Science.gov

Sample records for 3-kinase p110beta gene

  1. Silencing p110{beta} prevents rapid depletion of nuclear pAkt

    SciTech Connect

    Ye, Zhi-wei; Ghalali, Aram; Hoegberg, Johan; Stenius, Ulla

    2011-12-02

    Highlights: Black-Right-Pointing-Pointer p110{beta} was essential for the statin- and ATP-induced depletion of nuclear pAkt and an associated inhibition of growth. Black-Right-Pointing-Pointer p110{beta} knock-out inhibited statin-induced changes in binding between FKBP51, pAkt and PTEN. Black-Right-Pointing-Pointer Data supports the hypothesis that nuclear pAkt is important for anti-cancer effects of statins. -- Abstract: The p110{beta} subunit in the class IA PI3K family may act as an oncogene and is critical for prostate tumor development in PTEN knockout mice. We tested the possible involvement of p110{beta} in a recently described rapid depletion of phosphorylated Akt (pAkt) in the nucleus. Previous work showed that this down-regulation is induced by extracellular ATP or by statins and is mediated by the purinergic receptor P2X7. Here, we used p110{beta} knock out mouse embryonic fibroblasts (MEFs) and siRNA-treated cancer cells. We found that p110{beta} is essential for ATP- or statin-induced nuclear pAkt depletion in MEFs and in several cancer cell lines including prostate cancer cells. ATP, statin or the selective P2X7 agonist BzATP also inhibited cell growth, and this inhibition was not seen in p110{beta} knock out cells. We also found that p110{beta} was necessary for statin-induced changes in binding between FKBP51, pAkt and PTEN. Our data show that p110{beta} is essential for the ATP- and statin-induced effects and support a role of nuclear pAkt in cancer development. They also provide support for a chemopreventive effect of statins mediated by depletion of nuclear pAkt.

  2. Anaplasma phagocytophilum infection modulates expression of megakaryocyte cell cycle genes through phosphatidylinositol-3-kinase signaling.

    PubMed

    Khanal, Supreet; Sultana, Hameeda; Catravas, John D; Carlyon, Jason A; Neelakanta, Girish

    2017-01-01

    Anaplasma phagocytophilum, the agent of human granulocytic anaplasmosis infects neutrophils and other cells from hematopoietic origin. Using human megakaryocytic cell line, MEG-01, we show that expression of cell cycle genes in these cells are altered upon A. phagocytophilum infection. Expression of several cell cycle genes in MEG-01 cells was significantly up regulated at early and then down regulated at later stages of A. phagocytophilum infection. Lactate dehydrogenase (LDH) assays revealed reduced cellular cytotoxicity in MEG-01 cells upon A. phagocytophilum infection. The levels of both PI3KCA (p110 alpha, catalytic subunit) and PI3KR1 (p85, regulatory subunit) of Class I PI3 kinases and phosphorylated protein kinase B (Akt/PKB) and inhibitory kappa B (IκB) were elevated at both early and late stages of A. phagocytophilum infection. Inhibition of PI3 kinases with LY294002 treatment resulted in significant reduction in the expression of tested cell cycle genes, A. phagocytophilum burden and phosphorylated Akt levels in these MEG-01 cells. Collectively, these results suggest a role for PI3K-Akt-NF-κB signaling pathway in the modulation of megakaryocyte cell cycle genes upon A. phagocytophilum infection.

  3. High fat diet induced obesity alters ovarian phosphatidylinositol-3 kinase signaling gene expression.

    PubMed

    Nteeba, J; Ross, J W; Perfield, J W; Keating, A F

    2013-12-01

    Insulin regulates ovarian phosphatidylinositol-3-kinase (PI3 K) signaling, important for primordial follicle viability and growth activation. This study investigated diet-induced obesity impacts on: (1) insulin receptor (Insr) and insulin receptor substrate 1 (Irs1); (2) PI3K components (Kit ligand (Kitlg), kit (c-Kit), protein kinase B alpha (Akt1) and forkhead transcription factor subfamily 3 (Foxo3a)); (3) xenobiotic biotransformation (microsomal epoxide hydrolase (Ephx1), Cytochrome P450 isoform 2E1 (Cyp2e1), Glutathione S-transferase (Gst) isoforms mu (Gstm) and pi (Gstp)) and (4) microRNA's 184, 205, 103 and 21 gene expression. INSR, GSTM and GSTP protein levels were also measured. Obese mouse ovaries had decreased Irs1, Foxo3a, Cyp2e1, MiR-103, and MiR-21 but increased Kitlg, Akt1, and miR-184 levels relative to lean littermates. These results support that diet-induced obesity potentially impairs ovarian function through aberrant gene expression. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. High fat diet induced obesity alters ovarian phosphatidylinositol-3 kinase signaling gene expression

    PubMed Central

    Nteeba, J.; Ross, J.W.; Perfield, J.W.; Keating, A.F.

    2013-01-01

    Insulin regulates ovarian phosphatidylinositol-3-kinase (PI3K) signaling, important for primordial follicle viability and growth activation. This study investigated diet-induced obesity impacts on: 1) insulin receptor (Insr) and insulin receptor substrate 1 (Irs1); 2) PI3K components (Kit ligand (Kitlg), kit (c-Kit), protein kinase B alpha (Akt1) and forkhead transcription factor subfamily 3 (Foxo3a)); 3) xenobiotic biotransformation (microsomal epoxide hydrolase (Ephx1), Cytochrome P450 isoform 2E1 (Cyp2e1), Glutathione S-transferase (Gst) isoforms mu (Gstm) and pi (Gstp)) and 4) microRNA’s 184, 205, 103 and 21 gene expression. INSR, GSTM and GSTP protein levels were also measured. Obese mouse ovaries had decreased Irs1, Foxo3a, Cyp2e1, MiR-103, and MiR-21 but increased Kitlg, Akt1, and miR-184 levels relative to lean littermates. These results support that diet-induced obesity potentially impairs ovarian function through aberrant gene expression. PMID:23954404

  5. Phosphoinositide 3-kinase δ gene mutation predisposes to respiratory infection and airway damage

    PubMed Central

    Angulo, Ivan; Vadas, Oscar; Garçon, Fabien; Banham-Hall, Edward; Plagnol, Vincent; Leahy, Timothy R.; Baxendale, Helen; Coulter, Tanya; Curtis, James; Wu, Changxin; Blake-Palmer, Katherine; Perisic, Olga; Smyth, Deborah; Maes, Mailis; Fiddler, Christine; Juss, Jatinder; Cilliers, Deirdre; Markelj, Gašper; Chandra, Anita; Farmer, George; Kielkowska, Anna; Clark, Jonathan; Kracker, Sven; Debré, Marianne; Picard, Capucine; Pellier, Isabelle; Jabado, Nada; Morris, James A.; Barcenas-Morales, Gabriela; Fischer, Alain; Stephens, Len; Hawkins, Phillip; Barrett, Jeffrey C.; Abinun, Mario; Clatworthy, Menna; Durandy, Anne; Doffinger, Rainer; Chilvers, Edwin; Cant, Andrew J.; Kumararatne, Dinakantha; Okkenhaug, Klaus; Williams, Roger L.; Condliffe, Alison; Nejentsev, Sergey

    2014-01-01

    Genetic mutations cause primary immunodeficiencies (PIDs), which predispose to infections. Here we describe Activated PI3K-δ Syndrome (APDS), a PID associated with a dominant gain-of-function mutation E1021K in the p110δ protein, the catalytic subunit of phosphoinositide 3-kinase δ (PI3Kδ), encoded by the PIK3CD gene. We found E1021K in 17 patients from seven unrelated families, but not among 3,346 healthy subjects. APDS was characterized by recurrent respiratory infections, progressive airway damage, lymphopenia, increased circulating transitional B cells, increased IgM and reduced IgG2 levels in serum and impaired vaccine responses. The E1021K mutation enhanced membrane association and kinase activity of p110δ. Patient-derived lymphocytes had increased levels of phosphatidylinositol 3,4,5-trisphosphate and phosphorylated AKT protein and were prone to activation-induced cell death. Selective p110δ inhibitors IC87114 and GS-1101 reduced the activity of the mutant enzyme in vitro, suggesting a therapeutic approach for patients with APDS. PMID:24136356

  6. Specific roles of the p110alpha isoform of phosphatidylinsositol 3-kinase in hepatic insulin signaling and metabolic regulation.

    PubMed

    Sopasakis, Victoria Rotter; Liu, Pixu; Suzuki, Ryo; Kondo, Tatsuya; Winnay, Jonathon; Tran, Thien T; Asano, Tomoichiro; Smyth, Graham; Sajan, Mini P; Farese, Robert V; Kahn, C Ronald; Zhao, Jean J

    2010-03-03

    The class I(A) phosphatidylinsositol 3-kinases (PI3Ks) form a critical node in the insulin metabolic pathway; however, the precise roles of the different isoforms of this enzyme remain elusive. Using tissue-specific gene inactivation, we demonstrate that p110alpha catalytic subunit of PI3K is a key mediator of insulin metabolic actions in the liver. Thus, deletion of p110alpha in liver results in markedly blunted insulin signaling with decreased generation of PIP(3) and loss of insulin activation of Akt, defects that could not be rescued by overexpression of p110beta. As a result, mice with hepatic knockout of p110alpha display reduced insulin sensitivity, impaired glucose tolerance, and increased gluconeogenesis, hypolipidemia, and hyperleptinemia. The diabetic syndrome induced by loss of p110alpha in liver did not respond to metformin treatment. Together, these data indicate that the p110alpha isoform of PI3K plays a fundamental role in insulin signaling and control of hepatic glucose and lipid metabolism. 2010 Elsevier Inc. All rights reserved.

  7. Gene-Environment Interactions Target Mitogen-activated Protein 3 Kinase 1 (MAP3K1) Signaling in Eyelid Morphogenesis*

    PubMed Central

    Mongan, Maureen; Meng, Qinghang; Wang, Jingjing; Kao, Winston W.-Y.; Puga, Alvaro; Xia, Ying

    2015-01-01

    Gene-environment interactions determine the biological outcomes through mechanisms that are poorly understood. Mouse embryonic eyelid closure is a well defined model to study the genetic control of developmental programs. Using this model, we investigated how exposure to dioxin-like environmental pollutants modifies the genetic risk of developmental abnormalities. Our studies reveal that mitogen-activated protein 3 kinase 1 (MAP3K1) signaling is a focal point of gene-environment cross-talk. Dioxin exposure, acting through the aryl hydrocarbon receptor (AHR), blocked eyelid closure in genetic mutants in which MAP3K1 signaling was attenuated but did not disturb this developmental program in either wild type or mutant mice with attenuated epidermal growth factor receptor or WNT signaling. Exposure also markedly inhibited c-Jun phosphorylation in Map3k1+/− embryonic eyelid epithelium, suggesting that dioxin-induced AHR pathways can synergize with gene mutations to inhibit MAP3K1 signaling. Our studies uncover a novel mechanism through which the dioxin-AHR axis interacts with the MAP3K1 signaling pathways during fetal development and provide strong empirical evidence that specific gene alterations can increase the risk of developmental abnormalities driven by environmental pollutant exposure. PMID:26109068

  8. Molecular cloning, cDNA sequence, and chromosomal localization of the human phosphatidylinositol 3-kinase p110{alpha} (PIK3CA) gene

    SciTech Connect

    Volinia, S.; Hiles, I.; Waterfield, M.D.

    1994-12-01

    Phosphatidylinositol (PI) 3-kinase is a heterodimeric enzyme comprising a 110-kDa catalytic subunit and an 85-kDa regulatory subunit that binds to tyrosine phosphopeptide sites linked directly or indirectly to receptors serving diverse signal functions. Knowledge of the structure and function of PI 3-kinase was greatly advanced by the purification, cDNA cloning, and subsequent expression of the bovine enzyme. Here the cloning of the cDNA for the human p110{alpha}subunit of PI 3-kinase (PIK3CA), encoding a protein 99% identical to the bovine p110, and of its gene in YAC is described. The chromosomal localization of the gene for PIK3CA is shown to be at 3q21-qter as determined using somatic cell hybrids. In situ hybridization performed using Alu-PCR from the YAC DNA located the gene in 3q26.3. 30 refs., 3 figs., 1 tab.

  9. A genomewide overexpression screen identifies genes involved in the phosphatidylinositol 3-kinase pathway in the human protozoan parasite Entamoeba histolytica.

    PubMed

    Koushik, Amrita B; Welter, Brenda H; Rock, Michelle L; Temesvari, Lesly A

    2014-03-01

    Entamoeba histolytica is a protozoan parasite that causes amoebic dysentery and liver abscess. E. histolytica relies on motility, phagocytosis, host cell adhesion, and proteolysis of extracellular matrix for virulence. In eukaryotic cells, these processes are mediated in part by phosphatidylinositol 3-kinase (PI3K) signaling. Thus, PI3K may be critical for virulence. We utilized a functional genomics approach to identify genes whose products may operate in the PI3K pathway in E. histolytica. We treated a population of trophozoites that were overexpressing genes from a cDNA library with a near-lethal dose of the PI3K inhibitor wortmannin. This screen was based on the rationale that survivors would be overexpressing gene products that directly or indirectly function in the PI3K pathway. We sequenced the overexpressed genes in survivors and identified a cDNA encoding a Rap GTPase, a protein previously shown to participate in the PI3K pathway. This supports the validity of our approach. Genes encoding a coactosin-like protein, EhCoactosin, and a serine-rich E. histolytica protein (SREHP) were also identified. Cells overexpressing EhCoactosin or SREHP were also less sensitive to a second PI3K inhibitor, LY294002. This corroborates the link between these proteins and PI3K. Finally, a mutant cell line with an increased level of phosphatidylinositol (3,4,5)-triphosphate, the product of PI3K activity, exhibited increased expression of SREHP and EhCoactosin. This further supports the functional connection between these proteins and PI3K in E. histolytica. To our knowledge, this is the first forward-genetics screen adapted to reveal genes participating in a signal transduction pathway in this pathogen.

  10. LY294002 inhibits glucocorticoid-induced COX-2 gene expression in cardiomyocytes through a phosphatidylinositol 3 kinase-independent mechanism

    SciTech Connect

    Sun Haipeng; Xu Beibei; Sheveleva, Elena; Chen, Qin M.

    2008-10-01

    Glucocorticoids induce COX-2 expression in rat cardiomyocytes. While investigating whether phosphatidylinositol 3 kinase (PI3K) plays a role in corticosterone (CT)-induced COX-2, we found that LY294002 (LY29) but not wortmannin (WM) attenuates CT from inducing COX-2 gene expression. Expression of a dominant-negative mutant of p85 subunit of PI3K failed to inhibit CT from inducing COX-2 expression. CT did not activate PI3K/AKT signaling pathway whereas LY29 and WM decreased the activity of PI3K. LY303511 (LY30), a structural analogue and a negative control for PI3K inhibitory activity of LY29, also suppressed COX-2 induction. These data suggest PI3K-independent mechanisms in regulating CT-induced COX-2 expression. LY29 and LY30 do not inhibit glucocorticoid receptor transactivity. Both compounds have been reported to inhibit Casein Kinase 2 activity and modulate potassium and calcium levels independent of PI3K, while LY29 has been reported to inhibit mammalian Target of Rapamycin (mTOR), and DNA-dependent Protein Kinase (DNA-PK). Inhibitor of Casein Kinase 2 (CK2), mTOR or DNA-PK failed to prevent CT from inducing COX-2 expression. Tetraethylammonium (TEA), a potassium channel blocker, and nimodipine, a calcium channel blocker, both attenuated CT from inducing COX-2 gene expression. CT was found to increase intracellular Ca{sup 2+} concentration, which can be inhibited by LY29, TEA or nimodipine. These data suggest a possible role of calcium instead of PI3K in CT-induced COX-2 expression in cardiomyocytes.

  11. Epidermal growth factor-dependent association of phosphatidylinositol 3-kinase with the erbB3 gene product.

    PubMed

    Kim, H H; Sierke, S L; Koland, J G

    1994-10-07

    The ErbB3 protein is a member of the ErbB subfamily of receptor protein tyrosine kinases. In the present study, the mechanism by which the ErbB3 protein is phosphorylated and the signal-transducing functions of this phosphorylated protein were investigated. When phosphorylated by the epidermal growth factor receptor in vitro, the ErbB3 protein strongly associated with the regulatory p85 subunit and the catalytic activity of phosphatidylinositol (PI) 3-kinase. The association of PI 3-kinase with ErbB3 in human breast cancer cells was found to be correlated with the constitutive phosphorylation of ErbB3 on tyrosine residues. In MDA-MB-468 breast cancer cells in which the ErbB3 protein is not constitutively phosphorylated, stimulation with epidermal growth factor led to the phosphorylation of ErbB3 on tyrosine residues and the formation of a functional signal transduction complex involving the ErbB3 protein and PI 3-kinase. These results suggest that the ErbB3 protein can be phosphorylated on tyrosine residues by a cross-phosphorylation mechanism and that the phosphorylated ErbB3 protein can couple other growth factor receptor protein tyrosine kinases to the PI 3-kinase pathway in a manner similar to the insulin receptor substrate 1 protein.

  12. MGMT-independent temozolomide resistance in pediatric glioblastoma cells associated with a PI3-kinase-mediated HOX/stem cell gene signature.

    PubMed

    Gaspar, Nathalie; Marshall, Lynley; Perryman, Lara; Bax, Dorine A; Little, Suzanne E; Viana-Pereira, Marta; Sharp, Swee Y; Vassal, Gilles; Pearson, Andrew D J; Reis, Rui M; Hargrave, Darren; Workman, Paul; Jones, Chris

    2010-11-15

    Sensitivity to temozolomide is restricted to a subset of glioblastoma patients, with the major determinant of resistance being a lack of promoter methylation of the gene encoding the repair protein DNA methyltransferase MGMT, although other mechanisms are thought to be active. There are, however, limited preclinical data in model systems derived from pediatric glioma patients. We screened a series of cell lines for temozolomide efficacy in vitro, and investigated the differential mechanisms of resistance involved. In the majority of cell lines, a lack of MGMT promoter methylation and subsequent protein overexpression were linked to temozolomide resistance. An exception was the pediatric glioblastoma line KNS42. Expression profiling data revealed a coordinated upregulation of HOX gene expression in resistant lines, especially KNS42, which was reversed by phosphoinositide 3-kinase pathway inhibition. High levels of HOXA9/HOXA10 gene expression were associated with a shorter survival in pediatric high-grade glioma patient samples. Combination treatment in vitro of pathway inhibition and temozolomide resulted in a highly synergistic interaction in KNS42 cells. The resistance gene signature further included contiguous genes within the 12q13-q14 amplicon, including the Akt enhancer PIKE, significantly overexpressed in the KNS42 line. These cells were also highly enriched for CD133 and other stem cell markers. We have thus shown an in vitro link between phosphoinositide 3-kinase-mediated HOXA9/HOXA10 expression, and a drug-resistant, progenitor cell phenotype in MGMT-independent pediatric glioblastoma.

  13. Down-regulation of the tumor suppressor gene retinoic acid receptor beta2 through the phosphoinositide 3-kinase/Akt signaling pathway.

    PubMed

    Lefebvre, Bruno; Brand, Céline; Flajollet, Sébastien; Lefebvre, Philippe

    2006-09-01

    The retinoic acid receptor beta2 (RARbeta2) is a potent, retinoid-inducible tumor suppressor gene, which is a critical molecular relay for retinoid actions in cells. Its down-regulation, or loss of expression, leads to resistance of cancer cells to retinoid treatment. Up to now, no primary mechanism underlying the repression of the RARbeta2 gene expression, hence affecting cellular retinoid sensitivity, has been identified. Here, we demonstrate that the phosphoinositide 3-kinase/Akt signaling pathway affects cellular retinoid sensitivity, by regulating corepressor recruitment to the RARbeta2 promoter. Through direct phosphorylation of the corepressor silencing mediator for retinoic and thyroid hormone receptors (SMRT), Akt stabilized RAR/SMRT interaction, leading to an increased tethering of SMRT to the RARbeta2 promoter, decreased histone acetylation, down-regulation of the RARbeta2 expression, and impaired cellular differentiation in response to retinoid. The phosphoinositide 3-kinase/Akt signaling pathway, an important modulator of cellular survival, has thus a direct impact on cellular retinoid sensitivity, and its deregulation may be the triggering event in retinoid resistance of cancer cells.

  14. The phosphoinositide 3-kinase pathway.

    PubMed

    Cantley, Lewis C

    2002-05-31

    Phosphorylated lipids are produced at cellular membranes during signaling events and contribute to the recruitment and activation of various signaling components. The role of phosphoinositide 3-kinase (PI3K), which catalyzes the production of phosphatidylinositol-3,4,5-trisphosphate, in cell survival pathways; the regulation of gene expression and cell metabolism; and cytoskeletal rearrangements are highlighted. The PI3K pathway is implicated in human diseases including diabetes and cancer, and understanding the intricacies of this pathway may provide new avenues for therapuetic intervention.

  15. Investigating the role of class-IA PI 3-kinase isoforms in adipocyte differentiation

    SciTech Connect

    Kim, Ji Eun; Shepherd, Peter R. Chaussade, Claire

    2009-02-20

    PI 3-kinases, in particular class-IA, are key signalling molecules controlling many cellular processes including growth, proliferation, migration and differentiation. In this study, we have used a collection of isoform selective PI 3-kinase inhibitors to determine whether attenuation of signalling through class-IA PI 3-kinase isoforms will impact adipocyte differentiation. First, we analysed the expression profiles and found that fibroblastic pre-adipocytes express detectable levels of p110{alpha} and p110{delta} and that after differentiation, p110{delta} levels fall while p110{alpha} levels rise, together with C/EBP{alpha} and PPAR{gamma}. When using specific inhibitors during the differentiation process, we observed that neither p110{beta} nor p110{delta} inhibition, had any significant effect. In contrast PIK-75, a selective p110{alpha} inhibitor completely abolished adipocyte differentiation as assessed by morphology, transcript and protein levels of adipocyte markers. These results indicate that long term treatment with p110{alpha} inhibitors could potentially have a severe impact on fat cell numbers in vivo.

  16. ARIA/HRG regulates AChR epsilon subunit gene expression at the neuromuscular synapse via activation of phosphatidylinositol 3-kinase and Ras/MAPK pathway

    PubMed Central

    1996-01-01

    AChR-inducing activity (ARIA)/heregulin, a ligand for erbB receptor tyrosine kinases (RTKs), is likely to be one nerve-supplied signal that induces expression of acetylcholine receptor (AChR) genes at the developing neuromuscular junction. Since some RTKs act through Ras and phosphatidylinositol 3-kinase (PI3K), we investigated the role of these pathways in ARIA signaling. Expression of activated Ras or Raf mimicked ARIA-induction of AChR epsilon subunit genes in muscle cells; whereas dominant negative Ras or Raf blocked the effect of ARIA. ARIA rapidly activated erk1 and erk2 and inhibition of both erks also abolished the effect of ARIA. ARIA stimulated association of PI3K with erbB3, expression of an activated PI3K led to ARIA-independent AChR epsilon subunit expression, and inhibition of PI3K abolished the action of ARIA. Thus, synaptic induction of AChR genes requires activation of both Ras/MAPK and PI3K signal transduction pathways. PMID:8707830

  17. Phosphatidylinositol 3-kinase p85 alpha regulatory subunit gene PIK3R1 haplotype is associated with body fat and serum leptin in a female twin population

    PubMed Central

    Jamshidi, Y.; Snieder, H.; Wang, X.; Pavitt, M. J.; Spector, T. D.; Carter, N. D.; O’Dell, S. D.

    2006-01-01

    Aims/hypothesis Phosphatidylinositol 3-kinase (PI3K) couples the leptin and insulin signalling pathways via IRS-1 and IRS-2. Hence, defective activation of PI3K could be a novel mechanism of peripheral leptin or insulin resistance. We investigated association of tagging SNPs (tSNPs) in the PI3K p85α regulatory subunit gene PIK3R1 with anthropometry, leptin, body fat and insulin sensitivity in a female twin population of European extraction. Methods Eight tSNPs were genotyped in 2778 women (mean age 47.4±12.5 years) from the St Thomas’ UK Adult Twin Registry (Twins UK). Results SNP rs1550805 was associated with serum leptin (P=0.028), BMI (P=0.025), weight (P=0.019), total fat (P=0.004), % total fat (P=0.002), waist (P=0.025), central fat (P=0.005) and % central fat (P=0.005). SNPs rs7713645 and rs7709243 were associated with BMI (P=0.020; P=0.029), rs7709243 with weight, total and central fat, (P=0.026; P=0.031; P=0.023) and both SNPs with fasting glucose (P=0.003; P=0.001) and glucose 2h post OGTT (P=0.023; P=0.007). Haplotype 222 (freq. 7.2%) showed higher serum leptin (P=0.007) and body fat measures (Ps≤0.001) and haplotype 221 (freq. 38.7%) showed higher fasting and 2h-glucose (P=0.035; P=0.021), compared with the most common haplotype 111 (freq. 45.5%). Conclusions/interpretation Association of the PIK3R1 SNP rs1550805 with serum leptin and body fat may reflect diminished ability of PI3K to signal via IRS-1 or IRS-2 in response to leptin. PMID:17016694

  18. Phosphoinositide 3-kinase targeting by the β galactoside binding protein cytokine negates akt gene expression and leads aggressive breast cancer cells to apoptotic death

    PubMed Central

    Wells, Valerie; Mallucci, Livio

    2009-01-01

    Introduction Phosphoinositide 3-kinase (PI3K)-activated signalling has a critical role in the evolution of aggressive tumourigenesis and is therefore a prime target for anticancer therapy. Previously we have shown that the β galactoside binding protein (βGBP) cytokine, an antiproliferative molecule, induces functional inhibition of class 1A and class 1B PI3K. Here, we have investigated whether, by targeting PI3K, βGBP has therapeutic efficacy in aggressive breast cancer cells where strong mitogenic input is fuelled by overexpression of the ErbB2 (also known as HER/neu, for human epidermal growth factor receptor 2) oncoprotein receptor and have used immortalised ductal cells and non-aggressive mammary cancer cells, which express ErbB2 at low levels, as controls. Methods Aggressive BT474 and SKBR3 cancer cells where ErbB2 is overexpressed, MCF10A immortalised ductal cells and non-invasive MCF-7 cancer cells which express low levels of ErbB2, both in their naive state and when forced to mimic aggressive behaviour, were used. Class IA PI3K was immunoprecipitated and the conversion of phosphatidylinositol (4,5)-biphosphate (PIP2) to phosphatidylinositol (3,4,5)-trisphosphate (PIP3) assessed by ELISA. The consequences of PI3K inhibition by βGBP were analysed at proliferation level, by extracellular signal-regulated kinase (ERK) activation, by akt gene expression and by apoptosis. Apoptosis was documented by changes in mitochondrial membrane potential, alteration of the plasma membrane, caspase 3 activation and DNA fragmentation. Phosphorylated and total ERK were measured by Western blot analysis and akt mRNA levels by Northern blot analysis. The results obtained with the BT474 and SKBR3 cells were validated in the MCF10A ductal cells and in non-invasive MCF-7 breast cancer cells forced into mimicking the in vitro behaviour of the BT474 and SKBR3 cells. Results In aggressive breast cancer cells, where mitogenic signalling is enforced by the ErbB2 oncoprotein receptor

  19. Phosphatidylinositol 3-kinase inhibition broadly sensitizes glioblastoma cells to death receptor- and drug-induced apoptosis.

    PubMed

    Opel, Daniela; Westhoff, Mike-Andrew; Bender, Ariane; Braun, Veit; Debatin, Klaus-Michael; Fulda, Simone

    2008-08-01

    The aberrant activity of the phosphatidylinositol 3-kinase (PI3K) pathway has been reported to correlate with adverse clinical outcome in human glioblastoma in vivo. However, the question of how this survival network can be successfully targeted to restore the sensitivity of glioblastoma to apoptosis induction has not yet been answered. Here, we report that inhibition of PI3K by LY294002 broadly sensitizes wild-type and mutant PTEN glioblastoma cells to both death receptor- and chemotherapy-induced apoptosis, whereas mammalian target of rapamycin (mTOR) inhibition is not sufficient to restore apoptosis sensitivity. LY294002 significantly enhances apoptosis triggered by tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), agonistic anti-CD95 antibodies, or several anticancer drugs (i.e., doxorubicin, etoposide, and vincristine) in a highly synergistic manner. In addition, LY294002 cooperates with TRAIL or doxorubicin to suppress colony formation, thus also showing a strong effect on long-term survival. Similarly, genetic knockdown of PI3K subunits p110alpha and/or p110beta by RNA interference (RNAi) primes glioblastoma cells for TRAIL- or doxorubicin-mediated apoptosis. In contrast to PI3K inhibition, pharmacologic or genetic blockade of mTOR by RAD001 (everolimus), rapamycin, or RNAi fails to enhance TRAIL- or doxorubicin-induced apoptosis. Analysis of apoptosis pathways reveals that PI3K inhibition acts in concert with TRAIL or doxorubicin to trigger mitochondrial membrane permeabilization, caspase activation, and caspase-dependent apoptosis, which are abolished by the caspase inhibitor N-benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone. Most importantly, PI3K inhibition by LY294002 sensitizes primary cultured glioblastoma cells obtained from surgical specimens to TRAIL- or chemotherapy-induced cell death. By showing that PI3K inhibition broadly primes glioblastoma cells for apoptosis, our findings provide the rationale for using PI3K inhibitors in

  20. Solute Carrier Family 39 Member 6 Gene Promotes Aggressiveness of Esophageal Carcinoma Cells by Increasing Intracellular Levels of Zinc, Activating Phosphatidylinositol 3-Kinase Signaling, and Up-regulating Genes That Regulate Metastasis.

    PubMed

    Cheng, Xinxin; Wei, Lixuan; Huang, Xudong; Zheng, Jian; Shao, Mingming; Feng, Ting; Li, Jun; Han, Yaling; Tan, Wenle; Tan, Wen; Lin, Dongxin; Wu, Chen

    2017-06-01

    A common variant in the solute carrier family 39 member 6 gene (SLC39A6) has been associated with survival times of patients with esophageal squamous cell carcinoma (ESCC). We investigated the function of SLC39A6 and ways in which this variant affects tumor progression by studying ESCC samples and cell lines. SLC39A6 was expressed or knocked down by expression of short hairpin RNAs in ESCC cells (KYSE30 and KYSE450) and HeLa cells using lentiviral vectors; we analyzed effects on proliferation, colony formation, migration, and invasion in vitro. Cells were grown as xenograft tumors in nude mice and tumor volume and metastases were quantified; tumors were collected and analyzed histologically. Cells were also analyzed for levels of intracellular zinc and messenger RNA (mRNA) expression patterns. We obtained ESCC and adjacent normal esophageal tissues from 94 patients who underwent esophagectomy in China from 2010 through 2014. Survival times of patients were measured from the date of diagnosis to the date of last follow-up or death. We sequenced mRNAs and compared levels between tumor and non-tumor tissues using the Wilcox rank-sum test. Total proteins in cell lines or tissue samples were measured by immunoblotting. We searched publicly available databases for variants of SLC39A6 in human tumor and non-tumor tissues. Knockdown of SLC39A6 reduced proliferation of ESCC cells in culture and metastasis of xenograft tumors in mice. Cells that overexpressed SLC39A6 had significant increases in intracellular levels of zinc and were more invasive in assays, activating phosphatidylinositol 3-kinase signaling to AKT serine/threonine kinase 1 and mitogen-activated protein kinase 1. Cells that overexpressed SLC39A6 had increased expression of mRNAs and proteins associated with metastasis, such as matrix metalloproteinase (MMP) 1, MMP3, MYC, and snail family transcriptional repressor 2 (SNAI2 or SLUG). Levels of MMP1, MMP3, MYC, and SLUG mRNAs correlated with levels of SLC39A6 m

  1. The wavy Mutation Maps to the Inositol 1,4,5-Trisphosphate 3-Kinase 2 (IP3K2) Gene of Drosophila and Interacts with IP3R to Affect Wing Development.

    PubMed

    Dean, Derek M; Maroja, Luana S; Cottrill, Sarah; Bomkamp, Brent E; Westervelt, Kathleen A; Deitcher, David L

    2015-11-27

    Inositol 1,4,5-trisphosphate (IP3) regulates a host of biological processes from egg activation to cell death. When IP3-specific receptors (IP3Rs) bind to IP3, they release calcium from the ER into the cytoplasm, triggering a variety of cell type- and developmental stage-specific responses. Alternatively, inositol polyphosphate kinases can phosphorylate IP3; this limits IP3R activation by reducing IP3 levels, and also generates new signaling molecules altogether. These divergent pathways draw from the same IP3 pool yet cause very different cellular responses. Therefore, controlling the relative rates of IP3R activation vs. phosphorylation of IP3 is essential for proper cell functioning. Establishing a model system that sensitively reports the net output of IP3 signaling is crucial for identifying the controlling genes. Here we report that mutant alleles of wavy (wy), a classic locus of the fruit fly Drosophila melanogaster, map to IP3 3-kinase 2 (IP3K2), a member of the inositol polyphosphate kinase gene family. Mutations in wy disrupt wing structure in a highly specific pattern. RNAi experiments using GAL4 and GAL80(ts) indicated that IP3K2 function is required in the wing discs of early pupae for normal wing development. Gradations in the severity of the wy phenotype provide high-resolution readouts of IP3K2 function and of overall IP3 signaling, giving this system strong potential as a model for further study of the IP3 signaling network. In proof of concept, a dominant modifier screen revealed that mutations in IP3R strongly suppress the wy phenotype, suggesting that the wy phenotype results from reduced IP4 levels, and/or excessive IP3R signaling.

  2. Isoform-selective phosphoinositide 3'-kinase inhibitors inhibit CXCR4 signaling and overcome stromal cell-mediated drug resistance in chronic lymphocytic leukemia: a novel therapeutic approach.

    PubMed

    Niedermeier, Matthias; Hennessy, Bryan T; Knight, Zachary A; Henneberg, Marina; Hu, Jianhua; Kurtova, Antonina V; Wierda, William G; Keating, Michael J; Shokat, Kevan M; Burger, Jan A

    2009-05-28

    Phosphoinositide 3-kinases (PI3Ks) are among the most frequently activated signaling pathways in cancer. In chronic lymphocytic leukemia (CLL), signals from the microenvironment are critical for expansion of the malignant B cells, and cause constitutive activation of PI3Ks. CXCR4 is a key receptor for CLL cell migration and adhesion to marrow stromal cells (MSCs). Because of the importance of CXCR4 and PI3Ks for CLL-microenvironment cross-talk, we investigated the activity of novel, isoform-selective PI3K inhibitors that target different isoforms of the p110-kDa subunit. Inhibition with p110alpha inhibitors (PIK-90 and PI-103) resulted in a significant reduction of chemotaxis and actin polymerization to CXCL12 and reduced migration beneath MSC (pseudoemperipolesis). Western blot and reverse phase protein array analyses consistently demonstrated that PIK-90 and PI-103 inhibited phosphorylation of Akt and S6, whereas p110delta or p110beta/p110delta inhibitors were less effective. In suspension and MSC cocultures, PI-103 and PIK-90 were potent inducers of CLL cell apoptosis. Moreover, these p110alpha inhibitors enhanced the cytotoxicity of fludarabine and reversed the protective effect of MSC on fludarabine-induced apoptosis. Collectively, our data demonstrate that p110alpha inhibitors antagonize stromal cell-derived migration, survival, and drug-resistance signals and therefore provide a rational to explore the therapeutic activity of these promising agents in CLL.

  3. o,p'-DDT induces cyclooxygenase-2 gene expression in murine macrophages: Role of AP-1 and CRE promoter elements and PI3-kinase/Akt/MAPK signaling pathways

    SciTech Connect

    Han, Eun Hee; Kim, Ji Young; Kim, Hyung-Kyun; Hwang, Yong Pil; Jeong, Hye Gwang

    2008-12-01

    Dichlorodiphenyltrichloroethane (DDT) has been used as an insecticide to prevent the devastation of malaria in tropical zones. However, many reports suggest that DDT may act as an endocrine disruptor and may have possible carcinogenic effects. Cyclooxygenase-2 (COX-2) acts as a link between inflammation and carcinogenesis through its involvement in tumor promotion. In the present study, we examined the effect of o,p'-DDT on COX-2 gene expression and analyzed the molecular mechanism of its activity in murine RAW 264.7 macrophages. Exposure to o,p'-DDT markedly enhanced the production of prostaglandin E{sub 2} (PGE{sub 2}), a major COX-2 metabolite, in murine macrophages. Furthermore, o,p'-DDT dose-dependently increased the levels of COX-2 protein and mRNA. Transfection with human COX-2 promoter construct, electrophoretic mobility shift assays and DNA-affinity protein-binding assay experiments revealed that o,p'-DDT activated the activator protein 1 (AP-1) and cyclic AMP response element (CRE) sites, but not the NF-{kappa}B site. Phosphatidylinositol 3 (PI3)-kinase, its downstream signaling molecule, Akt, and mitogen-activated protein kinases (MAPK) were also significantly activated by the o,p'-DDT-induced AP-1 and CRE activation. These results demonstrate that o,p'-DDT induced COX-2 expression via AP-1 and CRE activation through the PI3-K/Akt/ERK, JNK, and p38 MAP kinase pathways. These findings provide further insight into the signal transduction pathways involved in the carcinogenic effects of o,p'-DDT.

  4. Concerted transcriptional activation of the low density lipoprotein receptor gene by insulin and luteinizing hormone in cultured porcine granulosa-luteal cells: possible convergence of protein kinase a, phosphatidylinositol 3-kinase, and mitogen-activated protein kinase signaling pathways.

    PubMed

    Sekar, N; Veldhuis, J D

    2001-07-01

    -repressive region in this gene. Non-LH receptor-dependent agonists of protein kinase A (PKA), 8-bromo-cAMP (1 mM), and forskolin (10 microM) with or without insulin/IGF-I costimulation likewise augmented LDL receptor promoter expression with similar strong dependency on the -255 to -139 bp 5'-upstream region. To assess more specific PKA-dependent mediation of LH's contribution to combined hormonal drive, the LDL receptor (-1076 to +11 bp) reporter plasmid was cotransfected with a full-sequence rabbit muscle protein kinase inhibitor (PKI) minigene driven constitutively by a Rous sarcoma virus promoter. Expression of the latter PKA antagonist blocked transcriptional stimulation by LH alone as well as that by LH combined with insulin (or IGF-I) by 70-85% without reducing basal transcriptional activity. Transfection of a mutant inactive (Arg to Gly) Rous sarcoma virus/PKI gene confirmed the specificity of the PKI effect. To investigate the convergent role of the insulin/IGF-I effector pathway mediating bihormonal stimulation of LDL receptor promoter expression, transfected granulosa-luteal cells were pretreated for 30 min with two specific inhibitors of phophatidylinositol 3-kinase, wortmannin (100 nM) and LY 294002 (10 microM), or of mitogen-activated protein kinase kinase, PD 98059 (50 microM), U0126 (10 microM), or the latter's inactive derivative, U0124 (10 microM). Both classes of antagonists impeded the ability of insulin or IGF-I to enhance LH-stimulated LDL receptor promoter expression by 60-80%. In conclusion, the present analyses indicate that LH and insulin (or IGF-I) can up-regulate LDL receptor transcriptional activity supraadditively in porcine granulosa-luteal cells 1) via one or more agonistic cis-acting DNA regions located between -255 and -139 bp 5'- upstream of the transcriptional start site, 2) without abrogating sterol-sensitive repressive of this promoter, and 3) by way of intracellular mechanisms that include the PKA, phophatidylinositol 3-kinase, and mitogen

  5. RAS signalling through PI3-Kinase controls cell migration via modulation of Reelin expression

    PubMed Central

    Castellano, Esther; Molina-Arcas, Miriam; Krygowska, Agata Adelajda; East, Philip; Warne, Patricia; Nicol, Alastair; Downward, Julian

    2016-01-01

    RAS signalling through phosphoinositide 3-kinase (PI3-Kinase) has been shown to have an essential role in tumour initiation and maintenance. RAS also regulates cell motility and tumour invasiveness, but the role of direct RAS binding to PI3-Kinase in this remains uncertain. Here, we provide evidence that disruption of RAS interaction with PI3-Kinase p110α decreases cell motility and prevents activation of Rac GTPase. Analysis of gene expression in cells lacking RAS interaction with p110α reveals increased levels of the extracellular matrix glycoprotein Reelin and activation of its downstream pathway resulting in upregulation of E-cadherin expression. Induction of the Reelin/E-cadherin axis is also observed in Kras mutant lung tumours that are regressing due to blockade of RAS interaction with PI3-Kinase. Furthermore, loss of Reelin correlates with decreased survival of lung and breast cancer patients. Reelin thus plays a role in restraining RAS and PI3-kinase promotion of cell motility and potentially tumour metastasis. PMID:27071537

  6. Targeting the phosphoinositide 3-kinase pathway in hematologic malignancies

    PubMed Central

    Jabbour, Elias; Ottmann, Oliver G.; Deininger, Michael; Hochhaus, Andreas

    2014-01-01

    The phosphoinositide 3-kinase pathway represents an important anticancer target because it has been implicated in cancer cell growth, survival, and motility. Recent studies show that PI3K may also play a role in the development of resistance to currently available therapies. In a broad range of cancers, various components of the phosphoinositide 3-kinase signaling axis are genetically modified, and the pathway can be activated through many different mechanisms. The frequency of genetic alterations in the phosphoinositide 3-kinase pathway, coupled with the impact in oncogenesis and disease progression, make this signaling axis an attractive target in anticancer therapy. A better understanding of the critical function of the phosphoinositide 3-kinase pathway in leukemias and lymphomas has led to the clinical evaluation of novel rationally designed inhibitors in this setting. Three main categories of phosphoinositide 3-kinase inhibitors have been developed so far: agents that target phosphoinositide 3-kinase and mammalian target of rapamycin (dual inhibitors), pan-phosphoinositide 3-kinase inhibitors that target all class I isoforms, and isoform-specific inhibitors that selectively target the α, -β, -γ, or -δ isoforms. Emerging data highlight the promise of phosphoinositide 3-kinase inhibitors in combination with other therapies for the treatment of patients with hematologic malignancies. Further evaluation of phosphoinositide 3-kinase inhibitors in first-line or subsequent regimens may improve clinical outcomes. This article reviews the role of phosphoinositide 3-kinase signaling in hematologic malignancies and the potential clinical utility of inhibitors that target this pathway. PMID:24425689

  7. Natural variation in Drosophila melanogaster diapause due to the insulin-regulated PI3-kinase

    PubMed Central

    Williams, Karen D.; Busto, Macarena; Suster, Maximiliano L.; So, Anthony K.-C.; Ben-Shahar, Yehuda; Leevers, Sally J.; Sokolowski, Marla B.

    2006-01-01

    This study links natural variation in a Drosophila melanogaster overwintering strategy, diapause, to the insulin-regulated phosphatidylinositol 3-kinase (PI3-kinase) gene, Dp110. Variation in diapause, a reproductive arrest, was associated with Dp110 by using Dp110 deletions and genomic rescue fragments in transgenic flies. Deletions of Dp110 increased the proportion of individuals in diapause, whereas expression of Dp110 in the nervous system, but not including the visual system, decreased it. The roles of phosphatidylinositol 3-kinase for both diapause in D. melanogaster and dauer formation in Caenorhabditis elegans suggest a conserved role for this kinase in both reproductive and developmental arrests in response to environmental stresses. PMID:17043223

  8. Phosphoinositide 3-kinase mediated signaling in lobster olfactory receptor neurons

    PubMed Central

    Corey, Elizabeth A.; Bobkov, Yuriy; Pezier, Adeline; Ache, Barry W.

    2010-01-01

    In vertebrates and some invertebrates, odorant molecules bind to G protein-coupled receptors (GPCRs) on olfactory receptor neurons (ORNs) to initiate signal transduction. Phosphoinositide 3-kinase (PI3K) activity has been implicated physiologically in olfactory signal transduction, suggesting a potential role for a GPCR-activated class I PI3K. Using isoform-specific antibodies, we identified a protein in the olfactory signal transduction compartment of lobster ORNs that is antigenically similar to mammalian PI3Kγ and cloned a gene for a PI3K with amino acid homology with PI3Kβ. The lobster olfactory PI3K co-immunoprecipitates with the G protein α and β subunits, and an odorant-evoked increase in phosphatidylinositol (3,4,5)-trisphosphate can be detected in the signal transduction compartment of the ORNs. PI3Kγ and β isoform-specific inhibitors reduce the odorant-evoked output of lobster ORNs in vivo. Collectively, these findings provide evidence that PI3K is indeed activated by odorant receptors in lobster ORNs and further support the potential involvement of G protein activated PI3K signaling in olfactory transduction. PMID:20132480

  9. Phosphoinositide 3-kinase: the key switch mechanism in insulin signalling.

    PubMed Central

    Shepherd, P R; Withers, D J; Siddle, K

    1998-01-01

    Insulin plays a key role in regulating a wide range of cellular processes. However, until recently little was known about the signalling pathways that are involved in linking the insulin receptor with downstream responses. It is now apparent that the activation of class 1a phosphoinositide 3-kinase (PI 3-kinase) is necessary and in some cases sufficient to elicit many of insulin's effects on glucose and lipid metabolism. The lipid products of PI 3-kinase act as both membrane anchors and allosteric regulators, serving to localize and activate downstream enzymes and their protein substrates. One of the major ways these lipid products of PI 3-kinase act in insulin signalling is by binding to pleckstrin homology (PH) domains of phosphoinositide-dependent protein kinase (PDK) and protein kinase B (PKB) and in the process regulating the phosphorylation of PKB by PDK. Using mechanisms such as this, PI 3-kinase is able to act as a molecular switch to regulate the activity of serine/threonine-specific kinase cascades important in mediating insulin's effects on endpoint responses. PMID:9677303

  10. Two distinct functions for PI3-kinases in macropinocytosis

    PubMed Central

    Hoeller, Oliver; Bolourani, Parvin; Clark, Jonathan; Stephens, Len R.; Hawkins, Phillip T.; Weiner, Orion D.; Weeks, Gerald; Kay, Robert R.

    2013-01-01

    Summary Class-1 PI3-kinases are major regulators of the actin cytoskeleton, whose precise contributions to chemotaxis, phagocytosis and macropinocytosis remain unresolved. We used systematic genetic ablation to examine this question in growing Dictyostelium cells. Mass spectroscopy shows that a quintuple mutant lacking the entire genomic complement of class-1 PI3-kinases retains only 10% of wild-type PtdIns(3,4,5)P3 levels. Chemotaxis to folate and phagocytosis of bacteria proceed normally in the quintuple mutant but macropinocytosis is abolished. In this context PI3-kinases show specialized functions, only one of which is directly linked to gross PtdIns(3,4,5)P3 levels: macropinosomes originate in patches of PtdIns(3,4,5)P3, with associated F-actin-rich ruffles, both of which depend on PI3-kinase 1/2 (PI3K1/2) but not PI3K4, whereas conversion of ruffles into vesicles requires PI3K4. A biosensor derived from the Ras-binding domain of PI3K1 suggests that Ras is activated throughout vesicle formation. Binding assays show that RasG and RasS interact most strongly with PI3K1/2 and PI3K4, and single mutants of either Ras have severe macropinocytosis defects. Thus, the fundamental function of PI3-kinases in growing Dictyostelium cells is in macropinocytosis where they have two distinct functions, supported by at least two separate Ras proteins. PMID:23843627

  11. PI-3 kinase-PTEN signaling node: an intercept point for the control of angiogenesis.

    PubMed

    Castellino, R C; Muh, C R; Durden, D L

    2009-01-01

    Angiogenesis is tightly regulated by opposing mechanisms in mammalian cells and is controlled by the angiogenic switch. Other review articles have described a central role for the PTEN/PI-3 kinase/AKT signaling node in the coordinate control of cell division, tumor growth, apoptosis, invasion and cellular metabolism [1, 2]. In this review, we focus on literature that supports the PTEN/PI-3 kinase/AKT signaling node as a major control point for the angiogenic switch in both the on and off positions. We also discuss the rationale for designing small molecule drugs that target the PTEN/PI-3 kinase/AKT signaling node for therapeutic intervention. Our hypothesis is that, instead of inhibiting one cell surface receptor, such as VEGFR2 with bevacizumab (Avastin), thereby leaving a significant number of receptors free to pulse angiogenic signals, a more effective strategy may be to regulate signaling through an intercept node where redundant cell surface receptor signals converge to transmit important signaling events within the cell. This therapeutic configuration brings coordinate control over multiple cell surface receptors in concert with a physiologic response which may combine arrest of cell cycle progression with growth inhibition and the induction of genes involved in specialized functions such as movement, which are all required for the complex process of angiogenesis to occur in a temporal-spatial paradigm.

  12. Increased protein glycation in fructosamine 3-kinase-deficient mice

    PubMed Central

    da-Cunha, Maria VEIGA; Jacquemin, Patrick; Delpierre, Ghislain; Godfraind, Catherine; Théate, Ivan; Vertommen, Didier; Clotman, Frédéric; Lemaigre, Frédéric; Devuyst, Olivier; Van Schaftingen, Emile

    2006-01-01

    Amines, including those present on proteins, spontaneously react with glucose to form fructosamines in a reaction known as glycation. In the present paper, we have explored, through a targeted gene inactivation approach, the role of FN3K (fructosamine 3-kinase), an intracellular enzyme that phosphorylates free and protein-bound fructose-ϵ-lysines and which is potentially involved in protein repair. Fn3k−/− mice looked healthy and had normal blood glucose and serum fructosamine levels. However, their level of haemoglobin-bound fructosamines was approx. 2.5-fold higher than that of control (Fn3k+/+) or Fn3k+/− mice. Other intracellular proteins were also significantly more glycated in Fn3k−/− mice in erythrocytes (1.8–2.2-fold) and in brain, kidney, liver and skeletal muscle (1.2–1.8-fold), indicating that FN3K removes fructosamines from intracellular proteins in vivo. The urinary excretion of free fructose-ϵ-lysine was 10–20-fold higher in fed mice compared with mice starved for 36 h, and did not differ between fed Fn3k+/+ and Fn3k−/− mice, indicating that food is the main source of urinary fructose-ϵ-lysine in these mice and that FN3K does not participate in the metabolism of food-derived fructose-ϵ-lysine. However, in starved animals, the urinary excretion of fructose-ϵ-lysine was 2.5-fold higher in Fn3k−/− mice compared with Fn3k+/+ or Fn3k+/− mice. Furthermore, a marked increase (5–13-fold) was observed in the concentration of free fructose-ϵ-lysine in tissues of fed Fn3k−/− mice compared with control mice, indicating that FN3K participates in the metabolism of endogenously produced fructose-ϵ-lysine. Taken together, these data indicate that FN3K serves as a protein repair enzyme and also in the metabolism of endogenously produced free fructose-ϵ-lysine. PMID:16819943

  13. Enhancement of Morphological Plasticity in Hippocampal Neurons by a Physically Modified Saline via Phosphatidylinositol-3 Kinase

    PubMed Central

    Roy, Avik; Modi, Khushbu K.; Khasnavis, Saurabh; Ghosh, Supurna; Watson, Richard; Pahan, Kalipada

    2014-01-01

    Increase of the density of dendritic spines and enhancement of synaptic transmission through ionotropic glutamate receptors are important events, leading to synaptic plasticity and eventually hippocampus-dependent spatial learning and memory formation. Here we have undertaken an innovative approach to upregulate hippocampal plasticity. RNS60 is a 0.9% saline solution containing charge-stabilized nanobubbles that are generated by subjecting normal saline to Taylor-Couette-Poiseuille (TCP) flow under elevated oxygen pressure. RNS60, but not NS (normal saline), PNS60 (saline containing a comparable level of oxygen without the TCP modification), or RNS10.3 (TCP-modified normal saline without excess oxygen), stimulated morphological plasticity and synaptic transmission via NMDA- and AMPA-sensitive calcium influx in cultured mouse hippocampal neurons. Using mRNA-based targeted gene array, real-time PCR, immunoblot, and immunofluorescence analyses, we further demonstrate that RNS60 stimulated the expression of many plasticity-associated genes in cultured hippocampal neurons. Activation of type IA, but not type IB, phosphatidylinositol-3 (PI-3) kinase by RNS60 together with abrogation of RNS60-mediated upregulation of plasticity-related proteins (NR2A and GluR1) and increase in spine density, neuronal size, and calcium influx by LY294002, a specific inhibitor of PI-3 kinase, suggest that RNS60 upregulates hippocampal plasticity via activation of PI-3 kinase. Finally, in the 5XFAD transgenic model of Alzheimer’s disease (AD), RNS60 treatment upregulated expression of plasticity-related proteins PSD95 and NR2A and increased AMPA- and NMDA-dependent hippocampal calcium influx. These results describe a novel property of RNS60 in stimulating hippocampal plasticity, which may help AD and other dementias. PMID:25007337

  14. Enhancement of morphological plasticity in hippocampal neurons by a physically modified saline via phosphatidylinositol-3 kinase.

    PubMed

    Roy, Avik; Modi, Khushbu K; Khasnavis, Saurabh; Ghosh, Supurna; Watson, Richard; Pahan, Kalipada

    2014-01-01

    Increase of the density of dendritic spines and enhancement of synaptic transmission through ionotropic glutamate receptors are important events, leading to synaptic plasticity and eventually hippocampus-dependent spatial learning and memory formation. Here we have undertaken an innovative approach to upregulate hippocampal plasticity. RNS60 is a 0.9% saline solution containing charge-stabilized nanobubbles that are generated by subjecting normal saline to Taylor-Couette-Poiseuille (TCP) flow under elevated oxygen pressure. RNS60, but not NS (normal saline), PNS60 (saline containing a comparable level of oxygen without the TCP modification), or RNS10.3 (TCP-modified normal saline without excess oxygen), stimulated morphological plasticity and synaptic transmission via NMDA- and AMPA-sensitive calcium influx in cultured mouse hippocampal neurons. Using mRNA-based targeted gene array, real-time PCR, immunoblot, and immunofluorescence analyses, we further demonstrate that RNS60 stimulated the expression of many plasticity-associated genes in cultured hippocampal neurons. Activation of type IA, but not type IB, phosphatidylinositol-3 (PI-3) kinase by RNS60 together with abrogation of RNS60-mediated upregulation of plasticity-related proteins (NR2A and GluR1) and increase in spine density, neuronal size, and calcium influx by LY294002, a specific inhibitor of PI-3 kinase, suggest that RNS60 upregulates hippocampal plasticity via activation of PI-3 kinase. Finally, in the 5XFAD transgenic model of Alzheimer's disease (AD), RNS60 treatment upregulated expression of plasticity-related proteins PSD95 and NR2A and increased AMPA- and NMDA-dependent hippocampal calcium influx. These results describe a novel property of RNS60 in stimulating hippocampal plasticity, which may help AD and other dementias.

  15. Neuroprotective Role of the PI3 Kinase/Akt Signaling Pathway in Zebrafish

    PubMed Central

    Chen, Shuang; Liu, Yunzhang; Rong, Xiaozhi; Li, Yun; Zhou, Jianfeng; Lu, Ling

    2017-01-01

    Neuronal survival and growth in the embryo is controlled partly by trophic factors. For most trophic factors (such as Insulin-like growth factor-1), the ability to regulate cell survival has been attributed to the phosphoinositide 3-kinase (PI3K)/Akt kinase cascade. This study presents data illustrating the role of PI3K/Akt in attainment of normal brain size during zebrafish embryogenesis. Blocking PI3K with inhibitor LY294002 caused a significant reduction in brain size (in addition to global growth retardation) during zebrafish embryogenesis. This PI3 Kinase inhibition-induced brain size decrease was recovered by the overexpression of myristoylated Akt (myr-Akt), a constitutive form of Akt. Further analysis reveals that expressing exogenous myr-Akt significantly augmented brain size. Whole mount in situ hybridization analysis of several marker genes showed that myr-Akt overexpression did not alter brain patterning. Furthermore, the expression of myr-Akt was found to protect neuronal cells from apoptosis induced by heat shock and UV light, suggesting that inhibition of neuronal cell death may be part of the underlying cause of the increased brain size. These data provide a foundation for addressing the role of PI3K/Akt in brain growth during zebrafish embryogenesis. PMID:28228749

  16. Phosphatidylinositol 3-kinase (PI3K) inhibitors as cancer therapeutics

    PubMed Central

    2013-01-01

    Phosphatidylinositol 3-kinases (PI3Ks) are lipid kinases that regulate diverse cellular processes including proliferation, adhesion, survival, and motility. Dysregulated PI3K pathway signaling occurs in one-third of human tumors. Aberrantly activated PI3K signaling also confers sensitivity and resistance to conventional therapies. PI3K has been recognized as an attractive molecular target for novel anti-cancer molecules. In the last few years, several classes of potent and selective small molecule PI3K inhibitors have been developed, and at least fifteen compounds have progressed into clinical trials as new anticancer drugs. Among these, idelalisib has advanced to phase III trials in patients with advanced indolent non-Hodgkin’s lymphoma and mantle cell lymphoma. In this review, we summarized the major molecules of PI3K signaling pathway, and discussed the preclinical models and clinical trials of potent small-molecule PI3K inhibitors. PMID:24261963

  17. Phosphoinositide 3-kinase signaling in the vertebrate retina

    PubMed Central

    Rajala, Raju V. S.

    2010-01-01

    The phosphoinositide (PI) cycle, discovered over 50 years ago by Mabel and Lowell Hokin, describes a series of biochemical reactions that occur on the inner leaflet of the plasma membrane of cells in response to receptor activation by extracellular stimuli. Studies from our laboratory have shown that the retina and rod outer segments (ROSs) have active PI metabolism. Biochemical studies revealed that the ROSs contain the enzymes necessary for phosphorylation of phosphoinositides. We showed that light stimulates various components of the PI cycle in the vertebrate ROS, including diacylglycerol kinase, PI synthetase, phosphatidylinositol phosphate kinase, phospholipase C, and phosphoinositide 3-kinase (PI3K). This article describes recent studies on the PI3K-generated PI lipid second messengers in the control and regulation of PI-binding proteins in the vertebrate retina. PMID:19638643

  18. PI3 kinase enzymology on fluid lipid bilayers.

    PubMed

    Dutta, Debjit; Pulsipher, Abigail; Luo, Wei; Yousaf, Muhammad N

    2014-10-21

    We report the use of fluid lipid bilayer membrane as a model platform to study the influence of the bilayer microenvironment and composition on the enzymology in membrane. As a model system we determined the enzyme kinetics on membranes for the transformation of bilayers containing phosphoinositol(4,5)-bisphosphate (PI(4,5)P2) to phosphoinositol(3,4,5)-trisphosphate (PI(3,4,5)P3) by the enzyme phosphoinositol-3-kinase (PI3K) using radiolabeled ATP. The activity of the enzyme was monitored as a function of the radioactivity incorporated within the bilayer. The transformation of PI(4,5)P2 to PI(3,4,5)P3 was determined using a mass strip assay. The fluidity of the bilayer was confirmed by Fluorescence Recovery After Photobleaching (FRAP) experiments. Kinetic simulations were performed based on Langmuir adsorption and Michaelis-Menton kinetics equations to generate the rate constants for the enzymatic reaction. The effect of cholesterol on the enzyme kinetics was studied by doping the bilayer with 1% cholesterol. This leads to significant reduction in reaction rate due to change in membrane microenvironment. This strategy provides a method to study the enzymology of various kinases and phosphatases occurring at the membrane and also how these reactions are affected by the membrane composition and surface microenvironment.

  19. Clinical development of phosphatidylinositol 3-kinase inhibitors for cancer treatment

    PubMed Central

    2012-01-01

    The phosphatidylinositol 3-kinase (PI3K) pathway is commonly deregulated in cancer. In recent years, the results of the first phase I clinical trials with PI3K inhibitors have become available. In comparison to other targeted agents such v-raf murine sarcoma viral oncogene homolog B1 (BRAF) inhibitors in melanoma or crizotinib in anaplastic lymphoma receptor tyrosine kinase (ALK) translocated tumors, the number of objective responses to PI3K inhibitors is less dramatic. In this review we propose possible strategies to optimize the clinical development of PI3K inhibitors: by exploring the potential role of PI3K isoform-specific inhibitors in improving the therapeutic index, molecular characterization as a basis for patient selection, and the relevance of performing serial tumor biopsies to understand the associated mechanisms of drug resistance. The main focus of this review will be on PI3K isoform-specific inhibitors by describing the functions of different PI3K isoforms, the preclinical activity of selective PI3K isoform-specific inhibitors and the early clinical data of these compounds. PMID:23232172

  20. Targeting phosphoinositide 3-kinase δ for allergic asthma.

    PubMed

    Rowan, Wendy C; Smith, Janet L; Affleck, Karen; Amour, Augustin

    2012-02-01

    Chronic inflammation in the lung has long been linked to the pathogenesis of asthma. Central to this airway inflammation is a T-cell response to allergens, with Th2 cytokines driving the differentiation, survival and function of the major inflammatory cells involved in the allergic cascade. PI3Kδ (phosphoinositide 3-kinase δ) is a lipid kinase, expressed predominantly in leucocytes, where it plays a critical role in immune receptor signalling. A selective PI3Kδ inhibitor is predicted to block T-cell activation in the lung, reducing the production of pro-inflammatory Th2 cytokines. PI3Kδ is also involved in B-cell and mast cell activation. Therefore the inhibition of PI3Kδ should dampen down the inflammatory cascade involved in the asthmatic response through a wide breadth of pharmacology. Current anti-inflammatory therapies, which are based on corticosteroids, are effective in controlling inflammation in mild asthmatics, but moderate/severe asthmatic patients remain poorly controlled, experiencing recurrent exacerbations. Corticosteroids have no effect on mast cell degranulation and do not act directly on B-cells, so, overall, a PI3Kδ inhibitor has the potential to deliver improvements in onset of action, efficacy and reduced exacerbations in moderate/severe asthmatics. Additionally, PI3Kδ inhibition is expected to block effects of Th17 cells, which are increasingly implicated in steroid-insensitive asthma.

  1. Architecture and dynamics of the autophagic phosphatidylinositol 3-kinase complex

    PubMed Central

    Baskaran, Sulochanadevi; Carlson, Lars-Anders; Stjepanovic, Goran; Young, Lindsey N; Kim, Do Jin; Grob, Patricia; Stanley, Robin E; Nogales, Eva; Hurley, James H

    2014-01-01

    The class III phosphatidylinositol 3-kinase complex I (PI3KC3-C1) that functions in early autophagy consists of the lipid kinase VPS34, the scaffolding protein VPS15, the tumor suppressor BECN1, and the autophagy-specific subunit ATG14. The structure of the ATG14-containing PI3KC3-C1 was determined by single-particle EM, revealing a V-shaped architecture. All of the ordered domains of VPS34, VPS15, and BECN1 were mapped by MBP tagging. The dynamics of the complex were defined using hydrogen–deuterium exchange, revealing a novel 20-residue ordered region C-terminal to the VPS34 C2 domain. VPS15 organizes the complex and serves as a bridge between VPS34 and the ATG14:BECN1 subcomplex. Dynamic transitions occur in which the lipid kinase domain is ejected from the complex and VPS15 pivots at the base of the V. The N-terminus of BECN1, the target for signaling inputs, resides near the pivot point. These observations provide a framework for understanding the allosteric regulation of lipid kinase activity. DOI: http://dx.doi.org/10.7554/eLife.05115.001 PMID:25490155

  2. Phosphatidylinositol 3-Kinase and Antiestrogen Resistance in Breast Cancer

    PubMed Central

    Miller, Todd W.; Balko, Justin M.; Arteaga, Carlos L.

    2011-01-01

    Although antiestrogen therapies targeting estrogen receptor (ER) α signaling prevent disease recurrence in the majority of patients with hormone-dependent breast cancer, a significant fraction of patients exhibit de novo or acquired resistance. Currently, the only accepted mechanism linked with endocrine resistance is amplification or overexpression of the ERBB2 (human epidermal growth factor receptor 2 [HER2]) proto-oncogene. Experimental and clinical evidence suggests that hyperactivation of the phosphatidylinositol 3-kinase (PI3K) pathway, the most frequently mutated pathway in breast cancer, promotes antiestrogen resistance. PI3K is a major signaling hub downstream of HER2 and other receptor tyrosine kinases. PI3K activates several molecules involved in cell-cycle progression and survival, and in ER-positive breast cancer cells, it promotes estrogen-dependent and -independent ER transcriptional activity. Preclinical tumor models of antiestrogen-resistant breast cancer often remain sensitive to estrogens and PI3K inhibition, suggesting that simultaneous targeting of the PI3K and ER pathways may be most effective. Herein, we review alterations in the PI3K pathway associated with resistance to endocrine therapy, the state of clinical development of PI3K inhibitors, and strategies for the clinical investigation of such drugs in hormone receptor–positive breast cancer. PMID:22010023

  3. Endosomal Phosphatidylinositol 3-Kinase Is Essential for Canonical GPCR Signaling.

    PubMed

    Uchida, Yasunori; Rutaganira, Florentine U; Jullié, Damien; Shokat, Kevan M; von Zastrow, Mark

    2017-01-01

    G protein-coupled receptors (GPCRs), the largest family of signaling receptors, are critically regulated by endosomal trafficking, suggesting that endosomes might provide new strategies for manipulating GPCR signaling. Here we test this hypothesis by focusing on class III phosphatidylinositol 3-kinase (Vps34), which is an essential regulator of endosomal trafficking. We verify that Vps34 is required for recycling of the β2-adrenoceptor (β2AR), a prototypical GPCR, and then investigate the effects of Vps34 inhibition on the canonical cAMP response elicited by β2AR activation. Vps34 inhibition impairs the ability of cells to recover this response after prolonged activation, which is in accord with the established role of recycling in GPCR resensitization. In addition, Vps34 inhibition also attenuates the short-term cAMP response, and its effect begins several minutes after initial agonist application. These results establish Vps34 as an essential determinant of both short-term and long-term canonical GPCR signaling, and support the potential utility of the endosomal system as a druggable target for signaling.

  4. Phosphoinositide 3-kinase inhibitors induce DNA damage through nucleoside depletion

    PubMed Central

    Juvekar, Ashish; Hu, Hai; Yadegarynia, Sina; Lyssiotis, Costas A.; Ullas, Soumya; Lien, Evan C.; Bellinger, Gary; Son, Jaekyoung; Hok, Rosanna C.; Seth, Pankaj; Daly, Michele B.; Kim, Baek; Scully, Ralph; Asara, John M.; Cantley, Lewis C.; Wulf, Gerburg M.

    2016-01-01

    We previously reported that combining a phosphoinositide 3-kinase (PI3K) inhibitor with a poly-ADP Rib polymerase (PARP)-inhibitor enhanced DNA damage and cell death in breast cancers that have genetic aberrations in BRCA1 and TP53. Here, we show that enhanced DNA damage induced by PI3K inhibitors in this mutational background is a consequence of impaired production of nucleotides needed for DNA synthesis and DNA repair. Inhibition of PI3K causes a reduction in all four nucleotide triphosphates, whereas inhibition of the protein kinase AKT is less effective than inhibition of PI3K in suppressing nucleotide synthesis and inducing DNA damage. Carbon flux studies reveal that PI3K inhibition disproportionately affects the nonoxidative pentose phosphate pathway that delivers Rib-5-phosphate required for base ribosylation. In vivo in a mouse model of BRCA1-linked triple-negative breast cancer (K14-Cre BRCA1f/fp53f/f), the PI3K inhibitor BKM120 led to a precipitous drop in DNA synthesis within 8 h of drug treatment, whereas DNA synthesis in normal tissues was less affected. In this mouse model, combined PI3K and PARP inhibition was superior to either agent alone to induce durable remissions of established tumors. PMID:27402769

  5. Phosphoinositide 3-kinase p85beta regulates invadopodium formation

    PubMed Central

    Cariaga-Martínez, Ariel E.; Cortés, Isabel; García, Esther; Pérez-García, Vicente; Pajares, María J.; Idoate, Miguel A.; Redondo-Muñóz, Javier; Antón, Inés M.; Carrera, Ana C.

    2014-01-01

    ABSTRACT The acquisition of invasiveness is characteristic of tumor progression. Numerous genetic changes are associated with metastasis, but the mechanism by which a cell becomes invasive remains unclear. Expression of p85β, a regulatory subunit of phosphoinositide-3-kinase, markedly increases in advanced carcinoma, but its mode of action is unknown. We postulated that p85β might facilitate cell invasion. We show that p85β localized at cell adhesions in complex with focal adhesion kinase and enhanced stability and maturation of cell adhesions. In addition, p85β induced development at cell adhesions of an F-actin core that extended several microns into the cell z-axis resembling the skeleton of invadopodia. p85β lead to F-actin polymerization at cell adhesions by recruiting active Cdc42/Rac at these structures. In accordance with p85β function in invadopodium-like formation, p85β levels increased in metastatic melanoma and p85β depletion reduced invadopodium formation and invasion. These results show that p85β enhances invasion by inducing cell adhesion development into invadopodia-like structures explaining the metastatic potential of tumors with increased p85β levels. PMID:25217619

  6. Role of PI 3-kinase and PIP3 in submandibular gland branching morphogenesis

    PubMed Central

    Larsen, Melinda; Hoffman, Matthew P.; Sakai, Takayoshi; Neibaur, Justin C.; Mitchell, Jonathan M.; Yamada, Kenneth M.

    2007-01-01

    The mouse submandibular gland (SMG) epithelium undergoes extensive morphogenetic branching during embryonic development as the first step in the establishment of its glandular structure. However, the specific signaling pathways required for SMG branching morphogenesis are not well understood. Using E13 mouse SMG organ cultures, we showed that inhibitors of phosphatidylinositol 3-kinase (PI 3-kinase), wortmannin and LY294002, substantially inhibited branching morphogenesis in SMG. Branching morphogenesis of epithelial rudiments denuded of mesenchyme was inhibited similarly, indicating that PI 3-kinase inhibitors act directly on the epithelium. Immunostaining and Western analysis demonstrated that the p85 isoform of PI 3-kinase is expressed in epithelium at levels higher than in the mesenchyme. A target of PI 3-kinase, Akt/protein kinase B (PKB), showed decreased phosphorylation at Ser473 by Western analysis in the presence of PI 3-kinase inhibitors. The major lipid product of PI 3-kinase, phosphatidylinositol 3,4,5-trisphosphate (PIP3), was added exogenously to SMG via a membrane-transporting carrier in the presence of PI 3-kinase inhibitors and was found to stimulate cleft formation, the first step of branching morphogenesis. Together, these data indicate that PI 3-kinase plays a role in the regulation of epithelial branching morphogenesis in mouse SMG acting through a PIP3 pathway. PMID:12618142

  7. RUNX1 regulates phosphoinositide 3-kinase/AKT pathway: role in chemotherapy sensitivity in acute megakaryocytic leukemia

    PubMed Central

    Edwards, Holly; Xie, Chengzhi; LaFiura, Katherine M.; Dombkowski, Alan A.; Buck, Steven A.; Boerner, Julie L.; Taub, Jeffrey W.; Matherly, Larry H.

    2009-01-01

    RUNX1 (AML1) encodes the core binding factor α subunit of a heterodimeric transcription factor complex which plays critical roles in normal hematopoiesis. Translocations or down-regulation of RUNX1 have been linked to favorable clinical outcomes in acute leukemias, suggesting that RUNX1 may also play critical roles in chemotherapy responses in acute leukemias; however, the molecular mechanisms remain unclear. The median level of RUNX1b transcripts in Down syndrome (DS) children with acute megakaryocytic leukemia (AMkL) were 4.4-fold (P < .001) lower than that in non-DS AMkL cases. Short hairpin RNA knockdown of RUNX1 in a non-DS AMkL cell line, Meg-01, resulted in significantly increased sensitivity to cytosine arabinoside, accompanied by significantly decreased expression of PIK3CD, which encodes the δ catalytic subunit of the survival kinase, phosphoinositide 3 (PI3)–kinase. Transcriptional regulation of PIK3CD by RUNX1 was further confirmed by chromatin immunoprecipitation and promoter reporter gene assays. Further, a PI3-kinase inhibitor, LY294002, and cytosine arabinoside synergized in antileukemia effects on Meg-01 and primary pediatric AMkL cells. Our results suggest that RUNX1 may play a critical role in chemotherapy response in AMkL by regulating the PI3-kinase/Akt pathway. Thus, the treatment of AMkL may be improved by integrating PI3-kinase or Akt inhibitors into the chemotherapy of this disease. PMID:19638627

  8. Dual regulation of glucocorticoid-induced leucine zipper (GILZ) by the glucocorticoid receptor and the PI3-kinase/AKT pathways in multiple myeloma.

    PubMed

    Grugan, Katharine D; Ma, Chunguang; Singhal, Seema; Krett, Nancy L; Rosen, Steven T

    2008-06-01

    Glucocorticoids (GCs) are effective therapeutics commonly used in multiple myeloma (MM) treatment. Clarifying the pathway of GC-induced apoptosis is crucial to understanding the process of drug resistance and to the development of new targets for MM treatment. We have previously published results of a micro-array identifying glucocorticoid-induced leucine zipper (GILZ) as GC-regulated gene in MM.1S cells. Consistent with those results, GCs increased GILZ in MM cell lines and patient samples. Reducing the levels of GILZ with siRNA decreased GC-induced cell death suggesting GILZ may mediate GC-killing. We conducted a screen to identify other pathways that affect GILZ regulation and report that inhibitors of PI3-kinase/AKT enhanced GILZ expression in MM cell lines and clinical samples. The combination of dexamethasone (Dex) and LY294002, wortmannin, triciribine, or AKT inhibitor VIII dramatically up regulated GILZ levels and enhanced apoptosis. Addition of interleukin-6 (IL-6) or insulin-like growth factor (IGF1), both which activate the PI3-kinase/AKT pathway and inhibit GC killing, blocked up regulation of GILZ by GC and PI3-kinase/AKT inhibitors. In summary, these results identify GILZ as a mediator of GC killing, indicate a role of PI3-kinase/AKT in controlling GILZ regulation and suggest that the combination of PI3-kinase/AKT inhibitors and GCs may be a beneficial MM treatment.

  9. Class (I) Phosphoinositide 3-Kinases in the Tumor Microenvironment

    PubMed Central

    Gyori, David; Chessa, Tamara; Hawkins, Phillip T.; Stephens, Len R.

    2017-01-01

    Phosphoinositide 3-kinases (PI3Ks) are a diverse family of enzymes which regulate various critical biological processes, such as cell proliferation and survival. Class (I) PI3Ks (PI3Kα, PI3Kβ, PI3Kγ and PI3Kδ) mediate the phosphorylation of the inositol ring at position D3 leading to the generation of PtdIns(3,4,5)P3. PtdIns(3,4,5)P3 can be dephosphorylated by several phosphatases, of which the best known is the 3-phosphatase PTEN (phosphatase and tensin homolog). The Class (I) PI3K pathway is frequently disrupted in human cancers where mutations are associated with increased PI3K-activity or loss of PTEN functionality within the tumor cells. However, the role of PI3Ks in the tumor stroma is less well understood. Recent evidence suggests that the white blood cell-selective PI3Kγ and PI3Kδ isoforms have an important role in regulating the immune-suppressive, tumor-associated myeloid cell and regulatory T cell subsets, respectively, and as a consequence are also critical for solid tumor growth. Moreover, PI3Kα is implicated in the direct regulation of tumor angiogenesis, and dysregulation of the PI3K pathway in stromal fibroblasts can also contribute to cancer progression. Therefore, pharmacological inhibition of the Class (I) PI3K family in the tumor microenvironment can be a highly attractive anti-cancer strategy and isoform-selective PI3K inhibitors may act as potent cancer immunotherapeutic and anti-angiogenic agents. PMID:28273837

  10. Different phosphoinositide 3-kinase isoforms mediate carrageenan nociception and inflammation.

    PubMed

    Pritchard, Rory A; Falk, Lovissa; Larsson, Mathilda; Leinders, Mathias; Sorkin, Linda S

    2016-01-01

    Phosphoinositide 3-kinases (PI3Ks) participate in signal transduction cascades that can directly activate and sensitize nociceptors and enhance pain transmission. They also play essential roles in chemotaxis and immune cell infiltration leading to inflammation. We wished to determine which PI3K isoforms were involved in each of these processes. Lightly anesthetized rats (isoflurane) were injected subcutaneously with carrageenan in their hind paws. This was preceded by a local injection of 1% DMSO vehicle or an isoform-specific antagonist to PI3K-α (compound 15-e), -β (TGX221), -δ (Cal-101), or -γ (AS252424). We measured changes in the mechanical pain threshold and spinal c-Fos expression (4 hours after injection) as indices of nociception. Paw volume, plasma extravasation (Evans blue, 0.3 hours after injection), and neutrophil (myeloperoxidase; 1 hour after injection) and macrophage (CD11b+; 4 hour after injection) infiltration into paw tissue were the measured inflammation endpoints. Only PI3K-γ antagonist before treatment reduced the carrageenan-induced pain behavior and spinal expression of c-Fos (P ≤ 0.01). In contrast, pretreatment with PI3K-α, -δ, and-γ antagonists reduced early indices of inflammation. Plasma extravasation PI3K-α (P ≤ 0.05), -δ (P ≤ 0.05), and -γ (P ≤ 0.01), early (0-2 hour) edema -α (P ≤ 0.05), -δ (P ≤ 0.001), and -γ (P ≤ 0.05), and neutrophil infiltration (all P ≤ 0.001) were all reduced compared to vehicle pretreatment. Later (2-4 hour), edema and macrophage infiltration (P ≤ 0.05) were reduced by only the PI3K-δ and -γ isoform antagonists, with the PI3K-δ antagonist having a greater effect on edema. PI3K-β antagonism was ineffective in all paradigms. These data indicate that pain and clinical inflammation are pharmacologically separable and may help to explain clinical conditions in which inflammation naturally wanes or goes into remission, but pain continues unabated.

  11. Class IA phosphatidylinositol 3-kinase in pancreatic β cells controls insulin secretion by multiple mechanisms.

    PubMed

    Kaneko, Kazuma; Ueki, Kohjiro; Takahashi, Noriko; Hashimoto, Shinji; Okamoto, Masayuki; Awazawa, Motoharu; Okazaki, Yukiko; Ohsugi, Mitsuru; Inabe, Kazunori; Umehara, Toshihiro; Yoshida, Masashi; Kakei, Masafumi; Kitamura, Tadahiro; Luo, Ji; Kulkarni, Rohit N; Kahn, C Ronald; Kasai, Haruo; Cantley, Lewis C; Kadowaki, Takashi

    2010-12-01

    Type 2 diabetes is characterized by insulin resistance and pancreatic β cell dysfunction, the latter possibly caused by a defect in insulin signaling in β cells. Inhibition of class IA phosphatidylinositol 3-kinase (PI3K), using a mouse model lacking the pik3r1 gene specifically in β cells and the pik3r2 gene systemically (βDKO mouse), results in glucose intolerance and reduced insulin secretion in response to glucose. β cells of βDKO mice had defective exocytosis machinery due to decreased expression of soluble N-ethylmaleimide attachment protein receptor (SNARE) complex proteins and loss of cell-cell synchronization in terms of Ca(2+) influx. These defects were normalized by expression of a constitutively active form of Akt in the islets of βDKO mice, preserving insulin secretion in response to glucose. The class IA PI3K pathway in β cells in vivo is important in the regulation of insulin secretion and may be a therapeutic target for type 2 diabetes.

  12. Involvement of phosphoinositide 3-kinase in insulin- or IGF-1-induced membrane ruffling.

    PubMed Central

    Kotani, K; Yonezawa, K; Hara, K; Ueda, H; Kitamura, Y; Sakaue, H; Ando, A; Chavanieu, A; Calas, B; Grigorescu, F

    1994-01-01

    Insulin, IGF-1 or EGF induce membrane ruffling through their respective tyrosine kinase receptors. To elucidate the molecular link between receptor activation and membrane ruffling, we microinjected phosphorylated peptides containing YMXM motifs or a mutant 85 kDa subunit of phosphoinositide (PI) 3-kinase (delta p85) which lacks a binding site for the catalytic 110 kDa subunit of PI 3-kinase into the cytoplasm of human epidermoid carcinoma KB cells. Both inhibited the association of insulin receptor substrate-1 (IRS-1) with PI 3-kinase in a cell-free system and also inhibited insulin- or IGF-1-induced, but not EGF-induced, membrane ruffling in KB cells. Microinjection of nonphosphorylated analogues, phosphorylated peptides containing the EYYE motif or wild-type 85 kDa subunit (Wp85), all of which did not inhibit the association of IRS-1 with PI 3-kinase in a cell-free system, did not inhibit membrane ruffling in KB cells. In addition, wortmannin, an inhibitor of PI 3-kinase activity, inhibited insulin- or IGF-1-induced membrane ruffling. These results suggest that the association of IRS-1 with PI 3-kinase followed by the activation of PI 3-kinase are required for insulin- or IGF-1-induced, but not for EGF-induced, membrane ruffling. Images PMID:8194523

  13. Tec kinase signaling in T cells is regulated by phosphatidylinositol 3-kinase and the Tec pleckstrin homology domain.

    PubMed

    Yang, W C; Ching, K A; Tsoukas, C D; Berg, L J

    2001-01-01

    Tec, the prototypical member of the Tec family of tyrosine kinases, is abundantly expressed in T cells and other hemopoietic cell types. Although the functions of Itk and Txk have recently been investigated, little is known about the role of Tec in T cells. Using antisense oligonucleotide treatment to deplete Tec protein from primary T cells, we demonstrate that Tec plays a role in TCR signaling leading to IL-2 gene induction. Interestingly, Tec kinases are the only known family of tyrosine kinases containing a pleckstrin homology (PH) domain. Using several PH domain mutants overexpressed in Jurkat T cells, we show that the Tec PH domain is required for Tec-mediated IL-2 gene induction and TCR-mediated Tec tyrosine phosphorylation. Furthermore, we show that Tec colocalizes with the TCR after TCR cross-linking, and that both the Tec PH and Src homology (SH) 2 domains play a role in this association. Wortmannin, a phosphatidylinositol 3-kinase inhibitor, abolishes Tec-mediated IL-2 gene induction and Tec tyrosine phosphorylation, and partially suppresses Tec colocalization with the activated TCR. Thus, our data implicate the Tec kinase PH domain and phosphatidylinositol 3-kinase in Tec signaling downstream of the TCR.

  14. Ablation of phosphoinositide-3-kinase class II alpha suppresses hepatoma cell proliferation

    SciTech Connect

    Ng, Stanley K.L.; Neo, Soek-Ying; Yap, Yann-Wan; Karuturi, R. Krishna Murthy; Loh, Evelyn S.L.; Liau, Kui-Hin; Ren, Ee-Chee

    2009-09-18

    Cancer such as hepatocellular carcinoma (HCC) is characterized by complex perturbations in multiple signaling pathways, including the phosphoinositide-3-kinase (PI3K/AKT) pathways. Herein we investigated the role of PI3K catalytic isoforms, particularly class II isoforms in HCC proliferation. Among the siRNAs tested against the eight known catalytic PI3K isoforms, specific ablation of class II PI3K alpha (PIK3C2{alpha}) was the most effective in impairing cell growth and this was accompanied by concomitant decrease in PIK3C2{alpha} mRNA and protein levels. Colony formation ability of cells deficient for PIK3C2{alpha} was markedly reduced and growth arrest was associated with increased caspase 3 levels. A small but significant difference in gene dosage and expression levels was detected between tumor and non-tumor tissues in a cohort of 19 HCC patients. Taken together, these data suggest for the first time that in addition to class I PI3Ks in cancer, class II PIK3C2{alpha} can modulate HCC cell growth.

  15. Class IA phosphoinositide 3-kinase regulates heart size and physiological cardiac hypertrophy.

    PubMed

    Luo, Ji; McMullen, Julie R; Sobkiw, Cassandra L; Zhang, Li; Dorfman, Adam L; Sherwood, Megan C; Logsdon, M Nicole; Horner, James W; DePinho, Ronald A; Izumo, Seigo; Cantley, Lewis C

    2005-11-01

    Class I(A) phosphoinositide 3-kinases (PI3Ks) are activated by growth factor receptors, and they regulate, among other processes, cell growth and organ size. Studies using transgenic mice overexpressing constitutively active and dominant negative forms of the p110alpha catalytic subunit of class I(A) PI3K have implicated the role of this enzyme in regulating heart size and physiological cardiac hypertrophy. To further understand the role of class I(A) PI3K in controlling heart growth and to circumvent potential complications from the overexpression of dominant negative and constitutively active proteins, we generated mice with muscle-specific deletion of the p85alpha regulatory subunit and germ line deletion of the p85beta regulatory subunit of class I(A) PI3K. Here we show that mice with cardiac deletion of both p85 subunits exhibit attenuated Akt signaling in the heart, reduced heart size, and altered cardiac gene expression. Furthermore, exercise-induced cardiac hypertrophy is also attenuated in the p85 knockout hearts. Despite such defects in postnatal developmental growth and physiological hypertrophy, the p85 knockout hearts exhibit normal contractility and myocardial histology. Our results therefore provide strong genetic evidence that class I(A) PI3Ks are critical regulators for the developmental growth and physiological hypertrophy of the heart.

  16. Polycystin-1 Induces Resistance to Apoptosis through the Phosphatidylinositol 3-Kinase/Akt Signaling Pathway

    PubMed Central

    Boca, Manila; Distefano, Gianfranco; Boletta, Alessandra; Qian, Feng; Bhunia, Anil K.; Germino, Gregory G.

    2006-01-01

    Polycystin-1 (PC-1), the PKD1 gene product, is a large receptor whose expression in renal epithelial cells results in resistance to apoptosis and tubulogenesis, a model consistent with the phenotype observed in patients. This study links PC-1 expression to a signaling pathway that is known to be both antiapoptotic and important for normal tubulogenesis. This study found that PC-1 expression results in phosphorylation of Akt and downstream effectors and that phosphatidylinositol 3-kinase (PI3-K) inhibitors prevent this process. In addition, it is shown that dominant negative Akt can revert PC-1-induced protection from apoptosis. Furthermore, it was observed that increased PI3-K β activity in PC-1- expressing MDCK cells seems to be dependent on both tyrosine-kinase activity and heterotrimeric G proteins. It also was found that PC-1-induced tubulogenesis is inhibited by PI3-K inhibitors. Taken together, these data suggest that the PI3-K/Akt cascade may be a central modulator of PC-1 function and that its deregulation might be important in autosomal dominant polycystic kidney disease. PMID:16452497

  17. Phosphatidylinositol 3-kinase inhibition potentiates glucocorticoid response in B-cell acute lymphoblastic leukemia.

    PubMed

    Evangelisti, Cecilia; Cappellini, Alessandra; Oliveira, Mariana; Fragoso, Rita; Barata, João T; Bertaina, Alice; Locatelli, Franco; Simioni, Carolina; Neri, Luca M; Chiarini, Francesca; Lonetti, Annalisa; Buontempo, Francesca; Orsini, Ester; Pession, Andrea; Manzoli, Lucia; Martelli, Alberto Maria; Evangelisti, Camilla

    2017-08-04

    Despite remarkable progress in polychemotherapy protocols, pediatric B-cell acute lymphoblastic leukemia (B-ALL) remains fatal in around 20% of cases. Hence, novel targeted therapies are needed for patients with poor prognosis. Glucocorticoids (GCs) are drugs commonly administrated for B-ALL treatment. Activation of the phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin signaling pathway is frequently observed in B-ALL and contributes to GC-resistance. Here, we analyzed for the first time to our knowledge, the therapeutic potential of pan and isoform-selective PI3K p110 inhibitors, alone or combined with dexamethasone (DEX), in B-ALL leukemia cell lines and patient samples. We found that a pan PI3K p110 inhibitor displayed the most powerful cytotoxic effects in B-ALL cells, by inducing cell cycle arrest and apoptosis. Both a pan PI3K p110 inhibitor and a dual γ/δ PI3K p110 inhibitor sensitized B-ALL cells to DEX by restoring nuclear translocation of the GC receptor and counteracted stroma-induced DEX-resistance. Finally, gene expression analysis documented that, on one hand the combination consisting of a pan PI3K p110 inhibitor and DEX strengthened the DEX-induced up- or down-regulation of several genes involved in apoptosis, while on the other, it rescued the effects of genes that might be involved in GC-resistance. Overall, our findings strongly suggest that PI3K p110 inhibition could be a promising strategy for treating B-ALL patients by improving GC therapeutic effects and/or overcoming GC-resistance. © 2017 Wiley Periodicals, Inc.

  18. Role of class III phosphatidylinositol 3-kinase during programmed nuclear death of Tetrahymena thermophila.

    PubMed

    Akematsu, Takahiko; Fukuda, Yasuhiro; Attiq, Rizwan; Pearlman, Ronald E

    2014-02-01

    Programmed nuclear death (PND) in the ciliate protozoan Tetrahymena thermophila is a novel type of autophagy that occurs during conjugation, in which only the parental somatic macronucleus is destined to die and is then eliminated from the progeny cytoplasm. Other coexisting nuclei, however, such as new micro- and macronuclei are unaffected. PND starts with condensation in the nucleus followed by apoptotic DNA fragmentation, lysosomal acidification, and final resorption. Because of the peculiarity in the process and the absence of some ATG genes in this organism, the mechanism of PND has remained unclear. In this study, we focus on the role of class III phosphatidylinositol 3-kinase (PtdIns3K, corresponding to yeast Vps34) in order to identify central regulators of PND. We identified the sole Tetrahymena thermophila ortholog (TtVPS34) to yeast Vps34 and human PIK3C3 (the catalytic subunit of PtdIns3K), through phylogenetic analysis, and generated the gene knockdown mutant for functional analysis. Loss of TtVPS34 activity prevents autophagosome formation on the parental macronucleus, and this nucleus escapes from the lysosomal pathway. In turn, DNA fragmentation and final resorption of the nucleus are drastically impaired. These phenotypes are similar to the situation in the ATG8Δ mutants of Tetrahymena, implying an inextricable link between TtVPS34 and TtATG8s in controlling PND as well as general macroautophagy. On the other hand, TtVPS34 does not appear responsible for the nuclear condensation and does not affect the progeny nuclear development. These results demonstrate that TtVPS34 is critically involved in the nuclear degradation events of PND in autophagosome formation rather than with an involvement in commitment to the death program.

  19. Role of class III phosphatidylinositol 3-kinase during programmed nuclear death of Tetrahymena thermophila

    PubMed Central

    Akematsu, Takahiko; Fukuda, Yasuhiro; Attiq, Rizwan; Pearlman, Ronald E

    2014-01-01

    Programmed nuclear death (PND) in the ciliate protozoan Tetrahymena thermophila is a novel type of autophagy that occurs during conjugation, in which only the parental somatic macronucleus is destined to die and is then eliminated from the progeny cytoplasm. Other coexisting nuclei, however, such as new micro- and macronuclei are unaffected. PND starts with condensation in the nucleus followed by apoptotic DNA fragmentation, lysosomal acidification, and final resorption. Because of the peculiarity in the process and the absence of some ATG genes in this organism, the mechanism of PND has remained unclear. In this study, we focus on the role of class III phosphatidylinositol 3-kinase (PtdIns3K, corresponding to yeast Vps34) in order to identify central regulators of PND. We identified the sole Tetrahymena thermophila ortholog (TtVPS34) to yeast Vps34 and human PIK3C3 (the catalytic subunit of PtdIns3K), through phylogenetic analysis, and generated the gene knockdown mutant for functional analysis. Loss of TtVPS34 activity prevents autophagosome formation on the parental macronucleus, and this nucleus escapes from the lysosomal pathway. In turn, DNA fragmentation and final resorption of the nucleus are drastically impaired. These phenotypes are similar to the situation in the ATG8Δ mutants of Tetrahymena, implying an inextricable link between TtVPS34 and TtATG8s in controlling PND as well as general macroautophagy. On the other hand, TtVPS34 does not appear responsible for the nuclear condensation and does not affect the progeny nuclear development. These results demonstrate that TtVPS34 is critically involved in the nuclear degradation events of PND in autophagosome formation rather than with an involvement in commitment to the death program. PMID:24280724

  20. FHL-2 suppresses VEGF-induced phosphatidylinositol 3-kinase/Akt activation via interaction with sphingosine kinase-1.

    PubMed

    Hayashi, Hiroki; Nakagami, Hironori; Takami, Yoichi; Koriyama, Hiroshi; Mori, Masaki; Tamai, Katsuto; Sun, Jianxin; Nagao, Kaori; Morishita, Ryuichi; Kaneda, Yasufumi

    2009-06-01

    In the functional screening of a human heart cDNA library to identify a novel antiangiogenic factor, the prime candidate gene was "four-and-a-half LIM only protein-2" (FHL-2). The goal of this study is to clear the mechanism of antiangiogenic signaling of FHL-2 in endothelial cells (ECs). Overexpressed FHL-2 strongly inhibited vascular endothelial growth factor (VEGF)-induced EC migration. In the angiogenic signaling, we focused on sphingosine kinase-1 (SK1), which produces sphingosine-1-phosphate (S1P), a bioactive sphingolipid, as a potent angiogenic mediator in ECs. Immunoprecipitation and immunostaining analysis showed that FHL-2 might bind to SK1. Importantly, overexpression of FHL-2 in ECs inhibited VEGF-induced SK1 activity, phosphatidylinositol 3-kinase activity, and phosphorylation of Akt and eNOS. In contrast, overexpression of FHL-2 had no effect on S1P-induced Akt phosphorylation. Interestingly, VEGF stimulation decreased the binding of FHL-2 and SK1. Depletion of FHL-2 by siRNA increased EC migration accompanied with SK1 and Akt activation, and increased the expression of VEGF receptor-2 which further enhanced VEGF signaling. Furthermore, injection of FHL-2 mRNA into Xenopus embryos resulted in inhibition of vascular network development, assessed by in situ hybridization with endothelial markers. FHL-2 may regulate phosphatidylinositol 3-kinase/Akt via direct suppression of the SK1-S1P pathway in ECs.

  1. Regular exercise enhances insulin activation of IRS-1-associated PI3-kinase in human skeletal muscle.

    PubMed

    Kirwan, J P; del Aguila, L F; Hernandez, J M; Williamson, D L; O'Gorman, D J; Lewis, R; Krishnan, R K

    2000-02-01

    Insulin action in skeletal muscle is enhanced by regular exercise. Whether insulin signaling in human skeletal muscle is affected by habitual exercise is not well understood. Phosphatidylinositol 3-kinase (PI3-kinase) activation is an important step in the insulin-signaling pathway and appears to regulate glucose metabolism via GLUT-4 translocation in skeletal muscle. To examine the effects of regular exercise on PI3-kinase activation, 2-h hyperinsulinemic (40 mU. m(-2). min(-1))-euglycemic (5.0 mM) clamps were performed on eight healthy exercise-trained [24 +/- 1 yr, 71.8 +/- 2.0 kg, maximal O(2) uptake (VO(2 max)) of 56.1 +/- 2.5 ml. kg(-1). min(-1)] and eight healthy sedentary men and women (24 +/- 1 yr, 64.7 +/- 4.4 kg, VO(2 max) of 44.4 +/- 2.7 ml. kg(-1). min(-1)). A [6, 6-(2)H]glucose tracer was used to measure hepatic glucose output. A muscle biopsy was obtained from the vastus lateralis muscle at basal and at 2 h of hyperinsulinemia to measure insulin receptor substrate-1(IRS-1)-associated PI3-kinase activation. Insulin concentrations during hyperinsulinemia were similar for both groups (293 +/- 22 and 311 +/- 22 pM for trained and sedentary, respectively). Insulin-mediated glucose disposal rates (GDR) were greater (P < 0.05) in the exercise-trained compared with the sedentary control group (9.22 +/- 0.95 vs. 6.36 +/- 0.57 mg. kg fat-free mass(-1). min(-1)). Insulin-stimulated PI3-kinase activation was also greater (P < 0.004) in the trained compared with the sedentary group (3.8 +/- 0.5- vs. 1.8 +/- 0.2-fold increase from basal). Endurance capacity (VO(2 max)) was positively correlated with PI3-kinase activation (r = 0.53, P < 0.04). There was no correlation between PI3-kinase and muscle morphology. However, increases in GDR were positively related to PI3-kinase activation (r = 0.60, P < 0.02). We conclude that regular exercise leads to greater insulin-stimulated IRS-1-associated PI3-kinase activation in human skeletal muscle, thus facilitating enhanced

  2. Mechanisms regulating phosphoinositide 3-kinase signalling in insulin-sensitive tissues.

    PubMed

    Shepherd, P R

    2005-01-01

    A great deal of evidence has accumulated indicating that the activity of PI 3-kinase is necessary, and in some cases sufficient, for a wide range of insulin's actions in the cell. Most biochemical, genetic and pharmacological studies have focused on identifying potential roles for the class-Ia PI 3-kinases which are rapidly activated following insulin stimulation. However, recent evidence indicates the alpha isoform of class-II PI 3-kinase (PI3K-C2alpha) may also play a role as insulin causes a very rapid activation of this as well. The basic mechanisms by which insulin activates the various members of the PI 3-kinase family are increasingly well understood and these studies reveal multiple mechanisms for modulating the activity and functionality of PI 3-kinase and for down regulating the signals they generate. These include inhibitory phosphorylation events, lipid phosphatases such as PTEN and SHIP2 and inhibitor proteins of the suppressors of cytokine signalling (SOCS) family. The current review will focus on these mechanisms and how defects in these might contribute to the development of insulin resistance.

  3. Phosphatidylinositol 3-kinase activation is mediated by high-affinity interactions between distinct domains within the p110 and p85 subunits.

    PubMed Central

    Holt, K H; Olson, L; Moye-Rowley, W S; Pessin, J E

    1994-01-01

    Domains of interaction between the p85 and p110 subunits of phosphatidylinositol 3-kinase (PI 3-kinase) were studied with the yeast two-hybrid expression system. A gene fusion between the GAL4 transactivation domain and p85 activated transcription from a GAL1-lacZ reporter gene when complemented with a gene fusion between the GAL4 DNA binding domain and p110. To define subdomains responsible for this interaction, a series of p85 deletion mutants were analyzed. A 192-amino-acid inter-SH2 (IS) fragment (residues 429 to 621) was the smallest determinant identified that specifically associated with p110. In analogous experiments, the subdomain within p110 responsible for interaction with p85 was localized to an EcoRI fragment encoding the amino-terminal 127 residues. Expression of these two subdomains [p85(IS) with p110RI] resulted in 100-fold greater reporter activity than that obtained with full-length p85 and p110. Although the p85(IS) domain conferred a strong interaction with the p110 catalytic subunit, this region was not sufficient to impart phosphotyrosine peptide stimulation of PI 3-kinase activity. In contrast, coexpression of the p110 subunit with full-length p85 or with constructs containing the IS sequences flanked by both SH2 domains of p85 [p85(n/cSH2)] or either of the individual SH2 domains [p85(nSH2+IS) or p85(IS+cSH2)] resulted in PI 3-kinase activity that was activated by a phosphotyrosine peptide. These data suggest that phosphotyrosine peptide binding to either SH2 domain generates an intramolecular signal propagated through the IS region to allosterically activate p110. Images PMID:8264609

  4. Phosphoinositide 3-kinase p110δ mediates estrogen- and FSH-stimulated ovarian follicle growth.

    PubMed

    Li, Qian; He, Hui; Zhang, Yin-Li; Li, Xiao-Meng; Guo, Xuejiang; Huo, Ran; Bi, Ye; Li, Jing; Fan, Heng-Yu; Sha, Jiahao

    2013-09-01

    In the mammalian ovary, primordial follicles are generated early in life and remain dormant for prolonged periods. Their growth resumes via primordial follicle activation, and they continue to grow until the preovulatory stage under the regulation of hormones and growth factors, such as estrogen, FSH, and IGF-1. Both FSH and IGF-1 activate the phosphatidylinositol-3 kinase (PI3K)/Akt (acute transforming retrovirus thymoma protein kinase) signaling pathway in granulosa cells (GCs), yet it remains inconclusive whether the PI3K pathway is crucial for follicle growth. In this study, we investigated the p110δ isoform (encoded by the Pik3cd gene) of PI3K catalytic subunit expression in the mouse ovary and its function in fertility. Pik3cd-null females were subfertile, exhibited fewer growing follicles and more atretic antral follicles in the ovary, and responded poorly to exogenous gonadotropins compared with controls. Ovary transplantation showed that Pik3cd-null ovaries responded poorly to FSH stimulation in vitro; this confirmed that the follicle growth defect was intrinsically ovarian. In addition, estradiol (E2)-stimulated follicle growth and GC proliferation in preantral follicles was impaired in Pik3cd-null ovaries. FSH and E2 substantially activated the PI3K/Akt pathway in GCs of control mice but not in those of Pik3cd-null mice. However, primordial follicle activation and oocyte meiotic maturation were not affected by Pik3cd knockout. Taken together, our findings indicate that the p110δ isoform of the PI3K catalytic subunit is a key component of the PI3K pathway for both FSH and E2-stimulated follicle growth in ovarian GCs; however, it is not required for primordial follicle activation and oocyte development.

  5. The role of phosphoinositide 3-kinases in neutrophil migration in 3D collagen gels.

    PubMed

    Martin, Kayleigh J S; Muessel, Michelle J; Pullar, Christine E; Willars, Gary B; Wardlaw, Andrew J

    2015-01-01

    The entry of neutrophils into tissue has been well characterised; however the fate of these cells once inside the tissue microenvironment is not fully understood. A variety of signal transduction pathways including those involving class I PI3 Kinases have been suggested to be involved in neutrophil migration. This study aims to determine the involvement of PI3 Kinases in chemokinetic and chemotactic neutrophil migration in response to CXCL8 and GM-CSF in a three-dimensional collagen gel, as a model of tissue. Using a three-dimensional collagen assay chemokinetic and chemotactic migration induced by CXCL8 was inhibited with the pan PI3 Kinase inhibitor wortmannin. Analysis of the specific Class I PI3 Kinase catalytic isoforms alpha, delta and gamma using the inhibitors PIK-75, PIK-294 and AS-605240 respectively indicated differential roles in CXCL8-induced neutrophil migration. PIK-294 inhibited both chemokinetic and chemotactic CXCL8-induced migration. AS-605240 markedly reduced CXCL8 induced chemokinetic migration but had no effect on CXCL8 induced chemotactic migration. In contrast PIK-75 inhibited chemotactic migration but not chemokinetic migration. At optimal concentrations of GM-CSF the inhibitors had no effect on the percentage of neutrophil migration in comparison to the control however at suboptimal concentrations wortmannin, AS-605240 and PIK-294 inhibited chemokinesis. This study suggests that PI3 Kinase is necessary for CXCL8 induced migration in a 3D tissue environment but that chemokinetic and chemotactic migration may be controlled by different isoforms with gamma shown to be important in chemokinesis and alpha important in chemotaxis. Neutrophil migration in response to suboptimal concentrations of GM-CSF is dependent on PI3 Kinase, particularly the gamma and delta catalytic isoforms.

  6. Hexamethylenebisacetamide modulation of thyroglobulin and protein levels in thyroid cells is not mediated by phosphatidylinositol-3-kinase: a study with wortmannin.

    PubMed

    Aouani, A; Samih, N; Amphoux-Fazekas, T; Hovsépian, S; Fayet, G

    1999-04-01

    Hexamethylenebisacetamide (HMBA) induces in murine erythroleukemia cells (MELC) the commitment to terminal differentiation leading to globin gene expression. In the thyroid, HMBA acts as a growth factor and also as a differentiating agent. In the present paper, we studied the effect of HMBA on the very specific thyroid marker thyroglobulin (Tg) in two different thyroid cell systems, i.e., porcine cells in primary culture and ovine cells in long term culture. Using wortmannin, a specific inhibitor of phosphatidylinositol-3-kinase, we investigated whether this enzyme is involved in HMBA mode of action. We found that HMBA is a positive modulator of Tg production in porcine cells, but a negative effector in the OVNIS cell line. As all HMBA effects studied in the present paper, i.e., Tg production and total protein levels, are not inhibited by wortmannin, we suggest the non-involvement of phosphatidylinositol-3-kinase in HMBA mode of action.

  7. Drug-resistant phosphatidylinositol 3-kinase: guidance for the preemptive strike.

    PubMed

    Vogt, Peter K

    2008-08-12

    In this issue of Cancer Cell, Zunder et al. (2008) describe surprising findings from investigating inhibitor-resistant mutations in the affinity pocket of p110 alpha of phosphatidylinositol 3-kinase (PI3K). Information on these critical residues provides a road map for generating novel PI3K inhibitors that can overcome the anticipated resistance mutations.

  8. Pooled Analysis of Phosphatidylinositol 3-kinase Pathway Variants and Risk of Prostate Cancer

    PubMed Central

    Koutros, Stella; Schumacher, Fredrick R.; Hayes, Richard B.; Ma, Jing; Huang, Wen-Yi; Albanes, Demetrius; Canzian, Federico; Chanock, Stephen J.; Crawford, E. David; Diver, W. Ryan; Feigelson, Heather Spencer; Giovanucci, Edward; Haiman, Christopher A.; Henderson, Brian E.; Hunter, David J.; Kaaks, Rudolf; Kolonel, Laurence N.; Kraft, Peter; Le Marchand, Loïc; Riboli, Elio; Siddiq, Afshan; Stampfer, Mier J.; Stram, Daniel O.; Thomas, Gilles; Travis, Ruth C.; Thun, Michael J.; Yeager, Meredith; Berndt, Sonja I.

    2010-01-01

    The phosphatidylinositol 3-kinase (PI3K) pathway regulates various cellular processes, including cellular proliferation and intracellular trafficking and may impact prostate carcinogenesis. Thus, we explored the association between single nucleotide polymorphisms (SNPs) in PI3K genes and prostate cancer. Pooled data from the National Cancer Institute Breast and Prostate Cancer Cohort Consortium were examined for associations between 89 SNPs in PI3K genes (PIK3C2B, PIK3AP1, PIK3C2A, PIK3CD, and PIK3R3) and prostate cancer risk in 8,309 cases and 9,286 controls. Odds ratios (OR) and 95% confidence intervals (CI) were estimated using logistic regression. SNP rs7556371 in PIK3C2B was significantly associated with prostate cancer risk (ORper allele=1.08 (95% CI: 1.03, 1.14), p-trend = 0.0017) after adjustment for multiple testing (Padj=0.024). Simultaneous adjustment of rs7556371 for nearby SNPs strengthened the association (ORper allele=1.21 (95% CI: 1.09, 1.34); p-trend =0.0003). The adjusted association was stronger for men who were diagnosed before 65 years (ORper allele= 1.47 (95% CI: 1.20, 1.79), p-trend = 0.0001) or had a family history (ORper allele= 1.57 (95% CI: 1.11, 2.23), p-trend = 0.0114), and was strongest in those with both characteristics (ORper allele= 2.31 (95% CI: 1.07, 5.07), p-interaction = 0.005). Increased risks were observed among men in the top tertile of circulating insulin like growth factor-1 (IGF-1) levels (ORper allele= 1.46 (95% CI: 1.04, 2.06), p-trend=0.075). No differences were observed with disease aggressiveness (≥8/stage T3/T4/fatal). In conclusion, we observed a significant association between PIK3C2B and prostate cancer risk, especially for familial, early onset disease, which may be attributable to IGF-dependent PI3K signaling. PMID:20197460

  9. Genetic alterations in the phosphatidylinositol-3 kinase/Akt pathway in thyroid cancer.

    PubMed

    Xing, Mingzhao

    2010-07-01

    Aberrant activation of the phosphatidylinositol-3 kinase (PI3K)/Akt pathway plays a fundamental role in thyroid tumorigenesis, particularly in follicular thyroid cancer (FTC) and aggressive thyroid cancer, such as anaplastic thyroid cancer (ATC). As the drivers of this process, many genetic alterations activating the PI3K/Akt pathway have been identified in thyroid cancer in recent years. This review summarizes the current knowledge on major genetic alterations in the PI3K/Akt pathway. These include PIK3CA mutations and genomic amplification/copy gain, Ras mutations, PTEN mutations, RET/PTC and PPARgamma/Pax8 rearrangements, as well as amplification/copy gain of PIK3CB, PDK1, Akt, and various receptor tyrosine kinase genes. Most of these genetic alterations are particularly common in FTC and many of them are even more common in ATC; they are generally less common in papillary thyroid cancer (PTC), in which the MAP kinase (MAPK) pathway activated by the BRAF mutation instead plays a major role. Methylation and, thus, epigenetic silencing of PTEN, a major negative regulator of the PI3K/Akt pathway, occurs in close association with activating genetic alterations of the PI3K/Akt pathway, constituting a unique self-enhancement mechanism for this pathway. Many of these genetic alterations are mutually exclusive in differentiated thyroid tumors, but with increasing concurrence from benign tumors to FTC to ATC. RET/PTC, Ras, and receptor tyrosine kinase could dually activate the PI3K/Akt and MAPK pathways. Most cases of ATC harbor genetic alterations in these genes or other genetic combinations that can activate both pathways. It is proposed that genetic alterations in the PI3K/Akt pathway promote thyroid cell transformation to FTC and that genetic alterations in the MAPK pathway promote cell transformation to PTC; accumulation of multiple genetic alterations that can activate both pathways promotes thyroid cancer aggressiveness and progression to ATC. Genetic alterations

  10. Genetic Alterations in the Phosphatidylinositol-3 Kinase/Akt Pathway in Thyroid Cancer

    PubMed Central

    2010-01-01

    Background Aberrant activation of the phosphatidylinositol-3 kinase (PI3K)/Akt pathway plays a fundamental role in thyroid tumorigenesis, particularly in follicular thyroid cancer (FTC) and aggressive thyroid cancer, such as anaplastic thyroid cancer (ATC). As the drivers of this process, many genetic alterations activating the PI3K/Akt pathway have been identified in thyroid cancer in recent years. Summary This review summarizes the current knowledge on major genetic alterations in the PI3K/Akt pathway. These include PIK3CA mutations and genomic amplification/copy gain, Ras mutations, PTEN mutations, RET/PTC and PPARγ/Pax8 rearrangements, as well as amplification/copy gain of PIK3CB, PDK1, Akt, and various receptor tyrosine kinase genes. Most of these genetic alterations are particularly common in FTC and many of them are even more common in ATC; they are generally less common in papillary thyroid cancer (PTC), in which the MAP kinase (MAPK) pathway activated by the BRAF mutation instead plays a major role. Methylation and, thus, epigenetic silencing of PTEN, a major negative regulator of the PI3K/Akt pathway, occurs in close association with activating genetic alterations of the PI3K/Akt pathway, constituting a unique self-enhancement mechanism for this pathway. Many of these genetic alterations are mutually exclusive in differentiated thyroid tumors, but with increasing concurrence from benign tumors to FTC to ATC. RET/PTC, Ras, and receptor tyrosine kinase could dually activate the PI3K/Akt and MAPK pathways. Most cases of ATC harbor genetic alterations in these genes or other genetic combinations that can activate both pathways. It is proposed that genetic alterations in the PI3K/Akt pathway promote thyroid cell transformation to FTC and that genetic alterations in the MAPK pathway promote cell transformation to PTC; accumulation of multiple genetic alterations that can activate both pathways promotes thyroid cancer aggressiveness and progression to ATC

  11. Involvement of phosphatidylinositol 3-kinase in stromal cell-derived factor-1 alpha-induced lymphocyte polarization and chemotaxis.

    PubMed

    Vicente-Manzanares, M; Rey, M; Jones, D R; Sancho, D; Mellado, M; Rodriguez-Frade, J M; del Pozo, M A; Yáñez-Mó, M; de Ana, A M; Martínez-A, C; Mérida, I; Sánchez-Madrid, F

    1999-10-01

    The role of phosphatidylinositol 3-kinase (PI3-kinase), an important enzyme involved in signal transduction events, has been studied in the polarization and chemotaxis of lymphocytes induced by the chemokine stromal cell-derived factor-1 alpha (SDF-1 alpha). This chemokine was able to directly activate p85/p110 PI3-kinase in whole human PBL and to induce the association of PI3-kinase to the SDF-1 alpha receptor, CXCR4, in a pertussis toxin-sensitive manner. Two unrelated chemical inhibitors of PI3-kinase, wortmannin and Ly294002, prevented ICAM-3 and ERM protein moesin polarization as well as the chemotaxis of PBL in response to SDF-1 alpha. However, they did not interfere with the reorganization of either tubulin or the actin cytoskeleton. Moreover, the transient expression of a dominant negative form of the PI3-kinase 85-kDa regulatory subunit in the constitutively polarized Peer T cell line inhibited ICAM-3 polarization and markedly reduced SDF-1 alpha-induced chemotaxis. Conversely, overexpression of a constitutively activated mutant of the PI3-kinase 110-kDa catalytic subunit in the round-shaped PM-1 T cell line induced ICAM-3 polarization. These results underline the role of PI3-kinase in the regulation of lymphocyte polarization and motility and indicate that PI3-kinase plays a selective role in the regulation of adhesion and ERM proteins redistribution in the plasma membrane of lymphocytes.

  12. The role of inositol 1,4,5-trisphosphate 3-kinase A in regulating emotional behavior and amygdala function

    PubMed Central

    Chung, Sooyoung; Kim, Il Hwan; Lee, Dongmin; Park, Kyungjoon; Kim, Joo Yeon; Lee, Yeon Kyung; Kim, Eun Joo; Lee, Hyun Woo; Choi, June-seek; Son, Gi Hoon; Sun, Woong; Shin, Ki Soon; Kim, Hyun

    2016-01-01

    Inositol 1,4,5-trisphosphate 3-kinase A (IP3K-A) is a molecule enriched in the brain and neurons that regulates intracellular calcium levels via signaling through the inositol trisphosphate receptor. In the present study, we found that IP3K-A expression is highly enriched in the central nucleus of the amygdala (CeA), which plays a pivotal role in the processing and expression of emotional phenotypes in mammals. Genetic abrogation of IP3K-A altered amygdala gene expression, particularly in genes involved in key intracellular signaling pathways and genes mediating fear- and anxiety-related behaviors. In agreement with the changes in amygdala gene expression profiles, IP3K-A knockout (KO) mice displayed more robust responses to aversive stimuli and spent less time in the open arms of the elevated plus maze, indicating high levels of innate fear and anxiety. In addition to behavioral phenotypes, decreased excitatory and inhibitory postsynaptic current and reduced c-Fos immunoreactivity in the CeA of IP3K-A KO mice suggest that IP3K-A has a profound influence on the basal activities of fear- and anxiety-mediating amygdala circuitry. In conclusion, our findings collectively demonstrate that IP3K-A plays an important role in regulating affective states by modulating metabotropic receptor signaling pathways and neural activity in the amygdala. PMID:27053114

  13. Effects of eicosapentaenoic acid on synaptic plasticity, fatty acid profile and phosphoinositide 3-kinase signaling in rat hippocampus and differentiated PC12 cells.

    PubMed

    Kawashima, Akiko; Harada, Tsuyoshi; Kami, Hideaki; Yano, Takashi; Imada, Kazunori; Mizuguchi, Kiyoshi

    2010-04-01

    Placebo-controlled clinical studies suggest that intake of n-3 polyunsaturated fatty acids improves neurological disorders such as Alzheimer's disease, Huntington's disease and schizophrenia. To evaluate the impact of eicosapentaenoic acid (EPA), we orally administered highly purified ethyl EPA (EPA-E) to rats at a dose of 1.0 mg/g per day and measured long-term potentiation of the CA1 hippocampal region, a physiological correlate of synaptic plasticity that is thought to underlie learning and memory. The mean field excitatory postsynaptic potential slope of the EPA-E group was significantly greater than that of the control group in the CA1 region. Gene expression of hippocampal p85alpha, one of the regulatory subunits of phosphatidylinositol 3-kinase (PI3-kinase), was increased with EPA-E administration. Investigation of fatty acid profiles of neuronal and glia-enriched fractions demonstrated that a single administration of EPA-E significantly increased neuronal and glial EPA content and glial docosahexaenoic acid content, clearly suggesting that EPA was indeed taken up by both neurons and glial cells. In addition, we investigated the direct effects of EPA on the PI3-kinase/Akt pathway in differentiated PC12 cells. Phosphorylated-Akt expression was significantly increased in EPA-treated cells, and nerve growth factor withdrawal-induced increases in cell death and caspase-3 activity were suppressed by EPA treatment. These findings suggest that EPA protects against neurodegeneration by modulating synaptic plasticity and activating the PI3-kinase/Akt pathway, possibly by its own functional effects in neurons and glial cells and by its capacity to increase brain docosahexaenoic acid.

  14. Clinical spectrum and features of activated phosphoinositide 3-kinase δ syndrome: A large patient cohort study.

    PubMed

    Coulter, Tanya I; Chandra, Anita; Bacon, Chris M; Babar, Judith; Curtis, James; Screaton, Nick; Goodlad, John R; Farmer, George; Steele, Cathal Laurence; Leahy, Timothy Ronan; Doffinger, Rainer; Baxendale, Helen; Bernatoniene, Jolanta; Edgar, J David M; Longhurst, Hilary J; Ehl, Stephan; Speckmann, Carsten; Grimbacher, Bodo; Sediva, Anna; Milota, Tomas; Faust, Saul N; Williams, Anthony P; Hayman, Grant; Kucuk, Zeynep Yesim; Hague, Rosie; French, Paul; Brooker, Richard; Forsyth, Peter; Herriot, Richard; Cancrini, Caterina; Palma, Paolo; Ariganello, Paola; Conlon, Niall; Feighery, Conleth; Gavin, Patrick J; Jones, Alison; Imai, Kohsuke; Ibrahim, Mohammad A A; Markelj, Gašper; Abinun, Mario; Rieux-Laucat, Frédéric; Latour, Sylvain; Pellier, Isabelle; Fischer, Alain; Touzot, Fabien; Casanova, Jean-Laurent; Durandy, Anne; Burns, Siobhan O; Savic, Sinisa; Kumararatne, D S; Moshous, Despina; Kracker, Sven; Vanhaesebroeck, Bart; Okkenhaug, Klaus; Picard, Capucine; Nejentsev, Sergey; Condliffe, Alison M; Cant, Andrew James

    2017-02-01

    Activated phosphoinositide 3-kinase δ syndrome (APDS) is a recently described combined immunodeficiency resulting from gain-of-function mutations in PIK3CD, the gene encoding the catalytic subunit of phosphoinositide 3-kinase δ (PI3Kδ). We sought to review the clinical, immunologic, histopathologic, and radiologic features of APDS in a large genetically defined international cohort. We applied a clinical questionnaire and performed review of medical notes, radiology, histopathology, and laboratory investigations of 53 patients with APDS. Recurrent sinopulmonary infections (98%) and nonneoplastic lymphoproliferation (75%) were common, often from childhood. Other significant complications included herpesvirus infections (49%), autoinflammatory disease (34%), and lymphoma (13%). Unexpectedly, neurodevelopmental delay occurred in 19% of the cohort, suggesting a role for PI3Kδ in the central nervous system; consistent with this, PI3Kδ is broadly expressed in the developing murine central nervous system. Thoracic imaging revealed high rates of mosaic attenuation (90%) and bronchiectasis (60%). Increased IgM levels (78%), IgG deficiency (43%), and CD4 lymphopenia (84%) were significant immunologic features. No immunologic marker reliably predicted clinical severity, which ranged from asymptomatic to death in early childhood. The majority of patients received immunoglobulin replacement and antibiotic prophylaxis, and 5 patients underwent hematopoietic stem cell transplantation. Five patients died from complications of APDS. APDS is a combined immunodeficiency with multiple clinical manifestations, many with incomplete penetrance and others with variable expressivity. The severity of complications in some patients supports consideration of hematopoietic stem cell transplantation for severe childhood disease. Clinical trials of selective PI3Kδ inhibitors offer new prospects for APDS treatment. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights

  15. Role of phosphoinositide 3-kinase in the aggressive tumor growth of HT1080 human fibrosarcoma cells.

    PubMed

    Gupta, S; Stuffrein, S; Plattner, R; Tencati, M; Gray, C; Whang, Y E; Stanbridge, E J

    2001-09-01

    We have developed a model system of human fibrosarcoma cell lines that do or do not possess and express an oncogenic mutant allele of N-ras. HT1080 cells contain an endogenous mutant allele of N-ras, whereas the derivative MCH603 cell line contains only wild-type N-ras. In an earlier study (S. Gupta et al., Mol. Cell. Biol. 20:9294-9306, 2000), we had shown that HT1080 cells produce rapidly growing, aggressive tumors in athymic nude mice, whereas MCH603 cells produced more slowly growing tumors and was termed weakly tumorigenic. An extensive analysis of the Ras signaling pathways (Raf, Rac1, and RhoA) provided evidence for a potential novel pathway that was critical for the aggressive tumorigenic phenotype and could be activated by elevated levels of constitutively active MEK. In this study we examined the role of phosphoinositide 3-kinase (PI 3-kinase) in the regulation of the transformed and aggressive tumorigenic phenotypes expressed in HT1080 cells. Both HT1080 (mutant N-ras) and MCH603 (wild-type N-ras) have similar levels of constitutively active Akt, a downstream target of activated PI 3-kinase. We find that both cell lines constitutively express platelet-derived growth factor (PDGF) and PDGF receptors. Transfection with tumor suppressor PTEN cDNA into HT1080 and constitutively active PI 3-kinase-CAAX cDNA into MCH603 cells, respectively, resulted in several interesting and novel observations. Activation of the PI 3-kinase/Akt pathway, including NF-kappaB, is not required for the aggressive tumorigenic phenotype in HT1080 cells. Activation of NF-kappaB is complex: in MCH603 cells it is mediated by Akt, whereas in HT1080 cells activation also involves other pathway(s) that are activated by mutant Ras. A threshold level of activation of PI 3-kinase is required in MCH603 cells before stimulatory cross talk to the RhoA, Rac1, and Raf pathways occurs, without a corresponding activation of Ras. The increased levels of activation seen were similar to those observed

  16. Functional genomics reveals that tumors with activating phosphoinositide 3-kinase mutations are dependent on accelerated protein turnover.

    PubMed

    Davoli, Teresa; Mengwasser, Kristen E; Duan, Jingjing; Chen, Ting; Christensen, Camilla; Wooten, Eric C; Anselmo, Anthony N; Li, Mamie Z; Wong, Kwok-Kin; Kahle, Kristopher T; Elledge, Stephen J

    2016-12-15

    Activating mutations in the phosphoinositide 3-kinase (PI3K) signaling pathway are frequently identified in cancer. To identify pathways that support PI3K oncogenesis, we performed a genome-wide RNAi screen in isogenic cell lines harboring wild-type or mutant PIK3CA to search for PI3K synthetic-lethal (SL) genes. A combined analysis of these results with a meta-analysis of two other large-scale RNAi screening data sets in PI3K mutant cancer cell lines converged on ribosomal protein translation and proteasomal protein degradation as critical nononcogene dependencies for PI3K-driven tumors. Genetic or pharmacologic inhibition of either pathway alone, but not together, selectively killed PI3K mutant tumor cells in an mTOR-dependent manner. The expression of ribosomal and proteasomal components was significantly up-regulated in primary human colorectal tumors harboring PI3K pathway activation. Importantly, a PI3K SL gene signature containing the top hits of the SL genes identified in our meta-analysis robustly predicted overall patient survival in colorectal cancer, especially among patients with tumors with an activated PI3K pathway. These results suggest that disruption of protein turnover homeostasis via ribosome or proteasome inhibition may be a novel treatment strategy for PI3K mutant human tumors. © 2016 Davoli et al.; Published by Cold Spring Harbor Laboratory Press.

  17. Requirement for Interaction of PI3-Kinase p110α with RAS in Lung Tumor Maintenance

    PubMed Central

    Castellano, Esther; Sheridan, Clare; Thin, May Zaw; Nye, Emma; Spencer-Dene, Bradley; Diefenbacher, Markus E.; Moore, Christopher; Kumar, Madhu S.; Murillo, Miguel M.; Grönroos, Eva; Lassailly, Francois; Stamp, Gordon; Downward, Julian

    2013-01-01

    Summary RAS proteins directly activate PI3-kinases. Mice bearing a germline mutation in the RAS binding domain of the p110α subunit of PI3-kinse are resistant to the development of RAS-driven tumors. However, it is unknown whether interaction of RAS with PI3-kinase is required in established tumors. The need for RAS interaction with p110α in the maintenance of mutant Kras-driven lung tumors was explored using an inducible mouse model. In established tumors, removal of the ability of p110α to interact with RAS causes long-term tumor stasis and partial regression. This is a tumor cell-autonomous effect, which is improved significantly by combination with MEK inhibition. Total removal of p110α expression or activity has comparable effects, albeit with greater toxicities. PMID:24229709

  18. Apoptosis and inactivation of the PI3-kinase pathway by tetrocarcin A in breast cancers

    SciTech Connect

    Nakajima, Hiroo; Sakaguchi, Koichi; Fujiwara, Ikuya; Mizuta, Mitsuhiko; Tsuruga, Mie; Magae, Junji . E-mail: jmagae@sannet.ne.jp; Mizuta, Naruhiko

    2007-04-27

    A survival kinase, Akt, is a downstream factor in the phosphatidylinositide-3'-kinase-dependent pathway, which mediates many biological responses including glucose uptake, protein synthesis and the regulation of proliferation and apoptosis, which is assumed to contribute to acquisition of malignant properties of human cancers. Here we find that an anti-tumor antibiotic, tetrocarcin A, directly induces apoptosis of human breast cancer cells. The apoptosis is accompanied by the activation of a proteolytic cascade of caspases including caspase-3 and -9, and concomitantly decreases phosphorylation of Akt, PDK1, and PTEN, a tumor suppressor that regulates the activity of Akt through the dephosphorylation of polyphosphoinositides. Tetrocarcin A affected neither expression of Akt, PDK1, or PTEN, nor did it affect the expression of Bcl family members including Bcl-2, Bcl-X{sub L}, and Bax. These results suggest that tetrocarcin A could be a potent chemotherapeutic agent for human breast cancer targeting the phosphatidylinositide-3'-kinase/Akt signaling pathway.

  19. Phosphoinositide lipid phosphatases: natural regulators of phosphoinositide 3-kinase signaling in T lymphocytes.

    PubMed

    Harris, Stephanie J; Parry, Richard V; Westwick, John; Ward, Stephen G

    2008-02-01

    The phosphoinositide 3-kinase signaling pathway has been implicated in a range of T lymphocyte cellular functions, particularly growth, proliferation, cytokine secretion, and survival. Dysregulation of phosphoinositide 3-kinase-dependent signaling and function in leukocytes, including B and T lymphocytes, has been implicated in many inflammatory and autoimmune diseases. As befits a pivotal signaling cascade, several mechanisms exist to ensure that the pathway is tightly regulated. This minireview focuses on two lipid phosphatases, viz. the 3'-phosphatase PTEN (phosphatase and tensin homolog deleted on chromosome 10) and SHIP (Src homology 2 domain-containing inositol-5-phosphatase). We discuss their role in regulating T lymphocyte signaling as well their potential as future therapeutic targets.

  20. The association of phosphoinositide 3-kinase enhancer A with hepatic insulin receptor enhances its kinase activity.

    PubMed

    Chan, Chi Bun; Liu, Xia; He, Kunyan; Qi, Qi; Jung, Dae Y; Kim, Jason K; Ye, Keqiang

    2011-07-01

    Dysfunction of hepatic insulin receptor tyrosine kinase (IRTK) causes the development of type 2 diabetes. However, the molecular mechanism regulating IRTK activity in the liver remains poorly understood. Here, we show that phosphoinositide 3-kinase enhancer A (PIKE-A) is a new insulin-dependent enhancer of hepatic IRTK. Liver-specific Pike-knockout (LPKO) mice display glucose intolerance with impaired hepatic insulin sensitivity. Specifically, insulin-provoked phosphoinositide 3-kinase/Akt signalling is diminished in the liver of LPKO mice, leading to the failure of insulin-suppressed gluconeogenesis and hyperglycaemia. Thus, hepatic PIKE-A has a key role in mediating insulin signal transduction and regulating glucose homeostasis in the liver.

  1. Phosphatidylinositol 3'-kinase associates with an insulin receptor substrate-1 serine kinase distinct from its intrinsic serine kinase.

    PubMed Central

    Cengel, K A; Kason, R E; Freund, G G

    1998-01-01

    Serine phosphorylation of insulin receptor substrate-1 (IRS-1) has been proposed as a counter-regulatory mechanism in insulin and cytokine signalling. Here we report that IRS-1 is phosphorylated by a wortmannin insensitive phosphatidylinositol 3'-kinase (PI 3-kinase)-associated serine kinase (PAS kinase) distinct from PI 3-kinase serine kinase. We found that PI 3-kinase immune complexes contain 5-fold more wortmannin-insensitive serine kinase activity than SH2-containing protein tyrosine phosphatase-2 (SHP2) and IRS-1 immune complexes. Affinity chromatography of cell lysates with a glutathione S-transferase fusion protein for the p85 subunit of PI 3-kinase showed that PAS kinase associated with the p85 subunit of PI 3-kinase. This interaction required unoccupied SH2 domain(s) but did not require the PI 3-kinase p110 subunit binding domain. In terms of function, PAS kinase phosphorylated IRS-1 and, after insulin stimulation, PAS kinase phosphorylated IRS-1 in PI 3-kinase-IRS-1 complexes. Phosphopeptide mapping showed that insulin-dependent in vivo sites of IRS-1 serine phosphorylation were comparable to those of PAS kinase phosphorylated IRS-1. More importantly, PAS kinase-dependent phosphorylation of IRS-1 reduced by 4-fold the ability of IRS-1 to act as an insulin receptor substrate. Taken together, these findings indicate that: (a) PAS kinase is distinct from the intrinsic serine kinase activity of PI 3-kinase, (b) PAS kinase associates with the p85 subunit of PI 3-kinase through SH2 domain interactions, and (c) PAS kinase is an IRS-1 serine kinase that can reduce the ability of IRS-1 to serve as an insulin receptor substrate. PMID:9761740

  2. Recent development of ATP-competitive small molecule phosphatidylinostitol-3-kinase inhibitors as anticancer agents

    PubMed Central

    Liu, Yu; Wan, Wen-zhu; Li, Yan; Zhou, Guan-lian; Liu, Xin-guang

    2017-01-01

    Phosphatidylinostitol-3-kinase (PI3K) is the potential anticancer target in the PI3K/Akt/ mTOR pathway. Here we reviewed the ATP-competitive small molecule PI3K inhibitors in the past few years, including the pan Class I PI3K inhibitors, the isoform-specific PI3K inhibitors and/or the PI3K/mTOR dual inhibitors. PMID:27769061

  3. Phosphoinositide 3-kinase controls early and late events in mammalian cell division.

    PubMed

    García, Zaira; Kumar, Amit; Marqués, Miriam; Cortés, Isabel; Carrera, Ana C

    2006-02-22

    Phosphoinositide 3-kinase (PI3K) plays a crucial role in triggering cell division. To initiate this process, PI3K induces two distinct routes, of which one promotes cell growth and the other regulates cyclin-dependent kinases. Fine-tuned PI3K regulation is also required for later cell cycle phases. Here, we review the multiple points at which PI3K controls cell division and discuss its impact on human cancer.

  4. Activation of phosphoinositide 3-kinase by D2 receptor prevents apoptosis in dopaminergic cell lines.

    PubMed

    Nair, Venugopalan D; Olanow, C Warren; Sealfon, Stuart C

    2003-07-01

    Whereas dopamine agonists are known to provide symptomatic benefits for Parkinson's disease, recent clinical trials suggest that they might also be neuroprotective. Laboratory studies demonstrate that dopamine agonists can provide neuroprotective effects in a number of model systems, but the role of receptor-mediated signalling in these effects is controversial. We find that dopamine agonists have robust, concentration-dependent anti-apoptotic activity in PC12 cells that stably express human D(2L) receptors from cell death due to H(2)O(2) or trophic withdrawal and that the protective effects are abolished in the presence of D(2)-receptor antagonists. D(2) agonists are also neuroprotective in the nigral dopamine cell line SN4741, which express endogenous D(2) receptors, whereas no anti-apoptotic activity is observed in native PC12 cells, which do not express detectable D(2) receptors. Notably, the agonists studied differ in their relative efficacy to mediate anti-apoptotic effects and in their capacity to stimulate [(35)S]guanosine 5'-[gamma-thio]triphosphate ([(35)S]GTP[S]) binding, an indicator of G-protein activation. Studies with inhibitors of phosphoinositide 3-kinase (PI 3-kinase), extracellular-signal-regulated kinase or p38 mitogen-activated protein kinase indicate that the PI 3-kinase pathway is required for D(2) receptor-mediated cell survival. These studies indicate that certain dopamine agonists can complex with D(2) receptors to preferentially transactivate neuroprotective signalling pathways and to mediate increased cell survival.

  5. DHEA improves glucose uptake via activations of protein kinase C and phosphatidylinositol 3-kinase.

    PubMed

    Ishizuka, T; Kajita, K; Miura, A; Ishizawa, M; Kanoh, Y; Itaya, S; Kimura, M; Muto, N; Mune, T; Morita, H; Yasuda, K

    1999-01-01

    We have examined the effect of adrenal androgen, dehydroepiandrosterone (DHEA), on glucose uptake, phosphatidylinositol (PI) 3-kinase, and protein kinase C (PKC) activity in rat adipocytes. DHEA (1 microM) provoked a twofold increase in 2-[3H]deoxyglucose (DG) uptake for 30 min. Pretreatment with DHEA increased insulin-induced 2-[3H]DG uptake without alterations of insulin specific binding and autophosphorylation of insulin receptor. DHEA also stimulated PI 3-kinase activity. [3H]DHEA bound to purified PKC containing PKC-alpha, -beta, and -gamma. DHEA provoked the translocation of PKC-beta and -zeta from the cytosol to the membrane in rat adipocytes. These results suggest that DHEA stimulates both PI 3-kinase and PKCs and subsequently stimulates glucose uptake. Moreover, to clarify the in vivo effect of DHEA on Goto-Kakizaki (GK) and Otsuka Long-Evans fatty (OLETF) rats, animal models of non-insulin-dependent diabetes mellitus (NIDDM) were treated with 0.4% DHEA for 2 wk. Insulin- and 12-O-tetradecanoyl phorbol-13-acetate-induced 2-[3H]DG uptakes of adipocytes were significantly increased, but there was no significant increase in the soleus muscles in DHEA-treated GK/Wistar or OLETF/Long-Evans Tokushima (LETO) rats when compared with untreated GK/Wistar or OLETF/LETO rats. These results indicate that in vivo DHEA treatment can result in increased insulin-induced glucose uptake in two different NIDDM rat models.

  6. Myricetin inhibits UVB-induced angiogenesis by regulating PI-3 kinase in vivo

    PubMed Central

    Jung, Sung Keun; Lee, Ki Won; Byun, Sanguine; Lee, Eun Jung; Kim, Jong-Eun; Bode, Ann M.; Dong, Zigang

    2010-01-01

    Myricetin is one of the principal phytochemicals in onions, berries and red wine. Previous studies showed that myricetin exhibits potent anticancer and chemopreventive effects. The present study examined the effect of myricetin on ultraviolet (UV) B-induced angiogenesis in an SKH-1 hairless mouse skin tumorigenesis model. Topical treatment with myricetin inhibited repetitive UVB-induced neovascularization in SKH-1 hairless mouse skin. The induction of vascular endothelial growth factor, matrix metalloproteinase (MMP)-9 and MMP-13 expression by chronic UVB irradiation was significantly suppressed by myricetin treatment. Immunohistochemical and western blot analyses revealed that myricetin inhibited UVB-induced hypoxia inducible factor-1α expression in mouse skin. Western blot analysis and kinase assay data revealed that myricetin suppressed UVB-induced phosphatidylinositol-3 (PI-3) kinase activity and subsequently attenuated the UVB-induced phosphorylation of Akt/p70S6K in mouse skin lysates. A pull-down assay revealed the direct binding of PI-3 kinase and myricetin in mouse skin lysates. Our results indicate that myricetin suppresses UVB-induced angiogenesis by regulating PI-3 kinase activity in vivo in mouse skin. PMID:20008033

  7. Autophagy requires endoplasmic reticulum targeting of the PI3-kinase complex via Atg14L.

    PubMed

    Matsunaga, Kohichi; Morita, Eiji; Saitoh, Tatsuya; Akira, Shizuo; Ktistakis, Nicholas T; Izumi, Tetsuro; Noda, Takeshi; Yoshimori, Tamotsu

    2010-08-23

    Autophagy is a catabolic process that allows cells to digest their cytoplasmic constituents via autophagosome formation and lysosomal degradation. Recently, an autophagy-specific phosphatidylinositol 3-kinase (PI3-kinase) complex, consisting of hVps34, hVps15, Beclin-1, and Atg14L, has been identified in mammalian cells. Atg14L is specific to this autophagy complex and localizes to the endoplasmic reticulum (ER). Knockdown of Atg14L leads to the disappearance of the DFCP1-positive omegasome, which is a membranous structure closely associated with both the autophagosome and the ER. A point mutation in Atg14L resulting in defective ER localization was also defective in the induction of autophagy. The addition of the ER-targeting motif of DFCP1 to this mutant fully complemented the autophagic defect in Atg14L knockout embryonic stem cells. Thus, Atg14L recruits a subset of class III PI3-kinase to the ER, where otherwise phosphatidylinositol 3-phosphate (PI3P) is essentially absent. The Atg14L-dependent appearance of PI3P in the ER makes this organelle the platform for autophagosome formation.

  8. Ribonuclease 5 facilitates corneal endothelial wound healing via activation of PI3-kinase/Akt pathway

    PubMed Central

    Kim, Kyoung Woo; Park, Soo Hyun; Lee, Soo Jin; Kim, Jae Chan

    2016-01-01

    To maintain corneal transparency, corneal endothelial cells (CECs) exert a pump function against aqueous inflow. However, human CECs are arrested in the G1-phase and non-proliferative in vivo. Thus, treatment of corneal endothelial decompensation is limited to corneal transplantation, and grafts are vulnerable to immune rejection. Here, we show that ribonuclease (RNase) 5 is more highly expressed in normal human CECs compared to decompensated tissues. Furthermore, RNase 5 up-regulated survival of CECs and accelerated corneal endothelial wound healing in an in vitro wound of human CECs and an in vivo cryo-damaged rabbit model. RNase 5 treatment rapidly induced accumulation of cytoplasmic RNase 5 into the nucleus, and activated PI3-kinase/Akt pathway in human CECs. Moreover, inhibition of nuclear translocation of RNase 5 using neomycin reversed RNase 5-induced Akt activation. As a potential strategy for proliferation enhancement, RNase 5 increased the population of 5-bromo-2′-deoxyuridine (BrdU)-incorporated proliferating CECs with concomitant PI3-kinase/Akt activation, especially in CECs deprived of contact-inhibition. Specifically, RNase 5 suppressed p27 and up-regulated cyclin D1, D3, and E by activating PI3-kinase/Akt in CECs to initiate cell cycle progression. Together, our data indicate that RNase 5 facilitates corneal endothelial wound healing, and identify RNase 5 as a novel target for therapeutic exploitation. PMID:27526633

  9. Dominant missense mutations in a novel yeast protein related to mammalian phosphatidylinositol 3-kinase and VPS34 abrogate rapamycin cytotoxicity.

    PubMed Central

    Cafferkey, R; Young, P R; McLaughlin, M M; Bergsma, D J; Koltin, Y; Sathe, G M; Faucette, L; Eng, W K; Johnson, R K; Livi, G P

    1993-01-01

    Rapamycin is a macrolide antifungal agent that exhibits potent immunosuppressive properties. In Saccharomyces cerevisiae, rapamycin sensitivity is mediated by a specific cytoplasmic receptor which is a homolog of human FKBP12 (hFKBP12). Deletion of the gene for yeast FKBP12 (RBP1) results in recessive drug resistance, and expression of hFKBP12 restores rapamycin sensitivity. These data support the idea that FKBP12 and rapamycin form a toxic complex that corrupts the function of other cellular proteins. To identify such proteins, we isolated dominant rapamycin-resistant mutants both in wild-type haploid and diploid cells and in haploid rbp1::URA3 cells engineered to express hFKBP12. Genetic analysis indicated that the dominant mutations are nonallelic to mutations in RBP1 and define two genes, designated DRR1 and DRR2 (for dominant rapamycin resistance). Mutant copies of DRR1 and DRR2 were cloned from genomic YCp50 libraries by their ability to confer drug resistance in wild-type cells. DNA sequence analysis of a mutant drr1 allele revealed a long open reading frame predicting a novel 2470-amino-acid protein with several motifs suggesting an involvement in intracellular signal transduction, including a leucine zipper near the N terminus, two putative DNA-binding sequences, and a domain that exhibits significant sequence similarity to the 110-kDa catalytic subunit of both yeast (VPS34) and bovine phosphatidylinositol 3-kinases. Genomic disruption of DRR1 in a mutant haploid strain restored drug sensitivity and demonstrated that the gene encodes a nonessential function. DNA sequence comparison of seven independent drr1dom alleles identified single base pair substitutions in the same codon within the phosphatidylinositol 3-kinase domain, resulting in a change of Ser-1972 to Arg or Asn. We conclude either that DRR1 (alone or in combination with DRR2) acts as a target of FKBP12-rapamycin complexes or that a missense mutation in DRR1 allows it to compensate for the

  10. Role of Phosphoinositide 3-Kinase in the Aggressive Tumor Growth of HT1080 Human Fibrosarcoma Cells

    PubMed Central

    Gupta, Swati; Stuffrein, Selma; Plattner, Rina; Tencati, Michael; Gray, Christa; Whang, Young E.; Stanbridge, Eric J.

    2001-01-01

    We have developed a model system of human fibrosarcoma cell lines that do or do not possess and express an oncogenic mutant allele of N-ras. HT1080 cells contain an endogenous mutant allele of N-ras, whereas the derivative MCH603 cell line contains only wild-type N-ras. In an earlier study (S. Gupta et al., Mol. Cell. Biol. 20:9294–9306, 2000), we had shown that HT1080 cells produce rapidly growing, aggressive tumors in athymic nude mice, whereas MCH603 cells produced more slowly growing tumors and was termed weakly tumorigenic. An extensive analysis of the Ras signaling pathways (Raf, Rac1, and RhoA) provided evidence for a potential novel pathway that was critical for the aggressive tumorigenic phenotype and could be activated by elevated levels of constitutively active MEK. In this study we examined the role of phosphoinositide 3-kinase (PI 3-kinase) in the regulation of the transformed and aggressive tumorigenic phenotypes expressed in HT1080 cells. Both HT1080 (mutant N-ras) and MCH603 (wild-type N-ras) have similar levels of constitutively active Akt, a downstream target of activated PI 3-kinase. We find that both cell lines constitutively express platelet-derived growth factor (PDGF) and PDGF receptors. Transfection with tumor suppressor PTEN cDNA into HT1080 and constitutively active PI 3-kinase–CAAX cDNA into MCH603 cells, respectively, resulted in several interesting and novel observations. Activation of the PI 3-kinase/Akt pathway, including NF-κB, is not required for the aggressive tumorigenic phenotype in HT1080 cells. Activation of NF-κB is complex: in MCH603 cells it is mediated by Akt, whereas in HT1080 cells activation also involves other pathway(s) that are activated by mutant Ras. A threshold level of activation of PI 3-kinase is required in MCH603 cells before stimulatory cross talk to the RhoA, Rac1, and Raf pathways occurs, without a corresponding activation of Ras. The increased levels of activation seen were similar to those observed

  11. Andrographolide inhibits hypoxia-inducible factor-1 through phosphatidylinositol 3-kinase/AKT pathway and suppresses breast cancer growth

    PubMed Central

    Li, Jie; Zhang, Chao; Jiang, Hongchuan; Cheng, Jiao

    2015-01-01

    Hypoxia-inducible factor-1 (HIF-1) is a master regulator of the transcriptional response to hypoxia. HIF-1α is one of the most compelling anticancer targets. Andrographolide (Andro) was newly identified to inhibit HIF-1 in T47D cells (a half maximal effective concentration [EC50] of 1.03×10−7 mol/L), by a dual-luciferase reporter assay. It suppressed HIF-1α protein and gene accumulation, which was dependent on the inhibition of upstream phosphatidylinositol 3-kinase (PI3K)/AKT pathway. It also abrogated the expression of HIF-1 target vascular endothelial growth factor (VEGF) gene and protein. Further, Andro inhibited T47D and MDA-MB-231 cell proliferation and colony formation. In addition, it exhibited significant in vivo efficacy and antitumor potential against the MDA-MB-231 xenograft in nude mice. In conclusion, these results highlighted the potential effects of Andro, which inhibits HIF-1, and hence may be developed as an antitumor agent for breast cancer therapy in future. PMID:25709476

  12. Receptor-mediated endocytosis of albumin by kidney proximal tubule cells is regulated by phosphatidylinositide 3-kinase.

    PubMed Central

    Brunskill, N J; Stuart, J; Tobin, A B; Walls, J; Nahorski, S

    1998-01-01

    Receptor-mediated endocytosis of albumin is an important function of the kidney proximal tubule epithelium. We have measured endocytosis of [125I]-albumin in opossum kidney cells and examined the regulation of this process by phosphatidylinositide 3-kinase (PI 3-kinase). Albumin endocytosis was inhibited by both wortmannin (IC50 6.9 nM) and LY294002 (IC50 6.5 microM) at concentrations that suggested the involvement of PI 3-kinase in its regulation. Recycling rates were unaffected. We transfected OK cells with either a wild-type p85 subunit of PI 3-kinase, or a dominant negative form of the p85 subunit (Deltap85) using the LacSwitch expression system. Transfects were screened by immunoblotting with anti-PI 3-kinase antibodies. Under basal conditions, transfects demonstrated no expression of p85 or Deltap85, but expression was briskly induced by treatment of the cells with IPTG (EC50 13.7 microM). Inhibition of PI 3-kinase activity by Deltap85 was confirmed by in vitro kinase assay of anti-phosphotyrosine immunoprecipitates from transfected cells stimulated with insulin. Expression of Deltap85 resulted in marked inhibition of albumin endocytosis, predominantly as a result of reduction of the Vmax of the transport process. Expression of p85 had no significant effect on albumin uptake. The results demonstrate that PI 3-kinase regulates an early step in the receptor-mediated endocytosis of albumin by kidney proximal tubular cells. PMID:9593770

  13. Fructosamine 3-kinase is involved in an intracellular deglycation pathway in human erythrocytes.

    PubMed Central

    Delpierre, Ghislain; Collard, François; Fortpied, Juliette; Van Schaftingen, Emile

    2002-01-01

    Fructosamine 3-kinase, which phosphorylates low-molecular-mass and protein-bound fructosamines on the third carbon of their deoxyfructose moiety, is quite active in erythrocytes, and was proposed to initiate a process removing fructosamine residues from proteins. In the present study, we show that incubation of human erythrocytes with 200 mM glucose not only caused the progressive formation of glycated haemoglobin, but also increased the level of an anionic form of haemoglobin containing alkali-labile phosphate, to approx. 5% of total haemoglobin. 1-Deoxy-1-morpholinofructose (DMF), a substrate and competitive inhibitor of fructosamine 3-kinase, doubled the rate of accumulation of glycated haemoglobin, but markedly decreased the amount of haemoglobin containing alkali-labile phosphate. The latter corresponds therefore to haemoglobin bound to a fructosamine 3-phosphate group (FN3P-Hb). Returning erythrocytes incubated with 200 mM glucose and DMF to a low-glucose medium devoid of DMF caused a decrease in the amount of glycated haemoglobin, a transient increase in FN3P-Hb and a net decrease in the sum (glycated haemoglobin+FN3P-Hb). These effects were prevented by DMF, indicating that fructosamine 3-kinase is involved in the removal of fructosamine residues. The second step of this 'deglycation' process is most likely a spontaneous decomposition of the fructosamine 3-phosphate residues to a free amine, 3-deoxyglucosone and P(i). This is consistent with the findings that 2-oxo-3-deoxygluconate, the product of 3-deoxyglucosone oxidation, is formed in erythrocytes incubated for 2 days with 200 mM glucose in a sufficient amount to account for the removal of fructosamine residues from proteins, and that DMF appears to inhibit the formation of 2-oxo-3-deoxygluconate from elevated glucose concentrations. PMID:11975663

  14. Structural basis for isoform selectivity in a class of benzothiazole inhibitors of phosphoinositide 3-kinase γ.

    PubMed

    Collier, Philip N; Martinez-Botella, Gabriel; Cornebise, Mark; Cottrell, Kevin M; Doran, John D; Griffith, James P; Mahajan, Sudipta; Maltais, François; Moody, Cameron S; Huck, Emilie Porter; Wang, Tiansheng; Aronov, Alex M

    2015-01-08

    Phosphoinositide 3-kinase γ (PI3Kγ) is an attractive target to potentially treat a range of disease states. Herein, we describe the evolution of a reported phenylthiazole pan-PI3K inhibitor into a family of potent and selective benzothiazole inhibitors. Using X-ray crystallography, we discovered that compound 22 occupies a previously unreported hydrophobic binding cleft adjacent to the ATP binding site of PI3Kγ, and achieves its selectivity by exploiting natural sequence differences among PI3K isoforms in this region.

  15. Modulation of phosphatidylinositol 3-kinase signaling reduces intimal hyperplasia in aortocoronary saphenous vein grafts.

    PubMed

    Hata, Jonathan A; Petrofski, Jason A; Schroder, Jacob N; Williams, Matthew L; Timberlake, Sarah H; Pippen, Anne; Corwin, Michael T; Solan, Amy K; Jakoi, Andre; Gehrig, Thomas R; Kontos, Christopher D; Milano, Carmelo A

    2005-06-01

    Fifty percent of human aortocoronary saphenous vein grafts are occluded after 10 years. Intimal hyperplasia is an initial step in graft occlusion and consists of vascular smooth muscle cell proliferation. Phosphatidylinositol 3-kinase and its downstream regulator, the inositol 3-phosphatase PTEN (phosphatase and tensin homolog deleted on chromosome 10), are important regulators of vascular smooth muscle cell proliferation, migration, and cell death. This study tests whether overexpression of PTEN in aortocoronary saphenous vein grafts can reduce intimal hyperplasia. Adult dogs underwent aortocoronary bypass grafting to the left anterior descending artery by using the autologous saphenous vein. Saphenous vein grafts were treated with phosphate-buffered saline (n = 9), empty adenovirus (n = 8), or adenovirus encoding for PTEN (n = 8). Arteriography at 30 and 90 days assessed saphenous vein graft patency. A subset received saphenous vein grafts treated with a marker transgene (beta-galactosidase, n = 3), empty adenovirus (n = 4), or adenovirus encoding for PTEN (n = 4) and were killed on postoperative day 3 to confirm expression. Vascular smooth muscle cells were isolated from canine saphenous vein infected with adenovirus encoding for PTEN, and immunoblotting and proliferation assays were performed. Saphenous vein graft transgene expression was confirmed by means of immunohistochemistry, immunoblotting, and polymerase chain reaction. Arteriograms revealed all saphenous vein grafts to be patent. Saphenous vein grafts treated with adenovirus encoding for PTEN demonstrated reduced intimal area compared with those treated with empty adenovirus and phosphate-buffered saline (1.39 +/- 0.11 vs 2.35 +/- 0.3 and 2.57 +/- 0.4 mm 2 , P < .05), and the intima/media ratio was lower in saphenous vein grafts treated with adenovirus encoding for PTEN (0.50 +/- 0.05 vs 1.43 +/- 0.18 and 1.11 +/- 0.14, P < .005). PTEN overexpression in vascular smooth muscle cells inhibited platelet

  16. Synthesis and Pharmacological Evaluation of 4-Iminothiazolidinones for Inhibition of PI3 Kinase

    PubMed Central

    Pinson, Jo-Anne; Schmidt-Kittler, Oleg; Frazzetto, Mark; Zheng, Zhaohua; Jennings, Ian G.; Kinzler, Kenneth W.; Vogelstein, Bert; Chalmers, David K.; Thompson, Philip E.

    2012-01-01

    The thiazolidinedione, compound 1, has previously shown pan-inhibition of the phosphoinositide 3-kinase (PI3K) class I isoforms. We hypothesized the derivatization of the thiazolidinedione core of compound 1 could introduce isoform selectivity. We report the synthesis, characterization, and inhibitory activity of a novel series of 4-iminothiazolidin-2-ones for inhibition of the class I PI3K isoforms. Their synthesis was successfully achieved by multiple pathways described in this paper. Initial in vitro data of 28 analogues demonstrated poor inhibition of all class I PI3K isoforms. However, we identified an alternate target, the phosphodiesterases, and present preliminary screening results showing improved inhibitory activity. PMID:23997244

  17. Mutation analysis by whole exome sequencing of endometrial hyperplasia and carcinoma in one patient: Abnormalities of polymerase epsilon and the phosphatidylinositol-3 kinase pathway.

    PubMed

    Miyamoto, Tsutomu; Ando, Hirofumi; Asaka, Ryoichi; Yamada, Yasushi; Shiozawa, Tanri

    2017-10-06

    In order to understand the role of gene mutations in endometrial carcinogenesis, whole exome sequencing via laser microdissection was performed in the normal endometrium, atypical endometrial hyperplasia and endometrial carcinoma in the same patient. A total of 4046 and 5746 mutations with amino acid substitution were detected in endometrial hyperplasia and endometrial carcinoma, respectively; 2252 were common in both tissues and might play crucial roles in early carcinogenesis. These common mutations included polymerase epsilon (POLE) and DNA mismatch repair (MMR) genes, indicating that an ultra-mutated phenotype, and also included PTEN and PIK3CA. The mutation-prone environment evoked by mutations in the POLE and MMR genes associated with the activated phosphatidylinositol-3 kinase pathway played a pivotal role in this case. © 2017 Japan Society of Obstetrics and Gynecology.

  18. PI3-kinase and mTOR inhibitors differently modulate the function of the ABCG2 multidrug transporter.

    PubMed

    Hegedüs, Csilla; Truta-Feles, Krisztina; Antalffy, Géza; Brózik, Anna; Kasza, Ildikó; Német, Katalin; Orbán, Tamás I; Özvegy-Laczka, Csilla; Váradi, András; Sarkadi, Balázs

    2012-04-20

    The ATP-binding cassette (ABC) transporter ABCG2 plays an important role in tissue detoxification and confers multidrug resistance to cancer cells. Identification of expressional and functional cellular regulators of this multidrug transporter is therefore intensively pursued. The PI3-kinase/Akt signaling axis has been implicated as a key element in regulating various cellular functions, including the expression and plasma membrane localization of ABCG2. Here we demonstrate that besides inhibiting their respective target kinases, the pharmacological PI3-kinase inhibitor LY294002 and the downstream mTOR kinase inhibitor rapamycin also directly inhibit ABCG2 function. In contrast, wortmannin, another commonly used pharmacological inhibitor of PI3-kinase does not interact with the transporter. We suggest that direct functional modulation of ABCG2 should be taken into consideration when pharmacological agents are applied to dissect the specific role of PI3-kinase/Akt/mTOR signaling in cellular functions.

  19. Src-homology 3 domain of protein kinase p59fyn mediates binding to phosphatidylinositol 3-kinase in T cells.

    PubMed Central

    Prasad, K V; Janssen, O; Kapeller, R; Raab, M; Cantley, L C; Rudd, C E

    1993-01-01

    The Src-related tyrosine kinase p59fyn(T) plays an important role in the generation of intracellular signals from the T-cell antigen receptor TCR zeta/CD3 complex. A key question concerns the nature and the binding sites of downstream components that interact with this Src-related kinase. p59fyn(T) contains Src-homology 2 and 3 domains (SH2 and SH3) with a capacity to bind to intracellular proteins. One potential downstream target is phosphatidylinositol 3-kinase (PI 3-kinase). In this study, we demonstrate that anti-CD3 and anti-Fyn immunoprecipitates possess PI 3-kinase activity as assessed by TLC and HPLC. Both free and receptor-bound p59fyn(T) were found to bind to the lipid kinase. Further, our results indicate that Src-related kinases have developed a novel mechanism to interact with PI 3-kinase. Precipitation using GST fusion proteins containing Fyn SH2, SH3, and SH2/SH3 domains revealed that PI 3-kinase bound principally to the SH3 domain of Fyn. Fyn SH3 bound directly to the p85 subunit of PI 3-kinase as expressed in a baculoviral system. Anti-CD3 crosslinking induced an increase in the detection of Fyn SH3-associated PI 3-kinase activity. Thus PI 3-kinase is a target of SH3 domains and is likely to play a major role in the signals derived from the TCR zeta/CD3-p59fyn complex. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:8394019

  20. Identification and Targeting of Upstream Tyrosine Kinases Mediating PI3 Kinase Activation in PTEN-Deficient Prostate Cancer

    DTIC Science & Technology

    2009-06-01

    by Ras, and is amplified by PTEN loss in the majority of advanced prostate cancers (PCa). We found that RTK inhibitors lapatinib and sorafenib could...PI3 kinase activity, but combined treatment with lapatinib and sorafenib (a multi-kinase inhibitor) was as effective as a direct PI3 kinase... sorafenib , contributed to PI3K pathway activation in PTEN deficient LNCaP cells. Moreover, this inhibition correlated with loss of tyrosine

  1. Inhibition of the phosphoinositide 3-kinase pathway for the treatment of patients with metastatic metaplastic breast cancer.

    PubMed

    Moulder, S; Helgason, T; Janku, F; Wheler, J; Moroney, J; Booser, D; Albarracin, C; Morrow, P K; Atkins, J; Koenig, K; Gilcrease, M; Kurzrock, R

    2015-07-01

    Mesenchymal/metaplastic breast cancers (MpBCs) are often triple-negative (TNBC), and chemo-refractory, and can harbor phosphoinositide 3-kinase (PI3kinase) alterations; thus, therapy with mTor inhibitors may demonstrate activity. Patients with mesenchymal/MpBC treated with temsirolimus-based regimens were evaluated. Mutational analyses [polymerase chain reaction (PCR)-based DNA sequencing method, mass spectrometric detection (Sequenom MassARRAY), or next-generation sequencing] as well as loss of phosphatase and tensin homolog (PTEN) (immunohistochemistry) were performed (archived tissue when available). Twenty-three patients (one of whom was on two separate trials) were treated using temsirolimus-containing regimens: temsirolimus alone (n = 1 patient) or combined with the following: liposomal doxorubicin and bevacizumab (DAT, n = 18); liposomal doxorubicin (DT, n = 1); paclitaxel and bevacizumab (TAT, n = 2); paclitaxel (TT, n = 1); carboplatin and bevacizumab (CAT, n = 1). Response rate [complete response (CR) + partial response (PR)] was 25% across all regimens; 32% in the anthracycline-based regimens [DAT and DT (CR = 2, PR = 4; N = 19)]. An additional two patients achieved stable disease (SD) ≥6 months [total SD ≥6 months/CR/PR = 8 (33%)]. Molecular aberrations in the PI3K pathway were common: PIK3CA mutation = 6/15 (40%), PTEN mutation = 3/11 (27%), and PTEN loss = 2/11 (18%). A point mutation in the NF2 gene (K159fs*16; NF2 alterations can activate mTor) was found in one patient who attained CR (3+ years). Of the eight patients who achieved SD ≥6 months/CR/PR, all 4 patients with available tissue had a molecular aberration that activate the PIK3CA/Akt/mTOR axis: PIK3CA mutation = 2; PTEN loss = 1; NF2 aberration = 1. DAT has activity in MpBCs including complete CRs. Molecular aberrations that can activate the PI3 K/Akt/mTOR axis are common in MpBC. © The Author 2015. Published by Oxford University Press on behalf of the European Society for Medical

  2. Phosphatidylinositol 3-Kinase (PI3K) Signaling via Glycogen Synthase Kinase-3 (Gsk-3) Regulates DNA Methylation of Imprinted Loci*

    PubMed Central

    Popkie, Anthony P.; Zeidner, Leigh C.; Albrecht, Ashley M.; D'Ippolito, Anthony; Eckardt, Sigrid; Newsom, David E.; Groden, Joanna; Doble, Bradley W.; Aronow, Bruce; McLaughlin, K. John; White, Peter; Phiel, Christopher J.

    2010-01-01

    Glycogen synthase kinase-3 (Gsk-3) isoforms, Gsk-3α and Gsk-3β, are constitutively active, largely inhibitory kinases involved in signal transduction. Underscoring their biological significance, altered Gsk-3 activity has been implicated in diabetes, Alzheimer disease, schizophrenia, and bipolar disorder. Here, we demonstrate that deletion of both Gsk-3α and Gsk-3β in mouse embryonic stem cells results in reduced expression of the de novo DNA methyltransferase Dnmt3a2, causing misexpression of the imprinted genes Igf2, H19, and Igf2r and hypomethylation of their corresponding imprinted control regions. Treatment of wild-type embryonic stem cells and neural stem cells with the Gsk-3 inhibitor, lithium, phenocopies the DNA hypomethylation at these imprinted loci. We show that inhibition of Gsk-3 by phosphatidylinositol 3-kinase (PI3K)-mediated activation of Akt also results in reduced DNA methylation at these imprinted loci. Finally, we find that N-Myc is a potent Gsk-3-dependent regulator of Dnmt3a2 expression. In summary, we have identified a signal transduction pathway that is capable of altering the DNA methylation of imprinted loci. PMID:21047779

  3. Cationic liposomes suppress intracellular calcium ion concentration increase via inhibition of PI3 kinase pathway in mast cells.

    PubMed

    Inoh, Yoshikazu; Haneda, Aki; Tadokoro, Satoshi; Yokawa, Satoru; Furuno, Tadahide

    2017-09-28

    Cationic liposomes are commonly used as vectors to effectively introduce foreign genes (antisense DNA, plasmid DNA, siRNA, etc.) into target cells. Cationic liposomes are also known to affect cellular immunocompetences such as the mast cell function in allergic reactions. In particular, we previously showed that the cationic liposomes bound to the mast cell surface suppress the degranulation induced by cross-linking of high affinity IgE receptors in a time- and dose-dependent manner. This suppression is mediated by impairment of the sustained level of intracellular Ca(2+) concentration ([Ca(2+)]i) via inhibition of store-operated Ca(2+) entry (SOCE). Here we study the mechanism underlying an impaired [Ca(2+)]i increase by cationic liposomes in mast cells. We show that cationic liposomes inhibit the phosphorylation of Akt and PI3 kinases but not Syk and LAT. As a consequence, SOCE is suppressed but Ca(2+) release from endoplasmic reticulum (ER) is not. Cationic liposomes inhibit the formation of STIM1 puncta, which is essential to SOCE by interacting with Orai1 following the Ca(2+) concentration decrease in the ER. These data suggest that cationic liposomes suppress SOCE by inhibiting the phosphorylation of PI3 and Akt kinases in mast cells. Copyright © 2017. Published by Elsevier B.V.

  4. Expression of beta-catenin is regulated by PI-3 kinase and sodium butyrate in colorectal cancer cells.

    PubMed

    Turecková, Jolana; Kucerová, Dana; Vojtechová, Martina; Sloncová, Eva; Tuhácková, Zdena

    2006-01-01

    beta-catenin has a dual function; it is implicated in intercellular junctions and transcriptional co-activation. Here we examined the regulation of the expression and localization of beta-catenin in HT29 colorectal adenocarcinoma cells. Our results showed that inhibition of PI-3 kinase with wortmannin was accompanied by a considerably reduced expression of beta-catenin. This effect was overcome by butyrate and occurred at the protein level, not at the level of mRNA. Moreover, NaBT significantly increased the phosphorylation of the ribosomal protein, S6, known to participate in the translational control of gene expression. This was accompanied by the increased phosphorylation of p70 S6K and MAPKs, the effector proteins that are upstream of protein S6 in the distinct signaling pathways. These facts indicate that different signaling pathways may be involved in the regulation of beta-catenin synthesis. Modulation of beta-catenin expression induced by NaBT appeared to occur at the level of protein translation, suggesting that NaBT may act as a translational regulator.

  5. Co-amplification of phosphoinositide 3-kinase enhancer A and cyclin-dependent kinase 4 triggers glioblastoma progression.

    PubMed

    Qi, Q; Kang, S S; Zhang, S; Pham, C; Fu, H; Brat, D J; Ye, K

    2017-08-10

    Glioblastoma (GBM) is the most common primary brain tumor and has a dismal prognosis. Amplification of chromosome 12q13-q15 (Cyclin-dependent kinase 4 (CDK4) amplicon) is frequently observed in numerous human cancers including GBM. Phosphoinositide 3-kinase enhancer (PIKE) is a group of GTP-binding proteins that belong to the subgroup of centaurin GTPase family, encoded by CENTG1 located in CDK4 amplicon. However, the pathological significance of CDK4 amplicon in GBM formation remains incompletely understood. In the current study, we show that co-expression of PIKE-A and CDK4 in TP53/PTEN double knockout GBM mouse model additively shortens the latency of glioma onset and survival compared to overexpression of these genes alone. Consequently, p-mTOR, p-Akt and p-ERK pathways are highly upregulated in the brain tumors, in alignment with their oncogenic activities by CDK4 and PIKE-A stably transfected in GBM cell lines. Hence, our findings support that PIKE amplification or overexpression coordinately acts with CDK4 to drive GBM tumorigenesis.

  6. Constitutively activated phosphatidylinositol 3-kinase primes platelets from patients with chronic myelogenous leukemia for thrombopoietin-induced aggregation.

    PubMed

    Kubota, Y; Tanaka, T; Ohnishi, H; Kitanaka, A; Okutani, Y; Taminato, T; Ishida, T; Kamano, H

    2004-06-01

    In this study, we examined the effect of thrombopoietin (TPO) on the aggregation of platelets from 40 patients with myeloproliferative disorders (MPDs), including 17 patients with chronic myelogenous leukemia in the chronic phase (CML-CP), 10 with polycythemia vera, 10 with essential thrombocythemia, and three with myelofibrosis. TPO by itself dose-dependently induced the aggregation of platelets from patients with CML-CP but not from those with other MPDs or with CML-CP in cytogenetical complete remission. The expression of CD63 in CML-CP platelets was induced by TPO treatment. Phosphatidylinositol 3-kinase (PI3-kinase) was constitutively activated in CML-CP platelets. Pretreatment with PI3-kinase inhibitors (wortmannin and LY294002) dose-dependently inhibited TPO-induced aggregation of CML-CP platelets. The Abl kinase inhibitor imatinib mesylate and the Jak inhibitor AG490 suppressed TPO-induced aggregation of CML-CP platelets. Pretreatment with imatinib mesylate, but not with AG490, inhibited the activity of PI3-kinase in CML-CP platelets. In addition, tyrosine phosphorylation of Jak2 was undetected in CML-CP platelets before TPO treatment. These findings indicate that the constitutive activation of PI3-kinase primes CML-CP platelets for the aggregation induced by TPO, and that Bcr-Abl, but not Jak family protein tyrosine kinases, are involved in the constitutive activation of PI3-kinase in CML-CP platelets.

  7. Cross-Talk between NFkB and the PI3-Kinase/AKT Pathway Can Be Targeted in Primary Effusion Lymphoma (PEL) Cell Lines for Efficient Apoptosis

    PubMed Central

    Hussain, Azhar R.; Ahmed, Saeeda O.; Ahmed, Maqbool; Khan, Omar S.; Al AbdulMohsen, Sally; Platanias, Leonidas C.; Al-Kuraya, Khawla S.; Uddin, Shahab

    2012-01-01

    Background A number of constitutively activated signaling pathways play critical roles in the survival and growth of primary effusion lymphoma cells (PELs) including NFkB and PI3/AKT kinase cascades. NFkBis constitutively activated in a number of malignancies, including multiple myeloma, Burkitt’s lymphoma and diffuse large cell B-cell lymphoma. However, its role in primary effusion lymphoma has not been fully explored. Methodology/Principal Findings We used pharmacological inhibition and gene silencing to define the role of NFkB in growth and survival of PEL cells. Inhibition of NFkB activity by Bay11-7085 resulted in decreased expression of p65 in the nuclear compartment as detected by EMSA assays. In addition, Bay11-7085 treatment caused de-phosphorylation of AKT and its downstream targets suggesting a cross-talk between NFkB and the PI3-kinase/AKT pathway. Importantly, treatment of PEL cells with Bay11-7085 led to inhibition of cell viability and induced apoptosis in a dose dependent manner. Similar apoptotic effects were found when p65 was knocked down using specific small interference RNA. Finally, co-treatment of PEL cells with suboptimal doses of Bay11-7085 and LY294002 led to synergistic apoptotic responses in PEL cells. Conclusion/Significance These data support a strong biological-link between NFkB and the PI3-kinase/AKT pathway in the modulation of anti-apoptotic effects in PEL cells. Synergistic targeting of these pathways using NFKB- and PI3-kinase/AKT- inhibitors may have a therapeutic potential for the treatment of PEL and possibly other malignancies with constitutive activation of these pathways. PMID:22768179

  8. Cross-talk between NFkB and the PI3-kinase/AKT pathway can be targeted in primary effusion lymphoma (PEL) cell lines for efficient apoptosis.

    PubMed

    Hussain, Azhar R; Ahmed, Saeeda O; Ahmed, Maqbool; Khan, Omar S; Al Abdulmohsen, Sally; Platanias, Leonidas C; Al-Kuraya, Khawla S; Uddin, Shahab

    2012-01-01

    A number of constitutively activated signaling pathways play critical roles in the survival and growth of primary effusion lymphoma cells (PELs) including NFkB and PI3/AKT kinase cascades. NFkBis constitutively activated in a number of malignancies, including multiple myeloma, Burkitt's lymphoma and diffuse large cell B-cell lymphoma. However, its role in primary effusion lymphoma has not been fully explored. We used pharmacological inhibition and gene silencing to define the role of NFkB in growth and survival of PEL cells. Inhibition of NFkB activity by Bay11-7085 resulted in decreased expression of p65 in the nuclear compartment as detected by EMSA assays. In addition, Bay11-7085 treatment caused de-phosphorylation of AKT and its downstream targets suggesting a cross-talk between NFkB and the PI3-kinase/AKT pathway. Importantly, treatment of PEL cells with Bay11-7085 led to inhibition of cell viability and induced apoptosis in a dose dependent manner. Similar apoptotic effects were found when p65 was knocked down using specific small interference RNA. Finally, co-treatment of PEL cells with suboptimal doses of Bay11-7085 and LY294002 led to synergistic apoptotic responses in PEL cells. These data support a strong biological-link between NFkB and the PI3-kinase/AKT pathway in the modulation of anti-apoptotic effects in PEL cells. Synergistic targeting of these pathways using NFKB- and PI3-kinase/AKT-inhibitors may have a therapeutic potential for the treatment of PEL and possibly other malignancies with constitutive activation of these pathways.

  9. Small molecule inhibitors of phosphoinositide 3-kinase (PI3K) delta and gamma.

    PubMed

    Ameriks, Michael K; Venable, Jennifer D

    2009-01-01

    In recent years, pharmaceutical companies have increasingly focused on phosphoinositide 3-kinases delta (PI3Kdelta) and gamma (PI3Kgamma) as therapeutic targets for the treatment of inflammatory and autoimmune diseases. All class 1 PI3-kinases (alpha/beta/gamma/delta) generate phospholipid second messengers that help govern cellular processes such as migration, proliferation, and apoptosis. PI3K delta/ gamma lipid kinases are mainly restricted to the hematopoetic system whereas PI3K alpha/beta are ubiquitously expressed, thus raising potential toxicity concerns for chronic indications such as asthma and rheumatoid arthritis. Therefore, the challenge in developing a small molecule inhibitor of PI3K is to define and attain the appropriate isoform selectivity profile. Significant advances in the design of such compounds have been achieved by utilizing x-ray crystal structures of various inhibitors bound to PI3Kgamma in conjunction with pharmacophore modeling and high-throughput screening. Herein, we review the history and challenges involved with the discovery of small molecule isoform-specific PI3K inhibitors. Recent progress in the design of selective PI3Kdelta, PI3Kgamma, and PI3Kdelta/gamma dual inhibitors will be presented.

  10. Identification of small molecule inhibitors of phosphatidylinositol 3-kinase and autophagy.

    PubMed

    Farkas, Thomas; Daugaard, Mads; Jäättelä, Marja

    2011-11-11

    Macroautophagy (hereafter autophagy) is a lysosomal catabolic pathway that controls cellular homeostasis and survival. It has recently emerged as an attractive target for the treatment of a variety of degenerative diseases and cancer. The targeting of autophagy has, however, been hampered by the lack of specific small molecule inhibitors. Thus, we screened two small molecule kinase inhibitor libraries for inhibitors of rapamycin-induced autophagic flux. The three most potent inhibitors identified conferred profound inhibition of autophagic flux by inhibiting the formation of autophagosomes. Notably, the autophagy inhibitory effects of all three compounds were independent of their established kinase targets, i.e. ataxia telangiectasia mutated for KU55933, protein kinase C for Gö6976, and Janus kinase 3 for Jak3 inhibitor VI. Instead, we identified phosphatidylinositol 3-kinase (PtdIns3K) as a direct target of KU55933 and Gö6976. Importantly, and in contrast to the currently available inhibitors of autophagosome formation (e.g. 3-methyladenine), none of the three compounds inhibited the cell survival promoting class I phosphoinositide 3-kinase-Akt signaling at the concentrations required for effective autophagy inhibition. Accordingly, they proved to be valuable tools for investigations of autophagy-associated cell death and survival. Employing KU55399, we demonstrated that autophagy protects amino acid-starved cells against both apoptosis and necroptosis. Taken together, our data introduce new possibilities for the experimental study of autophagy and can form a basis for the development of clinically relevant autophagy inhibitors.

  11. Advances in the researches on the biological activities and inhibitors of phosphatidylinositol 3-kinase.

    PubMed

    Tang, Jian-Feng; Wen, Qing; Sun, Jian; Zhang, Wei-Ming; Zhu, Hai-Liang

    2014-06-01

    The PI3K/AKT/mTOR pathway is an intracellular signaling pathway, being important in apoptosis hence cancer such as breast cancer and non-small-cell lung cancer. It signaling axis controls cell proliferation and survival and has achieved major importance as a target for cancer therapy. The serine/threonine kinase Akt (also known as protein kinase B or PKB), since its initial discovery as a protooncogene, has become a major focus of attention because of its critical regulatory role in diverse cellular processes, including cancer progression and insulin metabolism. The Akt cascade is activated by receptor tyrosine kinases, integrins, B and T cell receptors, cytokine receptors, G protein coupled receptors and other stimuli that induce the production of phosphatidylinositol 3,4,5 triphosphates (PtdIns(3,4,5)P3) by phosphoinositide 3-kinase (PI3K). Therefore, PI3K plays an important role in in numerous cellular functions such as cell growth, proliferation, differentiation, motility, survival and intracellular trafficking. In this review, we introduced the structure of the PI3K, and then focused on its biological activities. In addition, we reviewed the advances in the researches of PI3K as well as related inhibitors over the last couple of decades. Finally, we also discussed the prospect and developmental trend of phosphatidylinositol 3-kinase as antitumor agents.

  12. Idelalisib: Targeting the PI3 Kinase Pathway in Non-Hodgkin Lymphoma.

    PubMed

    Sujobert, Pierre; Rioufol, Catherine; Salles, Gilles A

    2016-01-01

    Based on substantial preclinical rationale, the restricted hematopoietic expression of the δ isoform of the phosphatidylinositol 3-kinase represents an attractive therapeutic target in B-cell malignancies. Its inhibition results in a direct antiproliferative effect on tumor cells as well as several modifications of their cellular microenvironment, all accounting for the potential therapeutic interest. Idelalisib, the first-in-class phosphatidylinositol 3-kinase δ-specific inhibitor, was developed in patients with B-cell lymphomas and chronic lymphocytic leukemia. Early clinical results demonstrated a potent antitumor effect across different subtypes of indolent and mantle cell lymphomas (where response duration was short). Adverse events, including transaminitis, neutropenia, pneumonitis, and diarrhea, were observed. A pivotal phase II study in patients with double refractory disease showed a 57% response rate, with response lasting for about 1 year, leading to market approval of the drug in the United States and Europe. Further developments of idelalisib combinations will contribute to delineate the position of this drug in the therapeutic strategy of indolent lymphomas.

  13. The involvement of Gab1 and PI 3-kinase in {beta}1 integrin signaling in keratinocytes

    SciTech Connect

    Kuwano, Yoshihiro; Fujimoto, Manabu . E-mail: fujimoto-m@umin.ac.jp; Watanabe, Rei; Ishiura, Nobuko; Nakashima, Hiroko; Komine, Mayumi; Hamazaki, Tatsuo S.; Tamaki, Kunihiko; Okochi, Hitoshi

    2007-09-14

    The control of the stem cell compartment in epidermis is closely linked to the regulation of keratinocyte proliferation and differentiation. {beta}1 integrins are expressed 2-fold higher by stem cells than transit-amplifying cells. Signaling from these {beta}1 integrins is critical for the regulation of the epidermal stem cell compartment. To clarify the functional relevance of this differential expression of {beta}1 integrins, we established HaCaT cells with high {beta}1integrin expression by repeated flow cytometric sorting of this population from the parental cell line. In these obtained cells expressing {beta}1 integrins by 5-fold, MAPK activation was markedly increased. Regarding the upstream of MAPK, Gab1 phosphorylation was also higher with high {beta}1 integrin expression, while Shc phosphorylation was not altered. In addition, enhanced phosphatidylinositol 3-kinase activation was also observed. These observations suggest that Gab1 and phosphatidylinositol 3-kinase play pivotal roles in the {beta}1 integrin-mediated regulation of the epidermal stem cell compartment.

  14. Identification of Small Molecule Inhibitors of Phosphatidylinositol 3-Kinase and Autophagy*

    PubMed Central

    Farkas, Thomas; Daugaard, Mads; Jäättelä, Marja

    2011-01-01

    Macroautophagy (hereafter autophagy) is a lysosomal catabolic pathway that controls cellular homeostasis and survival. It has recently emerged as an attractive target for the treatment of a variety of degenerative diseases and cancer. The targeting of autophagy has, however, been hampered by the lack of specific small molecule inhibitors. Thus, we screened two small molecule kinase inhibitor libraries for inhibitors of rapamycin-induced autophagic flux. The three most potent inhibitors identified conferred profound inhibition of autophagic flux by inhibiting the formation of autophagosomes. Notably, the autophagy inhibitory effects of all three compounds were independent of their established kinase targets, i.e. ataxia telangiectasia mutated for KU55933, protein kinase C for Gö6976, and Janus kinase 3 for Jak3 inhibitor VI. Instead, we identified phosphatidylinositol 3-kinase (PtdIns3K) as a direct target of KU55933 and Gö6976. Importantly, and in contrast to the currently available inhibitors of autophagosome formation (e.g. 3-methyladenine), none of the three compounds inhibited the cell survival promoting class I phosphoinositide 3-kinase-Akt signaling at the concentrations required for effective autophagy inhibition. Accordingly, they proved to be valuable tools for investigations of autophagy-associated cell death and survival. Employing KU55399, we demonstrated that autophagy protects amino acid-starved cells against both apoptosis and necroptosis. Taken together, our data introduce new possibilities for the experimental study of autophagy and can form a basis for the development of clinically relevant autophagy inhibitors. PMID:21930714

  15. LTB4 stimulates growth of human pancreatic cancer cells via MAPK and PI-3 kinase pathways

    SciTech Connect

    Tong, W.-G.; Ding, X.-Z.; Talamonti, Mark S.; Bell, Richard H.; Adrian, Thomas E. . E-mail: tadrian@northwestern.edu

    2005-09-30

    We have previously shown the importance of LTB4 in human pancreatic cancer. LTB4 receptor antagonists block growth and induce apoptosis in pancreatic cancer cells both in vitro and in vivo. Therefore, we investigated the effect of LTB4 on proliferation of human pancreatic cancer cells and the mechanisms involved. LTB4 stimulated DNA synthesis and proliferation of both PANC-1 and AsPC-1 human pancreatic cancer cells, as measured by thymidine incorporation and cell number. LTB4 stimulated rapid and transient activation of MEK and ERK1/2 kinases. The MEK inhibitors, PD98059 and U0126, blocked LTB4-stimulated ERK1/2 activation and cell proliferation. LTB4 also stimulated phosphorylation of p38 MAPK; however, the p38 MAPK inhibitor, SB203580, failed to block LTB4-stimulated growth. The activity of JNK/SAPK was not affected by LTB4 treatment. Phosphorylation of Akt was also induced by LTB4 and this effect was blocked by the PI-3 kinase inhibitor wortmannin, which also partially blocked LTB4-stimulated cell proliferation. In conclusion, LTB4 stimulates proliferation of human pancreatic cancer cells through MEK/ERK and PI-3 kinase/Akt pathways, while p38 MPAK and JNK/SAPK are not involved.

  16. Pathophysiological roles of Pim-3 kinase in pancreatic cancer development and progression.

    PubMed

    Li, Ying-Yi; Mukaida, Naofumi

    2014-07-28

    Pim-3 is a member of the provirus integration site for Moloney murine leukemia virus (Pim) family proteins that exhibit serine/threonine kinase activity. Similar to the other Pim kinases (Pim-1 and Pim-2), Pim-3 is involved in many cellular processes, including cell proliferation, survival, and protein synthesis. Although Pim-3 is expressed in normal vital organs, it is overexpressed particularly in tumor tissues of endoderm-derived organs, including the liver, pancreas, and colon. Silencing of Pim-3 expression can retard in vitro cell proliferation of hepatocellular, pancreatic, and colon carcinoma cell lines by promoting cell apoptosis. Pim-3 lacks the regulatory domains similarly as Pim-1 and Pim-2 lack, and therefore, Pim-3 can exhibit its kinase activity once it is expressed. Pim-3 expression is regulated at transcriptional and post-transcriptional levels by transcription factors (e.g., Ets-1) and post-translational modifiers (e.g., translationally-controlled tumor protein), respectively. Pim-3 could promote growth and angiogenesis of human pancreatic cancer cells in vivo in an orthotopic nude mouse model. Furthermore, a Pim-3 kinase inhibitor inhibited cell proliferation when human pancreatic cancer cells were injected into nude mice, without inducing any major adverse effects. Thus, Pim-3 kinase may serve as a novel molecular target for developing targeting drugs against pancreatic and other types of cancer.

  17. Phosphatidylinositol 3-kinase and dynamics of insulin resistance in denervated slow and fast muscles in vivo.

    PubMed

    Elmendorf, J S; Damrau-Abney, A; Smith, T R; David, T S; Turinsky, J

    1997-04-01

    Regulation of glucose uptake by 1- and 3-day denervated soleus (slow-twitch) and plantaris (fast-twitch) muscles in vivo was investigated. One day after denervation, soleus and plantaris muscles exhibited 62 and 65% decreases in insulin-stimulated 2-deoxyglucose uptake, respectively, compared with corresponding control muscles. At this interval, denervated muscles showed no alterations in insulin receptor binding and activity, amount and activity of phosphatidylinositol 3-kinase, and amounts of GLUT-1 and GLUT-4. Three days after denervation, there was no increase in 2-deoxyglucose uptake in response to insulin in soleus muscle, whereas plantaris muscle exhibited a 158% increase in basal and an almost normal absolute increment in insulin-stimulated uptake. Despite these differences, denervated soleus and plantaris muscles exhibited comparable decreases in insulin-stimulated activities of the insulin receptor (approximately 40%) and phosphatidylinositol 3-kinase (approximately 50%) and a pronounced decrease in GLUT-4. An increase in GLUT-1 in plantaris, but not soleus, muscle 3 days after denervation is consistent with augmented basal 2-deoxyglucose uptake in plantaris muscle at this interval. These results demonstrate that, in denervated muscles, there is a clear dissociation between insulin-stimulated 2-deoxyglucose uptake and upstream events involved in insulin-stimulated glucose uptake.

  18. Support for phosphoinositol 3 kinase and mTOR inhibitors as treatment for lupus using in-silico drug-repurposing analysis.

    PubMed

    Toro-Domínguez, Daniel; Carmona-Sáez, Pedro; Alarcón-Riquelme, Marta E

    2017-03-11

    Systemic lupus erythematosus (SLE) is an autoimmune disease with few treatment options. Current therapies are not fully effective and show highly variable responses. In this regard, large efforts have focused on developing more effective therapeutic strategies. Drug repurposing based on the comparison of gene expression signatures is an effective technique for the identification of new therapeutic approaches. Here we present a drug-repurposing exploratory analysis using gene expression signatures from SLE patients to discover potential new drug candidates and target genes. We collected a compendium of gene expression signatures comprising peripheral blood cells and different separate blood cell types from SLE patients. The Lincscloud database was mined to link SLE signatures with drugs, gene knock-down, and knock-in expression signatures. The derived dataset was analyzed in order to identify compounds, genes, and pathways that were significantly correlated with SLE gene expression signatures. We obtained a list of drugs that showed an inverse correlation with SLE gene expression signatures as well as a set of potential target genes and their associated biological pathways. The list includes drugs never or little studied in the context of SLE treatment, as well as recently studied compounds. Our exploratory analysis provides evidence that phosphoinositol 3 kinase and mammalian target of rapamycin (mTOR) inhibitors could be potential therapeutic options in SLE worth further future testing.

  19. Intracellular Localization of Phosphatidylinositide 3-kinase and Insulin Receptor Substrate-1 in Adipocytes: Potential Involvement of a Membrane Skeleton

    PubMed Central

    Clark, Sharon F.; Martin, Sally; Carozzi, Amanda J.; Hill, Michelle M.; James, David E.

    1998-01-01

    Phosphatidylinositide (PI) 3-kinase binds to tyrosyl-phosphorylated insulin receptor substrate-1 (IRS-1) in insulin-treated adipocytes, and this step plays a central role in the regulated movement of the glucose transporter, GLUT4, from intracellular vesicles to the cell surface. PDGF, which also activates PI 3-kinase in adipocytes, has no significant effect on GLUT4 trafficking in these cells. We propose that this specificity may be mediated by differential localization of PI 3-kinase in response to insulin versus PDGF activation. Using subcellular fractionation in 3T3-L1 adipocytes, we show that insulin- and PDGF-stimulated PI 3-kinase activities are located in an intracellular high speed pellet (HSP) and in the plasma membrane (PM), respectively. The HSP is also enriched in IRS-1, insulin-stimulated tyrosyl-phosphorylated IRS-1 and intracellular GLUT4-containing vesicles. Using sucrose density gradient sedimentation, we have been able to segregate the HSP into two separate subfractions: one enriched in IRS-1, tyrosyl-phosphorylated IRS-1, PI 3-kinase as well as cytoskeletal elements, and another enriched in membranes, including intracellular GLUT4 vesicles. Treatment of the HSP with nonionic detergent, liberates all membrane constituents, whereas IRS-1 and PI 3-kinase remain insoluble. Conversely, at high ionic strength, membranes remain intact, whereas IRS-1 and PI 3-kinase become freely soluble. We further show that this IRS-1–PI 3-kinase complex exists in CHO cells overexpressing IRS-1 and, in these cells, the cytosolic pool of IRS-1 and PI 3-kinase is released subsequent to permeabilization with Streptolysin-O, whereas the particulate fraction of these proteins is retained. These data suggest that IRS-1, PI 3-kinase, as well as other signaling intermediates, may form preassembled complexes that may be associated with the actin cytoskeleton. This complex must be in close apposition to the cell surface, enabling access to the insulin receptor and presumably

  20. H1047R phosphatidylinositol 3-kinase mutant enhances HER2-mediated transformation via heregulin production and activation of HER3

    PubMed Central

    Chakrabarty, Anindita; Rexer, Brent N.; Wang, Shizhen Emily; Cook, Rebecca S.; Engelman, Jeffrey A.; Arteaga, Carlos, L.

    2010-01-01

    Hyperactivation of phosphatidylinositol-3 kinase (PI3K) can occur as a result of somatic mutations in PIK3CA, the gene encoding the p110α subunit of PI3K. The HER2 oncogene is amplified in 25% of all breast cancers and some of these tumors also harbor PIK3CA mutations. We examined mechanisms by which mutant PI3K can enhance transformation and confer resistance to HER2-directed therapies. We introduced the PI3K mutations E545K and H1047R in MCF10A human mammary epithelial cells that also overexpress HER2. Both mutants conferred a gain of function to MCF10A/HER2 cells. Expression of H1047R PI3K but not E545K PI3K markedly upregulated the HER3/HER4 ligand heregulin (HRG). HRG siRNA inhibited growth of H1047R but not E545K-expressing cells and synergized with the HER2 inhibitors trastuzumab and lapatinib. The PI3K inhibitor BEZ235 markedly inhibited HRG and pAKT levels and, in combination with lapatinib, completely inhibited growth of cells expressing H1047R PI3K. These observations suggest that PI3K mutants enhance HER2-mediated transformation by amplifying the ligand-induced signaling output of the ErbB network. This also counteracts the full effect of therapeutic inhibitors of HER2. These data also suggest that mammary tumors that contain both HER2 gene amplification and PIK3CA mutations should be treated with a combination of HER2 and PI3K inhibitors. PMID:20581867

  1. Inhibition of acquired-resistance hepatocellular carcinoma cell growth by combining sorafenib with phosphoinositide 3-kinase and rat sarcoma inhibitor.

    PubMed

    Wu, Chang-Hao; Wu, Xiang; Zhang, Hong-Wei

    2016-12-01

    To provide support for combined usage of phosphoinositide 3-kinase (PI3K) inhibitors or mitogen-activated protein kinase pathway inhibitors together with sorafenib in treatment of sorafenib-resistant hepatocellular carcinoma. The sorafenib-resistant cell lines were established to evaluate the effects of MK-2206 2HCL, a dual PI3K/mammalian target of rapamycin (mTOR) inhibitor, and PD0325901, an rat sarcoma (RAS) and/or extracellular signal-regulated kinase (ERK) inhibitor, on cell proliferation and apoptosis, as both single and combined treatments with sorafenib. In addition, multidrug resistance 1 gene expression, mutation status of key members in PI3K/mTOR, and RAS/ERK pathways and pathway activation were analyzed to identify predictors of drug response. Molecular studies reveal that combining MK-2206 2HCL or PD0325901 with sorafenib not only has a synergistic effect, in suppressing PI3K/protein kinase B/mTOR and RAS/MEK/ERK signaling more effectively than either treatment alone, but also prevents the cross activation of the other pathway that occurs with single treatments in both sorafenib sensitive and resistant lines. PD0325901 exhibited a stronger synergic effect with sorafenib than MK-2206 2HCL. Sorafenib-resistant cell lines were characterized by activation of both of the two pathways, as indicated by multidrug resistance 1 gene expression profiles and pathway activity analysis. Our studies have showed that both inhibitors of PI3K/mTOR and RAS/ERK signaling are potentially effective antihepatocellular carcinoma drugs especially in treating sorafenib-resistant hepatocellular carcinoma. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Inhibition of neointimal formation by trans-resveratrol: role of phosphatidyl inositol 3-kinase-dependent Nrf2 activation in heme oxygenase-1 induction.

    PubMed

    Kim, Jung Woo; Lim, Sung Chul; Lee, Moo Yeol; Lee, Jeong Woon; Oh, Won Keun; Kim, Sang Kyum; Kang, Keon Wook

    2010-10-01

    Neointima, defined as abnormal growth of the intimal layer of blood vessels, is believed to be a critical event in the development of vascular occlusive disease. Although resveratrol's inhibitory effects on proliferation and migration of vascular smooth muscle cells has been reported, its activity on neointimal formation is still unclear. Oral administration of trans-resveratrol significantly suppressed intimal hyperplasia in a wire-injured femoral artery mouse model. In cultured vascular smooth muscle cells, trans-resveratrol inhibited platelet-derived growth factor-stimulated DNA synthesis and cell proliferation with down-regulation of cyclin D and pRB. Moreover, platelet-derived growth factor-induced production of reactive oxygen species was inhibited by trans-resveratrol and the compound induced heme oxygenase-1 (HO-1). The anti-proliferative activity of trans-resveratrol was reversed by an HO-1 inhibitor, ZnPPIX. Subcellular fractionation and reporter gene analyses revealed that trans-resveratrol increased the level of nuclear Nrf2 and antioxidant response element reporter activity, and that these were essential for the induction of HO-1. Trans-resveratrol also enhanced the activities of phosphatidyl inositol 3-kinase and extracellular signal regulated kinase, and phosphatidyl inositol 3-kinase was required for Nrf2/antioxidant response element-dependent HO-1 induction. These data have significant implications for the elucidation of the pharmacological mechanism by which trans-resveratrol prevents vascular occlusive diseases.

  3. Osteopontin: correlation with interstitial fibrosis in human diabetic kidney and PI3-kinase-mediated enhancement of expression by glucose in human proximal tubular epithelial cells.

    PubMed

    Junaid, A; Amara, F M

    2004-02-01

    To examine the expression and localization of osteopontin (OPN), a secreted phosphoprotein implicated in the development of tubulointerstitial inflammation in various models of renal disease, in human diabetic kidneys, and to study the regulation of OPN expression in primary cultures of human renal proximal tubular epithelial cells (RPTEC). Differential gene expression profiling through subtractive hybridization demonstrated increased renal OPN mRNA expression in a patient with diabetic nephropathy. Immunohistochemical staining of normal and diabetic human kidney samples confirmed that OPN was localized to cortical tubular, interstitial and juxtaglomerular compartments. Quantification of OPN immunostaining revealed a marked increase in the percentage of OPN-positive tubular profiles in diabetic kidneys (47 +/- 9% versus 5 +/- 3%, diabetic versus minimal change disease) that correlated strongly with the degree of cortical scarring (r2 = 0.91). Results of Northern hybridization, flow cytometry and Western blotting indicated that glucose up-regulates OPN mRNA and protein expression in primary cultures of human RPTECs. This effect was independent of the osmotic effects of glucose and independent of insulin. Finally, glucose-stimulated OPN expression was inhibited by LY294002, an inhibitor of phosphatidylinositol 3-kinase activity, in a dose-dependent manner. OPN is expressed in human diabetic kidneys and regulation of OPN expression is via a glucose-mediated, phosphatidylinositol 3-kinase-dependent pathway.

  4. 5-Azacytidine regulates matrix metalloproteinase-9 expression, and the migration and invasion of human fibrosarcoma HT1080 cells via PI3-kinase and ERK1/2 pathways.

    PubMed

    Yu, Seon-Mi; Kim, Song Ja

    2016-09-01

    Abnormal methylation of promoter CpG islands is one of the hallmarks of cancer cells, and is catalyzed by DNA methyltransferases. 5-azacytidine (5-aza C), a methyltransferase inhibitor, can cause demethylation of promoter regions of diverse genes. Epigenetic processes contribute to the regulation of matrix metalloproteinase (MMP) expression. However, little is known about the mechanisms and effects of 5-aza C on the invasive and migratory capacities of human fibrosarcoma HT1080 cells. In the present study, we found that 5-aza C induces MMP-9 activity, as determined by zymography. HT1080 cell proliferation was determined following 5-aza C administration by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Cell cycle was examined by flow cytometry. 5-aza C treatment inhibited cell proliferation without affecting cell viability. Furthermore, 5-aza C significantly promoted migration and invasion of HT1080 cells. 5-aza C treatment enhanced phosphorylation of extracellular signal-regulated kinase (ERK) and phosphoinositide (PI)3-kinase/Akt, and their inhibitors blocked MMP-9 activity induction, and cellular invasion and migration. Together, these findings suggest that promoter methylation may be one of the mechanisms modulating MMP-9 levels in HT1080 cells, and that 5-aza C-induced MMP-9 production is associated with the activation of ERK and PI3-kinase/Akt signaling pathways.

  5. Targeting the Phosphatidylinositol-3-kinase Pathway in Gastric Cancer: Can Omics Improve Outcomes?

    PubMed Central

    Tran, Phu; Nguyen, Cham

    2016-01-01

    Phosphatidylinositol-3-kinase (PI3K) pathway signaling is an established oncogenic signal transduction pathway implicated in multiple malignancies. Therapeutic targeting of PI3K pathway components has improved outcomes in chronic lymphocytic leukemia, kidney cancer, breast cancer, and neuroendocrine tumors. Gastric cancers harbor some of the highest rates of oncogenic alterations in PI3K but attempts to translate this genomic observation have met with limited clinical success and novel approaches are needed. In the following review we discuss PI3K signaling, previous preclinical and clinical investigations in gastric cancer, and discuss future strategies aimed at overcoming resistance and improving efficacy. Identification and refinement of molecular tumor subtypes, development of predictive biomarkers along, and rational drug combination strategies are key to capitalizing on the therapeutic potential of PI3K pathway directed therapies in gastric cancers. PMID:27915478

  6. ARF6, PI3-kinase and host cell actin cytoskeleton in Toxoplasma gondii cell invasion

    SciTech Connect

    Vieira da Silva, Claudio; Alves da Silva, Erika; Costa Cruz, Mario; Chavrier, Philippe; Arruda Mortara, Renato

    2009-01-16

    Toxoplasma gondii infects a variety of different cell types in a range of different hosts. Host cell invasion by T. gondii occurs by active penetration of the host cell, a process previously described as independent of host actin polymerization. Also, the parasitophorous vacuole has been shown to resist fusion with endocytic and exocytic pathways of the host cell. ADP-ribosylation factor-6 (ARF6) belongs to the ARF family of small GTP-binding proteins. ARF6 regulates membrane trafficking and actin cytoskeleton rearrangements at the plasma membrane. Here, we have observed that ARF6 is recruited to the parasitophorous vacuole of tachyzoites of T. gondii RH strain and it also plays an important role in the parasite cell invasion with activation of PI3-kinase and recruitment of PIP{sub 2} and PIP{sub 3} to the parasitophorous vacuole of invading parasites. Moreover, it was verified that maintenance of host cell actin cytoskeleton integrity is important to parasite invasion.

  7. The p110α isoform of phosphoinositide 3-kinase is essential for cone photoreceptor survival.

    PubMed

    Rajala, Raju V S; Ranjo-Bishop, Michelle; Wang, Yuhong; Rajala, Ammaji; Anderson, Robert E

    2015-05-01

    Phosphoinositide 3-kinases (PI3Ks) are a family of lipid kinases that phosphorylates the 3'OH of the inositol ring of phosphoinositides (PIs). They are responsible for coordinating a diverse range of cellular functions. Class IA PI3K is a heterodimeric protein composed of a regulatory p85 and a catalytic p110 subunit. In this study, we conditionally deleted the p110α-subunit of PI3K in cone photoreceptor cells using the Cre-loxP system. Cone photoreceptors allow for color vision in bright light (daylight vision). Cone-specific deletion of p110α resulted in cone degeneration. Our studies suggest that PI3K signaling is essential for cone photoreceptor functions. Copyright © 2015 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  8. Inhibition of PI-3 kinase for treating respiratory disease: good idea or bad idea?

    PubMed

    Thomas, Matt; Owen, Charles

    2008-06-01

    Inhibition of one or more members of the phosphoinositide 3-kinase (PI3K) family for the treatment of respiratory diseases remains the goal of many pharmaceutical companies over the past 20 years. Here we briefly review the PI3K family, then focus on the assessment of each isoform as a drug discovery target. The rationale for PI3Kalpha inhibition in the treatment of lung cancer, and PI3Kbeta inhibitors in pulmonary thrombotic processes, are balanced with a potential side effect profile affecting metabolism and/or foetal development. Roles for PI3Kdelta in inflammatory lung diseases and PI3Kgamma in asthma are weighed against the consequences of manipulating key immune cell populations. We also discuss the current status and future potential of PI3K inhibitors in respiratory disease.

  9. Measurement of phosphoinositide 3-kinase products in cultured Mammalian cells by HPLC.

    PubMed

    Cooke, Frank T

    2010-01-01

    The phosphoinositide 3-kinase (PI3K) family catalyses the addition of a phosphate group to the D-3 position of polyphosphoinositides (PPIn). Since the discovery in the late 80s that phosphatidylinositol is phosphorylated in the D-3 position in eukaryotic cells, there has been an explosion of interest in these PPIn. Although the four D-3 PPIn (phosphatidylinositol 3-phophate (PtdIns3P), PtdIns(3,4)P(2), PtdIns(3,5)P(2), and PtdIns(3,4,5)P(3)) represent only a small proportion of PPIn, production of D-3 PPIn is required for an ever-increasing number of processes. Measurement of the PPIn levels in intact cells cultured cells has been vital to our understanding of the metabolism and function of these important signalling molecules; methods are described herein that allow measurement of PPIn levels in cultured cells, with emphasis on the 3-OH PPIn.

  10. LINGO-1 receptor promotes neuronal apoptosis by inhibiting WNK3 kinase activity.

    PubMed

    Zhang, Zhaohuan; Xu, Xiaohui; Xiang, Zhenghua; Yu, Zhongwang; Feng, Jifeng; He, Cheng

    2013-04-26

    LINGO-1 is a functional component of the Nogo receptor 1 · p75(NTR) · LINGO-1 and Nogo receptor 1 · TAJ (TNFRSF19/TROY)·LINGO-1 signaling complexes. It has recently been shown that LINGO-1 antagonists significantly improve neuronal survival after neural injury. However, the mechanism by which LINGO-1 signaling influences susceptibility to apoptosis remains unknown. In an effort to better understand how LINGO-1 regulates these signaling pathways, we used an established model of serum deprivation (SD) to induce neuronal apoptosis. We demonstrate that treatment either with a construct containing the intracellular domain of LINGO-1 or with Nogo66, a LINGO-1 receptor complex agonist, resulted in an enhanced rate of apoptosis in primary cultured cortical neurons under SD. Reducing the expression levels of the serine/threonine kinase WNK3 using shRNA or inhibiting its kinase activity had similar effects on the survival of serum-deprived neurons. Consistent with these observations, we found that LINGO-1 and WNK3 co-localized and co-precipitated in cultured cortical neurons and brain tissue. Significantly, this co-association was enhanced by Nogo66 treatment. Binding of WNK3 to the intracellular domain of LINGO-1 led to a reduction in WNK3 kinase activity, as did Nogo66 stimulation. Moreover, in vitro and in vivo evidence indicates that endogenous WNK3 suppresses SD-induced neuronal apoptosis in a kinase-dependent manner, as the expression of either a WNK3 RNAi construct or a kinase-dead N-terminal fragment of WNK3 led to increased apoptosis. Taken together, our results show that LINGO-1 potentiates neuronal apoptosis, likely by inhibiting WNK3 kinase activity.

  11. Targeting Glutamatergic Signaling and the PI3 Kinase Pathway to Halt Melanoma Progression.

    PubMed

    Rosenberg, Stephen A; Niglio, Scot A; Salehomoum, Negar; Chan, Joseph L-K; Jeong, Byeong-Seon; Wen, Yu; Li, Jiadong; Fukui, Jami; Chen, Suzie; Shin, Seung-Shick; Goydos, James S

    2015-02-01

    Our group has previously reported that the majority of human melanomas (>60%) express the metabotropic glutamate receptor 1 (GRM1) and that the glutamate release inhibitor riluzole, a drug currently used to treat amyotrophic lateral sclerosis, can induce apoptosis in GRM1-expressing melanoma cells. Our group previously reported that in vitro riluzole treatment reduces cell growth in three-dimensional (3D) soft agar colony assays by 80% in cells with wildtype phosphoinositide 3-kinase (PI3K) pathway activation. However, melanoma cell lines harboring constitutive activating mutations of the PI3K pathway (PTEN and NRAS mutations) showed only a 35% to 40% decrease in colony formation in soft agar in the presence of riluzole. In this study, we have continued our preclinical studies of riluzole and its effect on melanoma cells alone and in combination with inhibitors of the PI3 kinase pathway: the AKT inhibitor, API-2, and the mammalian target of rapamycin (mTOR) inhibitor, rapamycin. We modeled these combinatorial therapies on various melanoma cell lines in 3D and 2D systems and in vivo. Riluzole combined with mTOR inhibition is more effective at halting melanoma anchorage-independent growth and xenograft tumor progression than either agent alone. PI3K signaling changes associated with this combinatorial treatment shows that 3D (nanoculture) modeling of cell signaling more closely resembles in vivo signaling than monolayer models. Riluzole combined with mTOR inhibition is effective at halting tumor cell progression independent of BRAF mutational status. This makes this combinatorial therapy a potentially viable alternative for metastatic melanoma patients who are BRAF WT and are therefore ineligible for vemurafenib therapy. Copyright © 2014. Published by Elsevier Inc.

  12. Targeting Glutamatergic Signaling and the PI3 Kinase Pathway to Halt Melanoma Progression12

    PubMed Central

    Rosenberg, Stephen A.; Niglio, Scot A.; Salehomoum, Negar; Chan, Joseph L.-K.; Jeong, Byeong-Seon; Wen, Yu; Li, Jiadong; Fukui, Jami; Chen, Suzie; Shin, Seung-Shick; Goydos, James S.

    2015-01-01

    Our group has previously reported that the majority of human melanomas (> 60%) express the metabotropic glutamate receptor 1 (GRM1) and that the glutamate release inhibitor riluzole, a drug currently used to treat amyotrophic lateral sclerosis, can induce apoptosis in GRM1-expressing melanoma cells. Our group previously reported that in vitro riluzole treatment reduces cell growth in three-dimensional (3D) soft agar colony assays by 80% in cells with wildtype phosphoinositide 3-kinase (PI3K) pathway activation. However, melanoma cell lines harboring constitutive activating mutations of the PI3K pathway (PTEN and NRAS mutations) showed only a 35% to 40% decrease in colony formation in soft agar in the presence of riluzole. In this study, we have continued our preclinical studies of riluzole and its effect on melanoma cells alone and in combination with inhibitors of the PI3 kinase pathway: the AKT inhibitor, API-2, and the mammalian target of rapamycin (mTOR) inhibitor, rapamycin. We modeled these combinatorial therapies on various melanoma cell lines in 3D and 2D systems and in vivo. Riluzole combined with mTOR inhibition is more effective at halting melanoma anchorage-independent growth and xenograft tumor progression than either agent alone. PI3K signaling changes associated with this combinatorial treatment shows that 3D (nanoculture) modeling of cell signaling more closely resembles in vivo signaling than monolayer models. Riluzole combined with mTOR inhibition is effective at halting tumor cell progression independent of BRAF mutational status. This makes this combinatorial therapy a potentially viable alternative for metastatic melanoma patients who are BRAF WT and are therefore ineligible for vemurafenib therapy. PMID:25749171

  13. Phosphatidylinositol 3-kinase is required for integrin-stimulated AKT and Raf-1/mitogen-activated protein kinase pathway activation.

    PubMed Central

    King, W G; Mattaliano, M D; Chan, T O; Tsichlis, P N; Brugge, J S

    1997-01-01

    Cell attachment to fibronectin stimulates the integrin-dependent interaction of p85-associated phosphatidylinositol (PI) 3-kinase with integrin-dependent focal adhesion kinase (FAK) as well as activation of the Ras/mitogen-activated protein (MAP) kinase pathway. However, it is not known if this PI 3-kinase-FAK interaction increases the synthesis of the 3-phosphorylated phosphoinositides (3-PPIs) or what role, if any, is played by activated PI 3-kinase in integrin signaling. We demonstrate here the integrin-dependent accumulation of the PI 3-kinase products, PI 3,4-bisphosphate [PI(3,4)P2] and PI(3,4,5)P3, as well as activation of AKT kinase, a serine/threonine kinase that can be stimulated by binding of PI(3,4)P2. The PI 3-kinase inhibitors wortmannin and LY294002 significantly decreased the integrin-induced accumulation of the 3-PPIs and activation of AKT kinase, without having significant effects on the levels of PI(4,5)P2 or tyrosine phosphorylation of paxillin. These inhibitors also reduced cell adhesion/spreading onto fibronectin but had no effect on attachment to polylysine. Interestingly, integrin-mediated Erk-2, Mek-1, and Raf-1 activation, but not Ras-GTP loading, was inhibited at least 80% by wortmannin and LY294002. In support of the pharmacologic results, fibronectin activation of Erk-2 and AKT kinases was completely inhibited by overexpression of a dominant interfering p85 subunit of PI 3-kinase. We conclude that integrin-mediated adhesion to fibronectin results in the accumulation of the PI 3-kinase products PI(3,4)P2 and PI(3,4,5)P3 as well as the PI 3-kinase-dependent activation of the kinases Raf-1, Mek-1, Erk-2, and AKT and that PI 3-kinase may function upstream of Raf-1 but downstream of Ras in integrin activation of Erk-2 MAP and AKT kinases. PMID:9234699

  14. Liver Dysfunction and Phosphatidylinositol-3-Kinase Signalling in Early Sepsis: Experimental Studies in Rodent Models of Peritonitis

    PubMed Central

    Westermann, Martin; Lambeck, Sandro; Lupp, Amelie; Rudiger, Alain; Dyson, Alex; Carré, Jane E.; Kortgen, Andreas; Krafft, Christoph; Popp, Jürgen; Sponholz, Christoph; Fuhrmann, Valentin; Hilger, Ingrid; Claus, Ralf A.; Riedemann, Niels C.; Wetzker, Reinhard; Singer, Mervyn; Trauner, Michael; Bauer, Michael

    2012-01-01

    Background Hepatic dysfunction and jaundice are traditionally viewed as late features of sepsis and portend poor outcomes. We hypothesized that changes in liver function occur early in the onset of sepsis, yet pass undetected by standard laboratory tests. Methods and Findings In a long-term rat model of faecal peritonitis, biotransformation and hepatobiliary transport were impaired, depending on subsequent disease severity, as early as 6 h after peritoneal contamination. Phosphatidylinositol-3-kinase (PI3K) signalling was simultaneously induced at this time point. At 15 h there was hepatocellular accumulation of bilirubin, bile acids, and xenobiotics, with disturbed bile acid conjugation and drug metabolism. Cholestasis was preceded by disruption of the bile acid and organic anion transport machinery at the canalicular pole. Inhibitors of PI3K partially prevented cytokine-induced loss of villi in cultured HepG2 cells. Notably, mice lacking the PI3Kγ gene were protected against cholestasis and impaired bile acid conjugation. This was partially confirmed by an increase in plasma bile acids (e.g., chenodeoxycholic acid [CDCA] and taurodeoxycholic acid [TDCA]) observed in 48 patients on the day severe sepsis was diagnosed; unlike bilirubin (area under the receiver-operating curve: 0.59), these bile acids predicted 28-d mortality with high sensitivity and specificity (area under the receiver-operating curve: CDCA: 0.77; TDCA: 0.72; CDCA+TDCA: 0.87). Conclusions Liver dysfunction is an early and commonplace event in the rat model of sepsis studied here; PI3K signalling seems to play a crucial role. All aspects of hepatic biotransformation are affected, with severity relating to subsequent prognosis. Detected changes significantly precede conventional markers and are reflected by early alterations in plasma bile acids. These observations carry important implications for the diagnosis of liver dysfunction and pharmacotherapy in the critically ill. Further clinical work is

  15. FgSsn3 kinase, a component of the mediator complex, is important for sexual reproduction and pathogenesis in Fusarium graminearum

    PubMed Central

    Cao, Shulin; Zhang, Shijie; Hao, Chaofeng; Liu, Huiquan; Xu, Jin-Rong; Jin, Qiaojun

    2016-01-01

    Fusarium graminearum is an important pathogen of wheat and barley. In addition to severe yield losses, infested grains are often contaminated with harmful mycotoxins. In this study, we characterized the functions of FgSSN3 kinase gene in different developmental and infection processes and gene regulation in F. graminearum. The FgSSN3 deletion mutant had a nutrient-dependent growth defects and abnormal conidium morphology. It was significantly reduced in DON production, TRI gene expression, and virulence. Deletion of FgSSN3 also resulted in up-regulation of HTF1 and PCS1 expression in juvenile cultures, and repression of TRI genes in DON-producing cultures. In addition, Fgssn3 was female sterile and defective in hypopodium formation and infectious growth. RNA-seq analysis showed that FgSsn3 is involved in the transcriptional regulation of a wide variety genes acting as either a repressor or activator. FgSsn3 physically interacted with C-type cyclin Cid1 and the cid1 mutant had similar phenotypes with Fgssn3, indicating that FgSsn3 and Cid1 form the CDK-cyclin pair as a component of the mediator complex in F. graminearum. Taken together, our results indicate that FgSSN3 is important for secondary metabolism, sexual reproduction, and plant infection, as a subunit of mediator complex contributing to transcriptional regulation of diverse genes. PMID:26931632

  16. Frequent PTEN genomic alterations and activated phosphatidylinositol 3-kinase pathway in basal-like breast cancer cells

    PubMed Central

    Marty, Bérengère; Maire, Virginie; Gravier, Eléonore; Rigaill, Guillem; Vincent-Salomon, Anne; Kappler, Marion; Lebigot, Ingrid; Djelti, Fathia; Tourdès, Audrey; Gestraud, Pierre; Hupé, Philippe; Barillot, Emmanuel; Cruzalegui, Francisco; Tucker, Gordon C; Stern, Marc-Henri; Thiery, Jean-Paul; Hickman, John A; Dubois, Thierry

    2008-01-01

    Introduction Basal-like carcinomas (BLCs) and human epidermal growth factor receptor 2 overexpressing (HER2+) carcinomas are the subgroups of breast cancers that have the most aggressive clinical behaviour. In contrast to HER2+ carcinomas, no targeted therapy is currently available for the treatment of patients with BLCs. In order to discover potential therapeutic targets, we aimed to discover deregulated signalling pathways in human BLCs. Methods In this study, we focused on the oncogenic phosphatidylinositol 3-kinase (PI3K) pathway in 13 BLCs, and compared it with a control series of 11 hormonal receptor negative- and grade III-matched HER2+ carcinomas. The two tumour populations were first characterised by immunohistochemistry and gene expression. The PI3K pathway was then investigated by gene copy-number analysis, gene expression profiling and at a proteomic level using reverse-phase protein array technology and tissue microarray. The effects of the PI3K inhibition pathway on proliferation and apoptosis was further analysed in three human basal-like cell lines. Results The PI3K pathway was found to be activated in BLCs and up-regulated compared with HER2+ tumours as shown by a significantly increased activation of the downstream targets Akt and mTOR (mammalian target of rapamycin). BLCs expressed significantly lower levels of the tumour suppressor PTEN and PTEN levels were significantly negatively correlated with Akt activity within that population. PTEN protein expression correlated significantly with PTEN DNA copy number and more importantly, reduced PTEN DNA copy numbers were observed specifically in BLCs. Similar to human samples, basal-like cell lines exhibited an activation of PI3K/Akt pathway and low/lack PTEN expression. Both PI3K and mTOR inhibitors led to basal-like cell growth arrest. However, apoptosis was specifically observed after PI3K inhibition. Conclusions These data provide insight into the molecular pathogenesis of BLCs and implicate the

  17. Insulin receptor substrate 1 binds two novel splice variants of the regulatory subunit of phosphatidylinositol 3-kinase in muscle and brain.

    PubMed Central

    Antonetti, D A; Algenstaedt, P; Kahn, C R

    1996-01-01

    We have identified two novel alternatively spliced forms of the p85alpha regulatory subunit of phosphatidylinositol (PI) 3-kinase by expression screening of a human skeletal muscle library with phosphorylated baculovirus- produced human insulin receptor substrate 1. One form is identical to p85alpha throughout the region which encodes both Src homology 2 (SH2) domains and the inter-SH2 domain/p110 binding region but diverges in sequence from p85alpha on the 5' side of nucleotide 953, where the entire break point cluster gene and SH3 regions are replaced by a unique 34-amino-acid N terminus. This form has an estimated molecular mass of approximately 53 kDa and has been termed p85/AS53. The second form is identical to p85 and p85/AS53 except for a 24-nucleotide insert between the SH2 domains that results in a replacement of aspartic acid 605 with nine amino acids, adding two potential serine phosphorylation sites in the vicinity of the known serine autophosphorylation site (Ser-608). Northern (RNA) analyses reveal a wide tissue distribution of p85alpha, whereas p85/AS53 is dominant in skeletal muscle and brain, and the insert isoforms are restricted to cardiac muscle and skeletal muscle. Western blot (immunoblot) analyses using an anti-p85 polyclonal antibody and a specific anti-p85/AS53 antibody confirmed the tissue distribution of p85/AS53 protein and indicate a approximately 7-fold higher expression of p85/AS53 protein than of p85 in skeletal muscle. Both p85 and p85/AS53 bind to p110 in coprecipitation experiments, but p85alpha itself appears to have preferential binding to insulin receptor substrate 1 following insulin stimulation. These data indicate that the gene for the p85alpha regulatory subunit of PI 3-kinase can undergo tissue-specific alternative splicing. Two novel splice variants of the regulatory subunit of PI 3-kinase are present in skeletal muscle, cardiac muscle, and brain; these variants may have important functional differences in activity and

  18. Sphingosine-1-phosphate stimulates human glioma cell proliferation through Gi-coupled receptors: role of ERK MAP kinase and phosphatidylinositol 3-kinase beta.

    PubMed

    Van Brocklyn, James; Letterle, Catherine; Snyder, Pamela; Prior, Thomas

    2002-07-26

    The regulation of glioma cell proliferation by sphingosine-1-phosphate (S1P) was studied using the human glioblastoma cell line U-373 MG. U-373 MG cells responded mitogenically to nanomolar concentrations of S1P, and express mRNA encoding the S1P receptors S1P1/endothelial differentiation gene (EDG)-1, S1P3/EDG-3 and S1P2/EDG-5. S1P-induced proliferation required extracellular signal-regulated kinase activation and was partially sensitive to pertussis toxin and wortmannin, indicating involvement of a Gi-coupled receptor and phosphatidylinositol 3-kinase. Moreover, S1P1, S1P3 and S1P2 receptors are expressed in the majority of human glioblastomas as determined by reverse transcriptase-polymerase chain reaction analysis. Thus, S1P signaling through EDG receptors may contribute to glioblastoma growth in vivo.

  19. Chemokine-cytokine cross-talk. The ELR+ CXC chemokine LIX (CXCL5) amplifies a proinflammatory cytokine response via a phosphatidylinositol 3-kinase-NF-kappa B pathway.

    PubMed

    Chandrasekar, Bysani; Melby, Peter C; Sarau, Henry M; Raveendran, Muthuswamy; Perla, Rao P; Marelli-Berg, Federica M; Dulin, Nickolai O; Singh, Ishwar S

    2003-02-14

    It is well established that cytokines can induce the production of chemokines, but the role of chemokines in the regulation of cytokine expression has not been fully investigated. Exposure of rat cardiac-derived endothelial cells (CDEC) to lipopolysaccharide-induced CXC chemokine (LIX), and to a lesser extent to KC and MIP-2, activated NF-kappaB and induced kappaB-driven promoter activity. LIX did not activate Oct-1. LIX-induced interleukin-1beta and tumor necrosis factor-alpha promoter activity, and up-regulated mRNA expression. Increased transcription and mRNA stability both contributed to cytokine expression. LIX-mediated cytokine gene transcription was inhibited by interleukin-10. Transient overexpression of kinase-deficient NF-kappaB-inducing kinase (NIK) and IkappaB kinase (IKK), and dominant negative IkappaB significantly inhibited LIX-mediated NF-kappaB activation in rat CDEC. Inhibition of G(i) protein-coupled signal transduction, poly(ADP-ribose) polymerase, phosphatidylinositol 3-kinase, and the 26 S proteasome significantly inhibited LIX-mediated NF-kappaB activation and cytokine gene transcription. Blocking CXCR2 attenuated LIX-mediated kappaB activation and kappaB-driven promoter activity in rat CDEC that express both CXCR1 and -2, and abrogated its activation in mouse CDEC that express only CXCR2. These results indicate that LIX activates NF-kappaB and induces kappaB-responsive proinflammatory cytokines via either CXCR1 or CXCR2, and involved phosphatidylinositol 3-kinase, NIK, IKK, and IkappaB. Thus, in addition to attracting and activating neutrophils, the ELR(+) CXC chemokines amplify the inflammatory cascade, stimulating local production of cytokines that have negative inotropic and proapoptotic effects.

  20. Phosphatidylinositol 3-kinase mediates the ability of retinol to decrease colorectal cancer cell invasion.

    PubMed

    Lengyel, Jennifer N Griffin; Park, Eun Young; Brunson, Anna R; Pinali, Daniel; Lane, Michelle A

    2014-01-01

    Previously, we showed that retinol (vitamin A) decreased both colorectal cancer cell invasion and phosphatidylinositol 3-kinase (PI3K) activity through a retinoic acid receptor-independent mechanism. Here, we determined if these phenomena were related by using parental HCT-116 cells that harbor 1 allele of wild-type PI3K and 1 allele of constitutively active (ca) PI3K and 2 mutant HCT-116 cell lines homozygous for caPI3K. In vitro, treatment of parental HCT-116 cells with 10 μM retinol reduced cell invasion whereas treatment of mutant HCT-116 cell lines with retinol did not. Treatment with 10 μM retinol also decreased the activity of matrixmetalloproteinase-9 and increased tissue inhibitor of matrixmetalloproteinase-I levels in parental, but not mutant, HCT-116 cells. Finally, parental or mutant cells were intrasplenically injected into athymic mice consuming diets with or without supplemental vitamin A. As expected, vitamin A supplementation tended (P = 0.18) to reduce the incidence of metastases in mice injected with the parental cell line and consuming the supplemented diet. In contrast, metastatic incidence was not affected (P = 1.00) by vitamin A supplementation in mice injected with mutant cells. These data indicate that the capacity of retinol to inhibit PI3K activity confers its ability to decrease colorectal cancer metastasis.

  1. Phosphoinositide 3-kinase: a new kid on the block in vascular anomalies.

    PubMed

    Castillo, Sandra D; Vanhaesebroeck, Bart; Sebire, Neil J

    2016-12-01

    Vascular anomalies are broadly divided into vascular tumours and malformations. These lesions are composed of abnormal vascular elements of various types, and mainly affect infants, children, and young adults. Vascular anomalies may be painful, may be complicated by bleeding, infection, or organ dysfunction, and can have secondary effects on other tissues. Current treatment strategies include surgical excision, pulsed laser, and sclerotherapy, which are invasive, with risks of recurrence. There are growing pharmacological options for these vascular anomalies, but, to date, no specific targeted therapies have been developed. Phosphoinositide 3-kinases (PI3Ks) constitute a family of lipid kinases that are involved in signal transduction and vesicular traffic, and that modulate important cellular processes such as proliferation, growth, and migration. Recent findings have indicated that the PI3K signalling pathway is important in the pathogenesis of vascular anomalies. This provides an opportunity to use PI3K inhibitors, which are in clinical trials for cancer treatment, for such lesions. Here, we provide an update on the classification of vascular anomalies, with their major features, and discuss the role of the PI3K signalling pathway in the pathogenesis of vascular anomalies, and their clinical implications and therapeutic opportunities. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  2. Phosphatidylinositol 3-Kinase γ is required for the development of experimental cerebral malaria.

    PubMed

    Lacerda-Queiroz, Norinne; Brant, Fatima; Rodrigues, David Henrique; Vago, Juliana Priscila; Rachid, Milene Alvarenga; Sousa, Lirlândia Pires; Teixeira, Mauro Martins; Teixeira, Antonio Lucio

    2015-01-01

    Experimental cerebral malaria (ECM) is characterized by a strong immune response, with leukocyte recruitment, blood-brain barrier breakdown and hemorrhage in the central nervous system. Phosphatidylinositol 3-kinase γ (PI3Kγ) is central in signaling diverse cellular functions. Using PI3Kγ-deficient mice (PI3Kγ-/-) and a specific PI3Kγ inhibitor, we investigated the relevance of PI3Kγ for the outcome and the neuroinflammatory process triggered by Plasmodium berghei ANKA (PbA) infection. Infected PI3Kγ-/- mice had greater survival despite similar parasitemia levels in comparison with infected wild type mice. Histopathological analysis demonstrated reduced hemorrhage, leukocyte accumulation and vascular obstruction in the brain of infected PI3Kγ-/- mice. PI3Kγ deficiency also presented lower microglial activation (Iba-1+ reactive microglia) and T cell cytotoxicity (Granzyme B expression) in the brain. Additionally, on day 6 post-infection, CD3+CD8+ T cells were significantly reduced in the brain of infected PI3Kγ-/- mice when compared to infected wild type mice. Furthermore, expression of CD44 in CD8+ T cell population in the brain tissue and levels of phospho-IkB-α in the whole brain were also markedly lower in infected PI3Kγ-/- mice when compared with infected wild type mice. Finally, AS605240, a specific PI3Kγ inhibitor, significantly delayed lethality in infected wild type mice. In brief, our results indicate a pivotal role for PI3Kγ in the pathogenesis of ECM.

  3. Phosphoinositide 3-kinase gamma (PI3Kgamma) inhibitors for the treatment of inflammation and autoimmune disease.

    PubMed

    Venable, Jennifer D; Ameriks, Michael K; Blevitt, Jonathan M; Thurmond, Robin L; Fung-Leung, Wai-Ping

    2010-01-01

    Phosphoinositide 3-kinase gamma (PI3Kgamma) is a lipid kinase in leukocytes that generates phosphatidylinositol 3,4,5-trisphosphate to recruit and activate downstream signaling molecules. Distinct from other members in the PI3K family, PI3Kgamma is activated by G-protein coupled-receptors responding to chemotactic ligands. PI3Kgamma plays an important role in migration of both myeloid and lymphoid cells. It is also required for other leukocyte functions such as neutrophil oxidative burst, T cell proliferation and mast degranulation. Mice with PI3Kgamma inactivated by genetic or pharmacological approaches are protected from disease development in a number of inflammation and autoimmune disease models. The function of PI3Kgamma depends on its kinase activity and therefore it has been suggested by many reports that small molecules inhibiting its kinase activity could be promising for the treatment of inflammation and autoimmune diseases. Over the last five years, a number of pharmaceutical companies have reported a wide variety of PI3Kgamma inhibitors, of which several x-ray crystal structures with PI3Kgamma have been elucidated. The structural characteristics and selectivity profiles of these inhibitors, in particular thiazolidinones and 2-aminoheterocycles, and those disclosed in related patent applications are summarized in this review.

  4. RAS and RHO Families of GTPases Directly Regulate Distinct Phosphoinositide 3-Kinase Isoforms

    PubMed Central

    Fritsch, Ralph; de Krijger, Inge; Fritsch, Kornelia; George, Roger; Reason, Beth; Kumar, Madhu S.; Diefenbacher, Markus; Stamp, Gordon; Downward, Julian

    2013-01-01

    Summary RAS proteins are important direct activators of p110α, p110γ, and p110δ type I phosphoinositide 3-kinases (PI3Ks), interacting via an amino-terminal RAS-binding domain (RBD). Here, we investigate the regulation of the ubiquitous p110β isoform of PI3K, implicated in G-protein-coupled receptor (GPCR) signaling, PTEN-loss-driven cancers, and thrombocyte function. Unexpectedly, RAS is unable to interact with p110β, but instead RAC1 and CDC42 from the RHO subfamily of small GTPases bind and activate p110β via its RBD. In fibroblasts, GPCRs couple to PI3K through Dock180/Elmo1-mediated RAC activation and subsequent interaction with p110β. Cells from mice carrying mutations in the p110β RBD show reduced PI3K activity and defective chemotaxis, and these mice are resistant to experimental lung fibrosis. These findings revise our understanding of the regulation of type I PI3K by showing that both RAS and RHO family GTPases directly regulate distinct ubiquitous PI3K isoforms and that RAC activates p110β downstream of GPCRs. PMID:23706742

  5. The role of phosphoinositide 3-kinase in adhesion of oral epithelial cells to titanium.

    PubMed

    Atsuta, Ikiru; Ayukawa, Yasunori; Yamaza, Takayoshi; Furuhashi, Akihiro; Koyano, Kiyoshi

    2013-11-01

    Oral epithelial cells (OECs) adhesion to titanium may improve the success rate of implant restoration. We investigated the mechanism by which OECs adhere to titanium dental implants. (1) After culturing rat OECs on titanium plates (Ti) or culture dishes in the presence or absence of a phosphoinositide 3-kinase (PI3K) activator or inhibitors and/or growth factors, and OEC morphology under these conditions were analyzed. (2) Right maxillary first molars were extracted and replaced with experimental implants. The rats were treated with or without growth factors. (1) Cell adherence was lower of OECs on Ti than in those on culture dishes, as were the levels of integrin β4 and the continuity of F-actin structures. After PI3K inhibition, markedly reducing adherence to both substrates. In contrast, PI3K activation with activator or insulin-like growth factor restored the OEC adherence and the expression of adhesion molecules on Ti to the levels seen in OECs cultured on dishes. Cell migration was inhibited by PI3K activation. (2) High expression of integrin β4 was observed in the peri-implant epithelia of PI3K-activated rats. These findings suggest that PI3K plays an important role in the adhesion of OECs to Ti. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Phosphatidylinositol 3-Kinase γ Is Required for the Development of Experimental Cerebral Malaria

    PubMed Central

    Lacerda-Queiroz, Norinne; Brant, Fatima; Rodrigues, David Henrique; Vago, Juliana Priscila; Rachid, Milene Alvarenga; Sousa, Lirlândia Pires; Teixeira, Mauro Martins; Teixeira, Antonio Lucio

    2015-01-01

    Experimental cerebral malaria (ECM) is characterized by a strong immune response, with leukocyte recruitment, blood-brain barrier breakdown and hemorrhage in the central nervous system. Phosphatidylinositol 3-kinase γ (PI3Kγ) is central in signaling diverse cellular functions. Using PI3Kγ-deficient mice (PI3Kγ-/-) and a specific PI3Kγ inhibitor, we investigated the relevance of PI3Kγ for the outcome and the neuroinflammatory process triggered by Plasmodium berghei ANKA (PbA) infection. Infected PI3Kγ-/- mice had greater survival despite similar parasitemia levels in comparison with infected wild type mice. Histopathological analysis demonstrated reduced hemorrhage, leukocyte accumulation and vascular obstruction in the brain of infected PI3Kγ-/- mice. PI3Kγ deficiency also presented lower microglial activation (Iba-1+ reactive microglia) and T cell cytotoxicity (Granzyme B expression) in the brain. Additionally, on day 6 post-infection, CD3+CD8+ T cells were significantly reduced in the brain of infected PI3Kγ-/- mice when compared to infected wild type mice. Furthermore, expression of CD44 in CD8+ T cell population in the brain tissue and levels of phospho-IkB-α in the whole brain were also markedly lower in infected PI3Kγ-/- mice when compared with infected wild type mice. Finally, AS605240, a specific PI3Kγ inhibitor, significantly delayed lethality in infected wild type mice. In brief, our results indicate a pivotal role for PI3Kγ in the pathogenesis of ECM. PMID:25775137

  7. Selective Sparing of Human Tregs by Pharmacologic Inhibitors of the Phosphatidylinositol 3-Kinase and MEK Pathways

    PubMed Central

    Zwang, N. A.; Zhang, R.; Germana, S.; Fan, M. Y.; Hastings, W. D.; Cao, A.; Turka, L. A.

    2016-01-01

    Phosphatidylinositol 3-kinase (PI3K) and mitogen-activated protein kinase/extracellular signal-regulated (MEK) signaling are central to the survival and proliferation of many cell types. Multiple lines of investigation in murine models have shown that control of the PI3K pathway is particularly important for regulatory T cell (Treg) stability and function. PI3K and MEK inhibitors are being introduced into the clinic, and we hypothesized that pharmacologic inhibition of PI3K, and possibly MEK, in mixed cultures of human mononuclear cells would preferentially affect CD4+ and CD8+ lymphocytes compared with Tregs. We tested this hypothesis using four readouts: proliferation, activation, functional suppression, and signaling. Results showed that Tregs were less susceptible to inhibition by both δ and α isoform–specific PI3K inhibitors and by an MEK inhibitor compared with their conventional CD4+ and CD8+ counterparts. These studies suggest less functional reliance on PI3K and MEK signaling in Tregs compared with conventional CD4+ and CD8+ lymphocytes. Therefore, the PI3K and MEK pathways are attractive pharmacologic targets for transplantation and treatment of autoimmunity. PMID:27017850

  8. Sulforaphane prevents human platelet aggregation through inhibiting the phosphatidylinositol 3-kinase/Akt pathway.

    PubMed

    Chuang, Wen-Ying; Kung, Po-Hsiung; Kuo, Chih-Yun; Wu, Chin-Chung

    2013-06-01

    Sulforaphane, a dietary isothiocyanate found in cruciferous vegetables, has been shown to exert beneficial effects in animal models of cardiovascular diseases. However, its effect on platelet aggregation, which is a critical factor in arterial thrombosis, is still unclear. In the present study, we show that sulforaphane inhibited human platelet aggregation caused by different receptor agonists, including collagen, U46619 (a thromboxane A2 mimic), protease-activated receptor 1 agonist peptide (PAR1-AP), and an ADP P2Y12 receptor agonist. Moreover, sulforaphane significantly reduced thrombus formation on a collagen-coated surface under whole blood flow conditions. In exploring the underlying mechanism, we found that sulforaphane specifically prevented phosphatidylinositol 3-kinase (PI3K)/Akt signalling, without markedly affecting other signlaling pathways involved in platelet aggregation, such as protein kinase C activation, calcium mobilisation, and protein tyrosine phosphorylation. Although sulforaphane did not directly inhibit the catalytic activity of PI3K, it caused ubiquitination of the regulatory p85 subunit of PI3K, and prevented PI3K translocation to membranes. In addition, sulforaphane caused ubiquitination and degradation of phosphoinositide-dependent kinase 1 (PDK1), which is required for Akt activation. Therefore, sulforaphane is able to inhibit the PI3K/Akt pathway at two distinct sites. In conclusion, we have demonstrated that sulforaphane prevented platelet aggregation and reduced thrombus formation in flow conditions; our data also support that the inhibition of the PI3K/Akt pathway by sulforaphane contributes it antiplatelet effects.

  9. ERK kinases modulate the activation of PI3 kinase related kinases (PIKKs) in DNA damage response.

    PubMed

    Lin, Xiaozeng; Yan, Judy; Tang, Damu

    2013-12-01

    DNA damage response (DDR) is the critical surveillance mechanism in maintaining genome integrity. The mechanism activates checkpoints to prevent cell cycle progression in the presence of DNA lesions, and mediates lesion repair. DDR is coordinated by three apical PI3 kinase related kinases (PIKKs), including ataxia-telangiectasia mutated (ATM), ATM- and Rad3-related (ATR), and DNA-PKcs (the catalytic subunit of the DNA dependent protein kinase). These kinases are activated in response to specific DNA damage or lesions, resulting in checkpoint activation and DNA lesion repair. While it is clear that the pathways of ATM, ATR, and DNA-PK are the core components of DDR, there is accumulating evidence revealing the involvement of other cellular pathways in regulating DDR; this is in line with the concept that in addition to being a nuclear event DDR is also a cellular process. One of these pathways is the extracellular signal-regulated kinase (ERK) MAPK (mitogen-activated protein kinase) pathway. ERK is a converging point of multiple signal transduction pathways involved in cell proliferation, differentiation, and apoptosis. Adding to this list of pathways is the recent development of ERK in DDR. The ERK kinases (ERK1 and ERK2) contribute to the proper execution of DDR in terms of checkpoint activation and the repair of DNA lesions. This review summarizes the contributions of ERK to DDR with emphasis on the relationship of ERK kinases with the activation of ATM, ATR, and DNA-PKcs.

  10. Targeting phosphoinositide 3-kinase δ for the treatment of respiratory diseases.

    PubMed

    Sriskantharajah, Srividya; Hamblin, Nicole; Worsley, Sally; Calver, Andrew R; Hessel, Edith M; Amour, Augustin

    2013-03-01

    Asthma and chronic obstructive pulmonary disease (COPD) are characterized in their pathogenesis by chronic inflammation in the airways. Phosphoinositide 3-kinase δ (PI3Kδ), a lipid kinase expressed predominantly in leukocytes, is thought to hold much promise as a therapeutic target for such inflammatory conditions. Of particular interest for the treatment of severe respiratory disease is the observation that inhibition of PI3Kδ may restore steroid effectiveness under conditions of oxidative stress. PI3Kδ inhibition may also prevent recruitment of inflammatory cells, including T lymphocytes and neutrophils, as well as the release of proinflammatory mediators, such as cytokines, chemokines, reactive oxygen species, and proteolytic enzymes. In addition, targeting the PI3Kδ pathway could reduce the incidence of pathogen-induced exacerbations by improving macrophage-mediated bacterial clearance. In this review, we discuss the potential and highlight the unknowns of targeting PI3Kδ for the treatment of respiratory disease, focusing on recent developments in the role of the PI3Kδ pathway in inflammatory cell types believed to be critical to the pathogenesis of COPD.

  11. IPD-196, a novel phosphatidylinositol 3-kinase inhibitor with potent anticancer activity against hepatocellular carcinoma.

    PubMed

    Lee, Ju-Hee; Lee, Hyunseung; Yun, Sun-Mi; Jung, Kyung Hee; Jeong, Yujeong; Yan, Hong Hua; Hong, Sungwoo; Hong, Soon-Sun

    2013-02-01

    As the activation of phosphatidylinositol 3-kinase (PI3K) is associated with a wide variety of human malignancies, it is emerging as an attractive target for cancer treatment. In this study we synthesized a novel PI3Kα inhibitor, IPD-196 [ethyl 6-(5-(2,4-difluorophenylsulfonamido)pyridin-3-yl)imidazo[1,2-a]pyridine-3-carboxylate], and evaluated its anticancer effects on human hepatocellular carcinoma (HCC) cells. IPD-196 effectively inhibited the phosphorylation of downstream PI3K effectors such as Akt, mTOR, p70S6K, and 4E-BP1, and its antiproliferative effect was more potent than that of sorafenib or LY294002. It also induced cell cycle arrest at the G0/G1 phase as well as apoptosis by increasing the proportion of sub-G1 apoptotic cells, and the levels of cleaved PARP, caspase-3, and caspase-9. Furthermore, it decreased the expression of HIF-1α and VEGF in Huh-7 cells, and inhibited tube formation and migration of human umbilical vein endothelial cells, which was confirmed by a Matrigel plug assay in mice. Taken together, IPD-196 exhibited its anticancer activity through disruption of the PI3K/Akt pathway that caused cell cycle arrest, apoptosis induction, and inhibition of angiogenesis in human HCC cells. We therefore suggest that IPD-196 may be a potential candidate drug for targeted HCC therapy.

  12. Par3 integrates Tiam1 and phosphatidylinositol 3-kinase signaling to change apical membrane identity.

    PubMed

    Ruch, Travis R; Bryant, David M; Mostov, Keith E; Engel, Joanne N

    2017-01-15

    Pathogens can alter epithelial polarity by recruiting polarity proteins to the apical membrane, but how a change in protein localization is linked to polarity disruption is not clear. In this study, we used chemically induced dimerization to rapidly relocalize proteins from the cytosol to the apical surface. We demonstrate that forced apical localization of Par3, which is normally restricted to tight junctions, is sufficient to alter apical membrane identity through its interactions with phosphatidylinositol 3-kinase (PI3K) and the Rac1 guanine nucleotide exchange factor Tiam1. We further show that PI3K activity is required upstream of Rac1, and that simultaneously targeting PI3K and Tiam1 to the apical membrane has a synergistic effect on membrane remodeling. Thus, Par3 coordinates the action of PI3K and Tiam1 to define membrane identity, revealing a signaling mechanism that can be exploited by human mucosal pathogens. © 2017 Ruch et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  13. Phosphoinositide-3-kinases as the novel therapeutic targets for the inflammatory diseases: Current and future perspectives.

    PubMed

    Vyas, Preeti; Vohora, Divya

    2016-10-13

    Recent findings have publicized phosphoinositide-3-kinases (PI3Ks) as novel therapeutic targets, which are also purported to be involved in the complex pathophysiology of inflammatory and various other diseases. They are recognized to participate in the inflammatory cellular responses by modulating the growth, development and proliferation of various immune cells and hence, affect the release of various cytokines and other inflammatory mediators involved in these manifestations. The review presents a brief synopsis of the PI3K/AKT/mTOR signalling pathway along with the current and future prospects of targeting PI3Ks for various diseases, like malignant, autoimmune, inflammatory, cardiovascular, neurological disorders etc., laying special emphasis on the inflammatory diseases and associated cellular responses. The recent literature relating this pathway with these diseases is highlighted, with a hope, which remains for the progression of PI3K inhibitors in the market as a treatment option. With Idelalisib entering the market for cancer, PI3K/AKT signalling has also gained significance as an investigational target for other diseases, particularly for inflammation. Further exploration of this pathway may also uncover its involvement in these disorders, which may further contribute to developing the new treatments and can turn out to be an innovative brainwave in the field of experimental and clinical pharmacology in future.

  14. Ablation of Phosphoinositide 3-Kinase-γ Reduces the Severity of Acute Pancreatitis

    PubMed Central

    Lupia, Enrico; Goffi, Alberto; De Giuli, Paolo; Azzolino, Ornella; Bosco, Ornella; Patrucco, Enrico; Vivaldo, Maria Cristina; Ricca, Marco; Wymann, Matthias P.; Hirsch, Emilio; Montrucchio, Giuseppe; Emanuelli, Giorgio

    2004-01-01

    In pancreatic acini, the G-protein-activated phosphoinositide 3-kinase-γ (PI3Kγ) regulates several key pathological responses to cholecystokinin hyperstimulation in vitro. Thus, using mice lacking PI3Kγ, we studied the function of this enzyme in vivo in two different models of acute pancreatitis. The disease was induced by supramaximal concentrations of cerulein and by feeding mice a choline-deficient/ethionine-supplemented diet. Although the secretive function of isolated pancreatic acini was identical in mutant and control samples, in both models, genetic ablation of PI3Kγ significantly reduced the extent of acinar cell injury/necrosis. In agreement with a protective role of apoptosis in pancreatitis, PI3Kγ-deficient pancreata showed an increased number of apoptotic acinar cells, as determined by terminal dUTP nick-end labeling and caspase-3 activity. In addition, neutrophil infiltration within the pancreatic tissue was also reduced, suggesting a dual action of PI3Kγ, both in the triggering events within acinar cells and in the subsequent neutrophil recruitment and activation. Finally, the lethality of the choline-deficient/ethionine-supplemented diet-induced pancreatitis was significantly reduced in mice lacking PI3Kγ. Our results thus suggest that inhibition of PI3Kγ may be of therapeutic value in acute pancreatitis. PMID:15579443

  15. Short-Form Ron Promotes Spontaneous Breast Cancer Metastasis through Interaction with Phosphoinositide 3-Kinase

    PubMed Central

    Liu, Xuemei; Zhao, Ling; DeRose, Yoko S.; Lin, Yi-Chun; Bieniasz, Magdalena; Eyob, Henok; Buys, Saundra S.; Neumayer, Leigh

    2011-01-01

    Receptor tyrosine kinases (RTKs) have been the subject of intense investigation due to their widespread deregulation in cancer and the prospect of developing targeted therapeutics against these proteins. The Ron RTK has been implicated in tumor aggressiveness and is a developing target for therapy, but its function in tumor progression and metastasis is not fully understood. We examined Ron activity in human breast cancers and found striking predominance of an activated Ron isoform known as short-form Ron (sfRon), whose function in breast tumors has not been explored. We found that sfRon plays a significant role in aggressiveness of breast cancer in vitro and in vivo. sfRon expression was sufficient to convert slow-growing, nonmetastatic tumors into rapidly growing tumors that spontaneously metastasized to liver and bones. Mechanistic studies revealed that sfRon promotes epithelial-mesenchymal transition, invasion, tumor growth, and metastasis through interaction with p85, the regulatory subunit of phosphoinositide 3-kinase (PI3K). Inhibition of PI3K activity, or introduction of a single mutation in the p85 docking site on sfRon, completely eliminated the ability of sfRon to promote tumor growth, invasion, and metastasis. These findings reveal sfRon as an important new player in breast cancer and validate Ron and PI3K as therapeutic targets in this disease. PMID:22207901

  16. Dynamics and architecture of the NRBF2-containing phosphatidylinositol 3-kinase complex I of autophagy

    PubMed Central

    Young, Lindsey N.; Cho, Kelvin; Lawrence, Rosalie; Zoncu, Roberto; Hurley, James H.

    2016-01-01

    The class III phosphatidylinositol 3-kinase complex I (PI3KC3-C1) is central to autophagy initiation. We previously reported the V-shaped architecture of the four-subunit version of PI3KC3-C1 consisting of VPS (vacuolar protein sorting) 34, VPS15, BECN1 (Beclin 1), and ATG (autophagy-related) 14. Here we show that a putative fifth subunit, nuclear receptor binding factor 2 (NRBF2), is a tightly bound component of the complex that profoundly affects its activity and architecture. NRBF2 enhances the lipid kinase activity of the catalytic subunit, VPS34, by roughly 10-fold. We used hydrogen–deuterium exchange coupled to mass spectrometry and negative-stain electron microscopy to map NRBF2 to the base of the V-shaped complex. NRBF2 interacts primarily with the N termini of ATG14 and BECN1. We show that NRBF2 is a homodimer and drives the dimerization of the larger PI3KC3-C1 complex, with implications for the higher-order organization of the preautophagosomal structure. PMID:27385829

  17. Biliverdin Reductase Mediates Hypoxia-Induced EMT via PI3-Kinase and Akt

    PubMed Central

    Zeng, Rui; Yao, Ying; Han, Min; Zhao, Xiaoqin; Liu, Xiao-Cheng; Wei, Juncheng; Luo, Yun; Zhang, Juan; Zhou, Jianfeng; Wang, Shixuan; Ma, Ding; Xu, Gang

    2008-01-01

    Chronic hypoxia in the renal parenchyma is thought to induce epithelial-to-mesenchymal transition (EMT), leading to fibrogenesis and ultimately end-stage renal failure. Biliverdin reductase, recently identified as a serine/threonine/tyrosine kinase that may activate phosphatidylinositol 3-kinase (PI3K) and Akt, is upregulated in response to reactive oxygen species that may accompany hypoxia. We investigated this potential role of biliverdin reductase in hypoxia-induced renal tubular EMT. Expression of biliverdin reductase was upregulated in a human proximal tubule cell line (HK-2) cultured in hypoxic conditions (1% O2), and this was accompanied by reduced expression of E-cadherin and increased expression of the mesenchymal marker vimentin. Inhibiting PI3K reversed these changes, consistent with EMT. In normoxic conditions, overexpression of biliverdin reductase promoted similar characteristics of EMT, which were also reversed by inhibiting PI3K. Furthermore, using small interfering RNA (siRNA) to knockdown biliverdin reductase, we demonstrated that the enzyme associates with phosphorylated Akt and mediates the hypoxia-induced EMT phenotype. In vivo, expression of biliverdin reductase increased in the tubular epithelia of 5/6-nephrectomized rats, and immunohistochemistry of serial sections demonstrated similar localization of phosphorylated Akt and biliverdin reductase. In conclusion, biliverdin reductase mediates hypoxia-induced EMT through a PI3K/Akt-dependent pathway. PMID:18184861

  18. Diosgenin inhibits melanogenesis through the activation of phosphatidylinositol-3-kinase pathway (PI3K) signaling.

    PubMed

    Lee, Jongsung; Jung, Kwangseon; Kim, Yeong Shik; Park, Deokhoon

    2007-06-27

    An increased level of melanin is characteristic of a large number of skin diseases, including acquired hyperpigmentation conditions such as melasma, post inflammatory melanoderma, and solar lentigo. Thus, there is an increasing need for the development of depigmenting agents. In order to evaluate the depigmenting capacity of diosgenin and elucidate its mechanism of action, several experiments were performed in B16 melanoma cells. Melanin content and Western blots for proteins that are involved in melanogenesis were assessed in this study. The melanin content was significantly inhibited by diosgenin. To clarify the mechanism of the depigmenting property of diosgenin, we examined the involvement of diosgenin in the phosphatidylinositol-3-kinase (PI3K) pathway. In this study, diosgenin inhibited the reduction of Akt and GSK 3beta phosphorylation induced by LY294,002, a PI3K inhibitor. In accordance with this result, production levels of MITF (microphthalmia-associated transcription factor) and tyrosinase were increased by diosgenin. These data suggest that diosgenin inhibits melanogenesis through the activation of the PI3K pathway. This suggestion was further confirmed by the fact that the increased production level of melanin by LY294,002 was reduced by diosgenin in B16 melanoma cells. Our study shows that diosgenin inhibits melanogenesis by activating the PI3K pathway, and also suggests that diosgenin may be an effective inhibitor of hyperpigmentation.

  19. Eupafolin suppresses prostate cancer by targeting phosphatidylinositol 3-kinase-mediated Akt signaling.

    PubMed

    Liu, Kangdong; Park, Chanmi; Chen, Hanyong; Hwang, Joonsung; Thimmegowda, N R; Bae, Eun Young; Lee, Ki Won; Kim, Hong-Gyum; Liu, Haidan; Soung, Nak Kyun; Peng, Cong; Jang, Jae Hyuk; Kim, Kyoon Eon; Ahn, Jong Seog; Bode, Ann M; Dong, Ziming; Kim, Bo Yeon; Dong, Zigang

    2015-09-01

    Phosphatase and tensin homolog (PTEN) loss or mutation consistently activates the phosphatidylinositol 3-kinase (PI3-K)/Akt signaling pathway, which contributes to the progression and invasiveness of prostate cancer. Furthermore, the PTEN/PI3-K/Akt and Ras/MAPK pathways cooperate to promote the epithelial-mesenchymal transition (EMT) and metastasis initiated from prostate stem/progenitor cells. For these reasons, the PTEN/PI3-K/Akt pathway is considered as an attractive target for both chemoprevention and chemotherapy. Herein we report that eupafolin, a natural compound found in common sage, inhibited proliferation of prostate cancer cells. Protein content analysis indicated that phosphorylation of Akt and its downstream kinases was inhibited by eupafolin treatment. Pull-down assay and in vitro kinase assay results indicated that eupafolin could bind with PI3-K and attenuate its kinase activity. Eupafolin also exhibited tumor suppressive effects in vivo in an athymic nude mouse model. Overall, these results suggested that eupafolin exerts antitumor effects by targeting PI3-K. © 2014 Wiley Periodicals, Inc.

  20. Eupafolin suppresses prostate cancer by targeting phosphatidylinositol 3-kinase-mediated Akt signaling

    PubMed Central

    Liu, Kangdong; Park, Chanmi; Chen, Hanyong; Hwang, Joonsung; Thimmegowda, N.R.; Bae, Eun Young; Lee, Ki Won; Kim, Hong-Gyum; Liu, Haidan; Soung, Nak Kyun; Peng, Cong; Jang, Jae Hyuk; Kim, Kyoon Eon; Ahn, Jong Seog; Bode, Ann M.; Dong, Ziming; Kim, Bo Yeon; Dong, Zigang

    2014-01-01

    Phosphatase and tensin homolog (PTEN) loss or mutation consistently activates the phosphatidylinositol 3-kinase (PI3-K)/Akt signaling pathway, which contributes to the progression and invasiveness of prostate cancer. Furthermore, the PTEN/PI3-K/Akt and Ras/MAPK pathways cooperate to promote the epithelial-mesenchymal transition (EMT) and metastasis initiated from prostate stem/progenitor cells. For these reasons, the PTEN/PI3-K/Akt pathway is considered as an attractive target for both chemoprevention and chemotherapy. Herein we report that eupafolin, a natural compound found in common sage, inhibited proliferation of prostate cancer cells. Protein content analysis indicated that phosphorylation of Akt and its downstream kinases was inhibited by eupafolin treatment. Pull-down assay and in vitro kinase assay results indicated that eupafolin could bind with PI3-K and attenuate its kinase activity. Eupafolin also exhibited tumor suppressive effects in vivo in an athymic nude mouse model. Overall, these results suggested that eupafolin exerts antitumor effects by targeting PI3-K. PMID:24700667

  1. Drosophila Spidey/Kar Regulates Oenocyte Growth via PI3-Kinase Signaling

    PubMed Central

    Cinnamon, Einat; Sawala, Annick; Tittiger, Claus; Paroush, Ze'ev

    2016-01-01

    Cell growth and proliferation depend upon many different aspects of lipid metabolism. One key signaling pathway that is utilized in many different anabolic contexts involves Phosphatidylinositide 3-kinase (PI3K) and its membrane lipid products, the Phosphatidylinositol (3,4,5)-trisphosphates. It remains unclear, however, which other branches of lipid metabolism interact with the PI3K signaling pathway. Here, we focus on specialized fat metabolizing cells in Drosophila called larval oenocytes. In the presence of dietary nutrients, oenocytes undergo PI3K-dependent cell growth and contain very few lipid droplets. In contrast, during starvation, oenocytes decrease PI3K signaling, shut down cell growth and accumulate abundant lipid droplets. We now show that PI3K in larval oenocytes, but not in fat body cells, functions to suppress lipid droplet accumulation. Several enzymes of fatty acid, triglyceride and hydrocarbon metabolism are required in oenocytes primarily for lipid droplet induction rather than for cell growth. In contrast, a very long chain fatty-acyl-CoA reductase (FarO) and a putative lipid dehydrogenase/reductase (Spidey, also known as Kar) not only promote lipid droplet induction but also inhibit oenocyte growth. In the case of Spidey/Kar, we show that the growth suppression mechanism involves inhibition of the PI3K signaling pathway upstream of Akt activity. Together, the findings in this study show how Spidey/Kar and FarO regulate the balance between the cell growth and lipid storage of larval oenocytes. PMID:27500738

  2. Class I and class III phosphoinositide 3-kinases are required for actin polymerization that propels phagosomes

    PubMed Central

    Bohdanowicz, Michal; Cosío, Gabriela; Backer, Jonathan M.

    2010-01-01

    Actin polymerization drives the extension of pseudopods that trap and engulf phagocytic targets. The polymerized actin subsequently dissociates as the phagocytic vacuole seals and detaches from the plasma membrane. We found that phagosomes formed by engagement of integrins that serve as complement receptors (CR3) undergo secondary waves of actin polymerization, leading to the formation of “comet tails” that propel the vacuoles inside the cells. Actin tail formation was accompanied by and required de novo formation of PI(3,4)P2 and PI(3,4,5)P3 on the phagosomal membrane by class I phosphoinositide 3-kinases (PI3Ks). Although the phosphatidylinositide phosphatase Inpp5B was recruited to nascent phagosomes, it rapidly detached from the membrane after phagosomes sealed. Detachment of Inpp5B required the formation of PI(3)P. Thus, class III PI3K activity was also required for the accumulation of PI(4,5)P2 and PI(3,4,5)P3 and for actin tail formation. These experiments reveal a new PI(3)P-sensitive pathway leading to PI(3,4)P2 and PI(3,4,5)P3 formation and signaling in endomembranes. PMID:21115805

  3. Vav3 modulates B cell receptor responses by regulating phosphoinositide 3-kinase activation.

    PubMed

    Inabe, Kazunori; Ishiai, Masamichi; Scharenberg, Andrew M; Freshney, Norman; Downward, Julian; Kurosaki, Tomohiro

    2002-01-21

    To elucidate the mechanism(s) by which Vav3, a new member of the Vav family proteins, participates in B cell antigen receptor (BCR) signaling, we have generated a B cell line deficient in Vav3. Here we report that Vav3 influences phosphoinositide 3-kinase (PI3K) function through Rac1 in that phosphatidylinositol-3,4,5-trisphosphate (PIP3) generation was attenuated by loss of Vav3 or by expression of a dominant negative form of Rac1. The functional interaction between PI3K and Rac1 was also demonstrated by increased PI3K activity in the presence of GTP-bound Rac1. In addition, we show that defects of calcium mobilization and c-Jun NH2-terminal kinase (JNK) activation in Vav3-deficient cells are relieved by deletion of a PIP3 hydrolyzing enzyme, SH2 domain-containing inositol polyphosphate 5'-phosphatase (SHIP). Hence, our results suggest a role for Vav3 in regulating the B cell responses by promoting the sustained production of PIP3 and thereby calcium flux.

  4. Vav3 Modulates B Cell Receptor Responses by Regulating Phosphoinositide 3-Kinase Activation

    PubMed Central

    Inabe, Kazunori; Ishiai, Masamichi; Scharenberg, Andrew M.; Freshney, Norman; Downward, Julian; Kurosaki, Tomohiro

    2002-01-01

    To elucidate the mechanism(s) by which Vav3, a new member of the Vav family proteins, participates in B cell antigen receptor (BCR) signaling, we have generated a B cell line deficient in Vav3. Here we report that Vav3 influences phosphoinositide 3-kinase (PI3K) function through Rac1 in that phosphatidylinositol-3,4,5-trisphosphate (PIP3) generation was attenuated by loss of Vav3 or by expression of a dominant negative form of Rac1. The functional interaction between PI3K and Rac1 was also demonstrated by increased PI3K activity in the presence of GTP-bound Rac1. In addition, we show that defects of calcium mobilization and c-Jun NH2-terminal kinase (JNK) activation in Vav3-deficient cells are relieved by deletion of a PIP3 hydrolyzing enzyme, SH2 domain-containing inositol polyphosphate 5′-phosphatase (SHIP). Hence, our results suggest a role for Vav3 in regulating the B cell responses by promoting the sustained production of PIP3 and thereby calcium flux. PMID:11805146

  5. A chemical proteomics approach to phosphatidylinositol 3-kinase signaling in macrophages.

    PubMed

    Pasquali, Christian; Bertschy-Meier, Dominique; Chabert, Christian; Curchod, Marie-Laure; Arod, Christian; Booth, Randy; Mechtler, Karl; Vilbois, Francis; Xenarios, Ioannis; Ferguson, Colin G; Prestwich, Glenn D; Camps, Montserrat; Rommel, Christian

    2007-11-01

    Prior work using lipid-based affinity matrices has been done to investigate distinct sets of lipid-binding proteins, and one series of experiments has proven successful in mammalian cells for the proteome-wide identification of lipid-binding proteins. However, most lipid-based proteomics screens require scaled up sample preparation, are often composed of multiple cell types, and are not adapted for simultaneous signal transduction studies. Herein we provide a chemical proteomics strategy that uses cleavable lipid "baits" with broad applicability to diverse biological samples. The novel baits were designed to avoid preparative steps to allow functional proteomics studies when the biological source is a limiting factor. Validation of the chemical baits was first confirmed by the selective isolation of several known endogenous phosphatidylinositol 3-kinase signaling proteins using primary bone marrow-derived macrophages. The use of this technique for cellular proteomics and MS/MS analysis was then demonstrated by the identification of known and potential novel lipid-binding proteins that was confirmed in vitro for several proteins by direct lipid-protein interactions. Further to the identification, the method is also compatible with subsequent signal transduction studies, notably for protein kinase profiling of the isolated lipid-bound protein complexes. Taken together, this integration of minimal scale proteomics, lipid chemistry, and activity-based readouts provides a significant advancement in the ability to identify and study the lipid proteome of single, relevant cell types.

  6. Design and purification of active truncated phosphoinositide 3-kinase gamma protein constructs for structural studies.

    PubMed

    Vujičić Žagar, A; Scapozza, L; Vadas, O

    2017-07-01

    Phosphoinositide 3-kinase gamma (PI3Kγ) is a lipid kinase that plays a crucial role in cell migration, chemotaxis, oxidative burst and myocardial contractility. It is activated downstream of G protein-coupled receptors (GPCRs) and small GTPases of Ras superfamily. PI3Kγ is a heterodimer composed of a catalytic and a regulatory subunit that is expressed mostly in hematopoietic cells and in the heart. Although it has attracted a lot of attention because of its link with tumor inflammation and heart diseases, its regulation is still not fully understood. This can be attributed to the absence of high-resolution structural details of the PI3Kγ heterodimer. Here we describe the design and purification of PI3Kγ constructs where flexible loops in the regulatory subunit have been removed based on structural information obtained by hydrogen/deuterium exchange - mass spectrometry (HDX-MS). The soluble constructs retain both basal activity and sensitivity to GPCR stimulation, and are thus an optimal tool to further explore their regulation using a structure-based approach. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Nuclear but Not Cytosolic Phosphoinositide 3-Kinase Beta Has an Essential Function in Cell Survival ▿

    PubMed Central

    Kumar, Amit; Redondo-Muñoz, Javier; Perez-García, Vicente; Cortes, Isabel; Chagoyen, Monica; Carrera, Ana C.

    2011-01-01

    Class IA phosphoinositide 3-kinases (PI3Ks) are heterodimeric enzymes composed of a p85 regulatory and a p110 catalytic subunit that induce the formation of 3-polyphosphoinositides, which mediate cell survival, division, and migration. There are two ubiquitous PI3K isoforms p110α and p110β that have nonredundant functions in embryonic development and cell division. However, whereas p110α concentrates in the cytoplasm, p110β localizes to the nucleus and modulates nuclear processes such as DNA replication and repair. At present, the structural features that determine p110β nuclear localization remain unknown. We describe here that association with the p85β regulatory subunit controls p110β nuclear localization. We identified a nuclear localization signal (NLS) in p110β C2 domain that mediates its nuclear entry, as well as a nuclear export sequence (NES) in p85β. Deletion of p110β induced apoptosis, and complementation with the cytoplasmic C2-NLS p110β mutant was unable to restore cell survival. These studies show that p110β NLS and p85β NES regulate p85β/p110β nuclear localization, supporting the idea that nuclear, but not cytoplasmic, p110β controls cell survival. PMID:21383062

  8. Phosphoinositide 3-kinase beta controls replication factor C assembly and function

    PubMed Central

    Redondo-Muñoz, Javier; Josefa Rodríguez, María; Silió, Virginia; Pérez-García, Vicente; María Valpuesta, José; Carrera, Ana C.

    2013-01-01

    Genomic integrity is preserved by the action of protein complexes that control DNA homeostasis. These include the sliding clamps, trimeric protein rings that are arranged around DNA by clamp loaders. Replication factor C (RFC) is the clamp loader for proliferating cell nuclear antigen, which acts on DNA replication. Other processes that require mobile contact of proteins with DNA use alternative RFC complexes that exchange RFC1 for CTF18 or RAD17. Phosphoinositide 3-kinases (PI3K) are lipid kinases that generate 3-poly-phosphorylated-phosphoinositides at the plasma membrane following receptor stimulation. The two ubiquitous isoforms, PI3Kalpha and PI3Kbeta, have been extensively studied due to their involvement in cancer and nuclear PI3Kbeta has been found to regulate DNA replication and repair, processes controlled by molecular clamps. We studied here whether PI3Kbeta directly controls the process of molecular clamps loading. We show that PI3Kbeta associated with RFC1 and RFC1-like subunits. Only when in complex with PI3Kbeta, RFC1 bound to Ran GTPase and localized to the nucleus, suggesting that PI3Kbeta regulates RFC1 nuclear import. PI3Kbeta controlled not only RFC1– and RFC–RAD17 complexes, but also RFC–CTF18, in turn affecting CTF18-mediated chromatid cohesion. PI3Kbeta thus has a general function in genomic stability by controlling the localization and function of RFC complexes. PMID:23175608

  9. Cell Activation-Induced Phosphoinositide 3-Kinase Alpha/Beta Dimerization Regulates PTEN Activity

    PubMed Central

    Pérez-García, Vicente; Redondo-Muñoz, Javier; Kumar, Amit

    2014-01-01

    The phosphoinositide 3-kinase (PI3K)/PTEN (phosphatase and tensin homolog) pathway is one of the central routes that enhances cell survival, division, and migration, and it is frequently deregulated in cancer. PI3K catalyzes formation of phosphatidylinositol 3,4,5-triphosphate [PI(3,4,5)P3] after cell activation; PTEN subsequently reduces these lipids to basal levels. Activation of the ubiquitous p110α isoform precedes that of p110β at several points during the cell cycle. We studied the potential connections between p110α and p110β activation, and we show that cell stimulation promotes p110α and p110β association, demonstrating oligomerization of PI3K catalytic subunits within cells. Cell stimulation also promoted PTEN incorporation into this complex, which was necessary for PTEN activation. Our results show that PI3Ks dimerize in vivo and that PI3K and PTEN activities modulate each other in a complex that controls cell PI(3,4,5)P3 levels. PMID:24958106

  10. Phosphoinositide 3-Kinase Beta Protects Nuclear Envelope Integrity by Controlling RCC1 Localization and Ran Activity

    PubMed Central

    Redondo-Muñoz, Javier; Pérez-García, Vicente; Rodríguez, María J.; Valpuesta, José M.

    2014-01-01

    The nuclear envelope (NE) forms a barrier between the nucleus and the cytosol that preserves genomic integrity. The nuclear lamina and nuclear pore complexes (NPCs) are NE components that regulate nuclear events through interaction with other proteins and DNA. Defects in the nuclear lamina are associated with the development of laminopathies. As cells depleted of phosphoinositide 3-kinase beta (PI3Kβ) showed an aberrant nuclear morphology, we studied the contribution of PI3Kβ to maintenance of NE integrity. pik3cb depletion reduced the nuclear membrane tension, triggered formation of areas of lipid bilayer/lamina discontinuity, and impaired NPC assembly. We show that one mechanism for PI3Kβ regulation of NE/NPC integrity is its association with RCC1 (regulator of chromosome condensation 1), the activator of nuclear Ran GTPase. PI3Kβ controls RCC1 binding to chromatin and, in turn, Ran activation. These findings suggest that PI3Kβ regulates the nuclear envelope through upstream regulation of RCC1 and Ran. PMID:25348717

  11. Phosphoinositide 3-kinase signaling to Akt promotes keratinocyte differentiation versus death.

    PubMed

    Calautti, Enzo; Li, Jian; Saoncella, Stefania; Brissette, Janice L; Goetinck, Paul F

    2005-09-23

    Signaling pathways regulating the differentiation program of epidermal cells overlap widely with those activated during apoptosis. How differentiating cells remain protected from premature death, however, is still poorly defined. We show here that the phosphoinositide 3-kinase (PI3K)/Akt pathway is activated at early stages of mouse keratinocyte differentiation both in culture and in the intact epidermis in vivo. Expression of active Akt in keratinocytes promotes growth arrest and differentiation, whereas pharmacological blockade of PI3K inhibits the expression of "late" differentiation markers and leads to death of cells that would otherwise differentiate. Mechanistically, the activation of the PI3K/Akt pathway in keratinocyte differentiation depends on the activity of the epidermal growth factor receptor and Src families of tyrosine kinases and the engagement of E-cadherin-mediated adhesion. During this process, PI3K associates increasingly with cadherin-catenin protein complexes bearing tyrosine phosphorylated YXXM motifs. Thus, the PI3K signaling pathway regulates the choice between epidermal cell differentiation and death at the cross-talk between tyrosine kinases and cadherin-associated catenins.

  12. AMPK signaling in neuronal polarization: Putting the brakes on axonal traffic of PI3-Kinase.

    PubMed

    Amato, Stephen; Man, Heng-Ye

    2012-03-01

    Neuronal polarization, the process by which neurons form multiple dendrites and an axon from the soma, is the first critical step in the formation and function of neural networks. Polarization begins with the rapid extension of a single neurite to produce an axon of impressive size and complex geometry, while the remaining sister neurites differentiate into dendrites. The extensive biosynthesis required to produce an axon therefore necessitates coordination with cellular energy status to ensure an ample energy supply. Our recent work shows that activity of the AMP-activated protein kinase (AMPK), the bio-energy sensor responsible for maintaining cellular energy homeostasis in all eukaryotic cells, plays an important role in the initiation of axonal growth. AMPK phosphorylates the cargo-binding light chain of the Kif5 motor protein, leading to dissociation of the phosphatidylinositol 3-Kinase (PI3K) from the motor complex. The mislocation of PI3K, which is normally enriched at the axonal tip for extension and differentiation, results in a lack of neurite specification and neuron polarization. These findings reveal a link between cellular bioenergy homeostasis and neuron morphogenesis, and suggest a novel cellular mechanism underlying the long-term neurological abnormalities as a consequence of bioenergy deficiency during early brain development.

  13. Creatine inhibits adipogenesis by downregulating insulin-induced activation of the phosphatidylinositol 3-kinase signaling pathway.

    PubMed

    Lee, Nayeon; Kim, Inhee; Park, Soojeong; Han, Dasol; Ha, Soobong; Kwon, Mookwang; Kim, Juwan; Byun, Sung-Hyun; Oh, Wonil; Jeon, Hong Bae; Kweon, Dae-Hyuk; Cho, Jae Youl; Yoon, Keejung

    2015-04-15

    Creatine is a nitrogenous organic acid known to function in adenosine triphosphate (ATP) metabolism. Recent evidence indicates that creatine regulates the differentiation of mesenchymal stem cells (MSCs) in processes such as osteogenesis and myogenesis. In this study, we show that creatine also has a negative regulatory effect on fat cell formation. Creatine inhibits the accumulation of cytoplasmic triglycerides in a dose-dependent manner irrespective of the adipogenic cell models used, including a C3H10T1/2 MSC line, 3T3-L1 preadipocytes, and primary human MSCs. Consistently, a dramatic reduction in mRNA expression of adipogenic transcription factors, peroxisome proliferator-activated receptor γ (PPARγ) and CCAAT/enhancer-binding protein α (C/EBPα), glucose transporters, 1 and 4 (Glut1, Glut4), and adipocyte markers, aP2 and adipsin, was observed in the presence of creatine. Creatine appears to exert its inhibitory effects on adipogenesis during early differentiation, but not late differentiation, or proliferation stages through inhibition of the PI3K-Akt-PPARγ signaling pathway. In an in vivo model, administration of creatine into mice resulted in body mass increase without fat accumulation. In summary, our results indicate that creatine downregulates adipogenesis through inhibition of phosphatidylinositol 3-kinase (PI3K) activation and imply the potent therapeutic value of creatine in treating obesity and obesity-related metabolic disorders.

  14. RhoG regulates anoikis through a phosphatidylinositol 3-kinase-dependent mechanism

    SciTech Connect

    Yamaki, Nao; Negishi, Manabu; Katoh, Hironori . E-mail: hirokato@pharm.kyoto-u.ac.jp

    2007-08-01

    In normal epithelial cells, cell-matrix interaction is required for cell survival and proliferation, whereas disruption of this interaction causes epithelial cells to undergo apoptosis called anoikis. Here we show that the small GTPase RhoG plays an important role in the regulation of anoikis. HeLa cells are capable of anchorage-independent cell growth and acquire resistance to anoikis. We found that RNA interference-mediated knockdown of RhoG promoted anoikis in HeLa cells. Previous studies have shown that RhoG activates Rac1 and induces several cellular functions including promotion of cell migration through its effector ELMO and the ELMO-binding protein Dock180 that function as a Rac-specific guanine nucleotide exchange factor. However, RhoG-induced suppression of anoikis was independent of the ELMO- and Dock180-mediated activation of Rac1. On the other hand, the regulation of anoikis by RhoG required phosphatidylinositol 3-kinase (PI3K) activity, and constitutively active RhoG bound to the PI3K regulatory subunit p85{alpha} and induced the PI3K-dependent phosphorylation of Akt. Taken together, these results suggest that RhoG protects cells from apoptosis caused by the loss of anchorage through a PI3K-dependent mechanism, independent of its activation of Rac1.

  15. Inhibition of Human Class I vs Class III Phosphatidylinositol 3'-Kinases.

    PubMed

    Hassett, Matthew R; Sternberg, Anna R; Roepe, Paul D

    2017-08-22

    Most investigations of phosphatidylinositol 3'-kinase (PI3K) drug inhibition have been via assays based on ADP appearance or ATP consumption (e.g., Liu, Q., et al. ( 2011 ) J. Med. Chem. 54 , 1473 - 1480 ). However, at least some PI3K isoforms show basal ATPase activity in the absence of PI lipid substrate(s), which may complicate quantification of drug potency, isoform specificity of some drugs, and synergy for drug combinations. In this study, we probe the class I vs class III isoform specificity of a selected set of PI3K inhibitors using a simple, inexpensive, semi high-throughput assay that quantifies production of phosphatidylinositol 3'-phosphate (PI3P) from phosphatidylinositol. Results are compared to previous data largely generated using ATPase activity assays. Good agreement between EC50 values computed via ATPase assays vs the reported PI3P formation assay is found for most drugs, but with a few exceptions. Furthermore, for the first time, drug inhibition of class I vs class III enzymes is compared side-by-side with the same assay for the important class I-specific inhibitors GSK2126458 ("Omipalisib") and NVP-BGT226 ("BGT226") currently in clinical development for advanced solid tumors.

  16. Molecular cloning and biochemical characterization of a Drosophila phosphatidylinositol-specific phosphoinositide 3-kinase.

    PubMed

    Linassier, C; MacDougall, L K; Domin, J; Waterfield, M D

    1997-02-01

    Molecular, biochemical and genetic characterization of phosphoinositide 3-kinases (PI3Ks) have identified distinct classes of enzymes involved in processes mediated by activation of cell-surface receptors and in constitutive intracellular protein trafficking events. The latter process appears to involve a PtdIns-specific PI3K first described in yeast as a mutant, vps34, defective in the sorting of newly synthesized proteins from the Golgi to the vacuole. We have identified a representative member of each class of PI3Ks in Drosophila using a PCR-based approach. In the present paper we describe the molecular cloning of a PI3K from Drosophila, P13K_59F, that shows sequence similarity to Vps34. PI3K_59F encodes a protein of 108 kDa co-linear with Vps34 homologues, and with three regions of sequence similarity to other PI3Ks. Biochemical characterization of the enzyme, by expression of the complete coding sequence as a glutathione S-transferase fusion protein in Sf9 cells, demonstrates that PI3K_59F is a PtdIns-specific PI3K that can utilize either Mg2+ or Mn2+. This activity is sensitive to inhibition both by non-ionic detergent (Nonidet P40) and by wortmannin (IC50 10 nM). PI3K_59F, therefore, conserves both the structural and biochemical properties of the Vps34 class of enzymes.

  17. Evaluation of variation in the phosphoinositide-3-kinase catalytic subunit alpha oncogene and breast cancer risk

    PubMed Central

    Stevens, K N; Garcia-Closas, M; Fredericksen, Z; Kosel, M; Pankratz, V S; Hopper, J L; Dite, G S; Apicella, C; Southey, M C; Schmidt, M K; Broeks, A; Van ‘t Veer, L J; Tollenaar, R A E M; Fasching, P A; Beckmann, M W; Hein, A; Ekici, A B; Johnson, N; Peto, J; dos Santos Silva, I; Gibson, L; Sawyer, E; Tomlinson, I; Kerin, M J; Chanock, S; Lissowska, J; Hunter, D J; Hoover, R N; Thomas, G D; Milne, R L; Pérez, JI Arias; González-Neira, A; Benítez, J; Burwinkel, B; Meindl, A; Schmutzler, R K; Bartrar, C R; Hamann, U; Ko, Y D; Brüning, T; Chang-Claude, J; Hein, R; Wang-Gohrke, S; Dörk, T; Schürmann, P; Bremer, M; Hillemanns, P; Bogdanova, N; Zalutsky, J V; Rogov, Y I; Antonenkova, N; Lindblom, A; Margolin, S; Mannermaa, A; Kataja, V; Kosma, V-M; Hartikainen, J; Chenevix-Trench, G; Chen, X; Peterlongo, P; Bonanni, B; Bernard, L; Manoukian, S; Wang, X; Cerhan, J; Vachon, C M; Olson, J; Giles, G G; Baglietto, L; McLean, C A; Severi, G; John, E M; Miron, A; Winqvist, R; Pylkäs, K; Jukkola-Vuorinen, A; Grip, M; Andrulis, I; Knight, J A; Glendon, G; Mulligan, A M; Cox, A; Brock, I W; Elliott, G; Cross, S S; Pharoah, P P; Dunning, A M; Pooley, K A; Humphreys, M K; Wang, J; Kang, D; Yoo, K-Y; Noh, D-Y; Sangrajrang, S; Gabrieau, V; Brennan, P; McKay, J; Anton-Culver, H; Ziogas, A; Couch, F J; Easton, D F

    2011-01-01

    Background: Somatic mutations in phosphoinositide-3-kinase catalytic subunit alpha (PIK3CA) are frequent in breast tumours and have been associated with oestrogen receptor (ER) expression, human epidermal growth factor receptor-2 overexpression, lymph node metastasis and poor survival. The goal of this study was to evaluate the association between inherited variation in this oncogene and risk of breast cancer. Methods: A single-nucleotide polymorphism from the PIK3CA locus that was associated with breast cancer in a study of Caucasian breast cancer cases and controls from the Mayo Clinic (MCBCS) was genotyped in 5436 cases and 5280 controls from the Cancer Genetic Markers of Susceptibility (CGEMS) study and in 30 949 cases and 29 788 controls from the Breast Cancer Association Consortium (BCAC). Results: Rs1607237 was significantly associated with a decreased risk of breast cancer in MCBCS, CGEMS and all studies of white Europeans combined (odds ratio (OR)=0.97, 95% confidence interval (CI) 0.95–0.99, P=4.6 × 10−3), but did not reach significance in the BCAC replication study alone (OR=0.98, 95% CI 0.96–1.01, P=0.139). Conclusion: Common germline variation in PIK3CA does not have a strong influence on the risk of breast cancer PMID:22033276

  18. Tyrosol Suppresses Allergic Inflammation by Inhibiting the Activation of Phosphoinositide 3-Kinase in Mast Cells.

    PubMed

    Je, In-Gyu; Kim, Duk-Sil; Kim, Sung-Wan; Lee, Soyoung; Lee, Hyun-Shik; Park, Eui Kyun; Khang, Dongwoo; Kim, Sang-Hyun

    2015-01-01

    Allergic diseases such as atopic dermatitis, rhinitis, asthma, and anaphylaxis are attractive research areas. Tyrosol (2-(4-hydroxyphenyl)ethanol) is a polyphenolic compound with diverse biological activities. In this study, we investigated whether tyrosol has anti-allergic inflammatory effects. Ovalbumin-induced active systemic anaphylaxis and immunoglobulin E-mediated passive cutaneous anaphylaxis models were used for the immediate-type allergic responses. Oral administration of tyrosol reduced the allergic symptoms of hypothermia and pigmentation in both animal models. Mast cells that secrete allergic mediators are key regulators on allergic inflammation. Tyrosol dose-dependently decreased mast cell degranulation and expression of inflammatory cytokines. Intracellular calcium levels and activation of inhibitor of κB kinase (IKK) regulate cytokine expression and degranulation. Tyrosol blocked calcium influx and phosphorylation of the IKK complex. To define the molecular target for tyrosol, various signaling proteins involved in mast cell activation such as Lyn, Syk, phosphoinositide 3-kinase (PI3K), and Akt were examined. Our results showed that PI3K could be a molecular target for tyrosol in mast cells. Taken together, these findings indicated that tyrosol has anti-allergic inflammatory effects by inhibiting the degranulation of mast cells and expression of inflammatory cytokines; these effects are mediated via PI3K. Therefore, we expect tyrosol become a potential therapeutic candidate for allergic inflammatory disorders.

  19. Involvement of phosphoinositide 3-kinases in neutrophil activation and the development of acute lung injury.

    PubMed

    Yum, H K; Arcaroli, J; Kupfner, J; Shenkar, R; Penninger, J M; Sasaki, T; Yang, K Y; Park, J S; Abraham, E

    2001-12-01

    Activated neutrophils contribute to the development and severity of acute lung injury (ALI). Phosphoinositide 3-kinases (PI3-K) and the downstream serine/threonine kinase Akt/protein kinase B have a central role in modulating neutrophil function, including respiratory burst, chemotaxis, and apoptosis. In the present study, we found that exposure of neutrophils to endotoxin resulted in phosphorylation of Akt, activation of NF-kappaB, and expression of the proinflammatory cytokines IL-1beta and TNF-alpha through PI3-K-dependent pathways. In vivo, endotoxin administration to mice resulted in activation of PI3-K and Akt in neutrophils that accumulated in the lungs. The severity of endotoxemia-induced ALI was significantly diminished in mice lacking the p110gamma catalytic subunit of PI3-K. In PI3-Kgamma(-/-) mice, lung edema, neutrophil recruitment, nuclear translocation of NF-kappaB, and pulmonary levels of IL-1beta and TNF-alpha were significantly lower after endotoxemia as compared with PI3-Kgamma(+/+) controls. Among neutrophils that did accumulate in the lungs of the PI3-Kgamma(-/-) mice after endotoxin administration, activation of NF-kappaB and expression of proinflammatory cytokines was diminished compared with levels present in lung neutrophils from PI3-Kgamma(+/+) mice. These results show that PI3-K, and particularly PI3-Kgamma, occupies a central position in regulating endotoxin-induced neutrophil activation, including that involved in ALI.

  20. ZSTK474, a novel phosphatidylinositol 3-kinase inhibitor identified using the JFCR39 drug discovery system.

    PubMed

    Kong, De-xin; Yamori, Takao

    2010-09-01

    JFCR39 is an informatic anticancer drug discovery system that utilizes a panel of 39 human cancer cells coupled with a drug-activity database. This system not only provides disease-oriented information but can also predict the mechanism of action of a given antitumor agent. Development of a phosphatidylinositol 3-kinase (PI3K) inhibitor as an anticancer drug candidate has attracted a great deal of attention from both academia and industry because PI3K is known to be closely involved in carcinogenesis. ZSTK474 was identified as a PI3K inhibitor using JFCR39 system in combination with COMPARE analysis program. These findings were based on the similar fingerprint (growth inhibition profiles for JFCR39 human cancer cell line panel) with that of a classical PI3K inhibitor LY294002. Biochemical experiments confirmed ZSTK474 to be a potent pan-class I PI3K inhibitor, with high selectivity over other classes of PI3K and protein kinases. We previously reported the in vitro and in vivo antitumor efficacy of ZSTK474, together with the G(0)/G(1) arrest and antiangiogenic activity. Here, we review the JFCR39 system and summarize recent studies on PI3K biology and the development of PI3K inhibitors before discussing ZSTK474 in some detail.

  1. Class IA phosphoinositide 3-kinases are obligate p85-p110 heterodimers

    PubMed Central

    Geering, Barbara; Cutillas, Pedro R.; Nock, Gemma; Gharbi, Severine I.; Vanhaesebroeck, Bart

    2007-01-01

    Class IA phosphoinositide 3-kinases (PI3Ks) signal downstream of tyrosine kinases and Ras and control a wide variety of biological responses. In mammals, these heterodimeric PI3Ks consist of a p110 catalytic subunit (p110α, p110β, or p110δ) bound to any of five distinct regulatory subunits (p85α, p85β, p55γ, p55α, and p50α, collectively referred to as “p85s”). The relative expression levels of p85 and p110 have been invoked to explain key features of PI3K signaling. For example, free (i.e., non-p110-bound) p85α has been proposed to negatively regulate PI3K signaling by competition with p85/p110 for recruitment to phosphotyrosine docking sites. Using affinity and ion exchange chromatography and quantitative mass spectrometry, we demonstrate that the p85 and p110 subunits are present in equimolar amounts in mammalian cell lines and tissues. No evidence for free p85 or p110 subunits could be obtained. Cell lines contain 10,000–15,000 p85/p110 complexes per cell, with p110β and p110δ being the most prevalent catalytic subunits in nonleukocytes and leukocytes, respectively. These results argue against a role of free p85 in PI3K signaling and provide insights into the nonredundant functions of the different class IA PI3K isoforms. PMID:17470792

  2. Intracellular Movement of Green Fluorescent Protein–Tagged Phosphatidylinositol 3-Kinase in Response to Growth Factor Receptor Signaling

    PubMed Central

    Gillham, Helen; Golding, Matthew C.H.M.; Pepperkok, Rainer; Gullick, William J.

    1999-01-01

    Phosphatidylinositol 3-kinase (PI 3-kinase) is a lipid kinase which has been implicated in mitogenesis, protein trafficking, inhibition of apoptosis, and integrin and actin functions. Here we show using a green fluorescent protein–tagged p85 subunit that phosphatidylinositol 3-kinase is distributed throughout the cytoplasm and is localized to focal adhesion complexes in resting NIH-3T3, A431, and MCF-7 cells. Ligand stimulation of an epidermal growth factor receptor/c-erbB-3 chimera expressed in these cells results in a redistribution of p85 to the cell membrane which is independent of the catalytic activity of the enzyme and the integrity of the actin cytoskeleton. The movement is, however, dependent on the phosphorylation status of the erbB-3 chimera. Using rhodamine-labeled epidermal growth factor we show that the phosphatidylinositol 3-kinase and the receptors colocalize in discrete patches on the cell surface. Low concentrations of ligand cause patching only at the periphery of the cells, whereas at high concentrations patches were seen over the whole cell surface. Using green fluorescent protein–tagged fragments of p85 we show that binding to the receptor requires the NH2-terminal part of the protein as well as its SH2 domains. PMID:10459020

  3. SH2 domains of the p85 alpha subunit of phosphatidylinositol 3-kinase regulate binding to growth factor receptors.

    PubMed Central

    McGlade, C J; Ellis, C; Reedijk, M; Anderson, D; Mbamalu, G; Reith, A D; Panayotou, G; End, P; Bernstein, A; Kazlauskas, A

    1992-01-01

    The binding of cytoplasmic signaling proteins such as phospholipase C-gamma 1 and Ras GTPase-activating protein to autophosphorylated growth factor receptors is directed by their noncatalytic Src homology region 2 (SH2) domains. The p85 alpha regulatory subunit of phosphatidylinositol (PI) 3-kinase, which associates with several receptor protein-tyrosine kinases, also contains two SH2 domains. Both p85 alpha SH2 domains, when expressed individually as fusion proteins in bacteria, bound stably to the activated beta receptor for platelet-derived growth factor (PDGF). Complex formation required PDGF stimulation and was dependent on receptor tyrosine kinase activity. The bacterial p85 alpha SH2 domains recognized activated beta PDGF receptor which had been immobilized on a filter, indicating that SH2 domains contact autophosphorylated receptors directly. Several receptor tyrosine kinases within the PDGF receptor subfamily, including the colony-stimulating factor 1 receptor and the Steel factor receptor (Kit), also associate with PI 3-kinase in vivo. Bacterially expressed SH2 domains derived from the p85 alpha subunit of PI 3-kinase bound in vitro to the activated colony-stimulating factor 1 receptor and to Kit. We infer that the SH2 domains of p85 alpha bind to high-affinity sites on these receptors, whose creation is dependent on receptor autophosphorylation. The SH2 domains of p85 are therefore primarily responsible for the binding of PI 3-kinase to activated growth factor receptors. Images PMID:1372092

  4. Class A scavenger receptor-mediated cell adhesion requires the sequential activation of Lyn and PI3-kinase.

    PubMed

    Nikolic, Dejan M; Cholewa, Jill; Gass, Cecelia; Gong, Ming C; Post, Steven R

    2007-04-01

    Class A scavenger receptors (SR-A) participate in multiple macrophage functions including macrophage adhesion to modified proteins. SR-A-mediated adhesion may therefore contribute to chronic inflammation by promoting macrophage accumulation at sites of protein modification. The mechanisms that couple SR-A binding to modified proteins with increased cell adhesion have not been defined. In this study, SR-A expressing HEK cells and SR-A+/+ or SR-A-/- macrophages were used to delineate the signaling pathways required for SR-A-mediated adhesion to modified protein. Inhibiting G(i/o) activation, which decreases initial SR-A-mediated cell attachment, did not prevent the subsequent spreading of attached cells. In contrast, inhibition of Src kinases or PI3-kinase abolished SR-A-dependent cell spreading without affecting SR-A-mediated cell attachment. Consistent with these results, the Src kinase Lyn and PI3-kinase were sequentially activated during SR-A-mediated cell spreading. Furthermore, activation of both Lyn and PI3-kinase was required for enhancing paxillin phosphorylation. Activation of a Src kinase-PI3-kinase-Akt pathway was also observed in cells expressing a truncated SR-A protein that does not internalize indicating that SR-A-mediated activation of intracellular signaling cascades following adhesion to MDA-BSA is independent of receptor internalization. Thus SR-A binding to modified protein activates signaling cascades that have distinct roles in regulating initial cell attachment and subsequent cell spreading.

  5. Kinetic analysis of platelet-derived growth factor receptor/phosphoinositide 3-kinase/Akt signaling in fibroblasts.

    PubMed

    Park, Chang Shin; Schneider, Ian C; Haugh, Jason M

    2003-09-26

    Isoforms of the serine-threonine kinase Akt coordinate multiple cell survival pathways in response to stimuli such as platelet-derived growth factor (PDGF). Activation of Akt is a multistep process, which relies on the production of 3'-phosphorylated phosphoinositide (PI) lipids by PI 3-kinases. To quantitatively assess the kinetics of PDGF receptor/PI 3-kinase/Akt signaling in fibroblasts, a systematic study of this pathway was performed, and a mechanistic mathematical model that describes its operation was formulated. We find that PDGF receptor phosphorylation exhibits positive cooperativity with respect to PDGF concentration, and its kinetics are quantitatively consistent with a mechanism in which receptor dimerization is initially mediated by the association of two 1:1 PDGF/PDGF receptor complexes. Receptor phosphorylation is transient at high concentrations of PDGF, consistent with the loss of activated receptors upon endocytosis. By comparison, Akt activation responds to lower PDGF concentrations and exhibits more sustained kinetics. Further analysis and modeling suggest that the pathway is saturated at the level of PI 3-kinase activation, and that the p110alpha catalytic subunit of PI 3-kinase contributes most to PDGF-stimulated 3'-PI production. Thus, at high concentrations of PDGF the kinetics of 3'-PI production are limited by the turnover rate of these lipids, while the Akt response is additionally influenced by the rate of Akt deactivation.

  6. Regulation of phosphatidylinositol 3-kinase activity in liver and muscle of animal models of insulin-resistant and insulin-deficient diabetes mellitus.

    PubMed Central

    Folli, F; Saad, M J; Backer, J M; Kahn, C R

    1993-01-01

    Insulin stimulates tyrosine phosphorylation of insulin receptor substrate 1 (IRS-1), which in turn binds to and activates phosphatidylinositol 3-kinase (PI 3-kinase). In the present study, we have examined these processes in animal models of insulin-resistant and insulin-deficient diabetes mellitus. After in vivo insulin stimulation, there was a 60-80% decrease in IRS-1 phosphorylation in liver and muscle of the ob/ob mouse. There was no insulin stimulation of PI 3-kinase (85 kD subunit) association with IRS-1, and IRS-1-associated PI 3-kinase activity was reduced 90%. Insulin-stimulated total PI 3-kinase activity was also absent in both tissues of the ob/ob mouse. By contrast, in the streptozotocin diabetic rat, IRS-1 phosphorylation increased 50% in muscle, IRS-1-associated PI 3-kinase activity was increased two- to threefold in liver and muscle, and there was a 50% increase in the p85 associated with IRS-1 after insulin stimulation in muscle. In conclusion, (a) IRS-1-associated PI 3-kinase activity is differentially regulated in hyperinsulinemic and hypoinsulinemic diabetic states; (b) PI 3-kinase activation closely correlates with IRS-1 phosphorylation; and (c) reduced PI 3-kinase activity may play a role in the pathophysiology of insulin resistant diabetic states, such as that seen in the ob/ob mouse. Images PMID:7691886

  7. PKC-ι promotes glioblastoma cell survival by phosphorylating and inhibiting BAD through a phosphatidylinositol 3-kinase pathway.

    PubMed

    Desai, S; Pillai, P; Win-Piazza, H; Acevedo-Duncan, M

    2011-06-01

    The focus of this research was to investigate the role of protein kinase C-iota (PKC-ι) in regulation of Bad, a pro-apoptotic BH3-only molecule of the Bcl-2 family in glioblastoma. Robust expression of PKC-ι is a hallmark of human glioma and benign and malignant meningiomas. The results were obtained from the two human glial tumor derived cell lines, T98G and U87MG. In these cells, PKC-ι co-localized and directly associated with Bad, as shown by immunofluorescence, immunoprecipitation, and Western blotting. Furthermore, in-vitro kinase activity assay showed that PKC-ι directly phosphorylated Bad at phospho specific residues, Ser-112, Ser-136 and Ser-155 which in turn induced inactivation of Bad and disruption of Bad/Bcl-XL dimer. Knockdown of PKC-ι by siRNA exhibited a corresponding reduction in Bad phosphorylation suggesting that PKC-ι may be a Bad kinase. PKC-ι knockdown also induced apoptosis in both the cell lines. Since, PKC-ι is an essential downstream mediator of the PI (3)-kinase, we hypothesize that glioma cell survival is mediated via a PI (3)-kinase/PDK1/PKC-ι/Bad pathway. Treatment with PI (3)-kinase inhibitors Wortmannin and LY294002, as well as PDK1 siRNA, inhibited PKC-ι activity and subsequent phosphorylation of Bad suggesting that PKC-ι regulates the activity of Bad in a PI (3)-kinase dependent manner. Thus, our data suggest that glioma cell survival occurs through a novel PI (3)-kinase/PDK1/PKC-ι/BAD mediated pathway.

  8. A novel signaling pathway associated with Lyn, PI 3-kinase and Akt supports the proliferation of myeloma cells

    SciTech Connect

    Iqbal, Mohd S.; Tsuyama, Naohiro; Obata, Masanori; Ishikawa, Hideaki

    2010-02-12

    Interleukin-6 (IL-6) is a growth factor for human myeloma cells. We have recently found that in myeloma cells the activation of both signal transducer and activator of transcription (STAT) 3 and extracellular signal-regulated kinase (ERK) 1/2 is not sufficient for the IL-6-induced proliferation, which further requires the activation of the src family kinases, such as Lyn. Here we showed that the Lyn-overexpressed myeloma cell lines had the higher proliferative rate with IL-6 and the enhanced activation of the phosphatidylinositol (PI) 3-kinase and Akt. The IL-6-induced phosphorylation of STAT3 and ERK1/2 was not up-regulated in the Lyn-overexpressed cells, indicating that the Lyn-PI 3-kinase-Akt pathway is independent of these pathways. The PI 3-kinase was co-precipitated with Lyn in the Lyn-overexpressed cells of which proliferation with IL-6 was abrogated by the specific inhibitors for PI 3-kinase or Akt, suggesting that the activation of the PI 3-kinase-Akt pathway associated with Lyn is indeed related to the concomitant augmentation of myeloma cell growth. Furthermore, the decreased expression of p53 and p21{sup Cip1} proteins was observed in the Lyn-overexpressed cells, implicating a possible downstream target of Akt. This study identifies a novel IL-6-mediated signaling pathway that certainly plays a role in the proliferation of myeloma cells and this novel mechanism of MM tumor cell growth associated with Lyn would eventually contribute to the development of MM treatment.

  9. Oleanolic acid supplement attenuates liquid fructose-induced adipose tissue insulin resistance through the insulin receptor substrate-1/phosphatidylinositol 3-kinase/Akt signaling pathway in rats

    SciTech Connect

    Li, Ying; Wang, Jianwei; Gu, Tieguang; Yamahara, Johji; Li, Yuhao

    2014-06-01

    Oleanolic acid, a triterpenoid contained in more than 1620 plants including various fruits and foodstuffs, has numerous metabolic effects, such as hepatoprotection. However, its underlying mechanisms remain poorly understood. Adipose tissue insulin resistance (Adipo-IR) may contribute to the development and progress of metabolic abnormalities through release of excessive free fatty acids from adipose tissue. This study investigated the effect of oleanolic acid on Adipo-IR. The results showed that supplement with oleanolic acid (25 mg/kg, once daily, by oral gavage) over 10 weeks attenuated liquid fructose-induced increase in plasma insulin concentration and the homeostasis model assessment of insulin resistance (HOMA-IR) index in rats. Simultaneously, oleanolic acid reversed the increase in the Adipo-IR index and plasma non-esterified fatty acid concentrations during the oral glucose tolerance test assessment. In white adipose tissue, oleanolic acid enhanced mRNA expression of the genes encoding insulin receptor, insulin receptor substrate (IRS)-1 and phosphatidylinositol 3-kinase. At the protein level, oleanolic acid upregulated total IRS-1 expression, suppressed the increased phosphorylated IRS-1 at serine-307, and restored the increased phosphorylated IRS-1 to total IRS-1 ratio. In contrast, phosphorylated Akt to total Akt ratio was increased. Furthermore, oleanolic acid reversed fructose-induced decrease in phosphorylated-Akt/Akt protein to plasma insulin concentration ratio. However, oleanolic acid did not affect IRS-2 mRNA expression. Therefore, these results suggest that oleanolic acid supplement ameliorates fructose-induced Adipo-IR in rats via the IRS-1/phosphatidylinositol 3-kinase/Akt pathway. Our findings may provide new insights into the mechanisms of metabolic actions of oleanolic acid. - Highlights: • Adipose insulin resistance (Adipo-IR) contributes to metabolic abnormalities. • We investigated the effect of oleanolic acid (OA) on adipo-IR in

  10. Ginsenoside Rg3 increases nitric oxide production via increases in phosphorylation and expression of endothelial nitric oxide synthase: essential roles of estrogen receptor-dependent PI3-kinase and AMP-activated protein kinase.

    PubMed

    Hien, Tran Thi; Kim, Nak Doo; Pokharel, Yuba Raj; Oh, Seok Jeong; Lee, Moo Yeol; Kang, Keon Wook

    2010-08-01

    We previously showed that ginsenosides increase nitric oxide (NO) production in vascular endothelium and that ginsenoside Rg3 (Rg3) is the most active one among ginseng saponins. However, the mechanism for Rg3-mediated nitric oxide production is still uncertain. In this study, we determined whether Rg3 affects phosphorylation and expression of endothelial nitric oxide synthase (eNOS) in ECV 304 human endothelial cells. Rg3 increased both the phosphorylation and the expression of eNOS in a concentration-dependent manner and a maximal effect was found at 10μg/ml of Rg3. The enzyme activities of phosphatidylinositol 3-kinase (PI3-kinase), c-Jun N-terminal kinase (JNK), and p38 kinase were enhanced as were estrogen receptor (ER)- and glucocorticoid receptor (GR)-dependent reporter gene transcriptions in Rg3-treated endothelial cells. Rg3-induced eNOS phosphorylation required the ER-mediated PI3-kinase/Akt pathway. Moreover, Rg3 activates AMP-activated protein kinase (AMPK) through up-regulation of CaM kinase II and Rg3-stimulated eNOS phosphorylation was reversed by AMPK inhibition. The present results provide a mechanism for Rg3-stimulated endothelial NO production.

  11. Ginsenoside Rg3 increases nitric oxide production via increases in phosphorylation and expression of endothelial nitric oxide synthase: Essential roles of estrogen receptor-dependent PI3-kinase and AMP-activated protein kinase

    SciTech Connect

    Hien, Tran Thi; Kim, Nak Doo; Pokharel, Yuba Raj; Oh, Seok Jeong; Lee, Moo Yeol; Kang, Keon Wook

    2010-08-01

    We previously showed that ginsenosides increase nitric oxide (NO) production in vascular endothelium and that ginsenoside Rg3 (Rg3) is the most active one among ginseng saponins. However, the mechanism for Rg3-mediated nitric oxide production is still uncertain. In this study, we determined whether Rg3 affects phosphorylation and expression of endothelial nitric oxide synthase (eNOS) in ECV 304 human endothelial cells. Rg3 increased both the phosphorylation and the expression of eNOS in a concentration-dependent manner and a maximal effect was found at 10 {mu}g/ml of Rg3. The enzyme activities of phosphatidylinositol 3-kinase (PI3-kinase), c-Jun N-terminal kinase (JNK), and p38 kinase were enhanced as were estrogen receptor (ER)- and glucocorticoid receptor (GR)-dependent reporter gene transcriptions in Rg3-treated endothelial cells. Rg3-induced eNOS phosphorylation required the ER-mediated PI3-kinase/Akt pathway. Moreover, Rg3 activates AMP-activated protein kinase (AMPK) through up-regulation of CaM kinase II and Rg3-stimulated eNOS phosphorylation was reversed by AMPK inhibition. The present results provide a mechanism for Rg3-stimulated endothelial NO production.

  12. Phosphoinositide 3-Kinase Gamma Contributes to Neuroinflammation in a Rat Model of Surgical Brain Injury

    PubMed Central

    Huang, Lei; Sherchan, Prativa; Wang, Yuechun; Reis, Cesar; Applegate, Richard L.; Tang, Jiping

    2015-01-01

    Neuroinflammation plays an important role in the pathophysiology of surgical brain injury (SBI). Phosphoinositide 3-kinase gamma (PI3Kγ), predominately expressed in immune and endothelial cells, activates multiple inflammatory responses. In the present study, we investigated the role of PI3Kγ and PI3Kγ-activated phosphodiesterase 3B (PDE3B) in neuroinflammation in a rat model of SBI. One hundred and fifty-two male Sprague Dawley rats (weight 280–350 g) were subjected to a partial right frontal lobe corticotomy model of SBI. A PI3Kγ pharmacological inhibitor (AS252424 or AS605240) was administered intraperitoneally. PI3Kγ siRNA, human recombinant active-PI3Kγ protein, or human recombinant active-PDE3B protein were administered intracerebroventricularly. Post-SBI assessments included neurobehavioral tests, brain water content, Western blot, and immunohistochemistry. Endogenous PI3Kγ levels were increased within peri-resection brain tissues after SBI, accompanied by increased brain water content and neurological functional deficits. There was a trend toward increased endogenous PDE3B phosphorylation after SBI. The selective PI3Kγ inhibitors AS252424 and AS605240 reduced brain water content surrounding corticotomy and improved neurological function after SBI. SBI increased and PI3Kγ inhibitor decreased levels of myeloperoxidase, cluster of differentiation 3, mast cell degranulation, E-selectin, and IL-1 in peri-resection brain tissues. Direct administration of human recombinant active-PI3Kγ protein and active-PDE3B protein countered the protective effect of AS252424. PI3Kγ siRNA reduced PI3Kγ levels, decreased brain water content within peri-resection brain tissues, and improved neurological function after SBI. Collectively, our findings suggest that PI3Kγ contributed to neuroinflammation after SBI. The use of selective PI3Kγ inhibitors may be a novel approach to ameliorating SBI via their anti-inflammation effects. SIGNIFICANCE STATEMENT Life-saving or

  13. Cellular response to low dose radiation: Role of phosphatidylinositol-3 kinase like kinases

    SciTech Connect

    Balajee, A.S.; Meador, J.A.; Su, Y.

    2011-03-24

    It is increasingly realized that human exposure either to an acute low dose or multiple chronic low doses of low LET radiation has the potential to cause different types of cancer. Therefore, the central theme of research for DOE and NASA is focused on understanding the molecular mechanisms and pathways responsible for the cellular response to low dose radiation which would not only improve the accuracy of estimating health risks but also help in the development of predictive assays for low dose radiation risks associated with tissue degeneration and cancer. The working hypothesis for this proposal is that the cellular mechanisms in terms of DNA damage signaling, repair and cell cycle checkpoint regulation are different for low and high doses of low LET radiation and that the mode of action of phosphatidylinositol-3 kinase like kinases (PIKK: ATM, ATR and DNA-PK) determines the dose dependent cellular responses. The hypothesis will be tested at two levels: (I) Evaluation of the role of ATM, ATR and DNA-PK in cellular response to low and high doses of low LET radiation in simple in vitro human cell systems and (II) Determination of radiation responses in complex cell microenvironments such as human EpiDerm tissue constructs. Cellular responses to low and high doses of low LET radiation will be assessed from the view points of DNA damage signaling, DNA double strand break repair and cell cycle checkpoint regulation by analyzing the activities (i.e. post-translational modifications and kinetics of protein-protein interactions) of the key target proteins for PI-3 kinase like kinases both at the intra-cellular and molecular levels. The proteins chosen for this proposal are placed under three categories: (I) sensors/initiators include ATM ser1981, ATR, 53BP1, gamma-H2AX, MDC1, MRE11, Rad50 and Nbs1; (II) signal transducers include Chk1, Chk2, FANCD2 and SMC1; and (III) effectors include p53, CDC25A and CDC25C. The primary goal of this proposal is to elucidate the

  14. The inability of phosphatidylinositol 3-kinase activation to stimulate GLUT4 translocation indicates additional signaling pathways are required for insulin-stimulated glucose uptake.

    PubMed

    Isakoff, S J; Taha, C; Rose, E; Marcusohn, J; Klip, A; Skolnik, E Y

    1995-10-24

    Recent experimental evidence has focused attention to the role of two molecules, insulin receptor substrate 1 (IRS-1) and phosphatidylinositol 3-kinase (PI3-kinase), in linking the insulin receptor to glucose uptake; IRS-1 knockout mice are insulin resistant, and pharmacological inhibitors of PI3-kinase block insulin-stimulated glucose uptake. To investigate the role of PI3-kinase and IRS-1 in insulin-stimulated glucose uptake we examined whether stimulation of insulin-sensitive cells with platelet-derived growth factor (PDGF) or with interleukin 4 (IL-4) stimulates glucose uptake; the activated PDGF receptor (PDGFR) directly binds and activates PI3-kinase, whereas the IL-4 receptor (IL-4R) activates PI3-kinase via IRS-1 or the IRS-1-related molecule 4PS. We found that stimulation of 3T3-L1 adipocytes with PDGF resulted in tyrosine phosphorylation of the PDGFR and activation of PI3-kinase in these cells. To examine whether IL-4 stimulates glucose uptake, L6 myoblasts were engineered to overexpress GLUT4 as well as both chains of the IL-4R (L6/IL-4R/GLUT4); when these L6/IL-4R/GLUT4 myoblasts were stimulated with IL-4, IRS-1 became tyrosine phosphorylated and associated with PI3-kinase. Although PDGF and IL-4 can activate PI3-kinase in the respective cell lines, they do not possess insulin's ability to stimulate glucose uptake and GLUT4 translocation to the plasma membrane. These findings indicate that activation of PI3-kinase is not sufficient to stimulate GLUT4 translocation to the plasma membrane. We postulate that activation of a second signaling pathway by insulin, distinct from PI3-kinase, is necessary for the stimulation of glucose uptake in insulin-sensitive cells.

  15. Structural basis for decreased induction of class IB PI3-kinases expression by MIF inhibitors.

    PubMed

    Singh, Abhay Kumar; Pantouris, Georgios; Borosch, Sebastian; Rojanasthien, Siripong; Cho, Thomas Yoonsang

    2017-01-01

    Macrophage migration inhibitory factor (MIF) is a master regulator of proinflammatory cytokines and plays pathological roles when not properly regulated in rheumatoid arthritis, lupus, atherosclerosis, asthma and cancer. Unlike canonical cytokines, MIF has vestigial keto-enol tautomerase activity. Most of the current MIF inhibitors were screened for the inhibition of this enzymatic activity. However, only some of the enzymatic inhibitors inhibit receptor-mediated biological functions of MIF, such as cell recruitment, through an unknown molecular mechanism. The goal of this study was to understand the molecular basis underlying the pharmacological inhibition of biological functions of MIF. Here, we demonstrate how the structural changes caused upon inhibitor binding translate into the alteration of MIF-induced downstream signalling. Macrophage migration inhibitory factor activates phosphoinositide 3-kinases (PI3Ks) that play a pivotal role in immune cell recruitment in health and disease. There are several different PI3K isoforms, but little is known about how they respond to MIF. We demonstrate that MIF up-regulates the expression of Class IB PI3Ks in leucocytes. We also demonstrate that MIF tautomerase active site inhibitors down-regulate the expression of Class IB PI3Ks as well as leucocyte recruitment in vitro and in vivo. Finally, based on our MIF:inhibitor complex crystal structures, we hypothesize that the reduction in Class IB PI3K expression occurs because of the displacement of Pro1 towards the second loop of MIF upon inhibitor binding, which results in increased flexibility of the loop 2 and sub-optimal MIF binding to its receptors. These results will provide molecular insights for fine-tuning the biological functions of MIF.

  16. Lithium potentiates GSK-3β activity by inhibiting phosphoinositide 3-kinase-mediated Akt phosphorylation

    SciTech Connect

    Tian, Nie; Kanno, Takeshi; Jin, Yu; Nishizaki, Tomoyuki

    2014-07-18

    Highlights: • Lithium suppresses Akt activity by reducing PI3K-mediated Akt phosphorylation. • Lithium enhances GSK-3β activity by reducing Akt-mediated GSK-3β phosphorylation. • Lithium suppresses GSK-3β activity through its direct inhibition. - Abstract: Accumulating evidence has pointed to the direct inhibitory action of lithium, an anti-depressant, on GSK-3β. The present study investigated further insight into lithium signaling pathways. In the cell-free assay Li{sub 2}CO{sub 3} significantly inhibited phosphoinositide 3-kinase (PI3K)-mediated phosphorylation of Akt1 at Ser473, but Li{sub 2}CO{sub 3} did not affect PI3K-mediated PI(3,4,5)P{sub 3} production and 3-phosphoinositide-dependent protein kinase 1 (PDK1)-mediated phosphorylation of Akt1 at Thr308. This indicates that lithium could enhance GSK-3β activity by suppressing Akt-mediated Ser9 phosphorylation of GSK-3β in association with inhibition of PI3K-mediated Akt activation. There was no direct effect of Li{sub 2}CO{sub 3} on Akt1-induced phosphorylation of GSK-3β at Ser9, but otherwise Li{sub 2}CO{sub 3} significantly reduced GSK-3β-mediated phosphorylation of β-catenin at Ser33/37 and Thr41. This indicates that lithium directly inhibits GSK-3β in an Akt-independent manner. In rat hippocampal slices Li{sub 2}CO{sub 3} significantly inhibited phosphorylation of Akt1/2 at Ser473/474, GSK-3β at Ser9, and β-catenin at Ser33/37 and Thr41. Taken together, these results indicate that lithium exerts its potentiating and inhibiting bidirectional actions on GSK-3β activity.

  17. The Association of PI3 Kinase Signaling and Chemoresistance in Advanced Ovarian Cancer

    PubMed Central

    Carden, Craig P.; Stewart, Adam; Thavasu, Parames; Kipps, Emma; Pope, Lorna; Crespo, Mateus; Miranda, Susana; Attard, Gerhardt; Garrett, Michelle D.; Clarke, Paul A.; Workman, Paul; de Bono, Johann S.; Gore, Martin; Kaye, Stan B; Banerji, Udai

    2015-01-01

    Evidence that the phosphoinositide 3-kinase (PI3K) pathway is deregulated in ovarian cancer is largely based on the analysis of surgical specimens sampled at diagnosis and may not reflect the biology of advanced ovarian cancer. We aimed to investigate PI3K signaling in cancer cells isolated from patients with advanced ovarian cancer. Ascites samples were analyzed from 88 patients, of whom 61 received further treatment. Cancer cells were immunomagnetically separated from ascites, and the signaling output of the PI3K pathway was studied by quantifying p-AKT, p-p70S6K, and p-GSK3β by ELISA. Relevant oncogenes, such as PIK3CA and AKT, were sequenced by PCR-amplified mass spectroscopy detection methods. In addition, PIK3CA and AKT2 amplifications and PTEN deletions were analyzed by FISH. p-p70S6K levels were significantly higher in cells from 37 of 61 patients who did not respond to subsequent chemotherapy (0.7184 vs. 0.3496; P = 0.0100), and this difference was greater in patients who had not received previous chemotherapy. PIK3CA and AKT mutations were present in 5% and 0% of samples, respectively. Amplification of PIK3CA and AKT2 and deletion of PTEN was seen in 10%, 10%, and 27% of samples, respectively. Mutations of PIK3CA and amplification of PIK3CA/AKT2 or deletion of PTEN did not correlate with levels of p-AKT, p-p70S6K, and p-GSK3β. In patients with advanced ovarian cancer, there is an association between levels of p-p70S6K and response to subsequent chemotherapy. There is no clear evidence that this is driven specifically by PIK3CA or AKT mutations or by amplifications or deletion of PTEN. PMID:22556379

  18. Role of phosphoinositide 3-kinase in the pathogenesis of acute pancreatitis

    PubMed Central

    Lupia, Enrico; Pigozzi, Luca; Goffi, Alberto; Hirsch, Emilio; Montrucchio, Giuseppe

    2014-01-01

    A large body of experimental and clinical data supports the notion that inflammation in acute pancreatitis has a crucial role in the pathogenesis of local and systemic damage and is a major determinant of clinical severity. Thus, research has recently focused on molecules that can regulate the inflammatory processes, such as phosphoinositide 3-kinases (PI3Ks), a family of lipid and protein kinases involved in intracellular signal transduction. Studies using genetic ablation or pharmacologic inhibitors of different PI3K isoforms, in particular the class I PI3Kδ and PI3Kγ, have contributed to a greater understanding of the roles of these kinases in the modulation of inflammatory and immune responses. Recent data suggest that PI3Ks are also involved in the pathogenesis of acute pancreatitis. Activation of the PI3K signaling pathway, and in particular of the class IB PI3Kγ isoform, has a significant role in those events which are necessary for the initiation of acute pancreatic injury, namely calcium signaling alteration, trypsinogen activation, and nuclear factor-κB transcription. Moreover, PI3Kγ is instrumental in modulating acinar cell apoptosis, and regulating local neutrophil infiltration and systemic inflammatory responses during the course of experimental acute pancreatitis. The availability of PI3K inhibitors selective for specific isoforms may provide new valuable therapeutic strategies to improve the clinical course of this disease. This article presents a brief summary of PI3K structure and function, and highlights recent advances that implicate PI3Ks in the pathogenesis of acute pancreatitis. PMID:25386068

  19. Selective Inhibition of Phosphoinositide 3-Kinase p110α Preserves Lymphocyte Function*

    PubMed Central

    So, Lomon; Yea, Sung Su; Oak, Jean S.; Lu, Mengrou; Manmadhan, Arun; Ke, Qiao Han; Janes, Matthew R.; Kessler, Linda V.; Kucharski, Jeff M.; Li, Lian-Sheng; Martin, Michael B.; Ren, Pingda; Jessen, Katti A.; Liu, Yi; Rommel, Christian; Fruman, David A.

    2013-01-01

    Class IA phosphoinositide 3-kinase (PI3K) is essential for clonal expansion, differentiation, and effector function of B and T lymphocytes. The p110δ catalytic isoform of PI3K is highly expressed in lymphocytes and plays a prominent role in B and T cell responses. Another class IA PI3K catalytic isoform, p110α, is a promising drug target in cancer but little is known about its function in lymphocytes. Here we used highly selective inhibitors to probe the function of p110α in lymphocyte responses in vitro and in vivo. p110α inhibition partially reduced B cell receptor (BCR)-dependent AKT activation and proliferation, and diminished survival supported by the cytokines BAFF and IL-4. Selective p110δ inhibition suppressed B cell responses much more strongly, yet maximal suppression was achieved by targeting multiple PI3K isoforms. In mouse and human T cells, inhibition of single class IA isoforms had little effect on proliferation, whereas pan-class I inhibition did suppress T cell expansion. In mice, selective p110α inhibition using the investigational agent MLN1117 (previously known as INK1117) did not disrupt the marginal zone B cell compartment and did not block T cell-dependent germinal center formation. In contrast, the selective p110δ inhibitor IC87114 strongly suppressed germinal center formation and reduced marginal zone B cell numbers, similar to a pan-class I inhibitor. These findings show that although acute p110α inhibition partially diminishes AKT activation, selective p110α inhibitors are likely to be less immunosuppressive in vivo compared with p110δ or pan-class I inhibitors. PMID:23275335

  20. PHOSPHOINOSITIDE 3-KINASE REGULATES THE ROLE OF RETROMER IN TRANSCYTOSIS OF THE POLYMERIC IMMUNOGLOBULIN RECEPTOR

    PubMed Central

    Vergés, Marcel; Sebastián, Isabel; Mostov, Keith E.

    2007-01-01

    Retromer is a multimeric protein complex that mediates intracellular receptor sorting. One of the roles of retromer is to promote transcytosis of the polymeric immunoglobulin receptor (pIgR) and its ligand polymeric immunoglobulin A (pIgA) in polarized epithelial cells. In Madin-Darby Canine Kidney (MDCK) cells, overexpression of Vps35, the retromer subunit key for cargo recognition, restores transcytosis to a pIgR mutant that is normally degraded. Here we show that pIgA transcytosis was not restored in these cells when treated with the specific phosphoinositide 3-kinase (PI3K) inhibitor LY294002. Likewise, the decrease in pIgA transcytosis by wild-type pIgR seen upon PI3K inhibition was not reverted by Vps35 overexpression. PI3K inhibition reduced membrane association of sorting-nexins (SNX) 1 and 2, which constitute the retromer subcomplex involved in membrane deformation, while association of the Vps35-Vps26-Vps29 subcomplex, involved in cargo recognition, remained virtually unaffected. Colocalization between the two retromer subcomplexes was reduced upon the treatment. Whereas the interaction among the subunits of the Vps35-Vps26-Vps29 subcomplex remained unchanged, less Vps35 was found associated with pIgR upon PI3K inhibition. In addition, colocalization of internalized pIgA with subunits of both retromer subcomplexes throughout the transcytotic pathway was substantially reduced by LY294002 treatment. These data implicate PI3K in controlling retromer’s role in pIgR-pIgA transcytosis. PMID:17184770

  1. Dual roles of hemidesmosomal proteins in the pancreatic epithelium: the phosphoinositide 3-kinase decides.

    PubMed

    Laval, S; Laklai, H; Fanjul, M; Pucelle, M; Laurell, H; Billon-Galés, A; Le Guellec, S; Delisle, M-B; Sonnenberg, A; Susini, C; Pyronnet, S; Bousquet, C

    2014-04-10

    Given the failure of chemo- and biotherapies to fight advanced pancreatic cancer, one major challenge is to identify critical events that initiate invasion. One priming step in epithelia carcinogenesis is the disruption of epithelial cell anchorage to the basement membrane which can be provided by hemidesmosomes (HDs). However, the existence of HDs in pancreatic ductal epithelium and their role in carcinogenesis remain unexplored. HDs have been explored in normal and cancer pancreatic cells, and patient samples. Unique cancer cell models where HD assembly can be pharmacologically manipulated by somatostatin/sst2 signaling have been then used to investigate the role and molecular mechanisms of dynamic HD during pancreatic carcinogenesis. We surprisingly report the presence of mature type-1 HDs comprising the integrin α6β4 and bullous pemphigoid antigen BP180 in the human pancreatic ductal epithelium. Importantly, HDs are shown to disassemble during pancreatic carcinogenesis. HD breakdown requires phosphoinositide 3-kinase (PI3K)-dependent induction of the matrix-metalloprotease MMP-9, which cleaves BP180. Consequently, integrin α6β4 delocalizes to the cell-leading edges where it paradoxically promotes cell migration and invasion through S100A4 activation. As S100A4 in turn stimulates MMP-9 expression, a vicious cycle maintains BP180 cleavage. Inactivation of this PI3K-MMP-9-S100A4 signaling loop conversely blocks BP180 cleavage, induces HD reassembly and inhibits cell invasion. We conclude that mature type-1 HDs are critical anchoring structures for the pancreatic ductal epithelium whose disruption, upon PI3K activation during carcinogenesis, provokes pancreatic cancer cell migration and invasion.

  2. A new calmodulin-binding motif for inositol 1,4,5-trisphosphate 3-kinase regulation.

    PubMed

    Franco-Echevarría, Elsa; Baños-Sanz, Jose I; Monterroso, Begoña; Round, Adam; Sanz-Aparicio, Julia; González, Beatriz

    2014-11-01

    IP3-3K [Ins(1,4,5)P3 3-kinase] is a key enzyme that catalyses the synthesis of Ins(1,3,4,5)P4, using Ins(1,4,5)P3 and ATP as substrates. Both inositides, substrate and product, present crucial roles in the cell. Ins(1,4,5)P3 is a key point in Ca2+ metabolism that promotes Ca2+ release from intracellular stores and together with Ins(1,3,4,5)P4 regulates Ca2+ homoeostasis. In addition, Ins(1,3,4,5)P4 is involved in immune cell development. It has been proved that Ca2+/CaM (calmodulin) regulates the activity of IP3-3K, via direct interaction between both enzymes. Although we have extensive structural knowledge of the kinase domains of the three IP3-3K isoforms, no structural information is available about the interaction between IP3-3K and Ca2+/CaM. In the present paper we describe the crystal structure of the complex between human Ca2+/CaM and the CaM-binding region of human IP3-3K isoform A (residues 158-183) and propose a model for a complex including the kinase domain. The structure obtained allowed us to identify all of the key residues involved in the interaction, which have been evaluated by site-directed mutagenesis, pull-down and fluorescence anisotropy experiments. The results allowed the identification of a new CaM-binding motif, expanding our knowledge about how CaM interacts with its partners.

  3. Protein Kinase Activity of Phosphoinositide 3-Kinase Regulates Cytokine-Dependent Cell Survival

    PubMed Central

    Green, Benjamin D.; Barry, Emma F.; Ma, Yuefang; Woodcock, Joanna; Fitter, Stephen; Zannettino, Andrew C. W.; Pitson, Stuart M.; Hughes, Timothy P.; Lopez, Angel F.; Shepherd, Peter R.; Wei, Andrew H.; Ekert, Paul G.; Guthridge, Mark A.

    2013-01-01

    The dual specificity protein/lipid kinase, phosphoinositide 3-kinase (PI3K), promotes growth factor-mediated cell survival and is frequently deregulated in cancer. However, in contrast to canonical lipid-kinase functions, the role of PI3K protein kinase activity in regulating cell survival is unknown. We have employed a novel approach to purify and pharmacologically profile protein kinases from primary human acute myeloid leukemia (AML) cells that phosphorylate serine residues in the cytoplasmic portion of cytokine receptors to promote hemopoietic cell survival. We have isolated a kinase activity that is able to directly phosphorylate Ser585 in the cytoplasmic domain of the interleukin 3 (IL-3) and granulocyte macrophage colony stimulating factor (GM-CSF) receptors and shown it to be PI3K. Physiological concentrations of cytokine in the picomolar range were sufficient for activating the protein kinase activity of PI3K leading to Ser585 phosphorylation and hemopoietic cell survival but did not activate PI3K lipid kinase signaling or promote proliferation. Blockade of PI3K lipid signaling by expression of the pleckstrin homology of Akt1 had no significant impact on the ability of picomolar concentrations of cytokine to promote hemopoietic cell survival. Furthermore, inducible expression of a mutant form of PI3K that is defective in lipid kinase activity but retains protein kinase activity was able to promote Ser585 phosphorylation and hemopoietic cell survival in the absence of cytokine. Blockade of p110α by RNA interference or multiple independent PI3K inhibitors not only blocked Ser585 phosphorylation in cytokine-dependent cells and primary human AML blasts, but also resulted in a block in survival signaling and cell death. Our findings demonstrate a new role for the protein kinase activity of PI3K in phosphorylating the cytoplasmic tail of the GM-CSF and IL-3 receptors to selectively regulate cell survival highlighting the importance of targeting such pathways in

  4. Carbamazepine enhances the activity of glutamate transporter type 3 via phosphatidylinositol 3-kinase.

    PubMed

    Lee, Gwanwoo; Huang, Yueming; Washington, Jacqueline M; Briggs, Nicole W; Zuo, Zhiyi

    2005-01-01

    Glutamate transporters (also called excitatory amino acid transporters, EAAT) participate in maintaining extracellular homeostasis of glutamate, a major excitatory neurotransmitter, and regulating glutamate neurotransmission. EAAT3, the major neuronal EAAT, may also regulate gamma-aminobutyric acid-mediated inhibitory neurotransmission. Dysfunction of EAAT3 has been shown to induce seizure in rats. We hypothesize that carbamazepine, a commonly used antiepileptic agent, enhances EAAT3 activity. We tested this hypothesis using oocytes artificially expressing EAAT3 and C6 rat glioma cells expressing endogenous EAAT3. In oocytes, carbamazepine dose-dependently enhanced EAAT3 activity. The EC50 of this carbamazepine effect was 12.2muM. The concentrations of carbamazepine to significantly enhance EAAT3 activity were within the therapeutic serum levels (17-51muM) of carbamazepine for the antiepileptic effect. Carbamazepine decreased the Km but did not change the maximal response of EAAT3 to glutamate. Carbamazepine-increased EAAT3 activity was inhibited by wortmannin or LY-294002, phosphatidylinositol 3-kinase (PI3K) inhibitors, but was not affected by staurosporine, chelerythrine or calphostin C, protein kinase C inhibitors. In C6 cells, carbamazepine also enhanced the endogenous EAAT3 activity. However, carbamazepine did not affect the activity of EAAT4 expressed in Cos7 cells. These results suggest that carbamazepine at clinically relevant concentrations specifically enhances the affinity of EAAT3 for glutamate to increase EAAT3 activity via a PI3K-dependent pathway. EAAT3 may be a therapeutic target for carbamazepine in the central nervous system.

  5. Phosphoinositide 3-kinase isoforms selectively couple receptors to vascular L-type Ca(2+) channels.

    PubMed

    Macrez, N; Mironneau, C; Carricaburu, V; Quignard, J F; Babich, A; Czupalla, C; Nürnberg, B; Mironneau, J

    2001-10-12

    Heterodimeric class I phosphoinositide 3-kinase (PI3K) has been shown to be involved in the stimulation of voltage-gated Ca(2+) channels by various mediators. In this study, we bring evidences that vascular L-type Ca(2+) channels can be modulated by both tyrosine kinase-regulated class Ia and G protein-regulated class Ib PI3Ks. Purified recombinant PI3Ks increased the peak Ca(2+) channel current density when applied intracellularly. Furthermore, PI3Kalpha-, beta-, and delta-mediated stimulations of Ca(2+) channel currents were increased by preactivation by a phosphotyrosyl peptide, whereas PI3Kgamma- and beta-mediated effects were increased by Gbetagamma. In freshly isolated and cultured vascular myocytes, angiotensin II and Gbetagamma stimulated L-type Ca(2+) channel current. In contrast, platelet-derived growth factor (PDGF)-BB and the phosphotyrosyl peptide did not stimulate Ca(2+) channel current in freshly isolated cells despite the presence of endogenous PDGF receptors and PI3Kalpha and PI3Kgamma. Interestingly, when endogenous PI3Kbeta expression arose in cultured myocytes, both PDGF and phosphotyrosyl peptide stimulated Ca(2+) channels through PI3Kbeta, as revealed by the inhibitory effect of an anti-PI3Kbeta antibody. These results suggest that endogenous PI3Kbeta but not PI3Kalpha is specifically involved in PDGF receptor-induced stimulation of Ca(2+) channels and that different isoforms of PI3K regulate physiological increases of Ca(2+) influx in vascular myocytes stimulated by vasoconstrictor or growth factor.

  6. Control of neurite outgrowth and growth cone motility by phosphatidylinositol-3-kinase.

    PubMed

    Tornieri, Karine; Welshhans, Kristy; Geddis, Matthew S; Rehder, Vincent

    2006-04-01

    Phosphatidylinositol-3-kinase (PI-3K) has been reported to affect neurite outgrowth both in vivo and in vitro. Here we investigated the signaling pathways by which PI-3K affects neurite outgrowth and growth cone motility in identified snail neurons in vitro. Inhibition of PI-3K with wortmannin (2 microM) or LY 294002 (25 microM) resulted in a significant elongation of filopodia and in a slow-down of neurite outgrowth. Experiments using cytochalasin and blebbistatin, drugs that interfere with actin polymerization and myosin II activity, respectively, demonstrated that filopodial elongation resulting from PI-3K inhibition was dependent on actin polymerization. Inhibition of strategic kinases located downstream of PI-3K, such as Akt, ROCK, and MEK, also caused significant filopodial elongation and a slow-down in neurite outgrowth. Another growth cone parameter, filopodial number, was not affected by inhibition of PI-3K, Akt, ROCK, or MEK. A detailed study of growth cone behavior showed that the filopodial elongation induced by inhibiting PI-3K, Akt, ROCK, and MEK was achieved by increasing two motility parameters: the rate with which filopodia extend (extension rate) and the time that filopodia spend elongating. Whereas the inhibition of ROCK or Akt (both activated by the lipid kinase activity of PI-3K) and MEK (activated by the protein kinase activity of PI-3K) had additive effects, simultaneous inhibition of Akt and ROCK showed no additive effect. We further demonstrate that the effects on filopodial dynamics investigated were calcium-independent. Taken together, our results suggest that inhibition of PI-3K signaling results in filopodial elongation and a slow-down of neurite advance, reminiscent of growth cone searching behavior.

  7. Supramolecular nanoparticles that target phosphoinositide-3-kinase overcome insulin resistance and exert pronounced antitumor efficacy.

    PubMed

    Kulkarni, Ashish A; Roy, Bhaskar; Rao, Poornima S; Wyant, Gregory A; Mahmoud, Ayaat; Ramachandran, Madhumitha; Sengupta, Poulomi; Goldman, Aaron; Kotamraju, Venkata Ramana; Basu, Sudipta; Mashelkar, Raghunath A; Ruoslahti, Erkki; Dinulescu, Daniela M; Sengupta, Shiladitya

    2013-12-01

    The centrality of phosphoinositide-3-kinase (PI3K) in cancer etiology is well established, but clinical translation of PI3K inhibitors has been limited by feedback signaling, suboptimal intratumoral concentration, and an insulin resistance "class effect." This study was designed to explore the use of supramolecular nanochemistry for targeting PI3K to enhance antitumor efficacy and potentially overcome these limitations. PI3K inhibitor structures were rationally modified using a cholesterol-based derivative, facilitating supramolecular nanoassembly with L-α-phosphatidylcholine and DSPE-PEG [1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[amino(polythylene glycol)]. The supramolecular nanoparticles (SNP) that were assembled were physicochemically characterized and functionally evaluated in vitro. Antitumor efficacy was quantified in vivo using 4T1 breast cancer and K-Ras(LSL/+)/Pten(fl/fl) ovarian cancer models, with effects on glucose homeostasis evaluated using an insulin sensitivity test. The use of PI103 and PI828 as surrogate molecules to engineer the SNPs highlighted the need to keep design principles in perspective; specifically, potency of the active molecule and the linker chemistry were critical principles for efficacy, similar to antibody-drug conjugates. We found that the SNPs exerted a temporally sustained inhibition of phosphorylation of Akt, mTOR, S6K, and 4EBP in vivo. These effects were associated with increased antitumor efficacy and survival as compared with PI103 and PI828. Efficacy was further increased by decorating the nanoparticle surface with tumor-homing peptides. Notably, the use of SNPs abrogated the insulin resistance that has been associated widely with other PI3K inhibitors. This study provides a preclinical foundation for the use of supramolecular nanochemistry to overcome current challenges associated with PI3K inhibitors, offering a paradigm for extension to other molecularly targeted therapeutics being explored for cancer

  8. Assessing the subcellular distribution of oncogenic phosphoinositide 3-kinase using microinjection into live cells

    PubMed Central

    Layton, Meredith J.; Rynkiewicz, Natalie K.; Ivetac, Ivan; Horan, Kristy A.; Mitchell, Christina A.; Phillips, Wayne A.

    2014-01-01

    Oncogenic mutations in PIK3CA lead to an increase in intrinsic phosphoinositide kinase activity, but it is thought that increased access of PI3Kα (phosphoinositide 3-kinase α) to its PM (plasma membrane) localized substrate is also required for increased levels of downstream PIP3/Akt [phosphoinositide-3,4,5-trisphosphate/also called PKB (protein kinase B)] signalling. We have studied the subcellular localization of wild-type and the two most common oncogenic mutants of PI3Kα in cells maintained in growth media, and starved or stimulated cells using a novel method in which PI3Kα is pre-formed as a 1:1 p110α:p85α complex in vitro then introduced into live cells by microinjection. Oncogenic E545K and H1047R mutants did not constitutively interact with membrane lipids in vitro or in cells maintained in 10% (v/v) FBS. Following stimulation of RTKs (receptor tyrosine kinases), microinjected PI3Kα was recruited to the PM, but oncogenic forms of PI3Kα were not recruited to the PM to a greater extent and did not reside at the PM longer than the wild-type PI3Kα. Instead, the E545K mutant specifically bound activated Cdc42 in vitro and microinjection of E545K was associated with the formation of cellular protrusions, providing some preliminary evidence that changes in protein–protein interactions may play a role in the oncogenicity of the E545K mutant in addition to the well-known changes in lipid kinase activity. PMID:27919038

  9. Phosphatidylinositol 3-kinase pathway regulates sperm viability but not capacitation on boar spermatozoa.

    PubMed

    Aparicio, I M; Bragado, M J; Gil, M C; Garcia-Herreros, M; Gonzalez-Fernandez, L; Tapia, J A; Garcia-Marin, L J

    2007-08-01

    Phosphatidylinositol 3-kinase (PI3-K) plays an important role in cell survival in somatic cells and recent data pointed out a role for this kinase in sperm capacitation and acrosome reaction (AR). This study was undertaken to evaluate the role of PI3-K pathway on porcine spermatozoa capacitation, AR, and viability using two unrelated PI3-K inhibitors, LY294002 and wortmannin. In boar spermatozoa, we have identified the presence of PDK1, PKB/Akt, and PTEN, three of the main key components of the PI3-K pathway. Incubation of boar sperm in a capacitating medium (TCM) caused a significant increase in the percentage of capacitated (25 +/- 2 to 34 +/- 1% P < 0.05, n = 6) and acrosome reacted (1 +/- 1 to 11 +/- 1% P < 0.01, n = 6) spermatozoa compared with sperm in basal medium (TBM). Inhibition of PI3-K did affect neither the capacitation status nor AR nor protein p32 tyrosine phosphorylation of boar spermatozoa incubated in TBM or TCM. Boar sperm viability in TBM was significantly decreased by 40 and 20% after pretreatment with LY294002 or wortmannin, respectively. Similar results were observed after incubation of boar spermatozoa in TCM. Treatment of boar spermatozoa with the analog of cAMP, 8Br-cAMP significantly prevented the reduction on sperm viability. Our results provide evidence for an important role of the PI3-K pathway in the regulation of boar sperm viability and suggests that other signaling pathways different from PI3-K must be activated downstream of cAMP to contribute to regulation of sperm viability. Finally, in our conditions the PI3-K pathway seems not related with boar sperm capacitation or AR.

  10. Involvement of Phosphatidylinositol 3-kinase in the regulation of proline catabolism in Arabidopsis thaliana

    PubMed Central

    Leprince, Anne-Sophie; Magalhaes, Nelly; De Vos, Delphine; Bordenave, Marianne; Crilat, Emilie; Clément, Gilles; Meyer, Christian; Munnik, Teun; Savouré, Arnould

    2015-01-01

    Plant adaptation to abiotic stresses such as drought and salinity involves complex regulatory processes. Deciphering the signaling components that are involved in stress signal transduction and cellular responses is of importance to understand how plants cope with salt stress. Accumulation of osmolytes such as proline is considered to participate in the osmotic adjustment of plant cells to salinity. Proline accumulation results from a tight regulation between its biosynthesis and catabolism. Lipid signal components such as phospholipases C and D have previously been shown to be involved in the regulation of proline metabolism in Arabidopsis thaliana. In this study, we demonstrate that proline metabolism is also regulated by class-III Phosphatidylinositol 3-kinase (PI3K), VPS34, which catalyses the formation of phosphatidylinositol 3-phosphate (PI3P) from phosphatidylinositol. Using pharmacological and biochemical approaches, we show that the PI3K inhibitor, LY294002, affects PI3P levels in vivo and that it triggers a decrease in proline accumulation in response to salt treatment of A. thaliana seedlings. The lower proline accumulation is correlated with a lower transcript level of Pyrroline-5-carboxylate synthetase 1 (P5CS1) biosynthetic enzyme and higher transcript and protein levels of Proline dehydrogenase 1 (ProDH1), a key-enzyme in proline catabolism. We also found that the ProDH1 expression is induced in a pi3k-hemizygous mutant, further demonstrating that PI3K is involved in the regulation of proline catabolism through transcriptional regulation of ProDH1. A broader metabolomic analysis indicates that LY294002 also reduced other metabolites, such as hydrophobic and aromatic amino acids and sugars like raffinose. PMID:25628629

  11. Oxidative stress stimulates skeletal muscle glucose uptake through a phosphatidylinositol 3-kinase-dependent pathway

    PubMed Central

    Higaki, Yasuki; Mikami, Toshio; Fujii, Nobuharu; Hirshman, Michael F.; Koyama, Katsuhiro; Seino, Tetsuya; Tanaka, Keitaro; Goodyear, Laurie J.

    2010-01-01

    We determined the acute effects of oxidative stress on glucose uptake and intracellular signaling in skeletal muscle by incubating muscles with reactive oxygen species (ROS). Xanthine oxidase (XO) is a superoxide-generating enzyme that increases ROS. Exposure of isolated rat extensor digitorum longus (EDL) muscles to Hx/XO (Hx/XO) for 20 min resulted in a dose-dependent increase in glucose uptake. To determine whether the mechanism leading to Hx/XO-stimulated glucose uptake is associated with the production of H2O2, EDL muscles from rats were preincubated with the H2O2 scavenger catalase or the superoxide scavenger superoxide dismutase (SOD) prior to incubation with Hx/XO. Catalase treatment, but not SOD, completely inhibited the increase in Hx/XO-stimulated 2-deoxyglucose (2-DG) uptake, suggesting that H2O2 is an intermediary leading to Hx/XO-stimulated glucose uptake with incubation. Direct H2O2 also resulted in a dose-dependent increase in 2-DG uptake in isolated EDL muscles, and the maximal increase was threefold over basal levels at a concentration of 600 μmol/l H2O2. H2O2-stimulated 2-DG uptake was completely inhibited by the phosphatidylinositol 3-kinase (PI3K) inhibitor wortmannin, but not the nitric oxide inhibitor NG-monomethyl-L-arginine. H2O2 stimulated the phosphorylation of Akt Ser473 (7-fold) and Thr308 (2-fold) in isolated EDL muscles. H2O2 at 600 μmol/l had no effect on ATP concentrations and did not increase the activities of either the α1 or α2 catalytic isoforms of AMP-activated protein kinase. These results demonstrate that acute exposure of muscle to ROS is a potent stimulator of skeletal muscle glucose uptake and that this occurs through a PI3K-dependent mechanism. PMID:18303121

  12. Selective inhibition of phosphoinositide 3-kinase p110α preserves lymphocyte function.

    PubMed

    So, Lomon; Yea, Sung Su; Oak, Jean S; Lu, Mengrou; Manmadhan, Arun; Ke, Qiao Han; Janes, Matthew R; Kessler, Linda V; Kucharski, Jeff M; Li, Lian-Sheng; Martin, Michael B; Ren, Pingda; Jessen, Katti A; Liu, Yi; Rommel, Christian; Fruman, David A

    2013-02-22

    Class IA phosphoinositide 3-kinase (PI3K) is essential for clonal expansion, differentiation, and effector function of B and T lymphocytes. The p110δ catalytic isoform of PI3K is highly expressed in lymphocytes and plays a prominent role in B and T cell responses. Another class IA PI3K catalytic isoform, p110α, is a promising drug target in cancer but little is known about its function in lymphocytes. Here we used highly selective inhibitors to probe the function of p110α in lymphocyte responses in vitro and in vivo. p110α inhibition partially reduced B cell receptor (BCR)-dependent AKT activation and proliferation, and diminished survival supported by the cytokines BAFF and IL-4. Selective p110δ inhibition suppressed B cell responses much more strongly, yet maximal suppression was achieved by targeting multiple PI3K isoforms. In mouse and human T cells, inhibition of single class IA isoforms had little effect on proliferation, whereas pan-class I inhibition did suppress T cell expansion. In mice, selective p110α inhibition using the investigational agent MLN1117 (previously known as INK1117) did not disrupt the marginal zone B cell compartment and did not block T cell-dependent germinal center formation. In contrast, the selective p110δ inhibitor IC87114 strongly suppressed germinal center formation and reduced marginal zone B cell numbers, similar to a pan-class I inhibitor. These findings show that although acute p110α inhibition partially diminishes AKT activation, selective p110α inhibitors are likely to be less immunosuppressive in vivo compared with p110δ or pan-class I inhibitors.

  13. Rapamycin regulates connective tissue growth factor expression of lung epithelial cells via phosphoinositide 3-kinase.

    PubMed

    Xu, Xuefeng; Wan, Xuan; Geng, Jing; Li, Fei; Yang, Ting; Dai, Huaping

    2013-09-01

    The pathogenesis of idiopathic pulmonary fibrosis (IPF) remains largely unknown. It is believed that IPF is mainly driven by activated alveolar epithelial cells that have a compromised migration capacity, and that also produce substances (such as connective tissue growth factor, CTGF) that contribute to fibroblast activation and matrix protein accumulation. Because the mechanisms regulating these processes are unclear, the aim of this study was to determine the role of rapamycin in regulating epithelial cell migration and CTGF expression. Transformed epithelial cell line A549 and normal human pulmonary alveolar or bronchial epithelial cells were cultured in regular medium or medium containing rapamycin. Real time reverse transcriptase polymerase chain reaction was employed to determine CTGF mRNA expression. Western blotting and an enzyme-linked immunosorbent assay were used for detecting CTGF protein. Wound healing and migration assays were used to determine the cell migration potential. Transforming growth factor (TGF)-β type I receptor (TβRI) inhibitor, SB431542 and phosphoinositide 3-kinase (PI3K) inhibitor, LY294002 were used to determine rapamycin's mechanism of action. It was found that treatment of A549 and normal human alveolar or bronchial epithelial cells with rapamycin significantly promoted basal or TGF-β1 induced CTGF expression. LY294002, not SB431542 attenuated the promotional effect of rapamycin on CTGF expression. Cell mobility was not affected by rapamycin in wound healing and migration assays. These data suggest rapamycin has a profibrotic effect in vitro and underscore the potential of combined therapeutic approach with PI3K and mammalian target of rapamycin inhibitors for the treatment of animal or human lung fibrosis.

  14. Supramolecular nanoparticles that target phosphatidylinositol-3-kinase overcome insulin resistance and exert pronounced antitumor efficacy

    PubMed Central

    Kulkarni, Ashish A.; Roy, Bhaskar; Rao, Poornima S.; Wyant, Gregory A.; Mahmoud, Ayaat; Ramachandran, Madhumitha; Sengupta, Poulomi; Goldman, Aaron; Kotamraju, Venkata Ramana; Basu, Sudipta; Mashelkar, Raghunath A; Ruoslahti, Erkki; Dinulescu, Daniela M.; Sengupta, Shiladitya

    2013-01-01

    The centrality of phosphatidylinositol-3-kinase (PI3K) in cancer etiology is well established, but clinical translation of PI3K inhibitors has been limited by feedback signaling, suboptimal intra-tumoral concentration and an insulin resistance ‘class effect’. The current study was designed to explore the use of supramolecular nanochemistry for targeting PI3K to enhance antitumor efficacy and potentially overcome these limitations. PI3K inhibitor structures were rationally modified using a cholesterol-based derivative, facilitating supramolecular nanoassembly with L-α-phosphatidylcholine and DSPE-PEG. The supramolecular nanoparticles that were assembled were physicochemically characterized and functionally evaluated in vitro. Antitumor efficacy was quantified in vivo using 4T1 breast cancer and K-RasLSL/+/Ptenfl/fl ovarian cancer models, with effects on glucose homeostasis evaluated using an insulin sensitivity test. The use of PI103 and PI828 as surrogate molecules to engineer the supramolecular nanoparticles highlighted the need to keep design principles in perspective; specifically, potency of the active molecule and the linker chemistry were critical principles for efficacy, similar to antibody-drug conjugates. We found that the supramolecular nanoparticles exerted a temporally-sustained inhibition of phosphorylation of Akt, mTOR, S6K and 4EBP in vivo. These effects were associated with increased antitumor efficacy and survival as compared with PI103 and PI828. Efficacy was further increased by decorating the nanoparticle surface with tumor-homing peptides. Notably, the use of supramolecular nanoparticles abrogated the insulin resistance that has been associated widely with other PI3K inhibitors. This study provides a preclinical foundation for the use of supramolecular nanochemistry to overcome current challenges associated with PI3K inhibitors, offering a paradigm for extension to other molecularly targeted therapeutics being explored for cancer treatment

  15. Enterococcus faecalis infection activates phosphatidylinositol 3-kinase signaling to block apoptotic cell death in macrophages.

    PubMed

    Zou, Jun; Shankar, Nathan

    2014-12-01

    Apoptosis is an intrinsic immune defense mechanism in the host response to microbial infection. Not surprisingly, many pathogens have evolved various strategies to manipulate this important pathway to benefit their own survival and dissemination in the host during infection. To our knowledge, no attempts have been made to explore the host cell survival signals modulated by the bacterium Enterococcus faecalis. Here, we show for the first time that during early stages of infection, internalized enterococci can prevent host cell (RAW264.7 cells, primary macrophages, and mouse embryonic fibroblasts [MEFs]) apoptosis induced by a wide spectrum of proapoptotic stimuli. Activation of caspase 3 and cleavage of the caspase 3 substrate poly(ADP-ribose) polymerase were inhibited in E. faecalis-infected cells, indicating that E. faecalis protects macrophages from apoptosis by inhibiting caspase 3 activation. This antiapoptotic activity in E. faecalis-infected cells was dependent on the activation of the phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway, which resulted in the increased expression of the antiapoptotic factor Bcl-2 and decreased expression of the proapoptotic factor Bax. Further analysis revealed that active E. faecalis physiology was important for inhibition of host cell apoptosis, and this feature seemed to be a strain-independent trait among E. faecalis isolates. Employing a mouse peritonitis model, we also determined that cells collected from the peritoneal lavage fluid of E. faecalis-infected mice showed reduced levels of apoptosis compared to cells from uninfected mice. These results show early modulation of apoptosis during infection and have important implications for enterococcal pathogenesis.

  16. Oleanolic acid supplement attenuates liquid fructose-induced adipose tissue insulin resistance through the insulin receptor substrate-1/phosphatidylinositol 3-kinase/Akt signaling pathway in rats.

    PubMed

    Li, Ying; Wang, Jianwei; Gu, Tieguang; Yamahara, Johji; Li, Yuhao

    2014-06-01

    Oleanolic acid, a triterpenoid contained in more than 1620 plants including various fruits and foodstuffs, has numerous metabolic effects, such as hepatoprotection. However, its underlying mechanisms remain poorly understood. Adipose tissue insulin resistance (Adipo-IR) may contribute to the development and progress of metabolic abnormalities through release of excessive free fatty acids from adipose tissue. This study investigated the effect of oleanolic acid on Adipo-IR. The results showed that supplement with oleanolic acid (25 mg/kg, once daily, by oral gavage) over 10 weeks attenuated liquid fructose-induced increase in plasma insulin concentration and the homeostasis model assessment of insulin resistance (HOMA-IR) index in rats. Simultaneously, oleanolic acid reversed the increase in the Adipo-IR index and plasma non-esterified fatty acid concentrations during the oral glucose tolerance test assessment. In white adipose tissue, oleanolic acid enhanced mRNA expression of the genes encoding insulin receptor, insulin receptor substrate (IRS)-1 and phosphatidylinositol 3-kinase. At the protein level, oleanolic acid upregulated total IRS-1 expression, suppressed the increased phosphorylated IRS-1 at serine-307, and restored the increased phosphorylated IRS-1 to total IRS-1 ratio. In contrast, phosphorylated Akt to total Akt ratio was increased. Furthermore, oleanolic acid reversed fructose-induced decrease in phosphorylated-Akt/Akt protein to plasma insulin concentration ratio. However, oleanolic acid did not affect IRS-2 mRNA expression. Therefore, these results suggest that oleanolic acid supplement ameliorates fructose-induced Adipo-IR in rats via the IRS-1/phosphatidylinositol 3-kinase/Akt pathway. Our findings may provide new insights into the mechanisms of metabolic actions of oleanolic acid. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Estradiol regulates the insulin-like growth factor-I (IGF-I) signalling pathway: A crucial role of phosphatidylinositol 3-kinase (PI 3-kinase) in estrogens requirement for growth of MCF-7 human breast carcinoma cells

    SciTech Connect

    Bernard, Laurence; Legay, Christine; Adriaenssens, Eric; Mougel, Alexandra; Ricort, Jean-Marc . E-mail: ricort@lbpa.ens-cachan.fr

    2006-12-01

    Estrogens can stimulate the proliferation of estrogen-responsive breast cancer cells by increasing their proliferative response to insulin-like growth factors. With a view to investigating the molecular mechanisms implicated, we studied the effect of estradiol on the expression of proteins implicated in the insulin-like growth factor signalling pathway. Estradiol dose- and time-dependently increased the expression of insulin receptor substrate-1 and the p85/p110 subunits of phosphatidylinositol 3-kinase but did not change those of ERK2 and Akt/PKB. ICI 182,780 did not inhibit estradiol-induced IRS-1 and p85 expression. Moreover, two distinct estradiol-BSA conjugate compounds were as effective as estradiol in inducing IRS-1 and p85/p110 expression indicating the possible implication of an estradiol membrane receptor. Comparative analysis of steroids-depleted and steroids-treated cells showed that IGF-I only stimulates cell growth in the latter condition. Nevertheless, expression of a constitutively active form of PI 3-kinase in steroid-depleted cells triggers proliferation. These results demonstrate that estradiol positively regulates essential proteins of the IGF signalling pathway and put in evidence that phosphatidylinositol 3-kinase plays a central role in the synergistic pro-proliferative action of estradiol and IGF-I.

  18. Tissue Kallikrein Reverses Insulin Resistance and Attenuates Nephropathy in Diabetic Rats by Activation of PI3 kinase/Akt and AMPK Signaling Pathways

    PubMed Central

    Yuan, Gang; Deng, Juanjuan; Wang, Tao; Zhao, Chunxia; Xu, Xizheng; Wang, Peihua; Voltz, James W.; Edin, Matthew L.; Xiao, Xiao; Chao, Lee; Chao, Julie; Zhang, Xin A.; Zeldin, Darryl C.; Wang, Dao Wen

    2007-01-01

    We previously reported that intravenous delivery of the human tissue kallikrein (HK) gene reduced blood pressure and plasma insulin levels in fructose-induced hypertensive rats with insulin resistance. In the current study, we evaluated the potential of a recombinant adeno-associated viral vector expressing the HK cDNA (rAAV·HK) as a sole, long term therapy to correct insulin resistance and prevent renal damage in streptozotocin-induced type-2 diabetic rats. Administration of streptozotocin in conjunction with a high fat diet induced systemic hypertension, diabetes and renal damage in rats. Delivery of rAAV·HK resulted in a long-term reduction in blood pressure, and fasting plasma insulin was significantly lower in the rAAV·HK group than in the control group. The expression of PI3-kinase p110 catalytic subunit, and the levels of phosphorylation at residue Thr-308 of Akt, insulin receptor B and AMP-activated protein kinases (AMPK) were significantly decreased in organs from diabetic animals. These changes were significantly attenuated following rAAV-mediated HK gene therapy. Moreover, rAAV·HK significantly decreased urinary microalbumin excretion, improved creatinine clearance and increased urinary osmolarity. HK gene therapy also attenuated diabetic renal damage as assessed by histology. Together, these findings demonstrate that rAAV·HK delivery can efficiently attenuate hypertension, insulin resistance and diabetic nephropathy in streptozotocin-induced diabetic rats. PMID:17272402

  19. [The role of phosphoinositide-3-kinase in controlling the shape and directional movement in Physarum polycephalum plasmodium].

    PubMed

    Matveeva, N B; Beĭlina, S I; Teplov, V A

    2008-01-01

    The influence of wortmannin and LY294002, specific inhibitors of phosphoinosite-3-kinase, on the shape, motile behavior, and chemotaxis toward glucose has been investigated in Physarum polycephalum plasmodium, a multinuclear amoeboid cell with the autooscillatory mode of motion. Both inhibitors were shown to cause a reduction of the plasmodium frontal edge and a decrease in the efficiency of mass transfer during migration. They also suppress chemotaxis toward glucose and eliminate characteristic changes in autooscillatory behavior normally observed in response to the treatment of the whole plasmodium with glucose. The manifestation of these effects depends on the inhibitor concentration, the duration of treatment, and the size of plasmodium. The involvement of phosphoinosite-3-kinase in creating the frontal edge and in controlling the chemotaxis of Physarum plasmodium suggests that the interrelation of polar shape and directional movement of amoeboid cells with the distribution of phosphoinositides in the plasma membrane has the universal nature.

  20. Insulin-stimulated phosphatidylinositol 3-kinase activity and 2-deoxy-D-glucose uptake in rat skeletal muscles.

    PubMed

    Elmendorf, J S; Damrau-Abney, A; Smith, T R; David, T S; Turinsky, J

    1995-03-28

    To date there is suggestive evidence that phosphatidylinositol 3-kinase participates in insulin-stimulated glucose transport. However, its involvement in skeletal muscle, a major site of insulin-stimulated glucose disposal, has not been addressed. Therefore, we tested the effects of wortmannin, a known inhibitor of phosphatidylinositol 3-kinase, on insulin-stimulated 2-deoxyglucose uptake by rat soleus muscle in vitro: Wortmannin (1 microM) reversibly inhibited insulin-induced 2-deoxyglucose uptake in soleus muscle by 44%. Inclusion of 5 microM wortmannin in the incubation medium completely abolished the insulin-induced increment in 2-deoxyglucose uptake. In conclusion, the insulin-signaling cascade linking insulin-receptor tyrosine kinase activation to glucose uptake in skeletal muscle.

  1. [Significance of phosphoinositide 3 kinase/AKT pathway alterations in endometrial carcinoma].

    PubMed

    Yang, Xi; Dong, Ying; Zhang, Xiao-ming; Liang, Ying; Zhang, Ying; Meng, Yi-ting; Wang, Ying; Wang, Wei; Nong, Lin; Li, Ting; Liao, Qin-Ping

    2011-12-01

    To investigate the clinicopathologic and prognostic implications of phosphoinositide 3 kinase (PI3K)/AKT pathway alterations in endometrial cancers of Chinese women. The expression of PTEN, p-AKT, and ER/PR was assessed in 71 cases of endometrial carcinoma by immunohistochemistry (EnVision method). The PIK3CA mutation at exon 9 and exon 20 was analyzed by PCR and direct sequencing in 34 tumors. (1) Of the 71 cases of endometrial carcinoma, 65 cases were endometrioid adenocarcinoma (EEC) and 6 cases were nonendometrioid adenocarcinoma (NEEC). PTEN loss of expression was found in 63.4% (45/71) of tumors, and more commonly occurred in EEC (66.2%, 43/65) than that in NEEC (2/6, P = 0.18). Patients with PTEN loss in their tumors (45 cases) had a better survival than those without (26 cases, P = 0.07). In ER negative subgroup, the patients with PTEN loss of expression (12 cases) had longer survival than those with normal PTEN expression (7 cases; P = 0.04). (2) The frequency of PIK3CA mutation was 41.2% (14/34) with a hot mutation spot at T544 in exon 9. PIK3CA mutations more commonly occurred in EEC (44.8%, 13/29) than in NEEC (1/5, P > 0.05). The mutations at exon 9 more commonly occurred in EEC, well- and moderately-differentiated EEC, and tumors at early stage (P > 0.05). On the contrary, in tumors at early stages, the frequency of mutations in exon 20 (14.3%, 4/28) was significantly lower than that at late stages (4/6, P = 0.01). (3) p-AKT was positive in 59.2% (42/71) of tumors that were more frequently found in EEC (60.0%, 39/65) than that in NEEC (3/6, P = 0.68). However, the significant difference of p-AKT expression was found between well- and moderately-differentiated EEC (75.0%, 21/28; 53.6%, 15/28) and poorly-differentiated EEC (3/9, P = 0.02). Moreover, p-AKT expression was significantly correlated with positive ER (r = 0.339, P = 0.00). Endometrial carcinoma patients with loss of PTEN and p-AKT positivity have a favorable prognosis. PIK3CA mutations at

  2. Phosphatidylinositol-3 kinase-dependent translational regulation of Id1 involves the PPM1G phosphatase

    PubMed Central

    Xu, Kaiming; Wang, Lanfang; Feng, Wei; Feng, Yue; Shu, Hui-Kuo G.

    2016-01-01

    Id1 is a helix-loop-helix transcriptional modulator that increases the aggressiveness of malignant glial neoplasms. Since most glioblastomas (GBMs) show increased phosphatidylinositol-3 kinase (PI-3K) signaling, we sought to determine whether this pathway regulates Id1 expression. Higher basal Id1 expression correlates with dysregulated PI-3K signaling in multiple established GBM cell lines. Further characterization of PI-3K-dependent Id1 regulation reveals that chemical or genetic inhibition of PI-3K signaling reduces Id1 protein but not mRNA expression. Overall, PI-3K signaling appears to enhance Id1 translation with no significant effect on its stability. PI-3K signaling is known to regulate protein translation through mTORC1-dependent phosphorylation of 4E-BP1, which reduces its association with and inhibition of the translation initiation factor eIF4E. Interestingly, while inhibition of PI-3K and AKT lowers 4E-BP1 phosphorylation and expression of Id1 in all cases, inhibition of TORC1 with rapamycin does not consistently have a similar effect suggesting an alternative mechanism for PI-3K-dependent regulation of Id1 translation. We now identify a potential role for the serine-threonine phosphatase PPM1G in translational regulation of Id1 protein expression. PPM1G knockdown by siRNA increase both 4E-BP1 phosphorylation and Id1 expression and PPM1G and 4E-BP1 co-associates in GBM cells. Furthermore, PPM1G is a phosphoprotein and this phosphorylation appears to be regulated by PI-3K activity. Finally, PI-3K inhibition increases PPM1G activity when assessed by an in vitro phosphatase assay. Our findings provide the first evidence that the PI-3K/AKT signaling pathway modulates PPM1G activity resulting in a shift in the balance between hyper- and hypo-phosphorylated 4E-BP1 and translational regulation of Id1 expression. PMID:27065332

  3. PI3 kinase is involved in cocaine behavioral sensitization and its reversal with brain area specificity

    SciTech Connect

    Zhang Xiuwu . E-mail: xwzhang@duke.edu; Mi Jing; Wetsel, William C.; Davidson, Colin; Xiong Xieying; Chen Qiang; Ellinwood, Everett H.; Lee, Tong H.

    2006-02-24

    Phosphatidylinositol 3-kinase (PI3K) is an important signaling molecule involved in cell differentiation, proliferation, survival, and phagocytosis, and may participate in various brain functions. To determine whether it is also involved in cocaine sensitization, we measured the p85{alpha}/p110 PI3K activity in the nuclear accumbens (NAc) shell, NAc core, and prefrontal cortex (PFC) following establishment of cocaine sensitization and its subsequent reversal. Naive rats were rank-ordered and split into either daily cocaine or saline pretreatment group based on their locomotor responses to an acute cocaine injection (7.5 mg/kg, i.p.). These two groups were then injected with cocaine (40 mg/kg, s.c.) or saline for 4 consecutive days followed by 9-day withdrawal. Cocaine sensitization was subsequently reversed by 5 daily injections of the D{sub 1}/D{sub 2} agonist pergolide (0.1 mg/kg, s.c.) in combination with the 5-HT{sub 3} antagonist ondansetron (0.2 mg/kg, s.c., 3.5 h after pergolide injection). After another 9-day withdrawal, behavioral cocaine sensitization and its reversal were confirmed with an acute cocaine challenge (7.5 mg/kg, i.p.), and animals were sacrificed the next day for measurement of p85{alpha}/p110 PI3K activity. Cocaine-sensitized animals exhibited increased PI3K activity in the NAc shell, and this increase was reversed by combined pergolide/ondansetron treatment, which also reversed behavioral sensitization. In the NAc core and PFC, cocaine sensitization decreased and increased the PI3K activity, respectively. These changes, in contrast to that in the NAc shell, were not normalized following the reversal of cocaine-sensitization. Interestingly, daily injections of pergolide alone in saline-pretreated animals induced PI3K changes that were similar to the cocaine sensitization-associated changes in the NAc core and PFC but not the NAc shell; furthermore, these changes in saline-pretreated animals were prevented by ondansetron given 3.5 h after

  4. Pharmacologic Profiling of Phosphoinositide 3-Kinase Inhibitors as Mitigators of Ionizing Radiation–Induced Cell Death

    PubMed Central

    Sharlow, Elizabeth R.; Epperly, Michael W.; Lira, Ana; Leimgruber, Stephanie; Skoda, Erin M.; Wipf, Peter; Greenberger, Joel S.

    2013-01-01

    Ionizing radiation (IR) induces genotoxic stress that triggers adaptive cellular responses, such as activation of the phosphoinositide 3-kinase (PI3K)/Akt signaling cascade. Pluripotent cells are the most important population affected by IR because they are required for cellular replenishment. Despite the clear danger to large population centers, we still lack safe and effective therapies to abrogate the life-threatening effects of any accidental or intentional IR exposure. Therefore, we computationally analyzed the chemical structural similarity of previously published small molecules that, when given after IR, mitigate cell death and found a chemical cluster that was populated with PI3K inhibitors. Subsequently, we evaluated structurally diverse PI3K inhibitors. It is remarkable that 9 of 14 PI3K inhibitors mitigated γIR-induced death in pluripotent NCCIT cells as measured by caspase 3/7 activation. A single intraperitoneal dose of LY294002 [2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one], administered to mice at 4 or 24 hours, or PX-867 [(4S,4aR,5R,6aS,9aR,Z)-11-hydroxy-4-(methoxymethyl)-4a,6a-dimethyl-2,7,10-trioxo-1-(pyrrolidin-1-ylmethylene)-1,2,4,4a,5,6,6a,7,8,9,9a,10-dodecahydroindeno[4,5-H]isochromen-5-yl acetate (CID24798773)], administered 4 hours after a lethal dose of γIR, statistically significantly (P < 0.02) enhanced in vivo survival. Because cell cycle checkpoints are important regulators of cell survival after IR, we examined cell cycle distribution in NCCIT cells after γIR and PI3K inhibitor treatment. LY294002 and PX-867 treatment of nonirradiated cells produced a marked decrease in S phase cells with a concomitant increase in the G1 population. In irradiated cells, LY294002 and PX-867 treatment also decreased S phase and increased the G1 and G2 populations. Treatment with LY294002 or PX-867 decreased γIR-induced DNA damage as measured by γH2AX, suggesting reduced DNA damage. These results indicate pharmacologic inhibition of PI3K after

  5. Anti-inflammation effects of naloxone involve phosphoinositide 3-kinase delta and gamma.

    PubMed

    Wang, Tao-Yeuan; Su, Nuan-Yen; Shih, Ping-Cheng; Tsai, Pei-Shan; Huang, Chun-Jen

    2014-12-01

    Phosphoinositide 3-kinase (PI3K) delta and gamma (the p110δ and p110γ isoforms of PI3K) actively participate in the process of inflammation. We sought to elucidate the possible roles of PI3Kδ and PI3Kγ in mediating the anti-inflammation effects of naloxone. Murine macrophages were treated with endotoxin, endotoxin plus naloxone, or endotoxin plus naloxone plus the PI3K inhibitors (the PI3Kδ inhibitor IC87114, the PI3Kγ inhibitor AS252424, or IC87114 plus AS252424) and denoted as the LPS, LPS + N, LPS + N + IC, LPS + N + AS, and LPS + N + IC + AS group, respectively. Differences in inflammatory molecules and levels of nuclear factor-κB (NF-κB) activation and Akt activation (indicator of PI3K activity) among these groups were compared. The concentrations of inflammatory molecules (macrophage inflammatory protein 2, tumor necrosis factor-α, interleukin-1β, and cyclooxygenase-2/prostaglandin E2) and the levels of NF-κB activation (p-NF-κB p65 and p-inhibitor-κB concentrations and NF-κB-DNA binding activity) of the LPS + N group were significantly lower than those of the LPS group (all P < 0.001). These data confirmed the anti-inflammation effects of naloxone. Moreover, the anti-inflammation effects of naloxone could be counteracted by the inhibitors of PI3Kδ and PI3Kγ, as the concentrations of inflammatory molecules and the levels of NF-κB activation of the LPS + N group were significantly lower than those of the LPS + N + IC, LPS + N + AS, and LPS + N + IC + AS groups (all P < 0.05). In contrast, the concentration of phosphorylated Akt of the LPS + N group was significantly higher than those of the LPS, LPS + N + IC, LPS + N + AS, and LPS + N + IC + AS groups (all P < 0.05). PI3Kδ and PI3Kγ play crucial roles in mediating the anti-inflammation effects of naloxone. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Evolutionary history of phosphatidylinositol- 3-kinases: ancestral origin in eukaryotes and complex duplication patterns.

    PubMed

    Philippon, Héloïse; Brochier-Armanet, Céline; Perrière, Guy

    2015-10-19

    Phosphatidylinositol-3-kinases (PI3Ks) are a family of eukaryotic enzymes modifying phosphoinositides in phosphatidylinositols-3-phosphate. Located upstream of the AKT/mTOR signalling pathway, PI3Ks activate secondary messengers of extracellular signals. They are involved in many critical cellular processes such as cell survival, angiogenesis and autophagy. PI3K family is divided into three classes, including 14 human homologs. While class II enzymes are composed of a single catalytic subunit, class I and III also contain regulatory subunits. Here we present an in-depth phylogenetic analysis of all PI3K proteins. We confirmed that PI3K catalytic subunits form a monophyletic group, whereas regulatory subunits form three distinct groups. The phylogeny of the catalytic subunits indicates that they underwent two major duplications during their evolutionary history: the most ancient arose in the Last Eukaryotic Common Ancestor (LECA) and led to the emergence of class III and class I/II, while the second - that led to the separation between class I and II - occurred later, in the ancestor of Unikonta (i.e., the clade grouping Amoebozoa, Fungi, and Metazoa). These two major events were followed by many lineage specific duplications in particular in vertebrates, but also in various protist lineages. Major loss events were also detected in Vidiriplantae and Fungi. For the regulatory subunits, we identified homologs of class III in all eukaryotic groups indicating that, for this class, both the catalytic and the regulatory subunits were presents in LECA. In contrast, homologs of the regulatory class I have a more recent origin. The phylogenetic analysis of the PI3K shed a new light on the evolutionary history of these enzymes. We found that LECA already contained a PI3K class III composed of a catalytic and a regulatory subunit. Absence of class II regulatory subunits and the recent origin of class I regulatory subunits is puzzling given that the class I/II catalytic subunit

  7. Pharmacologic profiling of phosphoinositide 3-kinase inhibitors as mitigators of ionizing radiation-induced cell death.

    PubMed

    Lazo, John S; Sharlow, Elizabeth R; Epperly, Michael W; Lira, Ana; Leimgruber, Stephanie; Skoda, Erin M; Wipf, Peter; Greenberger, Joel S

    2013-12-01

    Ionizing radiation (IR) induces genotoxic stress that triggers adaptive cellular responses, such as activation of the phosphoinositide 3-kinase (PI3K)/Akt signaling cascade. Pluripotent cells are the most important population affected by IR because they are required for cellular replenishment. Despite the clear danger to large population centers, we still lack safe and effective therapies to abrogate the life-threatening effects of any accidental or intentional IR exposure. Therefore, we computationally analyzed the chemical structural similarity of previously published small molecules that, when given after IR, mitigate cell death and found a chemical cluster that was populated with PI3K inhibitors. Subsequently, we evaluated structurally diverse PI3K inhibitors. It is remarkable that 9 of 14 PI3K inhibitors mitigated γIR-induced death in pluripotent NCCIT cells as measured by caspase 3/7 activation. A single intraperitoneal dose of LY294002 [2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one], administered to mice at 4 or 24 hours, or PX-867 [(4S,4aR,5R,6aS,9aR,Z)-11-hydroxy-4-(methoxymethyl)-4a,6a-dimethyl-2,7,10-trioxo-1-(pyrrolidin-1-ylmethylene)-1,2,4,4a,5,6,6a,7,8,9,9a,10-dodecahydroindeno[4,5-H]isochromen-5-yl acetate (CID24798773)], administered 4 hours after a lethal dose of γIR, statistically significantly (P < 0.02) enhanced in vivo survival. Because cell cycle checkpoints are important regulators of cell survival after IR, we examined cell cycle distribution in NCCIT cells after γIR and PI3K inhibitor treatment. LY294002 and PX-867 treatment of nonirradiated cells produced a marked decrease in S phase cells with a concomitant increase in the G1 population. In irradiated cells, LY294002 and PX-867 treatment also decreased S phase and increased the G1 and G2 populations. Treatment with LY294002 or PX-867 decreased γIR-induced DNA damage as measured by γH2AX, suggesting reduced DNA damage. These results indicate pharmacologic inhibition of PI3K after

  8. Targeting Phosphoinositide-3-Kinase-δ with Theophylline Reverses Corticosteroid Insensitivity in Chronic Obstructive Pulmonary Disease

    PubMed Central

    To, Yasuo; Ito, Kazuhiro; Kizawa, Yasuo; Failla, Marco; Ito, Misako; Kusama, Tadashi; Elliott, W. Mark; Hogg, James C.; Adcock, Ian M.; Barnes, Peter J.

    2010-01-01

    Rationale: Patients with chronic obstructive pulmonary disease (COPD) show a poor response to corticosteroids. This has been linked to a reduction of histone deacetylase-2 as a result of oxidative stress and is reversed by theophylline. Objectives: To determine the role of phosphoinositide-3-kinase-delta (PI3K-δ) on the development of corticosteroid insensitivity in COPD and under oxidative stress, and as a target for theophylline. Methods: Corticosteroid sensitivity was determined as the 50% inhibitory concentration of dexamethasone on tumor necrosis factor-α–induced interleukin-8 release in peripheral blood mononuclear cells from patients with COPD (n = 17) and compared with that of nonsmoking (n = 8) and smoking (n = 7) control subjects. The effect of theophylline and a selective PI3K-δ inhibitor (IC87114) on restoration of corticosteroid sensitivity was confirmed in cigarette smoke–exposed mice. Measurements and Main Results: Peripheral blood mononuclear cells of COPD (50% inhibitory concentration of dexamethasone: 156.8 ± 32.6 nM) were less corticosteroid sensitive than those of nonsmoking (41.2 ± 10.5 nM; P = 0.018) and smoking control subjects (47.5 ± 19.6 nM; P = 0.031). Corticosteroid insensitivity and reduced histone deacetylase-2 activity after oxidative stress were reversed by a non-selective PI3K inhibitor (LY294002) and low concentrations of theophylline. Theophylline was a potent selective inhibitor of oxidant-activated PI3K-δ, which was up-regulated in peripheral lung tissue of patients with COPD. Furthermore, cells with knock-down of PI3K-δ failed to develop corticosteroid insensitivity with oxidative stress. Both theophylline and IC87114, combined with dexamethasone, inhibited corticosteroid-insensitive lung inflammation in cigarette–smoke-exposed mice in vivo. Conclusions: Inhibition of oxidative stress dependent PI3K-δ activation by a selective inhibitor or theophylline provides a novel approach to reversing corticosteroid

  9. Phosphoinositide 3-kinase signaling is critical for ErbB3-driven breast cancer cell motility and metastasis

    PubMed Central

    Smirnova, Tatiana; Zhou, Zhen Ni; Flinn, Rory J.; Wyckoff, Jeffrey; Boimel, Pamela J.; Pozzuto, Maria; Coniglio, Salvatore J.; Backer, Jonathan M.; Bresnick, Anne R.; Condeelis, John S.; Hynes, Nancy E.; Segall, Jeffrey E.

    2011-01-01

    Many malignancies show increased expression of the EGF receptor family member ErbB3 (HER3). ErbB3 binds beta-1 (HRGβ1), and forms a heterodimer with other ErbB family members, such as ErbB2 (HER2) or EGFR (HER1), enhancing phosphorylation of specific C terminal tyrosine residues and activation of downstream signaling pathways. ErbB3 contains six YXXM motifs that bind the p85 subunit of PI3-kinase. Previous studies demonstrated that overexpression of ErbB3 in mammary tumor cells can significantly enhance chemotaxis to HRGβ1 and overall metastatic potential. We tested the hypothesis that ErbB3-mediated PI3-kinase signaling is critical for heregulin-induced motility, and therefore crucial for ErbB3-mediated invasion, intravasation and metastasis. The tyrosines in the six YXXM motifs on the ErbB3 C-terminus were replaced with phenylalanine. In contrast to overexpression of the wild-type ErbB3, overexpression of the mutant ErbB3 did not enhance chemotaxis towards HRGβ1 in vitro or in vivo. We also observed reduced tumor cell motility in the primary tumor by multiphoton microscopy, as well as a dramatically reduced ability of these cells to cross the endothelium and intravasate into the circulation. Moreover, while mutation of the ErbB3 C-terminus had no effect on tumor growth, it had a dramatic effect on spontaneous metastatic potential. Treatment with the PI3-kinase inhibitor PIK-75 similarly inhibited motility and invasion in vitro and in vivo. Our results indicate that stimulation of the early metastatic steps of motility and invasion by ErbB3 requires activation of the PI3-kinase pathway by the ErbB3 receptor. PMID:21725367

  10. Molecular explorations of substituted 2-(4-phenylquinolin-2-yl) phenols as phosphoinositide 3-kinase inhibitors and anticancer agents.

    PubMed

    Alagumuthu, Manikandan; Arumugam, Sivakumar

    2017-02-01

    Substituted 2-(4-phenylquinolin-2-yl) phenols (PQPDs) emerged as the inhibitors of phosphoinositide 3-kinase (PI3K) and anticancer agents. PI3K inhibition was assessed by competitive ELISA. Anticancer activity was evaluated against breast cancer (MCF-7), skin cancer (G-361), and colon cancer (HCT 116) cell lines. In PI3 Kinase assay, PQPDs 4c, 4d, and 4k were inactive with IC50 >5 µM. IC50 for 4a, 4b, 4f-h, and 4j was ≥0.05 µM. Rest PQPDs IC50 was <1.0 µM. Anticancer activity found selective toward breast cancer (MCF-7); 4a, 4b, and 4j were showed excellent inhibitory (73.95, 68.36, and 70.06%) and IC50 1.16 µM (4a), 2.07 µM (4b), 1.021 µM (4f) and 1.981 µM (4j) while the standard (Doxorubicin) found with IC50 1.812 µM (72% inhibition). PQPDs were docked into the active site of PI3 Kinase p110α (PDB ID: 2RD0). Docking results suggested the hydrophobic interactions in PI3K binding pocket conquered affinity of the most favorable binding ligands [4a, 4b: inhibitory constant (ki) = 53.33, 41.23 pM]. PI3K assay and cancer cell line experimental results ensured that the inhibitory and anticancer activity potentials of PQPDs are more selective toward breast cancer treatments. PQPDs 4a, 4b, 4f, 4g, and 4j were displayed potent PI3 Kinase and anticancer activities. SAR studies demonstrated PQPDs as the PI3K precise inhibitors with the impending to treat various cancers.

  11. Time course of the MAPK and PI3-kinase response within 24 h of skeletal muscle overload

    NASA Technical Reports Server (NTRS)

    Carlson, C. J.; Fan, Z.; Gordon, S. E.; Booth, F. W.

    2001-01-01

    Knowledge of the molecular mechanisms by which skeletal muscle hypertrophies in response to increased mechanical loading may lead to the discovery of novel treatment strategies for muscle wasting and frailty. To gain insight into potential early signaling mechanisms associated with skeletal muscle hypertrophy, the temporal pattern of mitogen-activated protein kinase (MAPK) phosphorylation and phosphatidylinositol 3-kinase (PI3-kinase) activity during the first 24 h of muscle overload was determined in the rat slow-twitch soleus and fast-twitch plantaris muscles after ablation of the gastrocnemius muscle. p38alpha MAPK phosphorylation was elevated for the entire 24-h overload period in both muscles. In contrast, Erk 2 and p54 JNK phosphorylation were transiently increased by overload, returning to the levels of sham-operated controls by 24 h. PI3-kinase activity was increased by muscle overload only at 12 h of overload and only in the plantaris muscle. In summary, sustained elevation of p38alpha MAPK phosphorylation occurred early in response to muscle overload, identifying this pathway as a potential candidate for mediating early hypertrophic signals in response to skeletal muscle overload.

  12. Time course of the MAPK and PI3-kinase response within 24 h of skeletal muscle overload

    NASA Technical Reports Server (NTRS)

    Carlson, C. J.; Fan, Z.; Gordon, S. E.; Booth, F. W.

    2001-01-01

    Knowledge of the molecular mechanisms by which skeletal muscle hypertrophies in response to increased mechanical loading may lead to the discovery of novel treatment strategies for muscle wasting and frailty. To gain insight into potential early signaling mechanisms associated with skeletal muscle hypertrophy, the temporal pattern of mitogen-activated protein kinase (MAPK) phosphorylation and phosphatidylinositol 3-kinase (PI3-kinase) activity during the first 24 h of muscle overload was determined in the rat slow-twitch soleus and fast-twitch plantaris muscles after ablation of the gastrocnemius muscle. p38alpha MAPK phosphorylation was elevated for the entire 24-h overload period in both muscles. In contrast, Erk 2 and p54 JNK phosphorylation were transiently increased by overload, returning to the levels of sham-operated controls by 24 h. PI3-kinase activity was increased by muscle overload only at 12 h of overload and only in the plantaris muscle. In summary, sustained elevation of p38alpha MAPK phosphorylation occurred early in response to muscle overload, identifying this pathway as a potential candidate for mediating early hypertrophic signals in response to skeletal muscle overload.

  13. Insulin-regulated expression of Egr-1 and Krox20: dependence on ERK1/2 and interaction with p38 and PI3-kinase pathways.

    PubMed

    Keeton, Adam B; Bortoff, Katherine D; Bennett, William L; Franklin, J Lee; Venable, Derwei Y; Messina, Joseph L

    2003-12-01

    In addition to its ability to rapidly alter metabolism, insulin is also able to regulate the expression of numerous genes via activation of the PI3-kinase (PI3-K), MAPK kinase (MEK)-ERK, or p38 pathways. Using differential screening of H4IIE cells, we have identified two members of the Egr zinc-finger transcription factor family of early response genes, Egr-1 and Krox20, whose transcription is induced by insulin treatment. Egr-1 may be involved in insulin's regulation of hepatic gene expression. Krox20 regulation and expression have been primarily studied in neural cells and tissues, but little has been previously reported on the presence of Krox20 in cells of hepatic origin or its regulation by insulin. In the present studies, insulin treatment rapidly increased transcription of both Egr-1 and Krox20. In cells pretreated with a PI3-K inhibitor, there was no reduction in the effect of insulin on Egr-1 and Krox20, but an increase in Egr-1 transcription. The rapid induction of ERK1/2 phosphorylation was completely blocked by pretreatment with a MEK1 inhibitor and was associated with a nearly complete inhibition of insulin-stimulated induction of both Egr-1and Krox20, indicating this pathway is necessary for insulin's effect on these genes. Finally, inhibition of the p38 pathway, followed by insulin addition, caused an additive induction of both Egr-1and Krox20. In conclusion, these genes are induced by insulin via coordinated regulation of the MEK-ERK and p38 pathways and, in the case of Egr-1, the PI3-K pathway.

  14. A Functional Genetic Screen Identifies the Phosphoinositide 3-kinase Pathway as a Determinant of Resistance to Fibroblast Growth Factor Receptor Inhibitors in FGFR Mutant Urothelial Cell Carcinoma.

    PubMed

    Wang, Liqin; Šuštić, Tonći; Leite de Oliveira, Rodrigo; Lieftink, Cor; Halonen, Pasi; van de Ven, Marieke; Beijersbergen, Roderick L; van den Heuvel, Michel M; Bernards, René; van der Heijden, Michiel S

    2017-01-17

    Activating mutations and translocations of the FGFR3 gene are commonly seen in urothelial cell carcinoma (UCC) of the bladder and urinary tract. Several fibroblast growth factor receptor (FGFR) inhibitors are currently in clinical development and response rates appear promising for advanced UCC. A common problem with targeted therapeutics is intrinsic or acquired resistance of the cancer cells. To find potential drug targets that can act synergistically with FGFR inhibition, we performed a synthetic lethality screen for the FGFR inhibitor AZD4547 using a short hairpin RNA library targeting the human kinome in the UCC cell line RT112 (FGFR3-TACC3 translocation). We identified multiple members of the phosphoinositide 3-kinase (PI3K) pathway and found that inhibition of PIK3CA acts synergistically with FGFR inhibitors. The PI3K inhibitor BKM120 acted synergistically with inhibition of FGFR in multiple UCC and lung cancer cell lines having FGFR mutations. Consistently, we observed an elevated PI3K-protein kinase B pathway activity resulting from epidermal growth factor receptor or Erb-B2 receptor tyrosine kinase 3 reactivation caused by FGFR inhibition as the underlying molecular mechanism of the synergy. Our data show that feedback pathways activated by FGFR inhibition converge on the PI3K pathway. These findings provide a strong rationale to test FGFR inhibitors in combination with PI3K inhibitors in cancers harboring genetic activation of FGFR genes.

  15. Transformation of Rat-1 fibroblasts with the v-src oncogene induces inositol 1,4,5-trisphosphate 3-kinase expression.

    PubMed Central

    Woodring, P J; Garrison, J C

    1996-01-01

    Transformation of Rat-1 fibroblasts with the v-src oncogene leads to a 6- to 8-fold enhancement of the activity of the Ins(1,4,5)P3 3-kinase in cytosolic extracts [Johnson, Wasilenko, Mattingly, Weber and Garrison (1989) Science 246, 121-124]. This study confirms these results using another v-src-transformed Rat-1 cell line (B31 cells) and investigates the molecular mechanism by which pp60v-src activates Ins(1,4,5)P3 3-kinase. The mRNA and protein levels for two rat isoforms of Ins(1,4,5)P3 3-kinase were determined in the v-src-transformed cell line. Both the mRNA and protein levels for isoform A were elevated in v-src-transformed Rat-1 cells while those for isoform B were not significantly affected. Moreover, stable expression of either form of Ins(1,4,5)P3 3-kinase in the B31 v-src-transformed Rat-1 cell line did not result in tyrosine phosphorylation of Ins(1,4,5)P3 3-kinase A or B. These results suggest that at least one mechanism by which the v-src oncogene increases the activity of the Ins(1,4,5)P3 3-kinase in the Rat-1 transformed fibroblast is by increasing the level of expression of Ins(1,4,5)P3 3-kinase A. PMID:8870651

  16. Contraction inhibits insulin-stimulated insulin receptor substrate-1/2-associated phosphoinositide 3-kinase activity, but not protein kinase B activation or glucose uptake, in rat muscle.

    PubMed Central

    Whitehead, J P; Soos, M A; Aslesen, R; O'rahilly, S; Jensen, J

    2000-01-01

    The initial stages of insulin-stimulated glucose uptake are thought to involve tyrosine phosphorylation of insulin receptor substrates (IRSs), which recruit and activate phosphoinositide 3-kinase (PI 3-kinase), leading to the activation of protein kinase B (PKB) and other downstream effectors. In contrast, contraction stimulates glucose uptake via a PI 3-kinase-independent mechanism. The combined effects of insulin and contraction on glucose uptake are additive. However, it has been reported that contraction causes a decrease in insulin-stimulated IRS-1-associated PI 3-kinase activity. To investigate this paradox, we have examined the effects of contraction on insulin-stimulated glucose uptake and proximal insulin-signalling events in isolated rat epitrochlearis muscle. Stimulation by insulin or contraction produced a 3-fold increase in glucose uptake, with the effects of simultaneous treatment by insulin and contraction being additive. Wortmannin completely blocked the additive effect of insulin in contracting skeletal muscle, indicating that this is a PI 3-kinase-dependent effect. Insulin-stimulated recruitment of PI 3-kinase to IRS-1 was unaffected by contraction; however, insulin produced no discernible increase in PI 3-kinase activity in IRS-1 or IRS-2 immunocomplexes in contracting skeletal muscle. Consistent with this, contraction inhibited insulin-stimulated p70(S6K) activation. In contrast, insulin-stimulated activation of PKB was unaffected by contraction. Thus, in contracting skeletal muscle, insulin stimulates glucose uptake and activates PKB, but not p70(S6K), by a PI 3-kinase-dependent mechanism that is independent of changes in IRS-1- and IRS-2-associated PI 3-kinase activity. PMID:10903138

  17. Heregulin-dependent activation of phosphoinositide 3-kinase and Akt via the ErbB2/ErbB3 co-receptor.

    PubMed

    Hellyer, N J; Kim, M S; Koland, J G

    2001-11-09

    The ErbB2/ErbB3 heregulin co-receptor has been shown to couple to phosphoinositide (PI) 3-kinase in a heregulin-dependent manner. The recruitment and activation of PI 3-kinase by this co-receptor is presumed to occur via its interaction with phosphorylated Tyr-Xaa-Xaa-Met (YXXM) motifs occurring in the ErbB3 C terminus. In this study, mutant ErbB3 receptor proteins expressed in COS7 cells were used to investigate PI 3-kinase-dependent signaling pathways activated by the ErbB2/ErbB3 co-receptor. We observed that a mutant ErbB3 protein with each of its six YXXM motifs containing a Tyr --> Phe substitution was unable to bind either the p85 regulatory or p110 catalytic subunit of PI 3-kinase. However, restoration of a single YXXM motif was sufficient to mediate association with the PI 3-kinase holoenzyme, although at a lower level than wild-type ErbB3. When ErbB3 YXXM motifs were restored in pairs, evidence for cooperativity between two, those incorporating Tyr-1273 and Tyr-1286, was observed. Interestingly, we have shown that an apparent association of PI 3-kinase activity with ErbB2/Neu was due to the residual presence of ErbB3 in ErbB2 immunoprecipitates. The necessity of ErbB3 association with PI 3-kinase for downstream signaling to the effector kinase Akt was also investigated. Here, the heregulin-dependent translocation of Akt to the plasma membrane and its subsequent activation was observed in intact NIH-3T3 fibroblasts. Recruitment of PI 3-kinase to ErbB3 was required for both activities, and it appeared that ErbB2 activation alone was not sufficient to activate PI 3-kinase signaling in these cells.

  18. Human Placental Lactogen Induces CYP2E1 Expression via PI 3-Kinase Pathway in Female Human Hepatocytes

    PubMed Central

    Lee, Jin Kyung; Chung, Hye Jin; Fischer, Liam; Fischer, James; Gonzalez, Frank J.

    2014-01-01

    The state of pregnancy is known to alter hepatic drug metabolism. Hormones that rise during pregnancy are potentially responsible for the changes. Here we report the effects of prolactin (PRL), placental lactogen (PL), and growth hormone variant (GH-v) on expression of major hepatic cytochromes P450 expression and a potential molecular mechanism underlying CYP2E1 induction by PL. In female human hepatocytes, PRL and GH-v showed either no effect or small and variable effects on mRNA expression of CYP1A2, 2A6, 2B6, 2C9, 2C19, 2D6, 2E1, 3A4, and 3A5. On the other hand, PL increased expression level of CYP2E1 mRNA with corresponding increases in CYP2E1 protein and activity levels. Results from hepatocytes and HepaRG cells indicate that PL does not affect the expression or activity of HNF1α, the known transcriptional activator of basal CYP2E1 expression. Furthermore, transient transfection studies and Western blot results showed that STAT signaling, the previously known mediator of PL actions in certain tissues, does not play a role in CYP2E1 induction by PL. A chemical inhibitor of PI3-kinase signaling significantly repressed the CYP2E1 induction by PL in human hepatocytes, suggesting involvement of PI3-kinase pathway in CYP2E1 regulation by PL. CYP2E1-humanized mice did not exhibit enhanced CYP2E1 expression during pregnancy, potentially because of interspecies differences in PL physiology. Taken together, these results indicate that PL induces CYP2E1 expression via PI3-kinase pathway in human hepatocytes. PMID:24408518

  19. Endurance exercise training increases insulin responsiveness in isolated adipocytes through IRS/PI3-kinase/Akt pathway.

    PubMed

    Peres, Sidney B; de Moraes, Solange M Franzói; Costa, Cecilia E M; Brito, Luciana C; Takada, Julie; Andreotti, Sandra; Machado, Magaly A; Alonso-Vale, Maria Isabel C; Borges-Silva, Cristina N; Lima, Fabio B

    2005-03-01

    Endurance exercise training promotes important metabolic adaptations, and the adipose tissue is particularly affected. The aim of this study was to investigate how endurance exercise training modulates some aspects of insulin action in isolated adipocytes and in intact adipose tissue. Male Wistar rats were submitted to daily treadmill running (1 h/day) for 7 wk. Sedentary age-matched rats were used as controls. Final body weight, body weight gain, and epididymal fat pad weight did not show any statistical differences between groups. Adipocytes from trained rats were smaller than those from sedentary rats (205 +/- 16.8 vs. 286 +/- 26.4 pl; P < 0.05). Trained rats showed decreased plasma glucose (4.9 +/- 0.13 vs. 5.3 +/- 0.07 mM; P < 0.05) and insulin levels (0.24 +/- 0.012 vs. 0.41 +/- 0.049 mM; P < 0.05) and increased insulin-stimulated glucose uptake (23.1 +/- 3.1 vs. 12.1 +/- 2.9 pmol/cm(2); P < 0.05) compared with sedentary rats. The number of insulin receptors and the insulin-induced tyrosine phosphorylation of insulin receptor-beta subunit did not change between groups. Insulin-induced tyrosine phosphorylation insulin receptor substrates (IRS)-1 and -2 increased significantly (1.57- and 2.38-fold, respectively) in trained rats. Insulin-induced IRS-1/phosphatidylinositol 3 (PI3)-kinase (but not IRS-2/PI3-kinase) association and serine Akt phosphorylation also increased (2.06- and 3.15-fold, respectively) after training. The protein content of insulin receptor-beta subunit, IRS-1 and -2, did not differ between groups. Taken together, these data support the hypothesis that the increased adipocyte responsiveness to insulin observed after endurance exercise training is modulated by IRS/PI3-kinase/Akt pathway.

  20. Inhibition of the translocation of GLUT1 and GLUT4 in 3T3-L1 cells by the phosphatidylinositol 3-kinase inhibitor, wortmannin.

    PubMed Central

    Clarke, J F; Young, P W; Yonezawa, K; Kasuga, M; Holman, G D

    1994-01-01

    Wortmannin is a potent and reversible inhibitor of insulin-stimulated PtdIns 3-kinase activity in 3T3-L1 cells (IC50 = 2.6 +/- 0.8 nM). Wortmannin inhibits the PtdIns 3-kinase activity which is precipitated with antibodies against insulin receptor substrate 1 and against the alpha-p85 subunit of PtdIns 3-kinase. These observations suggest that wortmannin inhibits at the p110 catalytic subunit of PtdIns 3-kinase. Insulin stimulation of glucose transport in permeabilized 3T3-L1 cells is also inhibited by wortmannin (IC50 = 6.4 +/- 1.4 nM). Wortmannin did not inhibit basal glucose transport activity. The close similarity of the IC50 values for wortmannin inhibition of insulin-stimulated PtdIns 3-kinase and glucose transport activities suggests that the PtdIns 3-kinase is a key intermediate in insulin signalling of glucose-transport stimulation. The wortmannin inhibitory effect on transport is associated with a reduction in the cell-surface, but not the total cellular, levels of both GLUT1 and GLUT4 glucose transporter isoforms that are accessible to the cell-impermeant photolabel, ATB-BMPA. These photolabelling results suggest that the glucose transporter translocation process is dependent upon PtdIns 3-kinase activity. The stimulatory effect of guanosine 5'-[gamma-thio]triphosphate (GTP gamma S) on glucose transport activity in permeabilized cells is only partially blocked by concentrations of wortmannin that completely inhibit the stimulatory effect of insulin. The residual stimulatory effect of GTP gamma S that occurs in the presence of wortmannin suggests that at least part of the GTP gamma S effect is mediated at a signalling site that is downstream of the site at which wortmannin inhibits the insulin stimulation of PtdIns 3-kinase and glucose transport activities. PMID:8010944

  1. VEGF induces proliferation, migration, and TGF-{beta}1 expression in mouse glomerular endothelial cells via mitogen-activated protein kinase and phosphatidylinositol 3-kinase

    SciTech Connect

    Li Zhaodong; Bork, Jens Peter; Krueger, Bettina; Patsenker, Eleonora; Schulze-Krebs, Anja; Hahn, Eckhart G.; Schuppan, Detlef; E-mail: dschuppa@bidmc.harvard.edu

    2005-09-09

    The role of glomerular endothelial cells in kidney fibrosis remains incompletely understood. While endothelia are indispensable for repair of acute damage, they can produce extracellular matrix proteins and profibrogenic cytokines that promote fibrogenesis. We used a murine cell line with all features of glomerular endothelial cells (glEND.2), which dissected the effects of vascular endothelial growth factor (VEGF) on cell migration, proliferation, and profibrogenic cytokine production. VEGF dose-dependently induced glEND.2 cell migration and proliferation, accompanied by up-regulation of VEGFR-2 phosphorylation and mRNA expression. VEGF induced a profibrogenic gene expression profile, including up-regulation of TGF-{beta}1 mRNA, enhanced TGF-{beta}1 secretion, and bioactivity. VEGF-induced endothelial cell migration and TGF-{beta}1 induction were mediated by the phosphatidyl-inositol-3 kinase pathway, while proliferation was dependent on the Erk1/2 MAP kinase pathway. This suggests that differential modulation of glomerular angiogenesis by selective inhibition of the two identified VEGF-induced signaling pathways could be a therapeutic approach to treat kidney fibrosis.

  2. PI3-kinase/Akt pathway-regulated membrane insertion of acid-sensing ion channel 1a underlies BDNF-induced pain hypersensitivity.

    PubMed

    Duan, Bo; Liu, Di-Shi; Huang, Yu; Zeng, Wei-Zheng; Wang, Xiang; Yu, Hui; Zhu, Michael X; Chen, Zhe-Yu; Xu, Tian-Le

    2012-05-02

    Central neural plasticity plays a key role in pain hypersensitivity. This process is modulated by brain-derived neurotrophic factor (BDNF) and also involves the type 1a acid-sensing ion channel (ASIC1a). However, the interactions between the BDNF receptor, tropomyosin-related kinase B (TrkB), and ASIC1a are unclear. Here, we show that deletion of ASIC1 gene suppressed the sustained mechanical hyperalgesia induced by intrathecal BDNF application in mice. In both rat spinal dorsal horn neurons and heterologous cell cultures, the BDNF/TrkB pathway enhanced ASIC1a currents via phosphoinositide 3-kinase (PI3K)-protein kinase B (PKB/Akt) cascade and phosphorylation of cytoplasmic residue Ser-25 of ASIC1a, resulting in enhanced forward trafficking and increased surface expression. Moreover, in both rats and mice, this enhanced ASIC1a activity was required for BDNF-mediated hypersensitivity of spinal dorsal horn nociceptive neurons and central mechanical hyperalgesia, a process that was abolished by intrathecal application of a peptide representing the N-terminal region of ASIC1a encompassing Ser-25. Thus, our results reveal a novel mechanism underlying central sensitization and pain hypersensitivity, and reinforce the critical role of ASIC1a channels in these processes.

  3. Phosphatidylinositol 3-kinase and NF-kappa B/Rel are at the divergence of CD40-mediated proliferation and survival pathways.

    PubMed

    Andjelic, S; Hsia, C; Suzuki, H; Kadowaki, T; Koyasu, S; Liou, H C

    2000-10-01

    CD40 receptor ligation evokes several crucial outcomes for the fate of an activated B cell, including proliferation and survival. Although multiple signaling molecules in the CD40 pathways have been identified, their specific roles in regulating proliferation and maintaining cell viability are still obscure. In this report, we demonstrate that the activation of both phosphatidylinositol 3-kinase (PI-3K) and NF-kappaB/Rel transcription factors is crucial for CD40-mediated proliferation. Furthermore, our data indicate that PI-3K is indispensable for CD40-mediated NF-kappaB/Rel activation. This is achieved via activation of AKT and the degradation of IkappaBalpha. Furthermore, we show that PI-3K activity is necessary for the degradation of cyclin-dependent kinase inhibitor p27kip. Therefore, both of these events comprise the mechanism by which PI-3K controls cell proliferation. In contrast to the absolute requirement of PI-3K and NF-kappaB/Rel for proliferation, these signaling molecules are only partially responsible for CD40-mediated survival, as blocking of PI-3K activity did not lead to apoptosis of anti-CD40-treated cells. However, the PI-3K/NF-kappaB pathway is still required for CD40-induced Bcl-X gene expression. Taken together, our data indicate that multiple survival pathways are triggered via this receptor, whereas NF-kappaB/Rel and PI-3K are crucial for CD40-induced proliferation.

  4. Impact of the PI3-kinase/Akt pathway on ITAM and hemITAM receptors: haemostasis, platelet activation and antithrombotic therapy.

    PubMed

    Moroi, Alyssa J; Watson, Steve P

    2015-04-01

    Phosphoinositide 3-kinases (PI3Ks) are a family of lipid kinases that are activated in response to various stimulants, and they regulate many processes including inflammation; the stress response; gene transcription; and cell proliferation, differentiation, and death. Increasing reports have shown that the PI3Ks and their downstream effector Akt are activated by several platelet receptors that regulate platelet activation and haemostasis. Platelets express two immunoreceptor tyrosine based activation motif (ITAM) receptors, collagen receptor glycoprotein VI (GPVI) and Fcγ receptor IIA (FcγRIIA), which are characterized by two YxxL sequences separated by 6-12 amino acids. Activation of an ITAM receptor initiates a reaction cascade via its YxxL sequence in which signaling molecules such as spleen tyrosine kinase (Syk), linker for activation of T cells (LAT) and phospholipase C γ2 (PLCγ2) become activated, leading to platelet activation. Platelets also express another receptor, C-type lectin 2 (CLEC-2), which has a single YxxL sequence, so it is appropriately called a hemITAM receptor. ITAM receptors and the hemITAM receptor share many signaling features. Here we will summarize our current knowledge about how the PI3K/Akt pathway regulates (hem)ITAM receptor-mediated platelet activation and haemostasis and discuss the possible benefits of targeting PI3K/Akt as an antithrombotic therapy.

  5. Age-associated changes in basal NF-κB function in human CD4+ T lymphocytes via dysregulation of PI3 kinase

    PubMed Central

    Bektas, Arsun; Zhang, Yongqing; Lehmann, Elin; Wood, William H.; Becker, Kevin G.; Madara, Karen; Ferrucci, Luigi; Sen, Ranjan

    2014-01-01

    Immune impairment and high circulating level of pro-inflammatory cytokines are landmarks of human aging. However, the molecular basis of immune dys-regulation and the source of inflammatory markers remain unclear. Here we demonstrate that in the absence of overt cell stimulation gene expression mediated by the transcription factor NF-κB is higher in purified and rested human CD4+ T lymphocytes from older compared to younger individuals. This increase of NF-κB-associated transcription includes transcripts for pro-inflammatory cytokines such as IL-1 and chemokines such as CCL2 and CXCL10. We demonstrate that NF-κB up-regulation is cell-intrinsic and mediated in part by phosphatidylinositol 3-kinase (PI3K) activity induced in response to metabolic activity, which can be moderated by rapamycin treatment. Our observations provide direct evidence that dys-regulated basal NF-κB activity may contribute to the mild pro-inflammatory state of aging. PMID:25553802

  6. Sensitization of Glioma Cells to Tamoxifen-Induced Apoptosis by Pl3-Kinase Inhibitor through the GSK-3β/β-Catenin Signaling Pathway

    PubMed Central

    Li, Cuixian; Zhou, Chun; Wang, Shaogui; Feng, Ying; Lin, Wei; Lin, Sisi; Wang, Ying; Huang, Heqing; Liu, Peiqing; Mu, Yong-Gao; Shen, Xiaoyan

    2011-01-01

    Malignant gliomas represent one of the most aggressive types of cancers and their recurrence is closely linked to acquired therapeutic resistance. A combination of chemotherapy is considered a promising therapeutic model in overcoming therapeutic resistance and enhancing treatment efficacy. Herein, we show by colony formation, Hochest 33342 and TUNEL staining, as well as by flow cytometric analysis, that LY294002, a specific phosphatidylinositide-3-kinase (PI3K) inhibitor, enhanced significantly the sensitization of a traditional cytotoxic chemotherapeutic agent, tamoxifen-induced apoptosis in C6 glioma cells. Activation of PI3K signaling pathway by IGF-1 protected U251 cells from apoptosis induced by combination treatment of LY294002 and tamoxifen. Interference of PI3K signaling pathway by PI3K subunit P85 siRNA enhanced the sensitization of U251 glioma cells to tamoxifen -induced apoptosis. By Western blotting, we found that combination treatment showed lower levels of phosphorylated AktSer473 and GSK-3βSer9 than a single treatment of LY294002. Further, we showed a significant decrease of nuclear β-catenin by combination treatment. In response to the inhibition of β-catenin signaling, mRNA and protein levels of Survivin and the other three antiapoptotic genes Bcl-2, Bcl-xL, and Mcl-1 were significantly decreased by combination treatment. Our results indicated that the synergistic cytotoxic effect of LY294002 and tamoxifen is achieved by the inhibition of GSK-3β/β-catenin signaling pathway. PMID:22046442

  7. Polycystin-1 Induces Cell Migration by Regulating Phosphatidylinositol 3-kinase-dependent Cytoskeletal Rearrangements and GSK3β-dependent Cell–Cell Mechanical Adhesion

    PubMed Central

    Boca, Manila; D'Amato, Lisa; Distefano, Gianfranco; Polishchuk, Roman S.; Germino, Gregory G.

    2007-01-01

    Polycystin-1 (PC-1) is a large plasma-membrane receptor encoded by the PKD1 gene mutated in autosomal dominant polycystic kidney disease (ADPKD). Although the disease is thought to be recessive on a molecular level, the precise mechanism of cystogenesis is unclear, although cytoarchitecture defects seem to be the most likely initiating events. Here we show that PC-1 regulates the actin cytoskeleton in renal epithelial cells (MDCK) and induces cell scattering and cell migration. All of these effects require phosphatidylinositol 3-kinase (PI3-K) activity. Consistent with these observations Pkd1−/− mouse embryonic fibroblasts (MEFs) have reduced capabilities to migrate compared with controls. PC-1 overexpressing MDCK cells are able to polarize normally with proper adherens and tight junctions formation, but show quick reabsorption of ZO-1, E-cadherin, and β-catenin upon wounding of a monolayer and a transient epithelial-to-mesenchymal transition (EMT) that favors a rapid closure of the wound and repolarization. Finally, we show that PC-1 is able to control the turnover of cytoskeletal-associated β-catenin through activation of GSK3β. Expression of a nondegradable form of β-catenin in PC-1 MDCK cells restores strong cell–cell mechanical adhesion. We propose that PC-1 might be a central regulator of epithelial plasticity and its loss results in impaired normal epithelial homeostasis. PMID:17671167

  8. miR-502 inhibits cell proliferation and tumor growth in hepatocellular carcinoma through suppressing phosphoinositide 3-kinase catalytic subunit gamma

    SciTech Connect

    Chen, Suling; Li, Fang; Chai, Haiyun; Tao, Xin; Wang, Haili; Ji, Aifang

    2015-08-21

    MicroRNAs (miRNAs) play a key role in carcinogenesis and tumor progression in hepatocellular carcinoma (HCC). In the present study, we demonstrated that miR-502 significantly inhibits HCC cell proliferation in vitro and tumor growth in vivo. G1/S cell cycle arrest and apoptosis of HCC cells were induced by miR-502. Phosphoinositide 3-kinase catalytic subunit gamma (PIK3CG) was identified as a direct downstream target of miR-502 in HCC cells. Notably, overexpression of PIK3CG reversed the inhibitory effects of miR-502 in HCC cells. Our findings suggest that miR-502 functions as a tumor suppressor in HCC via inhibition of PI3KCG, supporting its utility as a promising therapeutic gene target for this tumor type. - Highlights: • miR-502 suppresses HCC cell proliferation in vitro and tumorigenicity in vivo. • miR-502 regulates cell cycle and apoptosis in HCC cells. • PIK3CG is a direct target of miR-502. • miR-502 and PIK3CG expression patterns are inversely correlated in HCC tissues.

  9. Grb2-associated binder-1 mediates phosphatidylinositol 3-kinase activation and the promotion of cell survival by nerve growth factor

    PubMed Central

    Holgado-Madruga, Marina; Moscatello, David K.; Emlet, David R.; Dieterich, Rebekka; Wong, Albert J.

    1997-01-01

    Nerve growth factor (NGF) prevents apoptosis through stimulation of the TrkA receptor protein tyrosine kinase. The downstream activation of phosphatidylinositol 3-kinase (PI 3-kinase) is essential for the inhibition of apoptosis, although this enzyme does not bind to and is not directly activated by TrkA. We have found that the addition of NGF to PC-12 cells resulted in the phosphorylation of the Grb2-associated binder-1 (Gab1) docking protein and induced the association of several SH2 domain-containing proteins, including PI 3-kinase. A substantial fraction of the total cellular PI 3-kinase activity was associated with Gab1. PC-12 cells that overexpressed Gab1 show a decreased requirement for the amount of NGF necessary to inhibit apoptosis. The expression of a Gab1 mutant that lacked the binding sites for PI 3-kinase enhanced apoptosis and diminished the protective effect of NGF. Hence, Gab1 has a major role in connecting TrkA with PI 3-kinase activation and for the promotion of cell survival by NGF. PMID:9356464

  10. Restructuring of focal adhesion plaques by PI 3-kinase. Regulation by PtdIns (3,4,5)-p(3) binding to alpha-actinin.

    PubMed

    Greenwood, J A; Theibert, A B; Prestwich, G D; Murphy-Ullrich, J E

    2000-08-07

    Focal adhesions are an elaborate network of interconnecting proteins linking actin stress fibers to the extracellular matrix substrate. Modulation of the focal adhesion plaque provides a mechanism for the regulation of cellular adhesive strength. Using interference reflection microscopy, we found that activation of phosphoinositide 3-kinase (PI 3-kinase) by PDGF induces the dissipation of focal adhesions. Loss of this close apposition between the cell membrane and the extracellular matrix coincided with a redistribution of alpha-actinin and vinculin from the focal adhesion complex to the Triton X-100-soluble fraction. In contrast, talin and paxillin remained localized to focal adhesions, suggesting that activation of PI 3-kinase induced a restructuring of the plaque rather than complete dispersion. Furthermore, phosphatidylinositol (3,4, 5)-trisphosphate (PtdIns (3,4,5)-P(3)), a lipid product of PI 3-kinase, was sufficient to induce restructuring of the focal adhesion plaque. We also found that PtdIns (3,4,5)-P(3) binds to alpha-actinin in PDGF-treated cells. Further evidence demonstrated that activation of PI 3-kinase by PDGF induced a decrease in the association of alpha-actinin with the integrin beta subunit, and that PtdIns (3,4,5)-P(3) could disrupt this interaction in vitro. Modification of focal adhesion structure by PI 3-kinase and its lipid product, PtdIns (3,4,5)-P(3), has important implications for the regulation of cellular adhesive strength and motility.

  11. A novel A-isoform-like inositol 1,4,5-trisphosphate 3-kinase from chicken erythrocytes exhibits alternative splicing and conservation of intron positions between vertebrates and invertebrates.

    PubMed

    Bertsch, U; Haefs, M; Möller, M; Deschermeier, C; Fanick, W; Kitzerow, A; Ozaki, S; Meyer, H E; Mayr, G W

    1999-03-04

    Based on the partial peptide sequence of inositol 1,4, 5-trisphosphate 3-kinase purified with 135 000-fold enrichment from chicken erythrocytes, cDNA-fragments were cloned by RT-PCR using degenerate oligonucleotides. Subsequent hybridization screening of an embryonic chicken cDNA library and 5'-RACE yielded a cDNA-contig of 2418 bp, encoding a 452 amino acid protein. The amino acid sequence shows the highest degree of homology with A-isoforms of inositol 1,4,5-trisphosphate 3-kinase (65% identities), whereas homology towards B and C isoforms was lower (57% and 52% amino acid identities respectively). These findings reveal a new tissue-specific pattern of A-isoform expression, a form which so far has only been found in brain and testes. Two overlapping lambda-genomic clones for chicken inositol 1,4,5-trisphosphate 3-kinase, isolated by hybridization screening, covered 18 499 bp of genomic sequence. This contig included four exons: three of them were present in all cDNA clones, whereas one was only represented in a single cDNA clone. In addition, the sequence of the latter differed from the other cDNAs by an in-frame deletion of 72 bp within the coding region for the catalytic domain of the enzyme. This divergent cDNA suggests the existence of alternative splice products, at least in embryonic tissue.A comparison of the position of introns, with the respective introns known from the corresponding gene from Caenorhabditis elegans, revealed a high degree of conservation of intron positions between vertebrates and invertebrates. Functional data for the enzyme suggests that the conserved exons represent defined functional protein modules.

  12. Phosphoinositide 3-kinase p110δ promotes lumen formation through enhancement of apico-basal polarity and basal membrane organization

    PubMed Central

    Sar, Sokhavuth; Komaiha, Ola Hamze; Moyano, Romina; Rayal, Amel; Samuel, Didier; Shewan, Annette; Vanhaesebroeck, Bart; Mostov, Keith; Gassama-Diagne, Ama

    2016-01-01

    Signaling triggered by adhesion to the extracellular matrix plays a key role in the spatial orientation of epithelial polarity and formation of lumens in glandular tissues. Phosphoinositide 3-kinase signaling in particular is known to influence the polarization process during epithelial cell morphogenesis. Here, using Madin-Darby canine kidney epithelial cells grown in 3D culture, we show that the p110δ isoform of phosphoinositide 3-kinase colocalizes with focal adhesion proteins at the basal surface of polarized cells. Pharmacological, siRNA- or kinase-dead mediated inhibition of p110δ impair the early stages of lumen formation, resulting in inverted polarized cysts, with no laminin or type IV collagen assembly at cell/extracellular matrix contacts. p110δ also regulates the organization of focal adhesions and membrane localization of dystroglycan. Thus, we uncover a previously unrecognized role for p110δ in epithelial cells in the orientation of the apico-basal axis and lumen formation. PMID:25583025

  13. Binding site identification and role of permanent water molecule of PIM-3 kinase: A molecular dynamics study.

    PubMed

    Ul-Haq, Zaheer; Gul, Sana; Usmani, Saman; Wadood, Abdul; Khan, Waqasuddin

    2015-11-01

    The kinome is a protein kinase complement of the human genome, categorized as serine/threonine and tyrosine kinases. These kinases catalyze phosphorylation reaction by using ATP as phosphoryl donor. Proviral Integration Site for Moloney Murine Leukemia Virus (PIM) kinase encodes serine/threonine protein kinases that recognized as proto-oncogene, responsible for rapid growth of cancerous cells. It is implicated in cell survival and function via cell cycle progression and its metabolism. PIM-3, sub-member of PIM kinases is a proto-oncogene, its overexpression inhibits apoptosis, and results in progression of hepatocellular carcinoma. PIM-3 is considered as a promising drug target but attempts to develop its specific inhibitors is slowed down due to the lack of 3D structure by any experimental technique. In silico techniques generally facilitate scientist to explore hidden structural features in order to improve drug discovery. In the present study, homology modeling, molecular docking and MD simulation techniques were utilized to explore the structure and dynamics of PIM-3 kinase. Induction of water molecules during molecular docking simulation explored differences in the hinge region between PIM-1 and PIM-3 kinases that may be responsible for specificity. Furthermore, role of water molecules in the active site was also explored via radial distribution function (RDF) after a 10 ns molecular dynamics (MD) simulations. Generated RDF plots exhibited the importance of water for inhibitor binding through their bridging capability that links the ligand with binding site residues.

  14. Acadesine Inhibits Tissue Factor Induction and Thrombus Formation by Activating the Phosphoinositide 3-Kinase/Akt Signaling Pathway

    PubMed Central

    Zhang, Weiyu; Wang, Jianguo; Wang, Huan; Tang, Rong; Belcher, John D.; Viollet, Benoit; Geng, Jian-Guo; Zhang, Chunxiang; Wu, Chaodong; Slungaard, Arne; Zhu, Chuhong; Huo, Yuqing

    2013-01-01

    Objective Acadesine, an adenosine-regulating agent and activator of AMP-activated protein kinase, has been shown to possess antiinflammatory activity. This study investigated whether and how acadesine inhibits tissue factor (TF) expression and thrombus formation. Methods and Results Human umbilical vein endothelial cells and human peripheral blood monocytes were stimulated with lipopolysaccharide to induce TF expression. Pretreatment with acadesine dramatically suppressed the clotting activity and expression of TF (protein and mRNA). These inhibitory effects of acadesine were unchanged for endothelial cells treated with ZM241385 (a specific adenosine A2A receptor antagonist) or AMP-activated protein kinase inhibitor compound C, and in macrophages lacking adenosine A2A receptor or α1–AMP-activated protein kinase. In endothelial cells and macrophages, acadesine activated the phosphoinositide 3-kinase/Akt signaling pathway, reduced the activity of mitogen-activated protein kinases, and consequently suppressed TF expression by inhibiting the activator protein-1 and NF-κB pathways. In mice, acadesine suppressed lipopolysaccharide-mediated increases in blood coagulation, decreased TF expression in atherosclerotic lesions, and reduced deep vein thrombus formation. Conclusion Acadesine inhibits TF expression and thrombus formation by activating the phosphoinositide 3-kinase/Akt pathway. This novel finding implicates acadesine as a potentially useful treatment for many disorders associated with thrombotic pathology, such as angina pain, deep vein thrombosis, and sepsis. PMID:20185792

  15. Gecko Proteins Exert Anti-Tumor Effect against Cervical Cancer Cells Via PI3-Kinase/Akt Pathway

    PubMed Central

    Jeong, Ae-Jin; Chung, Chung-Nam; Kim, Hye-Jin; Bae, Kil Soo; Choi, Song; Jun, Woo Jin; Shim, Sang In; Kang, Tae-Hong; Leem, Sun-Hee

    2012-01-01

    Anti-tumor activity of the proteins from Gecko (GP) on cervical cancer cells, and its signaling mechanisms were assessed by viable cell counting, propidium iodide (PI) staining, and Western blot analysis. GP induced the cell death of HeLa cells in a dose-dependent manner while it did not affect the viability of normal cells. Western blot analysis showed that GP decreased the activation of Akt, and co-administration of GP and Akt inhibitors synergistically exerted anti-tumor activities on HeLa cells, suggesting the involvement of PI3-kinase/Akt pathway in GP-induced cell death of the cancer cells. Indeed, the cytotoxic effect of GP against HeLa cells was inhibited by overexpression of constituvely active form of Akt in HeLa cells. The candidates of the functional proteins in GP were analyzed by Mass-spectrum. Taken together, our results suggest that GP elicits anti-tumor activity against HeLa cells by inhibition of PI3-kinase/Akt pathway. PMID:23118562

  16. Hepatocyte growth factor (HGF) enhances cardiac commitment of differentiating embryonic stem cells by activating PI3 kinase

    SciTech Connect

    Roggia, Cristiana; Ukena, Christian; Boehm, Michael; Kilter, Heiko . E-mail: kilter@med-in.uni-saarland.de

    2007-03-10

    Hepatocyte growth factor (HGF) is a pleiotropic cytokine promoting proliferation, migration and survival in several cell types. HGF and its cognate receptor c-Met are expressed in cardiac cells during early cardiogenesis, but data concerning its role in cardiac differentiation of embryonic stem cells (ESCs) and the underlying molecular mechanisms involved are limited. In the present study we show that HGF significantly increases the number of beating embryoid bodies of differentiating ESCs without affecting beating frequency. Furthermore, HGF up-regulates the expression of the cardiac-specific transcription factors Nkx 2.5 and GATA-4 and of markers of differentiated cardiomyocytes, i.e. {alpha}-MHC, {beta}-MHC, ANF, MLC2v and Troponin T. The HGF-induced increase in Nkx 2.5 expression was inhibited by co-treatment with the PI3 kinase inhibitors Wortmannin and LY294002, but not by its inactive homolog LY303511, suggesting an involvement of the PI3 kinase/Akt pathway in this effect. We conclude that HGF is an important growth factor involved in cardiac differentiation and/or proliferation of ESCs and may therefore be critical for the in vitro generation of pre- or fully differentiated cardiomyocytes as required for clinical use of embryonic stem cells in cardiac diseases.

  17. p110δ PI3 kinase pathway: emerging roles in cancer

    PubMed Central

    Tzenaki, Niki; Papakonstanti, Evangelia A.

    2012-01-01

    Class IA PI3Ks consists of three isoforms of the p110 catalytic subunit designated p110α, p110β, and p110δ which are encoded by three separate genes. Gain-of-function mutations on PIK3CA gene encoding for p110α isoform have been detected in a wide variety of human cancers whereas no somatic mutations of genes encoding for p110β or p110δ have been reported. Unlike p110α and p110β which are ubiquitously expressed, p110δ is highly enriched in leukocytes and thus the p110δ PI3K pathway has attracted more attention for its involvement in immune disorders. However, findings have been accumulated showing that the p110δ PI3K plays a seminal role in the development and progression of some hematologic malignancies. A wealth of knowledge has come from studies showing the central role of p110δ PI3K in B-cell functions and B-cell malignancies. Further data have documented that wild-type p110δ becomes oncogenic when overexpressed in cell culture models and that p110δ is the predominant isoform expressed in some human solid tumor cells playing a prominent role in these cells. Genetic inactivation of p110δ in mice models and highly-selective inhibitors of p110δ have demonstrated an important role of this isoform in differentiation, growth, survival, motility, and morphology with the inositol phosphatase PTEN to play a critical role in p110δ signaling. In this review, we summarize our understanding of the p110δ PI3K signaling pathway in hematopoietic cells and malignancies, we highlight the evidence showing the oncogenic potential of p110δ in cells of non-hematopoietic origin and we discuss perspectives for potential novel roles of p110δ PI3K in cancer. PMID:23459844

  18. Abnormal Wnt and PI3Kinase Signaling in the Malformed Intestine of lama5 Deficient Mice

    PubMed Central

    Lacroute, Joël; Bolcato-Bellemin, Anne-Laure; Lefebvre, Olivier; Bole-Feysot, Christine; Jost, Bernard; Klein, Annick; Arnold, Christiane; Kedinger, Michèle; Bagnard, Dominique; Orend, Gertraud; Simon-Assmann, Patricia

    2012-01-01

    Laminins are major constituents of basement membranes and are essential for tissue homeostasis. Laminin-511 is highly expressed in the intestine and its absence causes severe malformation of the intestine and embryonic lethality. To understand the mechanistic role of laminin-511 in tissue homeostasis, we used RNA profiling of embryonic intestinal tissue of lama5 knockout mice and identified a lama5 specific gene expression signature. By combining cell culture experiments with mediated knockdown approaches, we provide a mechanistic link between laminin α5 gene deficiency and the physiological phenotype. We show that laminin α5 plays a crucial role in both epithelial and mesenchymal cell behavior by inhibiting Wnt and activating PI3K signaling. We conclude that conflicting signals are elicited in the absence of lama5, which alter cell adhesion, migration as well as epithelial and muscle differentiation. Conversely, adhesion to laminin-511 may serve as a potent regulator of known interconnected PI3K/Akt and Wnt signaling pathways. Thus deregulated adhesion to laminin-511 may be instrumental in diseases such as human pathologies of the gut where laminin-511 is abnormally expressed as it is shown here. PMID:22666383

  19. The Role of Phosphatidylinositol-3-Kinase and AMP-Activated Kinase in the Rapid Estrogenic Attenuation of Cannabinoid-Induced Changes in Energy Homeostasis

    PubMed Central

    Jeffery, Garrett S.; Peng, Kelly C.; Wagner, Edward J.

    2011-01-01

    We sought to determine the involvement of phosphatidyl inositol 3-kinase (PI3K) and AMP-activated protein kinase (AMPK) in the estrogenic antagonism of the cannabinoid regulation of energy homeostasis. Food intake and body weight were evaluated in ovariectomized female guinea pigs treated s.c. with estradiol benzoate (EB) or its sesame oil vehicle, or the CB1 receptor antagonist AM251 or its cremephor/ethanol/0.9% saline vehicle. AMPK catalytic subunit, PI3K p85α regulatory subunit and proopiomelanocortin (POMC) gene expression was assessed via quantitative RT-PCR in microdissected hypothalamic tissue. Whole-cell patch clamp recordings were performed in hypothalamic slices. Both EB and AM251 decreased food intake and weight gain, and increased AMPKα1, AMPKα2 and PI3K p85α gene expression in the mediobasal hypothalamus. 17β-Estradiol rapidly and markedly attenuated the decreases in glutamatergic miniature excitatory postsynaptic current (mEPSC) frequency caused by the cannabinoid receptor agonist WIN 55,212-2 in POMC neurons. This rapid estrogenic diminution of cannabinoid-induced decreases in mEPSC frequency was blocked by the estrogen receptor (ER) antagonist ICI 182,780 and the PI3K inhibitor PI 828, the latter of which also prevented the AM251-induced increase in mEPSC frequency. In addition, the AMPK activator metformin reversed the EB-induced decreases in food intake and weight gain and restored the ability of WIN 55,212-2 to reduce mEPSC frequency. These data reveal that estrogens physiologically antagonize cannabinoid-induced changes in appetite and POMC neuronal activity by activating PI3K and inhibiting AMPK. As such, they provide insight into the neuroanatomical substrates and signal transduction mechanisms upon which these counter-regulatory factors converge in the control of energy homeostasis.

  20. Regioselective synthesis of 5- and 6-methoxybenzimidazole-1,3,5-triazines as inhibitors of phosphoinositide 3-kinase.

    PubMed

    Miller, Michelle S; Pinson, Jo-Anne; Zheng, Zhaohua; Jennings, Ian G; Thompson, Philip E

    2013-02-01

    Phosphoinositide 3-kinases (PI3K) hold significant therapeutic potential as novel targets for the treatment of cancer. ZSTK474 (4a) is a potent, pan-PI3K inhibitor currently under clinical evaluation for the treatment of cancer. Structural studies have shown that derivatisation at the 5- or 6-position of the benzimidazole ring may influence potency and isoform selectivity. However, synthesis of these derivatives by the traditional route results in a mixture of the two regioisomers. We have developed a straightforward regioselective synthesis that gave convenient access to 5- and 6-methoxysubstituted benzimidazole derivatives of ZSTK474. While 5-methoxy substitution abolished activity at all isoforms, the 6-methoxy substitution is consistently 10-fold more potent. This synthesis will allow convenient access to further 6-position derivatives, thus allowing the full scope of the structure-activity relationships of ZSTK474 to be probed.

  1. Identification of a Potent Phosphoinositide 3-Kinase Pan Inhibitor Displaying a Strategic Carboxylic Acid Group and Development of Its Prodrugs.

    PubMed

    Pirali, Tracey; Ciraolo, Elisa; Aprile, Silvio; Massarotti, Alberto; Berndt, Alex; Griglio, Alessia; Serafini, Marta; Mercalli, Valentina; Landoni, Clarissa; Campa, Carlo Cosimo; Margaria, Jean Piero; Silva, Rangel L; Grosa, Giorgio; Sorba, Giovanni; Williams, Roger; Hirsch, Emilio; Tron, Gian Cesare

    2017-09-21

    Activation of the phosphoinositide 3-kinase (PI3K) pathway is a key signaling event in cancer, inflammation, and other proliferative diseases. PI3K inhibitors are already approved for some specific clinical indications, but their systemic on-target toxicity limits their larger use. In particular, whereas toxicity is tolerable in acute treatment of life-threatening diseases, this is less acceptable in chronic conditions. In the past, the strategy to overcome this drawback was to block selected isoforms mainly expressed in leukocytes, but redundancy within the PI3K family members challenges the effectiveness of this approach. On the other hand, decreasing exposure to selected target cells represents a so-far unexplored alternative to circumvent systemic toxicity. In this manuscript, we describe the generation of a library of triazolylquinolones and the development of the first prodrug pan-PI3K inhibitor. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Structure-Based Design of a Novel Series of Potent, Selective Inhibitors of the Class I Phosphatidylinositol 3-Kinases

    SciTech Connect

    Smith, Adrian L.; D’Angelo, Noel D.; Bo, Yunxin Y.; Booker, Shon K.; Cee, Victor J.; Herberich, Brad; Hong, Fang-Tsao; Jackson, Claire L.M.; Lanman, Brian A.; Liu, Longbin; Nishimura, Nobuko; Pettus, Liping H.; Reed, Anthony B.; Tadesse, Seifu; Tamayo, Nuria A.; Wurz, Ryan P.; Yang, Kevin; Andrews, Kristin L.; Whittington, Douglas A.; McCarter, John D.; Miguel, Tisha San; Zalameda, Leeanne; Jiang, Jian; Subramanian, Raju; Mullady, Erin L.; Caenepeel, Sean; Freeman, Daniel J.; Wang, Ling; Zhang, Nancy; Wu, Tian; Hughes, Paul E.; Norman, Mark H.

    2012-09-17

    A highly selective series of inhibitors of the class I phosphatidylinositol 3-kinases (PI3Ks) has been designed and synthesized. Starting from the dual PI3K/mTOR inhibitor 5, a structure-based approach was used to improve potency and selectivity, resulting in the identification of 54 as a potent inhibitor of the class I PI3Ks with excellent selectivity over mTOR, related phosphatidylinositol kinases, and a broad panel of protein kinases. Compound 54 demonstrated a robust PD-PK relationship inhibiting the PI3K/Akt pathway in vivo in a mouse model, and it potently inhibited tumor growth in a U-87 MG xenograft model with an activated PI3K/Akt pathway.

  3. Novel domains in NADPH oxidase subunits, sorting nexins, and PtdIns 3-kinases: binding partners of SH3 domains?

    PubMed Central

    Ponting, C. P.

    1996-01-01

    Two SH3 domain-containing cytosolic components of the NADPH oxidase, p47phox and p40phox, are shown by analyses of their sequences to contain single copies of a novel class of domain, the PX (phox) domain. Homologous domains are demonstrated to be present in the Cpk class of phosphatidylinositol 3-kinase, S. cerevisiae Bem1p, and S. pombe Scd2, and a large family of human sorting nexin 1 (SNX1) homologues. The majority of these domains contains a polyproline motif, typical of SH3 domain-binding proteins. Two further findings are reported. A third NADPH oxidase subunit, p67phox, is shown to contain four tetratricopeptide repeats (TPRs) within its N-terminal RaclGTP-binding region, and a 28 residue motif in p40phox is demonstrated to be present in protein kinase C isoforms iota/lambda and zeta, and in three ZZ domain-containing proteins. PMID:8931154

  4. Inhibition of phosphoinositol 3 kinase contributes to nanoparticle-mediated exaggeration of endotoxin-induced leukocyte procoagulant activity

    PubMed Central

    Ilinskaya, Anna N; Man, Sonny; Patri, Anil K; Clogston, Jeffrey D; Crist, Rachael M; Cachau, Raul E; McNeil, Scott E; Dobrovolskaia, Marina A

    2014-01-01

    Aim Disseminated intravascular coagulation is an increasing concern for certain types of engineered nanomaterials. Recent studies have shed some light on the nanoparticle physicochemical properties contributing to this toxicity; however, the mechanisms are poorly understood. Leukocyte procoagulant activity (PCA) is a key factor contributing to the initiation of this toxicity. We have previously reported on the exaggeration of endotoxin-induced PCA by cationic dendrimers. Herein, we report an effort to discern the mechanism. Materials & methods Poly(amidoamine) dendrimers with various sizes and surface functionalities were studied in vitro by the recalcification test, flow cytometry and other relevant assays. Results & conclusion Cationic dendrimers exaggerated endotoxin-induced PCA, but their anionic or neutral counterparts did not; the cationic charge prompts this phenomenon, but different cationic surface chemistries do not influence it. Cationic dendrimers and endotoxin differentially affect the PCA complex. The inhibition of phosphoinositol 3 kinase by dendrimers contributes to the exaggeration of the endotoxin-induced PCA. PMID:24279459

  5. PI3 kinase inhibition improves vascular malformations in mouse models of hereditary haemorrhagic telangiectasia.

    PubMed

    Ola, Roxana; Dubrac, Alexandre; Han, Jinah; Zhang, Feng; Fang, Jennifer S; Larrivée, Bruno; Lee, Monica; Urarte, Ana A; Kraehling, Jan R; Genet, Gael; Hirschi, Karen K; Sessa, William C; Canals, Francesc V; Graupera, Mariona; Yan, Minhong; Young, Lawrence H; Oh, Paul S; Eichmann, Anne

    2016-11-29

    Activin receptor-like kinase 1 (ALK1) is an endothelial serine-threonine kinase receptor for bone morphogenetic proteins (BMPs) 9 and 10. Inactivating mutations in the ALK1 gene cause hereditary haemorrhagic telangiectasia type 2 (HHT2), a disabling disease characterized by excessive angiogenesis with arteriovenous malformations (AVMs). Here we show that inducible, endothelial-specific homozygous Alk1 inactivation and BMP9/10 ligand blockade both lead to AVM formation in postnatal retinal vessels and internal organs including the gastrointestinal (GI) tract in mice. VEGF and PI3K/AKT signalling are increased on Alk1 deletion and BMP9/10 ligand blockade. Genetic deletion of the signal-transducing Vegfr2 receptor prevents excessive angiogenesis but does not fully revert AVM formation. In contrast, pharmacological PI3K inhibition efficiently prevents AVM formation and reverts established AVMs. Thus, Alk1 deletion leads to increased endothelial PI3K pathway activation that may be a novel target for the treatment of vascular lesions in HHT2.

  6. PI3 kinase inhibition improves vascular malformations in mouse models of hereditary haemorrhagic telangiectasia

    PubMed Central

    Ola, Roxana; Dubrac, Alexandre; Han, Jinah; Zhang, Feng; Fang, Jennifer S.; Larrivée, Bruno; Lee, Monica; Urarte, Ana A.; Kraehling, Jan R.; Genet, Gael; Hirschi, Karen K.; Sessa, William C.; Canals, Francesc V.; Graupera, Mariona; Yan, Minhong; Young, Lawrence H.; Oh, Paul S.; Eichmann, Anne

    2016-01-01

    Activin receptor-like kinase 1 (ALK1) is an endothelial serine–threonine kinase receptor for bone morphogenetic proteins (BMPs) 9 and 10. Inactivating mutations in the ALK1 gene cause hereditary haemorrhagic telangiectasia type 2 (HHT2), a disabling disease characterized by excessive angiogenesis with arteriovenous malformations (AVMs). Here we show that inducible, endothelial-specific homozygous Alk1 inactivation and BMP9/10 ligand blockade both lead to AVM formation in postnatal retinal vessels and internal organs including the gastrointestinal (GI) tract in mice. VEGF and PI3K/AKT signalling are increased on Alk1 deletion and BMP9/10 ligand blockade. Genetic deletion of the signal-transducing Vegfr2 receptor prevents excessive angiogenesis but does not fully revert AVM formation. In contrast, pharmacological PI3K inhibition efficiently prevents AVM formation and reverts established AVMs. Thus, Alk1 deletion leads to increased endothelial PI3K pathway activation that may be a novel target for the treatment of vascular lesions in HHT2. PMID:27897192

  7. Janus and PI3-kinases mediate glucocorticoid resistance in activated chronic leukemia cells

    PubMed Central

    Oppermann, Sina; Lam, Avery J.; Tung, Stephanie; Shi, Yonghong; McCaw, Lindsay; Wang, Guizhei; Ylanko, Jarkko; Leber, Brian; Andrews, David; Spaner, David E.

    2016-01-01

    Glucorticoids (GCs) such as dexamethasone (DEX) remain important treatments for Chronic Lymphocytic Leukemia (CLL) but the mechanisms are poorly understood and resistance is inevitable. Proliferation centers (PC) in lymph nodes and bone marrow offer protection against many cytotoxic drugs and circulating CLL cells were found to acquire resistance to DEX-mediated killing in conditions encountered in PCs including stimulation by toll-like receptor agonists and interactions with stromal cells. The resistant state was associated with impaired glucocorticoid receptor-mediated gene expression, autocrine activation of STAT3 through Janus Kinases (JAKs), and increased glycolysis. The JAK1/2 inhibitor ruxolitinib blocked STAT3-phosphorylation and partially improved DEX-mediated killing of stimulated CLL cells in vitro but not in CLL patients in vivo. An automated microscopy-based screen of a kinase inhibitor library implicated an additional protective role for the PI3K/AKT/FOXO pathway. Blocking this pathway with the glycolysis inhibitor 2-deoxyglucose (2-DG) or the PI3K-inhibitors idelalisib and buparlisib increased DEX-mediated killing but did not block STAT3-phosphorylation. Combining idelalisib or buparlisib with ruxolitinib greatly increased killing by DEX. These observations suggest that glucocorticoid resistance in CLL cells may be overcome by combining JAK and PI3K inhibitors. PMID:27579615

  8. In vivo binding properties of SH2 domains from GTPase-activating protein and phosphatidylinositol 3-kinase.

    PubMed Central

    Cooper, J A; Kashishian, A

    1993-01-01

    We have used a transient expression system and mutant platelet-derived growth factor (PDGF) receptors to study the binding specificities of the Src homology 2 (SH2) regions of the Ras GTPase-activator protein (GAP) and the p85 alpha subunit of phosphatidylinositol 3-kinase (PI3 kinase). A number of fusion proteins, each tagged with an epitope allowing recognition by a monoclonal antibody, were expressed at levels comparable to those of endogenous GAP. Fusion proteins containing the central SH2-SH3-SH2 region of GAP or the C-terminal region of p85 alpha, which includes two SH2 domains, bound to PDGF receptors in response to PDGF stimulation. Both fusion proteins showed the same requirements for tyrosine phosphorylation sites in the PDGF receptor as the full-length proteins from which they were derived, i.e., binding of the GAP fusion protein was reduced by mutation of Tyr-771, and binding of the p85 fusion protein was reduced by mutation of Tyr-740, Tyr-751, or both residues. Fusion proteins containing single SH2 domains from either GAP or p85 alpha did not bind detectably to PDGF receptors in this system, suggesting that two SH2 domains in a single polypeptide cooperate to raise the affinity of binding. The sequence specificities of individual SH2 domains were deduced from the binding properties of fusion proteins containing one SH2 domain from GAP and another from p85. The results suggest that the C-terminal GAP SH2 domain specifies binding to Tyr-771, the C-terminal p85 alpha SH2 domain binds to either Tyr-740 or Tyr-751, and each protein's N-terminal SH2 domain binds to unidentified phosphorylation sites.(ABSTRACT TRUNCATED AT 250 WORDS) Images PMID:8382774

  9. A phosphatidylinositol 3-kinase/Akt/mTOR pathway mediates and PTEN antagonizes tumor necrosis factor inhibition of insulin signaling through insulin receptor substrate-1

    PubMed Central

    Ozes, Osman Nidai; Akca, Hakan; Mayo, Lindsey D.; Gustin, Jason A.; Maehama, Tomohiko; Dixon, Jack E.; Donner, David B.

    2001-01-01

    Tyrosine phosphorylation of insulin receptor substrate-1 (IRS-1) by the insulin receptor permits this docking protein to interact with signaling proteins that promote insulin action. Serine phosphorylation uncouples IRS-1 from the insulin receptor, thereby inhibiting its tyrosine phosphorylation and insulin signaling. For this reason, there is great interest in identifying serine/threonine kinases for which IRS-1 is a substrate. Tumor necrosis factor (TNF) inhibited insulin-promoted tyrosine phosphorylation of IRS-1 and activated the Akt/protein kinase B serine-threonine kinase, a downstream target for phosphatidylinositol 3-kinase (PI 3-kinase). The effect of TNF on insulin-promoted tyrosine phosphorylation of IRS-1 was blocked by inhibition of PI 3-kinase and the PTEN tumor suppessor, which dephosphorylates the lipids that mediate PI 3-kinase functions, whereas constitutively active Akt impaired insulin-promoted IRS-1 tyrosine phosphorylation. Conversely, TNF inhibition of IRS-1 tyrosine phosphorylation was blocked by kinase dead Akt. Inhibition of IRS-1 tyrosine phosphorylation by TNF was blocked by rapamycin, an inhibitor of the mammalian target of rapamycin (mTOR), a downstream target of Akt. mTOR induced the serine phosphorylation of IRS-1 (Ser-636/639), and such phosphorylation was inhibited by rapamycin. These results suggest that TNF impairs insulin signaling through IRS-1 by activation of a PI 3-kinase/Akt/mTOR pathway, which is antagonized by PTEN. PMID:11287630

  10. The phosphatidylinositol 3-kinase inhibitor, wortmannin, inhibits insulin-induced activation of phosphatidylcholine hydrolysis and associated protein kinase C translocation in rat adipocytes.

    PubMed Central

    Standaert, M L; Avignon, A; Yamada, K; Bandyopadhyay, G; Farese, R V

    1996-01-01

    We questioned whether phosphatidylinositol 3-kinase (PI 3-kinase) and protein kinase C (PKC) function as interrelated signalling mechanisms during insulin action in rat adipocytes. Insulin rapidly activated a phospholipase D that hydrolyses phosphatidylcholine (PC), and this activation was accompanied by increases in diacylglycerol and translocative activation of PKC-alpha and PKC-beta in the plasma membrane. Wortmannin, an apparently specific PI 3-kinase inhibitor, inhibited insulin-stimulated, phospholipase D-dependent PC hydrolysis and subsequent translocation of PKC-alpha and PKC-beta to the plasma membrane. Wortmannin did not inhibit PKC directly in vitro, or the PKC-dependent effects of phorbol esters on glucose transport in intact adipocytes. The PKC inhibitor RO 31-8220 did not inhibit PI 3-kinase directly or its activation in situ by insulin, but inhibited both insulin-stimulated and phorbol ester-stimulated glucose transport. Our findings suggest that insulin acts through PI 3-kinase to activate a PC-specific phospholipase D and causes the translocative activation of PKC-alpha and PKC-beta in plasma membranes of rat adipocytes. PMID:8611143

  11. Tyrosine 1101 of Tie2 Is the Major Site of Association of p85 and Is Required for Activation of Phosphatidylinositol 3-Kinase and Akt

    PubMed Central

    Kontos, Christopher D.; Stauffer, Thomas P.; Yang, Wen-Pin; York, John D.; Huang, Liwen; Blanar, Michael A.; Meyer, Tobias; Peters, Kevin G.

    1998-01-01

    Tie2 is an endothelium-specific receptor tyrosine kinase that is required for both normal embryonic vascular development and tumor angiogenesis and is thought to play a role in vascular maintenance. However, the signaling pathways responsible for the function of Tie2 remain unknown. In this report, we demonstrate that the p85 subunit of phosphatidylinositol 3-kinase (PI3-kinase) associates with Tie2 and that this association confers functional lipid kinase activity. Mutation of tyrosine 1101 of Tie2 abrogated p85 association both in vitro and in vivo in yeast. Tie2 was found to activate PI3-kinase in vivo as demonstrated by direct measurement of increases in cellular phosphatidylinositol 3-phosphate and phosphatidylinositol 3,4-bisphosphate, by plasma membrane translocation of a green fluorescent protein-Akt pleckstrin homology domain fusion protein, and by downstream activation of the Akt kinase. Activation of PI3-kinase was abrogated in these assays by mutation of Y1101 to phenylalanine, consistent with a requirement for this residue for p85 association with Tie2. These results suggest that activation of PI3-kinase and Akt may in part account for Tie2’s role in both embryonic vascular development and pathologic angiogenesis, and they are consistent with a role for Tie2 in endothelial cell survival. PMID:9632797

  12. Tyrosine 1101 of Tie2 is the major site of association of p85 and is required for activation of phosphatidylinositol 3-kinase and Akt.

    PubMed

    Kontos, C D; Stauffer, T P; Yang, W P; York, J D; Huang, L; Blanar, M A; Meyer, T; Peters, K G

    1998-07-01

    Tie2 is an endothelium-specific receptor tyrosine kinase that is required for both normal embryonic vascular development and tumor angiogenesis and is thought to play a role in vascular maintenance. However, the signaling pathways responsible for the function of Tie2 remain unknown. In this report, we demonstrate that the p85 subunit of phosphatidylinositol 3-kinase (PI3-kinase) associates with Tie2 and that this association confers functional lipid kinase activity. Mutation of tyrosine 1101 of Tie2 abrogated p85 association both in vitro and in vivo in yeast. Tie2 was found to activate PI3-kinase in vivo as demonstrated by direct measurement of increases in cellular phosphatidylinositol 3-phosphate and phosphatidylinositol 3, 4-bisphosphate, by plasma membrane translocation of a green fluorescent protein-Akt pleckstrin homology domain fusion protein, and by downstream activation of the Akt kinase. Activation of PI3-kinase was abrogated in these assays by mutation of Y1101 to phenylalanine, consistent with a requirement for this residue for p85 association with Tie2. These results suggest that activation of PI3-kinase and Akt may in part account for Tie2's role in both embryonic vascular development and pathologic angiogenesis, and they are consistent with a role for Tie2 in endothelial cell survival.

  13. Cholesterol crystals activate Syk and PI3 kinase in human macrophages and dendritic cells.

    PubMed

    Corr, Emma M; Cunningham, Clare C; Dunne, Aisling

    2016-08-01

    Cholesterol crystals are a key component of atherosclerotic lesions where they promote pro-inflammatory cytokine production and plaque destabilization. Antagonists of inflammatory mediators and agents that dissolve or prevent the formation of cholesterol crystals are being explored as potential therapeutics for atherothrombosis. We sought to identify signalling molecules activated following exposure of immune cells to cholesterol crystals with the view to identifying novel therapeutic targets. Human macrophages and dendritic cells (DC) were exposed to cholesterol crystals and activation of signalling molecules was assessed by immunoblotting. The role of Syk and PI3K in crystal-induced interleukin (IL)-1 production was determined by ELISA using specific kinase inhibitors. Real-time PCR was employed to examine the role of Syk/PI3K in cholesterol crystal-induced expression of S100 proteins and MMPs. Exposure of human macrophages and DC to cholesterol crystals induced robust activation of Syk and PI3K within 2-5 min. Pharmacological inhibition of Syk/PI3K reduced crystal-induced IL-1α/β production by approximately 80%. Activation of the downstream MAP kinases, MEK and ERK, was suppressed following inhibition of Syk and PI3K. Finally, inhibition of both Syk and PI3K significantly reduced cholesterol crystal-induced S100A8 and MMP1 gene expression by >70% while inhibition of PI3K also reduced S100A12 expression. Cholesterol crystals activate specific cell signalling pathways which drive the production of inflammatory cytokines and degradative enzymes known to contribute to disease initiation and progression. These molecular events are dependent on activation of Syk and PI3K, hence, they represent potential therapeutic targets for the treatment of cholesterol crystal-related pathologies. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  14. Temozolomide downregulates P-glycoprotein expression in glioblastoma stem cells by interfering with the Wnt3a/glycogen synthase-3 kinase/β-catenin pathway

    PubMed Central

    Riganti, Chiara; Salaroglio, Iris Chiara; Caldera, Valentina; Campia, Ivana; Kopecka, Joanna; Mellai, Marta; Annovazzi, Laura; Bosia, Amalia; Ghigo, Dario; Schiffer, Davide

    2013-01-01

    Background Glioblastoma multiforme stem cells display a highly chemoresistant phenotype, whose molecular basis is poorly known. We aim to clarify this issue and to investigate the effects of temozolomide on chemoresistant stem cells. Methods A panel of human glioblastoma cultures, grown as stem cells (neurospheres) and adherent cells, was used. Results Neurospheres had a multidrug resistant phenotype compared with adherent cells. Such chemoresistance was overcome by apparently noncytotoxic doses of temozolomide, which chemosensitized glioblastoma cells to doxorubicin, vinblastine, and etoposide. This effect was selective for P-glycoprotein (Pgp) substrates and for stem cells, leading to an investigation of whether there was a correlation between the expression of Pgp and the activity of typical stemness pathways. We found that Wnt3a and ABCB1, which encodes for Pgp, were both highly expressed in glioblastoma stem cells and reduced by temozolomide. Temozolomide-treated cells had increased methylation of the cytosine–phosphate–guanine islands in the Wnt3a gene promoter, decreased expression of Wnt3a, disrupted glycogen synthase-3 kinase/β-catenin axis, reduced transcriptional activation of ABCB1, and a lower amount and activity of Pgp. Wnt3a overexpression was sufficient to transform adherent cells into neurospheres and to simultaneously increase proliferation and ABCB1 expression. On the contrary, glioblastoma stem cells silenced for Wnt3a lost the ability to form neurospheres and reduced at the same time the proliferation rate and ABCB1 levels. Conclusions Our work suggests that Wnt3a is an autocrine mediator of stemness, proliferation, and chemoresistance in human glioblastoma and that temozolomide may chemosensitize the stem cell population by downregulating Wnt3a signaling. PMID:23897632

  15. Novel phosphoinositide 3-kinase δ,γ inhibitor: potent anti-inflammatory effects and joint protection in models of rheumatoid arthritis.

    PubMed

    Boyle, David L; Kim, Hae-Rim; Topolewski, Katharyn; Bartok, Beatrix; Firestein, Gary S

    2014-02-01

    Phosphoinositide 3-kinases γ and δ (PI3Kγ and PI3Kδ) are expressed in rheumatoid arthritis (RA) synovium and regulate innate and adaptive immune responses. We determined the effect of a potent PI3Kδ,γ inhibitor, IPI-145, in two preclinical models of RA. IPI-145 was administered orally in rat adjuvant-induced arthritis (AA) and intraperitoneally in mouse collagen-induced arthritis (CIA). Efficacy was assessed by paw swelling, clinical scores, histopathology and radiography, and microcomputed tomography scanning. Gene expression and Akt phosphorylation in joint tissues were determined by quantitative real-time polymerase chain reaction and Western blot analysis. Serum concentrations of anti-type II collagen (CII) IgG and IgE were measured by immunoassay. T-cell responses to CII were assayed using thymidine incorporation and immunoassay. IPI-145 significantly reduced arthritis severity in both RA models using dosing regimens initiated before onset of clinical disease. Treatment of established arthritis with IPI-145 in AA, but not CIA, significantly decreased arthritis progression. In AA, histology scores, radiographic joint damage, and matrix metalloproteinase (MMP)-13 expression were reduced in IPI-145-treated rats. In CIA, joint histology scores and expression of MMP-3 and MMP-13 mRNA were lower in the IPI-145 early treatment group than in the vehicle group. The ratio of anti-CII IgG2a to total IgG in CIA was modestly reduced. Interleukin-17 production in response to CII was decreased in the IPI-145-treated group, suggesting an inhibitory effect on T-helper cell 17 differentiation. These data show that PI3Kδ,γ inhibition suppresses inflammatory arthritis, as well as bone and cartilage damage, through effects on innate and adaptive immunity and that IPI-145 is a potential therapy for RA.

  16. Blueberry Phytochemicals Inhibit Growth and Metastatic Potential of MDA-MB-231 Breast Cancer Cells Through Modulation of the Phosphatidylinositol 3-Kinase Pathway

    PubMed Central

    Adams, Lynn S.; Phung, Sheryl; Yee, Natalie; Seeram, Navindra P.; Li, Liya; Chen, Shiuan

    2010-01-01

    Dietary phytochemicals are known to exhibit a variety of anti-carcinogenic properties. This study investigated the chemopreventive activity of blueberry extract in triple negative breast cancer cell lines in vitro and in vivo. Blueberry decreased cell proliferation in HCC38, HCC1937 and MDA-MB-231 cells with no effect on the non-tumorigenic MCF-10A cell line. Decreased metastatic potential of MDA-MB-231 cells by blueberry was shown through inhibition of cell motility using wound healing assays and migration through a PET membrane. Blueberry treatment decreased the activity of matrix metalloproteinase 9 and the secretion of urokinase-type plasminogen activator while increasing tissue inhibitor of metalloproteinase-1 and plasminogen activator inhibitor-1 secretion in MDA-MB-231 conditioned medium as shown by western blotting. Cell signaling pathways that control the expression/activation of these processes were investigated via western blotting and reporter gene assay. Treatment with blueberry decreased phosphatidylinositol 3-kinase (PI3K)/AKT and nuclear factor kappa-B (NFκB) activation in MDA-MB-231 cells where protein kinase C (PKC) and extracellular regulated kinase (ERK) were not affected. In vivo, the efficacy of blueberry to inhibit triple negative breast tumor growth was evaluated using the MDA-MB-231 xenograft model. Tumor weight and proliferation (Ki-67 expression) were decreased in blueberry treated mice, where apoptosis (caspase-3 expression) was increased compared to controls. Immunohistochemical analysis of tumors from blueberry-fed mice showed decreased activation of AKT and p65 NFκB signaling proteins with no effect on the phosphorylation of ERK. These data illustrate the inhibitory effect of blueberry phytochemicals on the growth and metastatic potential of MDA-MB-231 cells through modulation of the PI3K/AKT/NFκB pathway. PMID:20388778

  17. Phosphatidylinositol 3-kinase mediates activation of ATM by high NaCl and by ionizing radiation: Role in osmoprotective transcriptional regulation

    PubMed Central

    Irarrazabal, Carlos E.; Burg, Maurice B.; Ward, Stephen G.; Ferraris, Joan D.

    2006-01-01

    High NaCl causes DNA double-strand breaks and activates the transcription factor, TonEBP/OREBP, resulting in increased transcription of several protective genes, including those involved in accumulation of compatible organic osmolytes. Several kinases are known to contribute to signaling activation of TonEBP/OREBP, including ATM, which is a member of the phosphatidylinositol 3-kinase (PI3K)-like kinase family and is activated by DNA double-strand breaks. The purpose of the present studies was to investigate a possible role of PI3K Class IA (PI3K-IA). We found that high NaCl increases PI3K-IA lipid kinase activity. Inhibiting PI3K-IA either by expressing a dominant negative of its regulatory subunit, p85, or by small interfering RNA-mediated knockdown of its catalytic subunit, p110α, reduces high NaCl-induced increases in TonEBP/OREBP transcriptional activity and transactivation, but not nuclear translocation of TonEBP/OREBP, or increases in its abundance. Further, suppression of PI3K-IA inhibits the activation of ATM that is caused by either ionizing radiation or high NaCl. High NaCl-induced increase in TonEBP/OREBP activity is reduced equally by inhibition of ATM or PI3K-IA, and the effects are not additive. The conclusions are as follows: (i) PI3K-IA activity is necessary for both high NaCl- and ionizing radiation-induced activation of ATM and (ii) high NaCl activates PI3K-IA, which, in turn, contributes to full activation of TonEBP/OREBP via ATM. PMID:16728507

  18. Programmed Death-1 Inhibition of Phosphatidylinositol 3-Kinase/AKT/Mechanistic Target of Rapamycin Signaling Impairs Sarcoidosis CD4(+) T Cell Proliferation.

    PubMed

    Celada, Lindsay J; Rotsinger, Joseph E; Young, Anjuli; Shaginurova, Guzel; Shelton, Debresha; Hawkins, Charlene; Drake, Wonder P

    2017-01-01

    Patients with progressive sarcoidosis exhibit increased expression of programmed death-1 (PD-1) receptor on their CD4(+) T cells. Up-regulation of this marker of T cell exhaustion is associated with a reduction in the proliferative response to T cell receptor (TCR) stimulation, a defect that is reversed by PD-1 pathway blockade. Genome-wide association studies and microarray analyses have correlated signaling downstream from the TCR with sarcoidosis disease severity, but the mechanism is not yet known. Reduced phosphatidylinositol 3-kinase (PI3K)/AKT expression inhibits proliferation by inhibiting cell cycle progression. To test the hypothesis that PD-1 expression attenuates TCR-dependent activation of PI3K/AKT activity in progressive systemic sarcoidosis, we analyzed PI3K/AKT/mechanistic target of rapamycin (mTOR) expression at baseline and after PD-1 pathway blockade in CD4(+) T cells isolated from patients with sarcoidosis and healthy control subjects. We confirmed an increased percentage of PD-1(+) CD4(+) T cells and reduced proliferative capacity in patients with sarcoidosis compared with healthy control subjects (P < 0.001). There was a negative correlation with PD-1 expression and proliferative capacity (r = -0.70, P < 0.001). Expression of key mediators of cell cycle progression, including PI3K and AKT, were significantly decreased. Gene and protein expression levels reverted to healthy control levels after PD-1 pathway blockade. Reduction in sarcoidosis CD4(+) T cell proliferative capacity is secondary to altered expression of key mediators of cell cycle progression, including the PI3K/AKT/mTOR pathway, via PD-1 up-regulation. This supports the concept that PD-1 up-regulation drives the immunologic deficits associated with sarcoidosis severity by inducing signaling aberrancies in key mediators of cell cycle progression.

  19. Dual inhibition of class IA phosphatidylinositol 3-kinase and mammalian target of rapamycin as a new therapeutic option for T-cell acute lymphoblastic leukemia.

    PubMed

    Chiarini, Francesca; Falà, Federica; Tazzari, Pier Luigi; Ricci, Francesca; Astolfi, Annalisa; Pession, Andrea; Pagliaro, Pasqualepaolo; McCubrey, James A; Martelli, Alberto M

    2009-04-15

    Recent investigations have documented that constitutively activated phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) signaling is a common feature of T-cell acute lymphoblastic leukemia (T-ALL), where it strongly influences growth and survival. These findings lend compelling weight for the application of PI3K/Akt/mTOR inhibitors in T-ALL. However, our knowledge of PI3K/Akt/mTOR signaling in T-ALL is limited and it is not clear whether it could be an effective target for innovative therapeutic strategies. Here, we have analyzed the therapeutic potential of the dual PI3K/mTOR inhibitor PI-103, a small synthetic molecule of the pyridofuropyrimidine class, on both T-ALL cell lines and patient samples, which displayed constitutive activation of PI3K/Akt/mTOR signaling. PI-103 inhibited the growth of T-ALL cells, including 170-kDa P-glycoprotein overexpressing cells. PI-103 cytotoxicity was independent of p53 gene status. PI-103 was more potent than inhibitors that are selective only for PI3K (Wortmannin, LY294002) or for mTOR (rapamycin). PI-103 induced G(0)-G(1) phase cell cycle arrest and apoptosis, which was characterized by activation of caspase-3 and caspase-9. PI-103 caused Akt dephosphorylation, accompanied by dephosphorylation of the Akt downstream target, glycogen synthase kinase-3beta. Also, mTOR downstream targets were dephosphorylated in response to PI-103, including p70S6 kinase, ribosomal S6 protein, and 4E-BP1. PI-103 strongly synergized with vincristine. These findings indicate that multitargeted therapy toward PI3K and mTOR alone or with existing drugs may serve as an efficient treatment toward T-ALL cells, which require up-regulation of PI3K/Akt/mTOR signaling for their survival and growth.

  20. Deletion of the p85alpha regulatory subunit of phosphoinositide 3-kinase in cone photoreceptor cells results in cone photoreceptor degeneration.

    PubMed

    Ivanovic, Ivana; Anderson, Robert E; Le, Yun Z; Fliesler, Steven J; Sherry, David M; Rajala, Raju V S

    2011-06-01

    Downregulation of the retinal insulin/mTOR pathway in mouse models of retinitis pigmentosa is linked to cone cell death, which can be delayed by systemic administration of insulin. A classic survival kinase linking extracellular trophic/growth factors with intracellular antiapoptotic pathways is phosphoinositide 3-kinase (PI3K), which the authors have shown to protect rod photoreceptors from stress-induced cell death. The role of PI3K in cones was studied by conditional deletion of its p85α regulatory subunit. Mice expressing Cre recombinase in cones were bred to mice with a floxed pi3k gene encoding the p85α regulatory subunit of the PI3K and were back-crossed to ultimately generate offspring with cone-specific p85α knockout (cKO). Cre expression and cone-specific localization were confirmed by Western blot analysis and immunohistochemistry (IHC), respectively. Cone structural integrity was determined by IHC using peanut agglutinin and an M-opsin-specific antibody. Electroretinography (ERG) was used to assess rod and cone photoreceptor function. Retinal structure was examined by light and electron microscopy. An age-related cone degeneration was found in cKO mice, evidenced by a reduction in photopic ERG amplitudes and loss of cone cells. By 12 months of age, approximately 78% of cones had died, and progressive disorganization of synaptic ultrastructure was noted in surviving cone terminals in cKO retinas. Rod viability was unaffected in p85α cKO mice. The present study suggests that PI3K signaling pathway is essential for cone survival in the mouse retina.

  1. Deletion of the p85α Regulatory Subunit of Phosphoinositide 3-Kinase in Cone Photoreceptor Cells Results in Cone Photoreceptor Degeneration

    PubMed Central

    Ivanovic, Ivana; Anderson, Robert E.; Le, Yun Z.; Fliesler, Steven J.; Sherry, David M.

    2011-01-01

    Purpose. Downregulation of the retinal insulin/mTOR pathway in mouse models of retinitis pigmentosa is linked to cone cell death, which can be delayed by systemic administration of insulin. A classic survival kinase linking extracellular trophic/growth factors with intracellular antiapoptotic pathways is phosphoinositide 3-kinase (PI3K), which the authors have shown to protect rod photoreceptors from stress-induced cell death. The role of PI3K in cones was studied by conditional deletion of its p85α regulatory subunit. Methods. Mice expressing Cre recombinase in cones were bred to mice with a floxed pi3k gene encoding the p85α regulatory subunit of the PI3K and were back-crossed to ultimately generate offspring with cone-specific p85α knockout (cKO). Cre expression and cone-specific localization were confirmed by Western blot analysis and immunohistochemistry (IHC), respectively. Cone structural integrity was determined by IHC using peanut agglutinin and an M-opsin–specific antibody. Electroretinography (ERG) was used to assess rod and cone photoreceptor function. Retinal structure was examined by light and electron microscopy. Results. An age-related cone degeneration was found in cKO mice, evidenced by a reduction in photopic ERG amplitudes and loss of cone cells. By 12 months of age, approximately 78% of cones had died, and progressive disorganization of synaptic ultrastructure was noted in surviving cone terminals in cKO retinas. Rod viability was unaffected in p85α cKO mice. Conclusions. The present study suggests that PI3K signaling pathway is essential for cone survival in the mouse retina. PMID:21398281

  2. Effect of L-arginine supplementation on the hepatic phosphatidylinositol 3-kinase signaling pathway and gluconeogenic enzymes in early intrauterine growth-restricted rats.

    PubMed

    Luo, Kaiju; Chen, Pingyang; Li, Suping; Li, Wen; He, Mingfeng; Wang, Tao; Chen, Juncao

    2017-09-01

    The present study aimed to investigate the response of the phosphatidylinositol 3-kinase (PI3K) signaling pathway and gluconeogenic enzymes in intrauterine growth-restricted rats to dietary L-arginine (L-Arg) supplementation during the lactation period early in life. Pregnant Sprague-Dawley rats were randomly divided into a control group (CON), an intrauterine growth restriction group (IUGR) and an L-Arg group (LA). The pregnant rats in the CON group were fed a 21% protein diet, and those in the IUGR and LA groups were fed a 10% low protein diet, and all rats were fed a 21% protein diet after delivery. Water was available ad libitum to the pregnant rats during the 21-day lactation period, and the water provided to the LA group included 200 mg/kg/day L-Arg. Blood glucose, serum insulin, homeostasis model of assessment for insulin resistance (HOMA-IR), PI3K and protein kinase B (PKB) protein expression, and phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G-6-Pase) mRNA expression in the offspring rats were measured postnatally at 1, 3 and 8 weeks. No significant difference in blood glucose, serum insulin and HOMA-IR were identified at any time point among the three groups. PI3K and PKB expression was lower in the IUGR group offspring compared with that in the CON group offspring, but both were increased by dietary L-Arg supplementation. PEPCK mRNA and G-6-Pase mRNA expression levels in the offspring of the IUGR group were higher compared with those in the CON group but were downregulated following L-Arg supplementation. These results suggest that dietary L-Arg supplementation during the early lactation period promoted catch-up growth and reversed abnormalities in hepatic insulin signaling and gene expression of gluconeogenic enzymes in IUGR offspring rats.

  3. Oncogenic mutations weaken the interactions that stabilize the p110α-p85α heterodimer in phosphatidylinositol 3-kinase α.

    PubMed

    Echeverria, Ignacia; Liu, Yunlong; Gabelli, Sandra B; Amzel, L Mario

    2015-09-01

    Phosphatidylinositol 3-kinase (PI3K) α is a heterodimeric lipid kinase that catalyzes the conversion of phosphoinositol-4,5-bisphosphate to phosphoinositol-3,4,5-trisphosphate. The PI3Kα signaling pathway plays an important role in cell growth, proliferation, and survival. This pathway is activated in numerous cancers, where the PI3KCA gene, which encodes for the p110α PI3Kα subunit, is mutated. Its mutation often results in gain of enzymatic activity; however, the mechanism of activation by oncogenic mutations remains unknown. Here, using computational methods, we show that oncogenic mutations that are far from the catalytic site and increase the enzymatic affinity destabilize the p110α-p85α dimer. By affecting the dynamics of the protein, these mutations favor the conformations that reduce the autoinhibitory effect of the p85α nSH2 domain. For example, we determined that, in all of the mutants, the nSH2 domain shows increased positional heterogeneity as compared with the wild-type, as demonstrated by changes in the fluctuation profiles computed by normal mode analysis of coarse-grained elastic network models. Analysis of the interdomain interactions of the wild-type and mutants at the p110α-p85α interface obtained with molecular dynamics simulations suggest that all of the tumor-associated mutations effectively weaken the interactions between p110α and p85α by disrupting key stabilizing interactions. These findings have important implications for understanding how oncogenic mutations change the conformational multiplicity of PI3Kα and lead to increased enzymatic activity. This mechanism may apply to other enzymes and/or macromolecular complexes that play a key role in cell signaling.

  4. Synergistic inhibition of colon carcinoma cell growth by Hedgehog-Gli1 inhibitor arsenic trioxide and phosphoinositide 3-kinase inhibitor LY294002.

    PubMed

    Cai, Xinyi; Yu, Kun; Zhang, Lijuan; Li, Yunfeng; Li, Qiang; Yang, Zhibin; Shen, Tao; Duan, Lincan; Xiong, Wei; Wang, Weiya

    2015-01-01

    The Hedgehog (Hh) signaling pathway not only plays important roles in embryogenesis and adult tissue homeostasis, but also in tumorigenesis. Aberrant Hh pathway activation has been reported in a variety of malignant tumors including colon carcinoma. Here, we sought to investigate the regulation of the Hh pathway transcription factor Gli1 by arsenic trioxide and phosphoinositide 3-kinase (PI3K) inhibitor LY294002 in colon carcinoma cells. We transfected cells with siGli1 and observed a significant reduction of Gli1 expression in HCT116 and HT29 cells, which was confirmed by quantitative real-time polymerase chain reaction and Western blots. Knocking down endogenous Gli1 reduced colon carcinoma cell viability through inducing cell apoptosis. Similarly, knocking down Gli2 using short interfering RNA impaired colon carcinoma cell growth in vitro. To elucidate the regulation of Gli1 expression, we found that both Gli inhibitor arsenic trioxide and PI3K inhibitor LY294002 significantly reduced Gli1 protein expression and colon carcinoma cell proliferation. Arsenic trioxide treatment also reduced Gli1 downstream target gene expression, such as Bcl2 and CCND1. More importantly, the inhibition of Hedgehog-Gli1 by arsenic trioxide showed synergistic anticancer effect with the PI3K inhibitor LY294002 in colon carcinoma cells. Our findings suggest that the Hh pathway transcription factor Gli1 is involved in the regulation of colon carcinoma cell viability. Inhibition of Hedgehog-Gli1 expression by arsenic trioxide and PI3K inhibitor synergistically reduces colon cancer cell proliferation, indicating that they could be used as an effective anti-colon cancer combination therapy.

  5. Inhibition of focal adhesion kinase induces apoptosis in bladder cancer cells via Src and the phosphatidylinositol 3-kinase/Akt pathway

    PubMed Central

    KONG, DEBO; CHEN, FENG; SIMA, NI

    2015-01-01

    Focal adhesion kinase (FAK) is a 125-kDa, cytosolic, non-receptor, protein tyrosine kinase localized at focal adhesions that can be activated by multiple inputs and in different manners. FAK is implicated in signaling pathways regulating cell movement, invasion, survival, gene expression and cancer stem cell self-renewal. The aim of the present study was to investigate whether FAK plays a role in the apoptosis of bladder cancer cells. The study employed in situ deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling and Annexin V labeling flow cytometry. It was found that both the knockdown of FAK and the suppression of FAK phosphorylation were able to induce apoptosis in bladder cancer cells. Caspase-3 was activated during the apoptosis induced by the suppression of FAK phosphorylation. Src was involved in FAK-regulated apoptosis in bladder cancer cells, while the suppression of Src phosphorylation was able to inhibit FAK tyrosine phosphorylation and induce apoptosis. Furthermore, phosphatidylinositol 3-kinase (PI3K)/Akt signaling was inhibited via the suppression of FAK tyrosine phosphorylation. Conversely, the expression of neither the general nor the tyrosine-phosphorylated FAK was regulated by inhibiting PI3K/Akt, which suggested that PI3K/Akt acted downstream of FAK to regulate apoptosis in bladder cancer cells. These findings indicate the presence of a mechanism of apoptosis involving FAK-mediated oncogenic signaling. FAK may function as an important regulator of extracellular signaling-mediated apoptosis in bladder cancer and be used as a novel therapeutic target in the treatment of the condition. PMID:26640543

  6. Simultaneous inhibition of mitogen-activated protein kinase and phosphatidylinositol 3-kinase pathways augment the sensitivity to actinomycin D in Ewing sarcoma.

    PubMed

    Yamamoto, Takatoshi; Ohno, Takatoshi; Wakahara, Kazuhiko; Nagano, Akihito; Kawai, Gou; Saitou, Mitsuru; Takigami, Iori; Matsuhashi, Aya; Yamada, Kazunari; Shimizu, Katsuji

    2009-08-01

    Ewing sarcoma cells, of which over 85% retain chimeric fusion gene EWS/Fli-1, are by and large more resistant to chemotherapeutics compared to nonneoplastic cells. The purpose of this study is to determine the role of EWS/Fli-1 fusion and its downstream targets regarding the cells' resistance against actinomycin D (ActD), which is one of the most commonly used antitumor agents in combination chemotherapy of Ewing sarcomas. Cytotoxicity was measured by WST-8 assay. Caspase-dependent and -independent cell death was examined by fluorescence microscope. Protein expression was analyzed by western blotting. Caspase activity was determined by Caspase-Glo assay. ActD-induced caspase-dependent apoptotic cell death to Ewing sarcoma TC-135 cells in a dose- and time- dependent manner. Knockdown of EWS/Fli-1 fusion by siRNA resulted in enhancement of ActD-induced apoptosis. ActD treatment activated both mitogen-activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK) and phosphatidylinositol 3-kinase (PI3K)/Akt pathways although in a distinctive manner. Combined administration of U0126 (MEK inhibitor) and LY294002 (PI3K inhibitor) significantly enhanced ActD-induced apoptosis in vitro and suppressed xenograft tumor growth in vivo. The present study demonstrated for the first time that combination of U0126 and LY294002 can augment the cytotoxicity of ActD against Ewing sarcoma cells in vitro and in vivo. Our results indicate that further study on combination of conventional chemotherapies with MEK and PI3K inhibitors may be considered for innovative treatments of Ewing sarcoma patients.

  7. Phosphatidylinositol-3-kinase (PI3K) gamma plays a central role in blood-brain barrier dysfunction in acute experimental stroke

    PubMed Central

    Jin, Rong; Song, Zifang; Yu, Shiyong; Piazza, Abigail; Nanda, Anil; Penninger, Josef M; Granger, D Neil; Li, Guohong

    2011-01-01

    Background and Purpose Phosphoinositide 3-kinase (PI3K) gamma is linked to inflammation and oxidative stress. This study was conducted to investigate the role of the PI3Kgamma in the blood-brain barrier (BBB) dysfunction and brain damage induced by focal cerebral ischemia/reperfusion. Methods Wild-type and PI3Kgamma knockout mice were subjected to middle cerebral artery occlusion (60 min) followed by reperfusion. Evans blue leakage, brain edema, infarct volumes and neurological deficits were examined. Oxidative stress, neutrophil infiltration, and matrix metallopeptidase-9 (MMP-9) were assessed. Activation of NF-kB and expression of proinflammatory and pro-oxidative genes were studied. Results PI3Kgamma deficiency significantly reduced BBB permeability and brain edema formation, which were time-dependently correlated with preventing the degradation of the tight junction protein, claudin-5, and the basal lamina protein, collagen IV, and the phosphorylation of myosin light chain (MLC) in brain microvessels. PI3Kgamma deficiency suppressed ischemia/reperfusion-induced NF-kB p65 (Ser536) phosphorylation and the expression of the pro-oxidant enzyme NADPH oxidase (Nox1, Nox2, and Nox4) and pro-inflammatory adhesion molecules (E- and P-selectin, ICAM-1) at different time points. These molecular changes were associated with significant inhibition of oxidative stress (superoxide production and malondialdehyde content), neutrophil infiltration, and MMP-9 expression/activity in PI3Kgamma knockout mice. Eventually, PI3Kgamma deficiency significantly reduced infarct volumes and neurological scores at 24 hours after ischemia/reperfusion. Conclusions Our results provide the first direct demonstration that PI3Kgamma plays a significant role in ischemia/reperfusion-induced BBB disruption and brain damage. Future studies need to explore PI3Kγ as a potential target for stroke therapy. PMID:21546487

  8. Curcumin modulates nuclear factor kappaB (NF-kappaB)-mediated inflammation in human tenocytes in vitro: role of the phosphatidylinositol 3-kinase/Akt pathway.

    PubMed

    Buhrmann, Constanze; Mobasheri, Ali; Busch, Franziska; Aldinger, Constance; Stahlmann, Ralf; Montaseri, Azadeh; Shakibaei, Mehdi

    2011-08-12

    Inflammatory processes play essential roles in the pathogenesis of tendinitis and tendinopathy. These events are accompanied by catabolic processes initiated by pro-inflammatory cytokines such as interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α). Pharmacological treatments for tendinitis are restricted to the use of non-steroidal anti-inflammatory drugs. Recent studies in various cell models have demonstrated that curcumin targets the NF-κB signaling pathway. However, its potential for the treatment of tendinitis has not been explored. Herein, we used an in vitro model of human tenocytes to study the mechanism of curcumin action on IL-1β-mediated inflammatory signaling. Curcumin at concentrations of 5-20 μm inhibited IL-1β-induced inflammation and apoptosis in cultures of human tenocytes. The anti-inflammatory effects of curcumin included down-regulation of gene products that mediate matrix degradation (matrix metalloproteinase-1, -9, and -13), prostanoid production (cyclooxygenase-2), apoptosis (Bax and activated caspase-3), and stimulation of cell survival (Bcl-2), all known to be regulated by NF-κB. Furthermore, curcumin suppressed IL-1β-induced NF-κB activation via inhibition of phosphorylation and degradation of inhibitor of κBα, inhibition of inhibitor of κB-kinase activity, and inhibition of nuclear translocation of NF-κB. Furthermore, the effects of IL-1β were abrogated by wortmannin, suggesting a role for the phosphatidylinositol 3-kinase (PI-3K) pathway in IL-1β signaling. Curcumin suppressed IL-1β-induced PI-3K p85/Akt activation and its association with IKK. These results demonstrate, for the first time, a potential role for curcumin in treating tendon inflammation through modulation of NF-κB signaling, which involves PI-3K/Akt and the tendon-specific transcription factor scleraxis in tenocytes.

  9. Extended treatment with selective phosphatidylinositol 3-kinase and mTOR inhibitors has effects on metabolism, growth, behaviour and bone strength.

    PubMed

    Smith, Greg C; Ong, Wee-Kiat; Costa, Jessica L; Watson, Maureen; Cornish, Jillian; Grey, Andrew; Gamble, Greg D; Dickinson, Michelle; Leung, Sophie; Rewcastle, Gordon W; Han, Weiping; Shepherd, Peter R

    2013-11-01

    The class I phosphatidylinositol 3-kinases (PtdIns3Ks) mediate the effects of many hormones and growth factors on a wide range of cellular processes, and activating mutations or gene amplifications of class I PtdIns3K isoforms are known to contribute to oncogenic processes in a range of tumours. Consequently, a number of small-molecule PtdIns3K inhibitors are under development and in clinical trial. The central signalling role of PtdIns3K in many cellular processes suggests there will be on-target side effects associated with the use of these agents. To gain insights into what these might be we investigated the effect of extended daily dosing of eight small-molecule inhibitors of class Ia PtdIns3Ks. Animals were characterized in metabolic cages to analyse food intake, oxygen consumption and movement. Insulin tolerance and body composition were analysed at the end of the experiment, the latter using EchoMRI. Bone volume and strength was assessed by micro-CT and three-point bending, respectively. Surprisingly, after sustained dosing with pan-PtdIns3K inhibitors and selective inhibitors of the p110α isoform there was a resolution of the impairments in insulin tolerance observed in drug-naïve animals treated with the same drugs. However, pan-PtdIns3K inhibitors and selective inhibitors of the p110α have deleterious effects on animal growth, animal behaviour and bone volume and strength. Together, these findings identify a range of on target effects of PtdIns3K inhibitors and suggest use of these drugs in humans may have important adverse effects on metabolism, body composition, behaviour and skeletal health.

  10. Specific activation of p85-p110 phosphatidylinositol 3'-kinase stimulates DNA synthesis by ras- and p70 S6 kinase-dependent pathways.

    PubMed Central

    McIlroy, J; Chen, D; Wjasow, C; Michaeli, T; Backer, J M

    1997-01-01

    We have developed a polyclonal antibody that activates the heterodimeric p85-p110 phosphatidylinositol (PI) 3'-kinase in vitro and in microinjected cells. Affinity purification revealed that the activating antibody recognized the N-terminal SH2 (NSH2) domain of p85, and the antibody increased the catalytic activity of recombinant p85-p110 dimers threefold in vitro. To study the role of endogenous PI 3'-kinase in intact cells, the activating anti-NSH2 antibody was microinjected into GRC + LR73 cells, a CHO cell derivative selected for tight quiescence during serum withdrawal. Microinjection of anti-NSH2 antibodies increased bromodeoxyuridine (BrdU) incorporation fivefold in quiescent cells and enhanced the response to serum. These data reflect a specific activation of PI 3'-kinase, as the effect was blocked by coinjection of the appropriate antigen (glutathione S-transferase-NSH2 domains from p85 alpha), coinjection of inhibitory anti-p110 antibodies, or treatment of cells with wortmannin. We used the activating antibodies to study signals downstream from PI 3'-kinase. Although treatment of cells with 50 nM rapamycin only partially decreased anti-NSH2-stimulated BrdU incorporation, coinjection with an anti-p70 S6 kinase antibody effectively blocked anti-NSH2-stimulated DNA synthesis. We also found that coinjection of inhibitory anti-ras antibodies blocked both serum- and anti-NSH2-stimulated BrdU incorporation by approximately 60%, and treatment of cells with a specific inhibitor of MEK abolished antibody-stimulated BrdU incorporation. We conclude that selective activation of physiological levels of PI 3'-kinase is sufficient to stimulate DNA synthesis in quiescent cells. PI 3'-kinase-mediated DNA synthesis requires both p70 S6 kinase and the P21ras/MEK pathway. PMID:8972205

  11. Paraquat-induced Oxidative Stress Represses Phosphatidylinositol 3-Kinase Activities Leading to Impaired Glucose Uptake in 3T3-L1 Adipocytes*

    PubMed Central

    Shibata, Michihiro; Hakuno, Fumihiko; Yamanaka, Daisuke; Okajima, Hiroshi; Fukushima, Toshiaki; Hasegawa, Takashi; Ogata, Tomomi; Toyoshima, Yuka; Chida, Kazuhiro; Kimura, Kumi; Sakoda, Hideyuki; Takenaka, Asako; Asano, Tomoichiro; Takahashi, Shin-Ichiro

    2010-01-01

    Accumulated evidence indicates that oxidative stress causes and/or promotes insulin resistance; however, the mechanism by which this occurs is not fully understood. This study was undertaken to elucidate the molecular mechanism by which oxidative stress induced by paraquat impairs insulin-dependent glucose uptake in 3T3-L1 adipocytes. We confirmed that paraquat-induced oxidative stress decreased glucose transporter 4 (GLUT4) translocation to the cell surface, resulting in repression of insulin-dependent 2-deoxyglucose uptake. Under these conditions, oxidative stress did not affect insulin-dependent tyrosine phosphorylation of insulin receptor, insulin receptor substrate (IRS)-1 and -2, or binding of the phosphatidylinositol 3′-OH kinase (PI 3-kinase) p85 regulatory subunit or p110α catalytic subunit to each IRS. In contrast, we found that oxidative stress induced by paraquat inhibited activities of PI 3-kinase bound to IRSs and also inhibited phosphorylation of Akt, the downstream serine/threonine kinase that has been shown to play an essential role in insulin-dependent translocation of GLUT4 to the plasma membrane. Overexpression of active form Akt (myr-Akt) restored inhibition of insulin-dependent glucose uptake by paraquat, indicating that paraquat-induced oxidative stress inhibits insulin signals upstream of Akt. Paraquat treatment with and without insulin treatment decreased the activity of class Ia PI 3-kinases p110α and p110β that are mainly expressed in 3T3-L1 adipocytes. However, paraquat treatment did not repress the activity of the PI 3-kinase p110α mutated at Cys90 in the p85 binding region. These results indicate that the PI 3-kinase p110 is a possible primary target of paraquat-induced oxidative stress to reduce the PI 3-kinase activity and impaired glucose uptake in 3T3-L1 adipocytes. PMID:20430890

  12. Cooperation between STAT5 and phosphatidylinositol 3-kinase in the IL-3-dependent survival of a bone marrow derived cell line.

    PubMed

    Rosa Santos, S C; Dumon, S; Mayeux, P; Gisselbrecht, S; Gouilleux, F

    2000-02-24

    Cytokine-dependent activation of distinct signaling pathways is a common scheme thought to be required for the subsequent programmation into cell proliferation and survival. The PI 3-kinase/Akt, Ras/MAP kinase, Ras/NFIL3 and JAK/STAT pathways have been shown to participate in cytokine mediated suppression of apoptosis in various cell types. However the relative importance of these signaling pathways seems to depend on the cellular context. In several cases, individual inhibition of each pathway is not sufficient to completely abrogate cytokine mediated cell survival suggesting that cooperation between these pathways is required. Here we showed that individual inhibition of STAT5, PI 3-kinase or MEK activities did not or weakly affected the IL-3 dependent survival of the bone marrow derived Ba/F3 cell line. However, the simultaneous inhibition of STAT5 and PI 3-kinase activities but not that of STAT5 and MEK reduced the IL-3 dependent survival of Ba/F3. Analysis of the expression of the Bcl-2 members indicated that phosphorylation of Bad and Bcl-x expression which are respectively regulated by the PI 3-kinase/Akt pathway and STAT5 probably explain this cooperation. Furthermore, we showed by co-immunoprecipitation studies and pull down experiments with fusion proteins encoding the GST-SH2 domains of p85 that STAT5 in its phosphorylated form interacts with the p85 subunit of the PI 3-kinase. These results indicate that the activations of STAT5 and the PI 3-kinase by IL-3 in Ba/F3 cells are tightly connected and cooperate to mediate IL-3-dependent suppression of apoptosis by modulating Bad phosphorylation and Bcl-x expression.

  13. Effect of phosphatidylinositol-3 kinase inhibition on ovotoxicity caused by 4-vinylcyclohexene diepoxide and 7, 12-dimethylbenz[a]anthracene in neonatal rat ovaries

    SciTech Connect

    Keating, Aileen F.; Mark, Connie J.; Sen, Nivedita; Sipes, I. Glenn; Hoyer, Patricia B.

    2009-12-01

    4-vinylcyclohexene diepoxide (VCD) is an ovotoxicant that specifically destroys primordial and small primary follicles in the ovaries of mice and rats. In contrast, 7,12-dimethylbenz[a]anthracene (DMBA) is ovotoxic to all ovarian follicle classes. This study investigated phosphatidylinositol-3 kinase signaling involvement in VCD- and DMBA-induced ovotoxicity. Postnatal day (PND) 4 Fischer 344 (F344) rat whole ovaries were cultured for 2-12 days in vehicle control, VCD (30 muM), or DMBA (1 muM), +- PI3 kinase inhibitor LY294002 (20 muM) or its inactive analog LY303511 (20 muM). Following culture, ovaries were histologically evaluated, and healthy follicles were classified and counted. PI3 kinase inhibition had no effect on primordial follicle number, but reduced (P < 0.05) small primary and larger follicles beginning on day 4. VCD caused primordial and small primary follicle loss (P < 0.05) beginning on day 6. With PI3 kinase inhibition, VCD did not affect primordial follicles (P > 0.05) at any time, but did cause loss (P < 0.05) of small primary follicles. DMBA exposure caused primordial and small primary follicle loss (P < 0.05) on day 6. Further, DMBA-induced primordial and small primary follicle loss was greater with PI3 kinase inhibition (P < 0.05) than with DMBA alone. These results support that (1) PI3 kinase mediates primordial to small primary follicle recruitment, (2) VCD, but not DMBA, enhances ovotoxicity by increasing primordial to small primary follicle recruitment, and (3) in addition to xenobiotic-induced ovotoxicity, VCD is also a useful model chemical with which to elucidate signaling mechanisms involved in primordial follicle recruitment.

  14. Phosphatidylinositol 3-kinase binding to polyoma virus middle tumor antigen mediates elevation of glucose transport by increasing translocation of the GLUT1 transporter.

    PubMed Central

    Young, A T; Dahl, J; Hausdorff, S F; Bauer, P H; Birnbaum, M J; Benjamin, T L

    1995-01-01

    Elevation in the rate of glucose transport in polyoma virus-infected mouse fibroblasts was dependent upon phosphatidylinositol 3-kinase (PI 3-kinase; EC 2.7.1.137) binding to complexes of middle tumor antigen (middle T) and pp60c-src. Wild-type polyoma virus infection led to a 3-fold increase in the rate of 2-deoxyglucose (2DG) uptake, whereas a weakly transforming polyoma virus mutant that encodes a middle T capable of activating pp60c-src but unable to promote binding of PI 3-kinase induced little or no change in the rate of 2DG transport. Another transformation-defective mutant encoding a middle T that retains functional binding of both pp60c-src and PI 3-kinase but is incapable of binding Shc (a protein involved in activation of Ras) induced 2DG transport to wild-type levels. Wortmannin (< or = 100 nM), a known inhibitor of PI 3-kinase, blocked elevation of glucose transport in wild-type virus-infected cells. In contrast to serum stimulation, which led to increased levels of glucose transporter 1 (GLUT1) RNA and protein, wild-type virus infection induced no significant change in levels of either GLUT1 RNA or protein. Nevertheless, virus-infected cells did show increases in GLUT1 protein in plasma membranes. These results point to a posttranslational mechanism in the elevation of glucose transport by polyoma virus middle T involving activation of PI 3-kinase and translocation of GLUT1. Images Fig. 1 Fig. 3 Fig. 5 PMID:8524814

  15. Cudraflavone C Induces Tumor-Specific Apoptosis in Colorectal Cancer Cells through Inhibition of the Phosphoinositide 3-Kinase (PI3K)-AKT Pathway

    PubMed Central

    Soo, Hsien-Chuen; Chung, Felicia Fei-Lei; Lim, Kuan-Hon; Yap, Veronica Alicia; Bradshaw, Tracey D.; Hii, Ling-Wei; Tan, Si-Hoey; See, Sze-Jia; Tan, Yuen-Fen; Leong, Chee-Onn

    2017-01-01

    Cudraflavone C (Cud C) is a naturally-occurring flavonol with reported anti-proliferative activities. However, the mechanisms by which Cud C induced cytotoxicity have yet to be fully elucidated. Here, we investigated the effects of Cud C on cell proliferation, caspase activation andapoptosis induction in colorectal cancer cells (CRC). We show that Cud C inhibits cell proliferation in KM12, Caco-2, HT29, HCC2998, HCT116 and SW48 CRC but not in the non-transformed colorectal epithelial cells, CCD CoN 841. Cud C induces tumor-selective apoptosis via mitochondrial depolarization and activation of the intrinsic caspase pathway. Gene expression profiling by microarray analyses revealed that tumor suppressor genes EGR1, HUWE1 and SMG1 were significantly up-regulated while oncogenes such as MYB1, CCNB1 and GPX2 were down-regulated following treatment with Cud C. Further analyses using Connectivity Map revealed that Cud C induced a gene signature highly similar to that of protein synthesis inhibitors and phosphoinositide 3-kinase (PI3K)-AKT inhibitors, suggesting that Cud C might inhibit PI3K-AKT signaling. A luminescent cell free PI3K lipid kinase assay revealed that Cud C significantly inhibited p110β/p85α PI3K activity, followed by p120γ, p110δ/p85α, and p110α/p85α PI3K activities. The inhibition by Cud C on p110β/p85α PI3K activity was comparable to LY-294002, a known PI3K inhibitor. Cud C also inhibited phosphorylation of AKT independent of NFκB activity in CRC cells, while ectopic expression of myristoylated AKT completely abrogated the anti-proliferative effects, and apoptosis induced by Cud C in CRC. These findings demonstrate that Cud C induces tumor-selective cytotoxicity by targeting the PI3K-AKT pathway. These findings provide novel insights into the mechanism of action of Cud C, and indicate that Cud C further development of Cud C derivatives as potential therapeutic agents is warranted. PMID:28107519

  16. Role of Class III phosphoinositide 3-kinase in the brain development: possible involvement in specific learning disorders.

    PubMed

    Inaguma, Yutaka; Matsumoto, Ayumi; Noda, Mariko; Tabata, Hidenori; Maeda, Akihiko; Goto, Masahide; Usui, Daisuke; Jimbo, Eriko F; Kikkawa, Kiyoshi; Ohtsuki, Mamitaro; Momoi, Mariko Y; Osaka, Hitoshi; Yamagata, Takanori; Nagata, Koh-Ichi

    2016-10-01

    Class III phosphoinositide 3-kinase (PIK3C3 or mammalian vacuolar protein sorting 34 homolog, Vps34) regulates vesicular trafficking, autophagy, and nutrient sensing. Recently, we reported that PIK3C3 is expressed in mouse cerebral cortex throughout the developmental process, especially at early embryonic stage. We thus examined the role of PIK3C3 in the development of the mouse cerebral cortex. Acute silencing of PIK3C3 with in utero electroporation method caused positional defects of excitatory neurons during corticogenesis. Time-lapse imaging revealed that the abnormal positioning was at least partially because of the reduced migration velocity. When PIK3C3 was silenced in cortical neurons in one hemisphere, axon extension to the contralateral hemisphere was also delayed. These aberrant phenotypes were rescued by RNAi-resistant PIK3C3. Notably, knockdown of PIK3C3 did not affect the cell cycle of neuronal progenitors and stem cells at the ventricular zone. Taken together, PIK3C3 was thought to play a crucial role in corticogenesis through the regulation of excitatory neuron migration and axon extension. Meanwhile, when we performed comparative genomic hybridization on a patient with specific learning disorders, a 107 Kb-deletion was identified on 18q12.3 (nt. 39554147-39661206) that encompasses exons 5-23 of PIK3C3. Notably, the above aberrant migration and axon growth phenotypes were not rescued by the disease-related truncation mutant (172 amino acids) lacking the C-terminal kinase domain. Thus, functional defects of PIK3C3 might impair corticogenesis and relate to the pathophysiology of specific learning disorders and other neurodevelopmental disorders. Acute knockdown of Class III phosphoinositide 3-kinase (PIK3C3) evokes migration defects of excitatory neurons during corticogenesis. PIK3C3-knockdown also disrupts axon outgrowth, but not progenitor proliferation in vivo. Involvement of PIK3C3 in neurodevelopmental disorders might be an interesting future

  17. PTEN and PI-3 kinase inhibitors control LPS signaling and the lymphoproliferative response in the CD19+ B cell compartment

    SciTech Connect

    Singh, Alok R.; Peirce, Susan K.; Joshi, Shweta; Durden, Donald L.

    2014-09-10

    -3 kinase inhibitors reverse the lymphoproliferative phenotype in vivo. - Highlights: • First genetic evidence that PTEN controls LPS/TLR4 signaling in B lymphocytes. • Evidence that PTEN regulates LPS induced lymphoproliferation in vivo. • PI-3 kinase inhibitors block LPS induced lymphoproliferation in vivo.

  18. Hepatocyte growth factor activates phosphoinositide 3-kinase C2 beta in renal brush-border plasma membranes.

    PubMed Central

    Crljen, Vladiana; Volinia, Stefano; Banfic, Hrvoje

    2002-01-01

    Upon stimulation of renal cortical slices with hepatocyte growth factor (HGF), inositol lipid metabolism was studied in basal-lateral plasma membranes (BLM) and brush-border plasma membranes (BBM). Whereas in BLM rapid increases in 1,2-diacylglycerol, PtdIns(3,4,5)P(3) and PtdIns(3,4)P(2) were observed, suggesting that in BLM HGF activates both phospholipase C (PLC) and phosphoinositide 3-kinase (PI3K), in BBM only HGF-induced transient accumulation of PtdIns3P was seen, which was temporarily delayed from signalling events in BLM and could be blocked by the PtdIns-specific-PLC inhibitor ET-18-OCH(3) and the calpain inhibitor calpeptin, suggesting that 3-kinase activation in BBM lies downstream of PLC activation in BLM and is a calpain-mediated event. Moreover, the increase in immunoprecipitable PI3K-C2 beta activity, which is sensitive to wortmannin (10 nM) and shows strong preference for PtdIns over PtdIns4P as a substrate, was observed only in BBM upon stimulation of renal cortical slices with HGF and could be mimicked by the Ca(2+) ionophore A23187 and blocked by the cell-penetrant Ca(2+) chelator BAPTA-AM [1,2-bis-(2-aminophenoxy)ethane-N,N,N',N'-tetra-acetic acid tetrakis(acetoxymethyl ester)]. On Western blots PI3K-C2 beta revealed a single immunoreactive band of 180 kDa in BLM and BBM, while after stimulation with HGF a gel shift of 18 kDa was noticed only in BBM, suggesting that the observed enzyme activation is achieved by proteolysis. When BBM were subjected to short-term (15 min) exposure to mu-calpain, a similar gel shift together with an increase in PI3K-C2 beta activity was observed, when compared with the BBM harvested after HGF stimulation. The above-mentioned gel shift and increase in PI3K-C2 beta activity could be prevented by the calpain inhibitor calpeptin. The data presented in this report show that in renal cells there is a spatial separation of the inositol lipid signalling system between BLM and BBM, and that HGF causes activation of PLC and

  19. PI3 Kinase Disease

    MedlinePlus

    ... NIAID Scientists Discover Rare Genetic Susceptibility to Common Cold , June 12, 2017 NIAID Research Aids Discovery of ... Duke University Boston University Zoonotic Influenza Vaccine Seed Viruses Bioinformatics Resource Centers PATRIC Resources Bioinformatics Resource Centers ...

  20. Overexpression of a rat kinase-deficient phosphoinositide 3-kinase, Vps34p, inhibits cathepsin D maturation.

    PubMed Central

    Row, P E; Reaves, B J; Domin, J; Luzio, J P; Davidson, H W

    2001-01-01

    Lipid kinases and their phosphorylated products are important regulators of many cellular processes, including intracellular membrane traffic. The best example of this is provided by the class III phosphoinositide 3-kinase (PI-3K), Vps34p, which is required for correct targeting of newly synthesized carboxypeptidase Y to the yeast vacuole. A probable mammalian Vps34p orthologue has been previously identified, but its function in the trafficking of lysosomal enzymes has not been resolved. To investigate the possible role(s) of mammalian Vps34p in protein targeting to lysosomes, we have cloned the rat orthologue and overexpressed a kinase-deficient mutant in HeLa cells. Expression of the mutant protein inhibited both maturation of procathepsin D and basal secretion of the precursor. In contrast wortmannin, which also inhibited maturation, caused hypersecretion of the precursor. We propose that mammalian Vps34p plays a direct role in targeting lysosomal enzyme precursors to the endocytic pathway in an analogous fashion to its role in the fusion of early endocytic vesicles with endosomes. We further suggest that inhibition of a wortmannin-sensitive enzyme, other than mammalian Vps34p, is responsible for the failure to recycle unoccupied mannose 6-phosphate receptors to the trans-Golgi network, and consequent hypersecretion of lysosomal enzyme precursors observed in the presence of this drug. PMID:11171063

  1. Novel roles for class II Phosphoinositide 3-Kinase C2β in signalling pathways involved in prostate cancer cell invasion

    PubMed Central

    Mavrommati, Ioanna; Cisse, Ouma; Falasca, Marco; Maffucci, Tania

    2016-01-01

    Phosphoinositide 3-kinases (PI3Ks) regulate several cellular functions such as proliferation, growth, survival and migration. The eight PI3K isoforms are grouped into three classes and the three enzymes belonging to the class II subfamily (PI3K-C2α, β and γ) are the least investigated amongst all PI3Ks. Interest on these isoforms has been recently fuelled by the identification of specific physiological roles for class II PI3Ks and by accumulating evidence indicating their involvement in human diseases. While it is now established that these isoforms can regulate distinct cellular functions compared to other PI3Ks, there is still a limited understanding of the signalling pathways that can be specifically regulated by class II PI3Ks. Here we show that PI3K-C2β regulates mitogen-activated protein kinase kinase (MEK1/2) and extracellular signal-regulated kinase (ERK1/2) activation in prostate cancer (PCa) cells. We further demonstrate that MEK/ERK and PI3K-C2β are required for PCa cell invasion but not proliferation. In addition we show that PI3K-C2β but not MEK/ERK regulates PCa cell migration as well as expression of the transcription factor Slug. These data identify novel signalling pathways specifically regulated by PI3K-C2β and they further identify this enzyme as a key regulator of PCa cell migration and invasion. PMID:26983806

  2. p85α subunit of class IA PI-3 kinase is crucial for macrophage growth and migration

    PubMed Central

    Munugalavadla, Veerendra; Borneo, Jovencio; Ingram, David A.; Kapur, Reuben

    2005-01-01

    Macrophages play an essential role in defending against invading pathogens by migrating to the sites of infection, removing apoptotic cells, and secreting inflammatory cytokines. The molecular mechanisms whereby macrophages regulate these processes are poorly understood. Using bone marrow–derived macrophages (BMMs) deficient in the expression of p85α-subunit of class IA phosphatidylinositol 3 (PI-3) kinase, we demonstrate 50% reduction in proliferation in response to macrophage–colony-stimulating factor (M-CSF) as well as granulocyte macrophage–colony-stimulating factor (GM-CSF) compared with wild-type controls. Furthermore, p85α–/– BMMs demonstrate a significant reduction in migration in a wound-healing assay compared with wild-type controls. The reduction in migration due to p85α deficiency in BMMs is associated with reduced adhesion and directed migration on fibronectin and vascular cell adhesion molecule-1. In addition, deficiency of p85α in BMMs also results in defective phagocytosis of sheep red blood cells. Biochemically, loss of p85α in BMMs results in reduced activation of Akt and Rac, but not Erk (extracellular signal-related kinase) mitogen-activated protein (MAP) kinase. Taken together, our results provide genetic evidence for the importance of p85α in regulating both actin- and growth-based functions in macrophages, and provide a potential therapeutic target for the treatment of diseases involving macrophages, including inflammation. PMID:15769893

  3. ERK and phosphoinositide 3-kinase temporally coordinate different modes of actin-based motility during embryonic wound healing.

    PubMed

    Li, Jingjing; Zhang, Siwei; Soto, Ximena; Woolner, Sarah; Amaya, Enrique

    2013-11-01

    Embryonic wound healing provides a perfect example of efficient recovery of tissue integrity and homeostasis, which is vital for survival. Tissue movement in embryonic wound healing requires two functionally distinct actin structures: a contractile actomyosin cable and actin protrusions at the leading edge. Here, we report that the discrete formation and function of these two structures is achieved by the temporal segregation of two intracellular upstream signals and distinct downstream targets. The sequential activation of ERK and phosphoinositide 3-kinase (PI3K) signalling divides Xenopus embryonic wound healing into two phases. In the first phase, activated ERK suppresses PI3K activity, and is responsible for the activation of Rho and myosin-2, which drives actomyosin cable formation and constriction. The second phase is dominated by restored PI3K signalling, which enhances Rac and Cdc42 activity, leading to the formation of actin protrusions that drive migration and zippering. These findings reveal a new mechanism for coordinating different modes of actin-based motility in a complex tissue setting, namely embryonic wound healing.

  4. Endoglin regulates PI3-kinase/Akt trafficking and signaling to alter endothelial capillary stability during angiogenesis.

    PubMed

    Lee, Nam Y; Golzio, Christelle; Gatza, Catherine E; Sharma, Arun; Katsanis, Nicholas; Blobe, Gerard C

    2012-07-01

    Endoglin (CD105) is an endothelial-specific transforming growth factor β (TGF-β) coreceptor essential for angiogenesis and vascular homeostasis. Although endoglin dysfunction contributes to numerous vascular conditions, the mechanism of endoglin action remains poorly understood. Here we report a novel mechanism in which endoglin and Gα-interacting protein C-terminus-interacting protein (GIPC)-mediated trafficking of phosphatidylinositol 3-kinase (PI3K) regulates endothelial signaling and function. We demonstrate that endoglin interacts with the PI3K subunits p110α and p85 via GIPC to recruit and activate PI3K and Akt at the cell membrane. Opposing ligand-induced effects are observed in which TGF-β1 attenuates, whereas bone morphogenetic protein-9 enhances, endoglin/GIPC-mediated membrane scaffolding of PI3K and Akt to alter endothelial capillary tube stability in vitro. Moreover, we employ the first transgenic zebrafish model for endoglin to demonstrate that GIPC is a critical component of endoglin function during developmental angiogenesis in vivo. These studies define a novel non-Smad function for endoglin and GIPC in regulating endothelial cell function during angiogenesis.

  5. Endoglin regulates PI3-kinase/Akt trafficking and signaling to alter endothelial capillary stability during angiogenesis

    PubMed Central

    Lee, Nam Y.; Golzio, Christelle; Gatza, Catherine E.; Sharma, Arun; Katsanis, Nicholas; Blobe, Gerard C.

    2012-01-01

    Endoglin (CD105) is an endothelial-specific transforming growth factor β (TGF-β) coreceptor essential for angiogenesis and vascular homeostasis. Although endoglin dysfunction contributes to numerous vascular conditions, the mechanism of endoglin action remains poorly understood. Here we report a novel mechanism in which endoglin and Gα-interacting protein C-terminus–interacting protein (GIPC)–mediated trafficking of phosphatidylinositol 3-kinase (PI3K) regulates endothelial signaling and function. We demonstrate that endoglin interacts with the PI3K subunits p110α and p85 via GIPC to recruit and activate PI3K and Akt at the cell membrane. Opposing ligand-induced effects are observed in which TGF-β1 attenuates, whereas bone morphogenetic protein-9 enhances, endoglin/GIPC-mediated membrane scaffolding of PI3K and Akt to alter endothelial capillary tube stability in vitro. Moreover, we employ the first transgenic zebrafish model for endoglin to demonstrate that GIPC is a critical component of endoglin function during developmental angiogenesis in vivo. These studies define a novel non-Smad function for endoglin and GIPC in regulating endothelial cell function during angiogenesis. PMID:22593212

  6. Phosphoinositide-3-kinase and mitogen activated protein kinase signaling pathways mediate acute NGF sensitization of TRPV1

    PubMed Central

    Zhu, Weiguo; Oxford, Gerry S.

    2009-01-01

    Nerve growth factor (NGF) induces an acute sensitization of nociceptive DRG neurons, in part, through sensitization of the capsaicin receptor TRPV1 via the high affinity trkA receptor. The mechanisms linking trkA and TRPV1 remain controversial with several candidate signaling pathways proposed. Utilizing adult rat and mouse DRG neurons and CHO cells coexpressing trkA and TRPV1, we have investigated the signaling events underlying acute TRPV1 sensitization by NGF combining biochemical, electrophysiological, pharmacological, mutational and genetic knockout approaches. Pharmacological interference with p42/p44 mitogen activated protein kinase (MAPK) or phosphoinositide-3-kinase (PI3K), but not PLC abrogated sensitization of capsaicin responses. Co-expression of TRPV1 with wildtype or Y785F (PLC signal deficient) mutant human trkA reconstituted NGF sensitization. In contrast, TRPV1 coexpressed with MAPK signaling deficient Y490A or PI3K signaling deficient Y751F trkA mutants exhibited weaker sensitization. Biochemical analysis of p42/p44 and Akt phosphorylation confirmed the specificity of pharmacological agents and trkA mutants. Finally, NGF sensitization of capsaicin responses was greatly reduced in neurons from p85α (regulatory subunit of PI3K) null mice. These data strongly suggest that PI3K and MAPK pathways, but not the PLC pathway underlie the acute sensitization of TRPV1 by NGF. PMID:17324588

  7. Icaritin requires Phosphatidylinositol 3 kinase (PI3K)/Akt signaling to counteract skeletal muscle atrophy following mechanical unloading

    PubMed Central

    ZHANG, Zong-Kang; LI, Jie; LIU, Jin; GUO, Baosheng; LEUNG, Albert; ZHANG, Ge; ZHANG, Bao-Ting

    2016-01-01

    Counteracting muscle atrophy induced by mechanical unloading/inactivity is of great clinical need and challenge. A therapeutic agent that could counteract muscle atrophy following mechanical unloading in safety is desired. This study showed that natural product Icaritin (ICT) could increase the phosphorylation level of Phosphatidylinositol 3 kinase (PI3K) at p110 catalytic subunit and promote PI3K/Akt signaling markers in C2C12 cells. This study further showed that the high dose ICT treatment could significantly attenuate the decreases in the phosphorylation level of PI3K at p110 catalytic subunit and its downstream markers related to protein synthesis, and inhibit the increases in protein degradation markers at mRNA and protein levels in rat soleus muscle following 28-day hindlimb unloading. In addition, the decreases in soleus muscle mass, muscle fiber cross-sectional area, twitch force, specific force, contraction time and half relaxation time could be significantly attenuated by the high dose ICT treatment. The low dose ICT treatment could moderately attenuate the above changes induced by unloading. Wortmannin, a specific inhibitor of PI3K at p110 catalytic subunit, could abolish the above effects of ICT in vitro and in vivo, indicating that PI3K/Akt signaling could be required by ICT to counteract skeletal muscle atrophy following mechanical unloading. PMID:26831566

  8. The phosphatidylinositol 3-kinase/Akt/mTOR signaling network as a therapeutic target in acute myelogenous leukemia patients

    PubMed Central

    Martelli, Alberto M.; Evangelisti, Camilla; Chiarini, Francesca; McCubrey, James A.

    2010-01-01

    The phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) signaling axis plays a central role in cell proliferation, growth, and survival under physiological conditions. However, aberrant PI3K/Akt/mTOR signaling has been implicated in many human cancers, including acute myelogenous leukemia (AML). Therefore, the PI3K/Akt/mTOR network is considered as a validated target for innovative cancer therapy. The limit of acceptable toxicity for standard polychemotherapy has been reached in AML. Novel therapeutic strategies are therefore needed. This review highlights how the PI3K/Akt/mTOR signaling axis is constitutively active in AML patients, where it affects survival, proliferation, and drug-resistance of leukemic cells including leukemic stem cells. Effective targeting of this pathway with small molecule kinase inhibitors, employed alone or in combination with other drugs, could result in the suppression of leukemic cell growth. Furthermore, targeting the PI3K/Akt/mTOR signaling network with small pharmacological inhibitors, employed either alone or in combinations with other drugs, may result in less toxic and more efficacious treatment of AML patients. Efforts to exploit pharmacological inhibitors of the PI3K/Akt/mTOR cascade which show efficacy and safety in the clinical setting are now underway. PMID:20671809

  9. Puquitinib mesylate, an inhibitor of phosphatidylinositol 3-kinase p110δ, for treating relapsed or refractory non-Hodgkin's lymphoma

    PubMed Central

    Zhan, Jing; Xia, Yi; Sun, Peng; Bi, Xi-Wen; Liu, Pan-Pan; Li, Zhi-Ming; Li, Su; Zou, Ben-Yan; Jiang, Wen-Qi

    2015-01-01

    Objectives To determine the safety of Puquitinib Mesylate (XC-302), an oral inhibitor of phosphatidylinositol 3-kinase, in treating relapsed or refractory non-Hodgkin's lymphoma (NHL). Methods Between October 2013 and July 2015, 21 patients from Sun Yat-sen University Cancer Center were treated twice daily on each day of a 28-day cycle (median number of cycles, 2; maximum, 20) with XC-302 at a post prandial dose of 25 mg, 37.5 mg, or 50 mg. Adverse events (AEs), AUClast and Cmax, response rates, and overall survival were assessed. Results Patients had received a median (range) of 1 (1 to 3) previous cancer treatments. At the latest follow-up, two patients were still benefitting from the study. The most common drug-related AEs were elevations in alanine transaminase (ALT, 14 of 21 patients) and aspartate transaminase (AST, 7 of 21 patients). Four patients, both in the-50-mg group, had dose-limiting toxicities, and therapy was discontinued in a fifth because of persistent abnormal liver function. The overall response rate was 2 of19. Serum concentrations of XC-302 increased in a dose-dependent pattern. Median progression-free survival in all patients was 1.9 (95% CI, 1.7 to 2.0) months. Conclusion XC-302 has an acceptable safety profile and offers potential therapeutic value to patients with relapsed or refractory non-Hodgkin lymphoma. PMID:26510909

  10. Andrographolide inhibits osteopontin expression and breast tumor growth through down regulation of PI3 kinase/Akt signaling pathway.

    PubMed

    Kumar, S; Patil, H S; Sharma, P; Kumar, D; Dasari, S; Puranik, V G; Thulasiram, H V; Kundu, G C

    2012-09-01

    Breast cancer is one of the most common cancers among women in India and around the world. Despite recent advancement in the treatment of breast cancer, the results of chemotherapy to date remain unsatisfactory, prompting a need to identify natural agents that could target cancer efficiently with least side effects. Andrographolide (Andro) is one such molecule which has been shown to possess inhibitory effect on cancer cell growth. In this study, Andro, a natural diterpenoid lactone isolated from Andrographis paniculata has been shown to inhibit breast cancer cell proliferation, migration and arrest cell cycle at G2/M phase and induces apoptosis through caspase independent pathway. Our experimental evidences suggest that Andro attenuates endothelial cell motility and tumor-endothelial cell interaction. Moreover, Andro suppresses breast tumor growth in orthotopic NOD/SCID mice model. The anti-tumor activity of Andro in both in vitro and in vivo model was correlated with down regulation of PI3 kinase/Akt activation and inhibition of pro-angiogenic molecules such as OPN and VEGF expressions. Collectively, these results demonstrate that Andro may act as an effective anti-tumor and anti-angiogenic agent for the treatment of breast cancer.

  11. Emergence of the PI3-kinase pathway as a central modulator of normal and aberrant B cell differentiation.

    PubMed

    Baracho, G V; Miletic, A V; Omori, S A; Cato, M H; Rickert, R C

    2011-04-01

    Phosphoinositide 3-kinase (PI3K) defines a family of lipid kinases that direct a wide range of cellular processes and cell fate decisions. Since its discovery, and that of its enzymatic antagonist PTEN, much of the focus on PI3K has been on its oncogenic potential. In recent years, studies on PI3K signaling in B lymphocytes have established the importance of this pathway in effecting B cell differentiation and associated molecular events such as V(D)J recombination and class switch recombination. Intriguing new findings also indicate that there is specificity in the PI3K pathway in B cells, including preferential expression or usage of particular PI3K isoforms and counter-regulation by the PTEN and SHIP phosphatases. The role of PI3K adaptor proteins (CD19, BCAP, and TC21) has also undergone revision to reflect both shared and unique properties. The emergence of Foxo1 as a critical PI3K regulatory target for B cell differentiation has united membrane proximal regulatory events orchestrated by PI3K/PTEN/SHIP with key transcriptional targets. Insights into the regulation and impact of PI3K signaling have been brought to bear in new treatments for B cell malignancies, and will also be an important topic of consideration for B cell-dependent autoimmune diseases.

  12. Phosphoinositide-3-Kinase Is the Primary Mediator of Phosphoinositide-Dependent Inhibition in Mammalian Olfactory Receptor Neurons

    PubMed Central

    Ukhanov, Kirill; Corey, Elizabeth; Ache, Barry W.

    2016-01-01

    Odorants inhibit as well as excite primary olfactory receptor neurons (ORNs) in many animal species. Growing evidence suggests that inhibition of mammalian ORNs is mediated by phosphoinositide (PI) signaling through activation of phosphoinositide 3-kinase (PI3K), and that canonical adenylyl cyclase III signaling and PI3K signaling interact to provide the basis for ligand-induced selective signaling. As PI3K is known to act in concert with phospholipase C (PLC) in some cellular systems, the question arises as to whether they work together to mediate inhibitory transduction in mammalian ORNs. The present study is designed to test this hypothesis. While we establish that multiple PLC isoforms are expressed in the transduction zone of rat ORNs, that odorants can activate PLC in ORNs in situ, and that pharmacological blockade of PLC enhances the excitatory response to an odorant mixture in some ORNs in conjunction with PI3K blockade, we find that by itself PLC does not account for an inhibitory response. We conclude that PLC does not make a measurable independent contribution to odor-evoked inhibition, and that PI3K is the primary mediator of PI-dependent inhibition in mammalian ORNs. PMID:27147969

  13. Cobalt chloride stimulates phosphoinositide 3-kinase/Akt signaling through the epidermal growth factor receptor in oral squamous cell carcinoma.

    PubMed

    Ryu, Mi Heon; Park, Jeong Hee; Park, Ji Eun; Chung, Jin; Lee, Chang Hun; Park, Hae Ryoun

    2010-04-01

    Tumor cells are often found under hypoxic conditions due to the rapid outgrowth of their vascular supply, and, in order to survive hypoxia, these cells induce numerous signaling factors. Akt is an important kinase in cell survival, and its activity is regulated by the upstream phosphoinositide 3-kinase (PI3K) and receptor tyrosine kinases (RTKs). In this study, we examined Akt activation and RTKs/PI3K/Akt signaling using the hypoxia-mimetic cobalt chloride in oral squamous carcinoma cells. Cobalt chloride increases Akt phosphorylation in both a dose- and time-dependent manner. Blocking the activation of the PI3K/Akt pathway using LY294002 abolished Akt activation in response to cobalt chloride, suggesting that Akt phosphorylation by cobalt chloride is dependent on PI3K. In addition, activation of the PI3K/Akt pathway seems to rely on the epidermal growth factor receptor (EGFR), since the inhibition of EGFR attenuated cobalt chloride-induced Akt activation. The results in this study also demonstrate that cobalt chloride increases EGFR protein levels and induces oral squamous cell carcinoma cells to enter S phase.

  14. Distinct regulation of autophagic activity by Atg14L and Rubicon associated with Beclin 1-phosphatidylinositol-3-kinase complex.

    PubMed

    Zhong, Yun; Wang, Qing Jun; Li, Xianting; Yan, Ying; Backer, Jonathan M; Chait, Brian T; Heintz, Nathaniel; Yue, Zhenyu

    2009-04-01

    Beclin 1, a mammalian autophagy protein that has been implicated in development, tumour suppression, neurodegeneration and cell death, exists in a complex with Vps34, the class III phosphatidylinositol-3-kinase (PI(3)K) that mediates multiple vesicle-trafficking processes including endocytosis and autophagy. However, the precise role of the Beclin 1-Vps34 complex in autophagy regulation remains to be elucidated. Combining mouse genetics and biochemistry, we have identified a large in vivo Beclin 1 complex containing the known proteins Vps34, p150/Vps15 and UVRAG, as well as two newly identified proteins, Atg14L (yeast Atg14-like) and Rubicon (RUN domain and cysteine-rich domain containing, Beclin 1-interacting protein). Characterization of the new proteins revealed that Atg14L enhances Vps34 lipid kinase activity and upregulates autophagy, whereas Rubicon reduces Vps34 activity and downregulates autophagy. We show that Beclin 1 and Atg14L synergistically promote the formation of double-membraned organelles that are associated with Atg5 and Atg12, whereas forced expression of Rubicon results in aberrant late endosomal/lysosomal structures and impaired autophagosome maturation. We hypothesize that by forming distinct protein complexes, Beclin 1 and its binding proteins orchestrate the precise function of the class III PI(3)K in regulating autophagy at multiple steps.

  15. Genetic or Pharmaceutical Blockade of Phosphoinositide 3-Kinase P110δ Prevents Chronic Rejection of Heart Allografts

    PubMed Central

    Rose, Marlene L.; McCormack, Ann M.; Sarathchandra, Padmini; Okkenhaug, Klaus; Marelli-Berg, Federica M.

    2012-01-01

    Chronic rejection is the major cause of long-term heart allograft failure, characterized by tissue infiltration by recipient T cells with indirect allospecificity. Phosphoinositol-3-kinase p110δ is a key mediator of T cell receptor signaling, regulating both T cell activation and migration of primed T cells to non-lymphoid antigen-rich tissue. We investigated the effect of genetic or pharmacologic inactivation of PI3K p110δ on the development of chronic allograft rejection in a murine model in which HY-mismatched male hearts were transplanted into female recipients. We show that suppression of p110δ activity significantly attenuates the development of chronic rejection of heart grafts in the absence of any additional immunosuppressive treatment by impairing the localization of antigen-specific T cells to the grafts, while not inducing specific T cell tolerance. p110δ pharmacologic inactivation is effective when initiated after transplantation. Targeting p110δ activity might be a viable strategy for the treatment of heart chronic rejection in humans. PMID:22479345

  16. The insulin sensitizing effect of homoisoflavone-enriched fraction in Liriope platyphylla Wang et Tang via PI3-kinase pathway.

    PubMed

    Choi, Soo Bong; Wha, Jun Dong; Park, Sunmin

    2004-10-15

    In the present study, we screened candidates for enhancing insulin action, using glucose uptake as an indicator, from Liriope platyphylla Wang et Tang (LPWT) extract, Liliaceae, in 3T3-L1 adipocytes. The mechanism of insulin sensitizing action in the fractions was also investigated. LPWT extract with 70% MeOH was sequentially separated with Diaion HP-20 and silica gel column chromatography. The 9:1 fraction from silica gel column chromatography increased glucose uptake with 1 ng/mL up to glucose uptake with 50 ng/mL insulin. The 9:1 fraction, determined as homoisoflavone-enriched fraction, worked as an insulin sensitizer. It increased insulin stimulated glucose uptake in 3T3-L1 adipocytes, insulin responsive cells, through increased glucose transporter 4 (GLUT4) contents in the plasma membrane. GLUT4 translocation was increased through insulin receptor substrate 1 (IRS1)-PI3 kinase-Akt signaling mechanism. Thus, homoisoflavone-enriched fraction in LPWT extract played an important role as an insulin sensitizer in adipocytes.

  17. Phosphatidylinositol 3-kinase and calcium-activated transcription pathways are required for VLDL-induced smooth muscle cell proliferation.

    PubMed

    Lipskaia, Larissa; Pourci, Marie-Luce; Deloménie, Claudine; Combettes, Laurent; Goudounèche, Dominique; Paul, Jean-Louis; Capiod, Thierry; Lompré, Anne-Marie

    2003-05-30

    Little is known regarding the molecular mechanisms of atherogenicity of triglyceride-rich lipoproteins such as very low-density lipoproteins (VLDLs). We examined the effect of VLDL on proliferation of rat aortic smooth muscle cells, intracellular Ca2+ handling, and activity of cAMP-responsive element binding protein (CREB) and nuclear factor of activated T cells (NFAT) transcription factors. VLDL, isolated from human serum, dose- and time-dependently promoted proliferation. After 4 hours of exposure to VLDL (0.15 g/L proteins), the caffeine-induced Ca2+ release was inhibited and the IP3-sensitive Ca2+ release induced by ATP (10 micromol/L) was markedly prolonged. In quiescent cells, CREB was phosphorylated (pCREB) and NFAT was present in the cytosol, whereas in cells exposed to VLDL for 4 to 24 hours, pCREB disappeared and NFAT was translocated to the nucleus. VLDL-induced NFAT translocation and proliferation were blocked by cyclosporin A and LY294002 involving calcineurin and phosphatidylinositol 3-kinase (PI3K) pathways. Indeed, VLDLs rapidly phosphorylate protein kinase B and glycogen synthase kinase-3beta in a PI3K-dependent way. These results provide the first evidence that VLDLs induce smooth muscle cell proliferation by activating the PI3K pathway and nuclear NFAT translocation. Blockade of the Ca2+-induced Ca2+ release mechanism and dephosphorylation of pCREB contribute but were not sufficient to induce a proliferating phenotype.

  18. Novel Anti-Microbial Peptide SR-0379 Accelerates Wound Healing via the PI3 Kinase/Akt/mTOR Pathway

    PubMed Central

    Tomioka, Hideki; Nakagami, Hironori; Tenma, Akiko; Saito, Yoshimi; Kaga, Toshihiro; Kanamori, Toshihide; Tamura, Nao; Tomono, Kazunori; Kaneda, Yasufumi; Morishita, Ryuichi

    2014-01-01

    We developed a novel cationic antimicrobial peptide, AG30/5C, which demonstrates angiogenic properties similar to those of LL-37 or PR39. However, improvement of its stability and cost efficacy are required for clinical application. Therefore, we examined the metabolites of AG30/5C, which provided the further optimized compound, SR-0379. SR-0379 enhanced the proliferation of human dermal fibroblast cells (NHDFs) via the PI3 kinase-Akt-mTOR pathway through integrin-mediated interactions. Furthermore SR-0379 promoted the tube formation of human umbilical vein endothelial cells (HUVECs) in co-culture with NHDFs. This compound also displays antimicrobial activities against a number of bacteria, including drug-resistant microbes and fungi. We evaluated the effect of SR-0379 in two different would-healing models in rats, the full-thickness defects under a diabetic condition and an acutely infected wound with full-thickness defects and inoculation with Staphylococcus aureus. Treatment with SR-0379 significantly accelerated wound healing when compared to fibroblast growth factor 2 (FGF2). The beneficial effects of SR-0379 on wound healing can be explained by enhanced angiogenesis, granulation tissue formation, proliferation of endothelial cells and fibroblasts and antimicrobial activity. These results indicate that SR-0379 may have the potential for drug development in wound repair, even under especially critical colonization conditions. PMID:24675668

  19. Targeting the phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin signaling network in cancer stem cells.

    PubMed

    Martelli, A M; Evangelisti, C; Follo, M Y; Ramazzotti, G; Fini, M; Giardino, R; Manzoli, L; McCubrey, J A; Cocco, L

    2011-01-01

    Cancer stem cells (CSCs) comprise a subset of hierarchically organized, rare cancer cells with the ability to initiate cancer in xenografts of genetically modified murine models. CSCs are thought to be responsible for tumor onset, self-renewal/maintenance, mutation accumulation, and metastasis. The existence of CSCs could explain the high frequency of neoplasia relapse and resistance to all of currently available therapies, including chemotherapy. The phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) signaling pathway is a key regulator of physiological cell processes which include proliferation, differentiation, apoptosis, motility, metabolism, and autophagy. Nevertheless, aberrantly upregulated PI3K/Akt/mTOR signaling characterizes many types of cancers where it negatively influences prognosis. Several lines of evidence indicate that this signaling system plays a key role also in CSC biology. Of note, CSCs are more sensitive to pathway inhibition with small molecules when compared to healthy stem cells. This observation provides the proof-of-principle that functional differences in signaling transduction pathways between CSCs and healthy stem cells can be identified. Here, we review the evidence which links the signals deriving from the PI3K/Akt/mTOR network with CSC biology, both in hematological and solid tumors. We then highlight how therapeutic targeting of PI3K/Akt/mTOR signaling with small molecule inhibitors could improve cancer patient outcome, by eliminating CSCs.

  20. PI-103, a dual inhibitor of Class IA phosphatidylinositide 3-kinase and mTOR, has antileukemic activity in AML.

    PubMed

    Park, S; Chapuis, N; Bardet, V; Tamburini, J; Gallay, N; Willems, L; Knight, Z A; Shokat, K M; Azar, N; Viguié, F; Ifrah, N; Dreyfus, F; Mayeux, P; Lacombe, C; Bouscary, D

    2008-09-01

    The phosphatidylinositol 3-kinase (PI3K)/Akt and mammalian target of rapamycin complex 1 (mTORC1) signaling pathways are frequently activated in acute myelogenous leukemia (AML). mTORC1 inhibition with RAD001 induces PI3K/Akt activation and both pathways are activated independently, providing a rationale for dual inhibition of both pathways. PI-103 is a new potent PI3K/Akt and mTOR inhibitor. In human leukemic cell lines and in primary blast cells from AML patients, PI-103 inhibited constitutive and growth factor-induced PI3K/Akt and mTORC1 activation. PI-103 was essentially cytostatic for cell lines and induced cell cycle arrest in the G1 phase. In blast cells, PI-103 inhibited leukemic proliferation, the clonogenicity of leukemic progenitors and induced mitochondrial apoptosis, especially in the compartment containing leukemic stem cells. In contrast, apoptosis was not induced with RAD001 and IC87114 association, which specifically inhibits mTORC1 and p110delta activity, respectively. PI-103 had additive proapoptotic effects with etoposide in blast cells and in immature leukemic cells. Interestingly, PI-103 did not induce apoptosis in normal CD34(+) cells and had moderate effects on their clonogenic and proliferative properties. Here, we demonstrate that multitargeted therapy against PI3K/Akt and mTOR with PI-103 may be of therapeutic value in AML.

  1. Tannerella forsythia invasion in oral epithelial cells requires phosphoinositide 3-kinase activation and clathrin-mediated endocytosis.

    PubMed

    Mishima, Elina; Sharma, Ashu

    2011-08-01

    Tannerella forsythia, a Gram-negative anaerobe implicated in periodontitis, has been detected within human buccal epithelial cells and shown to invade oral epithelial cells in vitro. We have previously shown that this bacterium triggers host tyrosine kinase-dependent phosphorylation and actin-dependent cytoskeleton reorganization for invasion. On the bacterial side, the leucine-rich repeat cell-surface BspA protein is important for entry. The present study was undertaken to identify host signalling molecules during T. forsythia entry into human oral and cervical epithelial cells. Specifically, the roles of phosphatidylinositol 3-kinase (PI3K), Rho-family GTPases, cholesterol-rich membrane microdomains and the endocytic protein clathrin were investigated. For this purpose, cell lines were pretreated with chemical inhibitors or small interfering RNAs (siRNAs) that target PI3Ks, Rho GTPases, clathrin and cholesterol (a critical component of 'lipid rafts'), and the resulting effects on T. forsythia uptake were determined. Our studies revealed that T. forsythia entry is dependent on host PI3K signalling, and that purified BspA protein causes activation of this lipid kinase. Bacterial entry also requires the cooperation of host Rac1 GTPase. Finally, our findings indicate an important role for clathrin and cholesterol-rich lipid microdomains in the internalization process.

  2. SUMOylation of DNA topoisomerase IIα regulates histone H3 kinase Haspin and H3 phosphorylation in mitosis

    PubMed Central

    Yoshida, Makoto M.; Ting, Lily; Gygi, Steven P.

    2016-01-01

    DNA topoisomerase II (TOP2) plays a pivotal role in faithful chromosome separation through its strand-passaging activity that resolves tangled genomic DNA during mitosis. Additionally, TOP2 controls progression of mitosis by activating cell cycle checkpoints. Recent work showed that the enzymatically inert C-terminal domain (CTD) of TOP2 and its posttranslational modification are critical to this checkpoint regulation. However, the molecular mechanism has not yet been determined. By using Xenopus laevis egg extract, we found that SUMOylation of DNA topoisomerase IIα (TOP2A) CTD regulates the localization of the histone H3 kinase Haspin and phosphorylation of histone H3 at threonine 3 at the centromere, two steps known to be involved in the recruitment of the chromosomal passenger complex (CPC) to kinetochores in mitosis. Robust centromeric Haspin localization requires SUMOylated TOP2A CTD binding activity through SUMO-interaction motifs and the phosphorylation of Haspin. We propose a novel mechanism through which the TOP2 CTD regulates the CPC via direct interaction with Haspin at mitotic centromeres. PMID:27325792

  3. Force engages vinculin and promotes tumor progression by enhancing PI3-kinase activation of phosphatidylinositol (3,4,5)-triphosphate

    PubMed Central

    Rubashkin, MG; Cassereau, L; Bainer, R; DuFort, CC; Yui, Y; Ou, G; Paszek, MJ; Davidson, MW; Chen, YY; Weaver, VM

    2014-01-01

    Extracellular matrix stiffness induces focal adhesion assembly to drive malignant transformation and tumor metastasis. Nevertheless, how force alters focal adhesions to promote tumor progression remains unclear. Here, we explored the role of the focal adhesion protein vinculin, a force-activated mechano-transducer, in mammary epithelial tissue transformation and invasion. We found that extracellular matrix stiffness stabilizes the assembly of a vinculin-talin-actin scaffolding complex that facilitates PI3-kinase mediated phosphatidylinositol (3,4,5)-triphosphate phosphorylation. Using defined two and three dimensional matrices, a mouse model of mammary tumorigenesis with vinculin mutants and a novel super resolution imaging approach, we established that ECM stiffness, per se, promotes the malignant progression of a mammary epithelium by activating and stabilizing vinculin and enhancing Akt signaling at focal adhesions. Our studies also revealed that vinculin strongly co-localizes with activated Akt at the invasive border of human breast tumors, where the ECM is stiffest and we detected elevated mechano-signaling. Thus, extracellular matrix stiffness could induce tumor progression by promoting the assembly of signaling scaffolds; a conclusion underscored by the significant association we observed between highly expressed focal adhesion plaque proteins and malignant transformation across multiple types of solid cancer. PMID:25183785

  4. MST3 Kinase Phosphorylates TAO1/2 to Enable Myosin Va Function in Promoting Spine Synapse Development

    PubMed Central

    Ultanir, Sila K.; Yadav, Smita; Hertz, Nicholas T.; Oses-Prieto, Juan A.; Claxton, Suzanne; Burlingame, Alma L.; Shokat, Kevan M.; Jan, Lily Y.; Jan, Yuh-Nung

    2014-01-01

    Summary Mammalian Sterile 20 (Ste20)-like kinase 3 (MST3) is a ubiquitously expressed kinase capable of enhancing axon outgrowth. Whether and how MST3 kinase signaling might regulate development of dendritic filopodia and spine synapses is unknown. Through shRNA-mediated depletion of MST3 and kinase-dead MST3 expression in developing hippocampal cultures, we found that MST3 is necessary for proper filopodia, dendritic spine, and excitatory synapse development. Knockdown of MST3 in layer 2/3 pyramidal neurons via in utero electroporation also reduced spine density in vivo. Using chemical genetics, we discovered thirteen candidate MST3 substrates and identified the phosphorylation sites. Among the identified MST3 substrates, TAO kinases regulate dendritic filopodia and spine development, similar to MST3. Furthermore, using stable isotope labeling by amino acids in culture (SILAC), we show that phosphorylated TAO1/2 associates with Myosin Va and is necessary for its dendritic localization, thus revealing a mechanism for excitatory synapse development in the mammalian CNS. PMID:25456499

  5. MST3 kinase phosphorylates TAO1/2 to enable Myosin Va function in promoting spine synapse development.

    PubMed

    Ultanir, Sila K; Yadav, Smita; Hertz, Nicholas T; Oses-Prieto, Juan A; Claxton, Suzanne; Burlingame, Alma L; Shokat, Kevan M; Jan, Lily Y; Jan, Yuh-Nung

    2014-12-03

    Mammalian Sterile 20 (Ste20)-like kinase 3 (MST3) is a ubiquitously expressed kinase capable of enhancing axon outgrowth. Whether and how MST3 kinase signaling might regulate development of dendritic filopodia and spine synapses is unknown. Through shRNA-mediated depletion of MST3 and kinase-dead MST3 expression in developing hippocampal cultures, we found that MST3 is necessary for proper filopodia, dendritic spine, and excitatory synapse development. Knockdown of MST3 in layer 2/3 pyramidal neurons via in utero electroporation also reduced spine density in vivo. Using chemical genetics, we discovered thirteen candidate MST3 substrates and identified the phosphorylation sites. Among the identified MST3 substrates, TAO kinases regulate dendritic filopodia and spine development, similar to MST3. Furthermore, using stable isotope labeling by amino acids in culture (SILAC), we show that phosphorylated TAO1/2 associates with Myosin Va and is necessary for its dendritic localization, thus revealing a mechanism for excitatory synapse development in the mammalian CNS.

  6. Phosphatidylinositol 3-Kinase Mediates Bronchioalveolar Stem Cell Expansion in Mouse Models of Oncogenic K-ras-Induced Lung Cancer

    PubMed Central

    Yang, Yanan; Iwanaga, Kentaro; Raso, Maria Gabriela; Wislez, Marie; Hanna, Amy E.; Wieder, Eric D.; Molldrem, Jeffrey J.; Wistuba, Ignacio I.; Powis, Garth; Demayo, Francesco J.; Kim, Carla F.; Kurie, Jonathan M.

    2008-01-01

    Background Non-small cell lung cancer (NSCLC) is the most common cause of cancer-related death in Western countries. Developing more effective NSCLC therapeutics will require the elucidation of the genetic and biochemical bases for this disease. Bronchioalveolar stem cells (BASCs) are a putative cancer stem cell population in mouse models of oncogenic K-ras-induced lung adenocarcinoma, an histologic subtype of NSCLC. The signals activated by oncogenic K-ras that mediate BASC expansion have not been fully defined. Methodology/Principal Findings We used genetic and pharmacologic approaches to modulate the activity of phosphatidylinositol 3-kinase (PI3K), a key mediator of oncogenic K-ras, in two genetic mouse models of lung adenocarcinoma. Oncogenic K-ras-induced BASC accumulation and tumor growth were blocked by treatment with a small molecule PI3K inhibitor and enhanced by inactivation of phosphatase and tensin homologue deleted from chromosome 10, a negative regulator of PI3K. Conclusions/Significance We conclude that PI3K is a critical regulator of BASC expansion, supporting treatment strategies to target PI3K in NSCLC patients. PMID:18493606

  7. Cytokine Stimulation Promotes Glucose Uptake via Phosphatidylinositol-3 Kinase/Akt Regulation of Glut1 Activity and Trafficking

    PubMed Central

    Wieman, Heather L.; Wofford, Jessica A.

    2007-01-01

    Cells require growth factors to support glucose metabolism for survival and growth. It is unclear, however, how noninsulin growth factors may regulate glucose uptake and glucose transporters. We show that the hematopoietic growth factor interleukin (IL)3, maintained the glucose transporter Glut1 on the cell surface and promoted Rab11a-dependent recycling of intracellular Glut1. IL3 required phosphatidylinositol-3 kinase activity to regulate Glut1 trafficking, and activated Akt was sufficient to maintain glucose uptake and surface Glut1 in the absence of IL3. To determine how Akt may regulate Glut1, we analyzed the role of Akt activation of mammalian target of rapamycin (mTOR)/regulatory associated protein of mTOR (RAPTOR) and inhibition of glycogen synthase kinase (GSK)3. Although Akt did not require mTOR/RAPTOR to maintain surface Glut1 levels, inhibition of mTOR/RAPTOR by rapamycin greatly diminished glucose uptake, suggesting Akt-stimulated mTOR/RAPTOR may promote Glut1 transporter activity. In contrast, inhibition of GSK3 did not affect Glut1 internalization but nevertheless maintained surface Glut1 levels in IL3-deprived cells, possibly via enhanced recycling of internalized Glut1. In addition, Akt attenuated Glut1 internalization through a GSK3-independent mechanism. These data demonstrate that intracellular trafficking of Glut1 is a regulated component of growth factor-stimulated glucose uptake and that Akt can promote Glut1 activity and recycling as well as prevent Glut1 internalization. PMID:17301289

  8. Epidermal growth factor stimulates Rac activation through Src and phosphatidylinositol 3-kinase to promote colonic epithelial cell migration.

    PubMed

    Dise, Rebecca S; Frey, Mark R; Whitehead, Robert H; Polk, D Brent

    2008-01-01

    Regulated intestinal epithelial cell migration plays a key role in wound healing and maintenance of a healthy gastrointestinal tract. Epidermal growth factor (EGF) stimulates cell migration and wound closure in intestinal epithelial cells through incompletely understood mechanisms. In this study we investigated the role of the small GTPase Rac in EGF-induced cell migration using an in vitro wound-healing assay. In mouse colonic epithelial (MCE) cell lines, EGF-stimulated wound closure was accompanied by a doubling of the number of cells containing lamellipodial extensions at the wound margin, increased Rac membrane translocation in cells at the wound margin, and rapid Rac activation. Either Rac1 small interfering (si)RNA or a Rac1 inhibitor completely blocked EGF-stimulated wound closure. Whereas EGF failed to activate Rac in colon cells from EGF receptor (EGFR) knockout mice, stable expression of wild-type EGFR restored EGF-stimulated Rac activation and migration. Pharmacological inhibition of either phosphatidylinositol 3-kinase (PI3K) or Src family kinases reduced EGF-stimulated Rac activation. Cotreatment of cells with both inhibitors completely blocked EGF-stimulated Rac activation and localization to the leading edge of cells and lamellipodial extension. Our results present a novel mechanism by which the PI3K and Src signaling cascades cooperate to activate Rac and promote intestinal epithelial cell migration downstream of EGFR.

  9. The novel PI3 kinase inhibitor, BAY 80-6946, impairs melanoma growth in vivo and in vitro.

    PubMed

    Schneider, Philine; Schön, Margarete; Pletz, Nadin; Seitz, Cornelia S; Liu, Ningshu; Ziegelbauer, Karl; Zachmann, Karolin; Emmert, Steffen; Schön, Michael P

    2014-08-01

    Due to its almost universal resistance to chemotherapy, metastasized melanoma remains a major challenge in clinical oncology. Given that phosphatidyl inositol-3 kinase (PI3K) activation in melanoma cells is associated with poor prognosis, disease progression and resistance to chemotherapy, the PI3K-Akt signalling pathway is a promising therapeutic target for melanoma treatment. We analysed six human melanoma cell lines for their constitutive activation of Akt and then tested two representative lines, A375 and LOX, for their susceptibility to PI3K-inhibition by the highly specific small molecule inhibitor, BAY 80-6946. In addition, the effect of BAY 80-6946 on A375 and LOX melanoma cells was assessed in vivo in a xenotransplantation mouse model. We provide experimental evidence that specifically inhibiting the PI3K pathway and phosphorylation of Akt by this novel compound results in antitumoral activities including inhibition of proliferation, induction of apoptosis and cell cycle arrest in vitro and in vivo. However, the susceptibility did not show a clear-cut pattern and differed between the melanoma cell lines tested, resulting in in vivo growth inhibition of A375 but not LOX melanoma cells. Thus, in some cases BAY 80-6946 or related compounds may be a valuable addition to the therapeutic armamentarium.

  10. Phosphoinositide-3-kinase and mitogen activated protein kinase signaling pathways mediate acute NGF sensitization of TRPV1.

    PubMed

    Zhu, Weiguo; Oxford, Gerry S

    2007-04-01

    Nerve growth factor (NGF) induces an acute sensitization of nociceptive DRG neurons, in part, through sensitization of the capsaicin receptor TRPV1 via the high affinity trkA receptor. The mechanisms linking trkA and TRPV1 remain controversial with several candidate signaling pathways proposed. Utilizing adult rat and mouse DRG neurons and CHO cells co-expressing trkA and TRPV1, we have investigated the signaling events underlying acute TRPV1 sensitization by NGF combining biochemical, electrophysiological, pharmacological, mutational and genetic knockout approaches. Pharmacological interference with p42/p44 mitogen activated protein kinase (MAPK) or phosphoinositide-3-kinase (PI3K), but not PLC abrogated sensitization of capsaicin responses. Co-expression of TRPV1 with wild-type or Y785F (PLC signal deficient) mutant human trkA reconstituted NGF sensitization. In contrast, TRPV1 co-expressed with MAPK signaling deficient Y490A or PI3K signaling deficient Y751F trkA mutants exhibited weaker sensitization. Biochemical analysis of p42/p44 and Akt phosphorylation confirmed the specificity of pharmacological agents and trkA mutants. Finally, NGF sensitization of capsaicin responses was greatly reduced in neurons from p85alpha (regulatory subunit of PI3K) null mice. These data strongly suggest that PI3K and MAPK pathways, but not the PLC pathway underlie the acute sensitization of TRPV1 by NGF.

  11. In brain, Axl recruits Grb2 and the p85 regulatory subunit of Pl3 kinase; in vitro mutagenesis defines th requisite binding sites for downstream Akt activation

    PubMed Central

    Weinger, Jason G.; Gohari, Pouyan; Yan, Ying; Backer, Jonathan M.; Varnum, Brian; Shafit-Zagardo, Bridget

    2010-01-01

    Axl is a receptor tyrosine kinase implicated in cell survival following growth factor withdrawal and other stressors. The binding of Axl's ligand, growth arrest-specific protein 6 (Gas6), results in Axl autophosphorylation, recruitment of signaling molecules, and activation of downstream survival pathways. Pull-down assays and immunoprecipitations using wildtype and mutant Axl transfected cells determined that Axl directly binds growth factor receptor-bound protein 2 (Grb2) at pYVN and the p85 subunit of phosphatidylinositol-3 kinase (PI3 kinase) at two pYXXM sites (pY779 and pY821). Also, p85 can indirectly bind to Axl via an interaction between p85's second proline-rich region and the N-terminal SH3 domain of Grb2. Further, Grb2 and p85 can compete for binding at the pY821VNM site. Gas6-stimulation of Axl-transfected COS7 cells recruited activated PI3 kinase and phosphorylated Akt. An interaction between Axl, p85 and Grb2 was confirmed in brain homogenates, enriched populations of O4+ oligodendrocytes, and O4– flow-through prepared from day 10 mouse brain, indicating that cells with active Gas6/Axl signal through Grb2 and the PI3 kinase/Akt pathways. PMID:18346204

  12. In vitro glucose uptake activity of Aegles marmelos and Syzygium cumini by activation of Glut-4, PI3 kinase and PPARgamma in L6 myotubes.

    PubMed

    Anandharajan, R; Jaiganesh, S; Shankernarayanan, N P; Viswakarma, R A; Balakrishnan, A

    2006-06-01

    The purpose of the present study is to investigate the effect of methanolic extracts of Aegles marmelos and Syzygium cumini on a battery of targets glucose transporter (Glut-4), peroxisome proliferator activator receptor gamma (PPARgamma) and phosphatidylinositol 3' kinase (PI3 kinase) involved in glucose transport. A. marmelos and S. cumini are anti-diabetic medicinal plants being used in Indian traditional medicine. Different solvent extracts extracted sequentially were analysed for glucose uptake activity at each step and methanol extracts were found to be significantly active at 100ng/ml dose comparable with insulin and rosiglitazone. Elevation of Glut-4, PPARgamma and PI3 kinase by A. marmelos and S. cumini in association with glucose transport supported the up-regulation of glucose uptake. The inhibitory effect of cycloheximide on A. marmelos- and S. cumini-mediated glucose uptake suggested that new protein synthesis is required for the elevated glucose transport. Current observation concludes that methanolic extracts of A. marmelos and S. cumini activate glucose transport in a PI3 kinase-dependent fashion.

  13. Src-family-tyrosine kinase Lyn is critical for TLR2-mediated NF-κB activation through the PI 3-kinase signaling pathway.

    PubMed

    Toubiana, Julie; Rossi, Anne-Lise; Belaidouni, Nadia; Grimaldi, David; Pene, Frederic; Chafey, Philippe; Comba, Béatrice; Camoin, Luc; Bismuth, Georges; Claessens, Yann-Erick; Mira, Jean-Paul; Chiche, Jean-Daniel

    2015-10-01

    TLR2 has a prominent role in host defense against a wide variety of pathogens. Stimulation of TLR2 triggers MyD88-dependent signaling to induce NF-κB translocation, and activates a Rac1-PI 3-kinase dependent pathway that leads to transactivation of NF-κB through phosphorylation of the P65 NF-κB subunit. This transactivation pathway involves tyrosine phosphorylations. The role of the tyrosine kinases in TLR signaling is controversial, with discrepancies between studies using only chemical inhibitors and knockout mice. Here, we show the involvement of the tyrosine-kinase Lyn in TLR2-dependent activation of NF-κB in human cellular models, by using complementary inhibition strategies. Stimulation of TLR2 induces the formation of an activation cluster involving TLR2, CD14, PI 3-kinase and Lyn, and leads to the activation of AKT. Lyn-dependent phosphorylation of the p110 catalytic subunit of PI 3-kinase is essential to the control of PI 3-kinase biological activity upstream of AKT and thereby to the transactivation of NF-κB. Thus, Lyn kinase activity is crucial in TLR2-mediated activation of the innate immune response in human mononuclear cells.

  14. Platelet-derived growth factor triggers translocation of the insulin-regulatable glucose transporter (type 4) predominantly through phosphatidylinositol 3-kinase binding sites on the receptor.

    PubMed Central

    Kamohara, S; Hayashi, H; Todaka, M; Kanai, F; Ishii, K; Imanaka, T; Escobedo, J A; Williams, L T; Ebina, Y

    1995-01-01

    Insulin is the only known hormone which rapidly stimulates glucose uptake in target tissues, mainly by translocation to the cell surface of the intracellular insulin-regulatable glucose transporter (glucose transporter type 4, GLUT4). We have developed a cell line for direct, sensitive detection of GLUT4 on the cell surface. We have suggested that insulin-activated phosphatidylinositol (PI) 3-kinase may be involved in the signaling pathway of insulin-stimulated GLUT4 translocation. We report that platelet-derived growth factor (PDGF), which stimulates PI 3-kinase activity, triggers GLUT4 translocation in Chinese hamster ovary (CHO) cells stably overexpressing the PDGF receptor and in 3T3-L1 mouse adipocytes. Using mutant PDGF receptors that cannot bind to Ras-GTPase-activating protein, phospholipase C-gamma, and PI 3-kinase, respectively, we obtained evidence that PI 3-kinase binding sites play a key role in the signaling pathway of PDGF-stimulated GLUT4 translocation in the CHO cell system. Images Fig. 1 Fig. 4 PMID:7862637

  15. Arecoline-induced phosphorylated p53 and p21(WAF1) protein expression is dependent on ATM/ATR and phosphatidylinositol-3-kinase in clone-9 cells.

    PubMed

    Chou, Wen-Wen; Guh, Jinn-Yuh; Tsai, Jung-Fa; Hwang, Chi-Ching; Chiou, Shean-Jaw; Chuang, Lea-Yea

    2009-06-01

    Betel-quid use is associated with liver cancer whereas its constituent arecoline is cytotoxic, genotoxic, and induces p53-dependent p21(WAF1) protein expression in Clone-9 cells (rat hepatocytes). The ataxia telangiectasia mutated (ATM)/rad3-related (ATR)-p53-p21(WAF1) and the phosphatidylinositol-3-kinase (PI3K)-mammalian target of rapamycin (mTOR) pathways are involved in the DNA damage response and the pathogenesis of cancers. Thus, we studied the role of ATM/ATR and PI3K in arecoline-induced p53 and p21(WAF1) protein expression in Clone-9 cells. We found that arecoline (0.5 mM) activated the ATM/ATR kinase at 30 min. The arecoline-activated ATM/ATR substrate contained p-p53Ser15. Moreover, arecoline only increased the levels of the p-p53Ser6, p-p53Ser15, and p-p53Ser392 phosphorylated p53 isoforms among the known isoforms. ATM shRNA attenuated arecoline-induced p-p53Ser15 and p21(WAF1) at 24 h. Arecoline (0.5 mM) increased phosphorylation levels of p-AktSer473 and p-mTORSer2448 at 30-60 min. Dominant-negative PI3K plasmids attenuated arecoline-induced p21(WAF1), but not p-p53Ser15, at 24 h. Rapamycin attenuated arecoline-induced phosphrylated p-p53Ser15, but not p21(WAF1), at 24 h. ATM shRNA, but not dominant-negative PI3K plasmids, attenuated arecoline-induced p21(WAF1) gene transcription. We conclude that arecoline activates the ATM/ATR-p53-p21(WAF1) and the PI3K/Akt-mTOR-p53 pathways in Clone-9 cells. Arecoline-induced phosphorylated p-p53Ser15 expression is dependent on ATM whereas arecoline-induced p21(WAF1) protein expression is dependent on ATM and PI3K. Moreover, p21(WAF1) gene is transcriptionally induced by arecoline-activated ATM. (c) 2009 Wiley-Liss, Inc.

  16. Roles of mitogen-activated protein kinase and phosphoinositide 3'-kinase in ErbB2/ErbB3 coreceptor-mediated heregulin signaling.

    PubMed

    Vijapurkar, Ulka; Kim, Myong-Soo; Koland, John G

    2003-04-01

    ErbB2/HER2 and ErbB3/HER3, two members of the ErbB/HER family, together constitute a heregulin coreceptor complex that elicits a potent mitogenic and transforming signal. Among known intracellular effectors of the ErbB2/ErbB3 heregulin coreceptor are mitogen-activated protein kinase (MAPK) and phosphoinositide (PI) 3-kinase. Activation of the distinct MAPK and PI 3-kinase signaling pathways by the ErbB2/ErbB3 coreceptor in response to heregulin and their relative contributions to the mitogenic and transformation potentials of the activated coreceptor were investigated here. To this end, cDNAs encoding the wild-type ErbB3 protein (ErbB3-WT) and ErbB3 proteins with amino acid substitutions in either the Shc-binding site (ErbB3-Y1325F), the six putative PI 3-kinase-binding sites (ErbB3-6F), or both (ErbB3-7F) were generated and expressed in NIH-3T3 cells to form functional ErbB2/ErbB3 heregulin coreceptors. While the coreceptor incorporating ErbB3-WT activated both the MAPK and the PI 3-kinase signaling pathways, those incorporating ErbB3-Y1325F or ErbB3-6F activated either PI 3-kinase or MAPK, respectively. The ErbB2/ErbB3-7F coreceptor activated neither. Elimination of either signaling pathway lowered basal and eliminated heregulin-dependent expression of cyclin D1, which was in each case accompanied by an attenuated mitogenic response. Selective elimination of the PI 3-kinase pathway severely impaired the ability of heregulin to transform cells expressing the coreceptor, whereas attenuation of the MAPK pathway had a lesser effect. Thus, while both pathways contributed in a roughly additive manner to the mitogenic response elicited by the activated ErbB2/ErbB3 coreceptor, the PI 3-kinase pathway predominated in the induction of cellular transformation.

  17. Impaired activation of phosphoinositide 3-kinase by insulin in fibroblasts from patients with severe insulin resistance and pseudoacromegaly. A disorder characterized by selective postreceptor insulin resistance.

    PubMed Central

    Dib, K; Whitehead, J P; Humphreys, P J; Soos, M A; Baynes, K C; Kumar, S; Harvey, T; O'Rahilly, S

    1998-01-01

    Some patients with severe insulin resistance develop pathological tissue growth reminiscent of acromegaly. Previous studies of such patients have suggested the presence of a selective postreceptor defect of insulin signaling, resulting in the impairment of metabolic but preservation of mitogenic signaling. As the activation of phosphoinositide 3-kinase (PI 3-kinase) is considered essential for insulin's metabolic signaling, we have examined insulin-stimulated PI 3-kinase activity in anti-insulin receptor substrate (IRS)-1 immunoprecipitates from cultured dermal fibroblasts obtained from pseudoacromegalic (PA) patients and controls. At a concentration of insulin (1 nM) similar to that seen in vivo in PA patients, the activation of IRS-1-associated PI 3-kinase was reduced markedly in fibroblasts from the PA patients (32+/-7% of the activity of normal controls, P < 0.01). Genetic and biochemical studies indicated that this impairment was not secondary to a defect in the structure, expression, or activation of the insulin receptor, IRS-1, or p85alpha. Insulin stimulation of mitogenesis in PA fibroblasts, as determined by thymidine incorporation, was indistinguishable from controls, as was mitogen-activated protein kinase phosphorylation, confirming the integrity of insulin's mitogenic signaling pathways in this condition. These findings support the existence of an intrinsic defect of postreceptor insulin signaling in the PA subtype of insulin resistance, which involves impairment of the activation of PI 3-kinase. The PA tissue growth seen in such patients is likely to result from severe in vivo hyperinsulinemia activating intact mitogenic signaling pathways emanating from the insulin receptor. PMID:9486982

  18. Activation of S6 kinase in human neutrophils by calcium pyrophosphate dihydrate crystals: protein kinase C-dependent and phosphatidylinositol-3-kinase-independent pathways.

    PubMed Central

    Tudan, C; Jackson, J K; Charlton, L; Pelech, S L; Sahl, B; Burt, H M

    1998-01-01

    Phosphatidylinositol 3-kinase (PI 3-kinase) has been shown previously to be a central enzyme in crystal-induced neutrophil activation. Since activation of the 70 kDa S6 kinase (p70S6K) has been shown to be dependent on PI 3-kinase activation in mammalian cells, and since the former is a key enzyme in the transmission of signals to the cell nucleus, activation of p70(S6K) was investigated in crystal-stimulated neutrophils. Cytosolic fractions from calcium pyrophosphate dihydrate (CPPD)-crystal-activated neutrophils were separated by Mono Q chromatography and analysed for phosphotransferase activity using a range of substrates and probed by Western analysis using antibodies to p70(S6K) and mitogen-activated protein kinase (MAP kinase). CPPD crystals induced a robust, transient activation (peak activity at 2 min) of p70(S6K) that was fully inhibited by pretreatment with rapamycin. This is the first report of the activation of p70(S6K) in neutrophil signal transduction pathways induced by an agonist. This crystal-induced activation of p70(S6K) could also be inhibited by a protein kinase C (PKC) inhibitor (Compound 3), but not by the PI 3-kinase inhibitor wortmannin. CPPD crystals also activated the ERK1 and ERK2 forms of MAP kinase (wortmannin insensitive), PKC (Compound 3 sensitive) and protein kinase B (wortmannin sensitive) in neutrophils. These data suggest that activation of p70(S6K) may proceed through a PI 3-kinase- and protein kinase B-independent but PKC-dependent pathway in crystal-activated neutrophils. PMID:9531494

  19. Salinomycin causes migration and invasion of human fibrosarcoma cells by inducing MMP-2 expression via PI3-kinase, ERK-1/2 and p38 kinase pathways.

    PubMed

    Yu, Seon-Mi; Kim, Song Ja

    2016-06-01

    Salinomycin (SAL) is a polyether ionophore antibiotic that has recently been shown to regulate a variety of cellular responses in various human cancer cells. However, the effects of SAL on metastatic capacity of HT1080 human fibrosarcoma cells have not been elucidated. We investigated the effect of SAL on migration and invasion, with emphasis on the expression and activation of matrix metalloproteinase (MMP)-2 in HT1080 human fibrosarcoma cells. Treatment of SAL promoted the expression and activation of MMP-2 in a dose- and time-dependent manner, as detected by western blot analysis, gelatin zymography, and real-time polymerase chain reaction. SAL also increased metastatic capacities, as determined by an increase in the migration and invasion of cells using the wound healing assay and the invasion assay, respectively. To confirm the detailed molecular mechanisms of these effects, we measured the activation of phosphoinositide 3 kinase (PI3-kinase) and mitogen-activated protein kinase (MAPK)s (ERK-1/2 and p38 kinase), as detected by the phosphorylated proteins through western blot analysis. SAL treatment increased the phosphorylation of Akt and MAPKs. Inhibition of PI3-kinase, ERK-1/2, and p38 kinase with LY294002, PD98059, and SB203580, respectively, in the presence of SAL suppressed the metastatic capacity by reducing MMP-2 expression, as determined by gelatin zymography. Our results indicate that the PI3-kinase and MAPK signaling pathways are involved in migration and invasion of HT1080 through induction of MMP-2 expression and activation. In conclusion, SAL significantly increases the metastatic capacity of HT1080 cells by inducing MMP-2 expression via PI3-kinase and MAPK pathways. Our results suggest that SAL may be a potential agent for the study of cancer metastatic capacities.

  20. Disruption of GLUT1 glucose carrier trafficking in L6E9 and Sol8 myoblasts by the phosphatidylinositol 3-kinase inhibitor wortmannin.

    PubMed Central

    Kaliman, P; Viñals, F; Testar, X; Palacín, M; Zorzano, A

    1995-01-01

    In this study we have used wortmannin, a highly specific inhibitor of phosphatidylinositol (PI) 3-kinase, to assess the role of this enzyme on GLUT1 glucose carrier distribution and glucose transport activity in myoblasts from two skeletal-muscle cell lines, L6E9 and Sol8. As detected in L6E9 cells, myoblasts exhibited basal and insulin-stimulated PI 3-kinase activities. Incubation of intact myoblasts with wortmannin resulted in a marked inhibition of both basal and insulin-stimulated PI 3-kinase activities. L6E9 and Sol8 myoblasts showed basal and insulin-stimulated glucose transport activities, both of them inhibited by wortmannin in a dose-dependent manner (IC50 approximately 10-20 nM). Concomitantly, immunofluorescence analysis revealed that 1 h treatment with wortmannin led to a dramatic intracellular accumulation of GLUT1 carriers (the main glucose transporter expressed in L6E9 and Sol8 myoblasts) in both cell systems. The effect of wortmannin on GLUT1 cellular redistribution was independent of the presence of insulin. The cellular distribution of two structural plasma-membrane components such as beta 1-integrin or the alpha 1 subunit of the Na(+)-K(+)-ATPase were unaffected by wortmannin in both the absence and the presence of insulin. As a whole, our results indicate that PI 3-kinase is necessary to basal and insulin-stimulated glucose transport in L6E9 and Sol8 myoblasts. Moreover, immunofluorescence assays suggest that in both cellular models there is a constitutive GLUT 1 trafficking pathway (independent of insulin) that involves PI 3-kinase and which, when blocked, locks GLUT1 in a perinuclear compartment. Images Figure 1 Figure 3 Figure 4 Figure 5 Figure 6 PMID:8526858

  1. Phosphatidylinositol 3-kinase, MEK-1 and p38 mediate leptin/interferon-gamma synergistic NOS type II induction in chondrocytes.

    PubMed

    Otero, Miguel; Lago, Rocío; Gómez, Rodolfo; Lago, Francisca; Gomez-Reino, Juan Jesús; Gualillo, Oreste

    2007-10-27

    In a previous study, we established that leptin acts synergistically with interferon-gamma in inducing nitric oxide synthase type II in cultured chondrocytes via Janus kinase-2 activation. However, the exact molecular mechanism that accounts for this synergism is not completely understood. The aim of the present study was to further delineate the signalling pathway used by leptin/interferon-gamma in the nitric oxide synthase type II induction in chondrocytes. Consequently, the roles of PI-3 kinase, MEK1 and p38 kinase were investigated using specific pharmacological inhibitors (Wortmannin, LY 294002, PD 098,059 and SB 203580). For this purpose, the amount of stable nitrite, the end product of NO generation by activated chondrocytes, has been evaluated by Griess colorimetric reaction in culture medium of human primary chondrocytes and in the murine ATDC5 cell line stimulated with leptin (400 nM) and interferon-gamma (1 ng/ml), alone or in combination. Specific inhibitors for PI-3K, MEK1 and p38 were added 1 h before stimulation. Nitric oxide synthase type II mRNA was investigated by real-time RT-PCR and NOS type II protein expression has been evaluated by western blot analysis. Our results showed that, as expected, leptin synergizes with IFN-gamma in inducing NO accumulation in the supernatant of co-stimulated cells. Pre-treatment with Wortmannin, LY 294002, PD 098,059 and SB 203580 caused a significant decrease in nitrite production, NOS type II protein expression and NOS type II mRNA expression induced by leptin and interferon-gamma co-stimulation. These findings were confirmed in 15 and 21-day differentiated ATDC5 cells, and in normal human primary chondrocytes. This is the first report showing that NOS type II induction triggered by co-stimulation with leptin and interferon-gamma is mediated by a signaling pathway involving PI-3K, MEK1 and p38.

  2. Thrombopoietin enhances the alpha IIb beta 3-dependent adhesion of megakaryocytic cells to fibrinogen or fibronectin through PI 3 kinase.

    PubMed

    Zauli, G; Bassini, A; Vitale, M; Gibellini, D; Celeghini, C; Caramelli, E; Pierpaoli, S; Guidotti, L; Capitani, S

    1997-02-01

    The effect of thrombopoietin (TPO) on the functional activity of surface alpha IIb beta 3 (GPIIbIIIa) was investigated in both primary human megakaryocytic cells, derived from peripheral blood CD34+ cells, and HEL hematopoietic cell line. TPO (100 ng/mL) induced a sixfold to ninefold enhancement of adhesion of both primary megakaryocytic and HEL cells to plates coated with either fibrinogen or fibronectin and a parallel increase of immunoreactivity to the PAC1 monoclonal antibody (MoAb) and fluorescein isothiocyanate-fibrinogen, both of which recognize an activated state of alpha IIb beta 3. The enhanced adhesion to fibrinogen or fibronectin was mediated by the Arg-Gly-Asp (RGD) recognition sequence of alpha IIb beta 3, as it was abolished by pretreatment of cells with saturating concentrations of RGDS peptide. A MoAb specific for the alpha IIb beta subunit of alpha IIb beta 3 also inhibited cell attachment to fibrinogen or fibronectin, while MoAb to anti-alpha v beta 3 or anti-alpha 5 integrins were completely ineffective, clearly indicating that alpha IIb beta 3 participates in this association. A role for PI 3 kinase (PI 3-K) in the TPO-mediated increase in alpha IIb beta 3 function in megakaryocytic cells was suggested by the ability of the PI 3-K inhibitor wortmannin (100 nmol/L) and antisense oligonucleotides directed against the p85 regulatory subunit of PI 3-K to completely block the TPO-induced increase in alpha IIb beta 3 integrin activity upon TPO stimulation. The modulation of adhesiveness to extracellular matrix proteins containing the RGD motif mediated by TPO likely plays a physiologic role in megakaryocytopoiesis, as pretreatment of CD34+ cells with RGDS or anti-alpha IIb MoAb significantly reduced the number of megakaryocytic colonies obtained in a fibrinclot semisolid assay.

  3. PI3-kinase signaling contributes to orientation in shallow gradients and enhances speed in steep chemoattractant gradients.

    PubMed

    Bosgraaf, Leonard; Keizer-Gunnink, Ineke; Van Haastert, Peter J M

    2008-11-01

    Dictyostelium cells that chemotax towards cAMP produce phosphatidylinositol (3,4,5)-trisphosphate [PtdIns(3,4,5)P(3)] at the leading edge, which has been implicated in actin reorganization and pseudopod extension. However, in the absence of PtdIns(3,4,5)P(3) signaling, cells will chemotax via alternative pathways. Here we examined the potential contribution of PtdIns(3,4,5)P(3) to chemotaxis of wild-type cells. The results show that steep cAMP gradients (larger than 10% concentration difference across the cell) induce strong PtdIns(3,4,5)P(3) patches at the leading edge, which has little effect on the orientation but strongly enhances the speed of the cell. Using a new sensitive method for PtdIns(3,4,5)P(3) detection that corrects for the volume of cytosol in pixels at the boundary of the cell, we show that, in shallow cAMP gradient (less than 5% concentration difference across the cell), PtdIns(3,4,5)P(3) is still somewhat enriched at the leading edge. Cells lacking PI3-kinase (PI3K) activity exhibit poor chemotaxis in these shallow gradients. Owing to the reduced speed and diminished orientation of the cells in steep and shallow gradients, respectively, cells lacking PtdIns(3,4,5)P(3) signaling require two- to six-fold longer times to reach a point source of chemoattractant compared with wild-type cells. These results show that, although PI3K signaling is dispensable for chemotaxis, it gives the wild type an advantage over mutant cells.

  4. PAQR3 modulates insulin signaling by shunting phosphoinositide 3-kinase p110α to the Golgi apparatus.

    PubMed

    Wang, Xiao; Wang, Lingdi; Zhu, Lu; Pan, Yi; Xiao, Fei; Liu, Weizhong; Wang, Zhenzhen; Guo, Feifan; Liu, Yong; Thomas, Walter G; Chen, Yan

    2013-02-01

    Phosphoinositide 3-kinase (PI3K) mediates insulin actions by relaying signals from insulin receptors (IRs) to downstream targets. The p110α catalytic subunit of class IA PI3K is the primary insulin-responsive PI3K implicated in insulin signaling. We demonstrate here a new mode of spatial regulation for the p110α subunit of PI3K by PAQR3 that is exclusively localized in the Golgi apparatus. PAQR3 interacts with p110α, and the intracellular targeting of p110α to the Golgi apparatus is reduced by PAQR3 downregulation and increased by PAQR3 overexpression. Insulin-stimulated PI3K activity and phosphoinositide (3,4,5)-triphosphate production are enhanced by Paqr3 deletion and reduced by PAQR3 overexpression in hepatocytes. Deletion of Paqr3 enhances insulin-stimulated phosphorylation of AKT and glycogen synthase kinase 3β, but not phosphorylation of IR and IR substrate-1 (IRS-1), in hepatocytes, mouse liver, and skeletal muscle. Insulin-stimulated GLUT4 translocation to the plasma membrane and glucose uptake are enhanced by Paqr3 ablation. Furthermore, PAQR3 interacts with the domain of p110α involved in its binding with p85, the regulatory subunit of PI3K. Overexpression of PAQR3 dose-dependently reduces the interaction of p85α with p110α. Thus, PAQR3 negatively regulates insulin signaling by shunting cytosolic p110α to the Golgi apparatus while competing with p85 subunit in forming a PI3K complex with p110α.

  5. p70S6 kinase is a critical node that integrates HER-family and PI3 kinase signaling networks

    PubMed Central

    Axelrod, Mark J.; Gordon, Vicki; Mendez, Rolando E.; Leimgruber, Stephanie S.; Conaway, Mark R.; Sharlow, Elizabeth R.; Jameson, MarkJ.; Gioeli, Daniel G.; Weber, Michael J.

    2014-01-01

    Therapies targeting oncogenic drivers rapidly induce compensatory adaptive responses that blunt drug effectiveness, contributing to therapeutic resistance. Adaptive responses are characteristic of robust cell signaling networks, and thus there is increasing interest in drug combinations that co-target the driver and the adaptive response. An alternative approach to co-inhibiting oncogenic and adaptive targets is to identify a critical node where the activities of these targets converge. Nodes of convergence between signaling modules represent potential therapeutic vulnerabilities because their inhibition could result in collapse of the network, leading to enhanced cytotoxicity. In this report we demonstrate that p70S6 kinase (p70S6K) can function as a critical node linking HER-family and phosphoinositide-3-kinase (PI3K) pathway signaling. We used high-throughput combinatorial drug screening to identify adaptive survival responses to targeted therapies, and found that HER-family and PI3K represented compensatory signaling pathways. Co-targeting these pathways with drug combinations caused synergistic cytotoxicity in cases where inhibition of neither target was effective as a monotherapy. We utilized Reverse Phase Protein Arrays and determined that phosphorylation of ribosomal protein S6 was synergistically down-regulated upon HER-family and PI3K/mammalian target of rapamycin (mTOR) co-inhibition. Expression of constitutively active p70S6K protected against apoptosis induced by combined HER-family and PI3K/mTOR inhibition. Direct inhibition of p70S6K with small molecule inhibitors phenocopied HER-family and PI3K/mTOR co-inhibition. These data implicate p70S6K as a critical node in the HER-family/PI3K signaling network. The ability of direct inhibitors of p70S6K to phenocopy co-inhibition of two upstream signaling targets indicates that identification and targeting of critical nodes can overcome adaptive resistance to targeted therapies. PMID:24662264

  6. Signalling mechanisms mediated by the phosphoinositide 3-kinase/Akt cascade in synaptic plasticity and memory in the rat.

    PubMed

    Horwood, Jennifer M; Dufour, Franck; Laroche, Serge; Davis, Sabrina

    2006-06-01

    The phosphoinositide 3-kinase (PI3K)/Akt signalling cascade has classically been implicated in promoting cell survival but more recently has been shown to regulate a number of other cellular functions. In particular, studies have suggested that PI3K contributes to mechanisms associated with synaptic plasticity and memory processes but the function of this cascade in forms of synaptic plasticity, such as long-term potentiation, remains controversial and the PI3K substrates which mediate these effects are poorly understood. Here we report that the PI3K inhibitor LY294002 infused i.c.v. in vivo blocked maintenance of long-term potentiation induced in the dentate gyrus with a single tetanus to the perforant path but not with repeated tetani. This pattern of stimulation led to rapid and transient phosphorylation of the PI3K substrate Akt at Ser473 but not at Thr308. Functional readout of partial activation of Akt was demonstrated by an increase in phosphorylation of two downstream substrates, Forkhead (FKHR) and mammalian target of rapamycin (mTOR), in a delayed and prolonged manner at Akt-specific phosphorylation sites. LY294002 blocked phosphorylation of Akt and the prolonged phosphorylation of FKHR and mTOR but did not impair long-term potentiation-induced phosphorylation of extracellular receptor kinase. In addition, the same i.c.v. concentration of LY294002 impaired long-term consolidation of recognition memory but not short-term recognition memory or spatial learning and repeated training in the recognition memory task overcame the deficit in consolidation. These results suggest that activation of the PI3K/Akt pathway may contribute to the mechanisms of synaptic plasticity and memory consolidation by promoting cell survival via FKHR and protein synthesis via mTOR. Importantly, only partial activation of Akt at its Ser473 residue was necessary to mediate these effects.

  7. Epigallocatechin gallate (EGCG), a major component of green tea, is a dual phosphoinositide-3-kinase/mTOR inhibitor

    SciTech Connect

    Van Aller, Glenn S.; Carson, Jeff D.; Tang, Wei; Peng, Hao; Zhao, Lin; Copeland, Robert A.; Tummino, Peter J.; Luo, Lusong

    2011-03-11

    Research highlights: {yields} Epigallocatechin-3-gallate (EGCG) is an ATP-competitive inhibitor of PI3K and mTOR with Ki values around 300 nM. {yields} EGCG inhibits cell proliferation and AKT phosphorylation at Ser473 in MDA-MB-231and A549 cells. {yields} Molecular docking studies show that EGCG binds well to the PI3K kinase domain active site. {yields} These results suggest another important molecular mechanism for the anticancer activities of EGCG. -- Abstract: The PI3K signaling pathway is activated in a broad spectrum of human cancers, either directly by genetic mutation or indirectly via activation of receptor tyrosine kinases or inactivation of the PTEN tumor suppressor. The key nodes of this pathway have emerged as important therapeutic targets for the treatment of cancer. In this study, we show that (-)-epigallocatechin-3-gallate (EGCG), a major component of green tea, is an ATP-competitive inhibitor of both phosphoinositide-3-kinase (PI3K) and mammalian target of rapamycin (mTOR) with K{sub i} values of 380 and 320 nM respectively. The potency of EGCG against PI3K and mTOR is within physiologically relevant concentrations. In addition, EGCG inhibits cell proliferation and AKT phosphorylation at Ser473 in MDA-MB-231 and A549 cells. Molecular docking studies show that EGCG binds well to the PI3K kinase domain active site, agreeing with the finding that EGCG competes for ATP binding. Our results suggest another important molecular mechanism for the anticancer activities of EGCG.

  8. Phosphatidylinositol 3-kinase activates ERK in primary sensory neurons and mediates inflammatory heat hyperalgesia through TRPV1 sensitization.

    PubMed

    Zhuang, Zhi-Ye; Xu, Haoxing; Clapham, David E; Ji, Ru-Rong

    2004-09-22

    Although the PI3K (phosphatidylinositol 3-kinase) pathway typically regulates cell growth and survival, increasing evidence indicates the involvement of this pathway in neural plasticity. It is unknown whether the PI3K pathway can mediate pain hypersensitivity. Intradermal injection of capsaicin and NGF produce heat hyperalgesia by activating their respective TRPV1 (transient receptor potential vanilloid receptor-1) and TrkA receptors on nociceptor sensory nerve terminals. We examined the activation of PI3K in primary sensory DRG neurons by these inflammatory agents and the contribution of PI3K activation to inflammatory pain. We further investigated the correlation between the PI3K and the ERK (extracellular signal-regulated protein kinase) pathway. Capsaicin and NGF induce phosphorylation of the PI3K downstream target AKT (protein kinase B), which is blocked by the PI3K inhibitors LY294002 and wortmannin, indicative of the activation of PI3K by both agents. ERK activation by capsaicin and NGF was also blocked by PI3K inhibitors. Similarly, intradermal capsaicin in rats activated PI3K and ERK in C-fiber DRG neurons and epidermal nerve fibers. Injection of PI3K or MEK (ERK kinase) inhibitors into the hindpaw attenuated capsaicin- and NGF-evoked heat hyperalgesia but did not change basal heat sensitivity. Furthermore, PI3K, but not ERK, inhibition blocked early induction of hyperalgesia. In acutely dissociated DRG neurons, the capsaicin-induced TRPV1 current was strikingly potentiated by NGF, and this potentiation was completely blocked by PI3K inhibitors and primarily suppressed by MEK inhibitors. Therefore, PI3K induces heat hyperalgesia, possibly by regulating TRPV1 activity, in an ERK-dependent manner. The PI3K pathway also appears to play a role that is distinct from ERK by regulating the early onset of inflammatory pain.

  9. Involvement of PI 3 kinase/Akt-dependent Bad phosphorylation in Toxoplasma gondii-mediated inhibition of host cell apoptosis.

    PubMed

    Quan, Juan-Hua; Cha, Guang-Ho; Zhou, Wei; Chu, Jia-Qi; Nishikawa, Yoshifumi; Lee, Young-Ha

    2013-04-01

    Toxoplasma gondii-infected cells are resistant to various apoptotic stimuli, however, the role of the pro-apoptotic BH3-only Bad protein in T. gondii-imposed inhibition of host cell apoptosis in connection with the phosphoinositide 3-kinase (PI3K)-PKB/Akt pathway was not well delineated. Here, we investigated the signaling patterns of Bad, Bax and PKB/Akt in T. gondii-infected and uninfected THP-1 cells treated with staurosporine (STS) or PI3K inhibitors. STS treatment, without T. gondii infection, reduced the viability of THP-1 cells in proportion to STS concentration and triggered many cellular death events such as caspase-3 and -9 activation, Bax translocation, cytochrome c release from host cell mitochondria into cytosol, and PARP cleavage in the host cell. However, T. gondii infection eliminated the STS-triggered mitochondrial apoptotic events described above. Additionally, T. gondii infection in vitro and in vivo induced the phosphorylation of PKB/Akt and Bad in a parasite-load-dependent manner which subsequently inhibited Bax translocation. The PI3K inhibitors, LY294002 and Wortmannin, both blocked parasite-induced phosphorylation of PKB/Akt and Bad. Furthermore, THP-1 cells pretreated with these PI3K inhibitors showed reduced phosphorylation of Bad in a dose-dependent manner and subsequently failed to inhibit the Bax translocation, also these cells also failed to overcome the T. gondii-imposed inhibition of host cell apoptosis. These data demonstrate that the PI3K-PKB/Akt pathway may be one of the major route for T. gondii in the prevention of host cell apoptosis and T. gondii phosphorylates the pro-apoptotic Bad protein to prevent apoptosis.

  10. Chronic Blockade of Phosphatidylinositol 3-Kinase in the Nucleus Tractus Solitarii Is Prohypertensive in the Spontaneously Hypertensive Rat

    PubMed Central

    Zubcevic, Jasenka; Waki, Hidefumi; Diez-Freire, Carlos; Gampel, Alexandra; Raizada, Mohan K.; Paton, Julian F.R.

    2009-01-01

    Phosphatidylinositol 3-kinase (PI3K) within brain stem neurons has been implicated in hypertension in the spontaneously hypertensive rat (SHR). Previously, we demonstrated elevated expression of PI3K subunits in rostral ventrolateral medulla and paraventricular nucleus of SHRs compared with Wistar-Kyoto rats. Here, we considered expression levels of PI3K in the nucleus tractus solitarii, a pivotal region in reflex regulation of arterial pressure, and determined its functional role for arterial pressure homeostasis in SHRs and Wistar-Kyoto rats. We found elevated mRNA levels of p110β and p110δ catalytic PI3K subunits in the nucleus tractus solitarii of adult (12 to 14 weeks old) SHRs relative to the age-matched Wistar-Kyoto rats (fold differences relative to β-actin: 1.7±0.2 versus 1.01±0.08 for p110β, n=6, P<0.05; 1.62±0.15 versus 1.02±0.1 for p110δ, n=6, P<0.05). After chronic blockade of PI3K signaling in the nucleus tractus solitarii by lentiviral-mediated expression of a mutant form of p85α, systolic pressure increased from 175±3 mm Hg to 191±6 mm Hg (P<0.01) in SHRs but not in Wistar-Kyoto rats. In addition, heart rate increased (from 331±6 to 342±6 bpm; P<0.05) and spontaneous baroreflex gain decreased (from 0.7±0.07 to 0.5±0.04 ms/mm Hg; P<0.001) in the SHRs. Thus, PI3K signaling in the nucleus tractus solitarii of SHR restrains arterial pressure in this animal model of neurogenic hypertension. PMID:19015400

  11. K-Ras promotes growth transformation and invasion of immortalized human pancreatic cells by Raf and phosphatidylinositol 3-kinase signaling.

    PubMed

    Campbell, Paul M; Groehler, Angela L; Lee, Kwang M; Ouellette, Michel M; Khazak, Vladimir; Der, Channing J

    2007-03-01

    Mutational activation of the K-Ras oncogene is well established as a key genetic step in the development and growth of pancreatic adenocarcinomas. However, the mechanism by which aberrant Ras signaling promotes uncontrolled pancreatic tumor cell growth remains to be fully elucidated. The recent use of primary human cells to study Ras-mediated oncogenesis provides important model cell systems to dissect this mechanism. We have used a model of telomerase-immortalized human pancreatic duct-derived cells (E6/E7/st) to study mechanisms of Ras growth transformation. First, we found that human papillomavirus E6 and E7 oncogenes, which block the function of the p53 and Rb tumor suppressors, respectively, and SV40 small t antigen were required to allow mutant K-Ras(12D) growth transformation. Second, K-Ras(12D) caused growth transformation in vitro, including enhanced growth rate and loss of density dependency for growth, anchorage independence, and invasion through reconstituted basement membrane proteins, and tumorigenic transformation in vivo. Third, we determined that the Raf, phosphatidylinositol 3-kinase (PI3K), and Ral guanine nucleotide exchange factor effector pathways were activated, although extracellular signal-regulated kinase (ERK) activity was not up-regulated persistently. Finally, pharmacologic inhibition of Raf/mitogen-activated protein kinase/ERK and PI3K signaling impaired K-Ras-induced anchorage-independent growth and invasion. In summary, our studies established, characterized, and validated E6/E7/st cells for the study of Ras-induced oncogenesis.

  12. Klebsiella pneumoniae Translocates across the Intestinal Epithelium via Rho GTPase- and Phosphatidylinositol 3-Kinase/Akt-Dependent Cell Invasion

    PubMed Central

    Hsu, Chun-Ru; Pan, Yi-Jiun; Liu, Ju-Yun; Chen, Chun-Tang; Lin, Tzu-Lung

    2014-01-01

    Klebsiella pneumoniae is an important pathogen that causes hospital-acquired septicemia and is associated with the recent emergence of community-acquired pyogenic liver abscess (PLA). Clinical typing suggests that K. pneumoniae infections originate from the gastrointestinal reservoir. However, the underlying mechanism remains unknown. Here, we have sought to determine how K. pneumoniae penetrates the intestinal barrier. We identified that bacteremia and PLA clinical isolates adhered to and invaded intestinal epithelial cells. Internalization of K. pneumoniae in three different human colonic cell lines was visualized by confocal microscopy and three-dimensional (3D) imaging. Using a Transwell system, we demonstrated that these K. pneumoniae isolates translocated across a polarized Caco-2 monolayer. No disruptions of transepithelial electrical resistance and altered distribution of tight junction protein ZO-1 or occludin were observed. Therefore, K. pneumoniae appeared to penetrate the intestinal epithelium via a transcellular pathway. Using specific inhibitors, we characterized the host signaling pathways involved. Inhibition by cytochalasin D and nocodazole suggested that actin and microtubule cytoskeleton were both important for K. pneumoniae invasion. A Rho inhibitor, ML141, LY294002, and an Akt1/2 inhibitor diminished K. pneumoniae invasion in a dose-dependent manner, indicating that Rho family GTPases and phosphatidylinositol 3-kinase (PI3K)/Akt signaling were required. By a mouse model of gastrointestinal colonization, in vivo invasion of K. pneumoniae into colonic epithelial cells was demonstrated. Our results present evidence to describe a possible mechanism of gastrointestinal translocation for K. pneumoniae. Cell invasion by manipulating host machinery provides a pathway for gut-colonized K. pneumoniae cells to penetrate the intestinal barrier and access extraintestinal locations to cause disease. PMID:25452552

  13. Klebsiella pneumoniae translocates across the intestinal epithelium via Rho GTPase- and phosphatidylinositol 3-kinase/Akt-dependent cell invasion.

    PubMed

    Hsu, Chun-Ru; Pan, Yi-Jiun; Liu, Ju-Yun; Chen, Chun-Tang; Lin, Tzu-Lung; Wang, Jin-Town

    2015-02-01

    Klebsiella pneumoniae is an important pathogen that causes hospital-acquired septicemia and is associated with the recent emergence of community-acquired pyogenic liver abscess (PLA). Clinical typing suggests that K. pneumoniae infections originate from the gastrointestinal reservoir. However, the underlying mechanism remains unknown. Here, we have sought to determine how K. pneumoniae penetrates the intestinal barrier. We identified that bacteremia and PLA clinical isolates adhered to and invaded intestinal epithelial cells. Internalization of K. pneumoniae in three different human colonic cell lines was visualized by confocal microscopy and three-dimensional (3D) imaging. Using a Transwell system, we demonstrated that these K. pneumoniae isolates translocated across a polarized Caco-2 monolayer. No disruptions of transepithelial electrical resistance and altered distribution of tight junction protein ZO-1 or occludin were observed. Therefore, K. pneumoniae appeared to penetrate the intestinal epithelium via a transcellular pathway. Using specific inhibitors, we characterized the host signaling pathways involved. Inhibition by cytochalasin D and nocodazole suggested that actin and microtubule cytoskeleton were both important for K. pneumoniae invasion. A Rho inhibitor, ML141, LY294002, and an Akt1/2 inhibitor diminished K. pneumoniae invasion in a dose-dependent manner, indicating that Rho family GTPases and phosphatidylinositol 3-kinase (PI3K)/Akt signaling were required. By a mouse model of gastrointestinal colonization, in vivo invasion of K. pneumoniae into colonic epithelial cells was demonstrated. Our results present evidence to describe a possible mechanism of gastrointestinal translocation for K. pneumoniae. Cell invasion by manipulating host machinery provides a pathway for gut-colonized K. pneumoniae cells to penetrate the intestinal barrier and access extraintestinal locations to cause disease. Copyright © 2015, American Society for Microbiology. All

  14. Regulation of PI-3-Kinase and Akt Signaling in T Lymphocytes and Other Cells by TNFR Family Molecules

    PubMed Central

    So, Takanori; Croft, Michael

    2013-01-01

    Activation of phosphoinositide 3-kinase (PI3K) and Akt (protein kinase B) is a common response triggered by a range of membrane-bound receptors on many cell types. In T lymphocytes, the PI3K-Akt pathway promotes clonal expansion, differentiation, and survival of effector cells and suppresses the generation of regulatory T cells. PI3K activation is tightly controlled by signals through the T cell receptor (TCR) and the co-stimulatory receptor CD28, however sustained and periodic signals from additional co-receptors are now being recognized as critical contributors to the activation of this pathway. Accumulating evidence suggests that many members of the Tumor Necrosis Factor receptor (TNFR) superfamily, TNFR2 (TNFRSF1B), OX40 (TNFRSF4), 4-1BB (TNFRSF9), HVEM (TNFRSF14), and DR3 (TNFRSF25), that are constitutive or inducible on T cells, can directly or indirectly promote activity in the PI3K-Akt pathway. We discuss recent data which suggests that ligation of one TNFR family molecule organizes a signalosome, via TNFR-associated factor (TRAF) adapter proteins in T cell membrane lipid microdomains, that results in the subsequent accumulation of highly concentrated depots of PI3K and Akt in close proximity to TCR signaling units. We propose this may be a generalizable mechanism applicable to other TNFR family molecules that will result in a quantitative contribution of these signalosomes to enhancing and sustaining PI3K and Akt activation triggered by the TCR. We also review data that other TNFR molecules, such as CD40 (TNFRSF5), RANK (TNFRSF11A), FN14 (TNFRSF12A), TACI (TNFRSF13B), BAFFR (TNFRSF13C), and NGFR (TNFRSF16), contribute to the activation of this pathway in diverse cell types through a similar ability to recruit PI3K or Akt into their signaling complexes. PMID:23760533

  15. Early Activation of Phosphatidylinositol 3-Kinase after Ischemic Stroke Reduces Infarct Volume and Improves Long-Term Behavior.

    PubMed

    Kim, Young Seo; Yoo, Arum; Son, Jeong Woo; Kim, Hyun Young; Lee, Young-Jun; Hwang, Sejin; Lee, Kyu-Yong; Lee, Young Joo; Ayata, Cenk; Kim, Hyung-Hwan; Koh, Seong-Ho

    2017-09-01

    Phosphatidylinositol 3-kinases (PI3Ks) have recently been implicated in apoptosis and ischemic cell death. We tested the efficacy of early intervention with a peptide PI3K activator in focal cerebral ischemia. After determining the most effective dose (24 μg/kg) and time window (2 h after MCAO) of treatment, a total of 48 rats were subjected to middle cerebral artery occlusion (MCAO). Diffusion weighted MRI (DWI) was performed 1 h after MCAO and rats with lesion sizes within a predetermined range were randomized to either PI3K activator or vehicle treatment arms. Fluid attenuated inversion recovery (FLAIR) MRI, neurological function, western blots, and immunohistochemistry were blindly assessed. Initial DWI lesion volumes were nearly identical between two groups prior to treatment. However, FLAIR showed significantly smaller infarct volumes in the PI3K activator group compared with vehicle (146 ± 81 mm(3) and 211 ± 96 mm(3), p = 0.045) at 48 h. The PI3K activator group also had better neurological function for up to 2 weeks. In addition, PI3K activator decreased the number of TUNEL-positive cells in the peri-infarct region compared with the control group. Western blot and immunohistochemistry showed increased expression of phosphorylated Akt (Ser473) and GSK-3β (Ser9) and decreased expression of cleaved caspase-9 and caspase-3. Our results suggest a neuroprotective role of early activation of PI3K in ischemic stroke. The use of DWI in the randomization of experimental groups may reduce bias.

  16. Platelet-derived growth factor-dependent cellular transformation requires either phospholipase Cgamma or phosphatidylinositol 3 kinase.

    PubMed

    DeMali, K A; Whiteford, C C; Ulug, E T; Kazlauskas, A

    1997-04-04

    Although it has been well established that constitutive activation of receptor tyrosine kinases leads to cellular transformation, the signal relay pathways involved have not been systematically investigated. In this study we used a panel of platelet-derived growth factor (PDGF) beta receptor mutants (beta-PDGFR), which selectively activate various signal relay enzymes to define which signaling pathways are required for PDGF-dependent growth of cells in soft agar. The host cell line for these studies was Ph cells, a 3T3-like cell that expresses normal levels of the beta-PDGFR but no PDGF-alpha receptor (alpha-PDGFR). Hence, this cell system can be used to study signaling of mutant alphaPDGFRs or alpha/beta chimeras. We constructed chimeric receptors containing the alphaPDGFR extracellular domain and the betaPDGFR cytoplasmic domain harboring various phosphorylation site mutations. The mutants were expressed in Ph cells, and their ability to drive PDGF-dependent cellular transformation (growth in soft agar) was assayed. Cells infected with an empty expression vector failed to grow in soft agar, whereas introduction of the chimera with a wild-type beta-PDGFR cytoplasmic domain gave rise to a large number of colonies. In contrast, the N2F5 chimera, in which the binding sites for phospholipase Cgamma (PLC-gamma), RasGTPase-activating protein, phosphatidylinositol 3 kinase (PI3K), and SHP-2 were eliminated, failed to trigger proliferation. Restoring the binding sites for RasGTPase-activating protein or SHP-2 did not rescue the PDGF-dependent response. In contrast, receptors capable of associating with either PLC-gamma or PI3K relayed a growth signal that was comparable to wild-type receptors in the soft agar growth assay. These findings indicate that the PDGF receptor activates multiple signaling pathways that lead to cellular transformation, and that either PI3K or PLC-gamma are key initiators of such signal relay cascades.

  17. A novel macrolide/fluoroketolide, solithromycin (CEM-101), reverses corticosteroid insensitivity via phosphoinositide 3-kinase pathway inhibition

    PubMed Central

    Kobayashi, Y; Wada, H; Rossios, C; Takagi, D; Charron, C; Barnes, P J; Ito, K

    2013-01-01

    Background and Purpose Corticosteroid insensitivity is a major therapeutic problem for some inflammatory diseases including chronic obstructive pulmonary disease (COPD), and it is known to be induced by reduced histone deacetylase (HDAC)-2 activities via activation of the phosphoinositide 3-kinase (PI3K) pathway. The aim of this study is to evaluate effects of a novel macrolide/fluoroketolide, solithromycin (SOL, CEM-101), on corticosteroid sensitivity induced by oxidative stress. Experimental Approach Corticosteroid sensitivity was determined by IC50/EC50 of dexamethasone (Dex) on TNF-α-induced CXCL8 production in U937 monocytic cell line and peripheral blood mononuclear cells (PBMC) from COPD patients. Activities of HDAC and protein phosphatase 2A (PP2A) were measured by fluorescence-based assay in cells exposed to hydrogen peroxide (H2O2). We also investigated steroid insensitive airway neutrophilia in cigarette smoke exposed mice in vivo. Key Results SOL (10 μM) restored Dex sensitivity in PBMC from COPD patients, H2O2-treated U937 cells and phorbol 12-myristate 13-acetate-differentiated U937 cells. In addition, SOL restored HDAC activity with concomitant inhibition of Akt phosphorylation as surrogate marker of PI3K activation. The inhibition of Akt phosphorylation by SOL was due to increased PP2A phosphatase activity, which was reduced in COPD and oxidative stress model. Other known macrolides, such as eryhthromycin, clarithromycin and azithromycin, were significantly less effective in these responses. In cigarette smoke-exposed mice, SOL (100 mg kg−1, po) showed significant but weak inhibition of neutrophilia, whereas Dex (10 mg kg−1, p.o.) showed no such effect. However, a combination of SOL and Dex inhibited neutrophilia by over 50%. Conclusions and Implications SOL has potential as novel therapy for corticosteroid-insensitive diseases such as COPD. PMID:23758162

  18. The role of phosphoinositide 3-kinase and phosphatidic acid in the regulation of mammalian target of rapamycin following eccentric contractions.

    PubMed

    O'Neil, T K; Duffy, L R; Frey, J W; Hornberger, T A

    2009-07-15

    Resistance exercise induces a hypertrophic response in skeletal muscle and recent studies have begun to shed light on the molecular mechanisms involved in this process. For example, several studies indicate that signalling by the mammalian target of rapamycin (mTOR) is necessary for a hypertrophic response. Furthermore, resistance exercise has been proposed to activate mTOR signalling through an upstream pathway involving the phosphoinositide 3-kinase (PI3K) and protein kinase B (PKB); however, this hypothesis has not been thoroughly tested. To test this hypothesis, we first evaluated the temporal pattern of signalling through PI3K-PKB and mTOR following a bout of resistance exercise with eccentric contractions (EC). Our results indicated that the activation of signalling through PI3K-PKB is a transient event (<15 min), while the activation of mTOR is sustained for a long duration (>12 h). Furthermore, inhibition of PI3K-PKB activity did not prevent the activation of mTOR signalling by ECs, indicating that PI3K-PKB is not part of the upstream regulatory pathway. These observations led us to investigate an alternative pathway for the activation of mTOR signalling involving the synthesis of phosphatidic acid (PA) by phospholipase D (PLD). Our results demonstrate that ECs induce a sustained elevation in [PA] and inhibiting the synthesis of PA by PLD prevented the activation of mTOR. Furthermore, we determined that similar to ECs, PA activates mTOR signalling through a PI3K-PKB-independent mechanism. Combined, the results of this study indicate that the activation of mTOR following eccentric contractions occurs through a PI3K-PKB-independent mechanism that requires PLD and PA.

  19. The role of phosphoinositide 3-kinase and phosphatidic acid in the regulation of mammalian target of rapamycin following eccentric contractions

    PubMed Central

    O’Neil, T K; Duffy, L R; Frey, J W; Hornberger, T A

    2009-01-01

    Resistance exercise induces a hypertrophic response in skeletal muscle and recent studies have begun to shed light on the molecular mechanisms involved in this process. For example, several studies indicate that signalling by the mammalian target of rapamycin (mTOR) is necessary for a hypertrophic response. Furthermore, resistance exercise has been proposed to activate mTOR signalling through an upstream pathway involving the phosphoinositide 3-kinase (PI3K) and protein kinase B (PKB); however, this hypothesis has not been thoroughly tested. To test this hypothesis, we first evaluated the temporal pattern of signalling through PI3K–PKB and mTOR following a bout of resistance exercise with eccentric contractions (EC). Our results indicated that the activation of signalling through PI3K–PKB is a transient event (<15 min), while the activation of mTOR is sustained for a long duration (>12 h). Furthermore, inhibition of PI3K–PKB activity did not prevent the activation of mTOR signalling by ECs, indicating that PI3K–PKB is not part of the upstream regulatory pathway. These observations led us to investigate an alternative pathway for the activation of mTOR signalling involving the synthesis of phosphatidic acid (PA) by phospholipase D (PLD). Our results demonstrate that ECs induce a sustained elevation in [PA] and inhibiting the synthesis of PA by PLD prevented the activation of mTOR. Furthermore, we determined that similar to ECs, PA activates mTOR signalling through a PI3K–PKB-independent mechanism. Combined, the results of this study indicate that the activation of mTOR following eccentric contractions occurs through a PI3K–PKB-independent mechanism that requires PLD and PA. PMID:19470781

  20. Phosphatidylinositol 3-kinase-dependent signaling modulates taurochenodeoxycholic acid-induced liver injury and cholestasis in perfused rat livers.

    PubMed

    Rust, Christian; Bauchmuller, Kris; Fickert, Peter; Fuchsbichler, Andrea; Beuers, Ulrich

    2005-07-01

    Taurochenodeoxycholic acid (TCDCA), but not glycochenodeoxycholic acid (GCDCA), activates a phosphatidylinositol 3-kinase (PI3-K)-mediated survival pathway in vitro. Here, the effects of PI3-K inhibition on TCDCA- and GCDCA-induced hepatocellular injury, apoptosis, and bile secretion were examined in the intact liver. In isolated perfused rat livers, bile flow was determined gravimetrically. Hepatovenous lactate dehydrogenase and alanine aminotransferase efflux as markers of liver integrity and biliary secretion of 2,4-dinitrophenyl-S-glutathione (DNP-GS) were determined photometrically. Apoptosis was assessed by immunohistochemistry of active caspase-3 and cytokeratin 18 in liver tissue. Phosphorylation of protein kinase B (PKB/Akt) as a readout of PI3-K activity was determined by immunoblot analysis. Bile acid concentrations were determined by gas chromatography. TCDCA (25 muM) induced moderate liver injury by hepatocellular apoptosis and distinctly reduced bile flow and DNP-GS secretion. In contrast, GCDCA (25 muM) induced severe liver injury by extensive hepatocyte apoptosis. TCDCA strongly activated PI3-K, whereas GCDCA did not markedly affect PI3-K activity. Inhibition of PI3-K by 100 nM wortmannin enhanced TCDCA-induced liver injury and apoptosis and tended to aggravate the cholestatic effect of TCDCA. In contrast, wortmannin reduced GCDCA-induced liver injury and apoptosis. Bile acid uptake tended to be reduced by wortmannin. The cholestatic effect of GCDCA was aggravated by wortmannin. Inhibition of PI3-K markedly aggravated TCDCA-induced but not GCDCA-induced liver damage and hepatocyte apoptosis. Thus TCDCA appears to block its inherent toxicity by a PI3-K-dependent survival pathway in the intact liver.

  1. Phosphatidylinositol-3-kinase pathway aberrations in gastric and colorectal cancer: meta-analysis, co-occurrence and ethnic variation.

    PubMed

    Chong, Mei-Ling; Loh, Marie; Thakkar, Bhavin; Pang, Brendan; Iacopetta, Barry; Soong, Richie

    2014-03-01

    Inhibition of the phosphatidylinositol-3-kinase (PI3K) signaling pathway is a cancer treatment strategy that has entered into clinical trials. We performed a meta-analysis on the frequency of prominent genetic (PIK3CA mutation, PIK3CA amplification and PTEN deletion) and protein expression (high PI3K, PTEN loss and high pAkt) aberrations in the PI3K pathway in gastric cancer (GC) and colorectal cancer (CRC). We also performed laboratory analysis to investigate the co-occurrence of these aberrations. The meta-analysis indicated that East Asian and Caucasian GC patients differ significantly for the frequencies of PIK3CA Exon 9 and 20 mutations (7% vs. 15%, respectively), PTEN deletion (21% vs. 4%) and PTEN loss (47% vs. 78%), while CRC patients differed for PTEN loss (57% vs. 26%). High study heterogeneity (I(2) > 80) was observed for all aberrations except PIK3CA mutations. Laboratory analysis of tumors from East Asian patients revealed significant differences between GC (n = 79) and CRC (n = 116) for the frequencies of PIK3CA amplification (46% vs. 4%) and PTEN loss (54% vs. 78%). The incidence of GC cases with 0, 1, 2 and 3 concurrent aberrations was 14%, 52%, 27% and 8%, respectively, while for CRC it was 10%, 60%, 25% and 4%, respectively. Our study consolidates knowledge on the frequency, co-occurrence and clinical relevance of PI3K pathway aberrations in GC and CRC. Up to 86% of GC and 90% of CRC have at least one aberration in the PI3K pathway, and there are significant differences in the frequencies of these aberrations according to cancer type and ethnicity.

  2. Signals controlling un-differentiated states in embryonic stem and cancer cells: role of the phosphatidylinositol 3' kinase pathway.

    PubMed

    Voskas, Daniel; Ling, Ling Sunny; Woodgett, James Robert

    2014-10-01

    The capacity of embryonic stem (ES) cells to differentiate into cell lineages comprising the three germ layers makes them powerful tools for studying mammalian early embryonic development in vitro. The human body consists of approximately 210 different somatic cell types, the majority of which have limited proliferative capacity. However, both stem cells and cancer cells bypass this replicative barrier and undergo symmetric division indefinitely when cultured under defined conditions. Several signal transduction pathways play important roles in regulating stem cell development, and aberrant expression of components of these pathways is linked to cancer. Among signaling systems, the critical role of leukemia inhibitory factor (LIF) coupled to the Jak/STAT3 (signal transduction and activation of transcription-3) pathway in maintaining stem cell self-renewal has been extensively reviewed. This pathway additionally plays multiple roles in tumorigenesis. Likewise, the phosphatidylinositide 3-kinase (PI3K)/protein kinase B (PKB/Akt) pathway has been determined to play an important role in both stem cell maintenance and tumor development. This pathway is often induced in cancer with frequent mutational activation of the catalytic subunit of PI3K or loss of a primary PI3K antagonist, phosphatase and tensin homolog deleted on chromosome ten (PTEN). This review focusses on roles of the PI3K signal transduction pathway components, with emphasis on functions in stem cell maintenance and cancer. Since the PI3K pathway impinges on and collaborates with other signaling pathways in regulating stem cell development and/or cancer, aspects of the canonical Wnt, Ras/mitogen-activated protein kinase (MAPK), and TGF-β signaling pathways are also discussed.

  3. Phosphoinositide 3-kinase gamma mediates angiotensin II-induced stimulation of L-type calcium channels in vascular myocytes.

    PubMed

    Quignard, J F; Mironneau, J; Carricaburu, V; Fournier, B; Babich, A; Nurnberg, B; Mironneau, C; Macrez, N

    2001-08-31

    Previous results have shown that in rat portal vein myocytes the betagamma dimer of the G(13) protein transduces the angiotensin II-induced stimulation of calcium channels and increase in intracellular Ca(2+) concentration through activation of phosphoinositide 3-kinase (PI3K). In the present work we determined which class I PI3K isoforms were involved in this regulation. Western blot analysis indicated that rat portal vein myocytes expressed only PI3Kalpha and PI3Kgamma and no other class I PI3K isoforms. In the intracellular presence of an anti-p110gamma antibody infused by the patch clamp pipette, both angiotensin II- and Gbetagamma-mediated stimulation of Ca(2+) channel current were inhibited, whereas intracellular application of an anti-p110alpha antibody had no effect. The anti-PI3Kgamma antibody also inhibited the angiotensin II- and Gbetagamma-induced production of phosphatidylinositol 3,4,5-trisphosphate. In Indo-1 loaded cells, the angiotensin II-induced increase in [Ca(2+)](i) was inhibited by intracellular application of the anti-PI3Kgamma antibody, whereas the anti-PI3Kalpha antibody had no effect. The specificity of the anti-PI3Kgamma antibody used in functional experiments was ascertained by showing that this antibody did not recognize recombinant PI3Kalpha in Western blot experiments. Moreover, anti-PI3Kgamma antibody inhibited the stimulatory effect of intracellularly infused recombinant PI3Kgamma on Ca(2+) channel current without altering the effect of recombinant PI3Kalpha. Our results show that, although both PI3Kgamma and PI3Kalpha are expressed in vascular myocytes, the angiotensin II-induced stimulation of vascular L-type calcium channel and increase of [Ca(2+)](i) involves only the PI3Kgamma isoform.

  4. Phosphatidylinositol 3-Kinase Plays a Vital Role in Regulation of Rice Seed Vigor via Altering NADPH Oxidase Activity

    PubMed Central

    Liu, Jian; Zhou, Jun; Xing, Da

    2012-01-01

    Phosphatidylinositol 3-kinase (PI3K) has been reported to be important in normal plant growth and stress responses. In this study, it was verified that PI3K played a vital role in rice seed germination through regulating NADPH oxidase activity. Suppression of PI3K activity by inhibitors wortmannin or LY294002 could abate the reactive oxygen species (ROS) formation, which resulted in disturbance to the seed germination. And then, the signal cascades that PI3K promoted the ROS liberation was also evaluated. Diphenylene iodonium (DPI), an NADPH oxidase inhibitor, suppressed most of ROS generation in rice seed germination, which suggested that NADPH oxidase was the main source of ROS in this process. Pharmacological experiment and RT-PCR demonstrated that PI3K promoted the expression of Os rboh9. Moreover, functional analysis by native PAGE and the measurement of the 2, 3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazo-lium-5- carboxanilide (XTT) formazan concentration both showed that PI3K promoted the activity of NADPH oxidase. Furthermore, the western blot analysis of OsRac-1 demonstrated that the translocation of Rac-1 from cytoplasm to plasma membrane, which was known as a key factor in the assembly of NADPH oxidase, was suppressed by treatment with PI3K inhibitors, resulting in the decreased activity of NADPH oxidase. Taken together, these data favored the novel conclusion that PI3K regulated NADPH oxidase activity through modulating the recruitment of Rac-1 to plasma membrane and accelerated the process of rice seed germination. PMID:22448275

  5. Pulmonary administration of phosphoinositide 3-kinase inhibitor is a curative treatment for chronic obstructive pulmonary disease by alveolar regeneration.

    PubMed

    Horiguchi, Michiko; Oiso, Yuki; Sakai, Hitomi; Motomura, Tomoki; Yamashita, Chikamasa

    2015-09-10

    Chronic obstructive pulmonary disease (COPD) is an intractable pulmonary disease, causing widespread and irreversible alveoli collapse. The discovery of a low-molecular-weight compound that induces regeneration of pulmonary alveoli is of utmost urgency to cure intractable pulmonary diseases such as COPD. However, a practically useful compound for regenerating pulmonary alveoli is yet to be reported. Previously, we have elucidated that Akt phosphorylation is involved in a differentiation-inducing molecular mechanism of human alveolar epithelial stem cells, which play a role in regenerating pulmonary alveoli. In the present study, we directed our attention to phosphoinositide 3-kinase (PI3K)-Akt signaling and examined whether PI3K inhibitors display the pulmonary alveolus regeneration. Three PI3K inhibitors with different PI3K subtype specificities (Wortmannin, AS605240, PIK-75 hydrochloride) were tested for the differentiation-inducing effect on human alveolar epithelial stem cells, and Wortmannin demonstrated the most potent differentiation-inducing activity. We evaluated Akt phosphorylation in pulmonary tissues of an elastase-induced murine COPD model and found that Akt phosphorylation in the pulmonary tissue was enhanced in the murine COPD model compared with normal mice. Then, the alveolus-repairing effect of pulmonary administration of Wortmannin to murine COPD model was evaluated using X-ray CT analysis and hematoxylin-eosin staining. As a result, alveolar damages were repaired in the Wortmannin-administered group to a similar level of normal mice. Furthermore, pulmonary administration of Wortmannin induced a significant recovery of the respiratory function, compared to the control group. These results indicate that Wortmannin is capable of inducing differentiation of human alveolar epithelial stem cells and represents a promising drug candidate for curative treatment of pulmonary alveolar destruction in COPD.

  6. Promotion of melanoma cell invasion and tumor metastasis by microcystin-LR via phosphatidylinositol 3-kinase/AKT pathway.

    PubMed

    Xu, Pengfei; Zhang, Xu-Xiang; Miao, Chen; Fu, Ziyi; Li, Zhengrong; Zhang, Gen; Zheng, Maqing; Liu, Yuefang; Yang, Liuyan; Wang, Ting

    2013-08-06

    Recently, we have indicated that microcystin-LR, a cyanobacterial toxin produced in eutrophic lakes or reservoirs, can increase invasive ability of melanoma MDA-MB-435 cells; however, the stimulatory effect needs identification by in vivo experiment and the related molecular mechanism is poorly understood. In this study, in vitro and in vivo experiments were conducted to investigate the effect of microcystin-LR on invasion and metastasis of human melanoma cells, and the underlying molecular mechanism was also explored. MDA-MB-435 xenograft model assay showed that oral administration of nude mice with microcystin-LR at 0.001-0.1 mg/kg/d posed no significant effect on tumor weight. Histological examination demonstrated that microcystin-LR could promote lung metastasis, which is confirmed by Matrigel chamber assay suggesting that microcystin-LR treatment at 25 nM can increase the invasiveness of MDA-MB-435 cells. In vitro and in vivo experiments consistently showed that microcystin-LR exposure increased mRNA and protein levels of matrix metalloproteinases (MMP-2/-9) by activating phosphatidylinositol 3-kinase (PI3-K)/AKT. Additionally, microcystin-LR treatment at low doses (≤25 nM) decreased lipid phosphatase PTEN expression, and the microcystin-induced invasiveness enhancement and MMP-2/-9 overexpression were reversed by the PI3-K/AKT chemical inhibitor LY294002 and AKT siRNA, indicating that microcystin-LR promotes invasion and metastasis of MDA-MB-435 cells via the PI3-K/AKT pathway.

  7. ErbB3 ablation impairs phosphatidylinositol 3-kinase (PI3K)/AKT-dependent mammary tumorigenesis

    PubMed Central

    Cook, Rebecca S.; Garrett, Joan T.; Sánchez, Violeta; Stanford, Jamie C.; Young, Christian; Chakravarty, Anindita; Rinehart, Cammie; Zhang, Yixian; Wu, Yaming; Greenberger, Lee; Horak, Ivan D.; Arteaga, Carlos L.

    2011-01-01

    Summary The ErbB receptor family member ErbB3 has been implicated in breast cancer growth but it has yet to be determined whether its disruption is therapeutically valuable. In a mouse model of mammary carcinoma driven by the polyomavirus middle T (PyVmT) oncogene, the ErbB2 tyrosine kinase inhibitor lapatinib reduced the activation of ErbB3 and Akt along with tumor cell growth. In this phosphatidylinositol-3 kinase (PI3K)-dependent tumor model, ErbB2 is part of a complex containing PyVmT, p85 (PI3K), ErbB3, and Src, that is disrupted by treatment with lapatinib. Thus, full engagement of PI3K/Akt by ErbB2 in this oncogene-induced mouse tumor model may involve its ability to dimerize with and phosphorylate ErbB3, which itself directly binds PI3K. Here we report that ErbB3 is critical for PI3K/AKT-driven tumor formation triggered by the PyVmT oncogene. Tissue-specific, Cre-mediated deletion of ErbB3 reduced Akt phosphorylation, primary tumor growth and pulmonary metastasis. Further EZN-3920, a chemically stabilized antisense oligonucleotide that targets the ErbB3 mRNA in vivo, produced similar effects while causing no mouse toxicity. Our findings offer further preclinical evidence that ErbB3 ablation may be therapeutically effective in tumors where ErbB3 engages PI3K/Akt signaling. PMID:21482676

  8. Investigation into the Role of PI3K and JAK3 Kinase Inhibitors in Murine Models of Asthma

    PubMed Central

    Wagh, Akshaya D.; Sharma, Manoranjan; Mahapatra, Jogeshwar; Chatterjee, Abhijeet; Jain, Mukul; Addepalli, Veeranjaneyulu

    2017-01-01

    Asthma is a clinical disorder commonly characterized by chronic eosinophilic inflammation, remodeling and hyper responsiveness of the airways. However, the kinases like Phosphoinositide 3 kinase (PI3K) and Janus kinase 3 (JAK3) are involved in mast cell proliferation, activation, recruitment, migration, and prolonged survival of inflammatory cells. The present study was designed to evaluate the in-vivo comparative effects of two kinase inhibitors on airway inflammation and airway remodeling in acute and chronic models of asthma. Mice were sensitized twice intra-peritoneally and then challenged by inhalation with ovalbumin (OVA). They developed an extensive inflammatory response, goblet cell hyperplasia, collagen deposition, airway smooth muscle thickening similar to pathologies observed in human asthma. The effects of PI3K inhibitor (30 mg/kg, p.o), JAK3 inhibitor (30 mg/kg, p.o) and Dexamethasone (0.3 mg/kg) on airway inflammation and remodeling in OVA sensitized/challenged BALB/c mice were evaluated. Twenty-four hours after the final antigen challenge, bronchoalveolar lavage (BAL) and histological examinations were carried out. It was observed that kinase inhibitors significantly reduced airway inflammation as evidenced by the decrease in pro inflammatory cytokines in BALF and lung homogenate and inflammatory cell count in sensitized mice after allergen challenge. Lung histological analysis showed increased infiltration of inflammatory cells, hyperplasia of goblet cells and the collagen deposition, which were significantly reduced with kinase inhibitor. In conclusion, our data suggest that PI3K and JAK3 inhibitors showed promising alternative therapeutic activity in asthma, which might significantly counteract the airway inflammation in patients with allergic asthma. PMID:28293189

  9. Phosphatidylinositol 3-Kinase Mediates β-Catenin Dysfunction of Airway Epithelium in a Toluene Diisocyanate-Induced Murine Asthma Model.

    PubMed

    Yao, Lihong; Zhao, Haijin; Tang, Haixiong; Song, Jiafu; Dong, Hangming; Zou, Fei; Cai, Shaoxi

    2015-09-01

    Cell-cell junctions are critical for the maintenance of cellular as well as tissue polarity and integrity. Yet the role of phosphatidylinositol 3-kinase (PI3K) in dysregulation of airway epithelial adherens junctions in toluene diisocyanate (TDI)-induced asthma has not been addressed. Male BALB/c mice were first dermally sensitized and then challenged with TDI by means of compressed air nebulization. The mice were treated intratracheally with PI3K inhibitor LY294002. Levels of phospho-Akt in airway epithelium and whole lung tissues were markedly increased in TDI group compared with control mice, which decreased after administration of LY294002. The dilated intercellular spaces of airway epithelium induced by TDI were partially recovered by LY294002. Both the protein expression and distribution of adherens junction proteins E-cadherin and β-catenin were altered by TDI. Treatment with LY294002 rescued the distribution of E-cadherin and β-catenin at cell-cell membranes, restored total β-catenin pool, but had no effect on protein level of E-cadherin. At the same time, LY294002 also inhibited phosphorylation of ERK, glycogen synthase kinase3β and tyrosine 654 of β-catenin induced by TDI. In summary, our results showed that the PI3K pathway mediates β-catenin dysregulation in a TDI-induced murine asthma model, which may be associated with increased tyrosine phosphorylation of β-catenin. © The Author 2015. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  10. Inhibition of Phosphatidylinositol 3-Kinase/Akt Signaling Suppresses Tumor Cell Proliferation and Neuroendocrine Marker Expression in GI Carcinoid Tumors

    PubMed Central

    Pitt, Susan C.; Chen, Herbert; Kunnimalaiyaan, Muthusamy

    2010-01-01

    Background Over-activation of PI3K/Akt signaling facilitates tumor proliferation in several cancers. We have shown that various signal transduction pathways promote tumorigenesis in carcinoid tumors, which exhibit endogenously high levels of active, phosphorylated Akt. Therefore, we hypothesized that inhibition of the PI3K/Akt pathway would suppress carcinoid tumor cell growth and neuroendocrine (NE) marker production. Methods Human carcinoid BON cells were treated in vitro with LY294002, a PI3 kinase inhibitor, or transfected with Akt1 siRNA. Tumor cell proliferation was measured by MTT for six days. The effect of LY294002 or Akt1 siRNA treatment was assessed by western analysis. We examined the levels of phosphorylated Akt, total Akt, Akt1, and the NE markers human achaete-scute homolog1 (ASCL1) and chromogranin A (CgA). Results Treatment of BON cells with LY294002 reduced tumor cell proliferation (76%) in a dose-dependent manner. Growth also decreased in Akt1 siRNA transfected cells (29%). Levels of active, phosphorylated Akt and the NE tumor markers, ASCL1 and CgA, were diminished with both LY294002 and Akt1 siRNA treatments proportional to the degree of Akt inhibition. Total Akt, Akt2, and Akt3 levels were unaffected by these experiments. Conclusions These data indicate that PI3K/Akt signaling performs a critical role in human carcinoid tumor cell survival and NE hormone generation. Furthermore, the development of novel therapeutics targeting Akt1 or components of the PI3K/Akt pathway may enhance the management of carcinoid disease. Synopsis Carcinoid tumor cells were treated with a PI3K inhibitor, LY294002, and Akt1 siRNA to delineate the role of PI3K/Akt signaling in carcinoids. The effects of treatment on cellular proliferation and neuroendocrine marker expression were observed. PMID:19588205

  11. Identification of upregulated phosphoinositide 3-kinase γ as a target to suppress breast cancer cell migration and invasion

    PubMed Central

    Xie, Yan; Abel, Peter W.; Kirui, Joseph K.; Deng, Caishu; Sharma, Poonam; Wolff, Dennis W.; Toews, Myron L.; Tu, Yaping

    2013-01-01

    Metastasis is the major cause of breast cancer mortality. We recently reported that aberrant G-protein coupled receptor (GPCR) signaling promotes breast cancer metastasis by enhancing cancer cell migration and invasion. Phosphatidylinositol 3-kinase γ (PI3Kγ) is specifically activated by GPCRs. The goal of the present study was to determine the role of PI3Kγ in breast cancer cell migration and invasion. Immunohistochemical staining showed that the expression of PI3Kγ protein was significantly increased in invasive human breast carcinoma when compared to adjacent benign breast tissue or ductal carcinoma in situ. PI3Kγ was also detected in metastatic breast cancer cells, but not in normal breast epithelial cell line or in non-metastatic breast cancer cells. In contrast, PI3K isoforms α, β and δ were ubiquitously expressed in these cell lines. Overexpression of recombinant PI3Kγ enhanced the metastatic ability of non-metastatic breast cancer cells. Conversely, migration and invasion of metastatic breast cancer cells were inhibited by a PI3Kγ inhibitor or by siRNA knockdown of PI3Kγ but not by inhibitors or siRNAs of PI3Kα or PI3Kβ. Lamellipodia formation is a key step in cancer metastasis, and PI3Kγ blockade disrupted lamellipodia formation induced by the activation of GPCRs such as CXC chemokine receptor 4 and protease-activated receptor 1, but not by the epidermal growth factor tyrosine kinase receptor. Taken together, these results indicate that upregulated PI3Kγ conveys the metastatic signal initiated by GPCRs in breast cancer cells, and suggest that PI3Kγ may be a novel therapeutic target for development of chemotherapeutic agents to prevent breast cancer metastasis. PMID:23500535

  12. Investigation into the Role of PI3K and JAK3 Kinase Inhibitors in Murine Models of Asthma.

    PubMed

    Wagh, Akshaya D; Sharma, Manoranjan; Mahapatra, Jogeshwar; Chatterjee, Abhijeet; Jain, Mukul; Addepalli, Veeranjaneyulu

    2017-01-01

    Asthma is a clinical disorder commonly characterized by chronic eosinophilic inflammation, remodeling and hyper responsiveness of the airways. However, the kinases like Phosphoinositide 3 kinase (PI3K) and Janus kinase 3 (JAK3) are involved in mast cell proliferation, activation, recruitment, migration, and prolonged survival of inflammatory cells. The present study was designed to evaluate the in-vivo comparative effects of two kinase inhibitors on airway inflammation and airway remodeling in acute and chronic models of asthma. Mice were sensitized twice intra-peritoneally and then challenged by inhalation with ovalbumin (OVA). They developed an extensive inflammatory response, goblet cell hyperplasia, collagen deposition, airway smooth muscle thickening similar to pathologies observed in human asthma. The effects of PI3K inhibitor (30 mg/kg, p.o), JAK3 inhibitor (30 mg/kg, p.o) and Dexamethasone (0.3 mg/kg) on airway inflammation and remodeling in OVA sensitized/challenged BALB/c mice were evaluated. Twenty-four hours after the final antigen challenge, bronchoalveolar lavage (BAL) and histological examinations were carried out. It was observed that kinase inhibitors significantly reduced airway inflammation as evidenced by the decrease in pro inflammatory cytokines in BALF and lung homogenate and inflammatory cell count in sensitized mice after allergen challenge. Lung histological analysis showed increased infiltration of inflammatory cells, hyperplasia of goblet cells and the collagen deposition, which were significantly reduced with kinase inhibitor. In conclusion, our data suggest that PI3K and JAK3 inhibitors showed promising alternative therapeutic activity in asthma, which might significantly counteract the airway inflammation in patients with allergic asthma.

  13. Phosphatidylinositol 3-kinase plays a vital role in regulation of rice seed vigor via altering NADPH oxidase activity.

    PubMed

    Liu, Jian; Zhou, Jun; Xing, Da

    2012-01-01

    Phosphatidylinositol 3-kinase (PI3K) has been reported to be important in normal plant growth and stress responses. In this study, it was verified that PI3K played a vital role in rice seed germination through regulating NADPH oxidase activity. Suppression of PI3K activity by inhibitors wortmannin or LY294002 could abate the reactive oxygen species (ROS) formation, which resulted in disturbance to the seed germination. And then, the signal cascades that PI3K promoted the ROS liberation was also evaluated. Diphenylene iodonium (DPI), an NADPH oxidase inhibitor, suppressed most of ROS generation in rice seed germination, which suggested that NADPH oxidase was the main source of ROS in this process. Pharmacological experiment and RT-PCR demonstrated that PI3K promoted the expression of Os rboh9. Moreover, functional analysis by native PAGE and the measurement of the 2, 3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazo-lium-5- carboxanilide (XTT) formazan concentration both showed that PI3K promoted the activity of NADPH oxidase. Furthermore, the western blot analysis of OsRac-1 demonstrated that the translocation of Rac-1 from cytoplasm to plasma membrane, which was known as a key factor in the assembly of NADPH oxidase, was suppressed by treatment with PI3K inhibitors, resulting in the decreased activity of NADPH oxidase. Taken together, these data favored the novel conclusion that PI3K regulated NADPH oxidase activity through modulating the recruitment of Rac-1 to plasma membrane and accelerated the process of rice seed germination.

  14. The phosphatidylinositol-3 kinase/Akt pathway mediates geranylgeranylacetone-induced neuroprotection against cerebral infarction in rats.

    PubMed

    Abe, Eiji; Fujiki, Minoru; Nagai, Yasuyuki; Shiqi, Kong; Kubo, Takeshi; Ishii, Keisuke; Abe, Tatsuya; Kobayashi, Hidenori

    2010-05-12

    Previous studies demonstrated the cytoprotective effect of geranylgeranylacetone (GGA), a heat shock protein inducer, against ischemic insult. Phosphatidylinositol-3 kinase/Akt (PI3K/Akt) is thought to be an important factor that mediates neuroprotection. However, the signaling pathways in the brain in vivo after oral GGA administration remain unclear. We measured and compared infarction volumes to investigate the effect of GGA on cerebral infarction induced by permanent middle cerebral artery occlusion in rats. We evaluated the effects of pretreatment with 5-hydroxydecanoate (5HD), a specific mitochondrial ATP-sensitive potassium (mitoK(ATP)) channel inhibitor; diazoxide (DZX), a selective mitoK(ATP) channel opener and wortmannin (Wort), a specific PI3K inhibitor of GGA-induced neuroprotection against infarction volumes. To clarify the relationship between PI3K/Akt activation and neuroprotection, we used immunoblot analysis to determine the amount of p-Akt proteins present after GGA administration with or without Wort treatment. Neuroprotective effects of GGA (pretreatment with a single oral GGA dose (800 mg/kg) 48 h before ischemia) were prevented by 5HD, DZX and Wort pretreatment, which indicates that the selective mitoK(ATP) channel and the PI3K/Akt pathway may mediate GGA-dependent protection. Oral GGA-induced p-Akt and GGA pretreatment enhanced ischemia-induced p-Akt, both of which were prevented by Wort pretreatment. These results suggest that a single oral dose of GGA induces p-Akt and that GGA plays an important role in neuroprotection against cerebral ischemia through the mitoK(ATP) channel opening. (c) 2010 Elsevier B.V. All rights reserved.

  15. Randomized phase 1 study of the phosphatidylinositol 3-kinase δ inhibitor idelalisib in patients with allergic rhinitis.

    PubMed

    Horak, Friedrich; Puri, Kamal D; Steiner, Bart H; Holes, Leanne; Xing, Guan; Zieglmayer, Petra; Zieglmayer, René; Lemell, Patrick; Yu, Albert

    2016-06-01

    Phosphatidylinositol 3-kinase p110δ isoform (PI3K p110δ) activity is essential for mast cell activation, suggesting that inhibition of PI3K p110δ might be useful in treating allergic diseases. We sought to determine the effect of the PI3K p110δ-selective inhibitor idelalisib on allergic responses. This phase 1 randomized, double-blind, placebo-controlled, 2-period crossover study was conducted with the Vienna Challenge Chamber. Grass pollen-induced allergic symptoms were documented during screening. Eligible subjects received idelalisib (100 mg twice daily) or placebo for 7 days, with allergen challenge on day 7. After a 2-week washout period, subjects received the alternate treatment and repeated allergen challenge. Study measures included safety, nasal and nonnasal symptoms, nasal airflow, nasal secretions, basophil activation, and plasma cytokine levels. Forty-one patients with allergic rhinitis received idelalisib/placebo (n = 21) or placebo/idelalisib (n = 20). Idelalisib treatment was well tolerated. Mean total nasal symptom scores were lower during the combined idelalisib treatment periods compared with placebo (treatment difference [idelalisib - placebo], -1.78; 95% CI, -2.53 to -1.03; P < .001). Statistically significant differences were also observed for the combined treatment periods for total symptom scores, nasal airflow, nasal secretion weight, and nasal congestion scores. The percentage of ex vivo-activated basophils (CD63(+)/CCR3(+) cells; after stimulation with grass pollen) was substantially lower for idelalisib-treated compared with placebo-treated subjects. Plasma CCL17 and CCL22 levels were reduced after idelalisib treatment. Idelalisib treatment was well tolerated in patients with allergic rhinitis and appears to reduce allergic responses clinically and immunologically after an environmental allergen challenge. Copyright © 2016 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  16. Efficacy of phosphatidylinositol-3 kinase inhibitors with diverse isoform selectivity profiles for inhibiting the survival of chronic lymphocytic leukemia cells.

    PubMed

    Göckeritz, Elisa; Kerwien, Susan; Baumann, Michael; Wigger, Marion; Vondey, Verena; Neumann, Lars; Landwehr, Thomas; Wendtner, Clemens M; Klein, Christian; Liu, Ningshu; Hallek, Michael; Frenzel, Lukas P; Krause, Günter

    2015-11-01

    Pharmacological inhibition of phosphatiylinositide-3-kinase (PI3K)-mediated signaling holds great promise for treating chronic lymphocytic leukemia (CLL). Therefore we assessed three structurally related PI3K inhibitors targeting the PI3K-δ isoform for their ability to inhibit the survival of freshly isolated CLL cells. The purely PI3K-δ-selective inhibitor idelalisib was compared to copanlisib (BAY 80-6946) and duvelisib (IPI-145), with isoform target profiles that additionally include PI3K-α or PI3K-γ, respectively. The concentrations leading to half-maximal reduction of the survival of CLL cells were more than ten-fold lower for copanlisib than for idelalisib and duvelisib. At concentrations reflecting the biological availability of the different inhibitors, high levels of apoptotic response among CLL samples were attained more consistently with copanlisib than with idelalisib. Copanlisib selectively reduced the survival of CLL cells compared to T cells and to B cells from healthy donors. In addition copanlisib and duvelisib impaired the migration of CLL cells towards CXCL12 to a greater extent than equimolar idelalisib. Similarly copanlisib and duvelisib reduced the survival of CLL cells in co-cultures with the bone marrow stroma cell line HS-5 more strongly than idelalisib. Survival inhibition by copanlisib and idelalisib was enhanced by the monoclonal CD20 antibodies rituximab and obinutuzumab (GA101), while antibody-dependent cellular cytotoxicity mediated by alemtuzumab and peripheral blood mononuclear cells was not substantially impaired by both PI3K inhibitors for the CLL-derived JVM-3 cell line as target cells. Taken together, targeting the α- and δ- p110 isoforms with copanlisib may be a useful strategy for the treatment of CLL and warrants further clinical investigation.

  17. Class I PI3-kinase or Akt inhibition do not impair axonal polarization, but slow down axonal elongation.

    PubMed

    Diez, Héctor; Benitez, Ma José; Fernandez, Silvia; Torres-Aleman, Ignacio; Garrido, Juan José; Wandosell, Francisco

    2016-11-01

    PI3K proteins family have multiple and essential functions in most cellular events. This family is composed of class I, class II and class III PI3Ks, which upstream and downstream elements are not completely elucidated. Previous studies using the broad PI3K inhibitor, LY294002 allowed to propose that PI3 kinase>Akt pathway is a key element in the determination of axonal polarity in hippocampal neurons. Recently, new inhibitors with a higher selectivity for class I PI3K have been characterized. In the present study we have examined this widely accepted theory using a new class I PI3K inhibitor (GDC-0941), as well as Akt inhibitors, and PTEN phosphatase constructs to reduce PIP3 levels. Our present data show that both, class I PI3K inhibitor and Akt inhibitor did not alter axon specification in hippocampal neurons, but greatly reduced axon length. However, in the same experiments LY294002 effectively impeded axonal polarization, as previously reported. Our biochemical data show that both, class I PI3K and Akt inhibitors, effectively block downstream elements from Akt to S6K1 activity. Both inhibitors are stable in culture medium along the time period analysed, maintaining the inhibition better than LY294002. Besides, we found evidence that LY294002 directly inhibits mTORC1. However, further analysis using an mTORC1 inhibitor showed no change in neuron polarity. Same result was obtained using a general class III PI3K inhibitor. Interestingly, we found that either, wild-type PTEN, or a phosphatase-dead form of PTEN, disrupted axonal polarization, strongly suggesting that the role of PTEN in axonal polarity can be independent of PIP3.

  18. Cell Autonomous Phosphoinositide 3-Kinase Activation in Oocytes Disrupts Normal Ovarian Function Through Promoting Survival and Overgrowth of Ovarian Follicles

    PubMed Central

    Ebbert, Katherine; Cordeiro, Marilia H.; Romero, Megan; Zhu, Jie; Serna, Vanida Ann; Whelan, Kelly A.; Woodruff, Teresa K.

    2015-01-01

    In this study, we explored the effects of oocytic phosphoinositide 3-kinase (PI3K) activation on folliculogensis by generating transgenic mice, in which the oocyte-specific Cre-recombinase induces the expression of constitutively active mutant PI3K during the formation of primordial follicles. The ovaries of neonatal transgenic (Cre+) mice showed significantly reduced apoptosis in follicles, which resulted in an excess number of follicles per ovary. Thus, the elevation of phosphatidylinositol (3,4,5)-trisphosphate levels within oocytes promotes the survival of follicles during neonatal development. Despite the increase in AKT phosphorylation, primordial follicles in neonatal Cre+ mice remained dormant demonstrating a nuclear accumulation of phosphatase and tensin homolog deleted on chromosome 10 (PTEN). These primordial follicles containing a high level of nuclear PTEN persisted in postpubertal females, suggesting that PTEN is the dominant factor in the maintenance of female reproductive lifespan through the regulation of primordial follicle recruitment. Although the oocytic PI3K activity and PTEN levels were elevated, the activation of primordial follicles and the subsequent accumulation of antral follicles with developmentally competent oocytes progressed normally in prepubertal Cre+ mice. However, mature Cre+ female mice were anovulatory. Because postnatal day 50 Cre+ mice released cumulus-oocyte complexes with developmentally competent oocytes in response to super-ovulation treatment, the anovulatory phenotype was not due to follicular defects but rather endocrine abnormalities, which were likely caused by the excess number of overgrown follicles. Our current study has elucidated the critical role of oocytic PI3K activity in follicular function, as well as the presence of a PTEN-mediated mechanism in the prevention of immature follicle activation. PMID:25594701

  19. Black raspberry extracts inhibit benzo(a)pyrene diol-epoxide-induced activator protein 1 activation and VEGF transcription by targeting the phosphotidylinositol 3-kinase/Akt pathway.

    PubMed

    Huang, Chuanshu; Li, Jingxia; Song, Lun; Zhang, Dongyun; Tong, Qiangsong; Ding, Min; Bowman, Linda; Aziz, Robeena; Stoner, Gary D

    2006-01-01

    Previous studies have shown that freeze-dried black raspberry extract fractions inhibit benzo(a)pyrene [B(a)P]-induced transformation of Syrian hamster embryo cells and benzo(a)pyrene diol-epoxide [B(a)PDE]-induced activator protein-1 (AP-1) activity in mouse epidermal Cl 41 cells. The phosphotidylinositol 3-kinase (PI-3K)/Akt pathway is critical for B(a)PDE-induced AP-1 activation in mouse epidermal Cl 41 cells. In the present study, we determined the potential involvement of PI-3K and its downstream kinases on the inhibition of AP-1 activation by black raspberry fractions, RO-FOO3, RO-FOO4, RO-ME, and RO-DM. In addition, we investigated the effects of these fractions on the expression of the AP-1 target genes, vascular endothelial growth factor (VEGF) and inducible nitric oxide synthase (iNOS). Pretreatment of Cl 41 cells with fractions RO-F003 and RO-ME reduced activation of AP-1 and the expression of VEGF, but not iNOS. In contrast, fractions RO-F004 and RO-DM had no effect on AP-1 activation or the expression of either VEGF or iNOS. Consistent with inhibition of AP-1 activation, the RO-ME fraction markedly inhibited activation of PI-3K, Akt, and p70 S6 kinase (p70(S6k)). In addition, overexpression of the dominant negative PI-3K mutant delta p85 reduced the induction of VEGF by B(a)PDE. It is likely that the inhibitory effects of fractions RO-FOO3 and RO-ME on B(a)PDE-induced AP-1 activation and VEGF expression are mediated by inhibition of the PI-3K/Akt pathway. In view of the important roles of AP-1 and VEGF in tumor development, one mechanism for the chemopreventive activity of black raspberries may be inhibition of the PI-3K/Akt/AP-1/VEGF pathway.

  20. Paclitaxel resistance in MCF-7/PTX cells is reversed by paeonol through suppression of the SET/phosphatidylinositol 3-kinase/Akt pathway.

    PubMed

    Zhang, Weipeng; Cai, Jiangxia; Chen, Siying; Zheng, Xiaowei; Hu, Sasa; Dong, Weihua; Lu, Jun; Xing, Jianfeng; Dong, Yalin

    2015-07-01

    Breast cancer is one of the most prevalent types of malignant tumor. Paclitaxel is widely used in the treatment of breast cancer; however, the major problem contributing to the failure of chemotherapy in breast cancer is the development of drug resistance. Therefore, it is necessary to identify novel therapeutic targets and reversal agents for breast cancer. In the present study, the protein expression levels of SET, protein phosphatase 2A (PP2A) and phosphatidylinositol 3-kinase (PI3K)/Akt pathway were determined in MCF-7/PTX human breast carcinoma paclitaxel-resistant cells using western blot analysis. Small interference RNAs (siRNAs) were used to knock down the gene expression of SET in MCF-7/PTX cells and the cell viability was assessed following treatment with paclitaxel, using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assays and flow cytometry. In addition, western blot analysis was used to determined PI3K/Akt pathway activity following SET knockdown. Furthermore, the reversal effects of paeonol on paclitaxel, and its underlying mechanisms of action, were investigated using western blot analysis and reverse transcription-quantitative polymerase chain reaction. The results demonstrated that increased levels of SET and PI3K/Akt pathway proteins were present in the MCF-7/PTX cells, compared with normal MCF-7 cells. Knockdown of SET significantly sensitized MCF-7/PTX cells to paclitaxel and induced cell apoptosis. In addition, the expression levels of the adenosine triphosphate binding cassette (ABC) transporter proteins were significantly reduced in the MCF-7/PTX cells compared with the normal MCF-7 cells. SET-induced paclitaxel resistance was found to be associated with the activation of the PI3K/Akt pathway. Paeonol significantly reduced the mRNA and protein expression levels of SET in the MCF-7/PTX cells. Furthermore, paeonol significantly sensitized the MCF-7/PTX to paclitaxel via regulation of ABC transporters, B cell lymphoma-2 (Bcl-2

  1. Domain analysis reveals striking functional differences between the regulatory subunits of phosphatidylinositol 3-kinase (PI3K), p85α and p85β.

    PubMed

    Ito, Yoshihiro; Vogt, Peter K; Hart, Jonathan R

    2017-08-22

    Our understanding of isoform-specific activities of phosphatidylinositol 3-kinase (PI3K) is still rudimentary, and yet, deep knowledge of these non-redundant functions in the PI3K family is essential for effective and safe control of PI3K in disease. The two major isoforms of the regulatory subunits of PI3K are p85α and p85β, encoded by the genes PIK3R1 and PIK3R2, respectively. These isoforms show distinct functional differences that affect and control cellular PI3K activity and signaling [1-4]. In this study, we have further explored the differences between p85α and p85β by genetic truncations and substitutions. We have discovered unexpected activities of the mutant proteins that reflect regulatory functions of distinct p85 domains. These results can be summarized as follows: Deletion of the SH3 domain increases oncogenic and PI3K signaling activity. Deletion of the combined SH3-RhoGAP domains abolishes these activities. In p85β, deletion of the cSH2 domain reduces oncogenic and signaling activities. In p85α, such a deletion has an activating effect. The deletions of the combined cSH2 and iSH2 domains and also the deletion of the cSH2, iSH2 and nSH2 domains yield results that go in the same direction, generally activating in p85α and reducing activity in p85β. The contrasting functions of the cSH2 domains are verified by domain exchanges with the cSH2 domain of p85β exerting an activating effect and the cSH2 domain of p85α an inactivating effect, even in the heterologous isoform. In the cell systems studied, protein stability was not correlated with oncogenic and signaling activity. These observations significantly expand our knowledge of the isoform-specific activities of p85α and p85β and of the functional significance of specific domains for regulating the catalytic subunits of class IA PI3K.

  2. Multiple roles for PI 3-kinase in the regulation of PLCgamma activity and Ca2+ mobilization in antigen-stimulated mast cells.

    PubMed

    Barker, S A; Lujan, D; Wilson, B S

    1999-03-01

    Cross-linking the IgE-bound FcepsilonRI with polyvalent antigen leads to Ca2+-dependent degranulation from mast cells and basophils, initiating the allergic response. This overview addresses novel roles for PI 3-kinase in the regulation of signaling events that lie downstream of FcepsilonRI-mediated tyrosine kinase activation. The first novel role for PI 3-kinase is in the regulation of PLCgamma activity and is demonstrated by a dramatic inhibition of FcepsilonRI-induced Ins(1,4,5)P3 production after treatment of RBL-2H3 cells with wortmannin, a PI 3-kinase inhibitor. We show that PI 3-kinase lipid products support Ins(1,4,5)P3 production in at least two ways: by promoting translocation and phosphorylation of PLCgamma1 and by direct stimulation of both PLCgamma isoforms. In vitro stimulation of PLCgamma activity by PtdIns(3,4,5)P3 synergizes with activation by in vivo tyrosine phosphorylation for maximal enzymatic activity. A second novel role for PI 3-kinase is in the regulation of antigen-stimulated Ca2+ influx. Compared with control cells, Ca2+ responses are markedly diminished in antigen-stimulated cells after wortmannin pretreatment. Differences include both a longer lag time to the initial elevation in Ca2+ after antigen and an inhibition of the sustained Ca2+ influx phase. However, thapsigargin challenge during the sustained phase demonstrates no difference in the state of the Ca2+ stores in antigen-stimulated cells in the presence or absence of wortmannin. These data suggest that sufficient Ins(1,4,5)P3 is synthesized in wortmannin-treated cells to mobilize intracellular calcium stores and, furthermore, that the affected phase of Ca2+ influx is unlikely to be attributed to capacitative mechanisms. These data are consistent with a model where at least two pathways mediate Ca2+ influx in antigen-stimulated RBL-2H3 cells, one that is dependent on signals from empty stores (capacitative influx) and another that is downstream of PI 3-kinase.

  3. Proanthocyanidin from grape seeds inactivates the PI3-kinase/PKB pathway and induces apoptosis in a colon cancer cell line.

    PubMed

    Engelbrecht, A-M; Mattheyse, M; Ellis, B; Loos, B; Thomas, M; Smith, R; Peters, S; Smith, C; Myburgh, K

    2007-12-08

    The aim of this investigation was to evaluate the chemopreventative/antiproliferative potential of a grape seed proanthocyanidin extract (GSPE) against colon cancer cells (CaCo2 cells) and to investigate its mechanism of action. GSPE (10-100 microg/ml) significantly inhibited cell viability and increased apoptosis in CaCo2 cells, but did not alter viability in the normal colon cell line (NCM460). The increased apoptosis observed in GSPE-treated CaCo2 cells correlated with an attenuation of PI3-kinase (p110 and p85 subunits) and decreased PKB Ser(473) phosphorylation. GSPE might thus exert its beneficial effects by means of increased apoptosis and suppression of the important PI3-kinase survival-related pathway.

  4. Class II phosphoinositide 3-kinase C2β regulates a novel signaling pathway involved in breast cancer progression

    PubMed Central

    Abbott, Jonathan J.; Piñeiro, Roberto; Buus, Richard; Iezzi, Manuela; Ricci, Francesca; Bergamaschi, Daniele; Ostano, Paola; Chiorino, Giovanna; Lattanzio, Rossano; Broggini, Massimo; Piantelli, Mauro; Maffucci, Tania; Falasca, Marco

    2016-01-01

    It is now well established that the enzymes phosphoinositide 3-kinases (PI3Ks) have a key role in the development and progression of many cancer types and indeed PI3Ks inhibitors are currently being tested in clinical trials. Although eight distinct PI3K isoforms exist, grouped into three classes, most of the evidence currently available are focused on one specific isoform with very little known about the potential role of the other members of this family in cancer. Here we demonstrate that the class II enzyme PI3K-C2β is overexpressed in several human breast cancer cell lines and in human breast cancer specimens. Our data indicate that PI3K-C2β regulates breast cancer cell growth in vitro and in vivo and that PI3K-C2β expression in breast tissues is correlated with the proliferative status of the tumor. Specifically we show that downregulation of PI3K-C2β in breast cancer cell lines reduces colony formation, induces cell cycle arrest and inhibits tumor growth, in particular in an estrogen-dependent in vivo xenograft. Investigation of the mechanism of the PI3K-C2β-dependent regulation of cell cycle progression and cell growth revealed that PI3K-C2β regulates cyclin B1 protein levels through modulation of microRNA miR-449a levels. Our data further demonstrate that downregulation of PI3K-C2β inhibits breast cancer cell invasion in vitro and breast cancer metastasis in vivo. Consistent with this, PI3K-C2β is highly expressed in lymph-nodes metastases compared to matching primary tumors. These data demonstrate that PI3K-C2β plays a pivotal role in breast cancer progression and in metastasis development. Our data indicate that PI3K-C2β may represent a key molecular switch that regulates a rate-limiting step in breast tumor progression and therefore it may be targeted to limit breast cancer spread. PMID:26934321

  5. Low [Mg2+]e enhances arterial spontaneous tone via phosphatidylinositol 3-kinase in DOCA-salt hypertension.

    PubMed

    Northcott, Carrie A; Watts, Stephanie W

    2004-01-01

    Phosphatidylinositol 3-kinase (PI3K) has been implicated in low extracellular Mg2+ concentration ( [Mg2+]e)-induced aortic contraction, and Mg2+ deficiency has been associated with hypertension. Moreover, arterial PI3K activity is increased in hypertensive deoxycorticosterone (DOCA)-salt rats. We hypothesized that low [Mg2+]e activates PI3K, eliciting enhanced vascular contraction, PI3K activity, and norepinephrine (NE)-induced contraction. Spontaneous tone was monitored in endothelium-denuded aortic strips from sham and DOCA-salt rats exposed to low Mg2+ (0.15 mmol/L), high Mg2+ (4.8 mmol/L), or normal (1.17 mmol/L) physiologic salt solution (PSS) in isolated tissue baths. LY294002 (20 micromol/L), a PI3K inhibitor, or vehicle was added (30 minutes), followed by NE (10(-9) to 3 x10(-5) mol/L). Low [Mg2+]e significantly enhanced tone in aortas from DOCA-salt and sham rats compared with normal PSS (DOCA-salt low [Mg2+]e, +51.5 +7.0 vs DOCA-salt normal PSS, +7.1 +1.4 % of initial phenylephrine [PE] contraction). LY294002 and incubation with high Mg2+ PSS decreased tone in aortas from DOCA-salt rats (low [Mg2+]e LY294002, --87.5 +8.8; normal PSS LY294002, -81.7 +13.7; and high [Mg2+]e, -31.2 +10.8 % of initial PE contraction). Low [Mg2+]e leftward-shifted NE-induced aortic contractions in sham and thus matched the shift observed with DOCA (-log EC50 mol/L: sham PSS, -7.7 +0.1; DOCA-salt PSS, -8.2 +0.1; sham low [Mg2+]e, -8.2 +0.1; and DOCA-salt low [Mg2+]e, -8.1 +0.1). Moreover, this shift was inhibited by LY294002. In conclusion, low [Mg2+]e might activate PI3K, leading to enhanced tone and agonist-induced contraction observed in aortas from DOCA-salt hypertensive rats.

  6. Inhibition of phosphatidylinositol 3-kinase stimulates activity of the small-conductance K channel in the CCD

    PubMed Central

    Li, Dimin; Wei, Yuan; Babilonia, Elisa; Wang, Zhijian; Wang, Wen-Hui

    2010-01-01

    We used Western blotting to examine the expression of phosphatidylinositol 3-kinase (PI3K) in the renal cortex and outer medulla and employed the patch-clamp technique to study the effect of PI3K on the ROMK-like small-conductance K (SK) channels in the cortical collecting duct (CCD). Low K intake increased the expression of the 110-kDa α-subunit (p110α) of PI3K compared with rats on a normal-K diet. Because low K intake increases superoxide levels (2), the possibility that increases in superoxide anions may be responsible for the effect of low K intake on the expression of PI3K is supported by finding that addition of H2O2 stimulates the expression of p110α in M1 cells. Inhibition of PI3K with either wortmannin or LY-294002 significantly increased channel activity in the CCD from rats on a K-deficient (KD) diet or on a normal-K diet. The stimulatory effect of wortmannin on ROMK channel activity cannot be mimicked by inhibition of phospholipase C with U-73122. This suggests that the effect of inhibiting PI3K was not the result of increasing the phosphatidylinositol 4,5-bisphosphate level. Moreover, application of the exogenous phosphatidylinositol 3,4,5-trisphosphate analog had no effect on channel activity in excised patches. Because low K intake has been shown to increase the activity of protein tyrosine kinase (PTK), we explored the role of the interaction between PTK and PI3K in the regulation of the SK channel activity. Inhibition of PTK increased SK channel activity in the CCD from rats on a KD diet. However, addition of wortmannin did not further increase ROMK channel activity. Also, the effect of wortmannin was abolished by treatment of CCD with phalloidin. We conclude that PI3K is involved in mediating the effect of low K intake on ROMK channel activity in the CCD and that the effect of PI3K on SK channels requires the involvement of PTK and the cytoskeleton. PMID:16204406

  7. Inhibition of phosphatidylinositol 3-kinase stimulates activity of the small-conductance K channel in the CCD.

    PubMed

    Li, Dimin; Wei, Yuan; Babilonia, Elisa; Wang, Zhijian; Wang, Wen-Hui

    2006-04-01

    We used Western blotting to examine the expression of phosphatidylinositol 3-kinase (PI3K) in the renal cortex and outer medulla and employed the patch-clamp technique to study the effect of PI3K on the ROMK-like small-conductance K (SK) channels in the cortical collecting duct (CCD). Low K intake increased the expression of the 110-kDa alpha-subunit (p110alpha) of PI3K compared with rats on a normal-K diet. Because low K intake increases superoxide levels (2), the possibility that increases in superoxide anions may be responsible for the effect of low K intake on the expression of PI3K is supported by finding that addition of H(2)O(2) stimulates the expression of p110alpha in M1 cells. Inhibition of PI3K with either wortmannin or LY-294002 significantly increased channel activity in the CCD from rats on a K-deficient (KD) diet or on a normal-K diet. The stimulatory effect of wortmannin on ROMK channel activity cannot be mimicked by inhibition of phospholipase C with U-73122. This suggests that the effect of inhibiting PI3K was not the result of increasing the phosphatidylinositol 4,5-bisphosphate level. Moreover, application of the exogenous phosphatidylinositol 3,4,5-trisphosphate analog had no effect on channel activity in excised patches. Because low K intake has been shown to increase the activity of protein tyrosine kinase (PTK), we explored the role of the interaction between PTK and PI3K in the regulation of the SK channel activity. Inhibition of PTK increased SK channel activity in the CCD from rats on a KD diet. However, addition of wortmannin did not further increase ROMK channel activity. Also, the effect of wortmannin was abolished by treatment of CCD with phalloidin. We conclude that PI3K is involved in mediating the effect of low K intake on ROMK channel activity in the CCD and that the effect of PI3K on SK channels requires the involvement of PTK and the cytoskeleton.

  8. Positron emission tomographic monitoring of dual phosphatidylinositol-3-kinase and mTOR inhibition in anaplastic large cell lymphoma

    PubMed Central

    Graf, Nicolas; Li, Zhoulei; Herrmann, Ken; Weh, Daniel; Aichler, Michaela; Slawska, Jolanta; Walch, Axel; Peschel, Christian; Schwaiger, Markus; Buck, Andreas K; Dechow, Tobias; Keller, Ulrich

    2014-01-01

    Background Dual phosphatidylinositol-3-kinase (PI3K)/mammalian target of rapamycin (mTOR) inhibition offers an attractive therapeutic strategy in anaplastic large cell lymphoma depending on oncogenic nucleophosmin-anaplastic lymphoma kinase (NPM-ALK) signaling. We tested the efficacy of a novel dual PI3K/mTOR inhibitor, NVP-BGT226 (BGT226), in two anaplastic large cell lymphoma cell lines in vitro and in vivo and performed an early response evaluation with positron emission tomography (PET) imaging using the standard tracer, 2-deoxy-2-[18F]fluoro-D-glucose (FDG) and the thymidine analog, 3′-deoxy-3′-[18F] fluorothymidine (FLT). Methods The biological effects of BGT226 were determined in vitro in the NPM-ALK positive cell lines SU-DHL-1 and Karpas299 by 3-[4,5-Dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide assay, propidium iodide staining, and biochemical analysis of PI3K and mTOR downstream signaling. FDG-PET and FLT-PET were performed in immunodeficient mice bearing either SU-DHL-1 or Karpas299 xenografts at baseline and 7 days after initiation of treatment with BGT226. Lymphomas were removed for immunohistochemical analysis of proliferation and apoptosis to correlate PET findings with in vivo treatment effects. Results SU-DHL-1 cells showed sensitivity to BGT226 in vitro, with cell cycle arrest in G0/G1 phase and an IC50 in the low nanomolar range, in contrast with Karpas299 cells, which were mainly resistant to BGT226. In vivo, both FDG-PET and FLT-PET discriminated sensitive from resistant lymphoma, as indicated by a significant reduction of tumor-to-background ratios on day 7 in treated SU-DHL-1 lymphoma-bearing animals compared with the control group, but not in animals with Karpas299 xenografts. Imaging results correlated with a marked decrease in the proliferation marker Ki67, and a slight increase in the apoptotic marker, cleaved caspase 3, as revealed by immunostaining of explanted lymphoma tissue. Conclusion Dual PI3K/mTOR inhibition using BGT

  9. Positron emission tomographic monitoring of dual phosphatidylinositol-3-kinase and mTOR inhibition in anaplastic large cell lymphoma.

    PubMed

    Graf, Nicolas; Li, Zhoulei; Herrmann, Ken; Weh, Daniel; Aichler, Michaela; Slawska, Jolanta; Walch, Axel; Peschel, Christian; Schwaiger, Markus; Buck, Andreas K; Dechow, Tobias; Keller, Ulrich

    2014-01-01

    Dual phosphatidylinositol-3-kinase (PI3K)/mammalian target of rapamycin (mTOR) inhibition offers an attractive therapeutic strategy in anaplastic large cell lymphoma depending on oncogenic nucleophosmin-anaplastic lymphoma kinase (NPM-ALK) signaling. We tested the efficacy of a novel dual PI3K/mTOR inhibitor, NVP-BGT226 (BGT226), in two anaplastic large cell lymphoma cell lines in vitro and in vivo and performed an early response evaluation with positron emission tomography (PET) imaging using the standard tracer, 2-deoxy-2-[(18)F]fluoro-D-glucose (FDG) and the thymidine analog, 3'-deoxy-3'-[(18)F] fluorothymidine (FLT). The biological effects of BGT226 were determined in vitro in the NPM-ALK positive cell lines SU-DHL-1 and Karpas299 by 3-[4,5-Dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide assay, propidium iodide staining, and biochemical analysis of PI3K and mTOR downstream signaling. FDG-PET and FLT-PET were performed in immunodeficient mice bearing either SU-DHL-1 or Karpas299 xenografts at baseline and 7 days after initiation of treatment with BGT226. Lymphomas were removed for immunohistochemical analysis of proliferation and apoptosis to correlate PET findings with in vivo treatment effects. SU-DHL-1 cells showed sensitivity to BGT226 in vitro, with cell cycle arrest in G0/G1 phase and an IC50 in the low nanomolar range, in contrast with Karpas299 cells, which were mainly resistant to BGT226. In vivo, both FDG-PET and FLT-PET discriminated sensitive from resistant lymphoma, as indicated by a significant reduction of tumor-to-background ratios on day 7 in treated SU-DHL-1 lymphoma-bearing animals compared with the control group, but not in animals with Karpas299 xenografts. Imaging results correlated with a marked decrease in the proliferation marker Ki67, and a slight increase in the apoptotic marker, cleaved caspase 3, as revealed by immunostaining of explanted lymphoma tissue. Dual PI3K/mTOR inhibition using BGT226 is effective in ALK

  10. ErbB3 (HER3) interaction with the p85 regulatory subunit of phosphoinositide 3-kinase.

    PubMed Central

    Hellyer, N J; Cheng, K; Koland, J G

    1998-01-01

    ErbB3 (HER3), a unique member of the ErbB receptor family, lacks intrinsic protein tyrosine kinase activity and contains six Tyr-Xaa-Xaa-Met (YXXM) consensus binding sites for the SH2 domains of the p85 regulatory subunit of phosphoinositide 3-kinase. ErbB3 also has a proline-rich sequence that forms a consensus binding site for the SH3 domain of p85. Here we have investigated the interacting domains of ErbB3 and p85 by a unique application of the yeast two-hybrid system. A chimaeric ErbB3 molecule containing the epidermal growth factor receptor protein tyrosine kinase domain was developed so that the C-terminal domain of ErbB3 could become phosphorylated in the yeast system. We also generated several ErbB3 deletion and Tyr-->Phe site-specific mutants, and observed that a single ErbB3 YXXM motif was necessary and sufficient for the association of ErbB3 with p85. The incorporation of multiple YXXM motifs into the ErbB3 C-terminus enabled a stronger ErbB3/p85 interaction. The proline-rich region of ErbB3 was not necessary for interaction with p85. However, either deletion or mutation of the p85 SH3 domain decreased the observed ErbB3/p85 association. Additionally an ErbB3/p85 SH3 domain interaction was detected by an assay in vitro. These results were consistent with a model in which pairs of phosphorylated ErbB3 YXXM motifs co-operate in binding to the tandem SH2 domains of p85. Although a contributing role for the p85 SH3 domain was suggested, the N- and C-terminal SH2 domains seemed to be primarily responsible for the high-affinity association of p85 and ErbB3. PMID:9677338

  11. ErbB3 (HER3) interaction with the p85 regulatory subunit of phosphoinositide 3-kinase.

    PubMed

    Hellyer, N J; Cheng, K; Koland, J G

    1998-08-01

    ErbB3 (HER3), a unique member of the ErbB receptor family, lacks intrinsic protein tyrosine kinase activity and contains six Tyr-Xaa-Xaa-Met (YXXM) consensus binding sites for the SH2 domains of the p85 regulatory subunit of phosphoinositide 3-kinase. ErbB3 also has a proline-rich sequence that forms a consensus binding site for the SH3 domain of p85. Here we have investigated the interacting domains of ErbB3 and p85 by a unique application of the yeast two-hybrid system. A chimaeric ErbB3 molecule containing the epidermal growth factor receptor protein tyrosine kinase domain was developed so that the C-terminal domain of ErbB3 could become phosphorylated in the yeast system. We also generated several ErbB3 deletion and Tyr-->Phe site-specific mutants, and observed that a single ErbB3 YXXM motif was necessary and sufficient for the association of ErbB3 with p85. The incorporation of multiple YXXM motifs into the ErbB3 C-terminus enabled a stronger ErbB3/p85 interaction. The proline-rich region of ErbB3 was not necessary for interaction with p85. However, either deletion or mutation of the p85 SH3 domain decreased the observed ErbB3/p85 association. Additionally an ErbB3/p85 SH3 domain interaction was detected by an assay in vitro. These results were consistent with a model in which pairs of phosphorylated ErbB3 YXXM motifs co-operate in binding to the tandem SH2 domains of p85. Although a contributing role for the p85 SH3 domain was suggested, the N- and C-terminal SH2 domains seemed to be primarily responsible for the high-affinity association of p85 and ErbB3.

  12. Ovarian expressed microsomal epoxide hydrolase: Role in detoxification of 4-vinylcyclohexene diepoxide and regulation by phosphatidylinositol-3 kinase signaling

    SciTech Connect

    Bhattacharya, Poulomi; Sen, Nivedita; Hoyer, Patricia B.; Keating, Aileen F.

    2012-01-01

    4-vinylcyclohexene diepoxide (VCD) is a metabolite of 4-vinylcyclohexene (VCH) which has the potential to be formed in the ovary through CYP2E1 activity. VCD specifically destroys primordial and small primary follicles in the rodent ovary. Mouse ovaries exposed to VCD demonstrate increased mRNA and protein expression of microsomal epoxide hydrolase (mEH), and an inactive tetrol metabolite (4-(1,2-dihydroxy)ethyl-1,2-dihydroxycyclohexane) can be formed in mouse ovarian follicles, potentially through detoxification action of mEH. In contrast, mEH can bioactivate another ovotoxic chemical, 7,12-dimethylbenz[a]anthracene (DMBA) to a more toxic compound, DMBA-3,4-diol-1,2-epoxide. Thus, the present study evaluated a functional role for mEH during detoxification of VCD. Additionally, because inhibition of the phosphatidyinositol-3 kinase (PI3K) signaling pathway in a previous study protected primordial follicles from VCD-induced destruction, but accelerated DMBA-induced ovotoxicity, a role for PI3K in ovarian mEH regulation was evaluated. Using a post-natal day (PND) 4 Fischer 344 rat whole ovary culture system inhibition of mEH using cyclohexene oxide during VCD exposure resulted in a greater (P < 0.05) loss of primordial and small primary follicles relative to VCD-treated ovaries. Also, relative to controls, meh mRNA was increased (P < 0.05) on day 4 of VCD (30 μM) exposure, followed by increased (P < 0.05) mEH protein after 6 days. Furthermore, inhibition of PI3K signaling increased mEH mRNA and protein expression. Thus, these results support a functional role for mEH in the rat ovary, and demonstrate the involvement of PI3K signaling in regulation of ovarian xenobiotic metabolism by mEH. -- Highlights: ► Ovarian mEH functions to metabolize VCD to a less toxic compound. ► mEH expression is increased in a temporal pattern in response to VCD exposure. ► PI3K signaling is involved in regulation of ovarian mEH expression.

  13. PTEN and PI-3 kinase inhibitors control LPS signaling and the lymphoproliferative response in the CD19+ B cell compartment.

    PubMed

    Singh, Alok R; Peirce, Susan K; Joshi, Shweta; Durden, Donald L

    2014-09-10

    Pattern recognition receptors (PRRs), e.g. toll receptors (TLRs) that bind ligands within the microbiome have been implicated in the pathogenesis of cancer. LPS is a ligand for two TLR family members, TLR4 and RP105 which mediate LPS signaling in B cell proliferation and migration. Although LPS/TLR/RP105 signaling is well-studied; our understanding of the underlying molecular mechanisms controlling these PRR signaling pathways remains incomplete. Previous studies have demonstrated a role for PTEN/PI-3K signaling in B cell selection and survival, however a role for PTEN/PI-3K in TLR4/RP105/LPS signaling in the B cell compartment has not been reported. Herein, we crossed a CD19cre and PTEN(fl/fl) mouse to generate a conditional PTEN knockout mouse in the CD19+ B cell compartment. These mice were further crossed with an IL-14α transgenic mouse to study the combined effect of PTEN deletion, PI-3K inhibition and expression of IL-14α (a cytokine originally identified as a B cell growth factor) in CD19+ B cell lymphoproliferation and response to LPS stimulation. Targeted deletion of PTEN and directed expression of IL-14α in the CD19+ B cell compartment (IL-14+PTEN-/-) lead to marked splenomegaly and altered spleen morphology at baseline due to expansion of marginal zone B cells, a phenotype that was exaggerated by treatment with the B cell mitogen and TLR4/RP105 ligand, LPS. Moreover, LPS stimulation of CD19+ cells isolated from these mice display increased proliferation, augmented AKT and NFκB activation as well as increased expression of c-myc and cyclinD1. Interestingly, treatment of LPS treated IL-14+PTEN-/- mice with a pan PI-3K inhibitor, SF1126, reduced splenomegaly, cell proliferation, c-myc and cyclin D1 expression in the CD19+ B cell compartment and normalized the splenic histopathologic architecture. These findings provide the direct evidence that PTEN and PI-3K inhibitors control TLR4/RP105/LPS signaling in the CD19+ B cell compartment and that pan PI-3

  14. Combining TRAIL with PI3 Kinase or HSP90 inhibitors enhances apoptosis in colorectal cancer cells via suppression of survival signaling

    PubMed Central

    Saturno, Grazia; Valenti, Melanie; De Haven Brandon, Alexis; Thomas, George V.; Eccles, Suzanne; Clarke, Paul A.; Workman, Paul

    2013-01-01

    TRAIL has been shown to induce apoptosis in cancer cells, but in some cases they fail to respond to this ligand. We explored the ability of representative phosphatidylinositol-3-kinase (PI3 Kinase)/mTOR and HSP90 inhibitors to overcome TRAIL resistance by increasing apoptosis in colorectal cancer models. We determined the sensitivity of 27 human colorectal cancer and 2 non-transformed colon epithelial cell lines to TRAIL treatment. A subset of the cancer cell lines with a range of responses to TRAIL was selected from the panel for treatment with TRAIL combined with the PI3 Kinase/mTOR inhibitor PI-103 or the HSP90 inhibitor 17-AAG (tanespimycin). Two TRAIL-resistant cell lines were selected for in vivo combination studies with TRAIL and 17-AAG. We found that 13 colorectal cancer cell lines and the 2 non-transformed colon epithelial cell lines were resistant to TRAIL. We demonstrated that co-treatment of TRAIL and PI-103 or 17-AAG was synergistic or additive and significantly enhanced apoptosis in colorectal cancer cells. This was associated with decreased expression or activity of survival protein biomarkers such as ERBB2, AKT, IKKα and XIAP. In contrast, the effect of the combination treatments in non-transformed colon cells was minimal. We show here for the first time that co-treatment in vivo with TRAIL and 17-AAG in two TRAIL-resistant human colorectal cancer xenograft models resulted in significantly greater tumor growth inhibition compared to single treatments. We propose that combining TRAIL with PI3 Kinase/mTOR or HSP90 inhibitors has therapeutic potential in the treatment of TRAIL-resistant colorectal cancers. PMID:23852390

  15. PI3 kinase is indispensable for oncogenic transformation by the V560D mutant of c-Kit in a kinase-independent manner.

    PubMed

    Lindblad, Oscar; Kazi, Julhash U; Rönnstrand, Lars; Sun, Jianmin

    2015-11-01

    Oncogenic mutants of c-Kit are often found in mastocytosis, gastrointestinal stromal tumors and acute myeloid leukemia. The activation mechanism of the most commonly occurring mutation, D816V in exon 17 of c-Kit, has been well-studied while other mutations remain fairly uncharacterized in this respect. In this study, we show that the constitutive activity of the exon 11 mutant V560D is weaker than the D816V mutant. Phosphorylation of downstream signaling proteins induced by the ligand for c-Kit, stem cell factor, was stronger in c-Kit/V560D expressing cells than in cells expressing c-kit/D816V. Although cells expressing c-Kit/V560D showed increased ligand-independent proliferation and survival compared to wild-type c-Kit-expressing cells, these biological effects were weaker than in c-Kit/D816V-expressing cells. In contrast to cells expressing wild-type c-Kit, cells expressing c-Kit/V560D were independent of Src family kinases for downstream signaling. However, the independence of Src family kinases was not due to a Src-like kinase activity that c-Kit/D816V displayed. Point mutations that selectively block the association of PI3 kinase with c-Kit/V560D inhibited ligand-independent activation of the receptor, while inhibition of the kinase activity of PI3 kinase with pharmacological inhibitors did not affect the kinase activity of the receptor. This suggests a lipid kinase-independent key role of PI3 kinase in c-Kit/V560D-mediated oncogenic signal transduction. Thus, PI3 kinase is an attractive therapeutic target in malignancies induced by c-Kit mutations independent of its lipid kinase activity.

  16. Phosphatidylinositol 3-kinase/Akt signaling pathway activates the WNK-OSR1/SPAK-NCC phosphorylation cascade in hyperinsulinemic db/db mice.

    PubMed

    Nishida, Hidenori; Sohara, Eisei; Nomura, Naohiro; Chiga, Motoko; Alessi, Dario R; Rai, Tatemitsu; Sasaki, Sei; Uchida, Shinichi

    2012-10-01

    Metabolic syndrome patients have insulin resistance, which causes hyperinsulinemia, which in turn causes aberrant increased renal sodium reabsorption. The precise mechanisms underlying this greater salt sensitivity of hyperinsulinemic patients remain unclear. Abnormal activation of the recently identified with-no-lysine kinase (WNK)-oxidative stress-responsive kinase 1 (OSR1)/STE20/SPS1-related proline/alanine-rich kinase (SPAK)-NaCl cotransporter (NCC) phosphorylation cascade results in the salt-sensitive hypertension of pseudohypoaldosteronism type II. Here, we report a study of renal WNK-OSR1/SPAK-NCC cascade activation in the db/db mouse model of hyperinsulinemic metabolic syndrome. Thiazide sensitivity was increased, suggesting greater activity of NCC in db/db mice. In fact, increased phosphorylation of OSR1/SPAK and NCC was observed. In both SpakT243A/+ and Osr1T185A/+ knock-in db/db mice, which carry mutations that disrupt the signal from WNK kinases, increased phosphorylation of NCC and elevated blood pressure were completely corrected, indicating that phosphorylation of SPAK and OSR1 by WNK kinases is required for the increased activation and phosphorylation of NCC in this model. Renal phosphorylated Akt was increased in db/db mice, suggesting that increased NCC phosphorylation is regulated by the phosphatidylinositol 3-kinase/Akt signaling cascade in the kidney in response to hyperinsulinemia. A phosphatidylinositol 3-kinase inhibitor (NVP-BEZ235) corrected the increased OSR1/SPAK-NCC phosphorylation. Another more specific phosphatidylinositol 3-kinase inhibitor (GDC-0941) and an Akt inhibitor (MK-2206) also inhibited increased NCC phosphorylation. These results indicate that the phosphatidylinositol 3-kinase/Akt signaling pathway activates the WNK-OSR1/SPAK-NCC phosphorylation cascade in db/db mice. This mechanism may play a role in the pathogenesis of salt-sensitive hypertension in human hyperinsulinemic conditions, such as the metabolic syndrome.

  17. Combining trail with PI3 kinase or HSP90 inhibitors enhances apoptosis in colorectal cancer cells via suppression of survival signaling.

    PubMed

    Saturno, Grazia; Valenti, Melanie; De Haven Brandon, Alexis; Thomas, George V; Eccles, Suzanne; Clarke, Paul A; Workman, Paul

    2013-08-01

    TRAIL has been shown to induce apoptosis in cancer cells, but in some cases they fail to respond to this ligand. We explored the ability of representative phosphatidylinositol-3-kinase (PI3 Kinase)/mTOR and HSP90 inhibitors to overcome TRAIL resistance by increasing apoptosis in colorectal cancer models. We determined the sensitivity of 27 human colorectal cancer and 2 non-transformed colon epithelial cell lines to TRAIL treatment. A subset of the cancer cell lines with a range of responses to TRAIL was selected from the panel for treatment with TRAIL combined with the PI3 Kinase/mTOR inhibitor PI-103 or the HSP90 inhibitor 17-AAG (tanespimycin). Two TRAIL-resistant cell lines were selected for in vivo combination studies with TRAIL and 17-AAG. We found that 13 colorectal cancer cell lines and the 2 non-transformed colon epithelial cell lines were resistant to TRAIL. We demonstrated that co-treatment of TRAIL and PI-103 or 17-AAG was synergistic or additive and significantly enhanced apoptosis in colorectal cancer cells. This was associated with decreased expression or activity of survival protein biomarkers such as ERBB2, AKT, IKKα and XIAP. In contrast, the effect of the combination treatments in non-transformed colon cells was minimal. We show here for the first time that co-treatment in vivo with TRAIL and 17-AAG in two TRAIL-resistant human colorectal cancer xenograft models resulted in significantly greater tumor growth inhibition compared to single treatments. We propose that combining TRAIL with PI3 Kinase/mTOR or HSP90 inhibitors has therapeutic potential in the treatment of TRAIL-resistant colorectal cancers.

  18. Molecular definition of a novel inositol polyphosphate metabolic pathway initiated by inositol 1,4,5-trisphosphate 3-kinase activity in Saccharomyces cerevisiae.

    PubMed

    Seeds, Andrew M; Bastidas, Robert J; York, John D

    2005-07-29

    The production of inositol polyphosphate (IPs) and pyrophosphates (PP-IPs) from inositol 1,4,5-trisphosphate (I(1,4,5)P3) requires the 6-/3-/5-kinase activity of Ipk2 (also known as Arg82 and inositol polyphosphate multikinase). Here, we probed the distinct roles for I(1,4,5)P3 6- versus 3-kinase activities in IP metabolism and cellular functions reported for Ipk2. Expression of either I(1,4,5)P3 6- or 3-kinase activity rescued growth of ipk2-deficient yeast at high temperatures, whereas only 6-kinase activity enabled growth on ornithine as the sole nitrogen source. Analysis of IP metabolism revealed that the 3-kinase initiated the synthesis of novel pathway consisting of over eleven IPs and PP-IPs. This pathway was present in wild-type and ipk2 null cells, albeit at low levels as compared with inositol hexakisphosphate synthesis. The primary route of synthesis was: I(1,4,5)P3 --> I(1,3,4,5)P4 --> I(1,2,3,4,5)P5 --> PP-IP4 --> PP2-IP3 and required Kcs1 (or possibly Ipk2), Ipk1, a novel inositol pyrophosphate synthase, and then Kcs1 again, respectively. Mutation of kcs1 ablated this pathway in ipk2 null cells and overexpression of Kcs1 in ipk2 mutant cells phenocopied IP3K expression, confirming it harbors a novel 3-kinase activity. Our work provides a revised genetic map of IP metabolism in yeast and evidence for dosage compensation between IPs and PP-IPs downstream of I(1,4,5)P3 in the regulation of nucleocytoplasmic processes.

  19. Short-term low-protein diet during pregnancy alters islet area and protein content of phosphatidylinositol 3-kinase pathway in rats.

    PubMed

    Salvatierra, Cristiana S B; Reis, Sílvia R L; Pessoa, Ana F M; De Souza, Letícia M I; Stoppiglia, Luiz F; Veloso, Roberto V; Reis, Marise A B; Carneiro, Everardo M; Boschero, Antonio C; Colodel, Edson M; Arantes, Vanessa C; Latorraca, Márcia Q

    2015-01-01

    The phosphatidylinositol 3-kinase and mitogen-activated protein kinase pathways mediate β cell growth, proliferation, survival and death. We investigated whether protein restriction during pregnancy alters islet morphometry or the expression and phosphorylation of several proteins involved in the phosphatidylinositol 3-kinase and mitogen-activated protein kinase pathways. As controls, adult pregnant and non-pregnant rats were fed a normal-protein diet (17%). Pregnant and non-pregnant rats in the experimental groups were fed a low-protein diet (6%) for 15 days. Low protein diet during pregnancy increased serum prolactin level, reduced serum corticosterone concentration and the expression of both protein kinase B/AKT1 (AKT1) and p70 ribosomal protein S6 kinase (p70S6K), as well as the islets area, but did not alter the insulin content of pancreatic islets. Pregnancy increased the expression of the Src homology/collagen (SHC) protein and the extracellular signal-regulated kinases 1/2 (ERK1/2) independent of diet. ERK1/2 phosphorylation (pERK1/2) was similar in islets from pregnant and non-pregnant rats fed a low-protein diet, and was higher in islets from pregnant rats than in islets from non-pregnant rats fed a normal-protein diet. Thus, a short-term, low-protein diet during pregnancy was sufficient to reduce the levels of proteins in the phosphatidylinositol 3-kinase pathway and affect islet morphometry.

  20. Gastrin decreases Na+,K+-ATPase activity via a PI 3-kinase- and PKC-dependent pathway in human renal proximal tubule cells.

    PubMed

    Liu, Tianbing; Konkalmatt, Prasad R; Yang, Yu; Jose, Pedro A

    2016-04-01

    The natriuretic effect of gastrin suggests a role in the coordinated regulation of sodium balance by the gastrointestinal tract and the kidney. The renal molecular targets and signal transduction pathways for such an effect of gastrin are largely unknown. Recently, we reported that gastrin induces NHE3 phosphorylation and internalization via phosphatidylinositol (PI) 3-kinase and PKCα. In this study, we show that gastrin induced the phosphorylation of human Na(+),K(+)-ATPase at serine 16, resulting in its endocytosis via Rab5 and Rab7 endosomes. The gastrin-stimulated phosphorylation of Na(+),K(+)-ATPase was dependent on PI 3-kinase because the phosphorylation was blocked by the PI 3-kinase inhibitor wortmannin. The phosphorylation of Na(+),K(+)-ATPase was also blocked by chelerythrine, a pan-PKC inhibitor, Gö-6976, a conventional PKC (cPKC) inhibitor, and BAPTA-AM, an intracellular calcium chelator, suggesting the importance of cPKC and intracellular calcium in the gastrin signaling pathway. The gastrin-mediated phosphorylation of Na(+),K(+)-ATPase was also inhibited by U-73122, a phospholipase C (PLC) inhibitor. These results suggest that gastrin regulates sodium hydrogen exchanger and pump in renal proximal tubule cells at the apical and basolateral membranes.

  1. CAL-101, a p110δ selective phosphatidylinositol-3-kinase inhibitor for the treatment of B-cell malignancies, inhibits PI3K signaling and cellular viability

    PubMed Central

    Meadows, Sarah A.; Herman, Sarah E. M.; Kashishian, Adam; Steiner, Bart; Johnson, Amy J.; Byrd, John C.; Tyner, Jeffrey W.; Loriaux, Marc M.; Deininger, Mike; Druker, Brian J.; Puri, Kamal D.; Ulrich, Roger G.; Giese, Neill A.

    2011-01-01

    Phosphatidylinositol-3-kinase p110δ serves as a central integration point for signaling from cell surface receptors known to promote malignant B-cell proliferation and survival. This provides a rationale for the development of small molecule inhibitors that selectively target p110δ as a treatment approach for patients with B-cell malignancies. We thus identified 5-fluoro-3-phenyl-2-[(S)-1-(9H-purin-6-ylamino)-propyl]-3H-quinazolin-4-one (CAL-101), a highly selective and potent p110δ small molecule inhibitor (half-maximal effective concentration [EC50] = 8nM). Using tumor cell lines and primary patient samples representing multiple B-cell malignancies, we have demonstrated that constitutive phosphatidylinositol-3-kinase pathway activation is p110δ-dependent. CAL-101 blocked constitutive phosphatidylinositol-3-kinase signaling, resulting in decreased phosphorylation of Akt and other downstream effectors, an increase in poly(ADP-ribose) polymerase and caspase cleavage and an induction of apoptosis. These effects have been observed across a broad range of immature and mature B-cell malignancies, thereby providing a rationale for the ongoing clinical evaluation of CAL-101. PMID:20959606

  2. CAL-101, a p110delta selective phosphatidylinositol-3-kinase inhibitor for the treatment of B-cell malignancies, inhibits PI3K signaling and cellular viability.

    PubMed

    Lannutti, Brian J; Meadows, Sarah A; Herman, Sarah E M; Kashishian, Adam; Steiner, Bart; Johnson, Amy J; Byrd, John C; Tyner, Jeffrey W; Loriaux, Marc M; Deininger, Mike; Druker, Brian J; Puri, Kamal D; Ulrich, Roger G; Giese, Neill A

    2011-01-13

    Phosphatidylinositol-3-kinase p110δ serves as a central integration point for signaling from cell surface receptors known to promote malignant B-cell proliferation and survival. This provides a rationale for the development of small molecule inhibitors that selectively target p110δ as a treatment approach for patients with B-cell malignancies. We thus identified 5-fluoro-3-phenyl-2-[(S)-1-(9H-purin-6-ylamino)-propyl]-3H-quinazolin-4-one (CAL-101), a highly selective and potent p110δ small molecule inhibitor (half-maximal effective concentration [EC(50)] = 8nM). Using tumor cell lines and primary patient samples representing multiple B-cell malignancies, we have demonstrated that constitutive phosphatidylinositol-3-kinase pathway activation is p110δ-dependent. CAL-101 blocked constitutive phosphatidylinositol-3-kinase signaling, resulting in decreased phosphorylation of Akt and other downstream effectors, an increase in poly(ADP-ribose) polymerase and caspase cleavage and an induction of apoptosis. These effects have been observed across a broad range of immature and mature B-cell malignancies, thereby providing a rationale for the ongoing clinical evaluation of CAL-101.

  3. Polyunsaturated fatty acids block platelet-activating factor-induced phosphatidylinositol 3 kinase/Akt-mediated apoptosis in intestinal epithelial cells.

    PubMed

    Lu, Jing; Caplan, Michael S; Li, Dan; Jilling, Tamas

    2008-05-01

    We have shown earlier that platelet-activating factor (PAF) causes apoptosis in enterocytes via a mechanism that involves Bax translocation to mitochondria, followed by caspase activation and DNA fragmentation. Herein we report that, in rat small intestinal epithelial cells (IEC-6), these downstream apoptotic effects are mediated by a PAF-induced inhibition of the phosphatidylinositol 3-kinase (PI 3-kinase)/protein kinase B (Akt) signaling pathway. Treatment with PAF results in rapid dephosphorylation of Akt, phosphoinositide-dependent kinase-1, and the YXXM p85 binding motif of several proteins and redistribution of Akt-pleckstrin homology domain-green fluorescent protein, i.e., an in vivo phosphatidylinositol (3,4,5)-trisphosphate sensor, from membrane to cytosol. The proapoptotic effects of PAF were inhibited by both n-3 and n-6 polyunsaturated fatty acids but not by a saturated fatty acid palmitate. Indomethacin, an inhibitor of prostaglandin biosynthesis, did not influence the baseline or PAF-induced apoptosis, but 2-bromopalmitate, an inhibitor of protein palmitoylation, inhibited all of the proapoptotic effects of PAF. Our data strongly suggest that an inhibition of the PI 3-kinase/Akt signaling pathway is the main mechanism of PAF-induced apoptosis in enterocytes and that polyunsaturated fatty acids block this mechanism very early in the signaling cascade independently of any effect on prostaglandin synthesis, and probably directly via an effect on protein palmitoylation.

  4. Polyunsaturated fatty acids block platelet-activating factor-induced phosphatidylinositol 3 kinase/Akt-mediated apoptosis in intestinal epithelial cells

    PubMed Central

    Lu, Jing; Caplan, Michael S.; Li, Dan; Jilling, Tamas

    2009-01-01

    We have shown earlier that platelet-activating factor (PAF) causes apoptosis in enterocytes via a mechanism that involves Bax translocation to mitochondria, followed by caspase activation and DNA fragmentation. Herein we report that, in rat small intestinal epithelial cells (IEC-6), these downstream apoptotic effects are mediated by a PAF-induced inhibition of the phosphatidylinositol 3-kinase (PI 3-kinase)/protein kinase B (Akt) signaling pathway. Treatment with PAF results in rapid dephosphorylation of Akt, phosphoinositide-dependent kinase-1, and the YXXM p85 binding motif of several proteins and redistribution of Akt-pleckstrin homology domain-green fluorescent protein, i.e., an in vivo phosphatidylinositol (3,4,5)-trisphosphate sensor, from membrane to cytosol. The proapoptotic effects of PAF were inhibited by both n-3 and n-6 polyunsaturated fatty acids but not by a saturated fatty acid palmitate. Indomethacin, an inhibitor of prostaglandin biosynthesis, did not influence the baseline or PAF-induced apoptosis, but 2-bromopalmitate, an inhibitor of protein palmitoylation, inhibited all of the proapoptotic effects of PAF. Our data strongly suggest that an inhibition of the PI 3-kinase/Akt signaling pathway is the main mechanism of PAF-induced apoptosis in enterocytes and that polyunsaturated fatty acids block this mechanism very early in the signaling cascade independently of any effect on prostaglandin synthesis, and probably directly via an effect on protein palmitoylation. PMID:18356536

  5. [Effects of phosphatidylinositol-3 kinase/protein kinase b/bone morphogenetic protein-15 pathway on the follicular development in the mammalian ovary].

    PubMed

    Wu, Yan-qing; Chen, Li-yun; Zhang, Zheng-hong; wang, Zheng-chao

    2013-04-01

    In mammals, ovarian follicle is made of an oocyte with its surrounding granulosa cells and theca cells. Follicular growth and development is a highly coordinated programmable process, which guarantees the normal oocyte maturation and makes it having the fertilizing capacity. The paracrine and autocrine between oocytes and granulosa cells are essential for the follicular development to provide a suitable microenvironment. Phosphatidylinositol-3 kinase /protein kinase B is one of these important regulatory signaling pathways during this developmental process, and bone morphogenetic protein-15 an oocyte-specific secreted signal molecule, which regulates the follicular development by paracrine in the mammalian ovary. The present article overviewed the role of phosphatidylinositol-3 kinase / protein kinase B signaling during the follicular development based on our previous investigation about protein kinase B /forkhead transcription factor forkhead family of transcription factors -3a, and then focused on the regulatory effects of bone morphogenetic protein-15, as a downstream signal molecule of phosphatidylinositol-3 kinase / forkhead family of transcription factors -3a pathway, on ovarian follicular development, which helped to further understand the molecular mechanism regulating the follicular development and to treat ovarian diseases like infertility.

  6. Hepatocyte growth factor induces glucose uptake in 3T3-L1 adipocytes through A Gab1/phosphatidylinositol 3-kinase/Glut4 pathway.

    PubMed

    Bertola, Adeline; Bonnafous, Stéphanie; Cormont, Mireille; Anty, Rodolphe; Tanti, Jean-François; Tran, Albert; Le Marchand-Brustel, Yannick; Gual, Philippe

    2007-04-06

    Adipose tissue is a source of hepatocyte growth factor (HGF), and circulating HGF levels have been associated with elevated body mass index in human. However, the effects of HGF on adipocyte functions have not yet been investigated. We show here that in 3T3-L1 adipocytes HGF stimulates the phosphatidylinositol (PI) 3-kinase-dependent protein kinase B (PKB) activity, AS160 phosphorylation, Glut4 translocation, and consequently, glucose uptake. The initial steps involved in HGF- and insulin-induced glucose uptake are different. HGF enhanced the tyrosine phosphorylation of Gab1, leading to the recruitment of the p85-regulated subunit of PI 3-kinase, whereas p85 was exclusively recruited by IRS1 in response to insulin. In adipocytes rendered insulin-resistant by a long-lasting tumor necrosis factor alpha treatment, the protein level of Gab1 was strongly decreased, and HGF-stimulated PKB activation and glucose uptake were also altered. Moreover, treatment of 3T3-L1 adipocytes with thiazolidinedione, an anti-diabetic drug, enhanced the expression of both HGF and its receptor. These data provide the first evidence that in vitro HGF promotes glucose uptake through a Gab1/PI 3-kinase/PKB/AS160 pathway which was altered in tumor necrosis factor alpha-treated adipocytes.

  7. Molecular modeling study of CP-690550 derivatives as JAK3 kinase inhibitors through combined 3D-QSAR, molecular docking, and dynamics simulation techniques.

    PubMed

    Wang, Jing Li; Cheng, Li Ping; Wang, Tian Chi; Deng, Wei; Wu, Fan Hong

    2017-03-01

    To develop more potent JAK3 kinase inhibitors, a series of CP-690550 derivatives were investigated using combined molecular modeling techniques, such as 3D-QSAR, molecular docking and molecular dynamics (MD). The leave-one-out correlation (q(2)) and non-cross-validated correlation coefficient (r(2)) of the best CoMFA model are 0.715 and 0.992, respectively. The q(2) and r(2) values of the best CoMSIA model are 0.739 and 0.995, respectively. The steric, electrostatic, and hydrophobic fields played important roles in determining the inhibitory activity of CP-690550 derivatives. Some new JAK3 kinase inhibitors were designed. Some of them have better inhibitory activity than the most potent Tofacitinib (CP-690550). Molecular docking was used to identify some key amino acid residues at the active site of JAK3 protein. 10ns MD simulations were successfully performed to confirm the detailed binding mode and validate the rationality of docking results. The calculation of the binding free energies by MMPBSA method gives a good correlation with the predicted biological activity. To our knowledge, this is the first report on MD simulations and free energy calculations for this series of compounds. The combination results of this study will be valuable for the development of potent and novel JAK3 kinase inhibitors.

  8. Insulin receptor phosphorylation, insulin receptor substrate-1 phosphorylation, and phosphatidylinositol 3-kinase activity are decreased in intact skeletal muscle strips from obese subjects.

    PubMed Central

    Goodyear, L J; Giorgino, F; Sherman, L A; Carey, J; Smith, R J; Dohm, G L

    1995-01-01

    To determine whether the impaired insulin-stimulated glucose uptake in obese individuals is associated with altered insulin receptor signaling, we measured both glucose uptake and early steps in the insulin action pathway in intact strips of human skeletal muscle. Biopsies of rectus abdominus muscle were taken from eight obese and eight control subjects undergoing elective surgery (body mass index 52.9 +/- 3.6 vs 25.7 +/- 0.9). Insulin-stimulated 2-deoxyglucose uptake was 53% lower in muscle strips from obese subjects. Additional muscle strips were incubated in the basal state or with 10(-7) M insulin for 2, 15, or 30 min. In the lean subjects, tyrosine phosphorylation of the insulin receptor and insulin receptor substrate-1 (IRS-1), measured by immunoblotting with anti-phosphotyrosine antibodies, was significantly increased by insulin at all time points. In the skeletal muscle from the obese subjects, insulin was less effective in stimulating tyrosine phosphorylation (maximum receptor and IRS-1 phosphorylation decreased by 35 and 38%, respectively). Insulin stimulation of IRS-1 immunoprecipitable phosphatidylinositol 3-kinase (PI 3-kinase) activity also was markedly lower in obese subjects compared with controls (10- vs 35-fold above basal, respectively). In addition, the obese subjects had a lower abundance of the insulin receptor, IRS-1, and the p85 subunit of PI 3-kinase (55, 54, and 64% of nonobese, respectively). We conclude that impaired insulin-stimulated glucose uptake in skeletal muscle from severely obese subjects is accompanied by a deficiency in insulin receptor signaling, which may contribute to decreased insulin action. Images PMID:7537758

  9. Artesunate Protected Blood-Brain Barrier via Sphingosine 1 Phosphate Receptor 1/Phosphatidylinositol 3 Kinase Pathway After Subarachnoid Hemorrhage in Rats.

    PubMed

    Zuo, Shilun; Ge, Hongfei; Li, Qiang; Zhang, Xuan; Hu, Rong; Hu, Shengli; Liu, Xin; Zhang, John H; Chen, Yujie; Feng, Hua

    2017-03-01

    Blood-brain barrier preservation plays an important role in attenuating vasogenic brain edema after subarachnoid hemorrhage (SAH). This study was designed to investigate the protective effect and mechanism of artesunate, a traditional anti-malaria drug, on blood-brain barrier after SAH. Three hundred and seventy-seven (377) male Sprague-Dawley rats were subjected to endovascular perforation model for SAH. The rats received artesunate alone or in combination with Sphingosine-1-phosphate receptor-1 (S1P1) small interfering RNA (siRNA), antagonist VPC23019, or phosphatidylinositol 3-kinase inhibitor wortmannin after SAH. Modified Garcia score, SAH grades, brain water content, Evans blue leakage, transmission electron microscope, immunohistochemistry staining, Western blot, and cultured endothelial cells were used to investigate the optimum concentration and the therapeutic mechanism of artesunate. We found that artesunate (200 mg/kg) could do better in raising modified Garcia score, reducing brain water content and Evans blue leakage than other groups after SAH. Moreover, artesunate elevated S1P1 expression, enhanced phosphatidylinositol 3-kinase activation, lowered GSK-3β activation, stabilized β-catenin, and improved the expression of Claudin-3 and Claudin-5 after SAH in rats. These effects were eliminated by S1P1 siRNA, VPC23019, and wortmannin. This study revealed that artesunate could preserve blood-brain barrier integrity and improve neurological outcome after SAH, possibly through activating S1P1, enhancing phosphatidylinositol 3-kinase activation, stabilizing β-catenin via GSK-3β inhibition, and then effectively raising the expression of Claudin-3 and Claudin-5. Therefore, artesunate may be favorable for the blood-brain barrier (BBB) protection after SAH and become a potential candidate for the treatment of SAH patients.

  10. PSM/SH2-B distributes selected mitogenic receptor signals to distinct components in the PI3-kinase and MAP kinase signaling pathways.

    PubMed

    Deng, Youping; Xu, Hu; Riedel, Heimo

    2007-02-15

    The Pro-rich, PH, and SH2 domain containing mitogenic signaling adapter PSM/SH2-B has been implicated as a cellular partner of various mitogenic receptor tyrosine kinases and related signaling mechanisms. Here, we report in a direct comparison of three peptide hormones, that PSM participates in the assembly of distinct mitogenic signaling complexes in response to insulin or IGF-I when compared to PDGF in cultured normal fibroblasts. The complex formed in response to insulin or IGF-I involves the respective peptide hormone receptor and presumably the established components leading to MAP kinase activation. However, our data suggest an alternative link from the PDGF receptor via PSM directly to MEK1/2 and consequently also to p44/42 activation, possibly through a scaffold protein. At least two PSM domains participate, the SH2 domain anticipated to link PSM to the respective receptor and the Pro-rich region in an association with an unidentified downstream component resulting in direct MEK1/2 and p44/42 regulation. The PDGF receptor signaling complex formed in response to PDGF involves PI 3-kinase in addition to the same components and interactions as described for insulin or IGF-I. PSM associates with PI 3-kinase via p85 and in addition the PSM PH domain participates in the regulation of PI 3-kinase activity, presumably through membrane interaction. In contrast, the PSM Pro-rich region appears to participate only in the MAP kinase signal. Both pathways contribute to the mitogenic response as shown by cell proliferation, survival, and focus formation. PSM regulates p38 MAP kinase activity in a pathway unrelated to the mitogenic response.

  11. The novel orally bioavailable inhibitor of phosphoinositol-3-kinase and mammalian target of rapamycin, NVP-BEZ235, inhibits growth and proliferation in multiple myeloma

    SciTech Connect

    Baumann, Philipp Mandl-Weber, Sonja; Oduncu, Fuat; Schmidmaier, Ralf

    2009-02-01

    NVP-BEZ235 is a new inhibitor of phosphoinositol-3-kinase (PI3 kinase) and mammalian target of rapamycin (mTOR) whose efficacy in advanced solid tumours is currently being evaluated in a phase I/II clinical trial. Here we show that NVP-BEZ235 inhibits growth in common myeloma cell lines as well as primary myeloma cells at nanomolar concentrations in a time and dose dependent fashion. Further experiments revealed induction of apoptosis in three of four cell lines. Inhibition of cell growth was mainly due to inhibition of myeloma cell proliferation, as shown by the BrdU assay. Cell cycle analysis revealed induction of cell cycle arrest in the G1 phase, which was due to downregulation of cyclin D1, pRb and cdc25a. NVP-BEZ235 inhibited phosphorylation of protein kinase B (Akt), P70S6k and 4E-BP-1. Furthermore we show that the stimulatory effect of CD40-ligand (CD40L), insulin-like growth factor 1 (IGF-1), interleukin-6 (IL-6) and conditioned medium of HS-5 stromal cells on myeloma cell growth is completely abrogated by NVP-BEZ235. In addition, synergism studies revealed synergistic and additive activity of NVP-BEZ235 together with melphalan, doxorubicin and bortezomib. Taken together, inhibition of PI3 kinase/mTOR by NVP-BEZ235 is highly effective and NVP-BEZ235 represents a potential new candidate for targeted therapy in multiple myeloma.

  12. Co-amplification of phosphoinositide 3-kinase enhancer A and cyclin-dependent kinase 4 triggers glioblastoma progression | Office of Cancer Genomics

    Cancer.gov

    Glioblastoma (GBM) is the most common primary brain tumor and has a dismal prognosis. Amplification of chromosome 12q13-q15 (Cyclin-dependent kinase 4 (CDK4) amplicon) is frequently observed in numerous human cancers including GBM. Phosphoinositide 3-kinase enhancer (PIKE) is a group of GTP-binding proteins that belong to the subgroup of centaurin GTPase family, encoded by CENTG1 located in CDK4 amplicon. However, the pathological significance of CDK4 amplicon in GBM formation remains incompletely understood.

  13. The PI3-kinase isoform p110δ is essential for cell transformation induced by the D816V mutant of c-Kit in a lipid-kinase-independent manner.

    PubMed

    Sun, J; Mohlin, S; Lundby, A; Kazi, J U; Hellman, U; Påhlman, S; Olsen, J V; Rönnstrand, L

    2014-11-13

    PI3-kinase has a crucial role in transformation mediated by the oncogenic c-Kit mutant D816V. In this study, we demonstrate that the c-Kit/D816V-mediated cell survival is dependent on an intact direct binding of PI3-kinase to c-Kit. However, mutation of this binding site had little effect on the PI3-kinase activity in the cells, suggesting that c-Kit/D816V-mediated cell survival is dependent on PI3-kinase but not its kinase activity. Furthermore, inhibition of the lipid kinase activity of PI3-kinase led only to a slight inhibition of cell survival. Knockdown of the predominant PI3-kinase isoform p110δ in c-Kit/D816V-expressing Ba/F3 cells led to reduced cell transformation both in vitro and in vivo without affecting the overall PI3-kinase activity. This suggests that p110δ has a lipid-kinase-independent role in c-Kit/D816V-mediated cell transformation. We furthermore demonstrate that p110δ is phosphorylated at residues Y524 and S1039 and that phosphorylation requires an intact binding site for PI3-kinase in c-Kit/D816V. Overexpression of p110δ carrying the Y523F and S1038A mutations significantly reduced c-Kit/D816V-mediated cell survival and proliferation. Taken together, our results demonstrate an important lipid-kinase-independent role of p110δ in c-Kit/D816V-mediated cell transformation. This furthermore suggests that p110δ could be a potential diagnostic factor and selective therapeutic target for c-Kit/D816V-expressing malignancies.

  14. Redox-sensitive up-regulation of eNOS by purple grape juice in endothelial cells: role of PI3-kinase/Akt, p38 MAPK, JNK, FoxO1 and FoxO3a.

    PubMed

    Alhosin, Mahmoud; Anselm, Eric; Rashid, Sherzad; Kim, Jong Hun; Madeira, Socorro Vanesca Frota; Bronner, Christian; Schini-Kerth, Valérie B

    2013-01-01

    The vascular protective effect of grape-derived polyphenols has been attributable, in part, to their direct action on blood vessels by stimulating the endothelial formation of nitric oxide (NO). The aim of the present study was to determine whether Concord grape juice (CGJ), which contains high levels of polyphenols, stimulates the expression of endothelial NO synthase (eNOS) in porcine coronary artery endothelial cells and, if so, to determine the signaling pathway involved. CGJ dose- and time-dependently increased eNOS mRNA and protein levels and this effect is associated with an increased formation of NO in endothelial cells. The stimulatory effect of CGJ on eNOS mRNA is not associated with an increased eNOS mRNA stability and inhibited by antioxidants such as MnTMPyP, PEG-catalase, and catalase, and by wortmannin (an inhibitor of PI3-kinase), SB 203580 (an inhibitor of p38 MAPK), and SP 600125 (an inhibitor of JNK). Moreover, CGJ induced the formation of reactive oxygen species (ROS) in endothelial cells and this effect is inhibited by MnTMPyP, PEG-catalase, and catalase. The CGJ-induced the phosphorylation of p38 MAPK and JNK kinases is abolished by MnTMPyP. CGJ induced phosphorylation of transcription factors FoxO1 and FoxO3a, which regulate negatively eNOS expression, and this effect is prevented by MnTMPyP, PEG-catalase, wortmannin, SB203580 and SP600125. Moreover, chromatin immunoprecipitation assay indicated that the FoxO3a protein is associated with the eNOS promoter in control cells and that CGJ induced its dissociation. Thus, the present study indicates that CGJ up-regulates the expression of eNOS mRNA and protein leading to an increased formation of NO in endothelial cells. The stimulatory effect of CGJ is a redox-sensitive event involving PI3-kinase/Akt, p38 MAPK and JNK pathways, and the inactivation of the FoxO transcription factors, FoxO1 and FoxO3a, thereby preventing their repression of the eNOS gene.

  15. Redox-Sensitive Up-Regulation of eNOS by Purple Grape Juice in Endothelial Cells: Role of PI3-Kinase/Akt, p38 MAPK, JNK, FoxO1 and FoxO3a

    PubMed Central

    Rashid, Sherzad; Kim, Jong Hun; Frota Madeira, Socorro Vanesca; Bronner, Christian; Schini-Kerth, Valérie B.

    2013-01-01

    The vascular protective effect of grape-derived polyphenols has been attributable, in part, to their direct action on blood vessels by stimulating the endothelial formation of nitric oxide (NO). The aim of the present study was to determine whether Concord grape juice (CGJ), which contains high levels of polyphenols, stimulates the expression of endothelial NO synthase (eNOS) in porcine coronary artery endothelial cells and, if so, to determine the signaling pathway involved. CGJ dose- and time-dependently increased eNOS mRNA and protein levels and this effect is associated with an increased formation of NO in endothelial cells. The stimulatory effect of CGJ on eNOS mRNA is not associated with an increased eNOS mRNA stability and inhibited by antioxidants such as MnTMPyP, PEG-catalase, and catalase, and by wortmannin (an inhibitor of PI3-kinase), SB 203580 (an inhibitor of p38 MAPK), and SP 600125 (an inhibitor of JNK). Moreover, CGJ induced the formation of reactive oxygen species (ROS) in endothelial cells and this effect is inhibited by MnTMPyP, PEG-catalase, and catalase. The CGJ-induced the phosphorylation of p38 MAPK and JNK kinases is abolished by MnTMPyP. CGJ induced phosphorylation of transcription factors FoxO1 and FoxO3a, which regulate negatively eNOS expression, and this effect is prevented by MnTMPyP, PEG-catalase, wortmannin, SB203580 and SP600125. Moreover, chromatin immunoprecipitation assay indicated that the FoxO3a protein is associated with the eNOS promoter in control cells and that CGJ induced its dissociation. Thus, the present study indicates that CGJ up-regulates the expression of eNOS mRNA and protein leading to an increased formation of NO in endothelial cells. The stimulatory effect of CGJ is a redox-sensitive event involving PI3-kinase/Akt, p38 MAPK and JNK pathways, and the inactivation of the FoxO transcription factors, FoxO1 and FoxO3a, thereby preventing their repression of the eNOS gene. PMID:23533577

  16. Human SMG-1, a novel phosphatidylinositol 3-kinase-related protein kinase, associates with components of the mRNA surveillance complex and is involved in the regulation of nonsense-mediated mRNA decay

    PubMed Central

    Yamashita, Akio; Ohnishi, Tetsuo; Kashima, Isao; Taya, Yoichi; Ohno, Shigeo

    2001-01-01

    Nonsense-mediated mRNA decay (NMD) is a conserved surveillance mechanism that eliminates imperfect mRNAs that contain premature translation termination codons (PTCs) and code for nonfunctional or potentially harmful polypeptides. We show that a novel phosphatidylinositol 3-kinase-related protein kinase, hSMG-1, is a human ortholog of a product of Caenorhabditis elegans smg-1, one of seven smg genes involved in NMD. hSMG-1 phosphorylates hUPF1/SMG-2 in vivo and in vitro at specific serine residues in SQ motifs. hSMG-1 can associate with hUPF1/SMG-2 and other components of the surveillance complex. In particular, overexpression of a kinase-deficient point mutant of hSMG-1, hSMG-1-DA, results in a marked suppression of the PTC-dependent β-globin mRNA degradation; whereas that of wild-type hSMG-1 enhances it. We also show that inhibitors of hSMG-1 induce the accumulation of truncated p53 proteins in human cancer cell lines with p53 PTC mutation. Taken together, we conclude that hSMG-1 plays a critical role in NMD through the direct phosphorylation of hUPF1/SMG-2 in the evolutionally conserved mRNA surveillance complex. PMID:11544179

  17. Static magnetic field enhances the viability and proliferation rate of adipose tissue-derived mesenchymal stem cells potentially through activation of the phosphoinositide 3-kinase/Akt (PI3K/Akt) pathway.

    PubMed

    Marędziak, Monika; Tomaszewski, Krzysztof; Polinceusz, Paulina; Lewandowski, Daniel; Marycz, Krzysztof

    2017-01-01

    The aim of this work was to investigate the effects of 0.5T static magnetic field (sMF) on the viability and proliferation rate of human adipose-derived mesenchymal stromal stem cells (hASCs) via activation of the phosphoinositide 3-kinase/Akt (PI3K/Akt) signaling pathway. In a 7-d culture we examined cell growth kinetic and population doubling time (PDT). We also examined cell morphology and the cellular senescence markers level. Exposure to sMF enhanced the viability of these cells. However, the effect was blocked by treating the cells with LY294002, a P13K inhibitor. We compared this effect by Western Blot analysis of Akt protein expression. We also examined whether the cell response on sMF stimulation is dependent on integrin engagement and we measured integrin gene expression. Our results suggest that stimulation using sMF is a viable method to improve hASC viability. sMF is involved in mechanisms associated with controlling cell proliferative potential signaling events.

  18. Telencephalin protects PAJU cells from amyloid beta protein-induced apoptosis by activating the ezrin/radixin/moesin protein family/phosphatidylinositol-3-kinase/protein kinase B pathway.

    PubMed

    Yang, Heping; Wu, Dapeng; Zhang, Xiaojie; Wang, Xiang; Peng, Yi; Hu, Zhiping

    2012-10-05

    Telencephalin is a neural glycoprotein that reduces apoptosis induced by amyloid beta protein in the human neural tumor cell line PAJU. In this study, we examined the role of the ezrin/radixin/moesin protein family/phosphatidylinositol-3-kinase/protein kinase B pathway in this process. Western blot analysis demonstrated that telencephalin, phosphorylated ezrin/radixin/moesin and phosphatidylinositol-3-kinase/protein kinase B were not expressed in PAJU cells transfected with empty plasmid, while they were expressed in PAJU cells transfected with a telencephalin expression plasmid. After treatment with 1.0 nM amyloid beta protein 42, expression of telencephalin and phosphorylated phosphatidylinositol-3-kinase/protein kinase B in the transfected cells gradually diminished, while levels of phosphorylated ezrin/radixin/moesin increased. In addition, the high levels of telencephalin, phosphorylated ezrin/radixin/moesin and phosphatidylinositol-3-kinase/protein kinase B expression in PAJU cells transfected with a telencephalin expression plasmid could be suppressed by the phosphatidylinositol-3-kinase inhibitor LY294002. These findings indicate that telencephalin activates the ezrin/radixin/moesin family/phosphatidylinositol-3-kinase/protein kinase B pathway and protects PAJU cells from amyloid beta protein-induced apoptosis.

  19. Role of erbB-2 and erbB-3 in the Activation of Phosphatidylinositol 3 -Kinase.

    DTIC Science & Technology

    1997-06-01

    epithelium with the human papilloma virus , will provide an independent test of the oncogenic potential of c-erbB-2 overexpression in non-neoplastic human...cellnucei fom riplcat wels fr ech cndiion human papilloma virus (HPV) 16 and are not tumori- were solubilized with detergent and counted in a hmn...understanding of new potential targets for clinical intervention employing gene therapy and other methods. Our laboratory is interested in studying

  20. Structure of a specific peptide complex of the carboxy-terminal SH2 domain from the p85 alpha subunit of phosphatidylinositol 3-kinase.

    PubMed Central

    Breeze, A L; Kara, B V; Barratt, D G; Anderson, M; Smith, J C; Luke, R W; Best, J R; Cartlidge, S A

    1996-01-01

    We have determined the solution structure of the C-terminal SH2 domain of the p85 alpha subunit of human phosphatidylinositol (PI) 3-kinase (EC 2.7.1.137) in complex with a phosphorylated tyrosine pentapeptide sequence from the platelet-derived growth factor receptor using heteronuclear nuclear magnetic resonance spectroscopy. Overall, the structure is similar to other SH2 domain complexes, but displays different detail interactions within the phosphotyrosine binding site and in the recognition site for the +3 methionine residue of the peptide, the side chain of which inserts into a particularly deep and narrow pocket which is displaced relative to that of other SH2 domains. The contacts made within this +3 pocket provide the structural basis for the strong selection for methionine at this position which characterizes the SH2 domains of PI3-kinase. Comparison with spectral and structural features of the uncomplexed domain shows that the long BG loop becomes less mobile in the presence of the bound peptide. In contrast, extreme resonance broadening encountered for most residues in the beta D', beta E and beta F strands and associated connecting loops of the domain in the absence of peptide persists in the complex, implying conformational averaging in this part of the molecule on a microsecond-to-millisecond time scale. Images PMID:8670861

  1. Dynamic changes of connexin-43, gap junctional protein, in outer layers of cumulus cells are regulated by PKC and PI 3-kinase during meiotic resumption in porcine oocytes.

    PubMed

    Shimada, M; Maeda, T; Terada, T

    2001-04-01

    Mammalian oocytes are surrounded by numerous layers of cumulus cells, and the loss of gap junctional communication in the outer layers of cumulus cells induces meiotic resumption in oocytes. In this study, we investigated the dynamic changes in the gap junctional protein connexin-43 in cumulus cells during the meiotic resumption of porcine oocytes. The amount of connexin-43 in all layers of cumulus cells recovered from cumulus-oocyte complexes was increased after 4-h cultivation. However, at 12-h cultivation, the positive signal for connexin-43 immunoreactivity was markedly reduced in the outer layers of cumulus cells. When these reductions of connexin-43 were blocked by protein kinase C (PKC) or phosphatidylinositol (PI) 3-kinase inhibitor, networks of filamentous bivalents (i.e., advanced chromosomal status) were undetectable in the germinal vesicle of the oocyte. After 28-h cultivation, when the majority of oocytes were reaching the metaphase I (MI) stage, the connexin-43 in the inner layers of cumulus cells was phosphorylated, regardless of mitogen-activated protein (MAP) kinase activation. These