used a direct toxin pull-down assay with immobilised KcsA potassium channel to isolate a novel KcsA-binding toxin (called Tx7335) from eastern green mamba snake (Dendroaspis angusticeps) venom. Sequencing of the toxin by Edman degradation and mass spectrometry revealed a 63 amino acid residue peptide with 4 disulphide bonds that belongs to the three-finger toxin family, but with a unique modification of its disulphide-bridge scaffold. The toxin induces a dose-dependent increase in both open probabilities and mean open times on KcsA in artificial bilayers. Thus, it unexpectedly behaves as a channel activator rather than an inhibitor. A charybdotoxin-sensitive mutant of KcsA exhibits similar susceptibility to Tx7335 as wild-type, indicating that the binding site for Tx7335 is distinct from that of canonical pore-blocker toxins. Based on the extracellular location of the toxin binding site (far away from the intracellular pH gate), we propose that Tx7335 increases potassium flow through KcsA by allosterically reducing inactivation of the channel.

  19. Discovery and characterisation of a novel toxin from Dendroaspis angusticeps, named Tx7335, that activates the potassium channel KcsA

    PubMed Central

    Rivera-Torres, Iván O.; Jin, Tony B.; Cadene, Martine; Chait, Brian T.; Poget, Sébastien F.

    2016-01-01

    Due to their central role in essential physiological processes, potassium channels are common targets for animal toxins. These toxins in turn are of great value as tools for studying channel function and as lead compounds for drug development. Here, we used a direct toxin pull-down assay with immobilised KcsA potassium channel to isolate a novel KcsA-binding toxin (called Tx7335) from eastern green mamba snake (Dendroaspis angusticeps) venom. Sequencing of the toxin by Edman degradation and mass spectrometry revealed a 63 amino acid residue peptide with 4 disulphide bonds that belongs to the three-finger toxin family, but with a unique modification of its disulphide-bridge scaffold. The toxin induces a dose-dependent increase in both open probabilities and mean open times on KcsA in artificial bilayers. Thus, it unexpectedly behaves as a channel activator rather than an inhibitor. A charybdotoxin-sensitive mutant of KcsA exhibits similar susceptibility to Tx7335 as wild-type, indicating that the binding site for Tx7335 is distinct from that of canonical pore-blocker toxins. Based on the extracellular location of the toxin binding site (far away from the intracellular pH gate), we propose that Tx7335 increases potassium flow through KcsA by allosterically reducing inactivation of the channel. PMID:27044983

  20. Discovery and characterisation of a novel toxin from Dendroaspis angusticeps, named Tx7335, that activates the potassium channel KcsA.

    PubMed

    Rivera-Torres, Iván O; Jin, Tony B; Cadene, Martine; Chait, Brian T; Poget, Sébastien F

    2016-01-01

    Due to their central role in essential physiological processes, potassium channels are common targets for animal toxins. These toxins in turn are of great value as tools for studying channel function and as lead compounds for drug development. Here, we used a direct toxin pull-down assay with immobilised KcsA potassium channel to isolate a novel KcsA-binding toxin (called Tx7335) from eastern green mamba snake (Dendroaspis angusticeps) venom. Sequencing of the toxin by Edman degradation and mass spectrometry revealed a 63 amino acid residue peptide with 4 disulphide bonds that belongs to the three-finger toxin family, but with a unique modification of its disulphide-bridge scaffold. The toxin induces a dose-dependent increase in both open probabilities and mean open times on KcsA in artificial bilayers. Thus, it unexpectedly behaves as a channel activator rather than an inhibitor. A charybdotoxin-sensitive mutant of KcsA exhibits similar susceptibility to Tx7335 as wild-type, indicating that the binding site for Tx7335 is distinct from that of canonical pore-blocker toxins. Based on the extracellular location of the toxin binding site (far away from the intracellular pH gate), we propose that Tx7335 increases potassium flow through KcsA by allosterically reducing inactivation of the channel. PMID:27044983

  1. Surface-enhanced IR absorption spectroscopy of the KcsA potassium channel upon application of an electric field.

    PubMed

    Yamakata, Akira; Shimizu, Hirofumi; Oiki, Shigetoshi

    2015-09-01

    Surface-enhanced IR absorption spectroscopy (SEIRAS) is a powerful tool for studying the structure of molecules adsorbed on an electrode surface (ATR-SEIRA). Coupled with an electrochemical system, structural changes induced by changes in the electric field can be detected. All the membrane proteins are subjected to the effect of membrane electric field, but conformational changes at different membrane potentials and their functional relevance have not been studied extensively except for channel proteins. In this contribution, background information of potential-dependent functional and structural changes of a prototypical channel, the KcsA channel, is summarized, and SEIRAS applied to the KcsA channel under the application of the potential is shown. The potassium channels allow K(+) to permeate selectively through the structural part called the selectivity filter, in which dehydrated K(+) ions interact with backbone carbonyls. In the absence of K(+), the selectivity filter undergoes conformational changes to the non-conductive collapsed conformation. To apply the electric field, the KcsA channels were fixed on the gold surface in either upside or reverse orientation. The SEIRA spectrum in K(+) or Na(+) solution revealed both backbone structural changes and local changes in the OCO-carboxylate groups. Upon application of the negative electric field, the spectrum of OCO was enhanced only in the K(+) solution. These results indicate that the negative electric field accumulates local K(+) concentration, which turned the collapsed filter to the conductive conformation. ATR-SEIRA serves as an unprecedented experimental system for examining membrane proteins under an electric field.

  2. On the classical vibrational coherence of carbonyl groups in the selectivity filter backbone of the KcsA ion channel.

    PubMed

    Salari, V; Sajadi, M; Bassereh, H; Rezania, V; Alaei, M; Tuszynski, J A

    2015-06-01

    It has been suggested that quantum coherence in the selectivity filter of ion channel may play a key role in fast conduction and selectivity of ions. However, it has not been clearly elucidated yet why classical coherence is not sufficient for this purpose. In this paper, we investigate the classical vibrational coherence between carbonyl groups oscillations in the selectivity filter of KcsA ion channels based on the data obtained from molecular dynamics simulations. Our results show that classical coherence plays no effective role in fast ionic conduction. PMID:25990939

  3. Structures of KcsA in Complex with Symmetrical Quaternary Ammonium Compounds Reveal a Hydrophobic Binding Site

    PubMed Central

    2015-01-01

    Potassium channels allow for the passive movement of potassium ions across the cell membrane and are instrumental in controlling the membrane potential in all cell types. Quaternary ammonium (QA) compounds block potassium channels and have long been used to study the functional and structural properties of these channels. Here we describe the interaction between three symmetrical hydrophobic QAs and the prokaryotic potassium channel KcsA. The structures demonstrate the presence of a hydrophobic pocket between the inner helices of KcsA and provide insight into the binding site and blocking mechanism of hydrophobic QAs. The structures also reveal a structurally hidden pathway between the central cavity and the outside membrane environment reminiscent of the lateral fenestration observed in sodium channels that can be accessed through small conformational changes in the pore wall. We propose that the hydrophobic binding pocket stabilizes the alkyl chains of long-chain QA molecules and may play a key role in hydrophobic drug binding in general. PMID:25093676

  4. Polyphosphate at the Streptomyces lividans cytoplasmic membrane is enhanced in the presence of the potassium channel KcsA.

    PubMed

    Hegermann, J; Lünsdorf, H; Overbeck, J; Schrempf, H

    2008-01-01

    The distribution of polyphosphate (polyP) within the cytoplasmic membrane of Streptomyces lividans hyphae or protoplasts has been determined at high spatial resolution by elemental mapping using energy-filtered electron microscopy (EFTEM). The results revealed that polyP was best traceable after its interaction with lead ions followed by their precipitation as lead sulphide. Concomitant studies of the S.lividans wildtype (WT) strain and its co-embedded mutant DeltaK (lacking a functional kcsA gene) were conducted by labelling as the surface matrix of either one was labelled by cationic colloidal thorium dioxide. Within the WT strain, additional polyP was found to accumulate distinctly at the inner face of the cytoplasmic membrane. After removal of the cell wall (within protoplasts), the polyP-derived lead-sulphide (PbS) precipitate formed clusters of fibrillar material extending up to 50 nm into the cytoplasm. This feature was absent in the DeltaK mutant strain. Together the results revealed that the presence of the KcsA channel and the structured polyP coincide.

  5. Detection of the opening of the bundle crossing in KcsA with fluorescence lifetime spectroscopy reveals the existence of two gates for ion conduction.

    PubMed

    Blunck, Rikard; Cordero-Morales, Julio F; Cuello, Luis G; Perozo, Eduardo; Bezanilla, Francisco

    2006-11-01

    The closed KcsA channel structure revealed a crossing of the cytosolic ends of the transmembrane helices blocking the permeation pathway. It is generally agreed that during channel opening this helical bundle crossing has to widen in order to enable access to the inner cavity. Here, we address the question of whether the opening of the inner gate is sufficient for ion conduction, or if a second gate, located elsewhere, may interrupt the ion flow. We used fluorescence lifetime measurements on KcsA channels labeled with tetramethylrhodamine at residues in the C-terminal end of TM2 to report on the opening of the lower pore region. We found two populations of channels with different fluorescence lifetimes, whose relative distribution agrees with the open probability of the channel. The absolute fraction of channels found with an open bundle crossing is too high to explain the low open probability of the KcsA-WT channel. We found the same distribution as in the WT channel between open and closed bundle crossing for two KcsA mutants, A73E and E71A, which significantly increase open probability at low pH. These two results strongly suggest that a second gate in the ion permeation pathway exists. The location of the mutations A73E and E71A suggests that the second gate may be the selectivity filter, which resides in an inactivated state under steady-state conditions. Since the long closed times observed in KcsA-WT are not present in KcsA-A73E or -E71A, we propose that KcsA-WT remains predominantly in a state with an open bundle crossing but closed (inactivated) second gate, while the mutations A73E and E71A sharply decrease the tendency to enter in the inactivated state, and as a consequence, the second gate is predominantly open at steady state. The ability to monitor the opening of the bundle crossing optically enables the direct recording of the movement of the pore helices while the channel is functioning. PMID:17043150

  6. Functional Role and Affinity of Inorganic Cations in Stabilizing the Tetrameric Structure of the KcsA K+ Channel

    PubMed Central

    Krishnan, Manoj N.; Bingham, Jon-Paul; Lee, Siew Hwee; Trombley, Patrick; Moczydlowski, Edward

    2005-01-01

    Crystal structures of the tetrameric KcsA K+ channel reveal seven distinct binding sites for K+ ions within the central pore formed at the fourfold rotational symmetry axis. Coordination of an individual K+ ion by eight protein oxygen atoms within the selectivity filter suggests that ion-subunit bridging by cation–oxygen interactions contributes to structural stability of the tetramer. To test this hypothesis, we examined the effect of inorganic cations on the temperature dependence of the KcsA tetramer as monitored by SDS-PAGE. Inorganic cations known to permeate or strongly block K+ channels (K+, Rb+, Cs+, Tl+, NH4+, Ba2+, and Sr2+) confer tetramer stability at higher temperatures (T0.5 range = 87°C to >99°C) than impermeant cations and weak blockers (Li+, Na+, Tris+, choline+; T0.5 range = 59°C to 77°C). Titration of K+, Ba2+, and other stabilizing cations protects against rapid loss of KcsA tetramer observed in 100 mM choline Cl at 90°C. Tetramer protection titrations of K+, Rb+, Cs+, Tl+, and NH4+ at 85°C or 90°C exhibit apparent Hill coefficients (N) ranging from 1.7 to 3.3 and affinity constants (K0.5) ranging from 1.1 to 9.6 mM. Ba2+ and Sr2+ titrations exhibit apparent one-site behavior (N ≅ 1) with K0.5 values of 210 nM and 11 μM, respectively. At 95°C in the presence of 5 mM K+, titration of Li+ or Na+ destabilizes the tetramer with K0.5 values of 57 mM and 109 mM, respectively. We conclude that specific binding interactions of inorganic cations with the selectivity filter are an important determinant of tetramer stability of KscA. PMID:16129774

  7. Evolutionary Conserved Function of Barley and Arabidopsis 3-KETOACYL-CoA SYNTHASES in Providing Wax Signals for Germination of Powdery Mildew Fungi1[C][W

    PubMed Central

    Weidenbach, Denise; Jansen, Marcus; Franke, Rochus B.; Hensel, Goetz; Weissgerber, Wiebke; Ulferts, Sylvia; Jansen, Irina; Schreiber, Lukas; Korzun, Viktor; Pontzen, Rolf; Kumlehn, Jochen; Pillen, Klaus; Schaffrath, Ulrich

    2014-01-01

    For plant pathogenic fungi, such as powdery mildews, that survive only on a limited number of host plant species, it is a matter of vital importance that their spores sense that they landed on the right spot to initiate germination as quickly as possible. We investigated a barley (Hordeum vulgare) mutant with reduced epicuticular leaf waxes on which spores of adapted and nonadapted powdery mildew fungi showed reduced germination. The barley gene responsible for the mutant wax phenotype was cloned in a forward genetic screen and identified to encode a 3-KETOACYL-CoA SYNTHASE (HvKCS6), a protein participating in fatty acid elongation and required for synthesis of epicuticular waxes. Gas chromatography-mass spectrometry analysis revealed that the mutant has significantly fewer aliphatic wax constituents with a chain length above C-24. Complementation of the mutant restored wild-type wax and overcame germination penalty, indicating that wax constituents less present on the mutant are a crucial clue for spore germination. Investigation of Arabidopsis (Arabidopsis thaliana) transgenic plants with sense silencing of Arabidopsis REQUIRED FOR CUTICULAR WAX PRODUCTION1, the HvKCS6 ortholog, revealed the same germination phenotype against adapted and nonadapted powdery mildew fungi. Our findings hint to an evolutionary conserved mechanism for sensing of plant surfaces among distantly related powdery mildews that is based on KCS6-derived wax components. Perception of such a signal must have been evolved before the monocot-dicot split took place approximately 150 million years ago. PMID:25201879

  8. Solid-state NMR study and assignments of the KcsA potassium ion channel of S. lividans.

    PubMed

    Varga, Krisztina; Tian, Lin; McDermott, Ann E

    2007-12-01

    The extraordinary efficiency and selectivity of potassium channels have made them ideal systems for biophysical and functional studies of ion conduction. We carried out solid-state NMR studies of the selectivity filter region of the protein. Partial site-specific assignments of the NMR signals were obtained based on high field multidimensional solid-state NMR spectra of uniformly (13)C, (15)N enriched KcsA potassium channel from Streptomyces lividans. Both backbone and sidechain atoms were assigned for residues V76-D80 and P83-L90, in and near the selectivity filter region of the protein; this region exhibits good dispersion and useful chemical shift fingerprints. This study will enable structure, dynamic and mechanistic studies of ion conduction by NMR.

  9. Stilbene Synthase and Chalcone Synthase 1

    PubMed Central

    Rolfs, Claus-Henning; Kindl, Helmut

    1984-01-01

    Cultured cells of Picea excelsa capable of forming stilbenes and flavanoids have been established. Unlike needles of intact plants containing piceatannol (3,3′,4′,5-tetrahydroxystilbene) and stilbene glycosides the cultured cells converted phenylalanine and p-coumaric acid primarily into resveratrol monomethyl ether (3,4′-dihydroxy-5-methoxystilbene) and naringenin. Partially purified enzyme preparations were assayed for chalcone synthase as well as for stilbene synthase activity converting malonyl-CoA plus p-coumaroyl-CoA into 3,4′,5-trihydroxystilbene (resveratrol). Although stilbene synthase and chalcone synthase use the same substrates and exhibit similar molecular properties, i.e. molecular weight and subunit molecular weight, they are two different proteins. This difference was demonstrated by gel electrophoresis and by means of monospecific antibodies. PMID:16663649

  10. Conduction properties of KcsA measured using brownian dynamics with flexible carbonyl groups in the selectivity filter.

    PubMed

    Chung, Shin-Ho; Corry, Ben

    2007-07-01

    In the narrow segment of an ion conducting pathway, it is likely that a permeating ion influences the positions of the nearby atoms that carry partial or full electronic charges. Here we introduce a method of incorporating the motion of charged atoms lining the pore into Brownian dynamics simulations of ion conduction. The movements of the carbonyl groups in the selectivity filter of the KcsA channel are calculated explicitly, allowing their bond lengths, bond angles, and dihedral angels to change in response to the forces acting upon them. By systematically changing the coefficients of bond stretching and of angle bending, the carbon and oxygen atoms can be made to fluctuate from their fixed positions by varying mean distances. We show that incorporating carbonyl motion in this way does not alter the mechanism of ion conduction and only has a small influence on the computed current. The slope conductance of the channel increases by approximately 25% when the root mean-square fluctuations of the carbonyl groups are increased from 0.01 to 0.61 A. The energy profiles and the number of resident ions in the channel remain unchanged. The method we utilized here can be extended to allow the movement of glutamate or aspartate side chains lining the selectivity filters of other ionic channels.

  11. Multi-ion free energy landscapes underscore the microscopic mechanism of ion selectivity in the KcsA channel

    PubMed Central

    Medovoy, David; Perozo, Eduardo; Roux, Benoît

    2016-01-01

    Potassium (K+) channels are transmembrane proteins that passively and selectively allow K+ ions to flow through them, after opening in response to an external stimulus. One of the most critical functional aspects of their function is their ability to remain very selective for K+ over Na+ while allowing high-throughput ion conduction at a rate close to the diffusion limit. Classically, it is assumed that the free energy difference between K+ and Na+ in the pore relative to the bulk solution is the critical quantity at the origin of selectivity. This is the thermodynamic view of ion selectivity. An alternative view assumes that kinetic factor play the dominant role. Recent results from a number of studies have also highlighted the great importance of the multi-ion single file on the selectivity of K+ channels. The data indicate that having multiple K+ ions bound simultaneously is required for selective K+ conduction, and that a reduction in the number of bound K+ ions destroys the multi-ion selectivity mechanism utilized by K+ channels. In the present study, multi-ion potential of mean force molecular dynamics computations are carried out to clarify the mechanism of ion selectivity in the KcsA channel. The computations show that the multi-ion character of the permeation process is a critical element for establishing the selective ion conductivity through K+-channels. PMID:26896693

  12. A computational study of barium blockades in the KcsA potassium channel based on multi-ion potential of mean force calculations and free energy perturbation.

    PubMed

    Rowley, Christopher N; Roux, Benoît

    2013-10-01

    Electrophysiological studies have established that the permeation of Ba(2+) ions through the KcsA K(+)-channel is impeded by the presence of K(+) ions in the external solution, while no effect is observed for external Na(+) ions. This Ba(2+) "lock-in" effect suggests that at least one of the external binding sites of the KcsA channel is thermodynamically selective for K(+). We used molecular dynamics simulations to interpret these lock-in experiments in the context of the crystallographic structure of KcsA. Assuming that the Ba(2+) is bound in site S(2) in the dominant blocked state, we examine the conditions that could impede its translocation and cause the observed "lock-in" effect. Although the binding of a K(+) ion to site S(1) when site S(2) is occupied by Ba(2+) is prohibitively high in energy (>10 kcal/mol), binding to site S0 appears to be more plausible (ΔG > 4 kcal/mol). The 2D potential of mean force (PMF) for the simultaneous translocation of Ba(2+) from site S(2) to site S(1) and of a K(+) ion on the extracellular side shows a barrier that is consistent with the concept of external lock-in. The barrier opposing the movement of Ba(2+) is very high when a cation is in site S(0), and considerably smaller when the site is unoccupied. Furthermore, free energy perturbation calculations show that site S(0) is selective for K(+) by 1.8 kcal/mol when S(2) is occupied by Ba(2+). However, the same site S(0) is nonselective when site S(2) is occupied by K(+), which shows that the presence of Ba(2+) affects the selectivity of the pore. A theoretical framework within classical rate theory is presented to incorporate the concentration dependence of the external ions on the lock-in effect.

  13. A computational study of barium blockades in the KcsA potassium channel based on multi-ion potential of mean force calculations and free energy perturbation

    PubMed Central

    Rowley, Christopher N.

    2013-01-01

    Electrophysiological studies have established that the permeation of Ba2+ ions through the KcsA K+-channel is impeded by the presence of K+ ions in the external solution, while no effect is observed for external Na+ ions. This Ba2+ “lock-in” effect suggests that at least one of the external binding sites of the KcsA channel is thermodynamically selective for K+. We used molecular dynamics simulations to interpret these lock-in experiments in the context of the crystallographic structure of KcsA. Assuming that the Ba2+ is bound in site S2 in the dominant blocked state, we examine the conditions that could impede its translocation and cause the observed “lock-in” effect. Although the binding of a K+ ion to site S1 when site S2 is occupied by Ba2+ is prohibitively high in energy (>10 kcal/mol), binding to site S0 appears to be more plausible (ΔG > 4 kcal/mol). The 2D potential of mean force (PMF) for the simultaneous translocation of Ba2+ from site S2 to site S1 and of a K+ ion on the extracellular side shows a barrier that is consistent with the concept of external lock-in. The barrier opposing the movement of Ba2+ is very high when a cation is in site S0, and considerably smaller when the site is unoccupied. Furthermore, free energy perturbation calculations show that site S0 is selective for K+ by 1.8 kcal/mol when S2 is occupied by Ba2+. However, the same site S0 is nonselective when site S2 is occupied by K+, which shows that the presence of Ba2+ affects the selectivity of the pore. A theoretical framework within classical rate theory is presented to incorporate the concentration dependence of the external ions on the lock-in effect. PMID:24043859

  14. Geranyl diphosphate synthase from mint

    DOEpatents

    Croteau, Rodney Bruce; Wildung, Mark Raymond; Burke, Charles Cullen; Gershenzon, Jonathan

    1999-01-01

    A cDNA encoding geranyl diphosphate synthase from peppermint has been isolated and sequenced, and the corresponding amino acid sequence has been determined. Accordingly, an isolated DNA sequence (SEQ ID No:1) is provided which codes for the expression of geranyl diphosphate synthase (SEQ ID No:2) from peppermint (Mentha piperita). In other aspects, replicable recombinant cloning vehicles are provided which code for geranyl diphosphate synthase or for a base sequence sufficiently complementary to at least a portion of the geranyl diphosphate synthase DNA or RNA to enable hybridization therewith (e.g., antisense geranyl diphosphate synthase RNA or fragments of complementary geranyl diphosphate synthase DNA which are useful as polymerase chain reaction primers or as probes for geranyl diphosphate synthase or related genes). In yet other aspects, modified host cells are provided that have been transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence encoding geranyl diphosphate synthase. Thus, systems and methods are provided for the recombinant expression of geranyl diphosphate synthase that may be used to facilitate the production, isolation and purification of significant quantities of recombinant geranyl diphosphate synthase for subsequent use, to obtain expression or enhanced expression of geranyl diphosphate synthase in plants in order to enhance the production of monoterpenoids, to produce geranyl diphosphate in cancerous cells as a precursor to monoterpenoids having anti-cancer properties or may be otherwise employed for the regulation or expression of geranyl diphosphate synthase or the production of geranyl diphosphate.

  15. Geranyl diphosphate synthase from mint

    DOEpatents

    Croteau, R.B.; Wildung, M.R.; Burke, C.C.; Gershenzon, J.

    1999-03-02

    A cDNA encoding geranyl diphosphate synthase from peppermint has been isolated and sequenced, and the corresponding amino acid sequence has been determined. Accordingly, an isolated DNA sequence (SEQ ID No:1) is provided which codes for the expression of geranyl diphosphate synthase (SEQ ID No:2) from peppermint (Mentha piperita). In other aspects, replicable recombinant cloning vehicles are provided which code for geranyl diphosphate synthase or for a base sequence sufficiently complementary to at least a portion of the geranyl diphosphate synthase DNA or RNA to enable hybridization therewith (e.g., antisense geranyl diphosphate synthase RNA or fragments of complementary geranyl diphosphate synthase DNA which are useful as polymerase chain reaction primers or as probes for geranyl diphosphate synthase or related genes). In yet other aspects, modified host cells are provided that have been transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence encoding geranyl diphosphate synthase. Thus, systems and methods are provided for the recombinant expression of geranyl diphosphate synthase that may be used to facilitate the production, isolation and purification of significant quantities of recombinant geranyl diphosphate synthase for subsequent use, to obtain expression or enhanced expression of geranyl diphosphate synthase in plants in order to enhance the production of monoterpenoids, to produce geranyl diphosphate in cancerous cells as a precursor to monoterpenoids having anti-cancer properties or may be otherwise employed for the regulation or expression of geranyl diphosphate synthase or the production of geranyl diphosphate. 5 figs.

  16. Quantum calculations on water in the KcsA channel cavity with permeant and non-permeant ions

    SciTech Connect

    Kariev, Alisher M.; Green, Michael E.

    2009-04-30

    Different ions in the pore of the KcsA channel behave differently, and we relate this to their solvation. We show that the selectivity is dependent, in part, on the solvation in the cavity (sometimes referred to as the vestibule, it is the region containing water molecules between the intracellular gate and the selectivity filter at the extracellular end of the pore). We have shown earlier that potassium is more dependent at the upper end of the cavity region on solvation by the threonines there, while sodium ion has more water molecules as ligands. In addition, sodium ion is placed asymmetrically, while potassium is nearly exactly symmetric with respect to the four-fold symmetry of the channel. We have now extended these calculations to rubidium and cesium ions, and find that rubidium solvation resembles that of potassium (and both are permeant ions), while cesium resembles sodium (and both are non-permeant), in terms of the geometry of up to eight hydrating, and four non-hydrating, water molecules. In each case, a maximum of 12 water molecules are relevant to the calculation. The placement of the water molecules in the two cases is essentially the same as found from the electron density in the X-ray structure of Zhou and MacKinnon. For Na+ and K+, we show that energy decreases from bulk to the cavity to the lowest position in the selectivity filter (accurate energy could not be calculated for the heavier ions). A separate calculation shows that fixing the Na+ ion at the position of the K+ minimum, followed by re-optimization produced a significantly modified system, not something that could be produced by thermal fluctuations. Moving the K+ into the Na+ position in the upper cavity led to a small increase in energy, ≈ 3 kBT, but was accompanied by large shifts in the positions of hydrating waters, which would create a major kinetic barrier. Therefore, thermal fluctuations could not invalidate the conclusions of the main calculations.

  17. A computational study of ion conductance in the KcsA K(+) channel using a Nernst-Planck model with explicit resident ions.

    PubMed

    Jung, Yong-Woon; Lu, Benzhuo; Mascagni, Michael

    2009-12-01

    The biophysical mechanisms underlying the relationship between the structure and function of the KcsA K(+) channel are described. Because of the conciseness of electrodiffusion theory and the computational advantages of a continuum approach, the Nernst-Planck (NP) type models, such as the Goldman-Hodgkin-Katz and Poisson-NP (PNP) models, have been used to describe currents in ion channels. However, the standard PNP (SPNP) model is known to be inapplicable to narrow ion channels because it cannot handle discrete ion properties. To overcome this weakness, the explicit resident ions NP (ERINP) model was formulated, which applies a local explicit model where the continuum model fails. Then, the effects of the ERI Coulomb potential, the ERI induced potential, and the ERI dielectric constant for ion conductance were tested in the ERINP model. The current-voltage (I-V) and current-concentration (I-C) relationships determined in the ERINP model provided biologically significant information that the traditional continuum model could not, explicitly taking into account the effects of resident ions inside the KcsA K(+) channel. In addition, a mathematical analysis of the K(+) ion dynamics established a tight structure-function system with a shallow well, a deep well, and two K(+) ions resident in the selectivity filter. Furthermore, the ERINP model not only reproduced the experimental results with a realistic set of parameters, but it also reduced CPU costs.

  18. Plc1p, Arg82p, and Kcs1p, enzymes involved in inositol pyrophosphate synthesis, are essential for phosphate regulation and polyphosphate accumulation in Saccharomyces cerevisiae.

    PubMed

    Auesukaree, Choowong; Tochio, Hidehito; Shirakawa, Masahiro; Kaneko, Yoshinobu; Harashima, Satoshi

    2005-07-01

    In Saccharomyces cerevisiae, the phosphate signal transduction PHO pathway is involved in regulating several phosphate-responsive genes such as PHO5, which encodes repressible acid phosphatase. In this pathway, a cyclin-dependent kinase inhibitor (Pho81p) regulates the kinase activity of the cyclin-cyclin-dependent kinase complex Pho80p-Pho85p, which phosphorylates the transcription factor Pho4p in response to intracellular phosphate levels. However, how cells sense phosphate availability and transduce the phosphate signal to Pho81p remains unknown. To identify additional components of the PHO pathway, we have screened a collection of yeast deletion strains. We found that disruptants of PLC1, ARG82, and KCS1, which are involved in the synthesis of inositol polyphosphate, and ADK1, which encodes adenylate kinase, constitutively express PHO5. Each of these factors functions upstream of Pho81p and negatively regulates the PHO pathway independently of intracellular orthophosphate levels. Overexpression of KCS1, but not of the other genes, suppressed PHO5 expression in the wild-type strain under low phosphate conditions. These results raise the possibility that diphosphoinositol tetrakisphosphate and/or bisdiphosphoinositol triphosphate may be essential for regulation of the PHO pathway. Furthermore, the Deltaplc1, Deltaarg82, and Deltakcs1 deletion strains, but not the Deltaipk1 deletion strain, had significantly reduced intracellular polyphosphate levels, suggesting that enzymes involved in inositol pyrophosphate synthesis are also required for polyphosphate accumulation.

  19. Hybrid polyketide synthases

    DOEpatents

    Fortman, Jeffrey L.; Hagen, Andrew; Katz, Leonard; Keasling, Jay D.; Poust, Sean; Zhang, Jingwei; Zotchev, Sergey

    2016-05-10

    The present invention provides for a polyketide synthase (PKS) capable of synthesizing an even-chain or odd-chain diacid or lactam or diamine. The present invention also provides for a host cell comprising the PKS and when cultured produces the even-chain diacid, odd-chain diacid, or KAPA. The present invention also provides for a host cell comprising the PKS capable of synthesizing a pimelic acid or KAPA, and when cultured produces biotin.

  20. Probing the interaction of lipids with the non-annular binding sites of the potassium channel KcsA by magic-angle spinning NMR

    PubMed Central

    Marius, Phedra; de Planque, Maurits R.R.; Williamson, Philip T.F.

    2012-01-01

    The activity of the potassium channel KcsA is tightly regulated through the interactions of anionic lipids with high-affinity non-annular lipid binding sites located at the interface between the channel's subunits. Here we present solid-state phosphorous NMR studies that resolve the negatively charged lipid phosphatidylglycerol within the non-annular lipid-binding site. Perturbations in chemical shift observed upon the binding of phosphatidylglycerol are indicative of the interaction of positively charged sidechains within the non-annular binding site and the negatively charged lipid headgroup. Site directed mutagenesis studies have attributed these charge interactions to R64 and R89. Functionally the removal of the positive charges from R64 and R89 appears to act synergistically to reduce the probability of channel opening. PMID:21963409

  1. Cycle Flux Algebra for Ion and Water Flux through the KcsA Channel Single-File Pore Links Microscopic Trajectories and Macroscopic Observables

    PubMed Central

    Oiki, Shigetoshi; Iwamoto, Masayuki; Sumikama, Takashi

    2011-01-01

    In narrow pore ion channels, ions and water molecules diffuse in a single-file manner and cannot pass each other. Under such constraints, ion and water fluxes are coupled, leading to experimentally observable phenomena such as the streaming potential. Analysis of this coupled flux would provide unprecedented insights into the mechanism of permeation. In this study, ion and water permeation through the KcsA potassium channel was the focus, for which an eight-state discrete-state Markov model has been proposed based on the crystal structure, exhibiting four ion-binding sites. Random transitions on the model lead to the generation of the net flux. Here we introduced the concept of cycle flux to derive exact solutions of experimental observables from the permeation model. There are multiple cyclic paths on the model, and random transitions complete the cycles. The rate of cycle completion is called the cycle flux. The net flux is generated by a combination of cyclic paths with their own cycle flux. T.L. Hill developed a graphical method of exact solutions for the cycle flux. This method was extended to calculate one-way cycle fluxes of the KcsA channel. By assigning the stoichiometric numbers for ion and water transfer to each cycle, we established a method to calculate the water-ion coupling ratio (CRw-i) through cycle flux algebra. These calculations predicted that CRw-i would increase at low potassium concentrations. One envisions an intuitive picture of permeation as random transitions among cyclic paths, and the relative contributions of the cycle fluxes afford experimental observables. PMID:21304994

  2. Cycle flux algebra for ion and water flux through the KcsA channel single-file pore links microscopic trajectories and macroscopic observables.

    PubMed

    Oiki, Shigetoshi; Iwamoto, Masayuki; Sumikama, Takashi

    2011-01-31

    In narrow pore ion channels, ions and water molecules diffuse in a single-file manner and cannot pass each other. Under such constraints, ion and water fluxes are coupled, leading to experimentally observable phenomena such as the streaming potential. Analysis of this coupled flux would provide unprecedented insights into the mechanism of permeation. In this study, ion and water permeation through the KcsA potassium channel was the focus, for which an eight-state discrete-state Markov model has been proposed based on the crystal structure, exhibiting four ion-binding sites. Random transitions on the model lead to the generation of the net flux. Here we introduced the concept of cycle flux to derive exact solutions of experimental observables from the permeation model. There are multiple cyclic paths on the model, and random transitions complete the cycles. The rate of cycle completion is called the cycle flux. The net flux is generated by a combination of cyclic paths with their own cycle flux. T.L. Hill developed a graphical method of exact solutions for the cycle flux. This method was extended to calculate one-way cycle fluxes of the KcsA channel. By assigning the stoichiometric numbers for ion and water transfer to each cycle, we established a method to calculate the water-ion coupling ratio (CR(w-i)) through cycle flux algebra. These calculations predicted that CR(w-i) would increase at low potassium concentrations. One envisions an intuitive picture of permeation as random transitions among cyclic paths, and the relative contributions of the cycle fluxes afford experimental observables.

  3. Monoterpene synthases from common sage (Salvia officinalis)

    DOEpatents

    Croteau, Rodney Bruce; Wise, Mitchell Lynn; Katahira, Eva Joy; Savage, Thomas Jonathan

    1999-01-01

    cDNAs encoding (+)-bornyl diphosphate synthase, 1,8-cineole synthase and (+)-sabinene synthase from common sage (Salvia officinalis) have been isolated and sequenced, and the corresponding amino acid sequences has been determined. Accordingly, isolated DNA sequences (SEQ ID No:1; SEQ ID No:3 and SEQ ID No:5) are provided which code for the expression of (+)-bornyl diphosphate synthase (SEQ ID No:2), 1,8-cineole synthase (SEQ ID No:4) and (+)-sabinene synthase SEQ ID No:6), respectively, from sage (Salvia officinalis). In other aspects, replicable recombinant cloning vehicles are provided which code for (+)-bornyl diphosphate synthase, 1,8-cineole synthase or (+)-sabinene synthase, or for a base sequence sufficiently complementary to at least a portion of (+)-bornyl diphosphate synthase, 1,8-cineole synthase or (+)-sabinene synthase DNA or RNA to enable hybridization therewith. In yet other aspects, modified host cells are provided that have been transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence encoding (+)-bornyl diphosphate synthase, 1,8-cineole synthase or (+)-sabinene synthase. Thus, systems and methods are provided for the recombinant expression of the aforementioned recombinant monoterpene synthases that may be used to facilitate their production, isolation and purification in significant amounts. Recombinant (+)-bornyl diphosphate synthase, 1,8-cineole synthase and (+)-sabinene synthase may be used to obtain expression or enhanced expression of (+)-bornyl diphosphate synthase, 1,8-cineole synthase and (+)-sabinene synthase in plants in order to enhance the production of monoterpenoids, or may be otherwise employed for the regulation or expression of (+)-bornyl diphosphate synthase, 1,8-cineole synthase and (+)-sabinene synthase, or the production of their products.

  4. Coordination numbers of K(+) and Na(+) Ions inside the selectivity filter of the KcsA potassium channel: insights from first principles molecular dynamics.

    PubMed

    Bucher, Denis; Guidoni, Leonardo; Carloni, Paolo; Rothlisberger, Ursula

    2010-05-19

    Quantum mechanics/molecular mechanics (QM/MM) Car-Parrinello simulations were performed to estimate the coordination numbers of K(+) and Na(+) ions in the selectivity filter of the KcsA channel, and in water. At the DFT/BLYP level, K(+) ions were found to display an average coordination number of 6.6 in the filter, and 6.2 in water. Na(+) ions displayed an average coordination number of 5.2 in the filter, and 5.0 in water. A comparison was made with the average coordination numbers obtained from using classical molecular dynamics (6.7 for K(+) in the filter, 6.6 for K(+) in water, 6.0 for Na(+) in the filter, and 5.2 for Na(+) in water). The observation that different coordination numbers were displayed by the ions in QM/MM simulations and in classical molecular dynamics is relevant to the discussion of selectivity in K-channels.

  5. Competing Lipid-Protein and Protein-Protein Interactions Determine Clustering and Gating Patterns in the Potassium Channel from Streptomyces lividans (KcsA)*

    PubMed Central

    Molina, M. Luisa; Giudici, A. Marcela; Poveda, José A.; Fernández-Ballester, Gregorio; Montoya, Estefanía; Renart, M. Lourdes; Fernández, Asia M.; Encinar, José A.; Riquelme, Gloria; Morales, Andrés; González-Ros, José M.

    2015-01-01

    There is increasing evidence to support the notion that membrane proteins, instead of being isolated components floating in a fluid lipid environment, can be assembled into supramolecular complexes that take part in a variety of cooperative cellular functions. The interplay between lipid-protein and protein-protein interactions is expected to be a determinant factor in the assembly and dynamics of such membrane complexes. Here we report on a role of anionic phospholipids in determining the extent of clustering of KcsA, a model potassium channel. Assembly/disassembly of channel clusters occurs, at least partly, as a consequence of competing lipid-protein and protein-protein interactions at nonannular lipid binding sites on the channel surface and brings about profound changes in the gating properties of the channel. Our results suggest that these latter effects of anionic lipids are mediated via the Trp67–Glu71–Asp80 inactivation triad within the channel structure and its bearing on the selectivity filter. PMID:26336105

  6. Competing Lipid-Protein and Protein-Protein Interactions Determine Clustering and Gating Patterns in the Potassium Channel from Streptomyces lividans (KcsA).

    PubMed

    Molina, M Luisa; Giudici, A Marcela; Poveda, José A; Fernández-Ballester, Gregorio; Montoya, Estefanía; Renart, M Lourdes; Fernández, Asia M; Encinar, José A; Riquelme, Gloria; Morales, Andrés; González-Ros, José M

    2015-10-16

    There is increasing evidence to support the notion that membrane proteins, instead of being isolated components floating in a fluid lipid environment, can be assembled into supramolecular complexes that take part in a variety of cooperative cellular functions. The interplay between lipid-protein and protein-protein interactions is expected to be a determinant factor in the assembly and dynamics of such membrane complexes. Here we report on a role of anionic phospholipids in determining the extent of clustering of KcsA, a model potassium channel. Assembly/disassembly of channel clusters occurs, at least partly, as a consequence of competing lipid-protein and protein-protein interactions at nonannular lipid binding sites on the channel surface and brings about profound changes in the gating properties of the channel. Our results suggest that these latter effects of anionic lipids are mediated via the Trp(67)-Glu(71)-Asp(80) inactivation triad within the channel structure and its bearing on the selectivity filter.

  7. Genetics Home Reference: GM3 synthase deficiency

    MedlinePlus

    ... GM3 synthase deficiency is characterized by recurrent seizures (epilepsy) and problems with brain development. Within the first ... diagnosis or management of GM3 synthase deficiency: American Epilepsy Society: Find a Doctor Clinic for Special Children ( ...

  8. Mycocerosic acid synthase exemplifies the architecture of reducing polyketide synthases.

    PubMed

    Herbst, Dominik A; Jakob, Roman P; Zähringer, Franziska; Maier, Timm

    2016-03-24

    Polyketide synthases (PKSs) are biosynthetic factories that produce natural products with important biological and pharmacological activities. Their exceptional product diversity is encoded in a modular architecture. Modular PKSs (modPKSs) catalyse reactions colinear to the order of modules in an assembly line, whereas iterative PKSs (iPKSs) use a single module iteratively as exemplified by fungal iPKSs (fiPKSs). However, in some cases non-colinear iterative action is also observed for modPKSs modules and is controlled by the assembly line environment. PKSs feature a structural and functional separation into a condensing and a modifying region as observed for fatty acid synthases. Despite the outstanding relevance of PKSs, the detailed organization of PKSs with complete fully reducing modifying regions remains elusive. Here we report a hybrid crystal structure of Mycobacterium smegmatis mycocerosic acid synthase based on structures of its condensing and modifying regions. Mycocerosic acid synthase is a fully reducing iPKS, closely related to modPKSs, and the prototype of mycobacterial mycocerosic acid synthase-like PKSs. It is involved in the biosynthesis of C20-C28 branched-chain fatty acids, which are important virulence factors of mycobacteria. Our structural data reveal a dimeric linker-based organization of the modifying region and visualize dynamics and conformational coupling in PKSs. On the basis of comparative small-angle X-ray scattering, the observed modifying region architecture may be common also in modPKSs. The linker-based organization provides a rationale for the characteristic variability of PKS modules as a main contributor to product diversity. The comprehensive architectural model enables functional dissection and re-engineering of PKSs.

  9. STRUCTURAL ENZYMOLOGY OF POLYKETIDE SYNTHASES

    PubMed Central

    Tsai, Shiou-Chuan (Sheryl); Ames, Brian Douglas

    2010-01-01

    This chapter describes structural and associated enzymological studies of polyketide synthases, including isolated single domains and multidomain fragments. The sequence–structure–function relationship of polyketide biosynthesis, compared with homologous fatty acid synthesis, is discussed in detail. Structural enzymology sheds light on sequence and structural motifs that are important for the precise timing, substrate recognition, enzyme catalysis, and protein–protein interactions leading to the extraordinary structural diversity of naturally occurring polyketides. PMID:19362634

  10. Acetohydroxyacid synthases: evolution, structure, and function.

    PubMed

    Liu, Yadi; Li, Yanyan; Wang, Xiaoyuan

    2016-10-01

    Acetohydroxyacid synthase, a thiamine diphosphate-dependent enzyme, can condense either two pyruvate molecules to form acetolactate for synthesizing L-valine and L-leucine or pyruvate with 2-ketobutyrate to form acetohydroxybutyrate for synthesizing L-isoleucine. Because the key reaction catalyzed by acetohydroxyacid synthase in the biosynthetic pathways of branched-chain amino acids exists in plants, fungi, archaea, and bacteria, but not in animals, acetohydroxyacid synthase becomes a potential target for developing novel herbicides and antimicrobial compounds. In this article, the evolution, structure, and catalytic mechanism of acetohydroxyacid synthase are summarized. PMID:27576495

  11. Producing biofuels using polyketide synthases

    SciTech Connect

    Katz, Leonard; Fortman, Jeffrey L; Keasling, Jay D

    2013-04-16

    The present invention provides for a non-naturally occurring polyketide synthase (PKS) capable of synthesizing a carboxylic acid or a lactone, and a composition such that a carboxylic acid or lactone is included. The carboxylic acid or lactone, or derivative thereof, is useful as a biofuel. The present invention also provides for a recombinant nucleic acid or vector that encodes such a PKS, and host cells which also have such a recombinant nucleic acid or vector. The present invention also provides for a method of producing such carboxylic acids or lactones using such a PKS.

  12. Molecular evolution and sequence divergence of plant chalcone synthase and chalcone synthase-Like genes.

    PubMed

    Han, Yingying; Zhao, Wenwen; Wang, Zhicui; Zhu, Jingying; Liu, Qisong

    2014-06-01

    Plant chalcone synthase (CHS) and CHS-Like (CHSL) proteins are polyketide synthases. In this study, we evaluated the molecular evolution of this gene family using representative types of CHSL genes, including stilbene synthase (STS), 2-pyrone synthase (2-PS), bibenzyl synthase (BBS), acridone synthase (ACS), biphenyl synthase (BIS), benzalacetone synthase, coumaroyl triacetic acid synthase (CTAS), and benzophenone synthase (BPS), along with their CHS homologs from the same species of both angiosperms and gymnosperms. A cDNA-based phylogeny indicated that CHSLs had diverse evolutionary patterns. STS, ACS, and 2-PS clustered with CHSs from the same species (late diverged pattern), while CTAS, BBS, BPS, and BIS were distant from their CHS homologs (early diverged pattern). The amino-acid phylogeny suggested that CHS and CHSL proteins formed clades according to enzyme function. The CHSs and CHSLs from Polygonaceae and Arachis had unique evolutionary histories. Synonymous mutation rates were lower in late diverged CHSLs than in early diverged ones, indicating that gene duplications occurred more recently in late diverged CHSLs than in early diverged ones. Relative rate tests proved that late diverged CHSLs had unequal rates to CHSs from the same species when using fatty acid synthase, which evolved from the common ancestor with the CHS superfamily, as the outgroup, while the early diverged lineages had equal rates. This indicated that late diverged CHSLs experienced more frequent mutation than early diverged CHSLs after gene duplication, allowing obtaining new functions in relatively short period of time.

  13. Trichodiene synthase. Substrate specificity and inhibition.

    PubMed

    Cane, D E; Yang, G; Xue, Q; Shim, J H

    1995-02-28

    The substrate specificity of the sesquiterpene synthase trichodiene synthase was examined by determining the Vmax and Km parameters for the natural substrate, trans,trans-farnesyl diphosphate (1), its stereoisomer, cis,trans-farnesyl diphosphate, and the tertiary allylic isomer, (3R)-nerolidyl diphosphate (3), using both the native fungal and recombinant enzymes. A series of farnesyl diphosphate analogs, 15, 16, 20, 7, 8, and 9, was also tested as inhibitors of trichodiene synthase. 10-Fluorofarnesyl diphosphate (15) was the most effective competitive inhibitor, with a K1 of 16 nM compared to the Km for 1 of 87 nM, while the ether analog of farnesyl diphosphate, 8, an extremely potent inhibitor of squalene synthase, showed only modest inhibition of trichodiene synthase, with a K1/Km of 70. PMID:7873526

  14. Crystal structure of riboflavin synthase

    SciTech Connect

    Liao, D.-I.; Wawrzak, Z.; Calabrese, J.C.; Viitanen, P.V.; Jordan, D.B.

    2010-03-05

    Riboflavin synthase catalyzes the dismutation of two molecules of 6,7-dimethyl-8-(1'-D-ribityl)-lumazine to yield riboflavin and 4-ribitylamino-5-amino-2,6-dihydroxypyrimidine. The homotrimer of 23 kDa subunits has no cofactor requirements for catalysis. The enzyme is nonexistent in humans and is an attractive target for antimicrobial agents of organisms whose pathogenicity depends on their ability to biosynthesize riboflavin. The first three-dimensional structure of the enzyme was determined at 2.0 {angstrom} resolution using the multiwavelength anomalous diffraction (MAD) method on the Escherichia coli protein containing selenomethionine residues. The homotrimer consists of an asymmetric assembly of monomers, each of which comprises two similar {beta} barrels and a C-terminal {alpha} helix. The similar {beta} barrels within the monomer confirm a prediction of pseudo two-fold symmetry that is inferred from the sequence similarity between the two halves of the protein. The {beta} barrels closely resemble folds found in phthalate dioxygenase reductase and other flavoproteins. The three active sites of the trimer are proposed to lie between pairs of monomers in which residues conserved among species reside, including two Asp-His-Ser triads and dyads of Cys-Ser and His-Thr. The proposed active sites are located where FMN (an analog of riboflavin) is modeled from an overlay of the {beta} barrels of phthalate dioxygenase reductase and riboflavin synthase. In the trimer, one active site is formed, and the other two active sites are wide open and exposed to solvent. The nature of the trimer configuration suggests that only one active site can be formed and be catalytically competent at a time.

  15. The lumazine synthase/riboflavin synthase complex: shapes and functions of a highly variable enzyme system.

    PubMed

    Ladenstein, Rudolf; Fischer, Markus; Bacher, Adelbert

    2013-06-01

    The xylene ring of riboflavin (vitamin B2 ) is assembled from two molecules of 3,4-dihydroxy-2-butanone 4-phosphate by a mechanistically complex process that is jointly catalyzed by lumazine synthase and riboflavin synthase. In Bacillaceae, these enzymes form a structurally unique complex comprising an icosahedral shell of 60 lumazine synthase subunits and a core of three riboflavin synthase subunits, whereas many other bacteria have empty lumazine synthase capsids, fungi, Archaea and some eubacteria have pentameric lumazine synthases, and the riboflavin synthases of Archaea are paralogs of lumazine synthase. The structures of the molecular ensembles have been studied in considerable detail by X-ray crystallography, X-ray small-angle scattering and electron microscopy. However, certain mechanistic aspects remain unknown. Surprisingly, the quaternary structure of the icosahedral β subunit capsids undergoes drastic changes, resulting in formation of large, quasi-spherical capsids; this process is modulated by sequence mutations. The occurrence of large shells consisting of 180 or more lumazine synthase subunits has recently generated interest for protein engineering topics, particularly the construction of encapsulation systems.

  16. Unique animal prenyltransferase with monoterpene synthase activity

    NASA Astrophysics Data System (ADS)

    Gilg, Anna B.; Tittiger, Claus; Blomquist, Gary J.

    2009-06-01

    Monoterpenes are structurally diverse natural compounds that play an essential role in the chemical ecology of a wide array of organisms. A key enzyme in monoterpene biosynthesis is geranyl diphosphate synthase (GPPS). GPPS is an isoprenyl diphosphate synthase that catalyzes a single electrophilic condensation reaction between dimethylallyl diphosphate (C5) and isopentenyl diphosphate (C5) to produce geranyl diphosphate (GDP; C10). GDP is the universal precursor to all monoterpenes. Subsequently, monoterpene synthases are responsible for the transformation of GDP to a variety of acyclic, monocyclic, and bicyclic monoterpene products. In pheromone-producing male Ips pini bark beetles (Coleoptera: Scolytidae), the acyclic monoterpene myrcene is required for the production of the major aggregation pheromone component, ipsdienol. Here, we report monoterpene synthase activity associated with GPPS of I. pini. Enzyme assays were performed on recombinant GPPS to determine the presence of monoterpene synthase activity, and the reaction products were analyzed by coupled gas chromatography-mass spectrometry. The functionally expressed recombinant enzyme produced both GDP and myrcene, making GPPS of I. pini a bifunctional enzyme. This unique insect isoprenyl diphosphate synthase possesses the functional plasticity that is characteristic of terpene biosynthetic enzymes of plants, contributing toward the current understanding of product specificity of the isoprenoid pathway.

  17. Nitric oxide synthases in pregnant rat uterus.

    PubMed

    Farina, M; Ribeiro, M L; Franchi, A

    2001-03-01

    The conversion of [14C]arginine into [14C]citrulline as an indicator of nitric oxide synthesis was studied in uteri isolated from rats on different days of gestation, after labour and during dioestrus. Nitric oxide synthesis was present in uterine tissues isolated at each stage of gestation and also in tissues collected during dioestrus and after labour. Expression of neuronal nitric oxide synthase was not detectable at any of the stages studied. Endothelial nitric oxide synthase was present at all the stages studied, but there was a significant increase on day 13 of gestation and a decrease thereafter, with the lowest expression recorded on the day after labour. Inducible nitric oxide synthase expression in rat uteri increased substantially during pregnancy, with the highest expression on day 13 of gestation; expression decreased at term and after labour. The changes in expression of inducible nitric oxide synthase were coincident with the changes in nitric oxide synthase activity in uteri treated with aminoguanidine. Thus, these findings indicate that an increase in expression of inducible nitric oxide synthase in the uterus may be important for maintenance of uterine quiescence during pregnancy and its decrease near the time of labour could have an effect on the start of uterine contractility. PMID:11226066

  18. Malate synthase a membrane protein

    SciTech Connect

    Chapman, K.D.; Turley, R.B.; Hermerath, C.A.; Carrapico, F.; Trelease, R.N.

    1987-04-01

    Malate synthase (MS) is generally regarded as a peripheral membrane protein, and believed by some to be ontogenetically associated with ER. However, immuno- and cyto-chemical in situ localizations show MS throughout the matrix of cotton (and cucumber) glyoxysomes, not specifically near their boundary membranes, nor in ER. Only a maximum of 50% MS can be solubilized from cotton glyoxysomes with 1% Triton X-100, 2mM Zwittergen 14, or 10mM DOC +/- salts. Cotton MS does not incorporate /sup 3/H-glucosamine in vivo, nor does it react with Con A on columns or blots. Cotton MS banded with ER in sucrose gradients (20-40%) in Tricine after 3h, but not after 22h in Tricine or Hepes, or after 3h in Hepes or K-phosphate. Collectively the authors data are inconsistent with physiologically meaningful MS-membrane associations in ER or glyoxysomes. It appears that experimentally-induced aggregates of MS migrate in ER gradients and occur in isolated glyoxysomes. These data indicate that ER is not involved in synthesis or modification of cottonseed MS prior to its import into the glyoxysomal matrix.

  19. Dihydrodipicolinate synthase from Thermotoga maritima.

    PubMed

    Pearce, F Grant; Perugini, Matthew A; McKerchar, Hannah J; Gerrard, Juliet A

    2006-12-01

    DHDPS (dihydrodipicolinate synthase) catalyses the branch point in lysine biosynthesis in bacteria and plants and is feedback inhibited by lysine. DHDPS from the thermophilic bacterium Thermotoga maritima shows a high level of heat and chemical stability. When incubated at 90 degrees C or in 8 M urea, the enzyme showed little or no loss of activity, unlike the Escherichia coli enzyme. The active site is very similar to that of the E. coli enzyme, and at mesophilic temperatures the two enzymes have similar kinetic constants. Like other forms of the enzyme, T. maritima DHDPS is a tetramer in solution, with a sedimentation coefficient of 7.2 S and molar mass of 133 kDa. However, the residues involved in the interface between different subunits in the tetramer differ from those of E. coli and include two cysteine residues poised to form a disulfide bond. Thus the increased heat and chemical stability of the T. maritima DHDPS enzyme is, at least in part, explained by an increased number of inter-subunit contacts. Unlike the plant or E. coli enzyme, the thermophilic DHDPS enzyme is not inhibited by (S)-lysine, suggesting that feedback control of the lysine biosynthetic pathway evolved later in the bacterial lineage. PMID:16872276

  20. Identification of avian wax synthases

    PubMed Central

    2012-01-01

    Background Bird species show a high degree of variation in the composition of their preen gland waxes. For instance, galliform birds like chicken contain fatty acid esters of 2,3-alkanediols, while Anseriformes like goose or Strigiformes like barn owl contain wax monoesters in their preen gland secretions. The final biosynthetic step is catalyzed by wax synthases (WS) which have been identified in pro- and eukaryotic organisms. Results Sequence similarities enabled us to identify six cDNAs encoding putative wax synthesizing proteins in chicken and two from barn owl and goose. Expression studies in yeast under in vivo and in vitro conditions showed that three proteins from chicken performed WS activity while a sequence from chicken, goose and barn owl encoded a bifunctional enzyme catalyzing both wax ester and triacylglycerol synthesis. Mono- and bifunctional WS were found to differ in their substrate specificities especially with regard to branched-chain alcohols and acyl-CoA thioesters. According to the expression patterns of their transcripts and the properties of the enzymes, avian WS proteins might not be confined to preen glands. Conclusions We provide direct evidence that avian preen glands possess both monofunctional and bifunctional WS proteins which have different expression patterns and WS activities with different substrate specificities. PMID:22305293

  1. Energy transduction in ATP synthase

    NASA Astrophysics Data System (ADS)

    Elston, Timothy; Wang, Hongyun; Oster, George

    1998-01-01

    Mitochondria, bacteria and chloroplasts use the free energy stored in transmembrane ion gradients to manufacture ATP by the action of ATP synthase. This enzyme consists of two principal domains. The asymmetric membrane-spanning Fo portion contains the proton channel, and the soluble F1 portion contains three catalytic sites which cooperate in the synthetic reactions. The flow of protons through Fo is thought to generate a torque which is transmitted to F1 by an asymmetric shaft, the coiled-coil γ-subunit. This acts as a rotating `cam' within F1, sequentially releasing ATPs from the three active sites. The free-energy difference across the inner membrane of mitochondria and bacteria is sufficient to produce three ATPs per twelve protons passing through the motor. It has been suggested that this protonmotive force biases the rotor's diffusion so that Fo constitutes a rotary motor turning the γ shaft. Here we show that biased diffusion, augmented by electrostatic forces, does indeed generate sufficient torque to account for ATP production. Moreover, the motor's reversibility - supplying torque from ATP hydrolysis in F1 converts the motor into an efficient proton pump - can also be explained by our model.

  2. Critical aspartic acid residues in pseudouridine synthases.

    PubMed

    Ramamurthy, V; Swann, S L; Paulson, J L; Spedaliere, C J; Mueller, E G

    1999-08-01

    The pseudouridine synthases catalyze the isomerization of uridine to pseudouridine at particular positions in certain RNA molecules. Genomic data base searches and sequence alignments using the first four identified pseudouridine synthases led Koonin (Koonin, E. V. (1996) Nucleic Acids Res. 24, 2411-2415) and, independently, Santi and co-workers (Gustafsson, C., Reid, R., Greene, P. J., and Santi, D. V. (1996) Nucleic Acids Res. 24, 3756-3762) to group this class of enzyme into four families, which display no statistically significant global sequence similarity to each other. Upon further scrutiny (Huang, H. L., Pookanjanatavip, M., Gu, X. G., and Santi, D. V. (1998) Biochemistry 37, 344-351), the Santi group discovered that a single aspartic acid residue is the only amino acid present in all of the aligned sequences; they then demonstrated that this aspartic acid residue is catalytically essential in one pseudouridine synthase. To test the functional significance of the sequence alignments in light of the global dissimilarity between the pseudouridine synthase families, we changed the aspartic acid residue in representatives of two additional families to both alanine and cysteine: the mutant enzymes are catalytically inactive but retain the ability to bind tRNA substrate. We have also verified that the mutant enzymes do not release uracil from the substrate at a rate significant relative to turnover by the wild-type pseudouridine synthases. Our results clearly show that the aligned aspartic acid residue is critical for the catalytic activity of pseudouridine synthases from two additional families of these enzymes, supporting the predictive power of the sequence alignments and suggesting that the sequence motif containing the aligned aspartic acid residue might be a prerequisite for pseudouridine synthase function.

  3. Terpene synthases are widely distributed in bacteria

    PubMed Central

    Yamada, Yuuki; Kuzuyama, Tomohisa; Komatsu, Mamoru; Shin-ya, Kazuo; Omura, Satoshi; Cane, David E.; Ikeda, Haruo

    2015-01-01

    Odoriferous terpene metabolites of bacterial origin have been known for many years. In genome-sequenced Streptomycetaceae microorganisms, the vast majority produces the degraded sesquiterpene alcohol geosmin. Two minor groups of bacteria do not produce geosmin, with one of these groups instead producing other sesquiterpene alcohols, whereas members of the remaining group do not produce any detectable terpenoid metabolites. Because bacterial terpene synthases typically show no significant overall sequence similarity to any other known fungal or plant terpene synthases and usually exhibit relatively low levels of mutual sequence similarity with other bacterial synthases, simple correlation of protein sequence data with the structure of the cyclized terpene product has been precluded. We have previously described a powerful search method based on the use of hidden Markov models (HMMs) and protein families database (Pfam) search that has allowed the discovery of monoterpene synthases of bacterial origin. Using an enhanced set of HMM parameters generated using a training set of 140 previously identified bacterial terpene synthase sequences, a Pfam search of 8,759,463 predicted bacterial proteins from public databases and in-house draft genome data has now revealed 262 presumptive terpene synthases. The biochemical function of a considerable number of these presumptive terpene synthase genes could be determined by expression in a specially engineered heterologous Streptomyces host and spectroscopic identification of the resulting terpene products. In addition to a wide variety of terpenes that had been previously reported from fungal or plant sources, we have isolated and determined the complete structures of 13 previously unidentified cyclic sesquiterpenes and diterpenes. PMID:25535391

  4. Properties of phosphorylated thymidylate synthase.

    PubMed

    Frączyk, Tomasz; Ruman, Tomasz; Wilk, Piotr; Palmowski, Paweł; Rogowska-Wrzesinska, Adelina; Cieśla, Joanna; Zieliński, Zbigniew; Nizioł, Joanna; Jarmuła, Adam; Maj, Piotr; Gołos, Barbara; Wińska, Patrycja; Ostafil, Sylwia; Wałajtys-Rode, Elżbieta; Shugar, David; Rode, Wojciech

    2015-12-01

    Thymidylate synthase (TS) may undergo phosphorylation endogenously in mammalian cells, and as a recombinant protein expressed in bacterial cells, as indicated by the reaction of purified enzyme protein with Pro-Q® Diamond Phosphoprotein Gel Stain (PGS). With recombinant human, mouse, rat, Trichinella spiralis and Caenorhabditis elegans TSs, expressed in Escherichia coli, the phosphorylated, compared to non-phosphorylated recombinant enzyme forms, showed a decrease in Vmax(app), bound their cognate mRNA (only rat enzyme studied), and repressed translation of their own and several heterologous mRNAs (human, rat and mouse enzymes studied). However, attempts to determine the modification site(s), whether endogenously expressed in mammalian cells, or recombinant proteins, did not lead to unequivocal results. Comparative ESI-MS/analysis of IEF fractions of TS preparations from parental and FdUrd-resistant mouse leukemia L1210 cells, differing in sensitivity to inactivation by FdUMP, demonstrated phosphorylation of Ser(10) and Ser(16) in the resistant enzyme only, although PGS staining pointed to the modification of both L1210 TS proteins. The TS proteins phosphorylated in bacterial cells were shown by (31)P NMR to be modified only on histidine residues, like potassium phosphoramidate (KPA)-phosphorylated TS proteins. NanoLC-MS/MS, enabling the use of CID and ETD peptide fragmentation methods, identified several phosphohistidine residues, but certain phosphoserine and phosphothreonine residues were also implicated. Molecular dynamics studies, based on the mouse TS crystal structure, allowed one to assess potential of several phosphorylated histidine residues to affect catalytic activity, the effect being phosphorylation site dependent.

  5. Nuclear genetic defects of mitochondrial ATP synthase.

    PubMed

    Hejzlarová, K; Mráček, T; Vrbacký, M; Kaplanová, V; Karbanová, V; Nůsková, H; Pecina, P; Houštěk, J

    2014-01-01

    Disorders of ATP synthase, the key enzyme of mitochondrial energy provision belong to the most severe metabolic diseases presenting as early-onset mitochondrial encephalo-cardiomyopathies. Up to now, mutations in four nuclear genes were associated with isolated deficiency of ATP synthase. Two of them, ATP5A1 and ATP5E encode enzyme's structural subunits alpha and epsilon, respectively, while the other two ATPAF2 and TMEM70 encode specific ancillary factors that facilitate the biogenesis of ATP synthase. All these defects share a similar biochemical phenotype with pronounced decrease in the content of fully assembled and functional ATP synthase complex. However, substantial differences can be found in their frequency, molecular mechanism of pathogenesis, clinical manifestation as well as the course of the disease progression. While for TMEM70 the number of reported patients as well as spectrum of the mutations is steadily increasing, mutations in ATP5A1, ATP5E and ATPAF2 genes are very rare. Apparently, TMEM70 gene is highly prone to mutagenesis and this type of a rare mitochondrial disease has a rather frequent incidence. Here we present overview of individual reported cases of nuclear mutations in ATP synthase and discuss, how their analysis can improve our understanding of the enzyme biogenesis.

  6. An investigation into eukaryotic pseudouridine synthases.

    PubMed

    King, Ross D; Lu, Chuan

    2014-08-01

    A common post-transcriptional modification of RNA is the conversion of uridine to its isomer pseudouridine. We investigated the biological significance of eukaryotic pseudouridine synthases using the yeast Saccharomyces cerevisiae. We conducted a comprehensive statistical analysis on growth data from automated perturbation (gene deletion) experiments, and used bi-logistic curve analysis to characterise the yeast phenotypes. The deletant strains displayed different alteration in growth properties, including in some cases enhanced growth and/or biphasic growth curves not seen in wild-type strains under matched conditions. These results demonstrate that disrupting pseudouridine synthases can have a significant qualitative effect on growth. We further investigated the significance of post-transcriptional pseudouridine modification through investigation of the scientific literature. We found that (1) In Toxoplasma gondii, a pseudouridine synthase gene is critical in cellular differentiation between the two asexual forms: Tachyzoites and bradyzoites; (2) Mutation of pseudouridine synthase genes has also been implicated in human diseases (mitochondrial myopathy and sideroblastic anemia (MLASA); dyskeratosis congenita). Taken together, these results are consistent with pseudouridine synthases having a Gene Ontology function of "biological regulation".

  7. Exploring biosynthetic diversity with trichodiene synthase.

    PubMed

    Vedula, L Sangeetha; Zhao, Yuxin; Coates, Robert M; Koyama, Tanetoshi; Cane, David E; Christianson, David W

    2007-10-15

    Trichodiene synthase is a terpenoid cyclase that catalyzes the cyclization of farnesyl diphosphate (FPP) to form the bicyclic sesquiterpene hydrocarbon trichodiene (89%), at least five sesquiterpene side products (11%), and inorganic pyrophosphate (PP(i)). Incubation of trichodiene synthase with 2-fluorofarnesyl diphosphate or 4-methylfarnesyl diphosphate similarly yields sesquiterpene mixtures despite the electronic effects or steric bulk introduced by substrate derivatization. The versatility of the enzyme is also demonstrated in the 2.85A resolution X-ray crystal structure of the complex with Mg(2+) (3)-PP(i) and the benzyl triethylammonium cation, which is a bulkier mimic of the bisabolyl carbocation intermediate in catalysis. Taken together, these findings show that the active site of trichodiene synthase is sufficiently flexible to accommodate bulkier and electronically-diverse substrates and intermediates, which could indicate additional potential for the biosynthetic utility of this terpenoid cyclase. PMID:17678871

  8. Cellulose Synthase Complexes: Composition and Regulation

    PubMed Central

    Lei, Lei; Li, Shundai; Gu, Ying

    2012-01-01

    Live cell imaging has greatly advanced our knowledge on the molecular mechanism by which cellulose is deposited. Both the actin and microtubule cytoskeleton are involved in assuring the proper distribution, organization, and dynamics of cellulose synthase complexes (CSCs). This review is an update on the most recent progress on the characterization of the composition, regulation, and trafficking of CSCs. With the newly identified cellulose synthase interactive protein 1 (CSI1) on hand, we begin to unveil the mystery of an intimate relationship between cellulose microfibrils and microtubules. PMID:22639663

  9. Homology study of two polyhydroxyalkanoate (PHA) synthases from Pseudomonas aureofaciens.

    PubMed

    Umeda, F; Nishikawa, T; Miyasaka, H; Maeda, I; Kawase, M; Yagi, K

    2001-11-01

    Recently, we have cloned and analyzed two polyhydroxyalkanoate (PHA) synthase genes (phaC1 and phaC2 in the pha cluster) from Pseudomonas aureofaciens. In this report, the deduced amino acid (AA) sequences of PHA synthase 1 and PHA synthase 2 from P. aureofaciens are compared with those from three other bacterial strains (Pseudomonas sp. 61-3, P. oleovorans and P. aeruginosa) containing the homologous pha cluster. The level of homology of either PHA synthase 1 or PHA synthase 2 was high with each enzyme from these three bacterial strains. Furthermore, multialignment of PHA synthase AA sequences implied that both enzymes of PHA synthase 1 and PHA synthase 2 were highly conserved in the four strains including P. aureofaciens. PMID:11916262

  10. Identification of novel sesterterpene/triterpene synthase from Bacillus clausii.

    PubMed

    Sato, Tsutomu; Yamaga, Hiroaki; Kashima, Shoji; Murata, Yusuke; Shinada, Tetsuro; Nakano, Chiaki; Hoshino, Tsutomu

    2013-05-10

    Basic enzyme: The tetraprenyl-β-curcumene synthase homologue from the alkalophilic Bacillus clausii catalyses conversions of a geranylfarnesyl diphosphate and a hexaprenyl diphosphate into novel head-to-tail acyclic sesterterpene and triterpene. Tetraprenyl-β-curcumene synthase homologues represent a new family of terpene synthases that form not only sesquarterpene but also sesterterpene and triterpene. PMID:23554321

  11. Lessons from 455 Fusarium polyketide synthases

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In fungi, polyketide synthases (PKSs) synthesize a structurally diverse array of secondary metabolites (SMs) with a range of biological activities. The most studied SMs are toxic to animals and/or plants, alter plant growth, have beneficial pharmaceutical activities, and/or are brightly colored pigm...

  12. Producing dicarboxylic acids using polyketide synthases

    SciTech Connect

    Katz, Leonard; Fortman, Jeffrey L; Keasling, Jay D

    2013-10-29

    The present invention provides for a polyketide synthase (PKS) capable of synthesizing a dicarboxylic acid (diacid). Such diacids include diketide-diacids and triketide-diacids. The invention includes recombinant nucleic acid encoding the PKS, and host cells comprising the PKS. The invention also includes methods for producing the diacids.

  13. Producing dicarboxylic acids using polyketide synthases

    SciTech Connect

    Katz, Leonard; Fortman, Jeffrey L.; Keasling, Jay D.

    2015-05-26

    The present invention provides for a polyketide synthase (PKS) capable of synthesizing a dicarboxylic acid (diacid). Such diacids include diketide-diacids and triketide-diacids. The invention includes recombinant nucleic acid encoding the PKS, and host cells comprising the PKS. The invention also includes methods for producing the diacids.

  14. Re-Citrate Synthase from Clostridium kluyveri Is Phylogenetically Related to Homocitrate Synthase and Isopropylmalate Synthase Rather Than to Si-Citrate Synthase† ▿

    PubMed Central

    Li, Fuli; Hagemeier, Christoph H.; Seedorf, Henning; Gottschalk, Gerhard; Thauer, Rudolf K.

    2007-01-01

    The synthesis of citrate from acetyl-coenzyme A and oxaloacetate is catalyzed in most organisms by a Si-citrate synthase, which is Si-face stereospecific with respect to C-2 of oxaloacetate. However, in Clostridium kluyveri and some other strictly anaerobic bacteria, the reaction is catalyzed by a Re-citrate synthase, whose primary structure has remained elusive. We report here that Re-citrate synthase from C. kluyveri is the product of a gene predicted to encode isopropylmalate synthase. C. kluyveri is also shown to contain a gene for Si-citrate synthase, which explains why cell extracts of the organism always exhibit some Si-citrate synthase activity. PMID:17400742

  15. Geranyl diphosphate synthase large subunit, and methods of use

    DOEpatents

    Croteau, Rodney B.; Burke, Charles C.; Wildung, Mark R.

    2001-10-16

    A cDNA encoding geranyl diphosphate synthase large subunit from peppermint has been isolated and sequenced, and the corresponding amino acid sequence has been determined. Replicable recombinant cloning vehicles are provided which code for geranyl diphosphate synthase large subunit). In another aspect, modified host cells are provided that have been transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence encoding geranyl diphosphate synthase large subunit. In yet another aspect, the present invention provides isolated, recombinant geranyl diphosphate synthase protein comprising an isolated, recombinant geranyl diphosphate synthase large subunit protein and an isolated, recombinant geranyl diphosphate synthase small subunit protein. Thus, systems and methods are provided for the recombinant expression of geranyl diphosphate synthase.

  16. Benzophenone synthase from Garcinia mangostana L. pericarps.

    PubMed

    Nualkaew, Natsajee; Morita, Hiroyuki; Shimokawa, Yoshihiko; Kinjo, Keishi; Kushiro, Tetsuo; De-Eknamkul, Wanchai; Ebizuka, Yutaka; Abe, Ikuro

    2012-05-01

    The cDNA of a benzophenone synthase (BPS), a type III polyketide synthase (PKS), was cloned and the recombinant protein expressed from the fruit pericarps of Garcinia mangostana L., which contains mainly prenylated xanthones. The obtained GmBPS showed an amino acid sequence identity of 77-78% with other plant BPSs belonging to the same family (Clusiaceae). The recombinant enzyme produced 2,4,6-trihydroxybenzophenone as the predominant product with benzoyl CoA as substrate. It also accepted other substrates, such as other plant PKSs, and used 1-3 molecules of malonyl CoA to form various phloroglucinol-type and polyketide lactone-type compounds. Thus, providing GmBPS with various substrates in vivo might redirect the xanthone biosynthetic pathway.

  17. Monoterpene synthases from grand fir (Abies grandis). cDNA isolation, characterization, and functional expression of myrcene synthase, (-)-(4S)-limonene synthase, and (-)-(1S,5S)-pinene synthase.

    PubMed

    Bohlmann, J; Steele, C L; Croteau, R

    1997-08-29

    Grand fir (Abies grandis) has been developed as a model system for studying defensive oleoresin formation in conifers in response to insect attack or other injury. The turpentine fraction of the oleoresin is a complex mixture of monoterpene (C10) olefins in which (-)-limonene and (-)-alpha- and (-)-beta-pinene are prominent components; (-)-limonene and (-)-pinene synthase activities are also induced upon stem wounding. A similarity based cloning strategy yielded three new cDNA species from a wounded stem cDNA library that appeared to encode three distinct monoterpene synthases. After expression in Escherichia coli and enzyme assay with geranyl diphosphate as substrate, subsequent analysis of the terpene products by chiral phase gas chromatography and mass spectrometry showed that these sequences encoded a (-)-limonene synthase, a myrcene synthase, and a (-)-pinene synthase that produces both alpha-pinene and beta-pinene. In properties and reaction stereochemistry, the recombinant enzymes resemble the corresponding native monoterpene synthases of wound-induced grand fir stem. The deduced amino acid sequences indicated the limonene synthase to be 637 residues in length (73.5 kDa), the myrcene synthase to be 627 residues in length (72.5 kDa), and the pinene synthase to be 628 residues in length (71.5 kDa); all of these monoterpene synthases appear to be translated as preproteins bearing an amino-terminal plastid targeting sequence. Sequence comparison revealed that these monoterpene synthases from grand fir resemble sesquiterpene (C15) synthases and diterpene (C20) synthases from conifers more closely than other monoterpene synthases from angiosperm species. This similarity between extant monoterpene, sesquiterpene, and diterpene synthases of gymnosperms is surprising since functional diversification of this enzyme class is assumed to have occurred over 300 million years ago. Wound-induced accumulation of transcripts for monoterpene synthases was demonstrated by RNA

  18. Building-block selectivity of polyketide synthases.

    PubMed

    Liou, Grace F; Khosla, Chaitan

    2003-04-01

    For the past decade, polyketide synthases have presented an exciting paradigm for the controlled manipulation of complex natural product structure. These multifunctional enzymes catalyze the biosynthesis of polyketide natural products by stepwise condensation and modification of metabolically derived building blocks. In particular, regioselective modification of polyketide structure is possible by alterations in either intracellular acyl-CoA pools or, more commonly, by manipulation of acyl transferases that act as the primary gatekeepers for building blocks.

  19. Chrysanthemyl diphosphate synthase operates in planta as a bifunctional enzyme with chrysanthemol synthase activity.

    PubMed

    Yang, Ting; Gao, Liping; Hu, Hao; Stoopen, Geert; Wang, Caiyun; Jongsma, Maarten A

    2014-12-26

    Chrysanthemyl diphosphate synthase (CDS) is the first pathway-specific enzyme in the biosynthesis of pyrethrins, the most widely used plant-derived pesticide. CDS catalyzes c1'-2-3 cyclopropanation reactions of two molecules of dimethylallyl diphosphate (DMAPP) to yield chrysanthemyl diphosphate (CPP). Three proteins are known to catalyze this cyclopropanation reaction of terpene precursors. Two of them, phytoene and squalene synthase, are bifunctional enzymes with both prenyltransferase and terpene synthase activity. CDS, the other member, has been reported to perform only the prenyltransferase step. Here we show that the NDXXD catalytic motif of CDS, under the lower substrate conditions prevalent in plants, also catalyzes the next step, converting CPP into chrysanthemol by hydrolyzing the diphosphate moiety. The enzymatic hydrolysis reaction followed conventional Michaelis-Menten kinetics, with a Km value for CPP of 196 μm. For the chrysanthemol synthase activity, DMAPP competed with CPP as substrate. The DMAPP concentration required for half-maximal activity to produce chrysanthemol was ∼100 μm, and significant substrate inhibition was observed at elevated DMAPP concentrations. The N-terminal peptide of CDS was identified as a plastid-targeting peptide. Transgenic tobacco plants overexpressing CDS emitted chrysanthemol at a rate of 0.12-0.16 μg h(-1) g(-1) fresh weight. We propose that CDS should be renamed a chrysanthemol synthase utilizing DMAPP as substrate.

  20. Chrysanthemyl Diphosphate Synthase Operates in Planta as a Bifunctional Enzyme with Chrysanthemol Synthase Activity*

    PubMed Central

    Yang, Ting; Gao, Liping; Hu, Hao; Stoopen, Geert; Wang, Caiyun; Jongsma, Maarten A.

    2014-01-01

    Chrysanthemyl diphosphate synthase (CDS) is the first pathway-specific enzyme in the biosynthesis of pyrethrins, the most widely used plant-derived pesticide. CDS catalyzes c1′-2-3 cyclopropanation reactions of two molecules of dimethylallyl diphosphate (DMAPP) to yield chrysanthemyl diphosphate (CPP). Three proteins are known to catalyze this cyclopropanation reaction of terpene precursors. Two of them, phytoene and squalene synthase, are bifunctional enzymes with both prenyltransferase and terpene synthase activity. CDS, the other member, has been reported to perform only the prenyltransferase step. Here we show that the NDXXD catalytic motif of CDS, under the lower substrate conditions prevalent in plants, also catalyzes the next step, converting CPP into chrysanthemol by hydrolyzing the diphosphate moiety. The enzymatic hydrolysis reaction followed conventional Michaelis-Menten kinetics, with a Km value for CPP of 196 μm. For the chrysanthemol synthase activity, DMAPP competed with CPP as substrate. The DMAPP concentration required for half-maximal activity to produce chrysanthemol was ∼100 μm, and significant substrate inhibition was observed at elevated DMAPP concentrations. The N-terminal peptide of CDS was identified as a plastid-targeting peptide. Transgenic tobacco plants overexpressing CDS emitted chrysanthemol at a rate of 0.12–0.16 μg h−1 g−1 fresh weight. We propose that CDS should be renamed a chrysanthemol synthase utilizing DMAPP as substrate. PMID:25378387

  1. All members in the sphingomyelin synthase gene family have ceramide phosphoethanolamine synthase activity[S

    PubMed Central

    Ding, Tingbo; Kabir, Inamul; Li, Yue; Lou, Caixia; Yazdanyar, Amirfarbod; Xu, Jiachen; Dong, Jibin; Zhou, Hongwen; Park, Taesik; Boutjdir, Mohamed; Li, Zhiqiang; Jiang, Xian-Cheng

    2015-01-01

    Sphingomyelin synthase-related protein (SMSr) synthesizes the sphingomyelin analog ceramide phosphoethanolamine (CPE) in cells. Previous cell studies indicated that SMSr is involved in ceramide homeostasis and is crucial for cell function. To further examine SMSr function in vivo, we generated Smsr KO mice that were fertile and had no obvious phenotypic alterations. Quantitative MS analyses of plasma, liver, and macrophages from the KO mice revealed only marginal changes in CPE and ceramide as well as other sphingolipid levels. Because SMS2 also has CPE synthase activity, we prepared Smsr/Sms2 double KO mice. We found that CPE levels were not significantly changed in macrophages, suggesting that CPE levels are not exclusively dependent on SMSr and SMS2 activities. We then measured CPE levels in Sms1 KO mice and found that Sms1 deficiency also reduced plasma CPE levels. Importantly, we found that expression of Sms1 or Sms2 in SF9 insect cells significantly increased not only SM but also CPE formation, indicating that SMS1 also has CPE synthase activity. Moreover, we measured CPE synthase Km and Vmax for SMS1, SMS2, and SMSr using different NBD ceramides. Our study reveals that all mouse SMS family members (SMSr, SMS1, and SMS2) have CPE synthase activity. However, neither CPE nor SMSr appears to be a critical regulator of ceramide levels in vivo. PMID:25605874

  2. CTP synthase forms cytoophidia in the cytoplasm and nucleus

    SciTech Connect

    Gou, Ke-Mian; Chang, Chia-Chun; Shen, Qing-Ji; Sung, Li-Ying; Liu, Ji-Long

    2014-04-15

    CTP synthase is an essential metabolic enzyme responsible for the de novo synthesis of CTP. Multiple studies have recently showed that CTP synthase protein molecules form filamentous structures termed cytoophidia or CTP synthase filaments in the cytoplasm of eukaryotic cells, as well as in bacteria. Here we report that CTP synthase can form cytoophidia not only in the cytoplasm, but also in the nucleus of eukaryotic cells. Both glutamine deprivation and glutamine analog treatment promote formation of cytoplasmic cytoophidia (C-cytoophidia) and nuclear cytoophidia (N-cytoophidia). N-cytoophidia are generally shorter and thinner than their cytoplasmic counterparts. In mammalian cells, both CTP synthase 1 and CTP synthase 2 can form cytoophidia. Using live imaging, we have observed that both C-cytoophidia and N-cytoophidia undergo multiple rounds of fusion upon glutamine analog treatment. Our study reveals the coexistence of cytoophidia in the cytoplasm and nucleus, therefore providing a good opportunity to investigate the intracellular compartmentation of CTP synthase. - Highlights: • CTP synthase forms cytoophidia not only in the cytoplasm but also in the nucleus. • Glutamine deprivation and Glutamine analogs promotes cytoophidium formation. • N-cytoophidia exhibit distinct morphology when compared to C-cytoophidia. • Both CTP synthase 1 and CTP synthase 2 form cytoophidia in mammalian cells. • Fusions of cytoophidia occur in the cytoplasm and nucleus.

  3. Oligosaccharide Binding in Escherichia coli Glycogen Synthase

    SciTech Connect

    Sheng, Fang; Yep, Alejandra; Feng, Lei; Preiss, Jack; Geiger, James H.

    2010-11-17

    Glycogen/starch synthase elongates glucan chains and is the key enzyme in the synthesis of glycogen in bacteria and starch in plants. Cocrystallization of Escherichia coli wild-type glycogen synthase (GS) with substrate ADPGlc and the glucan acceptor mimic HEPPSO produced a closed form of GS and suggests that domain-domain closure accompanies glycogen synthesis. Cocrystallization of the inactive GS mutant E377A with substrate ADPGlc and oligosaccharide results in the first oligosaccharide-bound glycogen synthase structure. Four bound oligosaccharides are observed, one in the interdomain cleft (G6a) and three on the N-terminal domain surface (G6b, G6c, and G6d). Extending from the center of the enzyme to the interdomain cleft opening, G6a mostly interacts with the highly conserved N-terminal domain residues lining the cleft of GS. The surface-bound oligosaccharides G6c and G6d have less interaction with enzyme and exhibit a more curled, helixlike structural arrangement. The observation that oligosaccharides bind only to the N-terminal domain of GS suggests that glycogen in vivo probably binds to only one side of the enzyme to ensure unencumbered interdomain movement, which is required for efficient, continuous glucan-chain synthesis.

  4. Mutational analysis of a monoterpene synthase reaction: altered catalysis through directed mutagenesis of (-)-pinene synthase from Abies grandis.

    PubMed

    Hyatt, David C; Croteau, Rodney

    2005-07-15

    Two monoterpene synthases, (-)-pinene synthase and (-)-camphene synthase, from grand fir (Abies grandis) produce different product mixtures despite having highly homologous amino acid sequences and, presumably, very similar three-dimensional structures. The major product of (-)-camphene synthase, (-)-camphene, and the major products of (-)-pinene synthase, (-)-alpha-pinene, and (-)-beta-pinene, arise through distinct mechanistic variations of the electrophilic reaction cascade that is common to terpenoid synthases. Structural modeling followed by directed mutagenesis in (-)-pinene synthase was used to replace selected amino acid residues with the corresponding residues from (-)-camphene synthase in an effort to identify the amino acids responsible for the catalytic differences. This approach produced an enzyme in which more than half of the product was channeled through an alternative pathway. It was also shown that several (-)-pinene synthase to (-)-camphene synthase amino acid substitutions were necessary before catalysis was significantly altered. The data support a model in which the collective action of many key amino acids, located both in and distant from the active site pocket, regulate the course of the electrophilic reaction cascade.

  5. Regulation of mitochondrial ATP synthase in cardiac pathophysiology.

    PubMed

    Long, Qinqiang; Yang, Kevin; Yang, Qinglin

    2015-01-01

    Mitochondrial function is paramount to energy homeostasis, metabolism, signaling, and apoptosis in cells. Mitochondrial complex V (ATP synthase), a molecular motor, is the ultimate ATP generator and a key determinant of mitochondrial function. ATP synthase catalyzes the final coupling step of oxidative phosphorylation to supply energy in the form of ATP. Alterations at this step will crucially impact mitochondrial respiration and hence cardiac performance. It is well established that cardiac contractility is strongly dependent on the mitochondria, and that myocardial ATP depletion is a key feature of heart failure. ATP synthase dysfunction can cause and exacerbate human diseases, such as cardiomyopathy and heart failure. While ATP synthase has been extensively studied, essential questions related to how the regulation of ATP synthase determines energy metabolism in the heart linger and therapies targeting this important mechanism remain scarce. This review will visit the main findings, identify unsolved issues and provide insights into potential future perspectives related to the regulation of ATP synthase and cardiac pathophysiology.

  6. Surrogate splicing for functional analysis of sesquiterpene synthase genes.

    PubMed

    Wu, Shuiqin; Schoenbeck, Mark A; Greenhagen, Bryan T; Takahashi, Shunji; Lee, Sungbeom; Coates, Robert M; Chappell, Joseph

    2005-07-01

    A method for the recovery of full-length cDNAs from predicted terpene synthase genes containing introns is described. The approach utilizes Agrobacterium-mediated transient expression coupled with a reverse transcription-polydeoxyribonucleotide chain reaction assay to facilitate expression cloning of processed transcripts. Subsequent expression of intronless cDNAs in a suitable prokaryotic host provides for direct functional testing of the encoded gene product. The method was optimized by examining the expression of an intron-containing beta-glucuronidase gene agroinfiltrated into petunia (Petunia hybrida) leaves, and its utility was demonstrated by defining the function of two previously uncharacterized terpene synthases. A tobacco (Nicotiana tabacum) terpene synthase-like gene containing six predicted introns was characterized as having 5-epi-aristolochene synthase activity, while an Arabidopsis (Arabidopsis thaliana) gene previously annotated as a terpene synthase was shown to possess a novel sesquiterpene synthase activity for alpha-barbatene, thujopsene, and beta-chamigrene biosynthesis. PMID:15965019

  7. Geranyl diphosphate synthase molecules, and nucleic acid molecules encoding same

    DOEpatents

    Croteau, Rodney Bruce; Burke, Charles Cullen

    2008-06-24

    In one aspect, the present invention provides isolated nucleic acid molecules that each encode a geranyl diphosphate synthase protein, wherein each isolated nucleic acid molecule hybridizes to a nucleic acid molecule consisting of the sequence set forth in SEQ ID NO:1 under conditions of 5.times.SSC at 45.degree. C. for one hour. The present invention also provides isolated geranyl diphosphate synthase proteins, and methods for altering the level of expression of geranyl diphosphate synthase protein in a host cell.

  8. Vitis vinifera terpenoid cyclases: functional identification of two sesquiterpene synthase cDNAs encoding (+)-valencene synthase and (-)-germacrene D synthase and expression of mono- and sesquiterpene synthases in grapevine flowers and berries.

    PubMed

    Lücker, Joost; Bowen, Pat; Bohlmann, Jörg

    2004-10-01

    Valencene is a volatile sesquiterpene emitted from flowers of grapevine, Vitis vinifera L. A full-length cDNA from the cultivar Gewürztraminer was functionally expressed in Escherichia coli and found to encode valencene synthase (VvVal). The two major products formed by recombinant VvVal enzyme activity with farnesyl diphosphate (FPP) as substrate are (+)-valencene and (-)-7-epi-alpha-selinene. Grapevine valencene synthase is closely related to a second sesquiterpene synthase from this species, (-)-germacrene D synthase (VvGerD). VvVal and VvGerD cDNA probes revealed strong signals in Northern hybridizations with RNA isolated from grapevine flower buds. Transcript levels were lower in open pre-anthesis flowers, flowers after anthesis, or at early onset of fruit development. Similar results were obtained using a third probe, (-)-alpha-terpineol synthase, a monoterpenol synthase. Sesquiterpene synthase and monoterpene synthase transcripts were not detected in the mesocarp and exocarp during early stages of fruit development, but transcripts hybridizing with VvVal appeared during late ripening of the berries. Sesquiterpene synthase transcripts were also detected in young seeds. PMID:15464152

  9. Divinyl ether synthase gene, and protein and uses thereof

    DOEpatents

    Howe, Gregg A.; Itoh, Aya

    2006-12-26

    The present invention relates to divinyl ether synthase genes, proteins, and methods of their use. The present invention encompasses both native and recombinant wild-type forms of the synthase, as well as mutants and variant forms, some of which possess altered characteristics relative to the wild-type synthase. The present invention also relates to methods of using divinyl ether synthase genes and proteins, including in their expression in transgenic organisms and in the production of divinyl ether fatty acids, and to methods of suing divinyl ether fatty acids, including in the protection of plants from pathogens.

  10. Divinyl ether synthase gene and protein, and uses thereof

    DOEpatents

    Howe, Gregg A.; Itoh, Aya

    2011-09-13

    The present invention relates to divinyl ether synthase genes, proteins, and methods of their use. The present invention encompasses both native and recombinant wild-type forms of the synthase, as well as mutants and variant forms, some of which possess altered characteristics relative to the wild-type synthase. The present invention also relates to methods of using divinyl ether synthase genes and proteins, including in their expression in transgenic organisms and in the production of divinyl ether fatty acids, and to methods of suing divinyl ether fatty acids, including in the protection of plants from pathogens.

  11. Molecular characterization of the homo-phytochelatin synthase of soybean Glycine max: relation to phytochelatin synthase.

    PubMed

    Oven, Matjaz; Page, Jonathan E; Zenk, Meinhart H; Kutchan, Toni M

    2002-02-15

    The phytochelatin homologs homo-phytochelatins are heavy metal-binding peptides present in many legumes. To study the biosynthesis of these compounds, we have isolated and functionally expressed a cDNA GmhPCS1 encoding homo-phytochelatin synthase from Glycine max, a plant known to accumulate homo-phytochelatins rather than phytochelatins upon the exposure to heavy metals. The catalytic properties of GmhPCS1 were compared with the phytochelatin synthase AtPCS1 from Arabidopsis thaliana. When assayed only in the presence of glutathione, both enzymes catalyzed phytochelatin formation. GmhPCS1 accepted homoglutathione as the sole substrate for the synthesis of homo-phytochelatins whereas AtPCS1 did not. Homo-phytochelatin synthesis activity of both recombinant enzymes was significantly higher when glutathione was included in the reaction mixture. The incorporation of both glutathione and homoglutathione into homo-phytochelatin, n = 2, was demonstrated using GmhPCS1 and AtPCS1. In addition to bis(glutathionato)-metal complexes, various other metal-thiolates were shown to contribute to the activation of phytochelatin synthase. These complexes were not accepted as substrates by the enzyme, thereby suggesting that a recently proposed model of activation cannot fully explain the catalytic mechanism of phytochelatin synthase (Vatamaniuk, O. K., Mari, S., Lu, Y. P., and Rea, P. A. (2000) J. Biol. Chem. 275, 31451-31459). PMID:11706029

  12. Engineering of chimeric class II polyhydroxyalkanoate synthases.

    PubMed

    Niamsiri, Nuttawee; Delamarre, Soazig C; Kim, Young-Rok; Batt, Carl A

    2004-11-01

    PHA synthase is a key enzyme involved in the biosynthesis of polyhydroxyalkanoates (PHAs). Using a combinatorial genetic strategy to create unique chimeric class II PHA synthases, we have obtained a number of novel chimeras which display improved catalytic properties. To engineer the chimeric PHA synthases, we constructed a synthetic phaC gene from Pseudomonas oleovorans (phaC1Po) that was devoid of an internal 540-bp fragment. Randomly amplified PCR products (created with primers based on conserved phaC sequences flanking the deleted internal fragment) were generated using genomic DNA isolated from soil and were substituted for the 540-bp internal region. The chimeric genes were expressed in a PHA-negative strain of Ralstonia eutropha, PHB(-)4 (DSM 541). Out of 1,478 recombinant clones screened for PHA production, we obtained five different chimeric phaC1Po genes that produced more PHA than the native phaC1Po. Chimeras S1-71, S4-8, S5-58, S3-69, and S3-44 exhibited 1.3-, 1.4-, 2.0-, 2.1-, and 3.0-fold-increased levels of in vivo activity, respectively. All of the mutants mediated the synthesis of PHAs with a slightly increased molar fraction of 3-hydroxyoctanoate; however, the weight-average molecular weights (Mw) of the PHAs in all cases remained almost the same. Based upon DNA sequence analyses, the various phaC fragments appear to have originated from Pseudomonas fluorescens and Pseudomonas aureofaciens. The amino acid sequence analyses showed that the chimeric proteins had 17 to 20 amino acid differences from the wild-type phaC1Po, and these differences were clustered in the same positions in the five chimeric clones. A threading model of PhaC1Po, developed based on homology of the enzyme to the Burkholderia glumae lipase, suggested that the amino acid substitutions found in the active chimeras were located mostly on the protein model surface. Thus, our combinatorial genetic engineering strategy proved to be broadly useful for improving the catalytic

  13. Novel family of terpene synthases evolved from trans-isoprenyl diphosphate synthases in a flea beetle.

    PubMed

    Beran, Franziska; Rahfeld, Peter; Luck, Katrin; Nagel, Raimund; Vogel, Heiko; Wielsch, Natalie; Irmisch, Sandra; Ramasamy, Srinivasan; Gershenzon, Jonathan; Heckel, David G; Köllner, Tobias G

    2016-03-15

    Sesquiterpenes play important roles in insect communication, for example as pheromones. However, no sesquiterpene synthases, the enzymes involved in construction of the basic carbon skeleton, have been identified in insects to date. We investigated the biosynthesis of the sesquiterpene (6R,7S)-himachala-9,11-diene in the crucifer flea beetle Phyllotreta striolata, a compound previously identified as a male-produced aggregation pheromone in several Phyllotreta species. A (6R,7S)-himachala-9,11-diene-producing sesquiterpene synthase activity was detected in crude beetle protein extracts, but only when (Z,E)-farnesyl diphosphate [(Z,E)-FPP] was offered as a substrate. No sequences resembling sesquiterpene synthases from plants, fungi, or bacteria were found in the P. striolata transcriptome, but we identified nine divergent putative trans-isoprenyl diphosphate synthase (trans-IDS) transcripts. Four of these putative trans-IDSs exhibited terpene synthase (TPS) activity when heterologously expressed. Recombinant PsTPS1 converted (Z,E)-FPP to (6R,7S)-himachala-9,11-diene and other sesquiterpenes observed in beetle extracts. RNAi-mediated knockdown of PsTPS1 mRNA in P. striolata males led to reduced emission of aggregation pheromone, confirming a significant role of PsTPS1 in pheromone biosynthesis. Two expressed enzymes showed genuine IDS activity, with PsIDS1 synthesizing (E,E)-FPP, whereas PsIDS3 produced neryl diphosphate, (Z,Z)-FPP, and (Z,E)-FPP. In a phylogenetic analysis, the PsTPS enzymes and PsIDS3 were clearly separated from a clade of known coleopteran trans-IDS enzymes including PsIDS1 and PsIDS2. However, the exon-intron structures of IDS and TPS genes in P. striolata are conserved, suggesting that this TPS gene family evolved from trans-IDS ancestors. PMID:26936952

  14. Novel family of terpene synthases evolved from trans-isoprenyl diphosphate synthases in a flea beetle.

    PubMed

    Beran, Franziska; Rahfeld, Peter; Luck, Katrin; Nagel, Raimund; Vogel, Heiko; Wielsch, Natalie; Irmisch, Sandra; Ramasamy, Srinivasan; Gershenzon, Jonathan; Heckel, David G; Köllner, Tobias G

    2016-03-15

    Sesquiterpenes play important roles in insect communication, for example as pheromones. However, no sesquiterpene synthases, the enzymes involved in construction of the basic carbon skeleton, have been identified in insects to date. We investigated the biosynthesis of the sesquiterpene (6R,7S)-himachala-9,11-diene in the crucifer flea beetle Phyllotreta striolata, a compound previously identified as a male-produced aggregation pheromone in several Phyllotreta species. A (6R,7S)-himachala-9,11-diene-producing sesquiterpene synthase activity was detected in crude beetle protein extracts, but only when (Z,E)-farnesyl diphosphate [(Z,E)-FPP] was offered as a substrate. No sequences resembling sesquiterpene synthases from plants, fungi, or bacteria were found in the P. striolata transcriptome, but we identified nine divergent putative trans-isoprenyl diphosphate synthase (trans-IDS) transcripts. Four of these putative trans-IDSs exhibited terpene synthase (TPS) activity when heterologously expressed. Recombinant PsTPS1 converted (Z,E)-FPP to (6R,7S)-himachala-9,11-diene and other sesquiterpenes observed in beetle extracts. RNAi-mediated knockdown of PsTPS1 mRNA in P. striolata males led to reduced emission of aggregation pheromone, confirming a significant role of PsTPS1 in pheromone biosynthesis. Two expressed enzymes showed genuine IDS activity, with PsIDS1 synthesizing (E,E)-FPP, whereas PsIDS3 produced neryl diphosphate, (Z,Z)-FPP, and (Z,E)-FPP. In a phylogenetic analysis, the PsTPS enzymes and PsIDS3 were clearly separated from a clade of known coleopteran trans-IDS enzymes including PsIDS1 and PsIDS2. However, the exon-intron structures of IDS and TPS genes in P. striolata are conserved, suggesting that this TPS gene family evolved from trans-IDS ancestors.

  15. Novel family of terpene synthases evolved from trans-isoprenyl diphosphate synthases in a flea beetle

    PubMed Central

    Beran, Franziska; Rahfeld, Peter; Luck, Katrin; Nagel, Raimund; Vogel, Heiko; Wielsch, Natalie; Irmisch, Sandra; Ramasamy, Srinivasan; Gershenzon, Jonathan; Heckel, David G.; Köllner, Tobias G.

    2016-01-01

    Sesquiterpenes play important roles in insect communication, for example as pheromones. However, no sesquiterpene synthases, the enzymes involved in construction of the basic carbon skeleton, have been identified in insects to date. We investigated the biosynthesis of the sesquiterpene (6R,7S)-himachala-9,11-diene in the crucifer flea beetle Phyllotreta striolata, a compound previously identified as a male-produced aggregation pheromone in several Phyllotreta species. A (6R,7S)-himachala-9,11-diene–producing sesquiterpene synthase activity was detected in crude beetle protein extracts, but only when (Z,E)-farnesyl diphosphate [(Z,E)-FPP] was offered as a substrate. No sequences resembling sesquiterpene synthases from plants, fungi, or bacteria were found in the P. striolata transcriptome, but we identified nine divergent putative trans-isoprenyl diphosphate synthase (trans-IDS) transcripts. Four of these putative trans-IDSs exhibited terpene synthase (TPS) activity when heterologously expressed. Recombinant PsTPS1 converted (Z,E)-FPP to (6R,7S)-himachala-9,11-diene and other sesquiterpenes observed in beetle extracts. RNAi-mediated knockdown of PsTPS1 mRNA in P. striolata males led to reduced emission of aggregation pheromone, confirming a significant role of PsTPS1 in pheromone biosynthesis. Two expressed enzymes showed genuine IDS activity, with PsIDS1 synthesizing (E,E)-FPP, whereas PsIDS3 produced neryl diphosphate, (Z,Z)-FPP, and (Z,E)-FPP. In a phylogenetic analysis, the PsTPS enzymes and PsIDS3 were clearly separated from a clade of known coleopteran trans-IDS enzymes including PsIDS1 and PsIDS2. However, the exon–intron structures of IDS and TPS genes in P. striolata are conserved, suggesting that this TPS gene family evolved from trans-IDS ancestors. PMID:26936952

  16. Evolution and function of phytochelatin synthases.

    PubMed

    Clemens, Stephan

    2006-02-01

    Both essential and non-essential transition metal ions can easily be toxic to cells. The physiological range for essential metals between deficiency and toxicity is therefore extremely narrow and a tightly controlled metal homeostasis network to adjust to fluctuations in micronutrient availability is a necessity for all organisms. One protective strategy against metal excess is the expression of high-affinity binding sites to suppress uncontrolled binding of metal ions to physiologically important functional groups. The synthesis of phytochelatins, glutathione-derived metal binding peptides, represents the major detoxification mechanism for cadmium and arsenic in plants and an unknown range of other organisms. A few years ago genes encoding phytochelatin synthases (PCS) were cloned from plants, fungi and nematodes. Since then it has become apparent that PCS genes are far more widespread than ever anticipated. Searches in sequence databases indicate PCS expression in representatives of all eukaryotic kingdoms and the presence of PCS-like proteins in several prokaryotes. The almost ubiquitous presence in the plant kingdom and beyond as well as the constitutive expression of PCS genes and PCS activity in all major plant tissues are still mysterious. It is unclear, how the extremely rare need to cope with an excess of cadmium or arsenic ions could explain the evolution and distribution of PCS genes. Possible answers to this question are discussed. Also, the molecular characterization of phytochelatin synthases and our current knowledge about the enzymology of phytochelatin synthesis are reviewed.

  17. Activities and regulation of peptidoglycan synthases

    PubMed Central

    Egan, Alexander J. F.; Biboy, Jacob; van't Veer, Inge; Breukink, Eefjan; Vollmer, Waldemar

    2015-01-01

    Peptidoglycan (PG) is an essential component in the cell wall of nearly all bacteria, forming a continuous, mesh-like structure, called the sacculus, around the cytoplasmic membrane to protect the cell from bursting by its turgor. Although PG synthases, the penicillin-binding proteins (PBPs), have been studied for 70 years, useful in vitro assays for measuring their activities were established only recently, and these provided the first insights into the regulation of these enzymes. Here, we review the current knowledge on the glycosyltransferase and transpeptidase activities of PG synthases. We provide new data showing that the bifunctional PBP1A and PBP1B from Escherichia coli are active upon reconstitution into the membrane environment of proteoliposomes, and that these enzymes also exhibit DD-carboxypeptidase activity in certain conditions. Both novel features are relevant for their functioning within the cell. We also review recent data on the impact of protein–protein interactions and other factors on the activities of PBPs. As an example, we demonstrate a synergistic effect of multiple protein–protein interactions on the glycosyltransferase activity of PBP1B, by its cognate lipoprotein activator LpoB and the essential cell division protein FtsN. PMID:26370943

  18. ATP synthase: a tentative structural model.

    PubMed

    Engelbrecht, S; Junge, W

    1997-09-15

    Adenosine triphosphate (ATP) synthase produces ATP from ADP and inorganic phosphate at the expense of proton- or sodium-motive force across the respective coupling membrane in Archaea, Bacteria and Eucarya. Cation flow through the intrinsic membrane portion of this enzyme (Fo, subunits ab2c9-12) and substrate turnover in the headpiece (F1, subunits alpha3beta3 gammadeltaepsilon) are mechanically coupled by the rotation of subunit gamma in the center of the catalytic hexagon of subunits (alphabeta)3 in F1. ATP synthase is the smallest rotatory engine in nature. With respect to the headpiece alone, it probably operates with three steps. Partial structures of six out of its at least eight different subunits have been published and a 3-dimensional structure is available for the assembly (alphabeta)3gamma. In this article, we review the available structural data and build a tentative topological model of the holoenzyme. The rotor portion is proposed to consist of a wheel of at least nine copies of subunits c, epsilon and a portion of gamma as a spoke, and another portion of gamma as a crankshaft. The stator is made up from a, the transmembrane portion of b2, delta and the catalytic hexagon of (alphabeta)3. As an educated guess, the model may be of heuristic value for ongoing studies on this fascinating electrochemical-to-mechanical-to-chemical transducer. PMID:9323021

  19. Torque generation mechanism of ATP synthase

    NASA Astrophysics Data System (ADS)

    Miller, John; Maric, Sladjana; Scoppa, M.; Cheung, M.

    2010-03-01

    ATP synthase is a rotary motor that produces adenosine triphosphate (ATP), the chemical currency of life. Our proposed electric field driven torque (EFT) model of FoF1-ATP synthase describes how torque, which scales with the number of c-ring proton binding sites, is generated by the proton motive force (pmf) across the mitochondrial inner membrane. When Fo is coupled to F1, the model predicts a critical pmf to drive ATP production. In order to fully understand how the electric field resulting from the pmf drives the c-ring to rotate, it is important to examine the charge distributions in the protonated c-ring and a-subunit containing the proton channels. Our calculations use a self-consistent field approach based on a refinement of reported structural data. The results reveal changes in pKa for key residues on the a-subunit and c-ring, as well as titration curves and protonation state energy diagrams. Health implications will be briefly discussed.

  20. ATP synthases from archaea: the beauty of a molecular motor.

    PubMed

    Grüber, Gerhard; Manimekalai, Malathy Sony Subramanian; Mayer, Florian; Müller, Volker

    2014-06-01

    Archaea live under different environmental conditions, such as high salinity, extreme pHs and cold or hot temperatures. How energy is conserved under such harsh environmental conditions is a major question in cellular bioenergetics of archaea. The key enzymes in energy conservation are the archaeal A1AO ATP synthases, a class of ATP synthases distinct from the F1FO ATP synthase ATP synthase found in bacteria, mitochondria and chloroplasts and the V1VO ATPases of eukaryotes. A1AO ATP synthases have distinct structural features such as a collar-like structure, an extended central stalk, and two peripheral stalks possibly stabilizing the A1AO ATP synthase during rotation in ATP synthesis/hydrolysis at high temperatures as well as to provide the storage of transient elastic energy during ion-pumping and ATP synthesis/-hydrolysis. High resolution structures of individual subunits and subcomplexes have been obtained in recent years that shed new light on the function and mechanism of this unique class of ATP synthases. An outstanding feature of archaeal A1AO ATP synthases is their diversity in size of rotor subunits and the coupling ion used for ATP synthesis with H(+), Na(+) or even H(+) and Na(+) using enzymes. The evolution of the H(+) binding site to a Na(+) binding site and its implications for the energy metabolism and physiology of the cell are discussed.

  1. [Four cases of aldosterone synthase deficiency in childhood].

    PubMed

    Collinet, E; Pelissier, P; Richard, O; Gay, C; Pugeat, M; Morel, Y; Stephan, J-L

    2012-11-01

    Neonatal salt-wasting syndromes are rare but potentially serious conditions. Isolated hypoaldosteronism is an autosomal recessive inherited disorder of terminal aldosterone synthesis, leading to selective aldosterone deficiency. Two different biochemical forms of this disease have been described, called aldosterone synthase deficiency or corticosterone methyl oxydase, types I and II. In type I, there is no aldosterone synthase activity and the 18 hydroxycorticosterone (18 OHB) level is low, whereas in type II, a residual activity of aldosterone synthase persists and 18 OHB is overproduced. We report on four patients with isolated hypoaldosteronism. In 2 of them, who were recently diagnosed with aldosterone synthase deficit, we discuss the symptoms and treatment. The 2 other patients are now adults. We discuss the long-term outcome, the quality of adult life, aldosterone synthase deficits, as well as the pathophysiology and molecular analysis.

  2. Ubiquitination and filamentous structure of cytidine triphosphate synthase

    PubMed Central

    Pai, Li-Mei; Wang, Pei-Yu; Lin, Wei-Cheng; Chakraborty, Archan; Yeh, Chau-Ting; Lin, Yu-Hung

    2016-01-01

    ABSTRACT Living organisms respond to nutrient availability by regulating the activity of metabolic enzymes. Therefore, the reversible post-translational modification of an enzyme is a common regulatory mechanism for energy conservation. Recently, cytidine-5′-triphosphate (CTP) synthase was discovered to form a filamentous structure that is evolutionarily conserved from flies to humans. Interestingly, induction of the formation of CTP synthase filament is responsive to starvation or glutamine depletion. However, the biological roles of this structure remain elusive. We have recently shown that ubiquitination regulates CTP synthase activity by promoting filament formation in Drosophila ovaries during endocycles. Intriguingly, although the ubiquitination process was required for filament formation induced by glutamine depletion, CTP synthase ubiquitination was found to be inversely correlated with filament formation in Drosophila and human cell lines. In this article, we discuss the putative dual roles of ubiquitination, as well as its physiological implications, in the regulation of CTP synthase structure. PMID:27116391

  3. Trinuclear Metal Clusters in Catalysis by Terpenoid Synthases.

    PubMed

    Aaron, Julie A; Christianson, David W

    2010-01-01

    Terpenoid synthases are ubiquitous enzymes that catalyze the formation of structurally and stereochemically diverse isoprenoid natural products. Many isoprenoid coupling enzymes and terpenoid cyclases from bacteria, fungi, protists, plants, and animals share the class I terpenoid synthase fold. Despite generally low amino acid sequence identity among these examples, class I terpenoid synthases contain conserved metal binding motifs that coordinate to a trinuclear metal cluster. This cluster not only serves to bind and orient the flexible isoprenoid substrate in the precatalytic Michaelis complex, but it also triggers the departure of the diphosphate leaving group to generate a carbocation that initiates catalysis. Additional conserved hydrogen bond donors assist the metal cluster in this function. Crystal structure analysis reveals that the constellation of three metal ions required for terpenoid synthase catalysis is generally identical among all class I terpenoid synthases of known structure.

  4. Functional Contribution of Chorismate Synthase, Anthranilate Synthase, and Chorismate Mutase to Penetration Resistance in Barley-Powdery Mildew Interactions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plant processes resulting from primary or secondary metabolism have been hypothesized to contribute to defense against microbial attack. Barley chorismate synthase (HvCS), anthranilate synthase alpha subunit 2 (HvASa2) and chorismate mutase 1 (HvCM1) occupy pivotal branch-points downstream of the s...

  5. A Comparison of the Effects of Neuronal Nitric Oxide Synthase and Inducible Nitric Oxide Synthase Inhibition on Cartilage Damage

    PubMed Central

    Gokay, Nevzat Selim; Yilmaz, Ibrahim; Demiroz, Ahu Senem; Gokce, Alper; Dervisoglu, Sergülen; Gokay, Banu Vural

    2016-01-01

    The objective of this study was to investigate the effects of selective inducible nitric oxide synthase and neuronal nitric oxide synthase inhibitors on cartilage regeneration. The study involved 27 Wistar rats that were divided into five groups. On Day 1, both knees of 3 rats were resected and placed in a formalin solution as a control group. The remaining 24 rats were separated into 4 groups, and their right knees were surgically damaged. Depending on the groups, the rats were injected with intra-articular normal saline solution, neuronal nitric oxide synthase inhibitor 7-nitroindazole (50 mg/kg), inducible nitric oxide synthase inhibitor amino-guanidine (30 mg/kg), or nitric oxide precursor L-arginine (200 mg/kg). After 21 days, the right and left knees of the rats were resected and placed in formalin solution. The samples were histopathologically examined by a blinded evaluator and scored on 8 parameters. Although selective neuronal nitric oxide synthase inhibition exhibited significant (P = 0.044) positive effects on cartilage regeneration following cartilage damage, it was determined that inducible nitric oxide synthase inhibition had no statistically significant effect on cartilage regeneration. It was observed that the nitric oxide synthase activation triggered advanced arthrosis symptoms, such as osteophyte formation. The fact that selective neuronal nitric oxide synthase inhibitors were observed to have mitigating effects on the severity of the damage may, in the future, influence the development of new agents to be used in the treatment of cartilage disorders. PMID:27382570

  6. Pseudouridines and pseudouridine synthases of the ribosome.

    PubMed

    Ofengand, J; Malhotra, A; Remme, J; Gutgsell, N S; Del Campo, M; Jean-Charles, S; Peil, L; Kaya, Y

    2001-01-01

    psi are ubiquitous in ribosomal RNA. Eubacteria, Archaea, and eukaryotes all contain psi, although their number varies widely, with eukaryotes having the most. The small ribosomal subunit can apparently do without psi in some organisms, even though others have as many as 40 or more. Large subunits appear to need at least one psi but can have up to 50-60. psi is made by a set of site-specific enzymes in eubacteria, and in eukaryotes by a single enzyme complexed with auxiliary proteins and specificity-conferring guide RNAs. The mechanism is not known in Archaea, but based on an analysis of the kinds of psi synthases found in sequenced archaeal genomes, it is likely to involve use of guide RNAs. All psi synthases can be classified into one of four related groups, virtually all of which have a conserved aspartate residue in a conserved sequence motif. The aspartate is essential for psi formation in all twelve synthases examined so far. When the need for psi in E. coli was examined, the only synthase whose absence caused a major decrease in growth rate under normal conditions was RluD, the synthase that makes psi 1911, psi 1915, and psi 1917 in the helix 69 end-loop. This growth defect was the result of a major failure in assembly of the large ribosomal subunit. The defect could be prevented by supplying the rluD structural gene in trans, and also by providing a point mutant gene that made a synthase unable to make psi. Therefore, the RluD synthase protein appears to be directly involved in 50S subunit assembly, possibly as an RNA chaperone, and this activity is independent of its ability to form psi. This result is not without precedent. Depletion of PET56, a 2'-O-methyltransferase specific for G2251 (E. coli numbering) in yeast mitochondria virtually blocks 50S subunit assembly and mitochondrial function (Sirum-Connolly et al. 1995), but the methylation activity of the enzyme is not required (T. Mason, pers. comm.). The absence of FtsJ, a heat shock protein that makes

  7. Hyaluronan synthases and hyaluronidases in nasal polyps.

    PubMed

    Panogeorgou, T; Tserbini, E; Filou, S; Vynios, D H; Naxakis, S S; Papadas, T A; Goumas, P D; Mastronikolis, N S

    2016-07-01

    Nasal polyps (NPs) are benign lesions of nasal and paranasal sinuses mucosa affecting 1-4 % of all adults. Nasal polyposis affects the quality of patient's life as it causes nasal obstruction, postnasal drainage, purulent nasal discharge, hyposmia or anosmia, chronic sinusitis, facial pain and snoring. Without treatment, the disease can alter the craniofacial skeleton in cases of extended growth of polyps. The development of NPs is caused by the hyperplasia of nasal or paranasal sinuses mucosa, and edema of extracellular matrix. This is usually the result of high concentration of high molecular mass hyaluronan (HA) which is either overproduced or accumulated from blood supply. The size of HA presents high diversity and, especially in pathologic conditions, chains of low molecular mass can be observed. In NPs, chains of about 200 kDa have been identified and considered to be responsible for the inflammation. The purpose of the present study was the investigation, in NPs and normal nasal mucosa (NM), of the expression of the wild-type and alternatively spliced forms of hyaluronidases, their immunolocalization, and the expression of HA synthases to examine the isoform(s) responsible for the increased amounts of HA in NPs. Hyaluronidases' presence was examined on mRNA (RT-PCR analysis) and protein (immunohistochemistry) levels. Hyaluronan synthases' presence was examined on mRNA levels. Hyaluronidases were localized in the cytoplasm of epithelial and inflammatory cells, as well as in the matrix. On mRNA level, it was found that hyal-1-wt was decreased in NPs compared to NM and hyal-1-v3, -v4 and -v5 were substantially increased. Moreover, HAS2 and HAS3 were the only hyaluronan synthases detected, the expression of which was almost similar in NPs and NM. Overall, the results of the present study support that hyaluronidases are the main enzymes responsible for the decreased size of hyaluronan observed in NPs; thus they behave as inflammatory agents. Therefore, they

  8. Structure of Aminodeoxychorismate Synthase from Stenotrophomonas maltophilia†

    PubMed Central

    Bera, Asim K.; Atanasova, Vesna; Dhanda, Anjali; Ladner, Jane E.; Parsons, James F.

    2012-01-01

    PabB, aminodeoxychorismate synthase, is the chorismic acid binding component of the heterodimeric PabAB complex that converts chorismic acid to 4-amino-4-deoxychorismate, a precursor of p-aminobenzoate and folic acid in microorganisms. The second component, a glutamine amidotransferase subunit, PabA, generates ammonia that is channeled to the PabB active site where it attacks the C4 carbon of a chorismate derived intermediate that is covalently bound, through C2, to an active site lysine residue. The presence of a PIKGT motif was, until recently, believed to be discriminate PabB enzymes from the closely related enzyme anthranilate synthase, which typically contains a PIAGT active site motif and does not form a covalent enzyme-substrate intermediate with chorismate. A subclass of PabB enzymes that employ an alternative mechanism requiring two equivalents of ammonia from glutamine and that feature a noncovalently bound 2-amino-2-deoxyisochorismate intermediate was recently identified. Here we report the 2.25 Å crystal structure of PabB from the emerging pathogen Stenotrophomonas maltophilia. It is the first reported structure of a PabB that features the PIAGT motif. Surprisingly, no dedicated pabA is evident in the genome of S. maltophilia suggesting that another cellular amidotransferase is able to fulfill the role of PabA in this organism. Evaluation of the ammonia-dependent aminodeoxychorismate synthase activity of S. maltophilia PabB alone revealed that it is virtually inactive. However, in the presence of a heterologous PabA surrogate, typical levels of activity were observed using either glutamine or ammonia as the nitrogen source. Additionally, the structure suggests that a key segment of the polypeptide can remodel itself to interact with a nonspecialized or shared amidotransferase partner in vivo. The structure and mass spectral analysis further suggest that S. maltophilia PabB, like Escherichia coli PabB, binds tryptophan in a vestigial regulatory site

  9. Conversion of anthranilate synthase into isochorismate synthase: implications for the evolution of chorismate-utilizing enzymes.

    PubMed

    Plach, Maximilian G; Löffler, Patrick; Merkl, Rainer; Sterner, Reinhard

    2015-09-14

    Chorismate-utilizing enzymes play a vital role in the biosynthesis of metabolites in plants as well as free-living and infectious microorganisms. Among these enzymes are the homologous primary metabolic anthranilate synthase (AS) and secondary metabolic isochorismate synthase (ICS). Both catalyze mechanistically related reactions by using ammonia and water as nucleophiles, respectively. We report that the nucleophile specificity of AS can be extended from ammonia to water by just two amino acid exchanges in a channel leading to the active site. The observed ICS/AS bifunctionality demonstrates that a secondary metabolic enzyme can readily evolve from a primary metabolic enzyme without requiring an initial gene duplication event. In a general sense, these findings add to our understanding how nature has used the structurally predetermined features of enzyme superfamilies to evolve new reactions.

  10. Identification of cystathionine γ-synthase and threonine synthase from Cicer arietinum and Lens culinaris.

    PubMed

    Morneau, Dominique J K; Jaworski, Allison F; Aitken, Susan M

    2013-04-01

    In plants, cystathionine γ-synthase (CGS) and threonine synthase (TS) compete for the branch-point metabolite O-phospho-L-homoserine. These enzymes are potential targets for metabolic engineering studies, aiming to alter the flux through the competing methionine and threonine biosynthetic pathways, with the goal of increasing methionine production. Although CGS and TS have been characterized in the model organisms Escherichia coli and Arabidopsis thaliana, little information is available on these enzymes in other, particularly plant, species. The functional CGS and TS coding sequences from the grain legumes Cicer arietinum (chickpea) and Lens culinaris (lentil) identified in this study share approximately 80% amino acid sequence identity with the corresponding sequences from Glycine max. At least 7 active-site residues of grain legume CGS and TS are conserved in the model bacterial enzymes, including the catalytic base. Putative processing sites that remove the targeting sequence and result in functional TS were identified in the target species.

  11. Endothelial nitric oxide synthase in the microcirculation.

    PubMed

    Shu, Xiaohong; Keller, T C Stevenson; Begandt, Daniela; Butcher, Joshua T; Biwer, Lauren; Keller, Alexander S; Columbus, Linda; Isakson, Brant E

    2015-12-01

    Endothelial nitric oxide synthase (eNOS, NOS3) is responsible for producing nitric oxide (NO)--a key molecule that can directly (or indirectly) act as a vasodilator and anti-inflammatory mediator. In this review, we examine the structural effects of regulation of the eNOS enzyme, including post-translational modifications and subcellular localization. After production, NO diffuses to surrounding cells with a variety of effects. We focus on the physiological role of NO and NO-derived molecules, including microvascular effects on vessel tone and immune response. Regulation of eNOS and NO action is complicated; we address endogenous and exogenous mechanisms of NO regulation with a discussion of pharmacological agents used in clinical and laboratory settings and a proposed role for eNOS in circulating red blood cells.

  12. The Rotary Mechanism of the ATP Synthase

    PubMed Central

    Nakamoto, Robert K.; Scanlon, Joanne A. Baylis; Al-Shawi, Marwan K.

    2008-01-01

    The FOF1 ATP synthase is a large complex of at least 22 subunits, more than half of which are in the membranous FO sector. This nearly ubiquitous transporter is responsible for the majority of ATP synthesis in oxidative and photo-phosphorylation, and its overall structure and mechanism have remained conserved throughout evolution. Most examples utilize the proton motive force to drive ATP synthesis except for a few bacteria, which use a sodium motive force. A remarkable feature of the complex is the rotary movement of an assembly of subunits that plays essential roles in both transport and catalytic mechanisms. This review addresses the role of rotation in catalysis of ATP synthesis/hydrolysis and the transport of protons or sodium. PMID:18515057

  13. Transfer RNA pseudouridine synthases in Saccharomyces cerevisiae.

    PubMed

    Samuelsson, T; Olsson, M

    1990-05-25

    A transfer RNA lacking modified nucleosides was produced by transcription in vitro of a cloned gene that encodes a Saccharomyces cerevisiae glycine tRNA. At least three different uridines (in nucleotide positions 13, 32, and 55) of this transcript tRNA are modified to pseudouridine by an extract of S. cerevisiae. Variants of the RNA substrate were also constructed that each had only one of these sites, thus allowing specific monitoring of pseudouridylation at different nucleotide positions. Using such RNAs to assay pseudouridine synthesis, enzymes producing this nucleoside were purified from an extract of S. cerevisiae. The activities corresponding to positions 13, 32, and 55 in the tRNA substrate could all be separated chromatographically, indicating that there is a separate enzyme for each of these sites. The enzyme specific for position 55 (denoted pseudouridine synthase 55) was purified approximately 4000-fold using a combination of DEAE-Sepharose, heparin-Sepharose, and hydroxylapatite.

  14. Prenyltransferases of the dimethylallyltryptophan synthase superfamily.

    PubMed

    Yu, Xia; Li, Shu-Ming

    2012-01-01

    Prenylated natural products often have interesting biological and pharmacological activities clearly distinct from their nonprenylated precursors. Prenyltransferases are responsible for the attachment of prenyl moieties to a number of acceptors and contribute significantly to structural and biological diversity of these compounds in nature. In the past 8 years, significant progress has been achieved in the molecular biological, biochemical, and structural biological investigation of the prenyltransferases of the dimethylallyltryptophan synthase (DMATS) superfamily. These soluble enzymes are involved in the biosynthesis of fungal secondary metabolites and mainly catalyze prenylation of diverse indole derivatives, including tryptophan and tryptophan-containing cyclic dipeptides. The members of the DMATS superfamily show promising flexibility toward their aromatic substrates and catalyze highly regio- and stereoselective prenyltransfer reactions. These features were successfully used for chemoenzymatic synthesis, not only for production of prenylated simple indoles and cyclic dipeptides but also for prenylated hydroxynaphthalenes and flavonoids, which are usually found in bacteria and plants, respectively.

  15. Structure and Function of Fusicoccadiene Synthase, a Hexameric Bifunctional Diterpene Synthase.

    PubMed

    Chen, Mengbin; Chou, Wayne K W; Toyomasu, Tomonobu; Cane, David E; Christianson, David W

    2016-04-15

    Fusicoccin A is a diterpene glucoside phytotoxin generated by the fungal pathogen Phomopsis amygdali that causes the plant disease constriction canker, first discovered in New Jersey peach orchards in the 1930s. Fusicoccin A is also an emerging new lead in cancer chemotherapy. The hydrocarbon precursor of fusicoccin A is the tricyclic diterpene fusicoccadiene, which is generated by a bifunctional terpenoid synthase. Here, we report X-ray crystal structures of the individual catalytic domains of fusicoccadiene synthase: the C-terminal domain is a chain elongation enzyme that generates geranylgeranyl diphosphate, and the N-terminal domain catalyzes the cyclization of geranylgeranyl diphosphate to form fusicoccadiene. Crystal structures of each domain complexed with bisphosphonate substrate analogues suggest that three metal ions and three positively charged amino acid side chains trigger substrate ionization in each active site. While in vitro incubations reveal that the cyclase domain can utilize farnesyl diphosphate and geranyl diphosphate as surrogate substrates, these shorter isoprenoid diphosphates are mainly converted into acyclic alcohol or hydrocarbon products. Gel filtration chromatography and analytical ultracentrifugation experiments indicate that full-length fusicoccadiene synthase adopts hexameric quaternary structure, and small-angle X-ray scattering data yield a well-defined molecular envelope illustrating a plausible model for hexamer assembly.

  16. CLYBL is a polymorphic human enzyme with malate synthase and β-methylmalate synthase activity

    PubMed Central

    Strittmatter, Laura; Li, Yang; Nakatsuka, Nathan J.; Calvo, Sarah E.; Grabarek, Zenon; Mootha, Vamsi K.

    2014-01-01

    CLYBL is a human mitochondrial enzyme of unknown function that is found in multiple eukaryotic taxa and conserved to bacteria. The protein is expressed in the mitochondria of all mammalian organs, with highest expression in brown fat and kidney. Approximately 5% of all humans harbor a premature stop polymorphism in CLYBL that has been associated with reduced levels of circulating vitamin B12. Using comparative genomics, we now show that CLYBL is strongly co-expressed with and co-evolved specifically with other components of the mitochondrial B12 pathway. We confirm that the premature stop polymorphism in CLYBL leads to a loss of protein expression. To elucidate the molecular function of CLYBL, we used comparative operon analysis, structural modeling and enzyme kinetics. We report that CLYBL encodes a malate/β-methylmalate synthase, converting glyoxylate and acetyl-CoA to malate, or glyoxylate and propionyl-CoA to β-methylmalate. Malate synthases are best known for their established role in the glyoxylate shunt of plants and lower organisms and are traditionally described as not occurring in humans. The broader role of a malate/β-methylmalate synthase in human physiology and its mechanistic link to vitamin B12 metabolism remain unknown. PMID:24334609

  17. Role of cysteine residues in pseudouridine synthases of different families.

    PubMed

    Ramamurthy, V; Swann, S L; Spedaliere, C J; Mueller, E G

    1999-10-01

    The pseudouridine synthases catalyze the isomerization of uridine to pseudouridine in RNA molecules. An attractive mechanism was proposed based on that of thymidylate synthase, in which the thiol(ate) group of a cysteine side chain serves as the nucleophile in a Michael addition to C6 of the isomerized uridine. Such a role for cysteine in the pseudouridine synthase TruA (also named Psi synthase I) has been discredited by site-directed mutagenesis, but sequence alignments have led to the conclusion that there are four distinct "families" of pseudouridine synthases that share no statistically significant global sequence similarity. It was, therefore, necessary to probe the role of cysteine residues in pseudouridine synthases of the families that do not include TruA. We examined the enzymes RluA and TruB, which are members of different families than TruA and each other. Substitution of cysteine for amino acids with nonnucleophilic side chains did not significantly alter the catalytic activity of either pseudouridine synthase. We conclude, therefore, that neither TruB nor RluA require thiol(ate) groups to effect catalysis, excluding their participation in a Michael addition to C6 of uridine, although not eliminating that mechanism (with an alternate nucleophile) from future consideration.

  18. The Pseudouridine Synthases Proceed through a Glycal Intermediate

    PubMed Central

    2016-01-01

    The pseudouridine synthases isomerize (U) in RNA to pseudouridine (Ψ), and the mechanism that they follow has long been a question of interest. The recent elucidation of a product of the mechanistic probe 5-fluorouridine that had been epimerized to the arabino isomer suggested that the Ψ synthases might operate through a glycal intermediate formed by deprotonation of C2′. When that position in substrate U is deuterated, a primary kinetic isotope effect is observed, which indisputably indicates that the proposed deprotonation occurs during the isomerization of U to Ψ and establishes the mechanism followed by the Ψ synthases. PMID:27292228

  19. Colorimetric Coupled Enzyme Assay for Cystathionine β-Synthase.

    PubMed

    Rocchiccioli, Marco; Moschini, Roberta; Cappiello, Laura; Balestri, Francesco; Cappiello, Mario; Mura, Umberto; Del-Corso, Antonella

    2016-01-01

    A colorimetric coupled enzyme assay for the determination of cystathionine β-synthase activity is described. The method exploits cystathionine γ-lyase as an ancillary enzyme capable of transforming cystathionine, produced by cystathionine β-synthase, into cysteine. The cysteine is then spectrophotometrically detected at 560 nm, after its specific complexation with ninhydrin. This method was used to detect cystathionine β-synthase in crude extracts, and for the kinetic characterization of the enzyme partially purified from bovine kidney. A rapid two-step protocol is described for the partial purification of cystathionine γ-lyase from bovine kidney, aimed at a suitable and stable ancillary enzyme preparation. PMID:27506718

  20. Computational design and selections for an engineered, thermostable terpene synthase

    PubMed Central

    Diaz, Juan E; Lin, Chun-Shi; Kunishiro, Kazuyoshi; Feld, Birte K; Avrantinis, Sara K; Bronson, Jonathan; Greaves, John; Saven, Jeffery G; Weiss, Gregory A

    2011-01-01

    Terpenoids include structurally diverse antibiotics, flavorings, and fragrances. Engineering terpene synthases for control over the synthesis of such compounds represents a long sought goal. We report computational design, selections, and assays of a thermostable mutant of tobacco 5-epi-aristolochene synthase (TEAS) for the catalysis of carbocation cyclization reactions at elevated temperatures. Selection for thermostability included proteolytic digestion followed by capture of intact proteins. Unlike the wild-type enzyme, the mutant TEAS retains enzymatic activity at 65°C. The thermostable terpene synthase variant denatures above 80°C, approximately twice the temperature of the wild-type enzyme. PMID:21739507

  1. The Pseudouridine Synthases Proceed through a Glycal Intermediate.

    PubMed

    Veerareddygari, Govardhan Reddy; Singh, Sanjay K; Mueller, Eugene G

    2016-06-29

    The pseudouridine synthases isomerize (U) in RNA to pseudouridine (Ψ), and the mechanism that they follow has long been a question of interest. The recent elucidation of a product of the mechanistic probe 5-fluorouridine that had been epimerized to the arabino isomer suggested that the Ψ synthases might operate through a glycal intermediate formed by deprotonation of C2'. When that position in substrate U is deuterated, a primary kinetic isotope effect is observed, which indisputably indicates that the proposed deprotonation occurs during the isomerization of U to Ψ and establishes the mechanism followed by the Ψ synthases.

  2. Generation and Functional Evaluation of Designer Monoterpene Synthases.

    PubMed

    Srividya, N; Lange, I; Lange, B M

    2016-01-01

    Monoterpene synthases are highly versatile enzymes that catalyze the first committed step in the pathways toward terpenoids, the structurally most diverse class of plant natural products. Recent advancements in our understanding of the reaction mechanism have enabled engineering approaches to develop mutant monoterpene synthases that produce specific monoterpenes. In this chapter, we are describing protocols to introduce targeted mutations, express mutant enzyme catalysts in heterologous hosts, and assess their catalytic properties. Mutant monoterpene synthases have the potential to contribute significantly to synthetic biology efforts aimed at producing larger amounts of commercially attractive monoterpenes. PMID:27480686

  3. Peroxisomal and mitochondrial citrate synthase in CAM plants.

    PubMed

    Zafra, M F; Segovia, J L; Alejandre, M J; García-Peregrín, E

    1981-12-01

    Citrate synthase wa studied for the first time in peroxisomes and mitochondria of crassulacean acid metabolism plants. Cellular organelles were isolated from Agave americana leaves by sucrose density gradient centrifugation and characterized by the use of catalase and cytochrome oxidase as marker enzymes, respectively. 48,000 X g centrifugation caused the breakdown of the cellular organelles. The presence of a glyoxylate cycle enzyme (citrate synthase) and a glycollate pathway enzyme (catalase) in the same organelles, besides the absence of another glyoxalate cycle enzyme (malate synthase) is reported for the first time, suggesting that peroxisomal and glyoxysomal proteins are synthesized at the same time and housed in he same organelle.

  4. Rare structural variants of human and murine uroporphyrinogen I synthase.

    PubMed Central

    Meisler, M H; Carter, M L

    1980-01-01

    An isoelectric focusing method for detection of structural variants of the enzyme uroporphyrinogen I synthase [porphobilinogen ammonia-lyase (polymerizing), EC 4.3.1.8] in mammalian tissues has been developed. Mouse and human erythrocytes contain one or two major isozymes of uroporphyrinogen I synthase, respectively. Other tissues contain a set of more acidic isozymes that are encoded by the same structural gene as the erythrocyte isozymes. Mouse populations studied with this method were monomorphic for uroporphyrinogen I synthase, with the exception of one feral mouse population. The pedigree of a human family with a rare structural variant is consistent with autosomal linkage of the structural gene. This system provides a convenient isozyme marker for genetic studies and will facilitate determination of the chromosomal location of the uroporphyrinogen I synthase locus. Images PMID:6930671

  5. Thymoquinone Inhibits Escherichia coli ATP Synthase and Cell Growth

    PubMed Central

    Ahmad, Zulfiqar; Laughlin, Thomas F.; Kady, Ismail O.

    2015-01-01

    We examined the thymoquinone induced inhibition of purified F1 or membrane bound F1FO E. coli ATP synthase. Both purified F1 and membrane bound F1FO were completely inhibited by thymoquinone with no residual ATPase activity. The process of inhibition was fully reversible and identical in both membrane bound F1Fo and purified F1 preparations. Moreover, thymoquinone induced inhibition of ATP synthase expressing wild-type E. coli cell growth and non-inhibition of ATPase gene deleted null control cells demonstrates that ATP synthase is a molecular target for thymoquinone. This also links the beneficial dietary based antimicrobial and anticancer effects of thymoquinone to its inhibitory action on ATP synthase. PMID:25996607

  6. Regulation of synthase phosphatase and phosphorylase phosphatase in rat liver.

    PubMed

    Tan, A W; Nuttall, F Q

    1976-08-12

    Using substrates purified from liver, the apparent Km values of synthase phosphatase ([UDPglucose--glycogen glucosyltransferase-D]phosphohydrolase, EC 3.1.3.42) and phosphorylase phosphatase (phosphorylase a phosphohydrolase, EC 3.1.3.17) were found to be 0.7 and 60 units/ml respectively. The maximal velocity of phosphorylase phosphatase was more than a 100 times that of synthase phosphatase. In adrenalectomized, fasted animals there was a complete loss of synthase phosphatase but only a slight decrease in phosphorylase phosphatase when activity was measured using endogenous substrates in a concentrated liver extract. When assayed under optimal conditions with purified substrates, both activities were present but had decreased to very low levels. Mixing experiments indicated that synthase D present in the extract of adrenalectomized fasted animals was altered such that it was no longer a substrate for synthase phosphatase from normal rats. Phosphorylase a substrate on the other hand was unaltered and readily converted. When glucose was given in vivo, no change in percent of synthase in the I form was seen in adrenalectomized rats but the percent of phosphorylase in the a form was reduced. Precipitation of protein from an extract of normal fed rats with ethanol produced a large activation of phosphorylase phosphatase activity with no corresponding increase in synthase phosphatase activity. Despite the low phosphorylase phosphatase present in extracts of adrenalectomized fasted animals, ethanol precipitation increased activity to the same high level as obtained in the normal fed rats. Synthase phosphatase and phosphorylase phosphatase activities were also decreased in normal fasted, diabetic fed and fasted, and adrenalectomized fed rats. Both enzymes recovered in the same manner temporally after oral glucose administration to adrenalectomized, fasted rats. These results suggest an integrated regulatory mechanism for the two phosphatase.

  7. Biosynthesis of riboflavin: an unusual riboflavin synthase of Methanobacterium thermoautotrophicum.

    PubMed Central

    Eberhardt, S; Korn, S; Lottspeich, F; Bacher, A

    1997-01-01

    Riboflavin synthase was purified by a factor of about 1,500 from cell extract of Methanobacterium thermoautotrophicum. The enzyme had a specific activity of about 2,700 nmol mg(-1) h(-1) at 65 degrees C, which is relatively low compared to those of riboflavin synthases of eubacteria and yeast. Amino acid sequences obtained after proteolytic cleavage had no similarity with known riboflavin synthases. The gene coding for riboflavin synthase (designated ribC) was subsequently cloned by marker rescue with a ribC mutant of Escherichia coli. The ribC gene of M. thermoautotrophicum specifies a protein of 153 amino acid residues. The predicted amino acid sequence agrees with the information gleaned from Edman degradation of the isolated protein and shows 67% identity with the sequence predicted for the unannotated reading frame MJ1184 of Methanococcus jannaschii. The ribC gene is adjacent to a cluster of four genes with similarity to the genes cbiMNQO of Salmonella typhimurium, which form part of the cob operon (this operon contains most of the genes involved in the biosynthesis of vitamin B12). The amino acid sequence predicted by the ribC gene of M. thermoautotrophicum shows no similarity whatsoever to the sequences of riboflavin synthases of eubacteria and yeast. Most notably, the M. thermoautotrophicum protein does not show the internal sequence homology characteristic of eubacterial and yeast riboflavin synthases. The protein of M. thermoautotrophicum can be expressed efficiently in a recombinant E. coli strain. The specific activity of the purified, recombinant protein is 1,900 nmol mg(-1) h(-1) at 65 degrees C. In contrast to riboflavin synthases from eubacteria and fungi, the methanobacterial enzyme has an absolute requirement for magnesium ions. The 5' phosphate of 6,7-dimethyl-8-ribityllumazine does not act as a substrate. The findings suggest that riboflavin synthase has evolved independently in eubacteria and methanobacteria. PMID:9139911

  8. Understanding structure, function, and mutations in the mitochondrial ATP synthase

    PubMed Central

    Xu, Ting; Pagadala, Vijayakanth; Mueller, David M.

    2015-01-01

    The mitochondrial ATP synthase is a multimeric enzyme complex with an overall molecular weight of about 600,000 Da. The ATP synthase is a molecular motor composed of two separable parts: F1 and Fo. The F1 portion contains the catalytic sites for ATP synthesis and protrudes into the mitochondrial matrix. Fo forms a proton turbine that is embedded in the inner membrane and connected to the rotor of F1. The flux of protons flowing down a potential gradient powers the rotation of the rotor driving the synthesis of ATP. Thus, the flow of protons though Fo is coupled to the synthesis of ATP. This review will discuss the structure/function relationship in the ATP synthase as determined by biochemical, crystallographic, and genetic studies. An emphasis will be placed on linking the structure/function relationship with understanding how disease causing mutations or putative single nucleotide polymorphisms (SNPs) in genes encoding the subunits of the ATP synthase, will affect the function of the enzyme and the health of the individual. The review will start by summarizing the current understanding of the subunit composition of the enzyme and the role of the subunits followed by a discussion on known mutations and their effect on the activity of the ATP synthase. The review will conclude with a summary of mutations in genes encoding subunits of the ATP synthase that are known to be responsible for human disease, and a brief discussion on SNPs. PMID:25938092

  9. Linking pseudouridine synthases to growth, development and cell competition.

    PubMed

    Tortoriello, Giuseppe; de Celis, José F; Furia, Maria

    2010-08-01

    Eukaryotic pseudouridine synthases direct RNA pseudouridylation and bind H/ACA small nucleolar RNA (snoRNAs), which, in turn, may act as precursors of microRNA-like molecules. In humans, loss of pseudouridine synthase activity causes dyskeratosis congenita (DC), a complex systemic disorder characterized by cancer susceptibility, failures in ribosome biogenesis and telomere stability, and defects in stem cell formation. Considering the significant interest in deciphering the various molecular consequences of pseudouridine synthase failure, we performed a loss of function analysis of minifly (mfl), the pseudouridine synthase gene of Drosophila, in the wing disc, an advantageous model system for studies of cell growth and differentiation. In this organ, depletion of the mfl-encoded pseudouridine synthase causes a severe reduction in size by decreasing both the number and the size of wing cells. Reduction of cell number was mainly attributable to cell death rather than reduced proliferation, establishing that apoptosis plays a key role in the development of the loss of function mutant phenotype. Depletion of Mfl also causes a proliferative disadvantage in mosaic tissues that leads to the elimination of mutant cells by cell competition. Intriguingly, mfl silencing also triggered unexpected effects on wing patterning and cell differentiation, including deviations from normal lineage boundaries, mingling of cells of different compartments, and defects in the formation of the wing margin that closely mimic the phenotype of reduced Notch activity. These results suggest that a component of the pseudouridine synthase loss of function phenotype is caused by defects in Notch signalling.

  10. Citrate synthase from the liver fluke Fasciola hepatica.

    PubMed

    Zinsser, Veronika L; Moore, Catherine M; Hoey, Elizabeth M; Trudgett, Alan; Timson, David J

    2013-06-01

    Citrate synthase catalyses the first step of the Krebs' tricarboxylic acid cycle. A sequence encoding citrate synthase from the common liver fluke, Fasciola hepatica, has been cloned. The encoded protein sequence is predicted to fold into a largely α-helical protein with high structural similarity to mammalian citrate synthases. Although a hexahistidine-tagged version of the protein could be expressed in Escherichia coli, it was not possible to purify it by nickel-affinity chromatography. Similar results were obtained with a version of the protein which lacks the putative mitochondrial targeting sequence (residues 1 to 29). However, extracts from bacterial cells expressing this version had additional citrate synthase activity after correcting for the endogenous, bacterial activity. The apparent K m for oxaloacetate was found to be 0.22 mM, which is higher than that observed in mammalian citrate synthases. Overall, the sequence and structure of F. hepatica citrate synthase are similar to ones from other eukaryotes, but there are enzymological differences which merit further investigation.

  11. Membrane localization and topology of leukotriene C4 synthase.

    PubMed

    Christmas, Peter; Weber, Brittany M; McKee, Mary; Brown, Dennis; Soberman, Roy J

    2002-08-01

    Leukotriene C(4) (LTC(4)) synthase conjugates LTA(4) with GSH to form LTC(4). Determining the site of LTC(4) synthesis and the topology of LTC(4) synthase may uncover unappreciated intracellular roles for LTC(4), as well as how LTC(4) is transferred to its export carrier, the multidrug resistance protein-1. We have determined the membrane localization of LTC(4) synthase by immunoelectron microscopy. In contrast to the closely related five-lipoxygenase-activating protein, LTC(4) synthase is distributed in the outer nuclear membrane and peripheral endoplasmic reticulum but is excluded from the inner nuclear membrane. We have combined immunofluorescence with differential membrane permeabilization to determine the topology of LTC(4) synthase. The active site of LTC(4) synthase is localized in the lumen of the nuclear envelope and endoplasmic reticulum. These results indicate that the synthesis of LTB(4) and LTC(4) occurs in different subcellular locations and suggests that LTC(4) must be returned to the cytoplasmic side of the membrane for export by multidrug resistance protein-1. The differential localization of two very similar integral membrane proteins suggests that mechanisms other than size-dependent exclusion regulate their passage to the inner nuclear membrane.

  12. Nitric Oxide Synthases in Heart Failure

    PubMed Central

    Carnicer, Ricardo; Crabtree, Mark J.; Sivakumaran, Vidhya

    2013-01-01

    Abstract Significance: The regulation of myocardial function by constitutive nitric oxide synthases (NOS) is important for the maintenance of myocardial Ca2+ homeostasis, relaxation and distensibility, and protection from arrhythmia and abnormal stress stimuli. However, sustained insults such as diabetes, hypertension, hemodynamic overload, and atrial fibrillation lead to dysfunctional NOS activity with superoxide produced instead of NO and worse pathophysiology. Recent Advances: Major strides in understanding the role of normal and abnormal constitutive NOS in the heart have revealed molecular targets by which NO modulates myocyte function and morphology, the role and nature of post-translational modifications of NOS, and factors controlling nitroso-redox balance. Localized and differential signaling from NOS1 (neuronal) versus NOS3 (endothelial) isoforms are being identified, as are methods to restore NOS function in heart disease. Critical Issues: Abnormal NOS signaling plays a key role in many cardiac disorders, while targeted modulation may potentially reverse this pathogenic source of oxidative stress. Future Directions: Improvements in the clinical translation of potent modulators of NOS function/dysfunction may ultimately provide a powerful new treatment for many hearts diseases that are fueled by nitroso-redox imbalance. Antioxid. Redox Signal. 18, 1078–1099. PMID:22871241

  13. Electric field driven torque in ATP synthase.

    PubMed

    Miller, John H; Rajapakshe, Kimal I; Infante, Hans L; Claycomb, James R

    2013-01-01

    FO-ATP synthase (FO) is a rotary motor that converts potential energy from ions, usually protons, moving from high- to low-potential sides of a membrane into torque and rotary motion. Here we propose a mechanism whereby electric fields emanating from the proton entry and exit channels act on asymmetric charge distributions in the c-ring, due to protonated and deprotonated sites, and drive it to rotate. The model predicts a scaling between time-averaged torque and proton motive force, which can be hindered by mutations that adversely affect the channels. The torque created by the c-ring of FO drives the γ-subunit to rotate within the ATP-producing complex (F1) overcoming, with the aid of thermal fluctuations, an opposing torque that rises and falls with angular position. Using the analogy with thermal Brownian motion of a particle in a tilted washboard potential, we compute ATP production rates vs. proton motive force. The latter shows a minimum, needed to drive ATP production, which scales inversely with the number of proton binding sites on the c-ring. PMID:24040370

  14. Electric Field Driven Torque in ATP Synthase

    PubMed Central

    Miller, John H.; Rajapakshe, Kimal I.; Infante, Hans L.; Claycomb, James R.

    2013-01-01

    FO-ATP synthase (FO) is a rotary motor that converts potential energy from ions, usually protons, moving from high- to low-potential sides of a membrane into torque and rotary motion. Here we propose a mechanism whereby electric fields emanating from the proton entry and exit channels act on asymmetric charge distributions in the c-ring, due to protonated and deprotonated sites, and drive it to rotate. The model predicts a scaling between time-averaged torque and proton motive force, which can be hindered by mutations that adversely affect the channels. The torque created by the c-ring of FO drives the γ-subunit to rotate within the ATP-producing complex (F1) overcoming, with the aid of thermal fluctuations, an opposing torque that rises and falls with angular position. Using the analogy with thermal Brownian motion of a particle in a tilted washboard potential, we compute ATP production rates vs. proton motive force. The latter shows a minimum, needed to drive ATP production, which scales inversely with the number of proton binding sites on the c-ring. PMID:24040370

  15. Human Isoprenoid Synthase Enzymes as Therapeutic Targets

    NASA Astrophysics Data System (ADS)

    Park, Jaeok; Matralis, Alexios; Berghuis, Albert; Tsantrizos, Youla

    2014-07-01

    The complex biochemical network known as the mevalonate pathway is responsible for the biosynthesis of all isoprenoids in the human body, which consists of a vast array of metabolites that are vital for proper cellular functions. Two key isoprenoids, farnesyl pyrophosphate (FPP) and geranylgeranyl pyrophosphate (GGPP) are responsible for the post-translational prenylation of small GTP-binding proteins, and serve as the biosynthetic precursors to numerous other biomolecules. The down-stream metabolite of FPP and GGPP is squalene, the precursor to steroids, bile acids, lipoproteins and vitamin D. In the past, interest in prenyl synthase inhibitors focused mainly on the role of the FPP in lytic bone diseases. More recently, pre-clinical and clinical studies have strongly implicated high levels of protein prenylation in a plethora of human diseases, including non-skeletal cancers, the progression of neurodegenerative diseases and cardiovascular diseases. In this review, we focus mainly on the potential therapeutic value of down-regulating the biosynthesis of FPP, GGPP and squalene. We summarize the most recent drug discovery efforts and the structural data available that support the current on-going studies.

  16. Electric field driven torque in ATP synthase.

    PubMed

    Miller, John H; Rajapakshe, Kimal I; Infante, Hans L; Claycomb, James R

    2013-01-01

    FO-ATP synthase (FO) is a rotary motor that converts potential energy from ions, usually protons, moving from high- to low-potential sides of a membrane into torque and rotary motion. Here we propose a mechanism whereby electric fields emanating from the proton entry and exit channels act on asymmetric charge distributions in the c-ring, due to protonated and deprotonated sites, and drive it to rotate. The model predicts a scaling between time-averaged torque and proton motive force, which can be hindered by mutations that adversely affect the channels. The torque created by the c-ring of FO drives the γ-subunit to rotate within the ATP-producing complex (F1) overcoming, with the aid of thermal fluctuations, an opposing torque that rises and falls with angular position. Using the analogy with thermal Brownian motion of a particle in a tilted washboard potential, we compute ATP production rates vs. proton motive force. The latter shows a minimum, needed to drive ATP production, which scales inversely with the number of proton binding sites on the c-ring.

  17. Human isoprenoid synthase enzymes as therapeutic targets

    PubMed Central

    Park, Jaeok; Matralis, Alexios N.; Berghuis, Albert M.; Tsantrizos, Youla S.

    2014-01-01

    In the human body, the complex biochemical network known as the mevalonate pathway is responsible for the biosynthesis of all isoprenoids, which consists of a vast array of metabolites that are vital for proper cellular functions. Two key isoprenoids, farnesyl pyrophosphate (FPP) and geranylgeranyl pyrophosphate (GGPP) are responsible for the post-translational prenylation of small GTP-binding proteins, and serve as the biosynthetic precursors to numerous other biomolecules. The down-stream metabolite of FPP and GGPP is squalene, the precursor to steroids, bile acids, lipoproteins, and vitamin D. In the past, interest in prenyl synthase inhibitors focused mainly on the role of the FPP in lytic bone diseases. More recently pre-clinical and clinical studies have strongly implicated high levels of protein prenylation in a plethora of human diseases, including non-skeletal cancers, the progression of neurodegenerative diseases and cardiovascular diseases. In this review, we focus mainly on the potential therapeutic value of down-regulating the biosynthesis of FPP, GGPP, and squalene. We summarize the most recent drug discovery efforts and the structural data available that support the current on-going studies. PMID:25101260

  18. Undecaprenyl diphosphate synthase inhibitors: antibacterial drug leads.

    PubMed

    Sinko, William; Wang, Yang; Zhu, Wei; Zhang, Yonghui; Feixas, Ferran; Cox, Courtney L; Mitchell, Douglas A; Oldfield, Eric; McCammon, J Andrew

    2014-07-10

    There is a significant need for new antibiotics due to the rise in drug resistance. Drugs such as methicillin and vancomycin target bacterial cell wall biosynthesis, but methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococci (VRE) have now arisen and are of major concern. Inhibitors acting on new targets in cell wall biosynthesis are thus of particular interest since they might also restore sensitivity to existing drugs, and the cis-prenyl transferase undecaprenyl diphosphate synthase (UPPS), essential for lipid I, lipid II, and thus, peptidoglycan biosynthesis, is one such target. We used 12 UPPS crystal structures to validate virtual screening models and then assayed 100 virtual hits (from 450,000 compounds) against UPPS from S. aureus and Escherichia coli. The most promising inhibitors (IC50 ∼2 μM, Ki ∼300 nM) had activity against MRSA, Listeria monocytogenes, Bacillus anthracis, and a vancomycin-resistant Enterococcus sp. with MIC or IC50 values in the 0.25-4 μg/mL range. Moreover, one compound (1), a rhodanine with close structural similarity to the commercial diabetes drug epalrestat, exhibited good activity as well as a fractional inhibitory concentration index (FICI) of 0.1 with methicillin against the community-acquired MRSA USA300 strain, indicating strong synergism. PMID:24827744

  19. Reconstitution of Diphthine Synthase Activity In Vitro

    PubMed Central

    Zhu, Xuling; Kim, Jungwoo; Su, Xiaoyang; Lin, Hening

    2010-01-01

    Diphthamide, the target of diphtheria toxin, is a unique posttranslational modification on eukaryotic and archaeal translation elongation factor 2 (EF2). Although diphthamide modification was discovered three decades ago, in vitro reconstitution of diphthamide biosynthesis using purified proteins has not been reported. The proposed biosynthesis pathway of diphthamide involves three steps. Our laboratory has recently showed that in Pyrococcus horikoshii (P. horikoshii), the first step uses an [4Fe-4S] enzyme PhDph2 to generate a 3-amino-3-carboxypropyl radical from S-adenosyl-L-methionine (SAM) to form a C-C bond. The second step is the trimethylation of an amino group to form the diphthine intermediate. This step is catalyzed by a methyltransferase called diphthine synthase or Dph5. Here we report the in vitro reconstitution of the second step using P. horikoshii Dph5 (PhDph5). Our results demonstrate that PhDph5 is sufficient to catalyze the mono-, di-, and trimethylation of P. horikoshii EF2 (PhEF2). Interestingly, the trimethylated product from PhDph5-catalyzed reaction can easily eliminate the trimethylamino group. The potential implication of this unexpected finding on the diphthamide biosynthesis pathway is discussed. PMID:20873788

  20. Protein preparation, crystallization and preliminary X-ray analysis of Polygonum cuspidatum bifunctional chalcone synthase/benzalacetone synthase.

    PubMed

    Lu, Heshu; Yang, Mingfeng; Liu, Chunmei; Lu, Ping; Cang, Huaixing; Ma, Lanqing

    2013-08-01

    The chalcone synthase (CHS) superfamily of type III polyketide synthases (PKSs) generate the backbones of a variety of plant secondary metabolites. An active bifunctional chalcone synthase/benzalacetone synthase (CHS/BAS) from Polygonum cuspidatum was overexpressed in Escherichia coli as a C-terminally polyhistidine-tagged fusion protein, purified to homogeneity and crystallized using polyethylene glycol 4000 as a precipitant. The production of well shaped crystals of the complex between PcPKS1 and benzalacetone was dependent on the presence of sorbitol and barium chloride as additives. The crystals belonged to the orthorhombic space group P2₁2₁2₁, with unit-cell parameters a = 80.23, b = 81.01, c = 122.89 Å, and diffracted X-rays to at least 2.0 Å resolution. PMID:23908031

  1. Functional analysis of sucrose phosphate synthase (SPS) and sucrose synthase (SS) in sugarcane (Saccharum) cultivars.

    PubMed

    Verma, A K; Upadhyay, S K; Verma, P C; Solomon, S; Singh, S B

    2011-03-01

    Sucrose phosphate synthase (SPS; EC 2.4.1.14) and sucrose synthase (SS; EC 2.4.1.13) are key enzymes in the synthesis and breakdown of sucrose in sugarcane. The activities of internodal SPS and SS, as well as transcript expression were determined using semi-quantitative RT-PCR at different developmental stages of high and low sucrose accumulating sugarcane cultivars. SPS activity and transcript expression was higher in mature internodes compared with immature internodes in all the studied cultivars. However, high sugar cultivars showed increased transcript expression and enzyme activity of SPS compared to low sugar cultivars at all developmental stages. SS activity was higher in immature internodes than in mature internodes in all cultivars; SS transcript expression showed a similar pattern. Our studies demonstrate that SPS activity was positively correlated with sucrose and negatively correlated with hexose sugars. However, SS activity was negatively correlated with sucrose and positively correlated with hexose sugars. The present study opens the possibility for improvement of sugarcane cultivars by increasing expression of the respective enzymes using transgene technology.

  2. Dehydration induces expression of GALACTINOL SYNTHASE and RAFFINOSE SYNTHASE in seedlings of pea (Pisum sativum L.).

    PubMed

    Lahuta, Lesław B; Pluskota, Wioletta E; Stelmaszewska, Joanna; Szablińska, Joanna

    2014-09-01

    The exposition of 7-day-old pea seedlings to dehydration induced sudden changes in the concentration of monosaccharides and sucrose in epicotyl and roots tissues. During 24h of dehydration, the concentration of glucose and, to a lesser extent, fructose in seedling tissues decreased. The accumulation of sucrose was observed in roots after 4h and in epicotyls after 8h of stress. Epicotyls and roots also began to accumulate galactinol and raffinose after 8h of stress, when small changes in the water content of tissues occurred. The accumulation of galactinol and raffinose progressed parallel to water withdrawal from tissues, but after seedling rehydration both galactosides disappeared. The synthesis of galactinol and raffinose by an early induction (during the first hour of treatment) of galactinol synthase (PsGolS) and raffinose synthase (PsRS) gene expression as well as a later increase in the activity of both enzymes was noted. Signals possibly triggering the induction of PsGolS and PsRS gene expression and accumulation of galactinol and raffinose in seedlings are discussed.

  3. Structural and functional organization of the animal fatty acid synthase.

    PubMed

    Smith, Stuart; Witkowski, Andrzej; Joshi, Anil K

    2003-07-01

    The entire pathway of palmitate synthesis from malonyl-CoA in mammals is catalyzed by a single, homodimeric, multifunctional protein, the fatty acid synthase. Each subunit contains three N-terminal domains, the beta-ketoacyl synthase, malonyl/acetyl transferase and dehydrase separated by a structural core from four C-terminal domains, the enoyl reductase, beta-ketoacyl reductase, acyl carrier protein and thiosterase. The kinetics and specificities of the substrate loading reaction catalyzed by the malonyl/acetyl transferase, the condensation reaction catalyzed by beta-ketoacyl synthase and chain-terminating reaction catalyzed by the thioesterase ensure that intermediates do not leak off the enzyme, saturated chains exclusively are elongated and palmitate is released as the major product. Only in the fatty acid synthase dimer do the subunits adopt conformations that facilitate productive coupling of the individual reactions for fatty acid synthesis at the two acyl carrier protein centers. Introduction of a double tagging and dual affinity chromatographic procedure has permitted the engineering and isolation of heterodimeric fatty acid synthases carrying different mutations on each subunit. Characterization of these heterodimers, by activity assays and chemical cross-linking, has been exploited to map the functional topology of the protein. The results reveal that the two acyl carrier protein domains engage in substrate loading and condensation reactions catalyzed by the malonyl/acetyl transferase and beta-ketoacyl synthase domains of either subunit. In contrast, the reactions involved in processing of the beta-carbon atom, following each chain elongation step, together with the release of palmitate, are catalyzed by the cooperation of the acyl carrier protein with catalytic domains of the same subunit. These findings suggest a revised model for the fatty acid synthase in which the two polypeptides are oriented such that head-to-tail contacts are formed both between

  4. Nitric oxide synthases: structure, function and inhibition.

    PubMed Central

    Alderton, W K; Cooper, C E; Knowles, R G

    2001-01-01

    This review concentrates on advances in nitric oxide synthase (NOS) structure, function and inhibition made in the last seven years, during which time substantial advances have been made in our understanding of this enzyme family. There is now information on the enzyme structure at all levels from primary (amino acid sequence) to quaternary (dimerization, association with other proteins) structure. The crystal structures of the oxygenase domains of inducible NOS (iNOS) and vascular endothelial NOS (eNOS) allow us to interpret other information in the context of this important part of the enzyme, with its binding sites for iron protoporphyrin IX (haem), biopterin, L-arginine, and the many inhibitors which interact with them. The exact nature of the NOS reaction, its mechanism and its products continue to be sources of controversy. The role of the biopterin cofactor is now becoming clearer, with emerging data implicating one-electron redox cycling as well as the multiple allosteric effects on enzyme activity. Regulation of the NOSs has been described at all levels from gene transcription to covalent modification and allosteric regulation of the enzyme itself. A wide range of NOS inhibitors have been discussed, interacting with the enzyme in diverse ways in terms of site and mechanism of inhibition, time-dependence and selectivity for individual isoforms, although there are many pitfalls and misunderstandings of these aspects. Highly selective inhibitors of iNOS versus eNOS and neuronal NOS have been identified and some of these have potential in the treatment of a range of inflammatory and other conditions in which iNOS has been implicated. PMID:11463332

  5. Tertiary model of a plant cellulose synthase

    PubMed Central

    Sethaphong, Latsavongsakda; Haigler, Candace H.; Kubicki, James D.; Zimmer, Jochen; Bonetta, Dario; DeBolt, Seth; Yingling, Yaroslava G.

    2013-01-01

    A 3D atomistic model of a plant cellulose synthase (CESA) has remained elusive despite over forty years of experimental effort. Here, we report a computationally predicted 3D structure of 506 amino acids of cotton CESA within the cytosolic region. Comparison of the predicted plant CESA structure with the solved structure of a bacterial cellulose-synthesizing protein validates the overall fold of the modeled glycosyltransferase (GT) domain. The coaligned plant and bacterial GT domains share a six-stranded β-sheet, five α-helices, and conserved motifs similar to those required for catalysis in other GT-2 glycosyltransferases. Extending beyond the cross-kingdom similarities related to cellulose polymerization, the predicted structure of cotton CESA reveals that plant-specific modules (plant-conserved region and class-specific region) fold into distinct subdomains on the periphery of the catalytic region. Computational results support the importance of the plant-conserved region and/or class-specific region in CESA oligomerization to form the multimeric cellulose–synthesis complexes that are characteristic of plants. Relatively high sequence conservation between plant CESAs allowed mapping of known mutations and two previously undescribed mutations that perturb cellulose synthesis in Arabidopsis thaliana to their analogous positions in the modeled structure. Most of these mutation sites are near the predicted catalytic region, and the confluence of other mutation sites supports the existence of previously undefined functional nodes within the catalytic core of CESA. Overall, the predicted tertiary structure provides a platform for the biochemical engineering of plant CESAs. PMID:23592721

  6. Highly Divergent Mitochondrial ATP Synthase Complexes in Tetrahymena thermophila

    PubMed Central

    Balabaskaran Nina, Praveen; Dudkina, Natalya V.; Kane, Lesley A.; van Eyk, Jennifer E.; Boekema, Egbert J.; Mather, Michael W.; Vaidya, Akhil B.

    2010-01-01

    The F-type ATP synthase complex is a rotary nano-motor driven by proton motive force to synthesize ATP. Its F1 sector catalyzes ATP synthesis, whereas the Fo sector conducts the protons and provides a stator for the rotary action of the complex. Components of both F1 and Fo sectors are highly conserved across prokaryotes and eukaryotes. Therefore, it was a surprise that genes encoding the a and b subunits as well as other components of the Fo sector were undetectable in the sequenced genomes of a variety of apicomplexan parasites. While the parasitic existence of these organisms could explain the apparent incomplete nature of ATP synthase in Apicomplexa, genes for these essential components were absent even in Tetrahymena thermophila, a free-living ciliate belonging to a sister clade of Apicomplexa, which demonstrates robust oxidative phosphorylation. This observation raises the possibility that the entire clade of Alveolata may have invented novel means to operate ATP synthase complexes. To assess this remarkable possibility, we have carried out an investigation of the ATP synthase from T. thermophila. Blue native polyacrylamide gel electrophoresis (BN-PAGE) revealed the ATP synthase to be present as a large complex. Structural study based on single particle electron microscopy analysis suggested the complex to be a dimer with several unique structures including an unusually large domain on the intermembrane side of the ATP synthase and novel domains flanking the c subunit rings. The two monomers were in a parallel configuration rather than the angled configuration previously observed in other organisms. Proteomic analyses of well-resolved ATP synthase complexes from 2-D BN/BN-PAGE identified orthologs of seven canonical ATP synthase subunits, and at least 13 novel proteins that constitute subunits apparently limited to the ciliate lineage. A mitochondrially encoded protein, Ymf66, with predicted eight transmembrane domains could be a substitute for the subunit a

  7. Expression and characterization of glycogen synthase kinase-3 mutants and their effect on glycogen synthase activity in intact cells.

    PubMed Central

    Eldar-Finkelman, H; Argast, G M; Foord, O; Fischer, E H; Krebs, E G

    1996-01-01

    In these studies we expressed and characterized wild-type (WT) GSK-3 (glycogen synthase kinase-3) and its mutants, and examined their physiological effect on glycogen synthase activity. The GSK-3 mutants included mutation at serine-9 either to alanine (S9A) or glutamic acid (S9E) and an inactive mutant, K85,86MA. Expression of WT and the various mutants in a cell-free system indicated that S9A and S9E exhibit increased kinase activity as compared with WT. Subsequently, 293 cells were transiently transfected with WT GSK-3 and mutants. Cells expressing the S9A mutant exhibited higher kinase activity (2.6-fold of control cells) as compared with cells expressing WT and S9E (1.8- and 2.0-fold, respectively, of control cells). Combined, these results suggest serine-9 as a key regulatory site of GSK-3 inactivation, and indicate that glutamic acid cannot mimic the function of the phosphorylated residue. The GSK-3-expressing cell system enabled us to examine whether GSK-3 can induce changes in the endogenous glycogen synthase activity. A decrease in glycogen synthase activity (50%) was observed in cells expressing the S9A mutant. Similarly, glycogen synthase activity was suppressed in cells expressing WT and the S9E mutant (20-30%, respectively). These studies indicate that activation of GSK-3 is sufficient to inhibit glycogen synthase in intact cells, and provide evidence supporting a physiological role for GSK-3 in regulating glycogen synthase and glycogen metabolism. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:8816781

  8. Plasticity and Evolution of (+)-3-Carene Synthase and (−)-Sabinene Synthase Functions of a Sitka Spruce Monoterpene Synthase Gene Family Associated with Weevil Resistance*

    PubMed Central

    Roach, Christopher R.; Hall, Dawn E.; Zerbe, Philipp; Bohlmann, Jörg

    2014-01-01

    The monoterpene (+)-3-carene is associated with resistance of Sitka spruce against white pine weevil, a major North American forest insect pest of pine and spruce. High and low levels of (+)-3-carene in, respectively, resistant and susceptible Sitka spruce genotypes are due to variation of (+)-3-carene synthase gene copy number, transcript and protein expression levels, enzyme product profiles, and enzyme catalytic efficiency. A family of multiproduct (+)-3-carene synthase-like genes of Sitka spruce include the three (+)-3-carene synthases, PsTPS-3car1, PsTPS-3car2, PsTPS-3car3, and the (−)-sabinene synthase PsTPS-sab. Of these, PsTPS-3car2 is responsible for the relatively higher levels of (+)-3-carene in weevil-resistant trees. Here, we identified features of the PsTPS-3car1, PsTPS-3car2, PsTPS-3car3, and PsTPS-sab proteins that determine different product profiles. A series of domain swap and site-directed mutations, supported by structural comparisons, identified the amino acid in position 596 as critical for product profiles dominated by (+)-3-carene in PsTPS-3car1, PsTPS-3car2, and PsTPS-3car3, or (−)-sabinene in PsTPS-sab. A leucine in this position promotes formation of (+)-3-carene, whereas phenylalanine promotes (−)-sabinene. Homology modeling predicts that position 596 directs product profiles through differential stabilization of the reaction intermediate. Kinetic analysis revealed position 596 also plays a role in catalytic efficiency. Mutations of position 596 with different side chain properties resulted in a series of enzymes with different product profiles, further highlighting the inherent plasticity and potential for evolution of alternative product profiles of these monoterpene synthases of conifer defense against insects. PMID:25016016

  9. ATP synthases: cellular nanomotors characterized by LILBID mass spectrometry

    PubMed Central

    Hoffmann, Jan; Sokolova, Lucie; Preiss, Laura; Hicks, David B.; Krulwich, Terry A.; Morgner, Nina; Wittig, Ilka; Schägger, Hermann; Meier, Thomas; Brutschy, Bernd

    2010-01-01

    Mass spectrometry of membrane protein complexes is still a methodological challenge due to hydrophobic and hydrophilic parts of the species and the fact that all subunits are bound non-covalently together. The present study with the novel laser induced liquid bead ion desorption mass spectrometry (LILBID-MS) reports on the determination of the subunit composition of the F1Fo-ATP synthase from Bacillus pseudofirmus OF4, that of both bovine heart and, for the first time, of human heart mitochondrial F1Fo-ATP synthases. Under selected buffer conditions the mass of the intact F1Fo-ATP synthase of B. pseudofirmus OF4 could be measured, allowing the analysis of complex subunit stoichiometry. The agreement with theoretical masses derived from sequence databases is very good. A comparison of the ATP synthase subunit composition of 5 different ATPases reveals differences in the complexity of eukaryotic and bacterial ATP synthases. However, whereas the overall construction of eukaryotic enzymes is more complex than the bacterial ones, functionally important subunits are conserved among all ATPases. PMID:20820587

  10. Dimers of mitochondrial ATP synthase form the permeability transition pore

    PubMed Central

    Giorgio, Valentina; von Stockum, Sophia; Antoniel, Manuela; Fabbro, Astrid; Fogolari, Federico; Forte, Michael; Glick, Gary D.; Petronilli, Valeria; Zoratti, Mario; Szabó, Ildikó; Lippe, Giovanna; Bernardi, Paolo

    2013-01-01

    Here we define the molecular nature of the mitochondrial permeability transition pore (PTP), a key effector of cell death. The PTP is regulated by matrix cyclophilin D (CyPD), which also binds the lateral stalk of the FOF1 ATP synthase. We show that CyPD binds the oligomycin sensitivity-conferring protein subunit of the enzyme at the same site as the ATP synthase inhibitor benzodiazepine 423 (Bz-423), that Bz-423 sensitizes the PTP to Ca2+ like CyPD itself, and that decreasing oligomycin sensitivity-conferring protein expression by RNAi increases the sensitivity of the PTP to Ca2+. Purified dimers of the ATP synthase, which did not contain voltage-dependent anion channel or adenine nucleotide translocator, were reconstituted into lipid bilayers. In the presence of Ca2+, addition of Bz-423 triggered opening of a channel with currents that were typical of the mitochondrial megachannel, which is the PTP electrophysiological equivalent. Channel openings were inhibited by the ATP synthase inhibitor AMP-PNP (γ-imino ATP, a nonhydrolyzable ATP analog) and Mg2+/ADP. These results indicate that the PTP forms from dimers of the ATP synthase. PMID:23530243

  11. The ATP synthase: the understood, the uncertain and the unknown.

    PubMed

    Walker, John E

    2013-02-01

    The ATP synthases are multiprotein complexes found in the energy-transducing membranes of bacteria, chloroplasts and mitochondria. They employ a transmembrane protonmotive force, Δp, as a source of energy to drive a mechanical rotary mechanism that leads to the chemical synthesis of ATP from ADP and Pi. Their overall architecture, organization and mechanistic principles are mostly well established, but other features are less well understood. For example, ATP synthases from bacteria, mitochondria and chloroplasts differ in the mechanisms of regulation of their activity, and the molecular bases of these different mechanisms and their physiological roles are only just beginning to emerge. Another crucial feature lacking a molecular description is how rotation driven by Δp is generated, and how rotation transmits energy into the catalytic sites of the enzyme to produce the stepping action during rotation. One surprising and incompletely explained deduction based on the symmetries of c-rings in the rotor of the enzyme is that the amount of energy required by the ATP synthase to make an ATP molecule does not have a universal value. ATP synthases from multicellular organisms require the least energy, whereas the energy required to make an ATP molecule in unicellular organisms and chloroplasts is higher, and a range of values has been calculated. Finally, evidence is growing for other roles of ATP synthases in the inner membranes of mitochondria. Here the enzymes form supermolecular complexes, possibly with specific lipids, and these complexes probably contribute to, or even determine, the formation of the cristae.

  12. Diversity of sesquiterpene synthases in the basidiomycete Coprinus cinereus.

    PubMed

    Agger, Sean; Lopez-Gallego, Fernando; Schmidt-Dannert, Claudia

    2009-06-01

    Fungi are a rich source of bioactive secondary metabolites, and mushroom-forming fungi (Agaricomycetes) are especially known for the synthesis of numerous bioactive and often cytotoxic sesquiterpenoid secondary metabolites. Compared with the large number of sesquiterpene synthases identified in plants, less than a handful of unique sesquiterpene synthases have been described from fungi. Here we describe the functional characterization of six sesquiterpene synthases (Cop1 to Cop6) and two terpene-oxidizing cytochrome P450 monooxygenases (Cox1 and Cox2) from Coprinus cinereus. The genes were cloned and, except for cop5, functionally expressed in Escherichia coli and/or Saccharomyces cerevisiae. Cop1 and Cop2 each synthesize germacrene A as the major product. Cop3 was identified as an alpha-muurolene synthase, an enzyme that has not been described previously, while Cop4 synthesizes delta-cadinene as its major product. Cop6 was originally annotated as a trichodiene synthase homologue but instead was found to catalyse the highly specific synthesis of alpha-cuprenene. Coexpression of cop6 and the two monooxygenase genes next to it yields oxygenated alpha-cuprenene derivatives, including cuparophenol, suggesting that these genes encode the enzymes for the biosynthesis of antimicrobial quinone sesquiterpenoids (known as lagopodins) that were previously isolated from C. cinereus and other Coprinus species. PMID:19400802

  13. Understanding Plant Cellulose Synthases through a Comprehensive Investigation of the Cellulose Synthase Family Sequences

    PubMed Central

    Carroll, Andrew; Specht, Chelsea D.

    2011-01-01

    The development of cellulose as an organizing structure in the plant cell wall was a key event in both the initial colonization and the subsequent domination of the terrestrial ecosystem by vascular plants. A wealth of experimental data has demonstrated the complicated genetic interactions required to form the large synthetic complex that synthesizes cellulose. However, these results are lacking an extensive analysis of the evolution, specialization, and regulation of the proteins that compose this complex. Here we perform an in-depth analysis of the sequences in the cellulose synthase (CesA) family. We investigate the phylogeny of the CesA family, with emphasis on evolutionary specialization. We define specialized clades and identify the class-specific regions within the CesA sequence that may explain this specialization. We investigate changes in regulation of CesAs by looking at the conservation of proposed phosphorylation sites. We investigate the conservation of sites where mutations have been documented that impair CesA function, and compare these sites to those observed in the closest cellulose synthase-like (Csl) families to better understand what regions may separate the CesAs from other Csls. Finally we identify two positions with strong conservation of the aromatic trait, but lacking conservation of amino acid identity, which may represent residues important for positioning the sugar substrate for catalysis. These analyses provide useful tools for understanding characterized mutations and post-translational modifications, and for informing further experiments to probe CesA assembly, regulation, and function through site-directed mutagenesis or domain swapping experiments. PMID:22629257

  14. SbnG, a Citrate Synthase in Staphylococcus aureus

    PubMed Central

    Kobylarz, Marek J.; Grigg, Jason C.; Sheldon, Jessica R.; Heinrichs, David E.; Murphy, Michael E. P.

    2014-01-01

    In response to iron deprivation, Staphylococcus aureus produces staphyloferrin B, a citrate-containing siderophore that delivers iron back to the cell. This bacterium also possesses a second citrate synthase, SbnG, that is necessary for supplying citrate to the staphyloferrin B biosynthetic pathway. We present the structure of SbnG bound to the inhibitor calcium and an active site variant in complex with oxaloacetate. The overall fold of SbnG is structurally distinct from TCA cycle citrate synthases yet similar to metal-dependent class II aldolases. Phylogenetic analyses revealed that SbnG forms a separate clade with homologs from other siderophore biosynthetic gene clusters and is representative of a metal-independent subgroup in the phosphoenolpyruvate/pyruvate domain superfamily. A structural superposition of the SbnG active site to TCA cycle citrate synthases and site-directed mutagenesis suggests a case for convergent evolution toward a conserved catalytic mechanism for citrate production. PMID:25336653

  15. Evolutionary history of the chitin synthases of eukaryotes.

    PubMed

    Morozov, Alexey A; Likhoshway, Yelena V

    2016-06-01

    Chitin synthases are widespread among eukaryotes and known to have a complex evolutionary history in some of the groups. We have reconstructed the chitin synthase phylogeny using the most taxonomically comprehensive dataset currently available and have shown the presence of independently formed paralogous groups in oomycetes, ciliates, fungi, and all diatoms except raphid pennates. There were also two cases of horizontal gene transfer (HGT): transfer from fungus to early diatoms gave rise to diatom paralogous group, while transfer from raphid pennate diatom to Acantamoeba ancestor is, to our knowledge, restricted to a single gene in amoeba. Early evolution of chitin synthases is heavily obscured by paralogy, and further sequencing effort is necessary. PMID:26887391

  16. A functional map of the nopaline synthase promoter.

    PubMed Central

    Shaw, C H; Carter, G H; Watson, M D; Shaw, C H

    1984-01-01

    This paper describes the first functional map of a promoter expressed from the plant chromosome. We have constructed a series of overlapping deletion mutants within the region upstream of the Ti-plasmid encoded nopaline synthase (nos) gene. By monitoring nos expression in tumour tissue we have inferred a functional map of the nos promoter. The maximum length of sequence upstream of the transcription initiation point required to express wild type levels of nopaline synthase is 88 bp. Within this region, the "CAAT" box is essential for maximal activity; deletion of this sequence reduced apparent nos expression by over 80%. Presence of an intact or partial "TATA" box in the absence of the "CAAT" box supports a barely detectable level of nopaline synthase. Removal of all sequences upstream of the nos coding sequence results in no detectable activity. PMID:6493982

  17. Properties of peroxisomal and mitochondrial citrate synthase from Agave americana.

    PubMed

    Segovia, J L; Zafra, M F; Alejandre, M J; García-Peregrín, E

    1982-09-01

    Adenine nucleotides were tested as effectors of peroxisomal and mitochondrial citrate synthase from Agave americana leaves in the presence of different concentrations of acetyl-CoA and oxalacetate substrates. ATP inhibited both enzyme activities but with a different inhibition profile. 1.0-7.5 mM ADP did not inhibit the peroxisomal citrate synthase in the presence of high substrate concentrations, while the mitochondrial enzyme was strongly inhibited by 1.0 mM ADP in the same conditions. Likewise, a different pattern was obtained with AMP on both peroxisomal and mitochondrial activities. The rate of citrate formation as function of acetyl-CoA and oxalacetate concentration was also studied in both fractions. Maximal velocity was highest in the peroxisomal fraction, whether acetyl-CoA or oxalacetate were the variable substrates. These differences indicate that peroxisomal and mitochondrial citrate synthases seem to be two different isoenzymes.

  18. Mapping a kingdom-specific functional domain of squalene synthase.

    PubMed

    Linscott, Kristin B; Niehaus, Thomas D; Zhuang, Xun; Bell, Stephen A; Chappell, Joe

    2016-09-01

    Squalene synthase catalyzes the first committed step in sterol biosynthesis and consists of both an amino-terminal catalytic domain and a carboxy-terminal domain tethering the enzyme to the ER membrane. While the overall architecture of this enzyme is identical in eukaryotes, it was previously shown that plant and animal genes cannot complement a squalene synthase knockout mutation in yeast unless the carboxy-terminal domain is swapped for one of fungal origin. This implied a unique component of the fungal carboxy-terminal domain was responsible for the complementation phenotype. To identify this motif, we used Saccharomyces cerevisiae with a squalene synthase knockout mutation, and expressed intact and chimeric squalene synthases originating from fungi, plants, and animals. In contrast to previous observations, all enzymes tested could partially complement the knockout mutation when the genes were weakly expressed. However, when highly expressed, non-fungal squalene synthases could not complement the yeast mutation and instead led to the accumulation of a toxic intermediate(s) as defined by mutations of genes downstream in the ergosterol pathway. Restoration of the complete complementation phenotype was mapped to a 26-amino acid hinge region linking the catalytic and membrane-spanning domains specific to fungal squalene synthases. Over-expression of the C-terminal domain containing a hinge domain from fungi, not from animals or plants, led to growth inhibition of wild-type yeast. Because this hinge region is unique to and highly conserved within each kingdom of life, the data suggests that the hinge domain plays an essential functional role, such as assembly of ergosterol multi-enzyme complexes in fungi.

  19. Exploiting the Biosynthetic Potential of Type III Polyketide Synthases.

    PubMed

    Lim, Yan Ping; Go, Maybelle K; Yew, Wen Shan

    2016-01-01

    Polyketides are structurally and functionally diverse secondary metabolites that are biosynthesized by polyketide synthases (PKSs) using acyl-CoA precursors. Recent studies in the engineering and structural characterization of PKSs have facilitated the use of target enzymes as biocatalysts to produce novel functionally optimized polyketides. These compounds may serve as potential drug leads. This review summarizes the insights gained from research on type III PKSs, from the discovery of chalcone synthase in plants to novel PKSs in bacteria and fungi. To date, at least 15 families of type III PKSs have been characterized, highlighting the utility of PKSs in the development of natural product libraries for therapeutic development. PMID:27338328

  20. An Unusual Chimeric Diterpene Synthase from Emericella variecolor and Its Functional Conversion into a Sesterterpene Synthase by Domain Swapping.

    PubMed

    Qin, Bin; Matsuda, Yudai; Mori, Takahiro; Okada, Masahiro; Quan, Zhiyang; Mitsuhashi, Takaaki; Wakimoto, Toshiyuki; Abe, Ikuro

    2016-01-26

    Di- and sesterterpene synthases produce C20 and C25 isoprenoid scaffolds from geranylgeranyl pyrophosphate (GGPP) and geranylfarnesyl pyrophosphate (GFPP), respectively. By genome mining of the fungus Emericella variecolor, we identified a multitasking chimeric terpene synthase, EvVS, which has terpene cyclase (TC) and prenyltransferase (PT) domains. Heterologous gene expression in Aspergillus oryzae led to the isolation of variediene (1), a novel tricyclic diterpene hydrocarbon. Intriguingly, in vitro reaction with the enzyme afforded the new macrocyclic sesterterpene 2 as a minor product from dimethylallyl pyrophosphate (DMAPP) and isopentenyl pyrophosphate (IPP). The TC domain thus produces the diterpene 1 and the sesterterpene 2 from GGPP and GFPP, respectively. Notably, a domain swap of the PT domain of EvVS with that of another chimeric sesterterpene synthase, EvSS, successfully resulted in the production of 2 in vivo as well. Cyclization mechanisms for the production of these two compounds are proposed.

  1. Benzophenone Synthase and Chalcone Synthase Accumulate in the Mesophyll of Hypericum perforatum Leaves at Different Developmental Stages

    PubMed Central

    Belkheir, Asma K.; Gaid, Mariam; Liu, Benye; Hänsch, Robert; Beerhues, Ludger

    2016-01-01

    The active medicinal constituents in Hypericum perforatum, used to treat depression and skin irritation, include flavonoids and xanthones. The carbon skeletons of these compounds are formed by chalcone synthase (CHS) and benzophenone synthase (BPS), respectively. Polyclonal antisera were raised against the polyketide synthases from Hypericum androsaemum and their IgG fractions were isolated. Immunoblotting and immunotitration were used to test the IgGs for crossreactivity and monospecificity in H. perforatum leaf protein extract. Immunofluorescence localization revealed that both CHS and BPS are located in the mesophyll. The maximum fluorescence levels were observed in approx. 0.5 and 1 cm long leaves, respectively. The fluorescence intensity observed for CHS significantly exceeded that for BPS. Using histochemical staining, flavonoids were detected in the mesophyll, indicating that the sites of biosynthesis and accumulation coincide. Our results help understand the biosynthesis and underlying regulation of active H. perforatum constituents. PMID:27446151

  2. Identification of a cryptic type III polyketide synthase (1,3,6,8-tetrahydroxynaphthalene synthase) from Streptomyces peucetius ATCC 27952.

    PubMed

    Ghimire, Gopal Prasad; Oh, Tae-Jin; Liou, Kwangkyoung; Sohng, Jae Kyung

    2008-10-31

    We identified a 1,134-bp putative type III polyketide synthase from the sequence analysis of Streptomyces peucetius ATCC 27952, named Sp-RppA, which is characterized as 1,3,6,8-tetrahydroxynaphthalene synthase and shares 33% identity with SCO1206 from S. coelicolor A3(2) and 32% identity with RppA from S. griseus. The 1,3,6,8-tetrahydroxynaphthalene synthase is known to catalyze the sequential decarboxylative condensation, intramolecular cyclization, and aromatization of an oligoketide derived from five units of malonyl-CoA to give 1,3,6,8-tetrahydroxynaphthalene, which spontaneously oxidizes to form 2,5,7-trihydroxy-1,4-naphthoquinone (flaviolin). In this study, we report the in vivo expression and in vitro synthesis of flaviolin from purified gene product (Sp-RppA). PMID:18612244

  3. Benzophenone Synthase and Chalcone Synthase Accumulate in the Mesophyll of Hypericum perforatum Leaves at Different Developmental Stages.

    PubMed

    Belkheir, Asma K; Gaid, Mariam; Liu, Benye; Hänsch, Robert; Beerhues, Ludger

    2016-01-01

    The active medicinal constituents in Hypericum perforatum, used to treat depression and skin irritation, include flavonoids and xanthones. The carbon skeletons of these compounds are formed by chalcone synthase (CHS) and benzophenone synthase (BPS), respectively. Polyclonal antisera were raised against the polyketide synthases from Hypericum androsaemum and their IgG fractions were isolated. Immunoblotting and immunotitration were used to test the IgGs for crossreactivity and monospecificity in H. perforatum leaf protein extract. Immunofluorescence localization revealed that both CHS and BPS are located in the mesophyll. The maximum fluorescence levels were observed in approx. 0.5 and 1 cm long leaves, respectively. The fluorescence intensity observed for CHS significantly exceeded that for BPS. Using histochemical staining, flavonoids were detected in the mesophyll, indicating that the sites of biosynthesis and accumulation coincide. Our results help understand the biosynthesis and underlying regulation of active H. perforatum constituents. PMID:27446151

  4. Genetics Home Reference: N-acetylglutamate synthase deficiency

    MedlinePlus

    ... of reactions that occurs in liver cells. This cycle processes excess nitrogen, generated when protein is used by the body, to make a compound called urea that is excreted by the kidneys. The ... cycle. In people with N-acetylglutamate synthase deficiency , N- ...

  5. Incremental truncation of PHA synthases results in altered product specificity.

    PubMed

    Wang, Qian; Xia, Yongzhen; Chen, Quan; Qi, Qingsheng

    2012-05-10

    PHA synthase is the key enzyme involved in the biosynthesis of microbial polymers, polyhydroxyalkanoates (PHA). In this study, we created a hybrid library of PHA synthase gene with different crossover points by an incremental truncation method between the C-terminal fragments of the phaC(Cn) (phaC from Cupriavidus necator) and the N-terminal fragments of the phaC1(Pa) (phaC from Pseudomonas aeruginosa). As the truncation of the hybrid enzyme increased, the in vivo PHB synthesis ability of the hybrids declined gradually. PHA synthase PhaC(Cn) with a deletion on N-terminal up to 83 amino acid residues showed no synthase activity. While with the removal of up to 270 amino acids from the N-terminus, the activity of the truncated PhaC(Cn) could be complemented by the N-terminus of PhaC1(Pa). Three of the hybrid enzymes W188, W235 and W272 (named by the deleted nucleic acid number) were found to have altered product specificities. PMID:22500895

  6. Absence of Pneumocystis dihydropteroate synthase mutants in Brittany, France.

    PubMed

    Le Gal, Solène; Robert-Gangneux, Florence; Perrot, Maëla; Rouillé, Amélie; Virmaux, Michèle; Damiani, Céline; Totet, Anne; Gangneux, Jean-Pierre; Nevez, Gilles

    2013-05-01

    Archival Pneumocystis jirovecii specimens from 84 patients monitored at Rennes University Hospital (Rennes, France) were assayed at the dihydropteroate synthase (DHPS) locus. No patient was infected with mutants. The results provide additional data showing that P. jirovecii infections involving DHPS mutants do not represent a public health issue in Brittany, western France.

  7. Insight into Biochemical Characterization of Plant Sesquiterpene Synthases

    PubMed Central

    Manczak, Tom; Simonsen, Henrik Toft

    2016-01-01

    A fast and reproducible protocol was established for enzymatic characterization of plant sesquiterpene synthases that can incorporate radioactivity in their products. The method utilizes the 96-well format in conjunction with cluster tubes and enables processing of >200 samples a day. Along with reduced reagent usage, it allows further reduction in the use of radioactive isotopes and flammable organic solvents. The sesquiterpene synthases previously characterized were expressed in yeast, and the plant-derived Thapsia garganica kunzeaol synthase TgTPS2 was tested in this method. KM for TgTPS2 was found to be 0.55 μM; the turnover number, kcat, was found to be 0.29 s−1, kcat for TgTPS2 is in agreement with that of terpene synthases of other plants, and kcat/KM was found to be 0.53 s−1 μM−1 for TgTPS2. The kinetic parameters were in agreement with previously published data. PMID:27721652

  8. A particular phenotype in a girl with aldosterone synthase deficiency.

    PubMed

    Williams, Tracy A; Mulatero, Paolo; Bosio, Maurizio; Lewicka, Sabina; Palermo, Mario; Veglio, Franco; Armanini, Decio

    2004-07-01

    Aldosterone synthase deficiency (ASD) usually presents in infancy as a life-threatening electrolyte imbalance. A 4-wk-old child of unrelated parents was examined for failure to thrive and salt-wasting. Notable laboratory findings were hyperkalemia, high plasma renin, and low-normal aldosterone levels. Urinary metabolite ratios of corticosterone/18-hydroxycorticosterone and 18-hydroxycorticosterone/aldosterone were intermediate between ASD type I and type II. Sequence analysis of CYP11B2, the gene encoding aldosterone synthase (P450c11AS), revealed that the patient was a compound heterozygote carrying a previously described mutation located in exon 4 causing a premature stop codon (E255X) and a further, novel mutation in exon 5 that also causes a premature stop codon (Q272X). The patient's unaffected father was a heterozygous carrier of the E255X mutation, whereas the unaffected mother was a heterozygous carrier of the Q272X mutation. Therefore, the patient's CYP11B2 encodes two truncated forms of aldosterone synthase predicted to be inactive because they lack critical active site residues as well as the heme-binding site. This case of ASD is of particular interest because despite the apparent lack of aldosterone synthase activity, the patient displays low-normal aldosterone levels, thus raising the question of its source. PMID:15240589

  9. Lipoxin synthase activity of human platelet 12-lipoxygenase.

    PubMed Central

    Romano, M; Chen, X S; Takahashi, Y; Yamamoto, S; Funk, C D; Serhan, C N

    1993-01-01

    Human platelets and megacaryocytes generate lipoxins from exogenous leukotriene A4 (LTA4). We examined the role of human 12-lipoxygenase (12-LO) in lipoxin generation with recombinant histidine-tagged human platelet enzyme (6His-12-LO), partially purified 12-LO from human platelets (HPL 12-LO) and, for the purposes of direct comparison, permeabilized platelets. Recombinant and HPL 12-LO catalysed the conversion of intact LTA4 into both lipoxin A4 (LXA4) and lipoxin B4 (LXB4). In contrast, only negligible quantities of LXA4 were generated when recombinant 12-LO was incubated with the non-enzymic hydrolysis products of LTA4.6His-12-LO also converted a non-allylic epoxide, 5(6)-epoxy-(8Z,11Z,14Z)-eicosatrienoic acid. The apparent Km and Vmax. for lipoxin synthase activity of 6His-12-LO were estimated to be 7.9 +/- 0.8 microM and 24.5 +/- 2.5 nmol/min per mg respectively, and the LXB4 synthase activity of this enzyme was selectively regulated by suicide inactivation. Aspirin gave a 2-fold increase in lipoxin formation by platelets but did not enhance the conversion of LTA4 by the recombinant 12-LO. These results provide direct evidence for LXA4 and LXB4 synthase activity of human platelet 12-LO. Moreover, they suggest that 12-LO is a dual-function enzyme that carries both oxygenase and lipoxin synthase activity. Images Figure 1 PMID:8250832

  10. Polyhydroyxalkanoate synthase fusions as a strategy for oriented enzyme immobilisation.

    PubMed

    Hooks, David O; Venning-Slater, Mark; Du, Jinping; Rehm, Bernd H A

    2014-01-01

    Polyhydroxyalkanoate (PHA) is a carbon storage polymer produced by certain bacteria in unbalanced nutrient conditions. The PHA forms spherical inclusions surrounded by granule associate proteins including the PHA synthase (PhaC). Recently, the intracellular formation of PHA granules with covalently attached synthase from Ralstonia eutropha has been exploited as a novel strategy for oriented enzyme immobilisation. Fusing the enzyme of interest to PHA synthase results in a bifunctional protein able to produce PHA granules and immobilise the active enzyme of choice to the granule surface. Functionalised PHA granules can be isolated from the bacterial hosts, such as Escherichia coli, and maintain enzymatic activity in a wide variety of assay conditions. This approach to oriented enzyme immobilisation has produced higher enzyme activities and product levels than non-oriented immobilisation techniques such as protein inclusion based particles. Here, enzyme immobilisation via PHA synthase fusion is reviewed in terms of the genetic designs, the choices of enzymes, the control of enzyme orientations, as well as their current and potential applications. PMID:24962396

  11. Isoelectric focusing of wound-induced tomato ACC synthase

    SciTech Connect

    White, J.A.; Kende, H. )

    1990-05-01

    Several techniques of electrofocusing have been used to determine whether 1-aminocyclopropane-1-carboxylate (ACC) synthase isolated from wounded tomato pericarp tissue exists in different isoforms, each with its characteristic isoelectric point (pI). The pI of the native enzyme was found to be 6.0 {plus minus} 0.2. When radiolabeled, denatured ACC synthase was electrofocused by non-equilibrium pH gradient electrophoresis (NEpHGE), the enzyme separated into four discernible spots which, upon reaching equilibrium, ranged in pI from 6.6 to 6.9. Immunopurified ACC synthase from four tomato cultivars (Duke, Cornell, Mountain Pride and Pik Red) migrated in each case as a 50-kDa protein on sodium dodecyl sulfate polyacrylamide gels (SDS-PAGE). We propose that native ACC synthase in extracts of tomato pericarp tissue exists in one single form and that the charge heterogeneities observed upon electrofocusing of denatured enzyme result from modifications of preexisting protein.

  12. Mechanism of the beta-ketoacyl synthase reaction catalyzed by the animal fatty acid synthase.

    PubMed

    Witkowski, Andrzej; Joshi, Anil K; Smith, Stuart

    2002-09-01

    The catalytic mechanism of the beta-ketoacyl synthase domain of the multifunctional fatty acid synthase has been investigated by a combination of mutagenesis, active-site titration, product analysis, and product inhibition. Neither the reactivity of the active-site Cys161 residue toward iodoacetamide nor the rate of unidirectional transfer of acyl moieties to Cys161 was significantly decreased by replacement of any of the conserved residues, His293, His331, or Lys326, with Ala. Decarboxylation of malonyl moieties in the fully-active Cys161Gln background generated equimolar amounts of acetyl-CoA and bicarbonate, rather than carbon dioxide, and was seriously compromised by replacement of any of the conserved basic residues. The ability of bicarbonate to inhibit decarboxylation of malonyl moieties in the Cys161Gln background was significantly reduced by replacement of His293 but less so by replacement of His331. The data are consistent with a reaction mechanism, in which the initial primer transfer reaction is promoted largely through a lowering of the pKa of the Cys161 thiol by a helix dipole effect and activation of the substrate thioester carbon atom by binding of the keto group in an oxyanion hole. The data also indicate that an activated water molecule is present at the active site that is required either for the rapid hydration of carbon dioxide, prior its release as bicarbonate or, alternatively, for an initial attack on the malonyl C3. In the alternative mechanism, a negatively-charged tetrahedral transition state could be generated, stabilized in part by interaction of His293 with the negatively charged oxygen at C3 and interaction of His331 with the negatively charged thioester carbonyl oxygen, that breaks down to generate bicarbonate directly. Finally, the carbanion at C2, attacks the electrophilic C1 of the primer, generating a second tetrahedral transition state, also stabilized through contacts with the oxyanion hole and His331, that breaks down to form

  13. Detailed characterization of the substrate specificity of mouse wax synthase.

    PubMed

    Miklaszewska, Magdalena; Kawiński, Adam; Banaś, Antoni

    2013-01-01

    Wax synthases are membrane-associated enzymes catalysing the esterification reaction between fatty acyl-CoA and a long chain fatty alcohol. In living organisms, wax esters function as storage materials or provide protection against harmful environmental influences. In industry, they are used as ingredients for the production of lubricants, pharmaceuticals, and cosmetics. Currently the biological sources of wax esters are limited to jojoba oil. In order to establish a large-scale production of desired wax esters in transgenic high-yielding oilseed plants, enzymes involved in wax esters synthesis from different biological resources should be characterized in detail taking into consideration their substrate specificity. Therefore, this study aims at determining the substrate specificity of one of such enzymes -- the mouse wax synthase. The gene encoding this enzyme was expressed heterologously in Saccharomyces cerevisiae. In the in vitro assays (using microsomal fraction from transgenic yeast), we evaluated the preferences of mouse wax synthase towards a set of combinations of 11 acyl-CoAs with 17 fatty alcohols. The highest activity was observed for 14:0-CoA, 12:0-CoA, and 16:0-CoA in combination with medium chain alcohols (up to 5.2, 3.4, and 3.3 nmol wax esters/min/mg microsomal protein, respectively). Unsaturated alcohols longer than 18°C were better utilized by the enzyme in comparison to the saturated ones. Combinations of all tested alcohols with 20:0-CoA, 22:1-CoA, or Ric-CoA were poorly utilized by the enzyme, and conjugated acyl-CoAs were not utilized at all. Apart from the wax synthase activity, mouse wax synthase also exhibited a very low acyl-CoA:diacylglycerol acyltransferase activity. However, it displayed neither acyl-CoA:monoacylglycerol acyltransferase, nor acyl-CoA:sterol acyltransferase activity.

  14. Phytochelatin synthase: of a protease a peptide polymerase made.

    PubMed

    Rea, Philip A

    2012-05-01

    Of the mechanisms known to protect vascular plants and some algae, fungi and invertebrates from the toxic effects of non-essential heavy metals such as As, Cd or Hg, one of the most sophisticated is the enzyme-catalyzed synthesis of phytochelatins (PCs). PCs, (γ-Glu-Cys)(n) Gly polymers, which serve as high-affinity, thiol-rich cellular chelators and contribute to the detoxification of heavy metal ions, are derived from glutathione (GSH; γ-Glu-Cys-Gly) and related thiols in a reaction catalyzed by phytochelatin synthases (PC synthases, EC 2.3.2.15). Using the enzyme from Arabidopsis thaliana (AtPCS1) as a model, the reasoning and experiments behind the conclusion that PC synthases are novel papain-like Cys protease superfamily members are presented. The status of S-substituted GSH derivatives as generic PC synthase substrates and the sufficiency of the N-terminal domain of the enzyme from eukaryotic and its half-size equivalents from prokaryotic sources, for net PC synthesis and deglycylation of GSH and its derivatives, respectively, are emphasized. The question of the common need or needs met by PC synthases and their homologs is discussed. Of the schemes proposed to account for the combined protease and peptide polymerase capabilities of the eukaryotic enzymes vs the limited protease capabilities of the prokaryotic enzymes, two that will be considered are the storage and homeostasis of essential heavy metals in eukaryotes and the metabolism of S-substituted GSH derivatives in both eukaryotes and prokaryotes.

  15. Identifying the catalytic components of cellulose synthase and the maize mixed-linkage beta-glucan synthase

    SciTech Connect

    Nicholas C Carpita

    2009-04-20

    Five specific objectives of this project are to develop strategies to identify the genes that encode the catalytic components of "mixed-linkage" (1→3),(1→4)-beta-D-glucans in grasses, to determine the protein components of the synthase complex, and determine the biochemical mechanism of synthesis. We have used proteomic approaches to define intrinsic and extrinsic polypeptides of Golgi membranes that are associated with polysaccharide synthesis and trafficking. We were successful in producing recombinant catalytic domains of cellulose synthase genes and discovered that they dimerize upon concentration, indicating that two CesA proteins form the catalytic unit. We characterized a brittle stalk2 mutant as a defect in a COBRA-like protein that results in compromised lignin-cellulose interactions that decrease tissue flexibility. We used virus-induced gene silencing of barley cell wall polysaccharide synthesis by BSMV in an attempt to silence specific members of the cellulose synthase-like gene family. However, we unexpectedly found that regardless of the specificity of the target gene, whole gene interaction networks were silenced. We discovered the cause to be an antisense transcript of the cellulose synthase gene initiated small interfering RNAs that spread silencing to related genes.

  16. Isolation and functional characterization of a τ-cadinol synthase, a new sesquiterpene synthase from Lavandula angustifolia.

    PubMed

    Jullien, Frédéric; Moja, Sandrine; Bony, Aurélie; Legrand, Sylvain; Petit, Cécile; Benabdelkader, Tarek; Poirot, Kévin; Fiorucci, Sébastien; Guitton, Yann; Nicolè, Florence; Baudino, Sylvie; Magnard, Jean-Louis

    2014-01-01

    In this paper we characterize three sTPSs: a germacrene D (LaGERDS), a (E)-β-caryophyllene (LaCARS) and a τ-cadinol synthase (LaCADS). τ-cadinol synthase is reported here for the first time and its activity was studied in several biological models including transiently or stably transformed tobacco species. Three dimensional structure models of LaCADS and Ocimum basilicum γ-cadinene synthase were built by homology modeling using the template structure of Gossypium arboreum δ-cadinene synthase. The depiction of their active site organization provides evidence of the global influence of the enzymes on the formation of τ-cadinol: instead of a unique amino-acid, the electrostatic properties and solvent accessibility of the whole active site in LaCADS may explain the stabilization of the cadinyl cation intermediate. Quantitative PCR performed from leaves and inflorescences showed two patterns of expression. LaGERDS and LaCARS were mainly expressed during early stages of flower development and, at these stages, transcript levels paralleled the accumulation of the corresponding terpene products (germacrene D and (E)-β-caryophyllene). By contrast, the expression level of LaCADS was constant in leaves and flowers. Phylogenetic analysis provided informative results on potential duplication process leading to sTPS diversification in lavender. PMID:24078339

  17. Transgene silencing of sucrose synthase in alfalfa stem vascular tissue by a truncated phosphoenolpyruvate carboxylase: sucrose synthase construct

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An important role of sucrose synthase (SUS, EC 2.4.1.13) in plants is to provide UDP-glucose needed for cellulose synthesis in cell walls. We examined if over-expressing SUS in alfalfa (Medicago sativa L.) would increase cellulose content of stem cell walls. Alfalfa plants were transformed with two ...

  18. Evolutionary and mechanistic insights from the reconstruction of α-humulene synthases from a modern (+)-germacrene A synthase.

    PubMed

    Gonzalez, Veronica; Touchet, Sabrina; Grundy, Daniel J; Faraldos, Juan A; Allemann, Rudolf K

    2014-10-15

    Germacrene A synthase (GAS) from Solidago canadensis catalyzes the conversion of farnesyl diphosphate (FDP) to the plant sesquiterpene (+)-germacrene A. After diphosphate expulsion, farnesyl cation reacts with the distal 10,11-double bond to afford germacrene A (>96%) and <2% α-humulene, which arises from 1,11-cyclization of FDP. The origin of the 1,11-activity of GAS was investigated by amino acid sequence alignments of 1,10- and 1,11-synthases and comparisons of X-ray crystal structures with the homology model of GAS; a triad [Thr 401-Gly 402-Gly 403] that might be responsible for the predominant 1,10-cyclization activity of GAS was identified. Replacement of Gly 402 with residues of increasing size led to a progressive increase of 1,11-cyclization. The catalytic robustness of these 1,10- /1,11-GAS variants point to Gly 402 as a functional switch of evolutionary significance and suggests that enzymes with strict functionalities have evolved from less specific ancestors through a small number of substitutions. Similar results were obtained with germacrene D synthase (GDS) upon replacement of the homologous active-site residue Gly 404: GDS-G404V generated approximately 20% bicyclogermacrene, a hydrocarbon with a cyclopropane ring that underlines the dual 1,10-/1,11-cyclization activity of this mutant. This suggests that the reaction pathways to germacrenes and humulenes might be connected through a bridged 1,10,11-carbocation intermediate or transition state that resembles bicyclogermacrene. Mechanistic studies using [1-(3)H1]-10-fluorofarnesyl diphosphate and deuterium-labeling experiments with [12,13-(2)H6]-FDP support a germacrene-humulene rearrangement linking 1,10- and 1,11-pathways. These results support the bioinformatics proposal that modern 1,10-synthases could have evolved from promiscuous 1,11-sesquiterpene synthases. PMID:25230152

  19. Mechanism of Germacradien-4-ol Synthase-Controlled Water Capture.

    PubMed

    Grundy, Daniel J; Chen, Mengbin; González, Verónica; Leoni, Stefano; Miller, David J; Christianson, David W; Allemann, Rudolf K

    2016-04-12

    The sesquiterpene synthase germacradiene-4-ol synthase (GdolS) from Streptomyces citricolor is one of only a few known high-fidelity terpene synthases that convert farnesyl diphosphate (FDP) into a single hydroxylated product. Crystals of unliganded GdolS-E248A diffracted to 1.50 Å and revealed a typical class 1 sesquiterpene synthase fold with the active site in an open conformation. The metal binding motifs were identified as D(80)DQFD and N(218)DVRSFAQE. Some bound water molecules were evident in the X-ray crystal structure, but none were obviously positioned to quench a putative final carbocation intermediate. Incubations in H2(18)O generated labeled product, confirming that the alcohol functionality arises from nucleophilic capture of the final carbocation by water originating from solution. Site-directed mutagenesis of amino acid residues from both within the metal binding motifs and without identified by sequence alignment with aristolochene synthase from Aspergillus terreus generated mostly functional germacradien-4-ol synthases. Only GdolS-N218Q generated radically different products (∼50% germacrene A), but no direct evidence of the mechanism of incorporation of water into the active site was obtained. Fluorinated FDP analogues 2F-FDP and 15,15,15-F3-FDP were potent noncompetitive inhibitors of GdolS. 12,13-DiF-FDP generated 12,13-(E)-β-farnesene upon being incubated with GdolS, suggesting stepwise formation of the germacryl cation during the catalytic cycle. Incubation of GdolS with [1-(2)H2]FDP and (R)-[1-(2)H]FDP demonstrated that following germacryl cation formation a [1,3]-hydride shift generates the final carbocation prior to nucleophilic capture. The stereochemistry of this shift is not defined, and the deuteron in the final product was scrambled. Because no clear candidate residue for binding of a nucleophilic water molecule in the active site and no significant perturbation of product distribution from the replacement of active site residues

  20. Mechanism of Germacradien-4-ol Synthase-Controlled Water Capture

    PubMed Central

    2016-01-01

    The sesquiterpene synthase germacradiene-4-ol synthase (GdolS) from Streptomyces citricolor is one of only a few known high-fidelity terpene synthases that convert farnesyl diphosphate (FDP) into a single hydroxylated product. Crystals of unliganded GdolS-E248A diffracted to 1.50 Å and revealed a typical class 1 sesquiterpene synthase fold with the active site in an open conformation. The metal binding motifs were identified as D80DQFD and N218DVRSFAQE. Some bound water molecules were evident in the X-ray crystal structure, but none were obviously positioned to quench a putative final carbocation intermediate. Incubations in H218O generated labeled product, confirming that the alcohol functionality arises from nucleophilic capture of the final carbocation by water originating from solution. Site-directed mutagenesis of amino acid residues from both within the metal binding motifs and without identified by sequence alignment with aristolochene synthase from Aspergillus terreus generated mostly functional germacradien-4-ol synthases. Only GdolS-N218Q generated radically different products (∼50% germacrene A), but no direct evidence of the mechanism of incorporation of water into the active site was obtained. Fluorinated FDP analogues 2F-FDP and 15,15,15-F3-FDP were potent noncompetitive inhibitors of GdolS. 12,13-DiF-FDP generated 12,13-(E)-β-farnesene upon being incubated with GdolS, suggesting stepwise formation of the germacryl cation during the catalytic cycle. Incubation of GdolS with [1-2H2]FDP and (R)-[1-2H]FDP demonstrated that following germacryl cation formation a [1,3]-hydride shift generates the final carbocation prior to nucleophilic capture. The stereochemistry of this shift is not defined, and the deuteron in the final product was scrambled. Because no clear candidate residue for binding of a nucleophilic water molecule in the active site and no significant perturbation of product distribution from the replacement of active site residues were

  1. Phasin proteins activate Aeromonas caviae polyhydroxyalkanoate (PHA) synthase but not Ralstonia eutropha PHA synthase.

    PubMed

    Ushimaru, Kazunori; Motoda, Yoko; Numata, Keiji; Tsuge, Takeharu

    2014-05-01

    In this study, we performed in vitro and in vivo activity assays of polyhydroxyalkanoate (PHA) synthases (PhaCs) in the presence of phasin proteins (PhaPs), which revealed that PhaPs are activators of PhaC derived from Aeromonas caviae (PhaCAc). In in vitro assays, among the three PhaCs tested, PhaCAc was significantly activated when PhaPs were added at the beginning of polymerization (prepolymerization PhaCAc), whereas the prepolymerization PhaCRe (derived from Ralstonia eutropha) and PhaCDa (Delftia acidovorans) showed reduced activity with PhaPs. The PhaP-activated PhaCAc showed a slight shift of substrate preference toward 3-hydroxyhexanoyl-CoA (C6). PhaPAc also activated PhaCAc when it was added during polymerization (polymer-elongating PhaCAc), while this effect was not observed for PhaCRe. In an in vivo assay using Escherichia coli TOP10 as the host strain, the effect of PhaPAc expression on PHA synthesis by PhaCAc or PhaCRe was examined. As PhaPAc expression increased, PHA production was increased by up to 2.3-fold in the PhaCAc-expressing strain, whereas it was slightly increased in the PhaCRe-expressing strain. Taken together, this study provides evidence that PhaPs function as activators for PhaCAc both in vitro and in vivo but do not activate PhaCRe. This activating effect may be attributed to the new role of PhaPs in the polymerization reaction by PhaCAc.

  2. S-sulfocysteine synthase function in sensing chloroplast redox status

    PubMed Central

    Gotor, Cecilia; Romero, Luis C.

    2013-01-01

    The minor chloroplastic O-acetylserine(thiol)lyase isoform encoded by the CS26 gene in Arabidopsis thaliana has been described as an S-sulfocysteine synthase enzyme that plays an important role in chloroplast function. This enzyme is located in the thylakoid lumen, and its S-sulfocysteine activity is essential for the proper photosynthetic performance of the chloroplast under long-day growth conditions. Based on the present knowledge of this enzyme, we suggest that S-sulfocysteine synthase functions as a protein sensor to detect the accumulation of thiosulfate as a result of the inadequate detoxification of reactive oxygen species generated under conditions of excess light to produce the S-sulfocysteine molecule that triggers protection mechanisms of the photosynthetic apparatus. PMID:23333972

  3. Structure of isochorismate synthase DhbC from Bacillus anthracis

    PubMed Central

    Domagalski, M. J.; Tkaczuk, K. L.; Chruszcz, M.; Skarina, T.; Onopriyenko, O.; Cymborowski, M.; Grabowski, M.; Savchenko, A.; Minor, W.

    2013-01-01

    The isochorismate synthase DhbC from Bacillus anthracis is essential for the biosynthesis of the siderophore bacillibactin by this pathogenic bacterium. The structure of the selenomethionine-substituted protein was determined to 2.4 Å resolution using single-wavelength anomalous diffraction. B. anthracis DhbC bears the strongest resemblance to the Escherichia coli isochorismate synthase EntC, which is involved in the biosynthesis of another siderophore, namely enterobactin. Both proteins adopt the characteristic fold of other chorismate-utilizing enzymes, which are involved in the biosynthesis of various products, including siderophores, menaquinone and tryptophan. The conservation of the active-site residues, as well as their spatial arrangement, suggests that these enzymes share a common Mg2+-dependent catalytic mechanism. PMID:23989140

  4. Visualization of cellulose synthases in Arabidopsis secondary cell walls.

    PubMed

    Watanabe, Y; Meents, M J; McDonnell, L M; Barkwill, S; Sampathkumar, A; Cartwright, H N; Demura, T; Ehrhardt, D W; Samuels, A L; Mansfield, S D

    2015-10-01

    Cellulose biosynthesis in plant secondary cell walls forms the basis of vascular development in land plants, with xylem tissues constituting the vast majority of terrestrial biomass. We used plant lines that contained an inducible master transcription factor controlling xylem cell fate to quantitatively image fluorescently tagged cellulose synthase enzymes during cellulose deposition in living protoxylem cells. The formation of secondary cell wall thickenings was associated with a redistribution and enrichment of CESA7-containing cellulose synthase complexes (CSCs) into narrow membrane domains. The velocities of secondary cell wall-specific CSCs were faster than those of primary cell wall CSCs during abundant cellulose production. Dynamic intracellular of endomembranes, in combination with increased velocity and high density of CSCs, enables cellulose to be synthesized rapidly in secondary cell walls. PMID:26450210

  5. Defining the Product Chemical Space of Monoterpenoid Synthases

    PubMed Central

    Tian, Boxue; Poulter, C. Dale; Jacobson, Matthew P.

    2016-01-01

    Terpenoid synthases create diverse carbon skeletons by catalyzing complex carbocation rearrangements, making them particularly challenging for enzyme function prediction. To begin to address this challenge, we have developed a computational approach for the systematic enumeration of terpenoid carbocations. Application of this approach allows us to systematically define a nearly complete chemical space for the potential carbon skeletons of products from monoterpenoid synthases. Specifically, 18758 carbocations were generated, which we cluster into 74 cyclic skeletons. Five of the 74 skeletons are found in known natural products; some of the others are plausible for new functions, either in nature or engineered. This work systematizes the description of function for this class of enzymes, and provides a basis for predicting functions of uncharacterized enzymes. To our knowledge, this is the first computational study to explore the complete product chemical space of this important class of enzymes. PMID:27517297

  6. S-sulfocysteine synthase function in sensing chloroplast redox status.

    PubMed

    Gotor, Cecilia; Romero, Luis C

    2013-03-01

    The minor chloroplastic O-acetylserine(thiol)lyase isoform encoded by the CS26 gene in Arabidopsis thaliana has been described as an S-sulfocysteine synthase enzyme that plays an important role in chloroplast function. This enzyme is located in the thylakoid lumen, and its S-sulfocysteine activity is essential for the proper photosynthetic performance of the chloroplast under long-day growth conditions. Based on the present knowledge of this enzyme, we suggest that S-sulfocysteine synthase functions as a protein sensor to detect the accumulation of thiosulfate as a result of the inadequate detoxification of reactive oxygen species generated under conditions of excess light to produce the S-sulfocysteine molecule that triggers protection mechanisms of the photosynthetic apparatus.

  7. Visualization of cellulose synthases in Arabidopsis secondary cell walls.

    PubMed

    Watanabe, Y; Meents, M J; McDonnell, L M; Barkwill, S; Sampathkumar, A; Cartwright, H N; Demura, T; Ehrhardt, D W; Samuels, A L; Mansfield, S D

    2015-10-01

    Cellulose biosynthesis in plant secondary cell walls forms the basis of vascular development in land plants, with xylem tissues constituting the vast majority of terrestrial biomass. We used plant lines that contained an inducible master transcription factor controlling xylem cell fate to quantitatively image fluorescently tagged cellulose synthase enzymes during cellulose deposition in living protoxylem cells. The formation of secondary cell wall thickenings was associated with a redistribution and enrichment of CESA7-containing cellulose synthase complexes (CSCs) into narrow membrane domains. The velocities of secondary cell wall-specific CSCs were faster than those of primary cell wall CSCs during abundant cellulose production. Dynamic intracellular of endomembranes, in combination with increased velocity and high density of CSCs, enables cellulose to be synthesized rapidly in secondary cell walls.

  8. Use of linalool synthase in genetic engineering of scent production

    DOEpatents

    Pichersky, E.

    1998-12-15

    A purified S-linalool synthase polypeptide from Clarkia breweri is disclosed as is the recombinant polypeptide and nucleic acid sequences encoding the polypeptide. Also disclosed are antibodies immunoreactive with the purified peptide and with recombinant versions of the polypeptide. Methods of using the nucleic acid sequences, as well as methods of enhancing the smell and the flavor of plants expressing the nucleic acid sequences are also disclosed. 5 figs.

  9. Structural organization of the multifunctional animal fatty-acid synthase.

    PubMed

    Witkowski, A; Rangan, V S; Randhawa, Z I; Amy, C M; Smith, S

    1991-06-15

    The amino acid sequence of the multifunctional fatty-acid synthase has been examined to investigate the exact location of the seven functional domains. Good agreement in predicting the location of interdomain boundaries was obtained using three independent methods. First, the sites of limited proteolytic attack that give rise to relatively stable, large polypeptide fragments were identified; cryptic sites for protease attack at the subunit interface were unmasked by first dissociating the dimer into its component subunits. Second, polypeptide regions exhibiting higher-than-average rates of non-conservative mutation were identified. Third, the sizes of putative functional domains were compared with those of related monofunctional proteins that exhibit similar primary or secondary structure. Residues 1-406 were assigned to the oxoacyl synthase, residues 430-802 to the malonyl/acetyl transferase, residues 1630-1850 to the enoyl reductase, residues 1870-2100 to the oxyreductase, residues 2114-2190 to the acyl-carrier protein and residues 2200-2505 to the thioesterase. The 47-kDa transferase and 8-kDa acyl-carrier-protein domains, which are situated at opposite ends of the multifunctional subunit, were nevertheless isolated from tryptic digests as a non-covalently associated complex. Furthermore, a centrally located domain encompassing residues 1160-1545 was isolated as a nicked dimer. These findings, indicating that interactions between the head-to-tail juxtaposed subunits occur in both the polar and equatorial regions, are consistent with previously derived electron-micrograph images that show subunit contacts in these areas. The data permit refinement of the model for the fatty-acid synthase dimer and suggest that the malonyl/acetyl transferase and oxoacyl synthase of one subunit cooperate with the reductases, acyl carrier protein and thioesterase of the companion subunit in the formation of a center for fatty-acid synthesis.

  10. Structure and Mechanistic Implications of a Tryptophan Synthase Quinonoid Intermediate

    SciTech Connect

    Barends,T.; Domratcheva, T.; Kulik, V.; Blumenstein, L.; Niks, D.; Dunn, M.; Schlichting, I.

    2008-01-01

    Quinonoid intermediates play a key role in the catalytic mechanism of pyridoxal 5'-phosphate (PLP)-dependent enzymes. Whereas structures of other PLP-bound reaction intermediates have been determined, a high-quality structure of a quinonoid species has not been reported. We present the crystal structure of the indoline quinonoid intermediate of tryptophan synthase (see figure) and discuss its implications for the enzymatic mechanism and allosteric regulation.

  11. Isolation and characterization of terpene synthases in cotton (Gossypium hirsutum).

    PubMed

    Yang, Chang-Qing; Wu, Xiu-Ming; Ruan, Ju-Xin; Hu, Wen-Li; Mao, Yin-Bo; Chen, Xiao-Ya; Wang, Ling-Jian

    2013-12-01

    Cotton plants accumulate gossypol and related sesquiterpene aldehydes, which function as phytoalexins against pathogens and feeding deterrents to herbivorous insects. However, to date little is known about the biosynthesis of volatile terpenes in this crop. Herein is reported that 5 monoterpenes and 11 sesquiterpenes from extracts of a glanded cotton cultivar, Gossypium hirsutum cv. CCRI12, were detected by gas chromatography-mass spectrometry (GC-MS). By EST data mining combined with Rapid Amplification of cDNA Ends (RACE), full-length cDNAs of three terpene synthases (TPSs), GhTPS1, GhTPS2 and GhTPS3 were isolated. By in vitro assays of the recombinant proteins, it was found that GhTPS1 and GhTPS2 are sesquiterpene synthases: the former converted farnesyl pyrophosphate (FPP) into β-caryophyllene and α-humulene in a ratio of 2:1, whereas the latter produced several sesquiterpenes with guaia-1(10),11-diene as the major product. By contrast, GhTPS3 is a monoterpene synthase, which produced α-pinene, β-pinene, β-phellandrene and trace amounts of other monoterpenes from geranyl pyrophosphate (GPP). The TPS activities were also supported by Virus Induced Gene Silencing (VIGS) in the cotton plant. GhTPS1 and GhTPS3 were highly expressed in the cotton plant overall, whereas GhTPS2 was expressed only in leaves. When stimulated by mechanical wounding, Verticillium dahliae (Vde) elicitor or methyl jasmonate (MeJA), production of terpenes and expression of the corresponding synthase genes were induced. These data demonstrate that the three genes account for the biosynthesis of volatile terpenes of cotton, at least of this Upland cotton.

  12. The cellulose synthase superfamily in fully sequenced plants and algae

    PubMed Central

    2009-01-01

    Background The cellulose synthase superfamily has been classified into nine cellulose synthase-like (Csl) families and one cellulose synthase (CesA) family. The Csl families have been proposed to be involved in the synthesis of the backbones of hemicelluloses of plant cell walls. With 17 plant and algal genomes fully sequenced, we sought to conduct a genome-wide and systematic investigation of this superfamily through in-depth phylogenetic analyses. Results A single-copy gene is found in the six chlorophyte green algae, which is most closely related to the CslA and CslC families that are present in the seven land plants investigated in our analyses. Six proteins from poplar, grape and sorghum form a distinct family (CslJ), providing further support for the conclusions from two recent studies. CslB/E/G/H/J families have evolved significantly more rapidly than their widely distributed relatives, and tend to have intragenomic duplications, in particular in the grape genome. Conclusion Our data suggest that the CslA and CslC families originated through an ancient gene duplication event in land plants. We speculate that the single-copy Csl gene in green algae may encode a mannan synthase. We confirm that the rest of the Csl families have a different evolutionary origin than CslA and CslC, and have proposed a model for the divergence order among them. Our study provides new insights about the evolution of this important gene family in plants. PMID:19646250

  13. QSAR modeling of the inhibition of glycogen synthase kinase-3.

    PubMed

    Katritzky, Alan R; Pacureanu, Liliana M; Dobchev, Dimitar A; Fara, Dan C; Duchowicz, Pablo R; Karelson, Mati

    2006-07-15

    Quantitative structure-activity relationship (QSAR) models of the biological activity (pIC50) of 277 inhibitors of Glycogen Synthase Kinase-3 (GSK-3) are developed using geometrical, topological, quantum mechanical, and electronic descriptors calculated by CODESSA PRO. The linear (multilinear regression) and nonlinear (artificial neural network) models obtained link the structures to their reported activity pIC50. The results are discussed in the light of the main factors that influence the inhibitory activity of the GSK-3 enzyme.

  14. Trichodiene synthase: mechanism-based inhibition of a sesquiterpene cyclase.

    PubMed

    Cane, D E; Bowser, T E

    1999-04-19

    The 10-cyclopropylidene analog of farnesyl diphosphate was shown to be a mechanism-based inhibitor of trichodiene synthase with an inactivation rate (k(inact)) of 0.010 +/- 0.0003 min(-1) and an apparent Ki of 663 +/- 75 nM. The presence of three anomalous sesquiterpene products detected in incubation mixtures indicate that the compound also serves as a substrate of the enzyme. PMID:10328298

  15. Use of linalool synthase in genetic engineering of scent production

    DOEpatents

    Pichersky, Eran

    1998-01-01

    A purified S-linalool synthase polypeptide from Clarkia breweri is disclosed as is the recombinant polypeptide and nucleic acid sequences encoding the polypeptide. Also disclosed are antibodies immunoreactive with the purified peptide and with recombinant versions of the polypeptide. Methods of using the nucleic acid sequences, as well as methods of enhancing the smell and the flavor of plants expressing the nucleic acid sequences are also disclosed.

  16. Suites of Terpene Synthases Explain Differential Terpenoid Production in Ginger and Turmeric Tissues

    PubMed Central

    Koo, Hyun Jo; Gang, David R.

    2012-01-01

    The essential oils of ginger (Zingiber officinale) and turmeric (Curcuma longa) contain a large variety of terpenoids, some of which possess anticancer, antiulcer, and antioxidant properties. Despite their importance, only four terpene synthases have been identified from the Zingiberaceae family: (+)-germacrene D synthase and (S)-β-bisabolene synthase from ginger rhizome, and α-humulene synthase and β-eudesmol synthase from shampoo ginger (Zingiber zerumbet) rhizome. We report the identification of 25 mono- and 18 sesquiterpene synthases from ginger and turmeric, with 13 and 11, respectively, being functionally characterized. Novel terpene synthases, (−)-caryolan-1-ol synthase and α-zingiberene/β-sesquiphellandrene synthase, which is responsible for formation of the major sesquiterpenoids in ginger and turmeric rhizomes, were also discovered. These suites of enzymes are responsible for formation of the majority of the terpenoids present in these two plants. Structures of several were modeled, and a comparison of sets of paralogs suggests how the terpene synthases in ginger and turmeric evolved. The most abundant and most important sesquiterpenoids in turmeric rhizomes, (+)-α-turmerone and (+)-β-turmerone, are produced from (−)-α-zingiberene and (−)-β-sesquiphellandrene, respectively, via α-zingiberene/β-sesquiphellandrene oxidase and a still unidentified dehydrogenase. PMID:23272109

  17. [BIOINFORMATIC SEARCH AND PHYLOGENETIC ANALYSIS OF THE CELLULOSE SYNTHASE GENES OF FLAX (LINUM USITATISSIMUM)].

    PubMed

    Pydiura, N A; Bayer, G Ya; Galinousky, D V; Yemets, A I; Pirko, Ya V; Podvitski, T A; Anisimova, N V; Khotyleva, L V; Kilchevsky, A V; Blume, Ya B

    2015-01-01

    A bioinformatic search of sequences encoding cellulose synthase genes in the flax genome, and their comparison to dicots orthologs was carried out. The analysis revealed 32 cellulose synthase gene candidates, 16 of which are highly likely to encode cellulose synthases, and the remaining 16--cellulose synthase-like proteins (Csl). Phylogenetic analysis of gene products of cellulose synthase genes allowed distinguishing 6 groups of cellulose synthase genes of different classes: CesA1/10, CesA3, CesA4, CesA5/6/2/9, CesA7 and CesA8. Paralogous sequences within classes CesA1/10 and CesA5/6/2/9 which are associated with the primary cell wall formation are characterized by a greater similarity within these classes than orthologous sequences. Whereas the genes controlling the biosynthesis of secondary cell wall cellulose form distinct clades: CesA4, CesA7, and CesA8. The analysis of 16 identified flax cellulose synthase gene candidates shows the presence of at least 12 different cellulose synthase gene variants in flax genome which are represented in all six clades of cellulose synthase genes. Thus, at this point genes of all ten known cellulose synthase classes are identify in flax genome, but their correct classification requires additional research. PMID:26638491

  18. [BIOINFORMATIC SEARCH AND PHYLOGENETIC ANALYSIS OF THE CELLULOSE SYNTHASE GENES OF FLAX (LINUM USITATISSIMUM)].

    PubMed

    Pydiura, N A; Bayer, G Ya; Galinousky, D V; Yemets, A I; Pirko, Ya V; Podvitski, T A; Anisimova, N V; Khotyleva, L V; Kilchevsky, A V; Blume, Ya B

    2015-01-01

    A bioinformatic search of sequences encoding cellulose synthase genes in the flax genome, and their comparison to dicots orthologs was carried out. The analysis revealed 32 cellulose synthase gene candidates, 16 of which are highly likely to encode cellulose synthases, and the remaining 16--cellulose synthase-like proteins (Csl). Phylogenetic analysis of gene products of cellulose synthase genes allowed distinguishing 6 groups of cellulose synthase genes of different classes: CesA1/10, CesA3, CesA4, CesA5/6/2/9, CesA7 and CesA8. Paralogous sequences within classes CesA1/10 and CesA5/6/2/9 which are associated with the primary cell wall formation are characterized by a greater similarity within these classes than orthologous sequences. Whereas the genes controlling the biosynthesis of secondary cell wall cellulose form distinct clades: CesA4, CesA7, and CesA8. The analysis of 16 identified flax cellulose synthase gene candidates shows the presence of at least 12 different cellulose synthase gene variants in flax genome which are represented in all six clades of cellulose synthase genes. Thus, at this point genes of all ten known cellulose synthase classes are identify in flax genome, but their correct classification requires additional research.

  19. Dexmedetomidine inhibits vasoconstriction via activation of endothelial nitric oxide synthase

    PubMed Central

    Nong, Lidan; Ma, Jue; Zhang, Guangyan; Deng, Chunyu; Mao, Songsong; Li, Haifeng

    2016-01-01

    Despite the complex vascular effects of dexmedetomidine (DEX), its actions on human pulmonary resistance arteries remain unknown. The present study tested the hypothesis that DEX inhibits vascular tension in human pulmonary arteries through the endothelial nitric oxide synthase (eNOS) mediated production of nitric oxide (NO). Pulmonary artery segments were obtained from 62 patients who underwent lung resection. The direct effects of DEX on human pulmonary artery tension and changes in vascular tension were determined by isometric force measurements recorded on a myograph. Arterial contractions caused by increasing concentrations of serotonin with DEX in the presence or absence of L-NAME (endothelial nitric oxide synthase inhibitor), yohimbine (α2-adrenoceptor antagonist) and indomethacin (cyclooxygenase inhibitor) as antagonists were also measured. DEX had no effect on endothelium-intact pulmonary arteries, whereas at concentrations of 10–8~10–6 mol/L, it elicited contractions in endothelium-denuded pulmonary arteries. DEX (0.3, 1, or 3×10–9 mmol/L) inhibited serotonin-induced contraction in arteries with intact endothelium in a dose-dependent manner. L-NAME and yohimbine abolished DEX-induced inhibition, whereas indomethacin had no effect. No inhibitory effect was observed in endothelium-denuded pulmonary arteries. DEX-induced inhibition of vasoconstriction in human pulmonary arteries is mediated by NO production induced by the activation of endothelial α2-adrenoceptor and nitric oxide synthase.

  20. Virus-Induced Silencing of a Plant Cellulose Synthase Gene

    PubMed Central

    Burton, Rachel A.; Gibeaut, David M.; Bacic, Antony; Findlay, Kim; Roberts, Keith; Hamilton, Andrew; Baulcombe, David C.; Fincher, Geoffrey B.

    2000-01-01

    Specific cDNA fragments corresponding to putative cellulose synthase genes (CesA) were inserted into potato virus X vectors for functional analysis in Nicotiana benthamiana by using virus-induced gene silencing. Plants infected with one group of cDNAs had much shorter internode lengths, small leaves, and a “dwarf” phenotype. Consistent with a loss of cell wall cellulose, abnormally large and in many cases spherical cells ballooned from the undersurfaces of leaves, particularly in regions adjacent to vascular tissues. Linkage analyses of wall polysaccharides prepared from infected leaves revealed a 25% decrease in cellulose content. Transcript levels for at least one member of the CesA cellulose synthase gene family were lower in infected plants. The decrease in cellulose content in cell walls was offset by an increase in homogalacturonan, in which the degree of esterification of carboxyl groups decreased from ∼50 to ∼33%. The results suggest that feedback loops interconnect the cellular machinery controlling cellulose and pectin biosynthesis. On the basis of the phenotypic features of the infected plants, changes in wall composition, and the reduced abundance of CesA mRNA, we concluded that the cDNA fragments silenced one or more cellulose synthase genes. PMID:10810144

  1. Cloning and characterization of a mammalian pseudouridine synthase.

    PubMed Central

    Chen, J; Patton, J R

    1999-01-01

    This report describes the cloning and characterization of a pseudouridine (psi) synthase from mouse that we have named mouse pseudouridine synthase 1 (mpus1p). The cDNA is approximately 1.5 kb and when used as a probe on a Northern blot of mouse RNA from tissues and cultured cells, several bands were detected. The open reading frame is 393 amino acids and has 35% identity over its length with yeast psi synthase 1 (pus1p). The recombinant protein was expressed in Escherichia coli and the purified protein converted specific uridines to psi in a number of tRNA substrates. The positions modified in stoichiometric amounts in vitro were 27/28 in the anticodon stem and also positions 34 and 36 in the anticodon of an intron containing tRNA. A human cDNA was also cloned and the smaller open reading frame (348 amino acids) was 92% identical over its length with mpus1p but is shorter by 45 amino acids at the amino terminus. The expressed recombinant human protein has no activity on any of the tRNA substrates, most probably the result of the truncated open reading frame. PMID:10094309

  2. [Progress and application prospects of glutamine synthase in plants].

    PubMed

    Feng, Wanjun; Xing, Guofang; Niu, Xulong; Dou, Chen; Han, Yuanhuai

    2015-09-01

    Nitrogen is one of the most important nutrient elements for plants and a major limiting factor in plant growth and crop productivity. Glutamine synthase (GS) is a key enzyme involved in the nitrogen assimilation and recycling in plants. So far, members of the glutamine synthase gene family have been characterized in many plants such as Arabidopsis, rice, wheat, and maize. Reports show that GS are involved in the growth and development of plants, in particular its role in seed production. However, the outcome has generally been inconsistent, which are probably derived from the transcriptional and post-translational regulation of GS genes. In this review, we outlined studies on GS gene classification, QTL mapping, the relationship between GS genes and plant growth with nitrogen and the distribution characters, the biological functions of GS genes, as well as expression control at different regulation levels. In addition, we summarized the application prospects of glutamine synthetase genes in enhancing plant growth and yield by improving the nitrogen use efficiency. The prospects were presented on the improvement of nitrogen utility efficiency in crops and plant nitrogen status diagnosis on the basis of glutamine synthase gene regulation. PMID:26955708

  3. [Progress and application prospects of glutamine synthase in plants].

    PubMed

    Feng, Wanjun; Xing, Guofang; Niu, Xulong; Dou, Chen; Han, Yuanhuai

    2015-09-01

    Nitrogen is one of the most important nutrient elements for plants and a major limiting factor in plant growth and crop productivity. Glutamine synthase (GS) is a key enzyme involved in the nitrogen assimilation and recycling in plants. So far, members of the glutamine synthase gene family have been characterized in many plants such as Arabidopsis, rice, wheat, and maize. Reports show that GS are involved in the growth and development of plants, in particular its role in seed production. However, the outcome has generally been inconsistent, which are probably derived from the transcriptional and post-translational regulation of GS genes. In this review, we outlined studies on GS gene classification, QTL mapping, the relationship between GS genes and plant growth with nitrogen and the distribution characters, the biological functions of GS genes, as well as expression control at different regulation levels. In addition, we summarized the application prospects of glutamine synthetase genes in enhancing plant growth and yield by improving the nitrogen use efficiency. The prospects were presented on the improvement of nitrogen utility efficiency in crops and plant nitrogen status diagnosis on the basis of glutamine synthase gene regulation.

  4. Mechanism of Action and Inhibition of dehydrosqualene Synthase

    SciTech Connect

    F Lin; C Liu; Y Liu; Y Zhang; K Wang; W Jeng; T Ko; R Cao; A Wang; E Oldfield

    2011-12-31

    'Head-to-head' terpene synthases catalyze the first committed steps in sterol and carotenoid biosynthesis: the condensation of two isoprenoid diphosphates to form cyclopropylcarbinyl diphosphates, followed by ring opening. Here, we report the structures of Staphylococcus aureus dehydrosqualene synthase (CrtM) complexed with its reaction intermediate, presqualene diphosphate (PSPP), the dehydrosqualene (DHS) product, as well as a series of inhibitors. The results indicate that, on initial diphosphate loss, the primary carbocation so formed bends down into the interior of the protein to react with C2,3 double bond in the prenyl acceptor to form PSPP, with the lower two-thirds of both PSPP chains occupying essentially the same positions as found in the two farnesyl chains in the substrates. The second-half reaction is then initiated by the PSPP diphosphate returning back to the Mg{sup 2+} cluster for ionization, with the resultant DHS so formed being trapped in a surface pocket. This mechanism is supported by the observation that cationic inhibitors (of interest as antiinfectives) bind with their positive charge located in the same region as the cyclopropyl carbinyl group; that S-thiolo-diphosphates only inhibit when in the allylic site; activity results on 11 mutants show that both DXXXD conserved domains are essential for PSPP ionization; and the observation that head-to-tail isoprenoid synthases as well as terpene cyclases have ionization and alkene-donor sites which spatially overlap those found in CrtM.

  5. Rotation and structure of FoF1-ATP synthase.

    PubMed

    Okuno, Daichi; Iino, Ryota; Noji, Hiroyuki

    2011-06-01

    F(o)F(1)-ATP synthase is one of the most ubiquitous enzymes; it is found widely in the biological world, including the plasma membrane of bacteria, inner membrane of mitochondria and thylakoid membrane of chloroplasts. However, this enzyme has a unique mechanism of action: it is composed of two mechanical rotary motors, each driven by ATP hydrolysis or proton flux down the membrane potential of protons. The two molecular motors interconvert the chemical energy of ATP hydrolysis and proton electrochemical potential via the mechanical rotation of the rotary shaft. This unique energy transmission mechanism is not found in other biological systems. Although there are other similar man-made systems like hydroelectric generators, F(o)F(1)-ATP synthase operates on the nanometre scale and works with extremely high efficiency. Therefore, this enzyme has attracted significant attention in a wide variety of fields from bioenergetics and biophysics to chemistry, physics and nanoscience. This review summarizes the latest findings about the two motors of F(o)F(1)-ATP synthase as well as a brief historical background.

  6. Dexmedetomidine inhibits vasoconstriction via activation of endothelial nitric oxide synthase

    PubMed Central

    Nong, Lidan; Ma, Jue; Zhang, Guangyan; Deng, Chunyu; Mao, Songsong; Li, Haifeng

    2016-01-01

    Despite the complex vascular effects of dexmedetomidine (DEX), its actions on human pulmonary resistance arteries remain unknown. The present study tested the hypothesis that DEX inhibits vascular tension in human pulmonary arteries through the endothelial nitric oxide synthase (eNOS) mediated production of nitric oxide (NO). Pulmonary artery segments were obtained from 62 patients who underwent lung resection. The direct effects of DEX on human pulmonary artery tension and changes in vascular tension were determined by isometric force measurements recorded on a myograph. Arterial contractions caused by increasing concentrations of serotonin with DEX in the presence or absence of L-NAME (endothelial nitric oxide synthase inhibitor), yohimbine (α2-adrenoceptor antagonist) and indomethacin (cyclooxygenase inhibitor) as antagonists were also measured. DEX had no effect on endothelium-intact pulmonary arteries, whereas at concentrations of 10–8~10–6 mol/L, it elicited contractions in endothelium-denuded pulmonary arteries. DEX (0.3, 1, or 3×10–9 mmol/L) inhibited serotonin-induced contraction in arteries with intact endothelium in a dose-dependent manner. L-NAME and yohimbine abolished DEX-induced inhibition, whereas indomethacin had no effect. No inhibitory effect was observed in endothelium-denuded pulmonary arteries. DEX-induced inhibition of vasoconstriction in human pulmonary arteries is mediated by NO production induced by the activation of endothelial α2-adrenoceptor and nitric oxide synthase. PMID:27610030

  7. Dynamics of meso and thermo citrate synthases with implicit solvation

    NASA Astrophysics Data System (ADS)

    Cordeiro, J. M. M.

    The dynamics of hydration of meso and thermo citrate synthases has been investigated using the EEF1 methodology implemented with the CHARMM program. The native enzymes are composed of two identical subunits, each divided into a small and large domain. The dynamics behavior of both enzymes at 30°C and 60°C has been compared. The results of simulations show that during the hydration process, each subunit follows a different pathway of hydration, in spite of the identical sequence. The hydrated structures were compared with the crystalline structure, and the root mean square deviation (RMSD) of each residue along the trajectory was calculated. The regions with larger and smaller mobility were identified. In particular, helices belonging to the small domain are more mobile than those of the large domain. In contrast, the residues that constitute the active site show a much lower displacement compared with the crystalline structure. Hydration free energy calculations point out that Thermoplasma acidophilum citrate synthase (TCS) is more stable than chicken citrate synthase (CCS), at high temperatures. Such result has been ascribed to the higher number of superficial charges in the thermophilic homologue, which stabilizes the enzyme, while the mesophilic homologue denatures. These results are in accord with the experimental found that TCS keeps activity at temperatures farther apart from the catalysis regular temperature than the CCS.

  8. The pseudouridine synthases: revisiting a mechanism that seemed settled.

    PubMed

    Spedaliere, Christopher J; Ginter, Joy M; Johnston, Murray V; Mueller, Eugene G

    2004-10-13

    RNA containing 5-fluorouridine, [f 5U]RNA, has been used as a mechanistic probe for the pseudouridine synthases, which convert uridine in RNA to its C-glycoside isomer, pseudouridine. Hydrated products of f 5U were attributed to ester hydrolysis of a covalent complex between an essential aspartic acid residue and f 5U, and the results were construed as strong support for a mechanism involving Michael addition by the aspartic acid residue. Labeling studies with [18O]water are now reported that rule out such ester hydrolysis in one pseudouridine synthase, TruB. The aspartic acid residue does not become labeled, and the hydroxyl group in the hydrated product of f 5U derives directly from solvent. The hydrated product, therefore, cannot be construed to support Michael addition during the conversion of uridine to pseudouridine, but the results do not rule out such a mechanism. A hypothesis is offered for the seemingly disparate behavior of different pseudouridine synthases toward [f 5U]RNA.

  9. Multi-Substrate Terpene Synthases: Their Occurrence and Physiological Significance.

    PubMed

    Pazouki, Leila; Niinemets, Ülo

    2016-01-01

    Terpene synthases are responsible for synthesis of a large number of terpenes in plants using substrates provided by two distinct metabolic pathways, the mevalonate-dependent pathway that is located in cytosol and has been suggested to be responsible for synthesis of sesquiterpenes (C15), and 2-C-methyl-D-erythritol-4-phosphate pathway located in plastids and suggested to be responsible for the synthesis of hemi- (C5), mono- (C10), and diterpenes (C20). Recent advances in characterization of genes and enzymes responsible for substrate and end product biosynthesis as well as efforts in metabolic engineering have demonstrated existence of a number of multi-substrate terpene synthases. This review summarizes the progress in the characterization of such multi-substrate terpene synthases and suggests that the presence of multi-substrate use might have been significantly underestimated. Multi-substrate use could lead to important changes in terpene product profiles upon substrate profile changes under perturbation of metabolism in stressed plants as well as under certain developmental stages. We therefore argue that multi-substrate use can be significant under physiological conditions and can result in complicate modifications in terpene profiles. PMID:27462341

  10. Dexmedetomidine inhibits vasoconstriction via activation of endothelial nitric oxide synthase.

    PubMed

    Nong, Lidan; Ma, Jue; Zhang, Guangyan; Deng, Chunyu; Mao, Songsong; Li, Haifeng; Cui, Jianxiu

    2016-09-01

    Despite the complex vascular effects of dexmedetomidine (DEX), its actions on human pulmonary resistance arteries remain unknown. The present study tested the hypothesis that DEX inhibits vascular tension in human pulmonary arteries through the endothelial nitric oxide synthase (eNOS) mediated production of nitric oxide (NO). Pulmonary artery segments were obtained from 62 patients who underwent lung resection. The direct effects of DEX on human pulmonary artery tension and changes in vascular tension were determined by isometric force measurements recorded on a myograph. Arterial contractions caused by increasing concentrations of serotonin with DEX in the presence or absence of L-NAME (endothelial nitric oxide synthase inhibitor), yohimbine (α2-adrenoceptor antagonist) and indomethacin (cyclooxygenase inhibitor) as antagonists were also measured. DEX had no effect on endothelium-intact pulmonary arteries, whereas at concentrations of 10(-8)~10(-6) mol/L, it elicited contractions in endothelium-denuded pulmonary arteries. DEX (0.3, 1, or 3×10(-9) mmol/L) inhibited serotonin-induced contraction in arteries with intact endothelium in a dose-dependent manner. L-NAME and yohimbine abolished DEX-induced inhibition, whereas indomethacin had no effect. No inhibitory effect was observed in endothelium-denuded pulmonary arteries. DEX-induced inhibition of vasoconstriction in human pulmonary arteries is mediated by NO production induced by the activation of endothelial α2-adrenoceptor and nitric oxide synthase. PMID:27610030

  11. Multi-Substrate Terpene Synthases: Their Occurrence and Physiological Significance

    PubMed Central

    Pazouki, Leila; Niinemets, Ülo

    2016-01-01

    Terpene synthases are responsible for synthesis of a large number of terpenes in plants using substrates provided by two distinct metabolic pathways, the mevalonate-dependent pathway that is located in cytosol and has been suggested to be responsible for synthesis of sesquiterpenes (C15), and 2-C-methyl-D-erythritol-4-phosphate pathway located in plastids and suggested to be responsible for the synthesis of hemi- (C5), mono- (C10), and diterpenes (C20). Recent advances in characterization of genes and enzymes responsible for substrate and end product biosynthesis as well as efforts in metabolic engineering have demonstrated existence of a number of multi-substrate terpene synthases. This review summarizes the progress in the characterization of such multi-substrate terpene synthases and suggests that the presence of multi-substrate use might have been significantly underestimated. Multi-substrate use could lead to important changes in terpene product profiles upon substrate profile changes under perturbation of metabolism in stressed plants as well as under certain developmental stages. We therefore argue that multi-substrate use can be significant under physiological conditions and can result in complicate modifications in terpene profiles. PMID:27462341

  12. The structural basis of Erwinia rhapontici isomaltulose synthase.

    PubMed

    Xu, Zheng; Li, Sha; Li, Jie; Li, Yan; Feng, Xiaohai; Wang, Renxiao; Xu, Hong; Zhou, Jiahai

    2013-01-01

    Sucrose isomerase NX-5 from Erwiniarhapontici efficiently catalyzes the isomerization of sucrose to isomaltulose (main product) and trehalulose (by-product). To investigate the molecular mechanism controlling sucrose isomer formation, we determined the crystal structures of native NX-5 and its mutant complexes E295Q/sucrose and D241A/glucose at 1.70 Å, 1.70 Å and 2.00 Å, respectively. The overall structure and active site architecture of NX-5 resemble those of other reported sucrose isomerases. Strikingly, the substrate binding mode of NX-5 is also similar to that of trehalulose synthase from Pseudomonasmesoacidophila MX-45 (MutB). Detailed structural analysis revealed the catalytic RXDRX motif and the adjacent 10-residue loop of NX-5 and isomaltulose synthase PalI from Klebsiella sp. LX3 adopt a distinct orientation from those of trehalulose synthases. Mutations of the loop region of NX-5 resulted in significant changes of the product ratio between isomaltulose and trehalulose. The molecular dynamics simulation data supported the product specificity of NX-5 towards isomaltulose and the role of the loop(330-339) in NX-5 catalysis. This work should prove useful for the engineering of sucrose isomerase for industrial carbohydrate biotransformations.

  13. From bacterial to human dihydrouridine synthase: automated structure determination

    SciTech Connect

    Whelan, Fiona Jenkins, Huw T.; Griffiths, Samuel C.; Byrne, Robert T.; Dodson, Eleanor J.; Antson, Alfred A.

    2015-06-30

    The crystal structure of a human dihydrouridine synthase, an enzyme associated with lung cancer, with 18% sequence identity to a T. maritima enzyme, has been determined at 1.9 Å resolution by molecular replacement after extensive molecular remodelling of the template. The reduction of uridine to dihydrouridine at specific positions in tRNA is catalysed by dihydrouridine synthase (Dus) enzymes. Increased expression of human dihydrouridine synthase 2 (hDus2) has been linked to pulmonary carcinogenesis, while its knockdown decreased cancer cell line viability, suggesting that it may serve as a valuable target for therapeutic intervention. Here, the X-ray crystal structure of a construct of hDus2 encompassing the catalytic and tRNA-recognition domains (residues 1–340) determined at 1.9 Å resolution is presented. It is shown that the structure can be determined automatically by phenix.mr-rosetta starting from a bacterial Dus enzyme with only 18% sequence identity and a significantly divergent structure. The overall fold of the human Dus2 is similar to that of bacterial enzymes, but has a larger recognition domain and a unique three-stranded antiparallel β-sheet insertion into the catalytic domain that packs next to the recognition domain, contributing to domain–domain interactions. The structure may inform the development of novel therapeutic approaches in the fight against lung cancer.

  14. [Preparation and crystallization of Polygonum cuspidatum benzalacetone synthase].

    PubMed

    Ma, Wenrui; Liu, Chunmei; Yang, Mingfeng; Xue, Feiyan; Chen, Qing; Ma, Lanqing; Lü, Heshu

    2016-02-01

    The chalcone synthase (CHS) superfamily of the type III polyketide synthases (PKSs) generates backbones of a variety of plant secondary metabolites. Benzalacetone synthase (BAS) catalyzes a condensation reaction of decarboxylation between the substrates of 4-coumaric coenzyme A and malonyl coenzyme A to generate benzylidene acetone, whose derivatives are series of compounds with various biological activities. A BAS gene Pcpks2 and a bifunctional CHS/BAS PcPKSI were isolated from medicinal plant P. cuspidatum. Crystallographic and structure-based mutagenesis studies indicate that the functional diversity of the CHS-superfamily enzymes is principally derived from small modifications of the active site architecture. In order to obtain an understanding of the biosynthesis of polyketides in P. cuspidatum, which has been poorly described, as well as of its activation mechanism, PcPKS2 was overexpressed in Escherichia coli as a C-terminally poly-His-tagged fusion protein, purified to homogeneity and crystallized, which is helpful for the clarification of the catalytic mechanism of the enzyme and lays the foundation for its genetic engineering manipulation. PMID:27382775

  15. The Spatial Distribution of Sucrose Synthase Isozymes in Barley.

    PubMed Central

    Guerin, J.; Carbonero, P.

    1997-01-01

    The sucrose (Suc) synthase enzyme purified from barley (Hordeum vulgare L.) roots is a homotetramer that is composed of 90-kD type 1 Suc synthase (SS1) subunits. Km values for Suc and UDP were 30 mM and 5 [mu]M, respectively. This enzyme can also utilize ADP at 25% of the UDP rate. Anti-SS1 polyclonal antibodies, which recognized both SS1 and type 2 Suc synthase (SS2) (88-kD) subunits, and antibodies raised against a synthetic peptide, LANGSTDNNFV, which were specific for SS2, were used to study the spatial distribution of these subunits by immunoblot analysis and immunolocalization. Both SS1 and SS2 were abundantly expressed in endosperm, where they polymerize to form the five possible homo- and heterotetramers. Only SS1 homotetramers were detected in young leaves, where they appeared exclusively in phloem cells, and in roots, where expression was associated with cap cells and the vascular bundle. In the seed both SS1 and SS2 were present in endosperm, but only SS1 was apparent in the chalazal region, the nucellar projection, and the vascular bundle. The physiological implications for the difference in expression patterns observed are discussed with respect to the maize (Zea mays L.) model. PMID:12223688

  16. Energy transduction in the F1 motor of ATP synthase

    NASA Astrophysics Data System (ADS)

    Wang, Hongyun; Oster, George

    1998-11-01

    ATP synthase is the universal enzyme that manufactures ATP from ADP and phosphate by using the energy derived from a transmembrane protonmotive gradient. It can also reverse itself and hydrolyse ATP to pump protons against an electrochemical gradient. ATP synthase carries out both its synthetic and hydrolytic cycles by a rotary mechanism. This has been confirmed in the direction of hydrolysis, after isolation of the soluble F1 portion of the protein and visualization of the actual rotation of the central `shaft' of the enzyme with respect to the rest of the molecule, making ATP synthase the world's smallest rotary engine. Here we present a model for this engine that accounts for its mechanochemical behaviour in both the hydrolysing and synthesizing directions. We conclude that the F1 motor achieves its high mechanical torque and almost 100% efficiency because it converts the free energy of ATP binding into elastic strain, which is then released by a coordinated kinetic and tightly coupled conformational mechanism to create a rotary torque.

  17. CELLULOSE SYNTHASE INTERACTIVE1 Is Required for Fast Recycling of Cellulose Synthase Complexes to the Plasma Membrane in Arabidopsis

    PubMed Central

    Lei, Lei; Bashline, Logan; Li, Shundai

    2015-01-01

    Plants are constantly subjected to various biotic and abiotic stresses and have evolved complex strategies to cope with these stresses. For example, plant cells endocytose plasma membrane material under stress and subsequently recycle it back when the stress conditions are relieved. Cellulose biosynthesis is a tightly regulated process that is performed by plasma membrane-localized cellulose synthase (CESA) complexes (CSCs). However, the regulatory mechanism of cellulose biosynthesis under abiotic stress has not been well explored. In this study, we show that small CESA compartments (SmaCCs) or microtubule-associated cellulose synthase compartments (MASCs) are critical for fast recovery of CSCs to the plasma membrane after stress is relieved in Arabidopsis thaliana. This SmaCC/MASC-mediated fast recovery of CSCs is dependent on CELLULOSE SYNTHASE INTERACTIVE1 (CSI1), a protein previously known to represent the link between CSCs and cortical microtubules. Independently, AP2M, a core component in clathrin-mediated endocytosis, plays a role in the formation of SmaCCs/MASCs. Together, our study establishes a model in which CSI1-dependent SmaCCs/MASCs are formed through a process that involves endocytosis, which represents an important mechanism for plants to quickly regulate cellulose synthesis under abiotic stress. PMID:26443667

  18. Localization of beta-glucan synthases on the membranes of cultured Lolium multiflorum (ryegrass) endosperm cells.

    PubMed Central

    Henry, R J; Schibeci, A; Stone, B A

    1983-01-01

    The distribution of beta-glucan synthases between plasma membranes and intracellular membranes of suspension-cultured Italian-ryegrass (Lolium multiflorum Lam.) endosperm cells was examined. Highly purified plasma membranes prepared from protoplasts were only slightly enriched in beta-glucan synthases assayed at 10 microM- and 1 mM-UDP-glucose. Most beta-glucan synthase was associated with intracellular membranes. These membranes were fractionated on a linear sucrose density gradient and were resolved into different membrane fractions containing beta-glucan synthases. Beta-Glucan synthases assayed at 10 microM-UDP-glucose were found in a fraction banding at a density of 1.11 g . cm-3, but most of the beta-glucan synthase assayed at 1 mM-DDP-glucose was at a density of 1.04 g . cm-3. PMID:6223621

  19. Surrogate Splicing for Functional Analysis of Sesquiterpene Synthase Genes1[w

    PubMed Central

    Wu, Shuiqin; Schoenbeck, Mark A.; Greenhagen, Bryan T.; Takahashi, Shunji; Lee, Sungbeom; Coates, Robert M.; Chappell, Joseph

    2005-01-01

    A method for the recovery of full-length cDNAs from predicted terpene synthase genes containing introns is described. The approach utilizes Agrobacterium-mediated transient expression coupled with a reverse transcription-polydeoxyribonucleotide chain reaction assay to facilitate expression cloning of processed transcripts. Subsequent expression of intronless cDNAs in a suitable prokaryotic host provides for direct functional testing of the encoded gene product. The method was optimized by examining the expression of an intron-containing β-glucuronidase gene agroinfiltrated into petunia (Petunia hybrida) leaves, and its utility was demonstrated by defining the function of two previously uncharacterized terpene synthases. A tobacco (Nicotiana tabacum) terpene synthase-like gene containing six predicted introns was characterized as having 5-epi-aristolochene synthase activity, while an Arabidopsis (Arabidopsis thaliana) gene previously annotated as a terpene synthase was shown to possess a novel sesquiterpene synthase activity for α-barbatene, thujopsene, and β-chamigrene biosynthesis. PMID:15965019

  20. Structure and Mechanism of the Diterpene Cyclase ent-Copalyl Diphosphate Synthase

    PubMed Central

    Köksal, Mustafa; Hu, Huayou; Coates, Robert M.; Peters, Reuben J.; Christianson, David W.

    2011-01-01

    The structure of ent-copalyl diphosphate synthase (CPS) reveals three α-helical domains (α, β, γ), as also observed in the related diterpene cyclase taxadiene synthase. However, active sites are located at the interface of the βγ domains in CPS but exclusively in the α domain of taxadiene synthase. Modular domain architecture in plant diterpene cyclases enables the evolution of alternative active sites and chemical strategies for catalyzing isoprenoid cyclization reactions. PMID:21602811

  1. Stabilization and enhanced reactivity of actinorhodin polyketide synthase minimal complex in polymer-nucleotide coacervate droplets.

    PubMed

    Crosby, John; Treadwell, Tom; Hammerton, Michelle; Vasilakis, Konstantinos; Crump, Matthew P; Williams, David S; Mann, Stephen

    2012-12-18

    Compartmentalization of the minimal complex of actinorhodin polyketide synthase in coacervate liquid droplets produces enhanced yields of shunt polyketides under conditions of low and high ionic strength.

  2. The type I fatty acid and polyketide synthases: a tale of two megasynthases

    PubMed Central

    Tsai, Shiou-Chuan

    2008-01-01

    This review chronicles the synergistic growth of the fields of fatty acid and polyketide synthesis over the last century. In both animal fatty acid synthases and modular polyketide synthases, similar catalytic elements are covalently linked in the same order in megasynthases. Whereas in fatty acid synthases the basic elements of the design remain immutable, guaranteeing the faithful production of saturated fatty acids, in the modular polyketide synthases, the potential of the basic design has been exploited to the full for the elaboration of a wide range of secondary metabolites of extraordinary structural diversity. PMID:17898897

  3. The type I fatty acid and polyketide synthases: a tale of two megasynthases.

    PubMed

    Smith, Stuart; Tsai, Shiou-Chuan

    2007-10-01

    This review chronicles the synergistic growth of the fields of fatty acid and polyketide synthesis over the last century. In both animal fatty acid synthases and modular polyketide synthases, similar catalytic elements are covalently linked in the same order in megasynthases. Whereas in fatty acid synthases the basic elements of the design remain immutable, guaranteeing the faithful production of saturated fatty acids, in the modular polyketide synthases, the potential of the basic design has been exploited to the full for the elaboration of a wide range of secondary metabolites of extraordinary structural diversity.

  4. Polymorphism and expression of isoflavone synthase genes from soybean cultivars.

    PubMed

    Kim, Hyo-Kyoung; Jang, Yun-Hee; Baek, Il-Sun; Lee, Jeong-Hwan; Park, Min Joo; Chung, Young-Soo; Chung, Jong-Il; Kim, Jeong-Kook

    2005-02-28

    Isoflavones are synthesized by isoflavone synthases via the phenylpropanoid pathway in legumes. We have cloned two isoflavone synthase genes, IFS1 and IFS2, from a total of 18 soybean cultivars. The amino acid residues of the proteins that differed between cultivars were dispersed over the entire coding region. However, amino acid sequence variation did not occur in conserved domains such as the ERR triad region, except that one conserved amino acid was changed in the IFS2 protein of the GS12 cultivar (R374G) and the IFS1 proteins of the 99M06 and Soja99s65 cultivars (A109T, F105I). In three cultivars (99M06, 99M116, and Simheukpi), most of amino acid changes were such that the difference between the amino acid sequences of IFS1 and IFS2 was reduced. The expression profiles of three enzymes that convert naringenin to the isoflavone, genistein, chalcone isomerase (CHI), isoflavone synthase (IFS) and flavanone 3-hydroxylase (F3H) were examined. In general, IFS mRNA was more abundant in etiolated seedlings than mature plants whereas the levels of CHI and F3H mRNAs were similar in the two stages. During seed development, IFS was expressed a little later than CHI and F3H but expression of these three genes was barely detectable, if at all, during later seed hardening. In addition, we found that the levels of CHI, F3H, and IFS mRNAs were under circadian control. We also showed that IFS was induced by wounding and by application of methyl jasmonate to etiolated soybean seedlings. PMID:15750342

  5. Assembly Line Polyketide Synthases: Mechanistic Insights and Unsolved Problems

    PubMed Central

    2015-01-01

    Two hallmarks of assembly line polyketide synthases have motivated an interest in these unusual multienzyme systems, their stereospecificity and their capacity for directional biosynthesis. In this review, we summarize the state of knowledge regarding the mechanistic origins of these two remarkable features, using the 6-deoxyerythronolide B synthase as a prototype. Of the 10 stereocenters in 6-deoxyerythronolide B, the stereochemistry of nine carbon atoms is directly set by ketoreductase domains, which catalyze epimerization and/or diastereospecific reduction reactions. The 10th stereocenter is established by the sequential action of three enzymatic domains. Thus, the problem has been reduced to a challenge in mainstream enzymology, where fundamental gaps remain in our understanding of the structural basis for this exquisite stereochemical control by relatively well-defined active sites. In contrast, testable mechanistic hypotheses for the phenomenon of vectorial biosynthesis are only just beginning to emerge. Starting from an elegant theoretical framework for understanding coupled vectorial processes in biology [Jencks, W. P. (1980) Adv. Enzymol. Relat. Areas Mol. Biol. 51, 75–106], we present a simple model that can explain assembly line polyketide biosynthesis as a coupled vectorial process. Our model, which highlights the important role of domain–domain interactions, not only is consistent with recent observations but also is amenable to further experimental verification and refinement. Ultimately, a definitive view of the coordinated motions within and between polyketide synthase modules will require a combination of structural, kinetic, spectroscopic, and computational tools and could be one of the most exciting frontiers in 21st Century enzymology. PMID:24779441

  6. Obesity, insulin resistance, and skeletal muscle nitric oxide synthase

    PubMed Central

    Kraus, Raymond M.; Houmard, Joseph A.; Kraus, William E.; Tanner, Charles J.; Pierce, Joseph R.; Choi, Myung Dong

    2012-01-01

    The molecular mechanisms responsible for impaired insulin action have yet to be fully identified. Rodent models demonstrate a strong relationship between insulin resistance and an elevation in skeletal muscle inducible nitric oxide synthase (iNOS) expression; the purpose of this investigation was to explore this potential relationship in humans. Sedentary men and women were recruited to participate (means ± SE: nonobese, body mass index = 25.5 ± 0.3 kg/m2, n = 13; obese, body mass index = 36.6 ± 0.4 kg/m2, n = 14). Insulin sensitivity was measured using an intravenous glucose tolerance test with the subsequent modeling of an insulin sensitivity index (SI). Skeletal muscle was obtained from the vastus lateralis, and iNOS, endothelial nitric oxide synthase (eNOS), and neuronal nitric oxide synthase (nNOS) content were determined by Western blot. SI was significantly lower in the obese compared with the nonobese group (∼43%; P < 0.05), yet skeletal muscle iNOS protein expression was not different between nonobese and obese groups. Skeletal muscle eNOS protein was significantly higher in the nonobese than the obese group, and skeletal muscle nNOS protein tended to be higher (P = 0.054) in the obese compared with the nonobese group. Alternative analysis based on SI (high and low tertile) indicated that the most insulin-resistant group did not have significantly more skeletal muscle iNOS protein than the most insulin-sensitive group. In conclusion, human insulin resistance does not appear to be associated with an elevation in skeletal muscle iNOS protein in middle-aged individuals under fasting conditions. PMID:22797309

  7. Producing a trimethylpentanoic acid using hybrid polyketide synthases

    DOEpatents

    Katz, Leonard; Fortman, Jeffrey L; Keasling, Jay D

    2014-10-07

    The present invention provides for a polyketide synthase (PKS) capable of synthesizing trimethylpentanoic acid. The present invention also provides for a host cell comprising the PKS and when cultured produces the trimethylpentanoic acid. The present invention also provides for a method of producing the trimethylpentanoic acid, comprising: providing a host cell of the present invention, and culturing said host cell in a suitable culture medium such that the trimethylpentanoic acid is produced, optionally isolating the trimethylpentanoic acid, and optionally, reducing the isolated trimethylpentanoic acid into a trimethylpentanol or an iso-octane.

  8. [Nitric oxide and nitric oxide synthase related to male reproduction].

    PubMed

    Ji, Jiajia; Zhao, Yanfang; Chen, Guoyuan

    2007-09-01

    Nitric oxide (NO) may be a kind of signal molecule which may have multiplicate physiological function such as secondary messenger, neurotransmitter and effect molecule. NO may play a crucial role in organism. The production of NO can not get away from nitric oxide synthase (NOS) which may distribute in almost all kind of organs of male reproductive system. NO and NOS may have the function of bifunctional regulation for reproduction. In this paper, the regulatory function of NO and NOS on male reproductive system were reviewed.

  9. Human uroporphyrinogen III synthase: NMR-based mapping of the active site.

    PubMed

    Cunha, Luis; Kuti, Miklos; Bishop, David F; Mezei, Mihaly; Zeng, Lei; Zhou, Ming-Ming; Desnick, Robert J

    2008-05-01

    Uroporphyrinogen III synthase (URO-synthase) catalyzes the cyclization and D-ring isomerization of hydroxymethylbilane (HMB) to uroporphyrinogen (URO'gen) III, the cyclic tetrapyrrole and physiologic precursor of heme, chlorophyl, and corrin. The deficient activity of human URO-synthase results in the autosomal recessive cutaneous disorder, congenital erythropoietic porphyria. Mapping of the structural determinants that specify catalysis and, potentially, protein-protein interactions is lacking. To map the active site and assess the enzyme's possible interaction in a complex with hydroxymethylbilane-synthase (HMB-synthase) and/or uroporphyrinogen-decarboxylase (URO-decarboxylase) by NMR, an efficient expression and purification procedure was developed for these cytosolic enzymes of heme biosynthesis that enabled preparation of special isotopically-labeled protein samples for NMR characterization. Using an 800 MHz instrument, assignment of the URO-synthase backbone (13)C(alpha) (100%), (1)H(alpha) (99.6%), and nonproline (1)H(N) and (15)N resonances (94%) was achieved as well as 85% of the side-chain (13)C and (1)H resonances. NMR analyses of URO-synthase titrated with competitive inhibitors N(D)-methyl-1-formylbilane (NMF-bilane) or URO'gen III, revealed resonance perturbations of specific residues lining the cleft between the two major domains of URO synthase that mapped the enzyme's active site. In silico docking of the URO-synthase crystal structure with NMF-bilane and URO'gen III was consistent with the perturbation results and provided a 3D model of the enzyme-inhibitor complex. The absence of chemical shift changes in the (15)N spectrum of URO-synthase mixed with the homogeneous HMB-synthase holoenzyme or URO-decarboxylase precluded occurrence of a stable cytosolic enzyme complex. PMID:18004775

  10. Direct transfer of starter substrates from type I fatty acid synthase to type III polyketide synthases in phenolic lipid synthesis

    PubMed Central

    Miyanaga, Akimasa; Funa, Nobutaka; Awakawa, Takayoshi; Horinouchi, Sueharu

    2008-01-01

    Alkylresorcinols and alkylpyrones, which have a polar aromatic ring and a hydrophobic alkyl chain, are phenolic lipids found in plants, fungi, and bacteria. In the Gram-negative bacterium Azotobacter vinelandii, phenolic lipids in the membrane of dormant cysts are essential for encystment. The aromatic moieties of the phenolic lipids in A. vinelandii are synthesized by two type III polyketide synthases (PKSs), ArsB and ArsC, which are encoded by the ars operon. However, details of the synthesis of hydrophobic acyl chains, which might serve as starter substrates for the type III polyketide synthases (PKSs), were unknown. Here, we show that two type I fatty acid synthases (FASs), ArsA and ArsD, which are members of the ars operon, are responsible for the biosynthesis of C22–C26 fatty acids from malonyl-CoA. In vivo and in vitro reconstitution of phenolic lipid synthesis systems with the Ars enzymes suggested that the C22–C26 fatty acids produced by ArsA and ArsD remained attached to the ACP domain of ArsA and were transferred hand-to-hand to the active-site cysteine residues of ArsB and ArsC. The type III PKSs then used the fatty acids as starter substrates and carried out two or three extensions with malonyl-CoA to yield the phenolic lipids. The phenolic lipids in A. vinelandii were thus found to be synthesized solely from malonyl-CoA by the four members of the ars operon. This is the first demonstration that a type I FAS interacts directly with a type III PKS through substrate transfer. PMID:18199837

  11. Conversion of aminodeoxychorismate synthase into anthranilate synthase with Janus mutations: mechanism of pyruvate elimination catalyzed by chorismate enzymes.

    PubMed

    Culbertson, Justin E; Chung, Dong hee; Ziebart, Kristin T; Espiritu, Eduardo; Toney, Michael D

    2015-04-14

    The central importance of chorismate enzymes in bacteria, fungi, parasites, and plants combined with their absence in mammals makes them attractive targets for antimicrobials and herbicides. Two of these enzymes, anthranilate synthase (AS) and aminodeoxychorismate synthase (ADCS), are structurally and mechanistically similar. The first catalytic step, amination at C2, is common between them, but AS additionally catalyzes pyruvate elimination, aromatizing the aminated intermediate to anthranilate. Despite prior attempts, the conversion of a pyruvate elimination-deficient enzyme into an elimination-proficient one has not been reported. Janus, a bioinformatics method for predicting mutations required to functionally interconvert homologous enzymes, was employed to predict mutations to convert ADCS into AS. A genetic selection on a library of Janus-predicted mutations was performed. Complementation of an AS-deficient strain of Escherichia coli grown on minimal medium led to several ADCS mutants that allow growth in 6 days compared to 2 days for wild-type AS. The purified mutant enzymes catalyze the conversion of chorismate to anthranilate at rates that are ∼50% of the rate of wild-type ADCS-catalyzed conversion of chorismate to aminodeoxychorismate. The residues mutated do not contact the substrate. Molecular dynamics studies suggest that pyruvate elimination is controlled by the conformation of the C2-aminated intermediate. Enzymes that catalyze elimination favor the equatorial conformation, which presents the C2-H to a conserved active site lysine (Lys424) for deprotonation and maximizes stereoelectronic activation. Acid/base catalysis of pyruvate elimination was confirmed in AS and salicylate synthase by showing incorporation of a solvent-derived proton into the pyruvate methyl group and by solvent kinetic isotope effects on pyruvate elimination catalyzed by AS. PMID:25710100

  12. Direct transfer of starter substrates from type I fatty acid synthase to type III polyketide synthases in phenolic lipid synthesis.

    PubMed

    Miyanaga, Akimasa; Funa, Nobutaka; Awakawa, Takayoshi; Horinouchi, Sueharu

    2008-01-22

    Alkylresorcinols and alkylpyrones, which have a polar aromatic ring and a hydrophobic alkyl chain, are phenolic lipids found in plants, fungi, and bacteria. In the Gram-negative bacterium Azotobacter vinelandii, phenolic lipids in the membrane of dormant cysts are essential for encystment. The aromatic moieties of the phenolic lipids in A. vinelandii are synthesized by two type III polyketide synthases (PKSs), ArsB and ArsC, which are encoded by the ars operon. However, details of the synthesis of hydrophobic acyl chains, which might serve as starter substrates for the type III polyketide synthases (PKSs), were unknown. Here, we show that two type I fatty acid synthases (FASs), ArsA and ArsD, which are members of the ars operon, are responsible for the biosynthesis of C(22)-C(26) fatty acids from malonyl-CoA. In vivo and in vitro reconstitution of phenolic lipid synthesis systems with the Ars enzymes suggested that the C(22)-C(26) fatty acids produced by ArsA and ArsD remained attached to the ACP domain of ArsA and were transferred hand-to-hand to the active-site cysteine residues of ArsB and ArsC. The type III PKSs then used the fatty acids as starter substrates and carried out two or three extensions with malonyl-CoA to yield the phenolic lipids. The phenolic lipids in A. vinelandii were thus found to be synthesized solely from malonyl-CoA by the four members of the ars operon. This is the first demonstration that a type I FAS interacts directly with a type III PKS through substrate transfer.

  13. Expression, crystallization and preliminary crystallographic studies of a novel bifunctional N-acetylglutamate synthase/kinase from Xanthomonas campestris homologous to vertebrate N-acetylglutamate synthase

    SciTech Connect

    Shi, Dashuang Caldovic, Ljubica; Jin, Zhongmin; Yu, Xiaolin; Qu, Qiuhao; Roth, Lauren; Morizono, Hiroki; Hathout, Yetrib; Allewell, Norma M.; Tuchman, Mendel

    2006-12-01

    Expression, crystallization and preliminary X-ray diffraction studies of a novel bifunctional N-acetylglutamate synthase/kinase from X. campestris homologous to vertebrate N-acetylglutamate synthase are reported. A novel N-acetylglutamate synthase/kinase bifunctional enzyme of arginine biosynthesis that was homologous to vertebrate N-acetylglutamate synthases was identified in Xanthomonas campestris. The protein was overexpressed, purified and crystallized. The crystals belong to the hexagonal space group P6{sub 2}22, with unit-cell parameters a = b = 134.60, c = 192.11 Å, and diffract to about 3.0 Å resolution. Selenomethionine-substituted recombinant protein was produced and selenomethionine substitution was verified by mass spectroscopy. Multiple anomalous dispersion (MAD) data were collected at three wavelengths at SER-CAT, Advanced Photon Source, Argonne National Laboratory. Structure determination is under way using the MAD phasing method.

  14. Tryptophan synthase: a multienzyme complex with an intramolecular tunnel.

    PubMed

    Miles, E W

    2001-01-01

    Tryptophan synthase is a classic enzyme that channels a metabolic intermediate, indole. The crystal structure of the tryptophan synthase alpha2beta2 complex from Salmonella typhimurium revealed for the first time the architecture of a multienzyme complex and the presence of an intramolecular tunnel. This remarkable hydrophobic tunnel provides a likely passageway for indole from the active site of the alpha subunit, where it is produced, to the active site of the beta subunit, where it reacts with L-serine to form L-tryptophan in a pyridoxal phosphate-dependent reaction. Rapid kinetic studies of the wild type enzyme and of channel-impaired mutant enzymes provide strong evidence for the proposed channeling mechanism. Structures of a series of enzyme-substrate intermediates at the alpha and beta active sites are elucidating enzyme mechanisms and dynamics. These structural results are providing a fascinating picture of loops opening and closing, of domain movements, and of conformational changes in the indole tunnel. Solution studies provide further evidence for ligand-induced conformational changes that send signals between the alpha and beta subunits. The combined results show that the switching of the enzyme between open and closed conformations couples the catalytic reactions at the alpha and beta active sites and prevents the escape of indole.

  15. Chromosomal localization of the human and mouse hyaluronan synthase genes

    SciTech Connect

    Spicer, A.P.; McDonald, J.A.; Seldin, M.F.

    1997-05-01

    We have recently identified a new vertebrate gene family encoding putative hyaluronan (HA) synthases. Three highly conserved related genes have been identified, designated HAS1, HAS2, and HAS3 in humans and Has1, Has2, and Has3 in the mouse. All three genes encode predicted plasma membrane proteins with multiple transmembrane domains and approximately 25% amino acid sequence identity to the Streptococcus pyogenes HA synthase, HasA. Furthermore, expression of any one HAS gene in transfected mammalian cells leads to high levels of HA biosynthesis. We now report the chromosomal localization of the three HAS genes in human and in mouse. The genes localized to three different positions within both the human and the mouse genomes. HAS1 was localized to the human chromosome 19q13.3-q13.4 boundary and Has1 to mouse Chr 17. HAS2 was localized to human chromosome 8q24.12 and Has2 to mouse Chr 15. HAS3 was localized to human chromosome 16q22.1 and Has3 to mouse Chr 8. The map position for HAS1 reinforces the recently reported relationship between a small region of human chromosome 19q and proximal mouse chromosome 17. HAS2 mapped outside the predicted critical region delineated for the Langer-Giedion syndrome and can thus be excluded as a candidate gene for this genetic syndrome. 33 refs., 2 figs.

  16. Inhibitors to Polyhydroxyalkanoate (PHA) Synthases: Synthesis, Molecular Docking, and Implications

    PubMed Central

    Cao, Ruikai; Maurmann, Leila; Li, Ping

    2015-01-01

    Polyhydroxyalkanoate (PHA) synthases (PhaCs) catalyze the formation of biodegradable PHAs that are considered as an ideal alternative to nonbiodegradable synthetic plastics. However, study of PhaC has been challenging because the rate of PHA chain elongation is much faster than that of initiation. This difficulty along with lack of a structure has become the main hurdle to understand and engineer PhaCs for economical PHA production. Here we reported the synthesis of two carbadethia CoA analogs, sT-CH2-CoA 26a and sTet-CH2-CoA 26b as well as sT-aldehyde 29 as new PhaC inhibitors. Study of these analogs with PhaECAv revealed that 26a/b and 29 are competitive and mixed inhibitors, respectively. It was observed that CoA moiety and PHA chain extension can increase binding affinity, which is consistent with the docking study. Estimation from Kic of 26a/b predicts that a CoA analog attached with an octameric-HB chain may facilitate the formation of a kinetically well-behaved synthase. PMID:25394180

  17. Ack kinase regulates CTP synthase filaments during Drosophila oogenesis.

    PubMed

    Strochlic, Todd I; Stavrides, Kevin P; Thomas, Sam V; Nicolas, Emmanuelle; O'Reilly, Alana M; Peterson, Jeffrey R

    2014-11-01

    The enzyme CTP synthase (CTPS) dynamically assembles into macromolecular filaments in bacteria, yeast, Drosophila, and mammalian cells, but the role of this morphological reorganization in regulating CTPS activity is controversial. During Drosophila oogenesis, CTPS filaments are transiently apparent in ovarian germline cells during a period of intense genomic endoreplication and stockpiling of ribosomal RNA. Here, we demonstrate that CTPS filaments are catalytically active and that their assembly is regulated by the non-receptor tyrosine kinase DAck, the Drosophila homologue of mammalian Ack1 (activated cdc42-associated kinase 1), which we find also localizes to CTPS filaments. Egg chambers from flies deficient in DAck or lacking DAck catalytic activity exhibit disrupted CTPS filament architecture and morphological defects that correlate with reduced fertility. Furthermore, ovaries from these flies exhibit reduced levels of total RNA, suggesting that DAck may regulate CTP synthase activity. These findings highlight an unexpected function for DAck and provide insight into a novel pathway for the developmental control of an essential metabolic pathway governing nucleotide biosynthesis.

  18. Eugenol synthase genes in floral scent variation in Gymnadenia species.

    PubMed

    Gupta, Alok K; Schauvinhold, Ines; Pichersky, Eran; Schiestl, Florian P

    2014-12-01

    Floral signaling, especially through floral scent, is often highly complex, and little is known about the molecular mechanisms and evolutionary causes of this complexity. In this study, we focused on the evolution of "floral scent genes" and the associated changes in their functions in three closely related orchid species of the genus Gymnadenia. We developed a benchmark repertoire of 2,571 expressed sequence tags (ESTs) in Gymnadenia odoratissima. For the functional characterization and evolutionary analysis, we focused on eugenol synthase, as eugenol is a widespread and important scent compound. We obtained complete coding complementary DNAs (cDNAs) of two copies of putative eugenol synthase genes in each of the three species. The proteins encoded by these cDNAs were characterized by expression and testing for activity in Escherichia coli. While G. odoratissima and Gymnadenia conopsea enzymes were found to catalyze the formation of eugenol only, the Gymnadenia densiflora proteins synthesize eugenol, as well as a smaller amount of isoeugenol. Finally, we showed that the eugenol and isoeugenol producing gene copies of G. densiflora are evolutionarily derived from the ancestral genes of the other species producing only eugenol. The evolutionary switch from production of one to two compounds evolved under relaxed purifying selection. In conclusion, our study shows the molecular bases of eugenol and isoeugenol production and suggests that an evolutionary transition in a single gene can lead to an increased complexity in floral scent emitted by plants.

  19. Structural basis for glucose-6-phosphate activation of glycogen synthase

    SciTech Connect

    Baskaran, Sulochanadevi; Roach, Peter J.; DePaoli-Roach, Anna A.; Hurley, Thomas D.

    2010-11-22

    Regulation of the storage of glycogen, one of the major energy reserves, is of utmost metabolic importance. In eukaryotes, this regulation is accomplished through glucose-6-phosphate levels and protein phosphorylation. Glycogen synthase homologs in bacteria and archaea lack regulation, while the eukaryotic enzymes are inhibited by protein kinase mediated phosphorylation and activated by protein phosphatases and glucose-6-phosphate binding. We determined the crystal structures corresponding to the basal activity state and glucose-6-phosphate activated state of yeast glycogen synthase-2. The enzyme is assembled into an unusual tetramer by an insertion unique to the eukaryotic enzymes, and this subunit interface is rearranged by the binding of glucose-6-phosphate, which frees the active site cleft and facilitates catalysis. Using both mutagenesis and intein-mediated phospho-peptide ligation experiments, we demonstrate that the enzyme's response to glucose-6-phosphate is controlled by Arg583 and Arg587, while four additional arginine residues present within the same regulatory helix regulate the response to phosphorylation.

  20. GAPDH regulates cellular heme insertion into inducible nitric oxide synthase

    PubMed Central

    Chakravarti, Ritu; Aulak, Kulwant S.; Fox, Paul L.; Stuehr, Dennis J.

    2010-01-01

    Heme proteins play essential roles in biology, but little is known about heme transport inside mammalian cells or how heme is inserted into soluble proteins. We recently found that nitric oxide (NO) blocks cells from inserting heme into several proteins, including cytochrome P450s, hemoglobin, NO synthases, and catalase. This finding led us to explore the basis for NO inhibition and to identify cytosolic proteins that may be involved, using inducible NO synthase (iNOS) as a model target. Surprisingly, we found that GAPDH plays a key role. GAPDH was associated with iNOS in cells. Pure GAPDH bound tightly to heme or to iNOS in an NO-sensitive manner. GAPDH knockdown inhibited heme insertion into iNOS and a GAPDH mutant with defective heme binding acted as a dominant negative inhibitor of iNOS heme insertion. Exposing cells to NO either from a chemical donor or by iNOS induction caused GAPDH to become S-nitrosylated at Cys152. Expressing a GAPDH C152S mutant in cells or providing a drug to selectively block GAPDH S-nitrosylation both made heme insertion into iNOS resistant to the NO inhibition. We propose that GAPDH delivers heme to iNOS through a process that is regulated by its S-nitrosylation. Our findings may uncover a fundamental step in intracellular heme trafficking, and reveal a mechanism whereby NO can govern the process. PMID:20921417

  1. Phytochelatin synthase activity as a marker of metal pollution.

    PubMed

    Zitka, Ondrej; Krystofova, Olga; Sobrova, Pavlina; Adam, Vojtech; Zehnalek, Josef; Beklova, Miroslava; Kizek, Rene

    2011-08-30

    The synthesis of phytochelatins is catalyzed by γ-Glu-Cys dipeptidyl transpeptidase called phytochelatin synthase (PCS). Aim of this study was to suggest a new tool for determination of phytochelatin synthase activity in the tobacco BY-2 cells treated with different concentrations of the Cd(II). After the optimization steps, an experiment on BY-2 cells exposed to different concentrations of Cd(NO(3))(2) for 3 days was performed. At the end of the experiment, cells were harvested and homogenized. Reduced glutathione and cadmium (II) ions were added to the cell suspension supernatant. These mixtures were incubated at 35°C for 30min and analysed using high performance liquid chromatography coupled with electrochemical detector (HPLC-ED). The results revealed that PCS activity rises markedly with increasing concentration of cadmium (II) ions. The lowest concentration of the toxic metal ions caused almost three fold increase in PCS activity as compared to control samples. The activity of PCS (270fkat) in treated cells was more than seven times higher in comparison to control ones. K(m) for PCS was estimated as 2.3mM. PMID:21715087

  2. Inhibitors of polyhydroxyalkanoate (PHA) synthases: synthesis, molecular docking, and implications.

    PubMed

    Zhang, Wei; Chen, Chao; Cao, Ruikai; Maurmann, Leila; Li, Ping

    2015-01-01

    Polyhydroxyalkanoate (PHA) synthases (PhaCs) catalyze the formation of biodegradable PHAs that are considered to be ideal alternatives to non-biodegradable synthetic plastics. However, study of PhaCs has been challenging because the rate of PHA chain elongation is much faster than that of initiation. This difficulty, along with lack of a crystal structure, has become the main hurdle to understanding and engineering PhaCs for economical PHA production. Here we report the synthesis of two carbadethia CoA analogues--sT-CH2-CoA (26 a) and sTet-CH2-CoA (26 b)--as well as sT-aldehyde (saturated trimer aldehyde, 29), as new PhaC inhibitors. Study of these analogues with PhaECAv revealed that 26 a/b and 29 are competitive and mixed inhibitors, respectively. Both the CoA moiety and extension of PHA chain will increase binding affinity; this is consistent with our docking study. Estimation of the Kic values of 26 a and 26 b predicts that a CoA analogue incorporating an octameric hydroxybutanoate (HB) chain might facilitate the formation of a kinetically well-behaved synthase.

  3. INHIBITION OF NITRIC OXIDE SYNTHASE BY COBALAMINS AND COBINAMIDES*

    PubMed Central

    Weinberg, J. Brice; Chen, Youwei; Jiang, Ning; Beasley, Bethany E.; Salerno, John C.; Ghosh, Dipak K.

    2009-01-01

    Cobalamins (Cbl) are important co-factors for methionine synthase and methylmalonyl-coA mutase. Certain corrins also bind nitric oxide (NO), quenching its bioactivity. To determine if corrins would inhibit NO synthase (NOS), we measured their effects on 14-C-L-arginine-to-14-C-L-citrulline conversion by NOS1, NOS2, and NOS3. Hydroxocobalamin (OH-Cbl), cobinamide (Cbi), and dicyanocobinamide (CN2-Cbi) potently inhibited all isoforms, whfile cyanocobalamin, methylcobalamin, and adenosylcobalamin had much less effect. OH-Cbl and CN2-Cbi prevented binding of the oxygen analog carbon monoxide (CO) to the reduced NOS1 and NOS2 heme active site. CN2-Cbi did not react directly with NO or CO. Spectral perturbation analysis showed that CN2-Cbi interacted directly with the purified NOS1 oxygenase domain. NOS inhibition by corrins was rapid and not reversed by dialysis with L-arginine, tetrahydrobiopterin. Molecular modeling indicated that corrins could access the unusually large heme and substrate-binding pocket of NOS. Best fits were obtained in the “base-off” conformation of the lower axial dimethylbenzimidazole ligand. CN2-Cbi inhibited interferon-γ-activated Raw264.7 mouse macrophage NO production. We show for the first time that certain corrins directly inhibit NOS, suggesting that these agents (or their derivatives) may have pharmacological utility. Endogenous cobalamins and cobinamides might play important roles regulating NOS activity in normal and pathological conditions. PMID:19328848

  4. Preliminary crystallographic analysis of sugar cane phosphoribosylpyrophosphate synthase

    SciTech Connect

    Napolitano, H. B.; Sculaccio, S. A.; Thiemann, O. H.; Oliva, G.

    2005-01-01

    X-ray diffraction data have been collected from crystals of recombinant sugar cane phosphoribosylpyrophosphate synthase (PRS) and analysis has revealed its quaternary structure, localizing this PRS into the class of enzymes forming an hexameric oligomer of 223 kDa. Phosphoribosylpyrophosphate synthases (PRS; EC 2.7.6.1) are enzymes that are of central importance in several metabolic pathways in all cells. The sugar cane PRS enzyme contains 328 amino acids with a molecular weight of 36.6 kDa and represents the first plant PRS to be crystallized, as well as the first phosphate-independent PRS to be studied in molecular detail. Sugar cane PRS was overexpressed in Escherichia coli, purified and crystallized using the hanging-drop vapour-diffusion method. Using X-ray diffraction experiments it was determined that the crystals belong to the orthorhombic system, with space group P2{sub 1}2{sub 1}2 and unit-cell parameters a = 213.2, b = 152.6, c = 149.3 Å. The crystals diffract to a maximum resolution of 3.3 Å and a complete data set to 3.5 Å resolution was collected and analysed.

  5. The crystal structure of human GDP-L-fucose synthase.

    PubMed

    Zhou, Huan; Sun, Lihua; Li, Jian; Xu, Chunyan; Yu, Feng; Liu, Yahui; Ji, Chaoneng; He, Jianhua

    2013-09-01

    Human GDP-l-fucose synthase, also known as FX protein, synthesizes GDP-l-fucose from its substrate GDP-4-keto-6-deoxy-d-mannose. The reaction involves epimerization at both C-3 and C-5 followed by an NADPH-dependent reduction of the carbonyl at C-4. In this paper, the first crystal structure of human FX protein was determined at 2.37 Å resolution. The asymmetric unit of the crystal structure contains four molecules which form two homodimers. Each molecule consists of two domains, a Rossmann-fold NADPH-binding motif and a carboxyl terminal domain. Compared with the Escherichia coli GDP-l-fucose synthase, the overall structures of these two enzymes have four major differences. There are four loops in the structure of human FX protein corresponding to two α-helices and two β-sheets in that of the E. coli enzyme. Besides, there are seven different amino acid residues binding with NAPDH comparing human FX protein with that from E. coli. The structure of human FX reveals the key catalytic residues and could be useful for the design of drugs for the treatment of inflammation, auto-immune diseases, and possibly certain types of cancer.

  6. In vitro Biochemical Characterization of All Barley Endosperm Starch Synthases

    PubMed Central

    Cuesta-Seijo, Jose A.; Nielsen, Morten M.; Ruzanski, Christian; Krucewicz, Katarzyna; Beeren, Sophie R.; Rydhal, Maja G.; Yoshimura, Yayoi; Striebeck, Alexander; Motawia, Mohammed S.; Willats, William G. T.; Palcic, Monica M.

    2016-01-01

    Starch is the main storage polysaccharide in cereals and the major source of calories in the human diet. It is synthesized by a panel of enzymes including five classes of starch synthases (SSs). While the overall starch synthase (SS) reaction is known, the functional differences between the five SS classes are poorly understood. Much of our knowledge comes from analyzing mutant plants with altered SS activities, but the resulting data are often difficult to interpret as a result of pleitropic effects, competition between enzymes, overlaps in enzyme activity and disruption of multi-enzyme complexes. Here we provide a detailed biochemical study of the activity of all five classes of SSs in barley endosperm. Each enzyme was produced recombinantly in E. coli and the properties and modes of action in vitro were studied in isolation from other SSs and other substrate modifying activities. Our results define the mode of action of each SS class in unprecedented detail; we analyze their substrate selection, temperature dependence and stability, substrate affinity and temporal abundance during barley development. Our results are at variance with some generally accepted ideas about starch biosynthesis and might lead to the reinterpretation of results obtained in planta. In particular, they indicate that granule bound SS is capable of processive action even in the absence of a starch matrix, that SSI has no elongation limit, and that SSIV, believed to be critical for the initiation of starch granules, has maltoligosaccharides and not polysaccharides as its preferred substrates. PMID:26858729

  7. Polyketide synthases from poison hemlock (Conium maculatum L.).

    PubMed

    Hotti, Hannu; Seppänen-Laakso, Tuulikki; Arvas, Mikko; Teeri, Teemu H; Rischer, Heiko

    2015-11-01

    Coniine is a toxic alkaloid, the biosynthesis of which is not well understood. A possible route, supported by evidence from labelling experiments, involves a polyketide formed by the condensation of one acetyl-CoA and three malonyl-CoAs catalysed by a polyketide synthase (PKS). We isolated PKS genes or their fragments from poison hemlock (Conium maculatum L.) by using random amplification of cDNA ends (RACE) and transcriptome analysis, and characterized three full-length enzymes by feeding different starter-CoAs in vitro. On the basis of our in vitro experiments, two of the three characterized PKS genes in poison hemlock encode chalcone synthases (CPKS1 and CPKS2), and one encodes a novel type of PKS (CPKS5). We show that CPKS5 kinetically favours butyryl-CoA as a starter-CoA in vitro. Our results suggest that CPKS5 is responsible for the initiation of coniine biosynthesis by catalysing the synthesis of the carbon backbone from one butyryl-CoA and two malonyl-CoAs.

  8. Aldosterone synthase inhibitors in hypertension: current status and future possibilities

    PubMed Central

    Hargovan, Milan

    2014-01-01

    The renin-angiotensin aldosterone system is a critical mechanism for controlling blood pressure, and exerts most of its physiological effects through the action of angiotensin II. In addition to increasing blood pressure by increasing vascular resistance, angiotensin II also stimulates aldosterone secretion from the adrenal gland. Aldosterone acts to cause an increase in sodium and water reabsorption, thus elevating blood pressure. Although treatment with angiotensin converting enzyme inhibitors initially lowers circulating aldosterone, with chronic treatment aldosterone levels increase back to baseline, a phenomenon termed aldosterone escape; aldosterone blockade may therefore give added value in the treatment of hypertension. The first mineralocorticoid receptor antagonist developed was spironolactone, but its use has been severely hampered by adverse (notably oestrogenic) effects. The more recently developed mineralocorticoid receptor antagonist eplerenone exhibits a better adverse effect profile, although it is not devoid of effects similar to spironolactone. In addition, aldosterone activates non-genomic receptors that are not inhibited by either eplerenone or spironolactone. It is believed that deleterious organ remodelling is mediated by aldosterone via such non-genomic pathways. A new class of drugs, the aldosterone synthase inhibitors, is currently under development. These may offer a novel therapeutic approach for both lowering blood pressure and preventing the non-genomic effects of aldosterone. Here, we will review the cardiovascular effects of aldosterone and review the drugs available that target this hormone, with a particular focus on the aldosterone synthase inhibitors. PMID:24570839

  9. Pterins inhibit nitric oxide synthase activity in rat alveolar macrophages.

    PubMed Central

    Jorens, P. G.; van Overveld, F. J.; Bult, H.; Vermeire, P. A.; Herman, A. G.

    1992-01-01

    1. The synthesis of nitrite and citrulline from L-arginine by immune-stimulated rat alveolar macrophages and the modulation of this synthesis were studied. 2,4-Diamino-6-hydroxypyrimidine (DAHP), 6R-5,6,7,8-tetrahydro-L-biopterin (BH4) and L-sepiapterin were potent inhibitors of the recombinant interferon-gamma induced production of nitrogen oxides in intact cultured cells with I50 values for BH4 and L-sepiapterin of approximately 10 microM. They were equally effective in inhibiting the induced production of citrulline. This inhibitory effect was concentration-dependent for all three modulators investigated. 2. The inhibitory effects were not dependent on incubation times of either 24 or 48 h, on the immune-stimulus used (lipopolysaccharide, interferon-gamma), or whether these stimuli were added during or after the induction period. 3. Pterin-6-carboxylic acid (PCA), which cannot be converted into BH4, and methotrexate (MTX), which inhibits dihydrofolatereductase but not de novo biosynthesis of BH4, did not change the production of nitrite. 4. The data indicate that DAHP, an inhibitor of the de novo biosynthesis of the co-factor BH4, blocks the nitric oxide synthase activity in intact cells. Since the pterins BH4 and L-sepiapterin blocked the L-arginine dependent production of nitrite and citrulline, the activity of nitric oxide synthase in phagocytic cells may be regulated by metabolic endproducts of the de novo biosynthesis of BH4. PMID:1281717

  10. Studies of inositol 1-phosphate analogues as inhibitors of the phosphatidylinositol phosphate synthase in mycobacteria.

    PubMed

    Morii, Hiroyuki; Okauchi, Tatsuo; Nomiya, Hiroki; Ogawa, Midori; Fukuda, Kazumasa; Taniguchi, Hatsumi

    2013-03-01

    We previously reported a novel pathway for the biosynthesis of phosphatidylinositol in mycobacteria via phosphatidylinositol phosphate (PIP) [Morii H., Ogawa, M., Fukuda, K., Taniguchi, H., and Koga, Y (2010) J. Biochem. 148, 593-602]. PIP synthase in the pathway is a promising target for the development of new anti-mycobacterium drugs. In the present study, we evaluated the characteristics of the PIP synthase of Mycobacterium tuberculosis. Four types of compounds were chemically synthesized based on the assumption that structural homologues of inositol 1-phosphate, a PIP synthase substrate, would act as PIP synthase inhibitors, and the results confirmed that all synthesized compounds inhibited PIP synthase activity. The phosphonate analogue of inositol 1-phosphate (Ino-C-P) had the greatest inhibitory effect among the synthesized compounds examined. Kinetic analysis indicated that Ino-C-P acted as a competitive inhibitor of inositol 1-phosphate. The IC(50) value for Ino-C-P inhibition of the PIP synthase activity was estimated to be 2.0 mM. Interestingly, Ino-C-P was utilized in the same manner as the normal PIP synthase substrate, leading to the synthesis of a phosphonate analogue of PIP (PI-C-P), which had a structure similar to that of the natural product, PIP. In addition, PI-C-P had high inhibitory activity against PIP synthase.

  11. Identification and site of action of the remaining four putative pseudouridine synthases in Escherichia coli.

    PubMed Central

    Del Campo, M; Kaya, Y; Ofengand, J

    2001-01-01

    There are 10 known putative pseudouridine synthase genes in Escherichia coli. The products of six have been previously assigned, one to formation of the single pseudouridine in 16S RNA, three to the formation of seven pseudouridines in 23S RNA, and three to the formation of three pseudouridines in tRNA (one synthase makes pseudouridine in 23S RNA and tRNA). Here we show that the remaining four putative synthase genes make bona fide pseudouridine synthases and identify which pseudouridines they make. RluB (formerly YciL) and RluE (formerly YmfC) make pseudouridine2605 and pseudouridine2457, respectively, in 23S RNA. RluF (formerly YjbC) makes the newly discovered pseudouridine2604 in 23S RNA, and TruC (formerly YqcB) makes pseudouridine65 in tRNA(Ile1) and tRNA(Asp). Deletion of each of these synthase genes individually had no effect on exponential growth in rich media at 25 degrees C, 37 degrees C, or 42 degrees C. A strain lacking RluB and RluF also showed no growth defect under these conditions. Mutation of a conserved aspartate in a common sequence motif, previously shown to be essential for the other six E. coli pseudouridine synthases and several yeast pseudouridine synthases, also caused a loss of in vivo activity in all four of the synthases studied in this work. PMID:11720289

  12. Ethylene-Enhanced 1-Aminocyclopropane-1-carboxylic Acid Synthase Activity in Ripening Apples 1

    PubMed Central

    Bufler, Gebhard

    1984-01-01

    Apples (Malus sylvestris Mill, cv Golden Delicious) were treated before harvest with aminoethoxyvinylglycine (AVG). AVG is presumed to reversibly inhibit 1-aminocyclopropane-1-carboxylic acid (ACC) activity, but not the formation of ACC synthase. AVG treatment effectively blocked initiation of autocatalytic ethylene production and ripening of harvested apples. Exogenous ethylene induced extractable ACC synthase activity and ripening in AVG-treated apples. Removal of exogenous ethylene caused a rapid decline in ACC synthase activity and in CO2 production. The results with ripened, AVG-treated apples indicate (a) a dose-response relationship between ethylene and enhancement of ACC synthase activity with a half-maximal response at approximately 0.8 μl/l ethylene; (b) reversal of ethylene-enhanced ACC synthase activity by CO2; (c) enhancement of ACC synthase activity by the ethylene-activity analog propylene. Induction of ACC synthase activity, autocatalytic ethylene production, and ripening of preclimacteric apples not treated with AVG were delayed by 6 and 10% CO2, but not by 1.25% CO2. However, each of these CO2 concentrations reduced the rate of increase of ACC synthase activity. PMID:16663569

  13. Helical arrays of U-shaped ATP synthase dimers form tubular cristae in ciliate mitochondria.

    PubMed

    Mühleip, Alexander W; Joos, Friederike; Wigge, Christoph; Frangakis, Achilleas S; Kühlbrandt, Werner; Davies, Karen M

    2016-07-26

    F1Fo-ATP synthases are universal energy-converting membrane protein complexes that synthesize ATP from ADP and inorganic phosphate. In mitochondria of yeast and mammals, the ATP synthase forms V-shaped dimers, which assemble into rows along the highly curved ridges of lamellar cristae. Using electron cryotomography and subtomogram averaging, we have determined the in situ structure and organization of the mitochondrial ATP synthase dimer of the ciliate Paramecium tetraurelia. The ATP synthase forms U-shaped dimers with parallel monomers. Each complex has a prominent intracrista domain, which links the c-ring of one monomer to the peripheral stalk of the other. Close interaction of intracrista domains in adjacent dimers results in the formation of helical ATP synthase dimer arrays, which differ from the loose dimer rows in all other organisms observed so far. The parameters of the helical arrays match those of the cristae tubes, suggesting the unique features of the P. tetraurelia ATP synthase are directly responsible for generating the helical tubular cristae. We conclude that despite major structural differences between ATP synthase dimers of ciliates and other eukaryotes, the formation of ATP synthase dimer rows is a universal feature of mitochondria and a fundamental determinant of cristae morphology. PMID:27402755

  14. Creation of a high-amylose durum wheat through mutagenesis of starch synthase II (SSIIa)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In cereal seeds mutations in one or more starch synthases lead to decreased amylopectin and increased amylose content. Here, the impact of starch synthase IIa (SSIIa or SGP-1) mutations upon durum starch was investigated. A screen of durum accessions identified two lines lacking SGP-A1, the A geno...

  15. Helical arrays of U-shaped ATP synthase dimers form tubular cristae in ciliate mitochondria

    PubMed Central

    Mühleip, Alexander W.; Joos, Friederike; Wigge, Christoph; Frangakis, Achilleas S.; Kühlbrandt, Werner; Davies, Karen M.

    2016-01-01

    F1Fo-ATP synthases are universal energy-converting membrane protein complexes that synthesize ATP from ADP and inorganic phosphate. In mitochondria of yeast and mammals, the ATP synthase forms V-shaped dimers, which assemble into rows along the highly curved ridges of lamellar cristae. Using electron cryotomography and subtomogram averaging, we have determined the in situ structure and organization of the mitochondrial ATP synthase dimer of the ciliate Paramecium tetraurelia. The ATP synthase forms U-shaped dimers with parallel monomers. Each complex has a prominent intracrista domain, which links the c-ring of one monomer to the peripheral stalk of the other. Close interaction of intracrista domains in adjacent dimers results in the formation of helical ATP synthase dimer arrays, which differ from the loose dimer rows in all other organisms observed so far. The parameters of the helical arrays match those of the cristae tubes, suggesting the unique features of the P. tetraurelia ATP synthase are directly responsible for generating the helical tubular cristae. We conclude that despite major structural differences between ATP synthase dimers of ciliates and other eukaryotes, the formation of ATP synthase dimer rows is a universal feature of mitochondria and a fundamental determinant of cristae morphology. PMID:27402755

  16. Identification and site of action of the remaining four putative pseudouridine synthases in Escherichia coli.

    PubMed

    Del Campo, M; Kaya, Y; Ofengand, J

    2001-11-01

    There are 10 known putative pseudouridine synthase genes in Escherichia coli. The products of six have been previously assigned, one to formation of the single pseudouridine in 16S RNA, three to the formation of seven pseudouridines in 23S RNA, and three to the formation of three pseudouridines in tRNA (one synthase makes pseudouridine in 23S RNA and tRNA). Here we show that the remaining four putative synthase genes make bona fide pseudouridine synthases and identify which pseudouridines they make. RluB (formerly YciL) and RluE (formerly YmfC) make pseudouridine2605 and pseudouridine2457, respectively, in 23S RNA. RluF (formerly YjbC) makes the newly discovered pseudouridine2604 in 23S RNA, and TruC (formerly YqcB) makes pseudouridine65 in tRNA(Ile1) and tRNA(Asp). Deletion of each of these synthase genes individually had no effect on exponential growth in rich media at 25 degrees C, 37 degrees C, or 42 degrees C. A strain lacking RluB and RluF also showed no growth defect under these conditions. Mutation of a conserved aspartate in a common sequence motif, previously shown to be essential for the other six E. coli pseudouridine synthases and several yeast pseudouridine synthases, also caused a loss of in vivo activity in all four of the synthases studied in this work.

  17. ATP synthase in mycobacteria: special features and implications for a function as drug target.

    PubMed

    Lu, Ping; Lill, Holger; Bald, Dirk

    2014-07-01

    ATP synthase is a ubiquitous enzyme that is largely conserved across the kingdoms of life. This conservation is in accordance with its central role in chemiosmotic energy conversion, a pathway utilized by far by most living cells. On the other hand, in particular pathogenic bacteria whilst employing ATP synthase have to deal with energetically unfavorable conditions such as low oxygen tensions in the human host, e.g. Mycobacterium tuberculosis can survive in human macrophages for an extended time. It is well conceivable that such ATP synthases may carry idiosyncratic features that contribute to efficient ATP production. In this review genetic and biochemical data on mycobacterial ATP synthase are discussed in terms of rotary catalysis, stator composition, and regulation of activity. ATP synthase in mycobacteria is of particular interest as this enzyme has been validated as a target for promising new antibacterial drugs. A deeper understanding of the working of mycobacterial ATP synthase and its atypical features can provide insight in adaptations of bacterial energy metabolism. Moreover, pinpointing and understanding critical differences as compared with human ATP synthase may provide input for the design and development of selective ATP synthase inhibitors as antibacterials. This article is part of a Special Issue entitled: 18th European Bioenergetic Conference.

  18. The action of exogenous abscisic acid on malate-synthase synthesis in germinating castor-bean seeds.

    PubMed

    Dommes, J; Northcote, D H

    1985-12-01

    The presence of 30 μM abscisic acid inhibited development of malate-synthase activity in the endosperm of germinating castor-bean seeds. Malate synthase was purified from castor-bean endosperms and an antibody to it was prepared from rabbit serum. This antibody was used to measure the amounts of malate-synthase mRNA using an in-vitro translation system. The effect of abscisic acid appeared to be greater on malate-synthase mRNA than on the bulk of mRNA, indicating some specificity of abscisic-acid action. The extent of the inhibition of malate-synthase activity and of malate-synthase mRNA accumulation were similar. This indicates that abscisic acid inhibits malate-synthase activity by lowering levels of translatable malate-synthase mRNA rather than by affecting the translation rate of this mRNA.

  19. Combinatorial Effects of Fatty Acid Elongase Enzymes on Nervonic Acid Production in Camelina sativa

    PubMed Central

    Huai, Dongxin; Zhang, Yuanyuan; Zhang, Chunyu; Cahoon, Edgar B.; Zhou, Yongming

    2015-01-01

    Very long chain fatty acids (VLCFAs) with chain lengths of 20 carbons and longer provide feedstocks for various applications; therefore, improvement of VLCFA contents in seeds has become an important goal for oilseed enhancement. VLCFA biosynthesis is controlled by a multi-enzyme protein complex referred to as fatty acid elongase, which is composed of β-ketoacyl-CoA synthase (KCS), β-ketoacyl-CoA reductase (KCR), β-hydroxyacyl-CoA dehydratase (HCD) and enoyl reductase (ECR). KCS has been identified as the rate-limiting enzyme, but little is known about the involvement of other three enzymes in VLCFA production. Here, the combinatorial effects of fatty acid elongase enzymes on VLCFA production were assessed by evaluating the changes in nervonic acid content. A KCS gene from Lunaria annua (LaKCS) and the other three elongase genes from Arabidopsis thaliana were used for the assessment. Five seed-specific expressing constructs, including LaKCS alone, LaKCS with AtKCR, LaKCS with AtHCD, LaKCS with AtECR, and LaKCS with AtKCR and AtHCD, were transformed into Camelina sativa. The nervonic acid content in seed oil increased from null in wild type camelina to 6-12% in LaKCS-expressing lines. However, compared with that from the LaKCS-expressing lines, nervonic acid content in mature seeds from the co-expressing lines with one or two extra elongase genes did not show further increases. Nervonic acid content from LaKCS, AtKCR and AtHCD co-expressing line was significantly higher than that in LaKCS-expressing line during early seed development stage, while the ultimate nervonic acid content was not significantly altered. The results from this study thus provide useful information for future engineering of oilseed crops for higher VLCFA production. PMID:26121034

  20. Expression, crystallization and structure elucidation of γ-terpinene synthase from Thymus vulgaris.

    PubMed

    Rudolph, Kristin; Parthier, Christoph; Egerer-Sieber, Claudia; Geiger, Daniel; Muller, Yves A; Kreis, Wolfgang; Müller-Uri, Frieder

    2016-01-01

    The biosynthesis of γ-terpinene, a precursor of the phenolic isomers thymol and carvacrol found in the essential oil from Thymus sp., is attributed to the activitiy of γ-terpinene synthase (TPS). Purified γ-terpinene synthase from T. vulgaris (TvTPS), the Thymus species that is the most widely spread and of the greatest economical importance, is able to catalyze the enzymatic conversion of geranyl diphosphate (GPP) to γ-terpinene. The crystal structure of recombinantly expressed and purified TvTPS is reported at 1.65 Å resolution, confirming the dimeric structure of the enzyme. The putative active site of TvTPS is deduced from its pronounced structural similarity to enzymes from other species of the Lamiaceae family involved in terpenoid biosynthesis: to (+)-bornyl diphosphate synthase and 1,8-cineole synthase from Salvia sp. and to (4S)-limonene synthase from Mentha spicata. PMID:26750479

  1. Cloning and characterization of the Dictyostelium discoideum cycloartenol synthase cDNA.

    PubMed

    Godzina, S M; Lovato, M A; Meyer, M M; Foster, K A; Wilson, W K; Gu, W; de Hostos, E L; Matsuda, S P

    2000-03-01

    Cycloartenol synthase converts oxidosqualene to cycloartenol, the first carbocyclic intermediate en route to sterols in plants and many protists. Presented here is the first cycloartenol synthase gene identified from a protist, the cellular slime mold Dictyostelium discoideum. The cDNA encodes an 81-kDa predicted protein 50-52% identical to known higher plant cycloartenol synthases and 40-49% identical to known lanosterol synthases from fungi and mammals. The encoded protein expressed in transgenic Saccharomyces cerevisiae converted synthetic oxidosqualene to cycloartenol in vitro. This product was characterized by 1H and 13C nuclear magnetic resonance and gas chromatography-mass spectrometry. The predicted protein sequence diverges sufficiently from the known cycloartenol synthase sequences to dramatically reduce the number of residues that are candidates for the catalytic difference between cycloartenol and lanosterol formation.

  2. Structure and conformational states of the bovine mitochondrial ATP synthase by cryo-EM.

    PubMed

    Zhou, Anna; Rohou, Alexis; Schep, Daniel G; Bason, John V; Montgomery, Martin G; Walker, John E; Grigorieff, Nikolaus; Rubinstein, John L

    2015-10-06

    Adenosine triphosphate (ATP), the chemical energy currency of biology, is synthesized in eukaryotic cells primarily by the mitochondrial ATP synthase. ATP synthases operate by a rotary catalytic mechanism where proton translocation through the membrane-inserted FO region is coupled to ATP synthesis in the catalytic F1 region via rotation of a central rotor subcomplex. We report here single particle electron cryomicroscopy (cryo-EM) analysis of the bovine mitochondrial ATP synthase. Combining cryo-EM data with bioinformatic analysis allowed us to determine the fold of the a subunit, suggesting a proton translocation path through the FO region that involves both the a and b subunits. 3D classification of images revealed seven distinct states of the enzyme that show different modes of bending and twisting in the intact ATP synthase. Rotational fluctuations of the c8-ring within the FO region support a Brownian ratchet mechanism for proton-translocation-driven rotation in ATP synthases.

  3. Functional characterization of ent-copalyl diphosphate synthase, kaurene synthase and kaurene oxidase in the Salvia miltiorrhiza gibberellin biosynthetic pathway

    PubMed Central

    Su, Ping; Tong, Yuru; Cheng, Qiqing; Hu, Yating; Zhang, Meng; Yang, Jian; Teng, Zhongqiu; Gao, Wei; Huang, Luqi

    2016-01-01

    Salvia miltiorrhiza Bunge is highly valued in traditional Chinese medicine for its roots and rhizomes. Its bioactive diterpenoid tanshinones have been reported to have many pharmaceutical activities, including antibacterial, anti-inflammatory, and anticancer properties. Previous studies found four different diterpenoid biosynthetic pathways from the universal diterpenoid precursor (E,E,E)-geranylgeranyl diphosphate (GGPP) in S. miltiorrhiza. Here, we describe the functional characterization of ent-copalyl diphosphate synthase (SmCPSent), kaurene synthase (SmKS) and kaurene oxidase (SmKO) in the gibberellin (GA) biosynthetic pathway. SmCPSent catalyzes the cyclization of GGPP to ent-copalyl diphosphate (ent-CPP), which is converted to ent-kaurene by SmKS. Then, SmKO catalyzes the three-step oxidation of ent-kaurene to ent-kaurenoic acid. Our results show that the fused enzyme SmKS-SmCPSent increases ent-kaurene production by several fold compared with separate expression of SmCPSent and SmKS in yeast strains. In this study, we clarify the GA biosynthetic pathway from GGPP to ent-kaurenoic acid and provide a foundation for further characterization of the subsequent enzymes involved in this pathway. These insights may allow for better growth and the improved accumulation of bioactive tanshinones in S. miltiorrhiza through the regulation of the expression of these genes during developmental processes. PMID:26971881

  4. A gene from the cellulose synthase-like C family encodes a β-1,4 glucan synthase

    PubMed Central

    Cocuron, Jean-Christophe; Lerouxel, Olivier; Drakakaki, Georgia; Alonso, Ana P.; Liepman, Aaron H.; Keegstra, Kenneth; Raikhel, Natasha; Wilkerson, Curtis G.

    2007-01-01

    Despite the central role of xyloglucan (XyG) in plant cell wall structure and function, important details of its biosynthesis are not understood. To identify the gene(s) responsible for synthesizing the β-1,4 glucan backbone of XyG, we exploited a property of nasturtium (Tropaeolum majus) seed development. During the last stages of nasturtium seed maturation, a large amount of XyG is deposited as a reserve polysaccharide. A cDNA library was produced from mRNA isolated during the deposition of XyG, and partial sequences of 10,000 cDNA clones were determined. A single member of the C subfamily from the large family of cellulose synthase-like (CSL) genes was found to be overrepresented in the cDNA library. Heterologous expression of this gene in the yeast Pichia pastoris resulted in the production of a β-1,4 glucan, confirming that the CSLC protein has glucan synthase activity. The Arabidopsis CSLC4 gene, which is the gene with the highest sequence similarity to the nasturtium CSL gene, is coordinately expressed with other genes involved in XyG biosynthesis. These and other observations provide a compelling case that the CSLC gene family encode proteins that synthesize the XyG backbone. PMID:17488821

  5. Biochemistry of prostaglandin endoperoxide H synthase-1 and synthase-2 and their differential susceptibility to nonsteroidal anti-inflammatory drugs.

    PubMed

    Smith, W L; DeWitt, D L

    1995-05-01

    The principal pharmacological effects of nonsteroidal anti-inflammatory drugs (NSAIDs) are due to their ability to inhibit prostaglandin synthesis. NSAIDs block the cyclooxygenase activities of the closely related PGH synthase-1 and PGH synthase-2 (PGHS-1 and PGHS-2) isozymes. NSAIDs are therapeutically useful due to their analgesic, anti-pyretic, anti-inflammatory, and anti-thrombogenic properties. Major side-effects of NSAIDs include their ulcerogenic and nephrotoxic activities. All clinically approved NSAIDs in general use today inhibit both PGHS-1 and PGHS-2. Recently, inhibitors have been identified that are selective toward PGHS-2 and that have potent analgesic and anti-inflammatory activities with minimal ulcerogenic activity. If the new PGHS-2 selective NSAIDs can effectively inhibit inflammatory prostaglandin synthesis by PGHS-2, without inhibiting PGHS-1 prostaglandin synthesis required to regulate sodium and water resorption, and renal blood flow, it is likely that these new drugs will also have significantly less renal toxicity than present-day NSAIDs. In this article, the mechanisms of actions of NSAIDs primarily at the biochemical level, including the reactions catalyzed by PGHSs, will be discussed. In addition, the biochemical properties of these isozymes, and the differential regulation of the PGHS-1 and PGHS-2 genes, will be examined. PMID:7631045

  6. Crystal structures capture three states in the catalytic cycle of a pyridoxal phosphate (PLP) synthase.

    PubMed

    Smith, Amber Marie; Brown, William Clay; Harms, Etti; Smith, Janet L

    2015-02-27

    PLP synthase (PLPS) is a remarkable single-enzyme biosynthetic pathway that produces pyridoxal 5'-phosphate (PLP) from glutamine, ribose 5-phosphate, and glyceraldehyde 3-phosphate. The intact enzyme includes 12 synthase and 12 glutaminase subunits. PLP synthesis occurs in the synthase active site by a complicated mechanism involving at least two covalent intermediates at a catalytic lysine. The first intermediate forms with ribose 5-phosphate. The glutaminase subunit is a glutamine amidotransferase that hydrolyzes glutamine and channels ammonia to the synthase active site. Ammonia attack on the first covalent intermediate forms the second intermediate. Glyceraldehyde 3-phosphate reacts with the second intermediate to form PLP. To investigate the mechanism of the synthase subunit, crystal structures were obtained for three intermediate states of the Geobacillus stearothermophilus intact PLPS or its synthase subunit. The structures capture the synthase active site at three distinct steps in its complicated catalytic cycle, provide insights into the elusive mechanism, and illustrate the coordinated motions within the synthase subunit that separate the catalytic states. In the intact PLPS with a Michaelis-like intermediate in the glutaminase active site, the first covalent intermediate of the synthase is fully sequestered within the enzyme by the ordering of a generally disordered 20-residue C-terminal tail. Following addition of ammonia, the synthase active site opens and admits the Lys-149 side chain, which participates in formation of the second intermediate and PLP. Roles are identified for conserved Asp-24 in the formation of the first intermediate and for conserved Arg-147 in the conversion of the first to the second intermediate. PMID:25568319

  7. Inhibition of nitric oxide synthase does not impair spatial learning.

    PubMed

    Bannerman, D M; Chapman, P F; Kelly, P A; Butcher, S P; Morris, R G

    1994-12-01

    Nitric oxide (NO), a putative intercellular messenger in the CNS, may be involved in certain forms of synaptic plasticity and learning. This article reports a series of experiments investigating the effects of N omega-nitro-L-arginine methyl ester (L-NAME) upon various forms of learning and memory in the watermaze. L-NAME (75 mg/kg, i.p., sufficient to bring about > 90% inhibition of NO synthesis in brain) produced an apparent impairment in spatial learning when given to naive rats during acquisition (3 d, six training trials per day). This impairment was dose related, stereoselective, and attenuated by coadministration of L-arginine. A second study showed that L-NAME did not affect the retention of a previously learned spatial task. In addition, in a visual discrimination task, the rate at which criterion levels of performance were reached was unaffected by L-NAME. Thus, inhibition of NO synthase may cause a selective impairment of spatial learning without effect upon retention. However, analysis of the early training trials of the visual discrimination task revealed significantly elevated escape latencies in the L-NAME-treated rats, suggesting that inhibition of NO synthase may have more general effects. As normal rats learn the spatial task very rapidly, the possibility arises that the apparent deficit in learning is due to a disruption of some process other than learning per se. A further series of experiments investigated this possibility. L-NAME was found not to impair the learning of a new platform position in the same spatial environment. Surprisingly, L-NAME also had no effect on spatial learning in a second watermaze located in a novel spatial environment by rats well practiced with all aspects of watermaze training. Finally, L-NAME had no effect on spatial learning in naive rats trained with just one trial per day. Thus, systemic injection of an NO synthase inhibitor impairs behavioral performance in two tasks during their initial acquisition, but the

  8. mRNA expressions of inducible nitric oxide synthase, endothelial nitric oxide synthase, and neuronal nitric oxide synthase genes in meningitis patients.

    PubMed

    Oztuzcu, Serdar; Igci, Yusuf Ziya; Arslan, Ahmet; Sivasli, Ercan; Ozkara, Esma; Igci, Mehri; Demiryürek, Seniz; Cengiz, Beyhan; Gogebakan, Bulent; Namiduru, Mustafa; Coskun, Mehmet Yavuz; Cakmak, Ecir Ali

    2011-03-01

    Meningitis is an inflammation of the protective membranes covering the brain and spinal cord caused by bacteria, fungi, or viruses with various clinical symptoms. Although meningitis is not so prevalent, it remains the most serious contagious disease. The aim of our study was to investigate the effect of gene expressions of nitric oxide synthases (NOS) on meningitis patients. Using samples taken from 61 meningitis patients, inducible NOS, endothelial NOS (eNOS), and neuronal NOS mRNA levels were assessed in both blood and cerebrospinal fluid (CSF). A control group was constructed of 64 healthy persons. The gene expression analysis was made using real-time polymerase chain reaction method. There was no neuronal NOS expression in either group, whereas inducible NOS expression was detected in 40 blood samples and 12 CSF samples from meningitis patients. However, there were no marked differences between groups (p=0.5104). eNOS expression was detected in all blood and CSF samples, which was markedly higher in patients (p=0.0367). Because the increase in eNOS expression increases NO production, eNOS expression in meningitis patients is of great importance. This increase of eNOS in meningitis patients compared with healthy subjects may lead to novel treatments for reducing the severity of the disease.

  9. The Interplay between Myc and CTP Synthase in Drosophila

    PubMed Central

    Aughey, Gabriel N.; Grice, Stuart J.; Liu, Ji-Long

    2016-01-01

    CTP synthase (CTPsyn) is essential for the biosynthesis of pyrimidine nucleotides. It has been shown that CTPsyn is incorporated into a novel cytoplasmic structure which has been termed the cytoophidium. Here, we report that Myc regulates cytoophidium formation during Drosophila oogenesis. We have found that Myc protein levels correlate with cytoophidium abundance in follicle epithelia. Reducing Myc levels results in cytoophidium loss and small nuclear size in follicle cells, while overexpression of Myc increases the length of cytoophidia and the nuclear size of follicle cells. Ectopic expression of Myc induces cytoophidium formation in late stage follicle cells. Furthermore, knock-down of CTPsyn is sufficient to suppress the overgrowth phenotype induced by Myc overexpression, suggesting CTPsyn acts downstream of Myc and is required for Myc-mediated cell size control. Taken together, our data suggest a functional link between Myc, a renowned oncogene, and the essential nucleotide biosynthetic enzyme CTPsyn. PMID:26889675

  10. Sphingomyelin Synthase 1 Is Essential for Male Fertility in Mice

    PubMed Central

    Scherthan, Harry; Horsch, Marion; Beckers, Johannes; Fuchs, Helmut; Gailus-Durner, Valerie; Hrabě de Angelis, Martin; Ford, Steven J.; Burton, Neal C.; Razansky, Daniel; Trümbach, Dietrich; Aichler, Michaela; Walch, Axel Karl; Calzada-Wack, Julia; Neff, Frauke; Wurst, Wolfgang; Hartmann, Tobias; Floss, Thomas

    2016-01-01

    Sphingolipids and the derived gangliosides have critical functions in spermatogenesis, thus mutations in genes involved in sphingolipid biogenesis are often associated with male infertility. We have generated a transgenic mouse line carrying an insertion in the sphingomyelin synthase gene Sms1, the enzyme which generates sphingomyelin species in the Golgi apparatus. We describe the spermatogenesis defect of Sms1-/- mice, which is characterized by sloughing of spermatocytes and spermatids, causing progressive infertility of male homozygotes. Lipid profiling revealed a reduction in several long chain unsaturated phosphatidylcholins, lysophosphatidylcholins and sphingolipids in the testes of mutants. Multi-Spectral Optoacoustic Tomography indicated blood-testis barrier dysfunction. A supplementary diet of the essential omega-3 docosahexaenoic acid and eicosapentaenoic acid diminished germ cell sloughing from the seminiferous epithelium and restored spermatogenesis and fertility in 50% of previously infertile mutants. Our findings indicate that SMS1 has a wider than anticipated role in testis polyunsaturated fatty acid homeostasis and for male fertility. PMID:27788151

  11. Identification of sucrose synthase as an actin-binding protein

    NASA Technical Reports Server (NTRS)

    Winter, H.; Huber, J. L.; Huber, S. C.; Davies, E. (Principal Investigator)

    1998-01-01

    Several lines of evidence indicate that sucrose synthase (SuSy) binds both G- and F-actin: (i) presence of SuSy in the Triton X-100-insoluble fraction of microsomal membranes (i.e. crude cytoskeleton fraction); (ii) co-immunoprecipitation of actin with anti-SuSy monoclonal antibodies; (iii) association of SuSy with in situ phalloidin-stabilized F-actin filaments; and (iv) direct binding to F-actin, polymerized in vitro. Aldolase, well known to interact with F-actin, interfered with binding of SuSy, suggesting that a common or overlapping binding site may be involved. We postulate that some of the soluble SuSy in the cytosol may be associated with the actin cytoskeleton in vivo.

  12. Plant diterpene synthases: exploring modularity and metabolic diversity for bioengineering.

    PubMed

    Zerbe, Philipp; Bohlmann, Jörg

    2015-07-01

    Plants produce thousands of diterpenoid natural products; some of which are of significant industrial value as biobased pharmaceuticals (taxol), fragrances (sclareol), food additives (steviosides), and commodity chemicals (diterpene resin acids). In nature, diterpene synthase (diTPS) enzymes are essential for generating diverse diterpene hydrocarbon scaffolds. While some diTPSs also form oxygenated compounds, more commonly, oxygenation is achieved by cytochrome P450-dependent mono-oxygenases. Recent genome-, transcriptome-, and metabolome-guided gene discovery and enzyme characterization identified novel diTPS functions that form the core of complex modular pathway systems. Insights into diterpene metabolism may translate into the development of new bioengineered microbial and plant-based production systems.

  13. Glycogen Synthase Kinase-3 (GSK-3)-Targeted Therapy and Imaging.

    PubMed

    Pandey, Mukesh K; DeGrado, Timothy R

    2016-01-01

    Glycogen synthase kinase-3 (GSK-3) is associated with various key biological processes, including glucose regulation, apoptosis, protein synthesis, cell signaling, cellular transport, gene transcription, proliferation, and intracellular communication. Accordingly, GSK-3 has been implicated in a wide variety of diseases and specifically targeted for both therapeutic and imaging applications by a large number of academic laboratories and pharmaceutical companies. Here, we review the structure, function, expression levels, and ligand-binding properties of GSK-3 and its connection to various diseases. A selected list of highly potent GSK-3 inhibitors, with IC50 <20 nM for adenosine triphosphate (ATP)-competitive inhibitors and IC50 <5 μM for non-ATP-competitive inhibitors, were analyzed for structure activity relationships. Furthermore, ubiquitous expression of GSK-3 and its possible impact on therapy and imaging are also highlighted. Finally, a rational perspective and possible route to selective and effective GSK-3 inhibitors is discussed. PMID:26941849

  14. Structural Studies of Pterin-Based Inhibitors of Dihydropteroate Synthase

    SciTech Connect

    Hevener, Kirk E.; Yun, Mi-Kyung; Qi, Jianjun; Kerr, Iain D.; Babaoglu, Kerim; Hurdle, Julian G.; Balakrishna, Kanya; White, Stephan W.; Lee, Richard E.

    2010-01-12

    Dihydropteroate synthase (DHPS) is a key enzyme in bacterial folate synthesis and the target of the sulfonamide class of antibacterials. Resistance and toxicities associated with sulfonamides have led to a decrease in their clinical use. Compounds that bind to the pterin binding site of DHPS, as opposed to the p-amino benzoic acid (pABA) binding site targeted by the sulfonamide agents, are anticipated to bypass sulfonamide resistance. To identify such inhibitors and map the pterin binding pocket, we have performed virtual screening, synthetic, and structural studies using Bacillus anthracis DHPS. Several compounds with inhibitory activity have been identified, and crystal structures have been determined that show how the compounds engage the pterin site. The structural studies identify the key binding elements and have been used to generate a structure-activity based pharmacophore map that will facilitate the development of the next generation of DHPS inhibitors which specifically target the pterin site.

  15. Catalysis and Sulfa Drug Resistance in Dihydropteroate Synthase

    SciTech Connect

    Yun, Mi-Kyung; Wu, Yinan; Li, Zhenmei; Zhao, Ying; Waddell, M. Brett; Ferreira, Antonio M.; Lee, Richard E.; Bashford, Donald; White, Stephen W.

    2013-04-08

    The sulfonamide antibiotics inhibit dihydropteroate synthase (DHPS), a key enzyme in the folate pathway of bacteria and primitive eukaryotes. However, resistance mutations have severely compromised the usefulness of these drugs. We report structural, computational, and mutagenesis studies on the catalytic and resistance mechanisms of DHPS. By performing the enzyme-catalyzed reaction in crystalline DHPS, we have structurally characterized key intermediates along the reaction pathway. Results support an S{sub N}1 reaction mechanism via formation of a novel cationic pterin intermediate. We also show that two conserved loops generate a substructure during catalysis that creates a specific binding pocket for p-aminobenzoic acid, one of the two DHPS substrates. This substructure, together with the pterin-binding pocket, explains the roles of the conserved active-site residues and reveals how sulfonamide resistance arises.

  16. Farnesyl Diphosphate Synthase Inhibitors With Unique Ligand-Binding Geometries

    PubMed Central

    2015-01-01

    Farnesyl diphosphate synthase (FPPS) is an important drug target for bone resorption, cancer, and some infectious diseases. Here, we report five new structures including two having unique bound ligand geometries. The diamidine inhibitor 7 binds to human FPPS close to the homoallylic (S2) and allosteric (S3) sites and extends into a new site, here called S4. With the bisphosphonate inhibitor 8, two molecules bind to Trypanosoma brucei FPPS, one molecule in the allylic site (S1) and the other close to S2, the first observation of two bisphosphonate molecules bound to FPPS. We also report the structures of apo-FPPS from T. brucei, together with two more bisphosphonate-bound structures (2,9), for purposes of comparison. The diamidine structure is of particular interest because 7 could represent a new lead for lipophilic FPPS inhibitors, while 8 has low micromolar activity against T. brucei, the causative agent of human African trypanosomiasis. PMID:25815158

  17. Dihydropteroate synthase gene mutations in Pneumocystis and sulfa resistance.

    PubMed

    Huang, Laurence; Crothers, Kristina; Atzori, Chiara; Benfield, Thomas; Miller, Robert; Rabodonirina, Meja; Helweg-Larsen, Jannik

    2004-10-01

    Pneumocystis pneumonia (PCP) remains a major cause of illness and death in HIV-infected persons. Sulfa drugs, trimethoprim-sulfamethoxazole (TMP-SMX) and dapsone are mainstays of PCP treatment and prophylaxis. While prophylaxis has reduced the incidence of PCP, its use has raised concerns about development of resistant organisms. The inability to culture human Pneumocystis, Pneumocystis jirovecii, in a standardized culture system prevents routine susceptibility testing and detection of drug resistance. In other microorganisms, sulfa drug resistance has resulted from specific point mutations in the dihydropteroate synthase (DHPS) gene. Similar mutations have been observed in P. jirovecii. Studies have consistently demonstrated a significant association between the use of sulfa drugs for PCP prophylaxis and DHPS gene mutations. Whether these mutations confer resistance to TMP-SMX or dapsone plus trimethoprim for PCP treatment remains unclear. We review studies of DHPS mutations in P. jirovecii and summarize the evidence for resistance to sulfamethoxazole and dapsone.

  18. Catalysis and sulfa drug resistance in dihydropteroate synthase.

    PubMed

    Yun, Mi-Kyung; Wu, Yinan; Li, Zhenmei; Zhao, Ying; Waddell, M Brett; Ferreira, Antonio M; Lee, Richard E; Bashford, Donald; White, Stephen W

    2012-03-01

    The sulfonamide antibiotics inhibit dihydropteroate synthase (DHPS), a key enzyme in the folate pathway of bacteria and primitive eukaryotes. However, resistance mutations have severely compromised the usefulness of these drugs. We report structural, computational, and mutagenesis studies on the catalytic and resistance mechanisms of DHPS. By performing the enzyme-catalyzed reaction in crystalline DHPS, we have structurally characterized key intermediates along the reaction pathway. Results support an S(N)1 reaction mechanism via formation of a novel cationic pterin intermediate. We also show that two conserved loops generate a substructure during catalysis that creates a specific binding pocket for p-aminobenzoic acid, one of the two DHPS substrates. This substructure, together with the pterin-binding pocket, explains the roles of the conserved active-site residues and reveals how sulfonamide resistance arises.

  19. Sulfa use, dihydropteroate synthase mutations, and Pneumocystis jirovecii pneumonia.

    PubMed

    Stein, Cheryl R; Poole, Charles; Kazanjian, Powel; Meshnick, Steven R

    2004-10-01

    A systematic review was conducted to examine the associations in Pneumocystis jirovecii pneumonia (PCP) patients between dihydropteroate synthase (DHPS) mutations and sulfa or sulfone (sulfa) prophylaxis and between DHPS mutations and sulfa treatment outcome. Selection criteria included study populations composed entirely of PCP patients and mutation or treatment outcome results for all patients, regardless of exposure status. Based on 13 studies, the risk of developing DHPS mutations is higher for PCP patients receiving sulfa prophylaxis than for PCP patients not receiving sulfa prophylaxis (p < 0.001). Results are too heterogeneous (p < 0.001) to warrant a single summary effect estimate. Estimated effects are weaker after 1996 and stronger in studies that included multiple isolates per patient. Five studies examined treatment outcome. The effect of DHPS mutations on treatment outcome has not been well studied, and the few studies that have been conducted are inconsistent even as to the presence or absence of an association.

  20. The Interplay between Myc and CTP Synthase in Drosophila.

    PubMed

    Aughey, Gabriel N; Grice, Stuart J; Liu, Ji-Long

    2016-02-01

    CTP synthase (CTPsyn) is essential for the biosynthesis of pyrimidine nucleotides. It has been shown that CTPsyn is incorporated into a novel cytoplasmic structure which has been termed the cytoophidium. Here, we report that Myc regulates cytoophidium formation during Drosophila oogenesis. We have found that Myc protein levels correlate with cytoophidium abundance in follicle epithelia. Reducing Myc levels results in cytoophidium loss and small nuclear size in follicle cells, while overexpression of Myc increases the length of cytoophidia and the nuclear size of follicle cells. Ectopic expression of Myc induces cytoophidium formation in late stage follicle cells. Furthermore, knock-down of CTPsyn is sufficient to suppress the overgrowth phenotype induced by Myc overexpression, suggesting CTPsyn acts downstream of Myc and is required for Myc-mediated cell size control. Taken together, our data suggest a functional link between Myc, a renowned oncogene, and the essential nucleotide biosynthetic enzyme CTPsyn. PMID:26889675

  1. Glycogen Synthase Kinase-3 (GSK-3)-Targeted Therapy and Imaging

    PubMed Central

    Pandey, Mukesh K.; DeGrado, Timothy R.

    2016-01-01

    Glycogen synthase kinase-3 (GSK-3) is associated with various key biological processes, including glucose regulation, apoptosis, protein synthesis, cell signaling, cellular transport, gene transcription, proliferation, and intracellular communication. Accordingly, GSK-3 has been implicated in a wide variety of diseases and specifically targeted for both therapeutic and imaging applications by a large number of academic laboratories and pharmaceutical companies. Here, we review the structure, function, expression levels, and ligand-binding properties of GSK-3 and its connection to various diseases. A selected list of highly potent GSK-3 inhibitors, with IC50 <20 nM for adenosine triphosphate (ATP)-competitive inhibitors and IC50 <5 μM for non-ATP-competitive inhibitors, were analyzed for structure activity relationships. Furthermore, ubiquitous expression of GSK-3 and its possible impact on therapy and imaging are also highlighted. Finally, a rational perspective and possible route to selective and effective GSK-3 inhibitors is discussed. PMID:26941849

  2. Calmodulin-induced structural changes in endothelial nitric oxide synthase

    PubMed Central

    Persechini, Anthony; Tran, Quang-Kim; Black, D.J.; Gogol, Edward P.

    2013-01-01

    We have derived structures of intact calmodulin(CaM)-free and CaM-bound endothelial nitric oxide synthase (eNOS) by reconstruction from cryo-electron micrographs. The CaM-free reconstruction is well fitted by the oxygenase domain dimer, but the reductase domains are not visible, suggesting they are mobile and thus delocalized. Additional protein is visible in the CaM-bound reconstruction, concentrated in volumes near two basic patches on each oxygenase domain. One of these corresponds with a presumptive docking site for the reductase domain FMN-binding module. The other is proposed to correspond with a docking site for CaM. A model is suggested in which CaM binding and docking position the reductase domains near the oxygenase domains and promote docking of the FMN-binding modules required for electron transfer. PMID:23266515

  3. Rotary catalysis of FoF1-ATP synthase.

    PubMed

    Watanabe, Rikiya

    2013-01-01

    The synthesis of ATP, the key reaction of biological energy metabolism, is accomplished by the rotary motor protein; FoF1-ATP synthase (FoF1). In vivo, FoF1, located on the cell membrane, carries out ATP synthesis by using the proton motive force. This heterologous energy conversion is supposed to be mediated by the mechanical rotation of FoF1; however, it still remained unclear. Recently, we developed the novel experimental setup to reproduce the proton motive force in vitro and succeeded in directly observing the proton-driven rotation of FoF1. In this review, we describe the interesting working principles determined so far for FoF1 and then introduce results from our recent study.

  4. Glycogen Synthase in Sertoli Cells: More Than Glycogenesis?

    PubMed

    Maldonado, Rodrigo; Mancilla, Héctor; Villarroel-Espíndola, Franz; Slebe, Felipe; Slebe, Juan Carlos; Méndez, Raúl; Guinovart, Joan J; Concha, Ilona I

    2016-11-01

    Sertoli cell metabolism actively maintains the nutritional needs of germ cells. It has been described that after glucose incorporation in Sertoli cells, less than 1% is converted to glycogen suggesting low levels of glycogen synthase activity. Phosphorylation of muscle glycogen synthase (MGS) at serine 640 (pS640MGS) decreases its activity, and this form of the enzyme was discovered as a non-ribosomal protein that modulates the translation of a subset of transcripts in HeLa cells. The aim of our study was to functionally characterize MGS in cultured Sertoli cells, as well as to explore this new feature related to RNA molecules. We detected MGS in the cytoplasm of Sertoli cells as well as in the nuclei. The activity rates of the enzyme were extremely low indicating that MGS is expressed but almost inactive. Protein targeting to glycogen (PTG) overexpression was performed to activate MGS by dephosphorylation. PTG induced glycogen synthesis massively, confirming that this enzyme is present but inactive. This finding correlates with high levels of pS640MGS, which were assayed by phosphatase treatment. To explore a putative new function for MGS in Sertoli cells, we performed RNA immunoprecipitation coupled to microarray studies. The results revealed that MGS co-immunoprecipitated with the several mRNAs and also rRNAs. These findings indicate that MGS is expressed Sertoli cells but in an inactive form, and also support a possibly novel feature of this metabolic enzyme associated with RNA-related molecules. J. Cell. Biochem. 117: 2597-2607, 2016. © 2016 Wiley Periodicals, Inc. PMID:27017955

  5. New insight into the catalytic properties of rice sucrose synthase.

    PubMed

    Huang, Yu-Chiao; Hsiang, Erh-Chieh; Yang, Chien-Chih; Wang, Ai-Yu

    2016-01-01

    Sucrose synthase (SuS), which catalyzes the reversible conversion of sucrose and uridine diphosphate (UDP) into fructose and UDP-glucose, is a key enzyme in sucrose metabolism in higher plants. SuS belongs to family 4 of the glycosyltransferases (GT4) and contains an E-X7-E motif that is conserved in members of GT4 and two other GT families. To gain insight into the roles of this motif in rice sucrose synthase 3 (RSuS3), the two conserved glutamate residues (E678 and E686) in this motif and a phenylalanine residue (F680) that resides between the two glutamate residues were changed by site-directed mutagenesis. All mutant proteins maintained their tetrameric conformation. The mutants E686D and F680Y retained partial enzymatic activity and the mutants E678D, E678Q, F680S, and E686Q were inactive. Substrate binding assays indicated that UDP and fructose, respectively, were the leading substrates in the sucrose degradation and synthesis reactions of RSuS3. Mutations on E678, F680, and E686 affected the binding of fructose, but not of UDP. The results indicated that E678, F680, and E686 in the E-X7-E motif of RSuS3 are essential for the activity of the enzyme and the sequential binding of substrates. The sequential binding of the substrates implied that the reaction catalyzed by RSuS can be controlled by the availability of fructose and UDP, depending on the metabolic status of a tissue.

  6. Leishmania donovani Encodes a Functional Selenocysteinyl-tRNA Synthase.

    PubMed

    Manhas, Reetika; Gowri, Venkatraman Subramanian; Madhubala, Rentala

    2016-01-15

    The synthesis of selenocysteine, the 21st amino acid, occurs on its transfer RNA (tRNA), tRNA(Sec). tRNA(Sec) is initially aminoacylated with serine by seryl-tRNA synthetase and the resulting seryl moiety is converted to phosphoserine by O-phosphoseryl-tRNA kinase (PSTK) in eukaryotes. The selenium donor, selenophosphate is synthesized from selenide and ATP by selenophosphate synthetase. Selenocysteinyl-tRNA synthase (SepSecS) then uses the O-phosphoseryl-tRNA(Sec) and selenophosphate to form Sec-tRNA(Sec) in eukaryotes. Here, we report the characterization of selenocysteinyl-tRNA synthase from Leishmania donovani. Kinetoplastid SepSecS enzymes are phylogenetically closer to worm SepSecS. LdSepSecS was found to exist as a tetramer. Leishmania SepSecS enzyme was found to be active and able to complement the ΔselA deletion in Escherichia coli JS1 strain only in the presence of archaeal PSTK, indicating the conserved nature of the PSTK-SepSecS pathway. LdSepSecS was found to localize in the cytoplasm of the parasite. Gene deletion studies indicate that Leishmania SepSecS is dispensable for the parasite survival. The parasite was found to encode three selenoproteins, which were only expressed in the presence of SepSecS. Selenoproteins of L. donovani are not required for the growth of the promastigotes. Auranofin, a known inhibitor of selenoprotein synthesis showed the same sensitivity toward the wild-type and null mutants suggesting its effect is not through binding to selenoproteins. The three-dimensional structural comparison indicates that human and Leishmania homologs are structurally highly similar but their association modes leading to tetramerization seem different. PMID:26586914

  7. The Evolution of Function in Strictosidine Synthase-like Proteins

    PubMed Central

    Hicks, Michael A.; Barber, Alan E.; Giddings, Lesley-Ann; Caldwell, Jenna; O’Connor, Sarah E.; Babbitt, Patricia C.

    2013-01-01

    The exponential growth of sequence data provides abundant information for the discovery of new enzyme reactions. Correctly annotating the functions of highly diverse proteins can be difficult, however, hindering use of this information. Global analysis of large superfamilies of related proteins is a powerful strategy for understanding the evolution of reactions by identifying catalytic commonalities and differences in reaction and substrate specificity, even when only a few members have been biochemically or structurally characterized. A comparison of >2500 sequences sharing the six-bladed β-propeller fold establishes sequence, structural and functional links among the three subgroups of the functionally diverse N6P superfamily: the arylesterase-like and senescence marker protein-30/gluconolactonase/luciferin-regenerating enzyme-like (SGL) subgroups, representing enzymes that catalyze lactonase and related hydrolytic reactions, and the so-called “strictosidine synthase-like” (SSL) subgroup. Metal-coordinating residues were identified as broadly conserved in the active sites of all three subgroups except for a few proteins from the SSL subgroup, which have been experimentally determined to catalyze the quite different strictosidine synthase (SS) reaction, a metal-independent condensation reaction. Despite these differences, comparison of conserved catalytic features of the arylesterase-like and SGL enzymes with the SSs identified similar structural and mechanistic attributes between the hydrolytic reactions catalyzed by the former and the condensation reaction catalyzed by SS. The results also suggest that despite their annotations, the great majority of these >500 SSL sequences do not catalyze the SS reaction; rather, they likely catalyze hydrolytic reactions typical of the other two subgroups instead. This prediction was confirmed experimentally for one of these proteins. PMID:21948213

  8. Enzymatic and structural characterization of an archaeal thiamin phosphate synthase.

    PubMed

    Hayashi, Maria; Kobayashi, Kazuya; Esaki, Hiroyoshi; Konno, Hiroyuki; Akaji, Kenichi; Tazuya, Keiko; Yamada, Kazuko; Nakabayashi, Toshikatsu; Nosaka, Kazuto

    2014-04-01

    Studies on thiamin biosynthesis have so far been achieved in eubacteria, yeast and plants, in which the thiamin structure is formed as thiamin phosphate from a thiazole and a pyrimidine moiety. This condensation reaction is catalyzed by thiamin phosphate synthase, which is encoded by the thiE gene or its orthologs. On the other hand, most archaea do not seem to have the thiE gene, but instead their thiD gene, coding for a 2-methyl-4-amino-5-hydroxymethylpyrimidine (HMP) kinase/HMP phosphate kinase, possesses an additional C-terminal domain designated thiN. These two proteins, ThiE and ThiN, do not share sequence similarity. In this study, using recombinant protein from the hyperthermophile archaea Pyrobaculum calidifontis, we demonstrated that the ThiN protein is an analog of the ThiE protein, catalyzing the formation of thiamin phosphate with the release of inorganic pyrophosphate from HMP pyrophosphate and 4-methyl-5-β-hydroxyethylthiazole phosphate (HET-P). In addition, we found that the ThiN protein can liberate an inorganic pyrophosphate from HMP pyrophosphate in the absence of HET-P. A structure model of the enzyme-product complex of P. calidifontis ThiN domain was proposed on the basis of the known three-dimensional structure of the ortholog of Pyrococcus furiosus. The significance of Arg320 and His341 residues for thiN-coded thiamin phosphate synthase activity was confirmed by site-directed mutagenesis. This is the first report of the experimental analysis of an archaeal thiamin synthesis enzyme.

  9. Glycogen Synthase in Sertoli Cells: More Than Glycogenesis?

    PubMed

    Maldonado, Rodrigo; Mancilla, Héctor; Villarroel-Espíndola, Franz; Slebe, Felipe; Slebe, Juan Carlos; Méndez, Raúl; Guinovart, Joan J; Concha, Ilona I

    2016-11-01

    Sertoli cell metabolism actively maintains the nutritional needs of germ cells. It has been described that after glucose incorporation in Sertoli cells, less than 1% is converted to glycogen suggesting low levels of glycogen synthase activity. Phosphorylation of muscle glycogen synthase (MGS) at serine 640 (pS640MGS) decreases its activity, and this form of the enzyme was discovered as a non-ribosomal protein that modulates the translation of a subset of transcripts in HeLa cells. The aim of our study was to functionally characterize MGS in cultured Sertoli cells, as well as to explore this new feature related to RNA molecules. We detected MGS in the cytoplasm of Sertoli cells as well as in the nuclei. The activity rates of the enzyme were extremely low indicating that MGS is expressed but almost inactive. Protein targeting to glycogen (PTG) overexpression was performed to activate MGS by dephosphorylation. PTG induced glycogen synthesis massively, confirming that this enzyme is present but inactive. This finding correlates with high levels of pS640MGS, which were assayed by phosphatase treatment. To explore a putative new function for MGS in Sertoli cells, we performed RNA immunoprecipitation coupled to microarray studies. The results revealed that MGS co-immunoprecipitated with the several mRNAs and also rRNAs. These findings indicate that MGS is expressed Sertoli cells but in an inactive form, and also support a possibly novel feature of this metabolic enzyme associated with RNA-related molecules. J. Cell. Biochem. 117: 2597-2607, 2016. © 2016 Wiley Periodicals, Inc.

  10. Identification and characterization of the Populus sucrose synthase gene family.

    PubMed

    An, Xinmin; Chen, Zhong; Wang, Jingcheng; Ye, Meixia; Ji, Lexiang; Wang, Jia; Liao, Weihua; Ma, Huandi

    2014-04-10

    In this study, we indentified 15 sucrose synthase (SS) genes in Populus and the results of RT-qPCR revealed that their expression patterns were constitutive and partially overlapping but diverse. The release of the most recent Populus genomic data in Phytozome v9.1 has revealed the largest SS gene family described to date, comprising 15 distinct members. This information will now enable the analysis of transcript expression profiles for those that have not been previously reported. Here, we performed a comprehensive analysis of SS genes in Populus by describing the gene structure, chromosomal location and phylogenetic relationship of each family member. A total of 15 putative SS gene members were identified in the Populus trichocarpa (Torr. & Gray) genome using the SS domain and amino acid sequences from Arabidopsis thaliana as a probe. A phylogenetic analysis indicated that the 15 members could be classified into four groups that fall into three major categories: dicots, monocots & dicots 1 (M & D 1), and monocots & dicots 2 (M & D 2). In addition, the 15 SS genes were found to be unevenly distributed on seven chromosomes. The two conserved domains (sucrose synthase and glycosyl transferase) were found in this family. Meanwhile, the expression profiles of all 15 gene members in seven different organs were investigated in Populus tomentosa (Carr.) by using RT-qPCR. Additional analysis indicated that the poplar SS gene family is also involved in response to water-deficit. The current study provides basic information that will assist in elucidating the functions of poplar SS family. PMID:24508272

  11. Mechanism and Stereospecificity of a Fully Saturating Polyketide Synthase Module: Nanchangmycin Synthase Module 2 and Its Dehydratase Domain

    PubMed Central

    Guo, Xun; Liu, Tiangang; Valenzano, Chiara R.; Deng, Zixin; Cane, David E.

    2010-01-01

    Recombinant nanchangmycin synthase module 2 (NANS module 2), with the thioesterase domain from the 6-deoxyerythronolide B synthase (DEBS TE) appended to the C-terminus, was cloned and expressed in Escherichia coli. Incubation of NANS module 2+TE with (±)-2-methyl-3-keto-butyryl-N-acetylcysteamine thioester (1), the -SNAC analog of the natural ACP-bound substrate, with methylmalonyl-CoA (MM-CoA) in the absence of NADPH gave 3,5,6-trimethyl-4-hydroxylpyrone (2), identified by direct comparison with synthetic 2 by radio-TLC-phosphorimaging and LC-ESI(+)-MS-MS. The reaction showed kcat 0.5±0.1 min−1 and Km(1) 19±5 mM at 0.5 mM MM-CoA and kcat(app) 0.26±0.02 min−1 and Km(MM-CoA) 0.11 ±0.02 mM at 8 mM 1. Incubation in the presence of NADPH generated the fully saturated triketide chain elongation product as a 5:3 mixture of (2S,4R)-2,4-dimethyl-5-ketohexanoic acid (3a) and the diastereomeric (2S,4S)-3b. The structure and stereochemistry of each product was established by comparison with synthetic 3a and 3b by a combination of radio-TLC-phosphorimaging and LC-ESI(−)-MS-MS, as well as chiral capillary GC-MS analysis of the corresponding methyl esters 3a-Me and 3b-Me. The recombinant dehydratase domain from NANS module 2, NANS DH2, was shown to catalyze the formation of an (E)-double bond by syn-dehydration of the ACP-bound substrate anti-(2R,3R,4S,5R)-2,4-dimethyl-3,5-dihydroxyheptanoyl-ACP6 (4), generated in situ by incubation of (2S,3R)-2-methyl-3-hydroxypentanoyl-SNAC (5), methylmalonyl-CoA, and NADPH with recombinant [KS6][AT6] didomain and ACP6 from DEBS module 6 along with the ketoreductase from the tylactone synthase module 1 (TYLS KR1). These results also indirectly establish the stereochemistry of the reactions catalyzed by the KR and enoylreductase (ER) domains of NANS module 2. PMID:20925339

  12. Functional Characterization of Novel Sesquiterpene Synthases from Indian Sandalwood, Santalum album.

    PubMed

    Srivastava, Prabhakar Lal; Daramwar, Pankaj P; Krithika, Ramakrishnan; Pandreka, Avinash; Shankar, S Shiva; Thulasiram, Hirekodathakallu V

    2015-01-01

    Indian Sandalwood, Santalum album L. is highly valued for its fragrant heartwood oil and is dominated by a blend of sesquiterpenes. Sesquiterpenes are formed through cyclization of farnesyl diphosphate (FPP), catalyzed by metal dependent terpene cyclases. This report describes the cloning and functional characterization of five genes, which encode two sesquisabinene synthases (SaSQS1, SaSQS2), bisabolene synthase (SaBS), santalene synthase (SaSS) and farnesyl diphosphate synthase (SaFDS) using the transcriptome sequencing of S. album. Using Illumina next generation sequencing, 33.32 million high quality raw reads were generated, which were assembled into 84,094 unigenes with an average length of 494.17 bp. Based on the transcriptome sequencing, five sesquiterpene synthases SaFDS, SaSQS1, SaSQS2, SaBS and SaSS involved in the biosynthesis of FPP, sesquisabinene, β-bisabolene and santalenes, respectively, were cloned and functionally characterized. Novel sesquiterpene synthases (SaSQS1 and SaSQS2) were characterized as isoforms of sesquisabinene synthase with varying kinetic parameters and expression levels. Furthermore, the feasibility of microbial production of sesquisabinene from both the unigenes, SaSQS1 and SaSQS2 in non-optimized bacterial cell for the preparative scale production of sesquisabinene has been demonstrated. These results may pave the way for in vivo production of sandalwood sesquiterpenes in genetically tractable heterologous systems.

  13. Functional Characterization of Novel Sesquiterpene Synthases from Indian Sandalwood, Santalum album.

    PubMed

    Srivastava, Prabhakar Lal; Daramwar, Pankaj P; Krithika, Ramakrishnan; Pandreka, Avinash; Shankar, S Shiva; Thulasiram, Hirekodathakallu V

    2015-01-01

    Indian Sandalwood, Santalum album L. is highly valued for its fragrant heartwood oil and is dominated by a blend of sesquiterpenes. Sesquiterpenes are formed through cyclization of farnesyl diphosphate (FPP), catalyzed by metal dependent terpene cyclases. This report describes the cloning and functional characterization of five genes, which encode two sesquisabinene synthases (SaSQS1, SaSQS2), bisabolene synthase (SaBS), santalene synthase (SaSS) and farnesyl diphosphate synthase (SaFDS) using the transcriptome sequencing of S. album. Using Illumina next generation sequencing, 33.32 million high quality raw reads were generated, which were assembled into 84,094 unigenes with an average length of 494.17 bp. Based on the transcriptome sequencing, five sesquiterpene synthases SaFDS, SaSQS1, SaSQS2, SaBS and SaSS involved in the biosynthesis of FPP, sesquisabinene, β-bisabolene and santalenes, respectively, were cloned and functionally characterized. Novel sesquiterpene synthases (SaSQS1 and SaSQS2) were characterized as isoforms of sesquisabinene synthase with varying kinetic parameters and expression levels. Furthermore, the feasibility of microbial production of sesquisabinene from both the unigenes, SaSQS1 and SaSQS2 in non-optimized bacterial cell for the preparative scale production of sesquisabinene has been demonstrated. These results may pave the way for in vivo production of sandalwood sesquiterpenes in genetically tractable heterologous systems. PMID:25976282

  14. Functional Characterization of Novel Sesquiterpene Synthases from Indian Sandalwood, Santalum album

    PubMed Central

    Srivastava, Prabhakar Lal; Daramwar, Pankaj P.; Krithika, Ramakrishnan; Pandreka, Avinash; Shankar, S. Shiva; Thulasiram, Hirekodathakallu V.

    2015-01-01

    Indian Sandalwood, Santalum album L. is highly valued for its fragrant heartwood oil and is dominated by a blend of sesquiterpenes. Sesquiterpenes are formed through cyclization of farnesyl diphosphate (FPP), catalyzed by metal dependent terpene cyclases. This report describes the cloning and functional characterization of five genes, which encode two sesquisabinene synthases (SaSQS1, SaSQS2), bisabolene synthase (SaBS), santalene synthase (SaSS) and farnesyl diphosphate synthase (SaFDS) using the transcriptome sequencing of S. album. Using Illumina next generation sequencing, 33.32 million high quality raw reads were generated, which were assembled into 84,094 unigenes with an average length of 494.17 bp. Based on the transcriptome sequencing, five sesquiterpene synthases SaFDS, SaSQS1, SaSQS2, SaBS and SaSS involved in the biosynthesis of FPP, sesquisabinene, β-bisabolene and santalenes, respectively, were cloned and functionally characterized. Novel sesquiterpene synthases (SaSQS1 and SaSQS2) were characterized as isoforms of sesquisabinene synthase with varying kinetic parameters and expression levels. Furthermore, the feasibility of microbial production of sesquisabinene from both the unigenes, SaSQS1 and SaSQS2 in non-optimized bacterial cell for the preparative scale production of sesquisabinene has been demonstrated. These results may pave the way for in vivo production of sandalwood sesquiterpenes in genetically tractable heterologous systems. PMID:25976282

  15. Nitric Oxide Synthase and Neuronal NADPH Diaphorase are Identical in Brain and Peripheral Tissues

    NASA Astrophysics Data System (ADS)

    Dawson, Ted M.; Bredt, David S.; Fotuhi, Majid; Hwang, Paul M.; Snyder, Solomon H.

    1991-09-01

    NADPH diaphorase staining neurons, uniquely resistant to toxic insults and neurodegenerative disorders, have been colocalized with neurons in the brain and peripheral tissue containing nitric oxide synthase (EC 1.14.23.-), which generates nitric oxide (NO), a recently identified neuronal messenger molecule. In the corpus striatum and cerebral cortex, NO synthase immunoreactivity and NADPH diaphorase staining are colocalized in medium to large aspiny neurons. These same neurons colocalize with somatostatin and neuropeptide Y immunoreactivity. NO synthase immunoreactivity and NADPH diaphorase staining are colocalized in the pedunculopontine nucleus with choline acetyltransferase-containing cells and are also colocalized in amacrine cells of the inner nuclear layer and ganglion cells of the retina, myenteric plexus neurons of the intestine, and ganglion cells of the adrenal medulla. Transfection of human kidney cells with NO synthase cDNA elicits NADPH diaphorase staining. The ratio of NO synthase to NADPH diaphorase staining in the transfected cells is the same as in neurons, indicating that NO synthase fully accounts for observed NADPH staining. The identity of neuronal NO synthase and NADPH diaphorase suggests a role for NO in modulating neurotoxicity.

  16. Expression of the trichodiene synthase gene of Fusarium sporotrichioides in Escherichia coli results in sesquiterpene production.

    PubMed

    Hohn, T M; Plattner, R D

    1989-11-15

    Trichodiene synthase is a sesquiterpene cyclase involved in the biosynthesis of trichothecene mycotoxins. We report that insertion of the unaltered trichodiene synthase gene of Fusarium sporotrichioides into the Escherichia coli expression vector pDR540 produced an inactive polypeptide with a molecular weight approximately 2000 greater than that of trichodiene synthase. This result is consistent with the presence of an intron in the trichodiene synthase gene, and prompted us to specifically delete a putative 60-nucleotide intron sequence. Insertion of the intron-deleted open reading frame into pDR540 resulted in the production of active enzyme. Trichodiene synthase activity in crude extracts from induced cultures was 0.07 nmol/min/mg of protein and represented 0.05-0.10% of the total cell protein. A cross-reactive protein was present with the same apparent molecular weight as the subunit of native trichodiene synthase. The recombinant enzyme was partially purified and shown to have properties closely resembling those of the native enzyme. Trichodiene was detected in ethyl acetate extracts from induced cultures at a concentration of 60 micrograms/liter after 4.5 h. These findings support the primary structure recently reported for trichodiene synthase and demonstrate that the expression of a sesquiterpene cyclase in E. coli results in sesquiterpene production. PMID:2817906

  17. ATP Synthase: A Molecular Therapeutic Drug Target for Antimicrobial and Antitumor Peptides

    PubMed Central

    Ahmad, Zulfiqar; Okafor, Florence; Azim, Sofiya; Laughlin, Thomas F.

    2015-01-01

    In this review we discuss the role of ATP synthase as a molecular drug target for natural and synthetic antimi-crobial/antitumor peptides. We start with an introduction of the universal nature of the ATP synthase enzyme and its role as a biological nanomotor. Significant structural features required for catalytic activity and motor functions of ATP synthase are described. Relevant details regarding the presence of ATP synthase on the surface of several animal cell types, where it is associated with multiple cellular processes making it a potential drug target with respect to antimicrobial peptides and other inhibitors such as dietary polyphenols, is also reviewed. ATP synthase is known to have about twelve discrete inhibitor binding sites including peptides and other inhibitors located at the interface of α/β subunits on the F1 sector of the enzyme. Molecular interaction of peptides at the β DEELSEED site on ATP synthase is discussed with specific examples. An inhibitory effect of other natural/synthetic inhibitors on ATP is highlighted to explore the therapeutic roles played by peptides and other inhibitors. Lastly, the effect of peptides on the inhibition of the Escherichia coli model system through their action on ATP synthase is presented. PMID:23432591

  18. Structural Basis for a Unique ATP Synthase Core Complex from Nanoarcheaum equitans.

    PubMed

    Mohanty, Soumya; Jobichen, Chacko; Chichili, Vishnu Priyanka Reddy; Velázquez-Campoy, Adrián; Low, Boon Chuan; Hogue, Christopher W V; Sivaraman, J

    2015-11-01

    ATP synthesis is a critical and universal life process carried out by ATP synthases. Whereas eukaryotic and prokaryotic ATP synthases are well characterized, archaeal ATP synthases are relatively poorly understood. The hyperthermophilic archaeal parasite, Nanoarcheaum equitans, lacks several subunits of the ATP synthase and is suspected to be energetically dependent on its host, Ignicoccus hospitalis. This suggests that this ATP synthase might be a rudimentary machine. Here, we report the crystal structures and biophysical studies of the regulatory subunit, NeqB, the apo-NeqAB, and NeqAB in complex with nucleotides, ADP, and adenylyl-imidodiphosphate (non-hydrolysable analog of ATP). NeqB is ∼20 amino acids shorter at its C terminus than its homologs, but this does not impede its binding with NeqA to form the complex. The heterodimeric NeqAB complex assumes a closed, rigid conformation irrespective of nucleotide binding; this differs from its homologs, which require conformational changes for catalytic activity. Thus, although N. equitans possesses an ATP synthase core A3B3 hexameric complex, it might not function as a bona fide ATP synthase.

  19. Crystal structure of TruD, a novel pseudouridine synthase with a new protein fold.

    PubMed

    Kaya, Yusuf; Del Campo, Mark; Ofengand, James; Malhotra, Arun

    2004-04-30

    TruD, a recently discovered novel pseudouridine synthase in Escherichia coli, is responsible for modifying uridine13 in tRNA(Glu) to pseudouridine. It has little sequence homology with the other 10 pseudouridine synthases in E. coli which themselves have been grouped into four related protein families. Crystal structure determination of TruD revealed a two domain structure consisting of a catalytic domain that differs in sequence but is structurally very similar to the catalytic domain of other pseudouridine synthases and a second large domain (149 amino acids, 43% of total) with a novel alpha/beta fold that up to now has not been found in any other protein.

  20. Effect of Combined Stress on Morphological Changes and Expression of NO Synthases in Rat Ventral Hippocampus.

    PubMed

    Smirnov, A V; Tyurenkov, I N; Shmidt, M V; Ekova, M R; Mednikov, D S; Borodin, D D

    2015-11-01

    Adult rats were subjected to 7-day combined stress with stochastic changes of stressors of different modalities (noise, vibration, pulsating bright light) along with mobility restriction and elevated temperature in the chamber during stress exposures (daily 30-min sessions). Circulatory disorders, inhibition of endothelial NO-synthase expression in endothelial cells of the microcirculatory bed, perivascular edema, pronounced degenerative changes, and enhanced expression of inducible NO synthase in CA3 pyramidal neurons in the ventral hippocampus of stressed 12-month-old rats were observed. These findings can attest to the involvement NOdependent mechanisms and different contribution of NO synthase isoforms into the formation of hippocampal neuronal damage. PMID:26608376

  1. The role of 1-deoxy-d-xylulose-5-phosphate synthase and phytoene synthase gene family in citrus carotenoid accumulation.

    PubMed

    Peng, Gang; Wang, Chunyan; Song, Song; Fu, Xiumin; Azam, Muhammad; Grierson, Don; Xu, Changjie

    2013-10-01

    Three 1-deoxy-D-xylulose-5-phosphate synthases (DXS) and three phytoene synthases (PSY) were identified in citrus, from Affymetrix GeneChip Citrus Genome Array, GenBank and public orange genome databases. Tissue-specific expression analysis of these genes was carried out on fruit peel and flesh, flower and leaf of Satsuma mandarin (Citrus unshiu Marc.) in order to determine their roles in carotenoid accumulation in different tissues. Expression of CitDXS1 and CitPSY1 was highest in all test tissues, while that of CitDXS2 and CitPSY2 was lower, and that of CitDXS3 and CitPSY3 undetectable. The transcript profiles of CitDXS1 and CitPSY1 paralleled carotenoid accumulation in flesh of Satsuma mandarin and orange (Citrus sinensis Osbeck) during fruit development, and CitPSY1 expression was also associated with carotenoid accumulation in peel, while the CitDXS1 transcript level was only weakly correlated with carotenoid accumulation in peel. Similar results were obtained following correlation analysis between expression of CitDXS1 and CitPSY1 and carotenoid accumulation in peel and flesh of 16 citrus cultivars. These findings identify CitPSY1 and CitDXS1 as the main gene members controlling carotenoid biosynthesis in citrus fruit. Furthermore, chromoplasts were extracted from flesh tissue of these citrus, and chromoplasts of different shape (spindle or globular), different size, and color depth were observed in different cultivars, indicating chromoplast abundance, number per gram tissue, size and color depth were closely correlated with carotenoid content in most cultivars. The relationship between carotenoid biosynthesis and chromoplast development was discussed.

  2. Reduced expression of prostacyclin synthase and nitric oxide synthase in subcutaneous arteries of type 2 diabetic patients.

    PubMed

    Safiah Mokhtar, Siti; M Vanhoutte, Paul; W S Leung, Susan; Imran Yusof, Mohd; Wan Sulaiman, Wan Azman; Zaharil Mat Saad, Arman; Suppian, Rapeah; Ghulam Rasool, Aida Hanum

    2013-01-01

    Diabetic endothelial dysfunction is characterized by impaired endothelium-dependent relaxation. In this study, we measured the expression of endothelial nitric oxide synthase (eNOS), cyclooxygenase-1 (COX-1), cyclooxygenase-2 (COX-2), prostacyclin synthase (PGIS), and prostacyclin receptor (IP) in subcutaneous arteries of type-2 diabetic and non-diabetic patients. Subcutaneous arteries were dissected from tissues from seven diabetics (4 males and 3 females) and seven non-diabetics (5 males and 2 females) aged between 18 to 65 years, who underwent lower limb surgical procedures. Diabetics had higher fasting blood glucose compared to non-diabetics, but there were no differences in blood pressure, body mass index and age. Patients were excluded if they had uncontrolled hypertension, previous myocardial infarction, coronary heart disease, renal or hepatic failure and tumor. The relative expression levels of eNOS, COX-1, COX-2, PGIS and IP receptor were determined by Western blotting analysis, normalized with the β-actin level. Increased expression of COX-2 was observed in subcutaneous arteries of diabetics compared to non-diabetics, whereas the expression levels of eNOS and PGIS were significantly lower in diabetics. There were no significant differences in expression levels of COX-1 and IP receptor between the two groups. Immunohistochemical study of subcutaneous arteries showed that the intensities of eNOS and PGIS staining were lower in diabetics, with higher COX-2 staining. In conclusion, type-2 diabetes is associated with higher COX-2 expression, but lower eNOS and PGIS expression in subcutaneous arteries. These alterations may lead to impaired endothelium-dependent vasodilatation, and thus these proteins may be potential targets for protection against the microvascular complications of diabetes.

  3. Upregulation of Cysteine Synthase and Cystathionine β-Synthase Contributes to Leishmania braziliensis Survival under Oxidative Stress

    PubMed Central

    Téllez, Jair; Romanha, Alvaro José; Steindel, Mario

    2015-01-01

    Cysteine metabolism is considered essential for the crucial maintenance of a reducing environment in trypanosomatids due to its importance as a precursor of trypanothione biosynthesis. Expression, activity, functional rescue, and overexpression of cysteine synthase (CS) and cystathionine β-synthase (CβS) were evaluated in Leishmania braziliensis promastigotes and intracellular amastigotes under in vitro stress conditions induced by hydrogen peroxide (H2O2), S-nitroso-N-acetylpenicillamine, or antimonial compounds. Our results demonstrate a stage-specific increase in the levels of protein expression and activity of L. braziliensis CS (LbrCS) and L. braziliensis CβS (LbrCβS), resulting in an increment of total thiol levels in response to both oxidative and nitrosative stress. The rescue of the CS activity in Trypanosoma rangeli, a trypanosome that does not perform cysteine biosynthesis de novo, resulted in increased rates of survival of epimastigotes expressing the LbrCS under stress conditions compared to those of wild-type parasites. We also found that the ability of L. braziliensis promastigotes and amastigotes overexpressing LbrCS and LbrCβS to resist oxidative stress was significantly enhanced compared to that of nontransfected cells, resulting in a phenotype far more resistant to treatment with the pentavalent form of Sb in vitro. In conclusion, the upregulation of protein expression and increment of the levels of LbrCS and LbrCβS activity alter parasite resistance to antimonials and may influence the efficacy of antimony treatment of New World leishmaniasis. PMID:26033728

  4. Modification of phenolic metabolism in soybean hairy roots through down regulation of chalcone synthase or isoflavone synthase.

    PubMed

    Lozovaya, Vera V; Lygin, Anatoliy V; Zernova, Olga V; Ulanov, Alexander V; Li, Shuxian; Hartman, Glen L; Widholm, Jack M

    2007-02-01

    Soybean hairy roots, transformed with the soybean chalcone synthase (CHS6) or isoflavone synthase (IFS2) genes, with dramatically decreased capacity to synthesize isoflavones were produced to determine what effects these changes would have on susceptibility to a fungal pathogen. The isoflavone and coumestrol concentrations were decreased by about 90% in most lines apparently due to gene silencing. The IFS2 transformed lines had very low IFS enzyme activity in microsomal fractions as measured by the conversion of naringenin to genistein. The CHS6 lines with decreased isoflavone concentrations had 5 to 20-fold lower CHS enzyme activities than the appropriate controls. Both IFS2 and CHS transformed lines accumulated higher concentrations of both soluble and cell wall bound phenolic acids compared to controls with higher levels found in the CHS6 lines indicating alterations in the lignin biosynthetic branch of the pathway. Induction of the soybean phytoalexin glyceollin, of which the precursor is the isoflavone daidzein, by the fungal pathogen Fusarium solani f. sp. glycines (FSG) that causes soybean sudden death syndrome (SDS) showed that the low isoflavone transformed lines did not accumulate glyceollin while the control lines did. The (iso)liquritigenin content increased upon FSG induction in the IFS2 transformed roots indicating that the pathway reactions before this point can control isoflavonoid synthesis. The lowest fungal growth rate on hairy roots was found on the FSG partially resistant control roots followed by the SDS sensitive control roots and the low isoflavone transformants. The results indicate the importance of phytoalexin synthesis in root resistance to the pathogen. PMID:16924535

  5. Increase of 20-HETE synthase after brain ischemia in rats revealed by PET study with 11C-labeled 20-HETE synthase-specific inhibitor

    PubMed Central

    Kawasaki, Toshiyuki; Marumo, Toshiyuki; Shirakami, Keiko; Mori, Tomoko; Doi, Hisashi; Suzuki, Masaaki; Watanabe, Yasuyoshi; Chaki, Shigeyuki; Nakazato, Atsuro; Ago, Yukio; Hashimoto, Hitoshi; Matsuda, Toshio; Baba, Akemichi; Onoe, Hirotaka

    2012-01-01

    20-Hydroxyeicosatetraenoic acid (20-HETE), an arachidonic acid metabolite known to be produced after cerebral ischemia, has been implicated in ischemic and reperfusion injury by mediating vasoconstriction. To develop a positron emission tomography (PET) probe for 20-HETE synthase imaging, which might be useful for monitoring vasoconstrictive processes in patients with brain ischemia, we synthesized a 11C-labeled specific 20-HETE synthase inhibitor, N′(4-dimethylaminohexyloxy)phenyl imidazole ([11C]TROA). Autoradiographic study showed that [11C]TROA has high-specific binding in the kidney and liver consistent with the previously reported distribution of 20-HETE synthase. Using transient middle cerebral artery occlusion in rats, PET study showed significant increases in the binding of [11C]TROA in the ipsilateral hemisphere of rat brains after 7 and 10 days, which was blocked by co-injection of excess amounts of TROA (10 mg/kg). The increased [11C]TROA binding on the ipsilateral side returned to basal levels within 14 days. In addition, quantitative real-time PCR revealed that increased expression of 20-HETE synthase was only shown on the ipsilateral side on day 7. These results indicate that [11C]TROA might be a useful PET probe for imaging of 20-HETE synthase in patients with cerebral ischemia. PMID:22669478

  6. Fo-driven Rotation in the ATP Synthase Direction against the Force of F1 ATPase in the FoF1 ATP Synthase.

    PubMed

    Martin, James; Hudson, Jennifer; Hornung, Tassilo; Frasch, Wayne D

    2015-04-24

    Living organisms rely on the FoF1 ATP synthase to maintain the non-equilibrium chemical gradient of ATP to ADP and phosphate that provides the primary energy source for cellular processes. How the Fo motor uses a transmembrane electrochemical ion gradient to create clockwise torque that overcomes F1 ATPase-driven counterclockwise torque at high ATP is a major unresolved question. Using single FoF1 molecules embedded in lipid bilayer nanodiscs, we now report the observation of Fo-dependent rotation of the c10 ring in the ATP synthase (clockwise) direction against the counterclockwise force of ATPase-driven rotation that occurs upon formation of a leash with Fo stator subunit a. Mutational studies indicate that the leash is important for ATP synthase activity and support a mechanism in which residues aGlu-196 and cArg-50 participate in the cytoplasmic proton half-channel to promote leash formation. PMID:25713065

  7. Partial purification and characterization of the short-chain prenyltransferases, gernayl diphospate synthase and farnesyl diphosphate synthase, from Abies grandis (grand fir).

    PubMed

    Tholl, D; Croteau, R; Gershenzon, J

    2001-02-15

    In the conifer Abies grandis (grand fir), a secreted oleoresin rich in mono-, sesqui-, and diterpenes serves as a constitutive and induced defense against insects and pathogenic fungi. Geranyl diphosphate (GPP) and farnesyl diphosphate (FPP) synthase, two enzymes which form the principal precursors of the oleoresin mono- and sesquiterpenes, were isolated from the stems of 2-year-old grand fir saplings. These enzymes were partially purified by sequential chromatography on DEAE-Sepharose, Mono-Q, and phenyl-Sepharose to remove competing phosphohydrolase and isopentenyl diphosphate (IPP) isomerase activities. GPP and FPP synthase formed GPP and E,E-FPP, respectively, as the sole products of the enzymatic condensation of IPP and dimethylallyl diphosphate (DMAPP). The properties of both enzymes are broadly similar to those of other prenyltransferases. The apparent native molecular masses are 54 +/- 3 kDa for GPP synthase and 110 +/- 6 kDa fo

  8. The Structure of Sucrose Synthase-1 from Arabidopsis thaliana and Its Functional Implications

    SciTech Connect

    Zheng, Yi; Anderson, Spencer; Zhang, Yanfeng; Garavito, R. Michael

    2014-10-02

    Sucrose transport is the central system for the allocation of carbon resources in vascular plants. During growth and development, plants control carbon distribution by coordinating sites of sucrose synthesis and cleavage in different plant organs and different cellular locations. Sucrose synthase, which reversibly catalyzes sucrose synthesis and cleavage, provides a direct and reversible means to regulate sucrose flux. Depending on the metabolic environment, sucrose synthase alters its cellular location to participate in cellulose, callose, and starch biosynthesis through its interactions with membranes, organelles, and cytoskeletal actin. The x-ray crystal structure of sucrose synthase isoform 1 from Arabidopsis thaliana (AtSus1) has been determined as a complex with UDP-glucose and as a complex with UDP and fructose, at 2.8- and 2.85-{angstrom} resolutions, respectively. The AtSus1 structure provides insights into sucrose catalysis and cleavage, as well as the regulation of sucrose synthase and its interactions with cellular targets.

  9. Isolation of the mature subunit of delta-aminolaevulinate synthase from embryonic chick liver.

    PubMed Central

    Ades, I Z; Harpe, K G

    1982-01-01

    We presented evidence indicating that the established procedure for purifying delta-aminolaevulinate (ALA) synthase from embryonic-chick liver yielded an enzyme with a partially degraded subunit of molecular weight 51000 [Ades & Harpe (1981) J. Biol. Chem. 256, 9329-9333]. We now report the purification from livers of porphyric embryos of a preparation of ALA synthase which consisted primarily of a 63000-Da polypeptide and a component migrating as a smear of polypeptides with a minimum molecular weight of 52 000. Neither component could be recovered from liver mitochondria of normal embryos, where the amounts of ALA synthase were relatively low. The 52 000-Da component had been established to be the partially degraded subunit of the enzyme. Peptide-mapping analyses indicated that the 63 000- and the 52 000-Da components possessed significant structural homologies, and it was concluded that the 63 000-Da polypeptide represented the mature subunit of ALA synthase. Images Fig. 1. Fig. 3. PMID:7138500

  10. Molecular cloning and characterization of drimenol synthase from valerian plant (Valeriana officinalis).

    PubMed

    Kwon, Moonhyuk; Cochrane, Stephen A; Vederas, John C; Ro, Dae-Kyun

    2014-12-20

    Drimenol, a sesquiterpene alcohol, and its derivatives display diverse bio-activities in nature. However, a drimenol synthase gene has yet to be identified. We identified a new sesquiterpene synthase cDNA (VoTPS3) in valerian plant (Valeriana officinalis). Purification and NMR analyses of the VoTPS3-produced terpene, and characterization of the VoTPS3 enzyme confirmed that VoTPS3 synthesizes (-)-drimenol. In feeding assays, possible reaction intermediates, farnesol and drimenyl diphosphate, could not be converted to drimenol, suggesting that the intermediate remains tightly bound to VoTPS3 during catalysis. A mechanistic consideration of (-)-drimenol synthesis suggests that drimenol synthase is likely to use a protonation-initiated cyclization, which is rare for sesquiterpene synthases. VoTPS3 can be used to produce (-)-drimenol, from which useful drimane-type terpenes can be synthesized. PMID:25447532

  11. Mitochondrial protein sorting as a therapeutic target for ATP synthase disorders.

    PubMed

    Aiyar, Raeka S; Bohnert, Maria; Duvezin-Caubet, Stéphane; Voisset, Cécile; Gagneur, Julien; Fritsch, Emilie S; Couplan, Elodie; von der Malsburg, Karina; Funaya, Charlotta; Soubigou, Flavie; Courtin, Florence; Suresh, Sundari; Kucharczyk, Roza; Evrard, Justine; Antony, Claude; St Onge, Robert P; Blondel, Marc; di Rago, Jean-Paul; van der Laan, Martin; Steinmetz, Lars M

    2014-01-01

    Mitochondrial diseases are systemic, prevalent and often fatal; yet treatments remain scarce. Identifying molecular intervention points that can be therapeutically targeted remains a major challenge, which we confronted via a screening assay we developed. Using yeast models of mitochondrial ATP synthase disorders, we screened a drug repurposing library, and applied genomic and biochemical techniques to identify pathways of interest. Here we demonstrate that modulating the sorting of nuclear-encoded proteins into mitochondria, mediated by the TIM23 complex, proves therapeutic in both yeast and patient-derived cells exhibiting ATP synthase deficiency. Targeting TIM23-dependent protein sorting improves an array of phenotypes associated with ATP synthase disorders, including biogenesis and activity of the oxidative phosphorylation machinery. Our study establishes mitochondrial protein sorting as an intervention point for ATP synthase disorders, and because of the central role of this pathway in mitochondrial biogenesis, it holds broad value for the treatment of mitochondrial diseases. PMID:25519239

  12. Production of geranylgeraniol on overexpression of a prenyl diphosphate synthase fusion gene in Saccharomyces cerevisiae.

    PubMed

    Ohto, Chikara; Muramatsu, Masayoshi; Obata, Shusei; Sakuradani, Eiji; Shimizu, Sakayu

    2010-07-01

    An acyclic diterpene alcohol, (E,E,E)-geranylgeraniol (GGOH), is one of the important compounds used as perfume and pharmacological agents. A deficiency of squalene (SQ) synthase activity allows yeasts to accumulate an acyclic sesquiterpene alcohol, (E,E)-farnesol, in their cells. Since sterols are essential for the growth of yeasts, a deficiency of SQ synthase activity makes the addition of supplemental sterols to the culture media necessary. To develop a GGOH production method not requiring any supplemental sterols, we overexpressed HMG1 encoding hydroxymethylglutaryl-CoA reductase and the genes of two prenyl diphosphate synthases, ERG20 and BTS1, in Saccharomyces cerevisiae. A prototrophic diploid coexpressing HMG1 and the ERG20-BTS1 fusion accumulated GGOH with neither disruption of the SQ synthase gene nor the addition of any supplemental sterols. The GGOH content on the diploid cultivation in a 5-l jar fermenter reached 138.8 mg/l under optimal conditions.

  13. The Structure of Sucrose Synthase-1 from Arabidopsis thaliana and Its Functional Implications*

    PubMed Central

    Zheng, Yi; Anderson, Spencer; Zhang, Yanfeng; Garavito, R. Michael

    2011-01-01

    Sucrose transport is the central system for the allocation of carbon resources in vascular plants. During growth and development, plants control carbon distribution by coordinating sites of sucrose synthesis and cleavage in different plant organs and different cellular locations. Sucrose synthase, which reversibly catalyzes sucrose synthesis and cleavage, provides a direct and reversible means to regulate sucrose flux. Depending on the metabolic environment, sucrose synthase alters its cellular location to participate in cellulose, callose, and starch biosynthesis through its interactions with membranes, organelles, and cytoskeletal actin. The x-ray crystal structure of sucrose synthase isoform 1 from Arabidopsis thaliana (AtSus1) has been determined as a complex with UDP-glucose and as a complex with UDP and fructose, at 2.8- and 2.85-Å resolutions, respectively. The AtSus1 structure provides insights into sucrose catalysis and cleavage, as well as the regulation of sucrose synthase and its interactions with cellular targets. PMID:21865170

  14. Identification of a mitochondrial ATP synthase-adenine nucleotide translocator complex in Leishmania.

    PubMed

    Detke, Siegfried; Elsabrouty, Rania

    2008-01-01

    The ATP synthasome is a macromolecular complex consisting of ATP synthase, adenine nucleotide translocator and phosphate carrier. To determine if this complex is evolutionary old or young, we searched for its presence in Leishmania, a mitochondria containing protozoan which evolved from the main eukaryote line soon after eukaryotes split from prokaryotes. Sucrose gradient centrifugation showed that the distribution of ANT among the fractions coincided with the distribution of ATP synthase. In addition, ATP synthase co-precipitated with FLAG tagged and wild type adenine nucleotide translocator isolated with anti FLAG and anti adenine nucleotide translocator antibodies, respectively. These data indicate that the adenine nucleotide translocator interacted with the ATP synthase to form a stable structure referred to as the ATP synthasome. The presence of the ATP synthasome in Leishmania, an organism branching off the main line of eukaryotes early in the development of eukaryotes, as well as in higher eukaryotes suggests that the ATP synthasome is a phylogenetically ancient structure. PMID:17920025

  15. Identification of amino acid networks governing catalysis in the closed complex of class I terpene synthases

    PubMed Central

    Buettner, Alexander; Goerner, Christian; Hertel, Michael; van Rijn, Jeaphianne; Wallrapp, Frank; Eisenreich, Wolfgang; Sieber, Volker; Kourist, Robert; Brück, Thomas

    2016-01-01

    Class I terpene synthases generate the structural core of bioactive terpenoids. Deciphering structure–function relationships in the reactive closed complex and targeted engineering is hampered by highly dynamic carbocation rearrangements during catalysis. Available crystal structures, however, represent the open, catalytically inactive form or harbor nonproductive substrate analogs. Here, we present a catalytically relevant, closed conformation of taxadiene synthase (TXS), the model class I terpene synthase, which simulates the initial catalytic time point. In silico modeling of subsequent catalytic steps allowed unprecedented insights into the dynamic reaction cascades and promiscuity mechanisms of class I terpene synthases. This generally applicable methodology enables the active-site localization of carbocations and demonstrates the presence of an active-site base motif and its dominating role during catalysis. It additionally allowed in silico-designed targeted protein engineering that unlocked the path to alternate monocyclic and bicyclic synthons representing the basis of a myriad of bioactive terpenoids. PMID:26842837

  16. Architecture of the polyketide synthase module: surprises from electron cryo-microscopy

    PubMed Central

    Smith, Janet L; Skiniotis, Georgios; Sherman, David H

    2015-01-01

    Modular polyketide synthases produce a vast array of bioactive molecules that are the basis of many highly valued pharmaceuticals. The biosynthesis of these compounds is based on ordered assembly lines of multi-domain modules, each extending and modifying a specific chain-elongation intermediate before transfer to the next module for further processing. The first 3D structures of a full polyketide synthase module in different functional states were obtained recently by electron cryo-microscopy. The unexpected module architecture revealed a striking evolutionary divergence of the polyketide synthase compared to its metazoan fatty acid synthase homolog, as well as remarkable conformational rearrangements dependent on its biochemical state during the full catalytic cycle. The design and dynamics of the module are highly optimized for both catalysis and fidelity in the construction of complex, biologically active natural products. PMID:25791608

  17. Tight linkage of genes that encode the two glutamate synthase subunits of Escherichia coli K-12.

    PubMed Central

    Lozoya, E; Sanchez-Pescador, R; Covarrubias, A; Vichido, I; Bolivar, F

    1980-01-01

    A hybrid deoxyribonucleic acid molecule, plasmid pRSP20, which was isolated from the Clarke and Carbon Escherichia coli gene bank, was shown to complement the gltB31 mutation, which affects the synthesis of glutamate synthase in E. coli strain PA340. We present evidence which demonstrates that plasmid pRSP20 carries an 8-megadalton E. coli chromosomal fragment, including the genes encoding the two unequal glutamate synthase subunits. Polypeptides with molecular weights of about 135,000 and 53,000, which comigrated with purified E. coli glutamate synthase subunit polypeptides and immunoprecipitated with antibodies to E. coli glutamate synthase, were synthesized by minicells carrying the pRSP20 plasmid. Images PMID:6107287

  18. Mitochondrial protein sorting as a therapeutic target for ATP synthase disorders

    PubMed Central

    Aiyar, Raeka S.; Bohnert, Maria; Duvezin-Caubet, Stéphane; Voisset, Cécile; Gagneur, Julien; Fritsch, Emilie S.; Couplan, Elodie; von der Malsburg, Karina; Funaya, Charlotta; Soubigou, Flavie; Courtin, Florence; Suresh, Sundari; Kucharczyk, Roza; Evrard, Justine; Antony, Claude; St.Onge, Robert P.; Blondel, Marc; di Rago, Jean-Paul; van der Laan, Martin; Steinmetz, Lars M.

    2014-01-01

    Mitochondrial diseases are systemic, prevalent and often fatal; yet treatments remain scarce. Identifying molecular intervention points that can be therapeutically targeted remains a major challenge, which we confronted via a screening assay we developed. Using yeast models of mitochondrial ATP synthase disorders, we screened a drug repurposing library, and applied genomic and biochemical techniques to identify pathways of interest. Here we demonstrate that modulating the sorting of nuclear-encoded proteins into mitochondria, mediated by the TIM23 complex, proves therapeutic in both yeast and patient-derived cells exhibiting ATP synthase deficiency. Targeting TIM23-dependent protein sorting improves an array of phenotypes associated with ATP synthase disorders, including biogenesis and activity of the oxidative phosphorylation machinery. Our study establishes mitochondrial protein sorting as an intervention point for ATP synthase disorders, and because of the central role of this pathway in mitochondrial biogenesis, it holds broad value for the treatment of mitochondrial diseases. PMID:25519239

  19. A close look at a ketosynthase from a trans-acyltransferase modular polyketide synthase

    PubMed Central

    Gay, Darren C.; Gay, Glen; Axelrod, Abram J.; Jenner, Matthew; Kohlhaas, Christoph; Kampa, Annette; Oldham, Neil J.; Piel, Jörn; Keatinge-Clay, Adrian T.

    2014-01-01

    SUMMARY The recently discovered trans-acyltransferase modular polyketide synthases catalyze the biosynthesis of a wide range of bioactive natural products in bacteria. Here we report the structure of the second ketosynthase from the bacillaene trans-acyltransferase polyketide synthase. This 1.95 Å-resolution structure provides the highest resolution view available of a modular polyketide synthase ketosynthase and reveals a flanking subdomain that is homologous to an ordered linker in cis-acyltransferase modular polyketide synthases. The structure of the cysteine-to-serine mutant of the ketosynthase acylated by its natural substrate provides high-resolution details of how a native polyketide intermediate is bound and helps explain the basis of ketosynthase substrate specificity. The substrate range of the ketosynthase was further investigated by mass spectrometry. PMID:24508341

  20. Structure and Function of Benzylsuccinate Synthase and Related Fumarate-Adding Glycyl Radical Enzymes.

    PubMed

    Heider, Johann; Szaleniec, Maciej; Martins, Berta M; Seyhan, Deniz; Buckel, Wolfgang; Golding, Bernard T

    2016-01-01

    The pathway of anaerobic toluene degradation is initiated by a remarkable radical-type enantiospecific addition of the chemically inert methyl group to the double bond of a fumarate cosubstrate to yield (R)-benzylsuccinate as the first intermediate, as catalyzed by the glycyl radical enzyme benzylsuccinate synthase. In recent years, it has become clear that benzylsuccinate synthase is the prototype enzyme of a much larger family of fumarate-adding enzymes, which play important roles in the anaerobic metabolism of further aromatic and even aliphatic hydrocarbons. We present an overview on the biochemical properties of benzylsuccinate synthase, as well as its recently solved structure, and present the results of an initial structure-based modeling study on the reaction mechanism. Moreover, we compare the structure of benzylsuccinate synthase with those predicted for different clades of fumarate-adding enzymes, in particular the paralogous enzymes converting p-cresol, 2-methylnaphthalene or n-alkanes.

  1. Head-to-head coiled arrangement of the subunits of the animal fatty acid synthase.

    PubMed

    Witkowski, Andrzej; Ghosal, Alokesh; Joshi, Anil K; Witkowska, H Ewa; Asturias, Francisco J; Smith, Stuart

    2004-12-01

    The role of the beta-ketoacyl synthase domains in dimerization of the 2505 residue subunits of the multifunctional animal FAS has been evaluated by a combination of crosslinking and characterization of several truncated forms of the protein. Polypeptides containing only the N-terminal 971 residues can form dimers, but polypeptides lacking only the N-terminal 422 residue beta-ketoacyl synthase domain cannot. FAS subunits can be crosslinked with spacer lengths as short as 6 A, via cysteine residues engineered near the N terminus of the full-length polypeptides. The proximity of the N-terminal beta-ketoacyl synthase domains and their essential role in dimerization is consistent with a revised model for the FAS in which a head-to-head arrangement of two coiled subunits facilitates functional interactions between the dimeric beta-ketoacyl synthase and the acyl carrier protein domains of either subunit.

  2. Identification of amino acid networks governing catalysis in the closed complex of class I terpene synthases.

    PubMed

    Schrepfer, Patrick; Buettner, Alexander; Goerner, Christian; Hertel, Michael; van Rijn, Jeaphianne; Wallrapp, Frank; Eisenreich, Wolfgang; Sieber, Volker; Kourist, Robert; Brück, Thomas

    2016-02-23

    Class I terpene synthases generate the structural core of bioactive terpenoids. Deciphering structure-function relationships in the reactive closed complex and targeted engineering is hampered by highly dynamic carbocation rearrangements during catalysis. Available crystal structures, however, represent the open, catalytically inactive form or harbor nonproductive substrate analogs. Here, we present a catalytically relevant, closed conformation of taxadiene synthase (TXS), the model class I terpene synthase, which simulates the initial catalytic time point. In silico modeling of subsequent catalytic steps allowed unprecedented insights into the dynamic reaction cascades and promiscuity mechanisms of class I terpene synthases. This generally applicable methodology enables the active-site localization of carbocations and demonstrates the presence of an active-site base motif and its dominating role during catalysis. It additionally allowed in silico-designed targeted protein engineering that unlocked the path to alternate monocyclic and bicyclic synthons representing the basis of a myriad of bioactive terpenoids.

  3. Expression of inducible nitric oxide synthase in experimental viral myocarditis.

    PubMed

    Glück, B; Merkle, I; Dornberger, G; Stelzner, A

    2000-05-01

    Nitric oxide (NO) is an important bioactive molecule with regulatory, cytotoxic or cytoprotective properties. In virus-induced myocarditis, NO mediates host defense mechanisms against the infection or causes cardiac dysfunctions. NO is synthesized from L-arginine by the enzyme nitric oxide synthase (NOS). The expression of the inducible form of the nitric oxide synthase (iNOS) is regulated by cytokines, involved in the complex myocardial immune response to enterovirus infections. The present study was undertaken to characterize the role of iNOS and NO in the murine model of viral myocarditis induced by coxsackievirus B3 (CVB3). In response to CVB3 infection we investigated the time course of iNOS induction in correlation with cytokine mRNA expression (TNF-alpha, IL-1 alpha, IFN-gamma, TGF-beta) in the heart of NMRI mice by RT-PCR. Positive PCR signals for viral RNA were found in the acute and chronic stage of disease by seminested PCR, indicating the persistence of viral genome. We found distinct expression of iNOS at all time points (1, 2, 3, 4, 7, 14, 28, 56, 98 days post infection [p.i.]). Higher iNOS mRNA levels were identified between days 4 until 28 p.i. in comparison to day 56 and 98 p.i. using densitometric values. The mRNA of the inflammatory cytokines TNF-alpha, IL-1 alpha, IFN-gamma appeared at days 1, 4, and 7 p.i., peaked at day 7 p.i. and persisted until day 98 p.i. Similar like the iNOS mRNA pattern was the expression profile of TGF-beta. Using in situ hybridization and immunohistochemistry iNOS was localized in infiltrates, vascular endothelial cells, smooth muscle cells, myocytes and throughout the interstitial spaces between myocardial fibers in the heart sections of NMRI mice. Increased levels of NO were measured as total nitrate/nitrite concentration in the sera of mice from day 7 until day 28 p.i.

  4. β-Carboline alkaloids from Galianthe ramosa inhibit malate synthase from Paracoccidioides spp.

    PubMed

    de Freitas, Carla S; Kato, Lucilia; de Oliveira, Cecília M A; Queiroz, Luiz H K; Santana, Mábio J; Schuquel, Ivânia T; Delprete, Piero G; da Silva, Roosevelt A; Quintino, Guilherme O; da Silva Neto, Benedito R; Soares, Célia M A; Pereira, Maristela

    2014-12-01

    As part of our continuing chemical and biological analyses of Rubiaceae species from Cerrado, we isolated novel alkaloids 1 and 2, along with known compounds epicatechin, ursolic acid, and oleanolic acid, from Galianthe ramosa. Alkaloid 2 inhibited malate synthase from the pathogenic fungus Paracoccidioides spp. This enzyme is considered an important molecular target because it is not found in humans. Molecular docking simulations were used to describe the interactions between the alkaloids and malate synthase.

  5. Inhibition of rabbit erythroid 15-lipoxygenase and sheep vesicular gland prostaglandin H synthase by gallic esters.

    PubMed

    Luther, H; Jordanov, D; Ludwig, P; Schewe, T

    1991-02-01

    Gallic acid esters possessing a varying chain length of their alcohol moiety were tested for their inhibitory potencies on 15-lipoxygenase from rabbit reticulocytes and prostaglandin H synthase from sheep vesicular glands. Octyl gallate and decyl gallate proved to be the most powerful inhibitors of both enzymes showing concentrations of half-inhibition of about 0.25 mumol/l for the reticulocyte lipoxygenase and of about 25 mumol/l for the prostaglandin H synthase.

  6. Seasonal influence on gene expression of monoterpene synthases in Salvia officinalis (Lamiaceae).

    PubMed

    Grausgruber-Gröger, Sabine; Schmiderer, Corinna; Steinborn, Ralf; Novak, Johannes

    2012-03-01

    Garden sage (Salvia officinalis L., Lamiaceae) is one of the most important medicinal and aromatic plants and possesses antioxidant, antimicrobial, spasmolytic, astringent, antihidrotic and specific sensorial properties. The essential oil of the plant, formed mainly in very young leaves, is in part responsible for these activities. It is mainly composed of the monoterpenes 1,8-cineole, α- and β-thujone and camphor synthesized by the 1,8-cineole synthase, the (+)-sabinene synthase and the (+)-bornyl diphosphate synthase, respectively, and is produced and stored in epidermal glands. In this study, the seasonal influence on the formation of the main monoterpenes in young, still expanding leaves of field-grown sage plants was studied in two cultivars at the level of mRNA expression, analyzed by qRT-PCR, and at the level of end-products, analyzed by gas chromatography. All monoterpene synthases and monoterpenes were significantly influenced by cultivar and season. 1,8-Cineole synthase and its end product 1,8-cineole remained constant until August and then decreased slightly. The thujones increased steadily during the vegetative period. The transcript level of their corresponding terpene synthase, however, showed its maximum in the middle of the vegetative period and declined afterwards. Camphor remained constant until August and then declined, exactly correlated with the mRNA level of the corresponding terpene synthase. In summary, terpene synthase mRNA expression and respective end product levels were concordant in the case of 1,8-cineole (r=0.51 and 0.67 for the two cultivars, respectively; p<0.05) and camphor (r=0.75 and 0.82; p<0.05) indicating basically transcriptional control, but discordant for α-/β-thujone (r=-0.05 and 0.42; p=0.87 and 0.13, respectively).

  7. Cloned and expressed nitric oxide synthase structurally resembles cytochrome P-450 reductase

    NASA Astrophysics Data System (ADS)

    Bredt, David S.; Hwang, Paul M.; Glatt, Charles E.; Lowenstein, Charles; Reed, Randall R.; Snyder, Solomon H.

    1991-06-01

    Nitric oxide is a messenger molecule, mediating the effect of endothelium-derived relaxing factor in blood vessels and the cytotoxic actions of macrophages, and playing a part in neuronal communication in the brain. Cloning of a complementary DNA for brain nitric oxide synthase reveals recognition sites for NADPH, FAD, flavin mononucleotide and calmodulin as well as phosphorylation sites, indicating that the synthase is regulated by many different factors. The only known mammalian enzyme with close homology is cytochrome P-450 reductase.

  8. Identification, functional characterization and developmental regulation of sesquiterpene synthases from sunflower capitate glandular trichomes

    PubMed Central

    Göpfert, Jens C; MacNevin, Gillian; Ro, Dae-Kyun; Spring, Otmar

    2009-01-01

    Background Sesquiterpene lactones are characteristic metabolites of Asteraceae (or Compositae) which often display potent bioactivities and are sequestered in specialized organs such as laticifers, resin ducts, and trichomes. For characterization of sunflower sesquiterpene synthases we employed a simple method to isolate pure trichomes from anther appendages which facilitated the identification of these genes and investigation of their enzymatic functions and expression patterns during trichome development. Results Glandular trichomes of sunflower (Helianthus annuus L.) were isolated, and their RNA was extracted to investigate the initial steps of sesquiterpene lactone biosynthesis. Reverse transcription-PCR experiments led to the identification of three sesquiterpene synthases. By combination of in vitro and in vivo characterization of sesquiterpene synthase gene products in Escherichia coli and Saccharomyces cerevisiae, respectively, two enzymes were identified as germacrene A synthases, the key enzymes of sesquiterpene lactone biosynthesis. Due to the very low in vitro activity, the third enzyme was expressed in vivo in yeast as a thioredoxin-fusion protein for functional characterization. In in vivo assays, it was identified as a multiproduct enzyme with the volatile sesquiterpene hydrocarbon δ-cadinene as one of the two main products with α-muuorlene, β-caryophyllene, α-humulene and α-copaene as minor products. The second main compound remained unidentified. For expression studies, glandular trichomes from the anther appendages of sunflower florets were isolated in particular developmental stages from the pre- to the post-secretory phase. All three sesquiterpene synthases were solely upregulated during the biosynthetically active stages of the trichomes. Expression in different aerial plant parts coincided with occurrence and maturity of trichomes. Young roots with root hairs showed expression of the sesquiterpene synthase genes as well. Conclusion This

  9. A domain swapping approach to elucidate differential regiospecific hydroxylation by geraniol and linalool synthases from perilla.

    PubMed

    Sato-Masumoto, Naoko; Ito, Michiho

    2014-06-01

    Geraniol and linalool are acyclic monoterpenes found in plant essential oils that have attracted much attention for their commercial use and in pharmaceutical studies. They are synthesized from geranyl diphosphate (GDP) by geraniol and linalool synthases, respectively. Both synthases are very similar at the amino acid level and share the same substrate; however, the position of the GDP to which they introduce hydroxyl groups is different. In this study, the mechanisms underlying the regiospecific hydroxylation of geraniol and linalool synthases were investigated using a domain swapping approach and site-directed mutagenesis in perilla. Sequences of the synthases were divided into ten domains (domains I to IV-4), and each corresponding domain was exchanged between both enzymes. It was shown that different regions were important for the formation of geraniol and linalool, namely, domains IV-1 and -4 for geraniol, and domains III-b, III-d, and IV-4 for linalool. These results suggested that the conformation of carbocation intermediates and their electron localization were seemingly to be different between geraniol and linalool synthases. Further, five amino acids in domain IV-4 were apparently indispensable for the formation of geraniol and linalool. According to three-dimensional structural models of the synthases, these five residues seemed to be responsible for the different spatial arrangement of the amino acid at H524 in the case of geraniol synthase, while N526 is the corresponding residue in linalool synthase. These results suggested that the side-chains of these five amino acids, in combination with several relevant domains, localized the positive charge in the carbocation intermediate to determine the position of the introduced hydroxyl group.

  10. High diversity of polyketide synthase genes and the melanin biosynthesis gene cluster in Penicillium marneffei.

    PubMed

    Woo, Patrick C Y; Tam, Emily W T; Chong, Ken T K; Cai, James J; Tung, Edward T K; Ngan, Antonio H Y; Lau, Susanna K P; Yuen, Kwok-Yung

    2010-09-01

    Despite the unique phenotypic properties and clinical importance of Penicillium marneffei, the polyketide synthase genes in its genome have never been characterized. Twenty-three putative polyketide synthase genes and two putative polyketide synthase nonribosomal peptide-synthase hybrid genes were identified in the P. marneffei genome, a diversity much higher than found in other pathogenic thermal dimorphic fungi, such as Histoplasma capsulatum (one polyketide synthase gene) and Coccidioides immitis (10 polyketide synthase genes). These genes were evenly distributed on the phylogenetic tree with polyketide synthase genes of Aspergillus and other fungi, indicating that the high diversity was not a result of lineage-specific gene expansion through recent gene duplication. The melanin-biosynthesis gene cluster had gene order and orientations identical to those in the Talaromyces stipitatus (a teleomorph of Penicillium emmonsii) genome. Phylogenetically, all six genes of the melanin-biosynthesis gene cluster in P. marneffei were also most closely related to those in T. stipitatus, with high bootstrap supports. The polyketide synthase gene of the melanin-biosynthesis gene cluster (alb1) in P. marneffei was knocked down, which was accompanied by loss of melanin pigment production and reduced ornamentation in conidia. The survival of mice challenged with the alb1 knockdown mutant was significantly better than those challenged with wild-type P. marneffei (P < 0.005). The sterilizing doses of hydrogen peroxide, leading to a 50% reduction in survival of conidia, were 11 min for wild-type P. marneffei and 6 min for the alb1 knockdown mutant of P. marneffei, implying that the melanin-biosynthesis gene cluster contributed to virulence through decreased susceptibility to killing by hydrogen peroxide. PMID:20718860

  11. ATP synthase superassemblies in animals and plants: two or more are better.

    PubMed

    Seelert, Holger; Dencher, Norbert A

    2011-09-01

    ATP synthases are part of the sophisticated cellular metabolic network and therefore multiple interactions have to be considered. As discussed in this review, ATP synthases form various supramolecular structures. These include dimers and homooligomeric species. But also interactions with other proteins, particularly those involved in energy conversion exist. The supramolecular assembly of the ATP synthase affects metabolism, organellar structure, diseases, ageing and vice versa. The most common approaches to isolate supercomplexes from native membranes by use of native electrophoresis or density gradients are introduced. On the one hand, isolated ATP synthase dimers and oligomers are employed for structural studies and elucidation of specific protein-protein interactions. On the other hand, native electrophoresis and other techniques serve as tool to trace changes of the supramolecular organisation depending on metabolic alterations. Upon analysing the structure, dimer-specific subunits can be identified as well as interactions with other proteins, for example, the adenine nucleotide translocator. In the organellar context, ATP synthase dimers and oligomers are involved in the formation of mitochondrial cristae. As a consequence, changes in the amount of such supercomplexes affect mitochondrial structure and function. Alterations in the cellular power plant have a strong impact on energy metabolism and ultimately play a significant role in pathophysiology. In plant systems, dimers of the ATP synthase have been also identified in chloroplasts. Similar to mammals, a correlation between metabolic changes and the amount of the chloroplast ATP synthase dimers exists. Therefore, this review focusses on the interplay between metabolism and supramolecular organisation of ATP synthase in different organisms.

  12. Discovery of two new inhibitors of Botrytis cinerea chitin synthase by a chemical library screening.

    PubMed

    Magellan, Hervé; Boccara, Martine; Drujon, Thierry; Soulié, Marie-Christine; Guillou, Catherine; Dubois, Joëlle; Becker, Hubert F

    2013-09-01

    Chitin synthases polymerize UDP-GlcNAC to form chitin polymer, a key component of fungal cell wall biosynthesis. Furthermore, chitin synthases are desirable targets for fungicides since chitin is absent in plants and mammals. Two potent Botrytis cinerea chitin synthase inhibitors, 2,3,5-tri-O-benzyl-d-ribose (compound 1) and a 2,5-functionalized imidazole (compound 2) were identified by screening a chemical library. We adapted the wheat germ agglutinin (WGA) test for chitin synthase activity detection to allow miniaturization and robotization of the screen. Both identified compounds inhibited chitin synthases in vitro with IC50 values of 1.8 and 10μM, respectively. Compounds 1 and 2 were evaluated for their antifungal activity and were found to be active against B. cinerea BD90 strain with MIC values of 190 and 100μM, respectively. Finally, we discovered that both compounds confer resistance to plant leaves against the attack of the fungus by reducing the propagation of lesions by 37% and 23%, respectively. Based on the inhibitory properties found in different assays, compounds 1 and 2 can be considered as antifungal hit inhibitors of chitin synthase, allowing further optimization of their pharmacological profile to improve their antifungal properties.

  13. Inhibition of E. coli CTP synthase by the "positive" allosteric effector GTP.

    PubMed

    MacDonnell, Jennifer E; Lunn, Faylene A; Bearne, Stephen L

    2004-06-01

    Cytidine 5'-triphosphate (CTP) synthase catalyzes the ATP-dependent formation of CTP from UTP using either ammonia or l-glutamine as the source of nitrogen. When glutamine is the substrate, GTP is required as a positive allosteric effector to promote catalysis of glutamine hydrolysis. We show that at concentrations exceeding approximately 0.15 mM, GTP actually behaves as a negative allosteric effector of E. coli CTP synthase, inhibiting glutamine-dependent CTP formation. In addition, GTP inhibits NH(3)-dependent CTP formation in a concentration-dependent manner. However, GTP does not inhibit the enzyme's intrinsic glutaminase activity. Although the activation of CTP synthase by GTP does not display cooperative behavior, inhibition of both CTP synthase-catalyzed ammonia- and glutamine-dependent CTP synthesis by GTP do exhibit positive cooperativity. These results suggest that GTP binding affects CTP synthase catalysis in two ways: it activates enzyme-catalyzed glutamine hydrolysis and it inhibits the utilization of NH(3) as a substrate by the synthase domain. PMID:15158730

  14. Identification, Functional Characterization, and Evolution of Terpene Synthases from a Basal Dicot1[OPEN

    PubMed Central

    Yahyaa, Mosaab; Matsuba, Yuki; Brandt, Wolfgang; Doron-Faigenboim, Adi; Bar, Einat; McClain, Alan; Davidovich-Rikanati, Rachel; Lewinsohn, Efraim; Pichersky, Eran; Ibdah, Mwafaq

    2015-01-01

    Bay laurel (Laurus nobilis) is an agriculturally and economically important dioecious tree in the basal dicot family Lauraceae used in food and drugs and in the cosmetics industry. Bay leaves, with their abundant monoterpenes and sesquiterpenes, are used to impart flavor and aroma to food, and have also drawn attention in recent years because of their potential pharmaceutical applications. To identify terpene synthases (TPSs) involved in the production of these volatile terpenes, we performed RNA sequencing to profile the transcriptome of L. nobilis leaves. Bioinformatic analysis led to the identification of eight TPS complementary DNAs. We characterized the enzymes encoded by three of these complementary DNAs: a monoterpene synthase that belongs to the TPS-b clade catalyzes the formation of mostly 1,8-cineole; a sesquiterpene synthase belonging to the TPS-a clade catalyzes the formation of mainly cadinenes; and a diterpene synthase of the TPS-e/f clade catalyzes the formation of geranyllinalool. Comparison of the sequences of these three TPSs indicated that the TPS-a and TPS-b clades of the TPS gene family evolved early in the evolution of the angiosperm lineage, and that geranyllinalool synthase activity is the likely ancestral function in angiosperms of genes belonging to an ancient TPS-e/f subclade that diverged from the kaurene synthase gene lineages before the split of angiosperms and gymnosperms. PMID:26157114

  15. Genetic structure and regulation of isoprene synthase in Poplar (Populus spp.).

    PubMed

    Vickers, Claudia E; Possell, Malcolm; Nicholas Hewitt, C; Mullineaux, Philip M

    2010-07-01

    Isoprene is a volatile 5-carbon hydrocarbon derived from the chloroplastic methylerythritol 2-C-methyl-D: -erythritol 4-phosphate isoprenoid pathway. In plants, isoprene emission is controlled by the enzyme isoprene synthase; however, there is still relatively little known about the genetics and regulation of this enzyme. Isoprene synthase gene structure was analysed in three poplar species. It was found that genes encoding stromal isoprene synthase exist as a small gene family, the members of which encode virtually identical proteins and are differentially regulated. Accumulation of isoprene synthase protein is developmentally regulated, but does not differ between sun and shade leaves and does not increase when heat stress is applied. Our data suggest that, in mature leaves, isoprene emission rates are primarily determined by substrate (dimethylallyl diphosphate, DMADP) availability. In immature leaves, where isoprene synthase levels are variable, emission levels are also influenced by the amount of isoprene synthase protein. No thylakoid isoforms could be identified in Populus alba or in Salix babylonica. Together, these data show that control of isoprene emission at the genetic level is far more complicated than previously assumed.

  16. Effects and mechanism of acid rain on plant chloroplast ATP synthase.

    PubMed

    Sun, Jingwen; Hu, Huiqing; Li, Yueli; Wang, Lihong; Zhou, Qing; Huang, Xiaohua

    2016-09-01

    Acid rain can directly or indirectly affect plant physiological functions, especially photosynthesis. The enzyme ATP synthase is the key in photosynthetic energy conversion, and thus, it affects plant photosynthesis. To clarify the mechanism by which acid rain affects photosynthesis, we studied the effects of acid rain on plant growth, photosynthesis, chloroplast ATP synthase activity and gene expression, chloroplast ultrastructure, intracellular H(+) level, and water content of rice seedlings. Acid rain at pH 4.5 remained the chloroplast structure unchanged but increased the expression of six chloroplast ATP synthase subunits, promoted chloroplast ATP synthase activity, and increased photosynthesis and plant growth. Acid rain at pH 4.0 or less decreased leaf water content, destroyed chloroplast structure, inhibited the expression of six chloroplast ATP synthase subunits, decreased chloroplast ATP synthase activity, and reduced photosynthesis and plant growth. In conclusion, acid rain affected the chloroplast ultrastructure, chloroplast ATPase transcription and activity, and P n by changing the acidity in the cells, and thus influencing the plant growth and development. Finally, the effects of simulated acid rain on the test indices were found to be dose-dependent. PMID:27278067

  17. The role of NO synthase isoforms in PDT-induced injury of neurons and glial cells

    NASA Astrophysics Data System (ADS)

    Kovaleva, V. D.; Berezhnaya, E. V.; Uzdensky, A. B.

    2015-03-01

    Nitric oxide (NO) is an important second messenger, involved in the implementation of various cell functions. It regulates various physiological and pathological processes such as neurotransmission, cell responses to stress, and neurodegeneration. NO synthase is a family of enzymes that synthesize NO from L-arginine. The activity of different NOS isoforms depends both on endogenous and exogenous factors. In particular, it is modulated by oxidative stress, induced by photodynamic therapy (PDT). We have studied the possible role of NOS in the regulation of survival and death of neurons and surrounding glial cells under photo-oxidative stress induced by photodynamic treatment (PDT). The crayfish stretch receptor consisting of a single identified sensory neuron enveloped by glial cells is a simple but informative model object. It was photosensitized with alumophthalocyanine photosens (10 nM) and irradiated with a laser diode (670 nm, 0.4 W/cm2). Antinecrotic and proapoptotic effects of NO on the glial cells were found using inhibitory analysis. We have shown the role of inducible NO synthase in photoinduced apoptosis and involvement of neuronal NO synthase in photoinduced necrosis of glial cells in the isolated crayfish stretch receptor. The activation of NO synthase was evaluated using NADPH-diaphorase histochemistry, a marker of neurons expressing the enzyme. The activation of NO synthase in the isolated crayfish stretch receptor was evaluated as a function of time after PDT. Photodynamic treatment induced transient increase in NO synthase activity and then slowly inhibited this enzyme.

  18. Medicinal Chemistry of ATP Synthase: A Potential Drug Target of Dietary Polyphenols and Amphibian Antimicrobial Peptides

    PubMed Central

    Ahmad, Zulfiqar; Laughlin, Thomas F.

    2015-01-01

    In this review we discuss the inhibitory effects of dietary polyphenols and amphibian antimicrobial/antitumor peptides on ATP synthase. In the beginning general structural features highlighting catalytic and motor functions of ATP synthase will be described. Some details on the presence of ATP synthase on the surface of several animal cell types, where it is associated with multiple cellular processes making it an interesting drug target with respect to dietary polyphenols and amphibian antimicrobial peptides will also be reviewed. ATP synthase is known to have distinct polyphenol and peptide binding sites at the interface of α/β subunits. Molecular interaction of polyphenols and peptides with ATP synthase at their respective binding sites will be discussed. Binding and inhibition of other proteins or enzymes will also be covered so as to understand the therapeutic roles of both types of molecules. Lastly, the effects of polyphenols and peptides on the inhibition of Escherichia coli cell growth through their action on ATP synthase will also be presented. PMID:20586714

  19. Effects and mechanism of acid rain on plant chloroplast ATP synthase.

    PubMed

    Sun, Jingwen; Hu, Huiqing; Li, Yueli; Wang, Lihong; Zhou, Qing; Huang, Xiaohua

    2016-09-01

    Acid rain can directly or indirectly affect plant physiological functions, especially photosynthesis. The enzyme ATP synthase is the key in photosynthetic energy conversion, and thus, it affects plant photosynthesis. To clarify the mechanism by which acid rain affects photosynthesis, we studied the effects of acid rain on plant growth, photosynthesis, chloroplast ATP synthase activity and gene expression, chloroplast ultrastructure, intracellular H(+) level, and water content of rice seedlings. Acid rain at pH 4.5 remained the chloroplast structure unchanged but increased the expression of six chloroplast ATP synthase subunits, promoted chloroplast ATP synthase activity, and increased photosynthesis and plant growth. Acid rain at pH 4.0 or less decreased leaf water content, destroyed chloroplast structure, inhibited the expression of six chloroplast ATP synthase subunits, decreased chloroplast ATP synthase activity, and reduced photosynthesis and plant growth. In conclusion, acid rain affected the chloroplast ultrastructure, chloroplast ATPase transcription and activity, and P n by changing the acidity in the cells, and thus influencing the plant growth and development. Finally, the effects of simulated acid rain on the test indices were found to be dose-dependent.

  20. Identification, Functional Characterization, and Evolution of Terpene Synthases from a Basal Dicot.

    PubMed

    Yahyaa, Mosaab; Matsuba, Yuki; Brandt, Wolfgang; Doron-Faigenboim, Adi; Bar, Einat; McClain, Alan; Davidovich-Rikanati, Rachel; Lewinsohn, Efraim; Pichersky, Eran; Ibdah, Mwafaq

    2015-11-01

    Bay laurel (Laurus nobilis) is an agriculturally and economically important dioecious tree in the basal dicot family Lauraceae used in food and drugs and in the cosmetics industry. Bay leaves, with their abundant monoterpenes and sesquiterpenes, are used to impart flavor and aroma to food, and have also drawn attention in recent years because of their potential pharmaceutical applications. To identify terpene synthases (TPSs) involved in the production of these volatile terpenes, we performed RNA sequencing to profile the transcriptome of L. nobilis leaves. Bioinformatic analysis led to the identification of eight TPS complementary DNAs. We characterized the enzymes encoded by three of these complementary DNAs: a monoterpene synthase that belongs to the TPS-b clade catalyzes the formation of mostly 1,8-cineole; a sesquiterpene synthase belonging to the TPS-a clade catalyzes the formation of mainly cadinenes; and a diterpene synthase of the TPS-e/f clade catalyzes the formation of geranyllinalool. Comparison of the sequences of these three TPSs indicated that the TPS-a and TPS-b clades of the TPS gene family evolved early in the evolution of the angiosperm lineage, and that geranyllinalool synthase activity is the likely ancestral function in angiosperms of genes belonging to an ancient TPS-e/f subclade that diverged from the kaurene synthase gene lineages before the split of angiosperms and gymnosperms. PMID:26157114

  1. Alcoholytic cleavage of polyhydroxyalkanoate chains by class IV synthases induced by endogenous and exogenous ethanol.

    PubMed

    Hyakutake, Manami; Tomizawa, Satoshi; Mizuno, Kouhei; Abe, Hideki; Tsuge, Takeharu

    2014-02-01

    Polyhydroxyalkanoate (PHA)-producing Bacillus strains express class IV PHA synthase, which is composed of the subunits PhaR and PhaC. Recombinant Escherichia coli expressing PHA synthase from Bacillus cereus strain YB-4 (PhaRCYB-4) showed an unusual reduction of the molecular weight of PHA produced during the stationary phase of growth. Nuclear magnetic resonance analysis of the low-molecular-weight PHA revealed that its carboxy end structure was capped by ethanol, suggesting that the molecular weight reduction was the result of alcoholytic cleavage of PHA chains by PhaRCYB-4 induced by endogenous ethanol. This scission reaction was also induced by exogenous ethanol in both in vivo and in vitro assays. In addition, PhaRCYB-4 was observed to have alcoholysis activity for PHA chains synthesized by other synthases. The PHA synthase from Bacillus megaterium (PhaRCBm) from another subgroup of class IV synthases was also assayed and was shown to have weak alcoholysis activity for PHA chains. These results suggest that class IV synthases may commonly share alcoholysis activity as an inherent feature.

  2. Identification, Functional Characterization, and Evolution of Terpene Synthases from a Basal Dicot.

    PubMed

    Yahyaa, Mosaab; Matsuba, Yuki; Brandt, Wolfgang; Doron-Faigenboim, Adi; Bar, Einat; McClain, Alan; Davidovich-Rikanati, Rachel; Lewinsohn, Efraim; Pichersky, Eran; Ibdah, Mwafaq

    2015-11-01

    Bay laurel (Laurus nobilis) is an agriculturally and economically important dioecious tree in the basal dicot family Lauraceae used in food and drugs and in the cosmetics industry. Bay leaves, with their abundant monoterpenes and sesquiterpenes, are used to impart flavor and aroma to food, and have also drawn attention in recent years because of their potential pharmaceutical applications. To identify terpene synthases (TPSs) involved in the production of these volatile terpenes, we performed RNA sequencing to profile the transcriptome of L. nobilis leaves. Bioinformatic analysis led to the identification of eight TPS complementary DNAs. We characterized the enzymes encoded by three of these complementary DNAs: a monoterpene synthase that belongs to the TPS-b clade catalyzes the formation of mostly 1,8-cineole; a sesquiterpene synthase belonging to the TPS-a clade catalyzes the formation of mainly cadinenes; and a diterpene synthase of the TPS-e/f clade catalyzes the formation of geranyllinalool. Comparison of the sequences of these three TPSs indicated that the TPS-a and TPS-b clades of the TPS gene family evolved early in the evolution of the angiosperm lineage, and that geranyllinalool synthase activity is the likely ancestral function in angiosperms of genes belonging to an ancient TPS-e/f subclade that diverged from the kaurene synthase gene lineages before the split of angiosperms and gymnosperms.

  3. A High-Throughput Colorimetric Screening Assay for Terpene Synthase Activity Based on Substrate Consumption

    PubMed Central

    Furubayashi, Maiko; Ikezumi, Mayu; Kajiwara, Jun; Iwasaki, Miki; Fujii, Akira; Li, Ling; Saito, Kyoichi; Umeno, Daisuke

    2014-01-01

    Terpene synthases catalyze the formation of a variety of terpene chemical structures. Systematic mutagenesis studies have been effective in providing insights into the characteristic and complex mechanisms of C-C bond formations and in exploring the enzymatic potential for inventing new chemical structures. In addition, there is growing demand to increase terpene synthase activity in heterologous hosts, given the maturation of metabolic engineering and host breeding for terpenoid synthesis. We have developed a simple screening method for the cellular activities of terpene synthases by scoring their substrate consumption based on the color loss of the cell harboring carotenoid pathways. We demonstrate that this method can be used to detect activities of various terpene synthase or prenyltransferase genes in a high-throughput manner, irrespective of the product type, enabling the mutation analysis and directed evolution of terpene synthases. We also report the possibility for substrate-specific screening system of terpene synthases by taking advantage of the substrate-size specificity of C30 and C40 carotenoid pathways. PMID:24681801

  4. Enhanced colonic nitric oxide generation and nitric oxide synthase activity in ulcerative colitis and Crohn's disease.

    PubMed Central

    Rachmilewitz, D; Stamler, J S; Bachwich, D; Karmeli, F; Ackerman, Z; Podolsky, D K

    1995-01-01

    Recent studies have suggested that nitric oxide (NO.), the product of nitric oxide synthase in inflammatory cells, may play a part in tissue injury and inflammation through its oxidative metabolism. In this study the colonic generation of oxides of nitrogen (NOx) and nitric oxide synthase activity was determined in ulcerative colitis and Crohn's disease. Colonic biopsy specimens were obtained from inflammatory bowel disease patients and from normal controls. Mucosal explants were cultured in vitro for 24 hours and NOx generation was determined. Nitric oxide synthase activity was monitored by the conversion of [3H]-L-arginine to citrulline. Median NOx generation by inflamed colonic mucosa of patients with active ulcerative colitis and Crohn's colitis was 4.2- and 8.1-fold respectively higher than that by normal human colonic mucosa. In ulcerative colitis and Crohn's colitis nitric oxide synthase activity was 10.0- and 3.8-fold respectively higher than in normal subjects. Colonic NOx generation is significantly decreased by methylprednisolone and ketotifen. The decrease in NOx generation by cultured colonic mucosa induced by methylprednisolone suggests that NO synthase activity is induced during the culture and the steroid effect may contribute to its therapeutic effect. Enhanced colonic NOx generation by stimulated nitric oxide synthase activity in ulcerative colitis and Crohn's disease may contribute to tissue injury. PMID:7541008

  5. The human liver glycogen synthase isozyme gene is located on the short arm of chromosome 12

    SciTech Connect

    Nuttall, F.Q.; Gannon, M.C. ); Kubic, V.L.; Hoyt, K.J. )

    1994-01-15

    Glycogen synthase catalyzes the rate-limiting step in glycogen synthesis. Its activity is regulated by a complex phosphorylation-dephosphorylation mechanism and by allosteric stimulators and inhibitors. Two isozymes of synthase, a skeletal muscle type and liver type, have been identified in rabbit and rat tissues using specific polyclonal antibodies. The skeletal muscle type isozyme is present in several organs in addition to skeletal muscle; the liver isozyme has been identified only in liver. Recently, we have purified and characterized the human liver synthase isozyme. We also have cloned and sequenced the gene from a human liver cDNA library. Using the entire cDNA coding sequence as a probe, we report here the localization of the liver synthase isozyme gene to the short arm of chromosome 12. These studies revealed a centromeric signal on chromosome 12 together with signal to glycogen synthase on the short arm of this chromosome in the p11.2-p12.2 region. Measurements of the relative distance from the midpoint of the centromere to the signal corresponding to glycogen synthase suggests that the locus is in the p12.2 band rather than in the more centromeric location.

  6. Investigation of potential glycogen synthase kinase 3 inhibitors using pharmacophore mapping and virtual screening.

    PubMed

    Dessalew, Nigus; Bharatam, Prasad V

    2006-09-01

    Glycogen synthase kinase-3 is a serine/threonine kinase that has attracted significant drug discovery attention in recent years. To investigate the identification of new potential glycogen synthase kinase-3 inhibitors, a pharmacophore mapping study was carried out using a set of 21 structurally diverse glycogen synthase kinase-3 inhibitors. A hypothesis containing four features: two hydrophobic, one hydrogen bond donor and another hydrogen bond acceptor was found to be the best from the 10 common feature hypotheses produced by HipHop module of Catalyst. The best hypothesis has a high cost of 156.592 and higher best fit values were obtained for the 21 inhibitors using this best hypothesis than the other HipHop hypotheses. The best hypothesis was then used to screen electronically the NCI2000 database. The hits obtained were docked into glycogen synthase kinase-3beta active site. A total of five novel potential leads were proposed after: (i) visual examination of how well they dock into the glycogen synthase kinase-3beta-binding site, (ii) comparative analysis of their FlexX, G-Score, PMF-Score, ChemScore and D-Scores values, (iii) comparison of their best fit value with the known inhibitors and (iv) examination of the how the hits retain interactions with the important amino acid residues of glycogen synthase kinase-3beta-binding site. PMID:17062013

  7. A single-vial analytical and quantitative gas chromatography-mass spectrometry assay for terpene synthases.

    PubMed

    O'Maille, Paul E; Chappell, Joe; Noel, Joseph P

    2004-12-15

    A quantitative assay for the analysis of sesquiterpene synthases, wherein each reaction mixture is formulated in glass gas chromatography vials, overlaid with organic solvent such as ethyl acetate, and subsequently vortexed to extract hydrocarbon reaction products into the organic phase after a suitable incubation period, was developed. The product-enriched organic phase is then sampled in an automated fashion and injected directly into a gas chromatograph-mass spectrometer without further workup for analysis and quantification of hydrocarbon products. Application of the vial assay to the analysis of amorpha-4,11-diene synthase (ADS), a sesquiterpene synthase, demonstrated the sensitivity of the assay for detection of major and minor reaction products and most notably for the identification of several sesquiterpene products that had escaped previous detection. A steady-state kinetic analysis of tobacco 5-epi-aristolochene synthase (TEAS), another sesquiterpene synthase, validated the quantitative nature of the assay, providing an alternative means to the established method of using radiolabeled substrate, extraction, and scintillation counting. This simplified assay provides a standardized method to facilitate analysis of terpene synthases and diverse mutant enzyme libraries by supplanting the common practice of using larger scale reactions, multiple extractions, and evaporative concentration of the organic phase prior to gas chromatography-mass spectrometry (GC-MS) analysis. PMID:15556559

  8. Characterization of Novel Sesquiterpenoid Biosynthesis in Tobacco Expressing a Fungal Sesquiterpene Synthase.

    PubMed

    Zook, M.; Hohn, T.; Bonnen, A.; Tsuji, J.; Hammerschmidt, R.

    1996-09-01

    The gene encoding trichodiene synthase (Tri5), a sesquiterpene synthase from the fungus Fusarium sporotrichioides, was used to transform tobacco (Nicotiana tabacum). Trichodiene was the sole sesquiterpene synthase product in enzyme reaction mixtures derived from unelicited transformant cell-suspension cultures, and both trichodiene and 5-epi-aristolochene were observed as reaction products following elicitor treatment. Immunoblot analysis of protein extracts revealed the presence of trichodiene synthase only in transformant cell lines producing trichodiene. In vivo labeling with [3H]mevalonate revealed the presence of a novel trichodiene metabolite, 15-hydroxytrichodiene, that accumulated in the transformant cell-suspension cultures. In a trichodiene-producing transformant, the level of 15-hydroxytrichodiene accumulation increased after elicitor treatment. In vivo labeling with [14C]acetate showed that the biosynthetic rate of trichodiene and 15-hydroxytrichodiene also increased after elicitor treatment. Incorporation of radioactivity from [14C]acetate into capsidiol was reduced following elicitor treatment of a trichodiene-producing transformant as compared with wild type. These results demonstrate that sesquiterpenoid accumulation resulting from the constitutive expression of a foreign sesquiterpene synthase is responsive to elicitation and that the farnesyl pyrophosphate present in elicited cells can be utilized by a foreign sesquiterpene synthase to produce high levels of novel sesquiterpenoids. PMID:12226394

  9. Not all pseudouridine synthases are potently inhibited by RNA containing 5-fluorouridine.

    PubMed

    Spedaliere, Christopher J; Mueller, Eugene G

    2004-02-01

    RNA containing 5-fluorouridine has been assumed to inhibit strongly or irreversibly the pseudouridine synthases that act on the RNA. RNA transcripts containing 5-fluorouridine in place of uridine have, therefore, been added to reconstituted systems in order to investigate the importance of particular pseudouridine residues in a given RNA by inactivating the pseudouridine synthase responsible for their generation. In sharp contradiction to the assumption of universal inhibition of pseudouridine synthases by RNA containing 5-fluorouridine, the Escherichia coli pseudouridine synthase TruB, which has physiologically critical eukaryotic homologs, is not inhibited by such RNA. Instead, the RNA containing 5-fluorouridine was handled as a substrate by TruB. The E. coli pseudouridine synthase RluA, on the other hand, forms a covalent complex and is inhibited stoichiometrically by RNA containing 5-fluorouridine. We offer a hypothesis for this disparate behavior and urge caution in interpreting results from reconstitution experiments in which RNA containing 5-fluorouridine is assumed to inhibit a pseudouridine synthase, as normal function may result from a failure to inactivate the targeted enzyme rather than from the absence of nonessential pseudouridine residues.

  10. Investigation of potential glycogen synthase kinase 3 inhibitors using pharmacophore mapping and virtual screening.

    PubMed

    Dessalew, Nigus; Bharatam, Prasad V

    2006-09-01

    Glycogen synthase kinase-3 is a serine/threonine kinase that has attracted significant drug discovery attention in recent years. To investigate the identification of new potential glycogen synthase kinase-3 inhibitors, a pharmacophore mapping study was carried out using a set of 21 structurally diverse glycogen synthase kinase-3 inhibitors. A hypothesis containing four features: two hydrophobic, one hydrogen bond donor and another hydrogen bond acceptor was found to be the best from the 10 common feature hypotheses produced by HipHop module of Catalyst. The best hypothesis has a high cost of 156.592 and higher best fit values were obtained for the 21 inhibitors using this best hypothesis than the other HipHop hypotheses. The best hypothesis was then used to screen electronically the NCI2000 database. The hits obtained were docked into glycogen synthase kinase-3beta active site. A total of five novel potential leads were proposed after: (i) visual examination of how well they dock into the glycogen synthase kinase-3beta-binding site, (ii) comparative analysis of their FlexX, G-Score, PMF-Score, ChemScore and D-Scores values, (iii) comparison of their best fit value with the known inhibitors and (iv) examination of the how the hits retain interactions with the important amino acid residues of glycogen synthase kinase-3beta-binding site.

  11. Cell Wall Polysaccharide Synthases Are Located in Detergent-Resistant Membrane Microdomains in Oomycetes ▿ †

    PubMed Central

    Briolay, Anne; Bouzenzana, Jamel; Guichardant, Michel; Deshayes, Christian; Sindt, Nicolas; Bessueille, Laurence; Bulone, Vincent

    2009-01-01

    The pathways responsible for cell wall polysaccharide biosynthesis are vital in eukaryotic microorganisms. The corresponding synthases are potential targets of inhibitors such as fungicides. Despite their fundamental and economical importance, most polysaccharide synthases are not well characterized, and their molecular mechanisms are poorly understood. With the example of Saprolegnia monoica as a model organism, we show that chitin and (1→3)-β-d-glucan synthases are located in detergent-resistant membrane microdomains (DRMs) in oomycetes, a phylum that comprises some of the most devastating microorganisms in the agriculture and aquaculture industries. Interestingly, no cellulose synthase activity was detected in the DRMs. The purified DRMs exhibited similar biochemical features as lipid rafts from animal, plant, and yeast cells, although they contained some species-specific lipids. This report sheds light on the lipid environment of the (1→3)-β-d-glucan and chitin synthases, as well as on the sterol biosynthetic pathways in oomycetes. The results presented here are consistent with a function of lipid rafts in cell polarization and as platforms for sorting specific sets of proteins targeted to the plasma membrane, such as carbohydrate synthases. The involvement of DRMs in the biosynthesis of major cell wall polysaccharides in eukaryotic microorganisms suggests a function of lipid rafts in hyphal morphogenesis and tip growth. PMID:19201970

  12. Ozone stress induces the expression of ACC synthase in potato plants

    SciTech Connect

    Schlagnhaufer, C.D.; Arteca, R.N.; Pell, E.J. )

    1993-05-01

    When potato plants (Solanum tuberosum L. cv Norland) are subjected to oxone stress ethylene is emitted. Increases in ethylene production are often the result of increased expression of the enzyme ACC synthase. We used the polymerase chain reaction (PCR) to clone a cDNA encoding an ozone-induced ACC synthase. After treating potato plants with 300 ppb ozone for 4 h, RNA was extracted using a guanidinium isothiocyanate method. Using degenerate oligonucleotides corresponding to several conserved regions of ACC synthase sequences reported from different plant tissues as primers, we were able to reverse transcribe the RNA and amplify a cDNA for ACC synthase. The clone is 1098 bp in length encoding for 386 amino acids comprising [approximately]80% of the protein. Computer analysis of the deduced amino acid sequence showed that our clone is 50-70% homologous with ACC synthase genes cloned from other plant tissues. Using the cDNA as a probe in northern analysis we found that there is little or no expression in control tissue: however there is a large increase in the expression of the ACC synthase message in response to ozone treatment.

  13. Design, synthesis, and enzyme kinetics of novel benzimidazole and quinoxaline derivatives as methionine synthase inhibitors.

    PubMed

    Elshihawy, Hosam; Helal, Mohamed A; Said, Mohamed; Hammad, Mohamed A

    2014-01-01

    Methionine synthase catalyzes the transfer of a methyl group from 5-methyltetrahydrofolate to homocysteine, producing methionine and tetrahydrofolate. Benzimidazole and deazatetrahydrofolates derivatives have been shown to inhibit methionine synthase by competing with the substrate 5-methyltetrahydrofolate. In this study, a novel series of substituted benzimidazoles and quinoxalines were designed and assessed for inhibitory activity against purified rat liver methionine synthase using a radiometric enzyme assay. Compounds 3g, 3j, and 5c showed the highest activity against methionine synthase (IC₅₀: 20 μM, 18 μM, 9 μM, respectively). Kinetic analysis of these compounds using Lineweaver-Burk plots revealed characteristics of mixed inhibition for 3g and 5c; and uncompetitive inhibition for 3j. Docking study into a homology model of the rat methionine synthase gave insights into the molecular determinants of the activity of this class of compounds. The identification of these drug-like inhibitors could lead the design of the next generation modulators of methionine synthase.

  14. Differential expression of two genes for 1-aminocyclopropane-1-carboxylate synthase in tomato fruits

    SciTech Connect

    Olson, D.C.; White, J.A.; Edelman, L.; Kende, H. ); Harkins, R.N. )

    1991-06-15

    1-Aminocyclopropane-1-carboxylate synthase is the regulated enzyme in the biosynthetic pathway of the plant hormone ethylene. A full-length cDNA encoding this enzyme has been cloned from tomato fruits. The authors report here the complete nucleotide and derived amino acid sequences of a cDNA encoding a second isoform of ACC synthase from tomato fruits. The cDNAs coding for both isoforms contain highly conserved regions that are surrounded by regions of low homology, especially at the 5{prime} and 3{prime} ends. Gene-specific probes were constructed to examine the expression of transcripts encoding the two ACC synthase isoforms under two conditions of enhanced ethylene formation--namely, during fruit ripening and in response to mechanical stress (wounding). The level of mRNA encoding both isoforms, ACC synthase 1 and 2, increased during ripening. In contrast, wounding caused an increase in only the level of mRNA coding for ACC synthase 1. Blot analysis of genomic DNA digested with restriction enzymes confirmed that ACC synthase 1 and 2 are encoded by different genes.

  15. Valencene synthase from the heartwood of Nootka cypress (Callitropsis nootkatensis) for biotechnological production of valencene.

    PubMed

    Beekwilder, Jules; van Houwelingen, Adèle; Cankar, Katarina; van Dijk, Aalt D J; de Jong, René M; Stoopen, Geert; Bouwmeester, Harro; Achkar, Jihane; Sonke, Theo; Bosch, Dirk

    2014-02-01

    Nootkatone is one of the major terpenes in the heartwood of the Nootka cypress Callitropsis nootkatensis. It is an oxidized sesquiterpene, which has been postulated to be derived from valencene. Both valencene and nootkatone are used for flavouring citrus beverages and are considered among the most valuable terpenes used at commercial scale. Functional evaluation of putative terpene synthase genes sourced by large-scale EST sequencing from Nootka cypress wood revealed a valencene synthase gene (CnVS). CnVS expression in different tissues from the tree correlates well with nootkatone content, suggesting that CnVS represents the first dedicated gene in the nootkatone biosynthetic pathway in C. nootkatensis The gene belongs to the gymnosperm-specific TPS-d subfamily of terpenes synthases and its protein sequence has low similarity to known citrus valencene synthases. In vitro, CnVS displays high robustness under different pH and temperature regimes, potentially beneficial properties for application in different host and physiological conditions. Biotechnological production of sesquiterpenes has been shown to be feasible, but productivity of microbial strains expressing valencene synthase from Citrus is low, indicating that optimization of valencene synthase activity is needed. Indeed, expression of CnVS in Saccharomyces cerevisiae indicated potential for higher yields. In an optimized Rhodobacter sphaeroides strain, expression of CnVS increased valencene yields 14-fold to 352 mg/L, bringing production to levels with industrial potential. PMID:24112147

  16. Crystal structure of 5-enolpyruvylshikimate-3-phosphate (EPSP) synthase from the ESKAPE pathogen Acinetobacter baumannii.

    PubMed

    Sutton, Kristin A; Breen, Jennifer; Russo, Thomas A; Schultz, L Wayne; Umland, Timothy C

    2016-03-01

    The enzyme 5-enolpyruvylshikimate-3-phosphate (EPSP) synthase catalyzes the sixth step of the seven-step shikimate pathway. Chorismate, the product of the pathway, is a precursor for the biosynthesis of aromatic amino acids, siderophores and metabolites such as folate, ubiquinone and vitamin K. The shikimate pathway is present in bacteria, fungi, algae, plants and apicomplexan parasites, but is absent in humans. The EPSP synthase enzyme produces 5-enolpyruvylshikimate 3-phosphate and phosphate from phosphoenolpyruvate and shikimate 3-phosphate via a transferase reaction, and is the target of the herbicide glyphosate. The Acinetobacter baumannii gene encoding EPSP synthase, aroA, has previously been demonstrated to be essential during host infection for the growth and survival of this clinically important drug-resistant ESKAPE pathogen. Prephenate dehydrogenase is also encoded by the bifunctional A. baumannii aroA gene, but its activity is dependent upon EPSP synthase since it operates downstream of the shikimate pathway. As part of an effort to evaluate new antimicrobial targets, recombinant A. baumannii EPSP (AbEPSP) synthase, comprising residues Ala301-Gln756 of the aroA gene product, was overexpressed in Escherichia coli, purified and crystallized. The crystal structure, determined to 2.37 Å resolution, is described in the context of a potential antimicrobial target and in comparison to EPSP synthases that are resistant or sensitive to the herbicide glyphosate. PMID:26919521

  17. Aspirin inhibits interleukin 1-induced prostaglandin H synthase expression in cultured endothelial cells

    SciTech Connect

    Wu, K.K.; Sanduja, R.; Tsai, A.L.; Ferhanoglu, B.; Loose-Mitchell, D.S. )

    1991-03-15

    Prostaglandin H (PGH) synthase is a key enzyme in the biosynthesis of prostaglandins, thromboxane, and prostacyclin. In cultured human umbilical vein endothelial cells, interleukin 1 (IL-1) is known to induce the synthesis of this enzyme, thereby raising the level of PGH synthase protein severalfold over the basal level. Pretreatment with aspirin at low concentrations inhibited more than 60% of the enzyme mass and also the cyclooxygenase activity in IL-1-induced cells with only minimal effects on the basal level of the synthase enzyme in cells without IL-1. Sodium salicylate exhibited a similar inhibitory action whereas indomethacin had no apparent effect. Similarly low levels of aspirin inhibited the increased L-({sup 35}S)methionine incorporation into PGH synthase that was induced by IL0-1 and also suppressed expression of the 2.7-kilobase PGH synthase mRNA. These results suggest that in cultured endothelial cells a potent inhibition of eicosanoid biosynthetic capacity can be effected by aspirin or salicylate at the level of PGH synthase gene expression. The aspirin effect may well be due to degradation of salicylate.

  18. Identification of a novel protein binding motif within the T-synthase for the molecular chaperone Cosmc.

    PubMed

    Aryal, Rajindra P; Ju, Tongzhong; Cummings, Richard D

    2014-04-25

    Prior studies suggested that the core 1 β3-galactosyltransferase (T-synthase) is a specific client of the endoplasmic reticulum chaperone Cosmc, whose function is required for T-synthase folding, activity, and consequent synthesis of normal O-glycans in all vertebrate cells. To explore whether the T-synthase encodes a specific recognition motif for Cosmc, we used deletion mutagenesis to identify a cryptic linear and relatively hydrophobic peptide in the N-terminal stem region of the T-synthase that is essential for binding to Cosmc (Cosmc binding region within T-synthase, or CBRT). Using this sequence information, we synthesized a peptide containing CBRT and found that it directly interacts with Cosmc and also inhibits Cosmc-assisted in vitro refolding of denatured T-synthase. Moreover, engineered T-synthase carrying mutations within CBRT exhibited diminished binding to Cosmc that resulted in the formation of inactive T-synthase. To confirm the general recognition of CBRT by Cosmc, we performed a domain swap experiment in which we inserted the stem region of the T-synthase into the human β4GalT1 and found that the CBRT element can confer Cosmc binding onto the β4GalT1 chimera. Thus, CBRT is a unique recognition motif for Cosmc to promote its regulation and formation of active T-synthase and represents the first sequence-specific chaperone recognition system in the ER/Golgi required for normal protein O-glycosylation. PMID:24616093

  19. [Chitin Synthase 2 (CHS2) gene of Malassezia species].

    PubMed

    Kano, Rui

    2005-01-01

    Malassezia species have been recognized as members of the microbiological flora of human and animal skin; they are also considered to play an important role in the pathogenesis of folliculitis, atopic dermatitis and otitis externa. Therefore, the molecular characteristics were investigated to clarify the epidemiology and the pathogenesis of diseases associated with Malassezia species in human and animals. Molecular investigation was made of 105 clinical isolates of M. pachydermatis from dogs and cats by random amplification of polymorphic DNA (RAPD) and chitin synthase 2 (CHS2) gene sequence analyses. The RAPD analysis and CHS2 gene analysis indicated that clinical isolates of M. pachydermatis were divided into four distinct genetic types (A, B, C and D). Type A was isolated from lesions of atopic dermatitis, flea allergic dermatitis, otitis externa, pyoderma and seborrheic (dermatitidis) in dogs and cats, and might be predominant on this. The phylogenetic analysis of the nucleotide sequences of CHS2 gene fragments of standard strains of 11 Malassezia species showed 11 distinct clusters of this species. PMID:16094288

  20. Pharmacological Inhibition of Glucosylceramide Synthase Enhances Insulin Sensitivity

    PubMed Central

    Aerts, Johannes M.; Ottenhoff, Roelof; Powlson, Andrew S.; Grefhorst, Aldo; van Eijk, Marco; Dubbelhuis, Peter F.; Aten, Jan; Kuipers, Folkert; Serlie, Mireille J.; Wennekes, Tom; Sethi, Jaswinder K.; O’Rahilly, Stephen; Overkleeft, Hermen S.

    2015-01-01

    A growing body of evidence implicates ceramide and/or its glycosphingolipid metabolites in the pathogenesis of insulin resistance. We have developed a highly specific small molecule inhibitor of glucosylceramide synthase, an enzyme that catalyzes a necessary step in the conversion of ceramide to glycosphingolipids. In cultured 3T3-L1 adipocytes, the iminosugar derivative N-(5′-adamantane-1′-yl-methoxy)-pentyl-1-deoxynojirimycin (AMP-DNM) counteracted tumor necrosis factor-α-induced abnormalities in glycosphingo-lipid concentrations and concomitantly reversed abnormalities in insulin signal transduction. When administered to mice and rats, AMP-DNM significantly reduced glycosphin-golipid but not ceramide concentrations in various tissues. Treatment of ob/ob mice with AMP-DNM normalized their elevated tissue glucosylceramide levels, markedly lowered circulating glucose levels, improved oral glucose tolerance, reduced A1C, and improved insulin sensitivity in muscle and liver. Similarly beneficial metabolic effects were seen in high fat-fed mice and ZDF rats. These findings provide further evidence that glycosphingolipid metabolites of ceramide may be involved in mediating the link between obesity and insulin resistance and that interference with glycosphingolipid biosynthesis might present a novel approach to the therapy of states of impaired insulin action such as type 2 diabetes. PMID:17287460

  1. Endothelial Caveolar Subcellular Domain Regulation of Endothelial Nitric Oxide Synthase

    PubMed Central

    Ramadoss, Jayanth; Pastore, Mayra B.; Magness, Ronald R.

    2015-01-01

    SUMMARY Complex regulatory processes alter the activity of endothelial nitric oxide synthase (eNOS) leading to nitric oxide (NO) production by endothelial cells under various physiological states. These complex processes require specific sub-cellular eNOS partitioning between plasma membrane caveolar domains and non-caveolar compartments.eNOS translocation from the plasma membrane to intracellular compartments is important for eNOS activation and subsequent NO biosynthesis. We present data reviewing and interpreting information: 1) the coupling of endothelial plasma membrane receptor systems in the caveolar structure relative to eNOS trafficking; 2) how eNOS trafficking relates to specific protein-protein interaction for inactivation and activation of eNOS; and 3) how these complex mechanisms confer specific subcellular location relative to eNOS multi-site phosphorylation and signaling.Dysfunction in regulation of eNOS activation may contribute to several disease states; in particular gestational endothelial abnormalities (preeclampsia, gestational diabetes, etc) that have life-long deleterious health consequences that predispose the offspring to develop hypertensive disease, type II diabetes and adiposity.1 PMID:23745825

  2. Renaturation of citrate synthase: influence of denaturant and folding assistants.

    PubMed Central

    Zhi, W.; Landry, S. J.; Gierasch, L. M.; Srere, P. A.

    1992-01-01

    Citrate synthase (CS), which has been denatured in either guanidine hydrochloride (GdnHCl) or urea can be assisted in its renaturation in a variety of ways. The addition of each of the assistants--bovine serum albumin (BSA), oxaloacetate (OAA), and glycerol--promotes renaturation. In combination, the effect of these substances is additive with respect to the yield of folded CS. The report of Buchner et al. (Buchner, J., Schmidt, M., Fuchs, M., Jaenicke, R., Rudolph, R., Schmid, F.X., & Kiefhaber, T., 1991, Biochemistry 30, 1586-1591) that refolding of CS is facilitated by the GroE system (an Escherichia coli chaperonin [cpn] that is composed of GroEL [cpn60] and GroES [cpn10]) has been confirmed. However, we observed substantially higher yield of reactivated CS, 82%, and almost no reactivation in the absence of GroES, < 5%, whereas Buchner et al. reported 28% and 16%, respectively. In addition, we find that GroE-assisted refolding is more efficient for CS denatured in GdnHCl than for CS denatured in urea. This result is discussed in light of the known difference in the denatured states generated in GdnHCl and urea. Because GroEL inhibits the BSA/glycerol/OAA-assisted refolding, this system will be useful in future studies on the mechanism of GroE-facilitated refolding. PMID:1363914

  3. Inhibition studies of Mycobacterium tuberculosis salicylate synthase (MbtI).

    PubMed

    Manos-Turvey, Alexandra; Bulloch, Esther M M; Rutledge, Peter J; Baker, Edward N; Lott, J Shaun; Payne, Richard J

    2010-07-01

    Mycobacterium tuberculosis salicylate synthase (MbtI), a member of the chorismate-utilizing enzyme family, catalyses the first committed step in the biosynthesis of the siderophore mycobactin T. This complex secondary metabolite is essential for both virulence and survival of M. tuberculosis, the etiological agent of tuberculosis (TB). It is therefore anticipated that inhibitors of this enzyme may serve as TB therapies with a novel mode of action. Herein we describe the first inhibition study of M. tuberculosis MbtI using a library of functionalized benzoate-based inhibitors designed to mimic the substrate (chorismate) and intermediate (isochorismate) of the MbtI-catalyzed reaction. The most potent inhibitors prepared were those designed to mimic the enzyme intermediate, isochorismate. These compounds, based on a 2,3-dihydroxybenzoate scaffold, proved to be low-micromolar inhibitors of MbtI. The most potent inhibitors in this series possessed hydrophobic enol ether side chains at C3 in place of the enol-pyruvyl side chain found in chorismate and isochorismate. PMID:20512795

  4. Mechanics of Cellulose Synthase Complexes in Living Plant Cells

    NASA Astrophysics Data System (ADS)

    Zehfroosh, Nina; Liu, Derui; Ramos, Kieran P.; Yang, Xiaoli; Goldner, Lori S.; Baskin, Tobias I.

    The polymer cellulose is one of the major components of the world's biomass with unique and fascinating characteristics such as its high tensile strength, renewability, biodegradability, and biocompatibility. Because of these distinctive aspects, cellulose has been the subject of enormous scientific and industrial interest, yet there are still fundamental open questions about cellulose biosynthesis. Cellulose is synthesized by a complex of transmembrane proteins called ``Cellulose Synthase A'' (CESA) in the plasma membrane. Studying the dynamics and kinematics of the CESA complex will help reveal the mechanism of cellulose synthesis and permit the development and validation of models of CESA motility. To understand what drives these complexes through the cell membrane, we used total internal reflection fluorescence microscopy (TIRFM) and variable angle epi-fluorescence microscopy to track individual, fluorescently-labeled CESA complexes as they move in the hypocotyl and root of living plants. A mean square displacement analysis will be applied to distinguish ballistic, diffusional, and other forms of motion. We report on the results of these tracking experiments. This work was funded by NSF/PHY-1205989.

  5. A nitric oxide synthase inhibitor impairs memory storage in mice.

    PubMed

    Baratti, C M; Kopf, S R

    1996-05-01

    Posttraining administration of the L-enantiomer of the competitive inhibitor of nitric oxide synthase, NG-nitro-L-arginine methyl ester (L-NAME, 3-100 mg/kg, ip), impaired 48-h retention of a one-trial step-through inhibitory shock-avoidance task in male Swiss mice. The effects were dose-dependent and were not observed when the D-enantiomer (D-NAME, 3-100 mg/kg, ip) was injected instead of L-NAME. Retention latencies of mice that had not received a footshock during training were not affected by L-NAME. The memory impairment produced by L-NAME was time-dependent, suggesting an action on memory storage. The effects of L-NAME on memory were overcome by the injection of L-(but not D-)arginine (300 mg/kg, ip) along with the inhibitor. Considered together, these findings suggest that the L-arginine/nitric oxide pathway may be involved in memory storage of an inhibitory avoidance response in mice. PMID:8616582

  6. A functional isopenicillin N synthase in an animal genome.

    PubMed

    Roelofs, Dick; Timmermans, Martijn J T N; Hensbergen, Paul; van Leeuwen, Hans; Koopman, Jessica; Faddeeva, Anna; Suring, Wouter; de Boer, Tjalf E; Mariën, Janine; Boer, Remon; Bovenberg, Roel; van Straalen, Nico M

    2013-03-01

    Horizontal transfer of genes is widespread among prokaryotes, but is less common between microorganisms and animals. Here, we present evidence for the presence of a gene encoding functional isopenicillin N synthase, an enzyme in the β-lactam antibiotics biosynthesis pathway, in the genome of the soil-living collembolan species, Folsomia candida (FcIPNS). At present, this gene is only known from bacteria and fungi, as is the capacity to produce β-lactam antibiotics. The FcIPNS gene was located on two genomic contigs, was physically linked to a predicted insect ATP-binding cassette transporter gene, and contained three introns each flanked by eukaryotic splicing recognition sites (GT/AG). Homology searches revealed no similarity between these introns and the FcIPNS regions of bacteria or fungi. All amino acids conserved across bacteria and fungi were also conserved in F. candida. Recombinant FcIPNS was able to convert its substrate amino δ-(l-α-aminoadipyl)-l-cysteinyl-d-valine into isopenicillin N, providing strong evidence that FcIPNS is functional. Phylogenetic analysis clustered FcIPNS outside the bacterial IPNS clade, and also outside the fungal IPNS clade, suggesting an ancient gene transfer followed by divergence in the F. candida genome. In conclusion, the data suggest that the soil-living collembolan F. candida has assimilated the capacity for antibacterial activity by horizontal gene transfer, which may be an important adaptive trait in the microbe-dominated soil ecosystem. PMID:23204388

  7. Neuronal Nitric Oxide Synthase in Vascular Physiology and Diseases

    PubMed Central

    Costa, Eduardo D.; Rezende, Bruno A.; Cortes, Steyner F.; Lemos, Virginia S.

    2016-01-01

    The family of nitric oxide synthases (NOS) has significant importance in various physiological mechanisms and is also involved in many pathological processes. Three NOS isoforms have been identified: neuronal NOS (nNOS or NOS 1), endothelial NOS (eNOS or NOS 3), and an inducible NOS (iNOS or NOS 2). Both nNOS and eNOS are constitutively expressed. Classically, eNOS is considered the main isoform involved in the control of the vascular function. However, more recent studies have shown that nNOS is present in the vascular endothelium and importantly contributes to the maintenance of the homeostasis of the cardiovascular system. In physiological conditions, besides nitric oxide (NO), nNOS also produces hydrogen peroxide (H2O2) and superoxide (O2•-) considered as key mediators in non-neuronal cells signaling. This mini-review highlights recent scientific releases on the role of nNOS in vascular homeostasis and cardiovascular disorders such as hypertension and atherosclerosis. PMID:27313545

  8. Phylogenomic and functional domain analysis of polyketide synthases in Fusarium

    SciTech Connect

    Brown, Daren W.; Butchko, Robert A.; Baker, Scott E.; Proctor, Robert H.

    2012-02-01

    Fusarium species are ubiquitous in nature, cause a range of plant diseases, and produce a variety of chemicals often referred to as secondary metabolites. Although some fungal secondary metabolites affect plant growth or protect plants from other fungi and bacteria, their presence in grain based food and feed is more often associated with a variety of diseases in plants and in animals. Many of these structurally diverse metabolites are derived from a family of related enzymes called polyketide synthases (PKSs). A search of genomic sequence of Fusarium verticillioides, F. graminearum, F. oxysporum and Nectria haematococca (anamorph F. solani) identified a total of 58 PKS genes. To gain insight into how this gene family evolved and to guide future studies, we conducted a phylogenomic and functional domain analysis. The resulting genealogy suggested that Fusarium PKSs represent 34 different groups responsible for synthesis of different core metabolites. The analyses indicate that variation in the Fusarium PKS gene family is due to gene duplication and loss events as well as enzyme gain-of-function due to the acquisition of new domains or of loss-of-function due to nucleotide mutations. Transcriptional analysis indicate that the 16 F. verticillioides PKS genes are expressed under a range of conditions, further evidence that they are functional genes that confer the ability to produce secondary metabolites.

  9. ASMPKS: an analysis system for modular polyketide synthases

    PubMed Central

    Tae, Hongseok; Kong, Eun-Bae; Park, Kiejung

    2007-01-01

    Background Polyketides are secondary metabolites of microorganisms with diverse biological activities, including pharmacological functions such as antibiotic, antitumor and agrochemical properties. Polyketides are synthesized by serialized reactions of a set of enzymes called polyketide synthase(PKS)s, which coordinate the elongation of carbon skeletons by the stepwise condensation of short carbon precursors. Due to their importance as drugs, the volume of data on polyketides is rapidly increasing and creating a need for computational analysis methods for efficient polyketide research. Moreover, the increasing use of genetic engineering to research new kinds of polyketides requires genome wide analysis. Results We describe a system named ASMPKS (Analysis System for Modular Polyketide Synthesis) for computational analysis of PKSs against genome sequences. It also provides overall management of information on modular PKS, including polyketide database construction, new PKS assembly, and chain visualization. ASMPKS operates on a web interface to construct the database and to analyze PKSs, allowing polyketide researchers to add their data to this database and to use it easily. In addition, the ASMPKS can predict functional modules for a protein sequence submitted by users, estimate the chemical composition of a polyketide synthesized from the modules, and display the carbon chain structure on the web interface. Conclusion ASMPKS has powerful computation features to aid modular PKS research. As various factors, such as starter units and post-processing, are related to polyketide biosynthesis, ASMPKS will be improved through further development for study of the factors. PMID:17764579

  10. Two Distinct Cardiolipin Synthases Operate in Agrobacterium tumefaciens.

    PubMed

    Czolkoss, Simon; Fritz, Christiane; Hölzl, Georg; Aktas, Meriyem

    2016-01-01

    Cardiolipin (CL) is a universal component of energy generating membranes. In most bacteria, it is synthesized via the condensation of two molecules phosphatidylglycerol (PG) by phospholipase D-type cardiolipin synthases (PLD-type Cls). In the plant pathogen and natural genetic engineer Agrobacterium tumefaciens CL comprises up to 15% of all phospholipids in late stationary growth phase. A. tumefaciens harbors two genes, atu1630 (cls1) and atu2486 (cls2), coding for PLD-type Cls. Heterologous expression of either cls1 or cls2 in Escherichia coli resulted in accumulation of CL supporting involvement of their products in CL synthesis. Expression of cls1 and cls2 in A. tumefaciens is constitutive and irrespective of the growth phase. Membrane lipid profiling of A. tumefaciens mutants suggested that Cls2 is required for CL synthesis at early exponential growth whereas both Cls equally contribute to CL production at later growth stages. Contrary to many bacteria, which suffer from CL depletion, A. tumefaciens tolerates large changes in CL content since the CL-deficient cls1/cls2 double mutant showed no apparent defects in growth, stress tolerance, motility, biofilm formation, UV-stress and tumor formation on plants. PMID:27472399

  11. Anthocyanidin synthase in non-anthocyanin-producing Caryophyllales species.

    PubMed

    Shimada, Setsuko; Inoue, Yoriko T; Sakuta, Masaaki

    2005-12-01

    Red colors in flowers are mainly produced by two types of pigments: anthocyanins and betacyanins. Although anthocyanins are widely distributed in higher plants, betacyanins have replaced anthocyanins in the Caryophyllales. There has been no report so far to find anthocyanins and betacyanins existing together within the same plant. This curious phenomenon has been examined from genetic and evolutionary perspectives, however nothing is known at the molecular level about the mutual exclusion of anthocyanins and betacyanins in higher plants. Here, we show that spinach (Spinacia oleracea) and pokeweed (Phytolacca americana), which are both members of the Caryophyllales, have functional anthocyanidin synthases (ANSs). The ability of ANSs of the Caryophyllales to oxidize trans-leucocyanidin to cyanidin is comparable to that of ANSs in anthocyanin-producing plants. Expression profiles reveal that, in spinach, dihydroflavonol 4-reductase (DFR) and ANS are not expressed in most tissues and organs, except seeds, in which ANS may contribute to proanthocyanidin synthesis. One possible explanation for the lack of anthocyanins in the Caryophyllales is the suppression or limited expression of the DFR and ANS.

  12. Plasmodium falciparum dolichol phosphate mannose synthase represents a novel clade

    SciTech Connect

    Shams-Eldin, Hosam Santos de Macedo, Cristiana; Niehus, Sebastian; Dorn, Caroline; Kimmel, Juergen; Azzouz, Nahid; Schwarz, Ralph T.

    2008-06-06

    Dolichol phosphate mannose synthase (DPM) catalyzes the reaction between dolichol phosphate (Dol-P) and guanosine diphosphate mannose (GDP-Man) to form dolichol-phosphate-mannose (Dol-P-Man). This molecule acts as mannose donor for N-glycosylation and glycosylphosphatidylinositol (GPI) biosynthesis. The Plasmodium falciparum DPM1 (Pfdpm1) possesses a single predicted transmembrane region near the N-, but not the C-terminus. Here we show that the cloned Pfdpm1 gene failed to complement a Saccharomyces cerevisiae mutant indicating that the parasite gene does not belong to the baker's yeast group, as was previously assumed. Furthermore, Pfdpm1 was unable to complement a mouse mutant deficient in DPM but efficiently complements the Schizosaccharomyces pombe fission yeast mutant, indicating a difference between fission yeast and mammalian DPM genes. Therefore, we reanalyzed the hydrophobicity scales of all known DPMs and consequently reclassify the DPM clade into six major novel subgroups. Furthermore, we show that Pfdpm1 represents a unique enzyme among these subgroups.

  13. Impaired Nitric Oxide Synthase Signaling Dissociates Social Investigation and Aggression

    PubMed Central

    Trainor, Brian C.; Workman, Joanna L.; Jessen, Ruth; Nelson, Randy J.

    2007-01-01

    A combination of social withdrawal and increased aggression is characteristic of several mental disorders. Most previous studies have investigated the neurochemical bases of social behavior and aggression independently, as opposed to how these behaviors are regulated in concert. Neuronal nitric oxide synthase (nNOS) produces gaseous nitric oxide, which functions as a neurotransmitter and is known to affect several types of behavior including mating and aggression. Compared with wild-type mice, we observed that nNOS knockout mice showed reduced behavioral responses to an intruder behind a wire barrier. Similar results were observed in mice treated with the selective nNOS inhibitor 3-bromo-7-nitroindazole (3BrN). In habituation–dishabituation tests, treatment with 3BrN did not block recognition of male urine but did attenuate investigation time compared with oil-treated animals. Finally, nNOS knockout mice and 3BrN treated mice were significantly more aggressive than wild-type and oil-treated males, respectively. In general, these behavioral effects are less pronounced in pair-housed males compared with singly-housed males. Thus, nNOS inhibition results in a phenotype that displays reduced social investigation and increased aggression. These data suggest that further study of nNOS signaling is warranted in mental disorders characterized by social withdrawal and increased aggression. PMID:17469926

  14. In planta transient expression analysis of monoterpene synthases.

    PubMed

    Green, Sol A; Chen, Xiuyin; Matich, Adam J

    2012-01-01

    In vitro-based analyses of monoterpene synthase (mono-TPS) enzymes have led to a wealth of knowledge regarding their catalytic behavior, the mechanistic principles governing their product specificity, and the molecular basis for their evolution. However, the efficient production of active enzymes in Escherichia coli or yeast can be challenging. Agrobacterium-mediated transient expression in tobacco leaves is increasingly being used as a viable alternative to in vitro-based approaches for the production and functional analysis of a wide range of plant proteins. Transient expression is well suited for qualitative and semiquantitative analyses of mono-TPS enzyme product specificity and, in conjunction with standard volatile analysis techniques, provides an efficient tool for screening mono-TPS function in planta. The primary advantages of this system for mono-TPS analysis are that both mono-TPS genomic clones and cDNAs can be cloned directly into plant expression vectors without modification and expressed enzymes can be analyzed without the need for purification or endogenous precursor addition. Here, we describe a simple and cost-effective method for the in planta functional analysis of plant mono-TPS enzymes. This method can accommodate both the analysis of single genes and the scaling for more high-throughput functional screening of mono-TPS gene families or mutant libraries.

  15. Transcriptional regulation of the Arabidopsis thaliana chalcone synthase gene

    SciTech Connect

    Feinbaum, R.L.; Ausubel, F.M.

    1988-05-01

    The authors cloned an Arabiodpsis thaliana chalcone synthase (CHS) gene on the basis of cross-hybridization with a Petroselinum hortense CHS cDNA clone. The protein sequence deduced from the A. thaliana CHS DNA sequence is at least 85% homologous to the CHS sequences from P. hortense, Antirrhinum majus, and Petunia hybrida. Southern blot analysis indicated that CHS is a single-copy gene in A. thaliana. High-intensity light treatment of A. thaliana plants for 24 h caused a 50-fold increase in CHS enzyme activity and an accumulation of visibly detectable levels of anthocyanin pigments in the vegetative structures of these plants. A corresponding increase in the steady-state level of CHS mRNA was detected after high-intensity light treatment for the same period of time. The accumulation of CHS mRNA in response to high-intensity light was due, at least in part, to an increased rate of transcription of the CHS gene as demonstrated by nuclear runoff experiment.

  16. The y1 gene of maize codes for phytoene synthase.

    PubMed

    Buckner, B; Miguel, P S; Janick-Buckner, D; Bennetzen, J L

    1996-05-01

    The cloned y1 locus of maize was sequenced and found to encode phytoene synthase. Different "wild-type" alleles of the locus were found to differ by the insertion of transposable elements in their promoter and polyA addition regions, and by the length of a CCA tandem repeat series, without any obvious effect on function of the gene. A dominant Y1 ("wild-type") allele was observed to be expressed at highest levels in the seedling but also in the embryo and endosperm. The Mu3 transposable element insertion responsible for a pastel allele of y1, which gives lowered levels of carotenoids in the endosperm of kernels and seedlings grown at high temperatures, was located in the 5' end of the gene. Although the size of the transcript from this y1 mutation suggests that the Mu3 element provides the promoter for this allele, leaf tissue in this mutant line contained approximately normal amounts of y1 mRNA. A recessive allele of y1, which conditions normal levels of carotenoids in the embryo and seedling, but almost no carotenoids in the endosperm, was found to accumulate normal amounts of y1 mRNA in the seedling and embryo, while y1 transcripts were not detected in the endosperm.

  17. Diverse Functions of Endothelial NO Synthases System: NO and EDH

    PubMed Central

    Godo, Shigeo

    2016-01-01

    Abstract: Endothelium-dependent relaxations are predominantly regulated by nitric oxide (NO) in large conduit arteries and by endothelium-dependent hyperpolarization (EDH) in small resistance vessels. Although the nature of EDH factors varies depending on species and vascular beds, we have previously demonstrated that endothelial NO synthases (eNOS)-derived hydrogen peroxide (H2O2) is an EDH factor in animals and humans. This vessel size-dependent contribution of NO and EDH is, at least in part, attributable to the diverse roles of endothelial NOSs system; in large conduit arteries, eNOS mainly serves as a NO-generating system to elicit soluble guanylate cyclase–cyclic guanosine monophosphate-mediated relaxations, whereas in small resistance vessels, it serves as a superoxide-generating system to cause EDH/H2O2-mediated relaxations. Endothelial caveolin-1 may play an important role for the diverse roles of NOSs. Although reactive oxygen species are generally regarded harmful, the physiological roles of H2O2 have attracted much attention as accumulating evidence has shown that endothelium-derived H2O2 contributes to cardiovascular homeostasis. The diverse functions of endothelial NOSs system with NO and EDH/H2O2 could account for a compensatory mechanism in the setting of endothelial dysfunction. In this review, we will briefly summarize the current knowledge on the diverse functions of endothelial NOSs system: NO and EDH/H2O2. PMID:26647119

  18. SUCROSE SYNTHASE: ELUCIDATION OF COMPLEX POST-TRANSLATIONAL REGULATORY MECHANISMS

    SciTech Connect

    Steven C. Huber

    2009-05-12

    Studies have focused on the enzyme sucrose synthase, which plays an important role in the metabolism of sucrose in seeds and tubers. There are three isoforms of SUS in maize, referred to as SUS1, SUS-SH1, and SUS2. SUS is generally considered to be tetrameric protein but recent evidence suggests that SUS can also occur as a dimeric protein. The formation of tetrameric SUS is regulated by sucrose concentration in vitro and this could also be an important factor in the cellular localization of the protein. We found that high sucrose concentrations, which promote tetramer formation, also inhibit the binding of SUS1 to actin filaments in vitro. Previously, high sucrose concentrations were shown to promote SUS association with the plasma membrane. The specific regions of the SUS molecule involved in oligomerization are not known, but we identified a region of the SUS1 moelcule by bioinformatic analysis that was predicted to form a coiled coil. We demonstrated that this sequence could, in fact, self-associate as predicted for a coiled coil, but truncation analysis with the full-length recombinant protein suggested that it was not responsible for formation of dimers or tetramers. However, the coiled coil may function in binding of other proteins to SUS1. Overall, sugar availability may differentially influence the binding of SUS to cellular structures, and these effects may be mediated by changes in the oligomeric nature of the enzyme.

  19. Structure-based design of bacterial nitric oxide synthase inhibitors.

    PubMed

    Holden, Jeffrey K; Kang, Soosung; Hollingsworth, Scott A; Li, Huiying; Lim, Nathan; Chen, Steven; Huang, He; Xue, Fengtian; Tang, Wei; Silverman, Richard B; Poulos, Thomas L

    2015-01-22

    Inhibition of bacterial nitric oxide synthase (bNOS) has the potential to improve the efficacy of antimicrobials used to treat infections by Gram-positive pathogens Staphylococcus aureus and Bacillus anthracis. However, inhibitor specificity toward bNOS over the mammalian NOS (mNOS) isoforms remains a challenge because of the near identical NOS active sites. One key structural difference between the NOS isoforms is the amino acid composition of the pterin cofactor binding site that is adjacent to the NOS active site. Previously, we demonstrated that a NOS inhibitor targeting both the active and pterin sites was potent and functioned as an antimicrobial ( Holden , , Proc. Natl. Acad. Sci. U.S.A. 2013 , 110 , 18127 ). Here we present additional crystal structures, binding analyses, and bacterial killing studies of inhibitors that target both the active and pterin sites of a bNOS and function as antimicrobials. Together, these data provide a framework for continued development of bNOS inhibitors, as each molecule represents an excellent chemical scaffold for the design of isoform selective bNOS inhibitors.

  20. Cardiolipin synthase is required for Streptomyces coelicolor morphogenesis

    PubMed Central

    Jyothikumar, Vinod; Klanbut, Khanungkan; Tiong, John; Roxburgh, James S.; Hunter, Iain S.; Smith, Terry K.; Herron, Paul R.

    2013-01-01

    Summary The fluid mosaic model has recently been amended to account for the existence of membrane domains enriched in certain phospholipids. In rod-shaped bacteria, the anionic phospholipid cardiolipin is enriched at the cell poles but its role in the morphogenesis of the filamentous bacterium Streptomyces coelicolor is unknown. It was impossible to delete clsA (cardiolipin synthase; SCO1389) unless complemented by a second copy of clsA elsewhere in the chromosome. When placed under the control of an inducible promoter, clsA expression, phospholipid profile and morphogenesis became inducer dependent. TLC analysis of phospholipid showed altered profiles upon depletion of clsA expression. Analysis of cardiolipin by mass spectrometry showed two distinct cardiolipin envelopes that reflected differences in acyl chain length; the level of the larger cardiolipin envelope was reduced in concert with clsA expression. ClsA-EGFP did not localize to specific locations, but cardiolipin itself showed enrichment at hyphal tips, branch points and anucleate regions. Quantitative analysis of hyphal dimensions showed that the mycelial architecture and the erection of aerial hyphae were affected by the expression of clsA. Overexpression of clsA resulted in weakened hyphal tips, misshaped aerial hyphae and anucleate spores and demonstrates that cardiolipin synthesis is a requirement for morphogenesis in Streptomyces. PMID:22409773

  1. Nitric oxide and nitric oxide synthase in Huntington's disease.

    PubMed

    Deckel, A W

    2001-04-15

    Nitric oxide (NO) is a biologically active inorganic molecule produced when the semiessential amino acid l-arginine is converted to l-citrulline and NO via the enzyme nitric oxide synthase (NOS). NO is known to be involved in the regulation of many physiological processes, such as control of blood flow, platelet adhesion, endocrine function, neurotransmission, neuromodulation, and inflammation, to name only a few. During neuropathological conditions, the production of NO can be either protective or toxic, dependent on the stage of the disease, the isoforms of NOS involved, and the initial pathological event. This paper reviews the properties of NO and NOS and the pathophysiology of Huntington's disease (HD). It discusses ways in which NO and NOS may interact with the protein product of HD and reviews data implicating NOS in the neuropathology of HD. This is followed by a synthesis of current information regarding how NO/NOS may contribute to HD-related pathology and identification of areas for potential future research. PMID:11288139

  2. ATP synthase: from single molecule to human bioenergetics

    PubMed Central

    KAGAWA, Yasuo

    2010-01-01

    ATP synthase (FoF1) consists of an ATP-driven motor (F1) and a H+-driven motor (Fo), which rotate in opposite directions. FoF1 reconstituted into a lipid membrane is capable of ATP synthesis driven by H+ flux. As the basic structures of F1 (α3β3γδε) and Fo (ab2c10) are ubiquitous, stable thermophilic FoF1 (TFoF1) has been used to elucidate molecular mechanisms, while human F1Fo (HF1Fo) has been used to study biomedical significance. Among F1s, only thermophilic F1 (TF1) can be analyzed simultaneously by reconstitution, crystallography, mutagenesis and nanotechnology for torque-driven ATP synthesis using elastic coupling mechanisms. In contrast to the single operon of TFoF1, HFoF1 is encoded by both nuclear DNA with introns and mitochondrial DNA. The regulatory mechanism, tissue specificity and physiopathology of HFoF1 were elucidated by proteomics, RNA interference, cytoplasts and transgenic mice. The ATP synthesized daily by HFoF1 is in the order of tens of kilograms, and is primarily controlled by the brain in response to fluctuations in activity. PMID:20689227

  3. Nitric oxide and nitric oxide synthase in Huntington's disease.

    PubMed

    Deckel, A W

    2001-04-15

    Nitric oxide (NO) is a biologically active inorganic molecule produced when the semiessential amino acid l-arginine is converted to l-citrulline and NO via the enzyme nitric oxide synthase (NOS). NO is known to be involved in the regulation of many physiological processes, such as control of blood flow, platelet adhesion, endocrine function, neurotransmission, neuromodulation, and inflammation, to name only a few. During neuropathological conditions, the production of NO can be either protective or toxic, dependent on the stage of the disease, the isoforms of NOS involved, and the initial pathological event. This paper reviews the properties of NO and NOS and the pathophysiology of Huntington's disease (HD). It discusses ways in which NO and NOS may interact with the protein product of HD and reviews data implicating NOS in the neuropathology of HD. This is followed by a synthesis of current information regarding how NO/NOS may contribute to HD-related pathology and identification of areas for potential future research.

  4. Conservation and Role of Electrostatics in Thymidylate Synthase

    PubMed Central

    Garg, Divita; Skouloubris, Stephane; Briffotaux, Julien; Myllykallio, Hannu; Wade, Rebecca C.

    2015-01-01

    Conservation of function across families of orthologous enzymes is generally accompanied by conservation of their active site electrostatic potentials. To study the electrostatic conservation in the highly conserved essential enzyme, thymidylate synthase (TS), we conducted a systematic species-based comparison of the electrostatic potential in the vicinity of its active site. Whereas the electrostatics of the active site of TS are generally well conserved, the TSs from minimal organisms do not conform to the overall trend. Since the genomes of minimal organisms have a high thymidine content compared to other organisms, the observation of non-conserved electrostatics was surprising. Analysis of the symbiotic relationship between minimal organisms and their hosts, and the genetic completeness of the thymidine synthesis pathway suggested that TS from the minimal organism Wigglesworthia glossinidia (W.g.b.) must be active. Four residues in the vicinity of the active site of Escherichia coli TS were mutated individually and simultaneously to mimic the electrostatics of W.g.b TS. The measured activities of the E. coli TS mutants imply that conservation of electrostatics in the region of the active site is important for the activity of TS, and suggest that the W.g.b. TS has the minimal activity necessary to support replication of its reduced genome. PMID:26612036

  5. The inner workings of the hydrazine synthase multiprotein complex.

    PubMed

    Dietl, Andreas; Ferousi, Christina; Maalcke, Wouter J; Menzel, Andreas; de Vries, Simon; Keltjens, Jan T; Jetten, Mike S M; Kartal, Boran; Barends, Thomas R M

    2015-11-19

    Anaerobic ammonium oxidation (anammox) has a major role in the Earth's nitrogen cycle and is used in energy-efficient wastewater treatment. This bacterial process combines nitrite and ammonium to form dinitrogen (N2) gas, and has been estimated to synthesize up to 50% of the dinitrogen gas emitted into our atmosphere from the oceans. Strikingly, the anammox process relies on the highly unusual, extremely reactive intermediate hydrazine, a compound also used as a rocket fuel because of its high reducing power. So far, the enzymatic mechanism by which hydrazine is synthesized is unknown. Here we report the 2.7 Å resolution crystal structure, as well as biophysical and spectroscopic studies, of a hydrazine synthase multiprotein complex isolated from the anammox organism Kuenenia stuttgartiensis. The structure shows an elongated dimer of heterotrimers, each of which has two unique c-type haem-containing active sites, as well as an interaction point for a redox partner. Furthermore, a system of tunnels connects these active sites. The crystal structure implies a two-step mechanism for hydrazine synthesis: a three-electron reduction of nitric oxide to hydroxylamine at the active site of the γ-subunit and its subsequent condensation with ammonia, yielding hydrazine in the active centre of the α-subunit. Our results provide the first, to our knowledge, detailed structural insight into the mechanism of biological hydrazine synthesis, which is of major significance for our understanding of the conversion of nitrogenous compounds in nature.

  6. Decreased Expression of Cystathionine β-Synthase Promotes Glioma Tumorigenesis

    PubMed Central

    Takano, Naoharu; Sarfraz, Yasmeen; Gilkes, Daniele M.; Chaturvedi, Pallavi; Xiang, Lisha; Suematsu, Makoto; Zagzag, David; Semenza, Gregg L.

    2014-01-01

    Cystathionine β-synthase (CBS) catalyzes metabolic reactions that convert homocysteine to cystathionine. To assess the role of CBS in human glioma, cells were stably transfected with lentiviral vectors encoding short hairpin RNA (shRNA) targeting CBS or a non-targeting control shRNA and subclones were injected into immunodeficient mice. Interestingly, decreased CBS expression did not affect proliferation in vitro but decreased the latency period prior to rapid tumor xenograft growth after subcutaneous injection and increased tumor incidence and volume following orthotopic implantation into the caudate-putamen. In soft agar colony formation assays, CBS knockdown subclones displayed increased anchorage-independent growth. Molecular analysis revealed that CBS knockdown subclones expressed higher basal levels of the transcriptional activator hypoxia-inducible factor 2α (HIF-2α/EPAS1). HIF-2α knockdown counteracted the effect of CBS knockdown on anchorage-independent growth. Bioinformatic analysis of mRNA expression data from human glioma specimens revealed a significant association between low expression of CBS mRNA and high expression of angiopoietin-like 4 (ANGPTL4) and vascular endothelial growth factor (VEGF) transcripts, which are HIF-2 target gene products that were also increased in CBS knockdown subclones. These results suggest that decreased CBS expression in glioma increases HIF-2α protein levels and HIF-2 target gene expression, which promotes glioma tumor formation. Implications CBS loss of function promotes glioma growth. PMID:24994751

  7. Sequential induction of prostaglandin E and D synthases in inflammation

    SciTech Connect

    Schuligoi, Rufina . E-mail: rufina.schuligoi@meduni-graz.at; Grill, Magdalena; Heinemann, Akos; Peskar, Bernhard A.; Amann, Rainer

    2005-09-30

    Enhanced biosynthesis of prostaglandin (PG)D{sub 2} and subsequent formation of 15-deoxy-{delta}{sup 12,14}-PGJ{sub 2} has been suggested to contribute to resolution of inflammation. The primary aim of the present study in mouse heart was, therefore, to determine at the transcriptional level if there is sequential induction of PGE and PGD synthases (S) during inflammation. Expression of interleukin (IL)-1{beta} in heart was enhanced 4 h after systemic inflammation and declined thereafter within 3-5 days to basal levels. In contrast to cyclooxygenase-2 and membrane-bound (m)-PGES-1, which both peaked 4 h after endotoxin administration, hematopoietic (H)-PGDS expression was enhanced only 48 h after endotoxin. The expression of lipocalin-type (L)-PGDS was not significantly influenced. mRNA encoding the putative target of 15-deoxy-{delta}{sup 12,14}-PGJ{sub 2}, peroxisome proliferator-activated receptor {gamma}, was enhanced between 4 and 24 h after induction of inflammation. Treatment of mice with acetylsalicylic acid or indomethacin at doses effective to cause near-complete inhibition of PGE{sub 2} and PGD{sub 2} biosynthesis in heart ex vivo resulted in enhanced expression of IL-1{beta} 24 h after endotoxin administration. These results provide additional support for the hypothesis of a shift towards PGD{sub 2} biosynthesis during resolution of inflammation.

  8. Conservation and Role of Electrostatics in Thymidylate Synthase

    NASA Astrophysics Data System (ADS)

    Garg, Divita; Skouloubris, Stephane; Briffotaux, Julien; Myllykallio, Hannu; Wade, Rebecca C.

    2015-11-01

    Conservation of function across families of orthologous enzymes is generally accompanied by conservation of their active site electrostatic potentials. To study the electrostatic conservation in the highly conserved essential enzyme, thymidylate synthase (TS), we conducted a systematic species-based comparison of the electrostatic potential in the vicinity of its active site. Whereas the electrostatics of the active site of TS are generally well conserved, the TSs from minimal organisms do not conform to the overall trend. Since the genomes of minimal organisms have a high thymidine content compared to other organisms, the observation of non-conserved electrostatics was surprising. Analysis of the symbiotic relationship between minimal organisms and their hosts, and the genetic completeness of the thymidine synthesis pathway suggested that TS from the minimal organism Wigglesworthia glossinidia (W.g.b.) must be active. Four residues in the vicinity of the active site of Escherichia coli TS were mutated individually and simultaneously to mimic the electrostatics of W.g.b TS. The measured activities of the E. coli TS mutants imply that conservation of electrostatics in the region of the active site is important for the activity of TS, and suggest that the W.g.b. TS has the minimal activity necessary to support replication of its reduced genome.

  9. Glycogen synthase kinase-3 (GSK3): regulation, actions, and diseases

    PubMed Central

    Beurel, Eleonore; Grieco, Steven F.; Jope, Richard S.

    2014-01-01

    Glycogen synthase kinase-3 (GSK3) may be the busiest kinase in most cells, with over 100 known substrates to deal with. How does GSK3 maintain control to selectively phosphorylate each substrate, and why was it evolutionarily favorable for GSK3 to assume such a large responsibility? GSK3 must be particularly adaptable for incorporating new substrates into its repertoire, and we discuss the distinct properties of GSK3 that may contribute to its capacity to fulfill its roles in multiple signaling pathways. The mechanisms regulating GSK3 (predominantly post-translational modifications, substrate priming, cellular trafficking, protein complexes) have been reviewed previously, so here we focus on newly identified complexities in these mechanisms, how each of these regulatory mechanism contributes to the ability of GSK3 to select which substrates to phosphorylate, and how these mechanisms may have contributed to its adaptability as new substrates evolved. The current understanding of the mechanisms regulating GSK3 is reviewed, as are emerging topics in the actions of GSK3, particularly its interactions with receptors and receptor-coupled signal transduction events, and differential actions and regulation of the two GSK3 isoforms, GSK3α and GSK3β. Another remarkable characteristic of GSK3 is its involvement in many prevalent disorders, including psychiatric and neurological diseases, inflammatory diseases, cancer, and others. We address the feasibility of targeting GSK3 therapeutically, and provide an update of its involvement in the etiology and treatment of several disorders. PMID:25435019

  10. Glycogen synthase kinase-3 inhibitors: Rescuers of cognitive impairments

    PubMed Central

    King, Margaret K.; Pardo, Marta; Cheng, Yuyan; Downey, Kimberlee; Jope, Richard S.; Beurel, Eléonore

    2013-01-01

    Impairment of cognitive processes is a devastating outcome of many diseases, injuries, and drugs affecting the central nervous system (CNS). Most often, very little can be done by available therapeutic interventions to improve cognitive functions. Here we review evidence that inhibition of glycogen synthase kinase-3 (GSK3) ameliorates cognitive deficits in a wide variety of animal models of CNS diseases, including Alzheimer's disease, Fragile X syndrome, Down syndrome, Parkinson's disease, spinocerebellar ataxia type 1, traumatic brain injury, and others. GSK3 inhibitors also improve cognition following impairments caused by therapeutic interventions, such as cranial irradiation for brain tumors. These findings demonstrate that GSK3 inhibitors are able to ameliorate cognitive impairments caused by a diverse array of diseases, injury, and treatments. The improvements in impaired cognition instilled by administration of GSK3 inhibitors appear to involve a variety of different mechanisms, such as supporting long-term potentiation and diminishing long-term depression, promotion of neurogenesis, reduction of inflammation, and increasing a number of neuroprotective mechanisms. The potential for GSK3 inhibitors to repair cognitive deficits associated with many conditions warrants further investigation of their potential for therapeutic interventions, particularly considering the current dearth of treatments available to reduce loss of cognitive functions. PMID:23916593

  11. Nicotianamine synthase specifically expressed in root nodules of Lotus japonicus.

    PubMed

    Hakoyama, T; Watanabe, H; Tomita, J; Yamamoto, A; Sato, S; Mori, Y; Kouchi, H; Suganuma, N

    2009-07-01

    In dicotyledonous plants, nicotianamine synthase (NAS) is thought to play a role in the intercellular transport of iron (Fe). Fe is an essential metal for nitrogen-fixing root nodules of legumes, prompting us to characterize the role of the NAS gene in detail. We previously compared gene-expression profiles in ineffective nodules formed on a Lotus japonicus Fix(-) mutant, sen1, with those in wild-type-effective nodules, and showed that expression of an expressed sequence tag (EST) clone encoding an NAS (EC 2.5.1.43) homologue was repressed in the ineffective nodules. In the present study, two EST clones encoding NAS homologues were found in the EST database. We named them LjNAS1 and LjNAS2. Both were detected as single-copy genes in the L. japonicus genome, and conferred NAS activities in transformed Saccharomyces cerevisiae. LjNAS2 was expressed only in nodules, but LjNAS1 was expressed mainly in leaves, stems, and cotyledons. The level of LjNAS2 transcripts was highest in the nodules 24 days after inoculation with Mesorhizobium loti, and was localized in vascular bundles within the nodules. Expression of LjNAS2 was suppressed in ineffective nodules formed on Fix(-) mutants other than sen1. By contrast, nitrogenase activities of nodules were not influenced in LjNAS2-suppressed plants. We discuss the role of LjNAS2 from the aspect of Fe translocation in nodules.

  12. Nitric oxide synthase deficiency and the pathophysiology of muscular dystrophy

    PubMed Central

    Tidball, James G; Wehling-Henricks, Michelle

    2014-01-01

    The secondary loss of neuronal nitric oxide synthase (nNOS) that occurs in dystrophic muscle is the basis of numerous, complex and interacting features of the dystrophic pathology that affect not only muscle itself, but also influence the interaction of muscle with other tissues. Many mechanisms through which nNOS deficiency contributes to misregulation of muscle development, blood flow, fatigue, inflammation and fibrosis in dystrophic muscle have been identified, suggesting that normalization in NO production could greatly attenuate diverse aspects of the pathology of muscular dystrophy through multiple regulatory pathways. However, the relative importance of the loss of nNOS from the sarcolemma versus the importance of loss of total nNOS from dystrophic muscle remains unknown. Although most current evidence indicates that nNOS localization at the sarcolemma is not required to achieve NO-mediated reductions of pathology in muscular dystrophy, the question remains open concerning whether membrane localization would provide a more efficient rescue from features of the dystrophic phenotype. PMID:25194047

  13. Differences in Substrate Specificities of Five Bacterial Wax Ester Synthases

    PubMed Central

    Wahlen, Bradley D.; Garner, EmmaLee; Wei, Jiashi; Seefeldt, Lance C.

    2012-01-01

    Wax esters are produced in certain bacteria as a potential carbon and energy storage compound. The final enzyme in the biosynthetic pathway responsible for wax ester production is the bifunctional wax ester synthase/acyl-coenzyme A (acyl-CoA):diacylglycerol acyltransferase (WS/DGAT), which utilizes a range of fatty alcohols and fatty acyl-CoAs to synthesize the corresponding wax ester. We report here the isolation and substrate range characterization for five WS/DGAT enzymes from four different bacteria: Marinobacter aquaeolei VT8, Acinetobacter baylyi, Rhodococcus jostii RHA1, and Psychrobacter cryohalolentis K5. The results from kinetic studies of isolated enzymes reveal a differential activity based on the order of substrate addition and reveal subtle differences between the substrate selectivity of the different enzymes. These in vitro results are compared to the wax ester and triacylglyceride product profiles obtained from each organism grown under neutral lipid accumulating conditions, providing potential insights into the role that the WS/DGAT enzyme plays in determining the final wax ester products that are produced under conditions of nutrient stress in each of these bacteria. Further, the analysis revealed that one enzyme in particular from M. aquaeolei VT8 showed the greatest potential for future study based on rapid purification and significantly higher activity than was found for the other isolated WS/DGAT enzymes. The results provide a framework to test prospective differences between these enzymes for potential biotechnological applications such as high-value petrochemicals and biofuel production. PMID:22685145

  14. Structure-Based Discovery of Inhibitors of Thymidylate Synthase

    NASA Astrophysics Data System (ADS)

    Shoichet, Brian K.; Stroud, Robert M.; Santi, Daniel V.; Kuntz, Irwin D.; Perry, Kathy M.

    1993-03-01

    A molecular docking computer program (DOCK) was used to screen the Fine Chemical Directory, a database of commercially available compounds, for molecules that are complementary to thymidylate synthase (TS), a chemotherapeutic target. Besides retrieving the substrate and several known inhibitors, DOCK proposed putative inhibitors previously unknown to bind to the enzyme. Three of these compounds inhibited Lactobacillus caser TS at submillimolar concentrations. One of these inhibitors, sulisobenzone, crystallized with TS in two configurations that differed from the DOCK-favored geometry: a counterion was bound in the substrate site, which resulted in a 6 to 9 angstrom displacement of the inhibitor. The structure of the complexes suggested another binding region in the active site that could be exploited. This region was probed with molecules sterically similar to sulisobenzone, which led to the identification of a family of phenolphthalein analogs that inhibit TS in the 1 to 30 micromolar range. These inhibitors do not resemble the substrates of the enzyme. A crystal structure of phenolphthalein with TS shows that it binds in the target site in a configuration that resembles the one suggested by DOCK.

  15. Engineering the acyltransferase substrate specificity of assembly line polyketide synthases

    PubMed Central

    Dunn, Briana J.; Khosla, Chaitan

    2013-01-01

    Polyketide natural products act as a broad range of therapeutics, including antibiotics, immunosuppressants and anti-cancer agents. This therapeutic diversity stems from the structural diversity of these small molecules, many of which are produced in an assembly line manner by modular polyketide synthases. The acyltransferase (AT) domains of these megasynthases are responsible for selection and incorporation of simple monomeric building blocks, and are thus responsible for a large amount of the resulting polyketide structural diversity. The substrate specificity of these domains is often targeted for engineering in the generation of novel, therapeutically active natural products. This review outlines recent developments that can be used in the successful engineering of these domains, including AT sequence and structural data, mechanistic insights and the production of a diverse pool of extender units. It also provides an overview of previous AT domain engineering attempts, and concludes with proposed engineering approaches that take advantage of current knowledge. These approaches may lead to successful production of biologically active ‘unnatural’ natural products. PMID:23720536

  16. Multisite phosphorylation of spinach leaf sucrose-phosphate synthase

    SciTech Connect

    Huber, J.L.; Huber, S.C. )

    1990-05-01

    Spinach leaf sucrose-phosphate synthase is phosphorylated both in vivo and in vitro on serine residues. Phosphorylation of SPS in vivo yields twelve major phosphopeptides after a tryptic digest and two dimensional mapping. The in vivo labeling of three of these SPS P-peptides is reduced in illuminated leaves where the extracted enzyme is activated relative to that of dark leaves. Two of these inhibitory sites are phosphorylated as well when SPS is inactivated in vitro using ({sup 32}P)ATP. In vivo phosphorylation of two other sites is enhanced during mannose feeding of the leaves (in light or dark) which produces the highest activation state of SPS. Overall, the results confirm that light-dark regulation of SPS activity occurs as a result of regulatory seryl-phosphorylation and involves a balance between phosphorylation of sites which inhibit or stimulate activity. Regulation of the SPS protein kinase that inhibits activity is relatively unaffected by phosphate but inhibited by G1c 6-P (IC{sub 50}{approx}5 mM), which may explain the control of SPS activation state by light-dark signals.

  17. Two Distinct Cardiolipin Synthases Operate in Agrobacterium tumefaciens

    PubMed Central

    Czolkoss, Simon; Fritz, Christiane; Hölzl, Georg; Aktas, Meriyem

    2016-01-01

    Cardiolipin (CL) is a universal component of energy generating membranes. In most bacteria, it is synthesized via the condensation of two molecules phosphatidylglycerol (PG) by phospholipase D-type cardiolipin synthases (PLD-type Cls). In the plant pathogen and natural genetic engineer Agrobacterium tumefaciens CL comprises up to 15% of all phospholipids in late stationary growth phase. A. tumefaciens harbors two genes, atu1630 (cls1) and atu2486 (cls2), coding for PLD-type Cls. Heterologous expression of either cls1 or cls2 in Escherichia coli resulted in accumulation of CL supporting involvement of their products in CL synthesis. Expression of cls1 and cls2 in A. tumefaciens is constitutive and irrespective of the growth phase. Membrane lipid profiling of A. tumefaciens mutants suggested that Cls2 is required for CL synthesis at early exponential growth whereas both Cls equally contribute to CL production at later growth stages. Contrary to many bacteria, which suffer from CL depletion, A. tumefaciens tolerates large changes in CL content since the CL-deficient cls1/cls2 double mutant showed no apparent defects in growth, stress tolerance, motility, biofilm formation, UV-stress and tumor formation on plants. PMID:27472399

  18. CDP-diacylglycerol synthase activity in Clostridium perfingens

    SciTech Connect

    Carmen, G.M.; Zaniewski, R.L.; Cousminer, J.J.

    1982-01-01

    CTP: phosphatidate cytidylyltransferase (CDP-diacylglycerol synthase; EC 2.7.7.41) was identified in the cell envelope fraction of the gram-positive anaerobe Clostridium perfringens. The association of this enzyme with the cell envelope fraction of cell extracts was demonstrated by glycerol density gradient centrifugation and by activity sedimenting with the 100,000 x g pellet. The enzyme exhibited a broad pH optimium between pH 6.5 and pH 7.5. Enzyme activity was dependent on magnesium (5 mM) or manganese (1 mM) ions. Activity was also dependent on the addition on the nonionic detergent Triton X-100 (5 mM). The apparent Km values for CTP and phosphatidic acid were 0.18 mM and 0.22 mM respectively. Thioreactive agents inhibited activity, indicating that a sulfhydryl group is essential for activity. Maximal enzyme activity was observed at 50 degrees C. (Refs. 24).

  19. Squalene Synthase As a Target for Chagas Disease Therapeutics

    PubMed Central

    Chan, Hsiu-Chien; Li, Jikun; Zheng, Yingying; Huang, Chun-Hsiang; Ren, Feifei; Chen, Chun-Chi; Zhu, Zhen; Galizzi, Melina; Li, Zhu-Hong; Rodrigues-Poveda, Carlos A.; Gonzalez-Pacanowska, Dolores; Veiga-Santos, Phercyles; de Carvalho, Tecia Maria Ulisses; de Souza, Wanderley; Urbina, Julio A.; Wang, Andrew H.-J.; Docampo, Roberto; Li, Kai; Liu, Yi-Liang; Oldfield, Eric; Guo, Rey-Ting

    2014-01-01

    Trypanosomatid parasites are the causative agents of many neglected tropical diseases and there is currently considerable interest in targeting endogenous sterol biosynthesis in these organisms as a route to the development of novel anti-infective drugs. Here, we report the first x-ray crystallographic structures of the enzyme squalene synthase (SQS) from a trypanosomatid parasite, Trypanosoma cruzi, the causative agent of Chagas disease. We obtained five structures of T. cruzi SQS and eight structures of human SQS with four classes of inhibitors: the substrate-analog S-thiolo-farnesyl diphosphate, the quinuclidines E5700 and ER119884, several lipophilic bisphosphonates, and the thiocyanate WC-9, with the structures of the two very potent quinuclidines suggesting strategies for selective inhibitor development. We also show that the lipophilic bisphosphonates have low nM activity against T. cruzi and inhibit endogenous sterol biosynthesis and that E5700 acts synergistically with the azole drug, posaconazole. The determination of the structures of trypanosomatid and human SQS enzymes with a diverse set of inhibitors active in cells provides insights into SQS inhibition, of interest in the context of the development of drugs against Chagas disease. PMID:24789335

  20. Structure-Based Design of Bacterial Nitric Oxide Synthase Inhibitors

    PubMed Central

    2015-01-01

    Inhibition of bacterial nitric oxide synthase (bNOS) has the potential to improve the efficacy of antimicrobials used to treat infections by Gram-positive pathogens Staphylococcus aureus and Bacillus anthracis. However, inhibitor specificity toward bNOS over the mammalian NOS (mNOS) isoforms remains a challenge because of the near identical NOS active sites. One key structural difference between the NOS isoforms is the amino acid composition of the pterin cofactor binding site that is adjacent to the NOS active site. Previously, we demonstrated that a NOS inhibitor targeting both the active and pterin sites was potent and functioned as an antimicrobial (Holden, , Proc. Natl. Acad. Sci. U.S.A.2013, 110, 1812724145412). Here we present additional crystal structures, binding analyses, and bacterial killing studies of inhibitors that target both the active and pterin sites of a bNOS and function as antimicrobials. Together, these data provide a framework for continued development of bNOS inhibitors, as each molecule represents an excellent chemical scaffold for the design of isoform selective bNOS inhibitors. PMID:25522110

  1. Transcriptional regulation of farnesyl pyrophosphate synthase by liver X receptors.

    PubMed

    Fukuchi, Junichi; Song, Ching; Ko, Andrew L; Liao, Shutsung

    2003-09-01

    Liver X receptors (LXRs) are members of the nuclear receptor superfamily that are involved in cholesterol and lipid metabolism. In addition to liver, the brain is another site where LXRs may control cholesterol homeostasis. In the brain, the regulation of cholesterol homeostasis is independent from other parts of the body, and its disturbance is associated with neurodegenerative disorders, such as Alzheimer's disease. We have used PCR-based suppressive subtractive cloning to identify new LXR target genes in brain cells. In this report, we show that farnesyl pyrophosphate synthase (FPPS) is a new target gene for LXR in astrocytes and neurons. Farnesyl pyrophosphate is an obligate intermediate for de novo cholesterol synthesis and a substrate for protein farnesylation. Stimulation of FPPS mRNA synthesis by an LXR agonist, Hypocholamide, was observed in several cell lines from the central nervous system. We identified a single putative direct repeat 4 (DR4) LXR response element in the FPPS promoter. In a reporter gene assay, LXR transactivated a reporter gene bearing a truncated FPPS promoter containing this DR4 cis-element but not if the DR4 element was mutated. Using gel-mobility shift assay, we further demonstrated the direct interaction between the LXR/retinoid X receptor (RXR) heterodimer and the response element. Taken together, our results indicate that LXRs directly regulate FPPS gene expression, and thus may play a role in modulating cholesterol synthesis in the brain. PMID:12957674

  2. Squalene synthase as a target for Chagas disease therapeutics.

    PubMed

    Shang, Na; Li, Qian; Ko, Tzu-Ping; Chan, Hsiu-Chien; Li, Jikun; Zheng, Yingying; Huang, Chun-Hsiang; Ren, Feifei; Chen, Chun-Chi; Zhu, Zhen; Galizzi, Melina; Li, Zhu-Hong; Rodrigues-Poveda, Carlos A; Gonzalez-Pacanowska, Dolores; Veiga-Santos, Phercyles; de Carvalho, Tecia Maria Ulisses; de Souza, Wanderley; Urbina, Julio A; Wang, Andrew H-J; Docampo, Roberto; Li, Kai; Liu, Yi-Liang; Oldfield, Eric; Guo, Rey-Ting

    2014-05-01

    Trypanosomatid parasites are the causative agents of many neglected tropical diseases and there is currently considerable interest in targeting endogenous sterol biosynthesis in these organisms as a route to the development of novel anti-infective drugs. Here, we report the first x-ray crystallographic structures of the enzyme squalene synthase (SQS) from a trypanosomatid parasite, Trypanosoma cruzi, the causative agent of Chagas disease. We obtained five structures of T. cruzi SQS and eight structures of human SQS with four classes of inhibitors: the substrate-analog S-thiolo-farnesyl diphosphate, the quinuclidines E5700 and ER119884, several lipophilic bisphosphonates, and the thiocyanate WC-9, with the structures of the two very potent quinuclidines suggesting strategies for selective inhibitor development. We also show that the lipophilic bisphosphonates have low nM activity against T. cruzi and inhibit endogenous sterol biosynthesis and that E5700 acts synergistically with the azole drug, posaconazole. The determination of the structures of trypanosomatid and human SQS enzymes with a diverse set of inhibitors active in cells provides insights into SQS inhibition, of interest in the context of the development of drugs against Chagas disease. PMID:24789335

  3. Inducible Nitric Oxide Synthase Expression in Human Colorectal Cancer

    PubMed Central

    Cianchi, Fabio; Cortesini, Camillo; Fantappiè, Ornella; Messerini, Luca; Schiavone, Nicola; Vannacci, Alfredo; Nistri, Silvia; Sardi, Iacopo; Baroni, Gianna; Marzocca, Cosimo; Perna, Federico; Mazzanti, Roberto; Bechi, Paolo; Masini, Emanuela

    2003-01-01

    To investigate the potential involvement of the nitric oxide (NO) pathway in colorectal carcinogenesis, we correlated the expression and the activity of inducible nitric oxide synthase (iNOS) with the degree of tumor angiogenesis in human colorectal cancer. Tumor samples and adjacent normal mucosa were obtained from 46 surgical specimens. Immunohistochemical expression of iNOS, vascular endothelial growth factor (VEGF), and CD31 was analyzed on paraffin-embedded tissue sections. iNOS activity and cyclic GMP levels were assessed by specific biochemical assays. iNOS protein expression was determined by Western blot analysis. iNOS and VEGF mRNA levels were evaluated using Northern blot analysis. Both iNOS and VEGF expressions correlated significantly with intratumor microvessel density (rs = 0.31, P = 0.02 and rs = 0.67, P < 0.0001, respectively). A significant correlation was also found between iNOS and VEGF expression (P = 0.001). iNOS activity and cyclic GMP production were significantly higher in the cancer specimens than in the normal mucosa (P < 0.0001 and P < 0.0001, respectively), as well as in metastatic tumors than in nonmetastatic ones (P = 0.002 and P = 0.04, respectively). Western and Northern blot analyses confirmed the up-regulation of the iNOS protein and gene in the tumor specimens as compared with normal mucosa. NO seems to play a role in colorectal cancer growth by promoting tumor angiogenesis. PMID:12598314

  4. A nitric oxide synthase inhibitor impairs memory storage in mice.

    PubMed

    Baratti, C M; Kopf, S R

    1996-05-01

    Posttraining administration of the L-enantiomer of the competitive inhibitor of nitric oxide synthase, NG-nitro-L-arginine methyl ester (L-NAME, 3-100 mg/kg, ip), impaired 48-h retention of a one-trial step-through inhibitory shock-avoidance task in male Swiss mice. The effects were dose-dependent and were not observed when the D-enantiomer (D-NAME, 3-100 mg/kg, ip) was injected instead of L-NAME. Retention latencies of mice that had not received a footshock during training were not affected by L-NAME. The memory impairment produced by L-NAME was time-dependent, suggesting an action on memory storage. The effects of L-NAME on memory were overcome by the injection of L-(but not D-)arginine (300 mg/kg, ip) along with the inhibitor. Considered together, these findings suggest that the L-arginine/nitric oxide pathway may be involved in memory storage of an inhibitory avoidance response in mice.

  5. Structural basis for substrate activation and regulation by cystathionine beta-synthase (CBS) domains in cystathionine [beta]-synthase

    SciTech Connect

    Koutmos, Markos; Kabil, Omer; Smith, Janet L.; Banerjee, Ruma

    2011-08-17

    The catalytic potential for H{sub 2}S biogenesis and homocysteine clearance converge at the active site of cystathionine {beta}-synthase (CBS), a pyridoxal phosphate-dependent enzyme. CBS catalyzes {beta}-replacement reactions of either serine or cysteine by homocysteine to give cystathionine and water or H{sub 2}S, respectively. In this study, high-resolution structures of the full-length enzyme from Drosophila in which a carbanion (1.70 {angstrom}) and an aminoacrylate intermediate (1.55 {angstrom}) have been captured are reported. Electrostatic stabilization of the zwitterionic carbanion intermediate is afforded by the close positioning of an active site lysine residue that is initially used for Schiff base formation in the internal aldimine and later as a general base. Additional stabilizing interactions between active site residues and the catalytic intermediates are observed. Furthermore, the structure of the regulatory 'energy-sensing' CBS domains, named after this protein, suggests a mechanism for allosteric activation by S-adenosylmethionine.

  6. An O-acetylserine (thiol) lyase from Leucaena leucocephala is a cysteine synthase but not a mimosine synthase.

    PubMed

    Yafuso, Jannai T; Negi, Vishal Singh; Bingham, Jon-Paul; Borthakur, Dulal

    2014-07-01

    In plants, the final step of cysteine formation is catalyzed by O-acetylserine (thiol) lyase (OAS-TL). The purpose of this study was to isolate and characterize an OAS-TL from the tree legume Leucaena leucocephala (leucaena). Leucaena contains a toxic, nonprotein amino acid, mimosine, which is also formed by an OAS-TL, and characterization of this enzyme is essential for developing a mimosine-free leucaena for its use as a protein-rich fodder. The cDNA for a cytosolic leucaena OAS-TL isoform was obtained through interspecies suppression subtractive hybridization. A 40-kDa recombinant protein was purified from Escherichia coli and used in enzyme activity assays where it was found to synthesize only cysteine. The enzyme followed Michaelis-Menten kinetics, and the Km was calculated to be 1,850±414 μM sulfide and the Vmax was 200.6±19.92 μM cysteine min(-1). The N-terminal affinity His-tag was cleaved from the recombinant OAS-TL to eliminate its possible interference in binding with the substrate, 3-hydroxy-4-pyridone, for mimosine formation. The His-tag-cleaved OAS-TL was again observed to catalyze the formation of cysteine but not mimosine. Thus, the cytosolic OAS-TL from leucaena used in this study is specific for only cysteine synthesis and is different from previously reported OAS-TLs that also function as β-substituted alanine synthases. PMID:24777760

  7. Functional analysis of (4S)-limonene synthase mutants reveals determinants of catalytic outcome in a model monoterpene synthase.

    PubMed

    Srividya, Narayanan; Davis, Edward M; Croteau, Rodney B; Lange, B Markus

    2015-03-17

    Crystal structural data for (4S)-limonene synthase [(4S)-LS] of spearmint (Mentha spicata L.) were used to infer which amino acid residues are in close proximity to the substrate and carbocation intermediates of the enzymatic reaction. Alanine-scanning mutagenesis of 48 amino acids combined with enzyme fidelity analysis [percentage of (-)-limonene produced] indicated which residues are most likely to constitute the active site. Mutation of residues W324 and H579 caused a significant drop in enzyme activity and formation of products (myrcene, linalool, and terpineol) characteristic of a premature termination of the reaction. A double mutant (W324A/H579A) had no detectable enzyme activity, indicating that either substrate binding or the terminating reaction was impaired. Exchanges to other aromatic residues (W324H, W324F, W324Y, H579F, H579Y, and H579W) resulted in enzyme catalysts with significantly reduced activity. Sequence comparisons across the angiosperm lineage provided evidence that W324 is a conserved residue, whereas the position equivalent to H579 is occupied by aromatic residues (H, F, or Y). These results are consistent with a critical role of W324 and H579 in the stabilization of carbocation intermediates. The potential of these residues to serve as the catalytic base facilitating the terminal deprotonation reaction is discussed.

  8. An O-acetylserine (thiol) lyase from Leucaena leucocephala is a cysteine synthase but not a mimosine synthase.

    PubMed

    Yafuso, Jannai T; Negi, Vishal Singh; Bingham, Jon-Paul; Borthakur, Dulal

    2014-07-01

    In plants, the final step of cysteine formation is catalyzed by O-acetylserine (thiol) lyase (OAS-TL). The purpose of this study was to isolate and characterize an OAS-TL from the tree legume Leucaena leucocephala (leucaena). Leucaena contains a toxic, nonprotein amino acid, mimosine, which is also formed by an OAS-TL, and characterization of this enzyme is essential for developing a mimosine-free leucaena for its use as a protein-rich fodder. The cDNA for a cytosolic leucaena OAS-TL isoform was obtained through interspecies suppression subtractive hybridization. A 40-kDa recombinant protein was purified from Escherichia coli and used in enzyme activity assays where it was found to synthesize only cysteine. The enzyme followed Michaelis-Menten kinetics, and the Km was calculated to be 1,850±414 μM sulfide and the Vmax was 200.6±19.92 μM cysteine min(-1). The N-terminal affinity His-tag was cleaved from the recombinant OAS-TL to eliminate its possible interference in binding with the substrate, 3-hydroxy-4-pyridone, for mimosine formation. The His-tag-cleaved OAS-TL was again observed to catalyze the formation of cysteine but not mimosine. Thus, the cytosolic OAS-TL from leucaena used in this study is specific for only cysteine synthesis and is different from previously reported OAS-TLs that also function as β-substituted alanine synthases.

  9. Cloning, characterization, and expression of a cDNA encoding an inducible nitric oxide synthase from the human chondrocyte.

    PubMed Central

    Charles, I G; Palmer, R M; Hickery, M S; Bayliss, M T; Chubb, A P; Hall, V S; Moss, D W; Moncada, S

    1993-01-01

    Incubation of human articular chondrocytes with interleukin 1 beta results in the time-dependent expression of nitric oxide (NO) synthase. We report here the isolation of a cDNA clone which encodes a protein of 1153 amino acids with a molecular mass of 131,213 Da and a calculated isoelectric point of 7.9. CHO cells transfected with a plasmid harboring this cDNA clone expressed NO synthase activity that was inhibited by some L-arginine analogues. The deduced amino acid sequence of the human chondrocyte inducible NO synthase shows 51% identity and 68% similarity with the endothelial NO synthase and 54% identity and 70% similarity with the neuronal NO synthase. The similarity (88%) between the human chondrocyte NO synthase cDNA sequence and that reported for the murine macrophage suggests that the inducible class of enzyme is conserved between different cell types and across species. Images Fig. 1 PMID:7504305

  10. Identification of a Fungal 1,8-Cineole Synthase from Hypoxylon sp. with Specificity Determinants in Common with the Plant Synthases*

    PubMed Central

    Shaw, Jeffrey J.; Berbasova, Tetyana; Sasaki, Tomoaki; Jefferson-George, Kyra; Spakowicz, Daniel J.; Dunican, Brian F.; Portero, Carolina E.; Narváez-Trujillo, Alexandra; Strobel, Scott A.

    2015-01-01

    Terpenes are an important and diverse class of secondary metabolites widely produced by fungi. Volatile compound screening of a fungal endophyte collection revealed a number of isolates in the family Xylariaceae, producing a series of terpene molecules, including 1,8-cineole. This compound is a commercially important component of eucalyptus oil used in pharmaceutical applications and has been explored as a potential biofuel additive. The genes that produce terpene molecules, such as 1,8-cineole, have been little explored in fungi, providing an opportunity to explore the biosynthetic origin of these compounds. Through genome sequencing of cineole-producing isolate E7406B, we were able to identify 11 new terpene synthase genes. Expressing a subset of these genes in Escherichia coli allowed identification of the hyp3 gene, responsible for 1,8-cineole biosynthesis, the first monoterpene synthase discovered in fungi. In a striking example of convergent evolution, mutational analysis of this terpene synthase revealed an active site asparagine critical for water capture and specificity during cineole synthesis, the same mechanism used in an unrelated plant homologue. These studies have provided insight into the evolutionary relationship of fungal terpene synthases to those in plants and bacteria and further established fungi as a relatively untapped source of this important and diverse class of compounds. PMID:25648891

  11. Identification of a fungal 1,8-cineole synthase from Hypoxylon sp. with specificity determinants in common with the plant synthases.

    PubMed

    Shaw, Jeffrey J; Berbasova, Tetyana; Sasaki, Tomoaki; Jefferson-George, Kyra; Spakowicz, Daniel J; Dunican, Brian F; Portero, Carolina E; Narváez-Trujillo, Alexandra; Strobel, Scott A

    2015-03-27

    Terpenes are an important and diverse class of secondary metabolites widely produced by fungi. Volatile compound screening of a fungal endophyte collection revealed a number of isolates in the family Xylariaceae, producing a series of terpene molecules, including 1,8-cineole. This compound is a commercially important component of eucalyptus oil used in pharmaceutical applications and has been explored as a potential biofuel additive. The genes that produce terpene molecules, such as 1,8-cineole, have been little explored in fungi, providing an opportunity to explore the biosynthetic origin of these compounds. Through genome sequencing of cineole-producing isolate E7406B, we were able to identify 11 new terpene synthase genes. Expressing a subset of these genes in Escherichia coli allowed identification of the hyp3 gene, responsible for 1,8-cineole biosynthesis, the first monoterpene synthase discovered in fungi. In a striking example of convergent evolution, mutational analysis of this terpene synthase revealed an active site asparagine critical for water capture and specificity during cineole synthesis, the same mechanism used in an unrelated plant homologue. These studies have provided insight into the evolutionary relationship of fungal terpene synthases to those in plants and bacteria and further established fungi as a relatively untapped source of this important and diverse class of compounds. PMID:25648891

  12. Identification of a fungal 1,8-cineole synthase from Hypoxylon sp. with specificity determinants in common with the plant synthases.

    PubMed

    Shaw, Jeffrey J; Berbasova, Tetyana; Sasaki, Tomoaki; Jefferson-George, Kyra; Spakowicz, Daniel J; Dunican, Brian F; Portero, Carolina E; Narváez-Trujillo, Alexandra; Strobel, Scott A

    2015-03-27

    Terpenes are an important and diverse class of secondary metabolites widely produced by fungi. Volatile compound screening of a fungal endophyte collection revealed a number of isolates in the family Xylariaceae, producing a series of terpene molecules, including 1,8-cineole. This compound is a commercially important component of eucalyptus oil used in pharmaceutical applications and has been explored as a potential biofuel additive. The genes that produce terpene molecules, such as 1,8-cineole, have been little explored in fungi, providing an opportunity to explore the biosynthetic origin of these compounds. Through genome sequencing of cineole-producing isolate E7406B, we were able to identify 11 new terpene synthase genes. Expressing a subset of these genes in Escherichia coli allowed identification of the hyp3 gene, responsible for 1,8-cineole biosynthesis, the first monoterpene synthase discovered in fungi. In a striking example of convergent evolution, mutational analysis of this terpene synthase revealed an active site asparagine critical for water capture and specificity during cineole synthesis, the same mechanism used in an unrelated plant homologue. These studies have provided insight into the evolutionary relationship of fungal terpene synthases to those in plants and bacteria and further established fungi as a relatively untapped source of this important and diverse class of compounds.

  13. Monomeric Alpha-Synuclein Exerts a Physiological Role on Brain ATP Synthase

    PubMed Central

    Ludtmann, Marthe H.R.; Angelova, Plamena R.; Ninkina, Natalia N.; Gandhi, Sonia

    2016-01-01

    Misfolded α-synuclein is a key factor in the pathogenesis of Parkinson's disease (PD). However, knowledge about a physiological role for the native, unfolded α-synuclein is limited. Using brains of mice lacking α-, β-, and γ-synuclein, we report that extracellular monomeric α-synuclein enters neurons and localizes to mitochondria, interacts with ATP synthase subunit α, and modulates ATP synthase function. Using a combination of biochemical, live-cell imaging and mitochondrial respiration analysis, we found that brain mitochondria of α-, β-, and γ-synuclein knock-out mice are uncoupled, as characterized by increased mitochondrial respiration and reduced mitochondrial membrane potential. Furthermore, synuclein deficiency results in reduced ATP synthase efficiency and lower ATP levels. Exogenous application of low unfolded α-synuclein concentrations is able to increase the ATP synthase activity that rescues the mitochondrial phenotypes observed in synuclein deficiency. Overall, the data suggest that α-synuclein is a previously unrecognized physiological regulator of mitochondrial bioenergetics through its ability to interact with ATP synthase and increase its efficiency. This may be of particular importance in times of stress or PD mutations leading to energy depletion and neuronal cell toxicity. SIGNIFICANCE STATEMENT Misfolded α-synuclein aggregations in the form of Lewy bodies have been shown to be a pathological hallmark in histological staining of Parkinson's disease (PD) patient brains. It is known that misfolded α-synuclein is a key driver in PD pathogenesis, but the physiological role of unfolded monomeric α-synuclein remains unclear. Using neuronal cocultures and isolated brain mitochondria of α-, β-, and γ-synuclein knock-out mice and monomeric α-synuclein, this current study shows that α-synuclein in its unfolded monomeric form improves ATP synthase efficiency and mitochondrial function. The ability of monomeric α-synuclein to enhance

  14. Studies on identifying the binding sites of folate and its derivatives in Lactobacillus casei thymidylate synthase

    SciTech Connect

    Maley, F.; Maley, G.F.

    1983-01-01

    It was shown that folate and its derivatives have a profound effect on stabilizing thymidylate synthase in vitro and in vivo, as a consequence of ternary formation between the folate, dUMP, or FdUMP, and the synthase. The degree to which complex formation is affected can be revealed qualitatively by circular dichroism and quantitatively by equilibrium dialysis using the Lactobacillus casei synthase. In contrast to the pteroylmonoglutamates, the pteroylpolyglutamates bind to thymidylate synthase in the absence of dUMP, but even their binding affinity is increased greatly by this nucleotide or its analogues. Similarly, treatment of the synthase with carboxypeptidase A prevents the binding of the pteroylmonoglutamates and reduces the binding of the polyglutamates without affecting dUMP binding. The latter does not protect against carboxypeptidase inactivation but does potentiate the protective effect of the pteroylpolyglutamates. To determine the region of the synthase involved in the binding of the glutamate residues, Pte(/sup 14/C)GluGlu6 was activated by a water soluble carbodiimide in the presence and absence of dUMP. This folate derivative behaved as a competitive inhibitor of 5,10-CH/sub 2/H/sub 4/PteGlu, in contrast to methotrexate which was non-competitive. Separation of the five cyanogen bromide peptides from the L. casei synthase revealed 80% of the radioactivity to be associated with CNBr-2 and about 15% with CNBr-4. Chymotrypsin treatment of CNBr-2 yielded two /sup 14/C-labeled peaks on high performance liquid chromatography, with the slower migrating one being separated further into two peaks by Bio-gel P2 chromatography. All three peptides came from the same region of CNBr-2, encompassing residues 47-61 of the enzyme. From these studies it would appear that the residues most probably involved in the fixation of PteGlu7 are lysines 50 and 58. In contrast, methotrexate appeared to bind to another region of CNBr-2.

  15. The molecular motor F-ATP synthase is targeted by the tumoricidal protein HAMLET.

    PubMed

    Ho, James; Sielaff, Hendrik; Nadeem, Aftab; Svanborg, Catharina; Grüber, Gerhard

    2015-05-22

    HAMLET (human alpha-lactalbumin made lethal to tumor cells) interacts with multiple tumor cell compartments, affecting cell morphology, metabolism, proteasome function, chromatin structure and viability. This study investigated if these diverse effects of HAMLET might be caused, in part, by a direct effect on the ATP synthase and a resulting reduction in cellular ATP levels. A dose-dependent reduction in cellular ATP levels was detected in A549 lung carcinoma cells, and by confocal microscopy, co-localization of HAMLET with the nucleotide-binding subunits α (non-catalytic) and β (catalytic) of the energy converting F1F0 ATP synthase was detected. As shown by fluorescence correlation spectroscopy, HAMLET binds to the F1 domain of the F1F0 ATP synthase with a dissociation constant (KD) of 20.5μM. Increasing concentrations of the tumoricidal protein HAMLET added to the enzymatically active α3β3γ complex of the F-ATP synthase lowered its ATPase activity, demonstrating that HAMLET binding to the F-ATP synthase effects the catalysis of this molecular motor. Single-molecule analysis was applied to study HAMLET-α3β3γ complex interaction. Whereas the α3β3γ complex of the F-ATP synthase rotated in a counterclockwise direction with a mean rotational rate of 3.8±0.7s(-1), no rotation could be observed in the presence of bound HAMLET. Our findings suggest that direct effects of HAMLET on the F-ATP synthase may inhibit ATP-dependent cellular processes. PMID:25681694

  16. The molecular motor F-ATP synthase is targeted by the tumoricidal protein HAMLET.

    PubMed

    Ho, James; Sielaff, Hendrik; Nadeem, Aftab; Svanborg, Catharina; Grüber, Gerhard

    2015-05-22

    HAMLET (human alpha-lactalbumin made lethal to tumor cells) interacts with multiple tumor cell compartments, affecting cell morphology, metabolism, proteasome function, chromatin structure and viability. This study investigated if these diverse effects of HAMLET might be caused, in part, by a direct effect on the ATP synthase and a resulting reduction in cellular ATP levels. A dose-dependent reduction in cellular ATP levels was detected in A549 lung carcinoma cells, and by confocal microscopy, co-localization of HAMLET with the nucleotide-binding subunits α (non-catalytic) and β (catalytic) of the energy converting F1F0 ATP synthase was detected. As shown by fluorescence correlation spectroscopy, HAMLET binds to the F1 domain of the F1F0 ATP synthase with a dissociation constant (KD) of 20.5μM. Increasing concentrations of the tumoricidal protein HAMLET added to the enzymatically active α3β3γ complex of the F-ATP synthase lowered its ATPase activity, demonstrating that HAMLET binding to the F-ATP synthase effects the catalysis of this molecular motor. Single-molecule analysis was applied to study HAMLET-α3β3γ complex interaction. Whereas the α3β3γ complex of the F-ATP synthase rotated in a counterclockwise direction with a mean rotational rate of 3.8±0.7s(-1), no rotation could be observed in the presence of bound HAMLET. Our findings suggest that direct effects of HAMLET on the F-ATP synthase may inhibit ATP-dependent cellular processes.

  17. 14-3-3 protein is a regulator of the mitochondrial and chloroplast ATP synthase

    PubMed Central

    Bunney, Tom D.; van Walraven, Hendrika S.; de Boer, Albertus H.

    2001-01-01

    Mitochondrial and chloroplast ATP synthases are key enzymes in plant metabolism, providing cells with ATP, the universal energy currency. ATP synthases use a transmembrane electrochemical proton gradient to drive synthesis of ATP. The enzyme complexes function as miniature rotary engines, ensuring energy coupling with very high efficiency. Although our understanding of the structure and functioning of the synthase has made enormous progress in recent years, our understanding of regulatory mechanisms is still rather preliminary. Here we report a role for 14-3-3 proteins in the regulation of ATP synthases. These 14-3-3 proteins are highly conserved phosphoserine/phosphothreonine-binding proteins that regulate a wide range of enzymes in plants, animals, and yeast. Recently, the presence of 14-3-3 proteins in chloroplasts was illustrated, and we show here that plant mitochondria harbor 14-3-3s within the inner mitochondrial-membrane compartment. There, the 14-3-3 proteins were found to be associated with the ATP synthases, in a phosphorylation-dependent manner, through direct interaction with the F1 β-subunit. The activity of the ATP synthases in both organelles is drastically reduced by recombinant 14-3-3. The rapid reduction in chloroplast ATPase activity during dark adaptation was prevented by a phosphopeptide containing the 14-3-3 interaction motif, demonstrating a role for endogenous 14-3-3 in the down-regulation of the CFoF1 activity. We conclude that regulation of the ATP synthases by 14-3-3 represents a mechanism for plant adaptation to environmental changes such as light/dark transitions, anoxia in roots, and fluctuations in nutrient supply. PMID:11274449

  18. Studies on identifying the binding sites of folate and its derivatives in Lactobacillus casei thymidylate synthase.

    PubMed

    Maley, F; Maley, G F

    1983-01-01

    It was shown that folate and its derivatives have a profound effect on stabilizing thymidylate synthase in vitro and in vivo, as a consequence of ternary formation between the folate, dUMP, or FdUMP, and the synthase. The degree to which complex formation is affected can be revealed qualitatively by circular dichroism and quantitatively by equilibrium dialysis using the Lactobacillus casei synthase. In contrast to the pteroylmonoglutamates, the pteroylpolyglutamates bind to thymidylate synthase in the absence of dUMP, but even their binding affinity is increased greatly by this nucleotide or its analogues. Similarly, treatment of the synthase with carboxypeptidase A prevents the binding of the pteroylmonoglutamates and reduces the binding of the polyglutamates without affecting dUMP binding. The latter does not protect against carboxypeptidase inactivation but does potentiate the protective effect of the pteroylpolyglutamates. To determine the region of the synthase involved in the binding of the glutamate residues, Pte[14C]GluGlu6 was activated by a water soluble carbodiimide in the presence and absence of dUMP. This folate derivative behaved as a competitive inhibitor of 5,10-CH2H4PteGlu, in contrast to methotrexate which was non-competitive. Separation of the five cyanogen bromide peptides from the L. casei synthase revealed 80% of the radioactivity to be associated with CNBr-2 and about 15% with CNBr-4. Chymotrypsin treatment of CNBr-2 yielded two 14C-labeled peaks on high performance liquid chromatography, with the slower migrating one being separated further into two peaks by Bio-gel P2 chromatography. All three peptides came from the same region of CNBr-2, encompassing residues 47-61 of the enzyme. From these studies it would appear that the residues most probably involved in the fixation of PteGlu7 are lysines 50 and 58. In contrast, methotrexate appeared to bind to another region of CNBr-2.

  19. Hyaluronan Synthase 1: A Mysterious Enzyme with Unexpected Functions

    PubMed Central

    Siiskonen, Hanna; Oikari, Sanna; Pasonen-Seppänen, Sanna; Rilla, Kirsi

    2015-01-01

    Hyaluronan synthase 1 (HAS1) is one of three isoenzymes responsible for cellular hyaluronan synthesis. Interest in HAS1 has been limited because its role in hyaluronan production seems to be insignificant compared to the two other isoenzymes, HAS2 and HAS3, which have higher enzymatic activity. Furthermore, in most cell types studied so far, the expression of its gene is low and the enzyme requires high concentrations of sugar precursors for hyaluronan synthesis, even when overexpressed in cell cultures. Both expression and activity of HAS1 are induced by pro-inflammatory factors like interleukins and cytokines, suggesting its involvement in inflammatory conditions. Has1 is upregulated in states associated with inflammation, like atherosclerosis, osteoarthritis, and infectious lung disease. In addition, both full length and splice variants of HAS1 are expressed in malignancies like bladder and prostate cancers, multiple myeloma, and malignant mesothelioma. Interestingly, immunostainings of tissue sections have demonstrated the role of HAS1 as a poor predictor in breast cancer, and is correlated with high relapse rate and short overall survival. Utilization of fluorescently tagged proteins has revealed the intracellular distribution pattern of HAS1, distinct from other isoenzymes. In all cell types studied so far, a high proportion of HAS1 is accumulated intracellularly, with a faint signal detected on the plasma membrane and its protrusions. Furthermore, the pericellular hyaluronan coat produced by HAS1 is usually thin without induction by inflammatory agents or glycemic stress and depends on CD44–HA interactions. These specific interactions regulate the organization of hyaluronan into a leukocyte recruiting matrix during inflammatory responses. Despite the apparently minor enzymatic activity of HAS1 under normal conditions, it may be an important factor under conditions associated with glycemic stress like metabolic syndrome, inflammation, and cancer. PMID

  20. Energy landscapes and catalysis in nitric-oxide synthase.

    PubMed

    Sobolewska-Stawiarz, Anna; Leferink, Nicole G H; Fisher, Karl; Heyes, Derren J; Hay, Sam; Rigby, Stephen E J; Scrutton, Nigel S

    2014-04-25

    Nitric oxide (NO) plays diverse roles in mammalian physiology. It is involved in blood pressure regulation, neurotransmission, and immune response, and is generated through complex electron transfer reactions catalyzed by NO synthases (NOS). In neuronal NOS (nNOS), protein domain dynamics and calmodulin binding are implicated in regulating electron flow from NADPH, through the FAD and FMN cofactors, to the heme oxygenase domain, the site of NO generation. Simple models based on crystal structures of nNOS reductase have invoked a role for large scale motions of the FMN-binding domain in shuttling electrons from the FAD-binding domain to the heme oxygenase domain. However, molecular level insight of the dynamic structural transitions in NOS enzymes during enzyme catalysis is lacking. We use pulsed electron-electron double resonance spectroscopy to derive inter-domain distance relationships in multiple conformational states of nNOS. These distance relationships are correlated with enzymatic activity through variable pressure kinetic studies of electron transfer and turnover. The binding of NADPH and calmodulin are shown to influence interdomain distance relationships as well as reaction chemistry. An important effect of calmodulin binding is to suppress adventitious electron transfer from nNOS to molecular oxygen and thereby preventing accumulation of reactive oxygen species. A complex landscape of conformations is required for nNOS catalysis beyond the simple models derived from static crystal structures of nNOS reductase. Detailed understanding of this landscape advances our understanding of nNOS catalysis/electron transfer, and could provide new opportunities for the discovery of small molecule inhibitors that bind at dynamic protein interfaces of this multidimensional energy landscape.

  1. Regulation of cardiolipin synthase levels in Saccharomyces cerevisiae.

    PubMed

    Su, Xuefeng; Dowhan, William

    2006-03-01

    The Saccharomyces cerevisiae cardiolipin (CL) synthase encoded by the CRD1 gene catalyses the synthesis of CL, which is localized to the inner mitochondrial membrane and plays an important role in mitochondrial function. To investigate how CRD1 expression is regulated, a lacZ reporter gene was placed under control of the CRD1 promoter and the 5'-untranslated region of its mRNA (P(CRD1)-lacZ). P(CRD1)-lacZ expression was 2.5 times higher in early stationary phase than in logarithmic phase for glucose grown cells. Non-fermentable growth resulted in a two-fold elevation in expression relative to glucose grown cells. A shift from glycerol to glucose rapidly repressed expression, whereas a shift from glucose to glycerol had the opposite effect. The derepression of P(CRD1)-lacZ expression by non-fermentable carbon sources was dependent on mitochondrial respiration. These results support a tight coordination between translation and transcription of the CRD1 gene, since similar effects by the above factors on CRD1 mRNA levels have been reported. In glucose-grown cells, P(CRD1)-lacZ expression was repressed 70% in a pgs1delta strain (lacks phosphatidylglycerol and CL) compared with wild-type and rho- cells and elevated 2.5-fold in crd1delta cells, which have increased phosphatidylglycerol levels, suggesting a role for phosphatidylglycerol in regulating CRD1 expression. Addition of inositol to the growth medium had no effect on expression. However, expression was elevated in an ino4delta mutant but not in ino2delta cells, suggesting multiple and separate functions for the inositol-responsive INO2/INO4 gene products, which normally function as a dimer in regulating gene function.

  2. The role of protein dynamics in thymidylate synthase catalysis

    PubMed Central

    Newby, Zachary; Lee, Tom T.; Morse, Richard J.; Liu, Lu; Liu, Yaoquan; Venkatraman, Prasanna; Santi, Daniel V.; Finer-Moore, Janet S.; Stroud, Robert M.

    2008-01-01

    The enzyme thymidylate synthase (TS) catalyzes the reductive methylation of 2′-deoxyuridine 5′-monophosphate (dUMP) to 2′-deoxythymidine 5′-monophosphate. Using kinetic and x-ray crystallography experiments, we have examined the role of the highly conserved Tyr-261 in the catalytic mechanism of TS. While Tyr-261 is distant from the site of methyl transfer, mutants at this position show a marked decrease in enzymatic activity. Given that Tyr-261 forms a hydrogen bond with the dUMP 3′-O, we hypothesized that this interaction would be important for substrate binding, orientation, and specificity. Our results, surprisingly, show that Tyr-261 contributes little to these features of the mechanism of TS. However, the residue is part of the structural core of closed ternary complexes of TS, and conservation of the size and shape of the Tyr side chain is essential for maintaining wild-type values of kcat/Km. Moderate increases in Kms for both substrate and the cofactor upon mutation of Tyr-261 arise mainly from destabilization of the active conformation of a loop containing a dUMP-binding arginine. Besides binding dUMP, this loop has a key role in stabilizing the closed conformation of the enzyme and in shielding the active site from bulk solvent during catalysis. Changes to atomic vibrations in crystals of a ternary complex of E. coli Tyr261Trp are associated with a greater than 2000-fold drop in kcat/Km. These results underline the important contribution of dynamics to catalysis in TS. PMID:16768437

  3. Intermolecular interactions of the malate synthase of Paracoccidioides spp

    PubMed Central

    2013-01-01

    Background The fungus Paracoccidioides spp is the agent of paracoccidioidomycosis (PCM), a pulmonary mycosis acquired by the inhalation of fungal propagules. Paracoccidioides malate synthase (PbMLS) is important in the infectious process of Paracoccidioides spp because the transcript is up-regulated during the transition from mycelium to yeast and in yeast cells during phagocytosis by murine macrophages. In addition, PbMLS acts as an adhesin in Paracoccidioides spp. The evidence for the multifunctionality of PbMLS indicates that it could interact with other proteins from the fungus and host. The objective of this study was to identify and analyze proteins that possibly bind to PbMLS (PbMLS-interacting proteins) because protein interactions are intrinsic to cell processes, and it might be possible to infer the function of a protein through the identification of its ligands. Results The search for interactions was performed using an in vivo assay with a two-hybrid library constructed in S. cerevisiae; the transcripts were sequenced and identified. In addition, an in vitro assay using pull-down GST methodology with different protein extracts (yeast, mycelium, yeast-secreted proteins and macrophage) was performed, and the resulting interactions were identified by mass spectrometry (MS). Some of the protein interactions were confirmed by Far-Western blotting using specific antibodies, and the interaction of PbMLS with macrophages was validated by indirect immunofluorescence and confocal microscopy. In silico analysis using molecular modeling, dynamics and docking identified the amino acids that were involved in the interactions between PbMLS and PbMLS-interacting proteins. Finally, the interactions were visualized graphically using Osprey software. Conclusion These observations indicate that PbMLS interacts with proteins that are in different functional categories, such as cellular transport, protein biosynthesis, modification and degradation of proteins and signal

  4. DISSECTING STRUCTURAL AND ELECTRONIC EFFECTS IN INDUCIBLE NITRIC OXIDE SYNTHASE

    PubMed Central

    Hannibal, Luciana; Page, Richard C.; Haque, Mohammad Mahfuzul; Bolisetty, Karthik; Yu, Zhihao; Misra, Saurav; Stuehr, Dennis J.

    2015-01-01

    Nitric oxide synthases (NOS) are haem-thiolate enzymes that catalyse the conversion of L-Arginine (LArg) into NO and citrulline. Inducible NOS (iNOS) is responsible for delivery of NO in response to stressors during inflammation. The catalytic performance of iNOS is proposed to rely mainly on the haem midpoint potential and the ability of the substrate L-Arg to provide an H-bond for oxygen activation (O-O scission). We present a comparative study of native iNOS versus iNOS-mesohaem, and investigate the formation of a low-spin ferric haem-aquo or -hydroxo species (P) in iNOS mutant W188H substituted with mesohaem. iNOS-mesohaem and W188H-mesohaem were stable and dimeric, and presented substrate-binding affinities comparable to their native counterparts. Single turnover reactions catalysed by iNOSoxy with LArg (first reaction step) or N-hydroxyarginine (second reaction step) showed that mesohaem substitution triggered faster rates of FeIIO2 conversion and altered other key kinetic parameters. We elucidated the first crystal structure of a NOS substituted with mesohaem and found essentially identical features compared to the structure of iNOS carrying native haem. This facilitated the dissection of structural and electronic effects. Mesohaem substitution substantially reduced the build-up of species P in W188H iNOS during catalysis, thus increasing its proficiency toward NO synthesis. The marked structural similarities of iNOSoxy containing native haem or mesohaem indicate that the kinetic behaviour observed in mesohaem-substituted iNOS is most heavily influenced by electronic effects rather than structural alterations. PMID:25608846

  5. Dissecting structural and electronic effects in inducible nitric oxide synthase.

    PubMed

    Hannibal, Luciana; Page, Richard C; Haque, Mohammad Mahfuzul; Bolisetty, Karthik; Yu, Zhihao; Misra, Saurav; Stuehr, Dennis J

    2015-04-01

    Nitric oxide synthases (NOSs) are haem-thiolate enzymes that catalyse the conversion of L-arginine (L-Arg) into NO and citrulline. Inducible NOS (iNOS) is responsible for delivery of NO in response to stressors during inflammation. The catalytic performance of iNOS is proposed to rely mainly on the haem midpoint potential and the ability of the substrate L-Arg to provide a hydrogen bond for oxygen activation (O-O scission). We present a study of native iNOS compared with iNOS-mesohaem, and investigate the formation of a low-spin ferric haem-aquo or -hydroxo species (P) in iNOS mutant W188H substituted with mesohaem. iNOS-mesohaem and W188H-mesohaem were stable and dimeric, and presented substrate-binding affinities comparable to those of their native counterparts. Single turnover reactions catalysed by iNOSoxy with L-Arg (first reaction step) or N-hydroxy-L-arginine (second reaction step) showed that mesohaem substitution triggered higher rates of Fe(II)O₂ conversion and altered other key kinetic parameters. We elucidated the first crystal structure of a NOS substituted with mesohaem and found essentially identical features compared with the structure of iNOS carrying native haem. This facilitated the dissection of structural and electronic effects. Mesohaem substitution substantially reduced the build-up of species P in W188H iNOS during catalysis, thus increasing its proficiency towards NO synthesis. The marked structural similarities of iNOSoxy containing native haem or mesohaem indicate that the kinetic behaviour observed in mesohaem-substituted iNOS is most heavily influenced by electronic effects rather than structural alterations.

  6. Inducible nitric oxide synthase haplotype associated with migraine and aura.

    PubMed

    de O S Mansur, Thiago; Gonçalves, Flavia M; Martins-Oliveira, Alisson; Speciali, Jose G; Dach, Fabiola; Lacchini, Riccardo; Tanus-Santos, Jose E

    2012-05-01

    Migraine is a complex neurological disorder with a clear neurogenic inflammatory component apparently including enhanced nitric oxide (NO) formation. Excessive NO amounts possibly contributing to migraine are derived from increased expression and activity of inducible NO synthase (iNOS). We tested the hypothesis that two functional, clinically relevant iNOS genetic polymorphisms (C(-1026)A-rs2779249 and G2087A-rs2297518) are associated with migraine with or without aura. We studied 142 healthy women without migraine (control group) and 200 women with migraine divided into two groups: 148 with migraine without aura (MWA) and 52 with aura (MA). Genotypes were determined by real-time polymerase chain reaction using the Taqman(®) allele discrimination assays. The PHASE 2.1 software was used to estimate the haplotypes. The A allele for the G2087A polymorphism was more commonly found in the MA group than in the MWA group (28 vs. 18%; P < 0.05). No other significant differences in the alleles or genotypes distributions were found (P > 0.05). The haplotype combining both A alleles for the two polymorphisms was more commonly found in the MA group than in the control group or in the MWA group (19 vs. 10 or 8%; P = 0.0245 or 0.0027, respectively). Our findings indicate that the G2087A and the C(-1026)A polymorphism in the iNOS gene affect the susceptibility to migraine with aura when their effects are combined within haplotypes, whereas the G2087A affects the susceptibility to aura in migraine patients. These finding may have therapeutic implications when examining the effects of selective iNOS inhibitors.

  7. Nitric oxide synthase-3 promotes embryonic development of atrioventricular valves.

    PubMed

    Liu, Yin; Lu, Xiangru; Xiang, Fu-Li; Lu, Man; Feng, Qingping

    2013-01-01

    Nitric oxide synthase-3 (NOS3) has recently been shown to promote endothelial-to-mesenchymal transition (EndMT) in the developing atrioventricular (AV) canal. The present study was aimed to investigate the role of NOS3 in embryonic development of AV valves. We hypothesized that NOS3 promotes embryonic development of AV valves via EndMT. To test this hypothesis, morphological and functional analysis of AV valves were performed in wild-type (WT) and NOS3(-/-) mice at postnatal day 0. Our data show that the overall size and length of mitral and tricuspid valves were decreased in NOS3(-/-) compared with WT mice. Echocardiographic assessment showed significant regurgitation of mitral and tricuspid valves during systole in NOS3(-/-) mice. These phenotypes were all rescued by cardiac specific NOS3 overexpression. To assess EndMT, immunostaining of Snail1 was performed in the embryonic heart. Both total mesenchymal and Snail1(+) cells in the AV cushion were decreased in NOS3(-/-) compared with WT mice at E10.5 and E12.5, which was completely restored by cardiac specific NOS3 overexpression. In cultured embryonic hearts, NOS3 promoted transforming growth factor (TGFβ), bone morphogenetic protein (BMP2) and Snail1expression through cGMP. Furthermore, mesenchymal cell formation and migration from cultured AV cushion explants were decreased in the NOS3(-/-) compared with WT mice. We conclude that NOS3 promotes AV valve formation during embryonic heart development and deficiency in NOS3 results in AV valve insufficiency.

  8. The general base in the thymidylate synthase catalyzed proton abstraction.

    PubMed

    Ghosh, Ananda K; Islam, Zahidul; Krueger, Jonathan; Abeysinghe, Thelma; Kohen, Amnon

    2015-12-14

    The enzyme thymidylate synthase (TSase), an important chemotherapeutic drug target, catalyzes the formation of 2'-deoxythymidine-5'-monophosphate (dTMP), a precursor of one of the DNA building blocks. TSase catalyzes a multi-step mechanism that includes the abstraction of a proton from the C5 of the substrate 2'-deoxyuridine-5'-monophosphate (dUMP). Previous studies on ecTSase proposed that an active-site residue, Y94 serves the role of the general base abstracting this proton. However, since Y94 is neither very basic, nor connected to basic residues, nor located close enough to the pyrimidine proton to be abstracted, the actual identity of this base remains enigmatic. Based on crystal structures, an alternative hypothesis is that the nearest potential proton-acceptor of C5 of dUMP is a water molecule that is part of a hydrogen bond (H-bond) network comprised of several water molecules and several protein residues including H147, E58, N177, and Y94. Here, we examine the role of the residue Y94 in the proton abstraction step by removing its hydroxyl group (Y94F mutant). We investigated the effect of the mutation on the temperature dependence of intrinsic kinetic isotope effects (KIEs) and found that these KIEs are more temperature dependent than those of the wild-type enzyme (WT). These results suggest that the phenolic -OH of Y94 is a component of the transition state for the proton abstraction step. The findings further support the hypothesis that no single functional group is the general base, but a network of bases and hydroxyls (from water molecules and tyrosine) sharing H-bonds across the active site can serve the role of the general base to remove the pyrimidine proton.

  9. Expression of fatty acid synthase in nonalcoholic fatty liver disease.

    PubMed

    Dorn, Christoph; Riener, Marc-Oliver; Kirovski, Georgi; Saugspier, Michael; Steib, Kathrin; Weiss, Thomas S; Gäbele, Erwin; Kristiansen, Glen; Hartmann, Arndt; Hellerbrand, Claus

    2010-01-01

    Nonalcoholic fatty liver disease (NAFLD) is characterized by hepatic lipid accumulation which starts with simple hepatic steatosis and may progress toward inflammation (nonalcoholic steatohepatitis [NASH]). Fatty acid synthase (FASN) catalyzes the last step in fatty acid biosynthesis, and thus, it is believed to be a major determinant of the maximal hepatic capacity to generate fatty acids by de novo lipogenesis. The aim of this study was to analyze the correlation between hepatic steatosis and inflammation with FASN expression. In vitro incubation of primary human hepatocytes with fatty acids dose-dependently induced cellular lipid-accumulation and FASN expression, while stimulation with TNF did not affect FASN levels. Further, hepatic FASN expression was significantly increased in vivo in a murine model of hepatic steatosis without significant inflammation but not in a murine NASH model as compared to control mice. Also, FASN expression was not increased in mice subjected to bile duct ligation, an experimental model characterized by severe hepatocellular damage and inflammation. Furthermore, FASN expression was analyzed in 102 human control or NAFLD livers applying tissue micro array technology and immunohistochemistry, and correlated significantly with the degree of hepatic steatosis, but not with inflammation or ballooning of hepatocytes. Quantification of FASN mRNA expression in human liver samples confirmed significantly higher FASN levels in hepatic steatosis but not in NASH, and expression of SREBP1, which is the main transcriptional regulator of FASN, paralleled FASN expression levels in human and experimental NAFLD. In conclusion, the transcriptional induction of FASN expression in hepatic steatosis is impaired in NASH, while hepatic inflammation in the absence of steatosis does not affect FASN expression, suggesting that FASN may serve as a new diagnostic marker or therapeutic target for the progression of NAFLD. PMID:20606731

  10. On the function of chitin synthase extracellular domains in biomineralization.

    PubMed

    Weiss, Ingrid M; Lüke, Florian; Eichner, Norbert; Guth, Christina; Clausen-Schaumann, Hauke

    2013-08-01

    Molluscs with various shell architectures evolved around 542-525 million years ago, as part of a larger phenomenon related to the diversification of metazoan phyla. Molluscs deposit minerals in a chitin matrix. The mollusc chitin is synthesized by transmembrane enzymes that contain several unique extracellular domains. Here we investigate the assembly mechanism of the chitin synthase Ar-CS1 via its extracellular domain ArCS1_E22. The corresponding transmembrane protein ArCS1_E22TM accumulates in membrane fractions of the expression host Dictyostelium discoideum. Soluble recombinant ArCS1_E22 proteins can be purified as monomers only at basic pH. According to confocal fluorescence microscopy experiments, immunolabeled ArCS1_E22 proteins adsorb preferably to aragonitic nacre platelets at pH 7.75. At pH 8.2 or pH 9.0 the fluorescence signal is less intense, indicating that protein-mineral interaction is reduced with increasing pH. Furthermore, ArCS1_E22 forms regular nanostructures on cationic substrates as revealed by atomic force microscopy (AFM) experiments on modified mica cleavage planes. These experiments suggest that the extracellular domain ArCS1_E22 is involved in regulating the multiple enzyme activities of Ar-CS1 such as chitin synthesis and myosin movements by interaction with mineral surfaces and eventually by protein assembly. The protein complexes could locally probe the status of mineralization according to pH unless ions and pCO2 are balanced with suitable buffer substances. Taking into account that the intact enzyme could act as a force sensor, the results presented here provide further evidence that shell formation is coordinated physiologically with precise adjustment of cellular activities to the structure, topography and stiffness at the mineralizing interface. PMID:23643908

  11. The Phylogenetic Signature Underlying ATP Synthase c-Ring Compliance.

    PubMed

    Pandini, Alessandro; Kleinjung, Jens; Taylor, Willie R; Junge, Wolfgang; Khan, Shahid

    2015-09-01

    The proton-driven ATP synthase (FOF1) is comprised of two rotary, stepping motors (FO and F1) coupled by an elastic power transmission. The elastic compliance resides in the rotor module that includes the membrane-embedded FO c-ring. Proton transport by FO is firmly coupled to the rotation of the c-ring relative to other FO subunits (ab2). It drives ATP synthesis. We used a computational method to investigate the contribution of the c-ring to the total elastic compliance. We performed principal component analysis of conformational ensembles built using distance constraints from the bovine mitochondrial c-ring x-ray structure. Angular rotary twist, the dominant ring motion, was estimated to show that the c-ring accounted in part for the measured compliance. Ring rotation was entrained to rotation of the external helix within each hairpin-shaped c-subunit in the ring. Ensembles of monomer and dimers extracted from complete c-rings showed that the coupling between collective ring and the individual subunit motions was independent of the size of the c-ring, which varies between organisms. Molecular determinants were identified by covariance analysis of residue coevolution and structural-alphabet-based local dynamics correlations. The residue coevolution gave a readout of subunit architecture. The dynamic couplings revealed that the hinge for both ring and subunit helix rotations was constructed from the proton-binding site and the adjacent glycine motif (IB-GGGG) in the midmembrane plane. IB-GGGG motifs were linked by long-range couplings across the ring, while intrasubunit couplings connected the motif to the conserved cytoplasmic loop and adjacent segments. The correlation with principal collective motions shows that the couplings underlie both ring rotary and bending motions. Noncontact couplings between IB-GGGG motifs matched the coevolution signal as well as contact couplings. The residue coevolution reflects the physiological importance of the dynamics that may

  12. Insights into the reactivation of cobalamin-dependent methionine synthase

    SciTech Connect

    Koutmos, Markos; Datta, Supratim; Pattridge, Katherine A.; Smith, Janet L.; Matthews, Rowena G.

    2009-12-10

    Cobalamin-dependent methionine synthase (MetH) is a modular protein that catalyzes the transfer of a methyl group from methyltetrahydrofolate to homocysteine to produce methionine and tetrahydrofolate. The cobalamin cofactor, which serves as both acceptor and donor of the methyl group, is oxidized once every {approx}2,000 catalytic cycles and must be reactivated by the uptake of an electron from reduced flavodoxin and a methyl group from S-adenosyl-L-methionine (AdoMet). Previous structures of a C-terminal fragment of MetH (MetH{sup CT}) revealed a reactivation conformation that juxtaposes the cobalamin- and AdoMet-binding domains. Here we describe 2 structures of a disulfide stabilized MetH{sup CT} ({sub s-s}MetH{sup CT}) that offer further insight into the reactivation of MetH. The structure of {sub s-s}MetH{sup CT} with cob(II)alamin and S-adenosyl-L-homocysteine represents the enzyme in the reactivation step preceding electron transfer from flavodoxin. The structure supports earlier suggestions that the enzyme acts to lower the reduction potential of the Co(II)/Co(I) couple by elongating the bond between the cobalt and its upper axial water ligand, effectively making the cobalt 4-coordinate, and illuminates the role of Tyr-1139 in the stabilization of this 4-coordinate state. The structure of {sub s-s}MetH{sub CT} with aquocobalamin may represent a transient state at the end of reactivation as the newly remethylated 5-coordinate methylcobalamin returns to the 6-coordinate state, triggering the rearrangement to a catalytic conformation.

  13. Phosphorylated neuronal nitric oxide synthase in neuropathic pain in rats

    PubMed Central

    Zhou, Zhidong; Liang, Yingping; Deng, Fumou; Cheng, Yong; Sun, Jing; Guo, Lian; Xu, Guohai

    2015-01-01

    Neuropathic pain caused by nervous system damage or system dysfunction. The pathogenesis and the mechanism underlying neuropathic pain remains unclear. The only known neurobiological component involved in the neuropathic pain is nitric oxide (NO). NO is synthesized by nitric oxide synthase (nNOS) from L-arginine and oxygen. nNOS is involved in the inflammatory pain and neuropathic pain. In this study, we aimed to identify whether KN93 reduced the pain in the rats. Sixty adult male SD rat were randomly divided into 4 groups. Sham group and model group were not received treatment. Experimental group received intrathecal injection of KN93, and negative control group received DMSO injection 30 min before pain test. After last test of pain threshold, the rats were sacrificed and lumbar spinal tissues were sampled for analysis of the expression of pnNOS and pCaMK II by quantitative PCR and Western blotting. Pain threshold was increased in the rats received KN93 treatment (P<0.01), and the expression levels of pnNOS was increased (P<0.05) in experimental group and accompanied with decrease of CaMK II expression (P<0.05). By administration of KN93, the interaction of nNOS and the adaptor protein CAPON was reduced through inhibition of CaMK II by KN93. In conclusion, this study reveals that KN93 can reduce neuropathic pain via inhibiting the activity of CaMK II, and then increase the level of phosphorylated nNOS, to reduce the interaction with CAPON. PMID:26722464

  14. Phylogenetic and Structural Analysis of Polyketide Synthases in Aspergilli.

    PubMed

    Bhetariya, Preetida J; Prajapati, Madhvi; Bhaduri, Asani; Mandal, Rahul Shubhra; Varma, Anupam; Madan, Taruna; Singh, Yogendra; Sarma, P Usha

    2016-01-01

    Polyketide synthases (PKSs) of Aspergillus species are multidomain and multifunctional megaenzymes that play an important role in the synthesis of diverse polyketide compounds. Putative PKS protein sequences from Aspergillus species representing medically, agriculturally, and industrially important Aspergillus species were chosen and screened for in silico studies. Six candidate Aspergillus species, Aspergillus fumigatus Af293, Aspergillus flavus NRRL3357, Aspergillus niger CBS 513.88, Aspergillus terreus NIH2624, Aspergillus oryzae RIB40, and Aspergillus clavatus NRRL1, were selected to study the PKS phylogeny. Full-length PKS proteins and only ketosynthase (KS) domain sequence were retrieved for independent phylogenetic analysis from the aforementioned species, and phylogenetic analysis was performed with characterized fungal PKS. This resulted into grouping of Aspergilli PKSs into nonreducing (NR), partially reducing (PR), and highly reducing (HR) PKS enzymes. Eight distinct clades with unique domain arrangements were classified based on homology with functionally characterized PKS enzymes. Conserved motif signatures corresponding to each type of PKS were observed. Three proteins from Protein Data Bank corresponding to NR, PR, and HR type of PKS (XP_002384329.1, XP_753141.2, and XP_001402408.2, respectively) were selected for mapping of conserved motifs on three-dimensional structures of KS domain. Structural variations were found at the active sites on modeled NR, PR, and HR enzymes of Aspergillus. It was observed that the number of iteration cycles was dependent on the size of the cavity in the active site of the PKS enzyme correlating with a type with reducing or NR products, such as pigment, 6MSA, and lovastatin. The current study reports the grouping and classification of PKS proteins of Aspergilli for possible exploration of novel polyketides based on sequence homology; this information can be useful for selection of PKS for polyketide exploration and

  15. Characterization of the phytochelatin synthase of Schistosoma mansoni.

    PubMed

    Ray, Debalina; Williams, David L

    2011-05-01

    Treatment for schistosomiasis, which is responsible for more than 280,000 deaths annually, depends exclusively on the use of praziquantel. Millions of people are treated annually with praziquantel and drug resistant parasites are likely to evolve. In order to identify novel drug targets the Schistosoma mansoni sequence databases were queried for proteins involved in glutathione metabolism. One potential target identified was phytochelatin synthase (PCS). Phytochelatins are oligopeptides synthesized enzymatically from glutathione by PCS that sequester toxic heavy metals in many organisms. However, humans do not have a PCS gene and do not synthesize phytochelatins. In this study we have characterized the PCS of S. mansoni (SmPCS). The conserved catalytic triad of cysteine-histidine-aspartate found in PCS proteins and cysteine proteases is also found in SmPCS, as are several cysteine residues thought to be involved in heavy metal binding and enzyme activation. The SmPCS open reading frame is considerably extended at both the N- and C-termini compared to PCS from other organisms. Multiple PCS transcripts are produced from the single encoded gene by alternative splicing, resulting in both mitochondrial and cytoplasmic protein variants. Expression of SmPCS in yeast increased cadmium tolerance from less than 50 µM to more than 1,000 µM. We confirmed the function of SmPCS by identifying PCs in yeast cell extracts using HPLC-mass spectrometry. SmPCS was found to be expressed in all mammalian stages of worm development investigated. Increases in SmPCS expression were seen in ex vivo worms cultured in the presence of iron, copper, cadmium, or zinc. Collectively, these results indicate that SmPCS plays an important role in schistosome response to heavy metals and that PCS is a potential drug target for schistosomiasis treatment. This is the first characterization of a PCS from a parasitic organism. PMID:21629724

  16. Prostaglandin endoperoxide H synthases: peroxidase hydroperoxide specificity and cyclooxygenase activation.

    PubMed

    Liu, Jiayan; Seibold, Steve A; Rieke, Caroline J; Song, Inseok; Cukier, Robert I; Smith, William L

    2007-06-22

    The cyclooxygenase (COX) activity of prostaglandin endoperoxide H synthases (PGHSs) converts arachidonic acid and O2 to prostaglandin G2 (PGG2). PGHS peroxidase (POX) activity reduces PGG2 to PGH2. The first step in POX catalysis is formation of an oxyferryl heme radical cation (Compound I), which undergoes intramolecular electron transfer forming Intermediate II having an oxyferryl heme and a Tyr-385 radical required for COX catalysis. PGHS POX catalyzes heterolytic cleavage of primary and secondary hydroperoxides much more readily than H2O2, but the basis for this specificity has been unresolved. Several large amino acids form a hydrophobic "dome" over part of the heme, but when these residues were mutated to alanines there was little effect on Compound I formation from H2O2 or 15-hydroperoxyeicosatetraenoic acid, a surrogate substrate for PGG2. Ab initio calculations of heterolytic bond dissociation energies of the peroxyl groups of small peroxides indicated that they are almost the same. Molecular Dynamics simulations suggest that PGG2 binds the POX site through a peroxyl-iron bond, a hydrogen bond with His-207 and van der Waals interactions involving methylene groups adjoining the carbon bearing the peroxyl group and the protoporphyrin IX. We speculate that these latter interactions, which are not possible with H2O2, are major contributors to PGHS POX specificity. The distal Gln-203 four residues removed from His-207 have been thought to be essential for Compound I formation. However, Q203V PGHS-1 and PGHS-2 mutants catalyzed heterolytic cleavage of peroxides and exhibited native COX activity. PGHSs are homodimers with each monomer having a POX site and COX site. Cross-talk occurs between the COX sites of adjoining monomers. However, no cross-talk between the POX and COX sites of monomers was detected in a PGHS-2 heterodimer comprised of a Q203R monomer having an inactive POX site and a G533A monomer with an inactive COX site.

  17. A thermodynamic investigation of reactions catalyzed by tryptophan synthase.

    PubMed

    Kishore, N; Tewari, Y B; Akers, D L; Goldberg, R N; Miles, E W

    1998-07-27

    Microcalorimetry and high-performance liquid chromatography have been used to conduct a thermodynamic investigation of the following reactions catalyzed by the tryptophan synthase alpha 2 beta 2 complex (EC 4.2.1.20) and its subunits: indole(aq) + L-serine(aq) = L-tryptophan(aq) + H2O(1); L-serine(aq) = pyruvate(aq) + ammonia(aq); indole(aq) + D-glyceraldehyde 3-phosphate(aq) = 1-(indol-3-yl)glycerol 3-phosphate(aq); L-serine(aq) + 1-(indol-3-yl)glycerol 3-phosphate(aq) = L-tryptophan(aq) + D-glyceraldehyde 3-phosphate(aq) + H2O(1). The calorimetric measurements led to standard molar enthalpy changes for all four of these reactions. Direct measurements yielded an apparent equilibrium constant for the third reaction; equilibrium constants for the remaining three reactions were obtained by using thermochemical cycle calculations. The results of the calorimetric and equilibrium measurements were analyzed in terms of a chemical equilibrium model that accounted for the multiplicity of the ionic states of the reactants and products. Thermodynamic quantities for chemical reference reactions involving specific ionic forms have been obtained. These quantities permit the calculation of the position of equilibrium of the above four reactions as a function of temperature, pH, and ionic strength. Values of the apparent equilibrium constants and standard transformed Gibbs free energy changes delta r G'(m) degree under approximately physiological conditions are given. Le Châtelier's principle provides an explanation as to why, in the metabolic pathway leading to the synthesis of L-tryptophan, the third reaction proceeds in the direction of formation of indole and D-glyceraldehyde 3-phosphate even though the apparent equilibrium constant greatly favors the formation of 1-(indol-3-yl)glycerol 3-phosphate. PMID:9700925

  18. Energy Landscapes and Catalysis in Nitric-oxide Synthase*

    PubMed Central

    Sobolewska-Stawiarz, Anna; Leferink, Nicole G. H.; Fisher, Karl; Heyes, Derren J.; Hay, Sam; Rigby, Stephen E. J.; Scrutton, Nigel S.

    2014-01-01

    Nitric oxide (NO) plays diverse roles in mammalian physiology. It is involved in blood pressure regulation, neurotransmission, and immune response, and is generated through complex electron transfer reactions catalyzed by NO synthases (NOS). In neuronal NOS (nNOS), protein domain dynamics and calmodulin binding are implicated in regulating electron flow from NADPH, through the FAD and FMN cofactors, to the heme oxygenase domain, the site of NO generation. Simple models based on crystal structures of nNOS reductase have invoked a role for large scale motions of the FMN-binding domain in shuttling electrons from the FAD-binding domain to the heme oxygenase domain. However, molecular level insight of the dynamic structural transitions in NOS enzymes during enzyme catalysis is lacking. We use pulsed electron-electron double resonance spectroscopy to derive inter-domain distance relationships in multiple conformational states of nNOS. These distance relationships are correlated with enzymatic activity through variable pressure kinetic studies of electron transfer and turnover. The binding of NADPH and calmodulin are shown to influence interdomain distance relationships as well as reaction chemistry. An important effect of calmodulin binding is to suppress adventitious electron transfer from nNOS to molecular oxygen and thereby preventing accumulation of reactive oxygen species. A complex landscape of conformations is required for nNOS catalysis beyond the simple models derived from static crystal structures of nNOS reductase. Detailed understanding of this landscape advances our understanding of nNOS catalysis/electron transfer, and could provide new opportunities for the discovery of small molecule inhibitors that bind at dynamic protein interfaces of this multidimensional energy landscape. PMID:24610812

  19. Phylogenetic and Structural Analysis of Polyketide Synthases in Aspergilli

    PubMed Central

    Bhetariya, Preetida J.; Prajapati, Madhvi; Bhaduri, Asani; Mandal, Rahul Shubhra; Varma, Anupam; Madan, Taruna; Singh, Yogendra; Sarma, P. Usha

    2016-01-01

    Polyketide synthases (PKSs) of Aspergillus species are multidomain and multifunctional megaenzymes that play an important role in the synthesis of diverse polyketide compounds. Putative PKS protein sequences from Aspergillus species representing medically, agriculturally, and industrially important Aspergillus species were chosen and screened for in silico studies. Six candidate Aspergillus species, Aspergillus fumigatus Af293, Aspergillus flavus NRRL3357, Aspergillus niger CBS 513.88, Aspergillus terreus NIH2624, Aspergillus oryzae RIB40, and Aspergillus clavatus NRRL1, were selected to study the PKS phylogeny. Full-length PKS proteins and only ketosynthase (KS) domain sequence were retrieved for independent phylogenetic analysis from the aforementioned species, and phylogenetic analysis was performed with characterized fungal PKS. This resulted into grouping of Aspergilli PKSs into nonreducing (NR), partially reducing (PR), and highly reducing (HR) PKS enzymes. Eight distinct clades with unique domain arrangements were classified based on homology with functionally characterized PKS enzymes. Conserved motif signatures corresponding to each type of PKS were observed. Three proteins from Protein Data Bank corresponding to NR, PR, and HR type of PKS (XP_002384329.1, XP_753141.2, and XP_001402408.2, respectively) were selected for mapping of conserved motifs on three-dimensional structures of KS domain. Structural variations were found at the active sites on modeled NR, PR, and HR enzymes of Aspergillus. It was observed that the number of iteration cycles was dependent on the size of the cavity in the active site of the PKS enzyme correlating with a type with reducing or NR products, such as pigment, 6MSA, and lovastatin. The current study reports the grouping and classification of PKS proteins of Aspergilli for possible exploration of novel polyketides based on sequence homology; this information can be useful for selection of PKS for polyketide exploration and

  20. Evolution of metamorphism in thymidylate synthases within the primate lineages.

    PubMed

    Luo, BeiBei; Johnson, Saphronia R; Lebioda, Lukasz; Berger, Sondra H

    2011-03-01

    Crystal structures of human thymidylate synthase (hTS) revealed that the protein exists in active and inactive conformations, defined by the position of a loop containing the active site nucleophile. TS is highly homologous among diverse species; however, the residue at position 163 (hTS) differs among species. Arginine at this position is predicted by structural modeling to enable conformational switching. Arginine or lysine is reported at this position in all mammals in the GenBank and Ensembl databases, with arginine reported in only primates. Sequence analysis of the TS gene of representative primates revealed that arginine occurs at this relative position in all primates except a representative of prosimians. Mutant human proteins were created with residues at position 163 that occur in TSs from prokaryotes and eukaryotes. Catalytic constants (k(cat)) of mutant enzymes were 45-149% of hTS, with the lysine mutant (R163K) exhibiting the highest k(cat). The effect of lysine substitution on solution structure and on ligand binding was investigated. R163K exhibited higher intrinsic fluorescence, a more negative molar ellipticity, and higher dissociation constants (K(d)) for ligands that modulate protein conformation than hTS. Temperature effects on intrinsic fluorescence and catalytic activity of hTS and R163K are consistent with proteins populating different conformational states. The data indicate that the enzyme with arginine at the position corresponding to 163 (hTS) evolved after the divergence of prosimians and simians and that substitution of lysine by arginine confers unique structural and functional properties to the enzyme expressed in simian primates.

  1. Ceramide Synthase-dependent Ceramide Generation and Programmed Cell Death

    PubMed Central

    Mullen, Thomas D.; Jenkins, Russell W.; Clarke, Christopher J.; Bielawski, Jacek; Hannun, Yusuf A.; Obeid, Lina M.

    2011-01-01

    The sphingolipid ceramide has been widely implicated in the regulation of programmed cell death or apoptosis. The accumulation of ceramide has been demonstrated in a wide variety of experimental models of apoptosis and in response to a myriad of stimuli and cellular stresses. However, the detailed mechanisms of its generation and regulatory role during apoptosis are poorly understood. We sought to determine the regulation and roles of ceramide production in a model of ultraviolet light-C (UV-C)-induced programmed cell death. We found that UV-C irradiation induces the accumulation of multiple sphingolipid species including ceramide, dihydroceramide, sphingomyelin, and hexosylceramide. Late ceramide generation was also found to be regulated by Bcl-xL, Bak, and caspases. Surprisingly, inhibition of de novo synthesis using myriocin or fumonisin B1 resulted in decreased overall cellular ceramide levels basally and in response to UV-C, but only fumonisin B1 inhibited cell death, suggesting the presence of a ceramide synthase (CerS)-dependent, sphingosine-derived pool of ceramide in regulating programmed cell death. We found that this pool did not regulate the mitochondrial pathway, but it did partially regulate activation of caspase-7 and, more importantly, was necessary for late plasma membrane permeabilization. Attempting to identify the CerS responsible for this effect, we found that combined knockdown of CerS5 and CerS6 was able to decrease long-chain ceramide accumulation and plasma membrane permeabilization. These data identify a novel role for CerS and the sphingosine salvage pathway in regulating membrane permeability in the execution phase of programmed cell death. PMID:21388949

  2. Bioinformatics Prediction of Polyketide Synthase Gene Clusters from Mycosphaerella fijiensis.

    PubMed

    Noar, Roslyn D; Daub, Margaret E

    2016-01-01

    Mycosphaerella fijiensis, causal agent of black Sigatoka disease of banana, is a Dothideomycete fungus closely related to fungi that produce polyketides important for plant pathogenicity. We utilized the M. fijiensis genome sequence to predict PKS genes and their gene clusters and make bioinformatics predictions about the types of compounds produced by these clusters. Eight PKS gene clusters were identified in the M. fijiensis genome, placing M. fijiensis into the 23rd percentile for the number of PKS genes compared to other Dothideomycetes. Analysis of the PKS domains identified three of the PKS enzymes as non-reducing and two as highly reducing. Gene clusters contained types of genes frequently found in PKS clusters including genes encoding transporters, oxidoreductases, methyltransferases, and non-ribosomal peptide synthases. Phylogenetic analysis identified a putative PKS cluster encoding melanin biosynthesis. None of the other clusters were closely aligned with genes encoding known polyketides, however three of the PKS genes fell into clades with clusters encoding alternapyrone, fumonisin, and solanapyrone produced by Alternaria and Fusarium species. A search for homologs among available genomic sequences from 103 Dothideomycetes identified close homologs (>80% similarity) for six of the PKS sequences. One of the PKS sequences was not similar (< 60% similarity) to sequences in any of the 103 genomes, suggesting that it encodes a unique compound. Comparison of the M. fijiensis PKS sequences with those of two other banana pathogens, M. musicola and M. eumusae, showed that these two species have close homologs to five of the M. fijiensis PKS sequences, but three others were not found in either species. RT-PCR and RNA-Seq analysis showed that the melanin PKS cluster was down-regulated in infected banana as compared to growth in culture. Three other clusters, however were strongly upregulated during disease development in banana, suggesting that they may encode

  3. Enhancing Human Spermine Synthase Activity by Engineered Mutations

    PubMed Central

    Zhang, Zhe; Zheng, Yueli; Petukh, Margo; Pegg, Anthony; Ikeguchi, Yoshihiko; Alexov, Emil

    2013-01-01

    Spermine synthase (SMS) is an enzyme which function is to convert spermidine into spermine. It was shown that gene defects resulting in amino acid changes of the wild type SMS cause Snyder-Robinson syndrome, which is a mild-to-moderate mental disability associated with osteoporosis, facial asymmetry, thin habitus, hypotonia, and a nonspecific movement disorder. These disease-causing missense mutations were demonstrated, both in silico and in vitro, to affect the wild type function of SMS by either destabilizing the SMS dimer/monomer or directly affecting the hydrogen bond network of the active site of SMS. In contrast to these studies, here we report an artificial engineering of a more efficient SMS variant by transferring sequence information from another organism. It is confirmed experimentally that the variant, bearing four amino acid substitutions, is catalytically more active than the wild type. The increased functionality is attributed to enhanced monomer stability, lowering the pKa of proton donor catalytic residue, optimized spatial distribution of the electrostatic potential around the SMS with respect to substrates, and increase of the frequency of mechanical vibration of the clefts presumed to be the gates toward the active sites. The study demonstrates that wild type SMS is not particularly evolutionarily optimized with respect to the reaction spermidine → spermine. Having in mind that currently there are no variations (non-synonymous single nucleotide polymorphism, nsSNP) detected in healthy individuals, it can be speculated that the human SMS function is precisely tuned toward its wild type and any deviation is unwanted and disease-causing. PMID:23468611

  4. Metabolism of aromatic amines by prostaglandin H synthase.

    PubMed Central

    Boyd, J A; Eling, T E

    1985-01-01

    The metabolism of aromatic amines by the peroxidase activity of prostaglandin H synthase (PHS) has been studied in this laboratory by use of two model compounds, the carcinogenic primary amine 2-aminofluorene (2-AF) and the substituted amine aminopyrine (AP). 2-AF is oxidized by PHS to 2, 2-azobisfluorene, 2-aminodifluorenylamine, 2-nitrofluorene, polymeric material, and products covalently bound to macromolecules. In the presence of phenolic compounds, 2-AF oxidation results in the formation of amine/phenol adducts. The data are consistent with a one-electron mechanism of 2-AF oxidation by PHS; furthermore, an N-hydroxy intermediate is not involved in 2-AF metabolism by PHS. PHS also catalyzes the binding of 2-AF to DNA in vitro. Unique 2-AF/DNA adducts were isolated and are distinct from the N-(deoxyguanosin-8-yl)-2-AF adduct formed from the reaction of N-hydroxy-2-AF with DNA. These new adducts represent a marker unique to peroxidative activation of 2-AF. AP is oxidized by the peroxidase activity of PHS to the cation radical, with one molecule of hydroperoxy fatty acid reduced for every two molecules of AP free radical formed. The decay of the AP radical follows second order kinetics, supporting the proposed mechanism in which the AP radical disproportionates to an iminium cation, followed by hydrolysis of this species to the demethylated amine and formaldehyde. In the presence of glutathione, the cation radical is reduced to the parent amine, resulting in the formation of the glutathione thiyl radical. It thus appears that both primary and substituted aromatic amines may undergo one-electron oxidation by PHS. PMID:3938394

  5. Evolution of metamorphism in thymidylate synthases within the primate lineages.

    PubMed

    Luo, BeiBei; Johnson, Saphronia R; Lebioda, Lukasz; Berger, Sondra H

    2011-03-01

    Crystal structures of human thymidylate synthase (hTS) revealed that the protein exists in active and inactive conformations, defined by the position of a loop containing the active site nucleophile. TS is highly homologous among diverse species; however, the residue at position 163 (hTS) differs among species. Arginine at this position is predicted by structural modeling to enable conformational switching. Arginine or lysine is reported at this position in all mammals in the GenBank and Ensembl databases, with arginine reported in only primates. Sequence analysis of the TS gene of representative primates revealed that arginine occurs at this relative position in all primates except a representative of prosimians. Mutant human proteins were created with residues at position 163 that occur in TSs from prokaryotes and eukaryotes. Catalytic constants (k(cat)) of mutant enzymes were 45-149% of hTS, with the lysine mutant (R163K) exhibiting the highest k(cat). The effect of lysine substitution on solution structure and on ligand binding was investigated. R163K exhibited higher intrinsic fluorescence, a more negative molar ellipticity, and higher dissociation constants (K(d)) for ligands that modulate protein conformation than hTS. Temperature effects on intrinsic fluorescence and catalytic activity of hTS and R163K are consistent with proteins populating different conformational states. The data indicate that the enzyme with arginine at the position corresponding to 163 (hTS) evolved after the divergence of prosimians and simians and that substitution of lysine by arginine confers unique structural and functional properties to the enzyme expressed in simian primates. PMID:21318388

  6. Transcriptional regulation of human thromboxane synthase gene expression

    SciTech Connect

    Lee, K.D.; Baek, S.J.; Fleischer, T

    1994-09-01

    The human thromboxane synthase (TS) gene encodes a microsomal enzyme catalyzing the conversion of prostaglandin endoperoxide into thromboxane A{sub 2}(TxA{sub 2}), a potent inducer of vasoconstriction and platelet aggregation. A deficiency in platelet TS activity results in bleeding disorders, but the underlying molecular mechanism remains to be elucidated. Increased TxA{sub 2} has been associated with many pathophysiological conditions such as cardiovascular disease, pulmonary hypertension, pre-eclampsia, and thrombosis in sickle cell patients. Since the formation of TxA{sub 2} is dependent upon TS, the regulation of TS gene expression may presumably play a crucial role in vivo. Abrogation of the regulatory mechanism in TS gene expression might contribute, in part, to the above clinical manifestations. To gain insight into TS gene regulation, a 1.7 kb promoter of the human TS gene was cloned and sequenced. RNase protection assay and 5{prime} RACE protocols were used to map the transcription initiation site to nucleotide A, 30 bp downstream from a canonical TATA box. Several transcription factor binding sites, including AP-1, PU.1, and PEA3, were identified within this sequence. Transient expression studies in HL-60 cells transfected with constructs containing various lengths (0.2 to 5.5 kb) of the TS promoter/luciferase fusion gene indicated the presence of multiple repressor elements within the 5.5 kb TS promoter. However, a lineage-specific up-regulation of TS gene expression was observed in HL-60 cells induced by TPA to differentiate along the macrophage lineage. The increase in TS transcription was not detectable until 36 hr after addition of the inducer. These results suggest that expression of the human TS gene may be regulated by a mechanism involving repression and derepression of the TS promoter.

  7. Phosphorylated neuronal nitric oxide synthase in neuropathic pain in rats.

    PubMed

    Zhou, Zhidong; Liang, Yingping; Deng, Fumou; Cheng, Yong; Sun, Jing; Guo, Lian; Xu, Guohai

    2015-01-01

    Neuropathic pain caused by nervous system damage or system dysfunction. The pathogenesis and the mechanism underlying neuropathic pain remains unclear. The only known neurobiological component involved in the neuropathic pain is nitric oxide (NO). NO is synthesized by nitric oxide synthase (nNOS) from L-arginine and oxygen. nNOS is involved in the inflammatory pain and neuropathic pain. In this study, we aimed to identify whether KN93 reduced the pain in the rats. Sixty adult male SD rat were randomly divided into 4 groups. Sham group and model group were not received treatment. Experimental group received intrathecal injection of KN93, and negative control group received DMSO injection 30 min before pain test. After last test of pain threshold, the rats were sacrificed and lumbar spinal tissues were sampled for analysis of the expression of pnNOS and pCaMK II by quantitative PCR and Western blotting. Pain threshold was increased in the rats received KN93 treatment (P<0.01), and the expression levels of pnNOS was increased (P<0.05) in experimental group and accompanied with decrease of CaMK II expression (P<0.05). By administration of KN93, the interaction of nNOS and the adaptor protein CAPON was reduced through inhibition of CaMK II by KN93. In conclusion, this study reveals that KN93 can reduce neuropathic pain via inhibiting the activity of CaMK II, and then increase the level of phosphorylated nNOS, to reduce the interaction with CAPON.

  8. Metabolism of aromatic amines by prostaglandin H synthase

    SciTech Connect

    Boyd, J.A.; Eling, T.E.

    1985-12-01

    The metabolism of aromatic amines by the peroxidase activity of prostaglandin H synthase (PHS) has been studied in this laboratory by use of two model compounds, the carcinogenic primary amine 2-aminofluorene (2-AF) and the substituted amine aminopyrine (AP). 2-AF is oxidized by PHS to 2, 2-azobisfluorene, 2-aminodifluorenylamine, 2-nitrofluorene, polymeric material, and products covalently bound to macromolecules. In the presence of phenolic compounds, 2-AF oxidation results in the formation of amine-phenol adducts. The data are consistent with a one-electron mechanism of 2-AF oxidation by PHS; furthermore, an N-hydroxy intermediate is not involved in 2-AF metabolism by PHS. PHS also catalyzes the binding of 2-AF to DNA in vitro. Unique 2-AF/DNA adducts were isolated and are distinct from the N-(deoxyguanosin-8-yl)-2-AF adduct formed from the reaction of N-hydroxy-2-AF with DNA. These new adducts represent a marker unique to peroxidative activation of 2-AF. AP is oxidized by the peroxidase activity of PHS to the cation radical, with one molecule of hydroperoxy fatty acid reduced for every two molecules of AP free radical formed. The decay of the AP radical follows second order kinetics, supporting the proposed mechanism in which the AP radical disproportionates to an iminium cation, followed by hydrolysis of this species to the demethylated amine and formaldehyde. In the presence of glutathione, the cation radical is reduced to the parent amine, resulting in the formation of the glutathione thiyl radical. It thus appears that both primary and substituted aromatic amines may undergo one-electron oxidation by PHS. 19 references.

  9. C-S bond cleavage by a polyketide synthase domain.

    PubMed

    Ma, Ming; Lohman, Jeremy R; Liu, Tao; Shen, Ben

    2015-08-18

    Leinamycin (LNM) is a sulfur-containing antitumor antibiotic featuring an unusual 1,3-dioxo-1,2-dithiolane moiety that is spiro-fused to a thiazole-containing 18-membered lactam ring. The 1,3-dioxo-1,2-dithiolane moiety is essential for LNM's antitumor activity, by virtue of its ability to generate an episulfonium ion intermediate capable of alkylating DNA. We have previously cloned and sequenced the lnm gene cluster from Streptomyces atroolivaceus S-140. In vivo and in vitro characterizations of the LNM biosynthetic machinery have since established that: (i) the 18-membered macrolactam backbone is synthesized by LnmP, LnmQ, LnmJ, LnmI, and LnmG, (ii) the alkyl branch at C-3 of LNM is installed by LnmK, LnmL, LnmM, and LnmF, and (iii) leinamycin E1 (LNM E1), bearing a thiol moiety at C-3, is the nascent product of the LNM hybrid nonribosomal peptide synthetase (NRPS)-acyltransferase (AT)-less type I polyketide synthase (PKS). Sulfur incorporation at C-3 of LNM E1, however, has not been addressed. Here we report that: (i) the bioinformatics analysis reveals a pyridoxal phosphate (PLP)-dependent domain, we termed cysteine lyase (SH) domain (LnmJ-SH), within PKS module-8 of LnmJ; (ii) the LnmJ-SH domain catalyzes C-S bond cleavage by using l-cysteine and l-cysteine S-modified analogs as substrates through a PLP-dependent β-elimination reaction, establishing l-cysteine as the origin of sulfur at C-3 of LNM; and (iii) the LnmJ-SH domain, sharing no sequence homology with any other enzymes catalyzing C-S bond cleavage, represents a new family of PKS domains that expands the chemistry and enzymology of PKSs and might be exploited to incorporate sulfur into polyketide natural products by PKS engineering.

  10. Chemoprevention with phytochemicals targeting inducible nitric oxide synthase.

    PubMed

    Murakami, Akira

    2009-01-01

    A regulated low level of nitric oxide (NO) production in the body is essential for maintaining homeostasis (neuroprotection, vasorelaxation, etc.), though certain pathophysiological conditions associated with inflammation involve de novo synthesis of inducible NO synthase (iNOS) in immune cells, including macrophages. A large body of evidence indicates that many inflammatory diseases, such as colitis and gastritis, as well as many types of cancer, occur through sustained and elevated activation of this particular enzyme. The biochemical process of iNOS protein expression is tightly regulated and complex, in which the endotoxin lipopolysaccharide selectively binds to toll-like receptor 4 and thereby activates its adaptor protein MyD88, which in turn targets downstream proteins such as IRAK and TRAF6. This leads to functional activation of key protein kinases, including IkB kinases and mitogen-activated protein kinases (MAPKs), such as p38 MAPK, JNK1/2, and ERK1/2, all of which are involved in activating key transcription factors, including nuclear factor-kappaB and activator protein-1. In addition, the production of proinflammatory cytokines such as interferon-gamma and interleukin-12 potentiates iNOS induction in autocrine fashions. Meanwhile, an LPS-stimulated p38 MAPK pathway plays a pivotal role in the stabilization of iNOS mRNA, which has the AU-rich element in its 3'-untranslated region, for rapid NO production. Thus, suppression and/or inhibition of the above-mentioned signaling molecules may have a great potential for the prevention and treatment of inflammation-associated carcinogenesis. In fact, there have been numerous reports of phytochemicals found capable of targeting NO production by unique mechanisms, including polyphenols, terpenoids, and others. This review article briefly highlights the molecular mechanisms underlying endotoxin-induced iNOS expression in macrophages, and also focuses on promising natural agents that may be useful for anti

  11. Bioinformatics Prediction of Polyketide Synthase Gene Clusters from Mycosphaerella fijiensis

    PubMed Central

    Noar, Roslyn D.; Daub, Margaret E.

    2016-01-01

    Mycosphaerella fijiensis, causal agent of black Sigatoka disease of banana, is a Dothideomycete fungus closely related to fungi that produce polyketides important for plant pathogenicity. We utilized the M. fijiensis genome sequence to predict PKS genes and their gene clusters and make bioinformatics predictions about the types of compounds produced by these clusters. Eight PKS gene clusters were identified in the M. fijiensis genome, placing M. fijiensis into the 23rd percentile for the number of PKS genes compared to other Dothideomycetes. Analysis of the PKS domains identified three of the PKS enzymes as non-reducing and two as highly reducing. Gene clusters contained types of genes frequently found in PKS clusters including genes encoding transporters, oxidoreductases, methyltransferases, and non-ribosomal peptide synthases. Phylogenetic analysis identified a putative PKS cluster encoding melanin biosynthesis. None of the other clusters were closely aligned with genes encoding known polyketides, however three of the PKS genes fell into clades with clusters encoding alternapyrone, fumonisin, and solanapyrone produced by Alternaria and Fusarium species. A search for homologs among available genomic sequences from 103 Dothideomycetes identified close homologs (>80% similarity) for six of the PKS sequences. One of the PKS sequences was not similar (< 60% similarity) to sequences in any of the 103 genomes, suggesting that it encodes a unique compound. Comparison of the M. fijiensis PKS sequences with those of two other banana pathogens, M. musicola and M. eumusae, showed that these two species have close homologs to five of the M. fijiensis PKS sequences, but three others were not found in either species. RT-PCR and RNA-Seq analysis showed that the melanin PKS cluster was down-regulated in infected banana as compared to growth in culture. Three other clusters, however were strongly upregulated during disease development in banana, suggesting that they may encode

  12. Sucrose synthase: A unique glycosyltransferase for biocatalytic glycosylation process development.

    PubMed

    Schmölzer, Katharina; Gutmann, Alexander; Diricks, Margo; Desmet, Tom; Nidetzky, Bernd

    2016-01-01

    Sucrose synthase (SuSy, EC 2.4.1.13) is a glycosyltransferase (GT) long known from plants and more recently discovered in bacteria. The enzyme catalyzes the reversible transfer of a glucosyl moiety between fructose and a nucleoside diphosphate (NDP) (sucrose+NDP↔NDP-glucose+fructose). The equilibrium for sucrose conversion is pH dependent, and pH values between 5.5 and 7.5 promote NDP-glucose formation. The conversion of a bulk chemical to high-priced NDP-glucose in a one-step reaction provides the key aspect for industrial interest. NDP-sugars are important as such and as key intermediates for glycosylation reactions by highly selective Leloir GTs. SuSy has gained renewed interest as industrially attractive biocatalyst, due to substantial scientific progresses achieved in the last few years. These include biochemical characterization of bacterial SuSys, overproduction of recombinant SuSys, structural information useful for design of tailor-made catalysts, and development of one-pot SuSy-GT cascade reactions for production of several relevant glycosides. These advances could pave the way for the application of Leloir GTs to be used in cost-effective processes. This review provides a framework for application requirements, focusing on catalytic properties, heterologous enzyme production and reaction engineering. The potential of SuSy biocatalysis will be presented based on various biotechnological applications: NDP-sugar synthesis; sucrose analog synthesis; glycoside synthesis by SuSy-GT cascade reactions. PMID:26657050

  13. The Cellulose Synthase Gene Superfamily and Biochemical Functions of Xylem-Specific Cellulose Synthase-Like Genes in Populus trichocarpa1[W][OA

    PubMed Central

    Suzuki, Shiro; Li, Laigeng; Sun, Ying-Hsuan; Chiang, Vincent L.

    2006-01-01

    Wood from forest trees modified for more cellulose or hemicelluloses could be a major feedstock for fuel ethanol. Xylan and glucomannan are the two major hemicelluloses in wood of angiosperms. However, little is known about the genes and gene products involved in the synthesis of these wood polysaccharides. Using Populus trichocarpa as a model angiosperm tree, we report here a systematic analysis in various tissues of the absolute transcript copy numbers of cellulose synthase superfamily genes, the cellulose synthase (CesA) and the hemicellulose-related cellulose synthase-like (Csl) genes. Candidate Csl genes were characterized for biochemical functions in Drosophila Schneider 2 (S2) cells. Of the 48 identified members, 37 were found expressed in various tissues. Seven CesA genes are xylem specific, suggesting gene networks for the synthesis of wood cellulose. Four Csl genes are xylem specific, three of which belong to the CslA subfamily. The more xylem-specific CslA subfamily is represented by three types of members: PtCslA1, PtCslA3, and PtCslA5. They share high sequence homology, but their recombinant proteins produced by the S2 cells exhibited distinct substrate specificity. PtCslA5 had no catalytic activity with the substrates for xylan or glucomannan. PtCslA1 and PtCslA3 encoded mannan synthases, but PtCslA1 further encoded a glucomannan synthase for the synthesis of (1→4)-β-d-glucomannan. The expression of PtCslA1 is most highly xylem specific, suggesting a key role for it in the synthesis of wood glucomannan. The results may help guide further studies to learn about the regulation of cellulose and hemicellulose synthesis in wood. PMID:16950861

  14. Mitochondrial ATP synthase is dispensable in blood-stage Plasmodium berghei rodent malaria but essential in the mosquito phase

    PubMed Central

    Sturm, Angelika; Mollard, Vanessa; Cozijnsen, Anton; Goodman, Christopher D.; McFadden, Geoffrey I.

    2015-01-01

    Mitochondrial ATP synthase is driven by chemiosmotic oxidation of pyruvate derived from glycolysis. Blood-stage malaria parasites eschew chemiosmosis, instead relying almost solely on glycolysis for their ATP generation, which begs the question of whether mitochondrial ATP synthase is necessary during the blood stage of the parasite life cycle. We knocked out the mitochondrial ATP synthase β subunit gene in the rodent malaria parasite, Plasmodium berghei, ablating the protein that converts ADP to ATP. Disruption of the β subunit gene of the ATP synthase only marginally reduced asexual blood-stage parasite growth but completely blocked mouse-to-mouse transmission via Anopheles stephensi mosquitoes. Parasites lacking the β subunit gene of the ATP synthase generated viable gametes that fuse and form ookinetes but cannot progress beyond this stage. Ookinetes lacking the β subunit gene of the ATP synthase had normal motility but were not viable in the mosquito midgut and never made oocysts or sporozoites, thereby abrogating transmission to naive mice via mosquito bite. We crossed the self-infertile ATP synthase β subunit knockout parasites with a male-deficient, self-infertile strain of P. berghei, which restored fertility and production of oocysts and sporozoites, which demonstrates that mitochondrial ATP synthase is essential for ongoing viability through the female, mitochondrion-carrying line of sexual reproduction in P. berghei malaria. Perturbation of ATP synthase completely blocks transmission to the mosquito vector and could potentially be targeted for disease control. PMID:25831536

  15. Mitochondrial ATP synthase is dispensable in blood-stage Plasmodium berghei rodent malaria but essential in the mosquito phase.

    PubMed

    Sturm, Angelika; Mollard, Vanessa; Cozijnsen, Anton; Goodman, Christopher D; McFadden, Geoffrey I

    2015-08-18

    Mitochondrial ATP synthase is driven by chemiosmotic oxidation of pyruvate derived from glycolysis. Blood-stage malaria parasites eschew chemiosmosis, instead relying almost solely on glycolysis for their ATP generation, which begs the question of whether mitochondrial ATP synthase is necessary during the blood stage of the parasite life cycle. We knocked out the mitochondrial ATP synthase β subunit gene in the rodent malaria parasite, Plasmodium berghei, ablating the protein that converts ADP to ATP. Disruption of the β subunit gene of the ATP synthase only marginally reduced asexual blood-stage parasite growth but completely blocked mouse-to-mouse transmission via Anopheles stephensi mosquitoes. Parasites lacking the β subunit gene of the ATP synthase generated viable gametes that fuse and form ookinetes but cannot progress beyond this stage. Ookinetes lacking the β subunit gene of the ATP synthase had normal motility but were not viable in the mosquito midgut and never made oocysts or sporozoites, thereby abrogating transmission to naive mice via mosquito bite. We crossed the self-infertile ATP synthase β subunit knockout parasites with a male-deficient, self-infertile strain of P. berghei, which restored fertility and production of oocysts and sporozoites, which demonstrates that mitochondrial ATP synthase is essential for ongoing viability through the female, mitochondrion-carrying line of sexual reproduction in P. berghei malaria. Perturbation of ATP synthase completely blocks transmission to the mosquito vector and could potentially be targeted for disease control.

  16. Isolation and partial characterization of the gene for goose fatty acid synthase.

    PubMed

    Kameda, K; Goodridge, A G

    1991-01-01

    Fatty acid synthase is regulated by diet and hormones, with regulation being primarily transcriptional. In chick embryo hepatocytes in culture, triiodothyronine stimulates accumulation of enzyme and transcription of the gene. Since the 5'-flanking region of this gene is likely involved in hormonal regulation of its expression, we have isolated and partially characterized an avian fatty acid synthase gene. A genomic DNA library was constructed in a cosmid vector and screened with cDNA clones that contained sequence complementary to the 3' end of goose fatty acid synthase mRNA. A genomic clone (approximately 35 kilobase pairs (kb] was isolated, and a 6.5-kb EcoRI fragment thereof contained DNA complementary to the 3' noncoding region of fatty acid synthase mRNA. Additional cosmid libraries were screened with 5' fragments of previously isolated genomic clones, resulting in the isolation of five overlapping cosmid DNAs. The entire region of cloned DNA spans approximately 105 kb. Exon-containing fragments were identified by hybridization with end-labeled poly(A)+ RNA and by hybridization of labeled exon-containing genomic DNA fragments to fatty acid synthase mRNA. A new set of cDNA clones spanning approximately 3.2 kb was isolated from a lambda-ZAP goose liver cDNA library using the 5'-most exon-containing fragment of the 5'-most genomic DNA clone. This region of mRNA contains a 5'-untranslated sequence and a continuous open reading frame which includes a region that codes for the essential cysteine of the beta-ketoacyl synthase domain. The entire fatty acid synthase gene spans about 50 kb. The 5' 15 kb of the gene contain 7 exons. S1 nuclease and primer extension analyses were used to identify a single site for initiation of transcription, 174 nucleotides upstream from the putative translation initiation codon. Putative "TATA" and "CCAAT" boxes are located 28 and 60 base pairs (bp), respectively, upstream of the site of initiation of transcription. The 5'-flanking 597

  17. Identification of a novel CoA synthase isoform, which is primarily expressed in Brain

    SciTech Connect

    Nemazanyy, Ivan . E-mail: nemazanyy@imbg.org.ua; Panasyuk, Ganna; Breus, Oksana; Zhyvoloup, Alexander; Filonenko, Valeriy; Gout, Ivan T. . E-mail: i.gout@ucl.ac.uk

    2006-03-24

    CoA and its derivatives Acetyl-CoA and Acyl-CoA are important players in cellular metabolism and signal transduction. CoA synthase is a bifunctional enzyme which mediates the final stages of CoA biosynthesis. In previous studies, we have reported molecular cloning, biochemical characterization, and subcellular localization of CoA synthase (CoASy). Here, we describe the existence of a novel CoA synthase isoform, which is the product of alternative splicing and possesses a 29aa extension at the N-terminus. We termed it CoASy {beta} and originally identified CoA synthase, CoASy {alpha}. The transcript specific for CoASy {beta} was identified by electronic screening and by RT-PCR analysis of various rat tissues. The existence of this novel isoform was further confirmed by immunoblot analysis with antibodies directed to the N-terminal peptide of CoASy {beta}. In contrast to CoASy {alpha}, which shows ubiquitous expression, CoASy {beta} is primarily expressed in Brain. Using confocal microscopy, we demonstrated that both isoforms are localized on mitochondria. The N-terminal extension does not affect the activity of CoA synthase, but possesses a proline-rich sequence which can bring the enzyme into complexes with signalling proteins containing SH3 or WW domains. The role of this novel isoform in CoA biosynthesis, especially in Brain, requires further elucidation.

  18. Single-stranded DNA binding activity of C1-tetrahydrofolate synthase enzymes.

    PubMed

    Wahls, W P; Song, J M; Smith, G R

    1993-11-15

    In eukaryotes C1-5,6,7,8-tetrahydrofolate (THF) synthase is a trifunctional enzyme that catalyzes the interconversion of reduced forms of folate to supply activated one-carbon units required for a variety of metabolic pathways. The enzymatic activities include 10-formyl-THF synthetase (EC 6.3.4.3), 5,10-methenyl-THF cyclohydrolase (EC 3.5.4.9), and 5,10-methylene-THF dehydrogenase (EC 1.5.1.5). In bacteria separate, monofunctional or bifunctional polypeptides catalyze the same reactions. We have purified C1-THF synthase from the fission yeast Schizosaccharomyces pombe and found its physical and enzymatic properties similar to those of other eukaryotic C1-THF synthase enzymes. Unexpectedly, the S. pombe enzyme bound strongly (Keq = 100 pM) to single-stranded DNA, but not to double-stranded DNA or to RNA. The binding was sequence-independent, apparently not cooperative, and not detectably inhibited by C1-THF synthase substrates or cofactors. Trifunctional cytoplasmic enzyme from Saccharomyces cerevisiae and monofunctional (synthetase) enzyme from Clostridium acidiurici also bound tightly to single-stranded DNA, while bifunctional (dehydrogenase and cyclohydrolase) enzyme from Escherichia coli did not, suggesting that single-stranded DNA binding is a conserved function of the synthetase domain of C1-THF synthase enzymes. PMID:8226914

  19. Cloning and functional characterization of three terpene synthases from lavender (Lavandula angustifolia).

    PubMed

    Landmann, Christian; Fink, Barbara; Festner, Maria; Dregus, Márta; Engel, Karl-Heinz; Schwab, Wilfried

    2007-09-15

    The essential oil of lavender (Lavandula angustifolia) is mainly composed of mono- and sesquiterpenes. Using a homology-based PCR strategy, two monoterpene synthases (LaLIMS and LaLINS) and one sesquiterpene synthase (LaBERS) were cloned from lavender leaves and flowers. LaLIMS catalyzed the formation of (R)-(+)-limonene, terpinolene, (1R,5S)-(+)-camphene, (1R,5R)-(+)-alpha-pinene, beta-myrcene and traces of alpha-phellandrene. The proportions of these products changed significantly when Mn(2+) was supplied as the cofactor instead of Mg(2+). The second enzyme LaLINS produced exclusively (R)-(-)-linalool, the main component of lavender essential oil. LaBERS transformed farnesyl diphosphate and represents the first reported trans-alpha-bergamotene synthase. It accepted geranyl diphosphate with higher affinity than farnesyl diphosphate and also produced monoterpenes, albeit at low rates. LaBERS is probably derived from a parental monoterpene synthase by the loss of the plastidial signal peptide and by broadening its substrate acceptance spectrum. The identification and description of the first terpene synthases from L. angustifolia forms the basis for the biotechnological modification of essential oil composition in lavender. PMID:17662687

  20. Venom peptides cathelicidin and lycotoxin cause strong inhibition of Escherichia coli ATP synthase.

    PubMed

    Azim, Sofiya; McDowell, Derek; Cartagena, Alec; Rodriguez, Ricky; Laughlin, Thomas F; Ahmad, Zulfiqar

    2016-06-01

    Venom peptides are known to have strong antimicrobial activity and anticancer properties. King cobra cathelicidin or OH-CATH (KF-34), banded krait cathelicidin (BF-30), wolf spider lycotoxin I (IL-25), and wolf spider lycotoxin II (KE-27) venom peptides were found to strongly inhibit Escherichia coli membrane bound F1Fo ATP synthase. The potent inhibition of wild-type E. coli in comparison to the partial inhibition of null E. coli by KF-34, BF-30, Il-25, or KE-27 clearly links the bactericidal properties of these venom peptides to the binding and inhibition of ATP synthase along with the possibility of other inhibitory targets. The four venom peptides KF-34, BF-30, IL-25, and KE-27, caused ≥85% inhibition of wild-type membrane bound E.coli ATP synthase. Venom peptide induced inhibition of ATP synthase and the strong abrogation of wild-type E. coli cell growth in the presence of venom peptides demonstrates that ATP synthase is a potent membrane bound molecular target for venom peptides. Furthermore, the process of inhibition was found to be fully reversible. PMID:26930579

  1. Functional characterization of terpene synthases and chemotypic variation in three lavender species of section Stoechas.

    PubMed

    Benabdelkader, Tarek; Guitton, Yann; Pasquier, Bernard; Magnard, Jean Louis; Jullien, Frédéric; Kameli, Abdelkrim; Legendre, Laurent

    2015-01-01

    Lavandula pedunculata (Mill.) Cav. subsp. lusitanica, Lavandula stoechas L. subsp. stoechas and Lavandula viridis l'Hér. are three lavender taxa that belong to the botanical section Stoechas and are widely used as aromatherapy, culinary herb or folk medicine in many Mediterranean regions. The analysis of their bioactive volatile constituents revealed the presence of 124 substances, the most abundant being the bicyclic monoterpenes fenchone, camphor and 1,8-cineole that give these three species their respective chemotypes. Most noteworthy was fenchone which, with its reduced form fenchol, made 48% of the total volatile constituents of L. pedunculata while present at 2.9% in L. stoechas and undetectable in L. viridis. In order to provide a molecular explanation to the differences in volatile compounds of these three species, two monoterpene synthases (monoTPS) and one sesquiterpene synthase (sesquiTPS) were cloned in L. pedunculata and functionally characterized as fenchol synthase (LpFENS), α-pinene synthase (LpPINS) and germacrene A synthase (LpGEAS). The two other lavender species contained a single orthologous gene for each of these three classes of TPS with similar enzyme product specificities. Expression profiles of FENS and PINS genes matched the accumulation profile of the enzyme products unlike GEAS. This study provides one of the rare documented cases of chemotype modification during plant speciation via changes in the level of plant TPS gene expression, and not functionality. PMID:24943828

  2. Mitochondrial ATP synthases cluster as discrete domains that reorganize with the cellular demand for oxidative phosphorylation.

    PubMed

    Jimenez, Laure; Laporte, Damien; Duvezin-Caubet, Stephane; Courtout, Fabien; Sagot, Isabelle

    2014-02-15

    Mitochondria are double membrane-bounded organelles that form a dynamic tubular network. Mitochondria energetic functions depend on a complex internal architecture. Cristae, inner membrane invaginations that fold into the matrix space, are proposed to be the site of oxidative phosphorylation, reactions by which ATP synthase produces ATP. ATP synthase is also thought to have a role in crista morphogenesis. To date, the exploration of the processes regulating mitochondrial internal compartmentalization have been mostly limited to electron microscopy. Here, we describe ATP synthase localization in living yeast cells and show that it clusters as discrete inner membrane domains. These domains are dynamic within the mitochondrial network. They are impaired in mutants defective in crista morphology and partially overlap with the crista-associated MICOS-MINOS-MITOS complex. Finally, ATP synthase occupancy increases with the cellular demand for OXPHOS. Overall our data suggest that domains in which ATP synthases are clustered correspond to mitochondrial cristae. Being able to follow mitochondrial sub-compartments in living yeast cells opens new avenues to explore the mechanisms involved in inner membrane remodeling, an architectural feature crucial for mitochondrial activities.

  3. Isolation and Characterization of Three New Monoterpene Synthases from Artemisia annua

    PubMed Central

    Ruan, Ju-Xin; Li, Jian-Xu; Fang, Xin; Wang, Ling-Jian; Hu, Wen-Li; Chen, Xiao-Ya; Yang, Chang-Qing

    2016-01-01

    Artemisia annua, an annual herb used in traditional Chinese medicine, produces a wealth of monoterpenes and sesquiterpenes, including the well-known sesquiterpene lactone artemisinin, an active ingredient in the treatment for malaria. Here we report three new monoterpene synthases of A. annua. From a glandular trichome cDNA library, monoterpene synthases of AaTPS2, AaTPS5, and AaTPS6, were isolated and characterized. The recombinant proteins of AaTPS5 and AaTPS6 produced multiple products with camphene and 1,8-cineole as major products, respectively, and AaTPS2 produced a single product, β-myrcene. Although both Mg2+ and Mn2+ were able to support their catalytic activities, altered product spectrum was observed in the presence of Mn2+ for AaTPS2 and AaTPS5. Analysis of extracts of aerial tissues and root of A. annua with gas chromatography–mass spectrometry detected more than 20 monoterpenes, of which the three enzymes constituted more than 1/3 of the total. Mechanical wounding induced the expression of all three monoterpene synthase genes, and transcript levels of AaTPS5 and AaTPS6 were also elevated after treatments with phytohormones of methyl jasmonate, salicylic acid, and gibberellin, suggesting a role of these monoterpene synthases in plant–environment interactions. The three new monoterpene synthases reported here further our understanding of molecular basis of monoterpene biosynthesis and regulation in plant. PMID:27242840

  4. 5-Fluoroindole Resistance Identifies Tryptophan Synthase Beta Subunit Mutants in Arabidopsis Thaliana

    PubMed Central

    Barczak, A. J.; Zhao, J.; Pruitt, K. D.; Last, R. L.

    1995-01-01

    A study of the biochemical genetics of the Arabidopsis thaliana tryptophan synthase beta subunit was initiated by characterization of mutants resistant to the inhibitor 5-fluoroindole. Thirteen recessive mutations were recovered that are allelic to trp2-1, a mutation in the more highly expressed of duplicate tryptophan synthase beta subunit genes (TSB1). Ten of these mutations (trp2-2 through trp2-11) cause a tryptophan requirement (auxotrophs), whereas three (trp2-100 through trp2-102) remain tryptophan prototrophs. The mutations cause a variety of changes in tryptophan synthase beta expression. For example, two mutations (trp2-5 and trp2-8) cause dramatically reduced accumulation of TSB mRNA and immunologically detectable protein, whereas trp2-10 is associated with increased mRNA and protein. A correlation exists between the quantity of mutant beta and wild-type alpha subunit levels in the trp2 mutant plants, suggesting that the synthesis of these proteins is coordinated or that the quantity or structure of the beta subunit influences the stability of the alpha protein. The level of immunologically detectable anthranilate synthase alpha subunit protein is increased in the trp2 mutants, suggesting the possibility of regulation of anthranilate synthase levels in response to tryptophan limitation. PMID:7635295

  5. Evidence for a cyclic diguanylic acid-dependent cellulose synthase in plants.

    PubMed Central

    Amor, Y; Mayer, R; Benziman, M; Delmer, D

    1991-01-01

    Because numerous attempts to detect an activity for a cellulose synthase in plants have failed, we have taken a different approach toward detecting polypeptides involved in this process. The uniqueness of the structure and function of cyclic diguanylic acid (c-di-GMP) as an activator of the cellulose synthase of the bacterium Acetobacter xylinum makes it an attractive probe to use in a search for a c-di-GMP receptor that might be involved in the process in plants. Direct photolabeling with 32P-c-di-GMP has been used, therefore, to identify in plants two membrane polypeptides of 83 and 48 kD derived from cotton fibers that possess properties consistent with their being components of a c-di-GMP-dependent cellulose synthase. Based upon several criteria, the 48-kD species is proposed to be derived by proteolytic cleavage of the 83-kD polypeptide. Both polypeptides bind c-di-GMP with high affinity and specificity and show antigenic relatedness to the bacterial cellulose synthase, and the N-terminal sequence of the 48-kD polypeptide also indicates relatedness to the bacterial synthase. Ability to detect both cotton fiber polypeptides by photolabeling increases markedly in extracts derived from fibers entering the active phase of secondary wall cellulose synthesis. These results provide a basis for future work aimed at identifying and characterizing genes involved in cellulose synthesis in plants. PMID:1668373

  6. Cloning and nucleotide sequence of the gene coding for citrate synthase from a thermotolerant Bacillus sp.

    PubMed Central

    Schendel, F J; August, P R; Anderson, C R; Hanson, R S; Flickinger, M C

    1992-01-01

    The structural gene coding for citrate synthase from the gram-positive soil isolate Bacillus sp. strain C4 (ATCC 55182) capable of secreting acetic acid at pH 5.0 to 7.0 in the presence of dolime has been cloned from a genomic library by complementation of an Escherichia coli auxotrophic mutant lacking citrate synthase. The nucleotide sequence of the entire 3.1-kb HindIII fragment has been determined, and one major open reading frame was found coding for citrate synthase (ctsA). Citrate synthase from Bacillus sp. strain C4 was found to be a dimer (Mr, 84,500) with a subunit with an Mr of 42,000. The N-terminal sequence was found to be identical with that predicted from the gene sequence. The kinetics were best fit to a bisubstrate enzyme with an ordered mechanism. Bacillus sp. strain C4 citrate synthase was not activated by potassium chloride and was not inhibited by NADH, ATP, ADP, or AMP at levels up to 1 mM. The predicted amino acid sequence was compared with that of the E. coli, Acinetobacter anitratum, Pseudomonas aeruginosa, Rickettsia prowazekii, porcine heart, and Saccharomyces cerevisiae cytoplasmic and mitochondrial enzymes. PMID:1311544

  7. Transmembrane myosin chitin synthase involved in mollusc shell formation produced in Dictyostelium is active

    SciTech Connect

    Schoenitzer, Veronika; Eichner, Norbert; Clausen-Schaumann, Hauke; Weiss, Ingrid M.

    2011-12-02

    Highlights: Black-Right-Pointing-Pointer Dictyostelium produces the 264 kDa myosin chitin synthase of bivalve mollusc Atrina. Black-Right-Pointing-Pointer Chitin synthase activity releases chitin, partly associated with the cell surface. Black-Right-Pointing-Pointer Membrane extracts of transgenic slime molds produce radiolabeled chitin in vitro. Black-Right-Pointing-Pointer Chitin producing Dictyostelium cells can be characterized by atomic force microscopy. Black-Right-Pointing-Pointer This model system enables us to study initial processes of chitin biomineralization. -- Abstract: Several mollusc shells contain chitin, which is formed by a transmembrane myosin motor enzyme. This protein could be involved in sensing mechanical and structural changes of the forming, mineralizing extracellular matrix. Here we report the heterologous expression of the transmembrane myosin chitin synthase Ar-CS1 of the bivalve mollusc Atrina rigida (2286 amino acid residues, M.W. 264 kDa/monomer) in Dictyostelium discoideum, a model organism for myosin motor proteins. Confocal laser scanning immunofluorescence microscopy (CLSM), chitin binding GFP detection of chitin on cells and released to the cell culture medium, and a radiochemical activity assay of membrane extracts revealed expression and enzymatic activity of the mollusc chitin synthase in transgenic slime mold cells. First high-resolution atomic force microscopy (AFM) images of Ar-CS1 transformed cellulose synthase deficient D. discoideumdcsA{sup -} cell lines are shown.

  8. Molecular evolution and functional divergence of soluble starch synthase genes in cassava (manihot esculenta crantz).

    PubMed

    Yang, Zefeng; Wang, Yifan; Xu, Shuhui; Xu, Chenwu; Yan, Changjie

    2013-01-01

    Soluble starch synthases (SSs) are major enzymes involved in starch biosynthesis in plants. Cassava starch has many remarkable characteristics, which should be influenced by the evolution of SS genes in this starchy root crop. In this work, we performed a comprehensive phylogenetic and evolutionary analysis of the soluble starch synthases in cassava. Genome-wide identification showed that there are 9 genes encoding soluble starch synthases in cassava. All of the soluble starch synthases encoded by these genes contain both Glyco_transf_5 and Glycos_transf_1 domains, and a correlation analysis showed evidence of coevolution between these 2 domains in cassava SS genes. The SS genes in land plants can be divided into 6 subfamilies that were formed before the origin of seed plants, and species-specific expansion has contributed to the evolution of this family in cassava. A functional divergence analysis for this family provided statistical evidence for shifted evolutionary rates between the subfamilies of land plant soluble starch synthases. Although the main selective pressure acting on land plant SS genes was purifying selection, our results also revealed that point mutation with positive selection contributed to the evolution of 2 SS genes in cassava. The remarkable cassava starch characteristics might be the result of both the duplication and adaptive selection of SS genes.

  9. Isolation and Characterization of Three New Monoterpene Synthases from Artemisia annua.

    PubMed

    Ruan, Ju-Xin; Li, Jian-Xu; Fang, Xin; Wang, Ling-Jian; Hu, Wen-Li; Chen, Xiao-Ya; Yang, Chang-Qing

    2016-01-01

    Artemisia annua, an annual herb used in traditional Chinese medicine, produces a wealth of monoterpenes and sesquiterpenes, including the well-known sesquiterpene lactone artemisinin, an active ingredient in the treatment for malaria. Here we report three new monoterpene synthases of A. annua. From a glandular trichome cDNA library, monoterpene synthases of AaTPS2, AaTPS5, and AaTPS6, were isolated and characterized. The recombinant proteins of AaTPS5 and AaTPS6 produced multiple products with camphene and 1,8-cineole as major products, respectively, and AaTPS2 produced a single product, β-myrcene. Although both Mg(2+) and Mn(2+) were able to support their catalytic activities, altered product spectrum was observed in the presence of Mn(2+) for AaTPS2 and AaTPS5. Analysis of extracts of aerial tissues and root of A. annua with gas chromatography-mass spectrometry detected more than 20 monoterpenes, of which the three enzymes constituted more than 1/3 of the total. Mechanical wounding induced the expression of all three monoterpene synthase genes, and transcript levels of AaTPS5 and AaTPS6 were also elevated after treatments with phytohormones of methyl jasmonate, salicylic acid, and gibberellin, suggesting a role of these monoterpene synthases in plant-environment interactions. The three new monoterpene synthases reported here further our understanding of molecular basis of monoterpene biosynthesis and regulation in plant. PMID:27242840

  10. Increased glycogen accumulation in transgenic mice overexpressing glycogen synthase in skeletal muscle.

    PubMed Central

    Manchester, J; Skurat, A V; Roach, P; Hauschka, S D; Lawrence, J C

    1996-01-01

    To investigate the role of glycogen synthase in controlling glycogen accumulation, we generated three lines of transgenic mice in which the enzyme was overexpressed in skeletal muscle by using promoter-enhancer elements derived from the mouse muscle creatine kinase gene. In all three lines, expression was highest in muscles composed primarily of fast-twitch fibers, such as the gastrocnemius and anterior tibialis. In these muscles, glycogen synthase activity was increased by as much as 10-fold, with concomitant increases (up to 5-fold) in the glycogen content. The uridine diphosphoglucose concentrations were markedly decreased, consistent with the increase in glycogen synthase activity. Levels of glycogen phosphorylase in these muscles increased (up to 3-fold), whereas the amount of the insulin-sensitive glucose transporter 4 either remained unchanged or decreased. The observation that increasing glycogen synthase enhances glycogen accumulation supports the conclusion that the activation of glycogen synthase, as well as glucose transport, contributes to the accumulation of glycogen in response to insulin in skeletal muscle. Images Fig. 1 PMID:8855244

  11. Anthranilate synthase/anthranilate 5-phosphoribosyl 1-pyrophosphate phosphoribosyltransferase from Aerobacter aerogenes

    PubMed Central

    Egan, A. F.; Gibson, F.

    1972-01-01

    1. Anthranilate synthase and phosphoribosyltransferase from Aerobacter aerogenes purify simultaneously and sediment together on sucrose gradients, showing that they occur as an enzyme aggregate. Both activities of the intact aggregate are subject to inhibition by tryptophan. 2. By using appropriate auxotrophic mutants it was shown that an intact active enzyme aggregate is formed when the components come from separate mutant strains. An intact active aggregate can also be formed when one component is from Escherichia coli and the other from A. aerogenes. 3. Phosphoribosyltransferase of A. aerogenes is active when not in an aggregate with anthranilate synthase, but is not subject to tryptophan inhibition, indicating that the inhibitor site is on the anthranilate synthase component. 4. Anthranilate synthase can be active and sensitive to tryptophan inhibition when complexed with an inactive phosphoribosyltransferase. 5. Kinetic studies on the anthranilate synthase activity show that tryptophan is a competitive inhibitor with respect to chorismate and a non-competitive inhibitor with respect to either glutamine or NH4+ ions. This is consistent with a sequential mechanism of the ordered type in which chorismate is the first reactant. PMID:4352716

  12. Structure and Function of a "Head-to-Middle" Prenyltransferase: Lavandulyl Diphosphate Synthase.

    PubMed

    Liu, Meixia; Chen, Chun-Chi; Chen, Lu; Xiao, Xiansha; Zheng, Yingying; Huang, Jian-Wen; Liu, Weidong; Ko, Tzu-Ping; Cheng, Ya-Shan; Feng, Xinxin; Oldfield, Eric; Guo, Rey-Ting; Ma, Yanhe

    2016-04-01

    We report the first X-ray structure of the unique "head-to-middle" monoterpene synthase, lavandulyl diphosphate synthase (LPPS). LPPS catalyzes the condensation of two molecules of dimethylallyl diphosphate (DMAPP) to form lavandulyl diphosphate, a precursor to the fragrance lavandulol. The structure is similar to that of the bacterial cis-prenyl synthase, undecaprenyl diphosphate synthase (UPPS), and contains an allylic site (S1) in which DMAPP ionizes and a second site (S2) which houses the DMAPP nucleophile. Both S-thiolo-dimethylallyl diphosphate and S-thiolo-isopentenyl diphosphate bind intact to S2, but are cleaved to (thio)diphosphate, in S1. His78 (Asn in UPPS) is essential for catalysis and is proposed to facilitate diphosphate release in S1, while the P1 phosphate in S2 abstracts a proton from the lavandulyl carbocation to form the LPP product. The results are of interest since they provide the first structure and structure-based mechanism of this unusual prenyl synthase. PMID:26922900

  13. Altering small and medium alcohol selectivity in the wax ester synthase.

    PubMed

    Barney, Brett M; Ohlert, Janet M; Timler, Jacobe G; Lijewski, Amelia M

    2015-11-01

    The bifunctional wax ester synthase/acyl-coenzyme A:diacylglycerol acyltransferase (WS/DGAT or wax ester synthase) catalyzes the terminal reaction in the bacterial wax ester biosynthetic pathway, utilizing a range of alcohols and fatty acyl-CoAs to synthesize the corresponding wax ester. The wild-type wax ester synthase Maqu_0168 from Marinobacter aquaeolei VT8 exhibits a preference for longer fatty alcohols, while applications with smaller alcohols would yield products with desired biotechnological properties. Small and medium chain length alcohol substrates are much poorer substrates for the native enzyme, which may hinder broad application of the wax ester synthase in many proposed biosynthetic schemes. Developing approaches to improve enzyme activity toward specific smaller alcohol substrates first requires a clear understanding of which amino acids of the primary sequences of these enzymes contribute to substrate specificity in the native enzyme. In this report, we surveyed a range of potential residues and identified the leucine at position 356 and methionine at position 405 in Maqu_0168 as residues that affected selectivity toward small, branched, and aromatic alcohols when substituted with different amino acids. This analysis provides evidence of residues that line the binding site for wax ester synthase, which will aid rational approaches to improve this enzyme with specific substrates.

  14. Functional characterization of terpene synthases and chemotypic variation in three lavender species of section Stoechas.

    PubMed

    Benabdelkader, Tarek; Guitton, Yann; Pasquier, Bernard; Magnard, Jean Louis; Jullien, Frédéric; Kameli, Abdelkrim; Legendre, Laurent

    2015-01-01

    Lavandula pedunculata (Mill.) Cav. subsp. lusitanica, Lavandula stoechas L. subsp. stoechas and Lavandula viridis l'Hér. are three lavender taxa that belong to the botanical section Stoechas and are widely used as aromatherapy, culinary herb or folk medicine in many Mediterranean regions. The analysis of their bioactive volatile constituents revealed the presence of 124 substances, the most abundant being the bicyclic monoterpenes fenchone, camphor and 1,8-cineole that give these three species their respective chemotypes. Most noteworthy was fenchone which, with its reduced form fenchol, made 48% of the total volatile constituents of L. pedunculata while present at 2.9% in L. stoechas and undetectable in L. viridis. In order to provide a molecular explanation to the differences in volatile compounds of these three species, two monoterpene synthases (monoTPS) and one sesquiterpene synthase (sesquiTPS) were cloned in L. pedunculata and functionally characterized as fenchol synthase (LpFENS), α-pinene synthase (LpPINS) and germacrene A synthase (LpGEAS). The two other lavender species contained a single orthologous gene for each of these three classes of TPS with similar enzyme product specificities. Expression profiles of FENS and PINS genes matched the accumulation profile of the enzyme products unlike GEAS. This study provides one of the rare documented cases of chemotype modification during plant speciation via changes in the level of plant TPS gene expression, and not functionality.

  15. Sphingomyelin Synthase 2, but Not Sphingomyelin Synthase 1, Is Involved in HIV-1 Envelope-mediated Membrane Fusion*

    PubMed Central

    Hayashi, Yasuhiro; Nemoto-Sasaki, Yoko; Tanikawa, Takashi; Oka, Saori; Tsuchiya, Kiyoto; Zama, Kouta; Mitsutake, Susumu; Sugiura, Takayuki; Yamashita, Atsushi

    2014-01-01

    Membrane fusion between the viral envelope and plasma membranes of target cells has previously been correlated with HIV-1 infection. Lipids in the plasma membrane, including sphingomyelin, may be crucially involved in HIV-1 infection; however, the role of lipid-metabolic enzymes in membrane fusion remains unclear. In this study, we examined the roles of sphingomyelin synthase (SMS) in HIV-1 Env-mediated membrane fusion using a cell-cell fusion assay with HIV-1 mimetics and their target cells. We employed reconstituted cells as target cells that stably express Sms1 or Sms2 in Sms-deficient cells. Fusion susceptibility was ∼5-fold higher in Sms2-expressing cells (not in Sms1-expressing cells) than in Sms-deficient cells. The enhancement of fusion susceptibility observed in Sms2-expressing cells was reversed and reduced by Sms2 knockdown. We also found that catalytically nonactive Sms2 promoted membrane fusion susceptibility. Moreover, SMS2 co-localized and was constitutively associated with the HIV receptor·co-receptor complex in the plasma membrane. In addition, HIV-1 Env treatment resulted in a transient increase in nonreceptor tyrosine kinase (Pyk2) phosphorylation in Sms2-expressing and catalytically nonactive Sms2-expressing cells. We observed that F-actin polymerization in the region of membrane fusion was more prominent in Sms2-expressing cells than Sms-deficient cells. Taken together, our research provides insight into a novel function of SMS2 which is the regulation of HIV-1 Env-mediated membrane fusion via actin rearrangement. PMID:25231990

  16. Function and expression study uncovered hepatocyte plasma membrane ecto-ATP synthase as a novel player in liver regeneration.

    PubMed

    Taurino, Federica; Giannoccaro, Caterina; Sardanelli, Anna Maria; Cavallo, Alessandro; De Luca, Elisa; Santacroce, Salvatore; Papa, Sergio; Zanotti, Franco; Gnoni, Antonio

    2016-08-15

    ATP synthase, canonically mitochondrially located, is reported to be ectopically expressed on the plasma membrane outer face of several cell types. We analysed, for the first time, the expression and catalytic activities of the ecto- and mitochondrial ATP synthase during liver regeneration. Liver regeneration was induced in rats by two-thirds partial hepatectomy. The protein level and the ATP synthase and/or hydrolase activities of the hepatocyte ecto- and mitochondrial ATP synthase were analysed on freshly isolated hepatocytes and mitochondria from control, sham-operated and partial hepatectomized rats. During the priming phase of liver regeneration, 3 h after partial hepatectomy, liver mitochondria showed a marked lowering of the ATP synthase protein level that was reflected in the impairment of both ATP synthesis and hydrolysis. The ecto-ATP synthase level, in 3 h partial hepatectomized hepatocytes, was decreased similarly to the level of the mitochondrial ATP synthase, associated with a lowering of the ecto-ATP hydrolase activity coupled to proton influx. Noteworthily, the ecto-ATP synthase activity coupled to proton efflux was completely inhibited in 3 h partial hepatectomized hepatocytes, even in the presence of a marked intracellular acidification that would sustain it as in control and sham-operated hepatocytes. At the end of the liver regeneration, 7 days after partial hepatectomy, the level and the catalytic activities of the ecto- and mitochondrial ATP synthase reached the control and sham-operated values. The specific modulation of hepatocyte ecto-ATP synthase catalytic activities during liver regeneration priming phase may modulate the extracellular ADP/ATP levels and/or proton influx/efflux trafficking, making hepatocyte ecto-ATP synthase a candidate for a novel player in the liver regeneration process. PMID:27287557

  17. Function and expression study uncovered hepatocyte plasma membrane ecto-ATP synthase as a novel player in liver regeneration.

    PubMed

    Taurino, Federica; Giannoccaro, Caterina; Sardanelli, Anna Maria; Cavallo, Alessandro; De Luca, Elisa; Santacroce, Salvatore; Papa, Sergio; Zanotti, Franco; Gnoni, Antonio

    2016-08-15

    ATP synthase, canonically mitochondrially located, is reported to be ectopically expressed on the plasma membrane outer face of several cell types. We analysed, for the first time, the expression and catalytic activities of the ecto- and mitochondrial ATP synthase during liver regeneration. Liver regeneration was induced in rats by two-thirds partial hepatectomy. The protein level and the ATP synthase and/or hydrolase activities of the hepatocyte ecto- and mitochondrial ATP synthase were analysed on freshly isolated hepatocytes and mitochondria from control, sham-operated and partial hepatectomized rats. During the priming phase of liver regeneration, 3 h after partial hepatectomy, liver mitochondria showed a marked lowering of the ATP synthase protein level that was reflected in the impairment of both ATP synthesis and hydrolysis. The ecto-ATP synthase level, in 3 h partial hepatectomized hepatocytes, was decreased similarly to the level of the mitochondrial ATP synthase, associated with a lowering of the ecto-ATP hydrolase activity coupled to proton influ