Science.gov

Sample records for 3-kinase inhibitor ly294002

  1. Inhibitory actions of the phosphatidylinositol 3-kinase inhibitor LY294002 on the human Kv1.5 channel

    PubMed Central

    Wu, J; Ding, W-G; Matsuura, H; Tsuji, K; Zang, W-J; Horie, M

    2009-01-01

    Background and purpose: Kv1.5 channels conduct the ultra-rapid delayed rectifier potassium current (IKur), and in humans, Kv1.5 channels are highly expressed in cardiac atria but are scarce in ventricles. Pharmacological blockade of human Kv1.5 (hKv1.5) has been regarded as effective for prevention and treatment of re-entry-based atrial tachyarrhythmias. Here we examined blockade of hKv1.5 channels by LY294002, a well-known inhibitor of phosphatidylinositol 3-kinase (PI3K). Experimental approach: hKv1.5 channels were heterologously expressed in Chinese hamster ovary cells. Effects of LY294002 on wild-type and mutant (T462C, H463C, T480A, R487V, A501V, I502A, I508A, L510A and V516A) hKv1.5 channels were examined by using the whole-cell patch-clamp method. Key results: LY294002 rapidly and reversibly inhibited hKv1.5 current in a concentration-dependent manner (IC50 of 7.9 µmol·L−1). In contrast, wortmannin, a structurally distinct inhibitor of PI3K, had little inhibitory effect on hKv1.5 current. LY294002 block of hKv1.5 current developed with time during depolarizing voltage-clamp steps, and this blockade was also voltage-dependent with a steep increase over the voltage range for channel openings. The apparent binding (k+1) and unbinding (k−1) rate constants were calculated to be 1.6 µmol·L−1−1·s−1 and 5.7 s−1 respectively. Inhibition by LY294002 was significantly reduced in several hKv1.5 mutant channels: T480A, R487V, I502A, I508A, L510A and V516A. Conclusions and implications: LY294002 acts directly on hKv1.5 currents as an open channel blocker, independently of its effects on PI3K activity. Amino acid residues located in the pore region (Thr480, Arg487) and the S6 segment (Ile502, Ile508, Leu510, Val516) appear to constitute potential binding sites for LY294002. PMID:19154427

  2. Direct inhibition of the signaling functions of the mammalian target of rapamycin by the phosphoinositide 3-kinase inhibitors, wortmannin and LY294002.

    PubMed Central

    Brunn, G J; Williams, J; Sabers, C; Wiederrecht, G; Lawrence, J C; Abraham, R T

    1996-01-01

    The immunosuppressant, rapamycin, inhibits cell growth by interfering with the function of a novel kinase, termed mammalian target of rapamycin (mTOR). The putative catalytic domain of mTOR is similar to those of mammalian and yeast phosphatidylinositol (PI) 3-kinases. This study demonstrates that mTOR is a component of a cytokine-triggered protein kinase cascade leading to the phosphorylation of the eukaryotic initiation factor-4E (eIF-4E) binding protein, PHAS-1, in activated T lymphocytes. This event promotes G1 phase progression by stimulating eIF-4E-dependent translation initiation. A mutant YAC-1 T lymphoma cell line, which was selected for resistance to the growth-inhibitory action of rapamycin, was correspondingly resistant to the suppressive effect of this drug on PHAS-1 phosphorylation. In contrast, the PI 3-kinase inhibitor, wortmannin, reduced the phosphorylation of PHAS-1 in both rapamycin-sensitive and -resistant T cells. At similar drug concentrations (0.1-1 microM), wortmannin irreversibly inhibited the serine-specific autokinase activity of mTOR. The autokinase activity of mTOR was also sensitive to the structurally distinct PI 3-kinase inhibitor, LY294002, at concentrations (1-30 microM) nearly identical to those required for inhibition of the lipid kinase activity of the mammalian p85-p110 heterodimer. These studies indicate that the signaling functions of mTOR, and potentially those of other high molecular weight PI 3-kinase homologs, are directly affected by cellular treatment with wortmannin or LY294002. Images PMID:8895571

  3. LY294002 inhibits glucocorticoid-induced COX-2 gene expression in cardiomyocytes through a phosphatidylinositol 3 kinase-independent mechanism

    SciTech Connect

    Sun Haipeng; Xu Beibei; Sheveleva, Elena; Chen, Qin M.

    2008-10-01

    Glucocorticoids induce COX-2 expression in rat cardiomyocytes. While investigating whether phosphatidylinositol 3 kinase (PI3K) plays a role in corticosterone (CT)-induced COX-2, we found that LY294002 (LY29) but not wortmannin (WM) attenuates CT from inducing COX-2 gene expression. Expression of a dominant-negative mutant of p85 subunit of PI3K failed to inhibit CT from inducing COX-2 expression. CT did not activate PI3K/AKT signaling pathway whereas LY29 and WM decreased the activity of PI3K. LY303511 (LY30), a structural analogue and a negative control for PI3K inhibitory activity of LY29, also suppressed COX-2 induction. These data suggest PI3K-independent mechanisms in regulating CT-induced COX-2 expression. LY29 and LY30 do not inhibit glucocorticoid receptor transactivity. Both compounds have been reported to inhibit Casein Kinase 2 activity and modulate potassium and calcium levels independent of PI3K, while LY29 has been reported to inhibit mammalian Target of Rapamycin (mTOR), and DNA-dependent Protein Kinase (DNA-PK). Inhibitor of Casein Kinase 2 (CK2), mTOR or DNA-PK failed to prevent CT from inducing COX-2 expression. Tetraethylammonium (TEA), a potassium channel blocker, and nimodipine, a calcium channel blocker, both attenuated CT from inducing COX-2 gene expression. CT was found to increase intracellular Ca{sup 2+} concentration, which can be inhibited by LY29, TEA or nimodipine. These data suggest a possible role of calcium instead of PI3K in CT-induced COX-2 expression in cardiomyocytes.

  4. Vesicular trafficking and stress response coupled to PI3K inhibition by LY294002 as revealed by proteomic and cell biological analysis

    PubMed Central

    Takáč, Tomáš; Pechan, Tibor; Šamajová, Olga; Šamaj, Jozef

    2013-01-01

    LY294002 is a synthetic quercetin-like compound which, unlike wortmannin, is an inhibitor of phosphatidylinositol 3-kinase (PI3K). It inhibits endocytosis and vacuolar transport. We report here on the proteome-wide effects of LY294002 on Arabidopsis roots focusing on proteins involved in vesicular trafficking and stress response. At the subcellular level, LY294002 caused swelling and clustering of late endosomes leading to inhibition of vacuolar transport. At the proteome level, this compound caused changes in abundances of proteins categorized to 10 functional classes. Among proteins involved in vesicular trafficking, a small GTPase ARFA1f was more abundant, indicating its possible contribution to the aggregation and fusion of late endosomes triggered by LY294002. Our study provides new information on storage proteins and vacuolar hydrolases in vegetative tissues treated by LY294002. Vacuolar hydrolases were downregulated while storage proteins were more abundant, suggesting that storage proteins were protected from degradation in swollen multivesicular bodies upon LY294002 treatment. Upregulation of 2S albumin was validated by immunoblotting and immunolabelling analyses. Our study also pointed to the control of antioxidant enzyme machinery by PI3K because LY294002 downregulated two isozymes of superoxide dismutase. This most likely occurred via PI3K–mediated downregulation of protein AtDJ1A. Finally, we discuss specificity differences of LY294002 and wortmannin against PI3K which are reflected at the proteome level. Compared to wortmannin, LY294002 showed more narrow and perhaps also more specific effects on proteins as suggested by gene ontology functional annotation. PMID:23931732

  5. Phosphatidylinositol 3-kinase inhibitors block differentiation of skeletal muscle cells.

    PubMed

    Kaliman, P; Viñals, F; Testar, X; Palacín, M; Zorzano, A

    1996-08-01

    Skeletal muscle differentiation involves myoblast alignment, elongation, and fusion into multinucleate myotubes, together with the induction of regulatory and structural muscle-specific genes. Here we show that two phosphatidylinositol 3-kinase inhibitors, LY294002 and wortmannin, blocked an essential step in the differentiation of two skeletal muscle cell models. Both inhibitors abolished the capacity of L6E9 myoblasts to form myotubes, without affecting myoblast proliferation, elongation, or alignment. Myogenic events like the induction of myogenin and of glucose carrier GLUT4 were also blocked and myoblasts could not exit the cell cycle, as measured by the lack of mRNA induction of p21 cyclin-dependent kinase inhibitor. Overexpresssion of MyoD in 10T1/2 cells was not sufficient to bypass the myogenic differentiation blockade by LY294002. Upon serum withdrawal, 10T1/2-MyoD cells formed myotubes and showed increased levels of myogenin and p21. In contrast, LY294002-treated cells exhibited none of these myogenic characteristics and maintained high levels of Id, a negative regulator of myogenesis. These data indicate that whereas phosphatidylinositol 3-kinase is not indispensable for cell proliferation or in the initial events of myoblast differentiation, i.e. elongation and alignment, it appears to be essential for terminal differentiation of muscle cells. PMID:8702591

  6. Pharmacologic profiling of phosphoinositide 3-kinase inhibitors as mitigators of ionizing radiation-induced cell death.

    PubMed

    Lazo, John S; Sharlow, Elizabeth R; Epperly, Michael W; Lira, Ana; Leimgruber, Stephanie; Skoda, Erin M; Wipf, Peter; Greenberger, Joel S

    2013-12-01

    Ionizing radiation (IR) induces genotoxic stress that triggers adaptive cellular responses, such as activation of the phosphoinositide 3-kinase (PI3K)/Akt signaling cascade. Pluripotent cells are the most important population affected by IR because they are required for cellular replenishment. Despite the clear danger to large population centers, we still lack safe and effective therapies to abrogate the life-threatening effects of any accidental or intentional IR exposure. Therefore, we computationally analyzed the chemical structural similarity of previously published small molecules that, when given after IR, mitigate cell death and found a chemical cluster that was populated with PI3K inhibitors. Subsequently, we evaluated structurally diverse PI3K inhibitors. It is remarkable that 9 of 14 PI3K inhibitors mitigated γIR-induced death in pluripotent NCCIT cells as measured by caspase 3/7 activation. A single intraperitoneal dose of LY294002 [2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one], administered to mice at 4 or 24 hours, or PX-867 [(4S,4aR,5R,6aS,9aR,Z)-11-hydroxy-4-(methoxymethyl)-4a,6a-dimethyl-2,7,10-trioxo-1-(pyrrolidin-1-ylmethylene)-1,2,4,4a,5,6,6a,7,8,9,9a,10-dodecahydroindeno[4,5-H]isochromen-5-yl acetate (CID24798773)], administered 4 hours after a lethal dose of γIR, statistically significantly (P < 0.02) enhanced in vivo survival. Because cell cycle checkpoints are important regulators of cell survival after IR, we examined cell cycle distribution in NCCIT cells after γIR and PI3K inhibitor treatment. LY294002 and PX-867 treatment of nonirradiated cells produced a marked decrease in S phase cells with a concomitant increase in the G1 population. In irradiated cells, LY294002 and PX-867 treatment also decreased S phase and increased the G1 and G2 populations. Treatment with LY294002 or PX-867 decreased γIR-induced DNA damage as measured by γH2AX, suggesting reduced DNA damage. These results indicate pharmacologic inhibition of PI3K after

  7. Pharmacologic Profiling of Phosphoinositide 3-Kinase Inhibitors as Mitigators of Ionizing Radiation–Induced Cell Death

    PubMed Central

    Sharlow, Elizabeth R.; Epperly, Michael W.; Lira, Ana; Leimgruber, Stephanie; Skoda, Erin M.; Wipf, Peter; Greenberger, Joel S.

    2013-01-01

    Ionizing radiation (IR) induces genotoxic stress that triggers adaptive cellular responses, such as activation of the phosphoinositide 3-kinase (PI3K)/Akt signaling cascade. Pluripotent cells are the most important population affected by IR because they are required for cellular replenishment. Despite the clear danger to large population centers, we still lack safe and effective therapies to abrogate the life-threatening effects of any accidental or intentional IR exposure. Therefore, we computationally analyzed the chemical structural similarity of previously published small molecules that, when given after IR, mitigate cell death and found a chemical cluster that was populated with PI3K inhibitors. Subsequently, we evaluated structurally diverse PI3K inhibitors. It is remarkable that 9 of 14 PI3K inhibitors mitigated γIR-induced death in pluripotent NCCIT cells as measured by caspase 3/7 activation. A single intraperitoneal dose of LY294002 [2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one], administered to mice at 4 or 24 hours, or PX-867 [(4S,4aR,5R,6aS,9aR,Z)-11-hydroxy-4-(methoxymethyl)-4a,6a-dimethyl-2,7,10-trioxo-1-(pyrrolidin-1-ylmethylene)-1,2,4,4a,5,6,6a,7,8,9,9a,10-dodecahydroindeno[4,5-H]isochromen-5-yl acetate (CID24798773)], administered 4 hours after a lethal dose of γIR, statistically significantly (P < 0.02) enhanced in vivo survival. Because cell cycle checkpoints are important regulators of cell survival after IR, we examined cell cycle distribution in NCCIT cells after γIR and PI3K inhibitor treatment. LY294002 and PX-867 treatment of nonirradiated cells produced a marked decrease in S phase cells with a concomitant increase in the G1 population. In irradiated cells, LY294002 and PX-867 treatment also decreased S phase and increased the G1 and G2 populations. Treatment with LY294002 or PX-867 decreased γIR-induced DNA damage as measured by γH2AX, suggesting reduced DNA damage. These results indicate pharmacologic inhibition of PI3K after

  8. Effects of Isoform-selective Phosphatidylinositol 3-Kinase Inhibitors on Osteoclasts

    PubMed Central

    Shugg, Ryan P. P.; Thomson, Ashley; Tanabe, Natsuko; Kashishian, Adam; Steiner, Bart H.; Puri, Kamal D.; Pereverzev, Alexey; Lannutti, Brian J.; Jirik, Frank R.; Dixon, S. Jeffrey; Sims, Stephen M.

    2013-01-01

    Phosphatidylinositol 3-kinases (PI3K) participate in numerous signaling pathways, and control distinct biological functions. Studies using pan-PI3K inhibitors suggest roles for PI3K in osteoclasts, but little is known about specific PI3K isoforms in these cells. Our objective was to determine effects of isoform-selective PI3K inhibitors on osteoclasts. The following inhibitors were investigated (targets in parentheses): wortmannin and LY294002 (pan-p110), PIK75 (α), GDC0941 (α, δ), TGX221 (β), AS252424 (γ), and IC87114 (δ). In addition, we characterized a new potent and selective PI3Kδ inhibitor, GS-9820, and explored roles of PI3K isoforms in regulating osteoclast function. Osteoclasts were isolated from long bones of neonatal rats and rabbits. Wortmannin, LY294002, GDC0941, IC87114, and GS-9820 induced a dramatic retraction of osteoclasts within 15–20 min to 65–75% of the initial area. In contrast, there was no significant retraction in response to vehicle, PIK75, TGX221, or AS252424. Moreover, wortmannin and GS-9820, but not PIK75 or TGX221, disrupted actin belts. We examined effects of PI3K inhibitors on osteoclast survival. Whereas PIK75, TGX221, and GS-9820 had no significant effect on basal survival, all blocked RANKL-stimulated survival. When studied on resorbable substrates, osteoclastic resorption was suppressed by wortmannin and inhibitors of PI3Kβ and PI3Kδ, but not other isoforms. These data are consistent with a critical role for PI3Kδ in regulating osteoclast cytoskeleton and resorptive activity. In contrast, multiple PI3K isoforms contribute to the control of osteoclast survival. Thus, the PI3Kδ isoform, which is predominantly expressed in cells of hematopoietic origin, is an attractive target for anti-resorptive therapeutics. PMID:24133210

  9. 1α,25-Dihydroxyvitamin D3–Induced Myeloid Cell Differentiation Is Regulated by a Vitamin D Receptor–Phosphatidylinositol 3-Kinase Signaling Complex

    PubMed Central

    Hmama, Zakaria; Nandan, Devki; Sly, Laura; Knutson, Keith L.; Herrera-Velit, Patricia; Reiner, Neil E.

    1999-01-01

    1α,25-dihydroxyvitamin D3 (D3) promotes the maturation of myeloid cells and surface expressions of CD14 and CD11b, markers of cell differentiation in response to D3. To examine how these responses are regulated, THP-1 cells were grown in serum-free medium and incubated with D3. This was associated with rapid and transient increases in phosphatidylinositol 3-kinase (PI 3-kinase) activity. Furthermore, induction of CD14 expression in response to D3 was abrogated by (a) the PI 3-kinase inhibitors LY294002 and wortmannin; (b) antisense oligonucleotides to mRNA for the p110 catalytic subunit of PI 3-kinase; and (c) a dominant negative mutant of PI 3-kinase. In THP-1 cells, induction of CD11b expression by D3 was also abrogated by LY294002 and wortmannin. Similarly, LY294002 and wortmannin inhibited D3-induced expression of both CD14 and CD11b in peripheral blood monocytes. In contrast to CD14 and CD11b, hormone-induced expression of the Cdk inhibitor p21 in THP-1 cells was unaffected by either wortmannin or LY294002. These findings suggest that PI 3-kinase selectively regulates D3-induced monocyte differentiation, independent of any effects on p21. PMID:10587349

  10. Myogenic signaling of phosphatidylinositol 3-kinase requires the serine-threonine kinase Akt/protein kinase B

    PubMed Central

    Jiang, Bing-Hua; Aoki, Masahiro; Zheng, Jenny Z.; Li, Jian; Vogt, Peter K.

    1999-01-01

    The oncogene p3k, coding for a constitutively active form of phosphatidylinositol 3-kinase (PI 3-kinase), strongly activates myogenic differentiation. Inhibition of endogenous PI 3-kinase activity with the specific inhibitor LY294002, or with dominant-negative mutants of PI 3-kinase, interferes with myotube formation and with the expression of muscle-specific proteins. Here we demonstrate that a downstream target of PI 3-kinase, serine-threonine kinase Akt, plays an important role in myogenic differentiation. Expression of constitutively active forms of Akt dramatically enhances myotube formation and expression of the muscle-specific proteins MyoD, creatine kinase, myosin heavy chain, and desmin. Transdominant negative forms of Akt inhibit myotube formation and the expression of muscle-specific proteins. The inhibition of myotube formation and the reduced expression of muscle-specific proteins caused by the PI 3-kinase inhibitor LY294002 are completely reversed by constitutively active forms of Akt. Wild-type cellular Akt effects a partial reversal of LY294002-induced inhibition of myogenic differentiation. This result suggests that Akt can substitute for PI 3-kinase in the stimulation of myogenesis; Akt may be an essential downstream component of PI 3-kinase-induced muscle differentiation. PMID:10051597

  11. Phosphatidylinositol 3-kinase in myogenesis.

    PubMed

    Kaliman, P; Zorzano, A

    1997-08-01

    Phosphatidylinositol 3-kinase (PI 3-kinase) has been cloned and characterized in a wide range of organisms. PI 3-kinases are activated by a diversity of extracellular stimuli and are involved in multiple cell processes such as cell proliferation, protein trafficking, cell motility, differentiation, regulation of cytoskeletal structure, and apoptosis. It has recently been shown that PI 3-kinase is a crucial second messenger in the signaling of myogenesis. Two structurally unrelated highly specific inhibitors of PI 3-kinase-wortmannin and LY294002-block the morphological and biochemical differentiation program of different skeletal-muscle cell models. Moreover, L6E9 myoblasts overexpressing a dominant-negative mutant of PI 3-kinase p85 regulatory subunit (Δp85) are unable to differentiate. Furthermore, PI 3-kinase is specifically involved in the insulinlike growth factor (IGF)-dependent myogenic pathway. Indeed, the ability of IGF-I, des-1,3-IGF-I, and IGF-II to promote cell fusion and muscle-specific protein expression is impaired after treatment with PI 3-kinase inhibitors or in cells overexpressing Δp85. The identification of additional key downstream elements of the IGF/PI 3-kinase myogenic cascade is crucial to a detailed understanding of the process of muscle differentiation and may generate new tools for skeletal and cardiac muscle regeneration therapies. (Trends Cardiovasc Med 1997;7:198-202). © 1997, Elsevier Science Inc. PMID:21235885

  12. Acetylcholinesterase inhibitors used in treatment of Alzheimer's disease prevent glutamate neurotoxicity via nicotinic acetylcholine receptors and phosphatidylinositol 3-kinase cascade.

    PubMed

    Takada-Takatori, Yuki; Kume, Toshiaki; Sugimoto, Mitsuhiro; Katsuki, Hiroshi; Sugimoto, Hachiro; Akaike, Akinori

    2006-09-01

    We show here that donepezil, galanathamine and tacrine, therapeutic acetylcholinesterase inhibitors currently being used for treatment of Alzheimer's disease, protect neuronal cells in a time- and concentration-dependent manner from glutamate neurotoxicity that involves apoptosis. The neuroprotective effects were antagonized by mecamylamine, an inhibitor of nicotinic acetylcholine receptors (nAChRs). Dihydro-beta-erythroidine and methyllycaconitine, antagonists for alpha4-nAChR and alpha7-nAChR, respectively, antagonized the protective effect of donepezil and galanthamine, but not that of tacrine. Previous reports suggest the involvement of the phosphatidylinositol 3-kinase (PI3K)-Akt pathway in the nicotine-induced neuroprotection. Inhibitors for a non-receptor type tyrosine kinase, Fyn, and janus-activated kinase 2, suppressed the neuroprotective effect of donepezil and galanthamine, but not that of tacrine. Furthermore, LY294002, a PI3K inhibitor, also suppressed the neuroprotective effect of donepezil and galanthamine, but not that of tacrine. The phosphorylation of Akt, an effector of PI3K, and the expression level of Bcl-2, an anti-apoptotic protein, increased with donepezil and galanthamine treatment, but not with tacrine treatment. These results suggest that donepezil and galanthamine prevent glutamate neurotoxicity through alpha4- and alpha7-nAChRs, followed by the PI3K-Akt pathway, and that tacrine protects neuronal cells through a different pathway. PMID:16762377

  13. Activation of Telomerase by Ionizing Radiation: Differential Response to the Inhibition of DNA Double-Strand Break Repair by Abrogation of Poly(ADP-ribosyl)ation, by LY294002, or by Wortmannin

    SciTech Connect

    Neuhof, Dirk Zwicker, Felix; Kuepper, Jan-Heiner; Debus, Juergen; Weber, Klaus-Josef

    2007-11-01

    Purpose: Telomerase activity represents a radiation-inducible function, which may be targeted by a double-strand break (DSB)-activated signal transduction pathway. Therefore, the effects of DNA-PK inhibitors (Wortmannin and LY294002) on telomerase upregulation after irradiation were studied. In addition, the role of trans-dominant inhibition of poly(ADP-ribosyl)ation, which strongly reduces DSB rejoining, was assessed in comparison with 3-aminobenzamide. Methods and Materials: COM3 rodent cells carry a construct for the dexamethasone-inducible overexpression of the DNA-binding domain of PARP1 and exhibit greatly impaired DSB rejoining after irradiation. Telomerase activity was measured using polymerase chain reaction ELISA 1 h after irradiation with doses up to 10 Gy. Phosphorylation status of PKB/Akt and of PKC{alpha}/{beta}{sub II} was assessed by western blotting. Results: No telomerase upregulation was detectable for irradiated cells with undisturbed DSB rejoining. In contrast, incubation with LY294002 or dexamethasone yielded pronounced radiation induction of telomerase activity that could be suppressed by Wortmannin. 3-Aminobenzamide not only was unable to induce telomerase activity but also suppressed telomerase upregulation upon incubation with LY294002 or dexamethasone. Phospho-PKB was detectable independent of irradiation or dexamethasone pretreatment, but was undetectable upon incubations with LY294002 or Wortmannin, whereas phospho-PKC rested detectable. Conclusions: Telomerase activation postirradiation was triggered by different treatments that interfere with DNA DSB processing. This telomerase upregulation, however, was not reflected by the phosporylation status of the putative mediators of TERT activation, PKB and PKC. Although an involvement of PKB in TERT activation is not supported by the present findings, a respective role of PKC isoforms other than {alpha}/{beta}{sub II} cannot be ruled out.

  14. Phosphoinositide 3-kinase dependent regulation of Kv channels in dendritic cells.

    PubMed

    Shumilina, Ekaterina; Zahir, Naima; Xuan, Nguyen Thi; Lang, Florian

    2007-01-01

    The phosphoinositide 3 (PI3) kinase plays a pivotal role in the regulation of dendritic cells (DCs), antigen-presenting cells that are able to initiate primary immune responses and to establish immunological memory. PI3 kinase is an endogenous suppressor of interleukin 12 (IL-12) production in DCs that is triggered by Toll-like receptor signaling. Inhibition of IL-12 production limits T helper 1 (Th1) polarization. On the other hand, PI3 kinase is an important regulator of various ion channels. The present study aimed to explore whether ion channels in DCs are regulated by PI3 kinase and whether they are important for DC function. To this end, DCs were isolated from murine bone marrow and ion channel activity was determined by patch clamp. As a result, DCs express voltage-gated K(+) channels (Kv), which are blocked by Stichodactyla helianthus toxin (ShK, 2.5 nM). A significant upregulation of Kv currents was observed upon maturation of DCs as induced by stimulation of the cells with lipopolysaccharide (LPS, 0.1 microg/ml, 48 h). A dramatic increase of Kv current amplitude was observed following preincubation of the cells with LY294002 (100 nM), a specific inhibitor of PI3 kinase. PI3 kinase inhibitor wortmannin (100 nM) similarly increased Kv current. LY294002 treatment was further followed by a significant increase of IL-12 production. ShK (100 nM) significantly blunted the stimulation of IL-12 release by LPS but not when the cells were first pretreated with LY294002. The observations point to Kv channel sensitive and Kv channel insensitive regulation of DC function. PMID:17982262

  15. Inhibition of phosphatidylinositol-3-kinase causes increased sensitivity to radiation through a PKB-dependent mechanism

    SciTech Connect

    Gottschalk, Alexander R. . E-mail: gottschalk@radonc17.ucsf.edu; Doan, Albert; Nakamura, Jean L.; Stokoe, David; Haas-Kogan, Daphne A.

    2005-11-15

    Purpose: To identify whether inhibition of phosphatidylinositol-3-kinase (PI3K) causes increased radiosensitivity through inhibition of protein kinase B (PKB), implicating PKB as an important therapeutic target in prostate cancer. Methods and Materials: The prostate cancer cell line LNCaP was treated with the PI3K inhibitor LY294002, radiation, and combinations of the two therapies. Apoptosis and survival were measured by cell cycle analysis, Western blot analysis for cleaved poly (ADP-ribose) polymerase, and clonogenic survival. To test the hypothesis that inhibition of PKB is responsible for LY294002-induced radiosensitivity, LNCaP cells expressing a constitutively active form of PKB were used. Results: The combination of PI3K inhibition and radiation caused an increase in apoptosis and a decrease in clonogenic survival when compared to either modality alone. The expression of constitutively activated PKB blocked apoptosis induced by combination of PI3K inhibition and radiation and prevented radiosensitization by LY294002. Conclusion: These data indicate that PI3K inhibition increases sensitivity of prostate cancer cell lines to ionizing radiation through inactivation of PKB. Therefore, PTEN mutations, which lead to PKB activation, may play an important role in the resistance of prostate cancer to radiation therapy. Targeted therapy against PKB could be beneficial in the management of prostate cancer patients.

  16. Insulin-like growth factors require phosphatidylinositol 3-kinase to signal myogenesis: dominant negative p85 expression blocks differentiation of L6E9 muscle cells.

    PubMed

    Kaliman, P; Canicio, J; Shepherd, P R; Beeton, C A; Testar, X; Palacín, M; Zorzano, A

    1998-01-01

    Phosphatidylinositol 3 (PI 3)-kinases are potently inhibited by two structurally unrelated membrane-permeant reagents: wortmannin and LY294002. By using these two inhibitors we first suggested the involvement of a PI 3-kinase activity in muscle cell differentiation. However, several reports have described that these compounds are not as selective for PI 3-kinase activity as assumed. Here we show that LY294002 blocks the myogenic pathway elicited by insulin-like growth factors (IGFs), and we confirm the specific involvement of PI 3-kinase in IGF-induced myogenesis by overexpressing in L6E9 myoblasts a dominant negative p85 PI 3-kinase-regulatory subunit (L6E9-delta p85). IGF-I, des(1-3)IGF-I, or IGF-II induced L6E9 skeletal muscle cell differentiation as measured by myotube formation, myogenin gene expression, and GLUT4 glucose carrier induction. The addition of LY294002 to the differentiation medium totally inhibited these IGF-induced myogenic events without altering the expression of a non-muscle-specific protein, beta1-integrin. Independent clones of L6E9 myoblasts expressing a dominant negative mutant of the p85-regulatory subunit (delta p85) showed markedly impaired glucose transport activity and formation of p85/p110 complexes in response to insulin, consistent with the inhibition of PI 3-kinase activity. IGF-induced myogenic parameters in L6E9-delta p85 cells, ie. cell fusion and myogenin gene and GLUT4 expression, were severely impaired compared with parental cells or L6E9 cells expressing wild-type p85. In all, data presented here indicate that PI 3-kinase is essential for IGF-induced muscle differentiation and that the specific PI 3-kinase subclass involved in myogenesis is the heterodimeric p85-p110 enzyme. PMID:9440811

  17. Phosphatidylinositol-3-kinase regulates mast cell ion channel activity.

    PubMed

    Lam, Rebecca S; Shumilina, Ekaterina; Matzner, Nicole; Zemtsova, Irina M; Sobiesiak, Malgorzata; Lang, Camelia; Felder, Edward; Dietl, Paul; Huber, Stephan M; Lang, Florian

    2008-01-01

    Stimulation of the mast cell IgE-receptor (FcepsilonRI) by antigen leads to stimulation of Ca(2+) entry with subsequent mast cell degranulation and release of inflammatory mediators. Ca(2+) further activates Ca(2+)-activated K(+) channels, which in turn provide the electrical driving force for Ca(2+) entry. Since phosphatidylinositol (PI)-3-kinase has previously been shown to be required for mast cell activation and degranulation, we explored, whether mast cell Ca(2+) and Ca(2+)-activated K(+) channels may be sensitive to PI3-kinase activity. Whole-cell patch clamp experiments and Fura-2 fluorescence measurements for determination of cytosolic Ca(2+) concentration were performed in mouse bone marrow-derived mast cells either treated or untreated with the PI3-kinase inhibitors LY-294002 (10 muM) and wortmannin (100 nM). Antigen-stimulated Ca(2+) entry but not Ca(2+) release from the intracellular stores was dramatically reduced upon PI3-kinase inhibition. Ca(2+) entry was further inhibited by TRPV blocker ruthenium red (10 muM). Ca(2+) entry following readdition after Ca(+)-store depletion with thapsigargin was again decreased by LY-294002, pointing to inhibition of store-operated channels (SOCs). Moreover, inhibition of PI3-kinase abrogated IgE-stimulated, but not ionomycin-induced stimulation of Ca(2+)-activated K(+) channels. These observations disclose PI3-kinase-dependent regulation of Ca(2+) entry and Ca(2+)-activated K(+)-channels, which in turn participate in triggering mast cell degranulation. PMID:18769043

  18. Acanthamoeba castellanii Induces Host Cell Death via a Phosphatidylinositol 3-Kinase-Dependent Mechanism

    PubMed Central

    Sissons, James; Kim, Kwang Sik; Stins, Monique; Jayasekera, Samantha; Alsam, Selwa; Khan, Naveed Ahmed

    2005-01-01

    Granulomatous amoebic encephalitis due to Acanthamoeba castellanii is a serious human infection with fatal consequences, but it is not clear how the circulating amoebae interact with the blood-brain barrier and transmigrate into the central nervous system. We studied the effects of an Acanthamoeba encephalitis isolate belonging to the T1 genotype on human brain microvascular endothelial cells, which constitute the blood-brain barrier. Using an apoptosis-specific enzyme-linked immunosorbent assay, we showed that Acanthamoeba induces programmed cell death in brain microvascular endothelial cells. Next, we observed that Acanthamoeba specifically activates phosphatidylinositol 3-kinase. Acanthamoeba-mediated brain endothelial cell death was abolished using LY294002, a phosphatidylinositol 3-kinase inhibitor. These results were further confirmed using brain microvascular endothelial cells expressing dominant negative forms of phosphatidylinositol 3-kinase. This is the first demonstration that Acanthamoeba-mediated brain microvascular endothelial cell death is dependent on phosphatidylinositol 3-kinase. PMID:15845472

  19. Inhibition of phosphatidylinositol 3-kinase promotes tumor cell resistance to chemotherapeutic agents via a mechanism involving delay in cell cycle progression

    SciTech Connect

    McDonald, Gail T.; Sullivan, Richard; Pare, Genevieve C.; Graham, Charles H.

    2010-11-15

    Approaches to overcome chemoresistance in cancer cells have involved targeting specific signaling pathways such as the phosphatidylinositol 3-kinase (PI3K) pathway, a stress response pathway known to be involved in the regulation of cell survival, apoptosis and growth. The present study determined the effect of PI3K inhibition on the clonogenic survival of human cancer cells following exposure to various chemotherapeutic agents. Treatment with the PI3K inhibitors LY294002 or Compound 15e resulted in increased survival of MDA-MB-231 breast carcinoma cells after exposure to doxorubicin, etoposide, 5-fluorouracil, and vincristine. Increased survival following PI3K inhibition was also observed in DU-145 prostate, HCT-116 colon and A-549 lung carcinoma cell lines exposed to doxorubicin. Increased cell survival mediated by LY294002 was correlated with a decrease in cell proliferation, which was linked to an increase in the proportion of cells in the G{sub 1} phase of the cell cycle. Inhibition of PI3K signaling also resulted in higher levels of the cyclin-dependent kinase inhibitors p21{sup Waf1/Cip1} and p27{sup Kip1}; and knockdown of p27{sup kip1} with siRNA attenuated resistance to doxorubicin in cells treated with LY294002. Incubation in the presence of LY294002 after exposure to doxorubicin resulted in decreased cell survival. These findings provide evidence that PI3K inhibition leads to chemoresistance in human cancer cells by causing a delay in cell cycle; however, the timing of PI3K inhibition (either before or after exposure to anti-cancer agents) may be a critical determinant of chemosensitivity.

  20. Inhibitors of glycogen synthase 3 kinase

    DOEpatents

    Schultz, Peter; Ring, David B.; Harrison, Stephen D.; Bray, Andrew M.

    2006-05-30

    Compounds of formula 1: ##STR00001## wherein R.sub.1 is alkyl, cycloalkyl, aryl, aralkyl, heteroaryl, or heteroaralkyl, substituted with 0 3 substituents selected from lower alkyl, halo, hydroxy, lower alkoxy, amino, lower alkyl-amino, and nitro; R.sub.2 is hydroxy, amino, or lower alkoxy; R.sub.3 is H, lower alkyl, lower acyl, lower alkoxy-acyl, or amino-acyl; R.sub.4 is H or lower alkyl; and pharmaceutically acceptable salts and esters thereof; are effective inhibitors of GSK3.

  1. Inhibitors of glycogen synthase 3 kinase

    DOEpatents

    Schultz, Peter; Ring, David B.; Harrison, Stephen D.; Bray, Andrew M.

    2000-01-01

    Compounds of formula 1: ##STR1## wherein R.sub.1 is alkyl, cycloalkyl, aryl, aralkyl, heteroaryl, or heteroaralkyl, substituted with 0-3 substituents selected from lower alkyl, halo, hydroxy, lower alkoxy, amino, lower alkyl-amino, and nitro; R.sub.2 is hydroxy, amino, or lower alkoxy; R.sub.3 is H, lower alkyl, lower acyl, lower alkoxy-acyl, or amnino-acyl; R.sub.4 is H or lower alkyl; and pharmaceutically acceptable salts and esters thereof; are effective inhibitors of GSK3.

  2. Radiation-induced upregulation of telomerase activity escapes PI3-kinase inhibition in two malignant glioma cell lines

    PubMed Central

    MILLET, P.; GRANOTIER, C.; ETIENNE, O.; BOUSSIN, F.D.

    2013-01-01

    Tumor relapse after radiotherapy is a great concern in the treatment of high-grade gliomas. Inhibition of the PI3-kinase/AKT pathway is known to radiosensitize cancer cells and to delay their DNA repair after irradiation. In this study, we show that the radiosensitization of CB193 and T98G, two high-grade glioma cell lines, by the PI3K inhibitor LY294002, correlates with the induction of G1 and G2/M arrest, but is inconsistently linked to a delayed DNA double-strand break (DSBs) repair. The PI3K/AKT pathway has been shown to activate radioprotective factors such as telomerase, whose inhibition may contribute to the radiosensitization of cancer cells. However, we show that radiation upregulates telomerase activity in LY-294002-treated glioma cells as well as untreated controls, demonstrating a PI3K/AKT-independent pathway of telomerase activation. Our study suggests that radiosensitizing strategies based on PI3-kinase inhibition in high-grade gliomas may be optimized by additional treatments targeting either telomerase activity or telomere maintenance. PMID:23727752

  3. Mu-opioid receptor activation prevents apoptosis following serum withdrawal in differentiated SH-SY5Y cells and cortical neurons via phosphatidylinositol 3-kinase.

    PubMed

    Iglesias, M; Segura, M F; Comella, J X; Olmos, G

    2003-03-01

    Opioid peptides and alkaloids exert their effects via G protein-coupled receptors (GPCRs). It has been shown that, in addition to trophic factors, some GPCRs are able to activate the phosphatidylinositol 3-kinase/Akt (PI 3-K/Akt) signal transduction pathway, thus leading to cell survival. The aim of this study was to test whether activation of mu-opioid receptors has protective effects on serum withdrawal-induced cell death and to study the possible implication of PI 3-K in this process. In SH-SY5Y neuroblastoma cells fully differentiated by exposure to retinoic acid for five days, the enkephalin derivative selective mu-agonist DAMGO (0.1-2 microM) and the alkaloid morphine (0.1-10 microM) promoted cell survival after serum deprivation (MTT and trypan blue exclusion assays), without inducing cell proliferation. These effects were fully reversed by naloxone, by the selective mu-antagonist beta-funaltrexamine (beta-FNA) and also by the specific PI 3-K inhibitor LY294002. The two agonists stimulated Akt phosphorylation and the effect was also abolished by beta-FNA and by LY294002. In mouse primary cortical neurons, DAMGO reduced the percentage of apoptosis after 6, 12, 24 and 48 h of serum withdrawal; as determined by Hoechst staining. This effect was blocked by beta-FNA, by pre-treatment with pertussis toxin and by LY294002. DAMGO also stimulated Akt phosphorylation via PI 3-K in this primary neuronal culture. Together, these results indicate that stimulation of the mu-opioid receptor promotes neuronal survival in a G(i/o)-linked, PI 3-K-dependent signaling cascade and suggest that Akt may be a key downstream kinase involved in this anti-apoptotic effect. PMID:12646285

  4. The phosphoinositide 3-kinase signaling pathway is involved in the control of modified low-density lipoprotein uptake by human macrophages.

    PubMed

    Michael, Daryn R; Davies, Thomas S; Laubertová, Lucia; Gallagher, Hayley; Ramji, Dipak P

    2015-03-01

    The transformation of macrophages into lipid-loaded foam cells is a critical early event in the pathogenesis of atherosclerosis. Both receptor-mediated uptake of modified LDL, mediated primarily by scavenger receptors-A (SR-A) and CD36 along with other proteins such as lipoprotein lipase (LPL), and macropinocytosis contribute to macrophage foam cell formation. The signaling pathways that are involved in the control of foam cell formation are not fully understood. In this study, we have investigated the role of phosphoinositide 3-kinase (PI3K) in relation to foam cell formation in human macrophages. The pan PI3K inhibitor LY294002 attenuated the uptake of modified LDL and macropinocytosis, as measured by Lucifer Yellow uptake, by human macrophages. In addition, the expression of SR-A, CD36 and LPL was attenuated by LY294002. The use of isoform-selective PI3K inhibitors showed that PI3K-β, -γ and -δ were all required for the expression of SR-A and CD36 whereas only PI3K-γ was necessary in the case of LPL. These studies reveal a pivotal role of PI3K in the control of macrophage foam cell formation and provide further evidence for their potential as therapeutic target against atherosclerosis. PMID:25663263

  5. Phosphatidylinositol 3-kinase is required for integrin-stimulated AKT and Raf-1/mitogen-activated protein kinase pathway activation.

    PubMed Central

    King, W G; Mattaliano, M D; Chan, T O; Tsichlis, P N; Brugge, J S

    1997-01-01

    Cell attachment to fibronectin stimulates the integrin-dependent interaction of p85-associated phosphatidylinositol (PI) 3-kinase with integrin-dependent focal adhesion kinase (FAK) as well as activation of the Ras/mitogen-activated protein (MAP) kinase pathway. However, it is not known if this PI 3-kinase-FAK interaction increases the synthesis of the 3-phosphorylated phosphoinositides (3-PPIs) or what role, if any, is played by activated PI 3-kinase in integrin signaling. We demonstrate here the integrin-dependent accumulation of the PI 3-kinase products, PI 3,4-bisphosphate [PI(3,4)P2] and PI(3,4,5)P3, as well as activation of AKT kinase, a serine/threonine kinase that can be stimulated by binding of PI(3,4)P2. The PI 3-kinase inhibitors wortmannin and LY294002 significantly decreased the integrin-induced accumulation of the 3-PPIs and activation of AKT kinase, without having significant effects on the levels of PI(4,5)P2 or tyrosine phosphorylation of paxillin. These inhibitors also reduced cell adhesion/spreading onto fibronectin but had no effect on attachment to polylysine. Interestingly, integrin-mediated Erk-2, Mek-1, and Raf-1 activation, but not Ras-GTP loading, was inhibited at least 80% by wortmannin and LY294002. In support of the pharmacologic results, fibronectin activation of Erk-2 and AKT kinases was completely inhibited by overexpression of a dominant interfering p85 subunit of PI 3-kinase. We conclude that integrin-mediated adhesion to fibronectin results in the accumulation of the PI 3-kinase products PI(3,4)P2 and PI(3,4,5)P3 as well as the PI 3-kinase-dependent activation of the kinases Raf-1, Mek-1, Erk-2, and AKT and that PI 3-kinase may function upstream of Raf-1 but downstream of Ras in integrin activation of Erk-2 MAP and AKT kinases. PMID:9234699

  6. Fibroblast Growth Factor Receptor-2 Contributes to the Basic Fibroblast Growth Factor-Induced Neuronal Differentiation in Canine Bone Marrow Stromal Cells via Phosphoinositide 3-Kinase/Akt Signaling Pathway

    PubMed Central

    Nakano, Rei; Edamura, Kazuya; Nakayama, Tomohiro; Narita, Takanori; Okabayashi, Ken; Sugiya, Hiroshi

    2015-01-01

    Bone marrow stromal cells (BMSCs) are considered as candidates for regenerative therapy and a useful model for studying neuronal differentiation. The role of basic fibroblast growth factor (bFGF) in neuronal differentiation has been previously studied; however, the signaling pathway involved in this process remains poorly understood. In this study, we investigated the signaling pathway in the bFGF-induced neuronal differentiation of canine BMSCs. bFGF induced the mRNA expression of the neuron marker, microtubule associated protein-2 (MAP2) and the neuron-like morphological change in canine BMSCs. In the presence of inhibitors of fibroblast growth factor receptors (FGFR), phosphatidylinositol 3-kinase (PI3K) and Akt, i.e., SU5402, LY294002, and MK2206, respectively, bFGF failed to induce the MAP2 mRNA expression and the neuron-like morphological change. bFGF induced Akt phosphorylation, but it was attenuated by the FGFR inhibitor SU5402 and the PI3K inhibitor LY294002. In canine BMSCs, expression of FGFR-1 and FGFR-2 was confirmed, but only FGFR-2 activation was detected by cross-linking and immunoprecipitation analysis. Small interfering RNA-mediated knockdown of FGFR-2 in canine BMSCs resulted in the attenuation of bFGF-induced Akt phosphorylation. These results suggest that the FGFR-2/PI3K/Akt signaling pathway is involved in the bFGF-induced neuronal differentiation of canine BMSCs. PMID:26523832

  7. PI-3 kinase pathway can mediate the effect of TGF-beta1 in inducing the expression of SHARP-2 in LLC-PK1 cells.

    PubMed

    Shou, Zhang-fei; Zhou, Qin; Cai, Jie-ru; Chen, Jiang-hua; Yamada, Kazuya; Miyamoto, Kaoru

    2009-09-01

    We aim to investigate the effect of transforming growth factor (TGF)-beta1 on the expression of enhancer of split- and hairy-related protein-2 (SHARP-2) messenger RNA (mRNA) and its signaling pathway. In this study, several cell lines including LLC-PK1 (a porcine kidney tubular epithelial cell line), MDCK (Madin-Darby canine kidney) and CTLL-2 (cytotoxic T-lymphocyte line) were treated with recombinant human TGF-beta1, and a series of experiments were carried out, involving Northern blot analysis of total RNA from these cells. Further, several specific chemical inhibitors were applied before TGF-beta1 treatment to probe the signaling pathway. The results showed that TGF-beta1 can significantly up-regulate SHARP-2 mRNA expression in the LLC-PK1 cell line. The peak level of induction was found 2 h after TGF-beta1 stimulation. While one phosphoinositide 3-kinases (PI-3) kinase inhibitor, LY294002, completely blocked the effect of TGF-beta1 on SHARP-2 mRNA expression in LLC-PK1 cells at a low concentration, other inhibitors, including PD98059, staurosporine, AG490, wortmannin, okadaic acid and rapamycin, had no effect. The effect of LY294002 was dose-dependent. We conclude that, in LLC-PK1 cells at least, TGF-beta1 can effectively induce the SHARP-2 mRNA expression and that the PI-3 kinase pathway can mediate this effect. PMID:19735104

  8. Involvement of Phosphatidylinositol 3-kinase in the regulation of proline catabolism in Arabidopsis thaliana.

    PubMed

    Leprince, Anne-Sophie; Magalhaes, Nelly; De Vos, Delphine; Bordenave, Marianne; Crilat, Emilie; Clément, Gilles; Meyer, Christian; Munnik, Teun; Savouré, Arnould

    2014-01-01

    Plant adaptation to abiotic stresses such as drought and salinity involves complex regulatory processes. Deciphering the signaling components that are involved in stress signal transduction and cellular responses is of importance to understand how plants cope with salt stress. Accumulation of osmolytes such as proline is considered to participate in the osmotic adjustment of plant cells to salinity. Proline accumulation results from a tight regulation between its biosynthesis and catabolism. Lipid signal components such as phospholipases C and D have previously been shown to be involved in the regulation of proline metabolism in Arabidopsis thaliana. In this study, we demonstrate that proline metabolism is also regulated by class-III Phosphatidylinositol 3-kinase (PI3K), VPS34, which catalyses the formation of phosphatidylinositol 3-phosphate (PI3P) from phosphatidylinositol. Using pharmacological and biochemical approaches, we show that the PI3K inhibitor, LY294002, affects PI3P levels in vivo and that it triggers a decrease in proline accumulation in response to salt treatment of A. thaliana seedlings. The lower proline accumulation is correlated with a lower transcript level of Pyrroline-5-carboxylate synthetase 1 (P5CS1) biosynthetic enzyme and higher transcript and protein levels of Proline dehydrogenase 1 (ProDH1), a key-enzyme in proline catabolism. We also found that the ProDH1 expression is induced in a pi3k-hemizygous mutant, further demonstrating that PI3K is involved in the regulation of proline catabolism through transcriptional regulation of ProDH1. A broader metabolomic analysis indicates that LY294002 also reduced other metabolites, such as hydrophobic and aromatic amino acids and sugars like raffinose. PMID:25628629

  9. Involvement of Phosphatidylinositol 3-kinase in the regulation of proline catabolism in Arabidopsis thaliana

    PubMed Central

    Leprince, Anne-Sophie; Magalhaes, Nelly; De Vos, Delphine; Bordenave, Marianne; Crilat, Emilie; Clément, Gilles; Meyer, Christian; Munnik, Teun; Savouré, Arnould

    2015-01-01

    Plant adaptation to abiotic stresses such as drought and salinity involves complex regulatory processes. Deciphering the signaling components that are involved in stress signal transduction and cellular responses is of importance to understand how plants cope with salt stress. Accumulation of osmolytes such as proline is considered to participate in the osmotic adjustment of plant cells to salinity. Proline accumulation results from a tight regulation between its biosynthesis and catabolism. Lipid signal components such as phospholipases C and D have previously been shown to be involved in the regulation of proline metabolism in Arabidopsis thaliana. In this study, we demonstrate that proline metabolism is also regulated by class-III Phosphatidylinositol 3-kinase (PI3K), VPS34, which catalyses the formation of phosphatidylinositol 3-phosphate (PI3P) from phosphatidylinositol. Using pharmacological and biochemical approaches, we show that the PI3K inhibitor, LY294002, affects PI3P levels in vivo and that it triggers a decrease in proline accumulation in response to salt treatment of A. thaliana seedlings. The lower proline accumulation is correlated with a lower transcript level of Pyrroline-5-carboxylate synthetase 1 (P5CS1) biosynthetic enzyme and higher transcript and protein levels of Proline dehydrogenase 1 (ProDH1), a key-enzyme in proline catabolism. We also found that the ProDH1 expression is induced in a pi3k-hemizygous mutant, further demonstrating that PI3K is involved in the regulation of proline catabolism through transcriptional regulation of ProDH1. A broader metabolomic analysis indicates that LY294002 also reduced other metabolites, such as hydrophobic and aromatic amino acids and sugars like raffinose. PMID:25628629

  10. Differential involvement of phosphoinositide 3-kinase in gonadotrophin-releasing hormone actions in gonadotrophs and somatotrophs of goldfish, Carassius auratus.

    PubMed

    Pemberton, Joshua G; Stafford, James L; Yu, Yi; Chang, John P

    2011-08-01

    In goldfish, two endogenous gonadotrophin-releasing hormones (GnRHs) [salmon (s)GnRH and chicken (c)GnRH-II] control maturational gonadotrophin-II [lutenising hormone (LH)] and growth hormone (GH) secretion via Ca(2+)-dependent intracellular signalling pathways. We investigated the involvement of phosphoinositide 3-kinase (PI3K) in GnRH-evoked LH and GH release and associated intracellular Ca(2+) increases ([Ca(2+)](i) ) in goldfish gonadotrophs and somatotrophs. Immunoreactive PI3K p85α, the predominant regulatory subunit for class IA PI3Ks, was detected in goldfish pituitary tissue extracts and both endogenous GnRH isoforms increased phosphorylation of PI3K p85α in excised pituitary fragments. sGnRH- and cGnRH-II-elicited LH release responses from primary cultures of pituitary cells and [Ca(2+)](i) increases in identified gonadotrophs were significantly reduced in the presence of PI3K inhibitors wortmannin (100 nm) and LY294002 (10 μm). Unexpectedly, wortmannin and LY294002 inhibited GnRH-evoked GH release but only attenuated the [Ca(2+)](i) response in identified somatotrophs to cGnRH-II, and not sGnRH. On the other hand, Ca(2+) ionophore-evoked LH and GH secretion remained unaltered in the presence of the PI3K inhibitors, suggesting that general decreases in the releasable hormone pool or sensitivity to [Ca(2+)](i) changes did not underlie the ability of wortmannin and LY294002 to reduce the actions of GnRH. These results provide the first evidence for the presence and involvement of PI3K in GnRH-induced LH and GH release in any primary pituitary cell system. In gonadotrophs, the inhibitory action of PI3K on both sGnRH and cGnRH-II involves the attenuation of their evoked [Ca(2+)](i); in contrast, GnRH isoform-specific effects occur in somatotrophs. PMID:21649760

  11. RUNX1 regulates phosphoinositide 3-kinase/AKT pathway: role in chemotherapy sensitivity in acute megakaryocytic leukemia

    PubMed Central

    Edwards, Holly; Xie, Chengzhi; LaFiura, Katherine M.; Dombkowski, Alan A.; Buck, Steven A.; Boerner, Julie L.; Taub, Jeffrey W.; Matherly, Larry H.

    2009-01-01

    RUNX1 (AML1) encodes the core binding factor α subunit of a heterodimeric transcription factor complex which plays critical roles in normal hematopoiesis. Translocations or down-regulation of RUNX1 have been linked to favorable clinical outcomes in acute leukemias, suggesting that RUNX1 may also play critical roles in chemotherapy responses in acute leukemias; however, the molecular mechanisms remain unclear. The median level of RUNX1b transcripts in Down syndrome (DS) children with acute megakaryocytic leukemia (AMkL) were 4.4-fold (P < .001) lower than that in non-DS AMkL cases. Short hairpin RNA knockdown of RUNX1 in a non-DS AMkL cell line, Meg-01, resulted in significantly increased sensitivity to cytosine arabinoside, accompanied by significantly decreased expression of PIK3CD, which encodes the δ catalytic subunit of the survival kinase, phosphoinositide 3 (PI3)–kinase. Transcriptional regulation of PIK3CD by RUNX1 was further confirmed by chromatin immunoprecipitation and promoter reporter gene assays. Further, a PI3-kinase inhibitor, LY294002, and cytosine arabinoside synergized in antileukemia effects on Meg-01 and primary pediatric AMkL cells. Our results suggest that RUNX1 may play a critical role in chemotherapy response in AMkL by regulating the PI3-kinase/Akt pathway. Thus, the treatment of AMkL may be improved by integrating PI3-kinase or Akt inhibitors into the chemotherapy of this disease. PMID:19638627

  12. The PI 3-kinase and mTOR signaling pathways are important modulators of epithelial tubule formation.

    PubMed

    Walid, Shereaf; Eisen, Randi; Ratcliffe, Don R; Dai, Kezhi; Hussain, M Mahmood; Ojakian, George K

    2008-08-01

    Using MDCK cells as a model system, evidence is presented demonstrating that the signaling pathways mammalian target of rapamycin (mTOR) and phosphoinositide 3-kinase (PI 3-kinase) play important roles in the regulation of epithelial tubule formation. Incubation of cells with collagen gel overlays induced early (4-8 h) reorganization of cells (epithelial remodeling) into three-dimensional multicellular tubular structures over 24 h. An MDCK cell line stably expressing the PH domain of Akt, a PI 3-kinase downstream effector, coupled to green fluorescent protein (GFP-Akt-PH) was used to determine the distribution of phosphatidyl inositol-3,4,5-P(3) (PIP(3)), a product of PI 3-kinase. GFP-Akt-PH was associated with lateral membranes in control cells. After incubation with collagen gel overlays, GFP-Akt-PH redistributed into the lamellipodia of migrating cells suggesting that PIP(3) plays a role in epithelial remodeling. Using the small molecule inhibitor LY-294002 that inhibits both mTOR and PI 3-kinase, we demonstrated that kinase activity was required for epithelial remodeling, disruption of cell junctions and subsequent modulation of tubule formation. Since the mTOR signaling pathway is downstream of PI 3-kinase, the effects of rapamycin, a specific mTOR inhibitor, on tubule formation were assessed. Rapamycin did not affect epithelial remodeling or GFP-Akt-PH redistribution but inhibited elongated tubule formation that occurred later (24 h) in morphogenesis. These results were further supported by using RNA interference to down-regulate mTOR and inhibit tubule formation. Our studies demonstrate that PI 3-kinase regulates early epithelial remodeling stages while mTOR modulates latter stages of tubule development. PMID:18366086

  13. Tyrosine phosphorylation-dependent activation of phosphatidylinositide 3-kinase occurs upstream of Ca2+-signalling induced by Fcgamma receptor cross-linking in human neutrophils.

    PubMed Central

    Vossebeld, P J; Homburg, C H; Schweizer, R C; Ibarrola, I; Kessler, J; Koenderman, L; Roos, D; Verhoeven, A J

    1997-01-01

    The effect of wortmannin on IgG-receptor (FcgammaR)-mediated stimulation of human neutrophils was investigated. The Ca2+ influx induced by clustering of both Fcgamma receptors was inhibited by wortmannin, as was the release of Ca2+ from intracellular stores. Wortmannin also inhibited, with the same efficacy, the accumulation of Ins(1,4,5)P3 observed after FcgammaR stimulation, but did not affect the increase in Ins(1,4,5)P3 induced by the chemotactic peptide, formyl-methionine-leucine-phenylalanine. Because wortmannin is, in the concentrations used here, an inhibitor of PtdIns 3-kinase, these results suggested a role for PtdIns 3-kinase upstream of Ca2+ signalling, induced by FcgammaR cross-linking. Support for this notion was obtained by investigating the effect of another inhibitor of PtdIns 3-kinase, LY 294002, and by studying the kinetics of PtdIns 3-kinase activation. We found translocation of PtdIns 3-kinase to the plasma membrane and increased PtdIns 3-kinase activity in the membrane as soon as 5 s after FcgammaR cross-linking, even before the onset of the Ca2+ response. Moreover, the translocation of PtdIns 3-kinase to the plasma membrane was inhibited by co-cross-linking of either FcgammaRIIa and FcgammaRIIIb with the tyrosine phosphatase, CD45, indicating a requirement for protein tyrosine phosphorylation in the recruitment of PtdIns 3-kinase to the plasma membrane. Taken together, our results suggest a role for PtdIns 3-kinase in early signal transduction events after FcgammaR cross-linking in human neutrophils. PMID:9173906

  14. Protective role of PI3-kinase-Akt-eNOS signalling pathway in intestinal injury associated with splanchnic artery occlusion shock

    PubMed Central

    Roviezzo, F; Cuzzocrea, S; Di Lorenzo, A; Brancaleone, V; Mazzon, E; Di Paola, R; Bucci, M; Cirino, G

    2007-01-01

    Background and purpose: Endothelial NO synthase (eNOS) is a dynamic enzyme tightly controlled by co- and post-translational lipid modifications, phosphorylation and regulated by protein-protein interactions. Here we have pharmacologically modulated the activation of eNOS, at different post-translational levels, to assess the role of eNOS-derived NO and of these regulatory mechanisms in intestinal injury associated with splanchnic artery occlusion (SAO) shock. Experimental approach: SAO shock was induced by clamping both the superior mesenteric artery and the celiac trunk for 45 min followed by 30 min of reperfusion. During ischemia, 15 min prior to reperfusion, mice were given geldanamycin, an inhibitor of hsp90 recruitment to eNOS, or LY-294002 an inhibitor of phosphatidylinositol 3-kinase (PI3K), an enzyme that initiates Akt–catalysed phosphorylation of eNOS on Ser1179. After 30 min of reperfusion, samples of ileum were taken for histological examination or for biochemical studies. Key results: Either LY-294002 or geldanamycin reversed the increased activation of eNOS and Akt observed following SAO shock. These molecular effects were mirrored in vivo by an exacerbation of the intestinal damage. Histological damage also correlated with neutrophil infiltration, assessed as myeloperoxidase activity, and with an increased expression of the adhesion proteins: ICAM-I, VCAM, P-selectin and E-selectin. Conclusions and implications: Overall these results suggest that activation of the Akt pathway in ischemic regions of reperfused ileum is a protective event, triggered in order to protect the intestinal tissue from damage induced by ischaemia/reperfusion through a fine tuning of the endothelial NO pathway. PMID:17450173

  15. An essential role of phosphatidylinositol 3-kinase in myogenic differentiation

    PubMed Central

    Jiang, Bing-Hua; Zheng, Jenny Z.; Vogt, Peter K.

    1998-01-01

    The oncogene p3k, coding for a constitutively active form of phosphatidylinositol 3-kinase (PI 3-kinase; EC 2.7.1.137), strongly enhances myogenic differentiation in cultures of chicken-embryo myoblasts. It increases the size of the myotubes and induces elevated levels of the muscle-specific proteins MyoD, myosin heavy chain, creatine kinase, and desmin. Inhibition of PI 3-kinase activity with LY294002 or with dominant-negative mutants of PI 3-kinase interferes with myogenic differentiation and with the induction of muscle-specific genes. PI 3-kinase is therefore an upstream mediator for the expression of the muscle-specific genes and is both necessary and rate-limiting for the process of myogenesis. PMID:9826674

  16. The modulation of vascular ATP-sensitive K+ channel function via the phosphatidylinositol 3-kinase-Akt pathway activated by phenylephrine.

    PubMed

    Haba, Masanori; Hatakeyama, Noboru; Kinoshita, Hiroyuki; Teramae, Hiroki; Azma, Toshiharu; Hatano, Yoshio; Matsuda, Naoyuki

    2010-08-01

    The present study examined the modulator role of the phosphatidylinositol 3-kinase (PI3K)-Akt pathway activated by the alpha-1 adrenoceptor agonist phenylephrine in ATP-sensitive K(+) channel function in intact vascular smooth muscle. We evaluated the ATP-sensitive K(+) channel function and the activity of the PI3K-Akt pathway in the rat thoracic aorta without endothelium. The PI3K inhibitor 2-(4-morpholinyl)-8-phenyl-1(4H)-benzopyran-4-one hydrochloride (LY294002) (10(-5) M) augmented relaxation in response to the ATP-sensitive K(+) channel opener levcromakalim (10(-8) to 3 x 10(-6) M) in aortic rings contracted with phenylephrine (3 x 10(-7) M) but not with 9,11-dideoxy-11alpha,9alpha-epoxy-methanoprostaglandin F(2alpha) (U46619; 3 x 10(-8) M), although those agents induced similar contraction. ATP-sensitive K(+) channel currents induced by levcromakalim (10(-6) M) in the presence of phenylephrine (3 x 10(-7) M) were enhanced by the nonselective alpha-adrenoceptor antagonist phentolamine (10(-7) M) and LY294002 (10(-5) M). Levels of the regulatory subunits of PI3K p85-alpha and p55-gamma increased in the membrane fraction from aortas without endothelium treated with phenylephrine (3 x 10(-7) M) but not with U46619 (3 x 10(-8) M). Phenylephrine simultaneously augmented Akt phosphorylation at Ser473 and Thr308. Therefore, activation of the PI3K-Akt pathway seems to play a role in the impairment of ATP-sensitive K(+) channel function in vascular smooth muscle exposed to alpha-1 adrenergic stimuli. PMID:20519555

  17. Hepatocyte growth factor (HGF) enhances cardiac commitment of differentiating embryonic stem cells by activating PI3 kinase

    SciTech Connect

    Roggia, Cristiana; Ukena, Christian; Boehm, Michael; Kilter, Heiko . E-mail: kilter@med-in.uni-saarland.de

    2007-03-10

    Hepatocyte growth factor (HGF) is a pleiotropic cytokine promoting proliferation, migration and survival in several cell types. HGF and its cognate receptor c-Met are expressed in cardiac cells during early cardiogenesis, but data concerning its role in cardiac differentiation of embryonic stem cells (ESCs) and the underlying molecular mechanisms involved are limited. In the present study we show that HGF significantly increases the number of beating embryoid bodies of differentiating ESCs without affecting beating frequency. Furthermore, HGF up-regulates the expression of the cardiac-specific transcription factors Nkx 2.5 and GATA-4 and of markers of differentiated cardiomyocytes, i.e. {alpha}-MHC, {beta}-MHC, ANF, MLC2v and Troponin T. The HGF-induced increase in Nkx 2.5 expression was inhibited by co-treatment with the PI3 kinase inhibitors Wortmannin and LY294002, but not by its inactive homolog LY303511, suggesting an involvement of the PI3 kinase/Akt pathway in this effect. We conclude that HGF is an important growth factor involved in cardiac differentiation and/or proliferation of ESCs and may therefore be critical for the in vitro generation of pre- or fully differentiated cardiomyocytes as required for clinical use of embryonic stem cells in cardiac diseases.

  18. Phosphoinositide 3-kinase-gamma induces Xenopus oocyte maturation via lipid kinase activity.

    PubMed Central

    Hehl, S; Stoyanov, B; Oehrl, W; Schönherr, R; Wetzker, R; Heinemann, S H

    2001-01-01

    Type-I phosphoinositide 3-kinases (PI3Ks) were characterized as a group of intracellular signalling proteins expressing both protein and lipid kinase activities. Recent studies implicate PI3Ks as mediators of oocyte maturation, but the molecular mechanisms are poorly defined. Here we used the Xenopus oocyte expression system as a model to investigate a possible contribution of the gamma-isoform of PI3K (PI3Kgamma) in the different pathways leading to cell-cycle progression by monitoring the time course of germinal vesicle breakdown (GVBD). Expression of a constitutive active PI3Kgamma (PI3Kgamma-CAAX) induced GVBD and increased the levels of phosphorylated Akt/protein kinase B and mitogen-activated protein kinase (MAPK). Furthermore, PI3Kgamma-CAAX accelerated progesterone-induced GVBD, but had no effect on GVBD induced by insulin. The effects of PI3Kgamma-CAAX could be suppressed by pre-incubation of the oocytes with LY294002, PD98059 or roscovitine, inhibitors of PI3K, MEK (MAPK/extracellular-signal-regulated protein kinase kinase) and cdc2/cyclin B kinase, respectively. Mutants of PI3Kgamma-CAAX, in which either lipid kinase or both lipid and protein kinase activities were altered or eliminated, did not induce significant GVBD. Our data demonstrate that expression of PI3Kgamma in Xenopus oocytes accelerates their progesterone-induced maturation and that lipid kinase activity is required to induce this effect. PMID:11736661

  19. v-Crk activates the phosphoinositide 3-kinase/AKT pathway in transformation

    PubMed Central

    Akagi, Tsuyoshi; Shishido, Tomoyuki; Murata, Kazutaka; Hanafusa, Hidesaburo

    2000-01-01

    v-Crk induces cellular tyrosine phosphorylation and transformation of chicken embryo fibroblasts (CEF). We studied the molecular mechanism of the v-Crk-induced transformation. Experiments with Src homology (SH)2 and SH3 domain mutants revealed that the induction of tyrosine phosphorylation of cellular proteins requires only the SH2 domain, but both the SH2 and SH3 domains are required for complete transformation. Analysis of three well defined signaling pathways, the mitogen-activated protein kinase (MAPK) pathway, the Jun N-terminal kinase (JNK) pathway, and the phosphoinositide 3-kinase (PI3K)/AKT pathway, demonstrated that only the PI3K/AKT pathway is constitutively activated in v-Crk-transformed CEF. Both the SH2 and SH3 domains are required for this activation of the PI3K/AKT pathway in CEF. We also found that the colony formation of CEF is strongly induced by a constitutively active PI3K mutant, and that a PI3K inhibitor, LY294002, suppresses the v-Crk-induced transformation. These results strongly suggest that constitutive activation of the PI3K/AKT pathway plays an essential role in v-Crk-induced transformation of CEF. PMID:10852971

  20. Enhancement of morphological plasticity in hippocampal neurons by a physically modified saline via phosphatidylinositol-3 kinase.

    PubMed

    Roy, Avik; Modi, Khushbu K; Khasnavis, Saurabh; Ghosh, Supurna; Watson, Richard; Pahan, Kalipada

    2014-01-01

    Increase of the density of dendritic spines and enhancement of synaptic transmission through ionotropic glutamate receptors are important events, leading to synaptic plasticity and eventually hippocampus-dependent spatial learning and memory formation. Here we have undertaken an innovative approach to upregulate hippocampal plasticity. RNS60 is a 0.9% saline solution containing charge-stabilized nanobubbles that are generated by subjecting normal saline to Taylor-Couette-Poiseuille (TCP) flow under elevated oxygen pressure. RNS60, but not NS (normal saline), PNS60 (saline containing a comparable level of oxygen without the TCP modification), or RNS10.3 (TCP-modified normal saline without excess oxygen), stimulated morphological plasticity and synaptic transmission via NMDA- and AMPA-sensitive calcium influx in cultured mouse hippocampal neurons. Using mRNA-based targeted gene array, real-time PCR, immunoblot, and immunofluorescence analyses, we further demonstrate that RNS60 stimulated the expression of many plasticity-associated genes in cultured hippocampal neurons. Activation of type IA, but not type IB, phosphatidylinositol-3 (PI-3) kinase by RNS60 together with abrogation of RNS60-mediated upregulation of plasticity-related proteins (NR2A and GluR1) and increase in spine density, neuronal size, and calcium influx by LY294002, a specific inhibitor of PI-3 kinase, suggest that RNS60 upregulates hippocampal plasticity via activation of PI-3 kinase. Finally, in the 5XFAD transgenic model of Alzheimer's disease (AD), RNS60 treatment upregulated expression of plasticity-related proteins PSD95 and NR2A and increased AMPA- and NMDA-dependent hippocampal calcium influx. These results describe a novel property of RNS60 in stimulating hippocampal plasticity, which may help AD and other dementias. PMID:25007337

  1. Enhancement of Morphological Plasticity in Hippocampal Neurons by a Physically Modified Saline via Phosphatidylinositol-3 Kinase

    PubMed Central

    Roy, Avik; Modi, Khushbu K.; Khasnavis, Saurabh; Ghosh, Supurna; Watson, Richard; Pahan, Kalipada

    2014-01-01

    Increase of the density of dendritic spines and enhancement of synaptic transmission through ionotropic glutamate receptors are important events, leading to synaptic plasticity and eventually hippocampus-dependent spatial learning and memory formation. Here we have undertaken an innovative approach to upregulate hippocampal plasticity. RNS60 is a 0.9% saline solution containing charge-stabilized nanobubbles that are generated by subjecting normal saline to Taylor-Couette-Poiseuille (TCP) flow under elevated oxygen pressure. RNS60, but not NS (normal saline), PNS60 (saline containing a comparable level of oxygen without the TCP modification), or RNS10.3 (TCP-modified normal saline without excess oxygen), stimulated morphological plasticity and synaptic transmission via NMDA- and AMPA-sensitive calcium influx in cultured mouse hippocampal neurons. Using mRNA-based targeted gene array, real-time PCR, immunoblot, and immunofluorescence analyses, we further demonstrate that RNS60 stimulated the expression of many plasticity-associated genes in cultured hippocampal neurons. Activation of type IA, but not type IB, phosphatidylinositol-3 (PI-3) kinase by RNS60 together with abrogation of RNS60-mediated upregulation of plasticity-related proteins (NR2A and GluR1) and increase in spine density, neuronal size, and calcium influx by LY294002, a specific inhibitor of PI-3 kinase, suggest that RNS60 upregulates hippocampal plasticity via activation of PI-3 kinase. Finally, in the 5XFAD transgenic model of Alzheimer’s disease (AD), RNS60 treatment upregulated expression of plasticity-related proteins PSD95 and NR2A and increased AMPA- and NMDA-dependent hippocampal calcium influx. These results describe a novel property of RNS60 in stimulating hippocampal plasticity, which may help AD and other dementias. PMID:25007337

  2. Triptolide, a diterpenoid triepoxide, induces antitumor proliferation via activation of c-Jun NH{sub 2}-terminal kinase 1 by decreasing phosphatidylinositol 3-kinase activity in human tumor cells

    SciTech Connect

    Miyata, Yoshiki; Sato, Takashi . E-mail: satotak@ps.toyaku.ac.jp; Ito, Akira

    2005-11-04

    Triptolide, a diterpenoid triepoxide extracted from the Chinese herb Tripterygium wilfordii Hook f., exerts antitumorigenic actions against several tumor cells, but the intracellular target signal molecule(s) for this antitumorigenesis activity of triptolide remains to be identified. In the present study, we demonstrated that triptolide, in a dose-dependent manner, inhibited the proliferation of human fibrosarcoma HT-1080, human squamous carcinoma SAS, and human uterine cervical carcinoma SKG-II cells. In addition, triptolide was found to decrease phosphatidylinositol 3-kinase (PI3K) activity. A PI3K inhibitor, LY-294002, mimicked the triptolide-induced antiproliferative activity in HT-1080, SAS, and SKG-II cells. There was no change in the activity of Akt or protein kinase C (PKC), both of which are downstream effectors in the PI3K pathway. Furthermore, the phosphorylation of Ras, Raf, and mitogen-activated protein/extracellular signal-regulated kinase 1/2 was not modified in HT-1080 cells treated with triptolide. However, the phosphorylation of c-Jun NH{sub 2}-terminal kinase 1 (JNK1) was found to increase in both triptolide- and LY-294002-treated cells. Furthermore, the triptolide-induced inhibition of HT-1080 cell proliferation was not observed by JNK1 siRNA-treatment. These results provide novel evidence that PI3K is a crucial target molecule in the antitumorigenic action of triptolide. They further suggest a possible triptolide-induced inhibitory signal for tumor cell proliferation that is initiated by the decrease in PI3K activity, which in turn leads to the augmentation of JNK1 phosphorylation via the Akt and/or PKC-independent pathway(s). Moreover, it is likely that the activation of JNK1 is required for the triptolide-induced inhibition of tumor proliferation.

  3. Effect of phosphatidylinositol-3 kinase inhibition on ovotoxicity caused by 4-vinylcyclohexene diepoxide and 7, 12-dimethylbenz[a]anthracene in neonatal rat ovaries

    SciTech Connect

    Keating, Aileen F.; Mark, Connie J.; Sen, Nivedita; Sipes, I. Glenn; Hoyer, Patricia B.

    2009-12-01

    4-vinylcyclohexene diepoxide (VCD) is an ovotoxicant that specifically destroys primordial and small primary follicles in the ovaries of mice and rats. In contrast, 7,12-dimethylbenz[a]anthracene (DMBA) is ovotoxic to all ovarian follicle classes. This study investigated phosphatidylinositol-3 kinase signaling involvement in VCD- and DMBA-induced ovotoxicity. Postnatal day (PND) 4 Fischer 344 (F344) rat whole ovaries were cultured for 2-12 days in vehicle control, VCD (30 muM), or DMBA (1 muM), +- PI3 kinase inhibitor LY294002 (20 muM) or its inactive analog LY303511 (20 muM). Following culture, ovaries were histologically evaluated, and healthy follicles were classified and counted. PI3 kinase inhibition had no effect on primordial follicle number, but reduced (P < 0.05) small primary and larger follicles beginning on day 4. VCD caused primordial and small primary follicle loss (P < 0.05) beginning on day 6. With PI3 kinase inhibition, VCD did not affect primordial follicles (P > 0.05) at any time, but did cause loss (P < 0.05) of small primary follicles. DMBA exposure caused primordial and small primary follicle loss (P < 0.05) on day 6. Further, DMBA-induced primordial and small primary follicle loss was greater with PI3 kinase inhibition (P < 0.05) than with DMBA alone. These results support that (1) PI3 kinase mediates primordial to small primary follicle recruitment, (2) VCD, but not DMBA, enhances ovotoxicity by increasing primordial to small primary follicle recruitment, and (3) in addition to xenobiotic-induced ovotoxicity, VCD is also a useful model chemical with which to elucidate signaling mechanisms involved in primordial follicle recruitment.

  4. Effect of phosphatidylinositol-3 kinase inhibition on ovotoxicity caused by 4-vinylcyclohexene diepoxide and 7, 12-dimethylbenz[a]anthracene in neonatal rat ovaries.

    PubMed

    Keating, Aileen F; J Mark, Connie; Sen, Nivedita; Sipes, I Glenn; Hoyer, Patricia B

    2009-12-01

    4-vinylcyclohexene diepoxide (VCD) is an ovotoxicant that specifically destroys primordial and small primary follicles in the ovaries of mice and rats. In contrast, 7,12-dimethylbenz[a]anthracene (DMBA) is ovotoxic to all ovarian follicle classes. This study investigated phosphatidylinositol-3 kinase signaling involvement in VCD- and DMBA-induced ovotoxicity. Postnatal day (PND) 4 Fischer 344 (F344) rat whole ovaries were cultured for 2-12 days in vehicle control, VCD (30 microM), or DMBA (1 microM), +/-PI3 kinase inhibitor LY294002 (20 microM) or its inactive analog LY303511 (20 microM). Following culture, ovaries were histologically evaluated, and healthy follicles were classified and counted. PI3 kinase inhibition had no effect on primordial follicle number, but reduced (P<0.05) small primary and larger follicles beginning on day 4. VCD caused primordial and small primary follicle loss (P<0.05) beginning on day 6. With PI3 kinase inhibition, VCD did not affect primordial follicles (P>0.05) at any time, but did cause loss (P<0.05) of small primary follicles. DMBA exposure caused primordial and small primary follicle loss (P<0.05) on day 6. Further, DMBA-induced primordial and small primary follicle loss was greater with PI3 kinase inhibition (P<0.05) than with DMBA alone. These results support that (1) PI3 kinase mediates primordial to small primary follicle recruitment, (2) VCD, but not DMBA, enhances ovotoxicity by increasing primordial to small primary follicle recruitment, and (3) in addition to xenobiotic-induced ovotoxicity, VCD is also a useful model chemical with which to elucidate signaling mechanisms involved in primordial follicle recruitment. PMID:19695275

  5. Evidence that a kinase distinct from protein kinase C and phosphatidylinositol 3-kinase mediates ligation-dependent serine/threonine phosphorylation of the T-lymphocyte co-stimulatory molecule CD28.

    PubMed Central

    Parry, R V; Olive, D; Westwick, J; Sansom, D M; Ward, S G

    1997-01-01

    The CD28 cytoplasmic tail contains several potential phosphorylation sites for the serine/threonine kinase protein kinase C (PKC) and/or proline-directed serine/threonine kinases, such as extracellular signal-regulated kinases. We demonstrate that ligation of CD28 by B7.1 results in strong serine/threonine phosphorylation of CD28. It is unlikely that ligation-stimulated phosphorylation of CD28 is mediated via activation of PKC, since it was not prevented by pre-treatment of Jurkat cells with inhibitors of PKC, and it was not mimicked by treatment with PKC activators such as PMA. Nevertheless, despite for lack of detectable effects of PMA treatment on CD28 phosphorylation, PMA did partially inhibit the association of CD28 with the putative signalling molecule phosphatidylinositol 3-kinase (PI 3-kinase) and the subsequent accumulation of PtdIns(3,4,5)P3. PI 3-kinase exhibits dual specificity as both a lipid kinase and a protein serine kinase, and site-specific mutagenesis of the Tyr173 residue in the CD28 cytoplasmic tail, which abolishes CD28 coupling to PI 3-kinase [Pages, Ragueneau, Rottapel, Truneh, Nunes, Imbert and Olive (1994) Nature (London) 369, 327-329], also prevents ligation-stimulated phosphorylation of CD28. However, the two PI 3-kinase inhibitors wortmannin and LY294002 had no effect on phosphorylation of CD28 after ligation by B7.1. This study therefore demonstrates that (1) a CD28-activated serine/threonine kinase distinct from both PKC and PI 3-kinase mediates ligation-stimulated CD28 phosphorylation, and (2) the PMA-stimulated down-regulation of the coupling of CD28 to PI 3-kinase is not due to PMA-stimulated phosphorylation of CD28. PMID:9337876

  6. Discovery of selective phosphatidylinositol 3-kinase inhibitors to treat hematological malignancies.

    PubMed

    Zhu, Jingyu; Hou, Tingjun; Mao, Xinliang

    2015-08-01

    The phosphatidylinositol 3-kinase (PI3K) signaling pathway is associated with chemoresistance and poor prognosis of many cancers, including hematological malignancies (HM), such as leukemia, lymphomas, and multiple myeloma (MM). Targeting PI3K is emerging as a promising strategy in the treatment of these blood cancers. Recent approval of idelalisib, a specific inhibitor of PI3Kδ, for the treatment of several types of HM, is likely to attract more interest in search for novel PI3K inhibitors. Here, we discuss classic and cutting-edge techniques and strategies to identify PI3K inhibitors for the treatment of HM. Each technique has its own strengths and limitations, and their combined application will accelerate the drug discovery process with fewer associated costs. PMID:25857437

  7. Clinical development of phosphatidylinositol 3-kinase inhibitors for non-Hodgkin lymphoma

    PubMed Central

    2013-01-01

    Phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) signaling pathway is extensively explored in cancers. It functions as an important regulator of cell growth, survival and metabolism. Activation of this pathway also predicts poor prognosis in numerous human malignancies. Drugs targeting this signaling pathway have been developed and have shown preliminary clinical activity. Accumulating evidence has highlighted the important role of PI3K in non-Hodgkin lymphoma (NHL), especially in the disease initiation and progression. Therapeutic functions of PI3K inhibitors in NHL have been demonstrated both in vivo and in vitro. This review will summarize recent advances in the activation of PI3K signaling in different types of NHL and the applications of PI3K inhibitors in NHL treatment. PMID:24252186

  8. Avian reovirus σA and σNS proteins activate the phosphatidylinositol 3-kinase-dependent Akt signalling pathway.

    PubMed

    Xie, Liji; Xie, Zhixun; Huang, Li; Fan, Qing; Luo, Sisi; Huang, Jiaoling; Deng, Xianwen; Xie, Zhiqin; Zeng, Tingting; Zhang, Yanfang; Wang, Sheng

    2016-08-01

    The present study was conducted to identify avian reovirus (ARV) proteins that can activate the phosphatidylinositol 3-kinase (PI3K)-dependent Akt pathway. Based on ARV protein amino acid sequence analysis, σA, σNS, μA, μB and μNS were identified as putative proteins capable of mediating PI3K/Akt pathway activation. The recombinant plasmids σA-pcAGEN, σNS-pcAGEN, μA-pcAGEN, μB-pcAGEN and μNS-pcAGEN were constructed and used to transfect Vero cells, and the expression levels of the corresponding genes were quantified by immunofluorescence and Western blot analysis. Phosphorylated Akt (P-Akt) levels in the transfected cells were measured by flow cytometry and Western blot analysis. The results showed that the σA, σNS, μA, μB and μNS genes were expressed in Vero cells. σA-expressing and σNS-expressing cells had higher P-Akt levels than negative control cells, pcAGEN-expressing cells and cells designed to express other proteins (i.e., μA, μB and μNS). Pre-treatment with the PI3K inhibitor LY294002 inhibited Akt phosphorylation in σA- and σNS-expressing cells. These results indicate that the σA and σNS proteins can activate the PI3K/Akt pathway. PMID:27233800

  9. cAMP-stimulated Na+ transport in H441 distal lung epithelial cells: role of PKA, phosphatidylinositol 3-kinase, and sgk1.

    PubMed

    Thomas, Christie P; Campbell, Jason R; Wright, Patrick J; Husted, Russell F

    2004-10-01

    H441 cells, a bronchiolar epithelial cell line, develop a cAMP-regulated benzamil-sensitive Na+ transport pathway on permeable supports (Itani OA, Auerbach SD, Husted RF, Volk KA, Ageloff S, Knepper MA, Stokes JB, Thomas CP. Am J Physiol Lung Cell Mol Physiol 282: L631-L641, 2002). To understand the molecular basis for the stimulation of Na+ transport, we delineated the role of specific intracellular pathways and examined the effect of cAMP on alphabetagamma-epithelial Na+ channel (ENaC) and sgk1 expression. Na+ transport increases within 5 min of cAMP stimulation and is sustained for >24 h. The sustained effect of cAMP on Na+ transport is abolished by LY-294002, an inhibitor of phosphatidylinositol 3-kinase, by H89, an inhibitor of PKA, or by SB-202190, an inhibitor of p38 MAP kinase. The sustained effect of cAMP was associated with increases in alpha-ENaC mRNA and protein but without a detectable increase in betagamma-ENaC and sgk1. The early effect of cAMP on Na+ transport is brefeldin sensitive and is mediated via PKA. These results are consistent with a model where the early effect of cAMP is to increase trafficking of Na+ channels to the apical cell surface whereas the sustained effect requires the synthesis of alpha-ENaC. PMID:15208094

  10. Inhibition of gap junctional Intercellular communication in WB-F344 rat liver epithelial cells by triphenyltin chloride through MAPK and PI3-kinase pathways

    PubMed Central

    2010-01-01

    Background Organotin compounds (OTCs) have been widely used as stabilizers in the production of plastic, agricultural pesticides, antifoulant plaints and wood preservation. The toxicity of triphenyltin (TPT) compounds was known for their embryotoxic, neurotoxic, genotoxic and immunotoxic effects in mammals. The carcinogenicity of TPT was not well understood and few studies had discussed the effects of OTCs on gap junctional intercellular communication (GJIC) of cells. Method In the present study, the effects of triphenyltin chloride (TPTC) on GJIC in WB-F344 rat liver epithelial cells were evaluated, using the scrape-loading dye transfer technique. Results TPTC inhibited GJIC after a 30-min exposure in a concentration- and time-dependent manner. Pre-incubation of cells with the protein kinase C (PKC) inhibitor did not modify the response, but the specific MEK 1 inhibitor PD98059 and PI3K inhibitor LY294002 decreased substantially the inhibition of GJIC by TPTC. After WB-F344 cells were exposed to TPTC, phosphorylation of Cx43 increased as seen in Western blot analysis. Conclusions These results show that TPTC inhibits GJIC in WB-F344 rat liver epithelial cells by altering the Cx43 protein expression through both MAPK and PI3-kinase pathways. PMID:20591183

  11. Regulation of constitutive vascular endothelial growth factor secretion in retinal pigment epithelium/choroid organ cultures: p38, nuclear factor kappaB, and the vascular endothelial growth factor receptor-2/phosphatidylinositol 3 kinase pathway

    PubMed Central

    Westhues, Daniel; Lassen, Jens; Bartsch, Sofia; Roider, Johann

    2013-01-01

    Purpose The retinal pigment epithelium (RPE) is a major source of vascular endothelial growth factor (VEGF) in the eye. Despite the role of VEGF in ocular pathology, VEGF is an important factor in maintaining the choroid and the RPE. Accordingly, the VEGF is constitutively expressed in RPE. In this study, the regulation of constitutive VEGF expression was investigated in an RPE/choroid organ culture. Methods To investigate VEGF regulation, RPE/choroid of porcine origin were used. VEGF content was evaluated with enzyme-linked immunosorbent assay. The influence of several molecular factors was assessed with commercially available inhibitors (SU1498, bisindolylmaleimide, LY294002, nuclear factor kappaB [NFkB] activation inhibitor, mithramycin, YC-1, Stattic, SB203580). For toxicity measurements of inhibitors, primary RPE cells of porcine origin were used, and toxicity was evaluated with methyl thiazolyl tetrazolium assay. Results VEGF secretion as measured in the RPE/choroid organ culture was diminished after long-term (48 h) inhibition of vascular endothelial growth factor receptor-2 by VEGFR-2-antagonist SU1498. VEGF secretion was also diminished after phosphatidylinositol 3 kinase was inhibited by LY294002 for 48 h. Coapplication of the substances did not show an additive effect, suggesting that they use the same pathway in an autocrine-positive VEGF regulation loop. Inhibition of protein kinase C by bisindolylmaleimide, on the other hand, did not influence VEGF secretion in organ culture. Inhibition of the transcription factor SP-1 by mithramycin displayed effects after 24 h and 48 h. Inhibiting hypoxia-inducible factor-1 (HIF-1) and Stat3 did not show any influence on constitutive VEGF secretion. Inhibition of the transcription factor NFkB diminished VEGF secretion after 6 h (earliest measured time point) and remained diminished at all measured time points (24 h, 48 h). The same pattern was found when the inhibitor of mitogen-activated kinase p38 was applied. A

  12. Identification of a new membrane-permeable inhibitor against inositol-1,4,5-trisphosphate-3-kinase A.

    PubMed

    Schröder, Dominik; Rehbach, Christoph; Seyffarth, Carola; Neuenschwander, Martin; Kries, Jens V; Windhorst, Sabine

    2013-09-20

    Ectopic expression of the neuron-specific inositol-1,4,5-trisphosphate-3-kinase A (ITPKA) in lung cancer cells increases their metastatic potential because the protein exhibits two actin regulating activities; it bundles actin filaments and regulates inositol-1,4,5-trisphosphate (InsP3)-mediated calcium signals by phosphorylating InsP3. Thus, in order to inhibit the metastasis-promoting activity of ITPKA, both its actin bundling and its InsP3kinase activity has to be blocked. In this study, we performed a high throughput screen in order to identify specific and membrane-permeable substances against the InsP3kinase activity. Among 341,44 small molecules, 237 compounds (0.7%) were identified as potential InsP3kinase inhibitors. After determination of IC50-values, the three compounds with highest specificity and highest hydrophobicity (EPPC-3, BAMB-4, MEPTT-3) were further characterized. Only BAMB-4 was nearly completely taken up by H1299 cells and remained stable after cellular uptake, thus exhibiting a robust stability and a high membrane permeability. Determination of the inhibitor type revealed that BAMB-4 belongs to the group of mixed type inhibitors. Taken together, for the first time we identified a highly membrane-permeable inhibitor against the InsP3kinase activity of ITPKA providing the possibility to partly inhibit the metastasis-promoting effect of ITPKA in lung tumor cells. PMID:23981806

  13. Selective Sparing of Human Tregs by Pharmacologic Inhibitors of the Phosphatidylinositol 3-Kinase and MEK Pathways

    PubMed Central

    Zwang, N. A.; Zhang, R.; Germana, S.; Fan, M. Y.; Hastings, W. D.; Cao, A.; Turka, L. A.

    2016-01-01

    Phosphatidylinositol 3-kinase (PI3K) and mitogen-activated protein kinase/extracellular signal-regulated (MEK) signaling are central to the survival and proliferation of many cell types. Multiple lines of investigation in murine models have shown that control of the PI3K pathway is particularly important for regulatory T cell (Treg) stability and function. PI3K and MEK inhibitors are being introduced into the clinic, and we hypothesized that pharmacologic inhibition of PI3K, and possibly MEK, in mixed cultures of human mononuclear cells would preferentially affect CD4+ and CD8+ lymphocytes compared with Tregs. We tested this hypothesis using four readouts: proliferation, activation, functional suppression, and signaling. Results showed that Tregs were less susceptible to inhibition by both δ and α isoform–specific PI3K inhibitors and by an MEK inhibitor compared with their conventional CD4+ and CD8+ counterparts. These studies suggest less functional reliance on PI3K and MEK signaling in Tregs compared with conventional CD4+ and CD8+ lymphocytes. Therefore, the PI3K and MEK pathways are attractive pharmacologic targets for transplantation and treatment of autoimmunity. PMID:27017850

  14. Phosphoinositide 3-kinase gamma (PI3Kgamma) inhibitors for the treatment of inflammation and autoimmune disease.

    PubMed

    Venable, Jennifer D; Ameriks, Michael K; Blevitt, Jonathan M; Thurmond, Robin L; Fung-Leung, Wai-Ping

    2010-01-01

    Phosphoinositide 3-kinase gamma (PI3Kgamma) is a lipid kinase in leukocytes that generates phosphatidylinositol 3,4,5-trisphosphate to recruit and activate downstream signaling molecules. Distinct from other members in the PI3K family, PI3Kgamma is activated by G-protein coupled-receptors responding to chemotactic ligands. PI3Kgamma plays an important role in migration of both myeloid and lymphoid cells. It is also required for other leukocyte functions such as neutrophil oxidative burst, T cell proliferation and mast degranulation. Mice with PI3Kgamma inactivated by genetic or pharmacological approaches are protected from disease development in a number of inflammation and autoimmune disease models. The function of PI3Kgamma depends on its kinase activity and therefore it has been suggested by many reports that small molecules inhibiting its kinase activity could be promising for the treatment of inflammation and autoimmune diseases. Over the last five years, a number of pharmaceutical companies have reported a wide variety of PI3Kgamma inhibitors, of which several x-ray crystal structures with PI3Kgamma have been elucidated. The structural characteristics and selectivity profiles of these inhibitors, in particular thiazolidinones and 2-aminoheterocycles, and those disclosed in related patent applications are summarized in this review. PMID:20017720

  15. Integrin β1-mediated acquired gefitinib resistance in non-small cell lung cancer cells occurs via the phosphoinositide 3-kinase-dependent pathway

    PubMed Central

    DENG, QIN-FANG; SU, BO; ZHAO, YIN-MIN; TANG, LIANG; ZHANG, JIE; ZHOU, CAI-CUN

    2016-01-01

    The present study aimed to explore the role of integrin β1 and the relevant signaling pathways in acquired gefitinib resistance in non-small cell lung cancer (NSCLC). The inhibitory effects of gefitinib, with or without LY294002, on cellular proliferation were evaluated by 3-(4,5-dimethylthiazol-2-yl) 2,5-diphenyltetrazolium bromide assay. Cell cycle progression and apoptosis were analyzed by flow cytometry, while western blotting was used to evaluate the expression of EGFR, phosphorylated (phospho)-EGFR, protein kinase B (Akt), phospho-Akt, extracellular signal-regulated kinase (Erk) and phospho-Erk. The gene expression profiles of PC9 and PC9/G cells were determined by DNA microarray. Integrin β1 was knocked down in PC9/G cells by transiently transfected short interfering RNA (siRNA). A scrambled siRNA sequence was used as a control. Apoptosis of transfected cells was determined by Annexin V-phycoerythrin-Cy5/propidium iodide staining. Sequencing products were amplified by nested PCR. The resistant index of PC9/G cells to gefitinib was ~138- to 256-fold higher than that of PC9 cells, and this resistance was accompanied by significant increase in integrin β1 expression in PC9/G cells. Knockdown of integrin β1 with short hairpin RNA in PC9/G cells markedly inhibited proliferation and enhanced apoptosis in response to gefitinib, restoring the sensitivity of PC9/G cells gefitinib. Phosphoinositide 3-kinase (PI3K)/Akt activation was observed in PC9/G cells in the presence of gefitinib and the sensitivity of PC9/G cells to gefitinib was also able to be restored by PI3K/Akt pathway inhibitor LY294002. Finally, knockdown of integrin β1 significantly reduced the levels of phospho-Akt. These findings suggest that integrin β1 signaling via the PI3K/Akt pathway may be a significant mechanism underlying gefitinib resistance, and may potentially present an alternative therapeutic target for the treatment of NSCLC unresponsive to EGFR inhibitors. PMID:26870244

  16. Activation of group IV cytosolic phospholipase A2 in human eosinophils by phosphoinositide 3-kinase through a mitogen-activated protein kinase-independent pathway.

    PubMed

    Myou, Shigeharu; Leff, Alan R; Myo, Saori; Boetticher, Evan; Meliton, Angelo Y; Lambertino, Anissa T; Liu, Jie; Xu, Chang; Munoz, Nilda M; Zhu, Xiangdong

    2003-10-15

    Activation of group IV cytosolic phospholipase A(2) (gIV-PLA(2)) is the essential first step in the synthesis of inflammatory eicosanoids and in integrin-mediated adhesion of leukocytes. Prior investigations have demonstrated that phosphorylation of gIV-PLA(2) results from activation of at least two isoforms of mitogen-activated protein kinase (MAPK). We investigated the potential role of phosphoinositide 3-kinase (PI3K) in the activation of gIV-PLA(2) and the hydrolysis of membrane phosphatidylcholine in fMLP-stimulated human blood eosinophils. Transduction into eosinophils of Deltap85, a dominant negative form of class IA PI3K adaptor subunit, fused to an HIV-TAT protein transduction domain (TAT-Deltap85) concentration dependently inhibited fMLP-stimulated phosphorylation of protein kinase B, a downstream target of PI3K. FMLP caused increased arachidonic acid (AA) release and secretion of leukotriene C(4) (LTC(4)). TAT-Deltap85 and LY294002, a PI3K inhibitor, blocked the phosphorylation of gIV-PLA(2) at Ser(505) caused by fMLP, thus inhibiting gIV-PLA(2) hydrolysis and production of AA and LTC(4) in eosinophils. FMLP also caused extracellular signal-related kinases 1 and 2 and p38 MAPK phosphorylation in eosinophils; however, neither phosphorylation of extracellular signal-related kinases 1 and 2 nor p38 was inhibited by TAT-Deltap85 or LY294002. Inhibition of 1) p70 S6 kinase by rapamycin, 2) protein kinase B by Akt inhibitor, or 3) protein kinase C by Ro-31-8220, the potential downstream targets of PI3K for activation of gIV-PLA(2), had no effect on AA release or LTC(4) secretion caused by fMLP. We find that PI3K is required for gIV-PLA(2) activation and hydrolytic production of AA in activated eosinophils. Our data suggest that this essential PI3K independently activates gIV-PLA(2) through a pathway that does not involve MAPK. PMID:14530366

  17. The anti-apoptotic effect of IGF-1 on tissue resident stem cells is mediated via PI3-kinase dependent secreted frizzled related protein 2 (Sfrp2) release

    SciTech Connect

    Gehmert, Sebastian; Sadat, Sanga; Song Yaohua; Yan Yasheng; Alt, Eckhard

    2008-07-11

    Previous studies suggest that IGF-1 may be used as an adjuvant to stem cell transfer in order to improve cell engraftment in ischemic tissue. In the current study, we investigated the effect of IGF-1 on serum deprivation and hypoxia induced stem cell apoptosis and the possible mechanisms involved. Exposure of adipose tissue derived stem cells (ASCs) to serum deprivation and hypoxia resulted in significant apoptosis in ASC which is partially prevented by IGF-1. IGF-1's anti-apoptotic effect was abolished in ASCs transfected with Sfrp2 siRNA but not by the control siRNA. Using Western blot analysis, we demonstrated that serum deprivation and hypoxia reduced the expression of nuclear {beta}-catenin, which is reversed by IGF-1. IGF-1's effect on {beta}-catenin expression was abolished by the presence of PI3-kinase inhibitor LY294002 or in ASCs transfected with Sfrp2 siRNA. These results suggest that IGF-1, through the release of the Sfrp2, contributes to cell survival by stabilizing {beta}-catenin.

  18. Frutalin, a galactose-binding lectin, induces chemotaxis and rearrangement of actin cytoskeleton in human neutrophils: involvement of tyrosine kinase and phosphoinositide 3-kinase.

    PubMed

    Brando-Lima, Aline C; Saldanha-Gama, Roberta F; Henriques, Maria das Graças M O; Monteiro-Moreira, Ana C O; Moreira, Renato A; Barja-Fidalgo, Christina

    2005-10-15

    Several lectin-like molecules have been shown as potent activators of leukocytes. Galactose-binding lectins are of special interest since they could interact with several endogenous molecules involved in the innate and specific immune responses. The effects of Frutalin (FTL), an alpha-D-galactose (Gal)-binding plant lectin, on the modulation of neutrophil (PMN) functions were investigated. FTL induced a dose-dependent PMN migration in mice pleural cavity. Moreover, FTL was also a potent direct chemotactic for human PMN, in vitro, and triggered oxidative burst in these cells. These effects were accompanied by a rearrangement of the actin cytoskeleton dynamic, activation of tyrosine kinase (TK) pathways, increase in focal adhesion kinase (FAK) phosphorylation, and its subsequent association to phosphoinositide3-kinase (PI3K). All those effects were inhibited in the presence of Gal, suggesting specific carbohydrate recognition for FTL effects. The activations of TK and PI3K pathways are essential events for FTL-induced chemotaxis, since inhibitors of these pathways, genistein and LY294002, inhibited neutrophil migration in vitro. The data indicate that sugar-protein interactions between a soluble lectin and galacto-components on neutrophil surface trigger the TK pathway, inducing FAK and PI3K activation, interfering with cell motility and oxidative response. PMID:16183388

  19. HspB8 mediates neuroprotection against OGD/R in N2A cells through the phosphoinositide 3-kinase/Akt pathway.

    PubMed

    Hu, Zhiping; Yang, Binbin; Mo, Xiaoye; Zhou, Fangfang

    2016-08-01

    In a previous study, we found that Heat shock protein B8 (HspB8) overexpression could prevent the apoptosis and reduced cell viability induced by OGD/R and showed that the neuroprotective effect of HspB8 was mediated by inhibition of the mitochondrial apoptotic pathway. In recent study, HspB8 has been shown to protect the heart against ischemia/reperfusion (I/R) injury via activation of the phosphatidylinositol 3-kinase (PI3K)/Akt pathway. However, whether this protective effect applied to brain I/R injury remained unexplored. To further test the mechanism of HspB8's effects in brain, we used oxygen-glucose deprivation followed by reperfusion (OGD/R), an in vitro model of ischemia to examine the involvement of PI3K/Akt signaling by treating mouse neuroblastoma cells (N2A cells) (untransfected or transfected with an HspB8 expression vector) with the PI3K inhibitor LY294002 before OGD/R. Our results revealed that the apoptosis-suppressing effect of HspB8 was mediated by the PI3K/Akt pathway. Therefore, HspB8 protected the N2A cells against OGD/R insult, possibly by activating the PI3K/Akt signaling pathway. PMID:27178361

  20. The tyrosine kinase inhibitor bafetinib inhibits PAR2-induced activation of TRPV4 channels in vitro and pain in vivo

    PubMed Central

    Grace, M S; Lieu, T; Darby, B; Abogadie, F C; Veldhuis, N; Bunnett, N W; McIntyre, P

    2014-01-01

    BACKGROUND AND PURPOSE Protease-activated receptor 2 (PAR2) is expressed on nociceptive neurons, and can sensitize transient receptor potential (TRP) ion channels to amplify neurogenic inflammation and pain. The mechanisms by which this occurs are not fully understood. PAR2 causes receptor-operated activation of TRPV4 channels and TRPV4 null mice have attenuated PAR2-stimulated neurogenic inflammation and mechanical hyperalgesia. Here we investigate the intracellular signalling mechanisms underlying PAR2-induced TRPV4 channel activation and pain. EXPERIMENTAL APPROACH Responses of non-transfected and TRPV4-transfected HEK293 cells to agonists of PAR2 (trypsin and SLIGRL) and TRPV4 channels (GSK1016790A) were determined using calcium imaging. Inhibitors of TRPV4 channels (HC067047), sarcoendoplasmic reticulum calcium transport ATPase (thapsigargin), Gαq (UBO-QIC), tyrosine kinases (bafetinib and dasatinib) or PI3 kinases (wortmannin and LY294002) were used to investigate signalling mechanisms. In vivo effects of tyrosine kinase inhibitors on PAR2-induced mechanical hyperalgesia were assessed in mice. KEY RESULTS In non-transfected HEK293 cells, PAR2 activation transiently increased intracellular calcium ([Ca2+]i). Functional expression of TRPV4 channels caused a sustained increase of [Ca2+]i, inhibited by HC067047, bafetinib and wortmannin; but not by thapsigargin, UBO-QIC, dasatinib or LY294002. Bafetinib but not dasatinib inhibited PAR2-induced mechanical hyperalgesia in vivo. CONCLUSIONS AND IMPLICATIONS This study supports a role for tyrosine kinases in PAR2-mediated receptor-operated gating of TRPV4 channels, independent of Gαq stimulation. The ability of a tyrosine kinase inhibitor to diminish PAR2-induced activation of TRPV4 channels and consequent mechanical hyperalgesia identifies bafetinib (which is in development in oncology) as a potential novel analgesic therapy. PMID:24779362

  1. Initiation of human astrovirus type 1 infection was blocked by inhibitors of phosphoinositide 3-kinase

    PubMed Central

    2013-01-01

    Background Upon initial contact with a virus, host cells activate a series of cellular signaling cascades that facilitate viral entry and viral propagation within the cell. Little is known about how the human astrovirus (HAstV) exploits signaling cascades to establish an infection in host cells. Recent studies showed that activation of extracellular signal-regulated kinase 1/2 (ERK1/2) is important for HAstV infection, though the involvement of other signaling cascades remains unclear. Methods A panel of kinase blockers was used to search for cellular signaling pathways important for HAstV1 infection. To determine their impact on the infectious process, we examined viral gene expression, RNA replication, and viral RNA and capsid protein release from host cells. Results Inhibitors of phosphoinositide 3-kinase (PI3K) activation interfered with the infection, independent of their effect on ERK 1/2 activation. Activation of the PI3K signaling cascade occurred at an early phase of the infection, judging from the timeframe of Akt phosphorylation. PI3K inhibition at early times, but not at later times, blocked viral gene expression. However, inhibiting the downstream targets of PI3K activation, Akt and Rac1, did not block infection. Inhibition of protein kinase A (PKA) activation was found to block a later phase of HAstV1 production. Conclusions Our results reveal a previously unknown, essential role of PI3K in the life cycle of HAstV1. PI3K participates in the early stage of infection, possibly during the viral entry process. Our results also reveal the role of PKA in viral production. PMID:23680019

  2. Phosphatidylinositol 3-Kinase Plays a Vital Role in Regulation of Rice Seed Vigor via Altering NADPH Oxidase Activity

    PubMed Central

    Liu, Jian; Zhou, Jun; Xing, Da

    2012-01-01

    Phosphatidylinositol 3-kinase (PI3K) has been reported to be important in normal plant growth and stress responses. In this study, it was verified that PI3K played a vital role in rice seed germination through regulating NADPH oxidase activity. Suppression of PI3K activity by inhibitors wortmannin or LY294002 could abate the reactive oxygen species (ROS) formation, which resulted in disturbance to the seed germination. And then, the signal cascades that PI3K promoted the ROS liberation was also evaluated. Diphenylene iodonium (DPI), an NADPH oxidase inhibitor, suppressed most of ROS generation in rice seed germination, which suggested that NADPH oxidase was the main source of ROS in this process. Pharmacological experiment and RT-PCR demonstrated that PI3K promoted the expression of Os rboh9. Moreover, functional analysis by native PAGE and the measurement of the 2, 3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazo-lium-5- carboxanilide (XTT) formazan concentration both showed that PI3K promoted the activity of NADPH oxidase. Furthermore, the western blot analysis of OsRac-1 demonstrated that the translocation of Rac-1 from cytoplasm to plasma membrane, which was known as a key factor in the assembly of NADPH oxidase, was suppressed by treatment with PI3K inhibitors, resulting in the decreased activity of NADPH oxidase. Taken together, these data favored the novel conclusion that PI3K regulated NADPH oxidase activity through modulating the recruitment of Rac-1 to plasma membrane and accelerated the process of rice seed germination. PMID:22448275

  3. A Genomewide Overexpression Screen Identifies Genes Involved in the Phosphatidylinositol 3-Kinase Pathway in the Human Protozoan Parasite Entamoeba histolytica

    PubMed Central

    Koushik, Amrita B.; Welter, Brenda H.; Rock, Michelle L.

    2014-01-01

    Entamoeba histolytica is a protozoan parasite that causes amoebic dysentery and liver abscess. E. histolytica relies on motility, phagocytosis, host cell adhesion, and proteolysis of extracellular matrix for virulence. In eukaryotic cells, these processes are mediated in part by phosphatidylinositol 3-kinase (PI3K) signaling. Thus, PI3K may be critical for virulence. We utilized a functional genomics approach to identify genes whose products may operate in the PI3K pathway in E. histolytica. We treated a population of trophozoites that were overexpressing genes from a cDNA library with a near-lethal dose of the PI3K inhibitor wortmannin. This screen was based on the rationale that survivors would be overexpressing gene products that directly or indirectly function in the PI3K pathway. We sequenced the overexpressed genes in survivors and identified a cDNA encoding a Rap GTPase, a protein previously shown to participate in the PI3K pathway. This supports the validity of our approach. Genes encoding a coactosin-like protein, EhCoactosin, and a serine-rich E. histolytica protein (SREHP) were also identified. Cells overexpressing EhCoactosin or SREHP were also less sensitive to a second PI3K inhibitor, LY294002. This corroborates the link between these proteins and PI3K. Finally, a mutant cell line with an increased level of phosphatidylinositol (3,4,5)-triphosphate, the product of PI3K activity, exhibited increased expression of SREHP and EhCoactosin. This further supports the functional connection between these proteins and PI3K in E. histolytica. To our knowledge, this is the first forward-genetics screen adapted to reveal genes participating in a signal transduction pathway in this pathogen. PMID:24442890

  4. DNA-hypomethylating agent, 5'-azacytidine, induces cyclooxygenase-2 expression via the PI3-kinase/Akt and extracellular signal-regulated kinase-1/2 pathways in human HT1080 fibrosarcoma cells.

    PubMed

    Yu, Seon-Mi; Kim, Song-Ja

    2015-10-01

    The cytosine analogue 5'-azacytidine (5'-aza) induces DNA hypomethylation by inhibiting DNA methyltransferase. In clinical trials, 5'-aza is widely used in epigenetic anticancer treatments. Accumulated evidence shows that cyclooxygenase-2 (COX-2) is overexpressed in various cancers, indicating that it may play a critical role in carcinogenesis. However, few studies have been performed to explore the molecular mechanism underlying the increased COX-2 expression. Therefore, we tested the hypothesis that 5'-aza regulates COX-2 expression and prostaglandin E2 (PGE2) production. The human fibrosarcoma cell line HT1080, was treated with various concentrations of 5'-aza for different time periods. Protein expressions of COX-2, DNA (cytosine-5)-methyltransferase 1 (DNMT1), pAkt, Akt, extracellular signal-regulated kinase (ERK), and phosphorylated ERK (pERK) were determined using western blot analysis, and COX-2 mRNA expression was determined using RT-PCR. PGE2 production was evaluated using the PGE2 assay kit. The localization and expression of COX-2 were determined using immunofluorescence staining. Treatment with 5'-aza induces protein and mRNA expression of COX-2. We also observed that 5'-aza-induced COX-2 expression and PGE2 production were inhibited by S-adenosylmethionine (SAM), a methyl donor. Treatment with 5'-aza phosphorylates PI3-kinase/Akt and ERK-1/2; inhibition of these pathways by LY294002, an inhibitor of PI3-kinase/Akt, or PD98059, an inhibitor of ERK-1/2, respectively, prevents 5'-aza-induced COX-2 expression and PGE2 production. Overall, these observations indicate that the hypomethylating agent 5'-aza modulates COX-2 expression via the PI3-kinase/Akt and ERK-1/2 pathways in human HT1080 fibrosarcoma cells. PMID:26238650

  5. Exendin-4 enhances the migration of adipose-derived stem cells to neonatal rat ventricular cardiomyocyte-derived conditioned medium via the phosphoinositide 3-kinase/Akt-stromal cell-derived factor-1α/CXC chemokine receptor 4 pathway

    PubMed Central

    ZHOU, HAO; YANG, JUNJIE; XIN, TING; ZHANG, TAO; HU, SHUNYIN; ZHOU, SHANSHAN; CHEN, GUANGHUI; CHEN, YUNDAI

    2015-01-01

    Adipose-derived stem cells (ADSCs) are considered a suitable source of cells for the repair of tissue following acute myocardial infarction (AMI); however, the transplantation efficiency of ADSCs remains low. Therefore, identification of an efficient method to enhance the migration of engrafted cells to the target site is required. The present study used exendin-4 (Ex-4), a glucagon-like peptide-1 receptor agonist, to optimize the migratory capacity of ADSCs. The aim was to determine the effect and mechanisms of Ex-4 on the migration of ADSCs to neonatal rat ventricular cardiomyocyte-derived conditioned medium (NRVC-CM). The ADSCs and cardiomyocytes were cultured in vitro. Following incubation of the ADSCs with Ex-4, cell proliferation was measured using an MTT assay and the expression levels of CXC chemokine receptor 4 (CXCR4) were investigated by reverse transctiption quantitative polymerase chain reaction (RT-qPCR), western blot analysis and flow cytometry. In addition, the expression levels of stromal cell-derived factor-1α (SDF-1α) were evaluated in the NRVC-CM treated with Ex-4 by ELISA, RT-qPCR and western blot analysis. The migration of the ADSCs to the NRVC-CM was examined using a Transwell assay. Changes in the protein expression levels of phosphorylated (p−)Akt were examined in the two types of cell by western blot analysis. The results suggested that Ex-4 promoted the proliferation and expression of CXCR4 in the ADSCs, increased the secretion of SDF-1α in the cardiomyocytes and increased the expression levels of p-Akt in both cells. However, the alterations to the SDF-1α/C XC R4 cascade in the cells were abrogated following pretreatment with LY-294002, a phosphoinositide 3-kinase(PI3K) inhibitor. Furthermore, a Transwell migration assay revealed marked translocation of the ADSCs through the membranes, towards the NRVC-CM, following treatment with Ex-4. However, these effects were reduced significantly by pretreatment of the cells with the SDF-1

  6. The hepatocyte growth factor antagonist NK4 inhibits indoleamine-2,3-dioxygenase expression via the c-Met-phosphatidylinositol 3-kinase-AKT signaling pathway.

    PubMed

    Wang, Dongdong; Saga, Yasushi; Sato, Naoto; Nakamura, Toshikazu; Takikawa, Osamu; Mizukami, Hiroaki; Matsubara, Shigeki; Fujiwara, Hiroyuki

    2016-06-01

    Indoleamine-2,3-dioxygenase (IDO) is an immunosuppressive enzyme involved in tumor malignancy. However, the regulatory mechanism underlying its involvement remains largely uncharacterized. The present study aimed to investigate the hypothesis that NK4, an antagonist of hepatocyte growth factor (HGF), can regulate IDO and to characterize the signaling mechanism involved. Following successful transfection of the human ovarian cancer cell line SKOV-3 (which constitutively expresses IDO) with an NK4 expression vector, we observed that NK4 expression suppressed IDO expression; furthermore, NK4 expression did not suppress cancer cell growth in vitro [in the absence of natural killer (NK) cells], but did influence tumor growth in vivo. In addition, NK4 enhanced the sensitivity of cancer cells to NK cells in vitro and promoted NK cell accumulation in the tumor stroma in vivo. In an effort to clarify the mechanisms by which NK4 interacts with IDO, we performed investigations utilizing various biochemical inhibitors. The results of these investigations were as follows. First, c-Met (a receptor of HGF) tyrosine kinase inhibitor PHA-665752, and phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002 both suppress IDO expression. Second, enhanced expression of PTEN (a known tumor suppressor) via negative regulation within a PI3K-AKT pathway, inhibits IDO expression. Conversely, neither the MEK1/2 inhibitor U0126 nor the STAT3 inhibitor WP1066 affects IDO expression. These results suggest that NK4 inhibits IDO expression via a c-Met-PI3K-AKT signaling pathway. PMID:27082119

  7. The hepatocyte growth factor antagonist NK4 inhibits indoleamine-2,3-dioxygenase expression via the c-Met-phosphatidylinositol 3-kinase-AKT signaling pathway

    PubMed Central

    WANG, DONGDONG; SAGA, YASUSHI; SATO, NAOTO; NAKAMURA, TOSHIKAZU; TAKIKAWA, OSAMU; MIZUKAMI, HIROAKI; MATSUBARA, SHIGEKI; FUJIWARA, HIROYUKI

    2016-01-01

    Indoleamine-2,3-dioxygenase (IDO) is an immunosuppressive enzyme involved in tumor malignancy. However, the regulatory mechanism underlying its involvement remains largely uncharacterized. The present study aimed to investigate the hypothesis that NK4, an antagonist of hepatocyte growth factor (HGF), can regulate IDO and to characterize the signaling mechanism involved. Following successful transfection of the human ovarian cancer cell line SKOV-3 (which constitutively expresses IDO) with an NK4 expression vector, we observed that NK4 expression suppressed IDO expression; furthermore, NK4 expression did not suppress cancer cell growth in vitro [in the absence of natural killer (NK) cells], but did influence tumor growth in vivo. In addition, NK4 enhanced the sensitivity of cancer cells to NK cells in vitro and promoted NK cell accumulation in the tumor stroma in vivo. In an effort to clarify the mechanisms by which NK4 interacts with IDO, we performed investigations utilizing various biochemical inhibitors. The results of these investigations were as follows. First, c-Met (a receptor of HGF) tyrosine kinase inhibitor PHA-665752, and phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002 both suppress IDO expression. Second, enhanced expression of PTEN (a known tumor suppressor) via negative regulation within a PI3K-AKT pathway, inhibits IDO expression. Conversely, neither the MEK1/2 inhibitor U0126 nor the STAT3 inhibitor WP1066 affects IDO expression. These results suggest that NK4 inhibits IDO expression via a c-Met-PI3K-AKT signaling pathway. PMID:27082119

  8. An integrin-targeted, pan-isoform, phosphoinositide-3 kinase inhibitor, SF1126, has activity against multiple myeloma in vivo

    PubMed Central

    De, Pradip; Dey, Nandini; Terakedis, Breanne; Bersagel, Leif; Li, Zhi Hua; Mahadevan, Daruka; Garlich, Joseph R.; Trudel, Suzanne; Makale, Milan T.; Durden, Donald L.

    2013-01-01

    Purpose Multiple reports point to an important role for the phosphoinositide-3 kinase (PI3K) and AKT signaling pathways in tumor survival and chemoresistance in multiple myeloma (MM). The goals of our study were: (1) to generate the preclinical results necessary to justify a Phase I clinical trial of SF1126 in hematopoietic malignancies including multiple myeloma, and (2) to begin combining pan PI-3 kinase inhibitors with other agents to augment antitumor activity of this class of agent in preparation for combination therapy in Phase I/II trials. Methods We determined the in vitro activity of SF1126 with16 human MM cell lines. In vivo tumor growth suppression was determined with human myeloma (MM.1R) xenografts in athymic mice. In addition, we provide evidence that SF1126 has pharmacodynamic activity in the treatment of patients with MM. Results SF1126 was cytotoxic to all tested MM lines and potency was augmented by the addition of bortezomib. SF1126 affected MM.1R cell line signaling in vitro, inhibiting phospho-AKT, phospho-ERK, and the hypoxic stabilization of HIF1α. Tumor growth was 94% inhibited, with a marked decrease in both cellular proliferation (PCNA immunostaining) and angiogenesis (tumor microvessel density via CD31 immunostaining). Our clinical results demonstrate pharmacodynamic knockdown of p-AKT in primary patient derived MM tumor cells in vivo. Conclusions Our results establish three important points: (1) SF1126, a pan PI-3 kinase inhibitor has potent antitumor activity against multiple myeloma in vitro and in vivo, (2) SF1126 displays augmented antimyeloma activity when combined with proteasome inhibitor, bortezomib/Velcade®, and (3) SF1126 blocks the IGF-1 induced activation of AKT in primary MM tumor cells isolated from SF1126 treated patients The results support the ongoing early Phase I clinical trial in MM and suggest a future Phase I trial in combination with bortezomib in hematopoietic malignancies. PMID:23355037

  9. Structure-Based Design of a Novel Series of Potent, Selective Inhibitors of the Class I Phosphatidylinositol 3-Kinases

    SciTech Connect

    Smith, Adrian L.; D’Angelo, Noel D.; Bo, Yunxin Y.; Booker, Shon K.; Cee, Victor J.; Herberich, Brad; Hong, Fang-Tsao; Jackson, Claire L.M.; Lanman, Brian A.; Liu, Longbin; Nishimura, Nobuko; Pettus, Liping H.; Reed, Anthony B.; Tadesse, Seifu; Tamayo, Nuria A.; Wurz, Ryan P.; Yang, Kevin; Andrews, Kristin L.; Whittington, Douglas A.; McCarter, John D.; Miguel, Tisha San; Zalameda, Leeanne; Jiang, Jian; Subramanian, Raju; Mullady, Erin L.; Caenepeel, Sean; Freeman, Daniel J.; Wang, Ling; Zhang, Nancy; Wu, Tian; Hughes, Paul E.; Norman, Mark H.

    2012-09-17

    A highly selective series of inhibitors of the class I phosphatidylinositol 3-kinases (PI3Ks) has been designed and synthesized. Starting from the dual PI3K/mTOR inhibitor 5, a structure-based approach was used to improve potency and selectivity, resulting in the identification of 54 as a potent inhibitor of the class I PI3Ks with excellent selectivity over mTOR, related phosphatidylinositol kinases, and a broad panel of protein kinases. Compound 54 demonstrated a robust PD-PK relationship inhibiting the PI3K/Akt pathway in vivo in a mouse model, and it potently inhibited tumor growth in a U-87 MG xenograft model with an activated PI3K/Akt pathway.

  10. Follicle-stimulating Hormone Activation of Hypoxia-inducible Factor-1 by the Phosphatidylinositol 3-Kinase/AKT/Ras Homolog Enriched in Brain (Rheb)/Mammalian Target of Rapamycin (mTOR) Pathway Is Necessary for Induction of Select Protein Markers of Follicular Differentiation*

    PubMed Central

    Alam, Hena; Maizels, Evelyn T.; Park, Youngkyu; Ghaey, Shail; Feiger, Zachary J.; Chandel, Navdeep S.; Hunzicker-Dunn, Mary

    2006-01-01

    We sought to elucidate the role of AKT in follicle-stimulating hormone (FSH)-mediated granulosa cell (GC) differentiation. Our results define a signaling pathway in GCs whereby the inactivating phosphorylation of tuberin downstream of phosphatidylinositol (PI) 3-kinase/AKT activity leads to Rheb (Ras homolog enriched in brain) and subsequent mTOR (mammalian target of rapamycin) activation. mTOR then stimulates translation by phosphorylating p70 S6 kinase and, consequently, the 40 S ribosomal protein S6. Activation of this pathway is required for FSH-mediated induction of several follicular differentiation markers, including luteinizing-hormone receptor (LHR), inhibin-α, microtubule-associated protein 2D, and the PKA type IIβ regulatory subunit. FSH also promotes activation of the transcription factor hypoxia-inducible factor-1 (HIF-1). FSH-stimulated HIF-1 activity is inhibited by the PI 3-kinase inhibitor LY294002, the Rheb inhibitor FTI-277 (farne-syltransferase inhibitor-277), and the mTOR inhibitor rapamycin. Finally, we find that the FSH-mediated up-regulation of reporter activities for LHR, inhibin-α, and vascular endothelial growth factor is dependent upon HIF-1 activity, because a dominant negative form of HIF-1α interferes with the up-regulation of these genes. These results show that FSH enhances HIF-1 activity downstream of the PI 3-kinase/AKT/Rheb/mTOR pathway in GCs and that HIF-1 activity is necessary for FSH to induce multiple follicular differentiation markers. PMID:14982927

  11. Leptin induces macrophage lipid body formation by a phosphatidylinositol 3-kinase- and mammalian target of rapamycin-dependent mechanism.

    PubMed

    Maya-Monteiro, Clarissa M; Almeida, Patricia E; D'Avila, Heloisa; Martins, Aline S; Rezende, Ana Paula; Castro-Faria-Neto, Hugo; Bozza, Patricia T

    2008-01-25

    Leptin is an adipocyte-derived hormone/cytokine that links nutritional status with neuroendocrine and immune functions. Lipid bodies (lipid droplets) are emerging as dynamic organelles with roles in lipid metabolism and inflammation. Here we investigated the roles of leptin in signaling pathways involved in cytoplasmic lipid body biogenesis and leukotriene B(4) synthesis in macrophages. Our results demonstrated that leptin directly activated macrophages and induced the formation of adipose differentiation-related protein-enriched lipid bodies. Newly formed lipid bodies were sites of 5-lipoxygenase localization and correlated with an enhanced capacity of leukotriene B(4) production. We demonstrated that leptin-induced macrophage activation was dependent on phosphatidylinositol 3-kinase (PI3K) activity, since the lipid body formation was inhibited by LY294002 and was absent in the PI3K knock-out mice. Leptin induces phosphorylation of p70(S6K) and 4EBP1 key downstream signaling intermediates of the mammalian target of rapamycin (mTOR) pathway in a rapamycin-sensitive mechanism. The mTOR inhibitor, rapamycin, inhibited leptin-induced lipid body formation, both in vivo and in vitro. In addition, rapamycin inhibited leptin-induced adipose differentiation-related protein accumulation in macrophages and lipid body-dependent leukotriene synthesis, demonstrating a key role for mTOR in lipid body biogenesis and function. Our results establish PI3K/mTOR as an important signaling pathway for leptin-induced cytoplasmic lipid body biogenesis and adipose differentiation-related protein accumulation. Furthermore, we demonstrate a previously unrecognized link between intracellular (mTOR) and systemic (leptin) nutrient sensors in macrophage lipid metabolism. Leptin-induced increased formation of cytoplasmic lipid bodies and enhanced inflammatory mediator production in macrophages may have implications for obesity-related cardiovascular diseases. PMID:18039669

  12. Mutations in the phosphatidylinositol-3-kinase pathway predict for antitumor activity of the inhibitor PX-866 while oncogenic Ras is a dominant predictor for resistance

    PubMed Central

    Ihle, NathanT.; Lemos, Robert; Wipf, Peter; Yacoub, Adly; Mitchell, Clint; Siwak, Doris; Mills, Gordon B.; Dent, Paul; Kirkpatrick, D Lynn.; Powis, Garth

    2008-01-01

    The novel phosphatidylinositol-3-kinase (PI-3-kinase) inhibitor PX-866 was tested against 13 experimental human tumor xenografts derived from cell lines of various tissue origins. Mutant PI-3-kinase (PIK3CA) and loss of PTEN activity were sufficient but not necessary as predictors of sensitivity to the antitumor activity of the PI-3-K inhibitor PX-866 in the presence of wild type Ras, while mutant oncogenic Ras was a dominant determinant of resistance, even in tumors with coexisting mutations in PIK3CA. The level of activation of PI-3-kinase signaling measured by tumor phospho-Ser473-Akt was insufficient to predict in vivo antitumor response to PX-866. Reverse phase protein array (RPPA) revealed that the Ras dependent down stream targets c-Myc and cyclin B were elevated in cell lines resistant to PX-866 in vivo. Studies using an H-Ras construct to constitutively and preferentially activate the three best defined downstream targets of Ras, namely Raf, RalGDS, and PI-3-kinase, showed that mutant Ras mediates resistance through its ability to utilize multiple pathways for tumorigenesis. The identification of Ras and downstream signaling pathways driving resistance to PI-3-kinase inhibition may serve as an important guide for patient selection as inhibitors enter clinical trials, and for the development of rational combinations with other molecularly targeted agents. PMID:19117997

  13. Dose-Dependent Suppression of Cytokine production from T cells by a Novel Phosphoinositide 3-Kinase Delta Inhibitor

    PubMed Central

    Way, Emily E.; Trevejo-Nunez, Giraldina; Kane, Lawrence P.; Steiner, Bart H.; Puri, Kamal D.; Kolls, Jay K.; Chen, Kong

    2016-01-01

    There remains a significant need for development of effective small molecules that can inhibit cytokine-mediated inflammation. Phosphoinositide 3 kinase (PI3K) is a direct upstream activator of AKT, and plays a critical role in multiple cell signaling pathways, cell cycle progression, and cell growth, and PI3K inhibitors have been approved or are in clinical development. We examined novel PI3Kdelta inhibitors, which are highly selective for the p110delta isoform of in CD3/CD28 stimulated T-cell cytokine production. In vitro generated CD4+ T effector cells stimulated in the presence of a PI3Kdelta inhibitor demonstrated a dose-dependent suppression of cytokines produced by Th1, Th2, and Th17 cells. This effect was T-cell intrinsic, and we observed similar effects on human PBMCs. Th17 cells expressing a constitutively activated form of AKT were resistant to PI3Kdelta inhibition, suggesting that the inhibitor is acting through AKT signaling pathways. Additionally, PI3Kdelta inhibition decreased IL-17 production in vivo and decreased neutrophil recruitment to the lung in a murine model of acute pulmonary inflammation. These experiments show that targeting PI3Kdelta activity can modulate T-cell cytokine production and reduce inflammation in vivo, suggesting that PI3Kdelta inhibition could have therapeutic potential in treating inflammatory diseases. PMID:27461849

  14. Activation of pp70/85 S6 kinases in interleukin-2-responsive lymphoid cells is mediated by phosphatidylinositol 3-kinase and inhibited by cyclic AMP.

    PubMed Central

    Monfar, M; Lemon, K P; Grammer, T C; Cheatham, L; Chung, J; Vlahos, C J; Blenis, J

    1995-01-01

    Activation of phosphatidylinositol 3-kinase (PI3K) and activation of the 70/85-kDa S6 protein kinases (alpha II and alpha I isoforms, referred to collectively as pp70S6k) have been independently linked to the regulation of cell proliferation. We demonstrate that these kinases lie on the same signalling pathway and that PI3K mediates the activation of pp70 by the cytokine interleukin-2 (IL-2). We also show that the activation of pp70S6k can be blocked at different points along the signalling pathway by using specific inhibitors of T-cell proliferation. Inhibition of PI3K activity with structurally unrelated but highly specific PI3K inhibitors (wortmannin or LY294002) results in inhibition of IL-2-dependent but not phorbol ester (conventional protein kinase C [cPKC])-dependent pp70S6k activation. The T-cell immunosuppressant rapamycin potently antagonizes IL-2-(PI3K)- and phorbol ester (cPKC)-mediated activation of pp70S6k. Thus, wortmannin and rapamycin antagonize IL-2-mediated activation of pp70S6k at distinct points along the PI3K-regulated signalling pathway, or rapamycin antagonizes another pathway required for pp70S6k activity. Agents that raise the concentration of intracellular cyclic AMP (cAMP) and activate cAMP-dependent protein kinase (PKA) also inhibit IL-2-dependent activation of pp70S6k. In this case, inhibition appears to occur at least two points in this signalling path. Like rapamycin, PKA appears to act downstream of cPKC-mediated pp70S6k activation, and like wortmannin, PKA antagonizes IL-2-dependent activation of PI3K. The results with rapamycin and wortmannin are of added interest since the yeast and mammalian rapamycin targets resemble PI3K in the catalytic domain. PMID:7528328

  15. BKM-120 (Buparlisib): A Phosphatidyl-Inositol-3 Kinase Inhibitor with Anti-Invasive Properties in Glioblastoma.

    PubMed

    Speranza, Maria-Carmela; Nowicki, Michal O; Behera, Prajna; Cho, Choi-Fong; Chiocca, E Antonio; Lawler, Sean E

    2016-01-01

    Glioblastoma is an aggressive, invasive tumor of the central nervous system (CNS). There is a widely acknowledged need for anti-invasive therapeutics to limit glioblastoma invasion. BKM-120 is a CNS-penetrant pan-class I phosphatidyl-inositol-3 kinase (PI3K) inhibitor in clinical trials for solid tumors, including glioblastoma. We observed that BKM-120 has potent anti-invasive effects in glioblastoma cell lines and patient-derived glioma cells in vitro. These anti-migratory effects were clearly distinguishable from cytostatic and cytotoxic effects at higher drug concentrations and longer durations of drug exposure. The effects were reversible and accompanied by changes in cell morphology and pronounced reduction in both cell/cell and cell/substrate adhesion. In vivo studies showed that a short period of treatment with BKM-120 slowed tumor spread in an intracranial xenografts. GDC-0941, a similar potent and selective PI3K inhibitor, only caused a moderate reduction in glioblastoma cell migration. The effects of BKM-120 and GDC-0941 were indistinguishable by in vitro kinase selectivity screening and phospho-protein arrays. BKM-120 reduced the numbers of focal adhesions and the velocity of microtubule treadmilling compared with GDC-0941, suggesting that mechanisms in addition to PI3K inhibition contribute to the anti-invasive effects of BKM-120. Our data suggest the CNS-penetrant PI3K inhibitor BKM-120 may have anti-invasive properties in glioblastoma. PMID:26846842

  16. BKM-120 (Buparlisib): A Phosphatidyl-Inositol-3 Kinase Inhibitor with Anti-Invasive Properties in Glioblastoma

    PubMed Central

    Speranza, Maria-Carmela; Nowicki, Michal O.; Behera, Prajna; Cho, Choi-Fong; Chiocca, E. Antonio; Lawler, Sean E.

    2016-01-01

    Glioblastoma is an aggressive, invasive tumor of the central nervous system (CNS). There is a widely acknowledged need for anti-invasive therapeutics to limit glioblastoma invasion. BKM-120 is a CNS-penetrant pan-class I phosphatidyl-inositol-3 kinase (PI3K) inhibitor in clinical trials for solid tumors, including glioblastoma. We observed that BKM-120 has potent anti-invasive effects in glioblastoma cell lines and patient-derived glioma cells in vitro. These anti-migratory effects were clearly distinguishable from cytostatic and cytotoxic effects at higher drug concentrations and longer durations of drug exposure. The effects were reversible and accompanied by changes in cell morphology and pronounced reduction in both cell/cell and cell/substrate adhesion. In vivo studies showed that a short period of treatment with BKM-120 slowed tumor spread in an intracranial xenografts. GDC-0941, a similar potent and selective PI3K inhibitor, only caused a moderate reduction in glioblastoma cell migration. The effects of BKM-120 and GDC-0941 were indistinguishable by in vitro kinase selectivity screening and phospho-protein arrays. BKM-120 reduced the numbers of focal adhesions and the velocity of microtubule treadmilling compared with GDC-0941, suggesting that mechanisms in addition to PI3K inhibition contribute to the anti-invasive effects of BKM-120. Our data suggest the CNS-penetrant PI3K inhibitor BKM-120 may have anti-invasive properties in glioblastoma. PMID:26846842

  17. PTEN and PI-3 kinase inhibitors control LPS signaling and the lymphoproliferative response in the CD19+ B cell compartment

    SciTech Connect

    Singh, Alok R.; Peirce, Susan K.; Joshi, Shweta; Durden, Donald L.

    2014-09-10

    -3 kinase inhibitors reverse the lymphoproliferative phenotype in vivo. - Highlights: • First genetic evidence that PTEN controls LPS/TLR4 signaling in B lymphocytes. • Evidence that PTEN regulates LPS induced lymphoproliferation in vivo. • PI-3 kinase inhibitors block LPS induced lymphoproliferation in vivo.

  18. The new InsP3Kinase inhibitor BIP-4 is competitive to InsP3 and blocks proliferation and adhesion of lung cancer cells.

    PubMed

    Schröder, Dominik; Tödter, Klaus; Gonzalez, Beatriz; Franco-Echevarría, Elsa; Rohaly, Gabor; Blecher, Christine; Lin, Hong-Ying; Mayr, Georg W; Windhorst, Sabine

    2015-07-15

    As ectopic expression of the neuronal inositol-1,4,5-trisphosphate-3-kinase A (InsP3Kinase) in tumor cells increases the metastatic potential, InsP3Kinase is an interesting target for tumor therapy. Recently, we have identified a membrane-permeable InsP3Kinase inhibitor (BAMB-4) exhibiting an IC50-value of 20 μM. Here we characterized a new InsP3Kinase inhibitor which shows a 130-fold lower IC50 value (157 ± 57 nM) as compared to BAMB-4. We demonstrate that this nitrophenolic compound, BIP-4, is non-competitive to ATP but competitive to InsP3, thus exhibits a high selectivity for inhibition of InsP3Kinase activity. Docking analysis suggested a putative binding mode of this molecule into the InsP3Kinase active site. Determination of cellular uptake in lung cancer cells (H1299) revealed that 6% of extracellular BIP-4 is internalized by non-endosomal uptake, showing that BIP-4 is not trapped inside endo/lysosomes but is available to inhibit cellular InsP3Kinase activity. Interestingly, we found that BIP-4 mediated inhibition of InsP3Kinase activity in the two lung cancer cell lines H1299 and LN4323 inhibited proliferation and adhesion at IC50 values of 3 μM or 2 μM, respectively. InsP3Kinase inhibition did not alter ATP-induced calcium signals but significantly reduced the level of Ins(1,3,4,5,6)P5. From these data we conclude that the inhibitory effect of BIP-4 on proliferation and adhesion of lung cancer cells does not result from alterations of calcium but from alterations of inositol phosphate signals. In summary, we reveal that inhibition of cellular InsP3Kinase by BIP-4 impairs proliferation and adhesion and therefore BIP-4 might be a promising compound to reduce the metastatic potential of lung carcinoma cells. PMID:25986882

  19. Protection against 1-methyl-4-phenyl pyridinium-induced neurotoxicity in human neuroblastoma SH-SY5Y cells by Soyasaponin I by the activation of the phosphoinositide 3-kinase/AKT/GSK3β pathway.

    PubMed

    Guo, Zheng; Cao, Wei; Zhao, Shifeng; Han, Zengtai; Han, Boxiang

    2016-07-01

    Parkinson's disease (PD) can be ascribed to the progressive and selective loss of dopaminergic neurons in the substantia nigra pars compacta, and thus molecules with neuroprotective ability may have therapeutic value against PD. In the current study, the neuroprotective effects and underlying mechanisms of Soyasaponin I (Soya-I), a naturally occurring triterpene extracted from a widely used ingredient in many foods, such as Glycine max (soybean), were evaluated in a widely used cellular PD model in which neurotoxicity was induced by 1-methyl-4-phenyl pyridinium (MPP) in cultured SH-SY5Y cells. We found that Soya-I at 10-40 μM considerably protected against MPP-induced neurotoxicity as evidenced by an increase in cell viability, a decrease in lactate dehydrogenase release, and a reduction in apoptotic nuclei. Moreover, Soya-I effectively inhibited the elevated intracellular accumulation of reactive oxygen species as well as the Bax/Bcl-2 ratio caused by MPP. Most importantly, Soya-I markedly reversed the inhibition of protein expression of phosphorylated AKT and phosphorylated GSK3β caused by MPP. LY294002, the specific inhibitor of phosphoinositide 3-kinase, significantly abrogated the upregulated phosphorylated AKT and phosphorylated GSK3β offered by Soya-I, suggesting that the neuroprotection of Soya-I was mainly dependent on the activation of the phosphoinositide 3-kinase/AKT/GSK3β signaling pathway. The results taken together indicate that Soya-I may be a potential candidate for further preclinical study aimed at the prevention and treatment of PD. PMID:27196724

  20. Efficacy of phosphatidylinositol-3 kinase inhibitors with diverse isoform selectivity profiles for inhibiting the survival of chronic lymphocytic leukemia cells.

    PubMed

    Göckeritz, Elisa; Kerwien, Susan; Baumann, Michael; Wigger, Marion; Vondey, Verena; Neumann, Lars; Landwehr, Thomas; Wendtner, Clemens M; Klein, Christian; Liu, Ningshu; Hallek, Michael; Frenzel, Lukas P; Krause, Günter

    2015-11-01

    Pharmacological inhibition of phosphatiylinositide-3-kinase (PI3K)-mediated signaling holds great promise for treating chronic lymphocytic leukemia (CLL). Therefore we assessed three structurally related PI3K inhibitors targeting the PI3K-δ isoform for their ability to inhibit the survival of freshly isolated CLL cells. The purely PI3K-δ-selective inhibitor idelalisib was compared to copanlisib (BAY 80-6946) and duvelisib (IPI-145), with isoform target profiles that additionally include PI3K-α or PI3K-γ, respectively. The concentrations leading to half-maximal reduction of the survival of CLL cells were more than ten-fold lower for copanlisib than for idelalisib and duvelisib. At concentrations reflecting the biological availability of the different inhibitors, high levels of apoptotic response among CLL samples were attained more consistently with copanlisib than with idelalisib. Copanlisib selectively reduced the survival of CLL cells compared to T cells and to B cells from healthy donors. In addition copanlisib and duvelisib impaired the migration of CLL cells towards CXCL12 to a greater extent than equimolar idelalisib. Similarly copanlisib and duvelisib reduced the survival of CLL cells in co-cultures with the bone marrow stroma cell line HS-5 more strongly than idelalisib. Survival inhibition by copanlisib and idelalisib was enhanced by the monoclonal CD20 antibodies rituximab and obinutuzumab (GA101), while antibody-dependent cellular cytotoxicity mediated by alemtuzumab and peripheral blood mononuclear cells was not substantially impaired by both PI3K inhibitors for the CLL-derived JVM-3 cell line as target cells. Taken together, targeting the α- and δ- p110 isoforms with copanlisib may be a useful strategy for the treatment of CLL and warrants further clinical investigation. PMID:25912635

  1. Insulin and insulin-like growth factor-1 can modulate the phosphoinositide-3-kinase/Akt/FoxO1 pathway in SZ95 sebocytes in vitro.

    PubMed

    Mirdamadi, Yasaman; Thielitz, Anja; Wiede, Antje; Goihl, Alexander; Papakonstantinou, Eleni; Hartig, Roland; Zouboulis, Christos C; Reinhold, Dirk; Simeoni, Luca; Bommhardt, Ursula; Quist, Sven; Gollnick, Harald

    2015-11-01

    A recent hypothesis suggests that a high glycaemic load diet-associated increase of insulin-like growth factor-1 (IGF-1) and insulin may promote acne by reducing nuclear localization of the forkhead box-O1 (FoxO1) transcription factor via activation of the phosphoinositide-3-kinase (PI3K)/Akt pathway. Using SZ95 sebocytes as a model, we investigated the effect of the most important insulinotropic western dietary factors, IGF-1 and insulin on acne. SZ95 sebocytes were stimulated with different concentrations of IGF-1 and insulin (0.001, 0.01, 0.1 and 1 μM) for 15 to 120 min ± PI3K inhibitor LY294002 (50 μM). Cytoplasmic and nuclear protein expression of p-Akt and p-FoxO1 as well as FoxO transcriptional activity was analysed. In addition, the proliferation and differentiation of sebocytes and their TLR2/4 expression were determined. We found that high concentrations of IGF-1 and insulin differentially stimulate the PI3K/Akt/FoxO1 pathway by an early up-regulation of cytoplasmic p-Akt and delayed up-regulation of p-FoxO1 resulting in FoxO1 shift to the cytoplasm and the reduction of FoxO transcriptional activity, physiological serum concentration had no effect. IGF-1 at concentrations of 0.1 and 1 μM significantly reduced proliferation but increased differentiation of sebocytes to a greater extent than insulin (0.1 and 1 μM), but up-regulated TLR2/4 expression to comparable extent. These data provide the first in vitro evidence that FoxO1 principally might be involved in the regulation of growth-factor-stimulatory effects on sebaceous lipogenesis and inflammation in the pathological condition of acne. However, the in vivo significance under physiological conditions remains to be elucidated. PMID:26257240

  2. Berberine activates Nrf2 nuclear translocation and inhibits apoptosis induced by high glucose in renal tubular epithelial cells through a phosphatidylinositol 3-kinase/Akt-dependent mechanism.

    PubMed

    Zhang, Xiuli; Liang, Dan; Lian, Xu; Jiang, Yan; He, Hui; Liang, Wei; Zhao, Yue; Chi, Zhi-Hong

    2016-06-01

    Apoptosis of tubular epithelial cells is a major feature of diabetic kidney disease, and hyperglycemia triggers the generation of free radicals and oxidant stress in tubular cells. Berberine (BBR) is identified as a potential anti-diabetic herbal medicine due to its beneficial effects on insulin sensitivity, glucose metabolism and glycolysis. In this study, the underlying mechanisms involved in the protective effects of BBR on high glucose-induced apoptosis were explored using cultured renal tubular epithelial cells (NRK-52E cells) and human kidney proximal tubular cell line (HK-2 cells). We identified the pivotal role of phosphatidylinositol 3-kinase (PI3K)/Akt in BBR cellular defense mechanisms and revealed the novel effect of BBR on nuclear factor (erythroid-derived 2)-related factor-2 (Nrf2) and heme oxygenase (HO)-1 in NRK-52E and HK-2 cells. BBR attenuated reactive oxygen species production, antioxidant defense (GSH and SOD) and oxidant-sensitive proteins (Nrf2 and HO-1), which also were blocked by LY294002 (an inhibitor of PI3K) in HG-treated NRK-52E and HK-2 cells. Furthermore, BBR improved mitochondrial function by increasing mitochondrial membrane potential. BBR-induced anti-apoptotic function was demonstrated by decreasing apoptotic proteins (cytochrome c, Bax, caspase3 and caspase9). All these findings suggest that BBR exerts the anti-apoptosis effects through activation of PI3K/Akt signal pathways and leads to activation of Nrf2 and induction of Nrf2 target genes, and consequently protecting the renal tubular epithelial cells from HG-induced apoptosis. PMID:26979714

  3. Mechanisms of Acute Eosinophil Mobilization from the Bone Marrow Stimulated by Interleukin 5: The Role of Specific Adhesion Molecules and Phosphatidylinositol 3-Kinase

    PubMed Central

    Palframan, Roger T.; Collins, Paul D.; Severs, Nicholas J.; Rothery, Stephen; Williams, Timothy J.; Rankin, Sara M.

    1998-01-01

    Mobilization of bone marrow eosinophils is a critical early step in their trafficking to the lung during allergic inflammatory reactions. We have shown previously that the cytokine interleukin (IL)-5, generated during an allergic inflammatory reaction in the guinea pig, acts systemically to mobilize eosinophils from the bone marrow. Here, we have investigated the mechanisms underlying this release process. Examination by light and electron microscopy revealed the rapid migration of eosinophils from the hematopoietic compartment and across the bone marrow sinus endothelium in response to IL-5. Using an in situ perfusion system of the guinea pig hind limb, we showed that IL-5 stimulated a dose-dependent selective release of eosinophils from the bone marrow. Eosinophils released from the bone marrow in response to IL-5 expressed increased levels of β2 integrin and a decrease in L-selectin, but no change in α4 integrin levels. A β2 integrin–blocking antibody markedly inhibited the mobilization of eosinophils from the bone marrow stimulated by IL-5. In contrast, an α4 integrin blocking antibody increased the rate of eosinophil mobilization induced by IL-5. In vitro we demonstrated that IL-5 stimulates the selective chemokinesis of bone marrow eosinophils, a process markedly inhibited by two structurally distinct inhibitors of phosphatidylinositol 3-kinase, wortmannin and LY294002. Wortmannin was also shown to block eosinophil release induced by IL-5 in the perfused bone marrow system. The parallel observations on the bone marrow eosinophil release process and responses in isolated eosinophils in vitro suggest that eosinophil chemokinesis is the driving force for release in vivo and that this release process is regulated by α4 and β2 integrins acting in opposite directions. PMID:9802974

  4. Crystal structure of the FLT3 kinase domain bound to the inhibitor quizartinib (AC220)

    SciTech Connect

    Zorn, Julie A.; Wang, Qi; Fujimura, Eric; Barros, Tiago; Kuriyan, John; Boggon, Titus J.

    2015-04-02

    More than 30% of acute myeloid leukemia (AML) patients possess activating mutations in the receptor tyrosine kinase FMS-like tyrosine kinase 3 or FLT3. A small-molecule inhibitor of FLT3 (known as quizartinib or AC220) that is currently in clinical trials appears promising for the treatment of AML. Here, we report the co-crystal structure of the kinase domain of FLT3 in complex with quizartinib. FLT3 with quizartinib bound adopts an “Abl-like” inactive conformation with the activation loop stabilized in the “DFG-out” orientation and folded back onto the kinase domain. This conformation is similar to that observed for the uncomplexed intracellular domain of FLT3 as well as for related receptor tyrosine kinases, except for a localized induced fit in the activation loop. The co-crystal structure reveals the interactions between quizartinib and the active site of FLT3 that are key for achieving its high potency against both wild-type FLT3 as well as a FLT3 variant observed in many AML patients. This co-complex further provides a structural rationale for quizartinib-resistance mutations.

  5. Acquired PIK3CA amplification causes resistance to selective phosphoinositide 3-kinase inhibitors in breast cancer.

    PubMed

    Huw, L-Y; O'Brien, C; Pandita, A; Mohan, S; Spoerke, J M; Lu, S; Wang, Y; Hampton, G M; Wilson, T R; Lackner, M R

    2013-01-01

    Agents targeting the PI3K/mTOR signaling axis have shown promise in early-phase clinical trials and are currently being studied in later stages of clinical development in multiple indications. Experience with other targeted agents suggests that clinical responses may be short-lived because of acquired resistance to therapy. Here, we report preclinical modeling of acquired resistance in a HER2-positive, PIK3CA mutant breast cancer cell line, KPL-4. We identified a heretofore-unreported mechanism of resistance, specifically high-level amplification of the mutant allele of PIK3CA, which resulted in a marked upregulation of PI3K signaling, enabling resistant cells to regain proliferative capacity at clinically relevant concentrations of the PI3K inhibitor, GDC-0941. We show that knockdown of the amplified PIK3CA mutant allele in these cells by small interfering RNA restored pathway signaling and sensitivity to PI3K inhibition at levels comparable to parental cells. These novel preclinical findings suggest that, in addition to assessment of other previously reported mechanisms of resistance, evaluation of PI3K copy number variation should be integrated into the exploratory analysis of biopsies obtained at disease progression. PMID:24366379

  6. Crystal structure of the FLT3 kinase domain bound to the inhibitor quizartinib (AC220)

    DOE PAGESBeta

    Zorn, Julie A.; Wang, Qi; Fujimura, Eric; Barros, Tiago; Kuriyan, John; Boggon, Titus J.

    2015-04-02

    More than 30% of acute myeloid leukemia (AML) patients possess activating mutations in the receptor tyrosine kinase FMS-like tyrosine kinase 3 or FLT3. A small-molecule inhibitor of FLT3 (known as quizartinib or AC220) that is currently in clinical trials appears promising for the treatment of AML. Here, we report the co-crystal structure of the kinase domain of FLT3 in complex with quizartinib. FLT3 with quizartinib bound adopts an “Abl-like” inactive conformation with the activation loop stabilized in the “DFG-out” orientation and folded back onto the kinase domain. This conformation is similar to that observed for the uncomplexed intracellular domain ofmore » FLT3 as well as for related receptor tyrosine kinases, except for a localized induced fit in the activation loop. The co-crystal structure reveals the interactions between quizartinib and the active site of FLT3 that are key for achieving its high potency against both wild-type FLT3 as well as a FLT3 variant observed in many AML patients. This co-complex further provides a structural rationale for quizartinib-resistance mutations.« less

  7. Capitalizing on tumor genotyping: Towards the design of mutation specific inhibitors of phosphoinsitide-3-kinase

    SciTech Connect

    Gabelli, Sandra B.; Duong-Ly, Krisna C.; Brower, Evan T.; Amzel, L. Mario

    2011-09-06

    PI3Ks catalyze the phosphorylation of the inositol hydroxyls of phosphoinositide membrane components. The changes in phosphorylation of the inositides recruit proteins to the plasma membrane that initiate important signaling cascades. PI3K{alpha}, one of the class IA PI3Ks, is highly mutated in cancers. All mutations analyzed result in an increase in enzymatic activity. The structures of this enzyme determined by X-ray diffraction, provide a framework for analyzing the possible structural effect of these mutations and their effect on the enzymatic activity. Many of the mutations occur at domain interfaces where they can affect domain interactions and relieve the inhibition of the wild-type enzyme by the nSH2 domain of p85. This mechanism is analogous to the mechanism of physiological activation by activated tyrosine-kinase receptors in which the phosphorylated tyrosine of the receptor (or their substrates) dislodges the nSH2 from its inhibitory position in the complex by competing with its binding to a loop in the helical domain. Other mutations in the kinase domain can directly affect the conformation of the catalytic site. One mutation, His1047Arg, uses a completely different mechanism: it changes the conformation of the C-terminal loop in such a way that it increases the interaction of the enzyme with the membrane, granting increased access to the phosphoinositide substrates. Taking advantage of the reliance of some cancers on the increased activity of mutated PI3K{alpha}, will require the development of isoform-specific, mutant-specific inhibitors. The structural, biochemical and physiological data that are becoming available for PI3Ks are an important first step in this direction.

  8. Rumex acetosa L. induces vasorelaxation in rat aorta via activation of PI3-kinase/Akt- AND Ca(2+)-eNOS-NO signaling in endothelial cells.

    PubMed

    Sun, Y Y; Su, X H; Jin, J Y; Zhou, Z Q; Sun, S S; Wen, J F; Kang, D G; Lee, H S; Cho, K W; Jin, S N

    2015-12-01

    Rumex acetosa L. (RA) (Polygonaceae) is an important traditional Chinese medicine (TCM) commonly used in clinic for a long history in China and the aerial parts of RA has a wide variety of pharmacological actions such as diuretic, anti-hypertensive, anti-oxidative, and anti-cancer effects. However, the mechanisms involved are to be defined. The purpose of the present study was to evaluate the vasorelaxant effect and define the mechanism of action of the ethanol extract of Rumex acetosa L. (ERA) in rat aorta. ERA was examined for its vascular relaxant effect in isolated phenylephrine-precontracted rat thoracic aorta and its acute effects on arterial blood pressure. In addition, the roles of the nitric oxide synthase (NOS)-nitric oxide (NO) signaling in the ERA-induced effects were tested in human umbilical vein endothelial cells (HUVECs). The phosphorylation levels of Akt and eNOS were assessed by Western blot analysis in the cultured HUVECs. ERA induced endothelium-dependent vasorelaxation. The ERA-induced vasorelaxation was abolished by L-NAME (an NOS inhibitor) or ODQ (a sGC inhibitor), but not by indomethacin. Inhibition of PI3-kinase/Akt signaling pathway markedly reduced the ERA-induced vasorelaxation. In HUVECs, ERA increased NO formation in a dose-dependent manner, which was inhibited by L-NAME and by removing extracellular Ca(2+). In addition, ERA promoted phosphorylation of Akt and eNOS, which was prevented by wortmannin and LY294002, indicating that ERA induces eNOS phosphorylation through the PI3-kinase/Akt pathway. Further, in anesthetized rats, intravenously administered ERA decreased arterial blood pressure in a dose-dependent manner through an activation of the NOS-NO system. In summary, the ERA- induced vasorelaxation was dependent on endothelial integrity and NO production, and was mediated by activation of both the endothelial PI3-kinase/Akt- and Ca(2+)-eNOS-NO signaling and muscular NO-sGC-cGMP signaling. PMID:26769840

  9. Receptor-mediated endocytosis of albumin by kidney proximal tubule cells is regulated by phosphatidylinositide 3-kinase.

    PubMed

    Brunskill, N J; Stuart, J; Tobin, A B; Walls, J; Nahorski, S

    1998-05-15

    Receptor-mediated endocytosis of albumin is an important function of the kidney proximal tubule epithelium. We have measured endocytosis of [125I]-albumin in opossum kidney cells and examined the regulation of this process by phosphatidylinositide 3-kinase (PI 3-kinase). Albumin endocytosis was inhibited by both wortmannin (IC50 6.9 nM) and LY294002 (IC50 6.5 microM) at concentrations that suggested the involvement of PI 3-kinase in its regulation. Recycling rates were unaffected. We transfected OK cells with either a wild-type p85 subunit of PI 3-kinase, or a dominant negative form of the p85 subunit (Deltap85) using the LacSwitch expression system. Transfects were screened by immunoblotting with anti-PI 3-kinase antibodies. Under basal conditions, transfects demonstrated no expression of p85 or Deltap85, but expression was briskly induced by treatment of the cells with IPTG (EC50 13.7 microM). Inhibition of PI 3-kinase activity by Deltap85 was confirmed by in vitro kinase assay of anti-phosphotyrosine immunoprecipitates from transfected cells stimulated with insulin. Expression of Deltap85 resulted in marked inhibition of albumin endocytosis, predominantly as a result of reduction of the Vmax of the transport process. Expression of p85 had no significant effect on albumin uptake. The results demonstrate that PI 3-kinase regulates an early step in the receptor-mediated endocytosis of albumin by kidney proximal tubular cells. PMID:9593770

  10. Invention of a novel photodynamic therapy for tumors using a photosensitizing PI3K inhibitor.

    PubMed

    Hayashida, Yushi; Ikeda, Yuka; Sawada, Koichi; Kawai, Katsuhisa; Kato, Takuma; Kakehi, Yoshiyuki; Araki, Nobukazu

    2016-08-01

    XL147 (SAR245408, pilaralisib), an ATP-competitive pan-class I phosphoinositide 3-kinase (PI3K) inhibitor, is a promising new anticancer drug. We examined the effect of the PI3K inhibitor on PC3 prostate cancer cells under a fluorescence microscope and found that XL147-treated cancer cells are rapidly injured by blue wavelength (430 nm) light irradiation. During the irradiation, the cancer cells treated with 0.2-2 μM XL147 showed cell surface blebbing and cytoplasmic vacuolation and died within 15 min. The extent of cell injury/death was dependent on the dose of XL147 and the light power of the irradiation. These findings suggest that XL147 might act as a photosensitizing reagent in photodynamic therapy (PDT) for cancer. Moreover, the cytotoxic effect of photosensitized XL147 was reduced by pretreatment with other ATP-competitive PI3K inhibitors such as LY294002, suggesting that the cytotoxic effect of photosensitized XL147 is facilitated by binding to PI3K in cells. In a single-cell illumination analysis using a fluorescent probe to identify reactive oxygen species (ROS), significantly increased ROS production was observed in the XL147-treated cells when the cell was illuminated with blue light. Taken together, it is conceivable that XL147, which is preferentially accumulated in cancer cells, could be photosensitized by blue light to produce ROS to kill cancer cells. This study will open up new possibilities for PDT using anticancer drugs. PMID:26989815

  11. Puquitinib mesylate, an inhibitor of phosphatidylinositol 3-kinase p110δ, for treating relapsed or refractory non-Hodgkin's lymphoma

    PubMed Central

    Zhan, Jing; Xia, Yi; Sun, Peng; Bi, Xi-Wen; Liu, Pan-Pan; Li, Zhi-Ming; Li, Su; Zou, Ben-Yan; Jiang, Wen-Qi

    2015-01-01

    Objectives To determine the safety of Puquitinib Mesylate (XC-302), an oral inhibitor of phosphatidylinositol 3-kinase, in treating relapsed or refractory non-Hodgkin's lymphoma (NHL). Methods Between October 2013 and July 2015, 21 patients from Sun Yat-sen University Cancer Center were treated twice daily on each day of a 28-day cycle (median number of cycles, 2; maximum, 20) with XC-302 at a post prandial dose of 25 mg, 37.5 mg, or 50 mg. Adverse events (AEs), AUClast and Cmax, response rates, and overall survival were assessed. Results Patients had received a median (range) of 1 (1 to 3) previous cancer treatments. At the latest follow-up, two patients were still benefitting from the study. The most common drug-related AEs were elevations in alanine transaminase (ALT, 14 of 21 patients) and aspartate transaminase (AST, 7 of 21 patients). Four patients, both in the-50-mg group, had dose-limiting toxicities, and therapy was discontinued in a fifth because of persistent abnormal liver function. The overall response rate was 2 of19. Serum concentrations of XC-302 increased in a dose-dependent pattern. Median progression-free survival in all patients was 1.9 (95% CI, 1.7 to 2.0) months. Conclusion XC-302 has an acceptable safety profile and offers potential therapeutic value to patients with relapsed or refractory non-Hodgkin lymphoma. PMID:26510909

  12. Epigallocatechin gallate (EGCG), a major component of green tea, is a dual phosphoinositide-3-kinase/mTOR inhibitor

    SciTech Connect

    Van Aller, Glenn S.; Carson, Jeff D.; Tang, Wei; Peng, Hao; Zhao, Lin; Copeland, Robert A.; Tummino, Peter J.; Luo, Lusong

    2011-03-11

    Research highlights: {yields} Epigallocatechin-3-gallate (EGCG) is an ATP-competitive inhibitor of PI3K and mTOR with Ki values around 300 nM. {yields} EGCG inhibits cell proliferation and AKT phosphorylation at Ser473 in MDA-MB-231and A549 cells. {yields} Molecular docking studies show that EGCG binds well to the PI3K kinase domain active site. {yields} These results suggest another important molecular mechanism for the anticancer activities of EGCG. -- Abstract: The PI3K signaling pathway is activated in a broad spectrum of human cancers, either directly by genetic mutation or indirectly via activation of receptor tyrosine kinases or inactivation of the PTEN tumor suppressor. The key nodes of this pathway have emerged as important therapeutic targets for the treatment of cancer. In this study, we show that (-)-epigallocatechin-3-gallate (EGCG), a major component of green tea, is an ATP-competitive inhibitor of both phosphoinositide-3-kinase (PI3K) and mammalian target of rapamycin (mTOR) with K{sub i} values of 380 and 320 nM respectively. The potency of EGCG against PI3K and mTOR is within physiologically relevant concentrations. In addition, EGCG inhibits cell proliferation and AKT phosphorylation at Ser473 in MDA-MB-231 and A549 cells. Molecular docking studies show that EGCG binds well to the PI3K kinase domain active site, agreeing with the finding that EGCG competes for ATP binding. Our results suggest another important molecular mechanism for the anticancer activities of EGCG.

  13. Definition of the binding mode of phosphoinositide 3-kinase α-selective inhibitor A-66S through molecular dynamics simulation.

    PubMed

    Bian, Xiaoli; Dong, Wangqing; Zhao, Yang; Sun, Rui; Kong, Wanjun; Li, Yiping

    2014-04-01

    Activation of the phosphatidylinositol 3-kinase α (PI3Kα) is commonly observed in human cancer and is critical for tumor progression, which has made PI3Kα an attractive target for anticancer drug discovery. To systematically investigate the binding mode of A-66S, a new selective PI3Kα inhibitor for PI3Kα, molecular docking, molecular dynamics simulation and ensuing energetic analysis were performed. The binding free energy between PI3Kα and A-66S is -11.27 kcal•mol⁻¹ using MMPBSA method, while -14.67 kcal•mol⁻¹ using MMGBSA method, which is beneficial for the binding, and the van der Waals/hydrophobic and electrostatic interactions are critical for the binding. The conserved hydrophobic adenine region of PI3Kα made up of Met772, Pro778, Ile800, Tyr836, Ile848, Val850, Val851, Met922, Phe930 and Ile932 accommodates the flat 2-tert-butyl-4'-methyl-4,5'-bithiazol moiety of A-66S, and the NH of Val851 forms a hydrogen with the nitrogen atom embedded in the aminothiazole ring of A-66S. The (S)-pyrrolidine carboxamide urea moiety especially extends toward the region of the binding site wall (Ser854-Gln859) defined by the C-terminal lobe, and has three hydrogen-bond arms with the backbone of Ser854 and the side chain of Gln859. Notably the interaction between the non-conserved residue Gln859 and A-66S is responsible for the selectivity profile of A-66S. The binding mode of A-66S for PI3Kα presented in this study should aid in the design of a new highly selective PI3Kα inhibitor. PMID:24633771

  14. Pulmonary administration of phosphoinositide 3-kinase inhibitor is a curative treatment for chronic obstructive pulmonary disease by alveolar regeneration.

    PubMed

    Horiguchi, Michiko; Oiso, Yuki; Sakai, Hitomi; Motomura, Tomoki; Yamashita, Chikamasa

    2015-09-10

    Chronic obstructive pulmonary disease (COPD) is an intractable pulmonary disease, causing widespread and irreversible alveoli collapse. The discovery of a low-molecular-weight compound that induces regeneration of pulmonary alveoli is of utmost urgency to cure intractable pulmonary diseases such as COPD. However, a practically useful compound for regenerating pulmonary alveoli is yet to be reported. Previously, we have elucidated that Akt phosphorylation is involved in a differentiation-inducing molecular mechanism of human alveolar epithelial stem cells, which play a role in regenerating pulmonary alveoli. In the present study, we directed our attention to phosphoinositide 3-kinase (PI3K)-Akt signaling and examined whether PI3K inhibitors display the pulmonary alveolus regeneration. Three PI3K inhibitors with different PI3K subtype specificities (Wortmannin, AS605240, PIK-75 hydrochloride) were tested for the differentiation-inducing effect on human alveolar epithelial stem cells, and Wortmannin demonstrated the most potent differentiation-inducing activity. We evaluated Akt phosphorylation in pulmonary tissues of an elastase-induced murine COPD model and found that Akt phosphorylation in the pulmonary tissue was enhanced in the murine COPD model compared with normal mice. Then, the alveolus-repairing effect of pulmonary administration of Wortmannin to murine COPD model was evaluated using X-ray CT analysis and hematoxylin-eosin staining. As a result, alveolar damages were repaired in the Wortmannin-administered group to a similar level of normal mice. Furthermore, pulmonary administration of Wortmannin induced a significant recovery of the respiratory function, compared to the control group. These results indicate that Wortmannin is capable of inducing differentiation of human alveolar epithelial stem cells and represents a promising drug candidate for curative treatment of pulmonary alveolar destruction in COPD. PMID:26160307

  15. Platelet-derived-growth-factor stimulation of the p42/p44 mitogen-activated protein kinase pathway in airway smooth muscle: role of pertussis-toxin-sensitive G-proteins, c-Src tyrosine kinases and phosphoinositide 3-kinase.

    PubMed Central

    Conway, A M; Rakhit, S; Pyne, S; Pyne, N J

    1999-01-01

    The mechanism used by the platelet-derived growth factor receptor (PDGFR) to activate the mitogen-activated- protein-kinase (p42/p44 MAPK) pathway was investigated in cultured airway smooth muscle (ASM) cells. We have found that pertussis toxin (PTX, which was used to inactivate the heterotrimeric G-protein Gi) induced an approx. 40-50% decrease in the activation of c-Src and p42/p44 MAPK by PDGF. An essential role for c-Src was confirmed using the c-Src inhibitor, PP1, which abolished p42/p44 MAPK activation (PP1 and PTX were without effect on PDGFR tyrosine phosphorylation). Furthermore, the PTX-dependent decrease in c-Src and p42/p44 MAPK activation appeared correlated. These findings suggest that the PDGFR can utilize the PTX-sensitive G-protein, Gi, to regulate c-Src and subsequent p42/p44 MAPK activation. Phosphoinositide 3-kinase (PI3K) has been shown by others to be involved in p42/p44 MAPK activation. This is confirmed here by experiments which showed that PI3K inhibitors (wortmannin and LY294002) reduced the activation of p42/p44 MAPK by PDGF. PI3K activity was increased in Grb-2 immunoprecipitates from PDGF-stimulated cells and was decreased by pretreating these cells with PTX. These findings show that Gi might also promote Grb-2-PI3K complex formation and that Grb-2 may be a site at which PI3K is integrated into the p42/p44 MAPK cascade. In conclusion, our results demonstrate that Gi enables the PDGFR to signal more efficiently to p42/p44 MAPK, and this appears to be achieved through the regulation of c-Src and Grb-2/PI3K, which are intermediates in the p42/p44 MAPK cascade. PMID:9882612

  16. Sphingosine 1-phosphate stimulation of the p42/p44 mitogen-activated protein kinase pathway in airway smooth muscle. Role of endothelial differentiation gene 1, c-Src tyrosine kinase and phosphoinositide 3-kinase.

    PubMed Central

    Rakhit, S; Conway, A M; Tate, R; Bower, T; Pyne, N J; Pyne, S

    1999-01-01

    We report here that cultured airway smooth muscle cells contain transcripts of endothelial differentiation gene 1 (EDG-1), a prototypical orphan Gi-coupled receptor whose natural ligand is sphingosine 1-phosphate (S1P). This is consistent with data that showed that S1P activated both c-Src and p42/p44 mitogen-activated protein kinase (p42/p44 MAPK) in a pertussis toxin (PTX)-sensitive manner in these cells. An essential role for c-Src was confirmed by using the c-Src inhibitor, PP1, which markedly decreased p42/p44 MAPK activation. We have also shown that phosphoinositide 3-kinase (PI-3K) inhibitors (wortmannin and LY294002) decreased p42/p44 MAPK activation. An essential role for PI-3K was supported by experiments that showed that PI-3K activity was increased in Grb-2 immunoprecipitates from S1P-stimulated cells. Significantly, Grb-2 associated PI-3K activity was decreased by pretreatment of cells with PTX. Finally, we have shown that the co-stimulation of cells with platelet-derived growth factor (PDGF) and S1P (which failed to stimulate DNA synthesis) elicited a larger p42/p44 MAPK activation over a 30 min stimulation compared with each agonist alone. This was associated with a S1P-dependent increase in PDGF-stimulated DNA synthesis. These results demonstrate that S1P activates c-Src and Grb-2-PI-3K (intermediates in the p42/p44 MAPK cascade) via a PTX-sensitive mechanism. This action of S1P is consistent with the stimulation of EDG-1 receptors. S1P might also function as a co-mitogen with PDGF, producing a more robust activation of a common permissive signal transduction pathway linked to DNA synthesis. PMID:10051434

  17. Interleukin-3, but not granulocyte-macrophage colony-stimulating factor and interleukin-5, inhibits apoptosis of human basophils through phosphatidylinositol 3-kinase: requirement of NF-kappaB-dependent and -independent pathways.

    PubMed

    Zheng, Xueyan; Karsan, Aly; Duronio, Vincent; Chu, Fanny; Walker, David C; Bai, Tony R; Schellenberg, R Robert

    2002-11-01

    Basophils are key effector cells of allergic reactions. Although proinflammatory cytokines, such as interleukin (IL)-3, granulocyte-macrophage colony-stimulating factor (GM-CSF) and IL-5, inhibit eosinophil apoptosis in vitro, little is known about basophil apoptosis, and the signalling mechanisms required for basophil survival remain undefined. To address this issue, we used a novel negative-selection system to isolate human basophils to a purity of > 95%, and evaluated apoptosis by morphology using light and transmission electron microscopy, and by annexin-V binding and propidium iodide incorporation using flow cytometry. In this study, we demonstrated that the spontaneous rate of apoptotic basophils was higher than that of eosinophils as, at 24 hr, 57.6 +/- 4.7% of basophils underwent apoptosis compared with 39.5 +/- 3.8% of eosinophils. In addition, basophil cell death was significantly inhibited when cultured with IL-3 for 48 hr (84.6 +/- 4.9% vehicle-treated cells versus 40.9 +/- 3.9% IL-3-treated cells). IL-3 also up-regulated basophil CD69 surface expression. The effects of IL-3 on apoptosis and CD69 surface expression of human basophils were completely blocked by LY294002 (LY), a potent inhibitor of phosphatidylinositol 3-kinase (PI3-K), but only partially inhibited by lactacystin, a proteasome inhibitor that prevents degradation of IkappaB and NF-kappaB translocation. These observations reveal the novel finding that IL-3 prevents basophil apoptosis through the activation of PI3-K, which is only partially NF-kappaB dependent. As basophils are active participants in allergic reactions and IL-3 is one of the abundant proinflammatory cytokines in secretions from allergic tissue, we suggest that IL-3-mediated inhibition of basophil apoptosis may exacerbate the inflammation associated with allergic disorders. PMID:12423306

  18. Exploration of a potent PI3 kinase/mTOR inhibitor as a novel anti-fibrotic agent in IPF

    PubMed Central

    Mercer, Paul F; Woodcock, Hannah V; Eley, Jessica D; Platé, Manuela; Sulikowski, Michal G; Durrenberger, Pascal F; Franklin, Linda; Nanthakumar, Carmel B; Man, Yim; Genovese, Federica; McAnulty, Robin J; Yang, Shuying; Maher, Toby M; Nicholson, Andrew G; Blanchard, Andy D; Marshall, Richard P; Lukey, Pauline T; Chambers, Rachel C

    2016-01-01

    Rationale Idiopathic pulmonary fibrosis (IPF) is the most rapidly progressive and fatal of all fibrotic conditions with no curative therapies. Common pathomechanisms between IPF and cancer are increasingly recognised, including dysfunctional pan-PI3 kinase (PI3K) signalling as a driver of aberrant proliferative responses. GSK2126458 is a novel, potent, PI3K/mammalian target of rapamycin (mTOR) inhibitor which has recently completed phase I trials in the oncology setting. Our aim was to establish a scientific and dosing framework for PI3K inhibition with this agent in IPF at a clinically developable dose. Methods We explored evidence for pathway signalling in IPF lung tissue and examined the potency of GSK2126458 in fibroblast functional assays and precision-cut IPF lung tissue. We further explored the potential of IPF patient-derived bronchoalveolar lavage (BAL) cells to serve as pharmacodynamic biosensors to monitor GSK2126458 target engagement within the lung. Results We provide evidence for PI3K pathway activation in fibrotic foci, the cardinal lesions in IPF. GSK2126458 inhibited PI3K signalling and functional responses in IPF-derived lung fibroblasts, inhibiting Akt phosphorylation in IPF lung tissue and BAL derived cells with comparable potency. Integration of these data with GSK2126458 pharmacokinetic data from clinical trials in cancer enabled modelling of an optimal dosing regimen for patients with IPF. Conclusions Our data define PI3K as a promising therapeutic target in IPF and provide a scientific and dosing framework for progressing GSK2126458 to clinical testing in this disease setting. A proof-of-mechanism trial of this agent is currently underway. Trial registration number NCT01725139, pre-clinical. PMID:27103349

  19. Design and synthesis of an in vivo-efficacious PIM3 kinase inhibitor as a candidate anti-pancreatic cancer agent.

    PubMed

    Nakano, Hirofumi; Hasegawa, Tsukasa; Saito, Nae; Furukawa, Kaoru; Mukaida, Naofumi; Kojima, Hirotatsu; Okabe, Takayoshi; Nagano, Tetsuo

    2015-12-15

    Serine/threonine kinase PIM3 is a potential therapeutic target for pancreatic cancer. Here, we describe the evolution of our previous PIM1 inhibitor 1 into PIM3 inhibitor 11 guided by use of the crystal structure of PIM1 as a surrogate to provide a basis for rational modification. Compound 11 potently inhibits PIM3 kinase activity, as well as growth of several pancreatic cancer cell lines. In a mouse xenograft model, 11 inhibited growth of human pancreatic cancer cell line PCI66 with negligible body weight loss. Thus, 11 appears to be a promising lead compound for further optimization to develop new anti-pancreatic cancer agents. PMID:26547690

  20. Disruption of GLUT1 glucose carrier trafficking in L6E9 and Sol8 myoblasts by the phosphatidylinositol 3-kinase inhibitor wortmannin.

    PubMed

    Kaliman, P; Viñals, F; Testar, X; Palacín, M; Zorzano, A

    1995-12-01

    In this study we have used wortmannin, a highly specific inhibitor of phosphatidylinositol (PI) 3-kinase, to assess the role of this enzyme on GLUT1 glucose carrier distribution and glucose transport activity in myoblasts from two skeletal-muscle cell lines, L6E9 and Sol8. As detected in L6E9 cells, myoblasts exhibited basal and insulin-stimulated PI 3-kinase activities. Incubation of intact myoblasts with wortmannin resulted in a marked inhibition of both basal and insulin-stimulated PI 3-kinase activities. L6E9 and Sol8 myoblasts showed basal and insulin-stimulated glucose transport activities, both of them inhibited by wortmannin in a dose-dependent manner (IC50 approximately 10-20 nM). Concomitantly, immunofluorescence analysis revealed that 1 h treatment with wortmannin led to a dramatic intracellular accumulation of GLUT1 carriers (the main glucose transporter expressed in L6E9 and Sol8 myoblasts) in both cell systems. The effect of wortmannin on GLUT1 cellular redistribution was independent of the presence of insulin. The cellular distribution of two structural plasma-membrane components such as beta 1-integrin or the alpha 1 subunit of the Na(+)-K(+)-ATPase were unaffected by wortmannin in both the absence and the presence of insulin. As a whole, our results indicate that PI 3-kinase is necessary to basal and insulin-stimulated glucose transport in L6E9 and Sol8 myoblasts. Moreover, immunofluorescence assays suggest that in both cellular models there is a constitutive GLUT 1 trafficking pathway (independent of insulin) that involves PI 3-kinase and which, when blocked, locks GLUT1 in a perinuclear compartment. PMID:8526858

  1. Disruption of GLUT1 glucose carrier trafficking in L6E9 and Sol8 myoblasts by the phosphatidylinositol 3-kinase inhibitor wortmannin.

    PubMed Central

    Kaliman, P; Viñals, F; Testar, X; Palacín, M; Zorzano, A

    1995-01-01

    In this study we have used wortmannin, a highly specific inhibitor of phosphatidylinositol (PI) 3-kinase, to assess the role of this enzyme on GLUT1 glucose carrier distribution and glucose transport activity in myoblasts from two skeletal-muscle cell lines, L6E9 and Sol8. As detected in L6E9 cells, myoblasts exhibited basal and insulin-stimulated PI 3-kinase activities. Incubation of intact myoblasts with wortmannin resulted in a marked inhibition of both basal and insulin-stimulated PI 3-kinase activities. L6E9 and Sol8 myoblasts showed basal and insulin-stimulated glucose transport activities, both of them inhibited by wortmannin in a dose-dependent manner (IC50 approximately 10-20 nM). Concomitantly, immunofluorescence analysis revealed that 1 h treatment with wortmannin led to a dramatic intracellular accumulation of GLUT1 carriers (the main glucose transporter expressed in L6E9 and Sol8 myoblasts) in both cell systems. The effect of wortmannin on GLUT1 cellular redistribution was independent of the presence of insulin. The cellular distribution of two structural plasma-membrane components such as beta 1-integrin or the alpha 1 subunit of the Na(+)-K(+)-ATPase were unaffected by wortmannin in both the absence and the presence of insulin. As a whole, our results indicate that PI 3-kinase is necessary to basal and insulin-stimulated glucose transport in L6E9 and Sol8 myoblasts. Moreover, immunofluorescence assays suggest that in both cellular models there is a constitutive GLUT 1 trafficking pathway (independent of insulin) that involves PI 3-kinase and which, when blocked, locks GLUT1 in a perinuclear compartment. Images Figure 1 Figure 3 Figure 4 Figure 5 Figure 6 PMID:8526858

  2. Fluid shear stress inhibits TNF-alpha-induced apoptosis in osteoblasts: a role for fluid shear stress-induced activation of PI3-kinase and inhibition of caspase-3

    NASA Technical Reports Server (NTRS)

    Pavalko, Fredrick M.; Gerard, Rita L.; Ponik, Suzanne M.; Gallagher, Patricia J.; Jin, Yijun; Norvell, Suzanne M.

    2003-01-01

    In bone, a large proportion of osteoblasts, the cells responsible for deposition of new bone, normally undergo programmed cell death (apoptosis). Because mechanical loading of bone increases the rate of new bone formation, we hypothesized that mechanical stimulation of osteoblasts might increase their survival. To test this hypothesis, we investigated the effects of fluid shear stress (FSS) on osteoblast apoptosis using three osteoblast cell types: primary rat calvarial osteoblasts (RCOB), MC3T3-E1 osteoblastic cells, and UMR106 osteosarcoma cells. Cells were treated with TNF-alpha in the presence of cyclohexamide (CHX) to rapidly induce apoptosis. Osteoblasts showed significant signs of apoptosis within 4-6 h of exposure to TNF-alpha and CHX, and application of FSS (12 dyne/cm(2)) significantly attenuated this TNF-alpha-induced apoptosis. FSS activated PI3-kinase signaling, induced phosphorylation of Akt, and inhibited TNF-alpha-induced activation of caspase-3. Inhibition of PI3-kinase, using LY294002, blocked the ability of FSS to rescue osteoblasts from TNF-alpha-induced apoptosis and blocked FSS-induced inhibition of caspase-3 activation in osteoblasts treated with TNF-alpha. LY294002 did not, however, prevent FSS-induced phosphorylation of Akt suggesting that activation of Akt alone is not sufficient to rescue cells from apoptosis. This result also suggests that FSS can activate Akt via a PI3-kinase-independent pathway. These studies demonstrate for the first time that application of FSS to osteoblasts in vitro results in inhibition of TNF-alpha-induced apoptosis through a mechanism involving activation of PI3-kinase signaling and inhibition of caspases. FSS-induced activation of PI3-kinase may promote cell survival through a mechanism that is distinct from the Akt-mediated survival pathway. Copyright 2002 Wiley-Liss, Inc.

  3. Progress in the Preclinical Discovery and Clinical Development of Class I and Dual Class I/IV Phosphoinositide 3-Kinase (PI3K) Inhibitors

    PubMed Central

    Shuttleworth, S.J; Silva, F.A; Cecil, A.R.L; Tomassi, C.D; Hill, T.J; Raynaud, F.I; Clarke, P.A; Workman, P

    2011-01-01

    The phosphoinositide 3-kinases (PI3Ks) constitute an important family of lipid kinase enzymes that control a range of cellular processes through their regulation of a network of signal transduction pathways, and have emerged as important therapeutic targets in the context of cancer, inflammation and cardiovascular diseases. Since the mid-late 1990s, considerable progress has been made in the discovery and development of small molecule ATP-competitive PI3K inhibitors, a number of which have entered early phase human trials over recent years from which key clinical results are now being disclosed. This review summarizes progress made to date, primarily on the discovery and characterization of class I and dual class I/IV subtype inhibitors, together with advances that have been made in translational and clinical research, notably in cancer. PMID:21649578

  4. The novel orally bioavailable inhibitor of phosphoinositol-3-kinase and mammalian target of rapamycin, NVP-BEZ235, inhibits growth and proliferation in multiple myeloma

    SciTech Connect

    Baumann, Philipp Mandl-Weber, Sonja; Oduncu, Fuat; Schmidmaier, Ralf

    2009-02-01

    NVP-BEZ235 is a new inhibitor of phosphoinositol-3-kinase (PI3 kinase) and mammalian target of rapamycin (mTOR) whose efficacy in advanced solid tumours is currently being evaluated in a phase I/II clinical trial. Here we show that NVP-BEZ235 inhibits growth in common myeloma cell lines as well as primary myeloma cells at nanomolar concentrations in a time and dose dependent fashion. Further experiments revealed induction of apoptosis in three of four cell lines. Inhibition of cell growth was mainly due to inhibition of myeloma cell proliferation, as shown by the BrdU assay. Cell cycle analysis revealed induction of cell cycle arrest in the G1 phase, which was due to downregulation of cyclin D1, pRb and cdc25a. NVP-BEZ235 inhibited phosphorylation of protein kinase B (Akt), P70S6k and 4E-BP-1. Furthermore we show that the stimulatory effect of CD40-ligand (CD40L), insulin-like growth factor 1 (IGF-1), interleukin-6 (IL-6) and conditioned medium of HS-5 stromal cells on myeloma cell growth is completely abrogated by NVP-BEZ235. In addition, synergism studies revealed synergistic and additive activity of NVP-BEZ235 together with melphalan, doxorubicin and bortezomib. Taken together, inhibition of PI3 kinase/mTOR by NVP-BEZ235 is highly effective and NVP-BEZ235 represents a potential new candidate for targeted therapy in multiple myeloma.

  5. Phophatidylinositol-3 kinase/mammalian target of rapamycin/p70S6K regulates contractile protein accumulation in airway myocyte differentiation.

    PubMed

    Halayko, Andrew J; Kartha, Sreedharan; Stelmack, Gerald L; McConville, John; Tam, John; Camoretti-Mercado, Blanca; Forsythe, Sean M; Hershenson, Marc B; Solway, Julian

    2004-09-01

    Increased airway smooth muscle in airway remodeling results from myocyte proliferation and hypertrophy. Skeletal and vascular smooth muscle hypertrophy is induced by phosphatidylinositide-3 kinase (PI(3) kinase) via mammalian target of rapamycin (mTOR) and p70S6 kinase (p70S6K). We tested the hypothesis that this pathway regulates contractile protein accumulation in cultured canine airway myocytes acquiring an elongated contractile phenotype in serum-free culture. In vitro assays revealed a sustained activation of PI(3) kinase and p70S6K during serum deprivation up to 12 d, with concomitant accumulation of SM22 and smooth muscle myosin heavy chain (smMHC) proteins. Immunocytochemistry revealed that activation of PI3K/mTOR/p70S6K occurred almost exclusively in myocytes that acquire the contractile phenotype. Inhibition of PI(3) kinase or mTOR with LY294002 or rapamycin blocked p70S6K activation, prevented formation of large elongated contractile phenotype myocytes, and blocked accumulation of SM22 and smMHC. Inhibition of MEK had no effect. Steady-state mRNA abundance for SM22 and smMHC was unaffected by blocking p70S6K activation. These studies provide primary evidence that PI(3) kinase and mTOR activate p70S6K in airway myocytes leading to the accumulation of contractile apparatus proteins, differentiation, and growth of large, elongated contractile phenotype airway smooth muscle cells. PMID:15105162

  6. Berberine induces dedifferentiation by actin cytoskeleton reorganization via phosphoinositide 3-kinase/Akt and p38 kinase pathways in rabbit articular chondrocytes.

    PubMed

    Yu, Seon-Mi; Cho, Hongsik; Kim, Gwang-Hoon; Chung, Ki-Wha; Seo, Sung-Yum; Kim, Song-Ja

    2016-04-01

    Osteoarthritis is a nonrheumatologic joint disease characterized by progressive degeneration of the cartilage extracellular matrix. Berberine (BBR) is an isoquinoline alkaloid used in traditional Chinese medicine, the majority of which is extracted from Huang Lian (Coptis chinensis). Although numerous studies have revealed the anticancer activity of BBR, its effects on normal cells, such as chondrocytes, and the molecular mechanisms underlying its actions remain elusive. Therefore, we examined the effects of BBR on rabbit articular chondrocytes, and the underlying molecular mechanisms, focusing on actin cytoskeletal reorganization. BBR induced dedifferentiation by inhibiting activation of phosphoinositide-3(PI3)-kinase/Akt and p38 kinase. Furthermore, inhibition of p38 kinase and PI3-kinase/Akt with SB203580 and LY294002, respectively, accelerated the BBR-induced dedifferentiation. BBR also caused actin cytoskeletal architecture reorganization and, therefore, we investigated if these effects were involved in the dedifferentiation. Disruption of the actin cytoskeleton by cytochalasin D reversed the BBR-induced dedifferentiation by activating PI3-kinase/Akt and p38 kinase. In contrast, the induction of actin filament aggregation by jasplakinolide accelerated the BBR-induced dedifferentiation via PI3-kinase/Akt inhibition and p38 kinase activation. Taken together, these data suggest that BBR strongly induces dedifferentiation, and actin cytoskeletal reorganization is a crucial requirement for this effect. Furthermore, the dedifferentiation activity of BBR appears to be mediated via PI3-kinase/Akt and p38 kinase pathways in rabbit articular chondrocytes. PMID:26851252

  7. Autophagy inhibition enhances colorectal cancer apoptosis induced by dual phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor NVP-BEZ235

    PubMed Central

    YANG, XIAOYU; NIU, BINGXUAN; WANG, LIBO; CHEN, MEILING; KANG, XIAOCHUN; WANG, LUONAN; JI, YINGHUA; ZHONG, JIATENG

    2016-01-01

    Phosphatidylinositol 3-kinase (PI3K)/mammalian target of rapamycin (mTOR) signaling pathway performs a central role in tumorigenesis and is constitutively activated in many malignancies. As a novel dual PI3K/mTOR inhibitor currently undergoing evaluation in a phase I/II clinical trial, NVP-BEZ235 indicates a significant antitumor efficacy in diverse solid tumors, including colorectal cancer (CRC). Autophagy is a catabolic process that maintains cellular homeostasis and reduces diverse stresses through lysosomal recycling of the unnecessary and damaged cell components. This process is also observed to antagonize the antitumor efficacy of PI3K/mTOR inhibitor agents such as NVP-BEZ235, via apoptosis inhibition. In the present study, we investigated anti-proliferative and apoptosis-inducing ability of NVP-BEZ235 in SW480 cells and the crosstalk between autophagy and apoptosis in SW480 cells treated with NVP-BEZ235 in combination with an autophagy inhibitor. The results revealed that, NVP-BEZ235 effectively inhibit the growth of SW480 cells by targeting the PI3K/mTOR signaling pathway and induced apoptosis. The inhibition of autophagy with 3-methyladenine or chloroquine inhibitors in combination with NVP-BEZ235 in SW480 cells enhanced the apoptotic rate as componets to NVP-BEZ235 alone. In conclusion, the findings provide a rationale for chemotherapy targeting the PI3K/mTOR signaling pathway presenting a potential therapeutic strategy to enhance the efficacy of dual PI3K/mTOR inhibitor NVP-BEZ235 in combination with an autophagy inhibitor in CRC treatment and treatment of other tumors. PMID:27347108

  8. Structure-Based Design of an Organoruthenium Phosphatidyl-inositol-3-Kinase Inhibitor Reveals a Switch Governing Lipid Kinase Potency and Selectivity

    SciTech Connect

    Xie,P.; Williams, D.; Atilla-Gokcumen, G.; Milk, L.; Xiao, M.; Smalley, K.; Herlyn, M.; Meggers, E.; Marmorstein, R.

    2008-01-01

    Mutations that constitutively activate the phosphatidyl-inositol-3-kinase (PI3K) signaling pathway, including alterations in PI3K, PTEN, and AKT, are found in a variety of human cancers, implicating the PI3K lipid kinase as an attractive target for the development of therapeutic agents to treat cancer and other related diseases. In this study, we report on the combination of a novel organometallic kinase inhibitor scaffold with structure-based design to develop a PI3K inhibitor, called E5E2, with an IC50 potency in the mid-low-nanomolar range and selectivity against a panel of protein kinases. We also show that E5E2 inhibits phospho-AKT in human melanoma cells and leads to growth inhibition. Consistent with a role for the PI3K pathway in tumor cell invasion, E5E2 treatment also inhibits the migration of melanoma cells in a 3D spheroid assay. The structure of the PI3K?/E5E2 complex reveals the molecular features that give rise to this potency and selectivity toward lipid kinases with implications for the design of a subsequent generation of PI3K-isoform-specific organometallic inhibitors.

  9. Suppression of CD4+ T lymphocyte activation in vitro and experimental encephalomyelitis in vivo by the phosphatidyl inositol 3-kinase inhibitor PIK-75.

    PubMed

    Acosta, Y Y; Montes-Casado, M; Aragoneses-Fenoll, L; Dianzani, U; Portoles, P; Rojo, J M

    2014-01-01

    Class IA phosphatidyl inositol-3 kinases (PI3-K) are important targets in cancer therapy and are essential to immune responses, particularly through costimulation by CD28 and ICOS. Thus, small PI3-K inhibitors are likely candidates to immune intervention. PIK-75 is an efficient inhibitor of the PI3-K p110alpha catalytic subunits that suppresses tumor growth, and its effects on immune and autoimmune responses should be studied. Here, we describe the effect of PIK-75 on different immune parameters in vitro and in vivo. PIK-75 at concentrations commonly used in vitro (≥0.1 μM) inhibited T and B cell activation by Concanavalin A and LPS, respectively, and survival of non-stimulated spleen cells. In naive CD4+ T lymphocytes, PIK-75 induced apoptosis of resting or activated cells that was prevented by caspase inhibitors. At low nanomolar concentrations (≤10 nM), PIK-75 inhibited naive CD4+ T cell proliferation, and IL-2 and IFN-gamma production induced by anti-CD3 plus anti-CD28. In activated CD4+ T blasts costimulated by ICOS, PIK-75 (less than 10 nM) inhibited IFN-gamma, IL-17A, or IL-21 secretion. Furthermore, PIK-75 (20 mg/kg p.o.) suppressed clinical symptoms in ongoing experimental autoimmune encephalomyelitis (EAE) and inhibited MOG-specific responses in vitro. Thus, PIK-75 is an efficient suppressor of EAE, modulating lymphocyte function and survival. PMID:24674679

  10. Antimyeloma activity of the orally bioavailable dual phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor NVP-BEZ235.

    PubMed

    McMillin, Douglas W; Ooi, Melissa; Delmore, Jake; Negri, Joseph; Hayden, Patrick; Mitsiades, Nicolas; Jakubikova, Jana; Maira, Sauveur-Michel; Garcia-Echeverria, Carlos; Schlossman, Robert; Munshi, Nikhil C; Richardson, Paul G; Anderson, Kenneth C; Mitsiades, Constantine S

    2009-07-15

    The phosphatidylinositol 3-kinase (PI3K)-Akt-mammalian target of rapamycin (mTOR) pathway mediates proliferation, survival, and drug resistance in multiple myeloma (MM) cells. Here, we tested the anti-MM activity of NVP-BEZ235 (BEZ235), which inhibits PI3K/Akt/mTOR signaling at the levels of PI3K and mTOR. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide colorimetric survival assays showed that MM cell lines exhibited dose- and time-dependent decreased viability after exposure to BEZ235 (IC(50), 25-800 nmol/L for 48 hours). MM cells highly sensitive (IC(50), <25 nmol/L) to BEZ235 (e.g., MM.1S, MM.1R, Dox40, and KMS-12-PE) included both lines sensitive and resistant to conventional (dexamethasone, cytotoxic chemotherapeutics) agents. Pharmacologically relevant BEZ235 concentrations (25-400 nmol/L) induced rapid commitment to and induction of MM.1S and OPM-2 cell death. Furthermore, normal donor peripheral blood mononuclear cells were less sensitive (IC(50), >800 nmol/L) than the majority of MM cell lines tested, suggesting a favorable therapeutic index. In addition, BEZ235 was able to target MM cells in the presence of exogenous interleukin-6, insulin-like growth factor-1, stromal cells, or osteoclasts, which are known to protect against various anti-MM agents. Molecular profiling revealed that BEZ235 treatment decreased the amplitude of transcriptional signatures previously associated with myc, ribosome, and proteasome function, as well as high-risk MM and undifferentiated human embryonic stem cells. In vivo xenograft studies revealed significant reduction in tumor burden (P = 0.011) and survival (P = 0.028) in BEZ235-treated human MM tumor-bearing mice. Combinations of BEZ235 with conventional (e.g., dexamethasone and doxorubicin) or novel (e.g., bortezomib) anti-MM agents showed lack of antagonism. These results indicate that BEZ235 merits clinical testing, alone and in combination with other agents, in MM. PMID:19584292

  11. [3a,4]-Dihydropyrazolo[1,5a]pyrimidines: Novel, Potent, and Selective Phosphatidylinositol-3-kinase β Inhibitors.

    PubMed

    Yu, Hongyi; Moore, Michael L; Erhard, Karl; Hardwicke, Mary Ann; Lin, Hong; Luengo, Juan I; McSurdy-Freed, Jeanelle; Plant, Ramona; Qu, Junya; Raha, Kaushik; Rominger, Cynthia M; Schaber, Michael D; Spengler, Michael D; Rivero, Ralph A

    2013-02-14

    A series of novel [3a,4]dihydropyrazolo[1,5a]pyrimidines were identified, which were highly potent and selective inhibitors of PI3Kβ. The template afforded the opportunity to develop novel SAR for both the hinge-binding (R3) and back-pocket (R4) substitutents. While cellular potency was relatively modest due to high protein binding, the series displayed low clearance in rat, mouse, and monkey. PMID:24900655

  12. [3a,4]-Dihydropyrazolo[1,5a]pyrimidines: Novel, Potent, and Selective Phosphatidylinositol-3-kinase β Inhibitors

    PubMed Central

    2013-01-01

    A series of novel [3a,4]dihydropyrazolo[1,5a]pyrimidines were identified, which were highly potent and selective inhibitors of PI3Kβ. The template afforded the opportunity to develop novel SAR for both the hinge-binding (R3) and back-pocket (R4) substitutents. While cellular potency was relatively modest due to high protein binding, the series displayed low clearance in rat, mouse, and monkey. PMID:24900655

  13. FLT3 kinase inhibitor TTT-3002 overcomes both activating and drug resistance mutations in FLT3 in acute myeloid leukemia

    PubMed Central

    Ma, Hayley S.; Nguyen, Bao; Duffield, Amy S.; Li, Li; Galanis, Allison; Williams, Allen B.; Brown, Patrick A.; Levis, Mark J.; Leahy, Daniel J.; Small, Donald

    2014-01-01

    There have been a number of clinical trials testing the efficacy of FLT3 tyrosine kinase inhibitors (TKIs) in acute myeloid leukemia (AML). patients harboring a constitutively activating mutation in FLT3 However, there has been limited efficacy, most often due to inadequate achievement of FLT3 inhibition through a variety of mechanisms In a previous study, TTT-3002 was identified as a novel FLT3 inhibitor with the most potent activity to date against FLT3 internal tandem duplication (FLT3/ITD) mutations Here the activity of TTT-3002 is demonstrated against a broad spectrum of FLT3 activating point mutations (FLT3/PMs), including the most frequently occurring D835 mutations The compound is also active against a number of point mutations selected for in FLT3/ITD alleles that confer resistance to other TKIs, including the F691L gatekeeper mutation TTT-3002 maintains activity against relapsed AML patient samples that are resistant to sorafenib and AC220 Studies utilizing human plasma samples from healthy donors and AML patients indicate that TTT-3002 is only moderately protein bound compared to several other TKIs currently in clinical trials Tumor burden of mice in a FLT3 TKI-resistant transplant model is significantly improved by oral dosing of TTT-3002 Therefore, TTT-3002 has demonstrated preclinical potential as a promising new FLT3 TKI that may overcome some of the limitations of other TKIs in the treatment of FLT3-mutant AML PMID:25060518

  14. ZSTK474, a specific class I phosphatidylinositol 3-kinase inhibitor, induces G1 arrest and autophagy in human breast cancer MCF-7 cells

    PubMed Central

    Wang, Yaochen; Liu, Jing; Qiu, Yuling; Jin, Meihua; Chen, Xi; Fan, Guanwei; Wang, Ran; Kong, Dexin

    2016-01-01

    Multifaceted activities of class I phosphatidylinositol 3-kinase (PI3K) inhibitor ZSTK474 were investigated on human breast cancer cell MCF-7. ZSTK474 inhibited proliferation of MCF-7 cells potently. Flow cytometric analysis indicated that ZSTK474 induced cell cycle arrest at G1 phase, but no obvious apoptosis occurred. Western blot analysis suggested that blockade of PI3K/Akt/GSK-3β/cyclin D1/p-Rb pathway might contribute to the G1 arrest induced. Moreover, we demonstrated that ZSTK474 induced autophagy in MCF-7 cells by use of various assays including monodansylcadaverine (MDC) staining, transmission electron microscopy (TEM), tandem mRFP-GFP-LC3 fluorescence microscopy, and western blot detection of the autophagy protein markers of LC3B II, p62 and Atg 5. Inhibition of class I PI3K and the downstream mTOR might be involved in the autophagy-inducing effect. Combinational use of ZSTK474 and autophagy inhibitors enhanced cell viability, suggesting ZSTK474-induced autophagy might contribute to the antitumor activity. Our report supports the application of ZSTK474, which is being evaluated in clinical trials, for breast cancer therapy. PMID:26918351

  15. HS-133, a novel fluorescent phosphatidylinositol 3-kinase inhibitor as a potential imaging and anticancer agent for targeted therapy

    PubMed Central

    Lee, Hyunseung; Son, Mi Kwon; Yun, Sun-Mi; Ahn, Sung-Hoon; Lee, Kyeong-Ryoon; Lee, Soyoung; Kim, Donghee; Hong, Sungwoo; Hong, Soon-Sun

    2014-01-01

    As PI3K/Akt signaling is frequently deregulated in a wide variety of human tumors, PI3K inhibitors are an emerging class of drugs for cancer treatment. The monitoring of the drug behavior and distribution in the biological system can play an important role for targeted therapy and provide information regarding the response or resistance to available therapies. In this study, therefore, we have developed a family of xanthine derivatives, serving as a dual function exhibiting fluorescence, as well as inhibiting PI3K. Among them, HS-133 showed anti-proliferative effects and was monitored for its subcellular localization by a fluorescence microscopy. HS-133 suppressed the PI3K/Akt pathway and induced cell cycle arrest at the G0/G1 phase. The induction of apoptosis by HS-133 was confirmed by the increases of the cleaved PARP, caspase-3, and caspase-8. Furthermore, HS-133 decreased the protein expression of HIF-1α and VEGF, as well inhibited the tube formation and migration of the human umbilical vein endothelial cells. In vivo imaging also showed that tumors were visualized fluorescent with HS-133, and its oral administration significantly inhibited the growth of tumor in SkBr3 mouse xenograft models. Thus, we suggest that HS-133 may be used as a fluorescent anticancer agent against human breast cancer. PMID:25338206

  16. ETP-46321, a dual p110α/δ class IA phosphoinositide 3-kinase inhibitor modulates T lymphocyte activation and collagen-induced arthritis.

    PubMed

    Aragoneses-Fenoll, L; Montes-Casado, M; Ojeda, G; Acosta, Y Y; Herranz, J; Martínez, S; Blanco-Aparicio, C; Criado, G; Pastor, J; Dianzani, U; Portolés, P; Rojo, J M

    2016-04-15

    Class IA phosphoinositide 3-kinases (PI3Ks) are essential to function of normal and tumor cells, and to modulate immune responses. T lymphocytes express high levels of p110α and p110δ class IA PI3K. Whereas the functioning of PI3K p110δ in immune and autoimmune reactions is well established, the role of p110α is less well understood. Here, a novel dual p110α/δ inhibitor (ETP-46321) and highly specific p110α (A66) or p110δ (IC87114) inhibitors have been compared concerning T cell activation in vitro, as well as the effect on responses to protein antigen and collagen-induced arthritis in vivo. In vitro activation of naive CD4(+) T lymphocytes by anti-CD3 and anti-CD28 was inhibited more effectively by the p110δ inhibitor than by the p110α inhibitor as measured by cytokine secretion (IL-2, IL-10, and IFN-γ), T-bet expression and NFAT activation. In activated CD4(+) T cells re-stimulated through CD3 and ICOS, IC87114 inhibited Akt and Erk activation, and the secretion of IL-2, IL-4, IL-17A, and IFN-γ better than A66. The p110α/δ inhibitor ETP-46321, or p110α plus p110δ inhibitors also inhibited IL-21 secretion by differentiated CD4(+) T follicular (Tfh) or IL-17-producing (Th17) helper cells. In vivo, therapeutic administration of ETP-46321 significantly inhibited responses to protein antigen as well as collagen-induced arthritis, as measured by antigen-specific antibody responses, secretion of IL-10, IL-17A or IFN-γ, or clinical symptoms. Hence, p110α as well as p110δ Class IA PI3Ks are important to immune regulation; inhibition of both subunits may be an effective therapeutic approach in inflammatory autoimmune diseases like rheumatoid arthritis. PMID:26883061

  17. The PI3-Kinase Delta Inhibitor Idelalisib (GS-1101) Targets Integrin-Mediated Adhesion of Chronic Lymphocytic Leukemia (CLL) Cell to Endothelial and Marrow Stromal Cells

    PubMed Central

    Fiorcari, Stefania; Brown, Wells S.; McIntyre, Bradley W.; Estrov, Zeev; Maffei, Rossana; O’Brien, Susan; Sivina, Mariela; Hoellenriegel, Julia; Wierda, William G.; Keating, Michael J.; Ding, Wei; Kay, Neil E.; Lannutti, Brian J.; Marasca, Roberto; Burger, Jan A.

    2013-01-01

    CLL cell trafficking between blood and tissue compartments is an integral part of the disease process. Idelalisib, a phosphoinositide 3-kinase delta (PI3Kδ) inhibitor causes rapid lymph node shrinkage, along with an increase in lymphocytosis, prior to inducing objective responses in CLL patients. This characteristic activity presumably is due to CLL cell redistribution from tissues into the blood, but the underlying mechanisms are not fully understood. We therefore analyzed idelalisib effects on CLL cell adhesion to endothelial and bone marrow stromal cells (EC, BMSC). We found that idelalisib inhibited CLL cell adhesion to EC and BMSC under static and shear flow conditions. TNFα-induced VCAM-1 (CD106) expression in supporting layers increased CLL cell adhesion and accentuated the inhibitory effect of idelalisib. Co-culture with EC and BMSC also protected CLL from undergoing apoptosis, and this EC- and BMSC-mediated protection was antagonized by idelalisib. Furthermore, we demonstrate that CLL cell adhesion to EC and VLA-4 (CD49d) resulted in the phosphorylation of Akt, which was sensitive to inhibition by idelalisib. These findings demonstrate that idelalisib interferes with integrin-mediated CLL cell adhesion to EC and BMSC, providing a novel mechanism to explain idelalisib-induced redistribution of CLL cells from tissues into the blood. PMID:24376763

  18. Discovery of imidazo[1,2-a]-pyridine inhibitors of pan-PI3 kinases that are efficacious in a mouse xenograft model.

    PubMed

    Han, Wooseok; Menezes, Daniel L; Xu, Yongjin; Knapp, Mark S; Elling, Robert; Burger, Matthew T; Ni, Zhi-Jie; Smith, Aaron; Lan, Jiong; Williams, Teresa E; Verhagen, Joelle; Huh, Kay; Merritt, Hanne; Chan, John; Kaufman, Susan; Voliva, Charles F; Pecchi, Sabina

    2016-02-01

    Alterations in PI3K/AKT signaling are known to be implicated with tumorigenesis. The PI3 kinases family of lipid kinases has been an attractive therapeutic target for cancer treatment. Imidazopyridine compound 1, a potent, selective, and orally available pan-PI3K inhibitor, identified by scaffold morphing of a benzothiazole hit, was further optimized in order to achieve efficacy in a PTEN-deleted A2780 ovarian cancer mouse xenograft model. With a hypothesis that a planar conformation between the core and the 6-heteroaryl ring will allow for the accommodation of larger 5'-substituents in a hydrophobic area under P-loop, SAR efforts focused on 5'-alkoxy heteroaryl rings at the 6-position of imidazopyridine and imidazopyridazine cores that have the same dihedral angle of zero degrees. 6'-Alkoxy 5'-aminopyrazines in the imidazopyridine series were identified as the most potent compounds in the A2780 cell line. Compound 14 with 1,1,1-trifluoroisopropoxy group at 6'-position demonstrated excellent potency and selectivity, good oral exposure in rats and in vivo efficacy in A2780 tumor-bearing mouse. Also, we disclose the X-ray co-crystal structure of one enantiomer of compound 14 in PI3Kα, confirming that the trifluoromethyl group fits nicely in the hydrophobic hot spot under P-loop. PMID:26774655

  19. Development of a robust flow cytometry-based pharmacodynamic assay to detect phospho-protein signals for phosphatidylinositol 3-kinase inhibitors in multiple myeloma

    PubMed Central

    2013-01-01

    Background The phosphatidylinositol 3-kinase (PI3K) pathway plays an important role in multiple myeloma (MM), a blood cancer associated with uncontrolled proliferation of bone marrow plasma cells. This study aimed to develop a robust clinical pharmacodynamic (PD) assay to measure the on-target PD effects of the selective PI3K inhibitor GDC-0941 in MM patients. Methods We conducted an in vitro drug wash-out study to evaluate the feasibility of biochemical approaches in measuring the phosphorylation of S6 ribosomal protein (S6), one of the commonly used PD markers for PI3K pathway inhibition. We then developed a 7-color phospho-specific flow cytometry assay, or phospho flow assay, to measure the phosphorylation state of intracellular S6 in bone marrow aspirate (BMA) and peripheral blood (PB). Integrated mean fluorescence intensity (iMFI) was used to calculate fold changes of phosphorylation. Assay sensitivity was evaluated by comparing phospho flow with Meso Scale Discovery (MSD) and immunohistochemistry (IHC) assays. Finally, a sample handling method was developed to maintain the integrity of phospho signal during sample shipping and storage to ensure clinical application. Results The phospho flow assay provided single-cell PD monitoring of S6 phosphorylation in tumor and surrogate cells using fixed BMA and PB, assessing pathway modulation in response to GDC-0941 with sensitivity similar to that of MSD assay. The one-shot sample fixation and handling protocol herein demonstrated exceptional preservation of protein phosphorylation. In contrast, the IHC assay was less sensitive in terms of signal quantification while the biochemical approach (MSD) was less suitable to assess PD activities due to the undesirable impact associated with cell isolation on the protein phosphorylation in tumor cells. Conclusions We developed a robust PD biomarker assay for the clinical evaluation of PI3K inhibitors in MM, allowing one to decipher the PD response in a relevant cell

  20. Inhibition of Autophagy as a Strategy to Augment Radiosensitization by the Dual Phosphatidylinositol 3-Kinase/Mammalian Target of Rapamycin Inhibitor NVP-BEZ235S⃞

    PubMed Central

    Cerniglia, George J.; Karar, Jayashree; Tyagi, Sonia; Christofidou-Solomidou, Melpo; Rengan, Ramesh; Koumenis, Constantinos

    2012-01-01

    We investigated the effect of 2-methyl-2-{4-[3-methyl-2-oxo-8-(quinolin-3-yl)-2,3-dihydro-1H-imidazo[4,5-c]quinolin-1-yl]phenyl} propanenitrile (NVP-BEZ235) (Novartis, Basel Switzerland), a dual phosphatidylinositol 3-kinase (PI3K)/mammalian target of rapamycin (mTOR) inhibitor currently being tested in phase I clinical trials, in radiosensitization. NVP-BEZ235 radiosensitized a variety of cancer cell lines, including SQ20B head and neck carcinoma cells and U251 glioblastoma cells. NVP-BEZ235 also increased in vivo radiation response in SQ20B xenografts. Knockdown of Akt1, p110α, or mTOR resulted in radiosensitization, but not to the same degree as with NVP-BEZ235. NVP-BEZ235 interfered with DNA damage repair after radiation as measured by the CometAssay and resolution of phosphorylated H2A histone family member X foci. NVP-BEZ235 abrogated the radiation-induced phosphorylation of both DNA-dependent protein kinase catalytic subunit (DNA-PKcs) and ataxia telangiectasia mutated. Knockdown of either p110α or mTOR failed to decrease the phosphorylation of DNA-PKcs, suggesting that the effect of the drug was direct rather than mediated via p110α or mTOR. The treatment of cells with NVP-BEZ235 also promoted autophagy. To assess the importance of this process in radiosensitization, we used the autophagy inhibitors 3-methyladenine and chloroquine and found that either drug increased cell killing after NVP-BEZ235 treatment and radiation. Knocking down the essential autophagy proteins autophagy related 5 (ATG5) and beclin1 increased NVP-BEZ235-mediated radiosensitization. Furthermore, NVP-BEZ235 radiosensitized autophagy-deficient ATG5(−/−) fibroblasts to a greater extent than ATG5(+/+) cells. We conclude that NVP-BEZ235 radiosensitizes cells and induces autophagy by apparently distinct mechanisms. Inhibiting autophagy via pharmacologic or genetic means increases radiation killing after NVP-BEZ235 treatment; hence, autophagy seems to be cytoprotective in this

  1. Identification of novel synergistic targets for rational drug combinations with PI3 kinase inhibitors using siRNA synthetic lethality screening against GBM

    PubMed Central

    Kim, Yong-Wan; Liu, Ta Jen; Koul, Dimpy; Tiao, Ningyi; Feroze, Abdullah H.; Wang, Jing; Powis, Garth; Yung, W. K. Alfred

    2011-01-01

    Several small molecules that inhibit the PI3 kinase (PI3K)-Akt signaling pathway are in clinical development. Although many of these molecules have been effective in preclinical models, it remains unclear whether this strategy alone will be sufficient to interrupt the molecular events initiated and maintained by signaling along the pathways because of the activation of other pathways that compensate for the inhibition of the targeted kinase. In this study, we performed a synthetic lethality screen to identify genes or pathways whose inactivation, in combination with the PI3K inhibitors PX-866 and NVPBEZ-235, might result in a lethal phenotype in glioblastoma multiforme (GBM) cells. We screened GBM cells (U87, U251, and T98G) with a large-scale, short hairpin RNA library (GeneNet), which contains 43 800 small interfering RNA sequences targeting 8500 well-characterized human genes. To decrease off-target effects, we selected overlapping genes among the 3 cell lines that synergized with PX-866 to induce cell death. To facilitate the identification of potential targets, we used a GSE4290 dataset and The Cancer Genome Atlas GBM dataset, identifying 15 target genes overexpressed in GBM tissues. We further analyzed the selected genes using Ingenuity Pathway Analysis software and showed that the 15 genes were closely related to cancer-promoting pathways, and a highly interconnected network of aberrations along the MYC, P38MAPK, and ERK signaling pathways were identified. Our findings suggest that inhibition of these pathways might increase tumor sensitivity to PX-866 and therefore represent a potential clinical therapeutic strategy. PMID:21430111

  2. Wnt5a promotes migration of human osteosarcoma cells by triggering a phosphatidylinositol-3 kinase/Akt signals

    PubMed Central

    2014-01-01

    Wnt5a is classified as a non-transforming Wnt family member and plays complicated roles in oncogenesis and cancer metastasis. However, Wnt5a signaling in osteosarcoma progression remains poorly defined. In this study, we found that Wnt5a stimulated the migration of human osteosarcoma cells (MG-63), with the maximal effect at 100 ng/ml, via enhancing phosphorylation of phosphatidylinositol-3 kinase (PI3K)/Akt. PI3K and Akt showed visible signs of basal phosphorylation and elevated phosphorylation at 15 min after stimulation with Wnt5a. Pharmaceutical inhibition of PI3K with LY294002 significantly blocked the Wnt5a-induced activation of Akt (p-Ser473) and decreased Wnt5a-induced cell migration. Akt siRNA remarkably inhibited Wnt5a-induced cell migration. Additionally, Wnt5a does not alter the total expression and phosphorylation of β-catenin in MG-63 cells. Taken together, we demonstrated for the first time that Wnt5a promoted osteosarcoma cell migration via the PI3K/Akt signaling pathway. These findings could provide a rationale for designing new therapy targeting osteosarcoma metastasis. PMID:24524196

  3. Salinomycin causes migration and invasion of human fibrosarcoma cells by inducing MMP-2 expression via PI3-kinase, ERK-1/2 and p38 kinase pathways.

    PubMed

    Yu, Seon-Mi; Kim, Song Ja

    2016-06-01

    Salinomycin (SAL) is a polyether ionophore antibiotic that has recently been shown to regulate a variety of cellular responses in various human cancer cells. However, the effects of SAL on metastatic capacity of HT1080 human fibrosarcoma cells have not been elucidated. We investigated the effect of SAL on migration and invasion, with emphasis on the expression and activation of matrix metalloproteinase (MMP)-2 in HT1080 human fibrosarcoma cells. Treatment of SAL promoted the expression and activation of MMP-2 in a dose- and time-dependent manner, as detected by western blot analysis, gelatin zymography, and real-time polymerase chain reaction. SAL also increased metastatic capacities, as determined by an increase in the migration and invasion of cells using the wound healing assay and the invasion assay, respectively. To confirm the detailed molecular mechanisms of these effects, we measured the activation of phosphoinositide 3 kinase (PI3-kinase) and mitogen-activated protein kinase (MAPK)s (ERK-1/2 and p38 kinase), as detected by the phosphorylated proteins through western blot analysis. SAL treatment increased the phosphorylation of Akt and MAPKs. Inhibition of PI3-kinase, ERK-1/2, and p38 kinase with LY294002, PD98059, and SB203580, respectively, in the presence of SAL suppressed the metastatic capacity by reducing MMP-2 expression, as determined by gelatin zymography. Our results indicate that the PI3-kinase and MAPK signaling pathways are involved in migration and invasion of HT1080 through induction of MMP-2 expression and activation. In conclusion, SAL significantly increases the metastatic capacity of HT1080 cells by inducing MMP-2 expression via PI3-kinase and MAPK pathways. Our results suggest that SAL may be a potential agent for the study of cancer metastatic capacities. PMID:27035160

  4. Simvastatin increases excitability in the hippocampus via a PI3 kinase-dependent mechanism.

    PubMed

    Métais, C; Hughes, B; Herron, C E

    2015-04-16

    Simvastatin is an HMG-CoA reductase inhibitor commonly used in the clinic to treat hypercholesterolemia. In addition, simvastatin has been shown to cross the blood-brain barrier and pleiotropic effects of simvastatin have been reported including anti-inflammatory properties, enhancement of neurite outgrowth, and memory enhancement properties. However, little has been reported on the effects of simvastatin on basal synaptic transmission and neuronal excitability. Here we report that simvastatin increases the fEPSP, the N-methyl-D-aspartate (NMDA) receptor-mediated fEPSP using extracellular recordings in the dendritic region of the CA1 of hippocampal slices taken from 8-week-old C57Black6J mice. In addition, we found that simvastatin perfusion causes a change in the input/output curve and a decrease of the paired-pulse facilitation ratio, indicating respectively an increase of the neuronal excitability and neurotransmitter release. We have also observed that acute application of simvastatin increased the amplitude of the compound action potential in the CA1 region. Notably, using LY294002, we have demonstrated that this effect was PI3K dependent and was occluded if the animals had previously received a diet supplemented with simvastatin. We have finally shown that the simvastatin-mediated increase of the compound action potential amplitude was also present in hippocampal slices from aged mice. PMID:25701710

  5. Cannabinoid receptor agonist WIN55,212-2 and fatty acid amide hydrolase inhibitor URB597 may protect against cognitive impairment in rats of chronic cerebral hypoperfusion via PI3K/AKT signaling.

    PubMed

    Su, Shao-Hua; Wang, Yue-Qing; Wu, Yi-Fang; Wang, Da-Peng; Lin, Qi; Hai, Jian

    2016-10-15

    The present study further investigated the protective effects of cannabinoid receptor agonist WIN55,212-2 (WIN) and fatty acid amide hydrolase (FAAH) inhibitor URB597 (URB) on chronic cerebral hypoperfusion (CCH)-induced cognitive impairment in rats. Spatial learning and memory were assessed with the Morris water maze and by measuring Long-term potentiation. The expression of microtubule-associated protein-2 (MAP)-2, growth-associated protein-43 (GAP)-43, synaptophysin, cannabinoid receptor 1 (CB1), brain-derived neurotrophic factor (BDNF), FAAH, N-acylphosphatidylethanolamine phospholipase D(NAPE-PLD) and monoacyl glycerol lipase (MGL) as well as phosphoinositide 3-kinase (PI3K)/AKT signaling pathway molecules and downstream targets including AKT, phosphorylated (p-)AKT, cyclic AMP response element- binding protein (CREB), p-CREB, Bcl-2-associated death protein (BAD), p-BAD, glycogen synthase kinase (GSK)-3β, p-GSK-3β, forkhead box protein (FOXO) 3A and p-FOXO3A was determined by western blotting. WIN and URB treatment improved learning and memory performance, effects that were abolished by co-administration of the PI3K/AKT inhibitor LY294002. Moreover, WIN and URB reversed the decreases in MAP-2 and synaptophysin expression resulting from CCH, and stimulated BDNF and CB1 expression as well as CREB, FOXO3A, GSK-3β, and BAD phosphorylation, confirming that WIN and URB mediate neuroprotection by preventing neuronal apoptosis and improving cognition via PI3K/AKT signaling. These findings suggest that WIN and URB are promising agents for therapeutic management of CCH. PMID:27424778

  6. Autophagy inhibitors as a potential antiamoebic treatment for Acanthamoeba keratitis.

    PubMed

    Moon, Eun-Kyung; Kim, So-Hee; Hong, Yeonchul; Chung, Dong-Il; Goo, Youn-Kyoung; Kong, Hyun-Hee

    2015-07-01

    Acanthamoeba cysts are resistant to extreme physical and chemical conditions. Autophagy is an essential pathway for encystation of Acanthamoeba cells. To evaluate the possibility of an autophagic Acanthamoeba encystation mechanism, we evaluated autophagy inhibitors, such as 3-methyladenine (3MA), LY294002, wortmannin, bafilomycin A, and chloroquine. Among these autophagy inhibitors, the use of 3MA and chloroquine showed a significant reduction in the encystation ratio in Acanthamoeba cells. Wortmannin also inhibited the formation of mature cysts, while LY294002 and bafilomycin A did not affect the encystation of Acanthamoeba cells. Transmission electron microscopy revealed that 3MA and wortmannin inhibited autophagy formation and that chloroquine interfered with the formation of autolysosomes. Inhibition of autophagy or autolysosome formation resulted in a significant block in the encystation in Acanthamoeba cells. Clinical treatment with 0.02% polyhexamethylene biguanide (PHMB) showed high cytopathic effects on Acanthamoeba trophozoites and cysts; however, it also revealed high cytopathic effects on human corneal epithelial cells. In this study, we investigated effects of the combination of a low (0.00125%) concentration of PHMB with each of the autophagy inhibitors 3MA, wortmannin, and chloroquine on Acanthamoeba and human corneal epithelial cells. These new combination treatments showed low cytopathic effects on human corneal cells and high cytopathic effects on Acanthamoeba cells. Taken together, these results provide fundamental information for optimizing the treatment of Acanthamoeba keratitis. PMID:25896709

  7. Effects and mechanisms of melatonin on neural differentiation of induced pluripotent stem cells.

    PubMed

    Shu, Tao; Wu, Tao; Pang, Mao; Liu, Chang; Wang, Xuan; Wang, Juan; Liu, Bin; Rong, Limin

    2016-06-01

    Melatonin, a lipophilic molecule mainly synthesized in the pineal gland, has properties of antioxidation, anti-inflammation, and antiapoptosis to improve neuroprotective functions. Here, we investigate effects and mechanisms of melatonin on neural differentiation of induced pluripotent stem cells (iPSCs). iPSCs were induced into neural stem cells (NSCs), then further differentiated into neurons in medium with or without melatonin, melatonin receptor antagonist (Luzindole) or Phosphatidylinositide 3 kinase (PI3K) inhibitor (LY294002). Melatonin significantly promoted the number of neurospheres and cell viability. In addition, Melatonin markedly up-regulated gene and protein expression of Nestin and MAP2. However, Luzindole or LY294002 attenuated these increase. The expression of pAKT/AKT were increased by Melatonin, while Luzindole or LY294002 declined these melatonin-induced increase. These results suggest that melatonin significantly increased neural differentiation of iPSCs via activating PI3K/AKT signaling pathway through melatonin receptor. PMID:27130826

  8. Effects of inhibitors of vascular endothelial growth factor receptor 2 and downstream pathways of receptor tyrosine kinases involving phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin or mitogen-activated protein kinase in canine hemangiosarcoma cell lines.

    PubMed

    Adachi, Mami; Hoshino, Yuki; Izumi, Yusuke; Sakai, Hiroki; Takagi, Satoshi

    2016-07-01

    Canine hemangiosarcoma (HSA) is a progressive malignant neoplasm with no current effective treatment. Previous studies showed that receptor tyrosine kinases and molecules within their downstream pathways involving phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (m-TOR) or mitogen-activated protein kinase (MAPK) were overexpressed in canine, human, and murine tumors, including HSA. The present study investigated the effects of inhibitors of these pathways in canine splenic and hepatic HSA cell lines using assays of cell viability and apoptosis. Inhibitors of the MAPK pathway did not affect canine HSA cell viability. However, cell viability was significantly reduced by exposure to inhibitors of vascular endothelial growth factor receptor 2 and the PI3K/Akt/m-TOR pathway; these inhibitors also induced apoptosis in these cell lines. These results suggest that these inhibitors reduce the proliferation of canine HSA cells by inducing apoptosis. Further study of these inhibitors, using xenograft mouse models of canine HSA, are warranted to explore their potential for clinical application. PMID:27408334

  9. Development of a potent and selective FLT3 kinase inhibitor by systematic expansion of a non-selective fragment-screening hit.

    PubMed

    Nakano, Hirofumi; Hasegawa, Tsukasa; Imamura, Riyo; Saito, Nae; Kojima, Hirotatsu; Okabe, Takayoshi; Nagano, Tetsuo

    2016-05-01

    A non-selective inhibitor (1) of FMS-like tyrosine kinase-3 (FLT3) was identified by fragment screening and systematically modified to afford a potent and selective inhibitor 26. We confirmed that 26 inhibited the growth of FLT-3-activated human acute myeloid leukemia cell line MV4-11. Our design strategy enabled rapid development of a novel type of FLT3 inhibitor from the hit fragment in the absence of target-structural information. PMID:26995531

  10. Discovery of Bifunctional Oncogenic Target Inhibitors against Allosteric Mitogen-Activated Protein Kinase (MEK1) and Phosphatidylinositol 3-Kinase (PI3K).

    PubMed

    Van Dort, Marcian E; Hong, Hao; Wang, Hanxiao; Nino, Charles A; Lombardi, Rachel L; Blanks, Avery E; Galbán, Stefanie; Ross, Brian D

    2016-03-24

    The synthesis of a series of single entity, bifunctional MEK1/PI3K inhibitors achieved by covalent linking of structural analogs of the ATP-competitive PI3K inhibitor ZSTK474 and the ATP-noncompetitive MEK inhibitor PD0325901 is described. Inhibitors displayed potent in vitro inhibition of MEK1 (0.015 < IC50 (nM) < 56.7) and PI3K (54 < IC50 (nM) < 341) in enzymatic inhibition assays. Concurrent MEK1 and PI3K inhibition was demonstrated with inhibitors 9 and 14 in two tumor cell lines (A549, D54). Inhibitors produced dose-dependent decreased cell viability similar to the combined administration of equivalent doses of ZSTK474 and PD0325901. In vivo efficacy of 14 following oral administration was demonstrated in D54 glioma and A549 lung tumor bearing mice. Compound 14 showed a 95% and 67% inhibition of tumor ERK1/2 and Akt phosphorylation, respectively, at 2 h postadministration by Western blot analysis, confirming the bioavailability and efficacy of this bifunctional inhibitor strategy toward combined MEK1/PI3K inhibition. PMID:26943489

  11. Osthole relaxes pulmonary arteries through endothelial phosphatidylinositol 3-kinase/Akt-eNOS-NO signaling pathway in rats.

    PubMed

    Yao, Li; Lu, Ping; Li, Yumei; Yang, Lijing; Feng, Hongxuan; Huang, Yong; Zhang, Dandan; Chen, Jianguo; Zhu, Daling

    2013-01-15

    Pulmonary arterial hypertension is a life-threatening disease lacking effective therapies. Osthole is a natural coumarin compound isolated from Angelica pubescens Maxim., which possesses hypotensive effect. Although its effects on isolated thoracic aorta (systemic circulating system) are clarified, it remains unclear whether Osthole relaxes isolated pulmonary arteries (PAs) (pulmonary circulating system). The aim of this study was to investigate the effects of Osthole on isolated PAs and the underlying mechanisms. We examined PA relaxation induced by Osthole in isolated human and rat PA rings with force-electricity transducers, the expression and activity of endothelial nitric oxide synthase (eNOS) and protein kinase B (Akt) with western blot, and nitric oxide (NO) production using DAF-FM DA fluorescent indicator. The results showed that Osthole elicited a dose-dependent vasorelaxation activity with phenylephrine-precontracted human and rat PA rings, which can be diminished by endothelium denudation and inhibition of eNOS, while having no effect on rat mesenteric arteries. Osthole increased NO release as well as activation of Akt and eNOS, indicated with increased phosphorylations of Akt at Ser-473 and eNOS at Ser-1177 in endothelial cells. PI3K inhibitor LY294002 also blocked Osthole induced vasodilation. In summary, dilative effect of Osthole was dependent on endothelial integrity and NO production, and was mediated by endothelial PI3K/Akt-eNOS-NO pathway. These may provide a new pulmonary vasodilator for the therapy of pulmonary arterial hypertension. PMID:23220709

  12. Dual inhibition of histone deacetylases and phosphoinositide 3-kinases: effects on Burkitt lymphoma cell growth and migration.

    PubMed

    Ferreira, Ana Carolina dos Santos; de-Freitas-Junior, Julio Cesar Madureira; Morgado-Díaz, Jose Andres; Ridley, Anne J; Klumb, Claudete Esteves

    2016-04-01

    Burkitt lymphoma is a highly aggressive non-Hodgkin lymphoma that is characterized by MYC deregulation. Recently, the PI3K pathway has emerged as a cooperative prosurvival mechanism in Burkitt lymphoma. Despite the highly successful results of treatment that use high-dose chemotherapy regimens in pediatric Burkitt lymphoma patients, the survival rate of pediatric patients with progressive or recurrent disease is low. PI3Ks are also known to regulate cell migration, and abnormal cell migration may contribute to cancer progression and dissemination in Burkitt lymphoma. Little is known about Burkitt lymphoma cell migration, but the cooperation between MYC and PI3K in Burkitt lymphoma pathogenesis suggests that a drug combination could be used to target the different steps involved in Burkitt lymphoma cell dissemination and disease progression. The aim of this study was to investigate the effects of the histone deacetylase inhibitor suberoylanilide hydroxamic acid combined with the PI3K inhibitor LY294002 on Burkitt lymphoma cell growth and migration. The combination enhanced the cell growth inhibition and cell-cycle arrest induced by the PI3K inhibitor or histone deacetylase inhibitor individually. Moreover, histone deacetylase inhibitor/PI3K inhibitor cotreatment suppressed Burkitt lymphoma cell migration and decreased cell polarization, Akt and ERK1/2 phosphorylation, and leads to RhoB induction. In summary, the histone deacetylase inhibitor/PI3Ki combination inhibits cell proliferation and migration via alterations in PI3K signaling and histone deacetylase activity, which is involved in the acetylation of α-tubulin and the regulation of RhoB expression. PMID:26561567

  13. Factors Influencing the Central Nervous System Distribution of a Novel Phosphoinositide 3-Kinase/Mammalian Target of Rapamycin Inhibitor GSK2126458: Implications for Overcoming Resistance with Combination Therapy for Melanoma Brain Metastases.

    PubMed

    Vaidhyanathan, Shruthi; Wilken-Resman, Brynna; Ma, Daniel J; Parrish, Karen E; Mittapalli, Rajendar K; Carlson, Brett L; Sarkaria, Jann N; Elmquist, William F

    2016-02-01

    Small molecule inhibitors targeting the mitogen-activated protein kinase pathway (Braf/mitogen-activated protein kinase kinase/extracellular signal-regulated kinase) have had success in extending survival for patients with metastatic melanoma. Unfortunately, resistance may occur via cross-activation of alternate signaling pathways. One approach to overcome resistance is to simultaneously target the phosphoinositide 3-kinase/mammalian target of rapamycin signaling pathway. Recent reports have shown that GSK2126458 [2,4-difluoro-N-(2-methoxy-5-(4-(pyridazin-4-yl)quinolin-6-yl)pyridin-3-yl) benzenesulfonamide], a dual phosphoinositide 3-kinase/mammalian target of rapamycin inhibitor, can overcome acquired resistance to Braf and mitogen-activated protein kinase kinase inhibitors in vitro. These resistance mechanisms may be especially important in melanoma brain metastases because of limited drug delivery across the blood-brain barrier. The purpose of this study was to investigate factors that influence the brain distribution of GSK2126458 and to examine the efficacy of GSK2126458 in a novel patient-derived melanoma xenograft (PDX) model. Both in vitro and in vivo studies indicate that GSK2126458 is a substrate for P-glycoprotein (P-gp) and breast cancer resistance protein (Bcrp), two dominant active efflux transporters in the blood-brain barrier. The steady-state brain distribution of GSK2126458 was 8-fold higher in the P-gp/Bcrp knockout mice compared with the wild type. We also observed that when simultaneously infused to steady state, GSK212658, dabrafenib, and trametinib, a rational combination to overcome mitogen-activated protein kinase inhibitor resistance, all had limited brain distribution. Coadministration of elacridar, a P-gp/Bcrp inhibitor, increased the brain distribution of GSK2126458 by approximately 7-fold in wild-type mice. In the PDX model, GSK2126458 showed efficacy in flank tumors but was ineffective in intracranial melanoma. These results show that

  14. Extracellular signal-regulated kinase and phosphoinositol-3 kinase mediate IGF-1 induced proliferation of fetal sheep cardiomyocytes.

    PubMed

    Sundgren, Nathan C; Giraud, George D; Schultz, Jess M; Lasarev, Michael R; Stork, Philip J S; Thornburg, Kent L

    2003-12-01

    Growth of the fetal heart involves cardiomyocyte enlargement, division, and maturation. Insulin-like growth factor-1 (IGF-1) is implicated in many aspects of growth and is likely to be important in developmental heart growth. IGF-1 stimulates the IGF-1 receptor (IGF1R) and downstream signaling pathways, including extracellular signal-regulated kinase (ERK) and phosphoinositol-3 kinase (PI3K). We hypothesized that IGF-1 stimulates cardiomyocyte proliferation and enlargement through stimulation of the ERK cascade and stimulates cardiomyocyte differentiation through the PI3K cascade. In vivo administration of Long R3 IGF-1 (LR3 IGF-1) did not stimulate cardiomyocyte hypertrophy but led to a decreased percentage of cells that were binucleated in vivo. In culture, LR3 IGF-1 increased myocyte bromodeoxyuridine (BrdU) uptake by three- to five-fold. The blockade of either ERK or PI3K signaling (by UO-126 or LY-294002, respectively) completely abolished BrdU uptake stimulated by LR3 IGF-1. LR3 IGF-1 did not increase footprint area, but as expected, phenylephrine stimulated an increase in binucleated cardiomyocyte size. We conclude that 1) IGF-1 through IGF1R stimulates cardiomyocyte division in vivo; hyperplastic growth is the most likely explanation of IGF-1 stimulated heart growth in vivo; 2) IGF-1 through IGF1R does not stimulate binucleation in vitro or in vivo; 3) IGF-1 through IGF1R does not stimulate hypertrophy either in vivo or in vitro; and 4) IGF-1 through IGF1R requires both ERK and PI3K signaling for proliferation of near-term fetal sheep cardiomyocytes in vitro. PMID:12947030

  15. Identifying Inhibitors of Epithelial-Mesenchymal Transition by Connectivity-Map Based Systems Approach

    PubMed Central

    Reka, Ajaya Kumar; Kuick, Rork; Kurapati, Himabindu; Standiford, Theodore J.; Omenn, Gilbert S.; Keshamouni, Venkateshwar G.

    2011-01-01

    Background Acquisition of mesenchymal phenotype by epithelial cells by means of epithelial mesenchymal transition (EMT) is considered as an early event in the multi-step process of tumor metastasis. Therefore, inhibition of EMT might be a rational strategy to prevent metastasis. Methods Utilizing the global gene expression profile from a cell culture model of TGF-β-induced EMT, we identified potential EMT inhibitors. We used a publicly available database (www.broad.mit.edu/cmap) comprising gene expression profiles obtained from multiple different cell lines in response to various drugs to derive negative correlations to EMT gene expression profile using Connectivity Map (C-Map), a pattern matching tool. Results Experimental validation of the identified compounds showed rapamycin as a novel inhibitor of TGF-β signaling along with 17-AAG, a known modulator of TGF-β pathway. Both of these compounds completely blocked EMT and the associated migratory and invasive phenotype. The other identified compound, LY294002, demonstrated a selective inhibition of mesenchymal markers, cell migration and invasion, without affecting the loss of E-cadherin expression or Smad phosphorylation. Conclusions Collectively, our data reveals that rapamycin is a novel modulator of TGF-β signaling, and along with 17-AAG and LY294002, could be used as therapeutic agent for inhibiting EMT. Also, this analysis demonstrates the potential of a systems approach in identifying novel modulators of a complex biological process. PMID:21964532

  16. Adhesion of ZAP-70+ chronic lymphocytic leukemia cells to stromal cells is enhanced by cytokines and blocked by inhibitors of the PI3-kinase pathway.

    PubMed

    Lafarge, Sandrine T; Johnston, James B; Gibson, Spencer B; Marshall, Aaron J

    2014-01-01

    CLL cell survival and proliferation is enhanced through direct contact with supporting cells present in lymphoid tissues. PI3Ks are critical signal transduction enzymes controlling B cell survival and activation. PI3K inhibitors have entered clinical trials and show promising therapeutic activity; however, it is unclear whether PI3K inhibitor drugs differentially affect ZAP-70 positive versus negative CLL cells or target specific microenvironmental interactions. Here we provide evidence that CD40L+IL-4, IL-8 or IL-6 enhance adhesion to stromal cells, with IL-6 showing a selective effect on ZAP-70 positive cells. Stimulatory effects of IL-8 or IL-6 are fully reversed by PI3K inhibition, while the effects of CD40L+IL-4 are partially reversed. While CD40L+IL-4 is the only stimulation increasing CLL cell survival for all patient groups, IL-6 protects ZAP-70 positive cells from cell death induced by PI3K inhibition. Altogether, our results indicate that targeting the PI3K pathway can reverse protective CLL-microenvironment interactions in both ZAP-70 positive and negative CLL despite their differences in cytokine responsiveness. PMID:23981382

  17. The pan-class I phosphatidyl-inositol-3 kinase inhibitor NVP-BKM120 demonstrates anti-leukemic activity in acute myeloid leukemia

    PubMed Central

    Allegretti, Matteo; Ricciardi, Maria Rosaria; Licchetta, Roberto; Mirabilii, Simone; Orecchioni, Stefania; Reggiani, Francesca; Talarico, Giovanna; Foà, Roberto; Bertolini, Francesco; Amadori, Sergio; Torrisi, Maria Rosaria; Tafuri, Agostino

    2015-01-01

    Aberrant activation of the PI3K/Akt/mTOR pathway is a common feature of acute myeloid leukemia (AML) patients contributing to chemoresistance, disease progression and unfavourable outcome. Therefore, inhibition of this pathway may represent a potential therapeutic approach in AML. The aim of this study was to evaluate the pre-clinical activity of NVP-BKM120 (BKM120), a selective pan-class I PI3K inhibitor, on AML cell lines and primary samples. Our results demonstrate that BKM120 abrogates the activity of the PI3K/Akt/mTOR signaling, promoting cell growth arrest and significant apoptosis in a dose- and time-dependent manner in AML cells but not in the normal counterpart. BKM120-induced cytotoxicity is associated with a profound modulation of metabolic behaviour in both cell lines and primary samples. In addition, BKM120 synergizes with the glycolitic inhibitor dichloroacetate enhancing apoptosis induction at lower doses. Finally, in vivo administration of BKM120 to a xenotransplant mouse model of AML significantly inhibited leukemia progression and improved the overall survival of treated mice. Taken together, our findings indicate that BKM120, alone or in combination with other drugs, has a significant anti-leukemic activity supporting its clinical development as a novel therapeutic agent in AML. PMID:26674543

  18. Imidazo[1,2-a]pyrazine inhibitors of phosphoinositide 3-kinase alpha (PI3Kα): 3D-QSAR analysis utilizing the Hybrid Monte Carlo algorithm to refine receptor-ligand complexes for molecular alignment.

    PubMed

    Chadha, N; Jasuja, H; Kaur, M; Singh Bahia, M; Silakari, O

    2014-01-01

    Phosphoinositide 3-kinase alpha (PI3Kα) is a lipid kinase involved in several cellular functions such as cell growth, proliferation, differentiation and survival, and its anomalous regulation leads to cancerous conditions. PI3Kα inhibition completely blocks the cancer signalling pathway, hence it can be explored as an important therapeutic target for cancer treatment. In the present study, docking analysis of 49 selective imidazo[1,2-a]pyrazine inhibitors of PI3Kα was carried out using the QM-Polarized ligand docking (QPLD) program of the Schrödinger software, followed by the refinement of receptor-ligand conformations using the Hybrid Monte Carlo algorithm in the Liaison program, and alignment of refined conformations of inhibitors was utilized for the development of an atom-based 3D-QSAR model in the PHASE program. Among the five generated models, the best model was selected corresponding to PLS factor 2, displaying the highest value of Q(2)test (0.650). The selected model also displayed high values of r(2)train (0.917), F-value (166.5) and Pearson-r (0.877) and a low value of SD (0.265). The contour plots generated for the selected 3D-QSAR model were correlated with the results of docking simulations. Finally, this combined information generated from 3D-QSAR and docking analysis was used to design new congeners. PMID:24601789

  19. Phosphatidylinositol 3-kinase and 4-kinase have distinct roles in intracellular trafficking of cellulose synthase complexes in Arabidopsis thaliana.

    PubMed

    Fujimoto, Masaru; Suda, Yasuyuki; Vernhettes, Samantha; Nakano, Akihiko; Ueda, Takashi

    2015-02-01

    The oriented deposition of cellulose microfibrils in the plant cell wall plays a crucial role in various plant functions such as cell growth, organ formation and defense responses. Cellulose is synthesized by cellulose synthase complexes (CSCs) embedded in the plasma membrane (PM), which comprise the cellulose synthases (CESAs). The abundance and localization of CSCs at the PM should be strictly controlled for precise regulation of cellulose deposition, which strongly depends on the membrane trafficking system. However, the mechanism of the intracellular transport of CSCs is still poorly understood. In this study, we explored requirements for phosphoinositides (PIs) in CESA trafficking by analyzing the effects of inhibitors of PI synthesis in Arabidopsis thaliana expressing green fluorescent protein-tagged CESA3 (GFP-CESA3). We found that a shift to a sucrose-free condition accelerated re-localization of PM-localized GFP-CESA3 into the periphery of the Golgi apparatus via the clathrin-enriched trans-Golgi network (TGN). Treatment with wortmannin (Wm), an inhibitor of phosphatidylinositol 3- (PI3K) and 4- (PI4K) kinases, and phenylarsine oxide (PAO), a more specific inhibitor for PI4K, inhibited internalization of GFP-CESA3 from the PM. In contrast, treatment with LY294002, which impairs the PI3K activity, did not exert such an inhibitory effect on the sequestration of GFP-CESA3, but caused a predominant accumulation of GFP-CESA3 at the ring-shaped periphery of the Golgi apparatus, resulting in the removal of GFP-CESA3 from the PM. These results indicate that PIs are essential elements for localization and intracellular transport of CESA3 and that PI4K and PI3K are required for distinct steps in secretory and/or endocytic trafficking of CESA3. PMID:25516570

  20. A Phase Ib Study of BEZ235, a Dual Inhibitor of Phosphatidylinositol 3-Kinase (PI3K) and Mammalian Target of Rapamycin (mTOR), in Patients With Advanced Renal Cell Carcinoma

    PubMed Central

    Carlo, Maria I.; Molina, Ana M.; Lakhman, Yulia; Patil, Sujata; Woo, Kaitlin; DeLuca, John; Lee, Chung-Han; Hsieh, James J.; Feldman, Darren R.; Motzer, Robert J.

    2016-01-01

    Lessons Learned Our results highlight additional toxicities of dual PI3K/mTOR inhibition in the clinical setting that were unforeseen from preclinical models. Because of toxicity and lack of efficacy, BEZ235 should not be further developed in the current formulation for patients with renal cell carcinoma. Background. Allosteric inhibitors of the mammalian target of rapamycin complex 1 (mTORC1) are approved for advanced renal cell carcinoma (RCC). Preclinical models have suggested that dual inhibition of phosphatidylinositol 3-kinase (PI3K) and mTOR kinase may establish superior anticancer effect. We aimed to establish safety for BEZ235, a potent inhibitor of both PI3K and mTOR, in advanced RCC. Methods. Patients with advanced RCC who had previously failed standard therapy received escalating doses of BEZ235 in sachet formulation twice daily until progression or unacceptable toxicity. Primary endpoints were to identify the maximally tolerated dose (MTD) and to determine the recommended dose for the phase II study. Results. The study was terminated early because of high incidence of dose-limiting toxicities (DLTs) across all dose levels tested. Ten patients were treated with BEZ235—six with clear cell and four with non-clear cell subtypes. Five of these patients suffered DLTs: 2 of 2 patients in the original 400 mg b.i.d. cohort, 1 of 6 in the 200 mg b.i.d. cohort, and 2 of 2 in the 300 mg b.i.d. cohort. DLTs included fatigue, rash, nausea and vomiting, diarrhea, mucositis, anorexia, and dysgeusia. Five patients were evaluable for response: Two had stable disease as best response, and three had progressive disease. Conclusion. BEZ235 twice daily resulted in significant toxicity without objective responses; further development of this compound will not be pursued in this disease. PMID:27286790

  1. Alterations in microRNA expression profile in HCV-infected hepatoma cells: Involvement of miR-491 in regulation of HCV replication via the PI3 kinase/Akt pathway

    SciTech Connect

    Ishida, Hisashi; Tatsumi, Tomohide; Hosui, Atsushi; Nawa, Takatoshi; Kodama, Takahiro; Shimizu, Satoshi; Hikita, Hayato; Hiramatsu, Naoki; Kanto, Tatsuya; Hayashi, Norio; Takehara, Tetsuo

    2011-08-19

    Highlights: {yields} HCV infection upregulated miR-192, -194, -215, downregulated miR-320, -491. {yields} Transfection of miR-192, -215, and -491 enhanced HCV replication. {yields} Transfection of miR-491 inhibited Akt phosphorylation. {yields} Akt inhibition could be responsible for augmentation of HCV replication by miR-491. -- Abstract: The aim of this study was to investigate the role of microRNA (miRNA) on hepatitis C virus (HCV) replication in hepatoma cells. Using miRNA array analysis, miR-192/miR-215, miR-194, miR-320, and miR-491 were identified as miRNAs whose expression levels were altered by HCV infection. Among them, miR-192/miR-215 and miR-491 were capable of enhancing replication of the HCV replicon as well as HCV itself. HCV IRES activity or cell proliferation was not increased by forced expression of miR-192/miR-215 or miR-491. Investigation of signaling pathways revealed that miR-491 specifically suppressed the phosphoinositol-3 (PI3) kinase/Akt pathway. Under inhibition of PI3 kinase by LY294002, the suppressive effect of miR-491 on HCV replication was abolished, indicating that suppression of HCV replication by miR-491 was dependent on the PI3 kinase/Akt pathway. miRNAs altered by HCV infection would then affect HCV replication, which implies a complicated mechanism for regulating HCV replication. HCV-induced miRNA may be involved in changes in cellular properties including hepatocarcinogenesis.

  2. The role of the PI3K-Akt signal transduction pathway in Autographa californica multiple nucleopolyhedrovirus infection of Spodoptera frugiperda cells

    SciTech Connect

    Xiao Wei; Yang Yi; Weng Qingbei; Lin Tiehao; Yuan Meijin; Yang Kai; Pang Yi

    2009-08-15

    Many viruses activate the phosphatidylinositol 3-kinase (PI3K)-Akt signaling pathway, thereby modulating diverse downstream signaling pathways associated with antiapoptosis, proliferation, cell cycling, protein synthesis and glucose metabolism, in order to augment their replication. To date, the role of the PI3K-Akt pathway in Baculovirus replication has not been defined. In the present study, we demonstrate that infection of Sf9 cells with Autographa californica multiple nucleopolyhedrovirus (AcMNPV) elevated cellular Akt phosphorylation at 1 h post-infection. The maximum Akt phosphorylation occurred at 6 h post-infection and remained unchanged until 18 h post-infection. The PI3K-specific inhibitor, LY294002, suppressed Akt phosphorylation in a dose-dependent manner, suggesting that AcMNPV-induced Akt phosphorylation is PI3K-dependent. The inhibition of PI3K-Akt activation by LY294002 significantly reduced the viral yield, including a reduction in budded viruses and occlusion bodies. The virus production was reduced only when the inhibitor was added within 24 h of infection, implying that activation of PI3K occurred early in infection. Correspondingly, both viral DNA replication and late (VP39) and very late (POLH) viral protein expression were impaired by LY294002 treatment; LY294002 had no effect on immediate-early (IE1) and early-late (GP64) protein expression. These results demonstrate that the PI3K-Akt pathway is required for efficient Baculovirus replication.

  3. Decrease in transient receptor potential melastatin 6 mRNA stability caused by rapamycin in renal tubular epithelial cells.

    PubMed

    Ikari, Akira; Sanada, Ayumi; Sawada, Hayato; Okude, Chiaki; Tonegawa, Chie; Sugatani, Junko

    2011-06-01

    Rapamycin, an inhibitor of mammalian target of rapamycin (mTOR), is used in treatments for transplantation and cancer. Rapamycin causes hypomagnesemia, although precisely how has not been examined. Here, we investigated the effect of rapamycin on the expression of transient receptor potential melastatin 6 (TRPM6), a Mg2+ channel. Rapamycin and LY-294002, an inhibitor of phosphatidilinositol-3 kinase (PI3K) located upstream of mTOR, inhibited epidermal growth factor (EGF)-induced expression of the TRPM6 protein without affecting TRPM7 expression in rat renal NRK-52E epithelial cells. Both rapamycin and LY-294002 decreased EGF-induced Mg2+ influx. U0126, a MEK inhibitor, inhibited EGF-induced increases in c-Fos, p-ERK, and TRPM6 levels. In contrast, neither rapamycin nor LY-294002 inhibited EGF-induced increases in p-ERK and c-Fos levels. EGF increased p-Akt level, an effect inhibited by LY-294002 and 1L-6-hydroxymethyl-chiro-inositol2-[(R)-2-O-methyl-3-O-octadecylcarbonate] (Akt inhibitor). Akt inhibitor decreased TRPM6 level similar to rapamycin and LY-294002. These results suggest that a PI3K/Akt/mTOR pathway is involved in the regulation of TRPM6 expression. Rapamycin inhibited the EGF-induced increase in TRPM6 mRNA but did not inhibit human TRPM6 promoter activity. In the presence of actinomycin D, a transcriptional inhibitor, rapamycin accelerated the decrease in TRPM6 mRNA. Rapamycin decreased the expression and activity of a luciferase linked with the 3'-untranslated region of human TRPM6 mRNA. These results suggest that TRPM6 expression is up-regulated by a PI3K/Akt/mTOR pathway and rapamycin reduces TRPM6 mRNA stability, resulting in a decrease in the reabsorption of Mg2+. PMID:21073857

  4. A Potent Inhibitor of Phosphoinositide 3-Kinase (PI3K) and Mitogen Activated Protein (MAP) Kinase Signalling, Quercetin (3, 3', 4', 5, 7-Pentahydroxyflavone) Promotes Cell Death in Ultraviolet (UV)-B-Irradiated B16F10 Melanoma Cells

    PubMed Central

    Rafiq, Rather A.; Quadri, Afnan; Nazir, Lone A.; Peerzada, Kaiser; Ganai, Bashir A.; Tasduq, Sheikh A.

    2015-01-01

    Ultraviolet (UV) radiation–induced skin damage contributes strongly to the formation of melanoma, a highly lethal form of skin cancer. Quercetin (Qu), the most widely consumed dietary bioflavonoid and well known inhibitor of phosphoinositide 3-kinase (PI3K) and mitogen activated protein (MAP) kinase signalling, has been reported to be chemopreventive in several forms of non-melanoma skin cancers. Here, we report that the treatment of ultraviolet (UV)-B-irradiated B16F10 melanoma cells with quercetin resulted in a dose dependent reduction in cell viability and increased apoptosis. The present study has brought out that the pro-apoptotic effects of quercetin in UVB-irradiated B16F10 cells are mediated through the elevation of intracellular reactive oxygen species (ROS) formation, calcium homeostasis imbalance, modulation of anti-oxidant defence response and depolarization of mitochondrial membrane potential (ΔΨM). Promotion of UVB-induced cell death by quercetin was further revealed by cleavage of chromosomal DNA, caspase activation, poly (ADP) ribose polymerase (PARP) cleavage, and an increase in sub-G1 cells. Quercetin markedly attenuated MEK-ERK signalling, influenced PI3K/Akt pathway, and potentially enhanced the UVB-induced NF-κB nuclear translocation. Furthermore, combined UVB and quercetin treatment decreased the ratio of Bcl-2 to that of Bax, and upregulated the expression of Bim and apoptosis inducing factor (AIF). Overall, these results suggest the possibility of using quercetin in combination with UVB as a possible treatment option for melanoma in future. PMID:26148186

  5. First-in-human Phase I study of Pictilisib (GDC-0941), a potent pan-class I phosphatidylinositol-3-kinase (PI3K) inhibitor, in patients with advanced solid tumors

    PubMed Central

    Baird, Richard; Kristeleit, Rebecca; Shah, Krunal; Moreno, Victor; Clarke, Paul A.; Raynaud, Florence I.; Levy, Gallia; Ware, Joseph A; Mazina, Kathryn; Lin, Ray; Wu, Jenny; Fredrickson, Jill; Spoerke, Jill M; Lackner, Mark R; Yan, Yibing; Friedman, Lori S.; Kaye, Stan B.; Derynck, Mika K.; Workman, Paul; de Bono, Johann S.

    2014-01-01

    Purpose This first-in-human dose-escalation trial evaluated the safety, tolerability, maximal tolerated dose (MTD), dose limiting toxicities (DLTs), pharmacokinetics, pharmacodynamics and preliminary clinical activity of pictilisib (GDC-0941), an oral, potent and selective inhibitor of the Class I phosphatidylinositol-3-kinases (PI3K). Patients and Methods Sixty patients with solid tumors received pictilisib at 14 dose levels from 15 to 450mg once-daily, initially on days 1-21 every 28 days and later, utilizing continuous dosing for selected dose levels. Pharmacodynamic studies incorporated 18F-FDG-PET, and assessment of phosphorylated AKT and S6 ribosomal protein in platelet-rich plasma and tumor tissue. Results Pictilisib was well-tolerated. The most common toxicities were grade 1-2 nausea, rash and fatigue while the DLT was grade 3 maculopapular rash (450mg, 2 of 3 patients; 330mg, 1 of 7 patients). The pharmacokinetic profile was dose-proportional and supported once-daily dosing. Levels of phosphorylated serine-473 AKT were suppressed >90% in platelet rich plasma at 3 hours post-dose at the MTD and in tumor at pictilisib doses associated with AUC >20uM.hr. Significant increase in plasma insulin and glucose levels, and >25% decrease in 18F-FDG uptake by PET in 7 of 32 evaluable patients confirmed target modulation. A patient with V600E BRAF mutant melanoma and another with platinum-refractory epithelial ovarian cancer exhibiting PTEN loss and PIK3CA amplification demonstrated partial response by RECIST and GCIG-CA125 criteria, respectively. Conclusion Pictilisib was safely administered with a dose-proportional pharmacokinetic profile, on-target pharmacodynamic activity at dose levels ≥100mg and signs of antitumor activity. The recommended Phase II dose was continuous dosing at 330mg once-daily. PMID:25370471

  6. A Potent Inhibitor of Phosphoinositide 3-Kinase (PI3K) and Mitogen Activated Protein (MAP) Kinase Signalling, Quercetin (3, 3', 4', 5, 7-Pentahydroxyflavone) Promotes Cell Death in Ultraviolet (UV)-B-Irradiated B16F10 Melanoma Cells.

    PubMed

    Rafiq, Rather A; Quadri, Afnan; Nazir, Lone A; Peerzada, Kaiser; Ganai, Bashir A; Tasduq, Sheikh A

    2015-01-01

    Ultraviolet (UV) radiation-induced skin damage contributes strongly to the formation of melanoma, a highly lethal form of skin cancer. Quercetin (Qu), the most widely consumed dietary bioflavonoid and well known inhibitor of phosphoinositide 3-kinase (PI3K) and mitogen activated protein (MAP) kinase signalling, has been reported to be chemopreventive in several forms of non-melanoma skin cancers. Here, we report that the treatment of ultraviolet (UV)-B-irradiated B16F10 melanoma cells with quercetin resulted in a dose dependent reduction in cell viability and increased apoptosis. The present study has brought out that the pro-apoptotic effects of quercetin in UVB-irradiated B16F10 cells are mediated through the elevation of intracellular reactive oxygen species (ROS) formation, calcium homeostasis imbalance, modulation of anti-oxidant defence response and depolarization of mitochondrial membrane potential (ΔΨM). Promotion of UVB-induced cell death by quercetin was further revealed by cleavage of chromosomal DNA, caspase activation, poly (ADP) ribose polymerase (PARP) cleavage, and an increase in sub-G1 cells. Quercetin markedly attenuated MEK-ERK signalling, influenced PI3K/Akt pathway, and potentially enhanced the UVB-induced NF-κB nuclear translocation. Furthermore, combined UVB and quercetin treatment decreased the ratio of Bcl-2 to that of Bax, and upregulated the expression of Bim and apoptosis inducing factor (AIF). Overall, these results suggest the possibility of using quercetin in combination with UVB as a possible treatment option for melanoma in future. PMID:26148186

  7. Unequal neuroprotection afforded by the acetylcholinesterase inhibitors galantamine, donepezil, and rivastigmine in SH-SY5Y neuroblastoma cells: role of nicotinic receptors.

    PubMed

    Arias, Esperanza; Gallego-Sandín, Sonia; Villarroya, Mercedes; García, Antonio G; López, Manuela G

    2005-12-01

    Donepezil, rivastigmine, and galantamine are three drugs with acetylcholinesterase (AChE)-inhibiting activity that are currently being used to treat patients suffering from Alzheimer's disease. We have studied the neuroprotective effects of these drugs, in comparison with nicotine, on cell death caused by beta-amyloid (Abeta) and okadaic acid, two models that are relevant to Alzheimer's pathology, in the human neuroblastoma cell line SH-SY5Y. Galantamine and donepezil showed a U-shaped neuroprotective curve against okadaic acid toxicity; maximum protection was achieved at 0.3 microM galantamine and at 1 microM donepezil; at higher concentrations, protection was diminished. Rivastigmine showed a concentration-dependent effect; maximum protection was achieved at 3 microM. When apoptosis was induced by Abeta25-35, galantamine, donepezil, and rivastigmine showed maximum protection at the same concentrations: 0.3, 1, and 3 microM, respectively. Nicotine also afforded protection against Abeta- and okadaic acid-induced toxicity. The neuroprotective effects of galantamine, donepezil, and nicotine were reversed by the alpha7 nicotinic antagonist methyllycaconitine but not by the alpha4beta2 nicotinic antagonist dihydro-beta-erythroidine. The phosphoinositide 3-kinase (PI3K)-Akt blocker 2-(4-morpholinyl)-8-phenyl-1(4H)-benzopyran-4-one hydrochloride (LY294002) reversed the protective effects of galantamine, donepezil, and nicotine but not that of rivastigmine. In contrast, the bcl-2 antagonist ethyl[2-amino-6-bromo-4-(1-cyano-2-ethoxy-2-oxoethyl)]-4H-chromene-3-carboxylate (HA 14-1) reversed the protective effects of the three AChE inhibitors and that of nicotine. Our results show that galantamine, donepezil, and rivastigmine afford neuroprotection through a mechanism that is likely unrelated to AChE inhibition. Such neuroprotection seemed to be linked to alpha7 nicotinic receptors and the PI3K-Akt pathway in the case of galantamine and donepezil but not for rivastigmine

  8. Preclinical assessment of the absorption and disposition of the phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor GDC-0980 and prediction of its pharmacokinetics and efficacy in human.

    PubMed

    Salphati, Laurent; Pang, Jodie; Plise, Emile G; Lee, Leslie B; Olivero, Alan G; Prior, Wei Wei; Sampath, Deepak; Wong, Susan; Zhang, Xiaolin

    2012-09-01

    (S)-1-{4-[2-(2-Amino-pyrimidin-5-yl)-7-methyl-4-morpholin-4-yl-thieno[3,2-d]pyrimidin-6-ylmethyl]-piperazin-1-yl}-2-hydroxy-propan-1-one (GDC-0980) is a potent and selective inhibitor of phosphatidylinositol 3-kinase (PI3K) and mammalian target of rapamycin, two key components of the PI3K pathway, the deregulation of which is associated with the development of many cancers. The objectives of these studies were to characterize the absorption and disposition of GDC-0980 and assess its efficacy in an MCF7-neo/HER2 human breast cancer xenograft model in immunocompromised mice. Studies in parental Madin-Darby canine kidney cells indicated that GDC-0980 had high permeability (P(app) = 18 × 10⁻⁶ cm/s), suggesting good absorption potential. However, it was found to be a P-glycoprotein and breast cancer resistance protein substrate in transfected cells and in knockout mice studies. Plasma protein binding was low, with the fraction unbound ranging from 29 to 52% across species. GDC-0980 hepatic clearance (CL) was predicted to be low in all of the species tested from hepatocyte incubations. The plasma CL of GDC-0980 was low in mouse (6.30 ml · min⁻¹ · kg⁻¹), rat (15.4 ml · min⁻¹ · kg⁻¹), and dog (6.37 ml · min⁻¹ · kg⁻¹) and moderate in cynomolgus monkey (18.9 ml · min⁻¹ · kg⁻¹). Oral bioavailability ranged from 14.4% in monkey to 125% in dog. Predicted human plasma CL and volume of distribution using allometry were 5.1 ml · min⁻¹ · kg⁻¹ and 1.8 l/kg, respectively. Parameters estimated from the pharmacokinetic/pharmacodynamic modeling of the MCF7-neo/HER2 xenograft data indicated that the GDC-0980 plasma concentration required for tumor stasis was approximately 0.5 μM. These parameters, combined with the predicted human pharmacokinetic profile, suggested that 55 mg once daily may be a clinically efficacious dose. GDC-0980 preclinical characterization and the predictions of its human properties supported its clinical development; it

  9. Phosphatidylinositol 3-Kinase/AKT Pathway Inhibition by Doxazosin Promotes Glioblastoma Cells Death, Upregulation of p53 and Triggers Low Neurotoxicity

    PubMed Central

    Gaelzer, Mariana Maier; Coelho, Bárbara Paranhos; de Quadros, Alice Hoffmann; Hoppe, Juliana Bender; Terra, Silvia Resende; Guerra, Maria Cristina Barea; Usach, Vanina; Guma, Fátima Costa Rodrigues; Gonçalves, Carlos Alberto Saraiva; Setton-Avruj, Patrícia; Battastini, Ana Maria Oliveira; Salbego, Christianne Gazzana

    2016-01-01

    Glioblastoma is the most frequent and malignant brain tumor. Treatment includes chemotherapy with temozolomide concomitant with surgical resection and/or irradiation. However, a number of cases are resistant to temozolomide, as well as the human glioblastoma cell line U138-MG. We investigated doxazosin’s (an antihypertensive drug) activity against glioblastoma cells (C6 and U138-MG) and its neurotoxicity on primary astrocytes and organoptypic hippocampal cultures. For this study, the following methods were used: citotoxicity assays, flow cytometry, western-blotting and confocal microscopy. We showed that doxazosin induces cell death on C6 and U138-MG cells. We observed that doxazosin’s effects on the PI3K/Akt pathway were similar as LY294002 (PI3K specific inhibitor). In glioblastoma cells treated with doxasozin, Akt levels were greatly reduced. Upon examination of activities of proteins downstream of Akt we observed upregulation of GSK-3β and p53. This led to cell proliferation inhibition, cell death induction via caspase-3 activation and cell cycle arrest at G0/G1 phase in glioblastoma cells. We used in this study Lapatinib, a tyrosine kinase inhibitor, as a comparison with doxazosin because they present similar chemical structure. We also tested the neurocitotoxicity of doxazosin in primary astrocytes and organotypic cultures and observed that doxazosin induced cell death on a small percentage of non-tumor cells. Aggressiveness of glioblastoma tumors and dismal prognosis require development of new treatment agents. This includes less toxic drugs, more selective towards tumor cells, causing less damage to the patient. Therefore, our results confirm the potential of doxazosin as an attractive therapeutic antiglioma agent. PMID:27123999

  10. Activation of phosphatidylinositol 3-kinase by insulin.

    PubMed Central

    Ruderman, N B; Kapeller, R; White, M F; Cantley, L C

    1990-01-01

    Insulin action appears to require the protein-tyrosine kinase domain of the beta subunit of the insulin receptor. Despite this, the identities and biochemical functions of the cellular targets of this tyrosine kinase are unknown. A phosphatidylinositol 3-kinase (PI 3-kinase) that phosphorylates the D-3 position of the inositol ring associates with several protein-tyrosine kinases. Here we report that PI 3-kinase activity is immunoprecipitated from insulin-stimulated CHO cells by antiphosphotyrosine and anti-insulin receptor antibodies. Insulin as low as 0.3 nM increased immunoprecipitable PI 3-kinase activity within 1 min. Increases in activity were much greater in CHO cells expressing the human insulin receptor (100,000 receptors per cell) than in control CHO cells (2000 receptors per cell). During insulin stimulation, various lipid products of the PI 3-kinase either appeared or increased in quantity in intact cells, suggesting that the appearance of immunoprecipitable PI 3-kinase reflects an increase in its activity in vivo. These results indicate that insulin at physiological concentrations regulates the PI 3-kinase and suggest that this regulation involves a physical association between the insulin receptor and the PI 3-kinase and tyrosyl phosphorylation. Images PMID:2154747

  11. Downregulation of Fes inhibits VEGF-A-induced chemotaxis and capillary-like morphogenesis by cultured endothelial cells

    PubMed Central

    Kanda, Shigeru; Kanetake, Hiroshi; Miyata, Yasuyoshi

    2007-01-01

    Abstract The aim of this study was to determine whether the downregulation of endogenous Fes by siRNA in cultured endothelial cells affects vascular endothelial growth factor-A (VEGF-A)-induced chemotaxis and capillary-like morphogenesis, which are considered as angiogenic cellular responses in vitro. VEGF-A-treatment induced autophosphorylation of Fes in cultured endothelial cells.LY294002, a phosphoinositide 3-kinase inhibitor, significantly inhibited VEGF-A-induced chemotaxis and capillary-like morphogenesis.Downregulation of Fes attenuated these VEGF-A-induced cellular responses but LY294002 did not produce further inhibition of these responses. Downregulation of Fes neither affected VEGF-A-induced autophosphorylation of VEGF receptor 2 nor mitogen-activated protein kinase activation, but markedly decreased Akt activation.Taken together, our novel results indicate the involvement of Fes in VEGF-A-induced cellular responses by cultured endothelial cells. PMID:17521372

  12. Inactivation of the phosphatidylinositol 3-kinase/Akt pathway is involved in BMP9-mediated tumor-suppressive effects in gastric cancer cells.

    PubMed

    Duan, Liang; Ye, Liwei; Wu, Rui; Wang, Haiyan; Li, Xueru; Li, Huan; Yuan, Shimei; Zha, He; Sun, Hui; Zhang, Yunyuan; Chen, Xian; Zhang, Yan; Zhou, Lan

    2015-06-01

    Bone morphogenetic proteins (BMPs) are members of the TGF-β superfamily signaling factors. Expression of several BMPs (BMP2, BMP4, and BMP7) is correlated to poor prognosis in gastric cancer patients. The function of BMP9, the latest discovered and most powerful osteogenetic factor, in gastric cancer is relatively unclear. In this report, we investigated the expression, function and underlying molecular mechanisms of BMP9 in gastric cancer. The results show that BMP9 expression was markedly decreased in gastric cancer tissues and cell lines. Enforced BMP9 expression in the gastric cancer cell lines SGC-7901 and MNK-45 increased apoptosis and reduced viability and migration. The in vivo function of BMP9 was evaluated in a xenograft mouse model. Tumors derived from SGC-7901 cells with enforced BMP9 expression (SGC-7901/BMP9) showed significantly reduced size and weight compared to that from control cells. Enforced BMP9 expression resulted in decreased Akt activity shown as lower levels of phosphorylation at Ser473 and Thr308 in Akt. The PI3K/Akt inhibitor LY294002 potentiated BMP9's viability and migration suppression, and apoptosis induction, which was associated with reduced expression of snail and VEGF and increased expression of E-cadherin. In addition, tumors derived from SGC-7901/BMP9 showed reduced Akt activity and VEGF expression, and increased E-cadherin expression. Therefore, our studies reveal for the first time that inhibition of the PI3K-Akt pathway is involved in the tumor suppressor effects of BMP9 in gastric cancer. PMID:25640278

  13. Novel function of CRTH2 in preventing apoptosis of human Th2 cells through activation of the phosphatidylinositol 3-kinase pathway.

    PubMed

    Xue, Luzheng; Barrow, Anna; Pettipher, Roy

    2009-06-15

    It is now well established that interaction of PGD(2) with chemoattractant receptor- homologous molecule expressed on Th2 cells (CRTH2) promotes chemotaxis and proinflammatory cytokine production by Th2 lymphocytes. In this study we show a novel function of CRTH2 in mediating an inhibitory effect of PGD(2) on the apoptosis of human Th2 cells induced by cytokine deprivation. This effect was mimicked by the selective CRTH2 agonist 13,14-dihydro-15-keto-PGD(2), inhibited by the CRTH2 antagonists ramatroban and TM30089, and not observed in CRTH2-negative T cells. D prostanoid receptor 1 (DP(1)) or the thromboxane-like prostanoid (TP) receptor did not play a role in mediating the effects of PGD(2) on the apoptosis of Th2 cells because neither the DP(1) antagonist BW868C nor the TP antagonist SQ29548 had any effect on the antiapoptotic effect of PGD(2). Apoptosis of Th2 cells induced by Fas ligation was not suppressed by treatment with PGD(2), illustrating that activation of CRTH2 only inhibits apoptosis induced by cytokine deprivation. Treatment with PGD(2) induced phosphorylation of Akt and BAD, prevented release of cytochrome c from mitochondria, and suppressed cleavage of caspase-3 and poly(ADP-ribose) polymerase in Th2 cells deprived of IL-2. The PI3K inhibitor LY294002 blocked the effect of PGD(2) both on the signaling events and on the apoptotic death of Th2 cells. These data suggest that in addition to promoting the recruitment and activation of Th2 cells, PGD(2) may also impede the resolution of allergic inflammation through inhibiting apoptosis of Th2 cells. PMID:19494281

  14. Discovery of (R)-1-(3-(4-Amino-3-(4-phenoxyphenyl)-1H-pyrazolo[3,4-d]pyrimidin-1-yl)piperidin-1-yl)-2-(dimethylamino)ethanone (CHMFL-FLT3-122) as a Potent and Orally Available FLT3 Kinase Inhibitor for FLT3-ITD Positive Acute Myeloid Leukemia.

    PubMed

    Li, Xixiang; Wang, Aoli; Yu, Kailin; Qi, Ziping; Chen, Cheng; Wang, Wenchao; Hu, Chen; Wu, Hong; Wu, Jiaxin; Zhao, Zheng; Liu, Juan; Zou, Fengming; Wang, Li; Wang, Beilei; Wang, Wei; Zhang, Shanchun; Liu, Jing; Liu, Qingsong

    2015-12-24

    FLT3-ITD mutant has been observed in about 30% of AML patients and extensively studied as a drug discovery target. On the basis of the structure of PCI-32765 (ibrutinib), a BTK kinase inhibitor that was recently reported to bear FLT3 kinase activity through a structure-guided drug design approach, we have discovered compound 18 (CHMFL-FLT3-122), which displayed an IC50 of 40 nM against FLT3 kinase and achieved selectivity over BTK kinase (over 10-fold). It significantly inhibited the proliferation of FLT3-ITD positive AML cancer cell lines MV4-11 (GI50 = 22 nM), MOLM13/14 (GI50 = 21 nM/42 nM). More importantly, 18 demonstrated 170-fold selectivity between FLT3 kinase and c-KIT kinase (GI50 = 11 nM versus 1900 nM) in the TEL-fusion isogenic BaF3 cells indicating a potential to avoid the FLT3/c-KIT dual inhibition induced myelosuppression toxicity. In the cellular context it strongly affected FLT3-ITD mediated signaling pathways and induced apoptosis by arresting the cell cycle into the G0/G1 phase. In the in vivo studies 18 demonstrated a good bioavailability (30%) and significantly suppressed the tumor growth in MV4-11 cell inoculated xenograft model (50 mg/kg) without exhibiting obvious toxicity. Compound 18 might be a potential drug candidate for FLT3-ITD positive AML. PMID:26630553

  15. Rational targeting of BRAF and PI3-Kinase signaling for melanoma therapy

    PubMed Central

    Deuker, Marian M.; McMahon, Martin

    2016-01-01

    ABSTRACT Although mitogen-activated protein kinase (MAPK) inhibitors elicit initial regression of BRAF-mutated melanoma, drug resistance is an inevitable and fatal event. We recently reported that in genetically engineered mouse models of BRAF-mutated melanoma, isoform-selective phosphatidylinositol 3-kinase inhibition cooperates with MAPK pathway inhibition to forestall the onset of MAPK pathway inhibitor resistance. PMID:27314067

  16. Rational targeting of BRAF and PI3-Kinase signaling for melanoma therapy.

    PubMed

    Deuker, Marian M; McMahon, Martin

    2016-05-01

    Although mitogen-activated protein kinase (MAPK) inhibitors elicit initial regression of BRAF-mutated melanoma, drug resistance is an inevitable and fatal event. We recently reported that in genetically engineered mouse models of BRAF-mutated melanoma, isoform-selective phosphatidylinositol 3-kinase inhibition cooperates with MAPK pathway inhibition to forestall the onset of MAPK pathway inhibitor resistance. PMID:27314067

  17. The Rational Design of Selective Benzoxazepin Inhibitors of the α-Isoform of Phosphoinositide 3-Kinase Culminating in the Identification of (S)-2-((2-(1-Isopropyl-1H-1,2,4-triazol-5-yl)-5,6-dihydrobenzo[f]imidazo[1,2-d][1,4]oxazepin-9-yl)oxy)propanamide (GDC-0326).

    PubMed

    Heffron, Timothy P; Heald, Robert A; Ndubaku, Chudi; Wei, BinQing; Augistin, Martin; Do, Steven; Edgar, Kyle; Eigenbrot, Charles; Friedman, Lori; Gancia, Emanuela; Jackson, Philip S; Jones, Graham; Kolesnikov, Aleksander; Lee, Leslie B; Lesnick, John D; Lewis, Cristina; McLean, Neville; Mörtl, Mario; Nonomiya, Jim; Pang, Jodie; Price, Steve; Prior, Wei Wei; Salphati, Laurent; Sideris, Steve; Staben, Steven T; Steinbacher, Stefan; Tsui, Vickie; Wallin, Jeffrey; Sampath, Deepak; Olivero, Alan G

    2016-02-11

    Inhibitors of the class I phosphoinositide 3-kinase (PI3K) isoform PI3Kα have received substantial attention for their potential use in cancer therapy. Despite the particular attraction of targeting PI3Kα, achieving selectivity for the inhibition of this isoform has proved challenging. Herein we report the discovery of inhibitors of PI3Kα that have selectivity over the other class I isoforms and all other kinases tested. In GDC-0032 (3, taselisib), we previously minimized inhibition of PI3Kβ relative to the other class I insoforms. Subsequently, we extended our efforts to identify PI3Kα-specific inhibitors using PI3Kα crystal structures to inform the design of benzoxazepin inhibitors with selectivity for PI3Kα through interactions with a nonconserved residue. Several molecules selective for PI3Kα relative to the other class I isoforms, as well as other kinases, were identified. Optimization of properties related to drug metabolism then culminated in the identification of the clinical candidate GDC-0326 (4). PMID:26741947

  18. Erythropoietin activates two distinct signaling pathways required for the initiation and the elongation of c-myc

    NASA Technical Reports Server (NTRS)

    Chen, C.; Sytkowski, A. J.

    2001-01-01

    Erythropoietin (Epo) stimulation of erythroid cells results in the activation of several kinases and a rapid induction of c-myc expression. Protein kinase C is necessary for Epo up-regulation of c-myc by promoting elongation at the 3'-end of exon 1. PKCepsilon mediates this signal. We now show that Epo triggers two signaling pathways to c-myc. Epo rapidly up-regulated Myc protein in BaF3-EpoR cells. The phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002 blocked Myc up-regulation in a concentration-dependent manner but had no effect on the Epo-induced phosphorylation of ERK1 and ERK2. LY294002 also had no effect on Epo up-regulation of c-fos. MEK1 inhibitor PD98059 blocked both the c-myc and the c-fos responses to Epo. PD98059 and the PKC inhibitor H7 also blocked the phosphorylation of ERK1 and ERK2. PD98059 but not LY294002 inhibited Epo induction of ERK1 and ERK2 phosphorylation in normal erythroid cells. LY294002 blocked transcription of c-myc at exon 1. PD98059 had no effect on transcription from exon 1 but, rather, blocked Epo-induced c-myc elongation at the 3'-end of exon 1. These results identify two Epo signaling pathways to c-myc, one of which is PI3K-dependent operating on transcriptional initiation, whereas the other is mitogen-activated protein kinase-dependent operating on elongation.

  19. Brain-derived Neurotrophic Factor Prevents Phencyclidine-induced Apoptosis in Developing Brain by Parallel Activation of both the ERK and PI-3K/Akt Pathways

    PubMed Central

    Xia, Yan; Wang, Cheng Z.; Liu, Jie; Anastasio, Noelle C.; Johnson, Kenneth M.

    2009-01-01

    Summary Phencyclidine is an N-methyl D-aspartate receptor (NMDAR) blocker that has been reported to induce neuronal apoptosis during development and schizophrenia-like behaviors in rats later in life. Brain derived neurotrophic factor (BDNF) has been shown to prevent neuronal death caused by NMDAR blockade, but the precise mechanism is unknown. This study examined the role of the phosphatidylinositol-3 kinase (PI3K)/Akt and extracellular signal-regulated kinase (ERK) pathways in BDNF protection of PCP-induced apoptosis in corticostriatal organotypic cultures. It was observed that BDNF inhibited PCP-induced apoptosis in a concentration dependent fashion. BDNF effectively prevented PCP-induced inhibition of the ERK and PI-3K/Akt pathways and suppressed GSK-3β activation. Blockade of either PI-3K/Akt or ERK activation abolished BDNF protection. Western blot analysis revealed that the PI-3K inhibitor LY294002 prevented the stimulating effect of BDNF on the PI-3K/Akt pathway, but had no effect on the ERK pathway. Similarly, the ERK inhibitor PD98059 prevented the stimulating effect of BDNF on the ERK pathway, but not the PI-3K/Akt pathway. Co-application of LY294002 and PD98059 had no additional effect on BDNF-evoked activation of Akt or ERK. However, concurrent exposure to PD98059 and LY294002 caused much greater inhibition of BDNF-evoked phosphorylation of GSK-3β at serine 9 than did LY294002 alone. Finally, either BDNF or GSK-3β inhibition prevented PCP-induced suppression of cyclic-AMP response element binding protein (CREB) phosphorylation. These data demonstrate that the protective effect of BDNF against PCP-induced apoptosis is mediated by parallel activation of the PI-3K/Akt and ERK pathways, most likely involves inhibition of GSK-3β and activation of CREB. PMID:19887077

  20. Mitogen-activated protein kinases regulate expression of neuronal nitric oxide synthase and neurite outgrowth via non-classical retinoic acid receptor signaling in human neuroblastoma SH-SY5Y cells.

    PubMed

    Fujibayashi, Tatsuya; Kurauchi, Yuki; Hisatsune, Akinori; Seki, Takahiro; Shudo, Koichi; Katsuki, Hiroshi

    2015-10-01

    We have previously shown that retinoic acid receptor (RAR) stimulation by an agonist Am80 recruits nitric oxide-dependent signaling via increased expression of neuronal nitric oxide synthase (nNOS) in rat midbrain slice cultures. Using neuroblastoma SH-SY5Y cells, here we investigated the mechanisms of RAR-induced nNOS expression, together with relationship between nNOS expression and neurite outgrowth. Am80 promoted neurite outgrowth, which was attenuated by inhibitors of phosphoinositide 3-kinase (PI3K; LY294002), c-Jun N-terminal kinase (JNK; SP600125) and p38 mitogen-activated protein kinase (p38 MAPK; SB203580). A selective nNOS inhibitor 3-bromo-nitroindazole also suppressed Am80-induced neurite outgrowth. Am80-induced increase in nNOS protein expression was attenuated by LY294002, SP600125 and SB203580, whereas increase in nNOS mRNA expression was attenuated only by LY294002. Am80-induced activation of JNK and p38 MAPK was blocked by LY294002, suggesting that these kinases acted downstream of PI3K. We also confirmed that DAX1, a nuclear receptor reported to regulate nNOS expression, was up-regulated in response to Am80. siRNA-mediated knockdown of DAX1 abrogated Am80-induced nNOS expression and neurite outgrowth. These results reveal for the first time that nNOS expression is crucial for RAR-mediated neurite outgrowth, and that non-genomic signaling such as JNK and p38 MAPK is involved in RAR-mediated nNOS expression. PMID:26422672

  1. Developing a Novel Embryo-Larval Zebrafish Xenograft Assay to Prioritize Human Glioblastoma Therapeutics.

    PubMed

    Wehmas, Leah Christine; Tanguay, Robert L; Punnoose, Alex; Greenwood, Juliet A

    2016-08-01

    Glioblastoma is an aggressive brain cancer requiring improved treatments. Existing methods of drug discovery and development require years before new therapeutics become available to patients. Zebrafish xenograft models hold promise for prioritizing drug development. We have developed an embryo-larval zebrafish xenograft assay in which cancer cells are implanted in a brain microenvironment to discover and prioritize compounds that impact glioblastoma proliferation, migration, and invasion. We illustrate the utility of our assay by evaluating the well-studied, phosphatidylinositide 3-kinase inhibitor LY294002 and zinc oxide nanoparticles (ZnO NPs), which demonstrate selective cancer cytotoxicity in cell culture, but the in vivo effectiveness has not been established. Exposures of 3.125-6.25 μM LY294002 significantly decreased proliferation up to 34% with concentration-dependent trends. Exposure to 6.25 μM LY294002 significantly inhibited migration/invasion by ∼27% within the glioblastoma cell mass (0-80 μm) and by ∼32% in the next distance region (81-160 μm). Unexpectedly, ZnO enhanced glioblastoma proliferation by ∼19% and migration/invasion by ∼35% at the periphery of the cell mass (161+ μm); however, dissolution of these NPs make it difficult to discern whether this was a nano or ionic effect. These results demonstrate that we have a short, relevant, and sensitive zebrafish-based assay to aid glioblastoma therapeutic development. PMID:27158859

  2. Novel inhibition of contractility by wortmannin in skeletal muscle

    PubMed Central

    Hong, S J; Chang, C C

    1998-01-01

    The effects of wortmannin and 2-(4-morpholinyl)-8-phenyl-1[4H]-benzopyran-4-one (LY294002), inhibitors of phosphatidylinositol 3-kinase, on the contractile responses of murine skeletal muscle were studied. Wortmannin (10–100 μM) suppressed twitch and tetanic contraction evoked by field stimulation of diaphragm without causing elevation of muscle tone. The inhibition was quasi-irreversible with IC50∼15 μM. In contrast, LY294002 increased twitch responses and elevated muscle tone.Wortmannin reversibly depressed the maximal slope of action potential upstroke by ∼40% and inhibited the membrane depolarization and spontaneous burst of action potential induced by crotamine, a polypeptide toxin that activates the Na+ channel of skeletal muscle.Wortmannin inhibited contractures evoked by high K+, ryanodine and caffeine, but potentiated the contracture induced by rapamycin, which binds to myoplasmic FK506 binding protein, an immunophilin closely associated with the ryanodine receptor. The contractures elicited by cardiotoxin, which disrupts the integrity of sarcolemma and thereby elevates `myoplasmic' Ca2+ level, were suppressed only slightly.In placed left atrium and ventricular strip, wortmannin and LY294002 produced a positive inotropic effect.The results suggest that, in addition to depressing the Ca2+ mobilization from sarcoplasmic reticulum, wortmannin exerts a novel inhibitory action on the excitation-contraction coupling in skeletal muscle but not in cardiac muscle. PMID:9692768

  3. FTY720 and two novel butterfly derivatives exert a general anti-inflammatory potential by reducing immune cell adhesion to endothelial cells through activation of S1P(3) and phosphoinositide 3-kinase.

    PubMed

    Imeri, Faik; Blanchard, Olivier; Jenni, Aurelio; Schwalm, Stephanie; Wünsche, Christin; Zivkovic, Aleksandra; Stark, Holger; Pfeilschifter, Josef; Huwiler, Andrea

    2015-12-01

    Sphingosine-1-phosphate (S1P) is a key lipid regulator of a variety of cellular responses including cell proliferation and survival, cell migration, and inflammatory reactions. Here, we investigated the effect of S1P receptor activation on immune cell adhesion to endothelial cells under inflammatory conditions. We show that S1P reduces both tumor necrosis factor (TNF)-α- and lipopolysaccharide (LPS)-stimulated adhesion of Jurkat and U937 cells to an endothelial monolayer. The reducing effect of S1P was reversed by the S1P1+3 antagonist VPC23019 but not by the S1P1 antagonist W146. Additionally, knockdown of S1P3, but not S1P1, by short hairpin RNA (shRNA) abolished the reducing effect of S1P, suggesting the involvement of S1P3. A suppression of immune cell adhesion was also seen with the immunomodulatory drug FTY720 and two novel butterfly derivatives ST-968 and ST-1071. On the molecular level, S1P and all FTY720 derivatives reduced the mRNA expression of LPS- and TNF-α-induced adhesion molecules including ICAM-1, VCAM-1, E-selectin, and CD44 which was reversed by the PI3K inhibitor LY294002, but not by the MEK inhibitor U0126.In summary, our data demonstrate a novel molecular mechanism by which S1P, FTY720, and two novel butterfly derivatives acted anti-inflammatory that is by suppressing gene transcription of various endothelial adhesion molecules and thereby preventing adhesion of immune cells to endothelial cells and subsequent extravasation. PMID:26267293

  4. Synthesis and structure-activity relationships of imidazo[1,2-a]pyrimidin-5(1H)-ones as a novel series of beta isoform selective phosphatidylinositol 3-kinase inhibitors.

    PubMed

    Lin, Hong; Erhard, Karl; Hardwicke, Mary Ann; Luengo, Juan I; Mack, James F; McSurdy-Freed, Jeanelle; Plant, Ramona; Raha, Kaushik; Rominger, Cynthia M; Sanchez, Robert M; Schaber, Michael D; Schulz, Mark J; Spengler, Michael D; Tedesco, Rosanna; Xie, Ren; Zeng, Jin J; Rivero, Ralph A

    2012-03-15

    A series of PI3K-beta selective inhibitors, imidazo[1,2-a]-pyrimidin-5(1H)-ones, has been rationally designed based on the docking model of the more potent R enantiomer of TGX-221, identified by a chiral separation, in a PI3K-beta homology model. Synthesis and SAR of this novel chemotype are described. Several compounds in the series demonstrated potent growth inhibition in a PTEN-deficient breast cancer cell line MDA-MB-468 under anchorage independent conditions. PMID:22361133

  5. Discovery of a potent, selective, and orally available class I phosphatidylinositol 3-kinase (PI3K)/mammalian target of rapamycin (mTOR) kinase inhibitor (GDC-0980) for the treatment of cancer.

    PubMed

    Sutherlin, Daniel P; Bao, Linda; Berry, Megan; Castanedo, Georgette; Chuckowree, Irina; Dotson, Jenna; Folks, Adrian; Friedman, Lori; Goldsmith, Richard; Gunzner, Janet; Heffron, Timothy; Lesnick, John; Lewis, Cristina; Mathieu, Simon; Murray, Jeremy; Nonomiya, Jim; Pang, Jodie; Pegg, Niel; Prior, Wei Wei; Rouge, Lionel; Salphati, Laurent; Sampath, Deepak; Tian, Qingping; Tsui, Vickie; Wan, Nan Chi; Wang, Shumei; Wei, Binqing; Wiesmann, Christian; Wu, Ping; Zhu, Bing-Yan; Olivero, Alan

    2011-11-10

    The discovery of 2 (GDC-0980), a class I PI3K and mTOR kinase inhibitor for oncology indications, is described. mTOR inhibition was added to the class I PI3K inhibitor 1 (GDC-0941) scaffold primarily through the substitution of the indazole in 1 for a 2-aminopyrimidine. This substitution also increased the microsomal stability and the free fraction of compounds as evidenced through a pairwise comparison of molecules that were otherwise identical. Highlighted in detail are analogues of an advanced compound 4 that were designed to improve solubility, resulting in 2. This compound, is potent across PI3K class I isoforms with IC(50)s of 5, 27, 7, and 14 nM for PI3Kα, β, δ, and γ, respectively, inhibits mTOR with a K(i) of 17 nM yet is highly selective versus a large panel of kinases including others in the PIKK family. On the basis of the cell potency, low clearance in mouse, and high free fraction, 2 demonstrated significant efficacy in mouse xenografts when dosed as low as 1 mg/kg orally and is currently in phase I clinical trials for cancer. PMID:21981714

  6. 12-O-Tetradecanoyl phorbol-13-acetate (TPA)-induced growth arrest is increased by silibinin by the down-regulation of cyclin B1 and cdc2 and the up-regulation of p21 expression in MDA-MB231 human breast cancer cells.

    PubMed

    Kim, Sangmin; Lee, Hye Sook; Lee, Se-Kyung; Kim, Sung Hoon; Hur, Sung Mo; Kim, Jee Soo; Kim, Jung-Han; Choe, Jun-Ho; Shin, Incheol; Yang, Jung-Hyun; Lee, Jeong Eon; Nam, Seok Jin

    2010-12-01

    TPA is a potent regulator of cell growth, including cell proliferation and differentiation. In this study, we determined the effect of silibinin on TPA-induced growth arrest in breast cancer cells. Silibinin increased growth arrest of the G2/M phase in a dose-dependent fashion. Silibinin decreased the basal level of cyclin B1 and cdc2 expression, which is involved in S phase and G2/M transition. In addition, TPA-induced G2/M phase arrest was increased by silibinin. Under the same conditions, TPA-induced down-regulation of cyclin B1 and cdc2 was decreased by silibinin. In contrast, TPA-induced p21 expression was further increased by silibinin. To determine the regulatory mechanism of TPA-induced growth arrest, we pretreated cells with various inhibitors, such as UO126, SB203580, and LY294002. Interestingly, TPA-induced growth arrest was significantly increased by LY294002, but not by UO126 and SB203580. In addition, TPA-induced down-regulation of cyclin B1 was inhibited by LY294002; however, the basal level of p21 was increased by TPA and TPA-induced p21 expression was further increased by LY294002. Finally, adenoviral constitutively active-Akt (Ad-CA-Akt) overexpression regulated the up-regulation of cyclin B1 and the down-regulation of p21. Therefore, we have demonstrated that silibinin has an additive effect on TPA-induced growth arrest through the PI-3-kinase/Akt-dependent pathway. PMID:20554189

  7. Phosphatidylinositol 3-kinase association with the osteoclast cytoskeleton, and its involvement in osteoclast attachment and spreading.

    PubMed

    Lakkakorpi, P T; Wesolowski, G; Zimolo, Z; Rodan, G A; Rodan, S B

    1997-12-15

    Osteoclast activation involves attachment to the mineralized bone matrix and reorganization of the cytoskeleton, leading to polarization of the cell. Signaling molecules, PI3-kinase, rho A, and pp60c-src, were shown to be essential for osteoclastic bone resorption. In this study we have focused on the involvement of these signaling molecules in the early event of osteoclast activation: attachment, spreading, and organization of the cytoskeleton. Highly purified osteoclasts were fractionated into Triton X-100-soluble or cytosolic and Triton X-100-insoluble or cytoskeletal fractions, and the distribution of above-mentioned signaling molecules between the two fractions was examined. PI3-kinase, rho A, and pp60c-src all showed translocation to the cytoskeletal fraction upon osteoclast attachment to plastic. However, PI3-kinase and rho A, but not pp60c-src, showed further translocation of 2.4- and 3.2-fold, respectively, upon attachment of osteoclasts to bone. PI3-kinase translocation to the cytoskeleton was inhibited by either cytochalasin B or colchicine. Furthermore, treatment of osteoclasts with the PI3-kinase inhibitor wortmannin decreased its translocation, suggesting that PI3-kinase activity was needed for its translocation. Moreover, wortmannin inhibited osteoclast attachment to both bone and plastic and caused drastic changes in osteoclast morphology resulting in rounding of the cells, disappearance of F-actin structures or podosomes, and appearance of punctate or vesicular structures inside the cells. Osteoblastic MB1.8 cells and IC-21 macrophages did not show additional translocation of PI3-kinase or rho A upon attachment to bone or changes in attachment or morphology in response to wortmannin. Finally, PI3-kinase coimmunoprecipitated with alpha v beta 3 integrin from osteoclasts. PMID:9434625

  8. Structure-activity relationships of phosphoinositide 3-kinase (PI3K)/mammalian target of rapamycin (mTOR) dual inhibitors: investigations of various 6,5-heterocycles to improve metabolic stability.

    PubMed

    Stec, Markian M; Andrews, Kristin L; Booker, Shon K; Caenepeel, Sean; Freeman, Daniel J; Jiang, Jian; Liao, Hongyu; McCarter, John; Mullady, Erin L; San Miguel, Tisha; Subramanian, Raju; Tamayo, Nuria; Wang, Ling; Yang, Kevin; Zalameda, Leeanne P; Zhang, Nancy; Hughes, Paul E; Norman, Mark H

    2011-07-28

    N-(6-(6-Chloro-5-(4-fluorophenylsulfonamido)pyridin-3-yl)benzo[d]thiazol-2-yl)acetamide (1) is a potent and efficacious inhibitor of PI3Kα and mTOR in vitro and in vivo. However, in hepatocyte and in vivo metabolism studies, 1 was found to undergo deacetylation on the 2-amino substituent of the benzothiazole. As an approach to reduce or eliminate this metabolic deacetylation, a variety of 6,5-heterocyclic analogues were examined as an alternative to the benzothiazole ring. Imidazopyridazine 10 was found to have similar in vitro potency and in vivo efficacy relative to 1, while only minimal amounts of the corresponding deacetylated metabolite of 10 were observed in hepatocytes. PMID:21714526

  9. Phosphoinositide 3-kinases-a historical perspective.

    PubMed

    Toker, Alex

    2012-01-01

    The phosphoinositide 3-kinase (PI 3-K) signal relay pathway represents arguably one of the most intensely studied mechanisms by which extracellular signals elicit cellular responses through the generation of second messengers that are associated with cell growth and transformation. This chapter reviews the many landmark discoveries in the PI 3-K signaling pathway in biology and disease, from the identification of a novel phosphoinositide kinase activity associated with transforming oncogenes in the 1980s, to the identification of oncogenic mutations in the catalytic subunit of PI 3-K in the mid 2000s. Two and a half decades of intense research have provided clear evidence that the PI 3-K pathway controls virtually all aspects of normal cellular physiology, and that deregulation of one or more proteins that regulate or transduce the PI 3-K signal ultimately leads to human pathology. The most recent efforts have focused on the development of specific PI 3-K inhibitors that are currently being evaluated in clinical trials for a range of disease states.This chapter is devoted to a historical review of the landmark findings in the PI 3-K from its relatively humble beginnings in the early to mid 1980s up until the present day. When considering the key findings in the history of PI 3-K, it is essential to recognize the landmark studies by Lowell and Mabel Hokin in the 1950s who were the first to describe that extracellular agonists such as acetylcholine could stimulate the incorporation of radiolabeled phosphate into phospholipids (Hokin and Hokin 1953). Their work initiated an entirely new field of lipid signaling, and subsequent studies in the 1970s by Michell and Lapetina who linked phosphoinositide turnover to membrane-associated receptors that initiate intracellular calcium mobilization (Lapetina and Michell 1973). Later studies revealed that the phospholipase-mediated breakdown of the same minor membrane phospholipids such as PtdIns-4,5-P(2) (phosphatidylinositol-4

  10. Effect of kinase inhibitors on the therapeutic properties of monoclonal antibodies.

    PubMed

    Duong, Minh Ngoc; Matera, Eva-Laure; Mathé, Doriane; Evesque, Anne; Valsesia-Wittmann, Sandrine; Clémenceau, Béatrice; Dumontet, Charles

    2015-01-01

    Targeted therapies of malignancies currently consist of therapeutic monoclonal antibodies and small molecule kinase inhibitors. The combination of these novel agents raises the issue of potential antagonisms. We evaluated the potential effect of 4 kinase inhibitors, including the Bruton tyrosine kinase inhibitor ibrutinib, and 3 PI3K inhibitors idelalisib, NVP-BEZ235 and LY294002, on the effects of the 3 monoclonal antibodies, rituximab and obinutuzumab (directed against CD20) and trastuzumab (directed against HER2). We found that ibrutinib potently inhibits antibody-dependent cell-mediated cytotoxicity exerted by all antibodies, with a 50% inhibitory concentration of 0.2 microM for trastuzumab, 0.5 microM for rituximab and 2 microM for obinutuzumab, suggesting a lesser effect in combination with obinutuzumab than with rituximab. The 4 kinase inhibitors were found to inhibit phagocytosis by fresh human neutrophils, as well as antibody-dependent cellular phagocytosis induced by the 3 antibodies. Conversely co-administration of ibrutinib with rituximab, obinutuzumab or trastuzumab did not demonstrate any inhibitory effect of ibrutinib in vivo in murine xenograft models. In conclusion, some kinase inhibitors, in particular, ibrutinib, are likely to exert inhibitory effects on innate immune cells. However, these effects do not compromise the antitumor activity of monoclonal antibodies in vivo in the models that were evaluated. PMID:25523586

  11. A Screen for Novel Phosphoinositide 3-kinase Effector Proteins*

    PubMed Central

    Dixon, Miles J.; Gray, Alexander; Boisvert, François-Michel; Agacan, Mark; Morrice, Nicholas A.; Gourlay, Robert; Leslie, Nicholas R.; Downes, C. Peter; Batty, Ian H.

    2011-01-01

    Class I phosphoinositide 3-kinases exert important cellular effects through their two primary lipid products, phosphatidylinositol 3,4,5-trisphosphate and phosphatidylinositol 3,4-bisphosphate (PtdIns(3,4)P2). As few molecular targets for PtdIns(3,4)P2 have yet been identified, a screen for PI 3-kinase-responsive proteins that is selective for these is described. This features a tertiary approach incorporating a unique, primary recruitment of target proteins in intact cells to membranes selectively enriched in PtdIns(3,4)P2. A secondary purification of these proteins, optimized using tandem pleckstrin homology domain containing protein-1 (TAPP-1), an established PtdIns(3,4)P2 selective ligand, yields a fraction enriched in proteins of potentially similar lipid binding character that are identified by liquid chromatography-tandem MS. Thirdly, this approach is coupled to stable isotope labeling with amino acids in cell culture using differential isotope labeling of cells stimulated in the absence and presence of the PI 3-kinase inhibitor wortmannin. This provides a ratio-metric readout that distinguishes authentically responsive components from copurifying background proteins. Enriched fractions thus obtained from astrocytoma cells revealed a subset of proteins that exhibited ratios indicative of their initial, cellular responsiveness to PI 3-kinase activation. The inclusion among these of tandem pleckstrin homology domain containing protein-1, three isoforms of Akt, switch associated protein-70, early endosome antigen-1 and of additional proteins expressing recognized lipid binding domains demonstrates the utility of this strategy and lends credibility to the novel candidate proteins identified. The latter encompass a broad set of proteins that include the gene product of TBC1D2A, a putative Rab guanine nucleotide triphosphatase activating protein (GAP) and IQ motif containing GAP1, a potential tumor promoter. A sequence comparison of the former protein indicates

  12. The phosphoinositide-3-kinase (PI3K)-delta and gamma inhibitor, IPI-145 (Duvelisib), overcomes signals from the PI3K/AKT/S6 pathway and promotes apoptosis in CLL.

    PubMed

    Balakrishnan, K; Peluso, M; Fu, M; Rosin, N Y; Burger, J A; Wierda, W G; Keating, M J; Faia, K; O'Brien, S; Kutok, J L; Gandhi, V

    2015-09-01

    The functional relevance of the B-cell receptor (BCR) and the evolution of protein kinases as therapeutic targets have recently shifted the paradigm for treatment of B-cell malignancies. Inhibition of p110δ with idelalisib has shown clinical activity in chronic lymphocytic leukemia (CLL). The dynamic interplay of isoforms p110δ and p110γ in leukocytes support the hypothesis that dual blockade may provide a therapeutic benefit. IPI-145, an oral inhibitor of p110δ and p110γ isoforms, sensitizes BCR-stimulated and/or stromal co-cultured primary CLL cells to apoptosis (median 20%, n=57; P<0.0001) including samples with poor prognostic markers, unmutated IgVH (n=28) and prior treatment (n=15; P<0.0001). IPI-145 potently inhibits the CD40L/IL-2/IL-10 induced proliferation of CLL cells with an IC50 in sub-nanomolar range. A corresponding dose-responsive inhibition of pAKT(Ser473) is observed with an IC50 of 0.36 nM. IPI-145 diminishes the BCR-induced chemokines CCL3 and CCL4 secretion to 17% and 37%, respectively. Pre-treatment with 1 μM IPI-145 inhibits the chemotaxis toward CXCL12; reduces pseudoemperipolesis to median 50%, inferring its ability to interfere with homing capabilities of CLL cells. BCR-activated signaling proteins AKT(Ser473), BAD(Ser112), ERK(Thr202/Tyr204) and S6(Ser235/236) are mitigated by IPI-145. Importantly, for clinical development in hematological malignancies, IPI-145 is selective to CLL B cells, sparing normal B- and T-lymphocytes. PMID:25917267

  13. Potentiation of antileukemic therapies by the dual PI3K/PDK-1 inhibitor, BAG956: effects on BCR-ABL– and mutant FLT3-expressing cells

    PubMed Central

    Weisberg, Ellen; Banerji, Lolita; Wright, Renee D.; Barrett, Rosemary; Ray, Arghya; Moreno, Daisy; Catley, Laurence; Jiang, Jingrui; Hall-Meyers, Elizabeth; Sauveur-Michel, Maira; Stone, Richard; Galinsky, Ilene; Fox, Edward; Kung, Andrew L.

    2008-01-01

    Mediators of PI3K/AKT signaling have been implicated in chronic myeloid leukemia (CML) and acute myeloid leukemia (AML). Studies have shown that inhibitors of PI3K/AKT signaling, such as wortmannin and LY294002, are able to inhibit CML and AML cell proliferation and synergize with targeted tyrosine kinase inhi-bitors. We investigated the ability of BAG956, a dual PI3K/PDK-1 inhibitor, to be used in combination with inhibitors of BCR-ABL and mutant FLT3, as well as with the mTOR inhibitor, rapamycin, and the rapamycin derivative, RAD001. BAG956 was shown to block AKT phosphorylation induced by BCR-ABL–, and induce apoptosis of BCR-ABL–expressing cell lines and patient bone marrow cells at concentrations that also inhibit PI3K signaling. Enhancement of the inhibitory effects of the tyrosine kinase inhibitors, imatinib and nilotinib, by BAG956 was demonstrated against BCR-ABL expressing cells both in vitro and in vivo. We have also shown that BAG956 is effective against mutant FLT3-expressing cell lines and AML patient bone marrow cells. Enhancement of the inhibitory effects of the tyrosine kinase inhibitor, PKC412, by BAG956 was demonstrated against mutant FLT3-expressing cells. Finally, BAG956 and rapamycin/RAD001 were shown to combine in a nonantagonistic fashion against BCR-ABL– and mutant FLT3-expressing cells both in vitro and in vivo. PMID:18184863

  14. Investigating the role of class-IA PI 3-kinase isoforms in adipocyte differentiation

    SciTech Connect

    Kim, Ji Eun; Shepherd, Peter R. Chaussade, Claire

    2009-02-20

    PI 3-kinases, in particular class-IA, are key signalling molecules controlling many cellular processes including growth, proliferation, migration and differentiation. In this study, we have used a collection of isoform selective PI 3-kinase inhibitors to determine whether attenuation of signalling through class-IA PI 3-kinase isoforms will impact adipocyte differentiation. First, we analysed the expression profiles and found that fibroblastic pre-adipocytes express detectable levels of p110{alpha} and p110{delta} and that after differentiation, p110{delta} levels fall while p110{alpha} levels rise, together with C/EBP{alpha} and PPAR{gamma}. When using specific inhibitors during the differentiation process, we observed that neither p110{beta} nor p110{delta} inhibition, had any significant effect. In contrast PIK-75, a selective p110{alpha} inhibitor completely abolished adipocyte differentiation as assessed by morphology, transcript and protein levels of adipocyte markers. These results indicate that long term treatment with p110{alpha} inhibitors could potentially have a severe impact on fat cell numbers in vivo.

  15. PI3K signalling in GnRH actions on dispersed goldfish pituitary cells: relationship with PKC-mediated LH and GH release and regulation of long-term effects on secretion and total cellular hormone availability.

    PubMed

    Pemberton, Joshua G; Orr, Michael E; Stafford, James L; Chang, John P

    2014-09-01

    Goldfish pituitary cells are exposed to two GnRHs, salmon (s)GnRH and chicken (c)GnRH-II. Phosphoinositide 3-kinase (PI3K) and protein kinase C (PKC) both participate in acute sGnRH- and cGnRH-II-stimulated LH and GH release. Using goldfish pituitary cells, we examined the relationship between PI3K and PKC in acute LH and GH secretion, and PI3K involvement in chronic hormone release and total LH and GH availability. The PI3K inhibitor LY294002 did not affect PKC agonists-induced LH or GH release, and PKC agonists did not alter PI3K p85 phosphorylation, suggesting PKC activation is not upstream of PI3K in acute hormone release. In 2, 6, 12 and 24h treatments, LY294002 did not affect LH release but stimulated total LH availability at 6h. sGnRH stimulatory actions on LH release and total availability at 12 and 24h, and cGnRH-II effects on these parameters at 6h were inhibited by LY294002. LY294002 enhanced basal GH release at 2 and 6h, but reduced total GH at 12 and 24h. Increased GH release was seen following 6, 12 and 24h of sGnRH, and 2, 6 and 24h of cGnRH-II treatment but total GH availability was only elevated by 24h cGnRH-II treatment. Whereas LY294002 inhibited GH release responses to sGnRH at 12h and cGnRH-II at 6h, it attenuated cGnRH-II-elicited, but not sGnRH-induced, effects on total GH. These results indicate that PI3K differentially modulates long-term basal and GnRH-stimulated hormone release, and total hormone availability, in a time-, cell-type-, and GnRH isoform-selective manner. PMID:24681225

  16. Sensitivity to the MEK inhibitor E6201 in melanoma cells is associated with mutant BRAF and wildtype PTEN status

    PubMed Central

    2012-01-01

    Background Melanoma is the most lethal form of skin cancer, but recent advances in molecularly targeted agents against the Ras/Raf/MAPK pathway demonstrate promise as effective therapies. Despite these advances, resistance remains an issue, as illustrated recently by the clinical experience with vemurafenib. Such acquired resistance appears to be the result of parallel pathway activation, such as PI3K, to overcome single-agent inhibition. In this report, we describe the cytotoxicity and anti-tumour activity of the novel MEK inhibitor, E6201, in a broad panel of melanoma cell lines (n = 31) of known mutational profile in vitro and in vivo. We further test the effectiveness of combining E6201 with an inhibitor of PI3K (LY294002) in overcoming resistance in these cell lines. Results The majority of melanoma cell lines were either sensitive (IC50 < 500 nM, 24/31) or hypersensitive (IC50 < 100 nM, 18/31) to E6201. This sensitivity correlated with wildtype PTEN and mutant BRAF status, whereas mutant RAS and PI3K pathway activation were associated with resistance. Although MEK inhibitors predominantly exert a cytostatic effect, E6201 elicited a potent cytocidal effect on most of the sensitive lines studied, as evidenced by Annexin positivity and cell death ELISA. Conversely, E6201 did not induce cell death in the two resistant melanoma cell lines tested. E6201 inhibited xenograft tumour growth in all four melanoma cell lines studied to varying degrees, but a more pronounced anti-tumour effect was observed for cell lines that previously demonstrated a cytocidal response in vitro. In vitro combination studies of E6201 and LY294002 showed synergism in all six melanoma cell lines tested, as defined by a mean combination index < 1. Conclusions Our data demonstrate that E6201 elicits a predominantly cytocidal effect in vitro and in vivo in melanoma cells of diverse mutational background. Resistance to E6201 was associated with disruption of PTEN and activation

  17. EGF or PDGF receptors activate atypical PKClambda through phosphatidylinositol 3-kinase.

    PubMed Central

    Akimoto, K; Takahashi, R; Moriya, S; Nishioka, N; Takayanagi, J; Kimura, K; Fukui, Y; Osada, S i; Mizuno, K; Hirai, S i; Kazlauskas, A; Ohno, S

    1996-01-01

    Overexpression of a TPA-insensitive PKC member, an atypical protein kinase C (aPKClambda), results in an enhancement of the transcriptional activation of TPA response element (TRE) in cells stimulated with epidermal growth factor (EGF) or platelet-derived growth factor (PDGF). EGF or PDGF also caused a transient increase in the in vivo phosphorylation level and a change in the intracellular localization of aPKClambda from the nucleus to the cytosol, indicating the activation of aPKClambda in response to this growth factor stimulation. These immediate signal-dependent changes in aKPClambda were observed for a PDGF receptor add-back mutant (Y40/51) that possesses only two of the five major autophosphorylation sites and binds PI3-kinase, and were inhibited by wortmannin, an inhibitor of PI3-kinase. Furthermore, an N-terminal fragment of the catalytic subunit of PI3-kinase, p110alpha, inhibited aPKClambda-dependent activation of TRE in Y40/51 cells stimulated with PDGF. Overexpression of p110alpha resulted in an enhancement of TRE expression in response to PDGF and the regulatory domain of aPKClambda inhibited this TRE activation in Y40/51 cells. These results provide the first in vivo evidence supporting the presence of a novel signalling pathway from receptor tyrosine kinases to aPKClambda through PI3-kinase. Images PMID:8631300

  18. GSK-3 kinases enhance calcineurin signaling by phosphorylation of RCNs

    PubMed Central

    Hilioti, Zoe; Gallagher, Deirdre A.; Low-Nam, Shalini T.; Ramaswamy, Priya; Gajer, Pawel; Kingsbury, Tami J.; Birchwood, Christine J.; Levchenko, Andre; Cunningham, Kyle W.

    2004-01-01

    The conserved RCN family of proteins can bind and directly regulate calcineurin, a Ca2+-activated protein phosphatase involved in immunity, heart growth, muscle development, learning, and other processes. Whereas high levels of RCNs can inhibit calcineurin signaling in fungal and animal cells, RCNs can also stimulate calcineurin signaling when expressed at endogenous levels. Here we show that the stimulatory effect of yeast Rcn1 involves phosphorylation of a conservedserine residue by Mck1, a member of the GSK-3 family of protein kinases. Mutations at the GSK-3 consensus site of Rcn1 and human DSCR1/MCIP1 abolish the stimulatory effects on calcineurin signaling. RCNs may therefore oscillate between stimulatory and inhibitory forms in vivo in a manner similar to the Inhibitor-2 regulators of type 1 protein phosphatase. Computational modeling indicates a biphasic response of calcineurin to increasing RCN concentration such that protein phosphatase activity is stimulated by low concentrations of phospho-RCN and inhibited by high concentrations of phospho- or dephospho-RCN. This prediction was verified experimentally in yeast cells expressing Rcn1 or DSCR1/MCIP1 at different concentrations. Through the phosphorylation of RCNs, GSK-3 kinases can potentially contribute to a positive feedback loop involving calcineurin-dependent up-regulation of RCN expression. Such feedback may help explain the large induction of DSCR1/MCIP1 observed in brain of Down syndrome individuals. PMID:14701880

  19. Combination of PI3K/Akt/mTOR inhibitors and PDT in endothelial and tumor cells

    NASA Astrophysics Data System (ADS)

    Fateye, Babasola; Chen, Bin

    2011-02-01

    The PI3/Akt/mTOR kinase signaling pathway is a major signaling pathway in eukaryotic cells, and dysregulation of this signaling pathway has been implicated in tumorigenesis and malignancy in several cancers including prostate cancer. We assessed the effects of combination PI3K pathway inhibition on the efficacy of PDT in human prostate tumor cell line (PC3) and SV40-transformed mouse endothelial cell line (SVEC-40). Combination of PDT and BEZ 235 (BEZ), a pan-PI3/ mTOR kinase inhibitor additively enhanced efficacy of sub-lethal PDT in both cell lines. The combination of the pan-PI3/ mTOR kinase inhibitor LY294002 (LY) with PDT also enhanced efficacy of PDT in PC3 in an additive manner but synergistically in SVEC. In order to determine the mechanism of enhancement of efficacy, we assessed apoptosis and autophagy following PDT. PDT-mediated apoptosis was enhanced in endothelial cells, by both BEZ and LY rapidly after treatment. Compared to SVEC, PC3 cells are apoptosis-deficient and apoptosis was not significantly enhanced by either LY or BEZ. However, lethal PDT of PC3 cells induced a delayed autophagic response which may be enhanced by combination, depending on PI3K inhibitor and dose.

  20. Endothelium-Dependent Relaxation Effect of Apocynum venetum Leaf Extract via Src/PI3K/Akt Signalling Pathway.

    PubMed

    Lau, Yeh Siang; Ling, Wei Chih; Murugan, Dharmani; Kwan, Chiu Yin; Mustafa, Mohd Rais

    2015-07-01

    Botanical herbs are consumed globally not only as an essential diet but also as medicines or as functional/recreational food supplements. The extract of the Apocynum venetum leaves (AVLE), also known as Luobuma, exerts its antihypertensive effect via dilating the blood vessels in an endothelium- and concentration-dependent manner with optimal effect seen at as low as 10 µg/mL. A commercial Luoboma "antihypertensive tea" is available commercially in the western province of China. The present study seeks to investigate the underlying cellular mechanisms of the nitric oxide (NO)-releasing property of AVLE in rat aortas and human umbilical vein endothelial cells (HUVECs). Endothelium-dependent relaxation induced by AVLE was assessed in organ chambers in the presence or absence of polyethyleneglycol catalase (PP2, 20 µM; inhibitor of Src kinase), wortmannin (30 nM) and LY294002 (20 µM; PI3 (phosphatidylinositol3)-Kinase inhibitor), N(G)-nitro-L-arginine (L-NAME, 100 µM; endothelial NO synthase inhibitor (eNOS)) and ODQ (1 µM; soluble guanylyl cyclase inhibitor). Total nitrite and nitrate (NOx) level and protein expression of p-Akt and p-eNOS were measured. AVLE-induced endothelium-dependent relaxation was reduced by PP2, wortmannin and LY294002 and abolished by L-NAME and ODQ. AVLE significantly increased total NOx level in rat aortas and in HUVECs compared to control. It also instigated phosphorylation of Akt and eNOS in cultured HUVECs in a concentration-dependent manner and this was markedly suppressed by PP2, wortmannin and LY294002. AVLE also inhibited superoxide generated from both NADPH oxidase and xanthine/xanthine oxidase system. Taken together, AVLE causes endothelium-dependent NO mediated relaxations of rat aortas through Src/PI3K/Akt dependent NO signalling pathway and possesses superoxide scavenging activity. PMID:26133970

  1. MKP1 repression is required for the chemosensitizing effects of NF-kappaB and PI3K inhibitors to cisplatin in non-small cell lung cancer.

    PubMed

    Cortes-Sempere, María; Chattopadhyay, Sharmila; Rovira, Ana; Rodriguez-Fanjul, Vanessa; Belda-Iniesta, Cristobal; Tapia, Marian; Cejas, Paloma; Machado-Pinilla, Rosario; Manguan-García, Cristina; Sánchez-Pérez, Isabel; Nistal, Manuel; Moratilla, Carmen; de Castro-Carpeño, Javier; Gonzalez-Barón, Manuel; Albanell, Joan; Perona, Rosario

    2009-12-28

    Treatment of non-small cell lung cancer (NSCLC) with cisplatin has a level of antitumor activity still modest. We have shown previously that MKP1/DUSP1 inhibits cisplatin-induced apoptosis in NSCLC cells and is overexpressed in tumors from most patients with stage I-II NSCLC. Here, using different NSCLC cell lines we found that MKP1 and NF-kappaB are differentially expressed. We studied whether targeting MKP1, NF-kappaB or both affects cisplatin-induced cell death. MKP1 is expressed in H460 and H727 cells. H727 and H1299 cells showed constitutive phosphorylation of Akt and increased NF-kappaB activity than did H460 cells. H460-MKP1-siRNA-expressing cells (but not H727-MKP1-siRNA or H1299-MKP1-siRNA cells) exhibit a marked increase in cisplatin response compared with parental cells. Treatment with the PI3K inhibitor LY294002 or the NF-kappaB inhibitor BAY11-7082 enhanced cisplatin antitumor activity in parental H1299 cells but only weakly affected responses of H727 and H460 cells. MKP1-siRNA expression enhanced the chemosensitization effect of LY294002 and BAY11-7082 on H727 and H460 cells. Additionally, NSCLC cell lines with higher NF-kappaB-constitutive activation were the most sensitive to PS-341 (Bortezomib), a non-specific NF-kappaB inhibitor. This finding suggests the proteasome as a suitable strategy in treating NSCLC tumors with high constitutive NF-kappaB activity. Altogether, these results showed that either an activated PI3K/Akt/NF-kappaB pathway and/or high MKP1 was linked to reduced sensitivity to cisplatin in NSCLC cells. Inhibition of NF-kappaB or PI3K potently enhanced cisplatin cytotoxicity in cells with endogenous or genetically induced low MKP1 levels. These findings support the potential improvement in cisplatin responses by co-targeting NF-kappaB or Akt and MKP1. PMID:19553005

  2. The PI3K signaling-mediated nitric oxide contributes to cardiovascular effects of angiotensin-(1-7) in the nucleus tractus solitarii of rats.

    PubMed

    Wu, Zhao-Tang; Ren, Chang-Zhen; Yang, Ya-Hong; Zhang, Ru-Wen; Sun, Jia-Cen; Wang, Yang-Kai; Su, Ding-Feng; Wang, Wei-Zhong

    2016-01-30

    Angiotensin-1-7 [Ang-(1-7)], acting via the Mas receptor in the central nervous system, is involved in the regulation of cardiovascular activity. Nitric oxide (NO) is implicated as an important modulator in the nucleus tractus solitarii (NTS), a key region involved in control of cardiovascular activity. The aim of the present study was to determine the role of phosphatidylinositol 3-kinase (PI3K) signaling in mediating the effect of Ang-(1-7) on NO generation in the NTS. In Sprague-Dawley rats, acute injection of Ang-(1-7) into the NTS significantly increased NO generation and neuronal/endothelial NO synthase (n/eNOS) activity, which were abolished by the selective Mas receptor antagonist d-Alanine-[Ang-(1-7)] (A-779), the PI3K inhibitor LY294002, or the Akt inhibitor triciribine (TCN). Western blotting analysis further demonstrated that Ang-(1-7) significantly increased levels of Akt/NOS phosphorylation in the NTS, and Ang-(1-7)-induced e/nNOS phosphorylation was antagonized by LY294002 or TCN. Furthermore, gene knockdown of PI3K by lentivirus containing small hairpin RNA in the NTS prevented the Ang-(1-7)-induced increases in NOS/Akt phosphorylation and NO production. The physiological (in vivo) experiments showed that pretreatment with the NOS inhibitor l-NAME, LY294002, or TCN abolished the decreases in blood pressure, heart rate, and renal sympathetic nerve activity induced by Ang-(1-7) injected into the NTS. Our findings suggest that nitric oxide release meditated by the Mas-PI3K-NOS signaling pathway is involved in the cardiovascular effects of Ang-(1-7) in the NTS. PMID:26686278

  3. Neuregulin-1β Regulates the migration of Different Neurochemical Phenotypic Neurons from Organotypically Cultured Dorsal Root Ganglion Explants.

    PubMed

    Li, Yunfeng; Liu, Guixiang; Li, Hao; Bi, Yanwen

    2016-01-01

    Neuregulin-1β (NRG-1β) has multiple roles in the development and function in the nervous system and exhibits potent neuroprotective properties. In the present study, organotypically cultured dorsal root ganglion (DRG) explants were used to evaluate the effects of NRG-1β on migration of two major phenotypic classes of DRG neurons. The signaling pathways involved in these effects were also determined. Organotypically cultured DRG explants were exposed to NRG-1β (20 nmol/L), the phosphatidylinositol 3-kinase inhibitor LY294002 (10 μmol/L) plus NRG-1β (20 nmol/L), the extracellular signal-regulated protein kinase (ERK1/2) inhibitor PD98059 (10 μmol/L) plus NRG-1β (20 nmol/L), and LY294002 (10 μmol/L) plus PD98059 (10 μmol/L) plus NRG-1β (20 nmol/L), respectively, for 3 days. The DRG explants were continuously exposed to culture media as a control. After that, all above cultures were processed for detecting the mRNA levels of calcitonin gene-related peptide (CGRP) and neurofilament-200 (NF-200) by real-time PCR analysis. CGRP and NF-200 expression in situ was determined by fluorescent labeling technique. The results showed that NRG-1β elevated the mRNA and protein levels of CGRP and NF-200. NRG-1β also increased the number and the percentage of CGRP-immunoreactive (IR) migrating neurons and NF-200-IR migrating neurons. Inhibitors (LY294002, PD98059) either alone or in combination blocked the effects of NRG-1β. The contribution of NRG-1β on modulating distinct neurochemical phenotypic plasticity of DRG neurons suggested that NRG-1β signaling system might play an important role on the biological effects of primary sensory neurons. PMID:26093851

  4. Identification of Druggable Targets for Radiation Mitigation Using a Small Interfering RNA Screening Assay

    PubMed Central

    Zellefrow, Crystal D.; Sharlow, Elizabeth R.; Epperly, Michael W.; Reese, Celeste E.; Shun, Tongying; Lira, Ana; Greenberger, Joel S.; Lazo, John S.

    2013-01-01

    Currently, there is a serious absence of pharmaceutically attractive small molecules that mitigate the lethal effects of an accidental or intentional public exposure to toxic doses of ionizing radiation. Moreover, cellular systems that emulate the radiobiologically relevant cell populations and that are suitable for high-throughput screening have not been established. Therefore, we examined two human pluripotent embryonal carcinoma cell lines for use in an unbiased phenotypic small interfering RNA (siRNA) assay to identify proteins with the potential of being drug targets for the protection of human cell populations against clinically relevant ionizing radiation doses that cause acute radiation syndrome. Of the two human cell lines tested, NCCIT cells had optimal growth characteristics in a 384 well format, exhibited radiation sensitivity (D0 = 1.3 ± 0.1 Gy and ñ = 2.0 ± 0.6) comparable to the radiosensitivity of stem cell populations associated with human death within 30 days after total-body irradiation. Moreover, they internalized siRNA after 4 Gy irradiation enabling siRNA library screening. Therefore, we used the human NCCIT cell line for the radiation mitigation study with a siRNA library that silenced 5,520 genes known or hypothesized to be potential therapeutic targets. Exploiting computational methodologies, we identified 113 siRNAs with potential radiomitigative properties, which were further refined to 29 siRNAs with phosphoinositide-3-kinase regulatory subunit 1 (p85α) being among the highest confidence candidate gene products. Colony formation assays revealed radiation mitigation when the phosphoinositide-3-kinase inhibitor LY294002 was given after irradiation of 32D cl 3 cells (D0 = 1.3 ± 0.1 Gy and ñ = 2.3 ± 0.3 for the vehicle control treated cells compared to D0 = 1.2 ± 0.1 Gy and ñ = 6.0 ± 0.8 for the LY294002 treated cells, P = 0.0004). LY294002 and two other PI3K inhibitors, PI 828 and GSK 1059615, also mitigated radiation

  5. Identification of druggable targets for radiation mitigation using a small interfering RNA screening assay.

    PubMed

    Zellefrow, Crystal D; Sharlow, Elizabeth R; Epperly, Michael W; Reese, Celeste E; Shun, Tongying; Lira, Ana; Greenberger, Joel S; Lazo, John S

    2012-09-01

    Currently, there is a serious absence of pharmaceutically attractive small molecules that mitigate the lethal effects of an accidental or intentional public exposure to toxic doses of ionizing radiation. Moreover, cellular systems that emulate the radiobiologically relevant cell populations and that are suitable for high-throughput screening have not been established. Therefore, we examined two human pluripotent embryonal carcinoma cell lines for use in an unbiased phenotypic small interfering RNA (siRNA) assay to identify proteins with the potential of being drug targets for the protection of human cell populations against clinically relevant ionizing radiation doses that cause acute radiation syndrome. Of the two human cell lines tested, NCCIT cells had optimal growth characteristics in a 384 well format, exhibited radiation sensitivity (D(0) = 1.3 ± 0.1 Gy and ñ = 2.0 ± 0.6) comparable to the radiosensitivity of stem cell populations associated with human death within 30 days after total-body irradiation. Moreover, they internalized siRNA after 4 Gy irradiation enabling siRNA library screening. Therefore, we used the human NCCIT cell line for the radiation mitigation study with a siRNA library that silenced 5,520 genes known or hypothesized to be potential therapeutic targets. Exploiting computational methodologies, we identified 113 siRNAs with potential radiomitigative properties, which were further refined to 29 siRNAs with phosphoinositide-3-kinase regulatory subunit 1 (p85α) being among the highest confidence candidate gene products. Colony formation assays revealed radiation mitigation when the phosphoinositide-3-kinase inhibitor LY294002 was given after irradiation of 32D cl 3 cells (D(0) = 1.3 ± 0.1 Gy and ñ = 2.3 ± 0.3 for the vehicle control treated cells compared to D(0) = 1.2 ± 0.1 Gy and ñ = 6.0 ± 0.8 for the LY294002 treated cells, P = 0.0004). LY294002 and two other PI3K inhibitors, PI 828 and GSK 1059615, also mitigated radiation

  6. Andrographolide Inhibits Nuclear Factor-κB Activation through JNK-Akt-p65 Signaling Cascade in Tumor Necrosis Factor-α-Stimulated Vascular Smooth Muscle Cells

    PubMed Central

    Chen, Yu-Ying; Hsieh, Cheng-Ying; Lee, Lin-Wen; Sheu, Joen-Rong

    2014-01-01

    Critical vascular inflammation leads to vascular dysfunction and cardiovascular diseases, including abdominal aortic aneurysms, hypertension, and atherosclerosis. Andrographolide is the most active and critical constituent isolated from the leaves of Andrographis paniculata, a herbal medicine widely used for treating anti-inflammation in Asia. In this study, we investigated the mechanisms of the inhibitory effects of andrographolide in vascular smooth muscle cells (VSMCs) exposed to a proinflammatory stimulus, tumor necrosis factor-α (TNF-α). Treating TNF-α-stimulated VSMCs with andrographolide suppressed the expression of inducible nitric oxide synthase in a concentration-dependent manner. A reduction in TNF-α-induced c-Jun N-terminal kinase (JNK), Akt, and p65 phosphorylation was observed in andrographolide-treated VSMCs. However, andrographolide affected neither IκBα degradation nor p38 mitogen-activated protein kinase or extracellular signal-regulated kinase 1/2 phosphorylation under these conditions. Both treatment with LY294002, a phosphatidylinositol 3-kinase/Akt inhibitor, and treatment with SP600125, a JNK inhibitor, markedly reversed the andrographolide-mediated inhibition of p65 phosphorylation. In addition, LY294002 and SP600125 both diminished Akt phosphorylation, whereas LY294002 had no effects on JNK phosphorylation. These results collectively suggest that therapeutic interventions using andrographolide can benefit the treatment of vascular inflammatory diseases, and andrographolide-mediated inhibition of NF-κB activity in TNF-α-stimulated VSMCs occurs through the JNK-Akt-p65 signaling cascade, an IκBα-independent mechanism. PMID:25114952

  7. PI3K/Akt signaling pathway is involved in the neurotrophic effect of senegenin.

    PubMed

    Pi, Ting; Zhou, Xiao-Wen; Cai, Liang; Zhang, Wei; Su, Chao-Fen; Wu, Wu-Tian; Ren, Xiao-Ming; Luo, Huan-Min

    2016-02-01

    Neurodegenerative diseases are frequently associated with the loss of synapses and neurons. Senegenin, extracted from the Chinese herb Polygala tenuifolia Willd, was previously found to promote neurite outgrowth and neuronal survival in primary cultured rat cortical neurons. The aim of the present study was to investigate the underlying mechanisms of senegenin-induced neurotrophic effects on rat cortical neurons. Primary cortical rat neurons were treated with various pharmacological antagonists and with or without senegenin, and subjected to MTT and western blot analysis to explore the effects of senegenin on cell survival as well as the activation of signaling pathways. Neurite outgrowth and neuronal survival induced by senegenin were significantly inhibited by A2A receptor antagonist ZM241385 and specific phosphoinositide-3 kinase (PI3K) inhibitor LY294002, but not by tropomyosin receptor kinase A receptor inhibitor K252a, mitogen-activated protein kinase kinase inhibitor PD98059 or protein kinase C inhibitor GÖ6976. Furthermore, senegenin enhanced the phosphorylation of Akt, which was blocked by LY294002. The present study revealed that the PI3K/Akt signaling pathway may be involved in the neurotrophic effects of senegenin. PMID:26647727

  8. PI-3 kinase p110β: a therapeutic target in advanced prostate cancers

    PubMed Central

    Li, Benyi; Sun, Aijing; Jiang, Wencong; Thrasher, J Brantley; Terranova, Paul

    2014-01-01

    Prostate cancers in the castration-resistant stage are life-threatening because they are not curable in clinic. The novel androgen receptor inhibitor Xandi (Enzalutamide) and the new CYP17 inhibitor Zytiga (Abiraterone) prolonged patient survival only a few months in advanced prostate cancers. Therefore, novel therapeutic agents for advanced prostate cancers are urgently needed. PI-3 kinases are major intracellular signaling molecules that regulate multiple signal pathways related to cellular metabolism, cytokinesis, growth and survival. Accumulating evidence in the literature indicates that some isoforms of this kinase family are oncogenic and abnormally expressed in various human cancers, including prostate cancers. Recent extensive studies from our group and others showed that PI-3 kinase p110β is aberrantly overexpressed in advanced prostate cancers and is critical for prostate cancer development and progression as demonstrated in cell-based and animal models. Importantly, novel p110β-specific inhibitors have been developed and are currently been testing in clinical trials. In this article, we will briefly summarize recent developments in this regard. PMID:25374921

  9. LTB4 stimulates growth of human pancreatic cancer cells via MAPK and PI-3 kinase pathways

    SciTech Connect

    Tong, W.-G.; Ding, X.-Z.; Talamonti, Mark S.; Bell, Richard H.; Adrian, Thomas E. . E-mail: tadrian@northwestern.edu

    2005-09-30

    We have previously shown the importance of LTB4 in human pancreatic cancer. LTB4 receptor antagonists block growth and induce apoptosis in pancreatic cancer cells both in vitro and in vivo. Therefore, we investigated the effect of LTB4 on proliferation of human pancreatic cancer cells and the mechanisms involved. LTB4 stimulated DNA synthesis and proliferation of both PANC-1 and AsPC-1 human pancreatic cancer cells, as measured by thymidine incorporation and cell number. LTB4 stimulated rapid and transient activation of MEK and ERK1/2 kinases. The MEK inhibitors, PD98059 and U0126, blocked LTB4-stimulated ERK1/2 activation and cell proliferation. LTB4 also stimulated phosphorylation of p38 MAPK; however, the p38 MAPK inhibitor, SB203580, failed to block LTB4-stimulated growth. The activity of JNK/SAPK was not affected by LTB4 treatment. Phosphorylation of Akt was also induced by LTB4 and this effect was blocked by the PI-3 kinase inhibitor wortmannin, which also partially blocked LTB4-stimulated cell proliferation. In conclusion, LTB4 stimulates proliferation of human pancreatic cancer cells through MEK/ERK and PI-3 kinase/Akt pathways, while p38 MPAK and JNK/SAPK are not involved.

  10. Phosphoinositide 3-kinase: the key switch mechanism in insulin signalling.

    PubMed Central

    Shepherd, P R; Withers, D J; Siddle, K

    1998-01-01

    Insulin plays a key role in regulating a wide range of cellular processes. However, until recently little was known about the signalling pathways that are involved in linking the insulin receptor with downstream responses. It is now apparent that the activation of class 1a phosphoinositide 3-kinase (PI 3-kinase) is necessary and in some cases sufficient to elicit many of insulin's effects on glucose and lipid metabolism. The lipid products of PI 3-kinase act as both membrane anchors and allosteric regulators, serving to localize and activate downstream enzymes and their protein substrates. One of the major ways these lipid products of PI 3-kinase act in insulin signalling is by binding to pleckstrin homology (PH) domains of phosphoinositide-dependent protein kinase (PDK) and protein kinase B (PKB) and in the process regulating the phosphorylation of PKB by PDK. Using mechanisms such as this, PI 3-kinase is able to act as a molecular switch to regulate the activity of serine/threonine-specific kinase cascades important in mediating insulin's effects on endpoint responses. PMID:9677303

  11. Evaluation of Potential Ionizing Irradiation Protectors and Mitigators Using Clonogenic Survival of Human Umbilical Cord Blood Hematopoietic Progenitor Cells

    PubMed Central

    Goff, Julie P.; Shields, Donna S.; Wang, Hong; Skoda, Erin M.; Sprachman, Melissa M.; Wipf, Peter; Garapati, Venkata Krishna; Atkinson, Jeffrey; London, Barry; Lazo, John S.; Kagan, Valerian; Epperly, Michael W.; Greenberger, Joel S.

    2013-01-01

    We evaluated the use of colony formation (CFU-GM, BFU-E, and CFU-GEMM) by human umbilical cord blood (CB) hematopoietic progenitor cells for testing novel small molecule ionizing irradiation protectors and mitigators. Each of 11 compounds was added before (protection) or after (mitigation) ionizing irradiation including: GS-nitroxides (JP4-039 and XJB-5-131), the bifunctional sulfoxide MMS-350, the phosphoinositol-3-kinase inhibitor (LY294002), TPP-imidazole fatty acid, (TPP-IOA), the nitric oxide synthase inhibitor (MCF-201-89), the p53/mdm2/mdm4 inhibitor (BEB55), methoxamine, isoproterenol, propanolol, and the ATP sensitive potassium channel blocker (glyburide). The drugs XJB-5-131, JP4-039, and MMS-350 were radiation protectors for CFU-GM. JP4-039 was also a radiation protector for CFU-GEMM. The drugs, XJB-5-131, JP4-039, and MMS-350 were radiation mitigators for BFU-E, MMS-350 and JP4-039 were mitigators for CFU-GM, and MMS350 was a mitigator for CFU-GEMM. In contrast, other drugs that were effective in murine assays: TTP-IOA, LY294002, MCF201-89, BEB55, propranolol, isoproterenol, methoxamine, and glyburide showed no significant protection or mitigation in human CB assays. These data support testing of new candidate clinical radiation protectors and mitigators using human CB clonogenic assays early in the drug discovery process, reducing the need for animal experiments. PMID:23933481

  12. Suppression of Mcl-1 induces apoptosis in mouse peritoneal macrophages infected with Mycobacterium tuberculosis.

    PubMed

    Wang, Fei-Yu; Wang, Xin-Min; Wang, Chan; Wang, Xiao-Fang; Zhang, Yu-Qing; Wu, Jiang-Dong; Wu, Fang; Zhang, Wan-Jiang; Zhang, Le

    2016-04-01

    The effect of myeloid cell leukemia-1 (Mcl-1) inhibition on apoptosis of peritoneal macrophages in mice infected with Mycobacterium tuberculosis was investigated and the primary signaling pathway associated with the transcriptional regulation of Mcl-1 was identified. Real-time PCR and western blotting indicated that Mcl-1 transcript and protein expression are upregulated during infection with virulent M. tuberculosis H37Rv and Xinjiang strains but not with attenuated M. tuberculosis strain H37Ra or Bacillus Calmette-Guérin. Mcl-1 transcript and protein expression were downregulated by specific inhibitors of the Janus kinase/signal transducer and activator of transcription (JAK/STAT), mitogen-activated protein kinase (MAPK) and phosphoinositol 3-kinase (PI3K) pathways (AG490, PD98059 and LY294002, respectively). The strongest inhibitor of Mcl-1 expression was PD98059, the MAPK inhibitor. Flow cytometry demonstrated that the rate of apoptosis in peritoneal macrophages is significantly higher in mice infected with M. tuberculosis and the rate of apoptosis is correlated with the virulence of the strain of M. tuberculosis. Apoptosis was found to be upregulated by AG490, PD98059 and LY294002, whereas inhibition of the MAPK pathway sensitized the infected macrophages to apoptosis. Taken together, these results suggest that specific downregulation of Mcl-1 significantly increases apoptosis of peritoneal macrophages and that the MAPK signaling pathway is the primary mediator of Mcl-1 expression. PMID:26876933

  13. Involvement of activation of PI3K/Akt pathway in the protective effects of puerarin against MPP+-induced human neuroblastoma SH-SY5Y cell death.

    PubMed

    Zhu, Guoqi; Wang, Xuncui; Wu, Shengbing; Li, Qinglin

    2012-03-01

    In an attempt to clarify the protective effect of puerarin on toxin-insulted dopaminergic neuronal death, this present study was carried out by using a typical Parkinson's disease (PD) model - 1-methyl-4-phenylpyridinium iodide (MPP(+))-induced dopaminergic SH-SY5Y cellular model. Data are presented, which showed that puerarin up-regulated Akt phosphorylation in both of MPP(+)-treated and non-MPP(+)-treated cells. The presence of PI3K inhibitor LY294002 completely blocked puerarin-induced activation of Akt phosphorylation. Moreover, puerarin decreased MPP(+)-induced cell death, which was blocked by phosphoinositide 3-kinase (PI3K) inhibitor LY294002. We further demonstrated that puerarin protected against MPP(+)-induced p53 nuclear accumulation, Puma (p53-upregulated mediator of apoptosis) and Bax expression and caspase-3-dependent programmed cell death (PCD). This protection was blocked by applying a PI3K/Akt inhibitor. Additionally, it was Pifithrin-α, but not Pifithrin-μ, which blocked MPP(+)-induced Puma and Bax expression, caspase-3 activation and cell death. Collectively, these data suggest that the activation of PI3K/Akt pathway is involved in the protective effect of puerarin against MPP(+)-induced neuroblastoma SH-SY5Y cell death through inhibiting nuclear p53 accumulation and subsequently caspase-3-dependent PCD. Puerarin might be a potential therapeutic agent for PD. PMID:22265823

  14. Identification and regulation of glycogen synthase kinase-3 during bovine embryo development.

    PubMed

    Aparicio, I M; Garcia-Herreros, M; Fair, T; Lonergan, P

    2010-07-01

    The aim of this study was to examine the presence and regulation of glycogen synthase kinase-3alpha (GSK3A) and GSK-3beta (GSK3B) in bovine embryos and their possible roles in embryo development. Our results show that GSK3A and GSK3B are present in bovine embryos at the two-cell stage to the hatched blastocyst stage. Bovine embryo development was associated with an increase in the phosphorylation of both isoforms, being statistically significant at blastocyst and hatched blastocyst stages, compared with earlier stages. Inhibition of GSK3 with CT99021 (3 microM) resulted in a significant increase in the percentage and quality of blastocysts, while inhibition of GSK3 with lithium chloride (LiCl; 20 mM) significantly reduced at the proportion of eight-cell embryos on day 3 and inhibited blastocyst formation. The use of LY294002 (10 microM), a specific inhibitor of phosphatidylinositol-3 kinase, also produced a significant decrease in embryo development. In addition, treatment with LiCl and LY294002 produced a significant decrease in the serine phosphorylation of both isoforms of GSK3. Finally, CT99021 and LiCl reduced the phosphorylation of beta-catenin on Ser45 in two-cell embryos, while LY294002 increased it. Despite the fact that LiCl inhibited GSK3 activity, as demonstrated by beta-catenin phosphorylation, its effects on the bovine embryo could be mediated through other signaling pathways leading finally to a decrease in the phosphorylation of GSK3 and a reduction in embryo development. Therefore, in conclusion, GSK3A/B serine phosphorylation was positively correlated with embryo development, indicating the importance of an accurate regulation of GSK3 activity during developmental stages to achieve normal bovine embryo development. PMID:20427566

  15. PI3K/Akt is involved in brown adipogenesis mediated by growth differentiation factor-5 in association with activation of the Smad pathway

    SciTech Connect

    Hinoi, Eiichi; Iezaki, Takashi; Fujita, Hiroyuki; Watanabe, Takumi; Odaka, Yoshiaki; Ozaki, Kakeru; Yoneda, Yukio

    2014-07-18

    Highlights: • Akt is preferentially phosphorylated in BAT and sWAT of aP2-GDF5 mice. • PI3K/Akt signaling is involved in GDF5-induced brown adipogenesis. • PI3K/Akt signaling regulates GDF5-induced Smad5 phosphorylation. - Abstract: We have previously demonstrated promotion by growth differentiation factor-5 (GDF5) of brown adipogenesis for systemic energy expenditure through a mechanism relevant to activating the bone morphological protein (BMP) receptor/mothers against decapentaplegic homolog (Smad)/peroxisome proliferator-activated receptor gamma co-activator 1α (PGC-1α) pathway. Here, we show the involvement of the phosphatidylinositol 3-kinase (PI3K)/Akt pathway in brown adipogenesis mediated by GDF5. Overexpression of GDF5 in cells expressing adipocyte protein-2 markedly accelerated the phosphorylation of Smad1/5/8 and Akt in white and brown adipose tissues. In brown adipose tissue from heterozygous GDF5{sup Rgsc451} mutant mice expressing a dominant-negative (DN) GDF5 under obesogenic conditions, the basal phosphorylation of Smad1/5/8 and Akt was significantly attenuated. Exposure to GDF5 not only promoted the phosphorylation of both Smad1/5/8 and Akt in cultured brown pre-adipocytes, but also up-regulated Pgc1a and uncoupling protein-1 expression in a manner sensitive to the PI3K/Akt inhibitor Ly294002 as well as retroviral infection with DN-Akt. GDF5 drastically promoted BMP-responsive luciferase reporter activity in a Ly294002-sensitive fashion. Both Ly294002 and DN-Akt markedly inhibited phosphorylation of Smad5 in the nuclei of brown pre-adipocytes. These results suggest that PI3K/Akt signals play a role in the GDF5-mediated brown adipogenesis through a mechanism related to activation of the Smad pathway.

  16. Impaired Peroxisome Proliferator-activated Receptor-γ Contributes to Phenotypic Modulation of Vascular Smooth Muscle Cells during Hypertension*

    PubMed Central

    Zhang, Lili; Xie, Peng; Wang, Jingzhou; Yang, Qingwu; Fang, Chuanqin; Zhou, Shuang; Li, Jingcheng

    2010-01-01

    The phenotypic modulation of vascular smooth muscle cells (VSMCs) plays a pivotal role in hypertension-induced vascular changes including vascular remodeling. The precise mechanisms underlying VSMC phenotypic modulation remain elusive. Here we test the role of peroxisome proliferator-activated receptor (PPAR)-γ in the VSMC phenotypic modulation during hypertension. Both spontaneously hypertensive rat (SHR) aortas and SHR-derived VSMCs exhibited reduced PPAR-γ expression and excessive VSMC phenotypic modulation identified by reduced contractile proteins, α-smooth muscle actin (α-SMA) and smooth muscle 22α (SM22α), and enhanced proliferation and migration. PPAR-γ overexpression rescued the expression of α-SMA and SM22α, and inhibited the proliferation and migration in SHR-derived VSMCs. In contrast, PPAR-γ silencing exerted the opposite effect. Activating PPAR-γ using rosiglitazone in vivo up-regulated aortic α-SMA and SM22α expression and attenuated aortic remodeling in SHRs. Increased activation of phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) signaling was observed in SHR-derived VSMCs. PI3K inhibitor LY294002 rescued the impaired expression of contractile proteins, and inhibited proliferation and migration in VSMCs from SHRs, whereas constitutively active PI3K mutant had the opposite effect. Overexpression or silencing of PPAR-γ inhibited or excited PI3K/Akt activity, respectively. LY294002 counteracted the PPAR-γ silencing induced proliferation and migration in SHR-derived VSMCs, whereas active PI3K mutant had the opposite effect. In contrast, reduced proliferation and migration by PPAR-γ overexpression were reversed by the active PI3K mutant, and further inhibited by LY294002. We conclude that PPAR-γ inhibits VSMC phenotypic modulation through inhibiting PI3K/Akt signaling. Impaired PPAR-γ expression is responsible for VSMC phenotypic modulation during hypertension. These findings highlight an attractive therapeutic target for

  17. Astaxanthin down-regulates Rad51 expression via inactivation of AKT kinase to enhance mitomycin C-induced cytotoxicity in human non-small cell lung cancer cells.

    PubMed

    Ko, Jen-Chung; Chen, Jyh-Cheng; Wang, Tai-Jing; Zheng, Hao-Yu; Chen, Wen-Ching; Chang, Po-Yuan; Lin, Yun-Wei

    2016-04-01

    Astaxanthin has been demonstrated to exhibit a wide range of beneficial effects, including anti-inflammatory and anti-cancer properties. However, the molecular mechanism of astaxanthin-induced cytotoxicity in non-small cell lung cancer (NSCLC) cells has not been identified. Rad51 plays a central role in homologous recombination, and studies show that chemo-resistant carcinomas exhibit high levels of Rad51 expression. In this study, astaxanthin treatment inhibited cell viability and proliferation of two NSCLC cells, A549 and H1703. Astaxanthin treatment (2.5-20 μM) decreased Rad51 expression and phospho-AKT(Ser473) protein level in a time and dose-dependent manner. Furthermore, expression of constitutively active AKT (AKT-CA) vector rescued the decreased Rad51 mRNA and protein levels in astaxanthin-treated NSCLC cells. Combined treatment with phosphatidylinositol 3-kinase (PI3K) inhibitors (LY294002 or wortmannin) further decreased the Rad51 expression in astaxanthin-exposed A549 and H1703 cells. Knockdown of Rad51 expression by transfection with si-Rad51 RNA or cotreatment with LY294002 further enhanced the cytotoxicity and cell growth inhibition of astaxanthin. Additionally, mitomycin C (MMC) as an anti-tumor antibiotic is widely used in clinical NSCLC chemotherapy. Combination of MMC and astaxanthin synergistically resulted in cytotoxicity and cell growth inhibition in NSCLC cells, accompanied with reduced phospho-AKT(Ser473) level and Rad51 expression. Overexpression of AKT-CA or Flag-tagged Rad51 reversed the astaxanthin and MMC-induced synergistic cytotoxicity. In contrast, pretreatment with LY294002 further decreased the cell viability in astaxanthin and MMC co-treated cells. In conclusion, astaxanthin enhances MMC-induced cytotoxicity by decreasing Rad51 expression and AKT activation. These findings may provide rationale to combine astaxanthin with MMC for the treatment of NSCLC. PMID:26921637

  18. Molecular Features of Neural Stem Cells Enable their Enrichment Using Pharmacological Inhibitors of Survival-Promoting Kinases

    PubMed Central

    Brazel, Christine Y.; Alaythan, Abdulaziz A.; Felling, Ryan J.; Calderon, Frances; Levison, Steven W.

    2013-01-01

    Isolating a pure population of neural stem cells (NSCs) has been difficult since no exclusive surface markers have been identified for panning or FACS purification. Moreover, additional refinements for maintaining NSCs in culture are required, since NSCs generate a variety of neural precursors (NPs) as they proliferate. Here, we demonstrate that postnatal rat NPs express low levels of pro-apoptotic molecules and resist PI3K and ERK1/2 inhibition as compared to late oligodendrocyte progenitors. Furthermore, maintaining SVZ precursors in LY294002 and PD98059, inhibitors of PI3K and ERK1/2 signaling, eliminated lineage-restricted precursors as revealed by enrichment for Nestin+/SOX-2+ cells. The cells that survived formed neurospheres and 89% of these neurospheres were tripotential, generating neurons, astrocytes and oligodendrocytes. Without this enrichment step, less than 50% of the NPs were Nestin+/SOX-2+ and 42% of the neurospheres were tripotential. Additionally, neurospheres enriched using this procedure produced 3-times more secondary neurospheres, supporting the conclusion that this procedure enriches for NSCs. A number of genes that enhance survival were more highly expressed in neurospheres compared to late oligodendrocyte progenitors. Altogether, these studies demonstrate that primitive neural precursors can be enriched using a relatively simple and inexpensive means that will facilitate cell replacement strategies using stem cells as well as other studies whose goal is to reveal the fundamental properties of primitive neural precursors. PMID:24032666

  19. Phosphatidylinositol 3-kinase mediates epidermal growth factor-induced activation of the c-Jun N-terminal kinase signaling pathway.

    PubMed Central

    Logan, S K; Falasca, M; Hu, P; Schlessinger, J

    1997-01-01

    The signaling events which mediate activation of c-Jun N-terminal kinase (JNK) are not yet well characterized. To broaden our understanding of upstream mediators which link extracellular signals to the JNK pathway, we investigated the role of phosphatidylinositol (PI) 3-kinase in epidermal growth factor (EGF)-mediated JNK activation. In this report we demonstrate that a dominant negative form of PI 3-kinase as well as the inhibitor wortmannin blocks EGF-induced JNK activation dramatically. However, wortmannin does not have an effect on JNK activation induced by UV irradiation or osmotic shock. In addition, a membrane-targeted, constitutively active PI 3-kinase (p110beta) was shown to produce in vivo products and to activate JNK, while a kinase-mutated form of this protein showed no activation. On the basis of these experiments, we propose that PI 3-kinase activity plays a role in EGF-induced JNK activation in these cells. PMID:9315636

  20. Cilostazol suppresses angiotensin II-induced apoptosis in endothelial cells

    PubMed Central

    SHI, MIAO-QIAN; SU, FEI-FEI; XU, XUAN; LIU, XIONG-TAO; WANG, HONG-TAO; ZHANG, WEI; LI, XUE; LIAN, CHENG; ZHENG, QIANG-SUN; FENG, ZHI-CHUN

    2016-01-01

    Patients with essential hypertension undergo endothelial dysfunction, particularly in the conduit arteries. Cilostazol, a type III phosphodiesterase inhibitor, serves a role in the inhibition of platelet aggregation and it is widely used in the treatment of peripheral vascular diseases. Previous studies have suggested that cilostazol suppresses endothelial dysfunction; however, it remains unknown whether cilostazol protects the endothelial function in essential hypertension. The aim of the present study was to investigate whether, and how, cilostazol suppresses angiotensin II (angII)-induced endothelial dysfunction. Human umbilical vein endothelial cells (HUVECs) and Sprague Dawley rats were exposed to angII and treated with cilostazol. Endothelial cell apoptosis and function, nitric oxide and superoxide production, phosphorylation (p) of Akt, and caspase-3 protein expression levels were investigated. AngII exposure resulted in the apoptosis of endothelial cells in vitro and in vivo. In vitro, cilostazol significantly suppressed the angII-induced apoptosis of HUVECs; however, this effect was reduced in the presence of LY294002, a phosphoinositide 3 kinase (PI3K) inhibitor. Furthermore, cilostazol suppressed the angII-induced p-Akt downregulation and cleaved caspase-3 upregulation. These effects were also alleviated by LY294002. In vivo, cilostazol suppressed the angII-induced endothelial cell apoptosis and dysfunction. Cilostazol was also demonstrated to partially reduced the angII-induced increase in superoxide production. The results of the present study suggested that cilostazol suppresses endothelial apoptosis and dysfunction by modulating the PI3K/Akt pathway. PMID:26862035

  1. G-protein-coupled receptor 30-mediated antiapoptotic effect of estrogen on spinal motor neurons following injury and its underlying mechanisms

    PubMed Central

    CHEN, JINGYU; HU, RONG; GE, HONGFEI; DUANMU, WANGSHENG; LI, YUHONG; XUE, XINGSENG; HU, SHENGLI; FENG, HUA

    2015-01-01

    Spinal cord injury (SCI) may result in severe dysfunction of motor neurons. G-protein-coupled receptor 30 (GPR30) expression in the motor neurons of the ventral horn of the spinal cord mediates neuroprotection through estrogen signaling. The present study explored the antiapoptotic effect of estrogen, mediated by GPR30 following SCI, and the mechanisms underlying this effect. Spinal motor neurons from rats were cultured in vitro in order to establish cell models of oxygen and glucose deprivation (OGD). The effects of estrogen, the estrogen agonist, G1, and the estrogen inhibitor, G15, on motor neurons were observed using MTT assays. The effects of E2, G1 and G15 on spinal motor neuron apoptosis following OGD, were detected using flow cytometry. The role of the phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) inhibitor, LY294002, was also determined using flow cytometry. Rat SCI models were established. E2, G1 and E2+LY294002 were administered in vivo. Motor function was scored at 3, 7, 14, 21 and 28 d following injury, using Basso-Beattie-Bresnahan (BBB) standards. Cell activity in the estrogen and G1 groups was higher than that in the solvent group, whereas cell activity in the E2+G15 group was lower than that in the E2 group (P<0.05). Following OGD, the proportion of apoptotic cells significantly increased (P<0.05). The proportion in the estrogen group was significantly lower than that in the solvent group, whereas the proportion of apoptotic cells in the E2+G15 and E2+LY294002 groups was higher than that in the E2 group (P<0.05). Treatment with E2 and G1 led to upregulation of P-Akt expression in normal cells and post-OGD cells. The BBB scores of rats in the E2 and G1 groups were higher than those in the placebo group (P<0.05). The BBB scores of the E2+LY294002 group were lower than those of the E2 group (P<0.05). Estrogen thus appears to exert a protective effect on spinal motor neurons following OGD, via GPR30. The PI3K/Akt pathway may be one of those

  2. Differential regulatory functions of three classes of phosphatidylinositol and phosphoinositide 3-kinases in autophagy

    PubMed Central

    Yu, Xinlei; Long, Yun Chau; Shen, Han-Ming

    2015-01-01

    Autophagy is an evolutionarily conserved and exquisitely regulated self-eating cellular process with important biological functions. Phosphatidylinositol 3-kinases (PtdIns3Ks) and phosphoinositide 3-kinases (PI3Ks) are involved in the autophagic process. Here we aim to recapitulate how 3 classes of these lipid kinases differentially regulate autophagy. Generally, activation of the class I PI3K suppresses autophagy, via the well-established PI3K-AKT-MTOR (mechanistic target of rapamycin) complex 1 (MTORC1) pathway. In contrast, the class III PtdIns3K catalytic subunit PIK3C3/Vps34 forms a protein complex with BECN1 and PIK3R4 and produces phosphatidylinositol 3-phosphate (PtdIns3P), which is required for the initiation and progression of autophagy. The class II enzyme emerged only recently as an alternative source of PtdIns3P and autophagic initiator. However, the orthodox paradigm is challenged by findings that the PIK3CB catalytic subunit of class I PI3K acts as a positive regulator of autophagy, and PIK3C3 was thought to be an amino acid sensor for MTOR, which curbs autophagy. At present, a number of PtdIns3K and PI3K inhibitors, including specific PIK3C3 inhibitors, have been developed for suppression of autophagy and for clinical applications in autophagy-related human diseases. PMID:26018563

  3. Phosphatidylinositol 3-kinase-dependent, MEK-independent proliferation in response to CaR activation

    SciTech Connect

    Bilderback, Tim R.; Lee, Fred; Auersperg, Nelly; Rodland, Karin D.

    2002-07-02

    Although ovarian surface epithelial (OSE) cells are responsible for the majority of ovarian tumors, we know relatively little about the pathway(s) that are responsible for regulating their proliferation. We found that phosphatidylinositol 3-kinase (PI3K) is activated in OSE cells in response to elevated extracellular calcium, and the PI3K inhibitors wortmannin and LY29004 inhibited ERK activation by approximately 75%, similar to effects of the MEK2 inhibitor PD98059. However, in assays of proliferation we found that PD98059 inhibited proliferation by approximately 50%, while wortmannin inhibited greater than 90% of the proliferative response to elevated calcium. Expression of a dominant negative PI3K totally inhibited ERK activation in response to calcium. These results demonstrate that ERK activation cannot account for the full proliferative effect of elevated calcium in OSE cells, and suggest the presence of an ERK independent, PI3K dependant component in the proliferative response.

  4. Fragile Histidine Triad (FHIT) Suppresses Proliferation and Promotes Apoptosis in Cholangiocarcinoma Cells by Blocking PI3K-Akt Pathway

    PubMed Central

    Huang, Qiang; Liu, Zhen; Xie, Fang; Liu, Chenhai; Shao, Feng; Zhu, Cheng-lin; Hu, Sanyuan

    2014-01-01

    Fragile histidine triad (FHIT) is a tumor suppressor protein that regulates cancer cell proliferation and apoptosis. However, its exact mechanism of action is poorly understood. Phosphatidylinositol 3-OH kinase (PI3K)-Akt-survivin is an important signaling pathway that was regulated by FHIT in lung cancer cells. To determine whether FHIT can regulate this pathway in cholangiocarcinoma QBC939 cells, we constructed an FHIT expression plasmid and used it to transfect QBC939 cells. Protein and mRNA expression were measured by western blotting and qRT-PCR, respectively. The viability and apoptosis of QBC939 cells were then assessed using MTT assays and flow cytometry. Our results revealed that the expression of survivin and Bcl-2 was downregulated, and caspase 3 was upregulated, in cells overexpressing FHIT. In addition, FHIT suppressed the phosphorylation of Akt. The changes in cell proliferation and apoptosis were obvious in cells overexpressing FHIT which parallels that of treatment with LY294002, a potent inhibitor of phosphoinositide 3-kinases. Treatment with LY294002 further decreased the expression of survivin and Bcl-2 and increased caspase-3 levels. These results suggest that FHIT can block the PI3K-Akt-survivin pathway by suppressing the phosphorylation of Akt and the expression of survivin and Bcl-2 and upregulating caspase 3. PMID:24757411

  5. Hydrogen Peroxide-Induced Akt Phosphorylation Regulates Bax Activation

    PubMed Central

    Sadidi, Mahdieh; Lentz, Stephen I.; Feldman, Eva L.

    2009-01-01

    Reactive oxygen species such as hydrogen peroxide (H2O2) are involved in many cellular processes that positively and negatively regulate cell fate. H2O2, acting as an intracellular messenger, activates phosphatidylinositol-3 kinase (PI3K) and its downstream target Akt, and promotes cell survival. The aim of the current study was to understand the mechanism by which PI3K/Akt signaling promotes survival in SH-SY5Y neuroblastoma cells. We demonstrate that PI3K/Akt mediates phosphorylation of the pro-apoptotic Bcl-2 family member Bax. This phosphorylation suppresses apoptosis and promotes cell survival. Increased survival in the presence of H2O2 was blocked by LY294002, an inhibitor of PI3K activation. LY294002 prevented Bax phosphorylation and resulted in Bax translocation to the mitochondria, cytochrome c release, caspase-3 activation, and cell death. Collectively, these findings reveal a mechanism by which H2O2-induced activation of PI3K/Akt influences posttranslational modification of Bax and inactivate a key component of the cell death machinery. PMID:19278624

  6. Inhibition of PI3K signaling triggered apoptotic potential of curcumin which is hindered by Bcl-2 through activation of autophagy in MCF-7 cells.

    PubMed

    Akkoç, Yunus; Berrak, Özge; Arısan, Elif Damla; Obakan, Pınar; Çoker-Gürkan, Ajda; Palavan-Ünsal, Narçin

    2015-04-01

    Curcumin is a natural anti-cancer agent derived from turmeric (Curcuma longa). Curcumin triggers intrinsic apoptotic cell death by activating mitochondrial permeabilization due to the altered expression of pro- and anti-apoptotic Bcl-2 family members. Phosphoinositol-3-kinase (PI3K) and Akt, key molecular players in the survival mechanism, have been shown to be associated with the Bcl-2 signaling cascade; therefore, evaluating the therapeutic efficiency of drugs that target both survival and the apoptosis mechanism has gained importance in cancer therapy. We found that Bcl-2 overexpression is a limiting factor for curcumin-induced apoptosis in highly metastatic MCF-7 breast cancer cells. Forced overexpression of Bcl-2 also blocked curcumin-induced autophagy in MCF-7 cells, through its inhibitory interactions with Beclin-1. Pre-treatment of PI3K inhibitor LY294002 enhanced curcumin-induced cell death, apoptosis, and autophagy via modulating the expression of Bcl-2 family members and autophagosome formation in MCF-7 breast cancer cells. Atg7 silencing further increased apoptotic potential of curcumin in the presence or absence of LY294002 in wt and Bcl-2+ MCF-7 cells. The findings of this study support the hypothesis that blocking the PI3K/Akt pathway may further increased curcumin-induced apoptosis and overcome forced Bcl-2 expression level mediated autophagic responses against curcumin treatment in MCF-7 cells. PMID:25960232

  7. A novel signaling pathway associated with Lyn, PI 3-kinase and Akt supports the proliferation of myeloma cells

    SciTech Connect

    Iqbal, Mohd S.; Tsuyama, Naohiro; Obata, Masanori; Ishikawa, Hideaki

    2010-02-12

    Interleukin-6 (IL-6) is a growth factor for human myeloma cells. We have recently found that in myeloma cells the activation of both signal transducer and activator of transcription (STAT) 3 and extracellular signal-regulated kinase (ERK) 1/2 is not sufficient for the IL-6-induced proliferation, which further requires the activation of the src family kinases, such as Lyn. Here we showed that the Lyn-overexpressed myeloma cell lines had the higher proliferative rate with IL-6 and the enhanced activation of the phosphatidylinositol (PI) 3-kinase and Akt. The IL-6-induced phosphorylation of STAT3 and ERK1/2 was not up-regulated in the Lyn-overexpressed cells, indicating that the Lyn-PI 3-kinase-Akt pathway is independent of these pathways. The PI 3-kinase was co-precipitated with Lyn in the Lyn-overexpressed cells of which proliferation with IL-6 was abrogated by the specific inhibitors for PI 3-kinase or Akt, suggesting that the activation of the PI 3-kinase-Akt pathway associated with Lyn is indeed related to the concomitant augmentation of myeloma cell growth. Furthermore, the decreased expression of p53 and p21{sup Cip1} proteins was observed in the Lyn-overexpressed cells, implicating a possible downstream target of Akt. This study identifies a novel IL-6-mediated signaling pathway that certainly plays a role in the proliferation of myeloma cells and this novel mechanism of MM tumor cell growth associated with Lyn would eventually contribute to the development of MM treatment.

  8. Idelalisib: Targeting the PI3 Kinase Pathway in Non-Hodgkin Lymphoma.

    PubMed

    Sujobert, Pierre; Rioufol, Catherine; Salles, Gilles A

    2016-01-01

    Based on substantial preclinical rationale, the restricted hematopoietic expression of the δ isoform of the phosphatidylinositol 3-kinase represents an attractive therapeutic target in B-cell malignancies. Its inhibition results in a direct antiproliferative effect on tumor cells as well as several modifications of their cellular microenvironment, all accounting for the potential therapeutic interest. Idelalisib, the first-in-class phosphatidylinositol 3-kinase δ-specific inhibitor, was developed in patients with B-cell lymphomas and chronic lymphocytic leukemia. Early clinical results demonstrated a potent antitumor effect across different subtypes of indolent and mantle cell lymphomas (where response duration was short). Adverse events, including transaminitis, neutropenia, pneumonitis, and diarrhea, were observed. A pivotal phase II study in patients with double refractory disease showed a 57% response rate, with response lasting for about 1 year, leading to market approval of the drug in the United States and Europe. Further developments of idelalisib combinations will contribute to delineate the position of this drug in the therapeutic strategy of indolent lymphomas. PMID:26841011

  9. Phosphoinositide 3-kinase enhancer (PIKE) in the brain: is it simply a phosphoinositide 3-kinase/Akt enhancer?

    PubMed Central

    Chan, Chi Bun; Ye, Keqiang

    2013-01-01

    Since its discovery in 2000, phosphoinositide 3-kinase enhancer (PIKE) has been recognized as a class of GTPase that controls the enzymatic activities of phosphoinositide 3-kinase (PI3K) and Akt in the central nervous system (CNS). However, recent studies suggest that PIKEs are not only enhancers to PI3K/Akt but also modulators to other kinases including insulin receptor tyrosine kinase and focal adhesion kinases. Moreover, they regulate transcription factors such as signal transducer and activator of transcription and nuclear factor κB. Indeed, PIKE proteins participate in multiple cellular processes including control of cell survival, brain development, memory formation, gene transcription, and metabolism. In this review, we have summarized the functions of PIKE proteins in CNS and discussed their potential implications in various neurological disorders. PMID:22499674

  10. Targeting the phosphoinositide 3-kinase (PI3K) pathway in cancer

    PubMed Central

    Liu, Pixu; Cheng, Hailing; Roberts, Thomas M.; Zhao, Jean J.

    2011-01-01

    The phosphoinositide 3-kinase (PI3K) pathway, a critical signal transduction system linking oncogenes and multiple receptor classes to many essential cellular functions, is perhaps the most commonly activated signaling pathway in human cancer. This pathway thus presents both an opportunity and a challenge for cancer therapy. Even as inhibitors that target PI3K isoforms and other major nodes in the pathway including AKT and mTOR reach clinical trials, major issues remain. Here we highlight recent progress made in our understanding of the PI3K pathway and discuss both the promises and challenges for the therapeutic development of agents targeting the PI3K pathway in cancer. PMID:19644473

  11. Molecular and Functional Characterization of Three Different Postzygotic Mutations in PIK3CA-Related Overgrowth Spectrum (PROS) Patients: Effects on PI3K/AKT/mTOR Signaling and Sensitivity to PIK3 Inhibitors

    PubMed Central

    Forte, Giovanna; Bagnulo, Rosanna; Stella, Alessandro; Lastella, Patrizia; Cutrone, Mario; Benedicenti, Francesco; Susca, Francesco C.; Patruno, Margherita; Varvara, Dora; Germani, Aldo; Chessa, Luciana; Laforgia, Nicola; Tenconi, Romano; Simone, Cristiano; Resta, Nicoletta

    2015-01-01

    Background PIK3CA-related overgrowth spectrum (PROS) include a group of disorders that affect only the terminal portion of a limb, such as type I macrodactyly, and conditions like fibroadipose overgrowth (FAO), megalencephaly-capillary malformation (MCAP) syndrome, congenital lipomatous asymmetric overgrowth of the trunk, lymphatic, capillary, venous, and combined-type vascular malformations, epidermal nevi, skeletal and spinal anomalies (CLOVES) syndrome and Hemihyperplasia Multiple Lipomatosis (HHML). Heterozygous postzygotic PIK3CA mutations are frequently identified in these syndromes, while timing and tissue specificity of the mutational event are likely responsible for the extreme phenotypic variability observed. Methods We carried out a combination of Sanger sequencing and targeted deep sequencing of genes involved in the PI3K/AKT/mTOR pathway in three patients (1 MCAP and 2 FAO) to identify causative mutations, and performed immunoblot analyses to assay the phosphorylation status of AKT and P70S6K in affected dermal fibroblasts. In addition, we evaluated their ability to grow in the absence of serum and their response to the PI3K inhibitors wortmannin and LY294002 in vitro. Results and Conclusion Our data indicate that patients’ cells showed constitutive activation of the PI3K/Akt pathway. Of note, PI3K pharmacological blockade resulted in a significant reduction of the proliferation rate in culture, suggesting that inhibition of PI3K might prove beneficial in future therapies for PROS patients. PMID:25915946

  12. Deletion of the phosphoinositide 3-Kinase p110(gamma) gene attenuates murine atherosclerosis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Inflammatory cell activation by chemokines requires intracellular signaling through phosphoinositide 3-kinase (PI3-kinase) and the PI3-kinase-dependent protein serine/threonine kinase Akt. Atherosclerosis is a chronic inflammatory process driven by oxidatively modified (atherogenic) lipoproteins, ch...

  13. Inhibitors

    MedlinePlus

    ... Community Counts Blood Safety Inhibitors Articles & Key Findings Free Materials Videos Starting the Conversation Playing it Safe A Look at Hemophilia Joint Range of Motion My Story Links to Other Websites ...

  14. Interaction of Ras with phosphoinositide 3-kinase gamma.

    PubMed Central

    Rubio, I; Rodriguez-Viciana, P; Downward, J; Wetzker, R

    1997-01-01

    Phosphoinositide 3-kinase gamma (PI3Kgamma) can be activated in vitro by both alpha and betagamma subunits of heterotrimeric G-proteins and does not interact with p85, the regulatory subunit of PI3Kalpha. Here we demonstrate the binding of Ras to PI3Kgamma in vitro. An N-terminal region of PI3Kgamma was identified as a binding site for Ras. After co-expression with PI3Kgamma in COS-7 cells, Ras induced only a modest increase in PI3K activity compared with the stimulation of PI3Kalpha by Ras in the same cells. PMID:9307042

  15. PIK3CA is implicated as an oncogene in ovarian cancer

    SciTech Connect

    Shayesteh, Laleh; Lu, Yiling; Kuo, Wen-Lin; Baldocchi, Russell; Godfrey, Tony; Collins, Colin; Pinkel, Daniel; Powell, Bethan; Mills,Gordon B.; Gray, Joe W.

    1998-03-25

    Ovarian cancer is the leading cause of death from gynecological malignancy and the fourth leading cause of cancer death among American women, yet little is known about its molecular aetiology. Studies using comparative genomic hybridization (CGH) have revealed several regions of recurrent, abnormal, DNA sequence copy number that may encode genes involved in the genesis or progression of the disease. One region at 3q26 found to be increased in copy number in approximately 40 percent of ovarian and other cancers contains PIK3CA, which encodes the p110 a catalytic subunit of phosphatidylinositol 3-kinase(PI3-kinase). The association between PIK3CA copy number and PI3-kinase activity makes PIK3CA a candidate oncogene because a broad range of cancer-related functions have been associated with PI3-kinase mediated signaling. These include proliferation, glucose transport and catabolism, cell adhesion, apoptosis, RAS signaling and oncogenic transformation. In addition, downstream effectors of PI3-kinase,AKT1 and AKT2, have been found to be amplified or activated in human tumors, including ovarian cancer. We show here that PIK3CA is frequently increased in copy number in ovarian cancers, that the increased copy number is associated with increased PIK3CA transcription, p110 a protein expression and PI3-kinase activity and that treatment with the PI3-kinase inhibitor LY294002 decreases proliferation and increases apoptosis. Our observations suggest PIK3CA is an oncogene that has an important role in ovarian cancer.

  16. Inhibition of phosphatidylinositide 3-kinase in OK-cells reduces Na/Pi-cotransport but does not interfere with its regulation by parathyroid hormone.

    PubMed

    Pfister, M F; Brunskill, N J; Forgo, J; Stange, G; Biber, J; Murer, H

    1999-08-01

    The importance of phosphatidylinositide 3- kinase(s) [PI 3-kinase(s)] in membrane trafficking processes led us to examine its/their possible role in parathyroid-hormone- (PTH-) induced endocytosis and lysosomal degradation of the type IIa Na/Pi-cotransporter in opossum kidney cells (OK-cells). We used wortmannin, a potent inhibitor of several mammalian PI 3-kinase isoforms, and measured Na/Pi-cotransporter activity and type IIa Na/Pi-cotransporter protein expression; also the induction of a negative dominant subunit (Deltap85) was used to reduce PI 3-kinase activity. Wortmannin and Deltap85 led to a reduction of Na/Pi-cotransport activity but were unable to prevent its inhibition by PTH. Wortmannin led in a dose- and time-dependent manner to a reduction of Na/Pi-cotransport activity and transporter protein expression, and retarded their recovery from PTH-induced inhibition/degradation. The data suggest that a PI 3-kinase "controlled" mechanism is involved in the synthesis (and/or routing) of the apical type IIa Na/Pi-cotransporter in OK-cells. PMID:10398872

  17. Responsiveness to PI3K and MEK Inhibitors in Breast Cancer. Use of a 3D Culture System to Study Pathways Related to Hormone Independence in Mice

    PubMed Central

    Polo, Maria Laura; Arnoni, Maria Victoria; Riggio, Marina; Wargon, Victoria; Lanari, Claudia; Novaro, Virginia

    2010-01-01

    Background A significant proportion of breast cancer patients face failure of endocrine therapy due to the acquisition of endocrine resistance. We have explored mechanisms involved in such disease progression by using a mouse breast cancer model that is induced by medroxyprogesterone acetate (MPA). These tumors transit through different stages of hormone sensitivity. However, when cells from tumor variants were seeded on plastic, all were stimulated by progestins and inhibited by antiprogestins such as RU486. Furthermore, cells from a RU486-resistant tumor variant recovered antiprogestin sensitivity. Hypothesis A three-dimensional (3D) culture system, by maintaining differential cellular organization that is typical of each tumor variant, may allow for the maintenance of particular hormone responses and thus be appropriate for the study of the effects of specific inhibitors of signaling pathways associated with disease progression. Method We compared the behavior of tumors growing in vivo and cancer cells ex vivo (in 3D Matrigel). In this system, we evaluated the effects of kinase inhibitors and hormone antagonists on tumor growth. Principal Findings LY294002, a PI3K/AKT pathway inhibitor, decreased both tumor growth in vivo and cell survival in Matrigel in MPA-independent tumors with higher AKT activity. Induction of cell death by anti-hormones such as ICI182780 and ZK230211 was more effective in MPA-dependent tumors with lower AKT activity. Inhibition of MEK with PD98059 did not affect tumor growth in any tested variant. Finally, while Matrigel reproduced differential responsiveness of MPA-dependent and -independent breast cancer cells, it was not sufficient to preserve antiprogestin resistance of RU486-resistant tumors. Conclusion We demonstrated that the PI3K/AKT pathway is relevant for MPA-independent tumor growth. Three-dimensional cultures were useful to test the effects of kinase inhibitors on breast cancer growth and highlight the need for in vivo models

  18. Frequent phosphatidylinositol-3-kinase mutations in proliferative breast lesions.

    PubMed

    Ang, Daphne C; Warrick, Andrea L; Shilling, Amy; Beadling, Carol; Corless, Christopher L; Troxell, Megan L

    2014-05-01

    The phosphatidylinositol-3-kinase pathway is one of the most commonly altered molecular pathways in invasive breast carcinoma, with phosphatidylinositol-3-kinase catalytic subunit (PIK3CA) mutations in 25% of invasive carcinomas. Ductal carcinoma in situ (DCIS), benign papillomas, and small numbers of columnar cell lesions harbor an analogous spectrum of PIK3CA and AKT1 mutations, yet there is little data on usual ductal hyperplasia and atypical ductal and lobular neoplasias. We screened 192 formalin-fixed paraffin-embedded breast lesions from 75 patients for point mutations using a multiplexed panel encompassing 643 point mutations across 53 genes, including 58 PIK3CA substitutions. PIK3CA point mutations were identified in 31/62 (50%) proliferative lesions (usual ductal hyperplasia and columnar cell change), 10/14 (71%) atypical hyperplasias (atypical ductal hyperplasia and flat epithelial atypia), 7/16 (44%) lobular neoplasias (atypical lobular hyperplasia and lobular carcinoma in situ), 10/21 (48%) DCIS, and 13/37 (35%) invasive carcinomas. In genotyping multiple lesions of different stage from the same patient/specimen, we found considerable heterogeneity; most notably, in 12 specimens the proliferative lesion was PIK3CA mutant but the concurrent carcinoma was wild type. In 11 additional specimens, proliferative epithelium and cancer contained different point mutations. The frequently discordant genotypes of usual ductal hyperplasia/columnar cell change and concurrent carcinoma support a role for PIK3CA-activating point mutations in breast epithelial proliferation, perhaps more so than transformation. Further, these data suggest that proliferative breast lesions are heterogeneous and may represent non-obligate precursors of invasive carcinoma. PMID:24186142

  19. Molecular cloning and characterization of a threonine/serine protein kinase lvakt from Litopenaeus vannamei

    NASA Astrophysics Data System (ADS)

    Ruan, Lingwei; Liu, Rongdiao; Xu, Xun; Shi, Hong

    2014-07-01

    The phosphatidylinositol 3-kinase (PI3K)-AKT pathway is involved in various cellular functions, including anti-apoptosis, protein synthesis, glucose metabolism and cell cycling. However, the role of the PI3K-AKT pathway in crustaceans remains unclear. In the present study, we cloned and characterized the AKT gene lvakt from Litopenaeus vannamei. The 511-residue LVAKT was highly conserved; contained a PH domain, a catalytic domain and a hydrophobic domain; and was highly expressed in the heart and gills of L. vannamei. We found, using Real-Time Quantitative PCR (Q-PCR) analysis, that lvakt was up-regulated during early white spot syndrome virus (WSSV) infection. Moreover, the PI3K-specific inhibitor, LY294002, reduced viral gene transcription, implying that the PI3K-AKT pathway might be hijacked by WSSV. Our results therefore suggest that LVAKT may play an important role in the shrimp immune response against WSSV.

  20. Supramolecular nanoparticles that target phosphatidylinositol-3-kinase overcome insulin resistance and exert pronounced antitumor efficacy

    PubMed Central

    Kulkarni, Ashish A.; Roy, Bhaskar; Rao, Poornima S.; Wyant, Gregory A.; Mahmoud, Ayaat; Ramachandran, Madhumitha; Sengupta, Poulomi; Goldman, Aaron; Kotamraju, Venkata Ramana; Basu, Sudipta; Mashelkar, Raghunath A; Ruoslahti, Erkki; Dinulescu, Daniela M.; Sengupta, Shiladitya

    2013-01-01

    The centrality of phosphatidylinositol-3-kinase (PI3K) in cancer etiology is well established, but clinical translation of PI3K inhibitors has been limited by feedback signaling, suboptimal intra-tumoral concentration and an insulin resistance ‘class effect’. The current study was designed to explore the use of supramolecular nanochemistry for targeting PI3K to enhance antitumor efficacy and potentially overcome these limitations. PI3K inhibitor structures were rationally modified using a cholesterol-based derivative, facilitating supramolecular nanoassembly with L-α-phosphatidylcholine and DSPE-PEG. The supramolecular nanoparticles that were assembled were physicochemically characterized and functionally evaluated in vitro. Antitumor efficacy was quantified in vivo using 4T1 breast cancer and K-RasLSL/+/Ptenfl/fl ovarian cancer models, with effects on glucose homeostasis evaluated using an insulin sensitivity test. The use of PI103 and PI828 as surrogate molecules to engineer the supramolecular nanoparticles highlighted the need to keep design principles in perspective; specifically, potency of the active molecule and the linker chemistry were critical principles for efficacy, similar to antibody-drug conjugates. We found that the supramolecular nanoparticles exerted a temporally-sustained inhibition of phosphorylation of Akt, mTOR, S6K and 4EBP in vivo. These effects were associated with increased antitumor efficacy and survival as compared with PI103 and PI828. Efficacy was further increased by decorating the nanoparticle surface with tumor-homing peptides. Notably, the use of supramolecular nanoparticles abrogated the insulin resistance that has been associated widely with other PI3K inhibitors. This study provides a preclinical foundation for the use of supramolecular nanochemistry to overcome current challenges associated with PI3K inhibitors, offering a paradigm for extension to other molecularly targeted therapeutics being explored for cancer treatment

  1. Subtype Specific MEK – PI3 Kinase Feedback as a Therapeutic Target in Pancreatic Adenocarcinoma

    PubMed Central

    Mirzoeva, Olga K.; Collisson, Eric A.; Schaefer, Peter M.; Hann, Byron; Hom, Yun K.; Ko, Andrew H.; Korn, W. Michael

    2013-01-01

    Mutations in the KRAS oncogene are dominant features in pancreatic adenocarcinoma (PDA). Since KRAS itself is considered “undruggable”, targeting pathways downstream of KRAS is being explored as a rational therapeutic strategy. We investigated the consequences of MEK inhibition in a large PDA cell line panel. Inhibition of MEK activated PI3 kinase in an EGFR-dependent fashion and combinations of MEK and EGFR inhibitors synergistically induced apoptosis. This combinatorial effect was observed in the epithelial but not mesenchymal subtype of PDA. RNA expression analysis revealed predictors of susceptibility to the combination, including E-cadherin, HER3, and the miR200-family of micro-RNAs, while expression of the transcription factor ZEB1 was associated with resistance to the drug combination. Knock-down of HER3 in epithelial-type and ZEB1 in mesenchymal-type PDA cell lines resulted in sensitization to the combination of MEK and EGFR inhibitors. Thus, our findings suggest a new, subtype-specific and personalized therapeutic strategy for pancreatic cancer. PMID:23918833

  2. Phosphatidylinositol 3-Kinase γ is required for the development of experimental cerebral malaria.

    PubMed

    Lacerda-Queiroz, Norinne; Brant, Fatima; Rodrigues, David Henrique; Vago, Juliana Priscila; Rachid, Milene Alvarenga; Sousa, Lirlândia Pires; Teixeira, Mauro Martins; Teixeira, Antonio Lucio

    2015-01-01

    Experimental cerebral malaria (ECM) is characterized by a strong immune response, with leukocyte recruitment, blood-brain barrier breakdown and hemorrhage in the central nervous system. Phosphatidylinositol 3-kinase γ (PI3Kγ) is central in signaling diverse cellular functions. Using PI3Kγ-deficient mice (PI3Kγ-/-) and a specific PI3Kγ inhibitor, we investigated the relevance of PI3Kγ for the outcome and the neuroinflammatory process triggered by Plasmodium berghei ANKA (PbA) infection. Infected PI3Kγ-/- mice had greater survival despite similar parasitemia levels in comparison with infected wild type mice. Histopathological analysis demonstrated reduced hemorrhage, leukocyte accumulation and vascular obstruction in the brain of infected PI3Kγ-/- mice. PI3Kγ deficiency also presented lower microglial activation (Iba-1+ reactive microglia) and T cell cytotoxicity (Granzyme B expression) in the brain. Additionally, on day 6 post-infection, CD3+CD8+ T cells were significantly reduced in the brain of infected PI3Kγ-/- mice when compared to infected wild type mice. Furthermore, expression of CD44 in CD8+ T cell population in the brain tissue and levels of phospho-IkB-α in the whole brain were also markedly lower in infected PI3Kγ-/- mice when compared with infected wild type mice. Finally, AS605240, a specific PI3Kγ inhibitor, significantly delayed lethality in infected wild type mice. In brief, our results indicate a pivotal role for PI3Kγ in the pathogenesis of ECM. PMID:25775137

  3. Phosphoinositide 3-kinase γ/δ inhibition limits infarct size after myocardial ischemia/reperfusion injury

    PubMed Central

    Doukas, John; Wrasidlo, Wolfgang; Noronha, Glenn; Dneprovskaia, Elena; Fine, Richard; Weis, Sara; Hood, John; DeMaria, Anthony; Soll, Richard; Cheresh, David

    2006-01-01

    Although phosphoinositide 3-kinases (PI3Ks) play beneficial pro-cell survival roles during tissue ischemia, some isoforms (γ and δ) paradoxically contribute to the inflammation that damages these same tissues upon reperfusion. We therefore considered the possibility that selectively inhibiting proinflammatory PI3K isoforms during the reperfusion phase could ultimately limit overall tissue damage seen in ischemia/reperfusion injuries such as myocardial infarction. Panreactive and isoform-restricted PI3K inhibitors were identified by screening a novel chemical family; molecular modeling studies attributed isoform specificity based on rotational freedom of substituent groups. One compound (TG100-115) identified as a selective PI3K γ/δ inhibitor potently inhibited edema and inflammation in response to multiple mediators known to participate in myocardial infarction, including vascular endothelial growth factor and platelet-activating factor; by contrast, endothelial cell mitogenesis, a repair process important to tissue survival after ischemic damage, was not disrupted. In rigorous animal MI models, TG100-115 provided potent cardioprotection, reducing infarct development and preserving myocardial function. Importantly, this was achieved when dosing well after myocardial reperfusion (up to 3 h after), the same time period when patients are most accessible for therapeutic intervention. In conclusion, by targeting pathologic events occurring relatively late in myocardial damage, we have identified a potential means of addressing an elusive clinical goal: meaningful cardioprotection in the postreperfusion time period. PMID:17172449

  4. Phosphoinositide 3-kinase gamma/delta inhibition limits infarct size after myocardial ischemia/reperfusion injury.

    PubMed

    Doukas, John; Wrasidlo, Wolfgang; Noronha, Glenn; Dneprovskaia, Elena; Fine, Richard; Weis, Sara; Hood, John; Demaria, Anthony; Soll, Richard; Cheresh, David

    2006-12-26

    Although phosphoinositide 3-kinases (PI3Ks) play beneficial pro-cell survival roles during tissue ischemia, some isoforms (gamma and delta) paradoxically contribute to the inflammation that damages these same tissues upon reperfusion. We therefore considered the possibility that selectively inhibiting proinflammatory PI3K isoforms during the reperfusion phase could ultimately limit overall tissue damage seen in ischemia/reperfusion injuries such as myocardial infarction. Panreactive and isoform-restricted PI3K inhibitors were identified by screening a novel chemical family; molecular modeling studies attributed isoform specificity based on rotational freedom of substituent groups. One compound (TG100-115) identified as a selective PI3K gamma/delta inhibitor potently inhibited edema and inflammation in response to multiple mediators known to participate in myocardial infarction, including vascular endothelial growth factor and platelet-activating factor; by contrast, endothelial cell mitogenesis, a repair process important to tissue survival after ischemic damage, was not disrupted. In rigorous animal MI models, TG100-115 provided potent cardioprotection, reducing infarct development and preserving myocardial function. Importantly, this was achieved when dosing well after myocardial reperfusion (up to 3 h after), the same time period when patients are most accessible for therapeutic intervention. In conclusion, by targeting pathologic events occurring relatively late in myocardial damage, we have identified a potential means of addressing an elusive clinical goal: meaningful cardioprotection in the postreperfusion time period. PMID:17172449

  5. BAI, a novel cyclin-dependent kinase inhibitor induces apoptosis in A549 cells through activation of caspases and inactivation of Akt.

    PubMed

    Kim, Shin; Lee, Jinho; Jang, Byeong-Churl; Kwon, Taeg Kyu; Park, Jong-Wook

    2013-02-01

    Previously, we have synthesized a novel cyclin-dependent kinase (CDK) inhibitor, 2-[1,1'biphenyl]-4-yl-N-[5-(1,1-dioxo-1λ(6) -isothiazolidin-2-yl)-1H-indazol-3-yl]acetamide (BAI) and reported its anti-cancer activity in head and neck cancer cells. In this study, we further evaluated the effect of BAI on growth of various human cancer cell lines, including A549 (nonsmall cell lung cancer), HCT116 (colon), and Caki (kidney). Profoundly, results of XTT and clonogenic assays demonstrated that BAI at nanomolar concentrations (20-60 nM) inhibited growth of A549, HCT116, and Caki cells, suggesting the anti-cancer potency. We show that BAI induced a dose-dependent apoptotic cell death in these human cancer cells, as measured by fluorescence-activated cell sorting (FACS). Interestingly, further biochemical analysis showed that treatment with BAI at 20 nM induced apoptosis in A549 cells in association with activation of caspases, cleavage of phospholipase C-γ1 (PLC-γ1), and inhibition of Akt in A549 cells. Importantly, pharmacological inhibition study revealed that pretreatment with z-VAD-fmk, a pan caspase inhibitor strongly blocked the BAI-induced apoptosis in A549 cells. Transfection analysis with Akt cDNA encoding constitutively active Akt further addressed the significance of Akt inhibition in the BAI-induced apoptosis in A549 cells. Notably, disruption of the PI3K/Akt pathway by LY294002, a PI3K/Akt inhibitor potentiated apoptosis in A549 cells by BAI at a subcytotoxic concentration. These findings collectively suggest that BAI potently inhibits growth of A549, HCT116, and Caki cells, and that the BAI-induced apoptosis in A549 cells is associated with activation of caspases, and inhibition of Akt. PMID:22887215

  6. Inhibition of thymidine phosphorylase expression by using an HSP90 inhibitor potentiates the cytotoxic effect of cisplatin in non-small-cell lung cancer cells.

    PubMed

    Weng, Shao-Hsing; Tseng, Sheng-Chieh; Huang, Yu-Ching; Chen, Huang-Jen; Lin, Yun-Wei

    2012-07-01

    Elevated thymidine phosphorylase (TP) levels, a key enzyme in the pyrimidine nucleoside salvage pathway, are associated with an aggressive disease phenotype and poor prognoses. In this study, we examined the role of TP expression in relation to the HSP90 inhibitor 17-allylamino-17-demethoxygeldanamycin (17-AAG)-induced cytotoxicity in two non-small-cell lung cancer (NSCLC) cell lines, A549 and H1650. Treatment with 17-AAG (0.1-1 μM) resulted in a decrease in cellular TP protein and mRNA levels, which was accompanied by a downregulation of phosphorylated MKK1/2-ERK1/2 and AKT protein levels. The 17-AAG treatment disrupted the interaction between HSP90 and TP and triggered TP protein degradation through the ubiquitin-26S proteasome pathway. Specific inhibition of TP expression by siRNA further enhanced the cell death and growth inhibition that had been induced by 17-AAG. An enhancement of ERK1/2 or AKT activation by transfecting the cancer cells with constitutively active MKK1/2 or AKT expression vectors significantly restored the 17-AAG-reduced TP protein levels as well as cell viability. In contrast, a combination of U0126 (MKK1/2 inhibitors) or LY294002 (PI3K inhibitor) further decreased the TP expression and cell viability induced by 17-AAG. Moreover, 17-AAG enhanced the cisplatin-induced cytotoxic effect through downregulation of the cisplatin-induced TP expression and ERK1/2 and AKT activation. Taken together, our results suggest that the down-modulation of TP protein induced by 17-AAG represents a key factor in enhancing the cytotoxic effects of cisplatin in NSCLC cells. PMID:22480737

  7. Gastrin decreases Na+,K+-ATPase activity via a PI 3-kinase- and PKC-dependent pathway in human renal proximal tubule cells.

    PubMed

    Liu, Tianbing; Konkalmatt, Prasad R; Yang, Yu; Jose, Pedro A

    2016-04-01

    The natriuretic effect of gastrin suggests a role in the coordinated regulation of sodium balance by the gastrointestinal tract and the kidney. The renal molecular targets and signal transduction pathways for such an effect of gastrin are largely unknown. Recently, we reported that gastrin induces NHE3 phosphorylation and internalization via phosphatidylinositol (PI) 3-kinase and PKCα. In this study, we show that gastrin induced the phosphorylation of human Na(+),K(+)-ATPase at serine 16, resulting in its endocytosis via Rab5 and Rab7 endosomes. The gastrin-stimulated phosphorylation of Na(+),K(+)-ATPase was dependent on PI 3-kinase because the phosphorylation was blocked by the PI 3-kinase inhibitor wortmannin. The phosphorylation of Na(+),K(+)-ATPase was also blocked by chelerythrine, a pan-PKC inhibitor, Gö-6976, a conventional PKC (cPKC) inhibitor, and BAPTA-AM, an intracellular calcium chelator, suggesting the importance of cPKC and intracellular calcium in the gastrin signaling pathway. The gastrin-mediated phosphorylation of Na(+),K(+)-ATPase was also inhibited by U-73122, a phospholipase C (PLC) inhibitor. These results suggest that gastrin regulates sodium hydrogen exchanger and pump in renal proximal tubule cells at the apical and basolateral membranes. PMID:26786777

  8. Binding site identification and role of permanent water molecule of PIM-3 kinase: A molecular dynamics study.

    PubMed

    Ul-Haq, Zaheer; Gul, Sana; Usmani, Saman; Wadood, Abdul; Khan, Waqasuddin

    2015-11-01

    The kinome is a protein kinase complement of the human genome, categorized as serine/threonine and tyrosine kinases. These kinases catalyze phosphorylation reaction by using ATP as phosphoryl donor. Proviral Integration Site for Moloney Murine Leukemia Virus (PIM) kinase encodes serine/threonine protein kinases that recognized as proto-oncogene, responsible for rapid growth of cancerous cells. It is implicated in cell survival and function via cell cycle progression and its metabolism. PIM-3, sub-member of PIM kinases is a proto-oncogene, its overexpression inhibits apoptosis, and results in progression of hepatocellular carcinoma. PIM-3 is considered as a promising drug target but attempts to develop its specific inhibitors is slowed down due to the lack of 3D structure by any experimental technique. In silico techniques generally facilitate scientist to explore hidden structural features in order to improve drug discovery. In the present study, homology modeling, molecular docking and MD simulation techniques were utilized to explore the structure and dynamics of PIM-3 kinase. Induction of water molecules during molecular docking simulation explored differences in the hinge region between PIM-1 and PIM-3 kinases that may be responsible for specificity. Furthermore, role of water molecules in the active site was also explored via radial distribution function (RDF) after a 10 ns molecular dynamics (MD) simulations. Generated RDF plots exhibited the importance of water for inhibitor binding through their bridging capability that links the ligand with binding site residues. PMID:26529487

  9. Activation of S6 kinase in human neutrophils by calcium pyrophosphate dihydrate crystals: protein kinase C-dependent and phosphatidylinositol-3-kinase-independent pathways.

    PubMed Central

    Tudan, C; Jackson, J K; Charlton, L; Pelech, S L; Sahl, B; Burt, H M

    1998-01-01

    Phosphatidylinositol 3-kinase (PI 3-kinase) has been shown previously to be a central enzyme in crystal-induced neutrophil activation. Since activation of the 70 kDa S6 kinase (p70S6K) has been shown to be dependent on PI 3-kinase activation in mammalian cells, and since the former is a key enzyme in the transmission of signals to the cell nucleus, activation of p70(S6K) was investigated in crystal-stimulated neutrophils. Cytosolic fractions from calcium pyrophosphate dihydrate (CPPD)-crystal-activated neutrophils were separated by Mono Q chromatography and analysed for phosphotransferase activity using a range of substrates and probed by Western analysis using antibodies to p70(S6K) and mitogen-activated protein kinase (MAP kinase). CPPD crystals induced a robust, transient activation (peak activity at 2 min) of p70(S6K) that was fully inhibited by pretreatment with rapamycin. This is the first report of the activation of p70(S6K) in neutrophil signal transduction pathways induced by an agonist. This crystal-induced activation of p70(S6K) could also be inhibited by a protein kinase C (PKC) inhibitor (Compound 3), but not by the PI 3-kinase inhibitor wortmannin. CPPD crystals also activated the ERK1 and ERK2 forms of MAP kinase (wortmannin insensitive), PKC (Compound 3 sensitive) and protein kinase B (wortmannin sensitive) in neutrophils. These data suggest that activation of p70(S6K) may proceed through a PI 3-kinase- and protein kinase B-independent but PKC-dependent pathway in crystal-activated neutrophils. PMID:9531494

  10. Phosphoinositide 3-kinase p85beta regulates invadopodium formation

    PubMed Central

    Cariaga-Martínez, Ariel E.; Cortés, Isabel; García, Esther; Pérez-García, Vicente; Pajares, María J.; Idoate, Miguel A.; Redondo-Muñóz, Javier; Antón, Inés M.; Carrera, Ana C.

    2014-01-01

    ABSTRACT The acquisition of invasiveness is characteristic of tumor progression. Numerous genetic changes are associated with metastasis, but the mechanism by which a cell becomes invasive remains unclear. Expression of p85β, a regulatory subunit of phosphoinositide-3-kinase, markedly increases in advanced carcinoma, but its mode of action is unknown. We postulated that p85β might facilitate cell invasion. We show that p85β localized at cell adhesions in complex with focal adhesion kinase and enhanced stability and maturation of cell adhesions. In addition, p85β induced development at cell adhesions of an F-actin core that extended several microns into the cell z-axis resembling the skeleton of invadopodia. p85β lead to F-actin polymerization at cell adhesions by recruiting active Cdc42/Rac at these structures. In accordance with p85β function in invadopodium-like formation, p85β levels increased in metastatic melanoma and p85β depletion reduced invadopodium formation and invasion. These results show that p85β enhances invasion by inducing cell adhesion development into invadopodia-like structures explaining the metastatic potential of tumors with increased p85β levels. PMID:25217619

  11. Phosphatidylinositol 3 kinase modulation of trophoblast cell differentiation

    PubMed Central

    2010-01-01

    Background The trophoblast lineage arises as the first differentiation event during embryogenesis. Trophoblast giant cells are one of several end-stage products of trophoblast cell differentiation in rodents. These cells are located at the maternal-fetal interface and are capable of invasive and endocrine functions, which are necessary for successful pregnancy. Rcho-1 trophoblast stem cells can be effectively used as a model for investigating trophoblast cell differentiation. In this report, we evaluated the role of the phosphatidylinositol 3-kinase (PI3K) signaling pathway in the regulation of trophoblast cell differentiation. Transcript profiles from trophoblast stem cells, differentiated trophoblast cells, and differentiated trophoblast cells following disruption of PI3K signaling were generated and characterized. Results Prominent changes in gene expression accompanied the differentiation of trophoblast stem cells. PI3K modulated the expression of a subset of trophoblast cell differentiation-dependent genes. Among the PI3K-responsive genes were those encoding proteins contributing to the invasive and endocrine phenotypes of trophoblast giant cells. Conclusions Genes have been identified with differential expression patterns associated with trophoblast stem cells and trophoblast cell differentiation; a subset of these genes are regulated by PI3K signaling, including those impacting the differentiated trophoblast giant cell phenotype. PMID:20840781

  12. Classes of phosphoinositide 3-kinases at a glance

    PubMed Central

    Jean, Steve; Kiger, Amy A.

    2014-01-01

    ABSTRACT The phosphoinositide 3-kinase (PI3K) family is important to nearly all aspects of cell and tissue biology and central to human cancer, diabetes and aging. PI3Ks are spatially regulated and multifunctional, and together, act at nearly all membranes in the cell to regulate a wide range of signaling, membrane trafficking and metabolic processes. There is a broadening recognition of the importance of distinct roles for each of the three different PI3K classes (I, II and III), as well as for the different isoforms within each class. Ongoing issues include the need for a better understanding of the in vivo complexity of PI3K regulation and cellular functions. This Cell Science at a Glance article and the accompanying poster summarize the biochemical activities, cellular roles and functional requirements for the three classes of PI3Ks. In doing so, we aim to provide an overview of the parallels, the key differences and crucial interplays between the regulation and roles of the three PI3K classes. PMID:24587488

  13. PI3 kinase regulation of skeletal muscle hypertrophy and atrophy.

    PubMed

    Glass, David J

    2010-01-01

    Activation of the PI3 kinase pathway can induce skeletal muscle hypertrophy, defined as an increase in skeletal muscle mass. In mammals, skeletal muscle hypertrophy occurs as a result of an increase in the size, as opposed to the number, of pre-existing skeletal muscle fibers. This pathway's effects on skeletal muscle have been implicated most prominently downstream of Insulin-like growth factor 1 signaling. IGF-1's pro-hypertrophy activity comes predominantly through its ability to activate the Phosphoinositide 3-kinase (PI3K)/Akt signaling pathway. Akt is a serine-threonine protein kinase that can induce protein synthesis and block the transcriptional upregulation of key mediators of skeletal muscle atrophy, the E3 ubiquitin ligases MuRF1 and MAFbx (also called Atrogin-1), by phosphorylating and thereby inhibiting the nuclear translocation of the FOXO (also called "forkhead") family of transcription factors. Once phosphorylated by Akt, the FOXOs are excluded from the nucleus, and upregulation of MuRF1 and MAFbx is blocked. MuRF1 and MAFbx mediate atrophy by ubiquitinating particular protein substrates, causing them to undergo degradation by the proteasome. MuRF1's substrates include several components of the sarcomeric thick filament, including Myosin Heavy Chain (MyHC). Thus, by blocking MuRF1 activation, IGF-1 helps prevent the breakdown of the thick filament under atrophy conditions.IGF1/PI3K/Akt signaling also can dominantly inhibit the effects of a secreted protein called "myostatin," which is a member of the TGFβ family of proteins. Deletion or inhibition of myostatin causes an increase in skeletal muscle size, because myostatin acts both to inhibit myoblast differentiation and to block the Akt pathway. Thus by blocking myostatin, PI3K/Akt activation stimulates differentiation and protein synthesis by this distinct mechanism. Myostatin induces the phosphorylation and activation of the transcription factors of Smad2 and Smad3, downstream of the Act

  14. Illuminating the phosphatidylinositol 3-kinase/Akt pathway

    NASA Astrophysics Data System (ADS)

    Ni, Qiang; Fosbrink, Matthew; Zhang, Jin

    2008-02-01

    Genetically encodable fluorescent biosensors based on fluorescence resonance energy transfer (FRET) are being developed for analyzing spatiotemporal dynamics of various signaling events in living cells, as these events are often dynamically regulated and spatially compartmentalized within specific signaling context. In particular, to investigate the phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway in the cellular context, we have developed a series of such biosensors that enable dynamic visualization of several key signaling events in this pathway, namely InPAkt for lipid second messenger dynamics, BAKR for Akt activity, and ReAktion for the action of Akt during its multi-step activation process. Discussed here are several studies that have been carried out with these novel biosensors. First, we examined nuclear phosphatidylinositol-3,4,5-triphosphate (PIP 3) in living cells using nucleus-targeted InPAkt. Second, we analyzed signal propagation from the plasma membrane to the nucleus by using plasma membrane-targeted InPAkt and nucleus-targeted BKAR to simultaneously monitor PIP 3 dynamics and Akt activity in the same cell. Of note, results from these co-imaging experiments suggest that active Akt can dissociate from the plasma membrane and translocate into the nucleus in the presence of high levels of PIP 3 at the plasma membrane. This finding has led to a further study of the action of Akt during its activation process, particularly focusing on how Akt dissociates from the membrane. In this regard, a live-cell molecular analysis using ReAktion reveals a conformational change in Akt that is critically dependent on the existence of a phosphorylatable T308 in the activation loop. Subsequently this has led to the discovery of new regulatory roles of this critical phosphorylation event of Akt for ensuring its proper activation and function.

  15. Productive Entry of Foot-and-Mouth Disease Virus via Macropinocytosis Independent of Phosphatidylinositol 3-Kinase

    PubMed Central

    Han, Shi-Chong; Guo, Hui-Chen; Sun, Shi-Qi; Jin, Ye; Wei, Yan-Quan; Feng, Xia; Yao, Xue-Ping; Cao, Sui-Zhong; Xiang Liu, Ding; Liu, Xiang-Tao

    2016-01-01

    Virus entry is an attractive target for therapeutic intervention. Here, using a combination of electron microscopy, immunofluorescence assay, siRNA interference, specific pharmacological inhibitors, and dominant negative mutation, we demonstrated that the entry of foot-and-mouth disease virus (FMDV) triggered a substantial amount of plasma membrane ruffling. We also found that the internalization of FMDV induced a robust increase in fluid-phase uptake, and virions internalized within macropinosomes colocalized with phase uptake marker dextran. During this stage, the Rac1-Pak1 signaling pathway was activated. After specific inhibition on actin, Na+/H+ exchanger, receptor tyrosine kinase, Rac1, Pak1, myosin II, and protein kinase C, the entry and infection of FMDV significantly decreased. However, inhibition of phosphatidylinositol 3-kinase (PI3K) did not reduce FMDV internalization but increased the viral entry and infection to a certain extent, implying that FMDV entry did not require PI3K activity. Results showed that internalization of FMDV exhibited the main hallmarks of macropinocytosis. Moreover, intracellular trafficking of FMDV involves EEA1/Rab5-positive vesicles. The present study demonstrated macropinocytosis as another endocytic pathway apart from the clathrin-mediated pathway. The findings greatly expand our understanding of the molecular mechanisms of FMDV entry into cells, as well as provide potential insights into the entry mechanisms of other picornaviruses. PMID:26757826

  16. The class I phosphoinositide 3-kinases α and β control antiphospholipid antibodies-induced platelet activation.

    PubMed

    Terrisse, Anne-Dominique; Laurent, Pierre-Alexandre; Garcia, Cédric; Gratacap, Marie-Pierre; Vanhaesebroeck, Bart; Sié, Pierre; Payrastre, Bernard

    2016-06-01

    Antiphospholipid syndrome (APS) is an autoimmune disease characterised by the presence of antiphospholipid antibodies (aPL) associated with increased thrombotic risk and pregnancy morbidity. Although aPL are heterogeneous auto-antibodies, the major pathogenic target is the plasma protein β2-glycoprotein 1. The molecular mechanisms of platelet activation by aPL remain poorly understood. Here, we explored the role of the class IA phosphoinositide 3-kinase (PI3K) α and β isoforms in platelet activation by aPL. Compared to control IgG from healthy individuals, the IgG fraction isolated from patients with APS potentiates platelet aggregation induced by low dose of thrombin in vitro and increases platelet adhesion and thrombus growth on a collagen matrix under arterial shear rate through a mechanism involving glycoprotein Ib (GPIb) and Toll Like Receptor 2 (TLR-2). Using isoforms-selective pharmacological PI3K inhibitors and mice with megakaryocyte/platelet lineage-specific inactivation of class IA PI3K isoforms, we demonstrate a critical role of the PI3Kβ and PI3Kα isoforms in platelet activation induced by aPL. Our data show that aPL potentiate platelet activation through GPIbα and TLR-2 via a mechanism involving the class IA PI3Kα and β isoforms, which represent new potential therapeutic targets in the prevention or treatment of thrombotic events in patients with APS. PMID:26818901

  17. Productive Entry of Foot-and-Mouth Disease Virus via Macropinocytosis Independent of Phosphatidylinositol 3-Kinase.

    PubMed

    Han, Shi-Chong; Guo, Hui-Chen; Sun, Shi-Qi; Jin, Ye; Wei, Yan-Quan; Feng, Xia; Yao, Xue-Ping; Cao, Sui-Zhong; Xiang Liu, Ding; Liu, Xiang-Tao

    2016-01-01

    Virus entry is an attractive target for therapeutic intervention. Here, using a combination of electron microscopy, immunofluorescence assay, siRNA interference, specific pharmacological inhibitors, and dominant negative mutation, we demonstrated that the entry of foot-and-mouth disease virus (FMDV) triggered a substantial amount of plasma membrane ruffling. We also found that the internalization of FMDV induced a robust increase in fluid-phase uptake, and virions internalized within macropinosomes colocalized with phase uptake marker dextran. During this stage, the Rac1-Pak1 signaling pathway was activated. After specific inhibition on actin, Na(+)/H(+) exchanger, receptor tyrosine kinase, Rac1, Pak1, myosin II, and protein kinase C, the entry and infection of FMDV significantly decreased. However, inhibition of phosphatidylinositol 3-kinase (PI3K) did not reduce FMDV internalization but increased the viral entry and infection to a certain extent, implying that FMDV entry did not require PI3K activity. Results showed that internalization of FMDV exhibited the main hallmarks of macropinocytosis. Moreover, intracellular trafficking of FMDV involves EEA1/Rab5-positive vesicles. The present study demonstrated macropinocytosis as another endocytic pathway apart from the clathrin-mediated pathway. The findings greatly expand our understanding of the molecular mechanisms of FMDV entry into cells, as well as provide potential insights into the entry mechanisms of other picornaviruses. PMID:26757826

  18. Critical role for phosphoinositide 3-kinase gamma in parasite invasion and disease progression of cutaneous leishmaniasis

    PubMed Central

    Cummings, Hannah E.; Barbi, Joseph; Reville, Patrick; Oghumu, Steve; Zorko, Nicholas; Sarkar, Anasuya; Keiser, Tracy L.; Lu, Bao; Rückle, Thomas; Varikuti, Sanjay; Lezama-Davila, Claudio; Wewers, Mark D.; Whitacre, Caroline; Radzioch, Danuta; Rommel, Christian; Seveau, Stéphanie; Satoskar, Abhay R.

    2012-01-01

    Obligate intracellular pathogens such as Leishmania specifically target host phagocytes for survival and replication. Phosphoinositide 3-kinase γ (PI3Kγ), a member of the class I PI3Ks that is highly expressed by leukocytes, controls cell migration by initiating actin polymerization and cytoskeletal reorganization, which are processes also critical for phagocytosis. In this study, we demonstrate that class IB PI3K, PI3Kγ, plays a critical role in pathogenesis of chronic cutaneous leishmaniasis caused by L. mexicana. Using the isoform-selective PI3Kγ inhibitor, AS-605240 and PI3Kγ gene-deficient mice, we show that selective blockade or deficiency of PI3Kγ significantly enhances resistance against L. mexicana that is associated with a significant suppression of parasite entry into phagocytes and reduction in recruitment of host phagocytes as well as regulatory T cells to the site of infection. Furthermore, we demonstrate that AS-605240 is as effective as the standard antileishmanial drug sodium stibogluconate in treatment of cutaneous leishmaniasis caused by L. mexicana. These findings reveal a unique role for PI3Kγ in Leishmania invasion and establishment of chronic infection, and demonstrate that therapeutic targeting of host pathways involved in establishment of infection may be a viable strategy for treating infections caused by obligate intracellular pathogens such as Leishmania. PMID:22232690

  19. Donepezil, an acetylcholine esterase inhibitor, and ABT-239, a histamine H3 receptor antagonist/inverse agonist, require the integrity of brain histamine system to exert biochemical and procognitive effects in the mouse.

    PubMed

    Provensi, Gustavo; Costa, Alessia; Passani, M Beatrice; Blandina, Patrizio

    2016-10-01

    Histaminergic H3 receptors (H3R) antagonists enhance cognition in preclinical models and modulate neurotransmission, in particular acetylcholine (ACh) release in the cortex and hippocampus, two brain areas involved in memory processing. The cognitive deficits seen in aging and Alzheimer's disease have been associated with brain cholinergic deficits. Donepezil is one of the acetylcholinesterase (AChE) inhibitor approved for use across the full spectrum of these cognitive disorders. We addressed the question if H3R antagonists and donepezil require an intact histamine neuronal system to exert their procognitive effects. The effect of the H3R antagonist ABT-239 and donepezil were evaluated in the object recognition test (ORT), and on the level of glycogen synthase kinase 3 beta (GSK-3β) phosphorylation in normal and histamine-depleted mice. Systemic administration of ABT-239 or donepezil ameliorated the cognitive performance in the ORT. However, these compounds were ineffective in either genetically (histidine decarboxylase knock-out, HDC-KO) or pharmacologically, by means of intracerebroventricular (i.c.v.) injections of the HDC irreversible inhibitor a-fluoromethylhistidine (a-FMHis), histamine-deficient mice. Western blot analysis revealed that ABT-239 or donepezil systemic treatments increased GSK-3β phosphorylation in cortical and hippocampal homogenates of normal, but not of histamine-depleted mice. Furthermore, administration of the PI3K inhibitor LY294002 that blocks GSK-3β phosphorylation, prevented the procognitive effects of both drugs in normal mice. Our results indicate that both donepezil and ABT-239 require the integrity of the brain histaminergic system to exert their procognitive effects and strongly suggest that impairments of PI3K/AKT/GSK-3β intracellular pathway activation is responsible for the inefficacy of both drugs in histamine-deficient animals. PMID:27291828

  20. Phosphoinositide 3-Kinase Gamma Contributes to Neuroinflammation in a Rat Model of Surgical Brain Injury

    PubMed Central

    Huang, Lei; Sherchan, Prativa; Wang, Yuechun; Reis, Cesar; Applegate, Richard L.; Tang, Jiping

    2015-01-01

    Neuroinflammation plays an important role in the pathophysiology of surgical brain injury (SBI). Phosphoinositide 3-kinase gamma (PI3Kγ), predominately expressed in immune and endothelial cells, activates multiple inflammatory responses. In the present study, we investigated the role of PI3Kγ and PI3Kγ-activated phosphodiesterase 3B (PDE3B) in neuroinflammation in a rat model of SBI. One hundred and fifty-two male Sprague Dawley rats (weight 280–350 g) were subjected to a partial right frontal lobe corticotomy model of SBI. A PI3Kγ pharmacological inhibitor (AS252424 or AS605240) was administered intraperitoneally. PI3Kγ siRNA, human recombinant active-PI3Kγ protein, or human recombinant active-PDE3B protein were administered intracerebroventricularly. Post-SBI assessments included neurobehavioral tests, brain water content, Western blot, and immunohistochemistry. Endogenous PI3Kγ levels were increased within peri-resection brain tissues after SBI, accompanied by increased brain water content and neurological functional deficits. There was a trend toward increased endogenous PDE3B phosphorylation after SBI. The selective PI3Kγ inhibitors AS252424 and AS605240 reduced brain water content surrounding corticotomy and improved neurological function after SBI. SBI increased and PI3Kγ inhibitor decreased levels of myeloperoxidase, cluster of differentiation 3, mast cell degranulation, E-selectin, and IL-1 in peri-resection brain tissues. Direct administration of human recombinant active-PI3Kγ protein and active-PDE3B protein countered the protective effect of AS252424. PI3Kγ siRNA reduced PI3Kγ levels, decreased brain water content within peri-resection brain tissues, and improved neurological function after SBI. Collectively, our findings suggest that PI3Kγ contributed to neuroinflammation after SBI. The use of selective PI3Kγ inhibitors may be a novel approach to ameliorating SBI via their anti-inflammation effects. SIGNIFICANCE STATEMENT Life-saving or

  1. Phosphatidylinositol 3-kinase CB association with preoperative radiotherapy response in rectal adenocarcinoma

    PubMed Central

    Yu, Wei-Dong; Peng, Yi-Fan; Pan, Hong-Da; Wang, Lin; Li, Kun; Gu, Jin

    2014-01-01

    AIM: To examine the correlation of phosphatidylinositol 3-kinase (PIK3) CB expression with preoperative radiotherapy response in patients with stage II/III rectal adenocarcinoma. METHODS: PIK3CB immunoexpression was retrospectively assessed in pretreatment biopsies from 208 patients with clinical stage II/III rectal adenocarcinoma, who underwent radical surgery after 30-Gy/10-fraction preoperative radiotherapy. The relation between PIK3CB expression and tumor regression grade, clinicopathological characteristics, and survival time was statistically analyzed. Western blotting and in vitro clonogenic formation assay were used to detect PIK3CB expression in four colorectal cancer cell lines (HCT116, HT29, LoVo, and LS174T) treated with 6-Gy ionizing radiation. Pharmacological assays were used to evaluate the therapeutic relevance of TGX-221 (a PIK3CB-specific inhibitor) in the four colorectal cancer cell lines. RESULTS: Immunohistochemical staining indicated that PIK3CB was more abundant in rectal adenocarcinoma tissues with poor response to preoperative radiotherapy. High expression of PIK3CB was closely correlated with tumor height (P < 0.05), ypT stage (P < 0.05), and high-degree tumor regression grade (P < 0.001). High expression of PIK3CB was a potential prognostic factor for local recurrence-free survival (P < 0.05) and metastasis-free survival (P < 0.05). High expression of PIK3CB was also associated with poor therapeutic response and adverse outcomes in rectal adenocarcinoma patients treated with 30-Gy/10-fraction preoperative radiotherapy. In vitro, PIK3CB expression was upregulated in all four colorectal cancer cell lines concurrently treated with 6-Gy ionizing radiation, and the PIK3CB-specific inhibitor TGX-221 effectively inhibited the clonogenic formation of these four colorectal cancer cell lines. CONCLUSION: PIK3CB is critically involved in response to preoperative radiotherapy and may serve as a novel target for therapeutic intervention. PMID:25473181

  2. Rescue from Sexually Dimorphic Neuronal Cell Death by Estradiol and PI3 Kinase Activity.

    PubMed

    Cheng, Hui-Yun; Hung, Shin-Hui; Chu, Po-Ju

    2016-07-01

    Responses of primary hippocampal and cortical neurons derived from male and female rats to cellular stressors were studied. It is demonstrated that 17β-estradiol (E2), a potent neuroprotectant, protected the female neurons but had no effects on the male neurons from CoCl2- and glutamate-induced toxicity. Agonists of the estrogen receptor (ER) subtypes ERα and ERβ, DPN and PPT, respectively, had similar effects to E2. By contrast, effects of E2 were abolished by the ER antagonist ICI-182780, further corroborating the neuroprotective role of ERs. In male neurons, CoCl2 predominately activated the apoptosis-inducing factor (AIF)-dependent pathway and AIF translocation from the cytosol to the nucleus. In comparison, CoCl2 activated the caspase pathway and cytochrome c release in female neurons. The inhibitors of these pathways, namely DiQ for AIF and zVAD for caspase, specifically rescued CoCl2-induced cell death in male and female neurons, respectively. When zVAD and ICI-182780, and E2 were applied in combination, it was demonstrated E2 acted on the caspase pathway leading to female-specific neuroprotection. Furthermore, the PI3 kinase (PI3K) inhibitor blocked the rescue effects of DiQ and zVAD on the male and female neurons, respectively, suggesting that PI3K is a common upstream regulator for both pathways. The present study suggested that both sex-specific and nonspecific mechanisms played a role in neuronal responses to stressors and protective reagents. PMID:26369912

  3. Phosphatidylinositol 3-kinase pathway activation in breast cancer brain metastases

    PubMed Central

    2011-01-01

    Introduction Activation status of the phosphatidylinositol 3-kinase (PI3K) pathway in breast cancer brain metastases (BCBMs) is largely unknown. We examined expression of phospho(p)-AKT, p-S6, and phosphatase and tensin homologue (PTEN) in BCBMs and their implications for overall survival (OS) and survival after BCBMs. Secondary analyses included PI3K pathway activation status and associations with time to distant recurrence (TTDR) and time to BCBMs. Similar analyses were also conducted among the subset of patients with triple-negative BCBMs. Methods p-AKT, p-S6, and PTEN expression was assessed with immunohistochemistry in 52 BCBMs and 12 matched primary BCs. Subtypes were defined as hormone receptor (HR)+/HER2-, HER2+, and triple-negative (TNBC). Survival analyses were performed by using a Cox model, and survival curves were estimated with the Kaplan-Meier method. Results Expression of p-AKT and p-S6 and lack of PTEN (PTEN-) was observed in 75%, 69%, and 25% of BCBMs. Concordance between primary BCs and matched BCBMs was 67% for p-AKT, 58% for p-S6, and 83% for PTEN. PTEN- was more common in TNBC compared with HR+/HER2- and HER2+. Expression of p-AKT, p-S6, and PTEN- was not associated with OS or survival after BCBMs (all, P > 0.06). Interestingly, among all patients, PTEN- correlated with shorter time to distant and brain recurrence. Among patients with TNBC, PTEN- in BCBMs was associated with poorer overall survival. Conclusions The PI3K pathway is active in most BCBMs regardless of subtype. Inhibition of this pathway represents a promising therapeutic strategy for patients with BCBMs, a group of patients with poor prognosis and limited systemic therapeutic options. Although expression of the PI3K pathway did not correlate with OS and survival after BCBM, PTEN- association with time to recurrence and OS (among patients with TNBC) is worthy of further study. PMID:22132754

  4. Different phosphoinositide 3-kinase isoforms mediate carrageenan nociception and inflammation

    PubMed Central

    Pritchard, Rory A.; Falk, Lovissa; Larsson, Mathilda; Leinders, Mathias; Sorkin, Linda S.

    2016-01-01

    Abstract Phosphoinositide 3-kinases (PI3Ks) participate in signal transduction cascades that can directly activate and sensitize nociceptors and enhance pain transmission. They also play essential roles in chemotaxis and immune cell infiltration leading to inflammation. We wished to determine which PI3K isoforms were involved in each of these processes. Lightly anesthetized rats (isoflurane) were injected subcutaneously with carrageenan in their hind paws. This was preceded by a local injection of 1% DMSO vehicle or an isoform-specific antagonist to PI3K-α (compound 15-e), -β (TGX221), -δ (Cal-101), or -γ (AS252424). We measured changes in the mechanical pain threshold and spinal c-Fos expression (4 hours after injection) as indices of nociception. Paw volume, plasma extravasation (Evans blue, 0.3 hours after injection), and neutrophil (myeloperoxidase; 1 hour after injection) and macrophage (CD11b+; 4 hour after injection) infiltration into paw tissue were the measured inflammation endpoints. Only PI3K-γ antagonist before treatment reduced the carrageenan-induced pain behavior and spinal expression of c-Fos (P ≤ 0.01). In contrast, pretreatment with PI3K-α, -δ, and-γ antagonists reduced early indices of inflammation. Plasma extravasation PI3K-α (P ≤ 0.05), -δ (P ≤ 0.05), and -γ (P ≤ 0.01), early (0-2 hour) edema -α (P ≤ 0.05), -δ (P ≤ 0.001), and -γ (P ≤ 0.05), and neutrophil infiltration (all P ≤ 0.001) were all reduced compared to vehicle pretreatment. Later (2-4 hour), edema and macrophage infiltration (P ≤ 0.05) were reduced by only the PI3K-δ and -γ isoform antagonists, with the PI3K-δ antagonist having a greater effect on edema. PI3K-β antagonism was ineffective in all paradigms. These data indicate that pain and clinical inflammation are pharmacologically separable and may help to explain clinical conditions in which inflammation naturally wanes or goes into remission, but pain continues unabated. PMID:26313408

  5. Different phosphoinositide 3-kinase isoforms mediate carrageenan nociception and inflammation.

    PubMed

    Pritchard, Rory A; Falk, Lovissa; Larsson, Mathilda; Leinders, Mathias; Sorkin, Linda S

    2016-01-01

    Phosphoinositide 3-kinases (PI3Ks) participate in signal transduction cascades that can directly activate and sensitize nociceptors and enhance pain transmission. They also play essential roles in chemotaxis and immune cell infiltration leading to inflammation. We wished to determine which PI3K isoforms were involved in each of these processes. Lightly anesthetized rats (isoflurane) were injected subcutaneously with carrageenan in their hind paws. This was preceded by a local injection of 1% DMSO vehicle or an isoform-specific antagonist to PI3K-α (compound 15-e), -β (TGX221), -δ (Cal-101), or -γ (AS252424). We measured changes in the mechanical pain threshold and spinal c-Fos expression (4 hours after injection) as indices of nociception. Paw volume, plasma extravasation (Evans blue, 0.3 hours after injection), and neutrophil (myeloperoxidase; 1 hour after injection) and macrophage (CD11b+; 4 hour after injection) infiltration into paw tissue were the measured inflammation endpoints. Only PI3K-γ antagonist before treatment reduced the carrageenan-induced pain behavior and spinal expression of c-Fos (P ≤ 0.01). In contrast, pretreatment with PI3K-α, -δ, and-γ antagonists reduced early indices of inflammation. Plasma extravasation PI3K-α (P ≤ 0.05), -δ (P ≤ 0.05), and -γ (P ≤ 0.01), early (0-2 hour) edema -α (P ≤ 0.05), -δ (P ≤ 0.001), and -γ (P ≤ 0.05), and neutrophil infiltration (all P ≤ 0.001) were all reduced compared to vehicle pretreatment. Later (2-4 hour), edema and macrophage infiltration (P ≤ 0.05) were reduced by only the PI3K-δ and -γ isoform antagonists, with the PI3K-δ antagonist having a greater effect on edema. PI3K-β antagonism was ineffective in all paradigms. These data indicate that pain and clinical inflammation are pharmacologically separable and may help to explain clinical conditions in which inflammation naturally wanes or goes into remission, but pain continues unabated. PMID:26313408

  6. Ascorbic acid reduces HMGB1 secretion in lipopolysaccharide-activated RAW 264.7 cells and improves survival rate in septic mice by activation of Nrf2/HO-1 signals.

    PubMed

    Kim, So Ra; Ha, Yu Mi; Kim, Young Min; Park, Eun Jung; Kim, Jung Whan; Park, Sang Won; Kim, Hye Jung; Chung, Hun Taeg; Chang, Ki Churl

    2015-06-15

    High mobility group box 1 (HMGB1) is now recognized as a late mediator of sepsis. We tested hypothesis that ascorbic acid (AscA) induces heme oxygenase (HO)-1 which inhibits HMGB1 release in lipopolysaccharide (LPS)-stimulated cells and increases survival of septic mice. AscA increased HO-1 protein expression in a concentration- and time-dependent manner via Nrf2 activation in RAW 264.7 cells. HO-1 induction by AscA was significantly reduced by Nrf2 siRNA-transfected cells. Mutation of cysteine to serine of keap-1 proteins (C151S, C273S, and C288S) lost the ability of HO-1 induction by AscA, due to failure of translocation of Nrf-2 to nucleus. The PI3 kinase inhibitor, LY294002, inhibited HO-1 induction by AscA. Oxyhemoglobin (HbO2), LY294002, and ZnPPIX (HO-1 enzyme inhibitor) reversed effect of AscA on HMGB1 release. Most importantly, administration of AscA (200mg/kg, i.p.) significantly increased survival in LPS-induced endotoxemic mice. In cecal ligation and puncture (CLP)-induced septic mice, AscA reduced hepatic injury and serum HMGB1 and plasminogen activator inhibitor (PAI)-1 in a ZnPPIX-sensitive manner. In addition, AscA failed to increase survival in Nrf2 knockout mice by LPS. Thus, we concluded that high dose of AscA may be useful in the treatment of sepsis, at least, by activation of Nrf2/HO-1 signals. PMID:25896849

  7. Reconstitution of the cellular response to DNA damage in vitro using damage-activated extracts from mammalian cells

    SciTech Connect

    Roper, Katherine; Coverley, Dawn

    2012-03-10

    In proliferating mammalian cells, DNA damage is detected by sensors that elicit a cellular response which arrests the cell cycle and repairs the damage. As part of the DNA damage response, DNA replication is inhibited and, within seconds, histone H2AX is phosphorylated. Here we describe a cell-free system that reconstitutes the cellular response to DNA double strand breaks using damage-activated cell extracts and naieve nuclei. Using this system the effect of damage signalling on nuclei that do not contain DNA lesions can be studied, thereby uncoupling signalling and repair. Soluble extracts from G1/S phase cells that were treated with etoposide before isolation, or pre-incubated with nuclei from etoposide-treated cells during an in vitro activation reaction, restrain both initiation and elongation of DNA replication in naieve nuclei. At the same time, H2AX is phosphorylated in naieve nuclei in a manner that is dependent upon the phosphatidylinositol 3-kinase-like protein kinases. Notably, phosphorylated H2AX is not focal in naieve nuclei, but is evident throughout the nucleus suggesting that in the absence of DNA lesions the signal is not amplified such that discrete foci can be detected. This system offers a novel screening approach for inhibitors of DNA damage response kinases, which we demonstrate using the inhibitors wortmannin and LY294002. -- Highlights: Black-Right-Pointing-Pointer A cell free system that reconstitutes the response to DNA damage in the absence of DNA lesions. Black-Right-Pointing-Pointer Damage-activated extracts impose the cellular response to DNA damage on naieve nuclei. Black-Right-Pointing-Pointer PIKK-dependent response impacts positively and negatively on two separate fluorescent outputs. Black-Right-Pointing-Pointer Can be used to screen for inhibitors that impact on the response to damage but not on DNA repair. Black-Right-Pointing-Pointer LY294002 and wortmannin demonstrate the system's potential as a pathway focused screening

  8. Gardenamide A Protects RGC-5 Cells from H2O2-Induced Oxidative Stress Insults by Activating PI3K/Akt/eNOS Signaling Pathway

    PubMed Central

    Wang, Rikang; Peng, Lizhi; Zhao, Jiaqiang; Zhang, Laitao; Guo, Cuiping; Zheng, Wenhua; Chen, Heru

    2015-01-01

    Gardenamide A (GA) protects the rat retinal ganglion (RGC-5) cells against cell apoptosis induced by H2O2. The protective effect of GA was completely abrogated by the specific phosphoinositide 3-kinase (PI3K) inhibitor LY294002, and the specific protein kinase B (Akt) inhibitor Akt VIII respectively, indicating that the protective mechanism of GA is mediated by the PI3K/Akt signaling pathway. The specific extracellular signal-regulated kinase (ERK1/2) inhibitor PD98059 could not block the neuroprotection of GA. GA attenuated the levels of reactive oxygen species (ROS) and malondialdehyde (MDA) induced by H2O2. Western blotting showed that GA promoted the phosphorylation of ERK1/2, Akt and endothelial nitric oxide synthase (eNOS), respectively, and effectively reversed the H2O2-inhibited phosphorylation of these three proteins. LY294002 completely inhibited the GA-activated phosphorylation of Akt, while only partially inhibiting eNOS. This evidence implies that eNOS may be activated directly by GA. PD98059 attenuated only partially the GA-induced phosphorylation of ERK1/2 with/without the presence of H2O2, indicating that GA may activate ERK1/2 directly. All these results put together confirm that GA protects RGC-5 cells from H2O2 insults via the activation of PI3K/Akt/eNOS signaling pathway. Whether the ERK1/2 signaling pathway is involved requires further investigations. PMID:26389892

  9. The EphA8 Receptor Regulates Integrin Activity through p110γ Phosphatidylinositol-3 Kinase in a Tyrosine Kinase Activity-Independent Manner

    PubMed Central

    Gu, Changkyu; Park, Soochul

    2001-01-01

    Recent genetic studies suggest that ephrins may function in a kinase-independent Eph receptor pathway. Here we report that expression of EphA8 in either NIH 3T3 or HEK293 cells enhanced cell adhesion to fibronectin via α5β1- or β3 integrins. Interestingly, a kinase-inactive EphA8 mutant also markedly promoted cell attachment to fibronectin in these cell lines. Using a panel of EphA8 point mutants, we have demonstrated that EphA8 kinase activity does not correlate with its ability to promote cell attachment to fibronectin. Analysis using EphA8 extracellular and intracellular domain mutants has revealed that enhanced cell adhesion is dependent on ephrin A binding to the extracellular domain and the juxtamembrane segment of the cytoplasmic domain of the receptor. EphA8-promoted adhesion was efficiently inhibited by wortmannin, a phosphatidylinositol 3-kinase (PI 3-kinase) inhibitor. Additionally, we found that EphA8 had associated PI 3-kinase activity and that the p110γ isoform of PI 3-kinase is associated with EphA8. In vitro binding experiments revealed that the EphA8 juxtamembrane segment was sufficient for the formation of a stable complex with p110γ. Similar results were obtained in assay using cells stripped of endogenous ephrin A ligands by treatment with preclustered ephrin A5-Fc proteins. In addition, a membrane-targeted lipid kinase-inactive p110γ mutant was demonstrated to stably associate with EphA8 and suppress EphA8-promoted cell adhesion to fibronectin. Taken together, these results suggest the presence of a novel mechanism by which the EphA8 receptor localizes p110γ PI 3-kinase to the plasma membrane in a tyrosine kinase-independent fashion, thereby allowing access to lipid substrates to enable the signals required for integrin-mediated cell adhesion. PMID:11416136

  10. Gecko Proteins Exert Anti-Tumor Effect against Cervical Cancer Cells Via PI3-Kinase/Akt Pathway

    PubMed Central

    Jeong, Ae-Jin; Chung, Chung-Nam; Kim, Hye-Jin; Bae, Kil Soo; Choi, Song; Jun, Woo Jin; Shim, Sang In; Kang, Tae-Hong; Leem, Sun-Hee

    2012-01-01

    Anti-tumor activity of the proteins from Gecko (GP) on cervical cancer cells, and its signaling mechanisms were assessed by viable cell counting, propidium iodide (PI) staining, and Western blot analysis. GP induced the cell death of HeLa cells in a dose-dependent manner while it did not affect the viability of normal cells. Western blot analysis showed that GP decreased the activation of Akt, and co-administration of GP and Akt inhibitors synergistically exerted anti-tumor activities on HeLa cells, suggesting the involvement of PI3-kinase/Akt pathway in GP-induced cell death of the cancer cells. Indeed, the cytotoxic effect of GP against HeLa cells was inhibited by overexpression of constituvely active form of Akt in HeLa cells. The candidates of the functional proteins in GP were analyzed by Mass-spectrum. Taken together, our results suggest that GP elicits anti-tumor activity against HeLa cells by inhibition of PI3-kinase/Akt pathway. PMID:23118562

  11. Gecko Proteins Exert Anti-Tumor Effect against Cervical Cancer Cells Via PI3-Kinase/Akt Pathway.

    PubMed

    Jeong, Ae-Jin; Chung, Chung-Nam; Kim, Hye-Jin; Bae, Kil Soo; Choi, Song; Jun, Woo Jin; Shim, Sang In; Kang, Tae-Hong; Leem, Sun-Hee; Chung, Jin Woong

    2012-10-01

    Anti-tumor activity of the proteins from Gecko (GP) on cervical cancer cells, and its signaling mechanisms were assessed by viable cell counting, propidium iodide (PI) staining, and Western blot analysis. GP induced the cell death of HeLa cells in a dose-dependent manner while it did not affect the viability of normal cells. Western blot analysis showed that GP decreased the activation of Akt, and co-administration of GP and Akt inhibitors synergistically exerted anti-tumor activities on HeLa cells, suggesting the involvement of PI3-kinase/Akt pathway in GP-induced cell death of the cancer cells. Indeed, the cytotoxic effect of GP against HeLa cells was inhibited by overexpression of constituvely active form of Akt in HeLa cells. The candidates of the functional proteins in GP were analyzed by Mass-spectrum. Taken together, our results suggest that GP elicits anti-tumor activity against HeLa cells by inhibition of PI3-kinase/Akt pathway. PMID:23118562

  12. Tyrosine kinase inhibitors influence ABCG2 expression in EGFR-positive MDCK BCRP cells via the PI3K/Akt signaling pathway.

    PubMed

    Pick, Anne; Wiese, Michael

    2012-04-01

    Multidrug resistance observed in cancer chemotherapy is commonly attributed to overexpression of efflux transporter proteins. These proteins act as ATP-dependent drug efflux pumps, actively extruding chemotherapeutic agents from cells and causing a decrease in intracellular drug accumulation. Besides the well-recognized role of P-glycoprotein (P-gp, ABCB1), the breast cancer resistance protein (BCRP, ABCG2) is becoming increasingly accepted as playing an important role in multidrug resistance. In contrast to P-glycoprotein, only a few inhibitors of ABCG2 are known. According to the literature, tyrosine kinase inhibitors (TKIs) can be considered to be broad-spectrum inhibitors, interacting with ABCB1, ABCC1 and ABCG2. Here, we investigated seven different TKIs, gefitinib, erlotinib, AG1478, PD158780, PD153035, nilotinib and imatinib, for their potential to restore ABCG2 sensitivity to cells. Furthermore, we analyzed the alteration of ABCG2 expression caused by TKIs and demonstrated that EGFR inhibitors such as gefitinib and PD158780 reduced both total and surface expression of ABCG2 in EGRF-positive MDCK BCRP cells by interaction with the PI3K/Akt signaling pathway. The reduced ABCG2 content led to an increased effect of XR9577, a well-known ABCG2 modulator, lowering the concentration required for half maximal inhibition. On the other hand, BCR-ABL inhibitors had no influence on ABCG2 expression and modulator activity. Interestingly, a combination of an EGFR inhibitor with the PI3K/Akt inhibitor LY294002 led to a significant reduction of ABCG2 expression at low concentrations of the drugs. Based on our results, we assume that EGFR exerts a post-transcriptional enhancing effect on ABCG2 expression via the PI3K/Akt signaling pathway, which can be attenuated by EGFR inhibitors. Blocking the key signaling pathway regulating ABCG2 expression with EGFR inhibitors, combined with the inhibition of ABCG2 with potent modulators might be a promising approach to circumvent MDR

  13. Hexamethylenebisacetamide modulation of thyroglobulin and protein levels in thyroid cells is not mediated by phosphatidylinositol-3-kinase: a study with wortmannin.

    PubMed

    Aouani, A; Samih, N; Amphoux-Fazekas, T; Hovsépian, S; Fayet, G

    1999-04-01

    Hexamethylenebisacetamide (HMBA) induces in murine erythroleukemia cells (MELC) the commitment to terminal differentiation leading to globin gene expression. In the thyroid, HMBA acts as a growth factor and also as a differentiating agent. In the present paper, we studied the effect of HMBA on the very specific thyroid marker thyroglobulin (Tg) in two different thyroid cell systems, i.e., porcine cells in primary culture and ovine cells in long term culture. Using wortmannin, a specific inhibitor of phosphatidylinositol-3-kinase, we investigated whether this enzyme is involved in HMBA mode of action. We found that HMBA is a positive modulator of Tg production in porcine cells, but a negative effector in the OVNIS cell line. As all HMBA effects studied in the present paper, i.e., Tg production and total protein levels, are not inhibited by wortmannin, we suggest the non-involvement of phosphatidylinositol-3-kinase in HMBA mode of action. PMID:10650339

  14. 2,6,9-Trisubstituted purines as CRK3 kinase inhibitors with antileishmanial activity in vitro.

    PubMed

    Řezníčková, Eva; Popa, Alexandr; Gucký, Tomáš; Zatloukal, Marek; Havlíček, Libor; Bazgier, Václav; Berka, Karel; Jorda, Radek; Popa, Igor; Nasereddin, Abdelmajeed; Jaffe, Charles L; Kryštof, Vladimír; Strnad, Miroslav

    2015-06-01

    Here we describe the leishmanicidal activities of a library of 2,6,9-trisubstituted purines that were screened for interaction with Cdc2-related protein kinase 3 (CRK3) and subsequently for activity against parasitic Leishmania species. The most active compound inhibited recombinant CRK3 with an IC50 value of 162 nM and was active against Leishmania major and Leishmania donovani at low micromolar concentrations in vitro. Its mode of binding to CRK3 was investigated by molecular docking using a homology model. PMID:25937014

  15. Protecting Intestinal Epithelial Cell Number 6 against Fission Neutron Irradiation through NF-κB Signaling Pathway

    PubMed Central

    Chang, Gong-Min; Gao, Ya-Bing; Wang, Shui-Ming; Xu, Xin-Ping; Zhao, Li; Zhang, Jing; Li, Jin-Feng; Wang, Yun-Liang; Peng, Rui-Yun

    2015-01-01

    The purpose of this paper is to explore the change of NF-κB signaling pathway in intestinal epithelial cell induced by fission neutron irradiation and the influence of the PI3K/Akt pathway inhibitor LY294002. Three groups of IEC-6 cell lines were given: control group, neutron irradiation of 4Gy group, and neutron irradiation of 4Gy with LY294002 treatment group. Except the control group, the other groups were irradiated by neutron of 4Gy. LY294002 was given before 24 hours of neutron irradiation. At 6 h and 24 h after neutron irradiation, the morphologic changes, proliferation ability, apoptosis, and necrosis rates of the IEC-6 cell lines were assayed and the changes of NF-κB and PI3K/Akt pathway were detected. At 6 h and 24 h after neutron irradiation of 4Gy, the proliferation ability of the IEC-6 cells decreased and lots of apoptotic and necrotic cells were found. The injuries in LY294002 treatment and neutron irradiation group were more serious than those in control and neutron irradiation groups. The results suggest that IEC-6 cells were obviously damaged and induced serious apoptosis and necrosis by neutron irradiation of 4Gy; the NF-κB signaling pathway in IEC-6 was activated by neutron irradiation which could protect IEC-6 against injury by neutron irradiation; LY294002 could inhibit the activity of IEC-6 cells. PMID:25866755

  16. Stromal Cell-Derived Factor 1 Increases Tetrodotoxin-Resistant Sodium Currents Nav1.8 and Nav1.9 in Rat Dorsal Root Ganglion Neurons via Different Mechanisms.

    PubMed

    Qiu, Fang; Li, Yang; Fu, Qiang; Fan, Yong-Yan; Zhu, Chao; Liu, Yan-Hong; Mi, Wei-Dong

    2016-07-01

    Stromal cell-derived factor 1 (SDF-1)/chemokine CXC motif ligand 12 (CXCL12), a chemokine that is upregulated in dorsal root ganglion (DRG) during chronic pain models, has recently been found to play a central role in pain hypersensitivity. The purpose of present study is to investigate the functional impact of SDF-1 and its receptor, chemokine CXC motif receptor 4 (CXCR4), on two TTXR sodium channels in rat DRG using electrophysiological techniques. Preincubation with SDF-1 caused a concentration-dependent increase of Nav1.8 and Nav1.9 currents amplitudes in acutely isolated small diameter DRG neurons in short-term culture. As to Nav1.9, changes in current density and kinetic properties of Nav1.9 current evoked by SDF-1(50 ng/ml) was eliminated by CXCR4 antagonist AMD3100 and phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002. The increase in Nav1.9 current was also blocked by pertussis toxin (PTX) but not cholera toxin (CTX), showing involvement of Gi/o but not Gs subunits. As to Nav1.8, inhibitors (AMD3100, PTX, CTX, LY294002) used in present study didn't inhibit the increased amplitude of Nav1.8 current and shifted activation curve of Nav1.8 in a hyperpolarizing direction in the presence of SDF-1 (50 ng/ml). In conclusion, our data demonstrated that SDF-1 may excite primary nociceptive sensory neurons by acting on the biophysical properties of Nav1.8 and Nav1.9 currents but via different mechanisms. PMID:27038931

  17. Interleukin-13-induced MUC5AC expression is regulated by a PI3K–NFAT3 pathway in mouse tracheal epithelial cells

    SciTech Connect

    Yan, Fugui; Li, Wen; Zhou, Hongbin; Wu, Yinfang; Ying, Songmin; Chen, Zhihua; Shen, Huahao

    2014-03-28

    Highlights: • IL-13 specifically induced NFAT3 activation in mouse tracheal epithelial cells. • CsA and LY294002 significantly blocked IL-13-induced MUC5AC production. • The PI3K–NFAT3 pathway is positively involved in IL-13-induced MUC5AC production. - Abstract: Interleukin-13 (IL-13) plays a critical role in asthma mucus overproduction, while the mechanisms underlying this process are not fully elucidated. Previous studies showed that nuclear factor of activated T cells (NFAT) is involved in the pathogenesis of asthma, but whether it can directly regulate IL-13-induced mucus (particularly MUC5AC) production is still not clear. Here we showed that IL-13 specifically induced NFAT3 activation through promoting its dephosphorylation in air–liquid interface (ALI) cultures of mouse tracheal epithelial cells (mTECs). Furthermore, both Cyclosporin A (CsA, a specific NFAT inhibitor) and LY294002 (a Phosphoinositide 3-kinase (PI3K) inhibitor) significantly blocked IL-13-induced MUC5AC mRNA and protein production through the inhibition of NFAT3 activity. We also confirmed that CsA could not influence the forkhead Box A2 (Foxa2) and mouse calcium dependent chloride channel 3 (mClca3) expression in IL-13-induced MUC5AC production, which both are known to be important in IL-13-stimulated mucus expression. Our study is the first to demonstrate that the PI3K–NFAT3 pathway is positively involved in IL-13-induced mucus production, and provided novel insights into the molecular mechanism of asthma mucus hypersecretion.

  18. MiR-20a Induces Cell Radioresistance by Activating the PTEN/PI3K/Akt Signaling Pathway in Hepatocellular Carcinoma

    SciTech Connect

    Zhang, Yuqin; Zheng, Lin; Ding, Yi; Li, Qi; Wang, Rong; Liu, Tongxin; Sun, Quanquan; Yang, Hua; Peng, Shunli; Wang, Wei; Chen, Longhua

    2015-08-01

    Purpose: To investigate the role of miR-20a in hepatocellular carcinoma (HCC) cell radioresistance, which may reveal potential strategies to improve treatment. Methods and Materials: The expression of miR-20a and PTEN were detected in HCC cell lines and paired primary tissues by quantitative real-time polymerase chain reaction. Cell radiation combined with colony formation assays was administrated to discover the effect of miR-20a on radiosensitivity. Bioinformatics prediction and luciferase assay were used to identify the target of miR-20a. The phosphatidylinositol 3-kinase inhibitor LY294002 was used to inhibit phosphorylation of Akt, to verify whether miR-20a affects HCC cell radioresistance through activating the PTEN/PI3K/Akt pathway. Results: MiR-20a levels were increased in HCC cell lines and tissues, whereas PTEN was inversely correlated with it. Overexpression of miR-20a in Bel-7402 and SMMC-7721 cells enhances their resistance to the effect of ionizing radiation, and the inhibition of miR-20a in HCCLM3 and QGY-7701 cells sensitizes them to it. PTEN was identified as a direct functional target of miR-20a for the induction of radioresistance. Overexpression of miR-20a activated the PTEN/PI3K/Akt signaling pathway. Additionally, the kinase inhibitor LY294002 could reverse the effect of miR-20a–induced radioresistance. Conclusion: MiR-20a induces HCC cell radioresistance by activating the PTEN/PI3K/Akt pathway, which suggests that miR-20a/PTEN/PI3K/Akt might represent a target of investigation for developing effective therapeutic strategies against HCC.

  19. Lipopolysaccharide induces VCAM-1 expression and neutrophil adhesion to human tracheal smooth muscle cells: Involvement of Src/EGFR/PI3-K/Akt pathway

    SciTech Connect

    Lin, W.-N.; Luo, S.-F.; Wu, C.-B.; Lin, C.-C.; Yang, C.-M.

    2008-04-15

    In our previous study, LPS has been shown to induce vascular cell adhesion molecule-1(VCAM-1) expression through MAPKs and NF-{kappa}B in human tracheal smooth muscle cells (HTSMCs). In addition to these pathways, the non-receptor tyrosine kinases (Src), EGF receptor (EGFR), and phosphatidylinositol 3-kinase (PI3K) have been shown to be implicated in the expression of several inflammatory target proteins. Here, we reported that LPS-induced up-regulation of VCAM-1 enhanced the adhesion of neutrophils onto HTSMC monolayer, which was inhibited by LY294002 and wortmannin. LPS stimulated phosphorylation of protein tyrosine kinases including Src, PYK2, and EGFR, which were further confirmed using specific anti-phospho-Src, PYK2, or EGFR Ab, respectively, revealed by Western blotting. LPS-stimulated Src, PYK2, EGFR, and Akt phosphorylation and VCAM-1 expression were attenuated by the inhibitors of Src (PP1), EGFR (AG1478), PI3-K (LY294002 and wortmannin), and Akt (SH-5), respectively, or transfection with siRNAs of Src or Akt and shRNA of p110. LPS-induced VCAM-1 expression was also blocked by pretreatment with curcumin (a p300 inhibitor) or transfection with p300 siRNA. LPS-stimulated Akt activation translocated into nucleus and associated with p300 and VCAM-1 promoter region was further confirmed by immunofluorescence, immunoprecipitation, and chromatin immunoprecipitation assays. This association of Akt and p300 to VCAM-1 promoter was inhibited by pretreatment with PP1, AG1478, wortmannin, and SH-5. LPS-induced p300 activation enhanced VCAM-1 promoter activity and VCAM-1 mRNA expression. These results suggested that in HTSMCs, Akt phosphorylation mediated through transactivation of Src/PYK2/EGFR promoted the transcriptional p300 activity and eventually led to VCAM-1 expression induced by LPS.

  20. The Effects of Glucagon-like Peptide-2 on the Tight Junction and Barrier Function in IPEC-J2 Cells through Phosphatidylinositol 3-kinase–Protein Kinase B–Mammalian Target of Rapamycin Signaling Pathway

    PubMed Central

    Yu, Changsong; Jia, Gang; Deng, Qiuhong; Zhao, Hua; Chen, Xiaoling; Liu, Guangmang; Wang, Kangning

    2016-01-01

    Glucagon-like peptide-2 (GLP-2) is important for intestinal barrier function and regulation of tight junction (TJ) proteins, but the intracellular mechanisms of action remain undefined. The purpose of this research was to determine the protective effect of GLP-2 mediated TJ and transepithelial electrical resistance (TER) in lipopolysaccharide (LPS) stressed IPEC-J2 cells and to test the hypothesis that GLP-2 regulate TJ and TER through the phosphatidylinositol 3-kinase (PI3K)-protein kinase B (Akt)-mammalian target of rapamycin (mTOR) signaling pathway in IPEC-J2 cells. Wortmannin and LY294002 are specific inhibitors of PI3K. The results showed that 100 μg/mL LPS stress decreased TER and TJ proteins occludin, claudin-1 and zonula occludens protein 1 (ZO-1) mRNA, proteins expressions (p<0.01) respectively. GLP-2 (100 nmol/L) promote TER and TJ proteins occludin, claudin-1, and zo-1 mRNA, proteins expressions in LPS stressed and normal IPEC-J2 cells (p<0.01) respectively. In normal cells, both wortmannin and LY294002, PI3K inhibitors, prevented the mRNA and protein expressions of Akt and mTOR increase induced by GLP-2 (p<0.01) following with the significant decreasing of occludin, claudin-1, ZO-1 mRNA and proteins expressions and TER (p<0.01). In conclusion, these results indicated that GLP-2 can promote TJ’s expression and TER in LPS stressed and normal IPEC-J2 cells and GLP-2 could regulate TJ and TER through the PI3K/Akt/mTOR pathway. PMID:26954146

  1. Glucagon-like peptide-1 protects cardiomyocytes from advanced oxidation protein product-induced apoptosis via the PI3K/Akt/Bad signaling pathway

    PubMed Central

    ZHANG, HUA; XIONG, ZHOUYI; WANG, JIAO; ZHANG, SHUANGSHUANG; LEI, LEI; YANG, LI; ZHANG, ZHEN

    2016-01-01

    Cardiomyocyte apoptosis is a major event in the pathogenesis of diabetic cardiomyopathy. Currently, no single effective treatment for diabetic cardiomyopathy exists. The present study investigated whether advanced oxidative protein products (AOPPs) have a detrimental role in the survival of cardiomyocytes and if glucagon-like peptide-1 (GLP-1) exerts a cardioprotective effect under these circumstances. The present study also aimed to determine the underlying mechanisms. H9c2 cells were exposed to increasing concentrations of AOPPs in the presence or absence of GLP-1, and the viability and apoptotic rate were detected using a cell counting kit-8 assay and flow cytometry, respectively. In addition, a phosphatidylino-sitol-4,5-bisphosphate 3-kinase (PI3K) inhibitor, LY294002, was employed to illustrate the mechanism of the antiapoptotic effect of GLP-1. The expression levels of the apoptotic-associated proteins, Akt, B-cell lymphoma (Bcl)-2, Bcl-2-associated death promoter (Bad), Bcl-2-associated X protein (Bax) and caspase-3 were measured by western blotting. It was revealed that GLP-1 significantly attenuated AOPP-induced cell toxicity and apoptosis. AOPPs inactivated the phosphorylation of Akt, reduced the phosphorylation of Bad, decreased the expression of Bcl-2, increased the expression of Bax and the activation of caspase-3 in H9c2 cells. GLP-1 reversed the above changes induced by AOPPs and the protective effects of GLP-1 were abolished by the PI3K inhibitor, LY294002. In conclusion, the present data suggested that GLP-1 protected cardiomyocytes against AOPP-induced apoptosis, predominantly via the PI3K/Akt/Bad pathway. These results provided a conceivable mechanism for the development of diabetic cardiomyopathy and rendered a novel application of GLP-1 exerting favorable cardiac effects for the treatment of diabetic cardiomyopathy. PMID:26717963

  2. Modulation of Insulin Sensitivity of Hepatocytes by the Pharmacological Downregulation of Phospholipase D

    PubMed Central

    Babenko, Nataliya A.; Kharchenko, Vitalina S.

    2015-01-01

    Background. The role of phospholipase D (PLD) as a positive modulator of glucose uptake activation by insulin in muscle and adipose cells has been demonstrated. The role of PLD in the regulation of glucose metabolism by insulin in the primary hepatocytes has been determined in this study. Methods. For this purpose, we studied effects of inhibitors of PLD on glucose uptake and glycogen synthesis stimulation by insulin. To determine the PLD activity, the method based on determination of products of transphosphatidylation reaction, phosphatidylethanol or phosphatidylbutanol, was used. Results. Inhibition of PLD by a general antagonist (1-butanol) or specific inhibitor, halopemide, or N-hexanoylsphingosine, or by cellular ceramides accumulated in doxorubicin-treated hepatocytes decreased insulin-stimulated glucose metabolism. Doxorubicin-induced hepatocytes resistance to insulin action could be abolished by inhibition of ceramide production. Halopemide could nullify this effect. Addition of propranolol, as well as inhibitors of phosphatidylinositol 3-kinase (PI3-kinase) (wortmannin, LY294002) or suppressors of Akt phosphorylation/activity, luteolin-7-O-glucoside or apigenin-7-O-glucoside, to the culture media could block cell response to insulin action. Conclusion. PLD plays an important role in the insulin signaling in the hepatocytes. PLD is activated downstream of PI3-kinase and Akt and is highly sensitive to ceramide content in the liver cells. PMID:26089893

  3. PI3K/AKT/mTOR Signaling-Mediated Neuropeptide VGF in the Hippocampus of Mice Is Involved in the Rapid Onset Antidepressant-Like Effects of GLYX-13

    PubMed Central

    Lu, Yang; Xue, Zhancheng; Li, Chenli; Zhang, Junfang; Zhao, Xin; Liu, Aiming; Wang, Qinwen; Zhou, Wenhua

    2015-01-01

    Background: VGF (nonacryonimic) and phosphatidylinositol 3-kinase (PI3K)/AKT (also known as protein kinase B, PKB)/mammalian target of rapamycin (mTOR) signaling play pivotal roles in depression. However, whether phosphatidylinositol 3-kinase/AKT/mTOR signaling-mediated VGF participates in rapid-acting antidepressant-like actions of GLYX-13 is unclear. Methods: Herein, we evaluated the effects of acute treatment of GLYX-13 (0.5, 5, and 10mg/kg, i.p.) in the forced swim test. In addition, we assessed whether the acute treatment with GLYX-13 reverses the depressive-like behaviors induced by chronic unpredictable mild stress. Furthermore, we determined whether the Vgf knockdown in hippocampus of mice blocks the effects of GLYX-13. Moreover, we also demonstrated the effects of intra-hippocampus infusion of LY294002 (10 nmol/side), a specific phosphatidylinositol 3-kinase inhibitor prior to the treatment of GLYX-13 in the forced swim test. Lastly, whether alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor and mTOR activation involves in the antidepressant-like effects of GLYX-13 was examined. Results: Our results shown that GLYX-13 dose-dependently reversed the depressive-like behaviors in forced swim test. Additionally, GLYX-13 significantly reversed the downregulation of phosphorylation of AKT, mTOR, and eukaryotic elongation factor 2 as well as VGF induced by chronic unpredictable mild stress in hippocampus. Further, Vgf knockdown in hippocampus of mice significantly blocked the rapid-acting antidepressant-like effects and upregulation on phosphatidylinositol 3-kinase/AKT/mTOR/VGF signaling of GLYX-13. Moreover, intra-hippocampus infusion of LY294002 significantly abolished the antidepressant-like effects and upregulation on phosphatidylinositol 3-kinase/AKT/mTOR/VGF signaling of GLYX-13. Finally, antidepressant-like effects of GLYX-13 required AMPA receptor and mTOR activation, as evidenced by the ability of NBQX and rapamycin to block the

  4. RAS signalling through PI3-Kinase controls cell migration via modulation of Reelin expression

    PubMed Central

    Castellano, Esther; Molina-Arcas, Miriam; Krygowska, Agata Adelajda; East, Philip; Warne, Patricia; Nicol, Alastair; Downward, Julian

    2016-01-01

    RAS signalling through phosphoinositide 3-kinase (PI3-Kinase) has been shown to have an essential role in tumour initiation and maintenance. RAS also regulates cell motility and tumour invasiveness, but the role of direct RAS binding to PI3-Kinase in this remains uncertain. Here, we provide evidence that disruption of RAS interaction with PI3-Kinase p110α decreases cell motility and prevents activation of Rac GTPase. Analysis of gene expression in cells lacking RAS interaction with p110α reveals increased levels of the extracellular matrix glycoprotein Reelin and activation of its downstream pathway resulting in upregulation of E-cadherin expression. Induction of the Reelin/E-cadherin axis is also observed in Kras mutant lung tumours that are regressing due to blockade of RAS interaction with PI3-Kinase. Furthermore, loss of Reelin correlates with decreased survival of lung and breast cancer patients. Reelin thus plays a role in restraining RAS and PI3-kinase promotion of cell motility and potentially tumour metastasis. PMID:27071537

  5. The Phosphoinositide 3-Kinase Pathway in Human Cancer: Genetic Alterations and Therapeutic Implications

    PubMed Central

    Arcaro, Alexandre; Guerreiro, Ana S

    2007-01-01

    The phosphoinositide 3-kinase (PI3K) pathway is frequently activated in human cancer and represents an attractive target for therapies based on small molecule inhibitors. PI3K isoforms play an essential role in the signal transduction events activated by cell surface receptors including receptor tyrosine kinases (RTKs) and G-protein-coupled receptors (GPCRs). There are eight known PI3K isoforms in humans, which have been subdivided into three classes (I-III). Therefore PI3Ks show considerable diversity and it remains unclear which kinases in this family should be targeted in cancer. The class IA of PI3K comprises the p110α, p110β and p110δ isoforms, which associate with activated RTKs. In human cancer, recent reports have described activating mutations in the PIK3CA gene encoding p110α, and inactivating mutations in the phosphatase and tensin homologue (PTEN) gene, a tumour suppressor and antagonist of the PI3K pathway. The PIK3CA mutations described in cancer constitutively activate p110α and, when expressed in cells drive oncogenic transformation. Moreover, these mutations cause the constitutive activation of downstream signaling molecules such as Akt/protein kinase B (PKB), mammalian target of rapamycin (mTOR) and ribosomal protein S6 kinase (S6K) that is commonly observed in cancer cells. In addition to p110α, the other isoforms of the PI3K family may also play a role in human cancer, although their individual functions remain to be precisely identified. In this review we will discuss the evidence implicating individual PI3K isoforms in human cancer and their potential as drug targets in this context. PMID:19384426

  6. Intravenous high mobility group box 1 upregulates the expression of HIF-1α in the myocardium via a protein kinase B-dependent pathway in rats following acute myocardial ischemia

    PubMed Central

    YAO, HENG-CHEN; ZHOU, MIN; ZHOU, YAN-HONG; WANG, LAN-HUA; ZHANG, DE-YONG; HAN, QIAN-FENG; LIU, TAO; WU, LEI; TIAN, KE-LI; ZHANG, MEI

    2016-01-01

    The effects of intravenous high mobility group box 1 (HMGB1) on myocardial ischemia/reperfusion (I/R) injury remains to be elucidated. The purpose of the present study was to investigate the effects of intravenous HMGB1 on the expression of hypoxia inducible factor-1α (HIF-1α) in the myocardium of rats following acute myocardial ischemia, and to examine the effects of intravenous HMGB1 on myocardial I/R injury. Male Wistar rats were divided into the following groups: Sham operation group (n=10), a group exposed to ischemia for 30 min and reperfusion for 4 h (I/R group) as a control (n=10), an HMGB group, in which 100 ng/kg HMGB was administered intravenously 30 min prior to ischemia (n=10), an LY group, in whic LY294002, an inhibitor of phosphoinositide 3-kinase (PI3K), was administered intravenously (0.3 mg/kg) 40 min prior to ischemia (n=10), and the HMGB1+LY group, in which HMGB1 (100 ng/kg) and LY294002 (0.3 mg/kg) were administered intravenously 30 min and 40 min prior to ischemia, respectively (n=10). The serum levels of cardiac troponin I (cTnI) and tumor necrosis factor-α (TNF-α), and myocardial infarct size were measured. The expression levels of phosphorylated Akt and HIF-1α were investigated using western blot analyses. The results showed that pre-treatment with HMGB1 significantly decreased serum levels of cTnI, and TNF-α, and reduced myocardial infarct size following 4 h reperfusion (all P<0.05). HMGB1 also increased the expression levels of HIF-1α and p-Akt induced by I/R (P<0.05). LY294002 was found to eliminate the effects of intravenous HMGB1 on myocardial I/R injury (P<0.05). These results suggest that intravenous pre-treatment with HMGB1 may exert its cardioprotective effects via the upregulation of the myocardial expression of HIF-1α, which may be regulated by the PI3K/Akt signaling pathway, in rats following acute myocardial I/R. PMID:26648172

  7. PI3 kinase directly phosphorylates Akt1/2 at Ser473/474 in the insulin signal transduction pathway

    PubMed Central

    Tsuchiya, A; Kanno, T; Nishizaki, T

    2014-01-01

    Insulin stimulated translocation of the glucose transporter GLUT4 from the cytosol to the plasma membrane in a concentration (1 nM–1 μM)-dependent manner and increased glucose uptake in 3T3-L1 adipocytes. Insulin-induced GLUT4 translocation to the cell surface was prevented by the phosphoinositide 3 kinase (PI3K) inhibitor wortmannin, the 3-phosphoinositide-dependent protein kinase 1 (PDK1) inhibitor BX912 or the Akt1/2 inhibitor MK2206, and by knocking-down PI3K, PDK1 or Akt1/2. Insulin increased phosphorylation of Akt1/2 at Thr308/309 and Ser473/474, to activate Akt1/2, in the adipocytes. Insulin-induced phosphorylation of Akt1/2 was suppressed by wortmannin and knocking-down PI3K, while no significant inhibition of the phosphorylation was obtained with BX912 or knocking-down PDK1. In the cell-free Akt assay, PI3K phosphorylated Akt1 both at Thr308 and Ser473 and Akt2 at Ser474 alone. In contrast, PDK1 phosphorylates Akt1 at Thr308 and Akt2 at Thr309. The results of this study indicate that PI3K activates Akt1, independently of PDK1, and Akt2 by cooperating with PDK1 in the insulin signal transduction pathway linked to GLUT4 translocation. PMID:24169049

  8. Dual PI-3 kinase/mTOR inhibition impairs autophagy flux and induces cell death independent of apoptosis and necroptosis

    PubMed Central

    Button, Robert W.; Vincent, Joseph H.; Strang, Conor J.; Luo, Shouqing

    2016-01-01

    The PI-3 kinase (PI-3K)/mTOR pathway is critical for cell growth and proliferation. Strategies of antagonising this signaling have proven to be detrimental to cell survival. This observation, coupled with the fact many tumours show enhanced growth signaling, has caused dual inhibitors of PI-3K and mTOR to be implicated in cancer treatment, and have thus been studied across various tumour models. Since PI-3K (class-I)/mTOR pathway negatively regulates autophagy, dual inhibitors of PI-3K/mTOR are currently believed to be autophagy activators. However, our present data show that the dual PI-3K/mTOR inhibition (DKI) potently suppresses autophagic flux. We further confirm that inhibition of Vps34/PI3KC3, the class-III PI-3K, causes the blockade to autophagosome-lysosome fusion. Our data suggest that DKI induces cell death independently of apoptosis and necroptosis, whereas autophagy perturbation by DKI may contribute to cell death. Given that autophagy is critical in cellular homeostasis, our study not only clarifies the role of a dual PI-3K/mTOR inhibitor in autophagy, but also suggests that its autophagy inhibition needs to be considered if such an agent is used in cancer chemotherapy. PMID:26814436

  9. Insulin-induced Drosophila S6 kinase activation requires phosphoinositide 3-kinase and protein kinase B.

    PubMed Central

    Lizcano, Jose M; Alrubaie, Saif; Kieloch, Agnieszka; Deak, Maria; Leevers, Sally J; Alessi, Dario R

    2003-01-01

    An important mechanism by which insulin regulates cell growth and protein synthesis is through activation of the p70 ribosomal S6 protein kinase (S6K). In mammalian cells, insulin-induced PI3K (phosphoinositide 3-kinase) activation, generates the lipid second messenger PtdIns(3,4,5) P (3), which is thought to play a key role in triggering the activation of S6K. Although the major components of the insulin-signalling pathway are conserved in Drosophila, recent studies suggested that S6K activation does not require PI3K in this system. To investigate further the role of dPI3K (Drosophila PI3K) in dS6K (Drosophila S6K) activation, we examined the effect of two structurally distinct PI3K inhibitors on insulin-induced dS6K activation in Kc167 and S2 Drosophila cell lines. We found that both inhibitors prevented insulin-stimulated phosphorylation and activation of dS6K. To investigate further the role of the dPI3K pathway in regulating dS6K activation, we also used dsRNAi (double-stranded RNA-mediated interference) to decrease expression of dPI3K and the PtdIns(3,4,5) P (3) phosphatase dPTEN ( Drosophila phosphatase and tensin homologue deleted on chromosome 10) in Kc167 and S2 cells. Knock-down of dPI3K prevented dS6K activation, whereas knock-down of dPTEN, which would be expected to increase PtdIns(3,4,5) P (3) levels, stimulated dS6K activity. Moreover, when the expression of the dPI3K target, dPKB (Drosophila protein kinase B), was decreased to undetectable levels, we found that insulin could no longer trigger dS6K activation. This observation provides the first direct demonstration that dPKB is required for insulin-stimulated dS6K activation. We also present evidence that the amino-acid-induced activation of dS6K in the absence of insulin, thought to be mediated by dTOR (Drosophila target of rapamycin), which is unaffected by the inhibition of dPI3K by wortmannin. The results of the present study support the view that, in Drosophila cells, dPI3K and dPKB, as well d

  10. alpha1B-Adrenergic receptor phosphorylation and desensitization induced by transforming growth factor-beta.

    PubMed Central

    Romero-Avila, M Teresa; Flores-Jasso, C Fabián; García-Sáinz, J Adolfo

    2002-01-01

    Transforming growth factor-beta (TGF-beta) induced alpha(1B)-adrenergic receptor phosphorylation in Rat-1 fibroblasts stably expressing these adrenoceptors. This effect of TGF-beta was rapid, reaching a maximum within 30 min and decreasing thereafter, and concentration-dependent (EC(50) 0.3 pM). The phosphoinositide 3-kinase inhibitors wortmannin and LY294002, and the protein kinase C inhibitors staurosporine, Ro 318220 and bisindolylmaleimide, blocked the effect of this growth factor. alpha(1B)-Adrenergic receptor phosphorylation was associated with desensitization, as indicated by a reduction in the adrenergic-mediated production of [(3)H]inositol phosphates. Phosphorylation of alpha(1B)-adrenergic receptors by TGF-beta was also observed in Cos-1 cells transfected with the receptor. Co-transfection of the dominant-negative mutant of the regulatory subunit of phosphoinositide 3-kinase (Deltap85) inhibited the phosphorylation of alpha(1B)-adrenergic receptors induced by TGF-beta. Our results indicate that activation of TGF-beta receptors induces alpha(1B)-adrenergic receptor phosphorylation and desensitization. The data suggest that phosphoinositide 3-kinase and protein kinase C play key roles in this effect of TGF-beta. PMID:12234252

  11. alpha1B-Adrenergic receptor phosphorylation and desensitization induced by transforming growth factor-beta.

    PubMed

    Romero-Avila, M Teresa; Flores-Jasso, C Fabián; García-Sáinz, J Adolfo

    2002-12-01

    Transforming growth factor-beta (TGF-beta) induced alpha(1B)-adrenergic receptor phosphorylation in Rat-1 fibroblasts stably expressing these adrenoceptors. This effect of TGF-beta was rapid, reaching a maximum within 30 min and decreasing thereafter, and concentration-dependent (EC(50) 0.3 pM). The phosphoinositide 3-kinase inhibitors wortmannin and LY294002, and the protein kinase C inhibitors staurosporine, Ro 318220 and bisindolylmaleimide, blocked the effect of this growth factor. alpha(1B)-Adrenergic receptor phosphorylation was associated with desensitization, as indicated by a reduction in the adrenergic-mediated production of [(3)H]inositol phosphates. Phosphorylation of alpha(1B)-adrenergic receptors by TGF-beta was also observed in Cos-1 cells transfected with the receptor. Co-transfection of the dominant-negative mutant of the regulatory subunit of phosphoinositide 3-kinase (Deltap85) inhibited the phosphorylation of alpha(1B)-adrenergic receptors induced by TGF-beta. Our results indicate that activation of TGF-beta receptors induces alpha(1B)-adrenergic receptor phosphorylation and desensitization. The data suggest that phosphoinositide 3-kinase and protein kinase C play key roles in this effect of TGF-beta. PMID:12234252

  12. Gefitinib induces lung cancer cell autophagy and apoptosis via blockade of the PI3K/AKT/mTOR pathway

    PubMed Central

    ZHAO, ZHONG-QUAN; YU, ZHONG-YANG; LI, JIE; OUYANG, XUE-NONG

    2016-01-01

    Gefitinib is a selective inhibitor of the tyrosine kinase epidermal growth factor receptor, which inhibits tumor pathogenesis, metastasis and angiogenesis, as well as promoting apoptosis. Therefore, gefitinib presents an effective drug for the targeted therapy of lung cancer. However, the underlying mechanisms by which gefitinib induces lung cancer cell death remain unclear. To investigate the effects of gefitinib on lung cancer cells and the mechanism of such, the present study analyzed the effect of gefitinib on the autophagy, apoptosis and proliferation of the A549 and A549-gefitinib-resistant (GR) cell lines GR. The regulation of the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT)/ mammalian target of rapamycin (mTOR) pathway was also investigated. Acridine orange staining revealed that gefitinib induced autophagy of A549 cells but not A549-GR cells. In addition, gefitinib promoted apoptosis and inhibited proliferation of A549 cells but not A549-GR cells. Furthermore, western blot analysis demonstrated that gefitinib treatment led to the downregulation of PI3K, AKT, pAKT, mTOR and phosphorylated-mTOR protein expression in A549 cells but not A549-GR cells. LY294002 blocked the PI3K/AKT/mTOR pathway and induced autophagy and apoptosis of A549 cells, however, no synergistic effect was observed following combined treatment with gefitinib and LY294002. In conclusion, the results of the present study indicate that gefitinib promotes autophagy and apoptosis of lung cancer cells via blockade of the PI3K/AKT/mTOR pathway, which leads to lung cancer cell death. PMID:27347100

  13. Hypoxia-induced mitogenic factor promotes vascular adhesion molecule-1 expression via the PI-3K/Akt-NF-kappaB signaling pathway.

    PubMed

    Tong, Qiangsong; Zheng, Liduan; Lin, Li; Li, Bo; Wang, Danming; Li, Dechun

    2006-10-01

    Hypoxia-induced mitogenic factor (HIMF), also known as FIZZ1 (found in inflammatory zone 1), is an important player in lung inflammation. However, the effects of HIMF on cell adhesion molecules involved in lung inflammation remain largely unknown. In the present work, we tested whether HIMF modulates vascular adhesion molecule (VCAM)-1 expression, and dissected the possible signaling pathways that link HIMF to VCAM-1 upregulation. Recombinant HIMF protein, instilled intratracheally into adult mouse lungs, results in a significant increase of VCAM-1 production in vascular endothelial, alveolar type II, and airway epithelial cells. In cultured mouse endothelial SVEC 4-10 and lung epithelial MLE-12 cells, we demonstrated that HIMF induces VCAM-1 expression via the phosphatidylinositol-3 kinase (PI-3K)/Akt-nuclear factor (NF)-kappaB signaling pathway. Knockdown of HIMF expression by small interference RNA attenuated LPS-induced VCAM-1 expression in vitro. We showed that HIMF induced phosphorylation of the IkappaB kinase signalsome and, subsequently, IkappaBalpha, leading to activation of NF-kappaB. Meanwhile, VCAM-1 production was correspondingly upregulated. Blocking NF-kappaB signaling pathway by expression of dominant-negative mutants of IkappaB kinase and IkappaBalpha suppressed HIMF-induced VCAM-1 upregulation. HIMF also strongly induced phosphorylation of Akt. A dominant-negative mutant of PI-3K, Deltap85, as well as PI-3K inhibitor, LY294002, also blocked HIMF-induced NF-kappaB activation and attenuated VCAM-1 production. Furthermore, LY294002 pretreatment abolished HIMF-enhanced mononuclear cells adhesion to endothelial and epithelial cells. Our findings connect HIMF to signaling pathways that regulate inflammation, and thus reveal the critical roles that HIMF plays in lung inflammation. PMID:16709959

  14. Therapeutic Effect of External Application of Ligustrazine Combined with Holistic Nursing on Pressure Sores

    PubMed Central

    Niu, Junzhi; Han, Lin; Gong, Fen

    2016-01-01

    Background This study aimed to explore the therapeutic effect of external application of ligustrazine combined with holistic nursing on pressure sores, as well as the underlying mechanism. Material/Methods From February 2014 to March 2015, a total of 32 patients with Phase II and Phase III pressure sores were enrolled and randomly assigned to an experimental group or a control group. The clinical data were comparable between the 2 groups. In addition to holistic nursing, the patients in the experimental group received 4 weeks of continuous external application of ligustrazine, whereas patients in the control group received compound clotrimazole cream. Therapeutic effect and healing time were recorded. HaCaT cells were used as an in vitro model for mechanism analysis of the effect of ligustrazine in treating pressure sores. After culturing with different concentrations of ligustrazine or the inhibitor of AKT (LY294002) for 72 h, cell viability, clone formation numbers, and levels of phosphatidyl inositol 3-kinase (PI3K), p-AKT, and p-mammalian target of rapamycin (mTOR) were determined. Results Compared to the control group, the total effective rate in the experimental group was significantly higher, and the healing time was significantly reduced. Cell viability and clone formation numbers were significantly upregulated by ligustrazine in a dose-dependent manner. Both the cell viability and clone formation numbers were significantly inhibited by application of LY294002. Conclusions Our results suggest that ligustrazine combined with holistic nursing is an effective treatment of pressure sores. The protective effect may be associated with the promotion of cell growth by activation of the PI3K/AKT pathway. PMID:27523814

  15. Induction of Pi form of glutathione S-transferase by carnosic acid is mediated through PI3K/Akt/NF-κB pathway and protects against neurotoxicity.

    PubMed

    Lin, Chia-Yuan; Chen, Jing-Hsien; Fu, Ru-Huei; Tsai, Chia-Wen

    2014-11-17

    Carnosic acid (CA), a diterpene found in the rosemary (Rosmarinus officinalis), has been reported to have a neuroprotective effect. Glutathione S-transferase (GST) P (GSTP) is a phase II detoxifying enzyme that provides a neuroprotective effect. The aim of this study was to explore whether the neuroprotective effect of CA is via an upregulation of GSTP expression and the possible signaling pathways involved. SH-SY5Y cells were pretreated with 1 μM CA followed by treatment with 100 μM 6-hydroxydopamine (6-OHDA). Both immunoblotting and enzyme activity results show that CA also induced protein expression and enzyme activity of GSTP. Moreover, CA significantly increased the phosphorylation of phosphatidylinositol 3-kinase (PI3K)/Akt, the nuclear translocation of p65, but not mitogen-activated protein kinases (p < 0.05). Pretreatment with LY294002 (a PI3K/Akt inhibitor) suppressed the CA-induced phosphorylation of IκB kinase (IKK) and IκBα, p65 nuclear translocation, and nuclear factor-kappa B (NF-κB)-DNA binding activity as well as GSTP protein expression. Furthermore, CA attenuated 6-OHDA-induced caspase 3 activation, and cell death was reversed by GSTP siRNA or LY294002 treatment. Additionally, male Wistar rats with lesions induced by 6-OHDA treatment in the right striatum responded to treatment with CA, which significantly reversed the reduction in GSTP protein expression that resulted from lesioning. We suggest that CA prevents 6-OHDA-induced apoptosis through an increase in GSTP expression via activation of the PI3K/Akt/NF-κB pathway. Therefore, CA may be a promising candidate for use in the prevention of Parkinson's disease. PMID:25271104

  16. Phospho-tyrosine phosphatase inhibitor Bpv(Hopic) enhances C2C12 myoblast migration in vitro. Requirement of PI3K/AKT and MAPK/ERK pathways.

    PubMed

    Dimchev, Georgi A; Al-Shanti, Nasser; Stewart, Claire E

    2013-05-01

    Muscle progenitor cell migration is an important step in skeletal muscle myogenesis and regeneration. Migration is required for muscle precursors to reach the site of damage and for the alignment of myoblasts prior to their fusion, which ultimately contributes to muscle regeneration. Limited spreading and migration of donor myoblasts are reported problems of myoblast transfer therapy, a proposed therapeutic strategy for Duchenne Muscular Dystrophy, warranting further investigation into different approaches for improving the motility and homing of these cells. In this article, the effect of protein phospho-tyrosine phosphatase and PTEN inhibitor BpV(Hopic) on C2C12 myoblast migration and differentiation was investigated. Applying a wound healing migration model, it is reported that 1 μM BpV(Hopic) is capable of enhancing the migration of C2C12 myoblasts by approximately 40 % in the presence of myotube conditioned media, without significantly affecting their capacity to differentiate and fuse into multinucleated myotubes. Improved migration of myoblasts treated with 1 μM BpV(Hopic) was associated with activation of PI3K/AKT and MAPK/ERK pathways, while their inhibition with either LY294002 or UO126, respectively, resulted in a reduction of C2C12 migration back to control levels. These results propose that bisperoxovanadium compounds may be considered as potential tools for enhancing the migration of myoblasts, while not reducing their differentiation capacity and underpin the importance of PI3K/AKT and MAPK/ERK signalling for the process of myogenic progenitor migration. PMID:23553034

  17. PI3 kinase is indispensable for oncogenic transformation by the V560D mutant of c-Kit in a kinase-independent manner.

    PubMed

    Lindblad, Oscar; Kazi, Julhash U; Rönnstrand, Lars; Sun, Jianmin

    2015-11-01

    Oncogenic mutants of c-Kit are often found in mastocytosis, gastrointestinal stromal tumors and acute myeloid leukemia. The activation mechanism of the most commonly occurring mutation, D816V in exon 17 of c-Kit, has been well-studied while other mutations remain fairly uncharacterized in this respect. In this study, we show that the constitutive activity of the exon 11 mutant V560D is weaker than the D816V mutant. Phosphorylation of downstream signaling proteins induced by the ligand for c-Kit, stem cell factor, was stronger in c-Kit/V560D expressing cells than in cells expressing c-kit/D816V. Although cells expressing c-Kit/V560D showed increased ligand-independent proliferation and survival compared to wild-type c-Kit-expressing cells, these biological effects were weaker than in c-Kit/D816V-expressing cells. In contrast to cells expressing wild-type c-Kit, cells expressing c-Kit/V560D were independent of Src family kinases for downstream signaling. However, the independence of Src family kinases was not due to a Src-like kinase activity that c-Kit/D816V displayed. Point mutations that selectively block the association of PI3 kinase with c-Kit/V560D inhibited ligand-independent activation of the receptor, while inhibition of the kinase activity of PI3 kinase with pharmacological inhibitors did not affect the kinase activity of the receptor. This suggests a lipid kinase-independent key role of PI3 kinase in c-Kit/V560D-mediated oncogenic signal transduction. Thus, PI3 kinase is an attractive therapeutic target in malignancies induced by c-Kit mutations independent of its lipid kinase activity. PMID:26040420

  18. Insulin-like growth factor-II, phosphatidylinositol 3-kinase, nuclear factor-kappaB and inducible nitric-oxide synthase define a common myogenic signaling pathway.

    PubMed

    Kaliman, P; Canicio, J; Testar, X; Palacín, M; Zorzano, A

    1999-06-18

    Insulin-like growth factors (IGFs) are potent inducers of skeletal muscle differentiation and phosphatidylinositol (PI) 3-kinase activity is essential for this process. Here we show that IGF-II induces nuclear factor-kappaB (NF-kappaB) and nitric-oxide synthase (NOS) activities downstream from PI 3-kinase and that these events are critical for myogenesis. Differentiation of rat L6E9 myoblasts with IGF-II transiently induced NF-kappaB DNA binding activity, inducible nitric-oxide synthase (iNOS) expression, and nitric oxide (NO) production. IGF-II-induced iNOS expression and NO production were blocked by NF-kappaB inhibition. Both NF-kappaB and NOS activities were essential for IGF-II-induced terminal differentiation (myotube formation and expression of skeletal muscle proteins: myosin heavy chain, GLUT 4, and caveolin 3), which was totally blocked by NF-kappaB or NOS inhibitors in rat and human myoblasts. Moreover, the NOS substrate L-Arg induced myogenesis in the absence of IGFs in both rat and human myoblasts, and this effect was blocked by NOS inhibition. Regarding the mechanisms involved in IGF-II activation of NF-kappaB, PI 3-kinase inhibition prevented NF-kappaB activation, iNOS expression, and NO production. Moreover, IGF-II induced, through a PI 3-kinase-dependent pathway, a decrease in IkappaB-alpha protein content that correlated with a decrease in the amount of IkappaB-alpha associated with p65 NF-kappaB. PMID:10364173

  19. 17β-estradiol activates mTOR in chondrocytes by AKT-dependent and AKT-independent signaling pathways

    PubMed Central

    Tao, Yulei; Sun, Haibiao; Sun, Hongyan; Qiu, Xianxing; Xu, Changbo; Shi, Changxiu; Du, Jiahui

    2015-01-01

    To confirm whether 17β-estradiol (E2) activates mammalian target of rapamycin (mTOR) signaling pathway in chondrocytes and in what way activates mTOR. Human immortalized chondrocytes cell lines TC28a2 and C28/I2 were subjected to incubate with or without E2, LY294002 (the inhibitor of PI3K), rapamycin (the inhibitor of mTOR), or E2 in combination with LY294002 or rapamycin. Thereafter, protein levels of S6K1, p-S6K1, protein kinase B (AKT), and p-AKT were determined by Western blot analysis. Matrix metallopeptidase (MMP) 3 or MMP13 mRNA levels were evaluated by quantitative real-time PCR (qRT-PCR). Co-immunoprecipitation and Western blot analysis were performed to verify the interaction between ERα and mTOR. Both p-S6K1 and p-AKT protein levels in TC28a2 and C28/I2E2 cells were significantly increased by incubation with E2 (0.5 h and 1 h) (P < 0.05). Rapamycin did not affect the levels of p-AKT, but were significantly reduced by LY294002 or E2 in combination with LY294002. The levels of p-S6K1 were significantly decreased by incubation with LY294002, but the effect could be reversed by E2 in combination with LY294002. Rabbit anti-mTOR antibody was able to immunoprecipitate ERα after incubation with E2. Moreover, E2 inhibited the mRNA levels of MMP3 and MMP13 by mTOR pathway. E2 actives mTOR in chondrocytes through AKT-dependent and independent ways. PMID:26884863

  20. Hepatocyte growth factor activates phosphoinositide 3-kinase C2 beta in renal brush-border plasma membranes.

    PubMed Central

    Crljen, Vladiana; Volinia, Stefano; Banfic, Hrvoje

    2002-01-01

    Upon stimulation of renal cortical slices with hepatocyte growth factor (HGF), inositol lipid metabolism was studied in basal-lateral plasma membranes (BLM) and brush-border plasma membranes (BBM). Whereas in BLM rapid increases in 1,2-diacylglycerol, PtdIns(3,4,5)P(3) and PtdIns(3,4)P(2) were observed, suggesting that in BLM HGF activates both phospholipase C (PLC) and phosphoinositide 3-kinase (PI3K), in BBM only HGF-induced transient accumulation of PtdIns3P was seen, which was temporarily delayed from signalling events in BLM and could be blocked by the PtdIns-specific-PLC inhibitor ET-18-OCH(3) and the calpain inhibitor calpeptin, suggesting that 3-kinase activation in BBM lies downstream of PLC activation in BLM and is a calpain-mediated event. Moreover, the increase in immunoprecipitable PI3K-C2 beta activity, which is sensitive to wortmannin (10 nM) and shows strong preference for PtdIns over PtdIns4P as a substrate, was observed only in BBM upon stimulation of renal cortical slices with HGF and could be mimicked by the Ca(2+) ionophore A23187 and blocked by the cell-penetrant Ca(2+) chelator BAPTA-AM [1,2-bis-(2-aminophenoxy)ethane-N,N,N',N'-tetra-acetic acid tetrakis(acetoxymethyl ester)]. On Western blots PI3K-C2 beta revealed a single immunoreactive band of 180 kDa in BLM and BBM, while after stimulation with HGF a gel shift of 18 kDa was noticed only in BBM, suggesting that the observed enzyme activation is achieved by proteolysis. When BBM were subjected to short-term (15 min) exposure to mu-calpain, a similar gel shift together with an increase in PI3K-C2 beta activity was observed, when compared with the BBM harvested after HGF stimulation. The above-mentioned gel shift and increase in PI3K-C2 beta activity could be prevented by the calpain inhibitor calpeptin. The data presented in this report show that in renal cells there is a spatial separation of the inositol lipid signalling system between BLM and BBM, and that HGF causes activation of PLC and

  1. Constitutive Macropinocytosis in Oncogene-transformed Fibroblasts Depends on Sequential Permanent Activation of Phosphoinositide 3-Kinase and Phospholipase C

    PubMed Central

    Amyere, Mustapha; Payrastre, Bernard; Krause, Ulrike; Smissen, Patrick Van Der; Veithen, Alex; Courtoy, Pierre J.

    2000-01-01

    Macropinocytosis results from the closure of lamellipodia generated by membrane ruffling, thereby reflecting cortical actin dynamics. Both transformation of Rat-1 fibroblasts by v-Src or K-Ras and stable transfection for expression of dominant-positive, wild-type phosphoinositide 3-kinase (PI3K) regulatory subunit p85α constitutively led to stress fiber disruption, cortical actin recruitment, extensive ruffling, and macropinosome formation, as measured by a selective acceleration of fluid-phase endocytosis. These alterations closely correlated with activation of PI3K and phosphatidylinositol-specific phospholipase C (PI-PLC), as assayed by 3-phosphoinositide synthesis in situ and in vitro and inositol 1,4,5 trisphosphate steady-state levels, respectively; they were abolished by stable transfection of v-Src–transformed cells for dominant-negative truncated p85α expression and by pharmacological inhibitors of PI3K and PI-PLC, indicating a requirement for both enzymes. Whereas PI3K activation resisted PI-PLC inhibition, PI-PLC activation was abolished by a PI3K inhibitor and dominant-negative transfection, thus placing PI-PLC downstream of PI3K. Together, these data suggest that permanent sequential activation of both PI3K and PI-PLC is necessary for the dramatic reorganization of the actin cytoskeleton in oncogene-transformed fibroblasts, resulting in constitutive ruffling and macropinocytosis. PMID:11029048

  2. [6]-Shogaol inhibits α-MSH-induced melanogenesis through the acceleration of ERK and PI3K/Akt-mediated MITF degradation.

    PubMed

    Huang, Huey-Chun; Chang, Shu-Jen; Wu, Chia-Yin; Ke, Hui-Ju; Chang, Tsong-Min

    2014-01-01

    [6]-Shogaol is the main biologically active component of ginger. Previous reports showed that [6]-shogaol has several pharmacological characteristics, such as antioxidative, anti-inflammatory, antimicrobial, and anticarcinogenic properties. However, the effects of [6]-shogaol on melanogenesis remain to be elucidated. The study aimed to evaluate the potential skin whitening mechanisms of [6]-shogaol. The effects of [6]-shogaol on cell viability, melanin content, tyrosinase activity, and the expression of the tyrosinase and microphthalmia-associated transcription factor (MITF) were measured. The results revealed that [6]-shogaol effectively suppresses tyrosinase activity and the amount of melanin and that those effects are more pronounced than those of arbutin. It was also found that [6]-shogaol decreased the protein expression levels of tyrosinase-related protein 1 (TRP-1) and microphthalmia-associated transcriptional factor (MITF). In addition, the MITF mRNA levels were also effectively decreased in the presence of 20 μM [6]-shogaol. The degradation of MITF protein was inhibited by the MEK 1-inhibitor (U0126) or phosphatidylinositol-3-kinase inhibitor (PI3K inhibitor) (LY294002). Further immunofluorescence staining assay implied the involvement of the proteasome in the downregulation of MITF by [6]-shogaol. Our confocal assay results also confirmed that [6]-shogaol inhibited α-melanocyte stimulating hormone- (α-MSH-) induced melanogenesis through the acceleration of extracellular responsive kinase (ERK) and phosphatidylinositol-3-kinase- (PI3K/Akt-) mediated MITF degradation. PMID:25045707

  3. Shear stress stimulates phosphorylation of eNOS at Ser(635) by a protein kinase A-dependent mechanism

    NASA Technical Reports Server (NTRS)

    Boo, Yong Chool; Hwang, Jinah; Sykes, Michelle; Michell, Belinda J.; Kemp, Bruce E.; Lum, Hazel; Jo, Hanjoong

    2002-01-01

    Shear stress stimulates nitric oxide (NO) production by phosphorylating endothelial NO synthase (eNOS) at Ser(1179) in a phosphoinositide-3-kinase (PI3K)- and protein kinase A (PKA)-dependent manner. The eNOS has additional potential phosphorylation sites, including Ser(116), Thr(497), and Ser(635). Here, we studied these potential phosphorylation sites in response to shear, vascular endothelial growth factor (VEGF), and 8-bromocAMP (8-BRcAMP) in bovine aortic endothelial cells (BAEC). All three stimuli induced phosphorylation of eNOS at Ser(635), which was consistently slower than that at Ser(1179). Thr(497) was rapidly dephosphorylated by 8-BRcAMP but not by shear and VEGF. None of the stimuli phosphorylated Ser(116). Whereas shear-stimulated Ser(635) phosphorylation was not affected by phosphoinositide-3-kinase inhibitors wortmannin and LY-294002, it was blocked by either treating the cells with a PKA inhibitor H89 or infecting them with a recombinant adenovirus-expressing PKA inhibitor. These results suggest that shear stress stimulates eNOS by two different mechanisms: 1) PKA- and PI3K-dependent and 2) PKA-dependent but PI3K-independent pathways. Phosphorylation of Ser(635) may play an important role in chronic regulation of eNOS in response to mechanical and humoral stimuli.

  4. Erythropoietin protects cardiac myocytes against anthracycline-induced apoptosis

    SciTech Connect

    Fu Ping; Arcasoy, Murat O. . E-mail: arcas001@mc.duke.edu

    2007-03-09

    The cardiotoxic adverse effects of anthracycline antibiotics limit their therapeutic utility as essential components of chemotherapy regimens for hematologic and solid malignancies. Here we show that the hematopoietic cytokine erythropoietin attenuates doxorubicin-induced apoptosis of primary neonatal rat ventricular cardiomyocytes in a dose-dependent manner. Erythropoietin treatment induced rapid, time-dependent phosphorylation of MAP kinases (MAPK) Erk1/2 and the phosphatidylinositol 3-kinase substrate Akt. Treatment of cardiomyocytes with inhibitors of phosphatidylinositol 3-kinase (LY294002) or Akt (Akti-1/2) abolished the protective effect of erythropoietin, whereas treatment with MAPK kinase (MEK1) inhibitor U0126 did not. Erythropoietin also induced the phosphorylation of GSK-3{beta}, a downstream target of PI3K-Akt. Because phosphorylation is known to inactivate GSK-3{beta}, we investigated whether GSK-3{beta} inhibition is cardioprotective. We found that GSK-3{beta} inhibitors SB216763 or lithium chloride blocked doxorubicin-induced cardiomyocyte apoptosis in a manner similar to erythropoietin, suggesting that GSK-3{beta} inhibition is involved in erythropoietin-mediated cardioprotection. Erythropoietin may serve as a novel cardioprotective agent against anthracycline-induced cardiotoxicity.

  5. [6]-Shogaol Inhibits α-MSH-Induced Melanogenesis through the Acceleration of ERK and PI3K/Akt-Mediated MITF Degradation

    PubMed Central

    Huang, Huey-Chun; Chang, Shu-Jen; Wu, Chia-Yin; Ke, Hui-Ju; Chang, Tsong-Min

    2014-01-01

    [6]-Shogaol is the main biologically active component of ginger. Previous reports showed that [6]-shogaol has several pharmacological characteristics, such as antioxidative, anti-inflammatory, antimicrobial, and anticarcinogenic properties. However, the effects of [6]-shogaol on melanogenesis remain to be elucidated. The study aimed to evaluate the potential skin whitening mechanisms of [6]-shogaol. The effects of [6]-shogaol on cell viability, melanin content, tyrosinase activity, and the expression of the tyrosinase and microphthalmia-associated transcription factor (MITF) were measured. The results revealed that [6]-shogaol effectively suppresses tyrosinase activity and the amount of melanin and that those effects are more pronounced than those of arbutin. It was also found that [6]-shogaol decreased the protein expression levels of tyrosinase-related protein 1 (TRP-1) and microphthalmia-associated transcriptional factor (MITF). In addition, the MITF mRNA levels were also effectively decreased in the presence of 20 μM [6]-shogaol. The degradation of MITF protein was inhibited by the MEK 1-inhibitor (U0126) or phosphatidylinositol-3-kinase inhibitor (PI3K inhibitor) (LY294002). Further immunofluorescence staining assay implied the involvement of the proteasome in the downregulation of MITF by [6]-shogaol. Our confocal assay results also confirmed that [6]-shogaol inhibited α-melanocyte stimulating hormone- (α-MSH-) induced melanogenesis through the acceleration of extracellular responsive kinase (ERK) and phosphatidylinositol-3-kinase- (PI3K/Akt-) mediated MITF degradation. PMID:25045707

  6. 5-Azacytidine regulates matrix metalloproteinase-9 expression, and the migration and invasion of human fibrosarcoma HT1080 cells via PI3-kinase and ERK1/2 pathways.

    PubMed

    Yu, Seon-Mi; Kim, Song Ja

    2016-09-01

    Abnormal methylation of promoter CpG islands is one of the hallmarks of cancer cells, and is catalyzed by DNA methyltransferases. 5-azacytidine (5-aza C), a methyltransferase inhibitor, can cause demethylation of promoter regions of diverse genes. Epigenetic processes contribute to the regulation of matrix metalloproteinase (MMP) expression. However, little is known about the mechanisms and effects of 5-aza C on the invasive and migratory capacities of human fibrosarcoma HT1080 cells. In the present study, we found that 5-aza C induces MMP-9 activity, as determined by zymography. HT1080 cell proliferation was determined following 5-aza C administration by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Cell cycle was examined by flow cytometry. 5-aza C treatment inhibited cell proliferation without affecting cell viability. Furthermore, 5-aza C significantly promoted migration and invasion of HT1080 cells. 5-aza C treatment enhanced phosphorylation of extracellular signal-regulated kinase (ERK) and phosphoinositide (PI)3-kinase/Akt, and their inhibitors blocked MMP-9 activity induction, and cellular invasion and migration. Together, these findings suggest that promoter methylation may be one of the mechanisms modulating MMP-9 levels in HT1080 cells, and that 5-aza C-induced MMP-9 production is associated with the activation of ERK and PI3-kinase/Akt signaling pathways. PMID:27573026

  7. PIKE GTPase are phosphoinositide-3-kinase enhancers, suppressing programmed cell deathPIKE GTPase are phosphoinositide-3-kinase enhancers, suppressing programmed cell death

    PubMed Central

    Chan, Chi Bun; Ye, Keqiang; Chan, Chi Bun; Ye, Keqiang

    2007-01-01

    Abstract Phosphoinositide-3-kinase enhancers (PIKE) are GTP-binding proteins that posses anti-apoptotic functions. The PIKE family includes three members, PIKE-L, PIKE-S and PIKE-A, which are originated from a single gene (CENTG1) through alternative splicing or differential transcription initiation. Both PIKE-S and PIKE-L bind to phosphoinositide-3-kinase (PI3K) and enhance its activity. PIKE-A does not interplay with PI3K. Instead, it interacts with the downstream effector Akt and promotes its activity. These actions are mediated by their GTPase activity. Because both PI3K and Akt are important effectors in the growth factor-mediated signaling which triggers cellular growth and acts against apoptosis, PIKEs therefore serve as the molecular switch that their activation are crucial for growth factors to exert their physiological functions. In this review, the current understanding of different PIKE isoforms in growth factors-induced anti-apoptotic function will be discussed. Moreover, the role of PIKE in the survival and invasion activity of cancer cells will also be introduced. PMID:17367500

  8. Growth-stimulatory activity of TIMP-2 is mediated through c-Src activation followed by activation of FAK, PI3-kinase/AKT, and ERK1/2 independent of MMP inhibition in lung adenocarcinoma cells

    PubMed Central

    Kim, Tae Hyun; Lee, Ju-Seog; Lee, Seung-Taek; Lee, Seo-Jin

    2015-01-01

    Tissue inhibitors of metalloproteinases (TIMPs) control extracellular matrix (ECM) homeostasis by inhibiting the activity of matrix metalloproteinases (MMPs), which are associated with ECM turnover. Recent studies have revealed that TIMPs are implicated in tumorigenesis in both MMP-dependent and MMP-independent manners. We examined a mechanism by which TIMP-2 stimulated lung adenocarcinoma cell proliferation, independent of MMP inhibition. The stimulation of growth by TIMP-2 in A549 cells required c-Src kinase activation. c-Src kinase activity, induced by TIMP-2, concomitantly increased FAK, phosphoinositide 3-kinase (PI3-kinase)/AKT, and ERK1/2 activation. Selective knockdown of integrin α3β1, known as a TIMP-2 receptor, did not significantly change TIMP-2 growth promoting activity. Furthermore, we showed that high TIMP-2 expression in lung adenocarcinomas is associated with a worse prognosis from multiple cohorts, especially for stage I lung adenocarcinoma. Through integrated analysis of The Cancer Genome Atlas data, TIMP-2 expression was significantly associated with the alteration of driving genes, c-Src activation, and PI3-kinase/AKT pathway activation. Taken together, our results demonstrate that TIMP-2 stimulates lung adenocarcinoma cell proliferation through c-Src, FAK, PI3-kinase/AKT, and ERK1/2 pathway activation in an MMP-independent manner. PMID:26556867

  9. Molecular Characterization of Synovial Sarcoma in Children and Adolescents: Evidence of Akt Activation1

    PubMed Central

    Bozzi, Fabio; Ferrari, Andrea; Negri, Tiziana; Conca, Elena; Luca, Da Riva; Losa, Marco; Casieri, Paola; Orsenigo, Marta; Lampis, Andrea; Meazza, Cristina; Casanova, Michela; Pierotti, Marco A; Tamborini, Elena; Pilotti, Silvana

    2008-01-01

    Synovial sarcoma (SS) is the most frequent nonrhabdomyosarcomatous soft tissue sarcoma encountered in adolescents and young adults, and despite advances in the treatment of local disease, metastases remain the main cause of death. The aim of this study was to characterize a single-center series of pediatric SS molecularly to seek any biomarkers or pathways that might make suitable targets for new agents. Seventeen cases of pediatric SS showing the SYT-SSX fusion transcript were screened immunohistochemically, biochemically, molecularly, and cytogenetically (depending on the available material) to investigate any expression/activation of epidermal growth factor receptor, platelet-derived growth factor receptor alpha (PDGFRα), PDGFRβ, Akt, and deregulated Wnt pathway. The most relevant outcome was the finding of activated epidermal growth factor receptor, PDGFRα, and PDGFRβ, which activated Akt in both the monophasic and biphasic histologic subtypes. Consistently, Akt activation was completely abolished in an SS cell line assay when stimulated by PDGF-AA and treated with the phosphatidylinositol 3-kinase inhibitor LY294002. Our results also showed the nuclear localization of β-catenin and cyclin D1 gene products in monophasic SS and the movement of β-catenin into the cytoplasm in the glandular component of the biphasic subtype. Although they need to be confirmed in larger series, these preliminary data suggest that therapeutic strategies including specific inhibitors of the phosphatidylinositol 3-kinase/Akt pathway might be exploited in SS. PMID:18633459

  10. Molecular Dynamics Simulations to Investigate the Binding Mode of the Natural Product Liphagal with Phosphoinositide 3-Kinase α.

    PubMed

    Gao, Yanjuan; Ma, Ying; Yang, Guangde; Li, Yiping

    2016-01-01

    Phosphatidylinositol 3-kinase α (PI3Kα) is an attractive target for anticancer drug design. Liphagal, isolated from the marine sponge Aka coralliphaga, possesses the special "liphagane" meroterpenoid carbon skeleton and has been demonstrated as a PI3Kα inhibitor. Molecular docking and molecular dynamics simulations were performed to explore the dynamic behaviors of PI3Kα binding with liphagal, and free energy calculations and energy decomposition analysis were carried out by use of molecular mechanics/Poisson-Boltzmann (generalized Born) surface area (MM/PB(GB)SA) methods. The results reveal that the heteroatom rich aromatic D-ring of liphagal extends towards the polar region of the binding site, and the D-ring 15-hydroxyl and 16-hydroxyl form three hydrogen bonds with Asp810 and Tyr836. The cyclohexyl A-ring projects up into the upper pocket of the lipophilic region, and the hydrophobic/van der Waals interactions with the residues Met772, Trp780, Ile800, Ile848, Val850, Met922, Phe930, Ile932 could be the key interactions for the affinity of liphagal to PI3Kα. Thus, a new strategy for the rational design of more potent analogs of liphagal against PI3Kα is provided. Our proposed PI3Kα/liphagal binding mode would be beneficial for the discovery of new active analogs of liphagal against PI3Kα. PMID:27367663

  11. Clionosterol and ethyl cholestan-22-enol isolated from the rhizome of Polygala tenuifolia inhibit phosphatidylinositol 3-kinase/Akt pathway.

    PubMed

    Le, Thi Kim Van; Jeong, Jin Ju; Kim, Dong-Hyun

    2012-01-01

    Phosphatidylinositol 3-kinase (PI3K)/Akt inhibitors were isolated from the rhizome of Polygala tenuifolia WILLD (PT, Polygalaceae), which has been used in traditional Chinese medicine for inflammation, dementia, amnesia, neurasthenia and cancer, by activity-guided fractionation. For the assay of PI3K/Akt pathway, cytoprotective Tat-transduced CHME5 cells, which are the cytoprotective phenotype against lypopolysaccharide (LPS)/cycloheximide (CHX), were used. We isolated 4 anti-cytoprotective compounds, clionasterol (1), ethyl cholestan-22-enol (2), 3-O-β-D-glucosyl ethyl cholestan-22-enol (3), and 3-O-β-D-glucopyranosyl clionasterol (4) from EtOAc fraction of PT against Tat-transduced CHME5 cells. Of them, (1) and (2) most potently abolished cytoprotective effect of Tat-transduced CHME5 cells. These constituents (1) and (2) inhibited the activation of 3-phosphoinositide-dependent kinase 1 (PDK1) and its downstream molecules, Akt/glycogen synthase kinase (GSK)3β, in PI3K/Akt cell survival signaling pathway, but did not suppress the activation of PI3K. Based on these finding, (1) and (2) may abolish the cytoprotective phenotype of Tat-transduced CHME5 cells by inhibiting PDK1 phosphorylation in PI3K/Akt pathway. PMID:22863942

  12. Icaritin requires Phosphatidylinositol 3 kinase (PI3K)/Akt signaling to counteract skeletal muscle atrophy following mechanical unloading

    PubMed Central

    ZHANG, Zong-Kang; LI, Jie; LIU, Jin; GUO, Baosheng; LEUNG, Albert; ZHANG, Ge; ZHANG, Bao-Ting

    2016-01-01

    Counteracting muscle atrophy induced by mechanical unloading/inactivity is of great clinical need and challenge. A therapeutic agent that could counteract muscle atrophy following mechanical unloading in safety is desired. This study showed that natural product Icaritin (ICT) could increase the phosphorylation level of Phosphatidylinositol 3 kinase (PI3K) at p110 catalytic subunit and promote PI3K/Akt signaling markers in C2C12 cells. This study further showed that the high dose ICT treatment could significantly attenuate the decreases in the phosphorylation level of PI3K at p110 catalytic subunit and its downstream markers related to protein synthesis, and inhibit the increases in protein degradation markers at mRNA and protein levels in rat soleus muscle following 28-day hindlimb unloading. In addition, the decreases in soleus muscle mass, muscle fiber cross-sectional area, twitch force, specific force, contraction time and half relaxation time could be significantly attenuated by the high dose ICT treatment. The low dose ICT treatment could moderately attenuate the above changes induced by unloading. Wortmannin, a specific inhibitor of PI3K at p110 catalytic subunit, could abolish the above effects of ICT in vitro and in vivo, indicating that PI3K/Akt signaling could be required by ICT to counteract skeletal muscle atrophy following mechanical unloading. PMID:26831566

  13. Therapeutic targeting of the phosphatidylinositol 3-kinase signaling pathway: novel targeted therapies and advances in the treatment of colorectal cancer

    PubMed Central

    Yu, Ming

    2012-01-01

    Colorectal cancer (CRC) is one of the leading causes of cancer-related death in the USA, and more effective treatment of CRC is therefore needed. Advances in our understanding of the molecular pathogenesis of this malignancy have led to the development of novel molecule-targeted therapies. Among the most recent classes of targeted therapies being developed are inhibitors targeting the phosphatidylinositol 3-kinase (PI3K) signaling pathway. As one of the most frequently deregulated pathways in several human cancers, including CRC, aberrant PI3K signaling plays an important role in the growth, survival, motility and metabolism of cancer cells. Targeting this pathway therefore has considerable potential to lead to novel and more effective treatments for CRC. Preclinical and early clinical studies have revealed the potential efficacy of drugs that target PI3K signaling for the treatment of CRC. However, a major challenge that remains is to study these agents in phase III clinical trials to see whether these early successes translate into better patient outcomes. In this review we focus on providing an up-to-date assessment of our current understanding of PI3K signaling biology and its deregulation in the molecular pathogenesis of CRC. Advances in available agents and challenges in targeting the PI3K signaling pathway in CRC treatment will be discussed and placed in the context of the currently available therapies for CRC. PMID:22973417

  14. Inulin stimulates phagocytosis of PMA-treated THP-1 macrophages by involvement of PI3-kinases and MAP kinases.

    PubMed

    Nagahara, Yukitoshi; Nagamori, Taome; Tamegai, Hidekazu; Hitokuwada, Mami; Yoshimi, Yoji; Ikekita, Masahiko; Shinomiya, Takahisa

    2011-01-01

    Inulin is a polysaccharide that enhances various immune responses, mainly to T and B cells, natural killer cells, and macrophages in vivo and in vitro. Previous reports describe that inulin activates macrophages indirectly by affecting the alternative complement pathway. In this study, we examined the direct effect of inulin on PMA-treated THP-1 macrophages. Inulin treatment did not stimulate the proliferation of THP-1 macrophages at all. However, inulin treatment significantly increased phagocytosis of the polystyrene beads without the influence of serum. Doses of around 1 mg/mL had the maximal effect, and significant progression of phagocytosis occurred at times treated over 6 h. Inulin augmented phagocytosis not only with polystyrene beads but also with apoptotic cancer cells. The inulin-induced phagocytosis uptake was suppressed in Toll-like receptor (TLR) 4 mutated C3H/HeJ mice peritoneal macrophages. Moreover, inulin-induced THP-1 macrophage TNF-α secretion was inhibited using a blocking antibody specific to TLR4, suggesting that TLR4 is involved in the binding of inulin to macrophages. Furthermore, we used specific kinase inhibitors to assess the involvement of inulin-induced phagocytosis and revealed that phosphoinositide 3-kinase and mitogen-activated protein kinase, especially p38, participated in phagocytosis. These results suggest that inulin affects macrophages directly by involving the TLR4 signaling pathway and stimulating phagocytosis for enhancing immunomodulation. PMID:22038771

  15. Apoptosis and inactivation of the PI3-kinase pathway by tetrocarcin A in breast cancers

    SciTech Connect

    Nakajima, Hiroo; Sakaguchi, Koichi; Fujiwara, Ikuya; Mizuta, Mitsuhiko; Tsuruga, Mie; Magae, Junji . E-mail: jmagae@sannet.ne.jp; Mizuta, Naruhiko

    2007-04-27

    A survival kinase, Akt, is a downstream factor in the phosphatidylinositide-3'-kinase-dependent pathway, which mediates many biological responses including glucose uptake, protein synthesis and the regulation of proliferation and apoptosis, which is assumed to contribute to acquisition of malignant properties of human cancers. Here we find that an anti-tumor antibiotic, tetrocarcin A, directly induces apoptosis of human breast cancer cells. The apoptosis is accompanied by the activation of a proteolytic cascade of caspases including caspase-3 and -9, and concomitantly decreases phosphorylation of Akt, PDK1, and PTEN, a tumor suppressor that regulates the activity of Akt through the dephosphorylation of polyphosphoinositides. Tetrocarcin A affected neither expression of Akt, PDK1, or PTEN, nor did it affect the expression of Bcl family members including Bcl-2, Bcl-X{sub L}, and Bax. These results suggest that tetrocarcin A could be a potent chemotherapeutic agent for human breast cancer targeting the phosphatidylinositide-3'-kinase/Akt signaling pathway.

  16. Upregulation of heme oxygenase-1 by Epigallocatechin-3-gallate via the phosphatidylinositol 3-kinase/Akt and ERK pathways.

    PubMed

    Wu, C C; Hsu, M C; Hsieh, C W; Lin, J B; Lai, P H; Wung, B S

    2006-05-15

    Heme oxygenase-1 (HO-1) is a cytoprotective enzyme activated by various phytochemicals and we examined the ability of Epigallocatechin-3-gallate (EGCG), the major constituent of green tea, to upregulate HO-1 expression in endothelial cells (ECs). We demonstrate that EGCG induces HO-1 expression in a concentration- and time-dependent manner. Furthermore, EGCG-mediated HO-1 induction was abrogated in the presence of actinomycin D and cycloheximide, indicating that this upregulation of HO-1 occurred at the transcriptional level. EGCG also upregulates Nrf2 levels in nuclear extracts and increases ARE-luciferase activity. Furthermore, EGCG is the most potent inducer of HO-1 expression of the different green tea constituents that we analyzed, but had no detectable cytotoxic effects over the 25-100 microM dosage range. The inhibition of intracellular ROS production by N-acetylcysteine (NAC), glutathione (GSH), superoxide dismutase (SOD), catalase and the mitochondrial complex I inhibitor, rotenone, results in a decrease in EGCG-dependent HO-1 expression. In addition, we determined that tyrosine kinase is involved in EGCG induction of HO-1 as this is abrogated by genistein. ECs treated with EGCG exhibit activation of Akt and ERK1/2. In addition, pharmacological inhibitors of phosphatidylinositol 3-kinase and MEK1/2, which are upstream of Akt and ERK1/2, respectively, attenuate EGCG-induced HO-1 expression. On the other hand, pretreatment of these cells with EGCG exerts significant cytoprotective effects against H2O2, suggesting that the induction of HO-1 is an important component in the protection against oxidative stress. Hence, EGCG is a novel phytochemical inducer of HO-1 expression and we further identify the principal underlying mechanisms involved in this process. PMID:16378625

  17. The intricate regulation and complex functions of the Class III phosphoinositide 3-kinase Vps34.

    PubMed

    Backer, Jonathan M

    2016-08-01

    The Class III phosphoinositide 3-kinase Vps34 (vacuolar protein sorting 34) plays important roles in endocytic trafficking, macroautophagy, phagocytosis, cytokinesis and nutrient sensing. Recent studies have provided exciting new insights into the structure and regulation of this lipid kinase, and new cellular functions for Vps34 have emerged. This review critically examines the wealth of new data on this important enzyme, and attempts to integrate these findings with current models of Vps34 signalling. PMID:27470591

  18. Myricetin inhibits UVB-induced angiogenesis by regulating PI-3 kinase in vivo.

    PubMed

    Jung, Sung Keun; Lee, Ki Won; Byun, Sanguine; Lee, Eun Jung; Kim, Jong-Eun; Bode, Ann M; Dong, Zigang; Lee, Hyong Joo

    2010-05-01

    Myricetin is one of the principal phytochemicals in onions, berries and red wine. Previous studies showed that myricetin exhibits potent anticancer and chemopreventive effects. The present study examined the effect of myricetin on ultraviolet (UV) B-induced angiogenesis in an SKH-1 hairless mouse skin tumorigenesis model. Topical treatment with myricetin inhibited repetitive UVB-induced neovascularization in SKH-1 hairless mouse skin. The induction of vascular endothelial growth factor, matrix metalloproteinase (MMP)-9 and MMP-13 expression by chronic UVB irradiation was significantly suppressed by myricetin treatment. Immunohistochemical and western blot analyses revealed that myricetin inhibited UVB-induced hypoxia inducible factor-1alpha expression in mouse skin. Western blot analysis and kinase assay data revealed that myricetin suppressed UVB-induced phosphatidylinositol-3 (PI-3) kinase activity and subsequently attenuated the UVB-induced phosphorylation of Akt/p70(S6K) in mouse skin lysates. A pull-down assay revealed the direct binding of PI-3 kinase and myricetin in mouse skin lysates. Our results indicate that myricetin suppresses UVB-induced angiogenesis by regulating PI-3 kinase activity in vivo in mouse skin. PMID:20008033

  19. Characterization of a Tumor-Associated Activating Mutation of the p110β PI 3-Kinase

    PubMed Central

    Dbouk, Hashem A.; Khalil, Bassem D.; Wu, Haiyan; Shymanets, Aliaksei; Nürnberg, Bernd; Backer, Jonathan M.

    2013-01-01

    The PI3-kinase pathway is commonly activated in tumors, most often by loss of PTEN lipid phosphatase activity or the amplification or mutation of p110α. Oncogenic mutants have commonly been found in p110α, but rarely in any of the other catalytic subunits of class I PI3-kinases. We here characterize a p110β helical domain mutation, E633K, first identified in a Her2-positive breast cancer. The mutation increases basal p110β activity, but does not affect activation of p85/p110β dimers by phosphopeptides or Gβγ. Expression of the mutant causes increases in Akt and S6K1 activation, transformation, chemotaxis, proliferation and survival in low serum. E633 is conserved among class I PI3 Ks, and its mutation in p110β is also activating. Interestingly, the E633K mutant occurs near a region that interacts with membranes in activated PI 3-kinases, and its mutation abrogates the requirement for an intact Ras-binding domain in p110β-mediated transformation. We propose that the E633K mutant activates p110β by enhancing its basal association with membranes. This study presents the first analysis of an activating oncogenic mutation of p110β. PMID:23734178

  20. Characterization of a tumor-associated activating mutation of the p110β PI 3-kinase.

    PubMed

    Dbouk, Hashem A; Khalil, Bassem D; Wu, Haiyan; Shymanets, Aliaksei; Nürnberg, Bernd; Backer, Jonathan M

    2013-01-01

    The PI3-kinase pathway is commonly activated in tumors, most often by loss of PTEN lipid phosphatase activity or the amplification or mutation of p110α. Oncogenic mutants have commonly been found in p110α, but rarely in any of the other catalytic subunits of class I PI3-kinases. We here characterize a p110β helical domain mutation, E633K, first identified in a Her2-positive breast cancer. The mutation increases basal p110β activity, but does not affect activation of p85/p110β dimers by phosphopeptides or Gβγ. Expression of the mutant causes increases in Akt and S6K1 activation, transformation, chemotaxis, proliferation and survival in low serum. E633 is conserved among class I PI3 Ks, and its mutation in p110β is also activating. Interestingly, the E633K mutant occurs near a region that interacts with membranes in activated PI 3-kinases, and its mutation abrogates the requirement for an intact Ras-binding domain in p110β-mediated transformation. We propose that the E633K mutant activates p110β by enhancing its basal association with membranes. This study presents the first analysis of an activating oncogenic mutation of p110β. PMID:23734178

  1. Ribonuclease 5 facilitates corneal endothelial wound healing via activation of PI3-kinase/Akt pathway

    PubMed Central

    Kim, Kyoung Woo; Park, Soo Hyun; Lee, Soo Jin; Kim, Jae Chan

    2016-01-01

    To maintain corneal transparency, corneal endothelial cells (CECs) exert a pump function against aqueous inflow. However, human CECs are arrested in the G1-phase and non-proliferative in vivo. Thus, treatment of corneal endothelial decompensation is limited to corneal transplantation, and grafts are vulnerable to immune rejection. Here, we show that ribonuclease (RNase) 5 is more highly expressed in normal human CECs compared to decompensated tissues. Furthermore, RNase 5 up-regulated survival of CECs and accelerated corneal endothelial wound healing in an in vitro wound of human CECs and an in vivo cryo-damaged rabbit model. RNase 5 treatment rapidly induced accumulation of cytoplasmic RNase 5 into the nucleus, and activated PI3-kinase/Akt pathway in human CECs. Moreover, inhibition of nuclear translocation of RNase 5 using neomycin reversed RNase 5-induced Akt activation. As a potential strategy for proliferation enhancement, RNase 5 increased the population of 5-bromo-2′-deoxyuridine (BrdU)-incorporated proliferating CECs with concomitant PI3-kinase/Akt activation, especially in CECs deprived of contact-inhibition. Specifically, RNase 5 suppressed p27 and up-regulated cyclin D1, D3, and E by activating PI3-kinase/Akt in CECs to initiate cell cycle progression. Together, our data indicate that RNase 5 facilitates corneal endothelial wound healing, and identify RNase 5 as a novel target for therapeutic exploitation. PMID:27526633

  2. Copper ions strongly activate the phosphoinositide-3-kinase/Akt pathway independent of the generation of reactive oxygen species.

    PubMed

    Ostrakhovitch, Elena A; Lordnejad, Mohammad Reza; Schliess, Freimut; Sies, Helmut; Klotz, Lars-Oliver

    2002-01-15

    Copper is implicated in metabolic disorders, such as Wilson's disease or Alzheimer's disease. Analysis of signaling pathways regulating cellular survival and function in response to a copper stress is crucial for understanding the pathogenesis of such diseases. Exposure of human skin fibroblasts or HeLa cells to Cu(2+) resulted in a dose- and time-dependent activation of the antiapoptotic kinase Akt/protein kinase B, starting at concentrations as low as 3 microM. Only Cu(II), but not Cu(I), had this effect. Activation of Akt was accompanied by phosphorylation of a downstream target of Akt, glycogen synthase kinase-3. Inhibitors of phosphoinositide-3-kinase (PI3K) completely blocked activation of Akt by Cu(2+), indicating a requirement of PI3K for Cu(2+)-induced activation of Akt. Indeed, cellular PI3K activity was strongly enhanced after exposure to Cu(2+). Copper ions may lead to the formation of reactive oxygen species, such as hydrogen peroxide. Activation of Akt by hydrogen peroxide or growth factors is known to proceed via the activation growth factor receptors. In line with this, pretreatment with inhibitors of growth factor receptor tyrosine kinases blocked activation of Akt by hydrogen peroxide and growth factors, as did a src-family tyrosine kinase inhibitor or the broad-spectrum tyrosine kinase inhibitor genistein. Activation of Akt by Cu(2+), however, remained unimpaired, implying (i) that tyrosine kinase activation is not involved in Cu(2+) activation of Akt and (ii) that activation of the PI3K/Akt pathway by Cu(2+) is initiated independently of that induced by reactive oxygen species. Comparison of the time course of the oxidation of 2',7'-dichlorodihydrofluorescein in copper-treated cells with that of Akt activation led to the conclusion that production of hydroperoxides cannot be an upstream event in copper-induced Akt activation. Rather, both activation of Akt and generation of ROS are proposed to occur in parallel, regulating cell survival after a

  3. A new arylbenzofuran derivative functions as an anti-tumour agent by inducing DNA damage and inhibiting PARP activity

    PubMed Central

    Chen, Hongbo; Zeng, Xiaobin; Gao, Chunmei; Ming, Pinghong; Zhang, Jianping; Guo, Caiping; Zhou, Lanzhen; Lu, Yin; Wang, Lijun; Huang, Laiqiang; He, Xiangjiu; Mei, Lin

    2015-01-01

    We previously reported that 7-hydroxy-5, 4’-dimethoxy-2-arylbenzofuran (HDAB) purified from Livistona chinensis is a key active agent. The present study investigated the function and molecular mechanism of HDAB. HDAB treatment of cervical cancer cells resulted in S phase arrest and apoptosis, together with cyclin A2 and CDK2 upregulation. Cyclin A2 siRNA and a CDK inhibitor efficiently relieved S phase arrest but increased the apoptosis rate. Mechanistic studies revealed that HDAB treatment significantly increased DNA strand breaks in an alkaline comet assay and induced ATM, CHK1, CHK2 and H2A.X phosphorylation. Wortmannin (a broad inhibitor of PIKKs) and CGK733 (a specific ATM inhibitor), but not LY294002 (a phosphatidylinositol 3-kinase inhibitor) or NU7026 (a DNA-PK specific inhibitor), prevented H2A.X phosphorylation and γH2A.X-positive foci formation in the nuclei, reversed S phase arrest and promoted the HDAB-induced apoptosis, suggesting that HDAB is a DNA damaging agent that can activate the ATM-dependent DNA repair response, thereby contributing to cell cycle arrest. In addition, molecular docking and in vitro activity assays revealed that HDAB can correctly dock into the hydrophobic pocket of PARP-1 and suppress PARP-1 ADP-ribosylation activity. Thus, the results indicated that HDAB can function as an anti-cancer agent by inducing DNA damage and inhibiting PARP activity. PMID:26041102

  4. Functional significance of the signal transduction pathways Akt and Erk in ovarian follicles: in vitro and in vivo studies in cattle and sheep

    PubMed Central

    Ryan, Kate E; Glister, Claire; Lonergan, Pat; Martin, Finian; Knight, Phil G; Evans, Alexander CO

    2008-01-01

    Background The intracellular signalling mechanisms that regulate ovarian follicle development are unclear; however, we have recently shown differences in the Akt and Erk signalling pathways in dominant compared to subordinate follicles. The aim of this study was to investigate the effects of inhibiting Akt and Erk phosphorylation on IGF- and gonadotropin- stimulated granulosa and theca cell function in vitro, and on follicle development in vivo. Methods Bovine granulosa and theca cells were cultured for six days and stimulated with FSH and/or IGF, or LH in combination with PD98059 (Erk inhibitor) and/or LY294002 (Akt inhibitor) and their effect on cell number and hormone secretion (estradiol, activin-A, inhibin-A, follistatin, progesterone and androstenedione) determined. In addition, ovarian follicles were treated in vivo with PD98059 and/or LY294002 in ewes on Day 3 of the cycle and follicles were recovered 48 hours later. Results We have shown that gonadotropin- and IGF-stimulated hormone production by granulosa and theca cells is reduced by treatment with PD98059 and LY294002 in vitro. Furthermore, treatment with PD98059 and LY294002 reduced follicle growth and oestradiol production in vivo. Conclusion These results demonstrate an important functional role for the Akt and Erk signalling pathways in follicle function, growth and development. PMID:19014654

  5. Cloning and expression of a cDNA encoding human inositol 1,4,5-trisphosphate 3-kinase C.

    PubMed Central

    Dewaste, V; Pouillon, V; Moreau, C; Shears, S; Takazawa, K; Erneux, C

    2000-01-01

    Inositol 1,4,5-trisphosphate [Ins(1,4,5)P(3)] 3-kinase catalyses the phosphorylation of Ins(1,4,5)P(3) to Ins(1,3,4,5)P(4). cDNAs encoding two isoenzymes of Ins(1,4,5)P(3) 3-kinase (3-kinases A and B) have been described previously. In the present study, we report the cloning of a full-length 2052 bp cDNA encoding a third human isoenzyme of the Ins(1,4,5)P(3) 3-kinase family, referred to as isoform C. This novel enzyme has a calculated molecular mass of 75. 207 kDa and a K(m) for Ins(1,4,5)P(3) of 6 microM. Northern-blot analysis showed the presence of a transcript of approx. 3.9 kb in various human tissues. Inositol trisphosphate 3-kinase C demonstrates enzymic activity when expressed in DH5alphaF' bacteria or COS-7 cells. Calcium alone decreases the Ins(1,4,5)P(3) 3-kinase activity of the 3-kinase C isoenzyme in transfected COS-7 cells. This inhibitory effect is reversed in the presence of calmodulin. The recombinant bacterial 3-kinase C can be adsorbed on calmodulin-Sepharose in the presence of calcium. The present data show that Ins(1,4,5)P(3) 3-kinase C: (i) shares a conserved catalytic domain of about 275 amino acids with the two other mammalian isoforms, (ii) could be purified on a calmodulin-Sepharose column and (iii) could be distinguished from the A and B isoenzymes by the effects of calcium and of calmodulin. PMID:11085927

  6. Coordinate direct input of both KRAS and IGF1 receptor to activation of PI 3-kinase in KRAS mutant lung cancer

    PubMed Central

    Molina-Arcas, Miriam; Hancock, David C.; Sheridan, Clare; Kumar, Madhu S.; Downward, Julian

    2013-01-01

    SUMMARY Using a panel of non-small cell lung cancer (NSCLC) lines, we show here that MEK and RAF inhibitors are selectively toxic for the KRAS mutant genotype, while PI 3-kinase (PI3K), AKT and mTOR inhibitors are not. IGF1 receptor (IGF1R) tyrosine kinase inhibitors also show selectivity for KRAS mutant lung cancer lines. Combinations of IGF1R and MEK inhibitors resulted in strengthened inhibition of KRAS mutant lines and also showed improved effectiveness in autochthonous mouse models of Kras induced NSCLC. PI3K pathway activity is dependent on basal IGF1R activity in KRAS mutant, but not wild-type, lung cancer cell lines. KRAS is needed for both MEK and PI3K pathway activity in KRAS mutant, but not wild-type, lung cancer cells, while acute activation of KRAS causes stimulation of PI3K dependent upon IGF1R kinase activity. Coordinate direct input of both KRAS and IGF1R is thus required to activate PI3K in KRAS mutant lung cancer cells. PMID:23454899

  7. FBI-1 Is Overexpressed in Gestational Trophoblastic Disease and Promotes Tumor Growth and Cell Aggressiveness of Choriocarcinoma via PI3K/Akt Signaling.

    PubMed

    Mak, Victor C Y; Wong, Oscar G W; Siu, Michelle K Y; Wong, Esther S Y; Ng, Wai-Yan; Wong, Richard W C; Chan, Ka-Kui; Ngan, Hextan Y S; Cheung, Annie N Y

    2015-07-01

    Human placental trophoblasts can be considered pseudomalignant, with tightly controlled proliferation, apoptosis, and invasiveness. Gestational trophoblastic disease (GTD) represents a family of heterogeneous trophoblastic lesions with aberrant apoptotic and proliferative activities and dysregulation of cell signaling pathways. We characterize the oncogenic effects of factor that binds to the inducer of short transcripts of HIV-1 [FBI-1, alias POZ and Krüppel erythroid myeloid ontogenic factor (POKEMON)/ZBTB7A] in GTD and its role in promoting cell aggressiveness in vitro and tumor growth in vivo. IHC studies showed increased nuclear expression of FBI-1, including hydatidiform moles, choriocarcinoma (CCA), and placental site trophoblastic tumor, in GTD. In JAR and JEG-3 CCA cells, ectopic FBI-1 expression opposed apoptosis through repression of proapoptotic genes (eg, BAK1, FAS, and CASP8). FBI-1 overexpression also promoted Akt activation, as indicated by Akt-pS473 phosphorylation. FBI-1 overexpression promoted mobility and invasiveness of JEG-3 and JAR, but not in the presence of the phosphoinositide 3-kinase inhibitor LY294002. These findings suggest that FBI-1 could promote cell migration and invasion via phosphoinositide 3-kinase/Akt signaling. In vivo, nude mice injected with CCA cells with stable FBI-1 knockdown demonstrated reduced tumor growth compared with that in control groups. These findings suggest that FBI-1 is clinically associated with the progression of, and may be a therapeutic target in, GTD, owing to its diverse oncogenic effects on dysregulated trophoblasts. PMID:26093985

  8. EGFR-mediated expression of aquaporin-3 is involved in human skin fibroblast migration

    PubMed Central

    Cao, Cong; Sun, Yun; Healey, Sarah; Bi, Zhigang; Hu, Gang; Wan, Shu; Kouttab, Nicola; Chu, Wenming; Wan, Yinsheng

    2006-01-01

    AQP3 (aquaporin-3), known as an integral membrane channel in epidermal keratinocytes, facilitates water and glycerol movement into and out of the skin. Here, we demonstrate that AQP3 is also expressed in cultured human skin fibroblasts, which under normal wound healing processes migrate from surrounding tissues to close the wound. EGF (epidermal growth factor), which induced fibroblast migration, also induced AQP3 expression in a time- and dose-dependent manner. CuSO4 and NiCl2, previously known as AQP3 water transport inhibitors, as well as two other bivalent heavy metals Mn2+ and Co2+, inhibited EGF-induced cell migration in human skin fibroblasts. AQP3 knockdown by small interfering RNA inhibited EGF-induced AQP3 expression and cell migration. Furthermore, an EGFR (EGF receptor) kinase inhibitor, PD153035, blocked EGF-induced AQP3 expression and cell migration. MEK [MAPK (mitogen-activated protein kinase)/ERK (extracellular-signal-regulated kinase) kinase]/ERK inhibitor U0126 and PI3K (phosphoinositide 3-kinase) inhibitor LY294002 also inhibited EGF-induced AQP3 expression and cell migration. Collectively, our findings show for the first time that AQP3 is expressed in human skin fibroblasts and that EGF induces AQP3 expression via EGFR, PI3K and ERK signal transduction pathways. We have provided evidence for a novel role of AQP3 in human skin fibroblast cell migration, which occurs during normal wound healing. PMID:16848764

  9. Studies on mitogen-activated protein kinase signaling pathway in the alveolar macrophages of chronic bronchitis rats.

    PubMed

    Huang, Yan; Meng, Xiao-Ming; Jiang, Guo-Lin; Yang, Ya-Ru; Liu, Juan; Lv, Xiong-Wen; Li, Jun

    2015-02-01

    Lipopolysaccharide (LPS), a potent stimulator of inflammatory responses in alveolar macrophages (AMs), activates several intracellular signaling pathways, including mitogen-activated protein kinases (MAPK). In the present study, we investigated the MAPK pathway in AMs of chronic bronchitis (CB) rats. CB was induced by endotracheal instillation of LPS followed by Bacillus Calmette Guerin injection through the caudal vein 1 week later. Specific inhibitors were used and protein phosphorylations were detected by Western blot. We found that Genistein (PTK inhibitor) could inhibit protein kinase C (PKC), phosphatidylinositol-3 kinase (PI3K)/protein kinase B (Akt or PKB) MAPK signaling pathway with different degrees, LY294002 (PI3K inhibitor) could not only inhibit phospho-PI3K/Akt expression, but also inhibit p38 and c-Jun NH2-terminal kinases (JNK) phosphorylation. Calphostin C (PKC inhibitor) could inhibit phospho-PKC expression and exerted significant effects on extracellular signal-regulated kinases (ERK) phosphorylation, however, it had no impact on p38 and JNK phosphorylation. These results demonstrated that the LPS mediated signaling pathway of MAPK in AMs of CB rats could be described as follows: PTK-PI3K-Akt-JNK/p38 or PTK-PI3K-PKC-ERK, and PI3K may have a negative regulation on the activation of downstream proteins. PMID:25467375

  10. Methyl 3,4-dihydroxybenzoate promote rat cortical neurons survival and neurite outgrowth through the adenosine A2a receptor/PI3K/Akt signaling pathway.

    PubMed

    Zhang, Zheng; Cai, Liang; Zhou, Xiaowen; Su, Chaofen; Xiao, Fei; Gao, Qin; Luo, Huanmin

    2015-04-15

    Methyl 3,4-dihydroxybenzoate (MDHB), a kind of phenolic acid compounds, has been reported to have antioxidant effects. Moreover, our previous study found that it could promote neurite outgrowth and brain-derived neurotrophic factor expression in cortical neurons of neonatal rats. In the present study, we focused on the mechanism of its neurotrophic effect; the results showed that MDHB-induced upregulation of neuronal survival and neurite outgrowth in cultured primary cortical neurons could be blocked by the adenosine A2a receptor inhibitor (ZM241385) and the phosphoinositide 3-kinase (PI3K) inhibitor (LY294002). Subsequently, we found that the upregulation of Akt phosphorylation by MDHB could be suppressed by A2a-R and PI3K-specific inhibitor, but not the Trk-R inhibitor. Furthermore, MDHB could activate Akt in a concentration-dependent manner. These results suggested that activation of the PI3K/Akt signaling pathway may be involved in the MDHB-induced neurotrophic effects and MDHB could be a candidate compound to develop drugs for neurodegenerative disease. PMID:25807175

  11. The sonic hedgehog signaling pathway stimulates anaplastic thyroid cancer cell motility and invasiveness by activating Akt and c-Met.

    PubMed

    Williamson, Ashley J; Doscas, Michelle E; Ye, Jin; Heiden, Katherine B; Xing, Mingzhao; Li, Yi; Prinz, Richard A; Xu, Xiulong

    2016-03-01

    The sonic hedgehog (Shh) pathway is highly activated in thyroid neoplasms and promotes thyroid cancer stem-like cell phenotype, but whether the Shh pathway regulates thyroid tumor cell motility and invasiveness remains unknown. Here, we report that the motility and invasiveness of two anaplastic thyroid tumor cell lines, KAT-18 and SW1736, were inhibited by two inhibitors of the Shh pathway (cyclopamine and GANT61). Consistently, the cell motility and invasiveness was decreased by Shh and Gli1 knockdown, and was increased by Gli1 overexpression in KAT-18 cells. Mechanistic studies revealed that Akt and c-Met phosphorylation was decreased by a Gli1 inhibitor and by Shh and Gli1 knockdown, but was increased by Gli1 overexpression. LY294002, a PI-3 kinase inhibitor, and a c-Met inhibitor inhibited the motility and invasiveness of Gli1-transfected KAT-18 cells more effectively than the vector-transfected cells. Knockdown of Snail, a transcription factor regulated by the Shh pathway, led to decreased cell motility and invasiveness in KAT-18 and SW1736 cells. However, key epithelial-to-mesenchymal transition (EMT) markers including E-cadherin and vimentin as well as Slug were not affected by cyclopamine and GANT61 in either SW1736 or WRO82, a well differentiated follicular thyroid carcinoma cell line. Our data suggest that the Shh pathway-stimulated thyroid tumor cell motility and invasiveness is largely mediated by AKT and c-Met activation with little involvement of EMT. PMID:26859575

  12. Nitric oxide mediates stretch-induced Ca2+ oscillation in smooth muscle.

    PubMed

    Zheng, Ji; Zhai, Kui; Chen, Yingxiao; Zhang, Xu; Miao, Lin; Wei, Bin; Ji, Guangju

    2016-06-15

    The stretching of smooth muscle tissue modulates contraction through augmentation of Ca(2+) transients, but the mechanism underlying stretch-induced Ca(2+) transients is still unknown. We found that mechanical stretching and maintenance of mouse urinary bladder smooth muscle strips and single myocytes at 30% and 18% beyond the initial length, respectively, resulted in Ca(2+) oscillations. Experiments indicated that mechanical stretching remarkably increased the production of nitric oxide (NO) as well as the amplitude and duration of muscle contraction. Stretch-induced Ca(2+) oscillations and contractility increases were completely abolished by the NO inhibitor L-NAME or eNOS (also known as NOS3) gene inactivation. Moreover, exposure of eNOS-knockout myocytes to exogenous NO donor induced Ca(2+) oscillations. The stretch-induced Ca(2+) oscillations were greatly inhibited by the selective inositol 1,4,5-trisphosphate receptor (IP3R) inhibitor xestospongin C and partially inhibited by ryanodine. Moreover, the stretch-induced Ca(2+) oscillations were also suppressed by the phosphoinositide 3-kinase (PI3K) inhibitor LY294002, but not by the soluble guanylyl cyclase (sGC) inhibitor ODQ. These results suggest that stretching myocyte and maintenance at a certain length results in Ca(2+) oscillations that are NO dependent , and sGC and cGMP independent, and results from the activation of PI3K in smooth muscle. PMID:27189081

  13. The sonic hedgehog signaling pathway stimulates anaplastic thyroid cancer cell motility and invasiveness by activating Akt and c-Met

    PubMed Central

    Williamson, Ashley J.; Doscas, Michelle E.; Ye, Jin; Heiden, Katherine B.; Xing, Mingzhao; Li, Yi; Prinz, Richard A.; Xu, Xiulong

    2016-01-01

    The sonic hedgehog (Shh) pathway is highly activated in thyroid neoplasms and promotes thyroid cancer stem-like cell phenotype, but whether the Shh pathway regulates thyroid tumor cell motility and invasiveness remains unknown. Here, we report that the motility and invasiveness of two anaplastic thyroid tumor cell lines, KAT-18 and SW1736, were inhibited by two inhibitors of the Shh pathway (cyclopamine and GANT61). Consistently, the cell motility and invasiveness was decreased by Shh and Gli1 knockdown, and was increased by Gli1 overexpression in KAT-18 cells. Mechanistic studies revealed that Akt and c-Met phosphorylation was decreased by a Gli1 inhibitor and by Shh and Gli1 knockdown, but was increased by Gli1 overexpression. LY294002, a PI-3 kinase inhibitor, and a c-Met inhibitor inhibited the motility and invasiveness of Gli1-transfected KAT-18 cells more effectively than the vector-transfected cells. Knockdown of Snail, a transcription factor regulated by the Shh pathway, led to decreased cell motility and invasiveness in KAT-18 and SW1736 cells. However, key epithelial-to-mesenchymal transition (EMT) markers including E-cadherin and vimentin as well as Slug were not affected by cyclopamine and GANT61 in either SW1736 or WRO82, a well differentiated follicular thyroid carcinoma cell line. Our data suggest that the Shh pathway-stimulated thyroid tumor cell motility and invasiveness is largely mediated by AKT and c-Met activation with little involvement of EMT. PMID:26859575

  14. Synthesis and Pharmacological Evaluation of 4-Iminothiazolidinones for Inhibition of PI3 Kinase

    PubMed Central

    Pinson, Jo-Anne; Schmidt-Kittler, Oleg; Frazzetto, Mark; Zheng, Zhaohua; Jennings, Ian G.; Kinzler, Kenneth W.; Vogelstein, Bert; Chalmers, David K.; Thompson, Philip E.

    2012-01-01

    The thiazolidinedione, compound 1, has previously shown pan-inhibition of the phosphoinositide 3-kinase (PI3K) class I isoforms. We hypothesized the derivatization of the thiazolidinedione core of compound 1 could introduce isoform selectivity. We report the synthesis, characterization, and inhibitory activity of a novel series of 4-iminothiazolidin-2-ones for inhibition of the class I PI3K isoforms. Their synthesis was successfully achieved by multiple pathways described in this paper. Initial in vitro data of 28 analogues demonstrated poor inhibition of all class I PI3K isoforms. However, we identified an alternate target, the phosphodiesterases, and present preliminary screening results showing improved inhibitory activity. PMID:23997244

  15. Co-Inhibition of GLUT-1 Expression and the PI3K/Akt Signaling Pathway to Enhance the Radiosensitivity of Laryngeal Carcinoma Xenografts In Vivo

    PubMed Central

    Xu, Bin; Zhou, Min-Li; Zhou, Shui-Hong; Fan, Jun; Lu, Zhong-Jie

    2015-01-01

    In the present study, we investigated the role of GLUT-1 and PI3K/Akt signaling in radioresistance of laryngeal carcinoma xenografts. Volume, weight, radiosensitization, and the rate of inhibition of tumor growth in the xenografts were evaluated in different groups. Apoptosis was evaluated by TUNEL assay. In addition, mRNA and protein levels of GLUT-1, p-Akt, and PI3K in the xenografts were measured. Treatment with LY294002, wortmannin, wortmannin plus GLUT-1 AS-ODN, and LY294002 plus GLUT-1 AS-ODN after X-ray irradiation significantly reduced the size and weight of the tumors, rate of tumor growth, and apoptosis in tumors compared to that observed in the 10-Gy group (p<0.05). In addition, mRNA and protein expression of GLUT-1, p-Akt, and PI3K was downregulated. The E/O values of LY294002, LY294002 plus GLUT-1 AS-ODN, wortmannin, and wortmannin plus GLUT-1 AS-ODN were 2.7, 1.1, 1.8, and 1.8, respectively. Taken together, these data indicate that GLUT-1 AS-ODN as well as the inhibitors of PI3K/Akt signaling may act as radiosensitizers of laryngeal carcinoma in vivo. PMID:26600164

  16. Single-Cell Analysis of Phosphoinositide 3-Kinase (PI3K) and Phosphatase and Tensin Homolog (PTEN) Activation

    PubMed Central

    Jiang, Dechen; Sims, Christopher Eldridge; Allbritton, Nancy Lynn

    2010-01-01

    Summary A single-cell assay was developed to measure the activation of phosphoinositide 3-kinase (PI3K) using microanalytical chemical separations and a fluorescently labeled lipid substrate. Phosphatidyl-inositol 4,5 bisphosphate labeled on its acyl chain with Bodipy fluorescein (Bodipy Fl PIP2) was utilized as a substrate for both in vitro and cell-based assays. Detection limits for the substrate and product of the PI3K reaction were 10 to 20 zeptomoles. In vitro assays with PI3K with and without pharmacologic inhibitors demonstrated that Bodipy Fl PIP2 was converted to phosphatidyl-inositol 3,4,5 trisphosphate (Bodipy Fl PIP3 ). Bodipy Fl PIP3 could be back converted to Bodipy Fl PIP2 by the phosphatase PTEN. When Bodipy Fl PIP2 was added to a cell lysate, 1.4 fmoles of the Bodipy Fl PIP3 were produced per ng of protein in the cytoplasmic extract in 10 min. Addition of Bodipy Fl PIP3 to a cell lysate yielded 3 fmoles of Bodipy Fl PIP2 per ng of protein in 8 min. Both Bodipy Fl PIP2 and Bodipy Fl PIP3 were measureable in single cells and the two species could be inter-converted. Under the appropriate conditions, a fluorescent diacylglycerol was also detected in single cells. When the FcεR1 receptor on the cells loaded with the fluorescent lipid was cross-linked, the amount of Bodipy Fl PIP3 generated per cell increased 4-fold over that of unstimulated cells. This production of Bodipy Fl PIP3 was blocked by wortmannin. Chemical cytometry utilizing the fluorescent lipids will be of value in understanding lipid metabolism at the single-cell level. PMID:21221426

  17. Ras, Rac1, and phosphatidylinositol-3-kinase (PI3K) signaling in nitric oxide induced endothelial cell migration.

    PubMed

    Eller-Borges, Roberta; Batista, Wagner L; da Costa, Paulo E; Tokikawa, Rita; Curcio, Marli F; Strumillo, Scheilla T; Sartori, Adriano; Moraes, Miriam S; de Oliveira, Graciele A; Taha, Murched O; Fonseca, Fábio V; Stern, Arnold; Monteiro, Hugo P

    2015-05-01

    The small GTP-binding proteins Ras and Rac1 are molecular switches exchanging GDP for GTP and converting external signals in response to a variety of stimuli. Ras and Rac1 play an important role in cell proliferation, cell differentiation, and cell migration. Rac1 is directly involved in the reorganization and changes in the cytoskeleton during cell motility. Nitric oxide (NO) stimulates the Ras - ERK1/2 MAP kinases signaling pathway and is involved in the interaction between Ras and the phosphatidyl-inositol-3 Kinase (PI3K) signaling pathway and cell migration. This study utilizes bradykinin (BK), which promotes endogenous production of NO, in an investigation of the role of NO in the activation of Rac1 in rabbit aortic endothelial cells (RAEC). NO-derived from BK stimulation of RAEC and incubation of the cells with the s-nitrosothiol S-nitrosoglutathione (GSNO) activated Rac1. NO-derived from BK stimulation promoted RAEC migration over a period of 12 h. The use of RAEC permanently transfected with the dominant negative mutant of Ras (Ras(N17)) or with the non-nitrosatable mutant of Ras (Ras(C118S)); and the use of specific inhibitors of: Ras, PI3K, and Rac1 resulted in inhibition of NO-mediated Rac1 activation. BK-stimulated s-nitrosylation of Ras in RAEC mediates Rac1 activation and cell migration. Inhibition of NO-mediated Rac1 activation resulted in inhibition of endothelial cell migration. In conclusion, the NO indirect activation of Rac1 involves the direct participation of Ras and PI3K in the migration of endothelial cells stimulated with BK. PMID:25819133

  18. Down-regulation of class II phosphoinositide 3-kinase alpha expression below a critical threshold induces apoptotic cell death.

    PubMed

    Elis, Winfried; Triantafellow, Ellen; Wolters, Natalie M; Sian, Katie R; Caponigro, Giordano; Borawski, Jason; Gaither, L Alex; Murphy, Leon O; Finan, Peter M; Mackeigan, Jeffrey P

    2008-04-01

    Members of the phosphoinositide 3-kinase (PI3K) family collectively control multiple cellular responses, including proliferation, growth, chemotaxis, and survival. These diverse effects can partly be attributed to the broad range of downstream effectors being regulated by the products of these lipid kinases, the 3'-phosphoinositides. However, an additional layer of complexity is introduced by the existence of multiple PI3K enzyme isoforms. Much has been learned over the last years on the roles of the classes I and III PI3K members in cellular signaling, but little is known about the isoform-specific tasks done by the class II PI3Ks (C2alpha, beta, and gamma). In this study, we used quantitative reverse transcription-PCR and RNA interference in mammalian cells to gain further insight into the function of these lesser studied PI3K enzymes. We find that PI3K-C2alpha, but not PI3K-C2beta, has an important role in controlling cell survival and by using a panel of RNA interference reagents, we were able to determine a critical threshold of PI3K-C2alpha mRNA levels, below which the apoptotic program is switched on, via the intrinsic cell death pathway. In addition, knockdown of PI3K-C2alpha to levels that by themselves do not induce apoptosis sensitize cells to the anticancer agent Taxol (paclitaxel). Lastly, we report that lowering the levels of PI3K-C2alpha in a number of cancer cell lines reduces their proliferation and cell viability, arguing that PI3K inhibitors targeting not only the class Ialpha isoform but also class IIalpha may contribute to an effective anticancer strategy. PMID:18403640

  19. Liver Dysfunction and Phosphatidylinositol-3-Kinase Signalling in Early Sepsis: Experimental Studies in Rodent Models of Peritonitis

    PubMed Central

    Westermann, Martin; Lambeck, Sandro; Lupp, Amelie; Rudiger, Alain; Dyson, Alex; Carré, Jane E.; Kortgen, Andreas; Krafft, Christoph; Popp, Jürgen; Sponholz, Christoph; Fuhrmann, Valentin; Hilger, Ingrid; Claus, Ralf A.; Riedemann, Niels C.; Wetzker, Reinhard; Singer, Mervyn; Trauner, Michael; Bauer, Michael

    2012-01-01

    Background Hepatic dysfunction and jaundice are traditionally viewed as late features of sepsis and portend poor outcomes. We hypothesized that changes in liver function occur early in the onset of sepsis, yet pass undetected by standard laboratory tests. Methods and Findings In a long-term rat model of faecal peritonitis, biotransformation and hepatobiliary transport were impaired, depending on subsequent disease severity, as early as 6 h after peritoneal contamination. Phosphatidylinositol-3-kinase (PI3K) signalling was simultaneously induced at this time point. At 15 h there was hepatocellular accumulation of bilirubin, bile acids, and xenobiotics, with disturbed bile acid conjugation and drug metabolism. Cholestasis was preceded by disruption of the bile acid and organic anion transport machinery at the canalicular pole. Inhibitors of PI3K partially prevented cytokine-induced loss of villi in cultured HepG2 cells. Notably, mice lacking the PI3Kγ gene were protected against cholestasis and impaired bile acid conjugation. This was partially confirmed by an increase in plasma bile acids (e.g., chenodeoxycholic acid [CDCA] and taurodeoxycholic acid [TDCA]) observed in 48 patients on the day severe sepsis was diagnosed; unlike bilirubin (area under the receiver-operating curve: 0.59), these bile acids predicted 28-d mortality with high sensitivity and specificity (area under the receiver-operating curve: CDCA: 0.77; TDCA: 0.72; CDCA+TDCA: 0.87). Conclusions Liver dysfunction is an early and commonplace event in the rat model of sepsis studied here; PI3K signalling seems to play a crucial role. All aspects of hepatic biotransformation are affected, with severity relating to subsequent prognosis. Detected changes significantly precede conventional markers and are reflected by early alterations in plasma bile acids. These observations carry important implications for the diagnosis of liver dysfunction and pharmacotherapy in the critically ill. Further clinical work is

  20. Korean Red Ginseng inhibits apoptosis in neuroblastoma cells via estrogen receptor β-mediated phosphatidylinositol-3 kinase/Akt signaling

    PubMed Central

    Nguyen, Cuong Thach; Luong, Truc Thanh; Kim, Gyu-Lee; Pyo, Suhkneung; Rhee, Dong-Kwon

    2014-01-01

    Background Ginseng has been shown to exert antistress effects both in vitro and in vivo. However, the effects of ginseng on stress in brain cells are not well understood. This study investigated how Korean Red Ginseng (KRG) controls hydrogen peroxide-induced apoptosis via regulation of phosphatidylinositol-3 kinase (PI3K)/Akt and estrogen receptor (ER)-β signaling. Methods Human neuroblastoma SK-N-SH cells were pretreated with KRG and subsequently exposed to H2O2. The ability of KRG to inhibit oxidative stress-induced apoptosis was assessed in MTT cytotoxicity assays. Apoptotic protein expression was examined by Western blot analysis. The roles of ER-β, PI3K, and p-Akt signaling in KRG regulation of apoptosis were studied using small interfering RNAs and/or target antagonists. Results Pretreating SK-N-SH cells with KRG decreased expression of the proapoptotic proteins p-p53 and caspase-3, but increased expression of the antiapoptotic protein BCL2. KRG pretreatment was also associated with increased ER-β, PI3K, and p-Akt expression. Conversely, ER-β inhibition with small interfering RNA or inhibitor treatment increased p-p53 and caspase-3 levels, but decreased BCL2, PI3K, and p-Akt expression. Moreover, inhibition of PI3K/Akt signaling diminished p-p53 and caspase-3 levels, but increased BCL2 expression. Conclusion Collectively, the data indicate that KRG represses oxidative stress-induced apoptosis by enhancing PI3K/Akt signaling via upregulation of ER-β expression. PMID:25535479

  1. Tumor Phosphatidylinositol-3-Kinase Signaling and Development of Metastatic Disease in Locally Advanced Rectal Cancer

    PubMed Central

    Ree, Anne Hansen; Kristensen, Annette Torgunrud; Saelen, Marie Grøn; de Wijn, Rik; Edvardsen, Hege; Jovanovic, Jovana; Abrahamsen, Torveig Weum; Dueland, Svein; Flatmark, Kjersti

    2012-01-01

    Background Recognizing EGFR as key orchestrator of the metastatic process in colorectal cancer, but also the substantial heterogeneity of responses to anti-EGFR therapy, we examined the pattern of composite tumor kinase activities governed by EGFR-mediated signaling that might be implicated in development of metastatic disease. Patients and Methods Point mutations in KRAS, BRAF, and PIK3CA and ERBB2 amplification were determined in primary tumors from 63 patients with locally advanced rectal cancer scheduled for radical treatment. Using peptide arrays with tyrosine kinase substrates, ex vivo phosphopeptide profiles were generated from the same baseline tumor samples and correlated to metastasis-free survival. Results Unsupervised clustering analysis of the resulting phosphorylation of 102 array substrates defined two tumor classes, both consisting of cases with and without KRAS/BRAF mutations. The smaller cluster group of patients, with tumors generating high ex vivo phosphorylation of phosphatidylinositol-3-kinase-related substrates, had a particularly aggressive disease course, with almost a half of patients developing metastatic disease within one year of follow-up. Conclusion High phosphatidylinositol-3-kinase-mediated signaling activity of the primary tumor, rather than KRAS/BRAF mutation status, was identified as a hallmark of poor metastasis-free survival in patients with locally advanced rectal cancer undergoing radical treatment of the pelvic cavity. PMID:23226389

  2. The involvement of Gab1 and PI 3-kinase in {beta}1 integrin signaling in keratinocytes

    SciTech Connect

    Kuwano, Yoshihiro; Fujimoto, Manabu . E-mail: fujimoto-m@umin.ac.jp; Watanabe, Rei; Ishiura, Nobuko; Nakashima, Hiroko; Komine, Mayumi; Hamazaki, Tatsuo S.; Tamaki, Kunihiko; Okochi, Hitoshi

    2007-09-14

    The control of the stem cell compartment in epidermis is closely linked to the regulation of keratinocyte proliferation and differentiation. {beta}1 integrins are expressed 2-fold higher by stem cells than transit-amplifying cells. Signaling from these {beta}1 integrins is critical for the regulation of the epidermal stem cell compartment. To clarify the functional relevance of this differential expression of {beta}1 integrins, we established HaCaT cells with high {beta}1integrin expression by repeated flow cytometric sorting of this population from the parental cell line. In these obtained cells expressing {beta}1 integrins by 5-fold, MAPK activation was markedly increased. Regarding the upstream of MAPK, Gab1 phosphorylation was also higher with high {beta}1 integrin expression, while Shc phosphorylation was not altered. In addition, enhanced phosphatidylinositol 3-kinase activation was also observed. These observations suggest that Gab1 and phosphatidylinositol 3-kinase play pivotal roles in the {beta}1 integrin-mediated regulation of the epidermal stem cell compartment.

  3. Na(+), K(+)-ATPase dysfunction causes cerebrovascular endothelial cell degeneration in rat prefrontal cortex slice cultures.

    PubMed

    Kurauchi, Yuki; Hisatsune, Akinori; Seki, Takahiro; Katsuki, Hiroshi

    2016-08-01

    Cerebrovascular endothelial cell dysfunction resulting in imbalance of cerebral blood flow contributes to the onset of psychiatric disorders such as depression, schizophrenia and bipolar disorder. Although decrease in Na(+), K(+)-ATPase activity has been reported in the patients with schizophrenia and bipolar disorder, the contribution of Na(+), K(+)-ATPase to endothelial cell dysfunction remains poorly understood. Here, by using rat neonatal prefrontal cortex slice cultures, we demonstrated that pharmacological inhibition of Na(+), K(+)-ATPase by ouabain induced endothelial cell injury. Treatment with ouabain significantly decreased immunoreactive area of rat endothelial cell antigen-1 (RECA-1), a marker of endothelial cells, in a time-dependent manner. Ouabain also decreased Bcl-2/Bax ratio and phosphorylation level of glycogen synthase kinase 3β (GSK3β) (Ser9), which were prevented by lithium carbonate. On the other hand, ouabain-induced endothelial cell injury was exacerbated by concomitant treatment with LY294002, an inhibitor of phosphoinositide 3- (PI3-) kinase. We also found that xestospongin C, an inhibitor of inositol triphosphate (IP3) receptor, but not SEA0400, an inhibitor of Na(+), Ca(2+) exchanger (NCX), protected endothelial cells from cytotoxicity of ouabain. These results suggest that cerebrovascular endothelial cell degeneration induced by Na(+), K(+)-ATPase inhibition resulting in Ca(2+) release from endoplasmic reticulum (ER) and activation of GSK3β signaling underlies pathogenesis of these psychiatric disorders. PMID:27208492

  4. The angiotensin II-AT1 receptor stimulates reactive oxygen species within the cell nucleus

    SciTech Connect

    Pendergrass, Karl D.; Gwathmey, TanYa M.; Michalek, Ryan D.; Grayson, Jason M.; Chappell, Mark C.

    2009-06-26

    We and others have reported significant expression of the Ang II Type 1 receptor (AT1R) on renal nuclei; thus, the present study assessed the functional pathways and distribution of the intracellular AT1R on isolated nuclei. Ang II (1 nM) stimulated DCF fluorescence, an intranuclear indicator of reactive oxygen species (ROS), while the AT1R antagonist losartan or the NADPH oxidase (NOX) inhibitor DPI abolished the increase in ROS. Dual labeling of nuclei with antibodies against nucleoporin 62 (Nup62) and AT1R or the NADPH oxidase isoform NOX4 revealed complete overlap of the Nup62 and AT1R (99%) by flow cytometry, while NOX4 was present on 65% of nuclei. Treatment of nuclei with a PKC agonist increased ROS while the PKC inhibitor GF109203X or PI3 kinase inhibitor LY294002 abolished Ang II stimulation of ROS. We conclude that the Ang II-AT1R-PKC axis may directly influence nuclear function within the kidney through a redox sensitive pathway.

  5. Sesamin induces melanogenesis by microphthalmia-associated transcription factor and tyrosinase up-regulation via cAMP signaling pathway.

    PubMed

    Jiang, Zequn; Li, Shasha; Liu, Yunyi; Deng, Pengyi; Huang, Jianguo; He, Guangyuan

    2011-10-01

    In this study, we confirmed that sesamin, an active lignan isolated from sesame seed and oil, is a novel skin-tanning compound. The melanin content and tyrosinase activity were increased by sesamin in a dose-dependent manner in B16 melanoma cells. The mRNA and protein levels of tyrosinase were also enhanced after the treatment with sesamin. Western blot analysis revealed that sesamin induced and sustained up-regulation of microphthalmia-associated transcription factor (MITF). Sesamin could activate cAMP response element (CRE) binding protein (CREB), but it had no effect on the phosphorylation of p38 mitogen-activated protein kinase (MAPK) or Akt. Moreover, sesamin activated protein kinase A (PKA) via a cAMP-dependent pathway. Consistent with these results, sesamin-mediated increase of melanin synthesis was reduced significantly by H-89, a PKA inhibitor, but not by SB203580, a p38 MAPK inhibitor or by LY294002, a phosphatidylinositol-3-kinase (PI3K) inhibitor. Sesamin-mediated phosphorylation of CREB and induction of MITF and tyrosinase expression were also inhibited by H-89. These findings indicated that sesamin could stimulate melanogenesis in B16 cells via the up-regulation of MITF and tyrosinase, which was, in turn, due to the activation of cAMP signaling. PMID:21896570

  6. Activation of multiple signaling modules is critical in angiotensin IV-induced lung endothelial cell proliferation.

    PubMed

    Li, Yong D; Block, Edward R; Patel, Jawaharlal M

    2002-10-01

    Signaling events involving angiotensin IV (ANG IV)-mediated pulmonary artery endothelial cell (PAEC) proliferation were examined. ANG IV significantly increased upstream phosphatidylinositide (PI) 3-kinase (PI3K), PI-dependent kinase-1 (PDK-1), extracellular signal-related kinases (ERK1/2), and protein kinase B-alpha/Akt (PKB-alpha) activities, as well as downstream p70 ribosomal S6 kinase (p70S6K) activities and/or phosphorylation of these proteins. ANG IV also significantly increased 5-bromo-2'-deoxy-uridine incorporation into newly synthesized DNA in a concentration- and time-dependent manner. Pretreatment of cells with wortmannin and LY-294002, inhibitors of PI3K, or rapamycin, an inhibitor of the mammalian target of rapamycin kinase and p70S6K, diminished the ANG IV-mediated activation of PDK-1 and PKB-alpha as well as phosphorylation of p70S6K. Although an inhibitor of mitogen-activated protein kinase kinase, PD-98059, but not rapamycin, blocked ANG IV-induced phosphorylation of ERK1/2, both PD-98059 and rapamycin independently caused partial reduction in ANG IV-mediated cell proliferation. However, simultaneous treatment with PD-98059 and rapamycin resulted in total inhibition of ANG IV-induced cell proliferation. These results demonstrate that ANG IV-induced DNA synthesis is regulated in a coordinated fashion involving multiple signaling modules in PAEC. PMID:12225947

  7. Interleukin-21 induces migration and invasion of fibroblast-like synoviocytes from patients with rheumatoid arthritis.

    PubMed

    Xing, R; Jin, Y; Sun, L; Yang, L; Li, C; Li, Z; Liu, X; Zhao, J

    2016-05-01

    Rheumatoid arthritis (RA) is a chronic inflammatory disease characterized by synovial fibroblast hyperplasia and bone erosion. Fibroblast-like synoviocytes (FLS) play a pivotal role in RA pathogenesis through aggressive migration and matrix invasion, and certain proinflammatory cytokines may affect synoviocyte invasion. Whether interleukin (IL)-21 influences this process remains controversial. Here, we evaluated the potential regulatory effect of IL-21 on the migration, invasion and matrix metalloproteinase (MMP) expression in RA-FLS. We found that IL-21 promoted the migration, invasion and MMP (MMP-2, MMP-3, MMP-9, MMP-13) production in RA-FLS. Moreover, IL-21 induced activation of the phosphoinositide 3-kinase (PI3K), signal transducer and activator of transcription-3 (STAT-3) and extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) pathways, and blockage of these pathways [PI3K/protein kinase B (AKT) inhibitor LY294002, STAT-3 inhibitor STA-21 and ERK1/2 inhibitor PD98059] attenuated IL-21-induced migration and secretion of MMP-3 and MMP-9. In conclusion, our results suggest that IL-21 promotes migration and invasion of RA-FLS. Therefore, therapeutic strategies targeting IL-21 might be effective for the treatment of RA. PMID:26646950

  8. Induction of steroid sulfatase expression in PC-3 human prostate cancer cells by insulin-like growth factor II.

    PubMed

    Sung, Chul-Hoon; Im, Hee-Jung; Park, Nahee; Kwon, Yeojung; Shin, Sangyun; Ye, Dong-Jin; Cho, Nam-Hyeon; Park, Young-Shin; Choi, Hyung-Kyoon; Kim, Donghak; Chun, Young-Jin

    2013-11-25

    Human steroid sulfatase (STS) plays an important role in regulating the formation of biologically active estrogens and may be a promising target for treating estrogen-mediated carcinogenesis. The molecular mechanism of STS gene expression, however, is still not clear. Growth factors are known to increase STS activity but the changes in STS expression have not been completely understood. To determine whether insulin-like growth factor (IGF)-II can induce STS gene expression, the effects of IGF-II on STS expression were studied in PC-3 human prostate cancer cells. RT-PCR and Western blot analysis showed that IGF-II treatment significantly increased the expression of STS mRNA and protein in concentration- and time-dependent manners. To understand the signaling pathway by which IGF-II induces STS gene expression, the effects of specific PI3-kinase/Akt and NF-κB inhibitors were determined. When the cells were treated with IGF-II and PI3-kinase/Akt inhibitors, such as LY294002, wortmannin, or Akt inhibitor IV, STS expression induced by IGF-II was significantly blocked. Moreover, we found that NF-κB inhibitors, such as MG-132, bortezomib, Bay 11-7082 or Nemo binding domain (NBD) binding peptide, also strongly prevented IGF-II from inducing STS gene expression. We assessed whether IGF-II activates STS promoter activity using transient transfection with a luciferase reporter. IGF-II significantly stimulated STS reporter activity. Furthermore, IGF-II induced expression of 17β-hydroxysteroid dehydrogenase (HSD) 1 and 3, whereas it reduced estrone sulfotransferase (EST) gene expression, causing enhanced estrone and β-estradiol production. Taken together, these results strongly suggest that IGF-II induces STS expression via a PI3-kinase/Akt-NF-κB signaling pathway in PC-3 cells and may induce estrogen production and estrogen-mediated carcinogenesis. PMID:24055520

  9. Inhibition of GSK3beta by indirubins restores HIF-1alpha accumulation under prolonged periods of hypoxia/anoxia.

    PubMed

    Schnitzer, Steffen E; Schmid, Tobias; Zhou, Jie; Eisenbrand, Gerhard; Brüne, Bernhard

    2005-01-17

    Hypoxia inducible factor 1 is regulated by the appearance of the HIF-1alpha subunit. HIF-1alpha is subjected to proteasomal destruction or enhanced protein translation, which requires the phosphatidylinositol 3-kinase (PI3K)/Akt pathway. We investigated how PI3K/Akt and glycogen synthase kinase 3beta (GSK3beta) affect HIF-1alpha in human RKO cells under prolonged periods of severe hypoxia/anoxia. 16- to 32-h lasting incubations attenuated Akt activity and decreased HIF-1alpha protein. This was reproduced by blocking PI3K with LY294002. GSK3beta inhibition by indirubins circumvented the effect of hypoxia/anoxia or LY294002 on HIF-1alpha. Ruling stability regulation of HIF-1alpha protein and/or enhanced transcription of HIF-1alpha mRNA via GSK3beta inhibition out is suggestive for translational modulation of HIF-1alpha under the influence of GSK3beta. PMID:15642371

  10. Role of Protein Kinase C, PI3-kinase and Tyrosine Kinase in Activation of MAP Kinase by Glucose and Agonists of G-protein Coupled Receptors in INS-1 Cells

    PubMed Central

    Böcker, Dietmar

    2001-01-01

    MAP (mitogen-activated protein) kinase (also called Erk 1/2) plays a crucial role in cell proliferation and differentiation. Its impact on secretory events is less well established. The interplay of protein kinase C (PKC), PI3-kinase nd cellular tyrosine kinase with MAP kinase activity using inhibitors and compounds such as glucose, phorbol 12-myristate 13-acetate (PMA) and agonists of G-protein coupled receptors like gastrin releasing peptide (GRP), oxytocin (OT) and glucose-dependent insulinotropic peptide (GIP) was investigated in INS-1 cells, an insulin secreting cell line. MAP kinase activity was determined by using a peptide derived from the EGF receptor as a MAP kinase substrate and [ P 32 ]ATP. Glucose as well as GRP, OT and GIP exhibited a time-dependent increase in MAP kinase activity with a maximum at time point 2.5 min. All further experiments were performed using 2.5 min incubations. The flavone PD 098059 is known to bind to the inactive forms of MEK1 (MAPK/ERK-Kinase) thus preventing activation by upstream activators. 20 μM PD 098059 ( IC 50 =51 μM) inhibited MAP kinase stimulated by either glucose, GRP, OT, GIP or PMA. Inhibiton (“downregulation”) of PKC by a long term (22h) pretreatment with 1 μM PMA did not influence MAP kinase activity when augmented by either of the above mentioned compound. To investigate whether PI3-kinase and cellular tyrosine kinase are involved in G-protein mediated effects on MAP kinase, inhibitors were used: 100 nM wortmannin (PI3-kinase inhibitor) reduced the effects of GRP, OT and GIP but not that of PMA; 100 μM genistein (tyrosine kinase inhibitor) inhibited the stimulatory effect of either above mentioned compound on MAP kinase activation. Inhibition of MAP kinase by 20 μM PD 098059 did not influence insulin secretion modulated by either compound (glucose, GRP, OT or GIP). [ H 3 ]Thymidine incorporation, however, was severely inhibited by PD 098059. Thus MAP kinase is important for INS-1 cell proliferation but

  11. The p110α Isoform of Phosphoinositide 3-Kinase is Essential for Cone Photoreceptor Survival

    PubMed Central

    Rajala, Raju V.S.; Ranjo-Bishop, Michelle; Wang, Yuhong; Rajala, Ammaji; Anderson, Robert E.

    2015-01-01

    Phosphoinositide 3-kinases (PI3Ks) are a family of lipid kinases that phosphorylates the 3'OH of the inositol ring of phosphoinositides (PIs). They are responsible for coordinating a diverse range of cellular functions. Class IA PI3K is a heterodimeric protein composed of a regulatory p85 and a catalytic p110 subunit. In this study, we conditionally deleted the p110α-subunit of PI3K in cone photoreceptor cells using the Cre-loxP system. Cone photoreceptors allow for color vision in bright light (daylight vision). Cone-specific deletion of p110α resulted in cone degeneration. Our studies suggest that PI3K signaling is essential for cone photoreceptor functions. PMID:25742742

  12. Tim-1-Mediated T Cell Activation Requires Recruitment and Activation of PI 3-Kinase

    PubMed Central

    de Souza, Anjali J.; Oak, Jean S.; Jordanhazy, Ryan; DeKruyff, Rosemarie H.; Fruman, David A.; Kane, Lawrence P.

    2009-01-01

    Ligation of the transmembrane protein Tim-1 can co-stimulate T cell activation. Agonistic antibodies to Tim-1 are also capable of inducing T cell activation without additional stimuli. However, little is known about the biochemical mechanisms underlying T cell stimulation or co-stimulation through Tim-1. We show that a tyrosine in Tim-1 becomes phosphorylated in an lck-dependent manner, whereupon it can directly recruit p85 adaptor subunits of PI 3-kinase. This results in PI3K activation, which is required for Tim-1 function. We also provide genetic evidence that p85 expression is required for optimal Tim-1 function. Thus, we describe a pathway from Tim-1 tyrosine phosphorylation to the PI3K signaling pathway, which appears to be a major effector of Tim-1-mediated T cell activation. PMID:18453570

  13. Propranolol Improves Impaired Hepatic Phosphatidylinositol 3-Kinase/Akt Signaling after Burn Injury

    PubMed Central

    Brooks, Natasha C; Song, Juquan; Boehning, Darren; Kraft, Robert; Finnerty, Celeste C; Herndon, David N; Jeschke, Marc G

    2012-01-01

    Severe burn injury is associated with induction of the hepatic endoplasmic reticulum (ER) stress response. ER stress leads to activation of c-Jun N-terminal kinase (JNK), suppression of insulin receptor signaling via phosphorylation of insulin receptor substrate 1 and subsequent insulin resistance. Marked and sustained increases in catecholamines are prominent after a burn. Here, we show that administration of propranolol, a nonselective β1/2 adrenergic receptor antagonist, attenuates ER stress and JNK activation. Attenuation of ER stress by propranolol results in increased insulin sensitivity, as determined by activation of hepatic phosphatidylinositol 3-kinase and Akt. We conclude that catecholamine release is responsible for the ER stress response and impaired insulin receptor signaling after burn injury. PMID:22396018

  14. ARF6, PI3-kinase and host cell actin cytoskeleton in Toxoplasma gondii cell invasion

    SciTech Connect

    Vieira da Silva, Claudio; Alves da Silva, Erika; Costa Cruz, Mario; Chavrier, Philippe; Arruda Mortara, Renato

    2009-01-16

    Toxoplasma gondii infects a variety of different cell types in a range of different hosts. Host cell invasion by T. gondii occurs by active penetration of the host cell, a process previously described as independent of host actin polymerization. Also, the parasitophorous vacuole has been shown to resist fusion with endocytic and exocytic pathways of the host cell. ADP-ribosylation factor-6 (ARF6) belongs to the ARF family of small GTP-binding proteins. ARF6 regulates membrane trafficking and actin cytoskeleton rearrangements at the plasma membrane. Here, we have observed that ARF6 is recruited to the parasitophorous vacuole of tachyzoites of T. gondii RH strain and it also plays an important role in the parasite cell invasion with activation of PI3-kinase and recruitment of PIP{sub 2} and PIP{sub 3} to the parasitophorous vacuole of invading parasites. Moreover, it was verified that maintenance of host cell actin cytoskeleton integrity is important to parasite invasion.

  15. Role of Phosphatidylinositol-3-Kinase Pathway in Head and Neck Squamous Cell Carcinoma

    PubMed Central

    Du, Li; Shen, Jingping; Weems, Andrew; Lu, Shi-Long

    2012-01-01

    Activation of the phosphatidylinositol-3-kinase (PI3K) pathway is one of the most frequently observed molecular alterations in many human malignancies, including head and neck squamous cell carcinoma (HNSCC). A growing body of evidence demonstrates the prime importance of the PI3K pathway at each stage of tumorigenesis, that is, tumor initiation, progression, recurrence, and metastasis. Expectedly, targeting the PI3K pathway yields some promising results in both preclinical studies and clinical trials for certain cancer patients. However, there are still many questions that need to be answered, given the complexity of this pathway and the existence of its multiple feedback loops and interactions with other signaling pathways. In this paper, we will summarize recent advances in the understanding of the PI3K pathway role in human malignancies, with an emphasis on HNSCC, and discuss the clinical applications and future direction of this field. PMID:22666248

  16. Puerarin activates endothelial nitric oxide synthase through estrogen receptor-dependent PI3-kinase and calcium-dependent AMP-activated protein kinase

    SciTech Connect

    Hwang, Yong Pil; Kim, Hyung Gyun; Hien, Tran Thi; Jeong, Myung Ho; Jeong, Tae Cheon; Jeong, Hye Gwang

    2011-11-15

    The cardioprotective properties of puerarin, a natural product, have been attributed to the endothelial nitric oxide synthase (eNOS)-mediated production of nitric oxide (NO) in EA.hy926 endothelial cells. However, the mechanism by which puerarin activates eNOS remains unclear. In this study, we sought to identify the intracellular pathways underlying eNOS activation by puerarin. Puerarin induced the activating phosphorylation of eNOS on Ser1177 and the production of NO in EA.hy926 cells. Puerarin-induced eNOS phosphorylation required estrogen receptor (ER)-mediated phosphatidylinositol 3-kinase (PI3K)/Akt signaling and was reversed by AMP-activated protein kinase (AMPK) and calcium/calmodulin-dependent kinase II (CaMKII) inhibition. Importantly, puerarin inhibited the adhesion of tumor necrosis factor (TNF)-{alpha}-stimulated monocytes to endothelial cells and suppressed the TNF-{alpha} induced expression of intercellular cell adhesion molecule-1. Puerarin also inhibited the TNF-{alpha}-induced nuclear factor-{kappa}B activation, which was attenuated by pretreatment with N{sup G}-nitro-L-arginine methyl ester, a NOS inhibitor. These results indicate that puerarin stimulates eNOS phosphorylation and NO production via activation of an estrogen receptor-mediated PI3K/Akt- and CaMKII/AMPK-dependent pathway. Puerarin may be useful for the treatment or prevention of endothelial dysfunction associated with diabetes and cardiovascular disease. -- Highlights: Black-Right-Pointing-Pointer Puerarin induced the phosphorylation of eNOS and the production of NO. Black-Right-Pointing-Pointer Puerarin activated eNOS through ER-dependent PI3-kinase and Ca{sup 2+}-dependent AMPK. Black-Right-Pointing-Pointer Puerarin-induced NO was involved in the inhibition of NF-kB activation. Black-Right-Pointing-Pointer Puerarin may help for prevention of vascular dysfunction and diabetes.

  17. Activation of the MAP Kinase Cascade by Exogenous Calcium-Sensing Receptor

    SciTech Connect

    Hobson, Susan A.; Wright, Jay W.; Lee, Fred; Mcneil, Scott; Bilderback, Tim R.; Rodland, Karin D.

    2003-02-01

    In Rat-1 fibroblasts and ovarian surface epithelial cells, extracellular calcium induces a proliferative response which appears to be mediated by the G-protein coupled Calcium-sensing Receptor (CaR), as expression of the non-functional CaR-R795W mutant inhibits both thymidine incorporation and activation of the extracellular-regulated kinase (ERK) in response to calcium. In this report we utilized CaR-transfected HEK293 cells to demonstrate that functional CaR is necessary and sufficient for calcium-induced ERK activation. CaR-dependent ERK activation was blocked by co-expression of the Ras dominant-negative mutant, Ras N17, and by exposure to the phosphatidyl inositol 3' kinase inhibitors wortmannin and LY294002. In contrast to Rat-1 fibroblasts, CaR-mediated in vitro kinase activity of ERK2 was unaffected by tyrosine kinase inhibitor herbimycin in CaR-transfected HEK293 cells. These results suggest that usage of distinct pathways downstream of the CaR varies in a cell-type specific manner, suggesting a potential mechanism by which activation of the CaR could couple to distinct calcium-dependent responses.

  18. Insulin-like growth factor 1 enhances the migratory capacity of mesenchymal stem cells

    SciTech Connect

    Li, Yangxin . E-mail: Yangxin_li@yahoo.com; Yu, XiYong . E-mail: yuxycn@hotmail.com; Lin, ShuGuang; Li, XiaoHong; Zhang, Saidan; Song, Yao-Hua

    2007-05-11

    Mesenchymal stem cells (MSCs) are attractive candidates for cell based therapies. However, the mechanisms responsible for stem cell migration and homing after transplantation remain unknown. It has been shown that insulin-like growth factor-1 (IGF-1) induces proliferation and migration of some cell types, but its effects on stem cells have not been investigated. We isolated and cultured MSC from rat bone marrow, and found that IGF-1 increased the expression levels of the chemokine receptor CXCR4 (receptor for stromal cell-derived factor-1, SDF-1). Moreover, IGF-1 markedly increased the migratory response of MSC to SDF-1. The IGF-1-induced increase in MSC migration in response to SDF-1 was attenuated by PI3 kinase inhibitor (LY294002 and wortmannin) but not by mitogen-activated protein/ERK kinase inhibitor PD98059. Our data indicate that IGF-1 increases MSC migratory responses via CXCR4 chemokine receptor signaling which is PI3/Akt dependent. These findings provide a new paradigm for biological effects of IGF-1 on MSC and have implications for the development of novel stem cell therapeutic strategies.

  19. S-Propargyl-cysteine Exerts a Novel Protective Effect on Methionine and Choline Deficient Diet-Induced Fatty Liver via Akt/Nrf2/HO-1 Pathway

    PubMed Central

    Li, Wenwen; Ma, Fenfen; Zhang, Laiyin; Huang, Yong; Li, Xinghui; Zhang, Aijie; Hou, Cuilan; Zhu, Yichun; Zhu, YiZhun

    2016-01-01

    This study investigated the antioxidative effect of S-propargyl-cysteine (SPRC) on nonalcoholic fatty liver (NAFLD) by treating mice fed a methionine and choline deficient (MCD) diet with SPRC for four weeks. We found that SPRC significantly reduced hepatic reactive oxygen species (ROS) and methane dicarboxylic aldehyde (MDA) levels. Moreover, SPRC also increased the superoxide dismutase (SOD) activity. By Western blot, we found that this protective effect of SPRC was importantly attributed to the regulated hepatic antioxidant-related proteins, including protein kinase B (Akt), heme oxygenase-1 (HO-1), nuclear factor erythroid 2-related factor 2 (Nrf2), and cystathionine γ-lyase (CSE, an enzyme that synthesizes hydrogen sulfide). Next, we examined the detailed molecular mechanism of the SPRC protective effect using oleic acid- (OA-) induced HepG2 cells. The results showed that SPRC significantly decreased intracellular ROS and MDA levels in OA-induced HepG2 cells by upregulating the phosphorylation of Akt, the expression of HO-1 and CSE, and the translocation of Nrf2. SPRC-induced HO-1 expression and Nrf2 translocation were abolished by the phosphoinositide 3-kinase (PI3K) inhibitor LY294002. Moreover, the antioxidative effect of SPRC was abolished by CSE inhibitor DL-propargylglycine (PAG) and HO-1 siRNA. Therefore, these results proved that SPRC produced an antioxidative effect on NAFLD through the PI3K/Akt/Nrf2/HO-1 signaling pathway. PMID:27313828

  20. The Neuroprotection of Liraglutide Against Ischaemia-induced Apoptosis through the Activation of the PI3K/AKT and MAPK Pathways

    PubMed Central

    Zhu, Huili; Zhang, Yusheng; Shi, Zhongshan; Lu, Dan; Li, Tingting; Ding, Yan; Ruan, Yiwen; Xu, Anding

    2016-01-01

    Glucagon-like peptide-1 (GLP-1) is an incretin hormone that increases glucose-dependent insulin secretion to reduce the glucose level. Liraglutide, a long-acting GLP-1 analogue, has been found to have neuroprotective action in various experimental models. However, the protective mechanisms of liraglutide in ischaemic stroke remain unclear. Here, we demonstrated that liraglutide significantly decreased the infarct volume, improved neurologic deficits, and lowered stress-related hyperglycaemia without causing hypoglycaemia in a rat model of middle cerebral artery occlusion (MCAO). Liraglutide inhibited cell apoptosis by reducing excessive reactive oxygen species (ROS) and improving the function of mitochondria in neurons under oxygen glucose deprivation (OGD) in vitro and MCAO in vivo. Liraglutide up-regulated the phosphorylation of protein kinase B (AKT) and extracellular signal-regulated kinases (ERK) and inhibited the phosphorylation of c-jun-NH2-terminal kinase (JNK) and p38. Moreover, the phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002 and/or the ERK inhibitor U0126 counteracted the protective effect of liraglutide. Taken together, these results suggest that liraglutide exerts neuroprotective action against ischaemia-induced apoptosis through the reduction of ROS and the activation of the PI3K/AKT and mitogen-activated protein kinase (MAPK) pathways. Therefore, liraglutide has therapeutic potential for patients with ischaemic stroke, especially those with Type 2 diabetes mellitus or stress hyperglycaemia. PMID:27240461

  1. S-Propargyl-cysteine Exerts a Novel Protective Effect on Methionine and Choline Deficient Diet-Induced Fatty Liver via Akt/Nrf2/HO-1 Pathway.

    PubMed

    Li, Wenwen; Ma, Fenfen; Zhang, Laiyin; Huang, Yong; Li, Xinghui; Zhang, Aijie; Hou, Cuilan; Zhu, Yichun; Zhu, YiZhun

    2016-01-01

    This study investigated the antioxidative effect of S-propargyl-cysteine (SPRC) on nonalcoholic fatty liver (NAFLD) by treating mice fed a methionine and choline deficient (MCD) diet with SPRC for four weeks. We found that SPRC significantly reduced hepatic reactive oxygen species (ROS) and methane dicarboxylic aldehyde (MDA) levels. Moreover, SPRC also increased the superoxide dismutase (SOD) activity. By Western blot, we found that this protective effect of SPRC was importantly attributed to the regulated hepatic antioxidant-related proteins, including protein kinase B (Akt), heme oxygenase-1 (HO-1), nuclear factor erythroid 2-related factor 2 (Nrf2), and cystathionine γ-lyase (CSE, an enzyme that synthesizes hydrogen sulfide). Next, we examined the detailed molecular mechanism of the SPRC protective effect using oleic acid- (OA-) induced HepG2 cells. The results showed that SPRC significantly decreased intracellular ROS and MDA levels in OA-induced HepG2 cells by upregulating the phosphorylation of Akt, the expression of HO-1 and CSE, and the translocation of Nrf2. SPRC-induced HO-1 expression and Nrf2 translocation were abolished by the phosphoinositide 3-kinase (PI3K) inhibitor LY294002. Moreover, the antioxidative effect of SPRC was abolished by CSE inhibitor DL-propargylglycine (PAG) and HO-1 siRNA. Therefore, these results proved that SPRC produced an antioxidative effect on NAFLD through the PI3K/Akt/Nrf2/HO-1 signaling pathway. PMID:27313828

  2. HIV-1 gp120 induces cytokine expression, leukocyte adhesion, and transmigration across the blood-brain barrier: modulatory effects of STAT1 signaling.

    PubMed

    Yang, Bo; Akhter, Sidra; Chaudhuri, Anathbandhu; Kanmogne, Georgette D

    2009-03-01

    How neuroinflammatory activities affect signaling pathways leading to blood-brain barrier (BBB) injury during HIV/AIDS are currently unknown. Our previous work demonstrated that HIV-1 exposure activates pro-inflammatory genes in human brain microvascular endothelial cells (HBMEC) and showed that these genes are linked to the janus kinase (JAK)/signal transducers and activators of transcription (STAT) pathway. Here, we report that HIV-1 gp120 protein activated STAT1 and induced interleukin (IL)-6 and IL-8 secretion in HBMEC. IL-6, IL-8, and gp120 increased monocyte adhesion and migration across in vitro BBB models. The STAT1 inhibitor, fludarabine, prevented gp120-induced IL-6 and IL-8 secretion. Inhibitors of STAT1, mitogen activated protein kinase kinase (MEK) (PD98059), and phosphatidyl inositol 3 kinase (PI3K) (LY294002), blocked gp120-induced STAT1 activation and significantly diminished IL-8-, IL-6-, and gp120-induced monocyte adhesion and migration across in vitro BBB models. These data support the notion that STAT1 plays an important role in gp120-induced inflammation and BBB dysfunction associated with viral infection. Results also suggest crosstalk between STAT1, MEK, and PI3K pathways in gp120-induced BBB dysfunction. Inhibition of STAT1 activation could provide a unique therapeutic strategy to decrease neuroinflammation and BBB dysfunction in HIV/AIDS. PMID:19103208

  3. Protective Effect of Aliskiren in Experimental Ischemic Stroke: Up-Regulated p-PI3K, p-AKT, Bcl-2 Expression, Attenuated Bax Expression.

    PubMed

    Miao, Jiangyong; Wang, Lina; Zhang, Xiangjian; Zhu, Chunhua; Cui, Lili; Ji, Hui; Liu, Ying; Wang, Xiaolu

    2016-09-01

    Aliskiren (ALK), a pharmacological renin inhibitor, is an effective antihypertensive drug and has potent anti-apoptotic activity, but it is currently unknown whether ALK is able to attenuate brain damage caused by acute cerebral ischemia independent of its blood pressure-lowering effects. This study aimed to investigate the role of ALK and its potential mechanism in cerebral ischemia. C57/BL6 mice were subjected to transient middle cerebral artery occlusion (tMCAO) and treated for 5 days with Vehicle or ALK (10 or 25 mg/kg per day via intragastric administration), whereas Sham-operated animals served as controls. Treatment with ALK significantly improved neurological deficits, infarct volume, brain water content and Nissl bodies after stroke (P < 0.05), which did not affect systemic blood pressure. Furthermore, the protection of ALK was also related to decreased levels of apoptosis in mice by enhanced activation of phosphatidylinositol 3-kinase (PI3K)/AKT pathway, increased level of Bcl-2 and reduced Bax expression (P < 0.05). In addition, ALK's effects were reversed by PI3K inhibitors LY294002 (P < 0.05). Our data indicated that ALK protected the brain from reperfusion injuries without affecting blood pressure, and this effect may be through PI3K/AKT signaling pathway. PMID:27180190

  4. Low Doses of Camptothecin Induced Hormetic and Neuroprotective Effects in PC12 Cells

    PubMed Central

    Zhang, Chao; Chen, Shenghui; Bao, Jiaolin; Zhang, Yulin; Huang, Borong; Jia, Xuejing; Chen, Meiwan; Wan, Jian-Bo; Su, Huanxing; Wang, Yitao

    2015-01-01

    Hormetic response is an adaptive mechanism for a cell or organism surviving in an unfavorable environment. It has been an intriguing subject of researches covering a broad range of biological and medical disciplines, in which the underlying significance and molecular mechanisms are under intensive investigation. In the present study, we demonstrated that topoisomerase I inhibitor camptothecin (CPT), a potent anticancer agent, induced an obvious hormetic response in rat pheochromocytoma PC12 cells. Camptothecin inhibited PC12 cell growth at relative high doses as generally acknowledged while stimulated the cell growth by as much as 39% at low doses. Moreover, low doses of CPT protected the cells from hydrogen peroxide (H2O2)-induced cell death. Phosphoinositide 3-kinase (PI3K)/Akt and nuclear factor-E2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) pathways were reported playing pivotal roles in protecting cells from oxidative stress. We observed that these 2 pathways were upregulated by low doses of CPT, as evidenced by increased levels of phosphorylated PI3K, phosphorylated Akt, phosphorylated mammalian target of rapamycin, Nrf2, and HO-1; and abolishment of the growth-promoting and neuroprotective effects of CPT by LY294002, a PI3K inhibitor. These results suggest that the hormetic and neuroprotective effects of CPT at low doses on PC12 cells were attributable, at least partially, to upregulated PI3K/Akt and Nrf2/HO-1 pathways. PMID:26674066

  5. The Neuroprotection of Liraglutide Against Ischaemia-induced Apoptosis through the Activation of the PI3K/AKT and MAPK Pathways.

    PubMed

    Zhu, Huili; Zhang, Yusheng; Shi, Zhongshan; Lu, Dan; Li, Tingting; Ding, Yan; Ruan, Yiwen; Xu, Anding

    2016-01-01

    Glucagon-like peptide-1 (GLP-1) is an incretin hormone that increases glucose-dependent insulin secretion to reduce the glucose level. Liraglutide, a long-acting GLP-1 analogue, has been found to have neuroprotective action in various experimental models. However, the protective mechanisms of liraglutide in ischaemic stroke remain unclear. Here, we demonstrated that liraglutide significantly decreased the infarct volume, improved neurologic deficits, and lowered stress-related hyperglycaemia without causing hypoglycaemia in a rat model of middle cerebral artery occlusion (MCAO). Liraglutide inhibited cell apoptosis by reducing excessive reactive oxygen species (ROS) and improving the function of mitochondria in neurons under oxygen glucose deprivation (OGD) in vitro and MCAO in vivo. Liraglutide up-regulated the phosphorylation of protein kinase B (AKT) and extracellular signal-regulated kinases (ERK) and inhibited the phosphorylation of c-jun-NH2-terminal kinase (JNK) and p38. Moreover, the phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002 and/or the ERK inhibitor U0126 counteracted the protective effect of liraglutide. Taken together, these results suggest that liraglutide exerts neuroprotective action against ischaemia-induced apoptosis through the reduction of ROS and the activation of the PI3K/AKT and mitogen-activated protein kinase (MAPK) pathways. Therefore, liraglutide has therapeutic potential for patients with ischaemic stroke, especially those with Type 2 diabetes mellitus or stress hyperglycaemia. PMID:27240461

  6. Genipin Derivatives Protect RGC-5 from Sodium Nitroprusside-Induced Nitrosative Stress

    PubMed Central

    Wang, Rikang; Zhao, Jiaqiang; Zhang, Lei; Peng, Lizhi; Zhang, Xinyi; Zheng, Wenhua; Chen, Heru

    2016-01-01

    CHR20 and CHR21 are a pair of stable diastereoisomers derived from genipin. These stereoisomers are activators of neuronal nitric oxide synthase (nNOS) and endothelial nitric oxide synthase (eNOS). In the rat retinal ganglion (RGC-5) cell model these compounds are non-toxic. Treatment of RGC-5 with 750 μM of sodium nitroprusside (SNP) produces nitrosative stress. Both genipin derivatives, however, protect these cells against SNP-induced apoptic cell death, although CHR21 is significantly more potent than CHR20 in this regard. With Western blotting we showed that the observed neuroprotection is primarily due to the activation of protein kinase B (Akt)/eNOS and extracellular signal-regulated kinase (ERK1/2) signaling pathways. Therefore, LY294002 (a phosphatidylinositol 3-kinase (PI3K) inhibitor) or PD98059 (a MAPK-activating enzyme inhibitor) abrogated the protective effects of CHR20 and CHR21. Altogether, our results show that in our experimental setup neuroprotection by the diasteromeric pair is mediated through the PI3K/Akt/eNOS and ERK1/2 signaling pathways. Further studies are needed to establish the potential of these compounds to prevent ntric oxide (NO)-induced toxicity commonly seen in many neurodegenerative diseases. PMID:26797604

  7. Roles of the PI3K/Akt pathway in Epstein-Barr virus-induced cancers and therapeutic implications.

    PubMed

    Chen, Jiezhong

    2012-12-12

    Viruses have been shown to be responsible for 10%-15% of cancer cases. Epstein-Barr virus (EBV) is the first virus to be associated with human malignancies. EBV can cause many cancers, including Burkett's lymphoma, Hodgkin's lymphoma, post-transplant lymphoproliferative disorders, nasopharyngeal carcinoma and gastric cancer. Evidence shows that phosphoinositide 3-kinase/protein kinase B (PI3K/Akt) plays a key role in EBV-induced malignancies. The main EBV oncoproteins latent membrane proteins (LMP) 1 and LMP2A can activate the PI3K/Akt pathway, which, in turn, affects cell survival, apoptosis, proliferation and genomic instability via its downstream target proteins to cause cancer. It has also been demonstrated that the activation of the PI3K/Akt pathway can result in drug resistance to chemotherapy. Thus, the inhibition of this pathway can increase the therapeutic efficacy of EBV-associated cancers. For example, PI3K inhibitor Ly294002 has been shown to increase the effect of 5-fluorouracil in an EBV-associated gastric cancer cell line. At present, dual inhibitors of PI3K and its downstream target mammalian target of rapamycin have been used in clinical trials and may be included in treatment regimens for EBV-associated cancers. PMID:24175221

  8. ERKs and mitochondria-related pathways are essential for glycyrrhizic acid-mediated neuroprotection against glutamate-induced toxicity in differentiated PC12 cells

    PubMed Central

    Wang, D.; Guo, T.Q.; Wang, Z.Y.; Lu, J.H.; Liu, D.P.; Meng, Q.F.; Xie, J.; Zhang, X.L.; Liu, Y.; Teng, L.S.

    2014-01-01

    The present study focuses on the neuroprotective effect of glycyrrhizic acid (GA, a major compound separated from Glycyrrhiza Radix, which is a crude Chinese traditional drug) against glutamate-induced cytotoxicity in differentiated PC12 (DPC12) cells. The results showed that GA treatment improved cell viability and ameliorated abnormal glutamate-induced alterations in mitochondria in DPC12 cells. GA reversed glutamate-suppressed B-cell lymphoma 2 levels, inhibited glutamate-enhanced expressions of Bax and cleaved caspase 3, and reduced cytochrome C (Cyto C) release. Exposure to glutamate strongly inhibited phosphorylation of AKT (protein kinase B) and extracellular signal-regulated kinases (ERKs); however, GA pretreatment enhanced activation of ERKs but not AKT. The presence of PD98059 (a mitogen-activated protein/extracellular signal-regulated kinase kinase [MEK] inhibitor) but not LY294002 (a phosphoinositide 3-kinase [PI3K] inhibitor) diminished the potency of GA for improving viability of glutamate-exposed DPC12 cells. These results indicated that ERKs and mitochondria-related pathways are essential for the neuroprotective effect of GA against glutamate-induced toxicity in DPC12 cells. The present study provides experimental evidence supporting GA as a potential therapeutic agent for use in the treatment of neurodegenerative diseases. PMID:25075574

  9. Rapid nontranscriptional activation of endothelial nitric oxide synthase mediates increased cerebral blood flow and stroke protection by corticosteroids

    PubMed Central

    Limbourg, Florian P.; Huang, Zhihong; Plumier, Jean-Christophe; Simoncini, Tommaso; Fujioka, Masayuki; Tuckermann, Jan; Schütz, Günther; Moskowitz, Michael A.; Liao, James K.

    2002-01-01

    Many cellular responses to corticosteroids involve the transcriptional modulation of target genes by the glucocorticoid receptor (GR). A rapid, non-nuclear effect of GR was found to mediate neuroprotection. High-dose corticosteroids (20 mg/kg intraperitoneally), given within 2 hours of transient cerebral ischemia, acutely increased endothelial nitric oxide synthase (eNOS) activity, augmented regional cerebral blood flow (CBF) by 40% to 50%, and reduced cerebral infarct size by 32%. These neuroprotective effects of corticosteroids were abolished by the GR antagonist RU486 and by inhibition of phosphatidylinositol 3-kinase (PI3K), and were absent in eNOS–/– mice. To determine the mechanism by which GR activated eNOS, we measured the effect of corticosteroids on PI3K and the protein kinase Akt. In a ligand-dependent manner, GR activated PI3K and Akt in vitro and in vivo caused NO-dependent vasodilation, which was blocked by cotreatment with RU486 or the PI3K inhibitor LY294002 but not by transcriptional inhibitors. Indeed, a mutant GR, which cannot dimerize and bind to DNA, still activated PI3K and Akt in response to corticosteroids. These findings indicate that non-nuclear GR rapidly activates eNOS through the PI3K/Akt pathway and suggest that this mechanism mediates the acute neuroprotective effects of corticosteroids through augmentation of CBF. PMID:12464678

  10. Hepatoprotective Effect of Quercetin on Endoplasmic Reticulum Stress and Inflammation after Intense Exercise in Mice through Phosphoinositide 3-Kinase and Nuclear Factor-Kappa B

    PubMed Central

    Tang, Yuhan; Li, Juan; Gao, Chao; Xu, Yanyan; Li, Yanyan; Yu, Xiao; Wang, Jing; Liu, Liegang

    2016-01-01

    The mechanisms underlying intense exercise-induced liver damage and its potential treatments remain unclear. We explored the hepatoprotection and mechanisms of quercetin, a naturally occurring flavonoid, in strenuous exercise-derived endoplasmic reticulum stress (ERS) and inflammation. Intense exercise (28 m/min at a 5° slope for 90 min) resulted in the leakage of aminotransferases in the BALB/C mice. The hepatic ultrastructural malformations and oxidative stress levels were attenuated by quercetin (100 mg/kg·bw). Intense exercise and thapsigargin- (Tg-) induced ERS (glucose-regulated protein 78, GRP78) and inflammatory cytokines levels (IL-6 and TNF-α) were decreased with quercetin. Furthermore, quercetin resulted in phosphoinositide 3-kinase (PI3K) induction, Ca2+ restoration, and blockade of the activities of Jun N-terminal kinase (JNK), activating transcription factor 6 (ATF6) and especially NF-κB (p65 and p50 nuclear translocation). A PI3K inhibitor abrogated the protection of quercetin on ERS and inflammation of mouse hepatocytes. SP600125 (JNK inhibitor), AEBSF (ATF6 inhibitor), and especially PDTC (NF-κB inhibitor) enhanced the quercetin-induced protection against Tg stimulation. Collectively, intense exercise-induced ERS and inflammation were attenuated by quercetin. PI3K/Akt activation and JNK, ATF6, and especially NF-κB suppression were involved in the protection. Our results highlight a novel preventive strategy for treating ERS and inflammation-mediated liver damage induced by intense exercise using natural phytochemicals. PMID:27504150

  11. Hepatoprotective Effect of Quercetin on Endoplasmic Reticulum Stress and Inflammation after Intense Exercise in Mice through Phosphoinositide 3-Kinase and Nuclear Factor-Kappa B.

    PubMed

    Tang, Yuhan; Li, Juan; Gao, Chao; Xu, Yanyan; Li, Yanyan; Yu, Xiao; Wang, Jing; Liu, Liegang; Yao, Ping

    2016-01-01

    The mechanisms underlying intense exercise-induced liver damage and its potential treatments remain unclear. We explored the hepatoprotection and mechanisms of quercetin, a naturally occurring flavonoid, in strenuous exercise-derived endoplasmic reticulum stress (ERS) and inflammation. Intense exercise (28 m/min at a 5° slope for 90 min) resulted in the leakage of aminotransferases in the BALB/C mice. The hepatic ultrastructural malformations and oxidative stress levels were attenuated by quercetin (100 mg/kg·bw). Intense exercise and thapsigargin- (Tg-) induced ERS (glucose-regulated protein 78, GRP78) and inflammatory cytokines levels (IL-6 and TNF-α) were decreased with quercetin. Furthermore, quercetin resulted in phosphoinositide 3-kinase (PI3K) induction, Ca(2+) restoration, and blockade of the activities of Jun N-terminal kinase (JNK), activating transcription factor 6 (ATF6) and especially NF-κB (p65 and p50 nuclear translocation). A PI3K inhibitor abrogated the protection of quercetin on ERS and inflammation of mouse hepatocytes. SP600125 (JNK inhibitor), AEBSF (ATF6 inhibitor), and especially PDTC (NF-κB inhibitor) enhanced the quercetin-induced protection against Tg stimulation. Collectively, intense exercise-induced ERS and inflammation were attenuated by quercetin. PI3K/Akt activation and JNK, ATF6, and especially NF-κB suppression were involved in the protection. Our results highlight a novel preventive strategy for treating ERS and inflammation-mediated liver damage induced by intense exercise using natural phytochemicals. PMID:27504150

  12. The Regulation of TGFβ1 Induced Fibronectin EDA Exon Alternative Splicing in Human Renal Proximal Tubule Epithelial Cells.

    PubMed

    Phanish, Mysore Keshavmurthy; Heidebrecht, Felicia; Nabi, Mohammad E; Shah, Nileshkumar; Niculescu-Duvaz, Ioana; Dockrell, Mark Edward Carl

    2015-02-01

    The EDA+ splice variant of fibronectin (Fn) is an early and important component of the extracellular matrix in renal fibrosis. In this work, we investigate cellular mechanisms of EDA+Fn production in human primary proximal tubule epithelial cells (PTECs). TGFβ1-induced EDA+Fn production was assessed by immunocytochemistry, PCR, and Western blotting. SRp40 knockdown was achieved by siRNA. The role of the PI3 kinase-AKT signalling and splicing regulatory protein SRp40 in the production of EDA+Fn was studied by using the chemical inhibitor LY294002 and siRNA targeted to SRp40 respectively. Interaction between PI3 kinase-AKT signalling and SRp40 were assessed by immunofluorescence and immunoprecipitation. To assess the specificity of SRp40 in regulating the splicing of EDA+ exon, we studied the effect of SRp40 knockdown on TGFβ1 induced splicing of FGF receptor 2. Primary human PTECs expressed EDA+ and EDA- Fn. TGFβ1 treatment resulted in increases in the production and deposition of EDA+ Fn as well as an increase in the ratio of EDA+/EDA- Fn mRNA. The TGFβ1 induced EDA+ production was dependent on PI3 kinase-AKT signalling and SRp40 expression. Immunoprecipitation experiments demonstrated direct binding between AKT and SRp40 with an increase in the amount of SRp40 bound to AKT upon TGFβ1 treatment. TGFβ1 treatment resulted in reduction in the FGF receptor2 IIIb splice variant which was unaffected by SRp40 knockdown. In this work, we have presented the first evidence for the regulation of Fn pre-mRNA splicing by PI3 kinase-AKT signalling and SRp40 in human PTECs. Targeting the splicing of Fn pre-mRNA to skip the EDA exon is an attractive option to combat fibrosis. PMID:24962218

  13. p70 S6 kinase activation is not required for insulin-like growth factor-induced differentiation of rat, mouse, or human skeletal muscle cells.

    PubMed

    Canicio, J; Gallardo, E; Illa, I; Testar, X; Palacín, M; Zorzano, A; Kaliman, P

    1998-12-01

    Insulin-like growth factors (IGFs) are potent stimulators of muscle differentiation, and phosphatidylinositol 3-kinase (PI 3-kinase) is an essential second messenger in this process. Little is known about the downstream effectors of the IGF/PI 3-kinase myogenic cascade, and contradictory observations have been reported concerning the involvement of p70 S6 kinase. In an attempt to clarify the role of p70 S6 kinase in myogenesis, here we have studied the effect of rapamycin on rat, mouse, and human skeletal muscle cell differentiation. Both insulin and IGF-II activated p70 S6 kinase in rat L6E9 and mouse Sol8 myoblasts, which was markedly inhibited at 1 ng/ml rapamycin concentrations. Consistent with previous observations in a variety of cell lines, rapamycin exerted a potent inhibitory effect on L6E9 and Sol8 serum-induced myoblast proliferation. In contrast, even at high concentrations (20 ng/ml), rapamycin had no effect on IGF-II-induced proliferation or differentiation. Indeed, neither the morphological differentiation, as assessed by myotube formation, nor the expression of muscle-specific markers such as myogenin, myosin heavy chain, or GLUT4 (glucose transporter-4) glucose carriers was altered by rapamycin. Moreover, here we extended our studies on IGF-II-induced myogenesis to human myoblasts derived from skeletal muscle biopsies. We show that, as observed for rat and mouse muscle cells, human myoblasts can be induced to form multinucleated myotubes in the presence of exogenous IGF-II. Moreover, IGF-II-induced human myotube formation was totally blocked by LY294002, a specific PI 3-kinase inhibitor, but remained unaffected in the presence of rapamycin. PMID:9832443

  14. Insulin-degrading enzyme as a downstream target of insulin receptor signaling cascade: implications for Alzheimer's disease intervention.

    PubMed

    Zhao, Lixia; Teter, Bruce; Morihara, Takashi; Lim, Giselle P; Ambegaokar, Surendra S; Ubeda, Oliver J; Frautschy, Sally A; Cole, Greg M

    2004-12-01

    Insulin-degrading enzyme (IDE) is one of the proteins that has been demonstrated to play a key role in degrading beta-amyloid (Abeta) monomer in vitro and in vivo, raising the possibility of upregulating IDE as an approach to reduce Abeta. Little is known, however, about the cellular and molecular regulation of IDE protein. Because one of the main functions of IDE is to degrade insulin, we hypothesized that there is a negative feedback mechanism whereby stimulation of insulin receptor-mediated signaling upregulates IDE to prevent chronic activation of the pathway. We show that treatment of primary hippocampal neurons with insulin increased IDE protein levels by approximately 25%. Insulin treatment also led to phosphatidylinositol-3 (PI3) kinase activation evidenced by Akt phosphorylation, which was blocked by PI3 kinase inhibitors, wortmannin and LY 294002. Inhibition of PI3 kinase abolished the IDE upregulation by insulin, indicating a cause-effect relationship between insulin signaling and IDE upregulation. Further support for this link was provided by the findings that deficient insulin signaling (decreased PI3 kinase subunit P85) was correlated with reduced IDE in Alzheimer's disease (AD) brains and in Tg2576 Swedish amyloid precursor protein transgenic mice fed a safflower oil-enriched ("Bad") diet used to accelerate pathogenesis. Consistent with IDE function in the degradation of Abeta monomer, the IDE decrease in the Bad diet-fed Tg2576 mice was associated with increased Abeta monomer levels. These in vitro and in vivo analyses validate the use of enhanced CNS insulin signaling as a potential strategy for AD intervention to correct the IDE defects occurring in AD. PMID:15590928

  15. Inactivation of the tuberous sclerosis complex-1 and -2 gene products occurs by phosphoinositide 3-kinase/Akt-dependent and -independent phosphorylation of tuberin.

    PubMed

    Tee, Andrew R; Anjum, Rana; Blenis, John

    2003-09-26

    The tuberous sclerosis complex (TSC) is a genetic disorder that is caused through mutations in either one of the two tumor suppressor genes, TSC1 and TSC2, that encode hamartin and tuberin, respectively. Interaction of hamartin with tuberin forms a heterodimer that inhibits signaling by the mammalian target of rapamycin to its downstream targets: eukaryotic initiation factor 4E-binding protein 1 (4E-BP1) and ribosomal protein S6 kinase 1 (S6K1). During mitogenic sufficiency, the phosphoinositide 3-kinase (PI3K)/Akt pathway phosphorylates tuberin on Ser-939 and Thr-1462 that inhibits the tumor suppressor function of the TSC complex. Here we show that tuberin-hamartin heterodimers block protein kinase C (PKC)/MAPK- and phosphatidic acid-mediated signaling toward mammalian target of rapamycin-dependent targets. We also show that two TSC2 mutants derived from TSC patients are defective in repressing phorbol 12-myristate 13-acetate-induced 4E-BP1 phosphorylation. PKC/MAPK signaling leads to phosphorylation of tuberin at sites that overlap with and are distinct from Akt phosphorylation sites. Phosphorylation of tuberin by phorbol 12-myristate 13-acetate was reduced by treatment of cells with either bisindolylmaleimide I or UO126, inhibitors of PKC and MAPK/MEK (MAPK/ERK kinase), respectively, but not by wortmannin (an inhibitor of PI3K). This work reveals that both PI3K-independent and -dependent mechanisms modulate tuberin phosphorylation in vivo. PMID:12867426

  16. Class II phosphoinositide 3-kinase C2β regulates a novel signaling pathway involved in breast cancer progression

    PubMed Central

    Abbott, Jonathan J.; Piñeiro, Roberto; Buus, Richard; Iezzi, Manuela; Ricci, Francesca; Bergamaschi, Daniele; Ostano, Paola; Chiorino, Giovanna; Lattanzio, Rossano; Broggini, Massimo; Piantelli, Mauro; Maffucci, Tania; Falasca, Marco

    2016-01-01

    It is now well established that the enzymes phosphoinositide 3-kinases (PI3Ks) have a key role in the development and progression of many cancer types and indeed PI3Ks inhibitors are currently being tested in clinical trials. Although eight distinct PI3K isoforms exist, grouped into three classes, most of the evidence currently available are focused on one specific isoform with very little known about the potential role of the other members of this family in cancer. Here we demonstrate that the class II enzyme PI3K-C2β is overexpressed in several human breast cancer cell lines and in human breast cancer specimens. Our data indicate that PI3K-C2β regulates breast cancer cell growth in vitro and in vivo and that PI3K-C2β expression in breast tissues is correlated with the proliferative status of the tumor. Specifically we show that downregulation of PI3K-C2β in breast cancer cell lines reduces colony formation, induces cell cycle arrest and inhibits tumor growth, in particular in an estrogen-dependent in vivo xenograft. Investigation of the mechanism of the PI3K-C2β-dependent regulation of cell cycle progression and cell growth revealed that PI3K-C2β regulates cyclin B1 protein levels through modulation of microRNA miR-449a levels. Our data further demonstrate that downregulation of PI3K-C2β inhibits breast cancer cell invasion in vitro and breast cancer metastasis in vivo. Consistent with this, PI3K-C2β is highly expressed in lymph-nodes metastases compared to matching primary tumors. These data demonstrate that PI3K-C2β plays a pivotal role in breast cancer progression and in metastasis development. Our data indicate that PI3K-C2β may represent a key molecular switch that regulates a rate-limiting step in breast tumor progression and therefore it may be targeted to limit breast cancer spread. PMID:26934321

  17. Reciprocal cross-talk between P2Y1 and P2Y12 receptors at the level of calcium signaling in human platelets.

    PubMed

    Hardy, Adam R; Jones, Matthew L; Mundell, Stuart J; Poole, Alastair W

    2004-09-15

    Adenosine diphosphate (ADP), an important platelet agonist, acts through 2 G-protein-coupled receptors (GPCRs), P2Y(1) and P2Y(12), which signal through Gq and Gi, respectively. There is increasing evidence for cross-talk between signaling pathways downstream of GPCRs and here we demonstrate cross-talk between these 2 ADP receptors in human platelets. We show that P2Y(12) contributes to platelet signaling by potentiating the P2Y(1)-induced calcium response. This potentiation is mediated by 2 mechanisms: inhibition of adenylate cyclase and activation of phosphatidylinositol 3 (PI 3)-kinase. Furthermore, the Src family kinase inhibitor PP1 selectively potentiates the contribution to the calcium response by P2Y(12), although inhibition of adenylate cyclase by P2Y(12) is unaffected. Using PP1 in combination with the inhibitor of PI 3-kinase LY294002, we show that Src negatively regulates the PI 3-kinase-mediated component of the P2Y(12) calcium response. Finally, we were able to show that Src kinase is activated through P2Y(1) but not P2Y(12). Taken together, we present evidence for a complex signaling interplay between P2Y(1) and P2Y(12), where P2Y(12) is able to positively regulate P2Y(1) action and P2Y(1) negatively regulates this action of P2Y(12). It is likely that this interplay between receptors plays an important role in maintaining the delicate balance between platelet activation and inhibition during normal hemostasis. PMID:15187029

  18. ADAM17-siRNA inhibits MCF-7 breast cancer through EGFR-PI3K-AKT activation.

    PubMed

    Meng, Xiangchao; Hu, Baoshan; Hossain, Mohammad Monir; Chen, Guofu; Sun, Ying; Zhang, Xuepeng

    2016-08-01

    A disintegrin and metalloproteinase-17 (ADAM17) can cut and release a wide variety of epidermal growth factor receptor (EGFR) ligands to promote survival, invasion and proliferation of cancer cell, and therefore, is considered to be a potential therapeutic target for cancer. The main goal of the present study was to observe the effects of ADAM17 small interfering RNA (ADAM17-siRNA) on human MCF-7 breast cancer and investigate its activation pathway. In vitro, MCF-7 cells were divided into ADAM17-siRNA groups, nonsense siRNA groups, AG1478 (selective EGFR blocker) groups, LY294002 [phosphatidylinositol 3-kinase (PI3K) phosphorylation inhibitor] groups, PD0325901 [mitogen extracellular kinase (MEK) inhibitor] groups and control groups. In vivo, MCF-7 cells were implanted subcutaneously into nude mice and then these mice were randomly divided into ADAM17-siRNA groups, vector groups and control groups. Our data showed that compared with the control groups, ADAM17-siRNA, AG1478 and LY294002 could inhibit the migration and proliferation of MCF-7 cells, but PD0325901 and nonsense siRNA did not show this effect. Except that specific ADAM17-siRNA could inhibit the expression of ADAM17 mRNA, others did not change it. Western blot analysis further confirmed that EGFR-PI3K-AKT signaling pathway is involved in ADAM17-siRNA inhibiting migration and proliferation of MCF-7 cells. Similarly to the former, the growth of MCF-7 breast cancer in nude mice was significantly inhibited by ADAM17-siRNA. Compared with the control group and the vector group, the tumor volume was smaller in the ADAM17-siRNA group, the tissues developed large areas of necrosis, immunohistochemistry showed low expressions of ADAM17 and Ki-67 and western blot analysis proved that the expression of ADAM17 protein in the tissue was also reduced. The present study suggests that ADAM17-siRNA inhibits MCF-7 breast cancer and is activated through the EGFR-PI3K-AKT signaling pathway. PMID:27221510

  19. Low-Dose Radiation Induces Cell Proliferation in Human Embryonic Lung Fibroblasts but not in Lung Cancer Cells: Importance of ERK1/2 and AKT Signaling Pathways.

    PubMed

    Liang, Xinyue; Gu, Junlian; Yu, Dehai; Wang, Guanjun; Zhou, Lei; Zhang, Xiaoying; Zhao, Yuguang; Chen, Xiao; Zheng, Shirong; Liu, Qiang; Cai, Lu; Cui, Jiuwei; Li, Wei

    2016-01-01

    Hormesis and adaptive responses are 2 important biological effects of low-dose ionizing radiation (LDR). In normal tissue, LDR induces hormesis as evinced by increased cell proliferation; however, whether LDR also increases tumor cell proliferation needs to be investigated. In this study, cell proliferation was assayed by total cell numbers and the Cell Counting Kit 8 assay. Mitogen-activated protein kinases (MAPK)/extracellular signal-regulated kinase (ERK) and phosphatidylinositol 3' -kinase(PI3K)-Akt (PI3K/AKT) phosphorylation were determined by Western blot analysis. Human embryonic lung fibroblast 2BS and lung cancer NCI-H446 cell lines were irradiated with LDR at different doses (20-100 mGy). In response to 20 to 75 mGy X-rays, cell proliferation was significantly increased in 2BS but not in NCI-H446 cells. In 2BS cells, LDR at 20 to 75 mGy also stimulated phosphorylation of MAPK/ERK pathway proteins including ERK, MEK, and Raf and of the PI3K/AKT pathway protein AKT. To test whether ERK1/2 and AKT pathway activation was involved in the stimulation of cell proliferation in 2BS cells, the MAPK/ERK and PI3K/AKT pathways were inhibited using their specific inhibitors, U0126 and LY294002. U0126 decreased the phosphorylation of ERK1/2, and LY294002 decreased the phosphorylation of AKT; each could significantly inhibit LDR-induced 2BS cell proliferation. However, LDR did not stimulate these kinases, and kinase inhibitors also did not affect cell proliferation in the NCI-H446 cells. These results suggest that LDR stimulates cell proliferation via the activation of both MAPK/ERK and PI3K/AKT signaling pathways in 2BS but not in NCI-H446 cells. This finding implies the potential for applying LDR to protect normal tissues from radiotherapy without diminishing the efficacy of tumor therapy. PMID:26788032

  20. Signalling pathway involved in nitric oxide synthase type II activation in chondrocytes: synergistic effect of leptin with interleukin-1

    PubMed Central

    Otero, Miguel; Lago, Rocío; Lago, Francisca; Reino, Juan Jesús Gomez; Gualillo, Oreste

    2005-01-01

    The objective of the present study was to investigate the effect of leptin, alone or in combination with IL-1, on nitric oxide synthase (NOS) type II activity in vitro in human primary chondrocytes, in the mouse chondrogenic ATDC5 cell line, and in mature and hypertrophic ATDC5 differentiated chondrocytes. For completeness, we also investigated the signalling pathway of the putative synergism between leptin and IL-1. For this purpose, nitric oxide production was evaluated using the Griess colorimetric reaction in culture medium of cells stimulated over 48 hours with leptin (800 nmol/l) and IL-1 (0.025 ng/ml), alone or combined. Specific pharmacological inhibitors of NOS type II (aminoguanidine [1 mmol/l]), janus kinase (JAK)2 (tyrphostin AG490 and Tkip), phosphatidylinositol 3-kinase (PI3K; wortmannin [1, 2.5, 5 and 10 μmol/l] and LY294002 [1, 2.5, 5 and 10 μmol/l]), mitogen-activated protein kinase kinase (MEK)1 (PD098059 [1, 5, 10, 20 and 30 μmol/l]) and p38 kinase (SB203580 [1, 5, 10, 20 and 30 μmol/l]) were added 1 hour before stimulation. Nitric oxide synthase type II mRNA expression in ATDC5 chondrocytes was investigated by real-time PCR and NOS II protein expression was analyzed by western blot. Our results indicate that stimulation of chondrocytes with IL-1 results in dose-dependent nitric oxide production. In contrast, leptin alone was unable to induce nitric oxide production or expression of NOS type II mRNA or its protein. However, co-stimulation with leptin and IL-1 resulted in a net increase in nitric oxide concentration over IL-1 challenge that was eliminated by pretreatment with the NOS II specific inhibitor aminoguanidine. Pretreatment with tyrphostin AG490 and Tkip (a SOCS-1 mimetic peptide that inhibits JAK2) blocked nitric oxide production induced by leptin/IL-1. Finally, wortmannin, LY294002, PD098059 and SB203580 significantly decreased nitric oxide production. These findings were confirmed in mature and hypertrophic ATDC5 chondrocytes, and

  1. Lipopolysaccharide induces ICAM-1 expression via a c-Src/NADPH oxidase/ROS-dependent NF-κB pathway in human pulmonary alveolar epithelial cells.

    PubMed

    Cho, Rou-Ling; Yang, Chien-Chung; Lee, I-Ta; Lin, Chih-Chung; Chi, Pei-Ling; Hsiao, Li-Der; Yang, Chuen-Mao

    2016-04-01

    Upregulation of intercellular adhesion molecule-1 (ICAM-1) is frequently implicated in lung inflammation. Lipopolysaccharide (LPS) has been shown to play a key role in inflammation via adhesion molecule induction and then causes lung injury. However, the mechanisms underlying LPS-induced ICAM-1 expression in human pulmonary alveolar epithelial cells (HPAEpiCs) remain unclear. We showed that LPS induced ICAM-1 expression in HPAEpiCs, revealed by Western blotting, RT-PCR, real-time PCR, and promoter assay. Pretreatment with the inhibitor of c-Src (protein phosphatase-1, PP1), reactive oxygen species (ROS) (Edaravone), NADPH oxidase (apocynin and diphenyleneiodonium chloride), EGFR (AG1478), PDGFR (AG1296), phosphatidylinositol-3-kinase (PI3K) (LY294002), MEK1/2 (U0126), or NF-κB (Bay11-7082) and transfection with siRNAs of c-Src, EGFR, PDGFR, Akt, p47(phox), Nox2, Nox4, p42, and p65 markedly reduced LPS-induced ICAM-1 expression and monocyte adherence to HPAEpiCs challenged with LPS. In addition, we established that LPS stimulated phosphorylation of c-Src, EGFR, PDGFR, Akt, or p65, which was inhibited by pretreatment with their respective inhibitors. LPS induced Toll-like receptor 4 (TLR4), MyD88, TNF receptor-associated factor 6 (TRAF6), c-Src, p47(phox), and Rac1 complex formation 2, which was attenuated by transfection with c-Src or TRAF6 siRNA. Furthermore, LPS markedly enhanced NADPH oxidase activation and intracellular ROS generation, which were inhibited by PP1. We established that LPS induced p42/p44 MAPK activation via a c-Src/NADPH oxidase/ROS/EGFR, PDGFR/PI3K/Akt-dependent pathway in these cells. Finally, we observed that LPS significantly enhanced NF-κB and IκBα phosphorylation, NF-κB translocation, and NF-κB promoter activity, which were inhibited by PP1, Edaravone, apocynin, diphenyleneiodonium chloride, AG1478, AG1296, LY294002, or U0126. These results demonstrated that LPS induces p42/p44 MAPK activation mediated through the TLR4/MyD88/TRAF6/c

  2. Resveratrol Inhibits LPS-Induced MAPKs Activation via Activation of the Phosphatidylinositol 3-Kinase Pathway in Murine RAW 264.7 Macrophage Cells

    PubMed Central

    Liu, Bin; Deng, Yi-Shu; Zhan, Dong; Chen, Yuan-Li; He, Ying; Liu, Jing; Zhang, Zong-Ji; Sun, Jun; Lu, Di

    2012-01-01

    Background Resveratrol is a natural polyphenolic compound that has cardioprotective, anticancer and anti-inflammatory properties. We investigated the capacity of resveratrol to protect RAW 264.7 cells from inflammatory insults and explored mechanisms underlying inhibitory effects of resveratrol on RAW 264.7 cells. Methodology/Principal Findings Murine RAW 264.7 cells were treated with resveratrol (1, 5, and 10 µM) and/or LPS (5 µg/ml). Nitric oxide (NO) and prostaglandin E2 (PGE2) were measured by Griess reagent and ELISA. The mRNA and protein levels of proinflammatory proteins and cytokines were analysed by ELISA, RT-PCR and double immunofluorescence labeling, respectively. Phosphorylation levels of Akt, cyclic AMP-responsive element-binding protein (CREB), mitogen-activated protein kinases (MAPKs) cascades, AMP-activated protein kinase (AMPK) and expression of SIRT1(Silent information regulator T1) were measured by western blot. Wortmannin (1 µM), a specific phosphatidylinositol 3-kinase (PI3-K) inhibitor, was used to determine if PI3-K/Akt signaling pathway might be involved in resveratrol’s action on RAW 264.7 cells. Resveratrol significantly attenuated the LPS-induced expression of nitric oxide (NO), prostaglandin E2 (PGE2), inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) in RAW 264.7 cells. Resveratrol increased Akt phosphorylation in a time-dependent manner. Wortmannin, a specific phosphatidylinositol 3-kinase (PI3-K) inhibitor, blocked the effects of resveratrol on LPS-induced RAW 264.7 cells activation. In addition, PI3-K inhibition partially abolished the inhibitory effect of resveratrol on the phosphorylation of cyclic AMP-responsive element-binding protein (CREB) and mitogen-activated protein kinases (MAPKs) cascades. Meanwhile, PI3-K is essential for resveratrol-mediated phosphorylation of AMPK and expression of SIRT1. Conclusion and Implications This investigation

  3. Interaction with PI3-kinase contributes to the cytotoxic activity of Apoptin

    PubMed Central

    Maddika, S; Wiechec, E; Ande, SR; Poon, IK; Fischer, U; Wesselborg, S; Jans, DA; Schulze-Osthoff, K; Los, M

    2010-01-01

    Apoptin, a small protein from the chicken anemia virus, has attracted attention because of its specificity in killing tumor cells. Localization of apoptin in the nucleus of tumor cells has been shown to be vital for proapoptotic activity, however, targeted expression of apoptin in the nucleus of normal cells does not harm the cells, indicating that nuclear localization of apoptin is insufficient for its cytotoxicity. Here, we demonstrate for the first time that apoptin interacts with the SH3 domain of p85, the regulatory subunit of phosphoinositide 3-kinase (PI3-K), through its proline-rich region. Apoptin derivatives devoid of this proline-rich region do not interact with p85, are unable to activate PI3-K, and show impaired apoptosis induction. Moreover, apoptin mutants containing the proline-rich domain are sufficient to elevate PI3-K activity and to induce apoptosis in cancer cells. Downregulation of p85 leads to nuclear exclusion of apoptin and impairs cell death induction, indicating that interaction with the p85 PI3-K subunit essentially contributes to the cytotoxic activity of apoptin. PMID:18059340

  4. Evaluation of variation in the phosphoinositide-3-kinase catalytic subunit alpha oncogene and breast cancer risk

    PubMed Central

    Stevens, K N; Garcia-Closas, M; Fredericksen, Z; Kosel, M; Pankratz, V S; Hopper, J L; Dite, G S; Apicella, C; Southey, M C; Schmidt, M K; Broeks, A; Van ‘t Veer, L J; Tollenaar, R A E M; Fasching, P A; Beckmann, M W; Hein, A; Ekici, A B; Johnson, N; Peto, J; dos Santos Silva, I; Gibson, L; Sawyer, E; Tomlinson, I; Kerin, M J; Chanock, S; Lissowska, J; Hunter, D J; Hoover, R N; Thomas, G D; Milne, R L; Pérez, JI Arias; González-Neira, A; Benítez, J; Burwinkel, B; Meindl, A; Schmutzler, R K; Bartrar, C R; Hamann, U; Ko, Y D; Brüning, T; Chang-Claude, J; Hein, R; Wang-Gohrke, S; Dörk, T; Schürmann, P; Bremer, M; Hillemanns, P; Bogdanova, N; Zalutsky, J V; Rogov, Y I; Antonenkova, N; Lindblom, A; Margolin, S; Mannermaa, A; Kataja, V; Kosma, V-M; Hartikainen, J; Chenevix-Trench, G; Chen, X; Peterlongo, P; Bonanni, B; Bernard, L; Manoukian, S; Wang, X; Cerhan, J; Vachon, C M; Olson, J; Giles, G G; Baglietto, L; McLean, C A; Severi, G; John, E M; Miron, A; Winqvist, R; Pylkäs, K; Jukkola-Vuorinen, A; Grip, M; Andrulis, I; Knight, J A; Glendon, G; Mulligan, A M; Cox, A; Brock, I W; Elliott, G; Cross, S S; Pharoah, P P; Dunning, A M; Pooley, K A; Humphreys, M K; Wang, J; Kang, D; Yoo, K-Y; Noh, D-Y; Sangrajrang, S; Gabrieau, V; Brennan, P; McKay, J; Anton-Culver, H; Ziogas, A; Couch, F J; Easton, D F

    2011-01-01

    Background: Somatic mutations in phosphoinositide-3-kinase catalytic subunit alpha (PIK3CA) are frequent in breast tumours and have been associated with oestrogen receptor (ER) expression, human epidermal growth factor receptor-2 overexpression, lymph node metastasis and poor survival. The goal of this study was to evaluate the association between inherited variation in this oncogene and risk of breast cancer. Methods: A single-nucleotide polymorphism from the PIK3CA locus that was associated with breast cancer in a study of Caucasian breast cancer cases and controls from the Mayo Clinic (MCBCS) was genotyped in 5436 cases and 5280 controls from the Cancer Genetic Markers of Susceptibility (CGEMS) study and in 30 949 cases and 29 788 controls from the Breast Cancer Association Consortium (BCAC). Results: Rs1607237 was significantly associated with a decreased risk of breast cancer in MCBCS, CGEMS and all studies of white Europeans combined (odds ratio (OR)=0.97, 95% confidence interval (CI) 0.95–0.99, P=4.6 × 10−3), but did not reach significance in the BCAC replication study alone (OR=0.98, 95% CI 0.96–1.01, P=0.139). Conclusion: Common germline variation in PIK3CA does not have a strong influence on the risk of breast cancer PMID:22033276

  5. Drosophila Spidey/Kar Regulates Oenocyte Growth via PI3-Kinase Signaling

    PubMed Central

    Cinnamon, Einat; Sawala, Annick; Tittiger, Claus; Paroush, Ze'ev

    2016-01-01

    Cell growth and proliferation depend upon many different aspects of lipid metabolism. One key signaling pathway that is utilized in many different anabolic contexts involves Phosphatidylinositide 3-kinase (PI3K) and its membrane lipid products, the Phosphatidylinositol (3,4,5)-trisphosphates. It remains unclear, however, which other branches of lipid metabolism interact with the PI3K signaling pathway. Here, we focus on specialized fat metabolizing cells in Drosophila called larval oenocytes. In the presence of dietary nutrients, oenocytes undergo PI3K-dependent cell growth and contain very few lipid droplets. In contrast, during starvation, oenocytes decrease PI3K signaling, shut down cell growth and accumulate abundant lipid droplets. We now show that PI3K in larval oenocytes, but not in fat body cells, functions to suppress lipid droplet accumulation. Several enzymes of fatty acid, triglyceride and hydrocarbon metabolism are required in oenocytes primarily for lipid droplet induction rather than for cell growth. In contrast, a very long chain fatty-acyl-CoA reductase (FarO) and a putative lipid dehydrogenase/reductase (Spidey, also known as Kar) not only promote lipid droplet induction but also inhibit oenocyte growth. In the case of Spidey/Kar, we show that the growth suppression mechanism involves inhibition of the PI3K signaling pathway upstream of Akt activity. Together, the findings in this study show how Spidey/Kar and FarO regulate the balance between the cell growth and lipid storage of larval oenocytes. PMID:27500738

  6. Phosphorylation of Src by phosphoinositide 3-kinase regulates beta-adrenergic receptor-mediated EGFR transactivation.

    PubMed

    Watson, Lewis J; Alexander, Kevin M; Mohan, Maradumane L; Bowman, Amber L; Mangmool, Supachoke; Xiao, Kunhong; Naga Prasad, Sathyamangla V; Rockman, Howard A

    2016-10-01

    β2-Adrenergic receptors (β2AR) transactivate epidermal growth factor receptors (EGFR) through formation of a β2AR-EGFR complex that requires activation of Src to mediate signaling. Here, we show that both lipid and protein kinase activities of the bifunctional phosphoinositide 3-kinase (PI3K) enzyme are required for β2AR-stimulated EGFR transactivation. Mechanistically, the generation of phosphatidylinositol (3,4,5)-tris-phosphate (PIP3) by the lipid kinase function stabilizes β2AR-EGFR complexes while the protein kinase activity of PI3K regulates Src activation by direct phosphorylation. The protein kinase activity of PI3K phosphorylates serine residue 70 on Src to enhance its activity and induce EGFR transactivation following βAR stimulation. This newly identified function for PI3K, whereby Src is a substrate for the protein kinase activity of PI3K, is of importance since Src plays a key role in pathological and physiological signaling. PMID:27169346

  7. Structural analysis of mevalonate-3-kinase provides insight into the mechanisms of isoprenoid pathway decarboxylases

    PubMed Central

    Vinokur, Jeffrey M; Korman, Tyler P; Sawaya, Michael R; Collazo, Michael; Cascio, Duillio; Bowie, James U

    2015-01-01

    In animals, cholesterol is made from 5-carbon building blocks produced by the mevalonate pathway. Drugs that inhibit the mevalonate pathway such as atorvastatin (lipitor) have led to successful treatments for high cholesterol in humans. Another potential target for the inhibition of cholesterol synthesis is mevalonate diphosphate decarboxylase (MDD), which catalyzes the phosphorylation of (R)-mevalonate diphosphate, followed by decarboxylation to yield isopentenyl pyrophosphate. We recently discovered an MDD homolog, mevalonate-3-kinase (M3K) from Thermoplasma acidophilum, which catalyzes the identical phosphorylation of (R)-mevalonate, but without concomitant decarboxylation. Thus, M3K catalyzes half the reaction of the decarboxylase, allowing us to separate features of the active site that are required for decarboxylation from features required for phosphorylation. Here we determine the crystal structure of M3K in the apo form, and with bound substrates, and compare it to MDD structures. Structural and mutagenic analysis reveals modifications that allow M3K to bind mevalonate rather than mevalonate diphosphate. Comparison to homologous MDD structures show that both enzymes employ analogous Arg or Lys residues to catalyze phosphate transfer. However, an invariant active site Asp/Lys pair of MDD previously thought to play a role in phosphorylation is missing in M3K with no functional replacement. Thus, we suggest that the invariant Asp/Lys pair in MDD may be critical for decarboxylation rather than phosphorylation. PMID:25422158

  8. PI3-kinase mutation linked to insulin and growth factor resistance in vivo.

    PubMed

    Winnay, Jonathon N; Solheim, Marie H; Dirice, Ercument; Sakaguchi, Masaji; Noh, Hye-Lim; Kang, Hee Joon; Takahashi, Hirokazu; Chudasama, Kishan K; Kim, Jason K; Molven, Anders; Kahn, C Ronald; Njølstad, Pål R

    2016-04-01

    The phosphatidylinositol 3-kinase (PI3K) signaling pathway is central to the action of insulin and many growth factors. Heterozygous mutations in the gene encoding the p85α regulatory subunit of PI3K (PIK3R1) have been identified in patients with SHORT syndrome - a disorder characterized by short stature, partial lipodystrophy, and insulin resistance. Here, we evaluated whether SHORT syndrome-associated PIK3R1 mutations account for the pathophysiology that underlies the abnormalities by generating knockin mice that are heterozygous for the Pik3r1Arg649Trp mutation, which is homologous to the mutation found in the majority of affected individuals. Similar to the patients, mutant mice exhibited a reduction in body weight and length, partial lipodystrophy, and systemic insulin resistance. These derangements were associated with a reduced capacity of insulin and other growth factors to activate PI3K in liver, muscle, and fat; marked insulin resistance in liver and fat of mutation-harboring animals; and insulin resistance in vitro in cells derived from these mice. In addition, mutant mice displayed defective insulin secretion and GLP-1 action on islets in vivo and in vitro. These data demonstrate the ability of this heterozygous mutation to alter PI3K activity in vivo and the central role of PI3K in insulin/growth factor action, adipocyte function, and glucose metabolism. PMID:26974159

  9. The Structure of p85ni in Class IA Phosphoinositide 3-Kinase Exhibits Interdomain Disorder

    PubMed Central

    Sen, K. Ilker; Wu, Haiyan; Backer, Jonathan M.; Gerfen, Gary J.

    2010-01-01

    Regulation of the Class IA PI 3-kinase involves inhibition and stabilization of the catalytic subunit (p110) by the regulatory subunit (p85). Regulation is achieved by 2 major contacts: a stable interface involving the Adapter-Binding Domain (ABD) of p110 and the inter-SH2 (iSH2) domain of p85, and a regulatory interaction between the N-terminal SH2 (nSH2) domain of p85 and the helical domain of p110. In the present study, we have examined the relative orientation of the nSH2 and iSH2 of p85α using site-directed spin labeling and pulsed EPR. Surprisingly, both distance measurements and distance distributions suggest that the nSH2 domain is highly disordered relative to the iSH2 domain. Molecular modeling based on EPR distance restraints suggests that the nSH2 domain moves in a hinge-like manner, sampling a torus space around the proximal end of the iSH2 domain. These data have important implications for the mechanism by which p85/p110 dimers are regulated by phosphopeptides. PMID:20131869

  10. PKN3 is required for malignant prostate cell growth downstream of activated PI 3-kinase

    PubMed Central

    Leenders, Frauke; Möpert, Kristin; Schmiedeknecht, Anett; Santel, Ansgar; Czauderna, Frank; Aleku, Manuela; Penschuck, Silke; Dames, Sibylle; Sternberger, Maria; Röhl, Thomas; Wellmann, Axel; Arnold, Wolfgang; Giese, Klaus; Kaufmann, Jörg; Klippel, Anke

    2004-01-01

    Chronic activation of the phosphoinositide 3-kinase (PI3K)/PTEN signal transduction pathway contributes to metastatic cell growth, but up to now effectors mediating this response are poorly defined. By simulating chronic activation of PI3K signaling experimentally, combined with three-dimensional (3D) culture conditions and gene expression profiling, we aimed to identify novel effectors that contribute to malignant cell growth. Using this approach we identified and validated PKN3, a barely characterized protein kinase C-related molecule, as a novel effector mediating malignant cell growth downstream of activated PI3K. PKN3 is required for invasive prostate cell growth as assessed by 3D cell culture assays and in an orthotopic mouse tumor model by inducible expression of short hairpin RNA (shRNA). We demonstrate that PKN3 is regulated by PI3K at both the expression level and the catalytic activity level. Therefore, PKN3 might represent a preferred target for therapeutic intervention in cancers that lack tumor suppressor PTEN function or depend on chronic activation of PI3K. PMID:15282551

  11. Atg38 is required for autophagy-specific phosphatidylinositol 3-kinase complex integrity

    PubMed Central

    Araki, Yasuhiro; Ku, Wei-Chi; Akioka, Manami; May, Alexander I.; Hayashi, Yu; Arisaka, Fumio; Ishihama, Yasushi

    2013-01-01

    Autophagy is a conserved eukaryotic process of protein and organelle self-degradation within the vacuole/lysosome. Autophagy is characterized by the formation of an autophagosome, for which Vps34-dervied phosphatidylinositol 3-phosphate (PI3P) is essential. In yeast, Vps34 forms two distinct protein complexes: complex I, which functions in autophagy, and complex II, which is involved in protein sorting to the vacuole. Here we identify and characterize Atg38 as a stably associated subunit of complex I. In atg38Δ cells, autophagic activity was significantly reduced and PI3-kinase complex I dissociated into the Vps15–Vps34 and Atg14–Vps30 subcomplexes. We find that Atg38 physically interacted with Atg14 and Vps34 via its N terminus. Further biochemical analyses revealed that Atg38 homodimerizes through its C terminus and that this homodimer formation is indispensable for the integrity of complex I. These data suggest that the homodimer of Atg38 functions as a physical linkage between the Vps15–Vps34 and Atg14–Vps30 subcomplexes to facilitate complex I formation. PMID:24165940

  12. RhoG regulates anoikis through a phosphatidylinositol 3-kinase-dependent mechanism

    SciTech Connect

    Yamaki, Nao; Negishi, Manabu; Katoh, Hironori . E-mail: hirokato@pharm.kyoto-u.ac.jp

    2007-08-01

    In normal epithelial cells, cell-matrix interaction is required for cell survival and proliferation, whereas disruption of this interaction causes epithelial cells to undergo apoptosis called anoikis. Here we show that the small GTPase RhoG plays an important role in the regulation of anoikis. HeLa cells are capable of anchorage-independent cell growth and acquire resistance to anoikis. We found that RNA interference-mediated knockdown of RhoG promoted anoikis in HeLa cells. Previous studies have shown that RhoG activates Rac1 and induces several cellular functions including promotion of cell migration through its effector ELMO and the ELMO-binding protein Dock180 that function as a Rac-specific guanine nucleotide exchange factor. However, RhoG-induced suppression of anoikis was independent of the ELMO- and Dock180-mediated activation of Rac1. On the other hand, the regulation of anoikis by RhoG required phosphatidylinositol 3-kinase (PI3K) activity, and constitutively active RhoG bound to the PI3K regulatory subunit p85{alpha} and induced the PI3K-dependent phosphorylation of Akt. Taken together, these results suggest that RhoG protects cells from apoptosis caused by the loss of anchorage through a PI3K-dependent mechanism, independent of its activation of Rac1.

  13. Phosphoinositide 3-kinase and Bruton's tyrosine kinase regulate overlapping sets of genes in B lymphocytes

    PubMed Central

    Fruman, David A.; Ferl, Gregory Z.; An, Sam S.; Donahue, Amber C.; Satterthwaite, Anne B.; Witte, Owen N.

    2002-01-01

    Bruton's tyrosine kinase (Btk) acts downstream of phosphoinositide 3-kinase (PI3K) in a pathway required for B cell receptor (BCR)-dependent proliferation. We used DNA microarrays to determine what fraction of genes this pathway influences and to investigate whether PI3K and Btk mediate distinct gene regulation events. As complete loss-of-function mutations in PI3K and Btk alter B cell subpopulations and may cause compensatory changes in gene expression, we used B cells with partial loss of function in either PI3K or Btk. Only about 5% of the BCR-dependent gene expression changes were significantly affected by reduced PI3K or Btk. The results indicate that PI3K and Btk share target genes, and that PI3K influences additional genes independently of Btk. These data are consistent with PI3K acting through Btk and other effectors to regulate expression of a critical subset of BCR target genes that determine effective entry into the cell cycle. PMID:11756681

  14. Drosophila Spidey/Kar Regulates Oenocyte Growth via PI3-Kinase Signaling.

    PubMed

    Cinnamon, Einat; Makki, Rami; Sawala, Annick; Wickenberg, Leah P; Blomquist, Gary J; Tittiger, Claus; Paroush, Ze'ev; Gould, Alex P

    2016-08-01

    Cell growth and proliferation depend upon many different aspects of lipid metabolism. One key signaling pathway that is utilized in many different anabolic contexts involves Phosphatidylinositide 3-kinase (PI3K) and its membrane lipid products, the Phosphatidylinositol (3,4,5)-trisphosphates. It remains unclear, however, which other branches of lipid metabolism interact with the PI3K signaling pathway. Here, we focus on specialized fat metabolizing cells in Drosophila called larval oenocytes. In the presence of dietary nutrients, oenocytes undergo PI3K-dependent cell growth and contain very few lipid droplets. In contrast, during starvation, oenocytes decrease PI3K signaling, shut down cell growth and accumulate abundant lipid droplets. We now show that PI3K in larval oenocytes, but not in fat body cells, functions to suppress lipid droplet accumulation. Several enzymes of fatty acid, triglyceride and hydrocarbon metabolism are required in oenocytes primarily for lipid droplet induction rather than for cell growth. In contrast, a very long chain fatty-acyl-CoA reductase (FarO) and a putative lipid dehydrogenase/reductase (Spidey, also known as Kar) not only promote lipid droplet induction but also inhibit oenocyte growth. In the case of Spidey/Kar, we show that the growth suppression mechanism involves inhibition of the PI3K signaling pathway upstream of Akt activity. Together, the findings in this study show how Spidey/Kar and FarO regulate the balance between the cell growth and lipid storage of larval oenocytes. PMID:27500738

  15. RAS and RHO families of GTPases directly regulate distinct phosphoinositide 3-kinase isoforms.

    PubMed

    Fritsch, Ralph; de Krijger, Inge; Fritsch, Kornelia; George, Roger; Reason, Beth; Kumar, Madhu S; Diefenbacher, Markus; Stamp, Gordon; Downward, Julian

    2013-05-23

    RAS proteins are important direct activators of p110α, p110γ, and p110δ type I phosphoinositide 3-kinases (PI3Ks), interacting via an amino-terminal RAS-binding domain (RBD). Here, we investigate the regulation of the ubiquitous p110β isoform of PI3K, implicated in G-protein-coupled receptor (GPCR) signaling, PTEN-loss-driven cancers, and thrombocyte function. Unexpectedly, RAS is unable to interact with p110β, but instead RAC1 and CDC42 from the RHO subfamily of small GTPases bind and activate p110β via its RBD. In fibroblasts, GPCRs couple to PI3K through Dock180/Elmo1-mediated RAC activation and subsequent interaction with p110β. Cells from mice carrying mutations in the p110β RBD show reduced PI3K activity and defective chemotaxis, and these mice are resistant to experimental lung fibrosis. These findings revise our understanding of the regulation of type I PI3K by showing that both RAS and RHO family GTPases directly regulate distinct ubiquitous PI3K isoforms and that RAC activates p110β downstream of GPCRs. PMID:23706742

  16. RhoG regulates anoikis through a phosphatidylinositol 3-kinase-dependent mechanism.

    PubMed

    Yamaki, Nao; Negishi, Manabu; Katoh, Hironori

    2007-08-01

    In normal epithelial cells, cell-matrix interaction is required for cell survival and proliferation, whereas disruption of this interaction causes epithelial cells to undergo apoptosis called anoikis. Here we show that the small GTPase RhoG plays an important role in the regulation of anoikis. HeLa cells are capable of anchorage-independent cell growth and acquire resistance to anoikis. We found that RNA interference-mediated knockdown of RhoG promoted anoikis in HeLa cells. Previous studies have shown that RhoG activates Rac1 and induces several cellular functions including promotion of cell migration through its effector ELMO and the ELMO-binding protein Dock180 that function as a Rac-specific guanine nucleotide exchange factor. However, RhoG-induced suppression of anoikis was independent of the ELMO- and Dock180-mediated activation of Rac1. On the other hand, the regulation of anoikis by RhoG required phosphatidylinositol 3-kinase (PI3K) activity, and constitutively active RhoG bound to the PI3K regulatory subunit p85alpha and induced the PI3K-dependent phosphorylation of Akt. Taken together, these results suggest that RhoG protects cells from apoptosis caused by the loss of anchorage through a PI3K-dependent mechanism, independent of its activation of Rac1. PMID:17570359

  17. Lithium potentiates GSK-3β activity by inhibiting phosphoinositide 3-kinase-mediated Akt phosphorylation.

    PubMed

    Tian, Nie; Kanno, Takeshi; Jin, Yu; Nishizaki, Tomoyuki

    2014-07-18

    Accumulating evidence has pointed to the direct inhibitory action of lithium, an anti-depressant, on GSK-3β. The present study investigated further insight into lithium signaling pathways. In the cell-free assay Li2CO3 significantly inhibited phosphoinositide 3-kinase (PI3K)-mediated phosphorylation of Akt1 at Ser473, but Li2CO3 did not affect PI3K-mediated PI(3,4,5)P3 production and 3-phosphoinositide-dependent protein kinase 1 (PDK1)-mediated phosphorylation of Akt1 at Thr308. This indicates that lithium could enhance GSK-3β activity by suppressing Akt-mediated Ser9 phosphorylation of GSK-3β in association with inhibition of PI3K-mediated Akt activation. There was no direct effect of Li2CO3 on Akt1-induced phosphorylation of GSK-3β at Ser9, but otherwise Li2CO3 significantly reduced GSK-3β-mediated phosphorylation of β-catenin at Ser33/37 and Thr41. This indicates that lithium directly inhibits GSK-3β in an Akt-independent manner. In rat hippocampal slices Li2CO3 significantly inhibited phosphorylation of Akt1/2 at Ser473/474, GSK-3β at Ser9, and β-catenin at Ser33/37 and Thr41. Taken together, these results indicate that lithium exerts its potentiating and inhibiting bidirectional actions on GSK-3β activity. PMID:24950409

  18. Ablation of phosphoinositide-3-kinase class II alpha suppresses hepatoma cell proliferation

    SciTech Connect

    Ng, Stanley K.L.; Neo, Soek-Ying; Yap, Yann-Wan; Karuturi, R. Krishna Murthy; Loh, Evelyn S.L.; Liau, Kui-Hin; Ren, Ee-Chee

    2009-09-18

    Cancer such as hepatocellular carcinoma (HCC) is characterized by complex perturbations in multiple signaling pathways, including the phosphoinositide-3-kinase (PI3K/AKT) pathways. Herein we investigated the role of PI3K catalytic isoforms, particularly class II isoforms in HCC proliferation. Among the siRNAs tested against the eight known catalytic PI3K isoforms, specific ablation of class II PI3K alpha (PIK3C2{alpha}) was the most effective in impairing cell growth and this was accompanied by concomitant decrease in PIK3C2{alpha} mRNA and protein levels. Colony formation ability of cells deficient for PIK3C2{alpha} was markedly reduced and growth arrest was associated with increased caspase 3 levels. A small but significant difference in gene dosage and expression levels was detected between tumor and non-tumor tissues in a cohort of 19 HCC patients. Taken together, these data suggest for the first time that in addition to class I PI3Ks in cancer, class II PIK3C2{alpha} can modulate HCC cell growth.

  19. A pivotal role of phosphatidylinositol 3-kinase in delaying of methyl jasmonate-induced leaf senescence.

    PubMed

    Liu, Jian; Zhou, Jun; Xing, Da

    2016-06-01

    Phosphatidylinositol 3-kinase (PI3K) and its product PI3P are involved in plant development and stress responses. Our recent report has suggested that down-regulation of PI3K activity accelerated leaf senescence induced by methyl jasmonate (MeJA) and suppressed the activation of vacuolar H(+)-ATPase (V-ATPase). In vitro and in vivo experiment revealed that PI3K interact with VHA-B2. The inhibition of V-ATPase activity suppressed the vacuolar acidification and enhanced the stomatal opening, thereby accelerating MeJA-induced leaf senescence. It was shown that there is close relationship between PI3K and V-ATPase. However, the factor which initiates the PI3K-V-ATPase pathway needs further improvement, and the domain of VHA-B that binds to PI3K is still not clear enough. By using the Arabidopsis and MeJA as the research model, studies have been performed to investigate the upstream regulation of PI3K and downstream function of PI3K-V-ATPase pathway in the plant senescence. PMID:26906642

  20. Control of Cardiac Repolarization by Phosphoinositide 3-kinase Signaling to Ion Channels

    PubMed Central

    Ballou, Lisa M.; Lin, Richard Z.; Cohen, Ira S.

    2014-01-01

    Upregulation of phosphoinositide 3-kinase (PI3K) signaling is a common alteration in human cancer, and numerous drugs that target this pathway have been developed for cancer treatment. However, recent studies have implicated inhibition of the PI3K signaling pathway as the cause of a drug-induced long QT syndrome in which alterations in several ion currents contribute to arrhythmogenic drug activity. Surprisingly, some drugs that were thought to induce long QT syndrome by direct block of the rapid delayed rectifier (IKr) also appear to inhibit PI3K signaling, an effect that may contribute to their arrhythmogenicity. The importance of PI3K in regulating cardiac repolarization is underscored by evidence that QT interval prolongation in diabetes also may result from changes in multiple currents due to decreased insulin activation of PI3K in the heart. How PI3K signaling regulates ion channels to control the cardiac action potential is poorly understood. Hence, this review summarizes what is known about the impact of PI3K and its downstream effectors including Akt on sodium, potassium and calcium currents in cardiac myocytes. We also refer to some studies in non-cardiac cells that provide insight into potential mechanisms of ion channel regulation by this signaling pathway in the heart. Drug development and safety could be improved with a better understanding of the mechanisms by which PI3K regulates cardiac ion channels and the extent to which PI3K inhibition contributes to arrhythmogenic susceptibility. PMID:25552692

  1. Short-Form Ron Promotes Spontaneous Breast Cancer Metastasis through Interaction with Phosphoinositide 3-Kinase

    PubMed Central

    Liu, Xuemei; Zhao, Ling; DeRose, Yoko S.; Lin, Yi-Chun; Bieniasz, Magdalena; Eyob, Henok; Buys, Saundra S.; Neumayer, Leigh

    2011-01-01

    Receptor tyrosine kinases (RTKs) have been the subject of intense investigation due to their widespread deregulation in cancer and the prospect of developing targeted therapeutics against these proteins. The Ron RTK has been implicated in tumor aggressiveness and is a developing target for therapy, but its function in tumor progression and metastasis is not fully understood. We examined Ron activity in human breast cancers and found striking predominance of an activated Ron isoform known as short-form Ron (sfRon), whose function in breast tumors has not been explored. We found that sfRon plays a significant role in aggressiveness of breast cancer in vitro and in vivo. sfRon expression was sufficient to convert slow-growing, nonmetastatic tumors into rapidly growing tumors that spontaneously metastasized to liver and bones. Mechanistic studies revealed that sfRon promotes epithelial-mesenchymal transition, invasion, tumor growth, and metastasis through interaction with p85, the regulatory subunit of phosphoinositide 3-kinase (PI3K). Inhibition of PI3K activity, or introduction of a single mutation in the p85 docking site on sfRon, completely eliminated the ability of sfRon to promote tumor growth, invasion, and metastasis. These findings reveal sfRon as an important new player in breast cancer and validate Ron and PI3K as therapeutic targets in this disease. PMID:22207901

  2. High fat diet induced obesity alters ovarian phosphatidylinositol-3 kinase signaling gene expression

    PubMed Central

    Nteeba, J.; Ross, J.W.; Perfield, J.W.; Keating, A.F.

    2013-01-01

    Insulin regulates ovarian phosphatidylinositol-3-kinase (PI3K) signaling, important for primordial follicle viability and growth activation. This study investigated diet-induced obesity impacts on: 1) insulin receptor (Insr) and insulin receptor substrate 1 (Irs1); 2) PI3K components (Kit ligand (Kitlg), kit (c-Kit), protein kinase B alpha (Akt1) and forkhead transcription factor subfamily 3 (Foxo3a)); 3) xenobiotic biotransformation (microsomal epoxide hydrolase (Ephx1), Cytochrome P450 isoform 2E1 (Cyp2e1), Glutathione S-transferase (Gst) isoforms mu (Gstm) and pi (Gstp)) and 4) microRNA’s 184, 205, 103 and 21 gene expression. INSR, GSTM and GSTP protein levels were also measured. Obese mouse ovaries had decreased Irs1, Foxo3a, Cyp2e1, MiR-103, and MiR-21 but increased Kitlg, Akt1, and miR-184 levels relative to lean littermates. These results support that diet-induced obesity potentially impairs ovarian function through aberrant gene expression. PMID:23954404

  3. Rapid accumulation of Akt in mitochondria following phosphatidylinositol 3-kinase activation.

    PubMed

    Bijur, Gautam N; Jope, Richard S

    2003-12-01

    We describe here a new component of the phosphatidylinositol 3-kinase/Akt signaling pathway that directly impacts mitochondria. Akt (protein kinase B) was shown for the first time to be localized in mitochondria, where it was found to reside in the matrix and the inner and outer membranes, and the level of mitochondrial Akt was very dynamically regulated. Stimulation of a variety of cell types with insulin-like growth factor-1, insulin, or stress (induced by heat shock), induced translocation of Akt to the mitochondria within only several minutes of stimulation, causing increases of nearly eight- to 12-fold, and the mitochondrial Akt was in its phosphorylated, active state. Two mitochondrial proteins were identified to be phosphorylated following stimulation of mitochondrial Akt, the beta-subunit of ATP synthase and glycogen synthase kinase-3beta. The finding that mitochondrial glycogen synthase kinase-3beta was rapidly and substantially modified by Ser9 phosphorylation, which inhibits its activity, following translocation of Akt to the mitochondria is the first evidence for a regulatory mechanism affecting mitochondrial glycogen synthase kinase-3beta. These results demonstrate that signals emanating from plasma membrane receptors or generated by stress rapidly modulate Akt and glycogen synthase kinase-3beta in mitochondria. PMID:14713298

  4. Interleukin 2- and polyomavirus middle T antigen-induced modification of phosphatidylinositol 3-kinase activity in activated T lymphocytes.

    PubMed Central

    Augustine, J A; Sutor, S L; Abraham, R T

    1991-01-01

    Stimulation of activated T lymphocytes with interleukin 2 (IL-2) results in rapid increases in intracellular protein tyrosine phosphorylation. Both the identity of the protein tyrosine kinase (PTK) activated by IL-2 receptor ligation and the identities of the critical target proteins for this PTK remain largely undefined. In this article, we demonstrate that stimulation of activated murine or human T cells with IL-2 for 10 to 30 min induces two- to threefold increases in the level of phosphatidylinositol (PtdIns) 3-kinase activity present in antiphosphotyrosine (p-Tyr) antibody immunoprecipitates from these cells. Furthermore, substantial levels of PtdIns 3-kinase activity were coprecipitated from IL-2-deprived T cells by antibodies to the src-related PTK p59fyn. Cellular stimulation with IL-2 induced a two- to threefold increase in the level of p59fyn-associated PtdIns 3-kinase activity. To examine the effect of a constitutive increase in PtdIns 3-kinase activity on the growth factor responsiveness of activated T cells, murine CTLL-2 cells were transfected with a polyomavirus middle T antigen (MTAg) expression vector. Anti-p-Tyr and anti-p59fyn immunoprecipitates from MTAg-transfected CTLL-2 cells contained three- to sixfold higher levels of PtdIns 3-kinase activity than wild-type cells. Immune complex kinase assays revealed that MTAg expression concomitantly induced a constitutive threefold increase in the PTK activity of p59fyn in these cells. However, stable MTAg expression did not abrogate the dependence of CTLL-2 cells on exogenous IL-2 for continued growth and proliferation. Images PMID:1652056

  5. Adenovirus-mediated expression of vascular endothelial growth factor-a potentiates bone morphogenetic protein9-induced osteogenic differentiation and bone formation.

    PubMed

    Pi, Chang-Jun; Liang, Kai-Lu; Ke, Zhen-Yong; Chen, Fu; Cheng, Yun; Yin, Liang-Jun; Deng, Zhong-Liang; He, Bai-Cheng; Chen, Liang

    2016-08-01

    Mesenchymal stem cells (MSCs) are suitable seed cells for bone tissue engineering because they can self-renew and undergo differentiation into osteogenic, adipogenic, chondrogenic, or myogenic lineages. Vascular endothelial growth factor-a (VEGF-a), an angiogenic factor, is also involved in osteogenesis and bone repair. However, the effects of VEGF-a on osteogenic MSCs differentiation remain unknown. It was previously reported that bone morphogenetic protein9 (BMP9) is one of the most important osteogenic BMPs. Here, we investigated the effects of VEGF-a on BMP9-induced osteogenesis with mouse embryo fibroblasts (MEFs). We found that endogenous VEGF-a expression was undetectable in MSCs. Adenovirus-mediated expression of VEGF-a in MEFs potentiated BMP9-induced early and late osteogenic markers, including alkaline phosphatase (ALP), osteocalcin (OCN), and osteopontin (OPN). In stem cell implantation assays, VEGF-a augmented BMP9-induced ectopic bone formation. VEGF-a in combination with BMP9 effectively increased the bone volume and osteogenic activity. However, the synergistic effect was efficiently abolished by the phosphoinositide 3-kinase (PI3K)/AKT inhibitor LY294002. These results demonstrated that BMP9 may crosstalk with VEGF-a through the PI3K/AKT signaling pathway to induce osteogenic differentiation in MEFs. Thus, our findings demonstrate the effects of VEGF-a on BMP9-induced bone formation and provide a new potential strategy for treating nonunion fractures, large segmental bony defects, and/or osteoporotic fractures. PMID:27003241

  6. Arctigenin Increases Hemeoxygenase-1 Gene Expression by Modulating PI3K/AKT Signaling Pathway in Rat Primary Astrocytes

    PubMed Central

    Jeong, Yeon-Hui; Park, Jin-Sun; Kim, Dong-Hyun; Kim, Hee-Sun

    2014-01-01

    In the present study, we found that the natural compound arctigenin inhibited hydrogen peroxide-induced reactive oxygen species (ROS) production in rat primary astrocytes. Since hemeoxygenase-1 (HO-1) plays a critical role as an antioxidant defense factor in the brain, we examined the effect of arctigenin on HO-1 expression in rat primary astrocytes. We found that arctigenin increased HO-1 mRNA and protein levels. Arctigenin also increases the nuclear translocation and DNA binding of Nrf2/c-Jun to the antioxidant response element (ARE) on HO-1 promoter. In addition, arctigenin increased ARE-mediated transcriptional activities in rat primary astrocytes. Further mechanistic studies revealed that arctigenin increased the phosphorylation of AKT, a downstream substrate of phosphatidylinositol 3-kinase (PI3K). Treatment of cells with a PI3K-specific inhibitor, LY294002, suppressed the HO-1 expression, Nrf2 DNA binding and ARE-mediated transcriptional activities in arctigenin-treated astrocyte cells. The results collectively suggest that PI3K/AKT signaling pathway is at least partly involved in HO-1 expression by arctigenin via modulation of Nrf2/ARE axis in rat primary astrocytes. PMID:25489416

  7. Arctigenin Increases Hemeoxygenase-1 Gene Expression by Modulating PI3K/AKT Signaling Pathway in Rat Primary Astrocytes.

    PubMed

    Jeong, Yeon-Hui; Park, Jin-Sun; Kim, Dong-Hyun; Kim, Hee-Sun

    2014-11-01

    In the present study, we found that the natural compound arctigenin inhibited hydrogen peroxide-induced reactive oxygen species (ROS) production in rat primary astrocytes. Since hemeoxygenase-1 (HO-1) plays a critical role as an antioxidant defense factor in the brain, we examined the effect of arctigenin on HO-1 expression in rat primary astrocytes. We found that arctigenin increased HO-1 mRNA and protein levels. Arctigenin also increases the nuclear translocation and DNA binding of Nrf2/c-Jun to the antioxidant response element (ARE) on HO-1 promoter. In addition, arctigenin increased ARE-mediated transcriptional activities in rat primary astrocytes. Further mechanistic studies revealed that arctigenin increased the phosphorylation of AKT, a downstream substrate of phosphatidylinositol 3-kinase (PI3K). Treatment of cells with a PI3K-specific inhibitor, LY294002, suppressed the HO-1 expression, Nrf2 DNA binding and ARE-mediated transcriptional activities in arctigenin-treated astrocyte cells. The results collectively suggest that PI3K/AKT signaling pathway is at least partly involved in HO-1 expression by arctigenin via modulation of Nrf2/ARE axis in rat primary astrocytes. PMID:25489416

  8. MLC901, a traditional Chinese medicine protects the brain against global ischemia.

    PubMed

    Quintard, H; Borsotto, M; Veyssiere, J; Gandin, C; Labbal, F; Widmann, C; Lazdunski, M; Heurteaux, C

    2011-09-01

    Global ischemia leads to damage in the hippocampal CA1 region and is associated with behavioral deficits. NeuroAid (MLC601 and MLC901), a Traditional Chinese Medicine is used in China for patients after stroke. We have investigated here the effects of MLC901 on brain injury and deficits after global ischemia in the rat. Global ischemia induced by four-vessel occlusion resulted in degeneration of CA1 neurons. MLC901 (0.074 mg/ml) prevented both necrosis and apoptosis of neurons up to 3 h after ischemia. These positive MLC901 effects were associated with a decrease in Bax expression and in levels of the lipid peroxidation product malondialdehyde. Using the PI3-kinase inhibitor LY294002 we also demonstrated the critical role of the Akt pathway in MLC901-mediated neuroprotection. MLC901 enhanced neurogenesis. Furthermore, MLC901 improved functional recovery of rats after global ischemia as assessed by the Morris water maze. In this test MLC901 reduced the increase in escape latency and in swim distance induced by ischemia. MLC901 also improved post-ischemic grip strength. If observations made with rats can be extended to humans, then MLC901 will represent a novel therapeutic strategy after cardiac arrest with a clinically interesting time window of protection. PMID:21605573

  9. Signaling Pathway of GP88 (Progranulin) in Breast Cancer Cells: Upregulation and Phosphorylation of c-myc by GP88/Progranulin in Her2-Overexpressing Breast Cancer Cells

    PubMed Central

    Kim, Wes E.; Yue, Binbin; Serrero, Ginette

    2015-01-01

    Her2 is a receptor tyrosine kinase overexpressed in 25% of breast tumors. We have shown that the 88 kDa autocrine growth and survival factor GP88 (progranulin) stimulated Her2 phosphorylation and proliferation and conferred Herceptin resistance in Her2-overexpressing cells. Herein, we report that GP88 stimulates c-myc phosphorylation and upregulates c-myc levels in Her2-overexpressing cells. c-myc phosphorylation and upregulation by GP88 were not observed in non-Her2-overexpressing breast cancer cells. c-myc activation was inhibited upon treatment with ERK, PI3 kinase, and c-src pathway inhibitors, U0126, LY294002, and PP2. GP88 also stimulated c-src phosphorylation, a known upstream regulator of c-myc. Thus, we describe here a signaling pathway for GP88 in Her2-overexpressing cells, with GP88 stimulating Src phosphorylation, followed by phosphorylation and upregulation of c-myc. These data would suggest that targeting GP88 could provide a novel treatment approach in breast cancer. PMID:27168723

  10. Chemical signals synchronize the life cycles of a plant-parasitic nematode and its vector beetle.

    PubMed

    Zhao, Lilin; Zhang, Shuai; Wei, Wei; Hao, Haijun; Zhang, Bin; Butcher, Rebecca A; Sun, Jianghua

    2013-10-21

    The pinewood nematode Bursaphelenchus xylophilus has caused severe damage to pine forests in large parts of the world [1-4]. Dispersal of this plant-parasitic nematode occurs when the nematode develops into the dispersal fourth larval stage (LIV) upon encountering its insect vector, the Monochamus pine sawyer beetle, inside an infected pine tree [5-9]. Here, we show that LIV formation in B. xylophilus is induced by C16 and C18 fatty acid ethyl esters (FAEEs), which are produced abundantly on the body surface of the vector beetle specifically during the late development pupal, emerging adult, and newly eclosed adult stages. The LIV can then enter the tracheal system of the adult beetle for dispersal to a new pine tree. Treatment of B. xylophilus with long-chain FAEEs, or the PI3 kinase inhibitor LY294002, promotes LIV formation, while Δ7-dafachronic acid blocks the effects of these chemicals, suggesting a conserved role for the insulin/IGF-1 and DAF-12 pathways in LIV formation. Our work provides a mechanism by which LIV formation in B. xylophilus is specifically coordinated with the life cycle of its vector beetle. Knowledge of the chemical signals that control the LIV developmental decision could be used to interfere with the dispersal of this plant-parasitic nematode. PMID:24120638

  11. The molecular mechanism of polygalasaponin F-mediated decreases in TNFα: emphasizing the role of the TLR4-PI3K/AKT-NF-κB pathway.

    PubMed

    Yan, Wen-Fen; Shao, Qian-Hang; Zhang, Dong-Ming; Yuan, Yu-He; Chen, Nai-Hong

    2015-01-01

    Polygalasaponin F (PS-F), an oleanane-type triterpenoid saponin extracted from Polygala japonica, decreases the release of the inflammatory cytokine tumor necrosis factor α (TNFα), but the precise molecular mechanisms by which this event occurs are not fully understood. To study the anti-neuroinflammatory mechanisms of PS-F, enzyme-linked immunosorbent assay was used to detect the secretion of TNFα from BV-2 microglial cells. Nuclear proteins extracted from BV-2 microglial cells stimulated by lipopolysaccharide (LPS) and pretreated with/without inhibitors were measured by Western blotting, and cell viability was evaluated by MTT analysis. The results indicated that inhibition of toll-like receptor (TLR) 4 (CLI-095 1 μg/ml), phosphatidylinositol 3-kinase (PI3K) (Ly294002 10 μM) or IκBα phosphorylation (Bay11-7082 10 μM) completely prevents the release of TNFα induced by LPS without affecting cell viability and attenuated the nuclear translocation of p65 stimulated by LPS. In addition, PS-F exhibited a similar trend regarding TNFα release, AKT phosphorylation and NF-κB translocation. These results suggest that PS-F reduces neuroinflammatory cytokine secretion through the regulation of the TLR4-PI3K/AKT-NF-κB signaling pathway. PMID:26235355

  12. Mulberry anthocyanin extract regulates glucose metabolism by promotion of glycogen synthesis and reduction of gluconeogenesis in human HepG2 cells.

    PubMed

    Yan, Fujie; Zhang, Ji; Zhang, Lingxia; Zheng, Xiaodong

    2016-01-01

    Mulberry has been demonstrated to possess important biological activities such as antioxidation and antiinflammation. However, research on the ability of mulberry for diabetes improvement mainly focuses on the leaves and less on the fruit. This study showed that a mulberry anthocyanin extract (MAE) had a significant effect on increasing the glucose consumption in HepG2 cells. The MAE enhanced the glycogen content and suppressed levels of glucose production. The enzyme activities of phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6Pase) were decreased in HepG2 cells after MAE treatment due to PPARγ coactivator 1α (PGC-1α) and forkhead box protein O1 (FOXO1) inhibition. Moreover, the phosphorylation of protein kinase B (AKT) and glycogen synthase kinase-3β (GSK-3β) was increased by the MAE, leading to an expression enhancement of glycogen synthase 2 (GYS2). And this effect was blocked by the phosphoinositide 3-kinase (PI3K) inhibitor LY294002. In summary, our results suggested that the MAE regulates glucose metabolism by activating the PI3K/AKT pathway that relates to glycogen synthesis as well as through the inhibition of key molecules that promote gluconeogenesis. PMID:26467565

  13. Real-Time Sensing of Cell Morphology by Infrared Waveguide Spectroscopy

    PubMed Central

    Lirtsman, Vladislav; Golosovsky, Michael; Davidov, Dan; Aroeti, Benjamin

    2012-01-01

    We demonstrate that a live epithelial cell monolayer can act as a planar waveguide. Our infrared reflectivity measurements show that highly differentiated simple epithelial cells, which maintain tight intercellular connectivity, support efficient waveguiding of the infrared light in the spectral region of 1.4–2.5 µm and 3.5–4 µm. The wavelength and the magnitude of the waveguide mode resonances disclose quantitative dynamic information on cell height and cell-cell connectivity. To demonstrate this we show two experiments. In the first one we trace in real-time the kinetics of the disruption of cell-cell contacts induced by calcium depletion. In the second one we show that cell treatment with the PI3-kinase inhibitor LY294002 results in a progressive decrease in cell height without affecting intercellular connectivity. Our data suggest that infrared waveguide spectroscopy can be used as a novel bio-sensing approach for studying the morphology of epithelial cell sheets in real-time, label-free manner and with high spatial-temporal resolution. PMID:23119025

  14. Advanced glycation end-products and insulin signaling in granulosa cells.

    PubMed

    Diamanti-Kandarakis, Evanthia; Chatzigeorgiou, Antonios; Papageorgiou, Efstathia; Koundouras, Dimitrios; Koutsilieris, Michael

    2016-07-01

    Advanced glycation end-products (AGEs) may interfere with insulin intracellular signaling and glucose transport in human granulosa cells, potentially affecting ovarian function, follicular growth, linked with diminished fertility. The potential interaction of AGEs with insulin signaling pathways and glucose transport was investigated in human granulosa KGN cells. KGN cells were cultured with variable concentrations of human glycated albumin (HGA, 50-200 µg/mL) or insulin (100 ng/mL). Combined treatments of KGN cells with insulin (100 ng/mL) and HGA (200 µg/mL) were also performed. p-AKT levels and glucose transporter type 4 (Glut-4) translocation analysis were performed by Western blot. Phosphatidylinositol-3-kinase (PI3K)-specific signaling was checked by using the PI3K-inhibitor, LY294002. p-AKT levels were significantly increased following insulin treatment compared to basal levels or HGA exposure. This insulin-mediated AKT-phosphorylation was PI3K-specific and it was inhibited after combined treatment of insulin and HGA. Furthermore, Glut-4 translocation from the cytoplasm to the membrane compartments of KGN cells was remarkably reduced after the combined treatment of insulin and HGA. The present findings support that AGEs interfere with insulin signaling in granulosa cells and prevent Glut-4 membrane translocation suggesting that intra ovarian AGEs accumulation, from endogenous or exogenous sources, may contribute to the pathophysiology of states characterized with anovulation and insulin resistance such as polycystic ovary syndrome. PMID:25956684

  15. IL-8 induces the epithelial-mesenchymal transition of renal cell carcinoma cells through the activation of AKT signaling

    PubMed Central

    Zhou, Nan; Lu, Fuding; Liu, Cheng; Xu, Kewei; Huang, Jian; Yu, Dexin; Bi, Liangkuan

    2016-01-01

    The epithelial-mesenchymal transition (EMT) process has increasingly been examined due to its role in the progression of human tumors. Renal cell carcinoma (RCC) is one of the most common urological tumors that results in patient mortality. Previous studies have demonstrated that the EMT process is closely associated with the metastasis of RCC; however, the underlying molecular mechanism has not been determined yet. The present study revealed that interleukin (IL)-8 was highly expressed in metastatic RCC. IL-8 could induce the EMT of an RCC cell line by enhancing N-cadherin expression and decreasing E-cadherin expression. Furthermore, IL-8 could induce AKT phosphorylation, and the phosphatidylinositol-4,5-bisphosphate 3-kinase inhibitor LY294002 could inhibit the EMT of RCC cells that was induced by IL-8. Therefore, these results suggest that IL-8 is able to promote the EMT of RCC through the activation of the AKT signal transduction pathway, and this may provide a possible molecular mechanism for RCC metastasis. PMID:27588140

  16. α-2,8-Sialyltransferase Is Involved in the Development of Multidrug Resistance via PI3K/Akt Pathway in Human Chronic Myeloid Leukemia.

    PubMed

    Zhang, Xu; Dong, Weijie; Zhou, Huimin; Li, Hongshuai; Wang, Ning; Miao, Xiaoyan; Jia, Li

    2015-02-01

    Cell surface sialylation is emerging as an important feature of cancer cell multidrug resistance (MDR). We have focused on the influence of 2,8-sialyltransferases in key steps of the development of MDR in chronic myeloid leukemia (CML). The expressional profiles of six α-2,8-sialyltransferases were generated in three pairs of CML cell lines and peripheral blood mononuclear cells (PBMC) of CML patients. Cellular MDR phenotype positively correlated with ST8SIA4 and ST8SIA6 levels. Furthermore, ST8SIA4 mediated the activity of phosphoinositide-3 kinase (PI3K)/Akt signal pathway and the expression of P-glycoprotein (P-gp). Targeting the PI3K/Akt pathway by its specific inhibitor LY294002, or by Akt RNA interfering reversed the MDR phenotype of K562/ADR cells. Inhibition of PI3K/Akt pathway also attenuated the effects caused by the overexpression of ST8SIA4 on MDR. Therefore this study indicated that α-2,8-sialyltransferases involved in the development of MDR of CML cells probably through ST8SIA4 regulating the activity of PI3K/Akt signaling and the expression of P-gp. PMID:25855199

  17. Acetyl-l-carnitine restores synaptic transmission and enhances the inducibility of stable LTP after oxygen-glucose deprivation.

    PubMed

    Kocsis, Kitti; Frank, Rita; Szabó, József; Knapp, Levente; Kis, Zsolt; Farkas, Tamás; Vécsei, László; Toldi, József

    2016-09-22

    Hypoxic circumstances result in functional and structural impairments of the brain. Oxygen-glucose deprivation (OGD) on hippocampal slices is a technique widely used to investigate the consequences of ischemic stroke and the potential neuroprotective effects of different drugs. Acetyl-l-carnitine (ALC) is a naturally occurring substance in the body, and it can therefore be administered safely even in relatively high doses. In previous experiments, ALC pretreatment proved to be effective against global hypoperfusion. In the present study, we investigated whether ALC can be protective in an OGD model. We are not aware of any earlier study in which the long-term potentiation (LTP) function on hippocampal slices was measured after OGD. Therefore, we set out to determine whether an effective ALC concentration has an effect on synaptic plasticity after OGD in the hippocampal CA1 subfield of rats. A further aim was to investigate the mechanism underlying the protective effect of this compound. The experiments revealed that ALC is neuroprotective against OGD in a dose-dependent manner, which is manifested not only in the regeneration of the impaired synaptic transmission after the OGD, but also in the inducibility and stability of the LTP. In the case of the most effective concentration of ALC (500μM), use of a phosphoinositide 3-kinase (PI3K) inhibitor (LY294002) revealed that the PI3K/Akt signaling pathway has a key role in the restoration of the synaptic transmission and plasticity reached by ALC treatment. PMID:27378558

  18. Leptin signalling and leptin-mediated activation of human platelets: importance of JAK2 and the phospholipases Cgamma2 and A2.

    PubMed

    Dellas, Claudia; Schäfer, Katrin; Rohm, Ilonka K; Lankeit, Mareike; Leifheit, Maren; Loskutoff, David J; Hasenfuss, Gerd; Konstantinides, Stavros V

    2007-11-01

    Leptin enhances agonist-induced platelet aggregation, and human platelets have been reported to express the leptin receptor. However, the pathways and mediators lying downstream of leptin binding to platelets remain, with few exceptions, unknown. In the present study, we sought to gain further insight into the possible role of leptin as a platelet agonist. Stimulation of platelets with leptin promoted thromboxane generation and activation of alpha(IIb)beta(3), as demonstrated by PAC-1 binding. Furthermore, it increased the adhesion to immobilised fibrinogen (p<0.001) and induced cytoskeletal rearrangement of both platelets and Meg01 cells. Leptin time- and dose-dependently phosphorylated the intracellular signalling molecules JAK2 and STAT3, although the importance of STAT3 for leptin-induced platelet activation remains to be determined. Important intracellular mediators and pathways activated by leptin downstream of JAK2 were found to include phosphatidylinositol-3 kinase, phospholipase Cgamma2 and protein kinase C, as well as the p38 MAP kinase-phospholipase A(2) axis. Accordingly, incubation with the specific inhibitors AG490, Ly294002, U73122, and SB203580 prevented leptin-mediated platelet activation. These results help delineate biologically relevant leptin signalling pathways in platelets and may improve our understanding of the mechanisms linking hyperleptinaemia to the increased thrombosis risk in human obesity. PMID:18000612

  19. Dihydroartemisinin prevents liver fibrosis in bile duct ligated rats by inducing hepatic stellate cell apoptosis through modulating the PI3K/Akt pathway.

    PubMed

    Chen, Qin; Chen, Lianyun; Wu, Xiafei; Zhang, Feng; Jin, Huanhuan; Lu, Chunfeng; Shao, Jiangjuan; Kong, Desong; Wu, Li; Zheng, Shizhong

    2016-03-01

    As a frequent event following chronic insult, liver fibrosis triggers wound healing reactions, with extracellular matrix components accumulated in the liver. During liver fibrogenesis, activation of hepatic stellate cells (HSCs) is the pivotal event. Fibrosis regression can feasibly be treated through pharmacological induction of HSC apoptosis. Herein we showed that dihydroartemisinin (DHA) improved liver histological architecture, decreased hepatic enzyme levels, and inhibited HSCs activation in the fibrotic rat liver. DHA also induced apoptosis of HSCs in such liver, as demonstrated by reduced distribution of α-SMA-positive cells and the presence of high number of cleaved-caspase-3-positive cells in vivo, as well as by down-regulation of Bcl-2 and up-regulation of Bax. In addition, in vitro experiments showed that DHA significantly inhibited HSC proliferation and led to dramatic morphological alterations in HSCs. we found that DHA disrupted mitochondrial functions and led to activation of caspase cascades in HSCs. Mechanistic investigations revealed that DHA induced HSC apoptosis through disrupting the phosphoinositide 3-kinase (PI3K)/Akt pathway and that PI3K specific inhibitor LY294002 mimicked the pro-apoptotic effect of DHA. DHA is a promising candidate for the prevention and treatment of liver fibrosis. PMID:26865509

  20. PGF2α-associated vascular smooth muscle hypertrophy is ROS dependent and involves the activation of mTOR, p70S6k, and PTEN

    PubMed Central

    Rice, K. M.; Uddemarri, S.; Desai, D. H.; Morrison, R.G.; Harris, R.; Wright, G.L.; Blough, E.R.

    2008-01-01

    Prostaglandin F2α (PGF2α) increases reactive oxygen species (ROS) and induces vascular smooth muscle cell (VSMC) hypertrophy by largely unknown mechanism(s). To investigate the signaling events governing PGF2α –induced VSMC hypertrophy we examined the ability of the PGF2α analog, fluprostenol to elicit phosphorylation of Akt, the mammalian target of rapamycin (mTOR), ribosomal protein S6 kinase (p70S6k), glycogen synthase kinase-3β (GSK-3β), phosphatase and tensin homolog (PTEN), extracellular signal-regulated kinase 1/2 (ERK1/2) and Jun N-terminal kinase (JNK) in growth arrested A7r5 VSMC. Fluprostenol-induced hypertrophy was associated with increased ROS, mTOR translocation from the nucleus to the cytoplasm, along with Akt, mTOR, GSK-3β, PTEN and ERK1/2 but not JNK phosphorylation. Whereas inhibition of phosphatidylinositol 3-kinase (PI3K) by LY294002 blocked fluprostenol-induced changes in total protein content, pretreatment with rapamycin or with the ERK1/2-MAPK inhibitor UO126 did not. Taken together, these findings suggest that fluprostenol-induced changes in A7R5 hypertrophy involve mTOR translocation and occur through PI3K-dependent mechanisms. PMID:18160324

  1. Pterostilbene, an Active Constituent of Blueberries, Stimulates Nitric Oxide Production via Activation of Endothelial Nitric Oxide Synthase in Human Umbilical Vein Endothelial Cells.

    PubMed

    Park, Seong Hoon; Jeong, Sun-Oh; Chung, Hun-Teag; Pae, Hyun-Ock

    2015-09-01

    Endothelial dysfunction, a key process in development of cardiovascular diseases, is largely due to reduced nitric oxide (NO) derived from endothelial NO synthase (eNOS). Resveratrol has been reported to stimulate NO production via estrogen receptor α (ERα) activation in endothelial cells. Here, we investigated whether two natural methylated analogs of resveratrol, pterostilbene (Pts) and trans-3,5,4'-trimethoxystilbene (TMS), similarly to resveratrol, could influence endothelial NO release in human umbilical vein endothelial cells (HUVECs). In HUVECs exposed to Pts or TMS, NO production and phosphorylation of eNOS, protein kinase B (Akt), and ERα were measured by using a fluorimetric NO assay kit and Western blot analysis, respectively. Dimethylated Pts, but not trimethylated TMS, stimulated dose-dependent NO production via eNOS phosphorylation. Pts also stimulated dose-dependent phosphorylation of Akt, but not of ERα. NO production and eNOS phosphorylation in response to Pts were significantly abolished by the phosphoinositide 3-kinase (PI3K)/Akt inhibitor LY294002, but not by the ERα antagonist ICI182780. Our results suggest that Pts, but not TMS, is capable of inducing eNOS phosphorylation and the subsequent NO release, presumably, by activating PI3K/Akt pathway. The potential efficacy of Pts, an active constituent of blueberries, may aid in the prevention of cardiovascular diseases characterized by endothelial dysfunction. PMID:26008990

  2. Hypoxia-induced mitogenic factor enhances angiogenesis by promoting proliferation and migration of endothelial cells

    SciTech Connect

    Tong Qiangsong; Zheng Liduan; Li Bo; Wang Danming; Huang Chuanshu; Matuschak, George M.; Li Dechun . E-mail: dli2@slu.edu

    2006-11-01

    Our previous studies have indicated that hypoxia-induced mitogenic factor (HIMF) has angiogenic properties in an in vivo matrigel plug model and HIMF upregulates expression of vascular endothelial growth factor (VEGF) in mouse lungs and cultured lung epithelial cells. However, whether HIMF exerts angiogenic effects through modulating endothelial cell function remains unknown. In this study, mouse aortic rings cultured with recombinant HIMF protein resulted in enhanced vascular sprouting and increased endothelial cell spreading as confirmed by Dil-Ac-LDL uptake, von Willebrand factor and CD31 staining. In cultured mouse endothelial cell line SVEC 4-10, HIMF dose-dependently enhanced cell proliferation, in vitro migration and tubulogenesis, which was not attenuated by SU1498, a VEGFR2/Flk-1 receptor tyrosine kinase inhibitor. Moreover, HIMF stimulation resulted in phosphorylation of Akt, p38 and ERK1/2 kinases in SVEC 4-10 cells. Treatment of mouse aortic rings and SVEC 4-10 cells with LY294002, but not SB203580, PD098059 or U0126, abolished HIMF-induced vascular sprouting and angiogenic responses. In addition, transfection of a dominant-negative mutant of phosphatidylinositol 3-kinase (PI-3K), {delta}p85, blocked HIMF-induced phosphorylation of Akt, endothelial activation and tubulogenesis. These results indicate that HIMF enhances angiogenesis by promoting proliferation and migration of endothelial cells via activation of the PI-3K/Akt pathways.

  3. Both Creatine and Its Product Phosphocreatine Reduce Oxidative Stress and Afford Neuroprotection in an In Vitro Parkinson’s Model

    PubMed Central

    Martín-de-Saavedra, Maria D.; Romero, Alejandro; Egea, Javier; Ludka, Fabiana K.; Tasca, Carla I.; Farina, Marcelo; Rodrigues, Ana Lúcia S.; López, Manuela G.

    2014-01-01

    Creatine is the substrate for creatine kinase in the synthesis of phosphocreatine (PCr). This energetic system is endowed of antioxidant and neuroprotective properties and plays a pivotal role in brain energy homeostasis. The purpose of this study was to investigate the neuroprotective effect of creatine and PCr against 6-hydroxydopamine (6-OHDA)-induced mitochondrial dysfunction and cell death in rat striatal slices, used as an in vitro Parkinson’s model. The possible involvement of the signaling pathway mediated by phosphatidylinositol-3 kinase (PI3K), protein kinase B (Akt), and glycogen synthase kinase-3β (GSK3β) was also evaluated. Exposure of striatal slices to 6-OHDA caused a significant disruption of the cellular homeostasis measured as 3-(4,5 dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide reduction, lactate dehydrogenase release, and tyrosine hydroxylase levels. 6-OHDA exposure increased the levels of reactive oxygen species and thiobarbituric acid reactive substances production and decreased mitochondrial membrane potential in rat striatal slices. Furthermore, 6-OHDA decreased the phosphorylation of Akt (Serine473) and GSK3β (Serine9). Coincubation with 6-OHDA and creatine or PCr reduced the effects of 6-OHDA toxicity. The protective effect afforded by creatine or PCr against 6-OHDA-induced toxicity was reversed by the PI3K inhibitor LY294002. In conclusion, creatine and PCr minimize oxidative stress in striatum to afford neuroprotection of dopaminergic neurons. PMID:25424428

  4. Antiplatelet activity of loureirin A by attenuating Akt phosphorylation: In vitro studies.

    PubMed

    Hao, Hong-Zhen; He, Ao-Di; Wang, Dao-Chun; Yin, Zhao; Zhou, Ya-Jun; Liu, Gang; Liang, Ming-Lu; Da, Xing-Wen; Yao, Guang-Qiang; Xie, Wen; Xiang, Ji-Zhou; Ming, Zhang-Yin

    2015-01-01

    Loureirin A is a flavonoid extracted from Dragon׳s Blood that has been used to promote blood circulation and remove stasis in Chinese traditional medicine. However, the mechanisms of these effects are not fully understood. We explored the anti-platelet activity and underlying mechanism of loureirin A in vitro. Our results indicated that loureirin A negatively affected agonist-induced platelet aggregation such as collagen, collagen-related peptide (CRP), ADP and thrombin. Loureirin A inhibited collagen-induced platelet ATP secretion and thrombin-stimulated P-selectin expression in a dose-dependent manner. Platelet spreading on immobilized fibrinogen was significantly impaired in the presence of loureirin A. Immunoblotting analysis indicated that 100μM of loureirin A almost completely eliminated collagen-induced Akt phosphorylation at Ser473. Interestingly, a submaximal dose (50μM) of loureirin A had an additive inhibitory effect with the phosphoinositide 3-kinase (PI3K) inhibitor Ly294002 on collage-induced Akt phosphorylation in platelets. Taken together, loureirin A had an inhibitory effect on platelet activation, perhaps through an impairment of PI3K/Akt signaling. PMID:25445049

  5. Hyperactive RAS/PI3-K/MAPK Signaling Cascade in Migration and Adhesion of Nf1 Haploinsufficient Mesenchymal Stem/Progenitor Cells.

    PubMed

    Zhou, Yuan; He, Yongzheng; Sharma, Richa; Xing, Wen; Estwick, Selina A; Wu, Xiaohua; Rhodes, Steven D; Xu, Mingjiang; Yang, Feng-Chun

    2015-01-01

    Neurofibromatosis type 1 (NF1) is an autosomal dominant disease caused by mutations in the NF1 tumor suppressor gene, which affect approximately 1 out of 3000 individuals. Patients with NF1 suffer from a range of malignant and nonmalignant manifestations such as plexiform neurofibromas and skeletal abnormalities. We previously demonstrated that Nf1 haploinsufficiency in mesenchymal stem/progenitor cells (MSPCs) results in impaired osteoblastic differentiation, which may be associated with the skeletal manifestations in NF1 patients. Here we sought to further ascertain the role of Nf1 in modulating the migration and adhesion of MSPCs of the Nf1 haploinsufficient (Nf1(+/-)) mice. Nf1(+/-) MSPCs demonstrated increased nuclear-cytoplasmic ratio, increased migration, and increased actin polymerization as compared to wild-type (WT) MSPCs. Additionally, Nf1(+/-) MSPCs were noted to have significantly enhanced cell adhesion to fibronectin with selective affinity for CH271 with an overexpression of its complimentary receptor, CD49e. Nf1(+/-) MSPCs also showed hyperactivation of phosphoinositide 3-kinase (PI3-K) and mitogen activated protein kinase (MAPK) signaling pathways when compared to WT MSPCs, which were both significantly reduced in the presence of their pharmacologic inhibitors, LY294002 and PD0325901, respectively. Collectively, our study suggests that both PI3-K and MAPK signaling pathways play a significant role in enhanced migration and adhesion of Nf1 haploinsufficient MSPCs. PMID:26039236

  6. Pulsed electromagnetic fields promote survival and neuronal differentiation of human BM-MSCs.

    PubMed

    Urnukhsaikhan, Enerelt; Cho, Hyunjin; Mishig-Ochir, Tsogbadrakh; Seo, Young-Kwon; Park, Jung-Kueg

    2016-04-15

    Pulsed electromagnetic fields (PEMF) are known to affect biological properties such as differentiation, regulation of transcription factor and cell proliferation. However, the cell-protective effect of PEMF exposure is largely unknown. The aim of this study is to understand the mechanisms underlying PEMF-mediated suppression of apoptosis and promotion of survival, including PEMF-induced neuronal differentiation. Treatment of induced human BM-MSCs with PEMF increased the expression of neural markers such as NF-L, NeuroD1 and Tau. Moreover, treatment of induced human BM-MSCs with PEMF greatly decreased cell death in a dose- and time-dependent manner. There is evidence that Akt and Ras are involved in neuronal survival and protection. Activation of Akt and Ras results in the regulation of survival proteins such as Bad and Bcl-xL. Thus, the Akt/Ras signaling pathway may be a desirable target for enhancing cell survival and treatment of neurological disease. Our analyses indicated that PEMF exposure dramatically increased the activity of Akt, Rsk, Creb, Erk, Bcl-xL and Bad via phosphorylation. PEMF-dependent cell protection was reversed by pretreatment with LY294002, a specific inhibitor of phosphatidylinositol 3-kinase (PI3K). Our data suggest that the PI3K/Akt/Bad signaling pathway may be a possible mechanism for the cell-protective effects of PEMF. PMID:26898125

  7. Polyphenols Isolated from Allium cepa L. Induces Apoptosis by Induction of p53 and Suppression of Bcl-2 through Inhibiting PI3K/Akt Signaling Pathway in AGS Human Cancer Cells

    PubMed Central

    Lee, Won Sup; Yi, Sang Mi; Yun, Jeong Won; Jung, Ji Hyun; Kim, Dong Hoon; Kim, Hye Jung; Chang, Seong-Hwan; Kim, GonSup; Ryu, Chung Ho; Shin, Sung Chul; Hong, Soon Chan; Choi, Yung Hyun; Jung, Jin-Myung

    2014-01-01

    Background: The extract of Allium cepa Linn is commonly used as adjuvant food for cancer therapy. We assumed that it includes a potential source of anti-cancer properties. Methods: We investigated anti-cancer effects of polyphenols extracted from lyophilized A. cepa Linn (PEAL) in AGS human cancer cells. Results: PEAL inhibited cell growth in a dose-dependent manner. It was related to caspase-dependent apoptosis. We confirmed this finding with annexin V staining. PEAL up-regulated p53 expression, and subsequent Bax induction, down regulated Bcl-2 protein, anti-apoptotic protein. In addition, PEAL suppressed Akt activity and PEAL-induced apoptosis were significantly accentuated with Akt inhibitor (LY294002). Conclusions: Our data suggested that PEAL induce caspase-dependent apoptosis through mitochondrial pathway by up-regulating p53 protein, and subsequent Bax protein as well as by modulating Bcl-2 protein, and that PEAL induces caspase-dependent apoptosis at least in part through the inhibition of phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway. This study provides evidence that PEAL might be useful for the treatment of cancer. PMID:25337568

  8. Staurosporine-induced apoptosis in astrocytes is prevented by A1 adenosine receptor activation.

    PubMed

    D'Alimonte, Iolanda; Ballerini, Patrizia; Nargi, Eleonora; Buccella, Silvana; Giuliani, Patricia; Di Iorio, Patrizia; Caciagli, Francesco; Ciccarelli, Renata

    2007-05-11

    Astrocyte apoptosis occurs in acute and chronic pathological processes at the central nervous system and the prevention of astrocyte death may represent an efficacious intervention in protecting neurons against degeneration. Our research shows that rat astrocyte exposure to 100 nM staurosporine for 3h caused apoptotic death accompanied by caspase-3, p38 mitogen-ed protein kinase (MAPK) and glycogen synthase kinase-3beta (GSK3beta) activation. N(6)-chlorocyclopentyladenosine (CCPA, 2.5-75 nM), a selective agonist of A(1) adenosine receptors, added to the cultures 1h prior to staurosporine, induced a dose-dependent anti-apoptotic effect, which was inhibited by the A(1) receptor antagonist, 8-cyclopentyl-1,3-dipropylxanthine. CCPA also caused a dose- and time-dependent phosphorylation/activation of Akt, a downstream effector of cell survival promoting phosphatidylinositol 3-kinase (PI3K) pathway, which in turn led to inhibition of staurosporine-induced GSK3beta and p38 MAPK activity. Accordingly, the anti-apoptotic effect of CCPA was abolished by culture pre-treatment with LY294002, a selective PI3K inhibitor, pointing out the prevailing role played by PI3K pathway in the protective effect exerted by A(1) receptor activation. Since an abnormal p38 and GSK3beta activity is implicated in acute (stroke) and chronic (Alzheimer's disease) neurodegenerative diseases, the results of the present study provide a hint to better understand adenosine relevance in these disorders. PMID:17400382

  9. Panax Quinquefolius Saponin of Stem and Leaf Attenuates Intermittent High Glucose-Induced Oxidative Stress Injury in Cultured Human Umbilical Vein Endothelial Cells via PI3K/Akt/GSK-3β Pathway

    PubMed Central

    Wang, Jingshang; Yin, Huijun; Guo, Chunyu; Xia, Chengdong; Liu, Qian; Zhang, Lu

    2013-01-01

    Panax quinquefolius saponin of stem and leaf (PQS), the effective parts of American ginseng, is widely used in China as a folk medicine for diabetes and cardiovascular diseases treatment. In our previous studies, we have demonstrated that PQS could improve the endothelial function of type II diabetes mellitus (T2DM) rats with high glucose fluctuation. In the present study, we investigated the protective effects of PQS against intermittent high glucose-induced oxidative damage on human umbilical vein endothelial cells (HUVECs) and the role of phosphatidylinositol 3-kinase kinase (PI3K)/Akt/GSK-3β pathway involved. Our results suggested that exposure of HUVECs to a high glucose concentration for 8 days showed a great decrease in cell viability accompanied by marked MDA content increase and SOD activity decrease. Moreover, high glucose significantly reduced the phosphorylation of Akt and GSK-3β. More importantly, these effects were even more evident in intermittent high glucose condition. PQS treatment significantly attenuated intermittent high glucose-induced oxidative damage on HUVECs and meanwhile increased cell viability and phosphorylation of Akt and GSK-3β of HUVECs. Interestingly, all these reverse effects of PQS on intermittent high glucose-cultured HUVECs were inhibited by PI3K inhibitor LY294002. These findings suggest that PQS attenuates intermittent-high-glucose-induced oxidative stress injury in HUVECs by PI3K/Akt/GSK-3β pathway. PMID:23956765

  10. Panax Quinquefolius Saponin of Stem and Leaf Attenuates Intermittent High Glucose-Induced Oxidative Stress Injury in Cultured Human Umbilical Vein Endothelial Cells via PI3K/Akt/GSK-3 β Pathway.

    PubMed

    Wang, Jingshang; Yin, Huijun; Huang, Ye; Guo, Chunyu; Xia, Chengdong; Liu, Qian; Zhang, Lu

    2013-01-01

    Panax quinquefolius saponin of stem and leaf (PQS), the effective parts of American ginseng, is widely used in China as a folk medicine for diabetes and cardiovascular diseases treatment. In our previous studies, we have demonstrated that PQS could improve the endothelial function of type II diabetes mellitus (T2DM) rats with high glucose fluctuation. In the present study, we investigated the protective effects of PQS against intermittent high glucose-induced oxidative damage on human umbilical vein endothelial cells (HUVECs) and the role of phosphatidylinositol 3-kinase kinase (PI3K)/Akt/GSK-3 β pathway involved. Our results suggested that exposure of HUVECs to a high glucose concentration for 8 days showed a great decrease in cell viability accompanied by marked MDA content increase and SOD activity decrease. Moreover, high glucose significantly reduced the phosphorylation of Akt and GSK-3 β . More importantly, these effects were even more evident in intermittent high glucose condition. PQS treatment significantly attenuated intermittent high glucose-induced oxidative damage on HUVECs and meanwhile increased cell viability and phosphorylation of Akt and GSK-3 β of HUVECs. Interestingly, all these reverse effects of PQS on intermittent high glucose-cultured HUVECs were inhibited by PI3K inhibitor LY294002. These findings suggest that PQS attenuates intermittent-high-glucose-induced oxidative stress injury in HUVECs by PI3K/Akt/GSK-3 β pathway. PMID:23956765

  11. Theanaphthoquinone inhibits fatty acid synthase expression in EGF-stimulated human breast cancer cells via the regulation of EGFR/ErbB-2 signaling

    SciTech Connect

    Weng, M.-S.; Ho, C.-T.; Ho, Y.-S.; Lin, J.-K. . E-mail: jklin@ha.mc.ntu.edu.tw

    2007-01-15

    Fatty acid synthase (FAS) is a major lipogenic enzyme catalyzing the synthesis of long-chain saturated fatty acids. Most breast cancers require lipogenesis for growth. Here, we demonstrated the effects of theanaphthoquinone (TNQ), a member of the thearubigins generated by the oxidation of theaflavin (TF-1), on the expression of FAS in human breast cancer cells. TNQ was found to suppress the EGF-induced expression of FAS mRNA and FAS protein in MDA-MB-231 cells. Expression of FAS has previously been shown to be regulated by the SREBP family of transcription factors. In this study, we demonstrated that the EGF-induced nuclear translocation of SREBP-1 was blocked by TNQ. Moreover, TNQ also modulated EGF-induced ERK1/2 and Akt phosphorylation. Treatment of MDA-MB-231 cells with PI 3-kinase inhibitors, LY294002 and Wortmannin, inhibited the EGF-induced expression of FAS and nuclear translocation of SREBP-1. Treatment with TNQ inhibited EGF-induced EGFR/ErbB-2 phosphorylation and dimerization. Furthermore, treatment with kinase inhibitors of EGFR and ErbB-2 suggested that EGFR/ErbB-2 activation was involved in EGF-induced FAS expression. In constitutive FAS expression, TNQ inhibited FAS expression and Akt autophosphorylation in BT-474 cells. The PI 3-kinase inhibitors and tyrosine kinase inhibitors of EGFR and ErbB-2 also reduced constitutive FAS expression. In addition, pharmacological blockade of FAS by TNQ decreased cell viability and induced cell death in BT-474 cells. In summary, our findings suggest that TNQ modulates FAS expression by the regulation of EGFR/ErbB-2 pathways and induces cell death in breast cancer cells.

  12. Involvement of the Ras/extracellular signal-regulated kinase signalling pathway in the regulation of ERCC-1 mRNA levels by insulin.

    PubMed Central

    Lee-Kwon, W; Park, D; Bernier, M

    1998-01-01

    Expression of DNA repair enzymes, which includes ERCC-1, might be under the control of hormonal and growth factor stimulation. In the present study it was observed that insulin increased ERCC-1 mRNA levels both in Chinese hamster ovary cells overexpressing human insulin receptors (HIRc cells) and in fully differentiated 3T3-L1 adipocytes. To investigate the mechanisms underlying the increase in ERCC-1 gene expression in HIRc cells, we used a variety of pharmacological tools known to inhibit distinct signalling pathways. None of these inhibitors affected the amount of ERCC-1 mRNA in unstimulated cells. The pretreatment of cells with two chemically unrelated phosphatidylinositol 3'-kinase inhibitors, wortmannin and LY294002, failed to block the doubling of ERCC-1 mRNA content by insulin. Similarly, inhibition of pp70 S6 kinase by rapamycin had no apparent effects on this insulin response. In contrast, altering the p21(ras)-dependent pathway with either manumycin, an inhibitor of Ras farnesylation, or PD98059, an inhibitor of the mitogen-activated protein kinase/extracellular signal-regulated protein kinase (ERK) kinase, suppressed the induction of ERCC-1 mRNA by insulin (P<0.001). Furthermore inhibition of RNA and protein synthesis negatively regulated the expression of this insulin-regulated gene (P<0.005). These results suggest that insulin enhances ERCC-1 mRNA levels by the activation of the Ras-ERK-dependent pathway without the involvement of the phosphatidylinositol 3'-kinase/pp70 S6 kinase. PMID:9531502

  13. PI3K/Akt Pathway Contributes to Neurovascular Unit Protection of Xiao-Xu-Ming Decoction against Focal Cerebral Ischemia and Reperfusion Injury in Rats

    PubMed Central

    Xiang, Jun; Zhang, Yong; Wang, Guo-Hua; Bao, Jie; Li, Wen-Wei; Zhang, Wen; Xu, Li-Li; Cai, Ding-Fang

    2013-01-01

    In the present study, we used a focal cerebral ischemia and reperfusion rat model to investigate the protective effects of Xiao-Xu-Ming decoction (XXMD) on neurovascular unit and to examine the role of PI3K (phosphatidylinositol 3-kinase)/Akt pathway in this protection. The cerebral ischemia was induced by 90 min of middle cerebral artery occlusion. Cerebral infarct area was measured by tetrazolium staining, and neurological function was observed at 24 h after reperfusion. DNA fragmentation assay, combined with immunofluorescence, was performed to evaluate apoptosis of neuron, astrocyte, and vascular endothelial cell which constitute neurovascular unit. The expression levels of proteins involved in PI3K/Akt pathway were detected by Western blot. The results showed that XXMD improved neurological function, decreased cerebral infarct area and neuronal damage, and attenuated cellular apoptosis in neurovascular unit, while these effects were abolished by inhibition of PI3K/Akt with LY294002. We also found that XXMD upregulated p-PDKl, p-Akt, and p-GSK3β expression levels, which were partly reversed by LY294002. In addition, the increases of p-PTEN and p-c-Raf expression levels on which LY294002 had no effect were also observed in response to XXMD treatment. The data indicated the protective effects of XXMD on neurovascular unit partly through the activation of PI3K/Akt pathway. PMID:23781261

  14. Cellular response to low dose radiation: Role of phosphatidylinositol-3 kinase like kinases

    SciTech Connect

    Balajee, A.S.; Meador, J.A.; Su, Y.

    2011-03-24

    It is increasingly realized that human exposure either to an acute low dose or multiple chronic low doses of low LET radiation has the potential to cause different types of cancer. Therefore, the central theme of research for DOE and NASA is focused on understanding the molecular mechanisms and pathways responsible for the cellular response to low dose radiation which would not only improve the accuracy of estimating health risks but also help in the development of predictive assays for low dose radiation risks associated with tissue degeneration and cancer. The working hypothesis for this proposal is that the cellular mechanisms in terms of DNA damage signaling, repair and cell cycle checkpoint regulation are different for low and high doses of low LET radiation and that the mode of action of phosphatidylinositol-3 kinase like kinases (PIKK: ATM, ATR and DNA-PK) determines the dose dependent cellular responses. The hypothesis will be tested at two levels: (I) Evaluation of the role of ATM, ATR and DNA-PK in cellular response to low and high doses of low LET radiation in simple in vitro human cell systems and (II) Determination of radiation responses in complex cell microenvironments such as human EpiDerm tissue constructs. Cellular responses to low and high doses of low LET radiation will be assessed from the view points of DNA damage signaling, DNA double strand break repair and cell cycle checkpoint regulation by analyzing the activities (i.e. post-translational modifications and kinetics of protein-protein interactions) of the key target proteins for PI-3 kinase like kinases both at the intra-cellular and molecular levels. The proteins chosen for this proposal are placed under three categories: (I) sensors/initiators include ATM ser1981, ATR, 53BP1, gamma-H2AX, MDC1, MRE11, Rad50 and Nbs1; (II) signal transducers include Chk1, Chk2, FANCD2 and SMC1; and (III) effectors include p53, CDC25A and CDC25C. The primary goal of this proposal is to elucidate the

  15. Mycobacterium avium MAV_2941 mimics Phosphoinositol-3-Kinase to interfere with macrophage phagosome maturation

    PubMed Central

    Danelishvili, Lia; Bermudez, Luiz E.

    2015-01-01

    Mycobacterium avium subsp hominissuis (M. avium) is a pathogen that infects and survives in macrophages. Previously, we have identified the M. avium MAV_2941 gene encoding a 73 amino acid protein exported by the oligopeptide transporter OppA to the macrophage cytoplasm. Mutations in MAV_2941 were associated with significant impairment of M. avium growth in THP-1 macrophages. In this study, we investigated the molecular mechanism of MAV_2941 action and demonstrated that MAV_2941 interacts with the vesicle trafficking proteins syntaxin-8 (STX8), adaptor-related protein complex 3 (AP-3) complex subunit beta-1 (AP3B1) and Archain 1 (ARCN1) in mononuclear phagocytic cells. Sequencing analysis revealed that the binding site of MAV_2941 is structurally homologous to the human phosphatidylinositol 3-kinase (PI3K) chiefly in the region recognized by vesicle trafficking proteins. The β3A subunit of AP-3, encoded by AP3B1, is essential for trafficking cargo proteins, including lysosomal-associated membrane protein 1 (LAMP-1), to the phagosome and lysosome-related organelles. Here, we show that while the heat-killed M. avium when ingested by macrophages co-localizes with LAMP-1 protein, transfection of MAV_2941 in macrophages results in significant decrease of LAMP-1 co-localization with the heat-killed M. avium phagosomes. Mutated MAV_2941, where the amino acids homologous to the binding region of PI3K were changed, failed to interact with trafficking proteins. Inactivation of the AP3B1 gene led to alteration in the trafficking of LAMP-1. These results suggest that M. avium MAV_2941 interferes with the protein trafficking within macrophages altering the maturation of phagosome. PMID:26043821

  16. Phosphatidylinositol 3-Kinase Couples Localised Calcium Influx to Activation of Akt in Central Nerve Terminals.

    PubMed

    Nicholson-Fish, Jessica C; Cousin, Michael A; Smillie, Karen J

    2016-03-01

    The efficient retrieval of synaptic vesicle membrane and cargo in central nerve terminals is dependent on the efficient recruitment of a series of endocytosis modes by different patterns of neuronal activity. During intense neuronal activity the dominant endocytosis mode is activity-dependent endocytosis (ADBE). Triggering of ADBE is linked to calcineurin-mediated dynamin I dephosphorylation since the same stimulation intensities trigger both. Dynamin I dephosphorylation is maximised by a simultaneous inhibition of its kinase glycogen synthase kinase 3 (GSK3) by the protein kinase Akt, however it is unknown how increased neuronal activity is transduced into Akt activation. To address this question we determined how the activity-dependent increases in intracellular free calcium ([Ca(2+)]i) control activation of Akt. This was achieved using either trains of high frequency action potentials to evoke localised [Ca(2+)]i increases at active zones, or a calcium ionophore to raise [Ca(2+)]i uniformly across the nerve terminal. Through the use of either non-specific calcium channel antagonists or intracellular calcium chelators we found that Akt phosphorylation (and subsequent GSK3 phosphorylation) was dependent on localised [Ca(2+)]i increases at the active zone. In an attempt to determine mechanism, we antagonised either phosphatidylinositol 3-kinase (PI3K) or calmodulin. Activity-dependent phosphorylation of both Akt and GSK3 was arrested on inhibition of PI3K, but not calmodulin. Thus localised calcium influx in central nerve terminals activates PI3K via an unknown calcium sensor to trigger the activity-dependent phosphorylation of Akt and GSK3. PMID:26198194

  17. Insulin Receptor Substrate 1, the Hub Linking Follicle-stimulating Hormone to Phosphatidylinositol 3-Kinase Activation.

    PubMed

    Law, Nathan C; Hunzicker-Dunn, Mary E

    2016-02-26

    The ubiquitous phosphatidylinositol 3-kinase (PI3K) signaling pathway regulates many cellular functions. However, the mechanism by which G protein-coupled receptors (GPCRs) signal to activate PI3K is poorly understood. We have used ovarian granulosa cells as a model to investigate this pathway, based on evidence that the GPCR agonist follicle-stimulating hormone (FSH) promotes the protein kinase A (PKA)-dependent phosphorylation of insulin receptor substrate 1 (IRS1) on tyrosine residues that activate PI3K. We report that in the absence of FSH, granulosa cells secrete a subthreshold concentration of insulin-like growth factor-1 (IGF-1) that primes the IGF-1 receptor (IGF-1R) but fails to promote tyrosine phosphorylation of IRS1. FSH via PKA acts to sensitize IRS1 to the tyrosine kinase activity of the IGF-1R by activating protein phosphatase 1 (PP1) to promote dephosphorylation of inhibitory Ser/Thr residues on IRS1, including Ser(789). Knockdown of PP1β blocks the ability of FSH to activate PI3K in the presence of endogenous IGF-1. Activation of PI3K thus requires both PKA-mediated relief of IRS1 inhibition and IGF-1R-dependent tyrosine phosphorylation of IRS1. Treatment with FSH and increasing concentrations of exogenous IGF-1 triggers synergistic IRS1 tyrosine phosphorylation at PI3K-activating residues that persists downstream through protein kinase B (AKT) and FOXO1 (forkhead box protein O1) to drive synergistic expression of genes that underlies follicle maturation. Based on the ability of GPCR agonists to synergize with IGFs to enhance gene expression in other cell types, PP1 activation to relieve IRS1 inhibition may be a more general mechanism by which GPCRs act with the IGF-1R to activate PI3K/AKT. PMID:26702053

  18. Mycobacterium avium MAV_2941 mimics phosphoinositol-3-kinase to interfere with macrophage phagosome maturation.

    PubMed

    Danelishvili, Lia; Bermudez, Luiz E

    2015-09-01

    Mycobacterium avium subsp hominissuis (M. avium) is a pathogen that infects and survives in macrophages. Previously, we have identified the M. avium MAV_2941 gene encoding a 73 amino acid protein exported by the oligopeptide transporter OppA to the macrophage cytoplasm. Mutations in MAV_2941 were associated with significant impairment of M. avium growth in THP-1 macrophages. In this study, we investigated the molecular mechanism of MAV_2941 action and demonstrated that MAV_2941 interacts with the vesicle trafficking proteins syntaxin-8 (STX8), adaptor-related protein complex 3 (AP-3) complex subunit beta-1 (AP3B1) and Archain 1 (ARCN1) in mononuclear phagocytic cells. Sequencing analysis revealed that the binding site of MAV_2941 is structurally homologous to the human phosphatidylinositol 3-kinase (PI3K) chiefly in the region recognized by vesicle trafficking proteins. The β3A subunit of AP-3, encoded by AP3B1, is essential for trafficking cargo proteins, including lysosomal-associated membrane protein 1 (LAMP-1), to the phagosome and lysosome-related organelles. Here, we show that while the heat-killed M. avium when ingested by macrophages co-localizes with LAMP-1 protein, transfection of MAV_2941 in macrophages results in significant decrease of LAMP-1 co-localization with the heat-killed M. avium phagosomes. Mutated MAV_2941, where the amino acids homologous to the binding region of PI3K were changed, failed to interact with trafficking proteins. Inactivation of the AP3B1 gene led to alteration in the trafficking of LAMP-1. These results suggest that M. avium MAV_2941 interferes with the protein trafficking within macrophages altering the maturation of phagosome. PMID:26043821

  19. Phosphatidylinositol 3-kinase/Akt signaling as a key mediator of tumor cell responsiveness to radiation.

    PubMed

    Toulany, Mahmoud; Rodemann, H Peter

    2015-12-01

    The phosphatidylinositol 3-kinase (PI3K)/Akt pathway is a key cascade downstream of several protein kinases, especially membrane-bound receptor tyrosine kinases, including epidermal growth factor receptor (EGFR) family members. Hyperactivation of the PI3K/Akt pathway is correlated with tumor development, progression, poor prognosis, and resistance to cancer therapies, such as radiotherapy, in human solid tumors. Akt/PKB (Protein Kinase B) members are the major kinases that act downstream of PI3K, and these are involved in a variety of cellular functions, including growth, proliferation, glucose metabolism, invasion, metastasis, angiogenesis, and survival. Accumulating evidence indicates that activated Akt is one of the major predictive markers for solid tumor responsiveness to chemo/radiotherapy. DNA double-strand breaks (DNA-DSB), are the prime cause of cell death induced by ionizing radiation. Preclinical in vitro and in vivo studies have shown that constitutive activation of Akt and stress-induced activation of the PI3K/Akt pathway accelerate the repair of DNA-DSB and, consequently, lead to therapy resistance. Analyzing dysregulations of Akt, such as point mutations, gene amplification or overexpression, which results in the constitutive activation of Akt, might be of special importance in the context of radiotherapy outcomes. Such studies, as well as studies of the mechanism(s) by which activated Akt1 regulates repair of DNA-DSB, might help to identify combinations using the appropriate molecular targeting strategies with conventional radiotherapy to overcome radioresistance in solid tumors. In this review, we discuss the dysregulation of the components of upstream regulators of Akt as well as specific modifications of Akt isoforms that enhance Akt activity. Likewise, the mechanisms by which Akt interferes with repair of DNA after exposure to ionizing radiation, will be reviewed. Finally, the current status of Akt targeting in combination with radiotherapy will

  20. Lithium potentiates GSK-3β activity by inhibiting phosphoinositide 3-kinase-mediated Akt phosphorylation

    SciTech Connect

    Tian, Nie; Kanno, Takeshi; Jin, Yu; Nishizaki, Tomoyuki

    2014-07-18

    Highlights: • Lithium suppresses Akt activity by reducing PI3K-mediated Akt phosphorylation. • Lithium enhances GSK-3β activity by reducing Akt-mediated GSK-3β phosphorylation. • Lithium suppresses GSK-3β activity through its direct inhibition. - Abstract: Accumulating evidence has pointed to the direct inhibitory action of lithium, an anti-depressant, on GSK-3β. The present study investigated further insight into lithium signaling pathways. In the cell-free assay Li{sub 2}CO{sub 3} significantly inhibited phosphoinositide 3-kinase (PI3K)-mediated phosphorylation of Akt1 at Ser473, but Li{sub 2}CO{sub 3} did not affect PI3K-mediated PI(3,4,5)P{sub 3} production and 3-phosphoinositide-dependent protein kinase 1 (PDK1)-mediated phosphorylation of Akt1 at Thr308. This indicates that lithium could enhance GSK-3β activity by suppressing Akt-mediated Ser9 phosphorylation of GSK-3β in association with inhibition of PI3K-mediated Akt activation. There was no direct effect of Li{sub 2}CO{sub 3} on Akt1-induced phosphorylation of GSK-3β at Ser9, but otherwise Li{sub 2}CO{sub 3} significantly reduced GSK-3β-mediated phosphorylation of β-catenin at Ser33/37 and Thr41. This indicates that lithium directly inhibits GSK-3β in an Akt-independent manner. In rat hippocampal slices Li{sub 2}CO{sub 3} significantly inhibited phosphorylation of Akt1/2 at Ser473/474, GSK-3β at Ser9, and β-catenin at Ser33/37 and Thr41. Taken together, these results indicate that lithium exerts its potentiating and inhibiting bidirectional actions on GSK-3β activity.

  1. Learning deficits and agenesis of synapses and myelinated axons in phosphoinositide-3 kinase-deficient mice.

    PubMed

    Tohda, Chihiro; Nakanishi, Ruiko; Kadowaki, Makoto

    Although previous studies have reported a role for phosphoinositide-3 kinase (PI3K) in axonal definition and growth in vitro, it is not clear whether PI3K regulates axonal formation and synaptogenesis in vivo. The goal of the present study was to clarify the role of PI3K in behavioral functions and some underlying neuroanatomical structures. Immunohistochemistry, an electron-microscopic analysis and behavioral tests were carried out. Knockout mice lacking the p85alpha regulatory subunit of PI3K (p85alpha-/- mice) significantly showed learning deficits, restlessness and motivation deficit. Expression of phosphorylated Akt, which indirectly shows the activity of PI3K, was high in myelinated axons, especially in axonal bundles in the striatum of wild-type mice, but was significantly low in the striatum, cerebral cortex and the hippocampal CA3 of p85alpha-/- mice. The axonal marker protein level decreased mainly in the striatum and cerebral cortex of p85alpha-/- mice. In these two regions, myelinated axons are rich in the wild-type mice. However, the density of myelinated axons and myelin thickness were significantly low in the striatum and cerebral cortex of p85alpha-/- mice. Synaptic protein level was clearly decreased in the striatum, cerebral cortex, and hippocampus of p85alpha-/- mice when compared with wild mice. The present results suggest that PI3K plays a role in the generation and/or maintenance of synapses and myelinated axons in the brain and that deficiencies in PI3K activity result in abnormalities in several neuronal functions, including learning, restlessness and motivation. PMID:17901711

  2. Vasculogenic Mimicry in Prostate Cancer: The Roles of EphA2 and PI3K

    PubMed Central

    Wang, Hua; Lin, Hao; Pan, Jincheng; Mo, Chengqiang; Zhang, Faming; Huang, Bin; Wang, Zongren; Chen, Xu; Zhuang, Jintao; Wang, Daohu; Qiu, Shaopeng

    2016-01-01

    BACKGROUND. Aggressive tumor cells can form perfusable networks that mimic normal vasculature and enhance tumor growth and metastasis. A number of molecular players have been implicated in such vasculogenic mimicry, among them the receptor tyrosine kinase EphA2, which is aberrantly expressed in aggressive tumors. Here we study the role and regulation of EphA2 in vasculogenic mimicry in prostate cancer where this phenomenon is still poorly understood. METHODS. Vasculogenic mimicry was characterized by tubules whose cellular lining was negative for the endothelial cell marker CD34 but positive for periodic acid-Schiff staining, and/or contained red blood cells. Vasculogenic mimicry was assessed in 92 clinical samples of prostate cancer and analyzed in more detail in three prostate cancer cell lines kept in three-dimensional culture. Tissue samples and cell lines were also assessed for total and phosphorylated levels of EphA2 and its potential regulator, Phosphoinositide 3-Kinase (PI3K). In addition, the role of EphA2 in vasculogenic mimicry and in cell migration and invasion were investigated by manipulating the levels of EphA2 through specific siRNAs. Furthermore, the role of PI3K in vasculogenic mimicry and in regulating EphA2 was tested by application of an inhibitor, LY294002. RESULTS. Immunohistochemistry of prostate cancers showed a significant correlation between vasculogenic mimicry and high expression levels of EphA2, high Gleason scores, advanced TNM stage, and the presence of lymph node and distant metastases. Likewise, two prostate cancer cell lines (PC3 and DU-145) formed vasculogenic networks on Matrigel and expressed high EphA2 levels, while one line (LNCaP) showed no vasculogenic networks and lower EphA2 levels. Specific silencing of EphA2 in PC3 and DU-145 cells decreased vasculogenic mimicry as well as cell migration and invasion. Furthermore, high expression levels of PI3K and EphA2 phosphorylation at Ser897 significantly correlated with the

  3. COMP-angiopoietin 1 increases proliferation, differentiation, and migration of stem-like cells through Tie-2-mediated activation of p38 MAPK and PI3K/Akt signal transduction pathways

    SciTech Connect

    Kook, Sung-Ho; Lim, Shin-Saeng; Cho, Eui-Sic; Lee, Young-Hoon; Han, Seong-Kyu; Lee, Kyung-Yeol; Kwon, Jungkee; Hwang, Jae-Won; Bae, Cheol-Hyeon; Seo, Young-Kwon; Lee, Jeong-Chae

    2014-12-12

    Highlights: • COMP-Ang1 induces Tie-2 activation in BMMSCs, but not in primary osteoblasts. • Tie-2 knockdown inhibits COMP-Ang1-stimulated proliferation and osteoblastogenesis. • Tie-2 knockdown prevents COMP-Ang1-induced activation of PI3K/Akt and p38 MAPK. • COMP-Ang1 induces migration of cells via activation of PI3K/Akt and CXCR4 pathways. • COMP-Ang1 stimulates in vivo migration of PDLSCs into a calvarial defect site of rats. - Abstract: Recombinant COMP-Ang1, a chimera of angiopoietin-1 (Ang1) and a short coiled-coil domain of cartilage oligomeric matrix protein (COMP), is under consideration as a therapeutic agent capable of inducing the homing of cells with increased angiogenesis. However, the potentials of COMP-Ang1 to stimulate migration of mesenchymal stem cells (MSCs) and the associated mechanisms are not completely understood. We examined the potential of COMP-Ang1 on bone marrow (BM)-MSCs, human periodontal ligament stem cells (PDLSCs), and calvarial osteoblasts. COMP-Ang1 augmented Tie-2 induction at protein and mRNA levels and increased proliferation and expression of runt-related transcription factor 2 (Runx2), osterix, and CXCR4 in BMMSCs, but not in osteoblasts. The COMP-Ang1-mediated increases were inhibited by Tie-2 knockdown and by treating inhibitors of phosphoinositide 3-kinase (PI3K), LY294002, or p38 mitogen-activated protein kinase (MAPK), SB203580. Phosphorylation of p38 MAPK and Akt was prevented by siRNA-mediated silencing of Tie-2. COMP-Ang1 also induced in vitro migration of BMMSCs and PDLSCs. The induced migration was suppressed by Tie-2 knockdown and by CXCR4-specific peptide antagonist or LY294002, but not by SB203580. Furthermore, COMP-Ang1 stimulated the migration of PDLSCs into calvarial defect site of rats. Collectively, our results demonstrate that COMP-Ang1-stimulated proliferation, differentiation, and migration of progenitor cells may involve the Tie-2-mediated activation of p38 MAPK and PI3K/Akt pathways.

  4. Salidroside Improves Behavioral and Histological Outcomes and Reduces Apoptosis via PI3K/Akt Signaling after Experimental Traumatic Brain Injury

    PubMed Central

    Chen, Szu-Fu; Tsai, Hsin-Ju; Hung, Tai-Ho; Chen, Chien-Cheng; Lee, Chao Yu; Wu, Chun-Hu; Wang, Pei-Yi; Liao, Nien-Chieh

    2012-01-01

    Background Traumatic brain injury (TBI) induces a complex sequence of apopototic cascades that contribute to secondary tissue damage. The aim of this study was to investigate the effects of salidroside, a phenolic glycoside with potent anti-apoptotic properties, on behavioral and histological outcomes, brain edema, and apoptosis following experimental TBI and the possible involvement of the phosphoinositide 3-kinase/protein kinase B (PI3K)/Akt signaling pathway. Methodology/Principal Findings Mice subjected to controlled cortical impact injury received intraperitoneal salidroside (20, or 50 mg/kg) or vehicle injection 10 min after injury. Behavioral studies, histology analysis and brain water content assessment were performed. Levels of PI3K/Akt signaling-related molecules, apoptosis-related proteins, cytochrome C (CytoC), and Smac/DIABLO were also analyzed. LY294002, a PI3K inhibitor, was administered to examine the mechanism of protection. The protective effect of salidroside was also investigated in primary cultured neurons subjected to stretch injury. Treatment with 20 mg/kg salidroside_significantly improved functional recovery and reduced brain tissue damage up to post-injury day 28. Salidroside_also significantly reduced neuronal death, apoptosis, and brain edema at day 1. These changes were associated with significant decreases in cleaved caspase-3, CytoC, and Smac/DIABLO at days 1 and 3. Salidroside increased phosphorylation of Akt on Ser473 and the mitochondrial Bcl-2/Bax ratio at day 1, and enhanced phosphorylation of Akt on Thr308 at day 3. This beneficial effect was abolished by pre-injection of LY294002. Moreover, delayed administration of salidroside at 3 or 6 h post-injury reduced neuronal damage at day 1. Salidroside treatment also decreased neuronal vulnerability to stretch-induced injury in vitro. Conclusions/Significance Post-injury salidroside improved long-term behavioral and histological outcomes and reduced brain edema and apoptosis

  5. CCN1/Cyr61-PI3K/AKT signaling promotes retinal neovascularization in oxygen-induced retinopathy

    PubMed Central

    DI, YU; ZHANG, YIOU; NIE, QINGZHU; CHEN, XIAOLONG

    2015-01-01

    Retinal neovascularization (RNV) is a characteristic pathological finding of retinopathy of prematurity (ROP). Cysteine-rich 61 [Cyr61, also known as CCN family member 1 (CCN1)] has been reported to mediate angiogenesis. The aim of the present study was to investigate the mechanisms of CCN1/Cyr61-phosphoinositide 3-kinase (PI3K)/AKT signaling in ROP. The contribution of CCN1 to human umbilical vein endothelial cell (HUVEC) proliferation and apoptosis under hypoxic conditions was determined using a cell counting kit-8 (CCK-8) and Annexin V/propidium iodide (PI) staining, respectively, as well as using siRNA targeting CCN1 (CCN1 siRNA). The cells exposed to hypoxia were also treated with the PI3K/AKT inhibitor, LY294002. In addition, mouse pups with oxygen-induced retinopathy (OIR) were administered an intravitreal injection of CCN1 siRNA. RNV was assessed by magnesium-activated adenosine diphosphatease (ADPase) staining. RT-qPCR, western blot analysis, immunofluorescence staining and immunohistochemistry were used to detect the distribution and expression of CCN1, PI3K and AKT. Exposure to hypoxia increased the neovascularization clock hour scores (from 1.23±0.49 to 5.60±0.73, P<0.05) and the number of preretinal neovascular cells, as well as the mRNA and protein expression levels of CCN1, PI3K and AKT (all P<0.05). The injection of CCN1 siRNA decreased the neovascularization clock hour scores and the number of preretinal neovascular cells (1.53±0.72 vs. 4.76±1.04; 12.0±2.8 vs. 31.4±2.6, respectively, both P<0.05), as well as the mRNA and protein expression levels of CCN1, PI3K and AKT (protein, −45.3, −22.5 and −28.4%; mRNA, −43.7, −58.7 and −42.9%, respectively, all P<0.05) compared to the administration of scrambled siRNA under hypoxic conditions. Treatment with LY294002 decreased the mRNA and protein expression levels of CCN1 in the cells exposed to hypoxia (both P<0.05). The administration of CCN1 siRNA resulted in less severe

  6. Phosphatidylinositol 3-Kinase-, Actin-, and Microtubule-Dependent Transport of Semliki Forest Virus Replication Complexes from the Plasma Membrane to Modified Lysosomes▿ †

    PubMed Central

    Spuul, Pirjo; Balistreri, Giuseppe; Kääriäinen, Leevi; Ahola, Tero

    2010-01-01

    Like other positive-strand RNA viruses, alphaviruses replicate their genomes in association with modified intracellular membranes. Alphavirus replication sites consist of numerous bulb-shaped membrane invaginations (spherules), which contain the double-stranded replication intermediates. Time course studies with Semliki Forest virus (SFV)-infected cells were combined with live-cell imaging and electron microscopy to reveal that the replication complex spherules of SFV undergo an unprecedented large-scale movement between cellular compartments. The spherules first accumulated at the plasma membrane and were then internalized using an endocytic process that required a functional actin-myosin network, as shown by blebbistatin treatment. Wortmannin and other inhibitors indicated that the internalization of spherules also required the activity of phosphatidylinositol 3-kinase. The spherules therefore represent an unusual type of endocytic cargo. After endocytosis, spherule-containing vesicles were highly dynamic and had a neutral pH. These primary carriers fused with acidic endosomes and moved long distances on microtubules, in a manner prevented by nocodazole. The result of the large-scale migration was the formation of a very stable compartment, where the spherules were accumulated on the outer surfaces of unusually large and static acidic vacuoles localized in the pericentriolar region. Our work highlights both fundamental similarities and important differences in the processes that lead to the modified membrane compartments in cells infected by distinct groups of positive-sense RNA viruses. PMID:20484502

  7. PHOSPHATIDYLINOSITIDE 3-KINASE AND PROTEIN KINASE C ZETA MEDIATE RETINOIC ACID INDUCTION OF DARPP-32 IN MEDIUM SIZE SPINY NEURONS IN VITRO

    PubMed Central

    Pedrini, Steve; Bogush, Alexey; Ehrlich, Michelle E

    2016-01-01

    Mature striatal medium size spiny neurons express the dopamine and cyclic AMP-regulated phosphoprotein, 32 kDa (DARPP-32), but little is known about the mechanisms regulating its levels, or the specification of fully differentiated neuronal subtypes. Cell extrinsic molecules that increase DARPP-32 mRNA and/or protein levels include retinoic acid (RA), brain-derived neurotrophic factor (BDNF), and estrogen (E2). We now demonstrate that RA regulates DARPP-32 mRNA and protein in primary striatal neuronal cultures. Furthermore, DARPP-32 induction by RA in vitro requires phosphatidylinositide 3-kinase (PI3K), but is independent of tropomyosin-related kinase b (TrkB), cyclin-dependent kinase 5 (cdk5), and protein kinase B (Akt). Using pharmacologic inhibitors of various isoforms of protein kinase C, we also demonstrate that DARPP-32 induction by RA in vitro is dependent on protein kinase C zeta (PKCζ). Thus, the signal transduction pathways mediated by RA are very different than those mediating DARPP-32 induction by brain derived neurotrophic factor (BDNF). These data support the presence of multiple signal transduction pathways mediating expression of DARPP-32 in vitro, including a novel, important pathway via which PI3K regulates the contribution of PKCζ. PMID:18485106

  8. PfIRR Interacts with HrIGF-I and Activates the MAP-kinase and PI3-kinase Signaling Pathways to Regulate Glycogen Metabolism in Pinctada fucata

    PubMed Central

    Shi, Yu; He, Mao-xian

    2016-01-01

    The insulin-induced mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3-kinase (PI3K) pathways are major intracellular signaling modules and conserved among eukaryotes that are known to regulate diverse cellular processes. However, they have not been investigated in the mollusk species Pinctada fucata. Here, we demonstrate that insulin-related peptide receptor of P. fucata (pfIRR) interacts with human recombinant insulin-like growth factor I (hrIGF-I), and stimulates the MAPK and PI3K signaling pathways in P. fucata oocytes. We also show that inhibition of pfIRR by the inhibitor PQ401 significantly attenuates the basal and hrIGF-I-induced phosphorylation of MAPK and PI3K/Akt at amino acid residues threonine 308 and serine 473. Furthermore, our experiments show that there is cross-talk between the MAPK and PI3K/Akt pathways, in which MAPK kinase positively regulates the PI3K pathway, and PI3K positively regulates the MAPK cascade. Intramuscular injection of hrIGF-I stimulates the PI3K and MAPK pathways to increase the expression of pfirr, protein phosphatase 1, glucokinase, and the phosphorylation of glycogen synthase, decreases the mRNA expression of glycogen synthase kinase-3 beta, decreases glucose levels in hemocytes, and increases glycogen levels in digestive glands. These results suggest that the MAPK and PI3K pathways in P. fucata transmit the hrIGF-I signal to regulate glycogen metabolism. PMID:26911653

  9. Transcriptional signature of epidermal keratinocytes subjected to in vitro scratch wounding reveals selective roles for ERK1/2, p38, and phosphatidylinositol 3-kinase signaling pathways.

    PubMed

    Fitsialos, Giorgos; Chassot, Anne-Amandine; Turchi, Laurent; Dayem, Manal A; LeBrigand, Kevin; Moreilhon, Chimène; Meneguzzi, Guerrino; Buscà, Roser; Mari, Bernard; Barbry, Pascal; Ponzio, Gilles

    2007-05-18

    Covering denuded dermal surfaces after injury requires migration, proliferation, and differentiation of skin keratinocytes. To clarify the major traits controlling these intermingled biological events, we surveyed the genomic modifications occurring during the course of a scratch wound closure of cultured human keratinocytes. Using a DNA microarray approach, we report the identification of 161 new markers of epidermal repair. Expression data, combined with functional analysis performed with specific inhibitors of ERK, p38(MAPK) and phosphatidylinositol 3-kinase (PI3K), demonstrate that kinase pathways exert very selective functions by precisely controlling the expression of specific genes. Inhibition of the ERK pathway totally blocks the wound closure and inactivates many early transcription factors and EGF-type growth factors. p38(MAPK) inhibition only delays "healing," probably in line with the control of genes involved in the propagation of injury-initiated signaling. In contrast, PI3K inhibition accelerates the scratch closure and potentiates the scratch-dependent stimulation of three genes related to epithelial cell transformation, namely HAS3, HBEGF, and ETS1. Our results define in vitro human keratinocyte wound closure as a repair process resulting from a fine balance between positive signals controlled by ERK and p38(MAPK) and negative ones triggered by PI3K. The perturbation of any of these pathways might lead to dysfunction in the healing process, similar to those observed in pathological wounding phenotypes, such as hypertrophic scars or keloids. PMID:17363378

  10. Ciliary Neurotrophic Factor Stimulates Muscle Glucose Uptake by a PI3-Kinase–Dependent Pathway That Is Impaired With Obesity

    PubMed Central

    Steinberg, Gregory R.; Watt, Matthew J.; Ernst, Matthias; Birnbaum, Morris J.; Kemp, Bruce E.; Jørgensen, Sebastian Beck

    2009-01-01

    OBJECTIVE Ciliary neurotrophic factor (CNTF) reverses muscle insulin resistance by increasing fatty acid oxidation through gp130-LIF receptor signaling to the AMP-activated protein kinase (AMPK). CNTF also increases Akt signaling in neurons and adipocytes. Because both Akt and AMPK regulate glucose uptake, we investigated muscle glucose uptake in response to CNTF signaling in lean and obese mice. RESEARCH DESIGN AND METHODS Mice were injected intraperitoneally with saline or CNTF, and blood glucose was monitored. The effects of CNTF on skeletal muscle glucose uptake and AMPK/Akt signaling were investigated in incubated soleus and extensor digitorum longus (EDL) muscles from muscle-specific AMPKα2 kinase-dead, gp130ΔSTAT, and lean and obese ob/ob and high-fat–fed mice. The effect of C2-ceramide on glucose uptake and gp130 signaling was also examined. RESULTS CNTF reduced blood glucose and increased glucose uptake in isolated muscles in a time- and dose-dependent manner with maximal effects after 30 min with 100 ng/ml. CNTF increased Akt-S473 phosphorylation in soleus and EDL; however, AMPK-T172 phosphorylation was only increased in soleus. Incubation of muscles from AMPK kinase dead (KD) and wild-type littermates with the PI3-kinase inhibitor LY-294002 demonstrated that PI3-kinase, but not AMPK, was essential for CNTF-stimulated glucose uptake. CNTF-stimulated glucose uptake and Akt phosphorylation were substantially reduced in obesity (high-fat diet and ob/ob) despite normal induction of gp130/AMPK signaling—effects also observed when treating myotubes with C2-ceramide. CONCLUSIONS CNTF acutely increases muscle glucose uptake by a mechanism involving the PI3-kinase/Akt pathway that does not require AMPK. CNTF-stimulated glucose uptake is impaired in obesity-induced insulin resistance and by ceramide. PMID:19136654

  11. Impact of PTEN on the expression of insulin-like growth factors (IGFs) and IGF-binding proteins in human gastric adenocarcinoma cells

    SciTech Connect

    Yi, Ho-Keun; Kim, Sun-Young; Hwang, Pyoung-Han; Kim, Chan-Young; Yang, Doo-Hyun; Oh, Youngman; Lee, Dae-Yeol . E-mail: leedy@chonbuk.ac.kr

    2005-05-13

    PTEN is a tumor suppressor gene that is frequently mutated or deleted in a variety of human cancers including human gastric cancer. PTEN functions primarily as a lipid phosphatase and plays a key role in the regulation of the PI3 kinase/Akt pathway, thereby modulating cell proliferation and cell survival. On the other hand, the IGF system plays an important role in cell proliferation and cell survival via the PI3 kinase/Akt and MAP kinase pathways in many cancer cells. To characterize the impact of PTEN on the IGF-IGFR-IGFBP axis in gastric cancer, we overexpressed PTEN using an adenovirus gene transfer system in human gastric adenocarcinoma cells, SNU-484 and SNU-663, which lack PTEN. Overexpression of PTEN inhibited serum-induced as well as IGF-I-induced cell proliferation as compared to control cells. PTEN overexpression resulted in a significant decrease in the expression of IGF-I, -II, and IGF-IR. Interestingly, amongst the six IGFBPs, only IGFBP-3 was upregulated by PTEN, whereas IGFBP-4 and -6 were reduced. The IGFBP-3 promoter activity assay and Western immunoblotting demonstrate that PTEN regulates IGFBP-3 at the transcriptional level. In addition, the PI3 kinase inhibitor, LY294002, upregulates IGFBP-3 expression but downregulates IGF-I and IGF-II, indicating that PTEN controls IGFBP-3 and IGFs by an Akt-dependent pathway. These findings suggest that PTEN may inhibit antiapoptotic IGF actions not only by blocking the IGF-IGFR-induced Akt activity, but also by regulating expression of components of the IGF system, in particular, upregulation of IGFBP-3, which is known to exert antiproliferative effects through IGF-dependent and IGF-independent mechanisms in cancer cells.

  12. Induction of Cyclin D2 in Rat Granulosa Cells Requires FSH-dependent Relief from FOXO1 Repression Coupled with Positive Signals from Smad*

    PubMed Central

    Park, Youngkyu; Maizels, Evelyn T.; Feiger, Zachary J.; Alam, Hena; Peters, Carl A.; Woodruff, Teresa K.; Unterman, Terry G.; Lee, Eun Jig; Jameson, J. Larry; Hunzicker-Dunn, Mary

    2006-01-01

    Ovarian follicles undergo exponential growth in response to follicle-stimulating hormone (FSH), largely as a result of the proliferation of granulosa cells (GCs). In vitro under serum-free conditions, rat GCs differentiate in response to FSH but do not proliferate unless activin is also present. In the presence of FSH plus activin, GCs exhibit enhanced expression of cyclin D2 as well as inhibin-α, aromatase, steroido