Science.gov

Sample records for 3-kinase pi3k inhibitor

  1. Optimization of the phenylurea moiety in a phosphoinositide 3-kinase (PI3K) inhibitor to improve water solubility and the PK profile by introducing a solubilizing group and ortho substituents.

    PubMed

    Kawada, Hatsuo; Ebiike, Hirosato; Tsukazaki, Masao; Yamamoto, Shun; Koyama, Kohei; Nakamura, Mitsuaki; Morikami, Kenji; Yoshinari, Kiyoshi; Yoshida, Miyuki; Ogawa, Kotaro; Shimma, Nobuo; Tsukuda, Takuo; Ohwada, Jun

    2016-07-01

    Phosphoinositide 3-kinase (PI3K) is a promising anti-cancer target, because various mutations and amplifications are observed in human tumors isolated from cancer patients. Our dihydropyrrolopyrimidine derivative with a phenylurea moiety showed strong PI3K enzyme inhibitory activity, but its pharmacokinetic property was poor because of lack of solubility. Herein, we report how we improved the solubility of our PI3K inhibitors by introducing a solubilizing group and ortho substituents to break molecular planarity. PMID:27189888

  2. Discovery of a Selective Phosphoinositide-3-Kinase (PI3K)-γ Inhibitor (IPI-549) as an Immuno-Oncology Clinical Candidate.

    PubMed

    Evans, Catherine A; Liu, Tao; Lescarbeau, André; Nair, Somarajan J; Grenier, Louis; Pradeilles, Johan A; Glenadel, Quentin; Tibbitts, Thomas; Rowley, Ann M; DiNitto, Jonathan P; Brophy, Erin E; O'Hearn, Erin L; Ali, Janid A; Winkler, David G; Goldstein, Stanley I; O'Hearn, Patrick; Martin, Christian M; Hoyt, Jennifer G; Soglia, John R; Cheung, Culver; Pink, Melissa M; Proctor, Jennifer L; Palombella, Vito J; Tremblay, Martin R; Castro, Alfredo C

    2016-09-01

    Optimization of isoquinolinone PI3K inhibitors led to the discovery of a potent inhibitor of PI3K-γ (26 or IPI-549) with >100-fold selectivity over other lipid and protein kinases. IPI-549 demonstrates favorable pharmacokinetic properties and robust inhibition of PI3K-γ mediated neutrophil migration in vivo and is currently in Phase 1 clinical evaluation in subjects with advanced solid tumors. PMID:27660692

  3. Phospshoinositide 3-kinase (PI3K)/mammalian target of rapamycin (mTOR) dual inhibitors: discovery and structure-activity relationships of a series of quinoline and quinoxaline derivatives.

    PubMed

    Nishimura, Nobuko; Siegmund, Aaron; Liu, Longbin; Yang, Kevin; Bryan, Marian C; Andrews, Kristin L; Bo, Yunxin; Booker, Shon K; Caenepeel, Sean; Freeman, Daniel; Liao, Hongyu; McCarter, John; Mullady, Erin L; San Miguel, Tisha; Subramanian, Raju; Tamayo, Nuria; Wang, Ling; Whittington, Douglas A; Zalameda, Leeanne; Zhang, Nancy; Hughes, Paul E; Norman, Mark H

    2011-07-14

    The phosphoinositide 3-kinase (PI3K) family catalyzes the ATP-dependent phosphorylation of the 3'-hydroxyl group of phosphatidylinositols and plays an important role in cell growth and survival. There is abundant evidence demonstrating that PI3K signaling is dysregulated in many human cancers, suggesting that therapeutics targeting the PI3K pathway may have utility for the treatment of cancer. Our efforts to identify potent, efficacious, and orally available PI3K/mammalian target of rapamycin (mTOR) dual inhibitors resulted in the discovery of a series of substituted quinolines and quinoxalines derivatives. In this report, we describe the structure-activity relationships, selectivity, and pharmacokinetic data of this series and illustrate the in vivo pharmacodynamic and efficacy data for a representative compound.

  4. Predicting the structures of complexes between phosphoinositide 3-kinase (PI3K) and romidepsin-related compounds for the drug design of PI3K/histone deacetylase dual inhibitors using computational docking and the ligand-based drug design approach.

    PubMed

    Oda, Akifumi; Saijo, Ken; Ishioka, Chikashi; Narita, Koichi; Katoh, Tadashi; Watanabe, Yurie; Fukuyoshi, Shuichi; Takahashi, Ohgi

    2014-11-01

    Predictions of the three-dimensional (3D) structures of the complexes between phosphoinositide 3-kinase (PI3K) and two inhibitors were conducted using computational docking and the ligand-based drug design approach. The obtained structures were refined by structural optimizations and molecular dynamics (MD) simulations. The ligands were located deep inside the ligand binding pocket of the p110α subunit of PI3K, and the hydrogen bond formations and hydrophobic effects of the surrounding amino acids were predicted. Although rough structures were obtained for the PI3K-inhibitor complexes before the MD simulations, the refinement of the structures by these simulations clarified the hydrogen bonding patterns of the complexes.

  5. PI3K inhibitors for cancer therapy: what has been achieved so far?

    PubMed

    Wu, Peng; Liu, Tao; Hu, Yongzhou

    2009-01-01

    PI3K is a large duel lipid and protein kinase that catalyzes phosphorylation of the 3-hydroxyl position of phosphatidylinositides (PIs) and plays a crucial role in the cellular signaling network. Inhibition of the phosphatidylinositol 3-kinase (PI3K) signaling pathway is a newly identified strategy for the discovery and development of certain therapeutic agents. Among the various subtypes of PI3K, class IA PI3Kalpha has gained increasing attention as a promising drug target for the treatment of cancer due to its frequent mutations and amplifications in various human cancers. Here, we discuss the insights gained so far relevant to the development of PI3K inhibitors for the treatment of human cancers. Emphasis is on the structure-activity relationship of PI3K inhibitors which bear the most significant PI3Kalpha inhibitory activities. We also highlight PI3K inhibitors that are currently under clinical trials for cancers. PMID:19275602

  6. Reactivation of AKT signaling following treatment of cancer cells with PI3K inhibitors attenuates their antitumor effects

    SciTech Connect

    Dufour, Marc; Dormond-Meuwly, Anne; Pythoud, Catherine; Demartines, Nicolas; Dormond, Olivier

    2013-08-16

    Highlights: •PI3K inhibitors inhibit AKT only transiently. •Re-activation of AKT limits the anti-cancer effect of PI3K inhibitors. •The results suggest to combine PI3K and AKT inhibitors in cancer therapy. -- Abstract: Targeting the phosphatidylinositol-3-kinase (PI3K) is a promising approach in cancer therapy. In particular, PI3K blockade leads to the inhibition of AKT, a major downstream effector responsible for the oncogenic activity of PI3K. However, we report here that small molecule inhibitors of PI3K only transiently block AKT signaling. Indeed, treatment of cancer cells with PI3K inhibitors results in a rapid inhibition of AKT phosphorylation and signaling which is followed by the reactivation of AKT signaling after 48 h as observed by Western blot. Reactivation of AKT signaling occurs despite effective inhibition of PI3K activity by PI3K inhibitors. In addition, wortmannin, a broad range PI3K inhibitor, did not block AKT reactivation suggesting that AKT signals independently of PI3K. In a therapeutical perspective, combining AKT and PI3K inhibitors exhibit stronger anti-proliferative and pro-apoptotic effects compared to AKT or PI3K inhibitors alone. Similarly, in a tumor xenograft mouse model, concomitant PI3K and AKT blockade results in stronger anti-cancer activity compared with either blockade alone. This study shows that PI3K inhibitors only transiently inhibit AKT which limits their antitumor activities. It also provides the proof of concept to combine PI3K inhibitors with AKT inhibitors in cancer therapy.

  7. PIK3CA mutations can initiate pancreatic tumorigenesis and are targetable with PI3K inhibitors

    PubMed Central

    Payne, S N; Maher, M E; Tran, N H; Van De Hey, D R; Foley, T M; Yueh, A E; Leystra, A A; Pasch, C A; Jeffrey, J J; Clipson, L; Matkowskyj, K A; Deming, D A

    2015-01-01

    Aberrations in the phosphoinositide 3-kinase (PI3K) signaling pathway have a key role in the pathogenesis of numerous cancers by altering cell growth, metabolism, proliferation and apoptosis. Interest in targeting the PI3K signaling cascade continues, as new agents are being clinically evaluated. PIK3CA mutations result in a constitutively active PI3K and are present in a subset of pancreatic cancers. Here we examine mutant PIK3CA-mediated pancreatic tumorigenesis and the response of PIK3CA mutant pancreatic cancers to dual PI3K/mammalian target of rapamycin (mTOR) inhibition. Two murine models were generated expressing a constitutively active PI3K within the pancreas. An increase in acinar-to-ductal metaplasia and pancreatic intraepithelial neoplasms (PanINs) was identified. In one model these lesions were detected as early as 10 days of age. Invasive pancreatic ductal adenocarcinoma developed in these mice as early as 20 days of age. These cancers were highly sensitive to treatment with dual PI3K/mTOR inhibition. In the second model, PanINs and invasive cancer develop with a greater latency owing to a lesser degree of PI3K pathway activation in this murine model. In addition to PI3K pathway activation, increased ERK1/2 signaling is common in human pancreatic cancers. Phosphorylation of ERK1/2 was also investigated in these models. Phosphorylation of ERK1/2 is demonstrated in the pre-neoplastic lesions and invasive cancers. This activation of ERK1/2 is diminished with dual PI3K/mTOR inhibition. In summary, PIK3CA mutations can initiate pancreatic tumorigenesis and these cancers are particularly sensitive to dual PI3K/mTOR inhibition. Future studies of PI3K pathway inhibitors for patients with PIK3CA mutant pancreatic cancers are warranted. PMID:26436951

  8. Icaritin requires Phosphatidylinositol 3 kinase (PI3K)/Akt signaling to counteract skeletal muscle atrophy following mechanical unloading

    PubMed Central

    ZHANG, Zong-Kang; LI, Jie; LIU, Jin; GUO, Baosheng; LEUNG, Albert; ZHANG, Ge; ZHANG, Bao-Ting

    2016-01-01

    Counteracting muscle atrophy induced by mechanical unloading/inactivity is of great clinical need and challenge. A therapeutic agent that could counteract muscle atrophy following mechanical unloading in safety is desired. This study showed that natural product Icaritin (ICT) could increase the phosphorylation level of Phosphatidylinositol 3 kinase (PI3K) at p110 catalytic subunit and promote PI3K/Akt signaling markers in C2C12 cells. This study further showed that the high dose ICT treatment could significantly attenuate the decreases in the phosphorylation level of PI3K at p110 catalytic subunit and its downstream markers related to protein synthesis, and inhibit the increases in protein degradation markers at mRNA and protein levels in rat soleus muscle following 28-day hindlimb unloading. In addition, the decreases in soleus muscle mass, muscle fiber cross-sectional area, twitch force, specific force, contraction time and half relaxation time could be significantly attenuated by the high dose ICT treatment. The low dose ICT treatment could moderately attenuate the above changes induced by unloading. Wortmannin, a specific inhibitor of PI3K at p110 catalytic subunit, could abolish the above effects of ICT in vitro and in vivo, indicating that PI3K/Akt signaling could be required by ICT to counteract skeletal muscle atrophy following mechanical unloading. PMID:26831566

  9. Status of PI3K/Akt/mTOR pathway inhibitors in lymphoma.

    PubMed

    Westin, Jason R

    2014-10-01

    The phosphatidylinositol-3-kinase (PI3K) pathway is well known to regulate a wide variety of essential cellular functions, including glucose metabolism, translational regulation of protein synthesis, cell proliferation, apoptosis, and survival. Aberrations in the PI3K pathway are among the most frequently observed in cancer, and include amplifications, rearrangements, mutations, and loss of regulators. As a net result of these anomalies, the PI3K pathway is activated in many malignancies, including in Hodgkin and non-Hodgkin lymphomas, and yields a competitive growth and survival advantage, increased metastatic ability, and resistance to conventional therapy. Numerous inhibitors targeting various nodes in the PI3K pathway are undergoing clinical development, and their current status in lymphoma will be the focus of this review.

  10. PI3K isoform-selective inhibitors: next-generation targeted cancer therapies

    PubMed Central

    Wang, Xiang; Ding, Jian; Meng, Ling-hua

    2015-01-01

    The pivotal roles of phosphatidylinositol 3-kinases (PI3Ks) in human cancers have inspired active development of small molecules to inhibit these lipid kinases. However, the first-generation pan-PI3K and dual-PI3K/mTOR inhibitors have encountered problems in clinical trials, with limited efficacies as a monotherapeutic agent as well as a relatively high rate of side effects. It is increasingly recognized that different PI3K isoforms play non-redundant roles in particular tumor types, which has prompted the development of isoform-selective inhibitors for pre-selected patients with the aim for improving efficacy while decreasing undesirable side effects. The success of PI3K isoform-selective inhibitors is represented by CAL101 (Idelalisib), a first-in-class PI3Kδ-selective small-molecule inhibitor that has been approved by the FDA for the treatment of chronic lymphocytic leukemia, indolent B-cell non-Hodgkin's lymphoma and relapsed small lymphocytic lymphoma. Inhibitors targeting other PI3K isoforms are also being extensively developed. This review focuses on the recent progress in development of PI3K isoform-selective inhibitors for cancer therapy. A deeper understanding of the action modes of novel PI3K isoform-selective inhibitors will provide valuable information to further validate the concept of targeting specific PI3K isoforms, while the identification of biomarkers to stratify patients who are likely to benefit from the therapy will be essential for the success of these agents. PMID:26364801

  11. First-in-human Phase I study of Pictilisib (GDC-0941), a potent pan-class I phosphatidylinositol-3-kinase (PI3K) inhibitor, in patients with advanced solid tumors

    PubMed Central

    Baird, Richard; Kristeleit, Rebecca; Shah, Krunal; Moreno, Victor; Clarke, Paul A.; Raynaud, Florence I.; Levy, Gallia; Ware, Joseph A; Mazina, Kathryn; Lin, Ray; Wu, Jenny; Fredrickson, Jill; Spoerke, Jill M; Lackner, Mark R; Yan, Yibing; Friedman, Lori S.; Kaye, Stan B.; Derynck, Mika K.; Workman, Paul; de Bono, Johann S.

    2014-01-01

    Purpose This first-in-human dose-escalation trial evaluated the safety, tolerability, maximal tolerated dose (MTD), dose limiting toxicities (DLTs), pharmacokinetics, pharmacodynamics and preliminary clinical activity of pictilisib (GDC-0941), an oral, potent and selective inhibitor of the Class I phosphatidylinositol-3-kinases (PI3K). Patients and Methods Sixty patients with solid tumors received pictilisib at 14 dose levels from 15 to 450mg once-daily, initially on days 1-21 every 28 days and later, utilizing continuous dosing for selected dose levels. Pharmacodynamic studies incorporated 18F-FDG-PET, and assessment of phosphorylated AKT and S6 ribosomal protein in platelet-rich plasma and tumor tissue. Results Pictilisib was well-tolerated. The most common toxicities were grade 1-2 nausea, rash and fatigue while the DLT was grade 3 maculopapular rash (450mg, 2 of 3 patients; 330mg, 1 of 7 patients). The pharmacokinetic profile was dose-proportional and supported once-daily dosing. Levels of phosphorylated serine-473 AKT were suppressed >90% in platelet rich plasma at 3 hours post-dose at the MTD and in tumor at pictilisib doses associated with AUC >20uM.hr. Significant increase in plasma insulin and glucose levels, and >25% decrease in 18F-FDG uptake by PET in 7 of 32 evaluable patients confirmed target modulation. A patient with V600E BRAF mutant melanoma and another with platinum-refractory epithelial ovarian cancer exhibiting PTEN loss and PIK3CA amplification demonstrated partial response by RECIST and GCIG-CA125 criteria, respectively. Conclusion Pictilisib was safely administered with a dose-proportional pharmacokinetic profile, on-target pharmacodynamic activity at dose levels ≥100mg and signs of antitumor activity. The recommended Phase II dose was continuous dosing at 330mg once-daily. PMID:25370471

  12. Discovery of a Novel Series of Thienopyrimidine as Highly Potent and Selective PI3K Inhibitors

    PubMed Central

    2015-01-01

    Inhibition of the phosphoinositide 3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) signaling pathway provides a promising new approach for cancer therapy. Through a rational design, a novel series of thienopyrimidine was discovered as highly potent and selective PI3K inhibitors. These thienopyrimidine derivatives were demonstrated to bear nanomolar PI3Kα inhibitory potency with over 100-fold selectivity against mTOR kinase. The lead compounds 6g and 6k showed good developability profiles in cell-based proliferation and ADME assays. In this communication, their design, synthesis, structure–activity relationship, selectivity, and some developability properties are described. PMID:25893045

  13. PI-3K Inhibitors Preferentially Target CD15+ Cancer Stem Cell Population in SHH Driven Medulloblastoma

    PubMed Central

    Singh, Alok R.; Joshi, Shweta; Zulcic, Muamera; Alcaraz, Michael; Garlich, Joseph R.; Morales, Guillermo A.; Cho, Yoon J.; Bao, Lei; Levy, Michael L.; Newbury, Robert; Malicki, Denise; Messer, Karen; Crawford, John; Durden, Donald L.

    2016-01-01

    Sonic hedgehog (SHH) medulloblastoma (MB) subtype is driven by a proliferative CD15+ tumor propagating cell (TPC), also considered in the literature as a putative cancer stem cell (CSC). Despite considerable research, much of the biology of this TPC remains unknown. We report evidence that phosphatase and tensin homolog (PTEN) and phosphoinositide 3-kinase (PI-3K) play a crucial role in the propagation, survival and potential response to therapy in this CD15+ CSC/TPC-driven malignant disease. Using the ND2-SmoA1 transgenic mouse model for MB, mouse genetics and patient-derived xenografts (PDXs), we demonstrate that the CD15+TPCs are 1) obligately required for SmoA1Tg-driven tumorigenicity 2) regulated by PTEN and PI-3K signaling 3) selectively sensitive to the cytotoxic effects of pan PI-3K inhibitors in vitro and in vivo but resistant to chemotherapy 4) in the SmoA1Tg mouse model are genomically similar to the SHH human MB subgroup. The results provide the first evidence that PTEN plays a role in MB TPC signaling and biology and that PI-3K inhibitors target and suppress the survival and proliferation of cells within the mouse and human CD15+ cancer stem cell compartment. In contrast, CD15+ TPCs are resistant to cisplatinum, temozolomide and the SHH inhibitor, NVP-LDE-225, agents currently used in treatment of medulloblastoma. These studies validate the therapeutic efficacy of pan PI-3K inhibitors in the treatment of CD15+ TPC dependent medulloblastoma and suggest a sequential combination of PI-3K inhibitors and chemotherapy will have augmented efficacy in the treatment of this disease. PMID:26938241

  14. PI-3K Inhibitors Preferentially Target CD15+ Cancer Stem Cell Population in SHH Driven Medulloblastoma.

    PubMed

    Singh, Alok R; Joshi, Shweta; Zulcic, Muamera; Alcaraz, Michael; Garlich, Joseph R; Morales, Guillermo A; Cho, Yoon J; Bao, Lei; Levy, Michael L; Newbury, Robert; Malicki, Denise; Messer, Karen; Crawford, John; Durden, Donald L

    2016-01-01

    Sonic hedgehog (SHH) medulloblastoma (MB) subtype is driven by a proliferative CD15+ tumor propagating cell (TPC), also considered in the literature as a putative cancer stem cell (CSC). Despite considerable research, much of the biology of this TPC remains unknown. We report evidence that phosphatase and tensin homolog (PTEN) and phosphoinositide 3-kinase (PI-3K) play a crucial role in the propagation, survival and potential response to therapy in this CD15+ CSC/TPC-driven malignant disease. Using the ND2-SmoA1 transgenic mouse model for MB, mouse genetics and patient-derived xenografts (PDXs), we demonstrate that the CD15+TPCs are 1) obligately required for SmoA1Tg-driven tumorigenicity 2) regulated by PTEN and PI-3K signaling 3) selectively sensitive to the cytotoxic effects of pan PI-3K inhibitors in vitro and in vivo but resistant to chemotherapy 4) in the SmoA1Tg mouse model are genomically similar to the SHH human MB subgroup. The results provide the first evidence that PTEN plays a role in MB TPC signaling and biology and that PI-3K inhibitors target and suppress the survival and proliferation of cells within the mouse and human CD15+ cancer stem cell compartment. In contrast, CD15+ TPCs are resistant to cisplatinum, temozolomide and the SHH inhibitor, NVP-LDE-225, agents currently used in treatment of medulloblastoma. These studies validate the therapeutic efficacy of pan PI-3K inhibitors in the treatment of CD15+ TPC dependent medulloblastoma and suggest a sequential combination of PI-3K inhibitors and chemotherapy will have augmented efficacy in the treatment of this disease. PMID:26938241

  15. Targeting the phosphatidylinositol 3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) pathway: an emerging treatment strategy for squamous cell lung carcinoma.

    PubMed

    Beck, Joseph Thaddeus; Ismail, Amen; Tolomeo, Christina

    2014-09-01

    Squamous cell lung carcinoma accounts for approximately 30% of all non-small cell lung cancers (NSCLCs). Despite progress in the understanding of the biology of cancer, cytotoxic chemotherapy remains the standard of care for patients with squamous cell lung carcinoma, but the prognosis is generally poor. The phosphatidylinositol 3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) pathway is one of the most commonly activated signaling pathways in cancer, leading to cell proliferation, survival, and differentiation. It has therefore become a major focus of clinical research. Various alterations in the PI3K/AKT/mTOR pathway have been identified in squamous cell lung carcinoma and a number of agents targeting these alterations are in clinical development for use as single agents and in combination with other targeted and conventional treatments. These include pan-PI3K inhibitors, isoform-specific PI3K inhibitors, AKT inhibitors, mTOR inhibitors, and dual PI3K/mTOR inhibitors. These agents have demonstrated antitumor activity in preclinical models of NSCLC and preliminary clinical evidence is also available for some agents. This review will discuss the role of the PI3K/AKT/mTOR pathway in cancer and how the discovery of genetic alterations in this pathway in patients with squamous cell lung carcinoma can inform the development of targeted therapies for this disease. An overview of ongoing clinical trials investigating PI3K/AKT/mTOR pathway inhibitors in squamous cell lung carcinoma will also be included.

  16. Discovery of GSK2126458, a Highly Potent Inhibitor of PI3K and the Mammalian Target of Rapamycin

    SciTech Connect

    Knight, Steven D.; Adams, Nicholas D.; Burgess, Joelle L.; Chaudhari, Amita M.; Darcy, Michael G.; Donatelli, Carla A.; Luengo, Juan I.; Newlander, Ken A.; Parrish, Cynthia A.; Ridgers, Lance H.; Sarpong, Martha A.; Schmidt, Stanley J.; Aller, Glenn S.Van; Carson, Jeffrey D.; Diamond, Melody A.; Elkins, Patricia A.; Gardiner, Christine M.; Garver, Eric; Gilbert, Seth A.; Gontarek, Richard R.; Jackson, Jeffrey R.; Kershner, Kevin L.; Luo, Lusong; Raha, Kaushik; Sherk, Christian S.; Sung, Chiu-Mei; Sutton, David; Tummino, Peter J.; Wegrzyn, Ronald J.; Auger, Kurt R.; Dhanak, Dashyant

    2010-09-30

    Phosphoinositide 3-kinase {alpha} (PI3K{alpha}) is a critical regulator of cell growth and transformation, and its signaling pathway is the most commonly mutated pathway in human cancers. The mammalian target of rapamycin (mTOR), a class IV PI3K protein kinase, is also a central regulator of cell growth, and mTOR inhibitors are believed to augment the antiproliferative efficacy of PI3K/AKT pathway inhibition. 2,4-Difluoro-N-{l_brace}2-(methyloxy)-5-[4-(4-pyridazinyl)-6-quinolinyl]-3-pyridinyl{r_brace}benzenesulfonamide (GSK2126458, 1) has been identified as a highly potent, orally bioavailable inhibitor of PI3K{alpha} and mTOR with in vivo activity in both pharmacodynamic and tumor growth efficacy models. Compound 1 is currently being evaluated in human clinical trials for the treatment of cancer.

  17. Trastuzumab-resistant cells rely on a HER2-PI3K-FoxO-survivin axis and are sensitive to PI3K inhibitors.

    PubMed

    Chakrabarty, Anindita; Bhola, Neil E; Sutton, Cammie; Ghosh, Ritwik; Kuba, María Gabriela; Dave, Bhuvanesh; Chang, Jenny C; Arteaga, Carlos L

    2013-02-01

    The antibody trastuzumab is approved for treatment of patients with HER2 (ERBB2)-overexpressing breast cancer. A significant fraction of these tumors are either intrinsically resistant or acquire resistance rendering the drug ineffective. The development of resistance has been attributed to failure of the antibody to inhibit phosphoinositide 3-kinase (PI3K), which is activated by the HER2 network. Herein, we examined the effects of PI3K blockade in trastuzumab-resistant breast cancer cell lines. Treatment with the pan-PI3K inhibitor XL147 and trastuzumab reduced proliferation and pAKT levels, triggering apoptosis of trastuzumab-resistant cells. Compared with XL147 alone, the combination exhibited a superior antitumor effect against trastuzumab-resistant tumor xenografts. Furthermore, treatment with XL147 and trastuzumab reduced the cancer stem-cell (CSC) fraction within trastuzumab-resistant cells both in vitro and in vivo. These effects were associated with FoxO-mediated inhibition of transcription of the antiapoptosis gene survivin (BIRC5) and the CSC-associated cytokine interleukin-8. RNA interference-mediated or pharmacologic inhibition of survivin restored sensitivity to trastuzumab in resistant cells. In a cohort of patients with HER2-overexpressing breast cancer treated with trastuzumab, higher pretreatment tumor levels of survivin RNA correlated with poor response to therapy. Together, our results suggest that survivin blockade is required for therapeutic responses to trastuzumab and that by combining trastuzumab and PI3K inhibitors, CSCs can be reduced within HER2(+) tumors, potentially preventing acquired resistance to anti-HER2 therapy.

  18. Role of phosphoinositide 3-kinase IA (PI3K-IA) activation in cardioprotection induced by ouabain preconditioning.

    PubMed

    Duan, Qiming; Madan, Namrata D; Wu, Jian; Kalisz, Jennifer; Doshi, Krunal Y; Haldar, Saptarsi M; Liu, Lijun; Pierre, Sandrine V

    2015-03-01

    Acute myocardial infarction, the clinical manifestation of ischemia-reperfusion (IR) injury, is a leading cause of death worldwide. Like ischemic preconditioning (IPC) induced by brief episodes of ischemia and reperfusion, ouabain preconditioning (OPC) mediated by Na/K-ATPase signaling protects the heart against IR injury. Class I PI3K activation is required for IPC, but its role in OPC has not been investigated. While PI3K-IB is critical to IPC, studies have suggested that ouabain signaling is PI3K-IA-specific. Hence, a pharmacological approach was used to test the hypothesis that OPC and IPC rely on distinct PI3K-I isoforms. In Langendorff-perfused mouse hearts, OPC was initiated by 4 min of ouabain 10 μM and IPC was triggered by 4 cycles of 5 min ischemia and reperfusion prior to 40 min of global ischemia and 30 min of reperfusion. Without affecting PI3K-IB, ouabain doubled PI3K-IA activity and Akt phosphorylation at Ser(473). IPC and OPC significantly preserved cardiac contractile function and tissue viability as evidenced by left ventricular developed pressure and end-diastolic pressure recovery, reduced lactate dehydrogenase release, and decreased infarct size. OPC protection was blunted by the PI3K-IA inhibitor PI-103, but not by the PI3K-IB inhibitor AS-604850. In contrast, IPC-mediated protection was not affected by PI-103 but was blocked by AS-604850, suggesting that PI3K-IA activation is required for OPC while PI3K-IB activation is needed for IPC. Mechanistically, PI3K-IA activity is required for ouabain-induced Akt activation but not PKCε translocation. However, in contrast to PKCε translocation which is critical to protection, Akt activity was not required for OPC. Further studies shall reveal the identity of the downstream targets of this new PI3K IA-dependent branch of OPC. These findings may be of clinical relevance in patients at risk for myocardial infarction with underlying diseases and/or medication that could differentially affect the

  19. The Emerging Role of PI3K Inhibitors in the Treatment of Hematological Malignancies: Preclinical Data and Clinical Progress to Date.

    PubMed

    Seiler, Till; Hutter, Grit; Dreyling, Martin

    2016-04-01

    The phosphoinositide 3-kinase (PI3K)/Akt/mTOR pathway is implicated in the pathogenesis of lymphoma. Deeper understanding of the diversity and biological impact of this pathway has led to the development of specific inhibitors to this pathway. Preclinical data in cell lines, patient samples and disease models have broadened our understanding of PI3K inhibition. Several PI3K inhibitors are currently in advanced stages of clinical development. Idelalisib is the first agent of this new substance class to be approved in chronic lymphocytic leukemia and follicular lymphoma. Other agents specifically target different PI3K isoforms and show promising clinical efficacy. PMID:27052260

  20. Sequential application of a cytotoxic nanoparticle and a PI3K inhibitor enhances antitumor efficacy

    PubMed Central

    Pandey, Ambarish; Goldman, Aaron; Sarangi, Sasmit; Sengupta, Poulomi; Phipps, Colin; Kopparam, Jawahar; Oh, Michael; Basu, Sudipta; Kohandel, Mohammad; Sengupta, Shiladitya

    2013-01-01

    Nanomedicines that preferentially deploy cytotoxic agents to tumors, and molecular targeted therapeutics that inhibit specific aberrant oncogenic drivers are emerging as the new paradigm for the management of cancer. While combination therapies are a mainstay of cancer chemotherapy, few studies have addressed the combination of nanomedicines and molecular targeted therapeutics. Furthermore, limited knowledge exists on the impact of sequencing of such therapeutics and nanomedicines on the antitumor outcome. Here we engineered a supramolecular cis-platinum nanoparticle, which induced apoptosis in breast cancer cells but also elicited pro-survival signaling via an epidermal growth factor receptor-phosphatidylinositol 3 kinase (PI3K) pathway. A combination of mathematical modeling and in vitro and in vivo validation using a pharmacological inhibitor of PI3K, PI828, demonstrate that administration of PI828 following treatment with the supramolecular cis-platinum nanoparticle results in enhanced antitumor efficacy in breast cancer as compared with when the sequence is reversed or when the two treatments are administered simultaneously. This study addresses, for the first time, the impact of drug sequencing in the case of a combination of a nanomedicine and a targeted therapeutic. Furthermore, our results indicate that a rational combination of cis-platinum nanoparticles and a PI3K-targeted therapeutic can emerge as a potential therapy for breast cancer. PMID:24121494

  1. Biochemical, biological and structural properties of romidepsin (FK228) and its analogs as novel HDAC/PI3K dual inhibitors.

    PubMed

    Saijo, Ken; Imamura, Jin; Narita, Koichi; Oda, Akifumi; Shimodaira, Hideki; Katoh, Tadashi; Ishioka, Chikashi

    2015-02-01

    Romidepsin (FK228, depsipeptide) is a potent histone deacetylase (HDAC) inhibitor that has FDA approval for the treatment of cutaneous and peripheral T-cell lymphomas. We have previously reported that FK228 and its analogs have an additional activity as phosphatidylinositol 3-kinase (PI3K) inhibitors, and are defined as HDAC/PI3K dual inhibitors. Because a combination of an HDAC inhibitor and a PI3K inhibitor induces apoptosis in human cancer cells in a synergistic manner, development of an HDAC/PI3K dual inhibitor will provide an attractive novel drug for cancer therapy. Using structure-based optimization of the analogs, FK-A11 was identified as the most potent analog. FK-A11 inhibited phosphorylation of AKT and accelerated histone acetylation at lower concentrations, resulting in stronger cytotoxic effects than FK228 and the other analogs in human cancer cells. In this study, we have characterized the biochemical, biological and structural properties of FK228 analogs as PI3K inhibitors. First, FK-A11 is an ATP competitive PI3K inhibitor. Second, FK-A11 is a pan-p110 isoform inhibitor. Third, FK-A11 selectively inhibits PI3K among 22 common cellular kinases. Fourth, conformational changes of FK228 analogs by reduction of an internal disulfide bond have no effect on PI3K inhibitory activity, unlike HDAC inhibitory activity. Finally, molecular modeling of PI3K-FK228 analogs and analyses of the binding affinities identified the structure that defines potency for PI3K inhibitory activity. These results prove our concept that a series of FK228 analogs are HDAC/PI3K dual inhibitors. These findings should help in the development of FK228 analogs as novel HDAC/PI3K dual inhibitors.

  2. A Switch of G Protein-Coupled Receptor Binding Preference from Phosphoinositide 3-Kinase (PI3K)–p85 to Filamin A Negatively Controls the PI3K Pathway

    PubMed Central

    Najib, Souad; Saint-Laurent, Nathalie; Estève, Jean-Pierre; Schulz, Stefan; Boutet-Robinet, Elisa; Fourmy, Daniel; Lättig, Jens; Mollereau, Catherine; Pyronnet, Stéphane; Susini, Christiane

    2012-01-01

    Frequent oncogenic alterations occur in the phosphoinositide 3-kinase (PI3K) pathway, urging identification of novel negative controls. We previously reported an original mechanism for restraining PI3K activity, controlled by the somatostatin G protein-coupled receptor (GPCR) sst2 and involving a ligand-regulated interaction between sst2 with the PI3K regulatory p85 subunit. We here identify the scaffolding protein filamin A (FLNA) as a critical player regulating the dynamic of this complex. A preexisting sst2-p85 complex, which was shown to account for a significant basal PI3K activity in the absence of ligand, is disrupted upon sst2 activation. FLNA was here identified as a competitor of p85 for direct binding to two juxtaposed sites on sst2. Switching of GPCR binding preference from p85 toward FLNA is determined by changes in the tyrosine phosphorylation of p85- and FLNA-binding sites on sst2 upon activation. It results in the disruption of the sst2-p85 complex and the subsequent inhibition of PI3K. Knocking down FLNA expression, or abrogating FLNA recruitment to sst2, reversed the inhibition of PI3K and of tumor growth induced by sst2. Importantly, we report that this FLNA inhibitory control on PI3K can be generalized to another GPCR, the mu opioid receptor, thereby providing an unprecedented mechanism underlying GPCR-negative control on PI3K. PMID:22203038

  3. PI3K Inhibitor Combined With Chemotherapy Can Enhance the Apoptosis of Neuroblastoma Cells In Vitro and In Vivo.

    PubMed

    Geng, Xianjie; Xie, Lingling; Xing, Hongshun

    2016-10-01

    Activation of the phosphoinositide 3-kinase (PI3K)/Akt signaling pathway is a novel poor prognostic indicator of neuroblastoma (NB), and the positive effects of chemotherapy on NB have been confirmed. In this study, we investigated the effect of small molecule PI3K inhibitor PI103 on chemosensitivity. The PI3K inhibitor cooperates with doxorubicin to synergistically induce apoptosis and to reduce tumor growth of NB in in vitro and in vivo models. Human NB cells, SH-SY5Y and SK-N-BE(2), were treated with PI103 combined doxorubicin-enhanced Bid cleavage, activated Bax, and caspase 3. Activation of caspase 3 was also observed in xenografts of NB in nude mice upon combination of doxorubicin with the specific PI3K inhibitor PI103. Cell viability was assessed with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assays. Both PI103 and doxorubicin inhibited growth of NB in vitro and PI103 induced a G1 arrest of NB cells. PI103 combined doxorubicin significantly inhibits the growth of established NB tumors, induced apoptosis of tumor cells, and improved the survival of mice in vivo Taken together, our findings suggest that PI3K inhibition seems to be a promising option to sensitize tumor cells for chemotherapy in NB, which may be effective in the treatment of NBs.

  4. PI3K Inhibitor Combined With Chemotherapy Can Enhance the Apoptosis of Neuroblastoma Cells In Vitro and In Vivo.

    PubMed

    Geng, Xianjie; Xie, Lingling; Xing, Hongshun

    2016-10-01

    Activation of the phosphoinositide 3-kinase (PI3K)/Akt signaling pathway is a novel poor prognostic indicator of neuroblastoma (NB), and the positive effects of chemotherapy on NB have been confirmed. In this study, we investigated the effect of small molecule PI3K inhibitor PI103 on chemosensitivity. The PI3K inhibitor cooperates with doxorubicin to synergistically induce apoptosis and to reduce tumor growth of NB in in vitro and in vivo models. Human NB cells, SH-SY5Y and SK-N-BE(2), were treated with PI103 combined doxorubicin-enhanced Bid cleavage, activated Bax, and caspase 3. Activation of caspase 3 was also observed in xenografts of NB in nude mice upon combination of doxorubicin with the specific PI3K inhibitor PI103. Cell viability was assessed with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assays. Both PI103 and doxorubicin inhibited growth of NB in vitro and PI103 induced a G1 arrest of NB cells. PI103 combined doxorubicin significantly inhibits the growth of established NB tumors, induced apoptosis of tumor cells, and improved the survival of mice in vivo Taken together, our findings suggest that PI3K inhibition seems to be a promising option to sensitize tumor cells for chemotherapy in NB, which may be effective in the treatment of NBs. PMID:26224681

  5. PI3K inhibitors as new cancer therapeutics: implications for clinical trial design

    PubMed Central

    Massacesi, Cristian; Di Tomaso, Emmanuelle; Urban, Patrick; Germa, Caroline; Quadt, Cornelia; Trandafir, Lucia; Aimone, Paola; Fretault, Nathalie; Dharan, Bharani; Tavorath, Ranjana; Hirawat, Samit

    2016-01-01

    The PI3K–AKT–mTOR pathway is frequently activated in cancer. PI3K inhibitors, including the pan-PI3K inhibitor buparlisib (BKM120) and the PI3Kα-selective inhibitor alpelisib (BYL719), currently in clinical development by Novartis Oncology, may therefore be effective as anticancer agents. Early clinical studies with PI3K inhibitors have demonstrated preliminary antitumor activity and acceptable safety profiles. However, a number of unanswered questions regarding PI3K inhibition in cancer remain, including: what is the best approach for different tumor types, and which biomarkers will accurately identify the patient populations most likely to benefit from specific PI3K inhibitors? This review summarizes the strategies being employed by Novartis Oncology to help maximize the benefits of clinical studies with buparlisib and alpelisib, including stratification according to PI3K pathway activation status, selective enrollment/target enrichment (where patients with PI3K pathway-activated tumors are specifically recruited), nonselective enrollment with mandatory tissue collection, and enrollment of patients who have progressed on previous targeted agents, such as mTOR inhibitors or endocrine therapy. An overview of Novartis-sponsored and Novartis-supported trials that are utilizing these approaches in a range of cancer types, including breast cancer, head and neck squamous cell carcinoma, non-small cell lung carcinoma, lymphoma, and glioblastoma multiforme, is also described. PMID:26793003

  6. Closing escape routes: inhibition of IL-8 signaling enhances the anti-tumor efficacy of PI3K inhibitors.

    PubMed

    Juvekar, Ashish; Wulf, Gerburg M

    2013-04-08

    The phosphoinositide 3-kinase (PI3K) pathway serves as a relay where signals that emanate from the cell membrane are received and converted into intracellular signals that promote proliferation and survival. Inhibitors of PI3K hold promise for the treatment of breast cancer because activation of this pathway is highly prevalent. However, as is increasingly observed with inhibitors of cell signaling, there appear to be mechanisms of primary and secondary resistance. Britschgi and colleagues report that compensatory activation of the IL-8 signaling axis is a mechanism of primary resistance to PI3K inhibitors in some triple-negative breast cancers. In a set of experiments that carefully emulate the clinical scenario in a mouse model, they show that simultaneous inhibition of Janus kinase 2 enhances the efficacy of PI3K/mammalian target of rapamycin inhibition. Their paper lends further support to the concept that successful design of treatments with signal transduction inhibitors must anticipate potential escape routes - and include agents to simultaneously block them.

  7. Infectious bursal disease virus activates the phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway by interaction of VP5 protein with the p85{alpha} subunit of PI3K

    SciTech Connect

    Wei Li; Hou Lei; Zhu Shanshan; Wang Jing; Zhou Jiao; Liu Jue

    2011-08-15

    Phosphatidylinositol 3-kinase (PI3K)/Akt signaling is commonly activated upon virus infection and has been implicated in the regulation of diverse cellular functions such as proliferation and apoptosis. The present study demonstrated for the first time that infectious bursal disease virus (IBDV), the causative agent of a highly contagious disease in chickens, can induce Akt phosphorylation in cultured cells, by a mechanism that is dependent on PI3K. Inhibition of PI3K activation greatly enhanced virus-induced cytopathic effect and apoptotic cell death as evidenced by cleavage of poly-ADP ribose polymerase and activation of caspase-3. Investigations into the mechanism of PI3K/Akt activation revealed that IBDV activates PI3K/Akt signaling through binding of the non-structural protein VP5 to regulatory subunit p85{alpha} of PI3K resulting in the suppression of premature apoptosis and improved virus growth after infection. The results presented here provide a basis for understanding molecular mechanism of IBDV infection.

  8. NVP-BKM120, a novel PI3K inhibitor, shows synergism with a STAT3 inhibitor in human gastric cancer cells harboring KRAS mutations

    PubMed Central

    PARK, EUNJU; PARK, JINAH; HAN, SAE-WON; IM, SEOCK-AH; KIM, TAE-YOU; OH, DO-YOUN; BANG, YUNG-JUE

    2012-01-01

    Aberrations of Phosphoinositide 3-kinase (PI3K)/AKT signaling are frequently observed in many types of cancer, promoting its emergence as a promising target for cancer treatment. PI3K can become activated by various pathways, one of which includes RAS. RAS can not only directly activate the PI3K/AKT pathway via binding to p110 of PI3K, but also regulates mTOR via ERK or RSK independently of the PI3K/AKT pathway. Thus, actively mutated RAS can constitutively activate PI3K signaling. Additionally, in RAS tumorigenic transformation, signal transducer and activator of transcription 3 (STAT3) has been known also to be required. In this study, we examined the efficacy of NVP-BKM120, a pan-class I PI3K inhibitor in human gastric cancer cells and hypothesized that the combined inhibition of PI3K and STAT3 would be synergistic in KRAS mutant gastric cancer cells. NVP-BKM120 demonstrated anti-proliferative activity in 11 human gastric cancer cell lines by decreasing mTOR downstream signaling. But NVP-BKM120 treatment increased p-AKT by subsequent abrogation of feedback inhibition by stabilizing insulin receptor substrate-1. In KRAS mutant gastric cancer cells, either p-ERK or p-STAT3 was also increased upon treatment of NVP-BKM120. The synergistic efficacy study demonstrated that dual PI3K and STAT3 blockade showed a synergism in cells harboring mutated KRAS by inducing apoptosis. The synergistic effect was not seen in KRAS wild-type cells. Together, these findings suggest for the first time that the dual inhibition of PI3K and STAT3 signaling may be an effective therapeutic strategy for KRAS mutant gastric cancer patients. PMID:22159814

  9. Rationale-based therapeutic combinations with PI3K inhibitors in cancer treatment

    PubMed Central

    Castel, Pau; Toska, Eneda; Zumsteg, Zachary S; Carmona, F Javier; Elkabets, Moshe; Bosch, Ana; Scaltriti, Maurizio

    2014-01-01

    The PI3K/AKT/mTOR signaling is important for cell proliferation, survival, and metabolism. Hyperactivation of this pathway is one of the most common signaling abnormalities observed in cancer and a substantial effort has recently been made to develop molecules targeting this signaling cascade. However, it is becoming evident that PI3K inhibitors used as single agents do not elicit dramatic or durable responses. Given the numerous mechanisms mediating intrinsic and acquired resistance to these agents, hypothesis-based combinatorial strategies are probably needed to fully exploit their antitumor activity. In the first part of this review, we briefly dissect the PI3K/AKT/mTOR axis and list the most advanced compounds targeting different nodes of this cascade. The second part focuses on what we believe to be the most promising rationale-based therapeutic combinations with PI3K/AKT/mTOR inhibitors in solid tumors, with special emphasis on breast cancer. PMID:27308344

  10. Structure-activity relationships of phosphoinositide 3-kinase (PI3K)/mammalian target of rapamycin (mTOR) dual inhibitors: investigations of various 6,5-heterocycles to improve metabolic stability.

    PubMed

    Stec, Markian M; Andrews, Kristin L; Booker, Shon K; Caenepeel, Sean; Freeman, Daniel J; Jiang, Jian; Liao, Hongyu; McCarter, John; Mullady, Erin L; San Miguel, Tisha; Subramanian, Raju; Tamayo, Nuria; Wang, Ling; Yang, Kevin; Zalameda, Leeanne P; Zhang, Nancy; Hughes, Paul E; Norman, Mark H

    2011-07-28

    N-(6-(6-Chloro-5-(4-fluorophenylsulfonamido)pyridin-3-yl)benzo[d]thiazol-2-yl)acetamide (1) is a potent and efficacious inhibitor of PI3Kα and mTOR in vitro and in vivo. However, in hepatocyte and in vivo metabolism studies, 1 was found to undergo deacetylation on the 2-amino substituent of the benzothiazole. As an approach to reduce or eliminate this metabolic deacetylation, a variety of 6,5-heterocyclic analogues were examined as an alternative to the benzothiazole ring. Imidazopyridazine 10 was found to have similar in vitro potency and in vivo efficacy relative to 1, while only minimal amounts of the corresponding deacetylated metabolite of 10 were observed in hepatocytes. PMID:21714526

  11. PI3K pathway inhibitors: potential prospects as adjuncts to vaccine immunotherapy for glioblastoma.

    PubMed

    Oh, Taemin; Ivan, Michael E; Sun, Matthew Z; Safaee, Michael; Fakurnejad, Shayan; Clark, Aaron J; Sayegh, Eli T; Bloch, Orin; Parsa, Andrew T

    2014-01-01

    Constitutive activation of the PI3K pathway has been implicated in glioblastoma (GBM) pathogenesis. Pharmacologic inhibition can both inhibit tumor survival and downregulate expression of programmed death ligand-1, a protein highly expressed on glioma cells that strongly contributes to cancer immunosuppression. In that manner, PI3K pathway inhibitors can help optimize GBM vaccine immunotherapy. In this review, we describe and assess the potential integration of various classes of PI3K pathway inhibitors into GBM immunotherapy. While early-generation inhibitors have a wide range of immunosuppressive effects that could negate their antitumor potency, further work should better characterize how contemporary inhibitors affect the immune response. This will help determine if these inhibitors are truly a therapeutic avenue with a strong future in GBM immunotherapy.

  12. Shiga toxin type-2 (Stx2) induces glutamate release via phosphoinositide 3-kinase (PI3K) pathway in murine neurons

    PubMed Central

    Obata, Fumiko; Hippler, Lauren M.; Saha, Progyaparamita; Jandhyala, Dakshina M.; Latinovic, Olga S.

    2015-01-01

    Shiga toxin-producing Escherichia coli (STEC) can cause central nervous system (CNS) damage resulting in paralysis, seizures, and coma. The key STEC virulence factors associated with systemic illness resulting in CNS impairment are Shiga toxins (Stx). While neurons express the Stx receptor globotriaosylceramide (Gb3) in vivo, direct toxicity to neurons by Stx has not been studied. We used murine neonatal neuron cultures to study the interaction of Shiga toxin type 2 (Stx2) with cell surface expressed Gb3. Single molecule imaging three dimensional STochastic Optical Reconstruction Microscopy—Total Internal Reflection Fluorescence (3D STORM-TIRF) allowed visualization and quantification of Stx2-Gb3 interactions. Furthermore, we demonstrate that Stx2 increases neuronal cytosolic Ca2+, and NMDA-receptor inhibition blocks Stx2-induced Ca2+ influx, suggesting that Stx2-mediates glutamate release. Phosphoinositide 3-kinase (PI3K)-specific inhibition by Wortmannin reduces Stx2-induced intracellular Ca2+ indicating that the PI3K signaling pathway may be involved in Stx2-associated glutamate release, and that these pathways may contribute to CNS impairment associated with STEC infection. PMID:26236186

  13. The p110 delta structure: mechanisms for selectivity and potency of new PI(3)K inhibitors.

    PubMed

    Berndt, Alex; Miller, Simon; Williams, Olusegun; Le, Daniel D; Houseman, Benjamin T; Pacold, Joseph I; Gorrec, Fabrice; Hon, Wai-Ching; Liu, Yi; Rommel, Christian; Gaillard, Pascale; Rückle, Thomas; Schwarz, Matthias K; Shokat, Kevan M; Shaw, Jeffrey P; Williams, Roger L

    2010-02-01

    Deregulation of the phosphoinositide-3-OH kinase (PI(3)K) pathway has been implicated in numerous pathologies including cancer, diabetes, thrombosis, rheumatoid arthritis and asthma. Recently, small-molecule and ATP-competitive PI(3)K inhibitors with a wide range of selectivities have entered clinical development. In order to understand the mechanisms underlying the isoform selectivity of these inhibitors, we developed a new expression strategy that enabled us to determine to our knowledge the first crystal structure of the catalytic subunit of the class IA PI(3)K p110 delta. Structures of this enzyme in complex with a broad panel of isoform- and pan-selective class I PI(3)K inhibitors reveal that selectivity toward p110 delta can be achieved by exploiting its conformational flexibility and the sequence diversity of active site residues that do not contact ATP. We have used these observations to rationalize and synthesize highly selective inhibitors for p110 delta with greatly improved potencies. PMID:20081827

  14. Src and PI3 K inhibitors affect the virulence factors of Entamoeba histolytica.

    PubMed

    López-Contreras, L; Hernández-Ramírez, V I; Flores-García, Y; Chávez-Munguía, B; Talamás-Rohana, P

    2013-02-01

    Protein kinases (PKs) of parasitic protozoa are being evaluated as drug targets. A large number of protein kinases within the protein kinome of Entamoeba histolytica strongly suggest that protein phosphorylation is a key component of pathogenesis regulation by this parasite. PI3 K and Src are kinases previously described in this parasite, but their role is poorly understood. Here, the effect of Src-1-inhibitor and PI3 K inhibitor (Wortmannin) on the virulence factors of E. histolytica was evaluated. Results show that both inhibitors affect the actin cytoskeleton and the amoebic movement. Also, the proteolytic activity is diminished by Wortmannin, but not by Src-inhibitor-1; however, the phagocytic capacity is diminished by Wortmannin and Src-1-inhibitor. Finally, we found that the virulence in vivo of E. histolytica is affected by Wortmannin but not by Src-1-inhibitor. This study opens the way for the design of anti-amoebic drugs based on kinase inhibition.

  15. Effects of PI3K inhibitor NVP-BKM120 on overcoming drug resistance and eliminating cancer stem cells in human breast cancer cells

    PubMed Central

    Hu, Y; Guo, R; Wei, J; Zhou, Y; Ji, W; Liu, J; Zhi, X; Zhang, J

    2015-01-01

    The multidrug resistance (MDR) phenotype often accompanies activation of the phosphatidylinositol 3-kinase (PI3K)/AKT pathway, which renders a survival signal to withstand cytotoxic anticancer drugs and enhances cancer stem cell (CSC) characteristics. As a result, PI3K/AKT-blocking approaches have been proposed as antineoplastic strategies, and inhibitors of PI3K/AKT are currently being trailed clinically in breast cancer patients. However, the effects of PI3K inhibitors on MDR breast cancers have not yet been elucidated. In the present study, the tumorigenic properties of three MDR breast cancer cell lines to a selective inhibitor of PI3K, NVP-BKM120 (BKM120), were assessed. We found that BKM120 showed a significant cytotoxic activity on MDR breast cancer cells both in vitro and in vivo. When doxorubicin (DOX) was combined with BKM120, strong synergistic antiproliferative effect was observed. BKM120 activity induced the blockage of PI3K/AKT signaling and NF-κB expression, which in turn led to activate caspase-3/7 and caspase-9 and changed the expression of several apoptosis-related gene expression. Furthermore, BKM120 effectively eliminated CSC subpopulation and reduced sphere formation of these drug-resistant cells. Our findings indicate that BKM120 partially overcomes the MDR phenotype in chemoresistant breast cancer through cell apoptosis induction and CSC abolishing, which appears to be mediated by the inhibition of the PI3K/AKT/NF-κB axis. This offers a strong rationale to explore the therapeutic strategy of using BKM120 alone or in combination for chemotherapy-nonresponsive breast cancer patients. PMID:26673665

  16. Combination of verteporfin-PDT and PI3K inhibitors enhances cell growth inhibition and apoptosis in endothelial cells

    NASA Astrophysics Data System (ADS)

    Kraus, Daniel; Chen, Bin

    2016-03-01

    Vascular targeted photodynamic therapy is a promising cancer treatment modality by ablating tumor vasculature. The effectiveness of this treatment is often compromised by regrowth of endothelial cells, which causes tumor recurrence. In this preliminary report, we showed that activated PI3K signaling was involved in endothelial cell regrowth after PDT with verteporfin and combination between verteporfin-PDT and PI3K pathway inhibitor BEZ235 induced more cell apoptosis and greater inhibition in cell proliferation. These results suggest that rational combination of verteporfin-PDT and PI3K inhibitors result in enhanced treatment outcomes.

  17. Recent Syntheses of PI3K/Akt/mTOR Signaling Pathway Inhibitors

    PubMed Central

    2013-01-01

    This review focuses on the syntheses of PI3K/Akt/mTOR inhibitors that have been reported outside of the patent literature in the last 5 years but is largely centered on synthetic work reported in 2011 and 2012. While focused on syntheses of inhibitors, some information on in vitro and in vivo testing of compounds is also included. Many of these reported compounds are reversible, competitive adenosine triphosphate (ATP) binding inhibitors, so given the structural similarities of many of these compounds to the adenine core, this review presents recent work on inhibitors based on where the synthetic chemistry was started, i.e. inhibitor syntheses which started with purines/pyrimidines are followed by inhibitor syntheses which began with pyridines, pyrazines, azoles, and triazines then moves to inhibitors which bear no structural resemblance to adenine: liphagal, wortmannin and quercetin analogs. The review then finishes with a short section on recent syntheses of phosphotidyl inositol (PI) analogs since competitive PI binding inhibitors represent an alternative to the competitive ATP binding inhibitors which have received the most attention. PMID:23735831

  18. Involvement of phosphoinositide 3-kinase class IA (PI3K 110α) and NADPH oxidase 1 (NOX1) in regulation of vascular differentiation induced by vascular endothelial growth factor (VEGF) in mouse embryonic stem cells.

    PubMed

    Bekhite, Mohamed M; Müller, Veronika; Tröger, Sebastian H; Müller, Jörg P; Figulla, Hans-Reiner; Sauer, Heinrich; Wartenberg, Maria

    2016-04-01

    The impact of reactive oxygen species and phosphoinositide 3-kinase (PI3K) in differentiating embryonic stem (ES) cells is largely unknown. Here, we show that the silencing of the PI3K catalytic subunit p110α and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 1 (NOX1) by short hairpin RNA or pharmacological inhibition of NOX and ras-related C3 botulinum toxin substrate 1 (Rac1) abolishes superoxide production by vascular endothelial growth factor (VEGF) in mouse ES cells and in ES-cell-derived fetal liver kinase-1(+) (Flk-1(+)) vascular progenitor cells, whereas the mitochondrial complex I inhibitor rotenone does not have an effect. Silencing p110α or inhibiting Rac1 arrests vasculogenesis at initial stages in embryoid bodies, even under VEGF treatment, as indicated by platelet endothelial cell adhesion molecule-1 (PECAM-1)-positive areas and branching points. In the absence of p110α, tube-like structure formation on matrigel and cell migration of Flk-1(+) cells in scratch migration assays are totally impaired. Silencing NOX1 causes a reduction in PECAM-1-positive areas, branching points, cell migration and tube length upon VEGF treatment, despite the expression of vascular differentiation markers. Interestingly, silencing p110α but not NOX1 inhibits the activation of Rac1, Ras homologue gene family member A (RhoA) and Akt leading to the abrogation of VEGF-induced lamellipodia structure formation. Thus, our data demonstrate that the PI3K p110α-Akt/Rac1 and NOX1 signalling pathways play a pivotal role in VEGF-induced vascular differentiation and cell migration. Rac1, RhoA and Akt phosphorylation occur downstream of PI3K and upstream of NOX1 underscoring a role of PI3K p110α in the regulation of cell polarity and migration. PMID:26553657

  19. Chloroquine or Chloroquine-PI3K/Akt Pathway Inhibitor Combinations Strongly Promote γ-Irradiation-Induced Cell Death in Primary Stem-Like Glioma Cells

    PubMed Central

    Firat, Elke; Weyerbrock, Astrid; Gaedicke, Simone; Grosu, Anca-Ligia; Niedermann, Gabriele

    2012-01-01

    We asked whether inhibitors of the phosphatidylinositol 3-kinase (PI3K)/Akt pathway, which is highly active in cancer stem cells (CSCs) and upregulated in response to genotoxic treatments, promote γ-irradiationγIR)-induced cell death in highly radioresistant, patient-derived stem-like glioma cells (SLGCs). Surprisingly, in most cases the inhibitors did not promote γIR-induced cell death. In contrast, the strongly cytostatic Ly294002 and PI-103 even tended to reduce it. Since autophagy was induced we examined whether addition of the clinically applicable autophagy inhibitor chloroquine (CQ) would trigger cell death in SLGCs. Triple therapy with CQ at doses as low as 5 to 10 µM indeed caused strong apoptosis. At slightly higher doses, CQ alone strongly promoted γIR-induced apoptosis in all SLGC lines examined. The strong apoptosis in combinations with CQ was invariably associated with strong accumulation of the autophagosomal marker LC3-II, indicating inhibition of late autophagy. Thus, autophagy-promoting effects of PI3K/Akt pathway inhibitors apparently hinder cell death induction in γ-irradiated SLGCs. However, as we show here for the first time, the late autophagy inhibitor CQ strongly promotes γIR-induced cell death in highly radioresistant CSCs, and triple combinations of CQ, γIR and a PI3K/Akt pathway inhibitor permit reduction of the CQ dose required to trigger cell death. PMID:23091617

  20. Fine particulate matter leads to reproductive impairment in male rats by overexpressing phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) signaling pathway.

    PubMed

    Cao, Xi-Ning; Yan, Chao; Liu, Dong-Yao; Peng, Jin-Pu; Chen, Jin-Jun; Zhou, Yue; Long, Chun-Lan; He, Da-Wei; Lin, Tao; Shen, Lian-Ju; Wei, Guang-Hui

    2015-09-17

    Maintenance of male reproductive function depends on normal sperm generation during which process Sertoli cells play a vital role. Studies found that fine particulate matter (PM) causes decreased male sperm quality, mechanism of which unestablished. We aim to investigate the definite mechanism of PM impairment on male reproduction. Male Sprague-Dawley rats were daily exposed to normal saline (NS) or PM2.5 with the doses of 9 mg/kg.b.w and 24 mg/kg.b.w. via intratracheal instillation for seven weeks. Reproductive function was tested by mating test and semen analysis after last exposure. Testes were collected to assess changes in histomorphology, and biomarkers including connexin 43 (Cx43), superoxide dismutase (SOD), phosphatidylinositol 3-kinase (PI3K) and phosphorylated protein kinase B (p-Akt). Male rats exposed to PM2.5 showed noticeable decreased fertility, significantly reduced sperm count, increased sperm abnormality rate and severe testicular damage in histomorphology. After PM2.5 exposure, the levels of Cx43 was significantly downregulated, and SOD was upregulated and downregulated significantly with different dose, respectively. Protein expression of PI3K and p-Akt dramatically enhanced, and the later one being located in Sertoli cells, the upward or declining trend was in dose dependent. PM2.5 exposure leads to oxidative stress impairment via PI3K/Akt signaling pathway on male reproduction in rats.

  1. Better Understanding of Phosphoinositide 3-Kinase (PI3K) Pathways in Vasculature: Towards Precision Therapy Targeting Angiogenesis and Tumor Blood Supply.

    PubMed

    Tsvetkov, D; Shymanets, A; Huang, Yu; Bucher, K; Piekorz, R; Hirsch, E; Beer-Hammer, S; Harteneck, C; Gollasch, M; Nürnberg, B

    2016-07-01

    The intracellular PI3K-AKT-mTOR pathway is involved in regulation of numerous important cell processes including cell growth, differentiation, and metabolism. The PI3Kα isoform has received particular attention as a novel molecular target in gene therapy, since this isoform plays critical roles in tumor progression and tumor blood flow and angiogenesis. However, the role of PI3Kα and other class I isoforms, i.e. PI3Kβ, γ, δ, in the regulation of vascular tone and regional blood flow are largely unknown. We used novel isoform-specific PI3K inhibitors and mice deficient in both PI3Kγ and PI3Kδ (Pik3cg(-/-)/Pik3cd(-/-)) to define the putative contribution of PI3K isoform(s) to arterial vasoconstriction. Wire myography was used to measure isometric contractions of isolated murine mesenteric arterial rings. Phenylephrine-dependent contractions were inhibited by the pan PI3K inhibitors wortmannin (100 nM) and LY294002 (10 µM). These vasoconstrictions were also inhibited by the PI3Kα isoform inhibitors A66 (10 µM) and PI-103 (1 µM), but not by the PI3Kβ isoform inhibitor TGX 221 (100 nM). Pik3cg(-/-)/Pik3cd(-/-)-arteries showed normal vasoconstriction. We conclude that PI3Kα is an important downstream element in vasoconstrictor GPCR signaling, which contributes to arterial vasocontraction via α1-adrenergic receptors. Our results highlight a regulatory role of PI3Kα in the cardiovascular system, which widens the spectrum of gene therapy approaches targeting PI3Kα in cancer cells and tumor angiogenesis and regional blood flow. PMID:27449615

  2. Taselisib (GDC-0032), a Potent β-Sparing Small Molecule Inhibitor of PI3K, Radiosensitizes Head and Neck Squamous Carcinomas Containing Activating PIK3CA Alterations

    PubMed Central

    Zumsteg, Zachary S.; Morse, Natasha; Krigsfeld, Gabriel; Gupta, Gaorav; Higginson, Daniel S.; Lee, Nancy Y.; Morris, Luc; Ganly, Ian; Shiao, Stephan L.; Powell, Simon N.; Chung, Christine H.; Scaltriti, Maurizio; Baselga, José

    2016-01-01

    Purpose Activating PIK3CA genomic alterations are frequent in head and neck squamous cell carcinoma (HNSCC), and there is an association between phosphoinositide 3-kinase (PI3K) signaling and radioresistance. Hence, we investigated the therapeutic efficacy of inhibiting PI3K with GDC-0032, a PI3K inhibitor with potent activity against p110α, in combination with radiation in HNSCC. Experimental Design The efficacy of GDC-0032 was assessed in vitro in 26 HNSCC cell lines with crystal violet proliferation assays, and changes in PI3K signaling were measured by Western blot analysis. Cytotoxicity and radiosensitization were assessed with Annexin V staining via flow cytometry and clonogenic survival assays, respectively. DNA damage repair was assessed with immunofluorescence for γH2AX foci, and cell cycle analysis was performed with flow cytometry. In vivo efficacy of GDC-0032 and radiation was assessed in xenografts implanted into nude mice. Results GDC-0032 inhibited potently PI3K signaling and displayed greater antiproliferative activity in HNSCC cell lines with PIK3CA mutations or amplification, whereas cell lines with PTEN alterations were relatively resistant to its effects. Pretreatment with GDC-0032 radiosensitized PIK3CA-mutant HNSCC cells, enhanced radiation-induced apoptosis, impaired DNA damage repair, and prolonged G2–M arrest following irradiation. Furthermore, combined GDC-0032 and radiation was more effective than either treatment alone in vivo in subcutaneous xenograft models. Conclusions GDC-0032 has increased potency in HNSCC cell lines harboring PIK3CA-activating aberrations. Further, combined GDC-0032 and radiotherapy was more efficacious than either treatment alone in PIK3CA-altered HNSCC in vitro and in vivo. This strategy warrants further clinical investigation PMID:26589432

  3. Comparison of the effects of the PI3K/mTOR inhibitors NVP-BEZ235 and GSK2126458 on tamoxifen-resistant breast cancer cells

    PubMed Central

    Kim, Ji Eun; Rewcastle, Gordon W; Finlay, Graeme J; Baguley, Bruce C

    2011-01-01

    Background Treatment with anti-estrogens or aromatase inhibitors is commonly used for patients with estrogen receptor-positive (ER+) breast cancers; however resistant disease develops almost inevitably, requiring a choice of secondary therapy. One possibility is to use inhibitors of the PI3K/mTOR pathway and several candidate drugs are in development. We examined the in vitro effects of two inhibitors of the PI3K/mTOR pathway on resistant MCF-7 cells. Results The derived sub-lines showed increased resistance to tamoxifen but none exhibited concomitantly increased sensitivity to the PI3K inhibitors. NVP-BEZ235 and GSK2126458 acted mainly by induction of cell cycle arrest, particularly in G1-phase, rather than by induction of apoptosis. The lines varied considerably in their utilization of the AKT, p70S6K and ERK pathways. NVP-BEZ235 and GSK2126458 inhibited AKT signaling but NVP-BEZ235 showed greater effects than GSK2126458 on p70S6K and rpS6 signaling with effects resembling those of rapamycin. Methods We cultured MCF-7 cells for prolonged periods either in the presence of the anti-estrogen tamoxifen (three sub-lines) or in estrogen free medium (two sub-lines) to mimic the effects of clinical treatment. We then analyzed the effects of two dual PI3K/mTOR phosphoinositide-3-kinase inhibitors, NVP-BEZ235 and GSK2126458, on the growth and signaling pathways of these MCF-7 sub-lines. The functional status of the PI3K, mTOR and ERK pathways was analyzed by measuring phosphorylation of AKT, p70S6K, rpS6 and ERK. Conclusion Increased resistance to tamoxifen in these MCF-7 sub-lines is not associated with hypersensitivity to PI3K inhibitors. While both drugs inhibited AKT signaling, NVP-BEZ235 resembled rapamycin in inhibiting the mTOR pathway. PMID:21464613

  4. A novel PI3K inhibitor PIK-C98 displays potent preclinical activity against multiple myeloma

    PubMed Central

    Yu, Yang; Qi, Huixin; Han, Kunkun; Tang, Juan; Zhang, Zubin; Zeng, Yuanying; Cao, Biyin; Qiao, Chunhua; Zhang, Hongjian; Hou, Tingjun; Mao, Xinliang

    2015-01-01

    Recent clinical trials have demonstrated targeting PI3K pathway is a promising strategy for the treatment of blood cancers. To identify novel PI3K inhibitors, we performed a high throughput virtual screen and identified several novel small molecule compounds, including PIK-C98 (C98). The cell-free enzymatic studies showed that C98 inhibited all class I PI3Ks at nano- or low micromolar concentrations but had no effects on AKT or mTOR activity. Molecular docking analysis revealed that C98 interfered with the ATP-binding pockets of PI3Ks by forming H-bonds and arene-H interactions with specific amino acid residues. The cellular assays demonstrated that C98 specifically inhibited PI3K/AKT/mTOR signaling pathway, but had no effects on other kinases and proteins including IGF-1R, ERK, p38, c-Src, PTEN, and STAT3. Inhibition of PI3K by C98 led to myeloma cell apoptosis. Furthermore, oral administration of C98 delayed tumor growth in two independent human myeloma xenograft models in nude mice but did not show overt toxicity. Pharmacokinetic analyses showed that C98 was well penetrated into myeloma tumors. Therefore, through a high throughput virtual screen we identified a novel PI3K inhibitor that is orally active against multiple myeloma with great potential for further development. PMID:25474140

  5. Novel agents and associated toxicities of inhibitors of the pi3k/Akt/mtor pathway for the treatment of breast cancer

    PubMed Central

    Chia, S.; Gandhi, S.; Joy, A.A.; Edwards, S.; Gorr, M.; Hopkins, S.; Kondejewski, J.; Ayoub, J.P.; Califaretti, N.; Rayson, D.; Dent, S.F.

    2015-01-01

    The pi3k/Akt/mtor (phosphatidylinositol 3 kinase/ Akt/mammalian target of rapamycin) signalling pathway is an established driver of oncogenic activity in human malignancies. Therapeutic targeting of this pathway holds significant promise as a treatment strategy. Everolimus, an mtor inhibitor, is the first of this class of agents approved for the treatment of hormone receptor–positive, human epidermal growth factor receptor 2–negative advanced breast cancer. Everolimus has been associated with significant improvements in progression-free survival; however, it is also associated with increased toxicity related to its specific mechanism of action. Methods A comprehensive review of the literature conducted using a focused medline search was combined with a search of current trials at http://ClinicalTrials.gov/. Summary tables of the toxicities of the various classes of pi3k/Akt/mtor inhibitors were created. A broad group of Canadian health care professionals was assembled to review the data and to produce expert opinion and summary recommendations for possible best practices in managing the adverse events associated with these pathway inhibitors. Results Differing toxicities are associated with the various classes of pi3k/Akt/mtor pathway inhibitors. The most common unique adverse events observed in everolimus clinical trials in breast cancer include stomatitis (all grades: approximately 60%), noninfectious pneumonitis (15%), rash (40%), hyperglycemia (15%), and immunosuppression (40%). To minimize grades 3 and 4 toxicities and to attempt to attain optimal outcomes, effective management of those adverse events is critical. Management should be interdisciplinary and should use approaches that include education, early recognition, active intervention, and potentially prophylactic strategies. Discussion Everolimus likely represents the first of many complex oral targeted therapies for the treatment of breast cancer. Using this agent as a template, it is essential to

  6. HS-173, a Novel PI3K Inhibitor, Attenuates the Activation of Hepatic Stellate Cells in Liver Fibrosis

    PubMed Central

    Son, Mi Kwon; Ryu, Ye-Lim; Jung, Kyung Hee; Lee, Hyunseung; Lee, Hee Seung; Yan, Hong Hua; Park, Heon Joo; Ryu, Ji-Kan; Suh, Jun–Kyu; Hong, Sungwoo; Hong, Soon-Sun

    2013-01-01

    Hepatic stellate cells (HSCs) are the primary source of matrix components in liver disease such as fibrosis. Phosphatidylinositol 3-kinase (PI3K) signaling in HSCs has been shown to induce fibrogenesis. In this study, we evaluated the anti-fibrotic activity of a novel imidazopyridine analogue (HS-173) in human HSCs as well as mouse liver fibrosis. HS-173 strongly suppressed the growth and proliferation of HSCs and induced the arrest at the G2/M phase and apoptosis in HSCs. Furthermore, it reduced the expression of extracellular matrix components such as collagen type I, which was confirmed by an in vivo study. We also observed that HS-173 blocked the PI3K/Akt signaling pathway in vitro and in vivo. Taken together, HS-173 suppressed fibrotic responses such as cell proliferation and collagen synthesis by blocking PI3K/Akt signaling. Therefore, we suggest that this compound may be an effective therapeutic agent for ameliorating liver fibrosis through the inhibition of PI3K signaling. PMID:24326778

  7. 3D-QSAR and docking studies of 3-Pyridine heterocyclic derivatives as potent PI3K/mTOR inhibitors

    NASA Astrophysics Data System (ADS)

    Yang, Wenjuan; Shu, Mao; Wang, Yuanqiang; Wang, Rui; Hu, Yong; Meng, Lingxin; Lin, Zhihua

    2013-12-01

    Phosphoinosmde-3-kinase/ mammalian target of rapamycin (PI3K/mTOR) dual inhibitors have attracted a great deal of interest as antitumor drugs research. In order to design and optimize these dual inhibitors, two types of 3D-quantitative structure-activity relationship (3D-QSAR) studies based on the ligand alignment and receptor alignment were applied using the comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA). In the study based on ligands alignment, models of PI3K (CoMFA with r2, 0.770; q2, 0.622; CoMSIA with r2, 0.945; q2, 0.748) and mTOR (CoMFA with r2, 0.850; q2, 0.654; CoMSIA with r2, 0.983; q2, 0.676) have good predictability. And in the study based on receptor alignment, models of PI3K (CoMFA with r2, 0.745; q2, 0.538; CoMSIA with r2, 0.938; q2, 0.630) and mTOR (CoMFA with r2, 0.977; q2, 0.825; CoMSIA with r2, 0.985; q2, 0.728) also have good predictability. 3D contour maps and docking results suggested different groups on the core parts of the compounds could enhance the biological activities. Finally, ten derivatives as potential candidates of PI3K/mTOR inhibitors with good predicted activities were designed.

  8. RES-529: a PI3K/AKT/mTOR pathway inhibitor that dissociates the mTORC1 and mTORC2 complexes

    PubMed Central

    2016-01-01

    RES-529 (previously named Palomid 529, P529) is a phosphoinositide 3-kinase (PI3K)/AKT/mechanistic target of rapamycin (mTOR) pathway inhibitor that interferes with the pathway through both mTOR complex 1 (mTORC1) and mTOR complex 2 (mTORC2) dissociation. This compound is currently being developed in oncology and ophthalmology. The oncology focus is for the treatment of glioblastoma, where it has received orphan designation by the US Food and Drug Administration, and prostate cancer. We present a review of the PI3K/AKT/mTOR pathway, its role in tumorigenesis, and the potential of RES-529 in cancer treatment. RES-529 inhibits mTORC1/mTORC2 activity in various cancer cell lines, as noted by decreased phosphorylation of substrates including ribosomal protein S6, 4E-BP1, and AKT, leading to cell growth inhibition and death, with activity generally in the range of 5–15 μmol/l. In animal tumor models where the PI3K/AKT/mTOR pathway is abnormally activated (i.e. glioblastoma, prostate cancer, and breast cancer), RES-529 reduces tumor growth by as much as 78%. RES-529 treatment is synergistic with radiation therapy, chemotherapy, and hormonal therapy in reducing tumor growth, potentially by preventing PI3K/AKT/mTOR pathway activation associated with these treatments. Furthermore, this compound has shown antiangiogenic activity in several animal models. mTORC1 and mTORC2 have redundant and distinct activities that contribute toward oncogenesis. Current inhibitors of this pathway have primarily targeted mTORC1, but have shown limited clinical efficacy. Inhibitors of mTORC1 and mTORC2 such as RES-529 may therefore have the potential to overcome the deficiencies found in targeting only mTORC1. PMID:26918392

  9. PI3K inhibitors prime neuroblastoma cells for chemotherapy by shifting the balance towards pro-apoptotic Bcl-2 proteins and enhanced mitochondrial apoptosis.

    PubMed

    Bender, A; Opel, D; Naumann, I; Kappler, R; Friedman, L; von Schweinitz, D; Debatin, K-M; Fulda, S

    2011-01-27

    We recently identified activation of phosphatidylinositol 3'-kinase (PI3K)/Akt as a novel predictor of poor outcome in neuroblastoma. Here, we investigated the effect of small-molecule PI3K inhibitors on chemosensitivity. We provide first evidence that PI3K inhibitors, for example PI103, synergize with various chemotherapeutics (Doxorubicin, Etoposide, Topotecan, Cisplatin, Vincristine and Taxol) to trigger apoptosis in neuroblastoma cells (combination index: high synergy). Mechanistic studies reveal that PI103 cooperates with Doxorubicin to reduce Mcl-1 expression and Bim(EL) phosphorylation and to upregulate Noxa and Bim(EL) levels. This shifted ratio of pro- and antiapoptotic Bcl-2 proteins results in increased Bax/Bak conformational change, loss of mitochondrial membrane potential, cytochrome c release, caspase activation and caspase-dependent apoptosis. Although Mcl-1 knockdown enhances Doxorubicin- and PI103-induced apoptosis, silencing of Noxa, Bax/Bak or p53 reduces apoptosis, underscoring the functional relevance of the Doxorubicin- and PI103-mediated modulation of these proteins for chemosensitization. Bcl-2 overexpression inhibits Bax activation, mitochondrial perturbations, cleavage of caspases and Bid, and apoptosis, confirming the central role of the mitochondrial pathway for chemosensitization. Interestingly, the broad-range caspase inhibitor zVAD.fmk does not interfere with Bax activation or mitochondrial outer membrane permeabilization, whereas it blocks caspase activation and apoptosis, thus placing mitochondrial events upstream of caspase activation. Importantly, PI103 and Doxorubicin cooperate to induce apoptosis and to suppress tumor growth in patients' derived primary neuroblastoma cells and in an in vivo neuroblastoma model, underlining the clinical relevance of the results. Thus, targeting PI3K presents a novel and promising strategy to sensitize neuroblastoma cells for chemotherapy-induced apoptosis, which has important implications for the

  10. Structure-based optimization leads to the discovery of NSC765844, a highly potent, less toxic and orally efficacious dual PI3K/mTOR inhibitor.

    PubMed

    Han, Jinsong; Chen, Ying; Yang, Chao; Liu, Ting; Wang, Mingping; Xu, Haojie; Zhang, Ling; Zheng, Canhui; Song, Yunlong; Zhu, Ju

    2016-10-21

    The phosphoinositide 3-kinase (PI3K) family is one of the most frequently activated enzymes in a wide range of human cancers; thus, inhibition of PI3K represents a promising strategy for cancer therapy. Herein, a series of benzylamine substituted arylsulfonamides were designed and synthesized as dual PI3K/mTOR inhibitors using a strategy integrating focused library design and virtual screening, resulting in the discovery of 13b (NSC765844). The compound 13b exhibits highly potent enzyme inhibition with IC50s of 1.3, 1.8, 1.5, 3.8 and 3.8 nM for PI3Kα, β, γ, δ, and mTOR, respectively. 13b was further evaluated in NCI by an in vitro cytotoxic screening program. Broad-spectrum antitumor activities with mean GI50 value of 18.6 nM against approximately 60 human tumor cell lines were found. 13b displayed favorable physicochemical properties and superior pharmacokinetic profiles for animal studies. It significantly inhibited tumor growth when administered orally in an A549 non-small-cell lung carcinoma xenograft and BEL7404 human hepatocellular carcinoma xenograft models. On the basis of its excellent in vivo efficacy and superior pharmacokinetic profiles, 13b has been selected for further preclinical investigation as a promising anticancer drug candidate. PMID:27448924

  11. Presence of both alterations in FGFR/FGF and PI3K/AKT/mTOR confer improved outcomes for patients with metastatic breast cancer treated with PI3K/AKT/mTOR inhibitors

    PubMed Central

    Wheler, Jennifer J.; Atkins, Johnique T.; Janku, Filip; Moulder, Stacy L.; Stephens, Philip J.; Yelensky, Roman; Valero, Vicente; Miller, Vincent; Kurzrock, Razelle; Meric-Bernstam, Funda

    2016-01-01

    There is limited data on co-expression of FGFR/FGR amplifications and PI3K/ AKT/mTOR alterations in breast cancer. Tumors from patients with metastatic breast cancer referred to our Phase I Program were analyzed by next generation sequencing (NGS). Genomic libraries were selected for all exons of 236 (or 182) cancer-related genes sequenced to average depth of >500× in a CLIA laboratory (Foundation Medicine, Cambridge, MA, USA) and analyzed for all classes of genomic alterations. We report genomic profiles of 112 patients with metastatic breast cancer, median age 55 years (range, 27-78). Twenty-four patients (21%) had at least one amplified FGFR or FGF. Fifteen of the 24 patients (63%) also had an alteration in the PI3K/ AKT/mTOR pathway. There was no association between alterations in FGFR/FGF and PI3K/AKT/mTOR (P=0.49). Patients with simultaneous amplification in FGFR/FGF signaling and the PI3K/AKT/mTOR pathway had a higher rate of SD≥6 months/PR/ CR when treated with therapies targeting the PI3K/AKT/mTOR pathway than patients with only alterations in the PI3K/AKT/mTOR pathway (73% vs. 34%; P=0.0376) and remained on treatment longer (6.8 vs. 3.7 months; P=0.053). Higher response rates were seen in patients with simultaneous amplification in FGFR/FGF signaling and alterations in the PI3K/AKT/mTOR pathway who were treated with inhibitors of that pathway. PMID:27489863

  12. Presence of both alterations in FGFR/FGF and PI3K/AKT/mTOR confer improved outcomes for patients with metastatic breast cancer treated with PI3K/AKT/mTOR inhibitors.

    PubMed

    Wheler, Jennifer J; Atkins, Johnique T; Janku, Filip; Moulder, Stacy L; Stephens, Philip J; Yelensky, Roman; Valero, Vicente; Miller, Vincent; Kurzrock, Razelle; Meric-Bernstam, Funda

    2016-01-01

    There is limited data on co-expression of FGFR/FGR amplifications and PI3K/ AKT/mTOR alterations in breast cancer. Tumors from patients with metastatic breast cancer referred to our Phase I Program were analyzed by next generation sequencing (NGS). Genomic libraries were selected for all exons of 236 (or 182) cancer-related genes sequenced to average depth of >500× in a CLIA laboratory (Foundation Medicine, Cambridge, MA, USA) and analyzed for all classes of genomic alterations. We report genomic profiles of 112 patients with metastatic breast cancer, median age 55 years (range, 27-78). Twenty-four patients (21%) had at least one amplified FGFR or FGF. Fifteen of the 24 patients (63%) also had an alteration in the PI3K/ AKT/mTOR pathway. There was no association between alterations in FGFR/FGF and PI3K/AKT/mTOR (P=0.49). Patients with simultaneous amplification in FGFR/FGF signaling and the PI3K/AKT/mTOR pathway had a higher rate of SD≥6 months/PR/ CR when treated with therapies targeting the PI3K/AKT/mTOR pathway than patients with only alterations in the PI3K/AKT/mTOR pathway (73% vs. 34%; P=0.0376) and remained on treatment longer (6.8 vs. 3.7 months; P=0.053). Higher response rates were seen in patients with simultaneous amplification in FGFR/FGF signaling and alterations in the PI3K/AKT/mTOR pathway who were treated with inhibitors of that pathway. PMID:27489863

  13. p87 and p101 subunits are distinct regulators determining class IB phosphoinositide 3-kinase (PI3K) specificity.

    PubMed

    Shymanets, Aliaksei; Prajwal; Bucher, Kirsten; Beer-Hammer, Sandra; Harteneck, Christian; Nürnberg, Bernd

    2013-10-25

    Class IB phosphoinositide 3-kinase γ (PI3Kγ) comprises a single catalytic p110γ subunit, which binds to two non-catalytic subunits, p87 or p101, and controls a plethora of fundamental cellular responses. The non-catalytic subunits are assumed to be redundant adaptors for Gβγ enabling G-protein-coupled receptor-mediated regulation of PI3Kγ. Growing experimental data provide contradictory evidence. To elucidate the roles of the non-catalytic subunits in determining the specificity of PI3Kγ, we tested the impact of p87 and p101 in heterodimeric p87-p110γ and p101-p110γ complexes on the modulation of PI3Kγ activity in vitro and in living cells. RT-PCR, biochemical, and imaging data provide four lines of evidence: (i) specific expression patterns of p87 and p101, (ii) up-regulation of p101, providing the basis to consider p87 as a protein forming a constitutively and p101 as a protein forming an inducibly expressed PI3Kγ, (iii) differences in basal and stimulated enzymatic activities, and (iv) differences in complex stability, all indicating apparent diversity within class IB PI3Kγ. In conclusion, expression and activities of PI3Kγ are modified differently by p87 and p101 in vitro and in living cells, arguing for specific regulatory roles of the non-catalytic subunits in the differentiation of PI3Kγ signaling pathways. PMID:24014027

  14. Different inhibition of Gβγ-stimulated class IB phosphoinositide 3-kinase (PI3K) variants by a monoclonal antibody

    PubMed Central

    Shymanets, Aliaksei; Prajwal; Vadas, Oscar; Czupalla, Cornelia; LoPiccolo, Jaclyn; Brenowitz, Michael; Ghigo, Alessandra; Hirsch, Emilio; Krause, Eberhard; Wetzker, Reinhard; Williams, Roger L.; Harteneck, Christian; Nürnberg, Bernd

    2015-01-01

    Class IB phosphoinositide 3-kinases (PI3Kγ) are second-messenger-generating enzymes downstream of signalling cascades triggered by G-protein-coupled-receptors (GPCRs). PI3Kγ variants have one catalytic p110γ subunit that can form two different heterodimers by binding to one of a pair of non-catalytic subunits, p87 or p101. Growing experimental data argue for a different regulation of p87-p110γ and p101-p110γ allowing integration into distinct signalling pathways. Pharmacological tools enabling distinct modulation of the two variants are missing. The ability of an anti-p110γ monoclonal antibody (mAb(A)p110γ) to block PI3Kγ enzymatic activity attracted us to characterize this tool in detail using purified proteins. In order to get insight into the antibody-p110γ-interface, hydrogen-deuterium exchange coupled to mass spectrometry measurements were performed demonstrating binding of the monoclonal antibody to the C2 domain in p110γ, which was accompanied by conformational changes in the helical domain harbouring the Gβγ-binding site. We then studied the modulation of phospholipid vesicles association of PI3Kγ by the antibody. p87-p110γ showed a significantly reduced Gβγ-mediated phospholipid recruitment as compared with p101-p110γ. Concomitantly, in the presence of mAb(A)p110γ Gβγ did not bind to p87-p110γ. These data correlated with the ability of the antibody to block Gβγ-stimulated lipid kinase activity of p87-p110γ 30 times more potently than p101-p110γ. Our data argue for differential regulatory functions of the non-catalytic subunits and a specific Gβγ-dependent regulation of p101 in PI3Kγ activation. In this scenario, we consider the antibody as a valuable tool to dissect the distinct roles of the two PI3Kγ variants downstream of GPCRs. PMID:26173259

  15. The PI3K/mTOR inhibitor PF-04691502 induces apoptosis and inhibits microenvironmental signaling in CLL and the Eµ-TCL1 mouse model.

    PubMed

    Blunt, Matthew D; Carter, Matthew J; Larrayoz, Marta; Smith, Lindsay D; Aguilar-Hernandez, Maria; Cox, Kerry L; Tipton, Thomas; Reynolds, Mark; Murphy, Sarah; Lemm, Elizabeth; Dias, Samantha; Duncombe, Andrew; Strefford, Jonathan C; Johnson, Peter W M; Forconi, Francesco; Stevenson, Freda K; Packham, Graham; Cragg, Mark S; Steele, Andrew J

    2015-06-25

    Current treatment strategies for chronic lymphocytic leukemia (CLL) involve a combination of conventional chemotherapeutics, monoclonal antibodies, and targeted signaling inhibitors. However, CLL remains largely incurable, with drug resistance and treatment relapse a common occurrence, leading to the search for novel treatments. Mechanistic target of rapamycin (mTOR)-specific inhibitors have been previously assessed but their efficacy is limited due to a positive feedback loop via mTOR complex 2 (mTORC2), resulting in activation of prosurvival signaling. In this study, we show that the dual phosphatidylinositol 3-kinase (PI3K)/mTOR inhibitor PF-04691502 does not induce an mTORC2 positive feedback loop similar to other PI3K inhibitors but does induce substantial antitumor effects. PF-04691502 significantly reduced survival coincident with the induction of Noxa and Puma, independently of immunoglobulin heavy chain variable region mutational status, CD38, and ZAP-70 expression. PF-04691502 inhibited both anti-immunoglobulin M-induced signaling and overcame stroma-induced survival signals and migratory stimuli from CXCL12. Equivalent in vitro activity was seen in the Eμ-TCL1 murine model of CLL. In vivo, PF-04691502 treatment of tumor-bearing animals resulted in a transient lymphocytosis, followed by a clear reduction in tumor in the blood, bone marrow, spleen, and lymph nodes. These data indicate that PF-04691502 or other dual PI3K/mTOR inhibitors in development may prove efficacious for the treatment of CLL, increasing our armamentarium to successfully manage this disease.

  16. Phosphatidylinositol-3-kinase (PI3K) is activated by influenza virus vRNA via the pathogen pattern receptor Rig-I to promote efficient type I interferon production.

    PubMed

    Hrincius, Eike R; Dierkes, Rüdiger; Anhlan, Darisuren; Wixler, Viktor; Ludwig, Stephan; Ehrhardt, Christina

    2011-12-01

    The phosphatidylinositol-3-kinase (PI3K) was identified to be activated upon influenza A virus (IAV) infection. An early and transient induction of PI3K signalling is caused by viral attachment to cells and promotes virus entry. In later phases of infection the kinase is activated by the viral NS1 protein to prevent premature apoptosis. Besides these virus supporting functions, it was suggested that PI3K signalling is involved in dsRNA and IAV induced antiviral responses by enhancing the activity of interferon regulatory factor-3 (IRF-3). However, molecular mechanisms of activation remained obscure. Here we show that accumulation of vRNA in cells infected with influenza A or B viruses results in PI3K activation. Furthermore, expression of the RNA receptors Rig-I and MDA5 was increased upon stimulation with virion extracted vRNA or IAV infection. Using siRNA approaches, Rig-I was identified as pathogen receptor necessary for influenza virus vRNA sensing and subsequent PI3K activation in a TRIM25 and MAVS signalling dependent manner. Rig-I induced PI3K signalling was further shown to be essential for complete IRF-3 activation and consequently induction of the type I interferon response. These data identify PI3K as factor that is activated as part of the Rig-I mediated anti-pathogen response to enhance expression of type I interferons.

  17. Design, synthesis, and biological activity of pyridopyrimidine scaffolds as novel PI3K/mTOR dual inhibitors.

    PubMed

    Saurat, Thibault; Buron, Frédéric; Rodrigues, Nuno; de Tauzia, Marie-Ludivine; Colliandre, Lionel; Bourg, Stéphane; Bonnet, Pascal; Guillaumet, Gérald; Akssira, Mohamed; Corlu, Anne; Guillouzo, Christiane; Berthier, Pauline; Rio, Pascale; Jourdan, Marie-Lise; Bénédetti, Hélène; Routier, Sylvain

    2014-02-13

    The design, synthesis, and screening of dual PI3K/mTOR inhibitors that gave nanomolar enzymatic and cellular activities on both targets with an acceptable kinase selectivity profile are described. A docking study was performed to understand the binding mode of the compounds and to explain the differences in biological activity. In addition, cellular effects of the best dual inhibitors were determined on six cancer cell lines and compared to those on a healthy diploid cell line for cellular cytotoxicity. Two compounds are highly potent on cancer cells in the submicromolar range without any toxicity on healthy cells. A more detailed analysis of the cellular effect of these PI3K/mTOR dual inhibitors demonstrated that they induce G1-phase cell cycle arrest in breast cancer cells and trigger apoptosis. These compounds show an interesting kinase profile as dual PI3K/mTOR tool compounds or as a chemical series for further optimization to progress into in vivo experiments.

  18. Acquired resistance to combination treatment through loss of synergy with MEK and PI3K inhibitors in colorectal cancer

    PubMed Central

    Bhattacharya, Bhaskar; Low, Sarah Hong Hui; Chong, Mei Ling; Chia, Dilys; Koh, King Xin; Sapari, Nur Sabrina; Kaye, Stanley; Hung, Huynh; Benoukraf, Touati; Soong, Richie

    2016-01-01

    Historically, understanding of acquired resistance (AQR) to combination treatment has been based on knowledge of resistance to its component agents. To test whether an altered drug interaction could be an additional factor in AQR to combination treatment, models of AQR to combination and single agent MEK and PI3K inhibitor treatment were generated. Combination indices indicated combination treatment of PI3K and MEK inhibitors remained synergistic in cells with AQR to single agent but not combination AQR cells. Differences were also observed between the models in cellular phenotypes, pathway signaling and drug cross-resistance. Genomics implicated TGFB2-EDN1 overexpression as candidate determinants in models of AQR to combination treatment. Supplementation of endothelin in parental cells converted synergism to antagonism. Silencing of TGFB2 or EDN1 in cells with AQR conferred synergy between PI3K and MEK inhibitor. These results highlight that AQR to combination treatment may develop through alternative mechanisms to those of single agent treatment, including a change in drug interaction. PMID:27081080

  19. Modulation of curcumin-induced Akt phosphorylation and apoptosis by PI3K inhibitor in MCF-7 cells

    SciTech Connect

    Kizhakkayil, Jaleel; Thayyullathil, Faisal; Chathoth, Shahanas; Hago, Abdulkader; Patel, Mahendra; Galadari, Sehamuddin

    2010-04-09

    Curcumin has been shown to induce apoptosis in various malignant cancer cell lines. One mechanism of curcumin-induced apoptosis is through the PI3K/Akt signaling pathway. Akt, also known as protein kinase B (PKB), is a member of the family of phosphatidylinositol 3-OH-kinase regulated Ser/Thr kinases. The active Akt regulates cell survival and proliferation; and inhibits apoptosis. In this study we found that curcumin induces apoptotic cell death in MCF-7 cells, as assessed by MTT assay, DNA ladder formation, PARP cleavage, p53 and Bax induction. At apoptotic inducing concentration, curcumin induces a dramatic Akt phosphorylation, accompanied by an increased phosphorylation of glycogen synthase kinase 3{beta} (GSK3{beta}), which has been considered to be a pro-growth signaling molecule. Combining curcumin with PI3K inhibitor, LY290042, synergizes the apoptotic effect of curcumin. The inhibitor LY290042 was capable of attenuating curcumin-induced Akt phosphorylation and activation of GSK3{beta}. All together, our data suggest that blocking the PI3K/Akt survival pathway sensitizes the curcumin-induced apoptosis in MCF-7 cells.

  20. Higher risk of infections with PI3K-AKT-mTOR pathway inhibitors in patients with advanced solid tumors on Phase I clinical trials

    PubMed Central

    Rafii, Saeed; Roda, Desamparados; Geuna, Elena; Jimenez, Begona; Rihawi, Karim; Capelan, Marta; Yap, Timothy A; Molife, L Rhoda; Kaye, Stanley B; de Bono, Johann S; Banerji, Udai

    2015-01-01

    Novel antitumor therapies against the PI3K-AKT-mTOR pathway are increasingly used to treat cancer, either as single agents or in combination with chemotherapy or other targeted therapies. Although these agents are not known to be myelosuppressive, an increased risk of infection has been reported with rapamycin analogs. However, the risk of infection with new inhibitors of this pathway such as PI3K, AKT, mTORC 1/2 or multi-kinase inhibitors is unknown. Methods In this retrospective case-control study, we determined the incidence of infection in a group of 432 patients who were treated on 15 phase I clinical trials involving PI3K-AKT-mTOR pathway inhibitors (cases) vs a group of 100 patients on 10 phase I clinical trials of single agent non-PI3K-AKT-mTOR pathway inhibitors (controls) which did not involve conventional cytotoxic agents. We also collected data from 42 patients who were treated with phase I trials of combinations of PI3K-AKT-mTOR inhibitors and MEK inhibitors and 24 patients with combinations of PI3K-AKT-mTOR inhibitors and cytotoxic chemotherapies. Results The incidence of all grade infection was significantly higher with all single agent PI3K-AKT-mTOR inhibitors compared to the control group (27% vs 8% respectively, OR: 4.26, 95% CI: 1.9-9.1, p=0.0001). The incidence of grade 3 and 4 infection was also significantly higher with PI3K-AKT-mTOR inhibitors compared to the control group (10.3% vs 3%, OR: 3.74, 95% CI: 1.1-12.4, p=0.02). Also the combination of PI3K-AKT-mTOR inhibitors and chemotherapy was associated with a significantly higher incidence of all grade (OR: 4.79, 95% CI: 2.0-11.2, p=0.0001) and high grade (OR: 2.87, 95% CI: 1.0-7.6, p=0.03) infection when compared with single agent PI3K-AKT-mTOR inhibitors. Conclusion Inhibitors of the PI3K-AKT-mTOR pathway can be associated with a higher risk of infection. Combinations of PI3K-AKT-mTOR inhibitors and cytotoxic chemotherapy significantly increase the risk of infection. This should be taken

  1. Wortmannin, PI3K/Akt signaling pathway inhibitor, attenuates thyroid injury associated with severe acute pancreatitis in rats.

    PubMed

    Abliz, Ablikim; Deng, Wenhong; Sun, Rongze; Guo, Wenyi; Zhao, Liang; Wang, Weixing

    2015-01-01

    Increasing evidences suggest that PI3K/AKT pathway plays an important role in the pathogenesis of inflammatory diseases such as acute pancreatitis. However, the exact effect of PI3K/AKT on thyroid injury associated with acute pancreatitis has not been investigated. This study aimed to investigate the protective effects of wortmannin, PI3K/AKT inhibitor, on thyroid injury in a rat model of severe acute pancreatitis (SAP). Sixty male SD rats were randomly divided into four groups: sham operating group (SO), SAP group, wortmannin treatment (WOR) group and drug control (WOR-CON) group. Serum amylase (AMY), lipase (LIP) and thyroid hormone levels were evaluated. The morphological change of thyroid tissue was analyzed under the light and transmission electron microscopy. AKT, P38MAPK and NF-κB expression in the thyroid tissue was evaluated by immunohistochemical staining. Oxidative stress and inflammatory cytokines were detected. Results showed that wortmannin attenuated the following: (1) serum AMY, LIP and thyroid hormone (2) pancreatic and thyroid pathological injuries (3) thyroid MDA, (4) thyroid ultrastructural change, (5) serum TNF-α, IL-6 and IL-1β (6) AKT, MAPKP38 and NF-κB expression in thyroid tissues. These results suggested that wortmannin attenuates thyroid injury in SAP rats, presumably because of its role on prevent ROS generation and inhibits the activation of P38MAPK, NF-κB pathway. Our findings provide new therapeutic targets for thyroid injury associated with SAP. PMID:26823696

  2. Wortmannin, PI3K/Akt signaling pathway inhibitor, attenuates thyroid injury associated with severe acute pancreatitis in rats.

    PubMed

    Abliz, Ablikim; Deng, Wenhong; Sun, Rongze; Guo, Wenyi; Zhao, Liang; Wang, Weixing

    2015-01-01

    Increasing evidences suggest that PI3K/AKT pathway plays an important role in the pathogenesis of inflammatory diseases such as acute pancreatitis. However, the exact effect of PI3K/AKT on thyroid injury associated with acute pancreatitis has not been investigated. This study aimed to investigate the protective effects of wortmannin, PI3K/AKT inhibitor, on thyroid injury in a rat model of severe acute pancreatitis (SAP). Sixty male SD rats were randomly divided into four groups: sham operating group (SO), SAP group, wortmannin treatment (WOR) group and drug control (WOR-CON) group. Serum amylase (AMY), lipase (LIP) and thyroid hormone levels were evaluated. The morphological change of thyroid tissue was analyzed under the light and transmission electron microscopy. AKT, P38MAPK and NF-κB expression in the thyroid tissue was evaluated by immunohistochemical staining. Oxidative stress and inflammatory cytokines were detected. Results showed that wortmannin attenuated the following: (1) serum AMY, LIP and thyroid hormone (2) pancreatic and thyroid pathological injuries (3) thyroid MDA, (4) thyroid ultrastructural change, (5) serum TNF-α, IL-6 and IL-1β (6) AKT, MAPKP38 and NF-κB expression in thyroid tissues. These results suggested that wortmannin attenuates thyroid injury in SAP rats, presumably because of its role on prevent ROS generation and inhibits the activation of P38MAPK, NF-κB pathway. Our findings provide new therapeutic targets for thyroid injury associated with SAP.

  3. Differential Effects of p38, MAPK, PI3K or Rho Kinase Inhibitors on Bacterial Phagocytosis and Efferocytosis by Macrophages in COPD

    PubMed Central

    Bewley, Martin A.; Belchamber, Kylie B. R.; Chana, Kirandeep K.; Budd, Richard C.; Donaldson, Gavin; Wedzicha, Jadwiga A.; Brightling, Christopher E.; Kilty, Iain; Donnelly, Louise E.; Barnes, Peter J.; Singh, Dave; Whyte, Moira K. B.; Dockrell, David H.

    2016-01-01

    Pulmonary inflammation and bacterial colonization are central to the pathogenesis of chronic obstructive pulmonary disease (COPD). Defects in macrophage phagocytosis of both bacteria and apoptotic cells contribute to the COPD phenotype. Small molecule inhibitors with anti-inflammatory activity against p38 mitogen activated protein kinases (MAPKs), phosphatidyl-inositol-3 kinase (PI3K) and Rho kinase (ROCK) are being investigated as novel therapeutics in COPD. Concerns exist, however, about off-target effects. We investigated the effect of p38 MAPK inhibitors (VX745 and SCIO469), specific inhibitors of PI3K α (NVS-P13K-2), δ (NVS-P13K-3) or γ (NVS-P13K-5) and a ROCK inhibitor PF4950834 on macrophage phagocytosis, early intracellular killing of bacteria and efferocytosis of apoptotic neutrophils. Alveolar macrophages (AM) obtained from broncho-alveolar lavage (BAL) or monocyte-derived macrophages (MDM) from COPD patients (GOLD stage II/III) enrolled from a well characterized clinical cohort (MRC COPD-MAP consortium) or from healthy ex-smoker controls were studied. Both COPD AM and MDM exhibited lower levels of bacterial phagocytosis (using Streptococcus pneumoniae and non-typeable Haemophilus influenzae) and efferocytosis than healthy controls. None of the inhibitors altered bacterial internalization or early intracellular bacterial killing in AM or MDM. Conversely PF4950834, but not other inhibitors, enhanced efferocytosis in COPD AM and MDM. These results suggest none of these inhibitors are likely to exacerbate phagocytosis-related defects in COPD, while confirming ROCK inhibitors can enhance efferocytosis in COPD. PMID:27680884

  4. Romidepsin (FK228) and its analogs directly inhibit phosphatidylinositol 3-kinase activity and potently induce apoptosis as histone deacetylase/phosphatidylinositol 3-kinase dual inhibitors.

    PubMed

    Saijo, Ken; Katoh, Tadashi; Shimodaira, Hideki; Oda, Akifumi; Takahashi, Ohgi; Ishioka, Chikashi

    2012-11-01

    Activation of phosphatidylinositol 3-kinase (PI3K) signaling is involved in carcinogenesis and cancer progression. The PI3K inhibitors are considered candidate drugs for cancer treatment. Here, we describe a drug screening system for novel PI3K inhibitors using Saccharomyces cerevisiae strains with deleterious mutations in the ATP-binding cassette transporter genes, because wild-type S. cerevisiae uses drug efflux pumps for reducing intracellular drug concentrations. By screening the chemical library of the Screening Committee of Anticancer Drugs, we identified the histone deacetylase (HDAC) inhibitor romidepsin (FK228) and its novel analogs. In vitro PI3K activity assays confirmed that these compounds directly inhibit PI3K activity at μM-range concentrations. FK-A5 analog was the most potent inhibitor. Western blotting revealed that these compounds inhibit phosphorylation of protein kinase B and downstream signaling components. Molecular modeling of the PI3K-FK228 complex indicated that FK228 binds to the ATP-binding pocket of PI3K. At μM-range concentrations, FK228 and FK-A5 show potent cytotoxicity, inducing apoptosis even in HDAC inhibitor-resistant cells. Furthermore, HDAC/PI3K dual inhibition by FK228 and FK-A5 at μM-range concentrations potentiates the apoptosis induction, mimicking the effect of combining specific HDAC and PI3K inhibitors. In this study, we showed that FK228 and its analogs directly inhibit PI3K activity and induce apoptosis at μM-range concentrations, similar to HDAC/PI3K dual inhibition. In future, optimizing the potency of FK228 and its analogs against PI3K may contribute to the development of novel HDAC/PI3K dual inhibitors for cancer treatment.

  5. Modulation of Platelet Activation and Thrombus Formation Using a Pan-PI3K Inhibitor S14161

    PubMed Central

    Ren, Lijie; Liu, Xiaohui; Wang, Qi; He, Sudan; Wu, Qingyu; Hu, Hu; Mao, Xinliang; Zhu, Li

    2014-01-01

    The phosphatidylinositol 3–kinase (PI3K) signaling pathway is critical in modulating platelet functions. In the present study, we evaluated the effect of S14161, a recently identified pan-class I PI3K inhibitor, on platelet activation and thrombus formation. Results showed that S14161 inhibited human platelet aggregation induced by collagen, thrombin, U46619, and ADP in a dose-dependent manner. Flow cytometric studies showed that S14161 inhibited convulxin- or thrombin-induced P-selectin expression and fibrinogen binding of single platelet. S14161 also inhibited platelet spreading on fibrinogen and clot retraction, processes mediated by outside-in signaling. Using a microfluidic chamber we demonstrated that S14161 decreased platelet adhesion on collagen-coated surface by about 80%. Western blot showed that S14161 inhibited phosphorylation of Akt at both Ser473 and Thr308 sites, and GSK3β at Ser9 in response to collagen, thrombin, or U46619. Comparable studies showed that S14161 has a higher potential bioavailability than LY294002, a prototypical inhibitor of pan-class I PI3K. Finally, the effects of S14161 on thrombus formation in vivo were measured using a ferric chloride-induced carotid artery injury model in mice. The intraperitoneal injection of S14161 (2 mg/kg) to male C57BL/6 mice significantly extended the first occlusion time (5.05±0.99 min, n = 9) compared to the vehicle controls (3.72±0.95 min, n = 8) (P<0.05), but did not prolong the bleeding time (P>0.05). Taken together, our data showed that S14161 inhibits platelet activation and thrombus formation without significant bleeding tendency and toxicity, and considering its potential higher bioavailability, it may be developed as a novel therapeutic agent for the prevention of thrombotic disorders. PMID:25115838

  6. Combination of PI3K/Akt/mTOR inhibitors and PDT in endothelial and tumor cells

    NASA Astrophysics Data System (ADS)

    Fateye, Babasola; Chen, Bin

    2011-02-01

    The PI3/Akt/mTOR kinase signaling pathway is a major signaling pathway in eukaryotic cells, and dysregulation of this signaling pathway has been implicated in tumorigenesis and malignancy in several cancers including prostate cancer. We assessed the effects of combination PI3K pathway inhibition on the efficacy of PDT in human prostate tumor cell line (PC3) and SV40-transformed mouse endothelial cell line (SVEC-40). Combination of PDT and BEZ 235 (BEZ), a pan-PI3/ mTOR kinase inhibitor additively enhanced efficacy of sub-lethal PDT in both cell lines. The combination of the pan-PI3/ mTOR kinase inhibitor LY294002 (LY) with PDT also enhanced efficacy of PDT in PC3 in an additive manner but synergistically in SVEC. In order to determine the mechanism of enhancement of efficacy, we assessed apoptosis and autophagy following PDT. PDT-mediated apoptosis was enhanced in endothelial cells, by both BEZ and LY rapidly after treatment. Compared to SVEC, PC3 cells are apoptosis-deficient and apoptosis was not significantly enhanced by either LY or BEZ. However, lethal PDT of PC3 cells induced a delayed autophagic response which may be enhanced by combination, depending on PI3K inhibitor and dose.

  7. Berberine Induced Apoptosis of Human Osteosarcoma Cells by Inhibiting Phosphoinositide 3 Kinase/Protein Kinase B (PI3K/Akt) Signal Pathway Activation

    PubMed Central

    2016-01-01

    Background: Osteosarcoma is a malignant tumor with high mortality but effective therapy has not yet been developed. Berberine, an isoquinoline alkaloid component in several Chinese herbs including Huanglian, has been shown to induce growth inhibition and the apoptosis of certain cancer cells. The aim of this study was to determine the role of berberine on human osteosarcoma cell lines U2OS and its potential mechanism. Methods: The proliferation effect of U20S was exanimed by 3-(4,5)-dimethylthiahiazo(-z-y1)-3,5-di- phenytetrazoliumromide (MTT) and the percentage of apoptotic cells were determined by flow cytometric analysis. The expression of PI3K, p-Akt, Bax, Bcl-2, cleavage-PARP and Caspase3 were detected by Western blott. Results: Berberine treatment caused dose-dependent inhibiting proliferation and inducing apoptosis of U20S cell. Mechanistically, berberine inhibits PI3K/AKT activation that, in turn, results in up-regulating the expression of Bax, and PARP and down-regulating the expression of Bcl-2 and caspase3. In all, berberine can suppress the proliferation and induce the apoptosis of U2OS cell through inhibiting the PI3K/Akt signaling pathway activation. Conclusion: Berberine can suppress the proliferation and induce the apoptosis of U2OS cell through inhibiting the PI3K/Akt signaling pathway activation. PMID:27398330

  8. Exploration of (S)-3-aminopyrrolidine as a potentially interesting scaffold for discovery of novel Abl and PI3K dual inhibitors.

    PubMed

    Zhang, Cunlong; Tan, Chunyan; Zu, Xuyu; Zhai, Xin; Liu, Feng; Chu, Bizhu; Ma, Xiaohua; Chen, Yuzong; Gong, Ping; Jiang, Yuyang

    2011-04-01

    Based on the literature-reported compensatory effect of PI3K on Abl inhibition and the improved preclinical effect of drug combination of Abl and PI3K inhibitors, a series of compounds bearing novel scaffold of (S)-3-aminopyrrolidine was identified as Abl and PI3K dual inhibitors through support vector machine screening tool, which were subsequently synthesized and tested. Most compounds demonstrated promising cytoxicity against a CML leukemia cell-line K562 and moderate inhibition against Abl and PI3K kinases. These compounds induced no apoptosis in K562 cell-line, suggesting that their cytotoxic activities are unlikely duo to other known anti-CML mechanisms. Molecular docking study further showed that the compound 5k could bind with both Abl and PI3K, but the weaker binding with Abl compared to Imatinib is consistent with its low kinase inhibitory rates. These plus literature-reported evidences suggest that the promising cytotoxic effect of our novel compounds might be due to the collective effect of Abl and PI3K inhibition. PMID:21295380

  9. The pan-PI3K inhibitor GDC-0941 activates canonical WNT signaling to confer resistance in TNBC cells: resistance reversal with WNT inhibitor.

    PubMed

    Tzeng, Huey-En; Yang, Lixin; Chen, Kemin; Wang, Yafan; Liu, Yun-Ru; Pan, Shiow-Lin; Gaur, Shikha; Hu, Shuya; Yen, Yun

    2015-05-10

    The pan-PI3K inhibitors are one treatment option for triple-negative breast cancer (TNBC). However, this treatment is ineffective for unknown reasons. Here, we report that aberrant expression of wingless-type MMTV integration site family (WNT) and activated WNT signals, which crosstalk with the PI3K-AKT-mTOR signaling pathway through GSK3β, plays the most critical role in resistance to pan-PI3K inhibitors in TNBC cells. GDC-0941 is a pan-PI3K inhibitor that activates the WNT/beta-catenin pathway in TNBC cells through stimulation of WNT secretion. GDC-0941-triggered WNT/beta-catenin pathway activation was observed in MDA-MB-231 and HCC1937 cells, which are TNBC cell lines showing aberrant WNT/beta-catenin activation, and not in SKBR3 and MCF7 cells. This observation is further investigated in vivo. GDC-0941 exhibited minimal tumor inhibition in MDA-MB-231 cells, but it significantly suppressed tumor growth in HER-positive SK-BR3 cells. In vivo mechanism study revealed the activation of WNT/beta-catenin pathway by GDC-0941. A synergistic effect was observed when combined treatment with GDC-0941 and the WNT inhibitor LGK974 at low concentrations in MDA-MB-231 cells. These findings indicated that WNT pathway activation conferred resistance in TNBC cells treated with GDC-0941. This resistance may be further circumvented through combined treatment with pan-PI3K and WNT inhibitors. Future clinical trials of these two inhibitors are warranted.

  10. The pan-PI3K inhibitor GDC-0941 activates canonical WNT signaling to confer resistance in TNBC cells: resistance reversal with WNT inhibitor

    PubMed Central

    Tzeng, Huey-En; Yang, Lixin; Chen, Kemin; Wang, Yafan; Liu, Yun-Ru; Pan, Shiow-Lin; Gaur, Shikha; Hu, Shuya; Yen, Yun

    2015-01-01

    The pan-PI3K inhibitors are one treatment option for triple-negative breast cancer (TNBC). However, this treatment is ineffective for unknown reasons. Here, we report that aberrant expression of wingless-type MMTV integration site family (WNT) and activated WNT signals, which crosstalk with the PI3K-AKT-mTOR signaling pathway through GSK3β, plays the most critical role in resistance to pan-PI3K inhibitors in TNBC cells. GDC-0941 is a pan-PI3K inhibitor that activates the WNT/beta-catenin pathway in TNBC cells through stimulation of WNT secretion. GDC-0941-triggered WNT/beta-catenin pathway activation was observed in MDA-MB-231 and HCC1937 cells, which are TNBC cell lines showing aberrant WNT/beta-catenin activation, and not in SKBR3 and MCF7 cells. This observation is further investigated in vivo. GDC-0941 exhibited minimal tumor inhibition in MDA-MB-231 cells, but it significantly suppressed tumor growth in HER-positive SK-BR3 cells. In vivo mechanism study revealed the activation of WNT/beta-catenin pathway by GDC-0941. A synergistic effect was observed when combined treatment with GDC-0941 and the WNT inhibitor LGK974 at low concentrations in MDA-MB-231 cells. These findings indicated that WNT pathway activation conferred resistance in TNBC cells treated with GDC-0941. This resistance may be further circumvented through combined treatment with pan-PI3K and WNT inhibitors. Future clinical trials of these two inhibitors are warranted. PMID:25857298

  11. 6-Aryl substituted 4-(4-cyanomethyl) phenylamino quinazolines as a new class of isoform-selective PI3K-alpha inhibitors.

    PubMed

    Yadav, Rammohan R; Guru, Santosh K; Joshi, Prashant; Mahajan, Girish; Mintoo, Mubashir J; Kumar, Vikas; Bharate, Sonali S; Mondhe, Dilip M; Vishwakarma, Ram A; Bhushan, Shashi; Bharate, Sandip B

    2016-10-21

    Isoform-selective inhibition of PI3K-α has been identified as one of the important strategy to discover effective and safer anticancer agents. Herein, we report discovery of 'quinazoline' as a new chemotype for isoform-selective PI3Kinhibitors. The indolyl substituted quinazoline 9u displayed selective inhibition of PI3K-α with IC50 value of 0.201 μM with >49.7 over PI3K-β, and δ-isoforms. Quinazoline 9u also inhibited PI3K-γ with IC50 value of 0.750 μM (3.7 fold selective for α-versus γ-isoform). The isoform-selective inhibition was also demonstrated at protein-expression level by western-blot analysis in MCF-7 and PC-3 cells. The isoform-selective inhibitor 9u also showed inhibition of phospho-Akt levels in these cells. Quinazoline 9u showed in-vitro cytotoxicity in MCF-7 cells with GI50 of 7 μM, which was highly selective for cancer cells, as it was non-toxic to normal cells fR2, HEK293 and hGF (GI50 > 50 μM). Compound 9u at 25 mg/kg dose showed 62 and 37% TGI in Ehrlich Ascites Carcinoma and Ehrlich Solid Tumor mice models. In nutshell, our efforts to identify potent and efficacious PI3K inhibitors resulted in the discovery of a new class of isoform-selective PI3Kinhibitors possessing promising in-vivo anticancer activity.

  12. Phosphoinositide 3-Kinase (PI3K) Subunit p110δ Is Essential for Trophoblast Cell Differentiation and Placental Development in Mouse

    PubMed Central

    Hu, Xiwen; Li, Jiangchao; Zhang, Qianqian; Zheng, Lingyun; Wang, Guang; Zhang, Xiaohan; Zhang, Jingli; Gu, Quliang; Ye, Yuxiang; Guo, Sun-Wei; Yang, Xuesong; Wang, Lijing

    2016-01-01

    Maternal PI3K p110δ has been implicated in smaller litter sizes in mice, but its underlying mechanism remains unclear. The placenta is an indispensable chimeric organ that supports mammalian embryonic development. Using a mouse model of genetic inactivation of PI3K p110δ (p110δD910A/D910A), we show that fetuses carried by p110δD910A/D910A females were growth retarded and showed increased mortality in utero mainly during placentation. The placentas in p110δD910A/D910A females were anomalously anemic, exhibited thinner spongiotrophoblast layer and looser labyrinth zone, which indicate defective placental vasculogenesis. In addition, p110δ was detected in primary trophoblast giant cells (P-TGC) at early placentation. Maternal PI3K p110δ inactivation affected normal TGCs generation and expansion, impeded the branching of chorioallantoic placenta but enhanced the expression of matrix metalloproteinases (MMP-2, MMP-12). Poor vasculature support for the developing fetoplacental unit resulted in fetal death or gross growth retardation. These data, taken together, provide the first in vivo evidence that p110δ may play an important role in placental vascularization through manipulating trophoblast giant cell. PMID:27306493

  13. PI3K Signaling in B and T Lymphocytes: New Developments and Therapeutic Advances

    PubMed Central

    So, Lomon; Fruman, David A.

    2012-01-01

    Synopsis Activation of phosphoinositide 3-kinase (PI3K) is a shared response to engagement of diverse types of transmembrane receptors. Depending on the cell type and stimulus, PI3K activation can promote different fates including proliferation, survival, migration and differentiation. The diverse roles of PI3K signaling are well illustrated by studies of lymphocytes, the cells that mediate adaptive immunity. Genetic and pharmacological experiments have shown that PI3K activation regulates many steps in the development, activation and differentiation of both B and T cells. These findings have prompted the development of PI3K inhibitors for the treatment of autoimmunity and inflammatory diseases. However, PI3K activation has both positive and negative roles in immune system activation. Consequently, while PI3K suppression can attenuate immune responses it can also enhance inflammation, disrupt peripheral tolerance and promote autoimmunity. An exciting discovery is that a selective inhibitor of the p110δ catalytic isoform of PI3K, CAL-101, achieves impressive clinical efficacy in certain B cell malignancies. A model is emerging in which p110δ inhibition disrupts signals from the lymphoid microenvironment, leading to release of leukemia and lymphoma cells from their protective niche. These encouraging findings have given further momentum to PI3K drug development efforts in both cancer and immune diseases. PMID:22364281

  14. miR-564 acts as a dual inhibitor of PI3K and MAPK signaling networks and inhibits proliferation and invasion in breast cancer

    NASA Astrophysics Data System (ADS)

    Mutlu, Merve; Saatci, Özge; Ansari, Suhail A.; Yurdusev, Emre; Shehwana, Huma; Konu, Özlen; Raza, Umar; Şahin, Özgür

    2016-09-01

    Dysregulation of PI3K and MAPK pathways promotes uncontrolled cell proliferation, apoptotic inhibition and metastasis. Individual targeting of these pathways using kinase inhibitors has largely been insufficient due to the existence of cross-talks between these parallel cascades. MicroRNAs are small non-coding RNAs targeting several genes simultaneously and controlling cancer-related processes. To identify miRNAs repressing both PI3K and MAPK pathways in breast cancer, we re-analyzed our previous miRNA mimic screen data with reverse phase protein array (RPPA) output, and identified miR-564 inhibiting both PI3K and MAPK pathways causing markedly decreased cell proliferation through G1 arrest. Moreover, ectopic expression of miR-564 blocks epithelial-mesenchymal transition (EMT) and reduces migration and invasion of aggressive breast cancer cells. Mechanistically, miR-564 directly targets a network of genes comprising AKT2, GNA12, GYS1 and SRF, thereby facilitating simultaneous repression of PI3K and MAPK pathways. Notably, combinatorial knockdown of these target genes using a cocktail of siRNAs mimics the phenotypes exerted upon miR-564 expression. Importantly, high miR-564 expression or low expression of target genes in combination is significantly correlated with better distant relapse-free survival of patients. Overall, miR-564 is a potential dual inhibitor of PI3K and MAPK pathways, and may be an attractive target and prognostic marker for breast cancer.

  15. miR-564 acts as a dual inhibitor of PI3K and MAPK signaling networks and inhibits proliferation and invasion in breast cancer.

    PubMed

    Mutlu, Merve; Saatci, Özge; Ansari, Suhail A; Yurdusev, Emre; Shehwana, Huma; Konu, Özlen; Raza, Umar; Şahin, Özgür

    2016-01-01

    Dysregulation of PI3K and MAPK pathways promotes uncontrolled cell proliferation, apoptotic inhibition and metastasis. Individual targeting of these pathways using kinase inhibitors has largely been insufficient due to the existence of cross-talks between these parallel cascades. MicroRNAs are small non-coding RNAs targeting several genes simultaneously and controlling cancer-related processes. To identify miRNAs repressing both PI3K and MAPK pathways in breast cancer, we re-analyzed our previous miRNA mimic screen data with reverse phase protein array (RPPA) output, and identified miR-564 inhibiting both PI3K and MAPK pathways causing markedly decreased cell proliferation through G1 arrest. Moreover, ectopic expression of miR-564 blocks epithelial-mesenchymal transition (EMT) and reduces migration and invasion of aggressive breast cancer cells. Mechanistically, miR-564 directly targets a network of genes comprising AKT2, GNA12, GYS1 and SRF, thereby facilitating simultaneous repression of PI3K and MAPK pathways. Notably, combinatorial knockdown of these target genes using a cocktail of siRNAs mimics the phenotypes exerted upon miR-564 expression. Importantly, high miR-564 expression or low expression of target genes in combination is significantly correlated with better distant relapse-free survival of patients. Overall, miR-564 is a potential dual inhibitor of PI3K and MAPK pathways, and may be an attractive target and prognostic marker for breast cancer. PMID:27600857

  16. miR-564 acts as a dual inhibitor of PI3K and MAPK signaling networks and inhibits proliferation and invasion in breast cancer

    PubMed Central

    Mutlu, Merve; Saatci, Özge; Ansari, Suhail A.; Yurdusev, Emre; Shehwana, Huma; Konu, Özlen; Raza, Umar; Şahin, Özgür

    2016-01-01

    Dysregulation of PI3K and MAPK pathways promotes uncontrolled cell proliferation, apoptotic inhibition and metastasis. Individual targeting of these pathways using kinase inhibitors has largely been insufficient due to the existence of cross-talks between these parallel cascades. MicroRNAs are small non-coding RNAs targeting several genes simultaneously and controlling cancer-related processes. To identify miRNAs repressing both PI3K and MAPK pathways in breast cancer, we re-analyzed our previous miRNA mimic screen data with reverse phase protein array (RPPA) output, and identified miR-564 inhibiting both PI3K and MAPK pathways causing markedly decreased cell proliferation through G1 arrest. Moreover, ectopic expression of miR-564 blocks epithelial-mesenchymal transition (EMT) and reduces migration and invasion of aggressive breast cancer cells. Mechanistically, miR-564 directly targets a network of genes comprising AKT2, GNA12, GYS1 and SRF, thereby facilitating simultaneous repression of PI3K and MAPK pathways. Notably, combinatorial knockdown of these target genes using a cocktail of siRNAs mimics the phenotypes exerted upon miR-564 expression. Importantly, high miR-564 expression or low expression of target genes in combination is significantly correlated with better distant relapse-free survival of patients. Overall, miR-564 is a potential dual inhibitor of PI3K and MAPK pathways, and may be an attractive target and prognostic marker for breast cancer. PMID:27600857

  17. Potentiation of antileukemic therapies by the dual PI3K/PDK-1 inhibitor, BAG956: effects on BCR-ABL– and mutant FLT3-expressing cells

    PubMed Central

    Weisberg, Ellen; Banerji, Lolita; Wright, Renee D.; Barrett, Rosemary; Ray, Arghya; Moreno, Daisy; Catley, Laurence; Jiang, Jingrui; Hall-Meyers, Elizabeth; Sauveur-Michel, Maira; Stone, Richard; Galinsky, Ilene; Fox, Edward; Kung, Andrew L.

    2008-01-01

    Mediators of PI3K/AKT signaling have been implicated in chronic myeloid leukemia (CML) and acute myeloid leukemia (AML). Studies have shown that inhibitors of PI3K/AKT signaling, such as wortmannin and LY294002, are able to inhibit CML and AML cell proliferation and synergize with targeted tyrosine kinase inhi-bitors. We investigated the ability of BAG956, a dual PI3K/PDK-1 inhibitor, to be used in combination with inhibitors of BCR-ABL and mutant FLT3, as well as with the mTOR inhibitor, rapamycin, and the rapamycin derivative, RAD001. BAG956 was shown to block AKT phosphorylation induced by BCR-ABL–, and induce apoptosis of BCR-ABL–expressing cell lines and patient bone marrow cells at concentrations that also inhibit PI3K signaling. Enhancement of the inhibitory effects of the tyrosine kinase inhibitors, imatinib and nilotinib, by BAG956 was demonstrated against BCR-ABL expressing cells both in vitro and in vivo. We have also shown that BAG956 is effective against mutant FLT3-expressing cell lines and AML patient bone marrow cells. Enhancement of the inhibitory effects of the tyrosine kinase inhibitor, PKC412, by BAG956 was demonstrated against mutant FLT3-expressing cells. Finally, BAG956 and rapamycin/RAD001 were shown to combine in a nonantagonistic fashion against BCR-ABL– and mutant FLT3-expressing cells both in vitro and in vivo. PMID:18184863

  18. Protein and lipid kinase inhibitors as targeted anticancer agents of the Ras/Raf/MEK and PI3K/PKB pathways.

    PubMed

    García-Echeverría, Carlos

    2009-03-01

    The identification and characterization of the components of individual signal transduction cascades, and advances in our understanding on how these biological signals are integrated in cancer initiation and progression, have provided new strategies for therapeutic intervention in solid tumors and hematological malignancies. To this end, pharmaceutical efforts have been directed to target different components of the Ras/Raf/MEK and PI3K/PKB pathways. This review article covers recent salient achievements in the identification and development of Raf, MEK, and PI3K inhibitors.

  19. PI3K/PTEN/Akt pathway status affects the sensitivity of high-grade glioma cell cultures to the insulin-like growth factor-1 receptor inhibitor NVP-AEW541.

    PubMed

    Hägerstrand, Daniel; Lindh, Maja Bradic; Peña, Cristina; Garcia-Echeverria, Carlos; Nistér, Monica; Hofmann, Francesco; Ostman, Arne

    2010-09-01

    IGF-1 receptor signaling contributes to the growth of many solid tumors, including glioblastoma. This study analyzed the sensitivity of 8 glioblastoma cultures to the IGF-1 receptor inhibitor NVP-AEW541. Growth reduction, caused by a combination of antiproliferative and proapoptotic effects, varied between 20% and 100%. Growth-inhibitory effects of IGF-1 receptor siRNA were also demonstrated in 2 of the cultures. Activating mutations in PIK3CA were found in 2 cultures, and 2 other cultures displayed ligand-independent Akt phosphorylation. Growth inhibition was significantly reduced in cultures with PIK3CA mutations or ligand-independent Akt phosphorylation. PTEN siRNA experiments supported the notion that the status of the PI3K/PTEN/Akt pathway is involved in determining NVP-AEW541 sensitivity. Combination treatments with either PI3 kinase or mTOR inhibitors together with NVP-AEW541 were performed. These experiments demonstrated the effects of NVP-AEW541 in cells not responding to mono-treatment with the IGF-1 receptor inhibitor, when used together with either of the 2 other inhibitors. Together, the studies support continued clinical development of IGF-1 receptor antagonists for glioblastomas and identify links between PI3K/PTEN/Akt status and sensitivity to mono-treatment with NVP-AEW541. Furthermore, the studies suggest that NVP-AEW541 is also active together with PI3 kinase and mTOR inhibitors in cultures with a dysregulated PI3K/PTEN/Akt pathway. These studies should assist in future clinical development of IGF-1 receptor antagonists for glioblastoma and other tumors.

  20. The mTOR inhibitor Everolimus synergizes with the PI3K inhibitor GDC0941 to enhance anti-tumor efficacy in uveal melanoma

    PubMed Central

    Amirouchene-Angelozzi, Nabil; Frisch-Dit-Leitz, Estelle; Carita, Guillaume; Dahmani, Ahmed; Raymondie, Chloé; Liot, Géraldine; Gentien, David; Némati, Fariba; Decaudin, Didier

    2016-01-01

    Uveal melanoma (UM) is the most frequent malignant ocular tumor in adults. While the primary tumor is efficiently treated by surgery and/or radiotherapy, about one third of UM patients develop metastases, for which no effective treatment is currently available. The PKC, MAPK and PI3K/AKT/mTOR signaling cascades have been shown to be associated with tumor growth. However, none of the compounds against those pathways results in tumor regression when used as single agents. To identify more effective therapeutic strategies for UM patients, we performed a combination screen using seven targeted agents inhibiting PKC, MEK, AKT, PI3K and mTOR in a panel of ten UM cell lines, representative of the UM disease. We identified a strong synergy between the mTOR inhibitor Everolimus and the PI3K inhibitor GDC0941. This combination resulted in an increase in apoptosis in several UM cell lines compared to monotherapies and enhanced the anti-tumor effect of each single agent in two patient-derived xenografts. Furthermore, we showed that the synergism between the two drugs was associated with the relief by GDC0491 of a reactivation of AKT induced by Everolimus. Altogether, our results highlight a novel and effective combination strategy, which could be beneficial for UM patients. PMID:26988753

  1. PI3K – From the Bench to the Clinic and Back

    PubMed Central

    Vanhaesebroeck, Bart; Vogt, Peter K.; Rommel, Christian

    2010-01-01

    From humble beginnings over 25 years ago as a lipid kinase activity associated with certain oncoproteins, PI3K (phosphoinositide 3-kinase) has been catapulted to the forefront of drug development in cancer, immunity and thrombosis, with the first clinical trials of PI3K pathway inhibitors now in progress. Here we give a brief overview of some key discoveries in the PI3K area and their impact, and include thoughts on the current state of the field, and where it could go from here. PMID:20549473

  2. E6 variants of human papillomavirus 18 differentially modulate the protein kinase B/phosphatidylinositol 3-kinase (akt/PI3K) signaling pathway

    SciTech Connect

    Contreras-Paredes, Adriana

    2009-01-05

    Intra-type genome variations of high risk Human papillomavirus (HPV) have been associated with a differential threat for cervical cancer development. In this work, the effect of HPV18 E6 isolates in Akt/PKB and Mitogen-associated protein kinase (MAPKs) signaling pathways and its implication in cell proliferation were analyzed. E6 from HPV types 16 and 18 are able to bind and promote degradation of Human disc large (hDlg). Our results show that E6 variants differentially modulate hDlg degradation, rebounding in levels of activated PTEN and PKB. HPV18 E6 variants are also able to upregulate phospho-PI3K protein, strongly correlating with activated MAPKs and cell proliferation. Data was supported by the effect of E6 silencing in HPV18-containing HeLa cells, as well as hDlg silencing in the tested cells. Results suggest that HPV18 intra-type variations may derive in differential abilities to activate cell-signaling pathways such as Akt/PKB and MAPKs, directly involved in cell survival and proliferation.

  3. Selective Sparing of Human Tregs by Pharmacologic Inhibitors of the Phosphatidylinositol 3-Kinase and MEK Pathways

    PubMed Central

    Zwang, N. A.; Zhang, R.; Germana, S.; Fan, M. Y.; Hastings, W. D.; Cao, A.; Turka, L. A.

    2016-01-01

    Phosphatidylinositol 3-kinase (PI3K) and mitogen-activated protein kinase/extracellular signal-regulated (MEK) signaling are central to the survival and proliferation of many cell types. Multiple lines of investigation in murine models have shown that control of the PI3K pathway is particularly important for regulatory T cell (Treg) stability and function. PI3K and MEK inhibitors are being introduced into the clinic, and we hypothesized that pharmacologic inhibition of PI3K, and possibly MEK, in mixed cultures of human mononuclear cells would preferentially affect CD4+ and CD8+ lymphocytes compared with Tregs. We tested this hypothesis using four readouts: proliferation, activation, functional suppression, and signaling. Results showed that Tregs were less susceptible to inhibition by both δ and α isoform–specific PI3K inhibitors and by an MEK inhibitor compared with their conventional CD4+ and CD8+ counterparts. These studies suggest less functional reliance on PI3K and MEK signaling in Tregs compared with conventional CD4+ and CD8+ lymphocytes. Therefore, the PI3K and MEK pathways are attractive pharmacologic targets for transplantation and treatment of autoimmunity. PMID:27017850

  4. Selective Sparing of Human Tregs by Pharmacologic Inhibitors of the Phosphatidylinositol 3-Kinase and MEK Pathways.

    PubMed

    Zwang, N A; Zhang, R; Germana, S; Fan, M Y; Hastings, W D; Cao, A; Turka, L A

    2016-09-01

    Phosphatidylinositol 3-kinase (PI3K) and mitogen-activated protein kinase/extracellular signal-regulated (MEK) signaling are central to the survival and proliferation of many cell types. Multiple lines of investigation in murine models have shown that control of the PI3K pathway is particularly important for regulatory T cell (Treg) stability and function. PI3K and MEK inhibitors are being introduced into the clinic, and we hypothesized that pharmacologic inhibition of PI3K, and possibly MEK, in mixed cultures of human mononuclear cells would preferentially affect CD4(+) and CD8(+) lymphocytes compared with Tregs. We tested this hypothesis using four readouts: proliferation, activation, functional suppression, and signaling. Results showed that Tregs were less susceptible to inhibition by both δ and α isoform-specific PI3K inhibitors and by an MEK inhibitor compared with their conventional CD4(+) and CD8(+) counterparts. These studies suggest less functional reliance on PI3K and MEK signaling in Tregs compared with conventional CD4(+) and CD8(+) lymphocytes. Therefore, the PI3K and MEK pathways are attractive pharmacologic targets for transplantation and treatment of autoimmunity. PMID:27017850

  5. PI3K inhibitors LY294002 and IC87114 reduce inflammation in carrageenan-induced paw oedema and down-regulate inflammatory gene expression in activated macrophages.

    PubMed

    Eräsalo, Heikki; Laavola, Mirka; Hämäläinen, Mari; Leppänen, Tiina; Nieminen, Riina; Moilanen, Eeva

    2015-01-01

    PI3K/Akt pathway is a well-characterized pathway controlling cellular processes such as proliferation, migration and survival, and its role in cancer is vastly studied. There is also evidence to suggest the involvement of this pathway in the regulation of inflammatory responses. In this study, an attempt was made to investigate the role of PI3Ks in acute inflammation in vivo using pharmacological inhibitors against PI3Ks in the carrageenan-induced paw oedema model. A non-selective PI3K inhibitor LY294002 and a PI3Kδ-selective inhibitor IC87114 were used. Both of these inhibitors reduced inflammatory oedema upon carrageenan challenge in the mouse paw. To explain this result, the effects of the two inhibitors on inflammatory gene expression were investigated in activated macrophages. LY294002 and IC87114 prevented Akt phosphorylation as expected and down-regulated the expression of inflammatory factors IL-6, MCP-1,TNFα and iNOS. These findings suggest that PI3K inhibitors could be used to attenuate inflammatory responses and that the mechanism of action behind this effect is the down-regulation of inflammatory gene expression.

  6. Synergistic suppression of the PI3K inhibitor CAL-101 with bortezomib on mantle cell lymphoma growth

    PubMed Central

    Qu, Fu-Lian; Xia, Bing; Li, Su-Xia; Tian, Chen; Yang, Hong-Liang; Li, Qian; Wang, Ya-Fei; Yu, Yong; Zhang, Yi-Zhuo

    2015-01-01

    Objective To investigate the effects of CAL-101, particularly when combined with bortezomib (BTZ) on mantle cell lymphoma (MCL) cells, and to explore its relative mechanisms. Methods MTT assay was applied to detect the inhibitory effects of different concentrations of CAL-101. MCL cells were divided into four groups: control group, CAL-101 group, BTZ group, and CAL-101/BTZ group. The expression of PI3K-p110σ, AKT, ERK, p-AKT and p-ERK were detected by Western blot. The apoptosis rates of CAL-101 group, BTZ group, and combination group were detected by flow cytometry. The location changes of nuclear factor kappa-B (NF-κB) of 4 groups was investigated by NF-κB Kit exploring. Western blot was applied to detect the levels of caspase-3 and the phosphorylation of AKT in different groups. Results CAL-101 dose- and time-dependently induced reduction in MCL cell viability. CAL-101 combined with BTZ enhanced the reduction in cell viability and apoptosis. Western blot analysis showed that CAL-101 significantly blocked the PI3K/AKT and ERK signaling pathway in MCL cells. The combination therapy contributed to the inactivation of NF-κB and AKT in MCL cell lines. However, cleaved caspase-3 was up-regulated after combined treatment. Conclusion Our study showed that PI3K/p110σ is a novel therapeutic target in MCL, and the underlying mechanism could be the blocking of the PI3K/AKT and ERK signaling pathways. These findings provided a basis for clinical evaluation of CAL-101 and a rationale for its application in combination therapy, particularly with BTZ. PMID:26779377

  7. Adaptive Mitochondrial Reprogramming and Resistance to PI3K Therapy

    PubMed Central

    Ghosh, Jagadish C.; Siegelin, Markus D.; Vaira, Valentina; Faversani, Alice; Tavecchio, Michele; Chae, Young Chan; Lisanti, Sofia; Rampini, Paolo; Giroda, Massimo; Caino, M. Cecilia; Seo, Jae Ho; Kossenkov, Andrew V.; Michalek, Ryan D.; Schultz, David C.; Bosari, Silvano; Languino, Lucia R.

    2015-01-01

    Background: Small molecule inhibitors of phosphatidylinositol-3 kinase (PI3K) have been developed as molecular therapy for cancer, but their efficacy in the clinic is modest, hampered by resistance mechanisms. Methods: We studied the effect of PI3K therapy in patient-derived tumor organotypic cultures (from five patient samples), three glioblastoma (GBM) tumor cell lines, and an intracranial model of glioblastoma in immunocompromised mice (n = 4–5 mice per group). Mechanisms of therapy-induced tumor reprogramming were investigated in a global metabolomics screening, analysis of mitochondrial bioenergetics and cell death, and modulation of protein phosphorylation. A high-throughput drug screening was used to identify novel preclinical combination therapies with PI3K inhibitors, and combination synergy experiments were performed. All statistical methods were two-sided. Results: PI3K therapy induces global metabolic reprogramming in tumors and promotes the recruitment of an active pool of the Ser/Thr kinase, Akt2 to mitochondria. In turn, mitochondrial Akt2 phosphorylates Ser31 in cyclophilin D (CypD), a regulator of organelle functions. Akt2-phosphorylated CypD supports mitochondrial bioenergetics and opposes tumor cell death, conferring resistance to PI3K therapy. The combination of a small-molecule antagonist of CypD protein folding currently in preclinical development, Gamitrinib, plus PI3K inhibitors (PI3Ki) reverses this adaptive response, produces synergistic anticancer activity by inducing mitochondrial apoptosis, and extends animal survival in a GBM model (vehicle: median survival = 28.5 days; Gamitrinib+PI3Ki: median survival = 40 days, P = .003), compared with single-agent treatment (PI3Ki: median survival = 32 days, P = .02; Gamitrinib: median survival = 35 days, P = .008 by two-sided unpaired t test). Conclusions: Small-molecule PI3K antagonists promote drug resistance by repurposing mitochondrial functions in bioenergetics and cell survival. Novel

  8. Efficacy of the dual PI3K and mTOR inhibitor NVP-BEZ235 in combination with nilotinib against BCR-ABL-positive leukemia cells involves the ABL kinase domain mutation

    PubMed Central

    Okabe, Seiichi; Tauchi, Tetsuzo; Tanaka, Yuko; Kitahara, Toshihiko; Kimura, Shinya; Maekawa, Taira; Ohyashiki, Kazuma

    2014-01-01

    Imatinib, an ABL tyrosine kinase inhibitor (TKI), has shown clinical efficacy against chronic myeloid leukemia (CML). However, a substantial number of patients develop resistance to imatinib treatment due to the emergence of clones carrying mutations in the protein BCR-ABL. The phosphoinositide 3 kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) pathway regulates various processes, including cell proliferation, cell survival, and antiapoptosis activity. In this study, we investigated the efficacy of NVP-BEZ235, a dual PI3K and mTOR inhibitor, using BCR-ABL-positive cell lines. Treatment with NVP-BEZ235 for 48 h inhibited cell growth and induced apoptosis. The phosphorylation of the AKT kinase, eukaryotic initiation factor 4-binding protein 1 (4E-BP1), and p70 S6 kinase were decreased after NVP-BEZ235 treatment. The combination of NVP-BEZ235 with a BCR-ABL kinase inhibitor, imatinib, or nilotinib, induced a more pronounced colony growth inhibition, whereas the combination of NVP-BEZ235 and nilotinib was more effective in inducing apoptosis and reducing the phosphorylation of AKT, 4E-BP1, and S6 kinase. NVP-BEZ235 in combination with nilotinib also inhibited tumor growth in a xenograft model and inhibited the growth of primary T315I mutant cells and ponatinib-resistant cells. Taken together, these results suggest that administration of the dual PI3K and mTOR inhibitor NVP-BEZ235 may be an effective strategy against BCR-ABL mutant cells and may enhance the cytotoxic effects of nilotinib in ABL TKI-resistant BCR-ABL mutant cells. PMID:24100660

  9. A patient tumor transplant model of squamous cell cancer identifies PI3K inhibitors as candidate therapeutics in defined molecular bins.

    PubMed

    Keysar, Stephen B; Astling, David P; Anderson, Ryan T; Vogler, Brian W; Bowles, Daniel W; Morton, J Jason; Paylor, Jeramiah J; Glogowska, Magdalena J; Le, Phuong N; Eagles-Soukup, Justin R; Kako, Severine L; Takimoto, Sarah M; Sehrt, Daniel B; Umpierrez, Adrian; Pittman, Morgan A; Macfadden, Sarah M; Helber, Ryan M; Peterson, Scott; Hausman, Diana F; Said, Sherif; Leem, Ted H; Goddard, Julie A; Arcaroli, John J; Messersmith, Wells A; Robinson, William A; Hirsch, Fred R; Varella-Garcia, Marileila; Raben, David; Wang, Xiao-Jing; Song, John I; Tan, Aik-Choon; Jimeno, Antonio

    2013-08-01

    Targeted therapy development in head and neck squamous cell carcinoma (HNSCC) is challenging given the rarity of activating mutations. Additionally, HNSCC incidence is increasing related to human papillomavirus (HPV). We sought to develop an in vivo model derived from patients reflecting the evolving HNSCC epidemiologic landscape, and use it to identify new therapies. Primary and relapsed tumors from HNSCC patients, both HPV+ and HPV-, were implanted on mice, giving rise to 25 strains. Resulting xenografts were characterized by detecting key mutations, measuring protein expression by IHC and gene expression/pathway analysis by mRNA-sequencing. Drug efficacy studies were run with representative xenografts using the approved drug cetuximab as well as the new PI3K inhibitor PX-866. Tumors maintained their original morphology, genetic profiles and drug susceptibilities through serial passaging. The genetic makeup of these tumors was consistent with known frequencies of TP53, PI3KCA, NOTCH1 and NOTCH2 mutations. Because the EGFR inhibitor cetuximab is a standard HNSCC therapy, we tested its efficacy and observed a wide spectrum of efficacy. Cetuximab-resistant strains had higher PI3K/Akt pathway gene expression and protein activation than cetuximab-sensitive strains. The PI3K inhibitor PX-866 had anti-tumor efficacy in HNSCC models with PIK3CA alterations. Finally, PI3K inhibition was effective in two cases with NOTCH1 inactivating mutations. In summary, we have developed an HNSCC model covering its clinical spectrum whose major genetic alterations and susceptibility to anticancer agents represent contemporary HNSCC. This model enables to prospectively test therapeutic-oriented hypotheses leading to personalized medicine. PMID:23607916

  10. Antitumor effect of a selective COX-2 inhibitor, celecoxib, may be attributed to angiogenesis inhibition through modulating the PTEN/PI3K/Akt/HIF-1 pathway in an H₂₂ murine hepatocarcinoma model.

    PubMed

    Sui, Wenwen; Zhang, Yueying; Wang, Zhaopeng; Wang, Zhaoxia; Jia, Qing; Wu, Licun; Zhang, Weidong

    2014-05-01

    Celecoxib, a selective cyclooxygenase-2 (COX-2) inhibitor, has recently been shown to affect the development of different types of cancer. The present study utilized a murine H22 hepatocarcinoma model to investigate the molecular mechanisms involved in celecoxib-induced inhibition of tumor angiogenesis. Tumor-bearing mice were randomly divided into five groups: i) control; ii) low-dose celecoxib (50 mg/kg); iii) high-dose celecoxib (200 mg/kg); iv) 5-fluorouracil (5-FU), (20 mg/kg) and v) combination of 5-FU and celecoxib (50 mg/kg). The antitumor effect of celecoxib was determined by measuring tumor volume. Tumor angiogenesis was evaluated by microvessel density (MVD). Tumor histology and immunostaining for CD34 in endothelial cells were performed to detect MVD. The expression levels of phosphatase and tensin homologue deleted from chromosome 10 (PTEN), phosphatidylinositol 3-kinase (PI3K), phospho‑Akt (P-Akt), COX-2, hypoxia-inducible factor-1α (HIF-1α) and vascular endothelial growth factor-A (VEGF-A) were detected by ELISA, immunohistochemistry and western blotting, respectively. We discovered substantial growth delay in murine H22 hepatoma as a result of celecoxib treatment. The inhibition rate of tumor growth induced by high-dose and low-dose celecoxib was 49.3 and 37.0%, respectively (P<0.05). The expression of PI3K, P-Akt, COX-2, HIF-1α, VEGF-A and PTEN in tumor tissues treated with celecoxib was demonstrated by immunohistochemistry, and the MVD was decreased in a dose-dependent manner (P<0.05). Reduced PI3K and P-Akt was particularly apparent in the high-dose celecoxib group (P<0.05). ELISA and western blotting data showed that the expression of PI3K, P-Akt, COX-2, HIF-1α and VEGF-A were reduced and PTEN was increased after treatment with celecoxib. In conclusion, the impact of celecoxib-induced tumor growth delay of murine H22 hepatocarcinoma may correlate with the inhibition of angiogenesis by reducing PI3K, P-Akt, COX-2, HIF-1α and VEGF

  11. Cannabinoid receptor agonist WIN55,212-2 and fatty acid amide hydrolase inhibitor URB597 may protect against cognitive impairment in rats of chronic cerebral hypoperfusion via PI3K/AKT signaling.

    PubMed

    Su, Shao-Hua; Wang, Yue-Qing; Wu, Yi-Fang; Wang, Da-Peng; Lin, Qi; Hai, Jian

    2016-10-15

    The present study further investigated the protective effects of cannabinoid receptor agonist WIN55,212-2 (WIN) and fatty acid amide hydrolase (FAAH) inhibitor URB597 (URB) on chronic cerebral hypoperfusion (CCH)-induced cognitive impairment in rats. Spatial learning and memory were assessed with the Morris water maze and by measuring Long-term potentiation. The expression of microtubule-associated protein-2 (MAP)-2, growth-associated protein-43 (GAP)-43, synaptophysin, cannabinoid receptor 1 (CB1), brain-derived neurotrophic factor (BDNF), FAAH, N-acylphosphatidylethanolamine phospholipase D(NAPE-PLD) and monoacyl glycerol lipase (MGL) as well as phosphoinositide 3-kinase (PI3K)/AKT signaling pathway molecules and downstream targets including AKT, phosphorylated (p-)AKT, cyclic AMP response element- binding protein (CREB), p-CREB, Bcl-2-associated death protein (BAD), p-BAD, glycogen synthase kinase (GSK)-3β, p-GSK-3β, forkhead box protein (FOXO) 3A and p-FOXO3A was determined by western blotting. WIN and URB treatment improved learning and memory performance, effects that were abolished by co-administration of the PI3K/AKT inhibitor LY294002. Moreover, WIN and URB reversed the decreases in MAP-2 and synaptophysin expression resulting from CCH, and stimulated BDNF and CB1 expression as well as CREB, FOXO3A, GSK-3β, and BAD phosphorylation, confirming that WIN and URB mediate neuroprotection by preventing neuronal apoptosis and improving cognition via PI3K/AKT signaling. These findings suggest that WIN and URB are promising agents for therapeutic management of CCH. PMID:27424778

  12. Radiation Enhancement of Head and Neck Squamous Cell Carcinoma by the Dual PI3K/mTOR Inhibitor PF-05212384

    PubMed Central

    Leiker, Andrew J.; DeGraff, William; Choudhuri, Rajani; Sowers, Anastasia L.; Thetford, Angela; Cook, John A.; Van Waes, Carter; Mitchell, James B.

    2015-01-01

    Purpose Radiation remains a mainstay for the treatment of non-metastatic head and neck squamous cell carcinoma (HNSCC), a malignancy characterized by a high rate of PI3K/mTOR signaling axis activation. We investigated the ATP-competitive dual PI3K/mTOR inhibitor, PF-05212384, as a radiosensitizer in pre-clinical HNSCC models. Experimental Design Extent of radiation enhancement of two HNSCC cell lines (UMSCC1-wtP53, UMSCC46-mtP53) and normal human fibroblast (1522) was assessed by in vitro clonogenic assay with appropriate target inhibition verified by immunoblotting. Radiation induced DNA damage repair was evaluated by γH2AX western blots with mechanism of DNA-DSB repair abrogation investigated by cell cycle analysis, immunoblotting, and RT-PCR. PF-05212384 efficacy in vivo was assessed by UMSCC1 xenograft tumor regrowth delay, xenograft lysate immunoblotting, and tissue section immunohistochemistry. Results PF-05212384 effectively inhibited PI3K and mTOR resulting in significant radiosensitization of exponentially growing and plateau-phase cells with 24 hr treatment following irradiation, and variable radiation enhancement with 24 hr treatment prior to irradiation. Tumor cells radiosensitized to a greater extent than normal human fibroblasts. Post-irradiation PF-05212384 treatment delays γ-H2AX foci resolution. PF-05212384 24 hr exposure resulted in an evident G1/S phase block in p53 competent cells. Fractionated radiation plus IV PF-05212384 synergistically delayed nude-mice bearing UMSCC1 xenograft regrowth, with potential drug efficacy biomarkers identified, including pS6, pAkt, p4EBP1, and Ki67. Conclusions Taken together, our results of significant radiosensitization both in vitro and in vivo validates the PI3K/mTOR axis as a radiation modification target and PF-05212384 as a potential clinical radiation modifier of non-metastatic HNSCC. PMID:25724523

  13. Abrogating endocrine resistance by targeting ERα and PI3K in breast cancer

    PubMed Central

    Fox, Emily M.; Arteaga, Carlos L.; Miller, Todd W.

    2012-01-01

    Antiestrogen therapies targeting estrogen receptor α (ER) signaling are a mainstay for patients with ER+ breast cancer. While many cancers exhibit resistance to antiestrogen therapies, a large body of clinical and experimental evidence indicates that hyperactivation of the phosphatidylinositol 3-kinase (PI3K) pathway promotes antiestrogen resistance. In addition, continued ligand-independent ER signaling in the setting of estrogen deprivation may contribute to resistance to endocrine therapy. PI3K activates several proteins which promote cell cycle progression and survival. In ER+ breast cancer cells, PI3K promotes ligand-dependent and -independent ER transcriptional activity. Models of antiestrogen-resistant breast cancer often remain sensitive to estrogen stimulation and PI3K inhibition, suggesting that clinical trials with combinations of drugs targeting both the PI3K and ER pathways are warranted. Herein, we review recent findings on the roles of PI3K and ER in antiestrogen resistance, and clinical trials testing drug combinations which target both pathways. We also discuss the need for clinical investigation of ER downregulators in combination with PI3K inhibitors. PMID:23087906

  14. Phase I dose-escalation study of the PI3K/mTOR inhibitor voxtalisib (SAR245409, XL765) plus temozolomide with or without radiotherapy in patients with high-grade glioma

    PubMed Central

    Wen, Patrick Y.; Omuro, Antonio; Ahluwalia, Manmeet S.; Fathallah-Shaykh, Hassan M.; Mohile, Nimish; Lager, Joanne J.; Laird, A. Douglas; Tang, Jiali; Jiang, Jason; Egile, Coumaran; Cloughesy, Timothy F.

    2015-01-01

    Background This phase I study aimed to evaluate safety, maximum tolerated dose, pharmacokinetics, pharmacodynamics, and preliminary efficacy of voxtalisib (SAR245409, XL765), a pan-class I phosphoinositide 3-kinase (PI3K) and mammalian target of rapamycin (mTOR) inhibitor, in combination with temozolomide (TMZ), with or without radiation therapy (RT), in patients with high-grade glioma. Methods Patients received voxtalisib 30–90 mg once daily (q.d.) or 20–50 mg twice daily (b.i.d.), in combination with 200 mg/m2 TMZ (n = 49), or voxtalisib 20 mg q.d. with 75 mg/m2 TMZ and RT (n = 5). A standard 3 + 3 dose-escalation design was used to determine the maximum tolerated dose. Patients were evaluated for adverse events (AEs), plasma pharmacokinetics, pharmacodynamic effects in skin biopsies, and tumor response. Results The maximum tolerated doses were 90 mg q.d. and 40 mg b.i.d. for voxtalisib in combination with TMZ. The most frequently reported treatment-related AEs were nausea (48%), fatigue (43%), thrombocytopenia (26%), and diarrhea (24%). The most frequently reported treatment-related grade ≥3 AEs were lymphopenia (13%), thrombocytopenia, and decreased platelet count (9% each). Pharmacokinetic parameters were similar to previous studies with voxtalisib monotherapy. Moderate inhibition of PI3K signaling was observed in skin biopsies. Best response was partial response in 4% of evaluable patients, with stable disease observed in 68%. Conclusions Voxtalisib in combination with TMZ with or without RT in patients with high-grade gliomas demonstrated a favorable safety profile and a moderate level of PI3K/mTOR pathway inhibition. PMID:26019185

  15. The PI3K/Akt pathway: recent progress in the development of ATP-competitive and allosteric Akt kinase inhibitors.

    PubMed

    Lindsley, Craig W; Barnett, Stanley F; Layton, Mark E; Bilodeau, Mark T

    2008-02-01

    This article describes recent advances in the development and biological evaluation of allosteric and ATP-competitive small molecule inhibitors for the serine/threonine kinase Akt (protein kinase B, PKB). Unregulated activation of the PI3K/Akt/PTEN pathway is a prominent feature of many human cancers and Akt is over-expressed or activated in all major cancers making Akt an exciting new target for cancer therapy. The development of Akt inhibitors has been complicated and hampered by the presence of three Akt isozymes, (Akt1, Akt2 and Akt3) which differ in function and tissue distribution, as well as a lack of Akt specific inhibitors. In the past 18 months, a large number of reports have appeared describing the discovery and development of allosteric Akt kinase inhibitors and classical ATP-competitive Akt kinase inhibitors. This review will discuss the PI3K/Akt/PTEN pathway, allosteric and ATP-competitive Akt kinase inhibitors, their biological evaluation and progress towards target validation.

  16. Molecular rationale for the use of PI3K/AKT/mTOR pathway inhibitors in combination with crizotinib in ALK-mutated neuroblastoma.

    PubMed

    Moore, Nathan F; Azarova, Anna M; Bhatnagar, Namrata; Ross, Kenneth N; Drake, Lauren E; Frumm, Stacey; Liu, Qinsong S; Christie, Amanda L; Sanda, Takaomi; Chesler, Louis; Kung, Andrew L; Gray, Nathanael S; Stegmaier, Kimberly; George, Rani E

    2014-09-30

    Mutations in the ALK tyrosine kinase receptor gene represent important therapeutic targets in neuroblastoma, yet their clinical translation has been challenging. The ALK(F1174L) mutation is sensitive to the ALK inhibitor crizotinib only at high doses and mediates acquired resistance to crizotinib in ALK-translocated cancers. We have shown that the combination of crizotinib and an inhibitor of downstream signaling induces a favorable response in transgenic mice bearing ALK(F1174L)/MYCN-positive neuroblastoma. Here, we investigated the molecular basis of this effect and assessed whether a similar strategy would be effective in ALK-mutated tumors lacking MYCN overexpression. We show that in ALK-mutated, MYCN-amplified neuroblastoma cells, crizotinib alone does not affect mTORC1 activity as indicated by persistent RPS6 phosphorylation. Combined treatment with crizotinib and an ATP-competitive mTOR inhibitor abrogated RPS6 phosphorylation, leading to reduced tumor growth and prolonged survival in ALK(F1174L)/MYCN-positive models compared to single agent treatment. By contrast, this combination, while inducing mTORC1 downregulation, caused reciprocal upregulation of PI3K activity in ALK-mutated cells expressing wild-type MYCN. Here, an inhibitor with potency against both mTOR and PI3K was more effective in promoting cytotoxicity when combined with crizotinib. Our findings should enable a more precise selection of molecularly targeted agents for patients with ALK-mutated tumors.

  17. Molecular analysis of a male breast cancer patient with prolonged stable disease under mTOR/PI3K inhibitors BEZ235/everolimus

    PubMed Central

    Brannon, A. Rose; Frizziero, Melissa; Chen, David; Hummel, Jennifer; Gallo, Jorge; Riester, Markus; Patel, Parul; Cheung, Wing; Morrissey, Michael; Carbone, Carmine; Cottini, Silvia; Tortora, Giampaolo; Melisi, Davide

    2016-01-01

    The mTORC1 inhibitor everolimus (Afinitor/RAD001) has been approved for multiple cancer indications, including ER+/HER2− metastatic breast cancer. However, the combination of everolimus with the dual PI3K/mTOR inhibitor BEZ235 was shown to be more efficacious than either everolimus or BEZ235 alone in preclinical models. Herein, we describe a male breast cancer (MBC) patient who was diagnosed with hormone receptor-positive (HR+)/HER2− stage IIIA invasive ductal carcinoma and sequentially treated with chemoradiotherapy and hormonal therapy. Upon the development of metastases, the patient began a 200 mg twice-daily BEZ235 and 2.5 mg weekly everolimus combination regimen. The patient sustained a prolonged stable disease of 18 mo while undergoing the therapy, before his tumor progressed again. Therefore, we sought to both better understand MBC and investigate the underlying molecular mechanisms of the patient's sensitivity and subsequent resistance to the BEZ235/everolimus combination therapy. Genomic and immunohistochemical analyses were performed on samples collected from the initial invasive ductal carcinoma pretreatment and a metastasis postprogression on the BEZ235/everolimus combination treatment. Both tumors were relatively quiet genomically with no overlap to recurrent MBC alterations in the literature. Markers of PI3K/mTOR pathway hyperactivation were not identified in the pretreatment sample, which complements previous reports of HR+ female breast cancers being responsive to mTOR inhibition without this activation. The postprogression sample, however, demonstrated greater than fivefold increased estrogen receptor and pathogenesis-related protein expression, which could have constrained the PI3K/mTOR pathway inhibition by BEZ235/everolimus. Overall, these analyses have augmented the limited episteme on MBC genetics and treatment. PMID:27148582

  18. Molecular analysis of a male breast cancer patient with prolonged stable disease under mTOR/PI3K inhibitors BEZ235/everolimus.

    PubMed

    Brannon, A Rose; Frizziero, Melissa; Chen, David; Hummel, Jennifer; Gallo, Jorge; Riester, Markus; Patel, Parul; Cheung, Wing; Morrissey, Michael; Carbone, Carmine; Cottini, Silvia; Tortora, Giampaolo; Melisi, Davide

    2016-03-01

    The mTORC1 inhibitor everolimus (Afinitor/RAD001) has been approved for multiple cancer indications, including ER(+)/HER2(-) metastatic breast cancer. However, the combination of everolimus with the dual PI3K/mTOR inhibitor BEZ235 was shown to be more efficacious than either everolimus or BEZ235 alone in preclinical models. Herein, we describe a male breast cancer (MBC) patient who was diagnosed with hormone receptor-positive (HR(+))/HER2(-) stage IIIA invasive ductal carcinoma and sequentially treated with chemoradiotherapy and hormonal therapy. Upon the development of metastases, the patient began a 200 mg twice-daily BEZ235 and 2.5 mg weekly everolimus combination regimen. The patient sustained a prolonged stable disease of 18 mo while undergoing the therapy, before his tumor progressed again. Therefore, we sought to both better understand MBC and investigate the underlying molecular mechanisms of the patient's sensitivity and subsequent resistance to the BEZ235/everolimus combination therapy. Genomic and immunohistochemical analyses were performed on samples collected from the initial invasive ductal carcinoma pretreatment and a metastasis postprogression on the BEZ235/everolimus combination treatment. Both tumors were relatively quiet genomically with no overlap to recurrent MBC alterations in the literature. Markers of PI3K/mTOR pathway hyperactivation were not identified in the pretreatment sample, which complements previous reports of HR(+) female breast cancers being responsive to mTOR inhibition without this activation. The postprogression sample, however, demonstrated greater than fivefold increased estrogen receptor and pathogenesis-related protein expression, which could have constrained the PI3K/mTOR pathway inhibition by BEZ235/everolimus. Overall, these analyses have augmented the limited episteme on MBC genetics and treatment.

  19. Antitumor activity of pimasertib, a selective MEK 1/2 inhibitor, in combination with PI3K/mTOR inhibitors or with multi-targeted kinase inhibitors in pimasertib-resistant human lung and colorectal cancer cells.

    PubMed

    Martinelli, Erika; Troiani, Teresa; D'Aiuto, Elena; Morgillo, Floriana; Vitagliano, Donata; Capasso, Anna; Costantino, Sarah; Ciuffreda, Loreta Pia; Merolla, Francesco; Vecchione, Loredana; De Vriendt, Veerle; Tejpar, Sabine; Nappi, Anna; Sforza, Vincenzo; Martini, Giulia; Berrino, Liberato; De Palma, Raffaele; Ciardiello, Fortunato

    2013-11-01

    The RAS/RAF/MEK/MAPK and the PTEN/PI3K/AKT/mTOR pathways are key regulators of proliferation and survival in human cancer cells. Selective inhibitors of different transducer molecules in these pathways have been developed as molecular targeted anti-cancer therapies. The in vitro and in vivo anti-tumor activity of pimasertib, a selective MEK 1/2 inhibitor, alone or in combination with a PI3K inhibitor (PI3Ki), a mTOR inhibitor (everolimus), or with multi-targeted kinase inhibitors (sorafenib and regorafenib), that block also BRAF and CRAF, were tested in a panel of eight human lung and colon cancer cell lines. Following pimasertib treatment, cancer cell lines were classified as pimasertib-sensitive (IC50 for cell growth inhibition of 0.001 µM) or pimasertib-resistant. Evaluation of basal gene expression profiles by microarrays identified several genes that were up-regulated in pimasertib-resistant cancer cells and that were involved in both RAS/RAF/MEK/MAPK and PTEN/PI3K/AKT/mTOR pathways. Therefore, a series of combination experiments with pimasertib and either PI3Ki, everolimus, sorafenib or regorafenib were conducted, demonstrating a synergistic effect in cell growth inhibition and induction of apoptosis with sustained blockade in MAPK- and AKT-dependent signaling pathways in pimasertib-resistant human colon carcinoma (HCT15) and lung adenocarcinoma (H1975) cells. Finally, in nude mice bearing established HCT15 and H1975 subcutaneous tumor xenografts, the combined treatment with pimasertib and BEZ235 (a dual PI3K/mTOR inhibitor) or with sorafenib caused significant tumor growth delays and increase in mice survival as compared to single agent treatment. These results suggest that dual blockade of MAPK and PI3K pathways could overcome intrinsic resistance to MEK inhibition.

  20. Evaluation of In Vitro Activity of the Class I PI3K Inhibitor Buparlisib (BKM120) in Pediatric Bone and Soft Tissue Sarcomas

    PubMed Central

    Anderson, Jennifer L.; Park, Ann; Akiyama, Ryan; Tap, William D.; Denny, Christopher T.; Federman, Noah

    2015-01-01

    Pediatric bone and soft tissue sarcomas often display increased Akt phosphorylation through up regulation of insulin-like growth factor (IGF1) signaling. Additionally, Akt signaling has been linked to resistance to IGF1 receptor (IGF1R) and mTOR (mammalian target of rapamycin) inhibitors in sarcoma, further demonstrating the role of Akt in tumor survival. This suggests targeting components of the PI3K/Akt pathway may be an effective therapeutic strategy. Here, we investigated the in vitro activity of the pan-class I PI3K inhibitor buparlisib (BKM120) in pediatric bone and soft tissue sarcomas. Buparlisib inhibited activation of Akt and signaling molecules downstream of mTORC1 (mTOR complex 1) in Ewing sarcoma, osteosarcoma, and rhabdomyosarcoma cell lines. Anti-proliferative effects were observed in both anchorage dependent and independent conditions and apoptosis was induced within 24 hours of drug treatment. Buparlisib demonstrated cytotoxicity as a single agent, but was found to be more effective when used in combination. Synergy was observed when buparlisib was combined with the IGF1R inhibitor NVP-AEW541 and the mTORC1 inhibitor rapamycin. The addition of NVP-AEW541 also further reduced phospho-Akt levels and more potently induced apoptosis compared to buparlisib treatment alone. Additionally, the combination of buparlisib with the MEK1/2 inhibitor trametinib resulted in synergy in sarcoma cell lines possessing MAPK pathway mutations. Taken together, these data indicate buparlisib could be a novel therapy for the treatment of pediatric bone and soft tissue sarcomas. PMID:26402468

  1. Evaluation of In Vitro Activity of the Class I PI3K Inhibitor Buparlisib (BKM120) in Pediatric Bone and Soft Tissue Sarcomas.

    PubMed

    Anderson, Jennifer L; Park, Ann; Akiyama, Ryan; Tap, William D; Denny, Christopher T; Federman, Noah

    2015-01-01

    Pediatric bone and soft tissue sarcomas often display increased Akt phosphorylation through up regulation of insulin-like growth factor (IGF1) signaling. Additionally, Akt signaling has been linked to resistance to IGF1 receptor (IGF1R) and mTOR (mammalian target of rapamycin) inhibitors in sarcoma, further demonstrating the role of Akt in tumor survival. This suggests targeting components of the PI3K/Akt pathway may be an effective therapeutic strategy. Here, we investigated the in vitro activity of the pan-class I PI3K inhibitor buparlisib (BKM120) in pediatric bone and soft tissue sarcomas. Buparlisib inhibited activation of Akt and signaling molecules downstream of mTORC1 (mTOR complex 1) in Ewing sarcoma, osteosarcoma, and rhabdomyosarcoma cell lines. Anti-proliferative effects were observed in both anchorage dependent and independent conditions and apoptosis was induced within 24 hours of drug treatment. Buparlisib demonstrated cytotoxicity as a single agent, but was found to be more effective when used in combination. Synergy was observed when buparlisib was combined with the IGF1R inhibitor NVP-AEW541 and the mTORC1 inhibitor rapamycin. The addition of NVP-AEW541 also further reduced phospho-Akt levels and more potently induced apoptosis compared to buparlisib treatment alone. Additionally, the combination of buparlisib with the MEK1/2 inhibitor trametinib resulted in synergy in sarcoma cell lines possessing MAPK pathway mutations. Taken together, these data indicate buparlisib could be a novel therapy for the treatment of pediatric bone and soft tissue sarcomas.

  2. MKP1 repression is required for the chemosensitizing effects of NF-kappaB and PI3K inhibitors to cisplatin in non-small cell lung cancer.

    PubMed

    Cortes-Sempere, María; Chattopadhyay, Sharmila; Rovira, Ana; Rodriguez-Fanjul, Vanessa; Belda-Iniesta, Cristobal; Tapia, Marian; Cejas, Paloma; Machado-Pinilla, Rosario; Manguan-García, Cristina; Sánchez-Pérez, Isabel; Nistal, Manuel; Moratilla, Carmen; de Castro-Carpeño, Javier; Gonzalez-Barón, Manuel; Albanell, Joan; Perona, Rosario

    2009-12-28

    Treatment of non-small cell lung cancer (NSCLC) with cisplatin has a level of antitumor activity still modest. We have shown previously that MKP1/DUSP1 inhibits cisplatin-induced apoptosis in NSCLC cells and is overexpressed in tumors from most patients with stage I-II NSCLC. Here, using different NSCLC cell lines we found that MKP1 and NF-kappaB are differentially expressed. We studied whether targeting MKP1, NF-kappaB or both affects cisplatin-induced cell death. MKP1 is expressed in H460 and H727 cells. H727 and H1299 cells showed constitutive phosphorylation of Akt and increased NF-kappaB activity than did H460 cells. H460-MKP1-siRNA-expressing cells (but not H727-MKP1-siRNA or H1299-MKP1-siRNA cells) exhibit a marked increase in cisplatin response compared with parental cells. Treatment with the PI3K inhibitor LY294002 or the NF-kappaB inhibitor BAY11-7082 enhanced cisplatin antitumor activity in parental H1299 cells but only weakly affected responses of H727 and H460 cells. MKP1-siRNA expression enhanced the chemosensitization effect of LY294002 and BAY11-7082 on H727 and H460 cells. Additionally, NSCLC cell lines with higher NF-kappaB-constitutive activation were the most sensitive to PS-341 (Bortezomib), a non-specific NF-kappaB inhibitor. This finding suggests the proteasome as a suitable strategy in treating NSCLC tumors with high constitutive NF-kappaB activity. Altogether, these results showed that either an activated PI3K/Akt/NF-kappaB pathway and/or high MKP1 was linked to reduced sensitivity to cisplatin in NSCLC cells. Inhibition of NF-kappaB or PI3K potently enhanced cisplatin cytotoxicity in cells with endogenous or genetically induced low MKP1 levels. These findings support the potential improvement in cisplatin responses by co-targeting NF-kappaB or Akt and MKP1.

  3. Effects of Novel Isoform-Selective Phosphoinositide 3-Kinase Inhibitors on Natural Killer Cell Function

    PubMed Central

    Yea, Sung Su; So, Lomon; Mallya, Sharmila; Lee, Jongdae; Rajasekaran, Kamalakannan; Malarkannan, Subramaniam; Fruman, David A.

    2014-01-01

    Phosphoinositide 3-kinases (PI3Ks) are promising targets for therapeutic development in cancer. The class I PI3K isoform p110α has received considerable attention in oncology because the gene encoding p110α (PIK3CA) is frequently mutated in human cancer. However, little is known about the function of p110α in lymphocyte populations that modulate tumorigenesis. We used recently developed investigational inhibitors to compare the function of p110α and other isoforms in natural killer (NK) cells, a key cell type for immunosurveillance and tumor immunotherapy. Inhibitors of all class I isoforms (pan-PI3K) significantly impaired NK cell-mediated cytotoxicity and antibody-dependent cellular cytotoxicity against tumor cells, whereas p110α-selective inhibitors had no effect. In NK cells stimulated through NKG2D, p110α inhibition modestly reduced PI3K signaling output as measured by AKT phosphorylation. Production of IFN-γ and NK cell-derived chemokines was blocked by a pan-PI3K inhibitor and partially reduced by a p110δinhibitor, with lesser effects of p110α inhibitors. Oral administration of mice with MLN1117, a p110α inhibitor in oncology clinical trials, had negligible effects on NK subset maturation or terminal subset commitment. Collectively, these results support the targeting of PIK3CA mutant tumors with selective p110α inhibitors to preserve NK cell function. PMID:24915189

  4. Involvement of HDAC1 and the PI3K/PKC signaling pathways in NF-{kappa}B activation by the HDAC inhibitor apicidin

    SciTech Connect

    Kim, Yong Kee . E-mail: yksnbk@kwandong.ac.kr; Seo, Dong-Wan; Kang, Dong-Won; Lee, Hoi Young; Han, Jeung-Whan; Kim, Su-Nam . E-mail: snkim@kist.re.kr

    2006-09-08

    Histone deacetylase (HDAC) inhibitors are appreciated as one of promising anticancer drugs, but they exert differential responses depending on the cell type. We recently reported the critical role of NF-{kappa}B as a modulator in determining cell fate for apoptosis in response to an HDAC inhibitor. In this study, we investigate a possible signaling pathway required for NF-{kappa}B activation in response to the HDAC inhibitor apicidin. Treatment of HeLa cells with apicidin leads to an increase in transcriptional activity of NF-{kappa}B and the expression of its target genes, IL-8 and TNF-{alpha}. TNF-{alpha} expression by apicidin is induced at earlier time points than NF-{kappa}B activation or IL-8 expression. In addition, our data show that the early expression of TNF-{alpha} does not lead to activation of NF-{kappa}B, because disruption of TNF-{alpha} activity by a neutralizing antibody does not affect nuclear translocation of NF-{kappa}B, I{kappa}B{alpha} degradation or reporter gene activation by apicidin. However, this activation of NF-{kappa}B requires the PI3K and PKC signaling pathways, but not ERK or JNK. Furthermore, apicidin activation of NF-{kappa}B seems to result from HDAC1 inhibition, as evidenced by the observation that overexpression of HDAC1, but not HDAC2, 3 or 4, dramatically inhibits NF-{kappa}B reporter gene activity. Collectively, our results suggest that activation of NF-{kappa}B signaling by apicidin requires both the PI3K/PKC signaling pathways and HDAC1, and functions as a critical modulator in determining the cellular effect of apicidin.

  5. Apelin-13 promotes cardiomyocyte hypertrophy via PI3K-Akt-ERK1/2-p70S6K and PI3K-induced autophagy.

    PubMed

    Xie, Feng; Liu, Wei; Feng, Fen; Li, Xin; He, Lu; Lv, Deguan; Qin, Xuping; Li, Lifang; Li, Lanfang; Chen, Linxi

    2015-12-01

    Apelin is highly expressed in rat left ventricular hypertrophy Sprague Dawley rat models, and it plays a crucial role in the cardiovascular system. The aim this study was to clarify whether apelin-13 promotes hypertrophy in H9c2 rat cardiomyocytes and to investigate its underlying mechanism. The cardiomyocyte hypertrophy was observed by measuring the diameter, volume, and protein content of H9c2 cells. The activation of autophagy was evaluated by observing the morphology of autophagosomes by transmission electron microscopy, observing the subcellular localization of LC3 by light microscopy, and detecting the membrane-associated form of LC3 by western blot analysis. The phosphatidylinositol 3-kinase (PI3K) signaling pathway was identified and the proteins expression was detected using western blot analysis. The results revealed that apelin-13 increased the diameter, volume, and protein content of H9c2 cells and promoted the phosphorylation of PI3K, Akt, ERK1/2, and p70S6K. Apelin-13 activated the PI3K-Akt-ERK1/2-p70S6K pathway. PI3K inhibitor LY294002, Akt inhibitor 1701-1, ERK1/2 inhibitor PD98059 attenuated the increase of the cell diameter, volume, protein content induced by apelin-13. Apelin-13 increased the autophagosomes and up-regulated the expressions of beclin 1 and LC3-II/I both transiently and stably. The autophagy inhibitor 3MA ameliorated the increase of cell diameter, volume, and protein content that were induced by apelin-13. These results suggested that apelin-13 promotes H9c2 rat cardiomyocyte hypertrophy via PI3K-Akt-ERK1/2-p70S6K and PI3K-induced autophagy. PMID:26607438

  6. Synthesis and antitumor activity evaluation of PI3K inhibitors containing 3-substituted quinazolin-4(3H)-one moiety.

    PubMed

    Zhang, Hao; Xin, Min-Hang; Xie, Xiao-Xiao; Mao, Shuai; Zuo, Sai-Jie; Lu, She-Min; Zhang, San-Qi

    2015-12-15

    In present study, a series of N-(2-methoxy-5-(3-substituted quinazolin-4(3H)-one-6-yl)-pyridin-3-yl)phenylsulfonamide were synthesized. Their antiproliferative activities in vitro were evaluated via MTT assay against HCT116 and MCF-7 cancer cell lines. The SAR of title compounds was discussed. The compounds (S)-C5 and (S)-C8 displayed potent inhibitory activity against PI3Ks and mTOR, especially against PI3Kα. In addition, compound (S)-C5 can efficaciously inhibit tumor growth in a mice S-180 model. These findings suggest that our designed compounds can serve as potent PI3K inhibitors and effective anticancer agents. PMID:26652969

  7. Effects of RAF inhibitors on PI3K/AKT signalling depend on mutational status of the RAS/RAF signalling axis

    PubMed Central

    Fritsche-Guenther, Raphaela; Witzel, Franziska; Kempa, Stefan; Brummer, Tilman; Sers, Christine; Blüthgen, Nils

    2016-01-01

    Targeted therapies within the RAS/RAF/MEK/ERK signalling axis become increasingly popular, yet cross-talk and feedbacks in the signalling network lead to unexpected effects. Here we look systematically into how inhibiting RAF and MEK with clinically relevant inhibitors result in changes in PI3K/AKT activation. We measure the signalling response using a bead-based ELISA, and use a panel of three cell lines, and isogenic cell lines that express mutant forms of the oncogenes KRAS and BRAF to interrogate the effects of the MEK and RAF inhibitors on signalling. We find that treatment with the RAF inhibitors have opposing effects on AKT phosphorylation depending on the mutational status of two important oncogenes, KRAS and BRAF. If these two genes are in wildtype configuration, RAF inhibitors reduce AKT phosphorylation. In contrast, if BRAF or KRAS are mutant, RAF inhibitors will leave AKT phosphorylation unaffected or lead to an increase of AKT phosphorylation. Down-regulation of phospho-AKT by RAF inhibitors also extends to downstream transcription factors, and correlates with apoptosis induction. Our results show that oncogenes rewire signalling such that targeted therapies can have opposing effects on parallel pathways, which depend on the mutational status of the cell. PMID:26799289

  8. The role of PI3K/AKT-related PIP5K1α and the discovery of its selective inhibitor for treatment of advanced prostate cancer

    PubMed Central

    Semenas, Julius; Hedblom, Andreas; Miftakhova, Regina R.; Sarwar, Martuza; Larsson, Rikard; Shcherbina, Liliya; Johansson, Martin E.; Härkönen, Pirkko; Sterner, Olov; Persson, Jenny L.

    2014-01-01

    Nitrogen-containing heterocyclic compounds are an important class of molecules that are commonly used for the synthesis of candidate drugs. Phosphatidylinositol-4-phosphate 5-kinase-α (PIP5Kα) is a lipid kinase, similar to PI3K. However, the role of PIP5K1α in oncogenic processes and the development of inhibitors that selectively target PIP5K1α have not been reported. In the present study we report that overexpression of PIP5K1α is associated with poor prognosis in prostate cancer and correlates with an elevated level of the androgen receptor. Overexpression of PIP5K1α in PNT1A nonmalignant cells results in an increased AKT activity and an increased survival, as well as invasive malignant phenotype, whereas siRNA-mediated knockdown of PIP5K1α in aggressive PC-3 cells leads to a reduced AKT activity and an inhibition in tumor growth in xenograft mice. We further report a previously unidentified role for PIP5K1α as a druggable target for our newly developed compound ISA-2011B using a high-throughput KINOMEscan platform. ISA-2011B was discovered during our synthetic studies of C-1 indol-3-yl substituted 1,2,3,4-tetrahydroisoquinolines via a Pictet-Spengler approach. ISA-2011B significantly inhibits growth of tumor cells in xenograft mice, and we show that this is mediated by targeting PIP5K1α-associated PI3K/AKT and the downstream survival, proliferation, and invasion pathways. Further, siRNA-mediated knockdown of PIP5K1α exerts similar effects on PC3 cells as ISA-2011B treatment, significantly inhibiting AKT activity, increasing apoptosis and reducing invasion. Thus, PIP5K1α has high potential as a drug target, and compound ISA-2011B is interesting for further development of targeted cancer therapy. PMID:25071204

  9. The role of PI3K/AKT-related PIP5K1α and the discovery of its selective inhibitor for treatment of advanced prostate cancer.

    PubMed

    Semenas, Julius; Hedblom, Andreas; Miftakhova, Regina R; Sarwar, Martuza; Larsson, Rikard; Shcherbina, Liliya; Johansson, Martin E; Härkönen, Pirkko; Sterner, Olov; Persson, Jenny L

    2014-09-01

    Nitrogen-containing heterocyclic compounds are an important class of molecules that are commonly used for the synthesis of candidate drugs. Phosphatidylinositol-4-phosphate 5-kinase-α (PIP5Kα) is a lipid kinase, similar to PI3K. However, the role of PIP5K1α in oncogenic processes and the development of inhibitors that selectively target PIP5K1α have not been reported. In the present study we report that overexpression of PIP5K1α is associated with poor prognosis in prostate cancer and correlates with an elevated level of the androgen receptor. Overexpression of PIP5K1α in PNT1A nonmalignant cells results in an increased AKT activity and an increased survival, as well as invasive malignant phenotype, whereas siRNA-mediated knockdown of PIP5K1α in aggressive PC-3 cells leads to a reduced AKT activity and an inhibition in tumor growth in xenograft mice. We further report a previously unidentified role for PIP5K1α as a druggable target for our newly developed compound ISA-2011B using a high-throughput KINOMEscan platform. ISA-2011B was discovered during our synthetic studies of C-1 indol-3-yl substituted 1,2,3,4-tetrahydroisoquinolines via a Pictet-Spengler approach. ISA-2011B significantly inhibits growth of tumor cells in xenograft mice, and we show that this is mediated by targeting PIP5K1α-associated PI3K/AKT and the downstream survival, proliferation, and invasion pathways. Further, siRNA-mediated knockdown of PIP5K1α exerts similar effects on PC3 cells as ISA-2011B treatment, significantly inhibiting AKT activity, increasing apoptosis and reducing invasion. Thus, PIP5K1α has high potential as a drug target, and compound ISA-2011B is interesting for further development of targeted cancer therapy.

  10. The role of PI3K/AKT-related PIP5K1α and the discovery of its selective inhibitor for treatment of advanced prostate cancer.

    PubMed

    Semenas, Julius; Hedblom, Andreas; Miftakhova, Regina R; Sarwar, Martuza; Larsson, Rikard; Shcherbina, Liliya; Johansson, Martin E; Härkönen, Pirkko; Sterner, Olov; Persson, Jenny L

    2014-09-01

    Nitrogen-containing heterocyclic compounds are an important class of molecules that are commonly used for the synthesis of candidate drugs. Phosphatidylinositol-4-phosphate 5-kinase-α (PIP5Kα) is a lipid kinase, similar to PI3K. However, the role of PIP5K1α in oncogenic processes and the development of inhibitors that selectively target PIP5K1α have not been reported. In the present study we report that overexpression of PIP5K1α is associated with poor prognosis in prostate cancer and correlates with an elevated level of the androgen receptor. Overexpression of PIP5K1α in PNT1A nonmalignant cells results in an increased AKT activity and an increased survival, as well as invasive malignant phenotype, whereas siRNA-mediated knockdown of PIP5K1α in aggressive PC-3 cells leads to a reduced AKT activity and an inhibition in tumor growth in xenograft mice. We further report a previously unidentified role for PIP5K1α as a druggable target for our newly developed compound ISA-2011B using a high-throughput KINOMEscan platform. ISA-2011B was discovered during our synthetic studies of C-1 indol-3-yl substituted 1,2,3,4-tetrahydroisoquinolines via a Pictet-Spengler approach. ISA-2011B significantly inhibits growth of tumor cells in xenograft mice, and we show that this is mediated by targeting PIP5K1α-associated PI3K/AKT and the downstream survival, proliferation, and invasion pathways. Further, siRNA-mediated knockdown of PIP5K1α exerts similar effects on PC3 cells as ISA-2011B treatment, significantly inhibiting AKT activity, increasing apoptosis and reducing invasion. Thus, PIP5K1α has high potential as a drug target, and compound ISA-2011B is interesting for further development of targeted cancer therapy. PMID:25071204

  11. Coordinate activation of Shh and PI3K signaling in PTEN-deficient glioblastoma: new therapeutic opportunities.

    PubMed

    Filbin, Mariella Gruber; Dabral, Sukriti K; Pazyra-Murphy, Maria F; Ramkissoon, Shakti; Kung, Andrew L; Pak, Ekaterina; Chung, Jarom; Theisen, Matthew A; Sun, Yanping; Franchetti, Yoko; Sun, Yu; Shulman, David S; Redjal, Navid; Tabak, Barbara; Beroukhim, Rameen; Wang, Qi; Zhao, Jean; Dorsch, Marion; Buonamici, Silvia; Ligon, Keith L; Kelleher, Joseph F; Segal, Rosalind A

    2013-11-01

    In glioblastoma, phosphatidylinositol 3-kinase (PI3K) signaling is frequently activated by loss of the tumor suppressor phosphatase and tensin homolog (PTEN). However, it is not known whether inhibiting PI3K represents a selective and effective approach for treatment. We interrogated large databases and found that sonic hedgehog (SHH) signaling is activated in PTEN-deficient glioblastoma. We demonstrate that the SHH and PI3K pathways synergize to promote tumor growth and viability in human PTEN-deficient glioblastomas. A combination of PI3K and SHH signaling inhibitors not only suppressed the activation of both pathways but also abrogated S6 kinase (S6K) signaling. Accordingly, targeting both pathways simultaneously resulted in mitotic catastrophe and tumor apoptosis and markedly reduced the growth of PTEN-deficient glioblastomas in vitro and in vivo. The drugs tested here appear to be safe in humans; therefore, this combination may provide a new targeted treatment for glioblastoma. PMID:24076665

  12. The Role of PI3K/Akt/mTOR Signaling in Gastric Carcinoma

    PubMed Central

    Matsuoka, Tasuku; Yashiro, Masakazu

    2014-01-01

    The phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) pathway is one of the key signaling pathways induced by various receptor-tyrosine kinases. Accumulating evidence shows that this pathway is an important promoter of cell growth, metabolism, survival, metastasis, and resistance to chemotherapy. Genetic alterations in the PI3K/Akt/mTOR pathway in gastric carcinoma have often been demonstrated. Many kinds of molecular targeting therapies are currently undergoing clinical testing in patients with solid tumors. However, with the exception of the ErbB2-targeting antibody, targeting agents, including PI3K/Akt/mTOR inhibitors, have not been approved for treatment of patients with gastric carcinoma. This review summarizes the current knowledge on PI3K/Akt/mTOR signaling in the pathogenesis of gastric carcinoma and the possible therapeutic targets for gastric carcinoma. Improved knowledge of the PI3K/Akt/mTOR pathway in gastric carcinoma will be useful in understanding the mechanisms of tumor development and for identifying ideal targets of anticancer therapy for gastric carcinoma. PMID:25003395

  13. PI3K-Akt pathway: its functions and alterations in human cancer.

    PubMed

    Osaki, M; Oshimura, M; Ito, H

    2004-11-01

    Phosphatidylinositol-3-kinase (PI3K) is a lipid kinase and generates phosphatidylinositol-3,4,5-trisphosphate (PI(3, 4, 5)P3). PI(3, 4, 5)P3 is a second messenger essential for the translocation of Akt to the plasma membrane where it is phosphorylated and activated by phosphoinositide-dependent kinase (PDK) 1 and PDK2. Activation of Akt plays a pivotal role in fundamental cellular functions such as cell proliferation and survival by phosphorylating a variety of substrates. In recent years, it has been reported that alterations to the PI3K-Akt signaling pathway are frequent in human cancer. Constitutive activation of the PI3K-Akt pathway occurs due to amplification of the PIK3C gene encoding PI3K or the Akt gene, or as a result of mutations in components of the pathway, for example PTEN (phosphatase and tensin homologue deleted on chromosome 10), which inhibit the activation of Akt. Several small molecules designed to specifically target PI3K-Akt have been developed, and induced cell cycle arrest or apoptosis in human cancer cells in vitro and in vivo . Moreover, the combination of an inhibitor with various cytotoxic agents enhances the anti-tumor efficacy. Therefore, specific inhibition of the activation of Akt may be a valid approach to treating human malignancies and overcoming the resistance of cancer cells to radiation or chemotherapy. PMID:15505410

  14. Targeting AKT1-E17K and the PI3K/AKT Pathway with an Allosteric AKT Inhibitor, ARQ 092

    PubMed Central

    Yu, Yi; Savage, Ronald E.; Eathiraj, Sudharshan; Meade, Justin; Wick, Michael J.; Hall, Terence; Abbadessa, Giovanni; Schwartz, Brian

    2015-01-01

    As a critical component in the PI3K/AKT/mTOR pathway, AKT has become an attractive target for therapeutic intervention. ARQ 092 and a next generation AKT inhibitor, ARQ 751 are selective, allosteric, pan-AKT and AKT1-E17K mutant inhibitors that potently inhibit phosphorylation of AKT. Biochemical and cellular analysis showed that ARQ 092 and ARQ 751 inhibited AKT activation not only by dephosphorylating the membrane-associated active form, but also by preventing the inactive form from localizing into plasma membrane. In endometrial PDX models harboring mutant AKT1-E17K and other tumor models with an activated AKT pathway, both compounds exhibited strong anti-tumor activity. Combination studies conducted in in vivo breast tumor models demonstrated that ARQ 092 enhanced tumor inhibition of a common chemotherapeutic agent (paclitaxel). In a large panel of diverse cancer cell lines, ARQ 092 and ARQ 751 inhibited proliferation across multiple tumor types but were most potent in leukemia, breast, endometrial, and colorectal cancer cell lines. Moreover, inhibition by ARQ 092 and ARQ 751 was more prevalent in cancer cell lines containing PIK3CA/PIK3R1 mutations compared to those with wt-PIK3CA/PIK3R1 or PTEN mutations. For both ARQ 092 and ARQ 751, PIK3CA/PIK3R1 and AKT1-E17K mutations can potentially be used as predictive biomarkers for patient selection in clinical studies. PMID:26469692

  15. Dual PI3K/mTOR inhibition is required to effectively impair microenvironment survival signals in mantle cell lymphoma

    PubMed Central

    Rosich, Laia; Montraveta, Arnau; Xargay-Torrent, Sílvia; López-Guerra, Mónica; Roldán, Jocabed; Aymerich, Marta; Salaverria, Itziar; Beà, Sílvia; Campo, Elías; Pérez-Galán, Patricia; Roué, Gaël; Colomer, Dolors

    2014-01-01

    Phosphatidylinositol-3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) pathway activation contributes to mantle cell lymphoma (MCL) pathogenesis and drug resistance. Antitumor activity has been observed with mTOR inhibitors. However, they have shown limited clinical efficacy in relation to drug activation of feedback loops. Selective PI3K inhibition or dual PI3K/mTOR catalytic inhibition are different therapeutic approaches developed to achieve effective pathway blockage. Here, we have performed a comparative analysis of the mTOR inhibitor everolimus, the pan-PI3K inhibitor NVP-BKM120 and the dual PI3K/mTOR inhibitor NVP-BEZ235 in primary MCL cells. We found NVP-BEZ235 to be more powerful than everolimus or NVP-BKM120 in PI3K/Akt/mTOR signaling inhibition, indicating that targeting the PI3K/Akt/mTOR pathway at multiple levels is likely to be a more effective strategy for the treatment of MCL than single inhibition of these kinases. Among the three drugs, NVP-BEZ235 induced the highest change in gene expression profile. Functional validation demonstrated that NVP-BEZ235 inhibited angiogenesis, migration and tumor invasiveness in MCL cells. NVP-BEZ235 was the only drug able to block IL4 and IL6/STAT3 signaling which compromise the therapeutic effect of chemotherapy in MCL. Our findings support the use of the dual PI3K/mTOR inhibitor NVP-BEZ235 as a promising approach to interfere with the microenvironment-related processes in MCL. PMID:25216518

  16. Molecular and Functional Characterization of Three Different Postzygotic Mutations in PIK3CA-Related Overgrowth Spectrum (PROS) Patients: Effects on PI3K/AKT/mTOR Signaling and Sensitivity to PIK3 Inhibitors

    PubMed Central

    Forte, Giovanna; Bagnulo, Rosanna; Stella, Alessandro; Lastella, Patrizia; Cutrone, Mario; Benedicenti, Francesco; Susca, Francesco C.; Patruno, Margherita; Varvara, Dora; Germani, Aldo; Chessa, Luciana; Laforgia, Nicola; Tenconi, Romano; Simone, Cristiano; Resta, Nicoletta

    2015-01-01

    Background PIK3CA-related overgrowth spectrum (PROS) include a group of disorders that affect only the terminal portion of a limb, such as type I macrodactyly, and conditions like fibroadipose overgrowth (FAO), megalencephaly-capillary malformation (MCAP) syndrome, congenital lipomatous asymmetric overgrowth of the trunk, lymphatic, capillary, venous, and combined-type vascular malformations, epidermal nevi, skeletal and spinal anomalies (CLOVES) syndrome and Hemihyperplasia Multiple Lipomatosis (HHML). Heterozygous postzygotic PIK3CA mutations are frequently identified in these syndromes, while timing and tissue specificity of the mutational event are likely responsible for the extreme phenotypic variability observed. Methods We carried out a combination of Sanger sequencing and targeted deep sequencing of genes involved in the PI3K/AKT/mTOR pathway in three patients (1 MCAP and 2 FAO) to identify causative mutations, and performed immunoblot analyses to assay the phosphorylation status of AKT and P70S6K in affected dermal fibroblasts. In addition, we evaluated their ability to grow in the absence of serum and their response to the PI3K inhibitors wortmannin and LY294002 in vitro. Results and Conclusion Our data indicate that patients’ cells showed constitutive activation of the PI3K/Akt pathway. Of note, PI3K pharmacological blockade resulted in a significant reduction of the proliferation rate in culture, suggesting that inhibition of PI3K might prove beneficial in future therapies for PROS patients. PMID:25915946

  17. Initiation of human astrovirus type 1 infection was blocked by inhibitors of phosphoinositide 3-kinase

    PubMed Central

    2013-01-01

    Background Upon initial contact with a virus, host cells activate a series of cellular signaling cascades that facilitate viral entry and viral propagation within the cell. Little is known about how the human astrovirus (HAstV) exploits signaling cascades to establish an infection in host cells. Recent studies showed that activation of extracellular signal-regulated kinase 1/2 (ERK1/2) is important for HAstV infection, though the involvement of other signaling cascades remains unclear. Methods A panel of kinase blockers was used to search for cellular signaling pathways important for HAstV1 infection. To determine their impact on the infectious process, we examined viral gene expression, RNA replication, and viral RNA and capsid protein release from host cells. Results Inhibitors of phosphoinositide 3-kinase (PI3K) activation interfered with the infection, independent of their effect on ERK 1/2 activation. Activation of the PI3K signaling cascade occurred at an early phase of the infection, judging from the timeframe of Akt phosphorylation. PI3K inhibition at early times, but not at later times, blocked viral gene expression. However, inhibiting the downstream targets of PI3K activation, Akt and Rac1, did not block infection. Inhibition of protein kinase A (PKA) activation was found to block a later phase of HAstV1 production. Conclusions Our results reveal a previously unknown, essential role of PI3K in the life cycle of HAstV1. PI3K participates in the early stage of infection, possibly during the viral entry process. Our results also reveal the role of PKA in viral production. PMID:23680019

  18. Clinical development of phosphatidylinositol-3 kinase pathway inhibitors.

    PubMed

    Arteaga, Carlos L

    2010-01-01

    The PI3K pathway is the most commonly altered in human cancer. Several recent phase I studies with therapeutic inhibitors of this pathway have shown that pharmacological inhibition of PI3K in humans is feasible and overall well tolerated. Furthermore, there has already been clinical evidence of anti-tumor activity in patients with advanced cancer. The intensity and duration of PI3K inhibition required for an antitumor effect and the optimal pharmacodynamic biomarker(s) of pathway inactivation remain to be established. Preclinical and early clinical data support focusing on trials with PI3K inhibitors that are at a minimum enriched with patients with alterations in this signaling pathway. These inhibitors are likely to be more effective in combination with established and other novel molecular therapies.

  19. Structure-Based Design of an Organoruthenium Phosphatidyl-inositol-3-Kinase Inhibitor Reveals a Switch Governing Lipid Kinase Potency and Selectivity

    SciTech Connect

    Xie,P.; Williams, D.; Atilla-Gokcumen, G.; Milk, L.; Xiao, M.; Smalley, K.; Herlyn, M.; Meggers, E.; Marmorstein, R.

    2008-01-01

    Mutations that constitutively activate the phosphatidyl-inositol-3-kinase (PI3K) signaling pathway, including alterations in PI3K, PTEN, and AKT, are found in a variety of human cancers, implicating the PI3K lipid kinase as an attractive target for the development of therapeutic agents to treat cancer and other related diseases. In this study, we report on the combination of a novel organometallic kinase inhibitor scaffold with structure-based design to develop a PI3K inhibitor, called E5E2, with an IC50 potency in the mid-low-nanomolar range and selectivity against a panel of protein kinases. We also show that E5E2 inhibits phospho-AKT in human melanoma cells and leads to growth inhibition. Consistent with a role for the PI3K pathway in tumor cell invasion, E5E2 treatment also inhibits the migration of melanoma cells in a 3D spheroid assay. The structure of the PI3K?/E5E2 complex reveals the molecular features that give rise to this potency and selectivity toward lipid kinases with implications for the design of a subsequent generation of PI3K-isoform-specific organometallic inhibitors.

  20. BMX acts downstream of PI3K to promote colorectal cancer cell survival and pathway inhibition sensitizes to the BH3 mimetic ABT-737.

    PubMed

    Potter, Danielle S; Kelly, Paul; Denneny, Olive; Juvin, Veronique; Stephens, Len R; Dive, Caroline; Morrow, Christopher J

    2014-02-01

    Evasion of apoptosis is a hallmark of cancer, and reversing this process by inhibition of survival signaling pathways is a potential therapeutic strategy. Phosphoinositide 3-kinase (PI3K) signaling can promote cell survival and is upregulated in solid tumor types, including colorectal cancer (CRC), although these effects are context dependent. The role of PI3K in tumorigenesis combined with their amenability to specific inhibition makes them attractive drug targets. However, we observed that inhibition of PI3K in HCT116, DLD-1, and SW620 CRC cells did not induce apoptotic cell death. Moreover, these cells were relatively resistant to the Bcl-2 homology domain 3 (BH3) mimetic ABT-737, which directly targets the Bcl-2 family of apoptosis regulators. To test the hypothesis that PI3K inhibition lowers the apoptotic threshold without causing apoptosis per se, PI3K inhibitors were combined with ABT-737. PI3K inhibition enhanced ABT-737-induced apoptosis by 2.3- to 4.5-fold and reduced expression levels of MCL-1, the resistance biomarker for ABT-737. PI3K inhibition enhanced ABT-737-induced apoptosis a further 1.4- to 2.4-fold in CRC cells with small interfering RNA-depleted MCL-1, indicative of additional sensitizing mechanisms. The observation that ABT-737-induced apoptosis was unaffected by inhibition of PI3K downstream effectors AKT and mTOR, implicated a novel PI3K-dependant pathway. To elucidate this, an RNA interference (RNAi) screen of potential downstream effectors of PI3K signaling was conducted, which demonstrated that knockdown of the TEC kinase BMX sensitized to ABT-737. This suggests that BMX is an antiapoptotic downstream effector of PI3K, independent of AKT. PMID:24709422

  1. Distinct roles of class IA PI3K isoforms in primary and immortalised macrophages.

    PubMed

    Papakonstanti, Evangelia A; Zwaenepoel, Olivier; Bilancio, Antonio; Burns, Emily; Nock, Gemma E; Houseman, Benjamin; Shokat, Kevan; Ridley, Anne J; Vanhaesebroeck, Bart

    2008-12-15

    The class IA isoforms of phosphoinositide 3-kinase (p110alpha, p110beta and p110delta) often have non-redundant functions in a given cell type. However, for reasons that are unclear, the role of a specific PI3K isoform can vary between cell types. Here, we compare the relative contributions of PI3K isoforms in primary and immortalised macrophages. In primary macrophages stimulated with the tyrosine kinase ligand colony-stimulating factor 1 (CSF1), all class IA PI3K isoforms participate in the regulation of Rac1, whereas p110delta selectively controls the activities of Akt, RhoA and PTEN, in addition to controlling proliferation and chemotaxis. The prominent role of p110delta in these cells correlates with it being the main PI3K isoform that is recruited to the activated CSF1 receptor (CSF1R). In immortalised BAC1.2F5 macrophages, however, the CSF1R also engages p110alpha, which takes up a more prominent role in CSF1R signalling, in processes including Akt phosphorylation and regulation of DNA synthesis. Cell migration, however, remains dependent mainly on p110delta. In other immortalised macrophage cell lines, such as IC-21 and J774.2, p110alpha also becomes more prominently involved in CSF1-induced Akt phosphorylation, at the expense of p110delta.These data show that PI3K isoforms can be differentially regulated in distinct cellular contexts, with the dominant role of the p110delta isoform in Akt phosphorylation and proliferation being lost upon cell immortalisation. These findings suggest that p110delta-selective PI3K inhibitors may be more effective in inflammation than in cancer. PMID:19033389

  2. Simultaneous Inhibition of EGFR and PI3K Enhances Radiosensitivity in Human Breast Cancer

    SciTech Connect

    Li Ping; Zhang Qing; Torossian, Artour; Li Zhaobin; Xu Wencai; Lu Bo; Fu Shen

    2012-07-01

    Purpose: Mutations in the epidermal growth factor receptor (EGFR)/phosphoinositide 3-kinase (PI3K)/Akt signaling transduction pathway are common in cancer. This pathway is imperative to the radiosensitivity of cancer cells. We aimed to investigate the radiosensitizing effects of the simultaneous inhibition of EGFR and PI3K in breast cancer cells. Methods and Materials: MCF-7 cell lines with low expression of EGFR and wild-type PTEN and MDA-MB-468 cell lines with high expression of EGFR and mutant PTEN were used. The radiosensitizing effects by the inhibition of EGFR with AG1478 and/or PI3K with Ly294002 were determined by colony formation assay, Western blot was used to investigate the effects on downstream signaling. Flow cytometry was used for apoptosis and cell cycle analysis. Mice-bearing xenografts of MDA-MB-468 breast cancer cells were also used to observe the radiosensitizing effect. Results: Simultaneous inhibition of EGFR and PI3K greatly enhanced radiosensitizing effect in MDA-MB-468 in terms of apoptosis and mitotic death, either inhibition of EGFR or PI3K alone could enhance radiosensitivity with a dose-modifying factor (DMF{sub SF2}) of 1.311 and 1.437, radiosensitizing effect was further enhanced by simultaneous inhibition of EGFR and PI3K with a DMF{sub SF2} at 2.698. DNA flow cytometric analysis indicated that dual inhibition combined with irradiation significantly induced G0/G1 phase arrest in MDA-MB-468 cells. The expression of phosphor-Akt and phosphor-Erk1/2 (induced by irradiation and PI3K inhibitor) were fully attenuated by simultaneous treatment with both inhibitors in combination with irradiation. In addition, dual inhibition combined with irradiation induced dramatic tumor growth delay in MDA-MB-468 xenografts. Conclusions: Our study indicated that simultaneous inhibition of EGFR and PI3K could further sensitize the cancer cells to irradiation compared to the single inhibitor with irradiation in vitro and in vivo. The approach may have

  3. Coenzyme Q10 restores amyloid beta-inhibited proliferation of neural stem cells by activating the PI3K pathway.

    PubMed

    Choi, Hojin; Park, Hyun-Hee; Lee, Kyu-Yong; Choi, Na-Young; Yu, Hyun-Jeung; Lee, Young Joo; Park, Jinse; Huh, Yong-Min; Lee, Sang-Hun; Koh, Seong-Ho

    2013-08-01

    Neurogenesis in the adult brain is important for memory and learning, and the alterations in neural stem cells (NSCs) may be an important part of Alzheimer's disease pathogenesis. The phosphatidylinositol 3-kinase (PI3K) pathway has been suggested to play an important role in neuronal cell survival and is highly involved in adult neurogenesis. Recently, coenzyme Q10 (CoQ10) was found to affect the PI3K pathway. We investigated whether CoQ10 could restore amyloid β (Aβ)25-35 oligomer-inhibited proliferation of NSCs by focusing on the PI3K pathway. To evaluate the effects of CoQ10 on Aβ25-35 oligomer-inhibited proliferation of NSCs, NSCs were treated with several concentrations of CoQ10 and/or Aβ25-35 oligomers. BrdU labeling, Colony Formation Assays, and immunoreactivity of Ki-67, a marker of proliferative activity, showed that NSC proliferation decreased with Aβ25-35 oligomer treatment, but combined treatment with CoQ10 restored it. Western blotting showed that CoQ10 treatment increased the expression levels of p85α PI3K, phosphorylated Akt (Ser473), phosphorylated glycogen synthase kinase-3β (Ser9), and heat shock transcription factor, which are proteins related to the PI3K pathway in Aβ25-35 oligomers-treated NSCs. To confirm a direct role for the PI3K pathway in CoQ10-induced restoration of proliferation of NSCs inhibited by Aβ25-35 oligomers, NSCs were pretreated with a PI3K inhibitor, LY294002; the effects of CoQ10 on the proliferation of NSCs inhibited by Aβ25-35 oligomers were almost completely blocked. Together, these results suggest that CoQ10 restores Aβ25-35 oligomer-inhibited proliferation of NSCs by activating the PI3K pathway.

  4. Inhibition of class IA PI3K enzymes in non-small cell lung cancer cells uncovers functional compensation among isoforms.

    PubMed

    Stamatkin, Christopher; Ratermann, Kelley L; Overley, Colleen W; Black, Esther P

    2015-01-01

    Deregulation of the phosphatidylinositol 3-kinase (PI3K) pathway is central to many human malignancies while normal cell proliferation requires pathway functionality. Although inhibitors of the PI3K pathway are in clinical trials or approved for therapy, an understanding of the functional activities of pathway members in specific malignancies is needed. In lung cancers, the PI3K pathway is often aberrantly activated by mutation of genes encoding EGFR, KRAS, and PIK3CA proteins. We sought to understand whether class IA PI3K enzymes represent rational therapeutic targets in cells of non-squamous lung cancers by exploring pharmacological and genetic inhibitors of PI3K enzymes in a non-small cell lung cancer (NSCLC) cell line system. We found that class IA PI3K enzymes were expressed in all cell lines tested, but treatment of NSCLC lines with isoform-selective inhibitors (A66, TGX-221, CAL-101 and IC488743) had little effect on cell proliferation or prolonged inhibition of AKT activity. Inhibitory pharmacokinetic and pharmacodynamic responses were observed using these agents at non-isoform selective concentrations and with the pan-class I (ZSTK474) agent. Response to pharmacological inhibition suggested that PI3K isoforms may functionally compensate for one another thus limiting efficacy of single agent treatment. However, combination of ZSTK474 and an EGFR inhibitor (erlotinib) in NSCLC resistant to each single agent reduced cellular proliferation. These studies uncovered unanticipated cellular responses to PI3K isoform inhibition in NSCLC that does not correlate with PI3K mutations, suggesting that patients bearing tumors with wildtype EGFR and KRAS are unlikely to benefit from inhibitors of single isoforms but may respond to pan-isoform inhibition.

  5. Evaluation of WO2013117503 and WO2013117504: the use of PI3K inhibitors to treat cough or idiopathic pulmonary fibrosis.

    PubMed

    Norman, Peter

    2014-06-01

    Two applications claim the use of the closely related, broad spectrum phosphatidylinositol 3-kinase inhibitors 2,4-difluoro-N-{2-(methoxy)-5-[4-(4-pyridazinyl)-6-quinolinyl]-3-pyridinyl}benzenesulfonamide (GSK-2126458) and 2,4-difluoro-N-{2-(methoxy)-5-[4-(4-morpholino)-6-quinazolinyl]-3-pyridinyl}benzenesulfonamide for the treatment of idiopathic pulmonary fibrosis and cough, respectively. Some in vitro data are presented in support of these claimed utilities. Since the filing of these applications, GSK-2126458 has commenced a dose-finding Phase I study in patients with idiopathic pulmonary fibrosis. PMID:24392766

  6. The role of the PI3K-Akt signal transduction pathway in Autographa californica multiple nucleopolyhedrovirus infection of Spodoptera frugiperda cells

    SciTech Connect

    Xiao Wei; Yang Yi; Weng Qingbei; Lin Tiehao; Yuan Meijin; Yang Kai; Pang Yi

    2009-08-15

    Many viruses activate the phosphatidylinositol 3-kinase (PI3K)-Akt signaling pathway, thereby modulating diverse downstream signaling pathways associated with antiapoptosis, proliferation, cell cycling, protein synthesis and glucose metabolism, in order to augment their replication. To date, the role of the PI3K-Akt pathway in Baculovirus replication has not been defined. In the present study, we demonstrate that infection of Sf9 cells with Autographa californica multiple nucleopolyhedrovirus (AcMNPV) elevated cellular Akt phosphorylation at 1 h post-infection. The maximum Akt phosphorylation occurred at 6 h post-infection and remained unchanged until 18 h post-infection. The PI3K-specific inhibitor, LY294002, suppressed Akt phosphorylation in a dose-dependent manner, suggesting that AcMNPV-induced Akt phosphorylation is PI3K-dependent. The inhibition of PI3K-Akt activation by LY294002 significantly reduced the viral yield, including a reduction in budded viruses and occlusion bodies. The virus production was reduced only when the inhibitor was added within 24 h of infection, implying that activation of PI3K occurred early in infection. Correspondingly, both viral DNA replication and late (VP39) and very late (POLH) viral protein expression were impaired by LY294002 treatment; LY294002 had no effect on immediate-early (IE1) and early-late (GP64) protein expression. These results demonstrate that the PI3K-Akt pathway is required for efficient Baculovirus replication.

  7. SP6616 as a new Kv2.1 channel inhibitor efficiently promotes β-cell survival involving both PKC/Erk1/2 and CaM/PI3K/Akt signaling pathways

    PubMed Central

    Zhou, T T; Quan, L L; Chen, L P; Du, T; Sun, K X; Zhang, J C; Yu, L; Li, Y; Wan, P; Chen, L L; Jiang, B H; Hu, L H; Chen, J; Shen, X

    2016-01-01

    Kv2.1 as a voltage-gated potassium (Kv) channel subunit has a pivotal role in the regulation of glucose-stimulated insulin secretion (GSIS) and pancreatic β-cell apoptosis, and is believed to be a promising target for anti-diabetic drug discovery, although the mechanism underlying the Kv2.1-mediated β-cell apoptosis is obscure. Here, the small molecular compound, ethyl 5-(3-ethoxy-4-methoxyphenyl)-2-(4-hydroxy-3-methoxybenzylidene)-7-methyl-3-oxo-2,3-dihydro-5H-[1,3]thiazolo[3,2–a]pyrimidine-6-carboxylate (SP6616) was discovered to be a new Kv2.1 inhibitor. It was effective in both promoting GSIS and protecting β cells from apoptosis. Evaluation of SP6616 on either high-fat diet combined with streptozocin-induced type 2 diabetic mice or db/db mice further verified its efficacy in the amelioration of β-cell dysfunction and glucose homeostasis. SP6616 treatment efficiently increased serum insulin level, restored β-cell mass, decreased fasting blood glucose and glycated hemoglobin levels, and improved oral glucose tolerance. Mechanism study indicated that the promotion of SP6616 on β-cell survival was tightly linked to its regulation against both protein kinases C (PKC)/extracellular-regulated protein kinases 1/2 (Erk1/2) and calmodulin(CaM)/phosphatidylinositol 3-kinase(PI3K)/serine/threonine-specific protein kinase (Akt) signaling pathways. To our knowledge, this may be the first report on the underlying pathway responsible for the Kv2.1-mediated β-cell protection. In addition, our study has also highlighted the potential of SP6616 in the treatment of type 2 diabetes. PMID:27148689

  8. Ras-related C3 Botulinum Toxin Substrate (Rac) and Src Family Kinases (SFK) Are Proximal and Essential for Phosphatidylinositol 3-Kinase (PI3K) Activation in Natural Killer (NK) Cell-mediated Direct Cytotoxicity against Cryptococcus neoformans.

    PubMed

    Xiang, Richard F; Stack, Danuta; Huston, Shaunna M; Li, Shu Shun; Ogbomo, Henry; Kyei, Stephen K; Mody, Christopher H

    2016-03-25

    The activity of Rac in leukocytes is essential for immunity. However, its role in NK cell-mediated anti-microbial signaling remains unclear. In this study, we investigated the role of Rac in NK cell mediated anti-cryptococcal killing. We found thatCryptococcus neoformansindependently activates both Rac and SFK pathways in NK cells, and unlike in tumor killing,Cryptococcusinitiated a novel Rac → PI3K → Erk cytotoxicity cascade. Remarkably, Rac was not required for conjugate formation, despite its essential role in NK cytotoxicity againstC. neoformans Taken together, our data show that, unlike observations with tumor cells, NK cells use a novel Rac cytotoxicity pathway in conjunction with SFK, to killC. neoformans. PMID:26867574

  9. Ras-related C3 Botulinum Toxin Substrate (Rac) and Src Family Kinases (SFK) Are Proximal and Essential for Phosphatidylinositol 3-Kinase (PI3K) Activation in Natural Killer (NK) Cell-mediated Direct Cytotoxicity against Cryptococcus neoformans.

    PubMed

    Xiang, Richard F; Stack, Danuta; Huston, Shaunna M; Li, Shu Shun; Ogbomo, Henry; Kyei, Stephen K; Mody, Christopher H

    2016-03-25

    The activity of Rac in leukocytes is essential for immunity. However, its role in NK cell-mediated anti-microbial signaling remains unclear. In this study, we investigated the role of Rac in NK cell mediated anti-cryptococcal killing. We found thatCryptococcus neoformansindependently activates both Rac and SFK pathways in NK cells, and unlike in tumor killing,Cryptococcusinitiated a novel Rac → PI3K → Erk cytotoxicity cascade. Remarkably, Rac was not required for conjugate formation, despite its essential role in NK cytotoxicity againstC. neoformans Taken together, our data show that, unlike observations with tumor cells, NK cells use a novel Rac cytotoxicity pathway in conjunction with SFK, to killC. neoformans.

  10. Nerve growth factor (NGF) regulates activity of nuclear factor of activated T-cells (NFAT) in neurons via the phosphatidylinositol 3-kinase (PI3K)-Akt-glycogen synthase kinase 3β (GSK3β) pathway.

    PubMed

    Kim, Man-Su; Shutov, Leonid P; Gnanasekaran, Aswini; Lin, Zhihong; Rysted, Jacob E; Ulrich, Jason D; Usachev, Yuriy M

    2014-11-01

    The Ca(2+)/calcineurin-dependent transcription factor nuclear factor of activated T-cells (NFAT) plays an important role in regulating many neuronal functions, including excitability, axonal growth, synaptogenesis, and neuronal survival. NFAT can be activated by action potential firing or depolarization that leads to Ca(2+)/calcineurin-dependent dephosphorylation of NFAT and its translocation to the nucleus. Recent data suggest that NFAT and NFAT-dependent functions in neurons can also be potently regulated by NGF and other neurotrophins. However, the mechanisms of NFAT regulation by neurotrophins are not well understood. Here, we show that in dorsal root ganglion sensory neurons, NGF markedly facilitates NFAT-mediated gene expression induced by mild depolarization. The effects of NGF were not associated with changes in [Ca(2+)]i and were independent of phospholipase C activity. Instead, the facilitatory effect of NGF depended on activation of the PI3K/Akt pathway downstream of the TrkA receptor and on inhibition of glycogen synthase kinase 3β (GSK3β), a protein kinase known to phosphorylate NFAT and promote its nuclear export. Knockdown or knockout of NFATc3 eliminated this facilitatory effect. Simultaneous monitoring of EGFP-NFATc3 nuclear translocation and [Ca(2+)]i changes in dorsal root ganglion neurons indicated that NGF slowed the rate of NFATc3 nuclear export but did not affect its nuclear import rate. Collectively, our data suggest that NGF facilitates depolarization-induced NFAT activation by stimulating PI3K/Akt signaling, inactivating GSK3β, and thereby slowing NFATc3 export from the nucleus. We propose that NFAT serves as an integrator of neurotrophin action and depolarization-driven calcium signaling to regulate neuronal gene expression.

  11. Amoebic PI3K and PKC is required for Jurkat T cell death induced by Entamoeba histolytica.

    PubMed

    Lee, Young Ah; Kim, Kyeong Ah; Min, Arim; Shin, Myeong Heon

    2014-08-01

    The enteric protozoan parasite Entamoeba histolytica is the causative agent of human amebiasis. During infection, adherence of E. histolytica through Gal/GalNAc lectin on the surface of the amoeba can induce caspase-3-dependent or -independent host cell death. Phosphorylinositol 3-kinase (PI3K) and protein kinase C (PKC) in E. histolytica play an important function in the adhesion, killing, or phagocytosis of target cells. In this study, we examined the role of amoebic PI3K and PKC in amoeba-induced apoptotic cell death in Jurkat T cells. When Jurkat T cells were incubated with E. histolytica trophozoites, phosphatidylserine (PS) externalization and DNA fragmentation in Jurkat cells were markedly increased compared to those of cells incubated with medium alone. However, when amoebae were pretreated with a PI3K inhibitor, wortmannin before being incubated with E. histolytica, E. histolytica-induced PS externalization and DNA fragmentation in Jurkat cells were significantly reduced compared to results for amoebae pretreated with DMSO. In addition, pretreatment of amoebae with a PKC inhibitor, staurosporine strongly inhibited Jurkat T cell death. However, E. histolytica-induced cleavage of caspase-3, -6, and -7 were not inhibited by pretreatment of amoebae with wortmannin or staurosporin. In addition, we found that amoebic PI3K and PKC have an important role on amoeba adhesion to host compartment. These results suggest that amebic PI3K and PKC activation may play an important role in caspase-independent cell death in Entamoeba-induced apoptosis.

  12. Amoebic PI3K and PKC is required for Jurkat T cell death induced by Entamoeba histolytica.

    PubMed

    Lee, Young Ah; Kim, Kyeong Ah; Min, Arim; Shin, Myeong Heon

    2014-08-01

    The enteric protozoan parasite Entamoeba histolytica is the causative agent of human amebiasis. During infection, adherence of E. histolytica through Gal/GalNAc lectin on the surface of the amoeba can induce caspase-3-dependent or -independent host cell death. Phosphorylinositol 3-kinase (PI3K) and protein kinase C (PKC) in E. histolytica play an important function in the adhesion, killing, or phagocytosis of target cells. In this study, we examined the role of amoebic PI3K and PKC in amoeba-induced apoptotic cell death in Jurkat T cells. When Jurkat T cells were incubated with E. histolytica trophozoites, phosphatidylserine (PS) externalization and DNA fragmentation in Jurkat cells were markedly increased compared to those of cells incubated with medium alone. However, when amoebae were pretreated with a PI3K inhibitor, wortmannin before being incubated with E. histolytica, E. histolytica-induced PS externalization and DNA fragmentation in Jurkat cells were significantly reduced compared to results for amoebae pretreated with DMSO. In addition, pretreatment of amoebae with a PKC inhibitor, staurosporine strongly inhibited Jurkat T cell death. However, E. histolytica-induced cleavage of caspase-3, -6, and -7 were not inhibited by pretreatment of amoebae with wortmannin or staurosporin. In addition, we found that amoebic PI3K and PKC have an important role on amoeba adhesion to host compartment. These results suggest that amebic PI3K and PKC activation may play an important role in caspase-independent cell death in Entamoeba-induced apoptosis. PMID:25246714

  13. Activity-dependent survival of developing neocortical neurons depends on PI3K signalling.

    PubMed

    Wagner-Golbs, Antje; Luhmann, Heiko J

    2012-02-01

    Spontaneous electrical network activity plays a major role in the control of cell survival in the developing brain. Several intracellular pathways are implicated in transducing electrical activity into gene expression dependent and independent survival signals. These include activation of phosphatidylinositol 3-kinase (PI3K) and its downstream effector Akt, activation of Ras and subsequently MAPK/extracellular signal-regulated kinase (MEK) and extracellular signal-regulated kinase and signalling via calcium/calmodulin-dependent protein kinase (CaMK). In the present study, we analyzed the role of these pathways for the control of neuronal survival in different extracellular potassium concentrations ([K(+) ](ex) ). Organotypic neocortical slice cultures prepared from newborn mice were kept in 5.3, 8.0 and 25.0mM [K(+) ](ex) and treated with specific inhibitors of PI3K, MEK1, CaMKK and a broad spectrum CaMK inhibitor. After 6h of incubation, slices were immunostained for activated caspase 3 (a-caspase 3) and the number of apoptotic cells was quantified by computer based analysis. We found that in 5.3 and 8.0mM [K(+) ](ex) only PI3K was important for neuronal survival. When [K(+) ](ex) was raised to 25.0mM, a concentration above the depolarization block, we found no influence of PI3K on neuronal survival. Our data demonstrate that only the PI3K pathway, and not the MEK1, CaMKK or CaMKs pathway, plays a central role in the regulation of activity-dependent neuronal survival in the developing cerebral cortex.

  14. PI-103 and Quercetin Attenuate PI3K-AKT Signaling Pathway in T- Cell Lymphoma Exposed to Hydrogen Peroxide.

    PubMed

    Maurya, Akhilendra Kumar; Vinayak, Manjula

    2016-01-01

    Phosphatidylinositol 3 kinase-protein kinase B (PI3K-AKT) pathway has been considered as major drug target site due to its frequent activation in cancer. AKT regulates the activity of various targets to promote tumorigenesis and metastasis. Accumulation of reactive oxygen species (ROS) has been linked to oxidative stress and regulation of signaling pathways for metabolic adaptation of tumor microenvironment. Hydrogen peroxide (H2O2) in this context is used as ROS source for oxidative stress preconditioning. Antioxidants are commonly considered to be beneficial to reduce detrimental effects of ROS and are recommended as dietary supplements. Quercetin, a ubiquitous bioactive flavonoid is a dietary component which has attracted much of interest due to its potential health-promoting effects. Present study is aimed to analyze PI3K-AKT signaling pathway in H2O2 exposed Dalton's lymphoma ascite (DLA) cells. Further, regulation of PI3K-AKT pathway by quercetin as well as PI-103, an inhibitor of PI3K was analyzed. Exposure of H2O2 (1mM H2O2 for 30min) to DLA cells caused ROS accumulation and resulted in increased phosphorylation of PI3K and downstream proteins PDK1 and AKT (Ser-473 and Thr-308), cell survival factors BAD and ERK1/2, as well as TNFR1. However, level of tumor suppressor PTEN was declined. Both PI-103 & quercetin suppressed the enhanced level of ROS and significantly down-regulated phosphorylation of AKT, PDK1, BAD and level of TNFR1 as well as increased the level of PTEN in H2O2 induced lymphoma cells. The overall result suggests that quercetin and PI3K inhibitor PI-103 attenuate PI3K-AKT pathway in a similar mechanism. PMID:27494022

  15. PI3K signaling supports amphetamine-induced dopamine efflux.

    PubMed

    Lute, Brandon J; Khoshbouei, Habibeh; Saunders, Christine; Sen, Namita; Lin, Richard Z; Javitch, Jonathan A; Galli, Aurelio

    2008-08-01

    The dopamine (DA) transporter (DAT) is a major molecular target of the psychostimulant amphetamine (AMPH). AMPH, as a result of its ability to reverse DAT-mediated inward transport of DA, induces DA efflux thereby increasing extracellular DA levels. This increase is thought to underlie the behavioral effects of AMPH. We have demonstrated previously that insulin, through phosphatidylinositol 3-kinase (PI3K) signaling, regulates DA clearance by fine-tuning DAT plasma membrane expression. PI3K signaling may represent a novel mechanism for regulating DA efflux evoked by AMPH, since only active DAT at the plasma membrane can efflux DA. Here, we show in both a heterologous expression system and DA neurons that inhibition of PI3K decreases DAT cell surface expression and, as a consequence, AMPH-induced DA efflux.

  16. PI3K therapy reprograms mitochondrial trafficking to fuel tumor cell invasion.

    PubMed

    Caino, M Cecilia; Ghosh, Jagadish C; Chae, Young Chan; Vaira, Valentina; Rivadeneira, Dayana B; Faversani, Alice; Rampini, Paolo; Kossenkov, Andrew V; Aird, Katherine M; Zhang, Rugang; Webster, Marie R; Weeraratna, Ashani T; Bosari, Silvano; Languino, Lucia R; Altieri, Dario C

    2015-07-14

    Molecular therapies are hallmarks of "personalized" medicine, but how tumors adapt to these agents is not well-understood. Here we show that small-molecule inhibitors of phosphatidylinositol 3-kinase (PI3K) currently in the clinic induce global transcriptional reprogramming in tumors, with activation of growth factor receptors, (re)phosphorylation of Akt and mammalian target of rapamycin (mTOR), and increased tumor cell motility and invasion. This response involves redistribution of energetically active mitochondria to the cortical cytoskeleton, where they support membrane dynamics, turnover of focal adhesion complexes, and random cell motility. Blocking oxidative phosphorylation prevents adaptive mitochondrial trafficking, impairs membrane dynamics, and suppresses tumor cell invasion. Therefore, "spatiotemporal" mitochondrial respiration adaptively induced by PI3K therapy fuels tumor cell invasion, and may provide an important antimetastatic target. PMID:26124089

  17. PI3K therapy reprograms mitochondrial trafficking to fuel tumor cell invasion

    PubMed Central

    Caino, M. Cecilia; Ghosh, Jagadish C.; Chae, Young Chan; Vaira, Valentina; Rivadeneira, Dayana B.; Faversani, Alice; Rampini, Paolo; Kossenkov, Andrew V.; Aird, Katherine M.; Zhang, Rugang; Webster, Marie R.; Weeraratna, Ashani T.; Bosari, Silvano; Languino, Lucia R.; Altieri, Dario C.

    2015-01-01

    Molecular therapies are hallmarks of “personalized” medicine, but how tumors adapt to these agents is not well-understood. Here we show that small-molecule inhibitors of phosphatidylinositol 3-kinase (PI3K) currently in the clinic induce global transcriptional reprogramming in tumors, with activation of growth factor receptors, (re)phosphorylation of Akt and mammalian target of rapamycin (mTOR), and increased tumor cell motility and invasion. This response involves redistribution of energetically active mitochondria to the cortical cytoskeleton, where they support membrane dynamics, turnover of focal adhesion complexes, and random cell motility. Blocking oxidative phosphorylation prevents adaptive mitochondrial trafficking, impairs membrane dynamics, and suppresses tumor cell invasion. Therefore, “spatiotemporal” mitochondrial respiration adaptively induced by PI3K therapy fuels tumor cell invasion, and may provide an important antimetastatic target. PMID:26124089

  18. Pharmacologic Profiling of Phosphoinositide 3-Kinase Inhibitors as Mitigators of Ionizing Radiation–Induced Cell Death

    PubMed Central

    Sharlow, Elizabeth R.; Epperly, Michael W.; Lira, Ana; Leimgruber, Stephanie; Skoda, Erin M.; Wipf, Peter; Greenberger, Joel S.

    2013-01-01

    Ionizing radiation (IR) induces genotoxic stress that triggers adaptive cellular responses, such as activation of the phosphoinositide 3-kinase (PI3K)/Akt signaling cascade. Pluripotent cells are the most important population affected by IR because they are required for cellular replenishment. Despite the clear danger to large population centers, we still lack safe and effective therapies to abrogate the life-threatening effects of any accidental or intentional IR exposure. Therefore, we computationally analyzed the chemical structural similarity of previously published small molecules that, when given after IR, mitigate cell death and found a chemical cluster that was populated with PI3K inhibitors. Subsequently, we evaluated structurally diverse PI3K inhibitors. It is remarkable that 9 of 14 PI3K inhibitors mitigated γIR-induced death in pluripotent NCCIT cells as measured by caspase 3/7 activation. A single intraperitoneal dose of LY294002 [2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one], administered to mice at 4 or 24 hours, or PX-867 [(4S,4aR,5R,6aS,9aR,Z)-11-hydroxy-4-(methoxymethyl)-4a,6a-dimethyl-2,7,10-trioxo-1-(pyrrolidin-1-ylmethylene)-1,2,4,4a,5,6,6a,7,8,9,9a,10-dodecahydroindeno[4,5-H]isochromen-5-yl acetate (CID24798773)], administered 4 hours after a lethal dose of γIR, statistically significantly (P < 0.02) enhanced in vivo survival. Because cell cycle checkpoints are important regulators of cell survival after IR, we examined cell cycle distribution in NCCIT cells after γIR and PI3K inhibitor treatment. LY294002 and PX-867 treatment of nonirradiated cells produced a marked decrease in S phase cells with a concomitant increase in the G1 population. In irradiated cells, LY294002 and PX-867 treatment also decreased S phase and increased the G1 and G2 populations. Treatment with LY294002 or PX-867 decreased γIR-induced DNA damage as measured by γH2AX, suggesting reduced DNA damage. These results indicate pharmacologic inhibition of PI3K after

  19. PF-04691502, a dual PI3K/mTOR inhibitor has potent pre-clinical activity by inducing apoptosis and G1 cell cycle arrest in aggressive B-cell non-Hodgkin lymphomas.

    PubMed

    Chen, Deyu; Mao, Chaoming; Zhou, Yuepeng; Su, Yuting; Liu, Shenzha; Qi, Wen-Qing

    2016-01-01

    The PI3K/Akt/mTOR pathway is activated in a variety of human tumors including B-cell non-Hodgkin lymphoma (B-NHL). Targeting this pathway has been validated in solid and hematological tumors. In the present study, we demonstrated that PF-04691502, a novel PI3K/mTOR inhibitor has potent activity in a panel of aggressive B-NHL cell lines including diffuse large B-cell lymphoma (DLBCL) and mantle cell lymphoma (MCL). MTS analysis showed that PF-04691502 effectively inhibited cell proliferation with IC50 values ranging from 0.12 to 0.55 µM. Cells treated with PF-04691502 exhibited decreased phosphorylation of Akt and S6 ribosomal protein confirming the mechanism of action of a PI3K/mTOR inhibitor. Also, treatment of B-NHL cell lines with PF-04691502 induced apoptosis in a dose- and time-dependent manner. Moreover, PF-04691502 significantly induced G1 cell cycle arrest associated with a decrease in cyclin D1 which contributed to suppression of cell proliferation. Finally, rituximab enhanced apoptosis induced by PF-04691502. Taken together, our findings provide for the first time that PF-04691502 inhibits the constitutively activated PI3K/mTOR pathway in aggressive B-cell NHL cell lines associated with inhibition of cell cycle progression, cell proliferation and promotion of apoptosis. These findings suggest that PF-04691502 is a novel therapeutic strategy in aggressive B-cell NHL and warrants early phase clinical trial evaluation with and without rituximab. PMID:26549638

  20. Synergistic inhibition of colon cancer cell growth with nanoemulsion-loaded paclitaxel and PI3K/mTOR dual inhibitor BEZ235 through apoptosis

    PubMed Central

    Zou, Hong; Li, Li; Garcia Carcedo, Ines; Xu, Zhi Ping; Monteiro, Michael; Gu, Wenyi

    2016-01-01

    Colon cancer is the third most common cancer in the world, with drug resistance and metastasis being the major challenges to effective treatments. To overcome this, combination therapy with different chemotherapeutics is a common practice. In this study, we demonstrated that paclitaxel (PTX) together with BEZ235 exhibited a synergetic inhibition effect on colon cancer cell growth. Furthermore, nanoemulsion (NE)-loaded PTX and BEZ235 were more effective than the free drug, and a combination treatment of both NE drugs increased the efficiency of the treatments. BEZ235 pretreatment before adding PTX sensitized the cancer cells further, suggesting a synergistic inhibition effect through the phosphatidylinositol-3-kinases/protein kinase B/mammalian target of rapamycin pathway. The 50% inhibitory concentrations for BEZ235 were 127.1 nM and 145.0 nM and for PTX 9.7 nM and 9.5 nM for HCT-116 and HT-29 cells, respectively. When loaded with NE the 50% inhibitory concentrations for BEZ235 decreased to 52.6 nM and 55.6 nM and for PTX to 1.9 nM and 2.3 nM for HCT-116 and HT-29 cells, respectively. Combination treatment with 10 nM NE-BEZ235 and 0.6 nM and 1.78 nM NE-PTX could kill 50% of HCT-116 and HT-29, respectively. The cell death caused by the treatment was through apoptotic cell death, which coincided with decreased expression of anti-apoptotic protein B-cell lymphoma 2. Our data indicate that the combination therapy of PTX with the phosphatidylinositol-3-kinases/protein kinase B/mammalian target of rapamycin dual inhibitor BEZ235 using NE delivery may hold promise for a more effective approach for colon cancer treatment. PMID:27226714

  1. PI3K/mTOR pathway inhibitors sensitize chronic myeloid leukemia stem cells to nilotinib and restore the response of progenitors to nilotinib in the presence of stem cell factor.

    PubMed

    Airiau, K; Mahon, F-X; Josselin, M; Jeanneteau, M; Belloc, F

    2013-10-03

    Nilotinib is a second-generation tyrosine kinase inhibitor, designed to specifically inhibit break-point cluster region (BCR)-Abelson (ABL) and developed to treat chronic myeloid leukemia (CML) in patients showing a resistance to imatinib. We previously demonstrated that nilotinib-induced apoptosis was reduced by stem cell factor (SCF) addition. Here, the SCF-activated survival pathway was investigated. BCR-ABL expression was accompanied by the activation of the SCF receptor: c-KIT. Nilotinib inhibited this activation that was restored by SCF binding. Parallel variations were observed for mammaliam target of rapamycin (mTOR) kinase and mTOR complex 1 substrate S6K. The inhibition of mTORC1 restored the response of BCR-ABL cell lines to nilotinib in the presence of SCF. PI3K inhibition restored nilotinib-induced apoptosis. On hematopoietic progenitors from CML patient's bone marrows, mTORC1 inhibition also restored nilotinib sensitivity in the presence of SCF, confirming its involvement in SCF-activated survival pathway. However, this pathway seems not to be involved in the nilotinib-induced resistance of the CML stem cell population. Conversely, PI3K inhibition sensitized both CML progenitors and stem cells to nilotinib, suggesting that, downstream PI3K, two different kinase pathways are activated in CML progenitor and stem cell populations.

  2. Epigallocatechin gallate (EGCG), a major component of green tea, is a dual phosphoinositide-3-kinase/mTOR inhibitor

    SciTech Connect

    Van Aller, Glenn S.; Carson, Jeff D.; Tang, Wei; Peng, Hao; Zhao, Lin; Copeland, Robert A.; Tummino, Peter J.; Luo, Lusong

    2011-03-11

    Research highlights: {yields} Epigallocatechin-3-gallate (EGCG) is an ATP-competitive inhibitor of PI3K and mTOR with Ki values around 300 nM. {yields} EGCG inhibits cell proliferation and AKT phosphorylation at Ser473 in MDA-MB-231and A549 cells. {yields} Molecular docking studies show that EGCG binds well to the PI3K kinase domain active site. {yields} These results suggest another important molecular mechanism for the anticancer activities of EGCG. -- Abstract: The PI3K signaling pathway is activated in a broad spectrum of human cancers, either directly by genetic mutation or indirectly via activation of receptor tyrosine kinases or inactivation of the PTEN tumor suppressor. The key nodes of this pathway have emerged as important therapeutic targets for the treatment of cancer. In this study, we show that (-)-epigallocatechin-3-gallate (EGCG), a major component of green tea, is an ATP-competitive inhibitor of both phosphoinositide-3-kinase (PI3K) and mammalian target of rapamycin (mTOR) with K{sub i} values of 380 and 320 nM respectively. The potency of EGCG against PI3K and mTOR is within physiologically relevant concentrations. In addition, EGCG inhibits cell proliferation and AKT phosphorylation at Ser473 in MDA-MB-231 and A549 cells. Molecular docking studies show that EGCG binds well to the PI3K kinase domain active site, agreeing with the finding that EGCG competes for ATP binding. Our results suggest another important molecular mechanism for the anticancer activities of EGCG.

  3. BKM-120 (Buparlisib): A Phosphatidyl-Inositol-3 Kinase Inhibitor with Anti-Invasive Properties in Glioblastoma.

    PubMed

    Speranza, Maria-Carmela; Nowicki, Michal O; Behera, Prajna; Cho, Choi-Fong; Chiocca, E Antonio; Lawler, Sean E

    2016-01-01

    Glioblastoma is an aggressive, invasive tumor of the central nervous system (CNS). There is a widely acknowledged need for anti-invasive therapeutics to limit glioblastoma invasion. BKM-120 is a CNS-penetrant pan-class I phosphatidyl-inositol-3 kinase (PI3K) inhibitor in clinical trials for solid tumors, including glioblastoma. We observed that BKM-120 has potent anti-invasive effects in glioblastoma cell lines and patient-derived glioma cells in vitro. These anti-migratory effects were clearly distinguishable from cytostatic and cytotoxic effects at higher drug concentrations and longer durations of drug exposure. The effects were reversible and accompanied by changes in cell morphology and pronounced reduction in both cell/cell and cell/substrate adhesion. In vivo studies showed that a short period of treatment with BKM-120 slowed tumor spread in an intracranial xenografts. GDC-0941, a similar potent and selective PI3K inhibitor, only caused a moderate reduction in glioblastoma cell migration. The effects of BKM-120 and GDC-0941 were indistinguishable by in vitro kinase selectivity screening and phospho-protein arrays. BKM-120 reduced the numbers of focal adhesions and the velocity of microtubule treadmilling compared with GDC-0941, suggesting that mechanisms in addition to PI3K inhibition contribute to the anti-invasive effects of BKM-120. Our data suggest the CNS-penetrant PI3K inhibitor BKM-120 may have anti-invasive properties in glioblastoma. PMID:26846842

  4. BKM-120 (Buparlisib): A Phosphatidyl-Inositol-3 Kinase Inhibitor with Anti-Invasive Properties in Glioblastoma

    PubMed Central

    Speranza, Maria-Carmela; Nowicki, Michal O.; Behera, Prajna; Cho, Choi-Fong; Chiocca, E. Antonio; Lawler, Sean E.

    2016-01-01

    Glioblastoma is an aggressive, invasive tumor of the central nervous system (CNS). There is a widely acknowledged need for anti-invasive therapeutics to limit glioblastoma invasion. BKM-120 is a CNS-penetrant pan-class I phosphatidyl-inositol-3 kinase (PI3K) inhibitor in clinical trials for solid tumors, including glioblastoma. We observed that BKM-120 has potent anti-invasive effects in glioblastoma cell lines and patient-derived glioma cells in vitro. These anti-migratory effects were clearly distinguishable from cytostatic and cytotoxic effects at higher drug concentrations and longer durations of drug exposure. The effects were reversible and accompanied by changes in cell morphology and pronounced reduction in both cell/cell and cell/substrate adhesion. In vivo studies showed that a short period of treatment with BKM-120 slowed tumor spread in an intracranial xenografts. GDC-0941, a similar potent and selective PI3K inhibitor, only caused a moderate reduction in glioblastoma cell migration. The effects of BKM-120 and GDC-0941 were indistinguishable by in vitro kinase selectivity screening and phospho-protein arrays. BKM-120 reduced the numbers of focal adhesions and the velocity of microtubule treadmilling compared with GDC-0941, suggesting that mechanisms in addition to PI3K inhibition contribute to the anti-invasive effects of BKM-120. Our data suggest the CNS-penetrant PI3K inhibitor BKM-120 may have anti-invasive properties in glioblastoma. PMID:26846842

  5. Follistatin could promote the proliferation of duck primary myoblasts by activating PI3K/Akt/mTOR signalling

    PubMed Central

    Li, Xinxin; Liu, Hehe; Wang, Haohan; Sun, Lingli; Ding, Fang; Sun, Wenqiang; Han, Chunchun; Wang, Jiwen

    2014-01-01

    FST (follistatin) is essential for skeletal muscle development, but the intracellular signalling networks that regulate FST-induced effects are not well defined. We sought to investigate whether FST promotes the proliferation of myoblasts through the PI3K (phosphoinositide 3-kinase)/Akt (protein kinase B)/mTOR (mammalian target of rapamycin) signalling. In the present study, we transfected the pEGFP-duFST plasmid and added PI3K and mTOR inhibitors to the medium of duck primary myoblasts. Then, we analysed the cellular phenotypic changes that occurred and analysed the expression of target genes. The results showed that FST promoted myoblast proliferation, induced the mRNA expression of PI3K, Akt, mTOR, 70-kDa ribosomal protein S6K (S6 kinase) and the protein expression of phospho-Akt (Thr308), mTOR, phospho-mTOR (serine 2448), phospho-S6K (Ser417), inhibited the mRNA expression of FoxO1, MuRF1 (muscle RING finger-1) and the protein expression of phospho-FoxO1 (Ser256). Moreover, we found that the overexpression of FST could alleviate the inhibitory effect of myoblast proliferation caused by the addition of LY294002, a PI3K inhibitor. Additionally, the overexpression of duck FST also relieved the inhibition of myoblast proliferation caused by the addition of rapamycin (an mTOR inhibitor) through PI3K/Akt/mTOR signalling. In light of the present results, we hypothesize that duck FST could promote myoblast proliferation, which is dependent on PI3K/Akt/mTOR signalling. PMID:25200144

  6. Exploration of a potent PI3 kinase/mTOR inhibitor as a novel anti-fibrotic agent in IPF

    PubMed Central

    Mercer, Paul F; Woodcock, Hannah V; Eley, Jessica D; Platé, Manuela; Sulikowski, Michal G; Durrenberger, Pascal F; Franklin, Linda; Nanthakumar, Carmel B; Man, Yim; Genovese, Federica; McAnulty, Robin J; Yang, Shuying; Maher, Toby M; Nicholson, Andrew G; Blanchard, Andy D; Marshall, Richard P; Lukey, Pauline T; Chambers, Rachel C

    2016-01-01

    Rationale Idiopathic pulmonary fibrosis (IPF) is the most rapidly progressive and fatal of all fibrotic conditions with no curative therapies. Common pathomechanisms between IPF and cancer are increasingly recognised, including dysfunctional pan-PI3 kinase (PI3K) signalling as a driver of aberrant proliferative responses. GSK2126458 is a novel, potent, PI3K/mammalian target of rapamycin (mTOR) inhibitor which has recently completed phase I trials in the oncology setting. Our aim was to establish a scientific and dosing framework for PI3K inhibition with this agent in IPF at a clinically developable dose. Methods We explored evidence for pathway signalling in IPF lung tissue and examined the potency of GSK2126458 in fibroblast functional assays and precision-cut IPF lung tissue. We further explored the potential of IPF patient-derived bronchoalveolar lavage (BAL) cells to serve as pharmacodynamic biosensors to monitor GSK2126458 target engagement within the lung. Results We provide evidence for PI3K pathway activation in fibrotic foci, the cardinal lesions in IPF. GSK2126458 inhibited PI3K signalling and functional responses in IPF-derived lung fibroblasts, inhibiting Akt phosphorylation in IPF lung tissue and BAL derived cells with comparable potency. Integration of these data with GSK2126458 pharmacokinetic data from clinical trials in cancer enabled modelling of an optimal dosing regimen for patients with IPF. Conclusions Our data define PI3K as a promising therapeutic target in IPF and provide a scientific and dosing framework for progressing GSK2126458 to clinical testing in this disease setting. A proof-of-mechanism trial of this agent is currently underway. Trial registration number NCT01725139, pre-clinical. PMID:27103349

  7. The p110δ subunit of PI3K regulates bone marrow-derived eosinophil trafficking and airway eosinophilia in allergen-challenged mice

    PubMed Central

    Kang, Bit Na; Ha, Sung Gil; Ge, Xiao Na; Reza Hosseinkhani, M.; Bahaie, Nooshin S.; Greenberg, Yana; Blumenthal, Malcolm N.; Puri, Kamal D.; Rao, Savita P.

    2012-01-01

    Trafficking and recruitment of eosinophils during allergic airway inflammation is mediated by the phosphatidylinositol 3-kinase (PI3K) family of signaling molecules. The role played by the p110δ subunit of PI3K (PI3K p110δ) in regulating eosinophil trafficking and recruitment was investigated using a selective pharmacological inhibitor (IC87114). Treatment with the PI3K p110δ inhibitor significantly reduced murine bone marrow-derived eosinophil (BM-Eos) adhesion to VCAM-1 as well as ICAM-1 and inhibited activation-induced changes in cell morphology associated with reduced Mac-1 expression and aberrant cell surface localization/distribution of Mac-1 and α4. Infused BM-Eos demonstrated significantly decreased rolling and adhesion in inflamed cremaster muscle microvessels of mice treated with IC87114 compared with vehicle-treated mice. Furthermore, inhibition of PI3K p110δ significantly attenuated eotaxin-1-induced BM-Eos migration and prevented eotaxin-1-induced changes in the cytoskeleton and cell morphology. Knockdown of PI3K p110δ with siRNA in BM-Eos resulted in reduced rolling, adhesion, and migration, as well as inhibition of activation-induced changes in cell morphology, validating its role in regulating trafficking and migration. Finally, in a mouse model of cockroach antigen-induced allergic airway inflammation, oral administration of the PI3K p110δ inhibitor significantly inhibited airway eosinophil recruitment, resulting in attenuation of airway hyperresponsiveness in response to methacholine, reduced mucus secretion, and expression of proinflammatory molecules (found in inflammatory zone-1 and intelectin-1). Overall, these findings indicate the important role played by PI3K p110δ in mediating BM-Eos trafficking and migration by regulating adhesion molecule expression and localization/distribution as well as promoting changes in cell morphology that favor recruitment during inflammation. PMID:22427531

  8. Dual targeting of the PI3K/Akt/mTOR pathway as an antitumor strategy in Waldenstrom macroglobulinemia

    PubMed Central

    Roccaro, Aldo M.; Sacco, Antonio; Husu, Emanuel N.; Pitsillides, Costas; Vesole, Steven; Azab, Abdel Kareem; Azab, Feda; Melhem, Molly; Ngo, Hai T.; Quang, Phong; Maiso, Patricia; Runnels, Judith; Liang, Mei-Chih; Wong, Kwok-Kin; Lin, Charles

    2010-01-01

    We have previously shown clinical activity of a mammalian target of rapamycin (mTOR) complex 1 inhibitor in Waldenstrom macroglobulinemia (WM). However, 50% of patients did not respond to therapy. We therefore examined mechanisms of activation of the phosphoinositide 3-kinase (PI3K)/Akt/mTOR in WM, and mechanisms of overcoming resistance to therapy. We first demonstrated that primary WM cells show constitutive activation of the PI3K/Akt pathway, supported by decreased expression of phosphate and tensin homolog tumor suppressor gene (PTEN) at the gene and protein levels, together with constitutive activation of Akt and mTOR. We illustrated that dual targeting of the PI3K/mTOR pathway by the novel inhibitor NVP-BEZ235 showed higher cytotoxicity on WM cells compared with inhibition of the PI3K or mTOR pathways alone. In addition, NVP-BEZ235 inhibited both rictor and raptor, thus abrogating the rictor-induced Akt phosphorylation. NVP-BEZ235 also induced significant cytotoxicity in WM cells in a caspase-dependent and -independent manner, through targeting the Forkhead box transcription factors. In addition, NVP-BEZ235 targeted WM cells in the context of bone marrow microenvironment, leading to significant inhibition of migration, adhesion in vitro, and homing in vivo. These studies therefore show that dual targeting of the PI3K/mTOR pathway is a better modality of targeted therapy for tumors that harbor activation of the PI3K/mTOR signaling cascade, such as WM. PMID:19965685

  9. Synergistic effect of oridonin and a PI3K/mTOR inhibitor on the non-germinal center B cell-like subtype of diffuse large B cell lymphoma.

    PubMed

    Qing, Kai; Jin, Zhen; Fu, Wanbin; Wang, Wenfang; Liu, Zhao; Li, Xiaoyang; Xu, Zizhen; Li, Junmin

    2016-01-01

    We demonstrate the synergistic antitumor effect of oridonin and the PI3K/mTOR inhibitor NVP-BEZ235 on the non-germinal center B cell-like subtype of diffuse large B cell lymphoma (non-GCB DLBCL) both in vitro and in vivo. The underlying mechanism may be multifunctional, involving apoptosis, AKT/mTOR and NF-kB inactivation, and ROS-mediated DNA damage response. Our findings pave the way for a new potential treatment option for non-GCB DLBCL with the combination of oridonin and NVP-BEZ235. PMID:27554093

  10. Suppression of MicroRNA-203 improves survival of rat bone marrow mesenchymal stem cells through enhancing PI3K-induced cellular activation.

    PubMed

    Liu, Tao; Fu, Nan-Nan; Song, Hong-Li; Wang, Yu-Liang; Wu, Ben-Juan; Shen, Zhong-Yang

    2014-03-23

    As a group of heterogeneous multipotent cells, mesenchymal stem cells (MSCs) have potential in treatment of a variety of clinical diseases. However, the low survival of the transplanted MSCs reduced their therapeutic effects. In this study, we revealed that rno-miR-203 suppressed activity and colony formation and enhanced apoptosis of the rat bone marrow-derived MSCs (BM-MSCs). Using bioinformatics analysis, we found a potential miR-203 binding site within rat phosphatidylinositol 3-kinase (PI3K) 3'UTR, and fluorescent reporter experiments validated the direct and negative regulation of PI3K expression by miR-203 through this site. Ectopic expression of PI3K rescued BM-MSCs from depressed activity induced by miR-203, and suppression of PI3K attenuated the increased BM-MSCs activity by miR-203 inhibitor treatment. Moreover, miR-203 blocking partly protected BM-MSCs from impairment caused by low nutrition. We conclude that inhibition of endogenous miR-203 elevated PI3K expression, which may strengthen PI3K/Akt pathway and promote BM-MSCs activity and survival. © 2014 IUBMB Life, 2014.

  11. Vasculogenic Mimicry in Prostate Cancer: The Roles of EphA2 and PI3K

    PubMed Central

    Wang, Hua; Lin, Hao; Pan, Jincheng; Mo, Chengqiang; Zhang, Faming; Huang, Bin; Wang, Zongren; Chen, Xu; Zhuang, Jintao; Wang, Daohu; Qiu, Shaopeng

    2016-01-01

    BACKGROUND. Aggressive tumor cells can form perfusable networks that mimic normal vasculature and enhance tumor growth and metastasis. A number of molecular players have been implicated in such vasculogenic mimicry, among them the receptor tyrosine kinase EphA2, which is aberrantly expressed in aggressive tumors. Here we study the role and regulation of EphA2 in vasculogenic mimicry in prostate cancer where this phenomenon is still poorly understood. METHODS. Vasculogenic mimicry was characterized by tubules whose cellular lining was negative for the endothelial cell marker CD34 but positive for periodic acid-Schiff staining, and/or contained red blood cells. Vasculogenic mimicry was assessed in 92 clinical samples of prostate cancer and analyzed in more detail in three prostate cancer cell lines kept in three-dimensional culture. Tissue samples and cell lines were also assessed for total and phosphorylated levels of EphA2 and its potential regulator, Phosphoinositide 3-Kinase (PI3K). In addition, the role of EphA2 in vasculogenic mimicry and in cell migration and invasion were investigated by manipulating the levels of EphA2 through specific siRNAs. Furthermore, the role of PI3K in vasculogenic mimicry and in regulating EphA2 was tested by application of an inhibitor, LY294002. RESULTS. Immunohistochemistry of prostate cancers showed a significant correlation between vasculogenic mimicry and high expression levels of EphA2, high Gleason scores, advanced TNM stage, and the presence of lymph node and distant metastases. Likewise, two prostate cancer cell lines (PC3 and DU-145) formed vasculogenic networks on Matrigel and expressed high EphA2 levels, while one line (LNCaP) showed no vasculogenic networks and lower EphA2 levels. Specific silencing of EphA2 in PC3 and DU-145 cells decreased vasculogenic mimicry as well as cell migration and invasion. Furthermore, high expression levels of PI3K and EphA2 phosphorylation at Ser897 significantly correlated with the

  12. Low-Dose Endothelial Monocyte-Activating Polypeptide-II Increases Blood-Tumor Barrier Permeability by Activating the RhoA/ROCK/PI3K Signaling Pathway.

    PubMed

    Li, Zhen; Liu, Xiao-Bai; Liu, Yun-Hui; Xue, Yi-Xue; Liu, Jing; Teng, Hao; Xi, Zhuo; Yao, Yi-Long

    2016-06-01

    Previous studies have demonstrated that low-dose endothelial monocyte-activating polypeptide-II (EMAP-II) can increase blood-tumor barrier (BTB) permeability via both paracellular and transcellular pathways. In addition, we revealed that the RhoA/Rho kinase (ROCK) signaling pathway is involved in EMAP-II-induced BTB opening. This study further investigated the exact mechanisms by which the RhoA/ROCK signaling pathway affects EMAP-II-induced BTB hyperpermeability. In an in vitro BTB model, low-dose EMAP-II significantly activated phosphatidylinositol-3-kinase (PI3K) in rat brain microvascular endothelial cells (RBMECs) at 0.75 h. Pretreatment with RhoA inhibitor C3 exoenzyme or ROCK inhibitor Y-27632 completely blocked EMAP-II-induced activation of PI3K. PKC-α/β inhibitor GÖ6976 pretreatment caused no change in EMAP-II-induced activation of PI3K. Besides, pretreatment with LY294002, a specific inhibitor of PI3K, did not affect EMAP-II-induced activation of PKC-α/β. Furthermore, LY294002 pretreatment significantly diminished EMAP-II-induced changes in BTB permeability, phosphorylation of myosin light chain and cofilin, expression and distribution of tight junction-associated protein ZO-1, and actin cytoskeleton arrangement in RBMECs. In summary, this study demonstrates that low-dose EMAP-II can increase BTB permeability by activating the RhoA/ROCK/PI3K signaling pathway.

  13. DAB2IP coordinates both PI3K-Akt and ASK1 pathways for cell survival and apoptosis

    PubMed Central

    Xie, Daxing; Gore, Crystal; Zhou, Jian; Pong, Rey-Chen; Zhang, Haifeng; Yu, Luyang; Vessella, Robert L.; Min, Wang; Hsieh, Jer-Tsong

    2009-01-01

    In metastatic prostate cancer (PCa) cells, imbalance between cell survival and death signals such as constitutive activation of phosphatidylinositol 3-kinase (PI3K)-Akt and inactivation of apoptosis-stimulated kinase (ASK1)-JNK pathways is often detected. Here, we show that DAB2IP protein, often down-regulated in PCa, is a potent growth inhibitor by inducing G0/G1 cell cycle arrest and is proapoptotic in response to stress. Gain of function study showed that DAB2IP can suppress the PI3K-Akt pathway and enhance ASK1 activation leading to cell apoptosis, whereas loss of DAB2IP expression resulted in PI3K-Akt activation and ASK1-JNK inactivation leading to accelerated PCa growth in vivo. Moreover, glandular epithelia from DAB2IP−/− animal exhibited hyperplasia and apoptotic defect. Structural functional analyses of DAB2IP protein indicate that both proline-rich (PR) and PERIOD-like (PER) domains, in addition to the critical role of C2 domain in ASK1 activity, are important for modulating PI3K-Akt activity. Thus, DAB2IP is a scaffold protein capable of bridging both survival and death signal molecules, which implies its role in maintaining cell homeostasis. PMID:19903888

  14. Eupatilin induces human renal cancer cell apoptosis via ROS-mediated MAPK and PI3K/AKT signaling pathways

    PubMed Central

    Zhong, Wei-Feng; Wang, Xiao-Hong; Pan, Bin; Li, Feng; Kuang, Lu; Su, Ze-Xuan

    2016-01-01

    Phosphatidylinositol 3-kinase (PI3K)/AKT and mitogen activated protein kinase (MAPK) signaling cascades have significant roles in cell proliferation, survival, angiogenesis and metastasis of tumor cells. Eupatilin, one of the major compounds present in Artemisia species, has been demonstrated to have antitumor properties. However, the effect of eupatilin in renal cell carcinoma (RCC) remains to be elucidated. Therefore, the present study investigated the biological effects and mechanisms of eupatilin in RCC cell apoptosis. The results of the present study demonstrated that eupatilin significantly induced cell apoptosis and enhanced the production of reactive oxygen species (ROS) in 786-O cells. In addition, eupatilin induced phosphorylation of p38α (Thr180/Tyr182), extracellular signal-regulated kinase 1/2 and c-Jun N-terminal kinase 1/2 (Thr183/Tyr185), and decreased the phosphorylation of PI3K and AKT in 786-O cells in a concentration-dependent manner. Furthermore, the ROS inhibitor N-acetyl-L-cysteine was able to rescue the MAPK activation and PI3K/AKT inhibition induced by eupatilin. Taken together, the results of the present study provide evidence that inhibition of eupatilin induces apoptosis in human RCC via ROS-mediated activation of the MAPK signaling pathway and inhibition of the PI3K/AKT signaling pathway. Thus, eupatilin may serve as a potential therapeutic agent for the treatment of human RCC. PMID:27698876

  15. Eupatilin induces human renal cancer cell apoptosis via ROS-mediated MAPK and PI3K/AKT signaling pathways

    PubMed Central

    Zhong, Wei-Feng; Wang, Xiao-Hong; Pan, Bin; Li, Feng; Kuang, Lu; Su, Ze-Xuan

    2016-01-01

    Phosphatidylinositol 3-kinase (PI3K)/AKT and mitogen activated protein kinase (MAPK) signaling cascades have significant roles in cell proliferation, survival, angiogenesis and metastasis of tumor cells. Eupatilin, one of the major compounds present in Artemisia species, has been demonstrated to have antitumor properties. However, the effect of eupatilin in renal cell carcinoma (RCC) remains to be elucidated. Therefore, the present study investigated the biological effects and mechanisms of eupatilin in RCC cell apoptosis. The results of the present study demonstrated that eupatilin significantly induced cell apoptosis and enhanced the production of reactive oxygen species (ROS) in 786-O cells. In addition, eupatilin induced phosphorylation of p38α (Thr180/Tyr182), extracellular signal-regulated kinase 1/2 and c-Jun N-terminal kinase 1/2 (Thr183/Tyr185), and decreased the phosphorylation of PI3K and AKT in 786-O cells in a concentration-dependent manner. Furthermore, the ROS inhibitor N-acetyl-L-cysteine was able to rescue the MAPK activation and PI3K/AKT inhibition induced by eupatilin. Taken together, the results of the present study provide evidence that inhibition of eupatilin induces apoptosis in human RCC via ROS-mediated activation of the MAPK signaling pathway and inhibition of the PI3K/AKT signaling pathway. Thus, eupatilin may serve as a potential therapeutic agent for the treatment of human RCC.

  16. Inhibition of PI3K by PX-866 prevents transforming growth factor-alpha-induced pulmonary fibrosis.

    PubMed

    Le Cras, Timothy D; Korfhagen, Thomas R; Davidson, Cynthia; Schmidt, Stephanie; Fenchel, Matthew; Ikegami, Machiko; Whitsett, Jeffrey A; Hardie, William D

    2010-02-01

    Transforming growth factor-alpha (TGFalpha) is a ligand for the epidermal growth factor receptor (EGFR). EGFR activation is associated with fibroproliferative processes in human lung disease and animal models of pulmonary fibrosis. EGFR signaling activates several intracellular signaling pathways including phosphatidylinositol 3'-kinase (PI3K). We previously showed that induction of lung-specific TGFalpha expression in transgenic mice caused progressive pulmonary fibrosis over a 4-week period. The increase in levels of phosphorylated Akt, detected after 1 day of doxycycline-induced TGFalpha expression, was blocked by treatment with the PI3K inhibitor, PX-866. Daily administration of PX-866 during TGFalpha induction prevented increases in lung collagen and airway resistance as well as decreases in lung compliance. Treatment of mice with oral PX-866 4 weeks after the induction of TGFalpha prevented additional weight loss and further increases in total collagen, and attenuated changes in pulmonary mechanics. These data show that PI3K is activated in TGFalpha/EGFR-mediated pulmonary fibrosis and support further studies to determine the role of PI3K activation in human lung fibrotic disease, which could be amenable to targeted therapy.

  17. Autophagy inhibition enhances colorectal cancer apoptosis induced by dual phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor NVP-BEZ235

    PubMed Central

    YANG, XIAOYU; NIU, BINGXUAN; WANG, LIBO; CHEN, MEILING; KANG, XIAOCHUN; WANG, LUONAN; JI, YINGHUA; ZHONG, JIATENG

    2016-01-01

    Phosphatidylinositol 3-kinase (PI3K)/mammalian target of rapamycin (mTOR) signaling pathway performs a central role in tumorigenesis and is constitutively activated in many malignancies. As a novel dual PI3K/mTOR inhibitor currently undergoing evaluation in a phase I/II clinical trial, NVP-BEZ235 indicates a significant antitumor efficacy in diverse solid tumors, including colorectal cancer (CRC). Autophagy is a catabolic process that maintains cellular homeostasis and reduces diverse stresses through lysosomal recycling of the unnecessary and damaged cell components. This process is also observed to antagonize the antitumor efficacy of PI3K/mTOR inhibitor agents such as NVP-BEZ235, via apoptosis inhibition. In the present study, we investigated anti-proliferative and apoptosis-inducing ability of NVP-BEZ235 in SW480 cells and the crosstalk between autophagy and apoptosis in SW480 cells treated with NVP-BEZ235 in combination with an autophagy inhibitor. The results revealed that, NVP-BEZ235 effectively inhibit the growth of SW480 cells by targeting the PI3K/mTOR signaling pathway and induced apoptosis. The inhibition of autophagy with 3-methyladenine or chloroquine inhibitors in combination with NVP-BEZ235 in SW480 cells enhanced the apoptotic rate as componets to NVP-BEZ235 alone. In conclusion, the findings provide a rationale for chemotherapy targeting the PI3K/mTOR signaling pathway presenting a potential therapeutic strategy to enhance the efficacy of dual PI3K/mTOR inhibitor NVP-BEZ235 in combination with an autophagy inhibitor in CRC treatment and treatment of other tumors. PMID:27347108

  18. Targeting the PI3K/AKT/mTOR pathway overcomes the stimulating effect of dabrafenib on the invasive behavior of melanoma cells with acquired resistance to the BRAF inhibitor.

    PubMed

    Caporali, Simona; Alvino, Ester; Lacal, Pedro Miguel; Levati, Lauretta; Giurato, Giorgio; Memoli, Domenico; Caprini, Elisabetta; Antonini Cappellini, Gian Carlo; D'Atri, Stefania

    2016-09-01

    BRAF inhibitors (BRAFi) have proven clinical benefits in patients with BRAF-mutant melanoma. However, acquired resistance eventually arises. The effects of BRAFi on melanoma cell proliferation and survival have been extensively studied, and several mechanisms involved in acquired resistance to the growth suppressive activity of these drugs have been identified. Much less is known about the impact of BRAFi, and in particular of dabrafenib, on the invasive potential of melanoma cells. In the present study, the BRAF-mutant human melanoma cell line A375 and its dabrafenib-resistant subline A375R were analyzed for invasive capacity, expression of vascular endothelial growth factor receptor (VEGFR)-2, and secretion of VEGF-A and matrix metalloproteinase (MMP)-9, under basal conditions or in response to dabrafenib. The consequences of inhibiting the PI3K/AKT/mTOR pathway on A375R cell responses to dabrafenib were also evaluated. We found that A375R cells were more invasive and secreted higher levels of VEGF-A and MMP-9 as compared with A375 cells. Dabrafenib reduced invasiveness, VEGFR-2 expression and VEGF-A secretion in A375 cells, whereas it increased invasiveness, VEGF-A and MMP-9 release in A375R cells. In these latter cells, the stimulating effects of dabrafenib on the invasive capacity were markedly impaired by the anti-VEGF‑A antibody bevacizumab, or by AKT1 silencing. A375R cells were not cross-resistant to the PI3K/mTOR inhibitor GSK2126458A. Moreover, this inhibitor given in combination with dabrafenib efficiently counteracted the stimulating effects of the BRAFi on invasiveness and VEGF-A and MMP-9 secretion. Our data demonstrate that melanoma cells with acquired resistance to dabrafenib possess a more invasive phenotype which is further stimulated by exposure to the drug. Substantial evidence indicates that continuing BRAFi therapy beyond progression produces a clinical benefit. Our results suggest that after the development of resistance, a regimen

  19. Implication of PI3K/Akt pathway in pancreatic cancer: When PI3K isoforms matter?

    PubMed

    Baer, Romain; Cintas, Célia; Therville, Nicole; Guillermet-Guibert, Julie

    2015-09-01

    Pancreatic cancer belongs to the incurable family of solid cancers. Despite of a recent better understanding its molecular biology, and an increased number of clinical trials, there is still a lack for innovative targeted therapies to fight this deadly malignancy. PI3K/Akt signalling is one of the most commonly deregulated signalling pathways in cancer, which explains the massive attention from many pharmaceutical companies over the ten past years on these signalling molecules. The already developed small molecule inhibitors are currently under clinical trial in various cancer types. Class I PI3Ks have 4 isoforms for which the role in physiology starts to be well described in the literature. Data are more unclear for their differential involvement in oncogenesis. In this review, we will discuss about the cognitive and therapeutic potential of targeting this signalling pathway and in particular Class I PI3K isoforms for pancreatic cancer treatment. Isoform-specificity of PI3K inhibitors are currently designed to achieve the same goal as pan-PI3K inhibitors but without potential adverse effects. We will discuss if such strategy is relevant in pancreatic adenocarcinoma.

  20. P-REX1 creates a positive feedback loop to activate growth factor receptor, PI3K/AKT, and MEK/ERK signaling in breast cancer

    PubMed Central

    Dillon, Lloye M.; Bean, Jennifer R.; Yang, Wei; Shee, Kevin; Symonds, Lynn K.; Balko, Justin M.; McDonald, W. Hayes; Liu, Shuying; Gonzalez-Angulo, Ana M.; Mills, Gordon B.; Arteaga, Carlos L.; Miller, Todd W.

    2014-01-01

    Phosphatidylinositol 3-kinase (PI3K) promotes cancer cell survival, migration, growth, and proliferation by generating phosphatidylinositol 3,4,5-trisphosphate (PIP3) in the inner leaflet of the plasma membrane. PIP3 recruits pleckstrin homology (PH) domain-containing proteins to the membrane to activate oncogenic signaling cascades. Anti-cancer therapeutics targeting the PI3K/AKT/mTOR pathway are in clinical development. In a mass spectrometric screen to identify PIP3-regulated proteins in breast cancer cells, levels of the Rac activator PIP3-dependent Rac exchange factor 1 (P-REX1) increased in response to PI3K inhibition, and decreased upon loss of the PI3K antagonist PTEN. P-REX1 mRNA and protein levels were positively correlated with ER expression, and inversely correlated with PI3K pathway activation in breast tumors as assessed by gene expression and phosphoproteomic analyses. P-REX1 increased activation of Rac1, PI3K/AKT, and MEK/ERK signaling in a PTEN-independent manner, and promoted cell and tumor viability. Loss of P-REX1 or inhibition of Rac suppressed PI3K/AKT and MEK/ERK, and decreased viability. P-REX1 also promoted insulin-like growth factor-1 receptor (IGF-1R) activation, suggesting that P-REX1 provides positive feedback to activators upstream of PI3K. In support of a model where PIP3-driven P-REX1 promotes both PI3K/AKT and MEK/ERK signaling, high levels of P-REX1 mRNA (but not phospho-AKT or a transcriptomic signature of PI3K activation) were predictive of sensitivity to PI3K inhibitors among breast cancer cell lines. P-REX1 expression was highest in ER+ breast tumors compared to many other cancer subtypes, suggesting that neutralizing the P-REX1/Rac axis may provide a novel therapeutic approach to selectively abrogate oncogenic signaling in breast cancer cells. PMID:25284585

  1. Class I PI3K in oncogenic cellular transformation

    PubMed Central

    Zhao, Li; Vogt, Peter K.

    2009-01-01

    Class I phosphoinositide 3-kinase (PI3K) is a dimeric enzyme, consisting of a catalytic and a regulatory subunit. The catalytic subunit occurs in four isoforms designated as p110α, p110β, p110γ and p110δ. These combine with several regulatory subunits; for p110α, β and δ the standard regulatory subunit is p85, for p110γ it is p101. PI3Ks play important roles in human cancer. PIK3CA, the gene encoding p110α, is mutated frequently in common cancers, including carcinoma of the breast, prostate, colon and endometrium. Eighty percent of these mutations are represented by one of three amino acid substitutions in the helical or kinase domains of the enzyme. The mutant p110α shows a gain of function in enzymatic and signaling activity and is oncogenic in cell culture and in animal model systems. Structural and genetic data suggest that the mutations affect regulatory inter- and intramolecular interactions and support the conclusion that there are at least two molecular mechanisms for the gain-of-function in p110α. One of these mechanisms operates largely independently of binding to p85, the other abolishes the requirement for an interaction with Ras. The non-alpha isoforms of p110 do not show cancer-specific mutations. However, they are often differentially expressed in cancer and, in contrast to p110α, wild-type non-alpha isoforms of p110 are oncogenic when overexpressed in cell culture. The isoforms of p110 have become promising drug targets. Isoform-selective inhibitors have been identified. Inhibitors that target exclusively the cancer-specific mutants of p110α constitute an important goal and challenge for current drug development. PMID:18794883

  2. Colon Cancer Tumorigenesis Initiated by the H1047R Mutant PI3K

    PubMed Central

    Yueh, Alexander E.; Payne, Susan N.; Leystra, Alyssa A.; Van De Hey, Dana R.; Foley, Tyler M.; Pasch, Cheri A.; Clipson, Linda; Matkowskyj, Kristina A.; Deming, Dustin A.

    2016-01-01

    The phosphoinositide 3-kinase (PI3K) signaling pathway is critical for multiple important cellular functions, and is one of the most commonly altered pathways in human cancers. We previously developed a mouse model in which colon cancers were initiated by a dominant active PI3K p110-p85 fusion protein. In that model, well-differentiated mucinous adenocarcinomas developed within the colon and initiated through a non-canonical mechanism that is not dependent on WNT signaling. To assess the potential relevance of PI3K mutations in human cancers, we sought to determine if one of the common mutations in the human disease could also initiate similar colon cancers. Mice were generated expressing the Pik3caH1047R mutation, the analog of one of three human hotspot mutations in this gene. Mice expressing a constitutively active PI3K, as a result of this mutation, develop invasive adenocarcinomas strikingly similar to invasive adenocarcinomas found in human colon cancers. These tumors form without a polypoid intermediary and also lack nuclear CTNNB1 (β-catenin), indicating a non-canonical mechanism of tumor initiation mediated by the PI3K pathway. These cancers are sensitive to dual PI3K/mTOR inhibition indicating dependence on the PI3K pathway. The tumor tissue remaining after treatment demonstrated reduction in cellular proliferation and inhibition of PI3K signaling. PMID:26863299

  3. Analysis of PI3K pathway components in human cancers

    PubMed Central

    DARAGMEH, JAMILA; BARRIAH, WASEIM; SAAD, BASHAR; ZAID, HILAL

    2016-01-01

    Recent advances in genomics, proteomics, cell biology and biochemistry of tumors have revealed new pathways that are aberrantly activated in numerous cancer types. However, the enormous amount of data available in this field may mislead scientists in focused research. As cancer cell growth and progression is often dependent upon the phosphoinositide 3-kinase (PI3K)/AKT pathway, there has been extensive research into the proteins implicated in the PI3K pathway. Using data available in the Human Protein Atlas database, the current study investigated the expression of 25 key proteins that are known to be involved with PI3K pathway activation in a distinct group of 20 cancer types. These proteins are AKTIP, ARP1, BAD, GSK3A, GSK3B, MERTK-1, PIK3CA, PRR5, PSTPIP2, PTEN, FOX1, RHEB, RPS6KB1, TSC1, TP53, BCL2, CCND1, WFIKKN2, CREBBP, caspase-9, PTK2, EGFR, FAS, CDKN1A and XIAP. The analysis revealed pronounced expression of specific proteins in distinct cancer tissues, which may have the potential to serve as targets for treatments and provide insights into the molecular basis of cancer. PMID:27073576

  4. PI3K in cancer: divergent roles of isoforms, modes of activation, and therapeutic targeting

    PubMed Central

    Thorpe, Lauren M.; Yuzugullu, Haluk; Zhao, Jean J.

    2015-01-01

    Preface Phosphatidylinositol 3-Kinases (PI3Ks) are critical coordinators of intracellular signaling in response to extracellular stimuli. Hyperactivation of PI3K signaling cascades is one of the most common events in human cancers. In this Review, we discuss recent advances in our knowledge of the roles of distinct PI3K isoforms in normal and oncogenic signaling, the different ways in which PI3K can be upregulated, and the current state and future potential of targeting this pathway in the clinic. PMID:25533673

  5. Sat-Nav for T cells: Role of PI3K isoforms and lipid phosphatases in migration of T lymphocytes.

    PubMed

    Ward, Stephen G; Westwick, John; Harris, Stephanie

    2011-07-01

    Phosphoinositide 3-kinase (PI3K)-dependent signaling has been placed at the heart of conserved biochemical mechanisms that facilitate cell migration of leukocytes in response to a range of chemoattractant stimuli. This review assesses the evidence for and against PI3K-dependent mechanisms of T lymphocyte migration and whether pharmacological targeting of PI3K isoforms is likely to offer potential benefit for T cell mediated pathologies. PMID:21333676

  6. Will targeting PI3K/Akt/mTOR signaling work in hematopoietic malignancies?

    PubMed Central

    Gao, Yanan; Yuan, Chase Y.

    2016-01-01

    The constitutive activation of phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/Akt/mTOR) signaling pathway has been demonstrated to be critical in clinical cancer patients as well as in laboratory cancer models including hematological malignancies. Great efforts have been made to develop inhibitors targeting this pathway in hematological malignancies but so far the efficacies of these inhibitors were not as good as expected. By analyzing existing literatures and datasets available, we found that mutations of genes in the pathway only constitute a very small subset of hematological malignancies. Deep understanding of the function of gene, the pathway and/or its regulators, and the cellular response to inhibitors, may help us design better drugs targeting the hematological malignancies. PMID:27583254

  7. The predominant protective effect of tianeptine over other antidepressants in models of neuronal apoptosis: the effect blocked by inhibitors of MAPK/ERK1/2 and PI3-K/Akt pathways.

    PubMed

    Jantas, D; Krawczyk, S; Lason, W

    2014-02-01

    Tianeptine (Tian) possesses neuroprotective potential, however, little is known about the effect of this drug in models of neuronal apoptosis. In the present study, we aimed (1) to compare the neuroprotective capacities of some antidepressants (ADs) in the models of staurosporine (St)- and doxorubicin (Dox)-evoked cell death, activating the intracellular and the extracellular apoptotic pathway, respectively; (2) to identify the Tian-modulated steps underlying its neuroprotective action; (3) to test the effect of various ADs against Dox-evoked cell damage in glia cells. Primary neuronal and glia cell cultures and retinoic acid-differentiated human neuroblastoma SH-SY5Y (RA-SH-SY5Y) cells were co-treated with imipramine, fluoxetine, citalopram, reboxetine, mirtazapine or Tian and St or Dox. The data showed the predominant neuroprotective effect of Tian over other tested ADs against St- and Dox-induced cell damage in primary neurons and in RA-SH-SY5Y cells. This effect was shown to be caspase-3-independent but connected with attenuation of DNA fragmentation. Moreover, neuroprotection elicited by Tian was blocked by pharmacological inhibitors of MAPK/ERK1/2 and PI3-K/Akt signaling pathways as well by inhibitor of necroptosis, necrostatin-1. Interestingly, the protective effects of all tested ADs were demonstrated in primary glia cells against the Dox-evoked cell damage. The obtained data suggests the glial cells as a common target for protective action of various ADs whereas in relation to neuronal cells only Tian possesses such properties, at least against St- and Dox-induced cell damage. Moreover, this neuroprotective effect of Tian is caspase-3-independent and engages the regulation of survival pathways (MAPK/ERK1/2 and PI3-K/Akt).

  8. The predominant protective effect of tianeptine over other antidepressants in models of neuronal apoptosis: the effect blocked by inhibitors of MAPK/ERK1/2 and PI3-K/Akt pathways.

    PubMed

    Jantas, D; Krawczyk, S; Lason, W

    2014-02-01

    Tianeptine (Tian) possesses neuroprotective potential, however, little is known about the effect of this drug in models of neuronal apoptosis. In the present study, we aimed (1) to compare the neuroprotective capacities of some antidepressants (ADs) in the models of staurosporine (St)- and doxorubicin (Dox)-evoked cell death, activating the intracellular and the extracellular apoptotic pathway, respectively; (2) to identify the Tian-modulated steps underlying its neuroprotective action; (3) to test the effect of various ADs against Dox-evoked cell damage in glia cells. Primary neuronal and glia cell cultures and retinoic acid-differentiated human neuroblastoma SH-SY5Y (RA-SH-SY5Y) cells were co-treated with imipramine, fluoxetine, citalopram, reboxetine, mirtazapine or Tian and St or Dox. The data showed the predominant neuroprotective effect of Tian over other tested ADs against St- and Dox-induced cell damage in primary neurons and in RA-SH-SY5Y cells. This effect was shown to be caspase-3-independent but connected with attenuation of DNA fragmentation. Moreover, neuroprotection elicited by Tian was blocked by pharmacological inhibitors of MAPK/ERK1/2 and PI3-K/Akt signaling pathways as well by inhibitor of necroptosis, necrostatin-1. Interestingly, the protective effects of all tested ADs were demonstrated in primary glia cells against the Dox-evoked cell damage. The obtained data suggests the glial cells as a common target for protective action of various ADs whereas in relation to neuronal cells only Tian possesses such properties, at least against St- and Dox-induced cell damage. Moreover, this neuroprotective effect of Tian is caspase-3-independent and engages the regulation of survival pathways (MAPK/ERK1/2 and PI3-K/Akt). PMID:24105645

  9. PI3K/Akt signalling pathway and cancer.

    PubMed

    Fresno Vara, Juan Angel; Casado, Enrique; de Castro, Javier; Cejas, Paloma; Belda-Iniesta, Cristóbal; González-Barón, Manuel

    2004-04-01

    Phosphatidylinositol-3 kinases, PI3Ks, constitute a lipid kinase family characterized by their ability to phosphorylate inositol ring 3'-OH group in inositol phospholipids to generate the second messenger phosphatidylinositol-3,4,5-trisphosphate (PI-3,4,5-P(3)). RPTK activation results in PI(3,4,5)P(3) and PI(3,4)P(2) production by PI3K at the inner side of the plasma membrane. Akt interacts with these phospholipids, causing its translocation to the inner membrane, where it is phosphorylated and activated by PDK1 and PDK2. Activated Akt modulates the function of numerous substrates involved in the regulation of cell survival, cell cycle progression and cellular growth. In recent years, it has been shown that PI3K/Akt signalling pathway components are frequently altered in human cancers. Cancer treatment by chemotherapy and gamma-irradiation kills target cells primarily by the induction of apoptosis. However, the development of resistance to therapy is an important clinical problem. Failure to activate the apoptotic programme represents an important mode of drug resistance in tumor cells. Survival signals induced by several receptors are mediated mainly by PI3K/Akt, hence this pathway may decisively contribute to the resistant phenotype. Many of the signalling pathways involved in cellular transformation have been elucidated and efforts are underway to develop treatment strategies that target these specific signalling molecules or their downstream effectors. The PI3K/Akt pathway is involved in many of the mechanisms targeted by these new drugs, thus a better understanding of this crossroad can help to fully exploit the potential benefits of these new agents. PMID:15023437

  10. Killing of Kras mutant colon cancer cells via Rac-independent actin remodeling by the βGBP cytokine a physiological PI3K inhibitor therapeutically effective in vivo

    PubMed Central

    Mallucci, Livio; Shi, Dong-yun; Davies, Derek; Jordan, Peter; Nicol, Alastair; Lotti, Lavinia; Mariani-Costantini, Renato; Verginelli, Fabio; Wells, Valerie; Zicha, Daniel

    2012-01-01

    Activating mutations in Kras are the most frequent mutations in human cancer. They define a subset of patients who do not respond to current therapies and for whom prognosis is poor. Oncogenic Kras has been shown to deregulate numerous signalling pathways of which the most intensively studied are the Ras-ERK cascade and the PI3K-Akt cascade. However, to date there are no effective targeted therapies in the clinic against Kras-mutant cancers. Here we report that the βGBP cytokine, a physiological inhibitor of class I PI3Ks is a potent activator of apoptosis in Kras-mutant colorectal cancer cells, even when co-harboring mutant-activated PIK3CA. Our study unveils an elective route to intrinsic and extrinsic apoptosis which involves the cytoskeleton. Early events are inhibition of PI3K activity and Rac-independent actin rearrangement assignable to phosphoinositide changes at the plasma membrane. Cyclin E deregulation, arrest of DNA synthesis and Chk2 activation underscore events critical to the activation of an intrinsic apoptotic program. Clustering of CD95/Fas death receptors underscore events critical to the activation of extrinsic apoptosis. In nude mice we present the first evidence that xenograft tumor development is strongly inhibited by Hu-r-βGBP. Taken together our results open a new therapeutic opportunity against a subset of patients refractive to current treatments. This first demonstration of therapeutic efficacy against Kras-mutant colon cancer suggests that Hu-r-βGBP may also be therapeutically effective against other cancers harbouring activating Ras mutations as well as PIK3CA mutations. PMID:22752425

  11. Phospho-tyrosine phosphatase inhibitor Bpv(Hopic) enhances C2C12 myoblast migration in vitro. Requirement of PI3K/AKT and MAPK/ERK pathways.

    PubMed

    Dimchev, Georgi A; Al-Shanti, Nasser; Stewart, Claire E

    2013-05-01

    Muscle progenitor cell migration is an important step in skeletal muscle myogenesis and regeneration. Migration is required for muscle precursors to reach the site of damage and for the alignment of myoblasts prior to their fusion, which ultimately contributes to muscle regeneration. Limited spreading and migration of donor myoblasts are reported problems of myoblast transfer therapy, a proposed therapeutic strategy for Duchenne Muscular Dystrophy, warranting further investigation into different approaches for improving the motility and homing of these cells. In this article, the effect of protein phospho-tyrosine phosphatase and PTEN inhibitor BpV(Hopic) on C2C12 myoblast migration and differentiation was investigated. Applying a wound healing migration model, it is reported that 1 μM BpV(Hopic) is capable of enhancing the migration of C2C12 myoblasts by approximately 40 % in the presence of myotube conditioned media, without significantly affecting their capacity to differentiate and fuse into multinucleated myotubes. Improved migration of myoblasts treated with 1 μM BpV(Hopic) was associated with activation of PI3K/AKT and MAPK/ERK pathways, while their inhibition with either LY294002 or UO126, respectively, resulted in a reduction of C2C12 migration back to control levels. These results propose that bisperoxovanadium compounds may be considered as potential tools for enhancing the migration of myoblasts, while not reducing their differentiation capacity and underpin the importance of PI3K/AKT and MAPK/ERK signalling for the process of myogenic progenitor migration. PMID:23553034

  12. Histone deacetylase inhibitor prevents cell growth in Burkitt's lymphoma by regulating PI3K/Akt pathways and leads to upregulation of miR-143, miR-145, and miR-101.

    PubMed

    Ferreira, Ana Carolina dos Santos; Robaina, Marcela Cristina; Rezende, Lídia Maria Magalhães de; Severino, Patricia; Klumb, Claudete Esteves

    2014-06-01

    Burkitt lymphoma (BL) is an aggressive B-cell lymphoma more common in children comprising one third of pediatric non-Hodgkin lymphoma cases. The recent discovery in BL pathogenesis highlighted the activation of PI3K pathway in cooperation with Myc in the development of BL. In this study, we demonstrated that PI3K/Akt pathway is a target to histone deacetylase inhibitor (HDACi) in BL cells. The combination of HDACi (sodium butyrate, NaB) and chemotherapy (VP-16) inhibited 51 % of the proliferation and enhanced the blockage of the cell cycle progression at G2/M with a concurrent decrease in the S phase. Microarray profiling showed a synergistic action of NaB/VP-16 combination through the differential regulation of 1,413 genes. Comparing VP-16 treatment with the NaB/VP-16 combination, 318 genes were deregulated: 250 genes were downregulated, and 68 were upregulated when compared with untreated cells. Among these genes, six (CDKN1A, CCND1, FAS, CHEK2, MDM4, and SESN2) belong to the p53-signaling pathway. The activation of this signaling pathway is usually induced by stress signals and ultimately leads to cell cycle arrest. Besides, the inhibition of the cell growth was related to reduced Akt phosphorylation, and decrease of c-Myc protein expression by about 60 % (p ≤ 0.005). Moreover, HDACi enhanced miR-101, miR-143, and miR-145 levels in BL cell line, which were inversely associated with the levels of miR-101, miR-143, and miR-145 found to be extremely downregulated in the sample of BL patients. We highlight the fact that effective combinations of HDACis with other target drugs could improve BL therapy in the future. PMID:24577510

  13. Activation of PI3K/Akt signaling has a dominant negative effect on IL-12 production by macrophages infected with Leishmania amazonensis promastigotes

    PubMed Central

    Ruhland, Aaron; Kima, Peter E.

    2009-01-01

    Infection of macrophages with Leishmania parasites does not result in the production of IL-12. In addition, infection with Leishmania suppresses IL-12 production elicited by otherwise potent activators of IL-12. We provide evidence that engagement of phosphatidyl inositol-3 kinase (PI3K) signaling during Leishmania amazonensis infection leads to the prevention of IL-12 p70 production at the level of transcription of its p40 subunit in bone marrow derived macrophages (BMDMϕ). Inhibition of PI3K signaling with specific inhibitors of PI3K or the downstream kinase Akt, reverses the IL-12 blockade. Although the MAP kinase ERK (p44 and p42) was transiently activated by infection with L. amazonensis, inhibition of MEK, the kinase upstream of ERK, with PD98059, did not reverse the blockade of IL-12. Furthermore, inhibition of the other MAP kinases JNK and p38 as well as treatment of cells with pertussis toxin that blocks G protein mediated signaling, did not reverse the prevention of IL-12 production by Leishmania infection. Interestingly, activation of PI3K/Akt signaling had differential effects on ERK and p38 activation. Taken together we propose that infection of BMDMϕ with Leishmania promastigotes activates both positive and negative signaling pathways that control IL-12 production. PI3K signaling activated by the infection is the negative signaling pathway that prevents IL-12 production. PMID:19186178

  14. Activation of PI3K/Akt signaling has a dominant negative effect on IL-12 production by macrophages infected with Leishmania amazonensis promastigotes.

    PubMed

    Ruhland, Aaron; Kima, Peter E

    2009-05-01

    Infection of macrophages with Leishmania parasites does not result in the production of IL-12. In addition, infection with Leishmania suppresses IL-12 production elicited by otherwise potent activators of IL-12. We provide evidence that engagement of phosphatidyl inositol-3 kinase (PI3K) signaling during Leishmania amazonensis infection leads to the prevention of IL-12 p70 production at the level of transcription of its p40 subunit in bone marrow derived macrophages (BMDMPhi). Inhibition of PI3K signaling with specific inhibitors of PI3K or the downstream kinase Akt, reverses the IL-12 blockade. Although the MAP kinase ERK (p44 and p42) was transiently activated by infection with L. amazonensis, inhibition of MEK, the kinase upstream of ERK, with PD98059, did not reverse the blockade of IL-12. Furthermore, inhibition of the other MAP kinases JNK and p38 as well as treatment of cells with pertussis toxin that blocks G protein mediated signaling, did not reverse the prevention of IL-12 production by Leishmania infection. Interestingly, activation of PI3K/Akt signaling had differential effects on ERK and p38 activation. Taken together we propose that infection of BMDMPhi with Leishmania promastigotes activates both positive and negative signaling pathways that control IL-12 production. PI3K signaling activated by the infection is the negative signaling pathway that prevents IL-12 production.

  15. PTEN and PI-3 kinase inhibitors control LPS signaling and the lymphoproliferative response in the CD19+ B cell compartment

    SciTech Connect

    Singh, Alok R.; Peirce, Susan K.; Joshi, Shweta; Durden, Donald L.

    2014-09-10

    Pattern recognition receptors (PRRs), e.g. toll receptors (TLRs) that bind ligands within the microbiome have been implicated in the pathogenesis of cancer. LPS is a ligand for two TLR family members, TLR4 and RP105 which mediate LPS signaling in B cell proliferation and migration. Although LPS/TLR/RP105 signaling is well-studied; our understanding of the underlying molecular mechanisms controlling these PRR signaling pathways remains incomplete. Previous studies have demonstrated a role for PTEN/PI-3K signaling in B cell selection and survival, however a role for PTEN/PI-3K in TLR4/RP105/LPS signaling in the B cell compartment has not been reported. Herein, we crossed a CD19cre and PTEN{sup fl/fl} mouse to generate a conditional PTEN knockout mouse in the CD19+ B cell compartment. These mice were further crossed with an IL-14α transgenic mouse to study the combined effect of PTEN deletion, PI-3K inhibition and expression of IL-14α (a cytokine originally identified as a B cell growth factor) in CD19+ B cell lymphoproliferation and response to LPS stimulation. Targeted deletion of PTEN and directed expression of IL-14α in the CD19+ B cell compartment (IL-14+PTEN-/-) lead to marked splenomegaly and altered spleen morphology at baseline due to expansion of marginal zone B cells, a phenotype that was exaggerated by treatment with the B cell mitogen and TLR4/RP105 ligand, LPS. Moreover, LPS stimulation of CD19+ cells isolated from these mice display increased proliferation, augmented AKT and NFκB activation as well as increased expression of c-myc and cyclinD1. Interestingly, treatment of LPS treated IL-14+PTEN-/- mice with a pan PI-3K inhibitor, SF1126, reduced splenomegaly, cell proliferation, c-myc and cyclin D1 expression in the CD19+ B cell compartment and normalized the splenic histopathologic architecture. These findings provide the direct evidence that PTEN and PI-3K inhibitors control TLR4/RP105/LPS signaling in the CD19+ B cell compartment and that pan PI

  16. Ursolic Acid Increases Glucose Uptake through the PI3K Signaling Pathway in Adipocytes

    PubMed Central

    He, Yonghan; Li, Wen; Li, Ying; Zhang, Shuocheng; Wang, Yanwen; Sun, Changhao

    2014-01-01

    Background Ursolic acid (UA), a triterpenoid compound, is reported to have a glucose-lowering effect. However, the mechanisms are not fully understood. Adipose tissue is one of peripheral tissues that collectively control the circulating glucose levels. Objective The objective of the present study was to determine the effect and further the mechanism of action of UA in adipocytes. Methods and Results The 3T3-L1 preadipocytes were induced to differentiate and treated with different concentrations of UA. NBD-fluorescent glucose was used as the tracer to measure glucose uptake and Western blotting used to determine the expression and activity of proteins involved in glucose transport. It was found that 2.5, 5 and 10 µM of UA promoted glucose uptake in a dose-dependent manner (17%, 29% and 35%, respectively). 10 µM UA-induced glucose uptake with insulin stimulation was completely blocked by the phosphatidylinositol (PI) 3-kinase (PI3K) inhibitor wortmannin (1 µM), but not by SB203580 (10 µM), the inhibitor of mitogen-activated protein kinase (MAPK), or compound C (2.5 µM), the inhibitor of AMP-activated kinase (AMPK) inhibitor. Furthmore, the downstream protein activities of the PI3K pathway, phosphoinositide-dependent kinase (PDK) and phosphoinositide-dependent serine/threoninekinase (AKT) were increased by 10 µM of UA in the presence of insulin. Interestingly, the activity of AS160 and protein kinase C (PKC) and the expression of glucose transporter 4 (GLUT4) were stimulated by 10 µM of UA under either the basal or insulin-stimulated status. Moreover, the translocation of GLUT4 from cytoplasm to cell membrane was increased by UA but decreased when the PI3K inhibitor was applied. Conclusions Our results suggest that UA stimulates glucose uptake in 3T3-L1 adipocytes through the PI3K pathway, providing important information regarding the mechanism of action of UA for its anti-diabetic effect. PMID:25329874

  17. Targeting the PI3K/Akt signaling pathway in gastric carcinoma: A reality for personalized medicine?

    PubMed Central

    Singh, Shikha Satendra; Yap, Wei Ney; Arfuso, Frank; Kar, Shreya; Wang, Chao; Cai, Wanpei; Dharmarajan, Arunasalam M; Sethi, Gautam; Kumar, Alan Prem

    2015-01-01

    Frequent activation of phosphatidylinositol-3 kinases (PI3K)/Akt/mTOR signaling pathway in gastric cancer (GC) is gaining immense popularity with identification of mutations and/or amplifications of PIK3CA gene or loss of function of PTEN, a tumor suppressor protein, to name a few; both playing a crucial role in regulating this pathway. These aberrations result in dysregulation of this pathway eventually leading to gastric oncogenesis, hence, there is a need for targeted therapy for more effective anticancer treatment. Several inhibitors are currently in either preclinical or clinical stages for treatment of solid tumors like GC. With so many inhibitors under development, further studies on predictive biomarkers are needed to measure the specificity of any therapeutic intervention. Herein, we review the common dysregulation of PI3K/Akt/mTOR pathway in GC and the various types of single or dual pathway inhibitors under development that might have a superior role in GC treatment. We also summarize the recent developments in identification of predictive biomarkers and propose use of predictive biomarkers to facilitate more personalized cancer therapy with effective PI3K/Akt/mTOR pathway inhibition. PMID:26604635

  18. PI3K is negatively regulated by PIK3IP1, a novel p110 interacting protein

    SciTech Connect

    Zhu, Zhenqi; He, Xin; Johnson, Carla; Stoops, John; Eaker, Amanda E.; Stoffer, David S.; Bell, Aaron; Zarnegar, Reza; DeFrances, Marie C. . E-mail: defrancesmc@upmc.edu

    2007-06-22

    Signaling initiated by Class Ia phosphatidylinositol-3-kinases (PI3Ks) is essential for cell proliferation and survival. We discovered a novel protein we call PI3K interacting protein 1 (PIK3IP1) that shares homology with the p85 regulatory PI3K subunit. Using a variety of in vitro and cell based assays, we demonstrate that PIK3IP1 directly binds to the p110 catalytic subunit and down modulates PI3K activity. Our studies suggest that PIK3IP1 is a new type of PI3K regulator.

  19. Development of an immunohistochemical protein quantification system in conjunction with tissue microarray technology for identifying predictive biomarkers for phosphatidylinositol 3-kinase inhibitors.

    PubMed

    Isoyama, Sho; Yoshimi, Hisashi; Dan, Shingo; Okamura, Mutsumi; Seki, Mariko; Irimura, Tatsuro; Yamori, Takao

    2012-01-01

    The phosphatidylinositol 3-kinase (PI3K) pathway is frequently activated in human cancers by gain-of-function mutations of phosphoinositide-3-kinase, catalytic, alpha polypeptide (PIK3CA) or dysfunction of phosphatase and tensin homolog deleted on chromosome 10 (PTEN). Therefore PI3K is thought to be a promising target for cancer therapy. Many agents targeting PI3K have been developed and some of them have been evaluated in clinical trials. In recent years, development of predictive biomarkers as companion diagnostics for molecular targeted drugs has become an important requirement for clinical development; however, no clinically established biomarkers that predict the efficacy of PI3K inhibitors have been found. We previously reported that expression of phosphorylated Akt determined by immunoblot analysis correlated with the antitumor efficacy of a PI3K inhibitor ZSTK474 in vitro and in vivo, suggesting that it might be used as a predictive biomarker. In this study, to evaluate biomarker candidates in in vivo tumor samples, we developed an immunohistochemical protein detection/quantification system in conjunction with the tissue microarray technology using a panel of 24 human tumor xenografts (JFCR24). We have clearly demonstrated that expression levels of phosphorylated v-akt murine thymoma viral oncogene homolog (Akt) and mitogen-activated protein kinase (MAPK) determined by this system significantly correlated with those determined by immunoblot analysis. As expected, PTEN status correlated with expression of phosphorylated Akt but not MAPK. Finally, we confirmed that phosphorylated Akt levels determined using this system correlated with the in vivo efficacy of ZSTK474. The present results indicate that the immunohistochemical protein detection/quantification system could be used to quantify expression of biomarker proteins in xenografted tumor tissues as well as in human tumor specimens to predict drug efficacy in future clinical trials. PMID:22975517

  20. Trans-homophilic interaction of CADM1 activates PI3K by forming a complex with MAGuK-family proteins MPP3 and Dlg.

    PubMed

    Murakami, Shigefumi; Sakurai-Yageta, Mika; Maruyama, Tomoko; Murakami, Yoshinori

    2014-01-01

    CADM1 (Cell adhesion molecule 1), a cell adhesion molecule belonging to the immunoglobulin superfamily, is involved in cell-cell interaction and the formation and maintenance of epithelial structure. Expression of CADM1 is frequently down-regulated in various tumors derived from epithelial cells. However, the intracellular signaling pathways activated by CADM1-mediated cell adhesion remain unknown. Here, we established a cell-based spreading assay to analyze the signaling pathway specifically activated by the trans-homophilic interaction of CADM1. In the assay, MDCK cells expressing exogenous CADM1 were incubated on the glass coated with a recombinant extracellular fragment of CADM1, and the degree of cell spreading was quantified by measuring their surface area. Assay screening of 104 chemical inhibitors with known functions revealed that LY294002, an inhibitor of phosphoinositide 3-kinase (PI3K), efficiently suppressed cell spreading in a dose-dependent manner. Inhibitors of Akt and Rac1, downstream effectors of PI3K, also partially suppressed cell spreading, while the addition of both inhibitors blocked cell spreading to the same extent as did LY294002. Furthermore, MPP3 and Dlg, membrane-associated guanylate kinase homologs (MAGuK) proteins, connect CADM1 with p85 of PI3K by forming a multi-protein complex at the periphery of cells. These results suggest that trans-homophilic interaction mediated by CADM1 activates the PI3K pathway to reorganize the actin cytoskeleton and form epithelial cell structure.

  1. Trans-homophilic interaction of CADM1 activates PI3K by forming a complex with MAGuK-family proteins MPP3 and Dlg.

    PubMed

    Murakami, Shigefumi; Sakurai-Yageta, Mika; Maruyama, Tomoko; Murakami, Yoshinori

    2014-01-01

    CADM1 (Cell adhesion molecule 1), a cell adhesion molecule belonging to the immunoglobulin superfamily, is involved in cell-cell interaction and the formation and maintenance of epithelial structure. Expression of CADM1 is frequently downregulated in various tumors derived from epithelial cells. However, the intracellular signaling pathways activated by CADM1-mediated cell adhesion remain unknown. Here, we established a cell-based spreading assay to analyze the signaling pathway specifically activated by the trans-homophilic interaction of CADM1. In the assay, MDCK cells expressing exogenous CADM1 were incubated on the glass coated with a recombinant extracellular fragment of CADM1, and the degree of cell spreading was quantified by measuring their surface area. Assay screening of 104 chemical inhibitors with known functions revealed that LY294002, an inhibitor of phosphoinositide 3-kinase (PI3K), efficiently suppressed cell spreading in a dose-dependent manner. Inhibitors of Akt and Rac1, downstream effectors of PI3K, also partially suppressed cell spreading, while the addition of both inhibitors blocked cell spreading to the same extent as did LY294002. Furthermore, MPP3 and Dlg, membrane-associated guanylate kinase homologs (MAGuK) proteins, connect CADM1 with p85 of PI3K by forming a multi-protein complex at the periphery of cells. These results suggest that trans-homophilic interaction mediated by CADM1 activates the PI3K pathway to reorganize the actin cytoskeleton and form epithelial cell structure.

  2. Structural Effects of Oncogenic PI3K alpha Mutations

    SciTech Connect

    S Gabelli; C Huang; D Mandelker; O Schmidt-Kittler; B Vogelstein; L Amzel

    2011-12-31

    Physiological activation of PI3K{alpha} is brought about by the release of the inhibition by p85 when the nSH2 binds the phosphorylated tyrosine of activated receptors or their substrates. Oncogenic mutations of PI3K{alpha} result in a constitutively activated enzyme that triggers downstream pathways that increase tumor aggressiveness and survival. Structural information suggests that some mutations also activate the enzyme by releasing p85 inhibition. Other mutations work by different mechanisms. For example, the most common mutation, His1047Arg, causes a conformational change that increases membrane association resulting in greater accessibility to the substrate, an integral membrane component. These effects are examples of the subtle structural changes that result in increased activity. The structures of these and other mutants are providing the basis for the design of isozyme-specific, mutation-specific inhibitors for individualized cancer therapies.

  3. Integrin β1 mediates vaccinia virus entry through activation of PI3K/Akt signaling.

    PubMed

    Izmailyan, Roza; Hsao, Jye-Chian; Chung, Che-Sheng; Chen, Chein-Hung; Hsu, Paul Wei-Che; Liao, Chung-Lin; Chang, Wen

    2012-06-01

    Vaccinia virus has a broad range of infectivity in many cell lines and animals. Although it is known that the vaccinia mature virus binds to cell surface glycosaminoglycans and extracellular matrix proteins, whether additional cellular receptors are required for virus entry remains unclear. Our previous studies showed that the vaccinia mature virus enters through lipid rafts, suggesting the involvement of raft-associated cellular proteins. Here we demonstrate that one lipid raft-associated protein, integrin β1, is important for vaccinia mature virus entry into HeLa cells. Vaccinia virus associates with integrin β1 in lipid rafts on the cell surface, and the knockdown of integrin β1 in HeLa cells reduces vaccinia mature virus entry. Additionally, vaccinia mature virus infection is reduced in a mouse cell line, GD25, that is deficient in integrin β1 expression. Vaccinia mature virus infection triggers the activation of phosphatidylinositol 3-kinase (PI3K)/Akt signaling, and the treatment of cells with inhibitors to block P13K activation reduces virus entry in an integrin β1-dependent manner, suggesting that integrin β1-mediates PI3K/Akt activation induced by vaccinia virus and that this signaling pathway is essential for virus endocytosis. The inhibition of integrin β1-mediated cell adhesion results in a reduction of vaccinia virus entry and the disruption of focal adhesion and PI3K/Akt activation. In summary, our results show that the binding of vaccinia mature virus to cells mimics the outside-in activation process of integrin functions to facilitate vaccinia virus entry into HeLa cells.

  4. PI3K isoform dependence of PTEN-deficient tumors can be altered by the genetic context.

    PubMed

    Schmit, Fabienne; Utermark, Tamara; Zhang, Sen; Wang, Qi; Von, Thanh; Roberts, Thomas M; Zhao, Jean J

    2014-04-29

    There has been increasing interest in the use of isoform-selective inhibitors of phosphatidylinositide-3-kinase (PI3K) in cancer therapy. Using conditional deletion of the p110 catalytic isoforms of PI3K to predict sensitivity of cancer types to such inhibitors, we and others have demonstrated that tumors deficient of the phosphatase and tensin homolog (PTEN) are often dependent on the p110β isoform of PI3K. Because human cancers usually arise due to multiple genetic events, determining whether other genetic alterations might alter the p110 isoform requirements of PTEN-null tumors becomes a critical question. To investigate further the roles of p110 isoforms in PTEN-deficient tumors, we used a mouse model of ovarian endometrioid adenocarcinoma driven by concomitant activation of the rat sarcoma protein Kras, which is known to activate p110α, and loss of PTEN. In this model, ablation of p110β had no effect on tumor growth, whereas p110α ablation blocked tumor formation. Because ablation of PTEN alone is often p110β dependent, we wondered if the same held true in the ovary. Because PTEN loss alone in the ovary did not result in tumor formation, we tested PI3K isoform dependence in ovarian surface epithelium (OSE) cells deficient in both PTEN and p53. These cells were indeed p110β dependent, whereas OSEs expressing activated Kras with or without PTEN loss were p110α dependent. Furthermore, isoform-selective inhibitors showed a similar pattern of the isoform dependence in established Kras(G12D)/PTEN-deficient tumors. Taken together, our data suggest that, whereas in some tissues PTEN-null tumors appear to inherently depend on p110β, the p110 isoform reliance of PTEN-deficient tumors may be altered by concurrent mutations that activate p110α.

  5. Identification of differential PI3K pathway target dependencies in T-cell acute lymphoblastic leukemia through a large cancer cell panel screen.

    PubMed

    Lynch, James T; McEwen, Robert; Crafter, Claire; McDermott, Ultan; Garnett, Mathew J; Barry, Simon T; Davies, Barry R

    2016-04-19

    Selective phosphoinositide 3-kinase (PI3K)/AKT/mTOR inhibitors are currently under evaluation in clinical studies. To identify tumor types that are sensitive to PI3K pathway inhibitors we screened compounds targeting PI3Kα/δ (AZD8835), PI3Kβ/δ (AZD8186), AKT (AZD5363) and mTORC1/2 (AZD2014) against a cancer cell line panel (971 cell lines). There was an enrichment of hematological malignancies that were sensitive to AKT and mTOR inhibition, with the greatest degree of sensitivity observed in T-cell acute lymphoblastic leukemia (T-ALL). We found that all NOTCH mutant T-ALL cell lines were sensitive to AKT and mTORC1/2 inhibitors, with only partial sensitivity to agents that target the PI3K α, β or δ isoforms. Induction of apoptosis only occurred following AKTi treatment in cell lines with PTEN protein loss and high levels of active AKT. In summary, we have demonstrated that T-ALL cell lines show differential sensitivity to inhibition at different nodes in the PI3K/AKT/mTOR pathway and inhibiting AKT or mTOR may have a therapeutic benefit in this disease setting. PMID:26989080

  6. Identification of differential PI3K pathway target dependencies in T-cell acute lymphoblastic leukemia through a large cancer cell panel screen

    PubMed Central

    Lynch, James T.; McEwen, Robert; Crafter, Claire; McDermott, Ultan; Garnett, Mathew J.; Barry, Simon T.; Davies, Barry R.

    2016-01-01

    Selective phosphoinositide 3-kinase (PI3K)/AKT/mTOR inhibitors are currently under evaluation in clinical studies. To identify tumor types that are sensitive to PI3K pathway inhibitors we screened compounds targeting PI3Kα/δ (AZD8835), PI3Kβ/δ (AZD8186), AKT (AZD5363) and mTORC1/2 (AZD2014) against a cancer cell line panel (971 cell lines). There was an enrichment of hematological malignancies that were sensitive to AKT and mTOR inhibition, with the greatest degree of sensitivity observed in T-cell acute lymphoblastic leukemia (T-ALL). We found that all NOTCH mutant T-ALL cell lines were sensitive to AKT and mTORC1/2 inhibitors, with only partial sensitivity to agents that target the PI3K α, β or δ isoforms. Induction of apoptosis only occurred following AKTi treatment in cell lines with PTEN protein loss and high levels of active AKT. In summary, we have demonstrated that T-ALL cell lines show differential sensitivity to inhibition at different nodes in the PI3K/AKT/mTOR pathway and inhibiting AKT or mTOR may have a therapeutic benefit in this disease setting. PMID:26989080

  7. Estrogen increases Nrf2 activity through activation of the PI3K pathway in MCF-7 breast cancer cells

    SciTech Connect

    Wu, Juanjuan; Williams, Devin; Walter, Grant A.; Thompson, Winston E.; Sidell, Neil

    2014-11-01

    The actions of the transcription factor Nuclear factor erythroid 2-related factor (Nrf2) in breast cancer have been shown to include both pro-oncogenic and anti-oncogenic activities which is influenced, at least in part, by the hormonal environment. However, direct regulation of Nrf2 by steroid hormones (estrogen and progesterone) has received only scant attention. Nrf2 is known to be regulated by its cytosolic binding protein, Kelch-like ECH-associated protein 1 (Keap1), and by a Keap1-independent mechanism involving a series of phosphorylation steps mediated by phosphatidylinositol 3-kinase (PI3K) and glycogen synthase kinase 3 beta (GSK3β). Here, we report that estrogen (E2) increases Nrf2 activity in MCF7 breast cancer cells through activation of the PI3K/GSK3β pathway. Utilizing antioxidant response element (ARE)-containing luciferase reporter constructs as read-outs for Nrf2 activity, our data indicated that E2 increased ARE activity >14-fold and enhanced the action of the Nrf2 activators, tertiary butylhydroquinone (tBHQ) and sulforaphane (Sul) 4 to 9 fold compared with cells treated with tBHQ or Sul as single agents. This activity was shown to be an estrogen receptor-mediated phenomenon and was antagonized by progesterone. In addition to its action on the reporter constructs, mRNA and protein levels of heme oxygenase 1, an endogenous target gene of Nrf2, was markedly upregulated by E2 both alone and in combination with tBHQ. Importantly, E2-induced Nrf2 activation was completely suppressed by the PI3K inhibitors LY294002 and Wortmannin while the GSK3β inhibitor CT99021 upregulated Nrf2 activity. Confirmation that E2 was, at least partly, acting through the PI3K/GSK3β pathway was indicated by our finding that E2 increased the phosphorylation status of both GSK3β and Akt, a well-characterized downstream target of PI3K. Together, these results demonstrate a novel mechanism by which E2 can regulate Nrf2 activity in estrogen receptor-positive breast cancer

  8. Arctigenin Increases Hemeoxygenase-1 Gene Expression by Modulating PI3K/AKT Signaling Pathway in Rat Primary Astrocytes.

    PubMed

    Jeong, Yeon-Hui; Park, Jin-Sun; Kim, Dong-Hyun; Kim, Hee-Sun

    2014-11-01

    In the present study, we found that the natural compound arctigenin inhibited hydrogen peroxide-induced reactive oxygen species (ROS) production in rat primary astrocytes. Since hemeoxygenase-1 (HO-1) plays a critical role as an antioxidant defense factor in the brain, we examined the effect of arctigenin on HO-1 expression in rat primary astrocytes. We found that arctigenin increased HO-1 mRNA and protein levels. Arctigenin also increases the nuclear translocation and DNA binding of Nrf2/c-Jun to the antioxidant response element (ARE) on HO-1 promoter. In addition, arctigenin increased ARE-mediated transcriptional activities in rat primary astrocytes. Further mechanistic studies revealed that arctigenin increased the phosphorylation of AKT, a downstream substrate of phosphatidylinositol 3-kinase (PI3K). Treatment of cells with a PI3K-specific inhibitor, LY294002, suppressed the HO-1 expression, Nrf2 DNA binding and ARE-mediated transcriptional activities in arctigenin-treated astrocyte cells. The results collectively suggest that PI3K/AKT signaling pathway is at least partly involved in HO-1 expression by arctigenin via modulation of Nrf2/ARE axis in rat primary astrocytes.

  9. Arctigenin Increases Hemeoxygenase-1 Gene Expression by Modulating PI3K/AKT Signaling Pathway in Rat Primary Astrocytes.

    PubMed

    Jeong, Yeon-Hui; Park, Jin-Sun; Kim, Dong-Hyun; Kim, Hee-Sun

    2014-11-01

    In the present study, we found that the natural compound arctigenin inhibited hydrogen peroxide-induced reactive oxygen species (ROS) production in rat primary astrocytes. Since hemeoxygenase-1 (HO-1) plays a critical role as an antioxidant defense factor in the brain, we examined the effect of arctigenin on HO-1 expression in rat primary astrocytes. We found that arctigenin increased HO-1 mRNA and protein levels. Arctigenin also increases the nuclear translocation and DNA binding of Nrf2/c-Jun to the antioxidant response element (ARE) on HO-1 promoter. In addition, arctigenin increased ARE-mediated transcriptional activities in rat primary astrocytes. Further mechanistic studies revealed that arctigenin increased the phosphorylation of AKT, a downstream substrate of phosphatidylinositol 3-kinase (PI3K). Treatment of cells with a PI3K-specific inhibitor, LY294002, suppressed the HO-1 expression, Nrf2 DNA binding and ARE-mediated transcriptional activities in arctigenin-treated astrocyte cells. The results collectively suggest that PI3K/AKT signaling pathway is at least partly involved in HO-1 expression by arctigenin via modulation of Nrf2/ARE axis in rat primary astrocytes. PMID:25489416

  10. GLCCI1 is a novel component associated with the PI3K signaling pathway in podocyte foot processes

    PubMed Central

    Kim, Sang-Hoon; Kim, Hyun-Jung; Kim, Chan-Wha

    2016-01-01

    Podocyte foot processes are interdigitated to form the slit diaphragm and are crucial for the glomerular filtration barrier. Glucocorticoid-induced transcript 1 (GLCCI1) is transcriptionally regulated, but its signaling pathway in podocytes is unknown. The main objective of this study was to investigate the regulation of podocyte foot process proteins and to investigate the role of GLCCI1 in the phosphoinositide 3-kinase (PI3K) pathway using high glucose-induced podocytes and streptozotocin-induced diabetic rats. In podocytes and rat kidneys, GLCCI1 was found to be highly specific for the glomerulus and podocyte foot processes similar to other podocyte-specific proteins (nephrin, podocin, synatopodin and podocalyxin) based on reverse transcription-PCR, western blotting, immunofluorescence and immunoelectron microscopy analyses. In addition, the decrease in the GLCCI1 expression level under hyperglycemic conditions was restored by treatment with a PI3K inhibitor (wortmannin). Immunofluorescence analysis confirmed that GLCCI1 colocalized with nephrin and synaptopodin both in vivo and in vitro. Finally, immunoelectron microscopy data from streptozotocin-induced diabetic rats showed that GLCCI1 also localized in podocyte foot processes. Hence, GLCCI1 is a component of podocyte foot processes, and its expression appears to be regulated via the PI3K pathway. PMID:27174202

  11. Arctigenin Increases Hemeoxygenase-1 Gene Expression by Modulating PI3K/AKT Signaling Pathway in Rat Primary Astrocytes

    PubMed Central

    Jeong, Yeon-Hui; Park, Jin-Sun; Kim, Dong-Hyun; Kim, Hee-Sun

    2014-01-01

    In the present study, we found that the natural compound arctigenin inhibited hydrogen peroxide-induced reactive oxygen species (ROS) production in rat primary astrocytes. Since hemeoxygenase-1 (HO-1) plays a critical role as an antioxidant defense factor in the brain, we examined the effect of arctigenin on HO-1 expression in rat primary astrocytes. We found that arctigenin increased HO-1 mRNA and protein levels. Arctigenin also increases the nuclear translocation and DNA binding of Nrf2/c-Jun to the antioxidant response element (ARE) on HO-1 promoter. In addition, arctigenin increased ARE-mediated transcriptional activities in rat primary astrocytes. Further mechanistic studies revealed that arctigenin increased the phosphorylation of AKT, a downstream substrate of phosphatidylinositol 3-kinase (PI3K). Treatment of cells with a PI3K-specific inhibitor, LY294002, suppressed the HO-1 expression, Nrf2 DNA binding and ARE-mediated transcriptional activities in arctigenin-treated astrocyte cells. The results collectively suggest that PI3K/AKT signaling pathway is at least partly involved in HO-1 expression by arctigenin via modulation of Nrf2/ARE axis in rat primary astrocytes. PMID:25489416

  12. Danusertib, a potent pan-Aurora kinase and ABL kinase inhibitor, induces cell cycle arrest and programmed cell death and inhibits epithelial to mesenchymal transition involving the PI3K/Akt/mTOR-mediated signaling pathway in human gastric cancer AGS and NCI-N78 cells.

    PubMed

    Yuan, Chun-Xiu; Zhou, Zhi-Wei; Yang, Yin-Xue; He, Zhi-Xu; Zhang, Xueji; Wang, Dong; Yang, Tianxing; Pan, Si-Yuan; Chen, Xiao-Wu; Zhou, Shu-Feng

    2015-01-01

    Gastric cancer is the second leading cause of cancer-related death worldwide, with a poor response to current chemotherapy. Danusertib is a pan-inhibitor of the Aurora kinases and a third-generation Bcr-Abl tyrosine kinase inhibitor with potent anticancer effects, but its antitumor effect and underlying mechanisms in the treatment of human gastric cancer are unknown. This study aimed to investigate the effects of danusertib on cell growth, apoptosis, autophagy, and epithelial to mesenchymal transition and the molecular mechanisms involved in human gastric cancer AGS and NCI-N78 cells. The results showed that danusertib had potent growth-inhibitory, apoptosis-inducing, and autophagy-inducing effects on AGS and NCI-N78 cells. Danusertib arrested AGS and NCI-N78 cells in G2/M phase, with downregulation of expression of cyclin B1 and cyclin-dependent kinase 1 and upregulation of expression of p21 Waf1/Cip1, p27 Kip1, and p53. Danusertib induced mitochondria-mediated apoptosis, with an increase in expression of proapoptotic protein and a decrease in antiapoptotic proteins in both cell lines. Danusertib induced release of cytochrome c from the mitochondria to the cytosol and triggered activation of caspase 9 and caspase 3 in AGS and NCI-N78 cells. Further, danusertib induced autophagy, with an increase in expression of beclin 1 and conversion of microtubule-associated protein 1A/1B-light chain 3 (LC3-I) to LC3-II in both cell lines. Inhibition of phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) and p38 mitogen-activated protein kinase pathways as well as activation of 5' AMP-activated protein kinase contributed to the proautophagic effect of danusertib in AGS and NCI-N78 cells. SB202191 and wortmannin enhanced the autophagy-inducing effect of danusertib in AGS and NCI-N78 cells. In addition, danusertib inhibited epithelial to mesenchymal transition with an increase in expression of E-cadherin and a decrease in expression of

  13. Danusertib, a potent pan-Aurora kinase and ABL kinase inhibitor, induces cell cycle arrest and programmed cell death and inhibits epithelial to mesenchymal transition involving the PI3K/Akt/mTOR-mediated signaling pathway in human gastric cancer AGS and NCI-N78 cells

    PubMed Central

    Yuan, Chun-Xiu; Zhou, Zhi-Wei; Yang, Yin-Xue; He, Zhi-Xu; Zhang, Xueji; Wang, Dong; Yang, Tianxing; Pan, Si-Yuan; Chen, Xiao-Wu; Zhou, Shu-Feng

    2015-01-01

    Gastric cancer is the second leading cause of cancer-related death worldwide, with a poor response to current chemotherapy. Danusertib is a pan-inhibitor of the Aurora kinases and a third-generation Bcr-Abl tyrosine kinase inhibitor with potent anticancer effects, but its antitumor effect and underlying mechanisms in the treatment of human gastric cancer are unknown. This study aimed to investigate the effects of danusertib on cell growth, apoptosis, autophagy, and epithelial to mesenchymal transition and the molecular mechanisms involved in human gastric cancer AGS and NCI-N78 cells. The results showed that danusertib had potent growth-inhibitory, apoptosis-inducing, and autophagy-inducing effects on AGS and NCI-N78 cells. Danusertib arrested AGS and NCI-N78 cells in G2/M phase, with downregulation of expression of cyclin B1 and cyclin-dependent kinase 1 and upregulation of expression of p21 Waf1/Cip1, p27 Kip1, and p53. Danusertib induced mitochondria-mediated apoptosis, with an increase in expression of proapoptotic protein and a decrease in antiapoptotic proteins in both cell lines. Danusertib induced release of cytochrome c from the mitochondria to the cytosol and triggered activation of caspase 9 and caspase 3 in AGS and NCI-N78 cells. Further, danusertib induced autophagy, with an increase in expression of beclin 1 and conversion of microtubule-associated protein 1A/1B-light chain 3 (LC3-I) to LC3-II in both cell lines. Inhibition of phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) and p38 mitogen-activated protein kinase pathways as well as activation of 5′ AMP-activated protein kinase contributed to the proautophagic effect of danusertib in AGS and NCI-N78 cells. SB202191 and wortmannin enhanced the autophagy-inducing effect of danusertib in AGS and NCI-N78 cells. In addition, danusertib inhibited epithelial to mesenchymal transition with an increase in expression of E-cadherin and a decrease in expression

  14. Differential regulation of protrusion and polarity by PI(3)K during neutrophil motility in live zebrafish

    PubMed Central

    Yoo, Sa Kan; Deng, Qing; Cavnar, Peter J.; Wu, Yi I.; Hahn, Klaus M.; Huttenlocher, Anna

    2010-01-01

    Summary Cell polarity is crucial for directed migration. Here we show that phosphoinositide 3-kinase (PI(3)K) mediates neutrophil migration in vivo by differentially regulating cell protrusion and polarity. The dynamics of PI(3)K products PI(3,4,5)P3-PI(3,4)P2 during neutrophil migration were visualized in living zebrafish, revealing that PI(3)K activation at the leading edge is critical for neutrophil motility in intact tissues. A genetically encoded photoactivatable Rac was used to demonstrate that localized activation of Rac is sufficient to direct migration with precise temporal and spatial control in vivo. Similar stimulation of PI(3)K-inhibited cells did not direct migration. Localized Rac activation rescued membrane protrusion but not anteroposterior polarization of F-actin dynamics of PI(3)K-inhibited cells. Uncoupling Rac-mediated protrusion and polarization suggests a paradigm of two-tiered PI(3)K-mediated regulation of cell motility. This work provides new insight into how cell signaling at the front and back of the cell is coordinated during polarized cell migration in intact tissues within a multicellular organism. PMID:20159593

  15. RhoC promotes human melanoma invasion in a PI3K/Akt-dependent pathway.

    PubMed

    Ruth, Mariah C; Xu, Yisheng; Maxwell, Ian H; Ahn, Natalie G; Norris, David A; Shellman, Yiqun G

    2006-04-01

    Overexpression of the small GTPase, RhoC, in various human cancers has been correlated with high metastatic ability and poor prognosis. Rho-kinase (ROCK) is an important effector of Rho GTPases. The oncogenic serine/threonine kinase Akt (also known as PKB) is a downstream effector of phosphatidylinositol-3 kinase (PI3K). Akt activation contributes to the neoplastic phenotype by promoting cell cycle progression, increasing antiapoptotic functions, and enhancing tumor cell invasion. Rho signaling via ROCK has been previously shown either to activate or to downregulate PI3K/Akt. Using a human radial growth phase melanoma cell line, WM35, we have established stable transfectants that overexpress RhoC (called WM35RhoC). We found that overexpression of RhoC increased phosphorylated-Akt (Ser473/474/472, pAkt) expression and promoted cell invasion. Inhibition of RhoC with C3 transferase downregulated pAkt expression and decreased cell invasion in these cells. In addition, inhibition of PI3K, Akt, or ROCK partially decreased invasion. Further, inhibition of PI3K but not ROCK decreased the pAkt level. These results suggest that RhoC promotes invasion in part via activation of a PI3K/Akt pathway, in a manner independent of ROCK signaling. We propose that RhoC promotes melanoma progression via separate mechanisms that regulate the PI3K/Akt pathway and the ROCK signaling pathway.

  16. Gefitinib induces lung cancer cell autophagy and apoptosis via blockade of the PI3K/AKT/mTOR pathway

    PubMed Central

    ZHAO, ZHONG-QUAN; YU, ZHONG-YANG; LI, JIE; OUYANG, XUE-NONG

    2016-01-01

    Gefitinib is a selective inhibitor of the tyrosine kinase epidermal growth factor receptor, which inhibits tumor pathogenesis, metastasis and angiogenesis, as well as promoting apoptosis. Therefore, gefitinib presents an effective drug for the targeted therapy of lung cancer. However, the underlying mechanisms by which gefitinib induces lung cancer cell death remain unclear. To investigate the effects of gefitinib on lung cancer cells and the mechanism of such, the present study analyzed the effect of gefitinib on the autophagy, apoptosis and proliferation of the A549 and A549-gefitinib-resistant (GR) cell lines GR. The regulation of the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT)/ mammalian target of rapamycin (mTOR) pathway was also investigated. Acridine orange staining revealed that gefitinib induced autophagy of A549 cells but not A549-GR cells. In addition, gefitinib promoted apoptosis and inhibited proliferation of A549 cells but not A549-GR cells. Furthermore, western blot analysis demonstrated that gefitinib treatment led to the downregulation of PI3K, AKT, pAKT, mTOR and phosphorylated-mTOR protein expression in A549 cells but not A549-GR cells. LY294002 blocked the PI3K/AKT/mTOR pathway and induced autophagy and apoptosis of A549 cells, however, no synergistic effect was observed following combined treatment with gefitinib and LY294002. In conclusion, the results of the present study indicate that gefitinib promotes autophagy and apoptosis of lung cancer cells via blockade of the PI3K/AKT/mTOR pathway, which leads to lung cancer cell death. PMID:27347100

  17. Progesterone is neuroprotective against ischemic brain injury through its effects on the PI3K/Akt signaling pathway

    PubMed Central

    Ishrat, Tauheed; Sayeed, Iqbal; Atif, Fahim; Hua, Fang; Stein, Donald G.

    2012-01-01

    We tested the hypothesis that the phosphatidylinositol-3 kinase (PI3K/Akt) pathway mediates some of the neuroprotective effects of progesterone (PROG) after ischemic stroke. We examined whether PROG acting through the PI3K/Akt pathway could affect the expression of vascular endothelial growth factor (VEGF) and brain-derived neurotrophic factor (BDNF). Rats underwent permanent focal cerebral ischemia (pMCAO) by electro-coagulation and received intraperitoneal injections of PROG (8mg/kg) or vehicle at 1h post-occlusion and subcutaneous injections at 6, 24, and 48h. PAkt/Akt levels, apoptosis and apoptosis-related proteins (pBAD, BAD, caspase-3, and cleaved caspase-3) were analyzed by TUNEL assays, Western blotting and immunohistochemistry at 24h post-pMCAO. VEGF and BDNF were analyzed at 24, 72h and 14 days post-pMCAO with Western blots. Following pMCAO, PROG treatment significantly (p<0.05) reduced ischemic lesion size and edema. Treatment with PROG significantly (p<0.05) decreased VEGF at 24 and 72h but increased VEGF expression 14d after injury. The treatment also increased BDNF, and attenuated apoptosis by increasing Akt phosphorylation compared to vehicle-alone. The selective PI3K inhibitor Wortmannin compromised PROG-induced neuroprotective effects and reduced the elevation of pAkt levels in the ischemic penumbra. Our findings lead us to suggest that the PI3K/Akt pathway can play a role in mediating the neuroprotective effects of PROG after stroke by altering the expression of trophic factors in the brain. PMID:22450229

  18. PI3K/AKT Signaling Pathway Is Essential for Survival of Induced Pluripotent Stem Cells

    PubMed Central

    Hossini, Amir M.; Quast, Annika S.; Plötz, Michael; Grauel, Katharina; Exner, Tarik; Küchler, Judit; Stachelscheid, Harald; Eberle, Jürgen; Rabien, Anja

    2016-01-01

    Apoptosis is a highly conserved biochemical mechanism which is tightly controlled in cells. It contributes to maintenance of tissue homeostasis and normally eliminates highly proliferative cells with malignant properties. Induced pluripotent stem cells (iPSCs) have recently been described with significant functional and morphological similarities to embryonic stem cells. Human iPSCs are of great hope for regenerative medicine due to their broad potential to differentiate into specialized cell types in culture. They may be useful for exploring disease mechanisms and may provide the basis for future cell-based replacement therapies. However, there is only poor insight into iPSCs cell signaling as the regulation of apoptosis. In this study, we focused our attention on the apoptotic response of Alzheimer fibroblast-derived iPSCs and two other Alzheimer free iPSCs to five biologically relevant kinase inhibitors as well as to the death ligand TRAIL. To our knowledge, we are the first to report that the relatively high basal apoptotic rate of iPSCs is strongly suppressed by the pancaspase inhibitor QVD-Oph, thus underlining the dependency on proapoptotic caspase cascades. Furthermore, wortmannin, an inhibitor of phosphoinositid-3 kinase / Akt signaling (PI3K-AKT), dramatically and rapidly induced apoptosis in iPSCs. In contrast, parental fibroblasts as well as iPSC-derived neuronal cells were not responsive. The resulting condensation and fragmentation of DNA and decrease of the membrane potential are typical features of apoptosis. Comparable effects were observed with an AKT inhibitor (MK-2206). Wortmannin resulted in disappearance of phosphorylated AKT and activation of the main effector caspase-3 in iPSCs. These results clearly demonstrate for the first time that PI3K-AKT represents a highly essential survival signaling pathway in iPSCs. The findings provide improved understanding on the underlying mechanisms of apoptosis regulation in iPSCs. PMID:27138223

  19. Dose-Dependent Suppression of Cytokine production from T cells by a Novel Phosphoinositide 3-Kinase Delta Inhibitor

    PubMed Central

    Way, Emily E.; Trevejo-Nunez, Giraldina; Kane, Lawrence P.; Steiner, Bart H.; Puri, Kamal D.; Kolls, Jay K.; Chen, Kong

    2016-01-01

    There remains a significant need for development of effective small molecules that can inhibit cytokine-mediated inflammation. Phosphoinositide 3 kinase (PI3K) is a direct upstream activator of AKT, and plays a critical role in multiple cell signaling pathways, cell cycle progression, and cell growth, and PI3K inhibitors have been approved or are in clinical development. We examined novel PI3Kdelta inhibitors, which are highly selective for the p110delta isoform of in CD3/CD28 stimulated T-cell cytokine production. In vitro generated CD4+ T effector cells stimulated in the presence of a PI3Kdelta inhibitor demonstrated a dose-dependent suppression of cytokines produced by Th1, Th2, and Th17 cells. This effect was T-cell intrinsic, and we observed similar effects on human PBMCs. Th17 cells expressing a constitutively activated form of AKT were resistant to PI3Kdelta inhibition, suggesting that the inhibitor is acting through AKT signaling pathways. Additionally, PI3Kdelta inhibition decreased IL-17 production in vivo and decreased neutrophil recruitment to the lung in a murine model of acute pulmonary inflammation. These experiments show that targeting PI3Kdelta activity can modulate T-cell cytokine production and reduce inflammation in vivo, suggesting that PI3Kdelta inhibition could have therapeutic potential in treating inflammatory diseases. PMID:27461849

  20. Genetics Home Reference: activated PI3K-delta syndrome

    MedlinePlus

    ... Health Conditions activated PI3K-delta syndrome activated PI3K-delta syndrome Enable Javascript to view the expand/collapse ... PDF Open All Close All Description Activated PI3K-delta syndrome is a disorder that impairs the immune ...

  1. α-2,8-Sialyltransferase Is Involved in the Development of Multidrug Resistance via PI3K/Akt Pathway in Human Chronic Myeloid Leukemia.

    PubMed

    Zhang, Xu; Dong, Weijie; Zhou, Huimin; Li, Hongshuai; Wang, Ning; Miao, Xiaoyan; Jia, Li

    2015-02-01

    Cell surface sialylation is emerging as an important feature of cancer cell multidrug resistance (MDR). We have focused on the influence of 2,8-sialyltransferases in key steps of the development of MDR in chronic myeloid leukemia (CML). The expressional profiles of six α-2,8-sialyltransferases were generated in three pairs of CML cell lines and peripheral blood mononuclear cells (PBMC) of CML patients. Cellular MDR phenotype positively correlated with ST8SIA4 and ST8SIA6 levels. Furthermore, ST8SIA4 mediated the activity of phosphoinositide-3 kinase (PI3K)/Akt signal pathway and the expression of P-glycoprotein (P-gp). Targeting the PI3K/Akt pathway by its specific inhibitor LY294002, or by Akt RNA interfering reversed the MDR phenotype of K562/ADR cells. Inhibition of PI3K/Akt pathway also attenuated the effects caused by the overexpression of ST8SIA4 on MDR. Therefore this study indicated that α-2,8-sialyltransferases involved in the development of MDR of CML cells probably through ST8SIA4 regulating the activity of PI3K/Akt signaling and the expression of P-gp. PMID:25855199

  2. Biphasic activation of PI3K/Akt and MAPK/Erk1/2 signaling pathways in bovine herpesvirus type 1 infection of MDBK cells.

    PubMed

    Zhu, Liqian; Ding, Xiuyan; Zhu, Xiaofang; Meng, Songshu; Wang, Jianye; Zhou, Hong; Duan, Qiangde; Tao, Jie; Schifferli, Dieter M; Zhu, Guoqiang

    2011-04-14

    Many viruses have been known to control key cellular signaling pathways to facilitate the virus infection. The possible involvement of signaling pathways in bovine herpesvirus type 1 (BoHV-1) infection is unknown. This study indicated that infection of MDBK cells with BoHV-1 induced an early-stage transient and a late-stage sustained activation of both phosphatidylinositol 3-kinase (PI3K)/Akt and mitogen activated protein kinases/extracellular signal-regulated kinase 1/2 (MAPK/Erk1/2) signaling pathways. Analysis with the stimulation of UV-irradiated virus indicated that the virus binding and/or entry process was enough to trigger the early phase activations, while the late phase activations were viral protein expression dependent. Biphasic activation of both pathways was suppressed by the selective inhibitor, Ly294002 for PI3K and U0126 for MAPK kinase (MEK1/2), respectively. Furthermore, treatment of MDBK cells with Ly294002 caused a 1.5-log reduction in virus titer, while U0126 had little effect on the virus production. In addition, the inhibition effect of Ly294002 mainly occurred at the post-entry stage of the virus replication cycle. This revealed for the first time that BoHV-1 actively induced both PI3K/Akt and MAPK/Erk1/2 signaling pathways, and the activation of PI3K was important for fully efficient replication, especially for the post-entry stage.

  3. RICTOR involvement in the PI3K/AKT pathway regulation in melanocytes and melanoma

    PubMed Central

    Laugier, Florence; Finet-Benyair, Adeline; André, Jocelyne; Rachakonda, P. Sivaramakrishna; Kumar, Rajiv; Bensussan, Armand; Dumaz, Nicolas

    2015-01-01

    Several studies have highlighted the importance of the PI3K pathway in melanocytes and its frequent over-activation in melanoma. However, little is known about regulation of the PI3K pathway in melanocytic cells. We showed that normal human melanocytes are less sensitive to selective PI3K or mTOR inhibitors than to dual PI3K/mTOR inhibitors. The resistance to PI3K inhibitor was due to a rapid AKT reactivation limiting the inhibitor effect on proliferation. Reactivation of AKT was linked to a feedback mechanism involving the mTORC2 complex and in particular its scaffold protein RICTOR. RICTOR overexpression in melanocytes disrupted the negative feedback, activated the AKT pathway and stimulated clonogenicity highlighting the importance of this feedback to restrict melanocyte proliferation. We found that the RICTOR locus is frequently amplified and overexpressed in melanoma and that RICTOR over-expression in NRAS-transformed melanocytes stimulates their clonogenicity, demonstrating that RICTOR amplification can cooperate with NRAS mutation to stimulate melanoma proliferation. These results show that RICTOR plays a central role in PI3K pathway negative feedback in melanocytes and that its deregulation could be involved in melanoma development. PMID:26356562

  4. RICTOR involvement in the PI3K/AKT pathway regulation in melanocytes and melanoma.

    PubMed

    Laugier, Florence; Finet-Benyair, Adeline; André, Jocelyne; Rachakonda, P Sivaramakrishna; Kumar, Rajiv; Bensussan, Armand; Dumaz, Nicolas

    2015-09-29

    Several studies have highlighted the importance of the PI3K pathway in melanocytes and its frequent over-activation in melanoma. However, little is known about regulation of the PI3K pathway in melanocytic cells. We showed that normal human melanocytes are less sensitive to selective PI3K or mTOR inhibitors than to dual PI3K/mTOR inhibitors. The resistance to PI3K inhibitor was due to a rapid AKT reactivation limiting the inhibitor effect on proliferation. Reactivation of AKT was linked to a feedback mechanism involving the mTORC2 complex and in particular its scaffold protein RICTOR. RICTOR overexpression in melanocytes disrupted the negative feedback, activated the AKT pathway and stimulated clonogenicity highlighting the importance of this feedback to restrict melanocyte proliferation. We found that the RICTOR locus is frequently amplified and overexpressed in melanoma and that RICTOR over-expression in NRAS-transformed melanocytes stimulates their clonogenicity, demonstrating that RICTOR amplification can cooperate with NRAS mutation to stimulate melanoma proliferation. These results show that RICTOR plays a central role in PI3K pathway negative feedback in melanocytes and that its deregulation could be involved in melanoma development.

  5. Phosphatidylinositol 3-kinase inhibitor(LY294002) induces apoptosis of human nasopharyngeal carcinoma in vitro and in vivo

    PubMed Central

    2010-01-01

    Background To evaluate whether PI3K/Akt pathway could effect on apoptosis and its mechanism in nasopharyngeal carcinoma cells. Methods The activation of the PI3K/Akt and its effect on CNE-2Z cells in vivo and in vitro was investigated by MTT assay, flow cytometry, western blot, ELISA, terminal deoxyribonucleotide transferase-mediated nick-end labeling assays (TUNEL), and immunohistochemical analyses, using PI3K inhibitor, LY294002. Results The results showed that LY294002 inhibited the phosphorylating of Akt (S473), cell proliferation, and induced apoptosis in CNE-2Z cells. However, our experiment results also demonstrated that apoptosis-induced LY294002 was directly regulated by caspase-9 activation pathway. Conclusion These data suggested that PI3K inhibitor, LY294002, induced apoptosis by caspase-9 activation pathway and might be as a potentially useful target for therapeutic intervention in nasopharyngeal carcinoma patients. PMID:20412566

  6. The PI3K/AKT Pathway as a Target for Cancer Treatment.

    PubMed

    Mayer, Ingrid A; Arteaga, Carlos L

    2016-01-01

    Anticancer targeted therapies are designed to exploit a particular vulnerability in the tumor, which in most cases results from its dependence on an oncogene and/or loss of a tumor suppressor. Genes in the phosphoinositide 3-kinase (PI3K)/AKT pathway are the most frequently altered in human cancers. Aberrant activation of this pathway, as a result of these somatic alterations, is associated with cellular transformation, tumorigenesis, cancer progression, and drug resistance. Several drugs targeting PI3K/ATK are currently in clinical trials, alone or in combination, in both solid tumors and hematologic malignancies. These drugs are the focus of this review.

  7. Emerging concepts for PI3K/mTOR inhibition as a potential treatment for osteosarcoma.

    PubMed

    Bishop, Michael W; Janeway, Katherine A

    2016-01-01

    Patients with metastatic and recurrent osteosarcoma fare poorly, and new therapeutic strategies are needed to improve survival. Several recent complementary genomic and pathway analyses of both murine and human osteosarcoma have revealed common aberrations of the phosphoinositide 3-kinase (PI3K)/mammalian target of rapamycin (mTOR) pathway in osteosarcoma. Preclinical data demonstrate that inhibition of PI3K and mTOR with either a combination of single agents or dual inhibiting compounds can decrease cell proliferation and induce cell cycle arrest and apoptosis. With a lack of available clinical agents active in osteosarcoma, PI3K/mTOR inhibition represents a potential vulnerability in osteosarcoma that warrants clinical investigation. PMID:27441088

  8. Vitamin E succinate induces apoptosis via the PI3K/AKT signaling pathways in EC109 esophageal cancer cells

    PubMed Central

    Yang, Peng; Zhao, Jiaying; Hou, Liying; Yang, Lei; Wu, Kun; Zhang, Linyou

    2016-01-01

    Esophageal cancer is the fourth most common gastrointestinal cancer, it generally has a poor prognosis and novel strategies are required for prevention and treatment. Vitamin E succinate (VES) is a potential chemical agent for cancer prevention and therapy as it exerts anti-tumor effects in a variety of cancers. However, the role of VES in tumorigenesis and progression of cancer remains to be elucidated. The present study aimed to determine the effects of VES in regulating the survival and apoptosis of human esophageal cancer cells. EC109 human esophageal cancer cells were used to investigate the anti-proliferative effects of VES. The MTT and Annexin V-fluorescein isothiocyanate/propidium iodide assays demonstrated that VES inhibited cell proliferation and induced apoptosis in esophageal cancer cells. Furthermore, VES downregulated constitutively active basal levels of phosphorylated (p)-serine-threonine kinase AKT (AKT) and p-mammalian target of rapamycin (mTOR), and decreased the phosphorylation of AKT substrates Bcl-2-associated death receptor and caspase-9, in addition to mTOR effectors, ribosomal protein S6 kinase β1 and eIF4E-binding protein 1. Phosphoinositide-3-kinase (PI3K) inhibitor, LY294002 suppressed p-AKT and p-mTOR, indicating PI3K is a common upstream mediator. The apoptosis induced by VES was increased by inhibition of AKT or mTOR with their respective inhibitor in esophageal cancer cells. The results of the present study suggested that VES targeted the PI3K/AKT signaling pathways and induced apoptosis in esophageal cancer cells. Furthermore, the current study suggests that VES may be useful in a combinational therapeutic strategy employing an mTOR inhibitor. PMID:27357907

  9. Involvement of the PI3K and ERK signaling pathways in largemouth bass virus-induced apoptosis and viral replication.

    PubMed

    Huang, Xiaohong; Wang, Wei; Huang, Youhua; Xu, Liwen; Qin, Qiwei

    2014-12-01

    Increased reports demonstrated that largemouth Bass, Micropterus salmoides in natural and artificial environments were always suffered from an emerging iridovirus disease, largemouth Bass virus (LMBV). However, the underlying mechanism of LMBV pathogenesis remained largely unknown. Here, we investigated the cell signaling events involved in virus induced cell death and viral replication in vitro. We found that LMBV infection in epithelioma papulosum cyprini (EPC) cells induced typical apoptosis, evidenced by the appearance of apoptotic bodies, cytochrome c release, mitochondrial membrane permeabilization (MMP) destruction and reactive oxygen species (ROS) generation. Two initiators of apoptosis, caspase-8 and caspase-9, and the executioner of apoptosis, caspase-3, were all significantly activated with the infection time, suggested that not only mitochondrion-mediated, but also death receptor-mediated apoptosis were involved in LMBV infection. Reporter gene assay showed that the promoter activity of transcription factors including p53, NF-κB, AP-1 and cAMP response element-binding protein (CREB) were decreased during LMBV infection. After treatment with different signaling pathway inhibitors, virus production were significantly suppressed by the inhibition of phosphatidylinositol 3-kinase (PI3K) pathway and extracellular-signal-regulated kinases (ERK) signaling pathway. Furthermore, LMBV infection induced apoptosis was enhanced by PI3K inhibitor LY294002, but decreased by addition of ERK inhibitor UO126. Therefore, we speculated that apoptosis was sophisticatedly regulated by a series of cell signaling events for efficient virus propagation. Taken together, our results provided new insights into the molecular mechanism of ranavirus infection. PMID:25260912

  10. Involvement of the PI3K and ERK signaling pathways in largemouth bass virus-induced apoptosis and viral replication.

    PubMed

    Huang, Xiaohong; Wang, Wei; Huang, Youhua; Xu, Liwen; Qin, Qiwei

    2014-12-01

    Increased reports demonstrated that largemouth Bass, Micropterus salmoides in natural and artificial environments were always suffered from an emerging iridovirus disease, largemouth Bass virus (LMBV). However, the underlying mechanism of LMBV pathogenesis remained largely unknown. Here, we investigated the cell signaling events involved in virus induced cell death and viral replication in vitro. We found that LMBV infection in epithelioma papulosum cyprini (EPC) cells induced typical apoptosis, evidenced by the appearance of apoptotic bodies, cytochrome c release, mitochondrial membrane permeabilization (MMP) destruction and reactive oxygen species (ROS) generation. Two initiators of apoptosis, caspase-8 and caspase-9, and the executioner of apoptosis, caspase-3, were all significantly activated with the infection time, suggested that not only mitochondrion-mediated, but also death receptor-mediated apoptosis were involved in LMBV infection. Reporter gene assay showed that the promoter activity of transcription factors including p53, NF-κB, AP-1 and cAMP response element-binding protein (CREB) were decreased during LMBV infection. After treatment with different signaling pathway inhibitors, virus production were significantly suppressed by the inhibition of phosphatidylinositol 3-kinase (PI3K) pathway and extracellular-signal-regulated kinases (ERK) signaling pathway. Furthermore, LMBV infection induced apoptosis was enhanced by PI3K inhibitor LY294002, but decreased by addition of ERK inhibitor UO126. Therefore, we speculated that apoptosis was sophisticatedly regulated by a series of cell signaling events for efficient virus propagation. Taken together, our results provided new insights into the molecular mechanism of ranavirus infection.

  11. Eupatilin inhibits EGF-induced JB6 cell transformation by targeting PI3K.

    PubMed

    Li, Feng; Tao, Ya; Qiao, Yan; Li, Ke; Jiang, Yanan; Cao, Chang; Ren, Shuxin; Chang, Xiaobin; Wang, Xiaona; Wang, Yanhong; Xie, Yifei; Dong, Ziming; Zhao, Jimin; Liu, Kangdong

    2016-09-01

    Phosphatidylinositol 3-kinases (PI3Ks) are lipid kinases that play fundamental roles in regulation of multiple signaling pathways, including cell proliferation, survival and cell cycle. Increasing evidence has shown that abnormal activation of PI3K pathway contributes to tumorigenesis and progression of various malignant tumors. Therefore, it is an attractive target of chemoprevention and chemotherapy. Eupatilin, a natural flavone compound extracted from Artemisia vulgaris, has antitumor and anti-inflammation efficacy. However, the direct target(s) of eupatilin in cancer chemoprevention are still elusive. In the present study, we reported eupatilin suppressed JB6 cell proliferation and its EGF-induced colony formation. Eupatilin attenuated phosphorylation of PI3K downstream signaling molecules. Downregulation of cyclin D1 expression and arresting in G1 phase were induced through eupatilin treatment. Furthermore, we found it could bind to the p110α, a catalytic subunit of PI3K, by computational docking methods. Pull down assay outcomes also verified the binding of eupatilin with PI3K. Taken together, our results suggest that epatilin is a potential chemopreventive agent in inhibition of skin cell transformation by targeting PI3K. PMID:27573489

  12. Susi, a negative regulator of Drosophila PI3-kinase.

    PubMed

    Wittwer, Franz; Jaquenoud, Malika; Brogiolo, Walter; Zarske, Marcel; Wüstemann, Philipp; Fernandez, Rafael; Stocker, Hugo; Wymann, Matthias P; Hafen, Ernst

    2005-06-01

    The Phosphatidylinositol-3 kinase/Protein Kinase B (PI3K/PKB) signaling pathway controls growth, metabolism, and lifespan in animals, and deregulation of its activity is associated with diabetes and cancer in humans. Here, we describe Susi, a coiled-coil domain protein that acts as a negative regulator of insulin signaling in Drosophila. Whereas loss of Susi function increases body size, overexpression of Susi reduces growth. We provide genetic evidence that Susi negatively regulates dPI3K activity. Susi directly binds to dP60, the regulatory subunit of dPI3K. Since Susi has no overt similarity to known inhibitors of PI3K/PKB signaling, it defines a novel mechanism by which this signaling cascade is kept in check. The fact that Susi is expressed in a circadian rhythm, with highest levels during the night, suggests that Susi attenuates insulin signaling during the fasting period.

  13. PI3K/Akt is involved in brown adipogenesis mediated by growth differentiation factor-5 in association with activation of the Smad pathway

    SciTech Connect

    Hinoi, Eiichi; Iezaki, Takashi; Fujita, Hiroyuki; Watanabe, Takumi; Odaka, Yoshiaki; Ozaki, Kakeru; Yoneda, Yukio

    2014-07-18

    Highlights: • Akt is preferentially phosphorylated in BAT and sWAT of aP2-GDF5 mice. • PI3K/Akt signaling is involved in GDF5-induced brown adipogenesis. • PI3K/Akt signaling regulates GDF5-induced Smad5 phosphorylation. - Abstract: We have previously demonstrated promotion by growth differentiation factor-5 (GDF5) of brown adipogenesis for systemic energy expenditure through a mechanism relevant to activating the bone morphological protein (BMP) receptor/mothers against decapentaplegic homolog (Smad)/peroxisome proliferator-activated receptor gamma co-activator 1α (PGC-1α) pathway. Here, we show the involvement of the phosphatidylinositol 3-kinase (PI3K)/Akt pathway in brown adipogenesis mediated by GDF5. Overexpression of GDF5 in cells expressing adipocyte protein-2 markedly accelerated the phosphorylation of Smad1/5/8 and Akt in white and brown adipose tissues. In brown adipose tissue from heterozygous GDF5{sup Rgsc451} mutant mice expressing a dominant-negative (DN) GDF5 under obesogenic conditions, the basal phosphorylation of Smad1/5/8 and Akt was significantly attenuated. Exposure to GDF5 not only promoted the phosphorylation of both Smad1/5/8 and Akt in cultured brown pre-adipocytes, but also up-regulated Pgc1a and uncoupling protein-1 expression in a manner sensitive to the PI3K/Akt inhibitor Ly294002 as well as retroviral infection with DN-Akt. GDF5 drastically promoted BMP-responsive luciferase reporter activity in a Ly294002-sensitive fashion. Both Ly294002 and DN-Akt markedly inhibited phosphorylation of Smad5 in the nuclei of brown pre-adipocytes. These results suggest that PI3K/Akt signals play a role in the GDF5-mediated brown adipogenesis through a mechanism related to activation of the Smad pathway.

  14. Expression of human TFF3 in relation to growth of HT-29 cell subpopulations: involvement of PI3-K but not STAT6.

    PubMed

    Durual, Stéphane; Blanchard, Carine; Estienne, Monique; Jacquier, Marie-France; Cuber, Jean-Claude; Perrot, Valérie; Laboisse, Christian; Cuber, Jean-Claude

    2005-02-01

    The trefoil factor family (TFF) peptides 1 and 2 (TFF1 and 2) are expressed in mucus cells of the stomach, whereas TFF3 is localized in goblet cells of the intestine. In the present study, we aimed to determine whether phosphatidylinositol 3-kinase (PI3-K) or signal transducer and activator of transcription protein 6 (STAT6) is involved in the expression of goblet cell specific markers. TFF3 expression was analyzed by RT-PCR, Northern blot, and radioimmunoassay (RIA) in relation to cell growth in subclones of HT-29 cells including the CL.16E and methotrexate (MTX) cell lines, which both exhibit a phenotype of mucus-secreting intestinal cells. A 30-fold increase in TFF3 mRNA levels and a 10-fold increase in TFF3-cell content were observed between the early proliferative and the late confluency states. The levels of MUC2 and MUC3 mRNA were also increased in the course of the differentiation process. A three to fourfold increase in PI3-K and Akt activities was observed in early post-confluent cells as compared with pre-confluent cells. Exposure of pre- and post-confluent cells to LY294002, a specific PI3-K inhibitor, for 1-4 days profoundly reduced TFF3 and MUC2 expression. A marked reduction in mucin granules content was also observed in LY-treated cells. Inhibition of the mitogen-activated protein (MAP) kinase kinase (MEK) with PD98059 did not modify the course of differentiation of the goblet cell lines. Moreover, stable transfection of HT-29 CL.16E cells with a dominant negative form of STAT6 had no effect on TFF3 induction. Together, these data indicate that PI3-K promotes the expression of TFF3 and MUC2 and that the PI3-K/Akt pathway may play a pivotal role in intestinal goblet cell differentiation.

  15. Optimal targeting of HER2-PI3K signaling in breast cancer: mechanistic insights and clinical implications.

    PubMed

    Rexer, Brent N; Arteaga, Carlos L

    2013-07-01

    The combination of a PI3K inhibitor with trastuzumab has been shown to be effective at overcoming trastuzumab resistance in models of HER2(+) breast cancer by inhibiting HER2-PI3K-FOXO-survivin signaling. In this review the potential clinical implications of these findings are discussed.

  16. ZSTK474, a specific class I phosphatidylinositol 3-kinase inhibitor, induces G1 arrest and autophagy in human breast cancer MCF-7 cells

    PubMed Central

    Wang, Yaochen; Liu, Jing; Qiu, Yuling; Jin, Meihua; Chen, Xi; Fan, Guanwei; Wang, Ran; Kong, Dexin

    2016-01-01

    Multifaceted activities of class I phosphatidylinositol 3-kinase (PI3K) inhibitor ZSTK474 were investigated on human breast cancer cell MCF-7. ZSTK474 inhibited proliferation of MCF-7 cells potently. Flow cytometric analysis indicated that ZSTK474 induced cell cycle arrest at G1 phase, but no obvious apoptosis occurred. Western blot analysis suggested that blockade of PI3K/Akt/GSK-3β/cyclin D1/p-Rb pathway might contribute to the G1 arrest induced. Moreover, we demonstrated that ZSTK474 induced autophagy in MCF-7 cells by use of various assays including monodansylcadaverine (MDC) staining, transmission electron microscopy (TEM), tandem mRFP-GFP-LC3 fluorescence microscopy, and western blot detection of the autophagy protein markers of LC3B II, p62 and Atg 5. Inhibition of class I PI3K and the downstream mTOR might be involved in the autophagy-inducing effect. Combinational use of ZSTK474 and autophagy inhibitors enhanced cell viability, suggesting ZSTK474-induced autophagy might contribute to the antitumor activity. Our report supports the application of ZSTK474, which is being evaluated in clinical trials, for breast cancer therapy. PMID:26918351

  17. Gardenamide A Protects RGC-5 Cells from H₂O₂-Induced Oxidative Stress Insults by Activating PI3K/Akt/eNOS Signaling Pathway.

    PubMed

    Wang, Rikang; Peng, Lizhi; Zhao, Jiaqiang; Zhang, Laitao; Guo, Cuiping; Zheng, Wenhua; Chen, Heru

    2015-01-01

    Gardenamide A (GA) protects the rat retinal ganglion (RGC-5) cells against cell apoptosis induced by H₂O₂. The protective effect of GA was completely abrogated by the specific phosphoinositide 3-kinase (PI3K) inhibitor LY294002, and the specific protein kinase B (Akt) inhibitor Akt VIII respectively, indicating that the protective mechanism of GA is mediated by the PI3K/Akt signaling pathway. The specific extracellular signal-regulated kinase (ERK1/2) inhibitor PD98059 could not block the neuroprotection of GA. GA attenuated the levels of reactive oxygen species (ROS) and malondialdehyde (MDA) induced by H₂O₂. Western blotting showed that GA promoted the phosphorylation of ERK1/2, Akt and endothelial nitric oxide synthase (eNOS), respectively, and effectively reversed the H₂O₂-inhibited phosphorylation of these three proteins. LY294002 completely inhibited the GA-activated phosphorylation of Akt, while only partially inhibiting eNOS. This evidence implies that eNOS may be activated directly by GA. PD98059 attenuated only partially the GA-induced phosphorylation of ERK1/2 with/without the presence of H₂O₂, indicating that GA may activate ERK1/2 directly. All these results put together confirm that GA protects RGC-5 cells from H₂O₂ insults via the activation of PI3K/Akt/eNOS signaling pathway. Whether the ERK1/2 signaling pathway is involved requires further investigations.

  18. Herbacetin induces apoptosis in HepG2 cells: Involvements of ROS and PI3K/Akt pathway.

    PubMed

    Qiao, Yan; Xiang, Qisen; Yuan, Li; Xu, Li; Liu, Zhigang; Liu, Xuebo

    2013-01-01

    Herbacetin (HER) is a natural flavonoid compound that can be extracted from Ramose Scouring Rush Herb, and its biological and pharmacological activities lack of corresponding attention. In this study, the apoptotic effect of HER against the human hepatoma cell line (HepG2) was investigated. The results showed that HepG2 cells apoptosis occurred in a dose-dependent manner within 48h incubated with HER, which was confirmed by DNA fragmentation, nuclear shrinkage, and poly (ADP-ribose) polymerase (PARP) cleavage. HER at 25-100μM induced a mitochondria-dependent apoptotic pathway associated with Bcl-2/Bax ratio decrease, mitochondrial membrane potential (ΔΨ) collapse, cytochrome c release, and caspase-3 activation. Increasing expression of peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α) was also observed in HER-treated cells. Furthermore, the addition of a ROS inhibitor (N-Acetyl-l-cysteine, NAC) significantly attenuated the apoptosis induced by HER and also blocked the expression of PGC-1α protein. Additionally, HER effectively inhibited the phosphorylation of Akt and the phosphatidylinositol-3 kinase (PI3K) inhibitor LY294002 increased the inhibition effect of HER on Akt phosphorylation. These findings provide evidences that HER induces HepG2 apoptosis in a ROS-mediated mitochondria-dependent manner that correlate with the inactivation of the PI3K/Akt pathway. PMID:23063593

  19. Allosteric modulation of Ras and the PI3K/AKT/mTOR pathway: emerging therapeutic opportunities

    PubMed Central

    Hubbard, Paul A.; Moody, Colleen L.; Murali, Ramachandran

    2014-01-01

    GTPases and kinases are two predominant signaling modules that regulate cell fate. Dysregulation of Ras, a GTPase, and the three eponymous kinases that form key nodes of the associated phosphatidylinositol 4,5-bisphosphate 3-kinase (PI3K)/AKT/mTOR pathway have been implicated in many cancers, including pancreatic cancer, a disease noted for its current lack of effective therapeutics. The K-Ras isoform of Ras is mutated in over 90% of pancreatic ductal adenocarcinomas (PDAC) and there is growing evidence linking aberrant PI3K/AKT/mTOR pathway activity to PDAC. Although these observations suggest that targeting one of these nodes might lead to more effective treatment options for patients with pancreatic and other cancers, the complex regulatory mechanisms and the number of sequence-conserved isoforms of these proteins have been viewed as significant barriers in drug development. Emerging insights into the allosteric regulatory mechanisms of these proteins suggest novel opportunities for development of selective allosteric inhibitors with fragment-based drug discovery (FBDD) helping make significant inroads. The fact that allosteric inhibitors of Ras and AKT are currently in pre-clinical development lends support to this approach. In this article, we will focus on the recent advances and merits of developing allosteric drugs targeting these two inter-related signaling pathways. PMID:25566081

  20. Allosteric modulation of Ras and the PI3K/AKT/mTOR pathway: emerging therapeutic opportunities.

    PubMed

    Hubbard, Paul A; Moody, Colleen L; Murali, Ramachandran

    2014-01-01

    GTPases and kinases are two predominant signaling modules that regulate cell fate. Dysregulation of Ras, a GTPase, and the three eponymous kinases that form key nodes of the associated phosphatidylinositol 4,5-bisphosphate 3-kinase (PI3K)/AKT/mTOR pathway have been implicated in many cancers, including pancreatic cancer, a disease noted for its current lack of effective therapeutics. The K-Ras isoform of Ras is mutated in over 90% of pancreatic ductal adenocarcinomas (PDAC) and there is growing evidence linking aberrant PI3K/AKT/mTOR pathway activity to PDAC. Although these observations suggest that targeting one of these nodes might lead to more effective treatment options for patients with pancreatic and other cancers, the complex regulatory mechanisms and the number of sequence-conserved isoforms of these proteins have been viewed as significant barriers in drug development. Emerging insights into the allosteric regulatory mechanisms of these proteins suggest novel opportunities for development of selective allosteric inhibitors with fragment-based drug discovery (FBDD) helping make significant inroads. The fact that allosteric inhibitors of Ras and AKT are currently in pre-clinical development lends support to this approach. In this article, we will focus on the recent advances and merits of developing allosteric drugs targeting these two inter-related signaling pathways. PMID:25566081

  1. Crosstalk Between MAPK/ERK and PI3K/AKT Signal Pathways During Brain Ischemia/Reperfusion

    PubMed Central

    Zhou, Jing; Du, Ting; Li, Baoman; Rong, Yan; Verkhratsky, Alexei

    2015-01-01

    The epidermal growth factor receptor (EGFR) is linked to the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) and Raf/mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK1/2) signaling pathways. During brain ischemia/reperfusion, EGFR could be transactivated, which stimulates these intracellular signaling cascades that either protect cells or potentiate cell injury. In the present study, we investigated the activation of EGFR, PI3K/AKT, and Raf/MAPK/ERK1/2 during ischemia or reperfusion of the brain using the middle cerebral artery occlusion model. We found that EGFR was phosphorylated and transactivated during both ischemia and reperfusion periods. During ischemia, the activity of PI3K/AKT pathway was significantly increased, as judged from the strong phosphorylation of AKT; this activation was suppressed by the inhibitors of EGFR and Zn-dependent metalloproteinase. Ischemia, however, did not induce ERK1/2 phosphorylation, which was dependent on reperfusion. Coimmunoprecipitation of Son of sevenless 1 (SOS1) with EGFR showed increased association between the receptor and SOS1 in ischemia, indicating the inhibitory node downstream of SOS1. The inhibitory phosphorylation site of Raf-1 at Ser259, but not its stimulatory phosphorylation site at Ser338, was phosphorylated during ischemia. Furthermore, ischemia prompted the interaction between Raf-1 and AKT, while both the inhibitors of PI3K and AKT not only abolished AKT phosphorylation but also restored ERK1/2 phosphorylation. All these findings suggest that Raf/MAPK/ERK1/2 signal pathway is inhibited by AKT via direct phosphorylation and inhibition at Raf-1 node during ischemia. During reperfusion, we observed a significant increase of ERK1/2 phosphorylation but no change in AKT phosphorylation. Inhibitors of reactive oxygen species and phosphatase and tensin homolog restored AKT phosphorylation but abolished ERK1/2 phosphorylation, suggesting that the reactive oxygen species

  2. Inhibitors of glycogen synthase 3 kinase

    DOEpatents

    Schultz, Peter; Ring, David B.; Harrison, Stephen D.; Bray, Andrew M.

    2006-05-30

    Compounds of formula 1: ##STR00001## wherein R.sub.1 is alkyl, cycloalkyl, aryl, aralkyl, heteroaryl, or heteroaralkyl, substituted with 0 3 substituents selected from lower alkyl, halo, hydroxy, lower alkoxy, amino, lower alkyl-amino, and nitro; R.sub.2 is hydroxy, amino, or lower alkoxy; R.sub.3 is H, lower alkyl, lower acyl, lower alkoxy-acyl, or amino-acyl; R.sub.4 is H or lower alkyl; and pharmaceutically acceptable salts and esters thereof; are effective inhibitors of GSK3.

  3. Inhibitors of glycogen synthase 3 kinase

    DOEpatents

    Schultz, Peter; Ring, David B.; Harrison, Stephen D.; Bray, Andrew M.

    2000-01-01

    Compounds of formula 1: ##STR1## wherein R.sub.1 is alkyl, cycloalkyl, aryl, aralkyl, heteroaryl, or heteroaralkyl, substituted with 0-3 substituents selected from lower alkyl, halo, hydroxy, lower alkoxy, amino, lower alkyl-amino, and nitro; R.sub.2 is hydroxy, amino, or lower alkoxy; R.sub.3 is H, lower alkyl, lower acyl, lower alkoxy-acyl, or amnino-acyl; R.sub.4 is H or lower alkyl; and pharmaceutically acceptable salts and esters thereof; are effective inhibitors of GSK3.

  4. Effects of PI3K inhibition and low docosahexaenoic acid on cognition and behavior.

    PubMed

    Bandaru, Sathyajit S; Lin, Kristen; Roming, Stephanie L; Vellipuram, Ramana; Harney, Jacob P

    2010-06-01

    Alterations in two components of the brain's insulin signaling pathway, docosahexaenoic acid (DHA) content and phosphoinositide 3-kinase (PI3K) activity, have been implicated in the insulin resistance that is central to type II diabetes mellitus (DM). A 2- to 3-fold increased risk of developing Alzheimer's disease (AD) in patients with type II DM suggests a potential link between cognition and insulin action. The current study was designed to examine the impact of DHA dietary content and PI3K activity on learning, memory, depression, and anxiety in rodents. Mice were divided into the following groups: (1) control diet and vehicle injection (control PI3K), (2) control diet and wortmannin injection (PI3K inhibition), (3) low DHA diet and vehicle, and (4) low DHA diet and wortmannin. Each group was assessed for effects on activity, cognition, depression, and anxiety. Concentrations of glucose and insulin in plasma were quantified to confirm insulin resistance. Results showed significant increases in depression, anxiety, plasma insulin and glucose, and significant decreases in activity in wortmannin-treated mice regardless of diet. The control diet/wortmannin-treated group showed a significant decrease in memory compared to all other groups. The low DHA diet/wortmannin-treated group had slightly improved memory and lower levels of depression compared to the control diet/wortmannin-treated group. Results of the present study suggest that inhibition of PI3K decreases activity and memory while increasing insulin resistance, depression, and anxiety. In addition, these results suggest a possible compensatory role of low DHA in decreasing the effects of dysfunctional PI3K in AD associated cognitive decline and depression. PMID:19914265

  5. beta-Sitosterol induces G2/M arrest, endoreduplication, and apoptosis through the Bcl-2 and PI3K/Akt signaling pathways.

    PubMed

    Moon, Dong-Oh; Kim, Mun-Ock; Choi, Yung Hyun; Kim, Gi-Young

    2008-06-18

    beta-Sitosterol (SITO) is a potentially valuable candidate for cancer chemotherapy, however the cellular and molecular mechanisms responsible for its anti-cancer activity are unknown. Therefore, we attempted to elucidate the mechanisms responsible for SITO-induced anti-proliferation in human leukemia cells. Treatment with SITO increased caspase-3 activation and DNA fragmentation in U937 and HL60 cells. This effect was associated with significant G2/M arrest and endoreduplication. We also demonstrated that SITO treatment significantly increases levels of polymeric alpha-tubulin and promoted microtubule polymerization. We next elucidated that ectopic expression of Bcl-2 accelerates endoreduplication in U937 cells. Furthermore, the specific Bcl-2 inhibitor, HA14-1, prevented endoreduplication through G2 phase arrest. Interestingly, SITO treatment did not significantly promote endoreduplication or decrease cell viability in Bcl-2 null K562 cells. SITO treatment also induced a gradual increase of phosphatidyl-inositol 3-kinase (PI3K) and Akt phosphorylation. Treatment with the selective PI3K/Akt inhibitor LY29004 completely blocked endoreduplication and apoptosis in the presence of SITO. In addition, treatment with SITO-induced phosphorylation of extracellular signal-regulated protein kinase (ERK), however significance of ERK activation in the execution of apoptosis and endoreduplication is unknown. These results suggest that SITO induces endoreduplication by promoting spindle microtubule dynamics through the Bcl-2 and PI3K/Akt signaling pathways.

  6. Sanguinarine Induces Apoptosis of Human Oral Squamous Cell Carcinoma KB Cells via Inactivation of the PI3K/Akt Signaling Pathway.

    PubMed

    Lee, Tae Kyung; Park, Cheol; Jeong, Soon-Jeong; Jeong, Moon-Jin; Kim, Gi-Young; Kim, Wun-Jae; Choi, Yung Hyun

    2016-08-01

    Preclinical Research Sanguinarine, an alkaloid isolated from the root of Sanguinaria canadensis and other plants of the Papaveraceae family, selectively induces apoptotic cell death in a variety of human cancer cells, but its mechanism of action requires further elaboration. The present study investigated the pro-apoptotic effects of sanguinarine in human oral squamous cell carcinoma KB cells. Sanguinarine treatment increased DR5/TRAILR2 (death receptor 5/TRAIL receptor 2) expression and enhanced the activation of caspase-8 and cleavage of its substrate, Bid. Sanguinarine also induced the mitochondrial translocation of pro-apoptotic Bax, mitochondrial dysfunction, cytochrome c release to the cytosol, and activation of caspase-9 and -3. However, a pan-caspase inhibitor, z-VAD-fmk, reversed the growth inhibition and apoptosis induced by sanguinarine. Sanguinarine also suppressed the phosphorylation of phosphoinositide 3-kinase (PI3K) and Akt in KB cells, while co-treatment of cells with sanguinarine and a PI3K inhibitor revealed synergistic apoptotic effects. However, pharmacological inhibition of AMP-activated protein kinase and mitogen-activated protein kinases did not reduce or enhance sanguinarine-induced growth inhibition and apoptosis. Collectively, these findings indicate that the pro-apoptotic effects of sanguinarine in KB cells may be regulated by a caspase-dependent cascade via activation of both intrinsic and extrinsic signaling pathways and inactivation of PI3K/Akt signaling. Drug Dev Res 77 : 227-240, 2016.   © 2016 Wiley Periodicals, Inc.

  7. The role of PI3K/Akt in human herpesvirus infection: From the bench to the bedside.

    PubMed

    Liu, XueQiao; Cohen, Jeffrey I

    2015-05-01

    The phosphatidylinositol-3-kinase (PI3K)-Akt signaling pathway regulates several key cellular functions including protein synthesis, cell growth, glucose metabolism, and inflammation. Many viruses have evolved mechanisms to manipulate this signaling pathway to ensure successful virus replication. The human herpesviruses undergo both latent and lytic infection, but differ in cell tropism, growth kinetics, and disease manifestations. Herpesviruses express multiple proteins that target the PI3K/Akt cell signaling pathway during the course of their life cycle to facilitate viral infection, replication, latency, and reactivation. Rare human genetic disorders with mutations in either the catalytic or regulatory subunit of PI3K that result in constitutive activation of the protein predispose to severe herpesvirus infections as well as to virus-associated malignancies. Inhibiting the PI3K/Akt pathway or its downstream proteins using drugs already approved for other diseases can block herpesvirus lytic infection and may reduce malignancies associated with latent herpesvirus infections. PMID:25798530

  8. The Role of PI3K/Akt in Human Herpesvirus Infection: from the Bench to the Bedside

    PubMed Central

    Liu, XueQiao; Cohen, Jeffrey I.

    2015-01-01

    The phosphatidylinositol-3-kinase (PI3K)-Akt signaling pathway regulates several key cellular functions including protein synthesis, cell growth, glucose metabolism, and inflammation. Many viruses have evolved mechanisms to manipulate this signaling pathway to ensure successful virus replication. The human herpesviruses undergo both latent and lytic infection, but differ in cell tropism, growth kinetics, and disease manifestations. Herpesviruses express multiple proteins that target the PI3K/Akt cell signaling pathway during the course of their life cycle to facilitate viral infection, replication, latency, and reactivation. Rare human genetic disorders with mutations in either the catalytic or regulatory subunit of PI3K that result in constitutive activation of the protein predispose to severe herpesvirus infections as well as to virus-associated malignancies. Inhibiting the PI3K/Akt pathway or its downstream proteins using drugs already approved for other diseases can block herpesvirus lytic infection and may reduce malignancies associated with latent herpesvirus infections. PMID:25798530

  9. The PI3K signaling-mediated nitric oxide contributes to cardiovascular effects of angiotensin-(1-7) in the nucleus tractus solitarii of rats.

    PubMed

    Wu, Zhao-Tang; Ren, Chang-Zhen; Yang, Ya-Hong; Zhang, Ru-Wen; Sun, Jia-Cen; Wang, Yang-Kai; Su, Ding-Feng; Wang, Wei-Zhong

    2016-01-30

    Angiotensin-1-7 [Ang-(1-7)], acting via the Mas receptor in the central nervous system, is involved in the regulation of cardiovascular activity. Nitric oxide (NO) is implicated as an important modulator in the nucleus tractus solitarii (NTS), a key region involved in control of cardiovascular activity. The aim of the present study was to determine the role of phosphatidylinositol 3-kinase (PI3K) signaling in mediating the effect of Ang-(1-7) on NO generation in the NTS. In Sprague-Dawley rats, acute injection of Ang-(1-7) into the NTS significantly increased NO generation and neuronal/endothelial NO synthase (n/eNOS) activity, which were abolished by the selective Mas receptor antagonist d-Alanine-[Ang-(1-7)] (A-779), the PI3K inhibitor LY294002, or the Akt inhibitor triciribine (TCN). Western blotting analysis further demonstrated that Ang-(1-7) significantly increased levels of Akt/NOS phosphorylation in the NTS, and Ang-(1-7)-induced e/nNOS phosphorylation was antagonized by LY294002 or TCN. Furthermore, gene knockdown of PI3K by lentivirus containing small hairpin RNA in the NTS prevented the Ang-(1-7)-induced increases in NOS/Akt phosphorylation and NO production. The physiological (in vivo) experiments showed that pretreatment with the NOS inhibitor l-NAME, LY294002, or TCN abolished the decreases in blood pressure, heart rate, and renal sympathetic nerve activity induced by Ang-(1-7) injected into the NTS. Our findings suggest that nitric oxide release meditated by the Mas-PI3K-NOS signaling pathway is involved in the cardiovascular effects of Ang-(1-7) in the NTS.

  10. Fragile Histidine Triad (FHIT) Suppresses Proliferation and Promotes Apoptosis in Cholangiocarcinoma Cells by Blocking PI3K-Akt Pathway

    PubMed Central

    Huang, Qiang; Liu, Zhen; Xie, Fang; Liu, Chenhai; Shao, Feng; Zhu, Cheng-lin; Hu, Sanyuan

    2014-01-01

    Fragile histidine triad (FHIT) is a tumor suppressor protein that regulates cancer cell proliferation and apoptosis. However, its exact mechanism of action is poorly understood. Phosphatidylinositol 3-OH kinase (PI3K)-Akt-survivin is an important signaling pathway that was regulated by FHIT in lung cancer cells. To determine whether FHIT can regulate this pathway in cholangiocarcinoma QBC939 cells, we constructed an FHIT expression plasmid and used it to transfect QBC939 cells. Protein and mRNA expression were measured by western blotting and qRT-PCR, respectively. The viability and apoptosis of QBC939 cells were then assessed using MTT assays and flow cytometry. Our results revealed that the expression of survivin and Bcl-2 was downregulated, and caspase 3 was upregulated, in cells overexpressing FHIT. In addition, FHIT suppressed the phosphorylation of Akt. The changes in cell proliferation and apoptosis were obvious in cells overexpressing FHIT which parallels that of treatment with LY294002, a potent inhibitor of phosphoinositide 3-kinases. Treatment with LY294002 further decreased the expression of survivin and Bcl-2 and increased caspase-3 levels. These results suggest that FHIT can block the PI3K-Akt-survivin pathway by suppressing the phosphorylation of Akt and the expression of survivin and Bcl-2 and upregulating caspase 3. PMID:24757411

  11. Thymoquinone attenuates liver fibrosis via PI3K and TLR4 signaling pathways in activated hepatic stellate cells.

    PubMed

    Bai, Ting; Lian, Li-Hua; Wu, Yan-Ling; Wan, Ying; Nan, Ji-Xing

    2013-02-01

    Thymoquinone (TQ) is the major active compound derived from the medicinal Nigella sativa. In the present study, we investigated the anti-fibrotic mechanism of TQ in lipopolysaccharide (LPS)-activated rat hepatic stellate cells line, T-HSC/Cl-6. T-HSC/Cl-6 cells were treated with TQ (3.125, 6.25 and 12.5μM) prior to LPS (1μg/ml). Our data demonstrated that TQ effectively decreased activated T-HSC/Cl-6 cell viability. TQ significantly attenuated the expression of CD14 and Toll-like receptor 4 (TLR4). TQ also significantly inhibited phosphatidylinositol 3-kinase (PI3K) and serine/threonine kinase-protein kinase B (Akt) phosphorylation. The expression of α-SMA and collagen-I were significantly decreased by TQ. Furthermore, TQ decreased X linked inhibitor of apoptosis (XIAP) and cellular FLIP (c-FLIPL) expression, which are related with the regulation of apoptosis. Furthermore, TQ significantly increased the survival against LPS challenge in d-galactosamine (d-GlaN)-sensitized mice, and decreased the levels of serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST), which were in line with in vitro results. Our data demonstrated that TQ attenuates liver fibrosis partially via blocking TLR4 expression and PI3K phosphorylation on the activated HSCs. Therefore, TQ may be a potential candidate for the therapy of hepatic fibrosis.

  12. PTEN and PI3K/AKT in non-small-cell lung cancer.

    PubMed

    Pérez-Ramírez, Cristina; Cañadas-Garre, Marisa; Molina, Miguel Ángel; Faus-Dáder, María José; Calleja-Hernández, Miguel Ángel

    2015-11-01

    Non-small-cell lung cancer (NSCLC) is the leading cause of cancer deaths worldwide. In the last years, the identification of activating EGFR mutations, conferring increased sensitivity and disease response to tyrosine kinase inhibitors, has changed the prospect of NSCLC patients. The PTEN/PI3K/AKT pathway regulates multiple cellular functions, including cell growth, differentiation, proliferation, survival, motility, invasion and intracellular trafficking. Alterations in this pathway, mainly PTEN inactivation, have been associated with resistance to EGFR-tyrosine kinase inhibitor therapy and lower survival in NSCLC patients. In this review, we will briefly discuss the main PTEN/PI3K/AKT pathway alterations found in NSCLC, as well as the cell processes regulated by PTEN/PI3K/AKT leading to tumorigenesis.

  13. PI3K/Akt/mTOR signaling pathway in cancer stem cells: from basic research to clinical application

    PubMed Central

    Xia, Pu; Xu, Xiao-Yan

    2015-01-01

    Cancer stem cells (CSCs) are a subpopulation of tumor cells that possess unique self-renewal activity and mediate tumor initiation and propagation. The PI3K/Akt/mTOR signaling pathway can be considered as a master regulator for cancer. More and more recent studies have shown the links between PI3K/Akt/mTOR signaling pathway and CSC biology. Herein, we provide a comprehensive review on the role of signaling components upstream and downstream of PI3K/Akt/mTOR signaling in CSC. In addition, we also summarize various classes of small molecule inhibitors of PI3K/Akt/mTOR signaling pathway and their clinical potential in CSC. Overall, the current available data suggest that the PI3K/Akt/mTOR signaling pathway could be a promising target for development of CSC-target drugs. PMID:26175931

  14. Following the trail of lipids: Signals initiated by PI3K function at multiple cellular membranes.

    PubMed

    Naguib, Adam

    2016-05-17

    Phosphatidylinositol 3,4,5-trisphosphate [PtdIns(3,4,5)P3] is the signaling currency of the phosphoinositide 3-kinase (PI3K)/AKT pathway; transduction through this axis depends on this signaling lipid. Formation of PtdIns(3,4,5)P3 is dictated not only by PI3K activation but also by the localization and access of PI3K to its substrate PtdIns(4,5)P2 (phosphatidylinositol 4,5-bisphosphate). PI3K/AKT-mediated signaling is antagonized by PtdIns(3,4,5)P3 dephosphorylation. Although previously typically considered an event associated with the plasma membrane, it is now appreciated that the formation and metabolism of PtdIns(3,4,5)P3 occur on multiple membranes with distinct kinetics. Modulated activity of phosphatidylinositol lipid kinases and phosphatases contributes to intricately orchestrated lipid gradients that define the signaling status of the pathway at multiple sites within the cell.

  15. Regulation of the PI3K pathway through a p85α monomer–homodimer equilibrium

    PubMed Central

    Cheung, Lydia WT; Walkiewicz, Katarzyna W; Besong, Tabot MD; Guo, Huifang; Hawke, David H; Arold, Stefan T; Mills, Gordon B

    2015-01-01

    The canonical action of the p85α regulatory subunit of phosphatidylinositol 3-kinase (PI3K) is to associate with the p110α catalytic subunit to allow stimuli-dependent activation of the PI3K pathway. We elucidate a p110α-independent role of homodimerized p85α in the positive regulation of PTEN stability and activity. p110α-free p85α homodimerizes via two intermolecular interactions (SH3:proline-rich region and BH:BH) to selectively bind unphosphorylated activated PTEN. As a consequence, homodimeric but not monomeric p85α suppresses the PI3K pathway by protecting PTEN from E3 ligase WWP2-mediated proteasomal degradation. Further, the p85α homodimer enhances the lipid phosphatase activity and membrane association of PTEN. Strikingly, we identified cancer patient-derived oncogenic p85α mutations that target the homodimerization or PTEN interaction surface. Collectively, our data suggest the equilibrium of p85α monomer–dimers regulates the PI3K pathway and disrupting this equilibrium could lead to disease development. DOI: http://dx.doi.org/10.7554/eLife.06866.001 PMID:26222500

  16. Conjugation of SUMO to p85 leads to a novel mechanism of PI3K regulation.

    PubMed

    de la Cruz-Herrera, C F; Baz-Martínez, M; Lang, V; El Motiam, A; Barbazán, J; Couceiro, R; Abal, M; Vidal, A; Esteban, M; Muñoz-Fontela, C; Nieto, A; Rodríguez, M S; Collado, M; Rivas, C

    2016-06-01

    Class IA phosphatidylinositol 3-kinases (PI3Ks) are composed of p110 catalytic and p85 regulatory subunits. How regulatory subunits modulate PI3K activity remains only partially understood. Here we identified SUMO (small ubiquitin-related modifier) as a new player modulating this regulation. We demonstrate that both p85β and p85α are conjugated to SUMO1 and SUMO2. We identified two lysine residues located at the inter-SH2 domain on p85β, a critical region required for inhibition of p110, as being required for SUMO conjugation. A SUMOylation-defective mutant p85β shows higher activation of the PI3K pathway, and increased cell migration and transformation. Moreover, the cancer-related KS459del mutant in p85α was less efficiently SUMOylated compared with the wild-type protein. Finally, our results show that SUMO modulates p85 tyrosine phosphorylation, a modification correlating with PI3K pathway activation. Thus, SUMO reduces the levels of tyrosine-phosphorylated-p85 while loss of SUMOylation results in increased tyrosine phosphorylation of p85. In summary, we identify SUMO as a new important player in the regulation of the PI3K pathway through modulation of p85.

  17. Thyroid hormone inhibits the proliferation of piglet Sertoli cell via PI3K signaling pathway.

    PubMed

    Sun, Yan; Yang, WeiRong; Luo, HongLin; Wang, XianZhong; Chen, ZhongQiong; Zhang, JiaoJiao; Wang, Yi; Li, XiaoMin

    2015-01-01

    Accumulating researches show that thyroid hormone (TH) inhibits Sertoli cells (SCs) proliferation and stimulates their functional maturation in prepubertal rat testis, confirming that TH plays a key role in testicular development. However, the mechanism under the T3 regulation of piglet SC proliferation remains unclear. In the present study, in order to investigate the possible mechanism of T3 on the suppression of SC proliferation, the expression pattern of TRα1 and cell cycle-related molecules, effect of T3 on SC proliferation, and the role of phosphoinositide 3-kinase (PI3K)/Akt signaling pathway on the T3-mediated SC proliferation in piglet testis were explored. Our results demonstrated that TRα1 was expressed in all tested stages of SCs and decreased along with the ages. T3 inhibited the proliferation of SCs in a time- and dose-dependent manner, and T3 treatment downregulated the expressions of cell cycling molecules, such as cyclinA2, cyclinD1, cyclinE1, PCNA, and Skp2, but upregulated the p27 expression in SCs. Most importantly, the suppressive effects of T3 on SC proliferation seemed dependent on the inhibition of PI3K/Akt signaling pathway, and pre-stimulation of PI3K could enhance such suppressive effects. Together, our findings demonstrate that TH inhibits the proliferation of piglet SCs via the suppression of PI3K/Akt signaling pathway.

  18. MiR-20a Induces Cell Radioresistance by Activating the PTEN/PI3K/Akt Signaling Pathway in Hepatocellular Carcinoma

    SciTech Connect

    Zhang, Yuqin; Zheng, Lin; Ding, Yi; Li, Qi; Wang, Rong; Liu, Tongxin; Sun, Quanquan; Yang, Hua; Peng, Shunli; Wang, Wei; Chen, Longhua

    2015-08-01

    Purpose: To investigate the role of miR-20a in hepatocellular carcinoma (HCC) cell radioresistance, which may reveal potential strategies to improve treatment. Methods and Materials: The expression of miR-20a and PTEN were detected in HCC cell lines and paired primary tissues by quantitative real-time polymerase chain reaction. Cell radiation combined with colony formation assays was administrated to discover the effect of miR-20a on radiosensitivity. Bioinformatics prediction and luciferase assay were used to identify the target of miR-20a. The phosphatidylinositol 3-kinase inhibitor LY294002 was used to inhibit phosphorylation of Akt, to verify whether miR-20a affects HCC cell radioresistance through activating the PTEN/PI3K/Akt pathway. Results: MiR-20a levels were increased in HCC cell lines and tissues, whereas PTEN was inversely correlated with it. Overexpression of miR-20a in Bel-7402 and SMMC-7721 cells enhances their resistance to the effect of ionizing radiation, and the inhibition of miR-20a in HCCLM3 and QGY-7701 cells sensitizes them to it. PTEN was identified as a direct functional target of miR-20a for the induction of radioresistance. Overexpression of miR-20a activated the PTEN/PI3K/Akt signaling pathway. Additionally, the kinase inhibitor LY294002 could reverse the effect of miR-20a–induced radioresistance. Conclusion: MiR-20a induces HCC cell radioresistance by activating the PTEN/PI3K/Akt pathway, which suggests that miR-20a/PTEN/PI3K/Akt might represent a target of investigation for developing effective therapeutic strategies against HCC.

  19. Hedgehog signaling is a novel therapeutic target in tamoxifen-resistant breast cancer aberrantly activated by PI3K/AKT pathway.

    PubMed

    Ramaswamy, Bhuvaneswari; Lu, Yuanzhi; Teng, Kun-yu; Nuovo, Gerard; Li, Xiaobai; Shapiro, Charles L; Majumder, Sarmila

    2012-10-01

    Endocrine resistance is a major challenge in the management of estrogen receptor (ER)-positive breast cancers. Although multiple mechanisms leading to endocrine resistance have been proposed, the poor outcome of patients developing resistance to endocrine therapy warrants additional studies. Here we show that noncanonical Hedgehog (Hh) signaling is an alternative growth promoting mechanism that is activated in tamoxifen-resistant tumors. Importantly, phosphoinositide 3-kinase inhibitor/protein kinase B (PI3K/AKT) pathway plays a key role in regulating Hh signaling by protecting key components of this pathway from proteasomal degradation. The levels of Hh-signaling molecules SMO and GLI1 and the targets were significantly elevated in tamoxifen-resistant MCF-7 cells and T47D cells. Serial passage of the resistant cells in mice resulted in aggressive tumors that metastasized to distant organs with concurrent increases in Hh marker expression and epithelial mesenchymal transition. RNAi-mediated depletion of SMO or GLI1 in the resistant cells resulted in reduced proliferation, clonogenic survival and delayed G(1)-S transition. Notably, treatment of resistant cells with PI3K inhibitors decreased SMO and GLI1 protein levels and activity that was rescued upon blocking GSK3β and proteasomal degradation. Furthermore, treatment of tamoxifen-resistant xenografts with anti-Hh compound GDC-0449 blocked tumor growth in mice. Importantly, high GLI1 expression correlated inversely with disease-free and overall survival in a cohort of 315 patients with breast cancer. In summary, our results describe a signaling event linking PI3K/AKT pathway with Hh signaling that promotes tamoxifen resistance. Targeting Hh pathway alone or in combination with PI3K/AKT pathway could therefore be a novel therapeutic option in treating endocrine-resistant breast cancer.

  20. Type 2 Iodothyronine Deiodinase Activity Is Required for Rapid Stimulation of PI3K by Thyroxine in Human Umbilical Vein Endothelial Cells.

    PubMed

    Aoki, Tomoyuki; Tsunekawa, Katsuhiko; Araki, Osamu; Ogiwara, Takayuki; Nara, Makoto; Sumino, Hiroyuki; Kimura, Takao; Murakami, Masami

    2015-11-01

    Thyroid hormones (THs) exert a number of physiological effects on the cardiovascular system. Some of the nongenomic actions of T3 are achieved by cross coupling the TH receptor (TR) with the phosphatidylinositol 3-kinase (PI3K)/protein kinase Akt (Akt) pathway. We observed that both T3 and T4 rapidly stimulated Akt phosphorylation and Ras-related C3 botulinum toxin substrate 1 (Rac1) activation, which resulted in cell migration, in a PI3K-dependent manner in human umbilical vein endothelial cells (HUVECs). We identified the expression of type 2 iodothyronine deiodinase (D2), which converts T4 to T3, and TRα1 in HUVECs. D2 activity was significantly stimulated by (Bu)2cAMP in HUVECs. The blockade of D2 activity through transfection of small interfering RNA (siRNA) specific to D2 as well as by addition of iopanoic acid, a potent D2 inhibitor, abolished Akt phosphorylation, Rac activation, and cell migration induced by T4 but not by T3. The inhibition of TRα1 expression by the transfection of siRNA for TRα1 canceled Akt phosphorylation, Rac activation, and cell migration induced by T3 and T4. These findings suggest that conversion of T4 to T3 by D2 is required for TRα1/PI3K-mediated nongenomic actions of T4 in HUVECs, including stimulation of Akt phosphorylation and Rac activation, which result in cell migration. PMID:26284425

  1. Sedanolide induces autophagy through the PI3K, p53 and NF-κB signaling pathways in human liver cancer cells.

    PubMed

    Hsieh, Shu-Ling; Chen, Chi-Tsai; Wang, Jyh-Jye; Kuo, Yu-Hao; Li, Chien-Chun; Hsieh, Lan-Chi; Wu, Chih-Chung

    2015-12-01

    Sedanolide (SN), a phthalide-like compound from celery seed oil, possesses antioxidant effects. However, the effect of SN on cell death in human liver cancer cells has yet to be determined. In this study, cell viability determination, monodansylcadaverine (MDC) fluorescent staining and immunoblot analysis were performed to determine autophagy induction and autophagy-induced protein expression changes via molecular examination after human liver cancer (J5) cells were treated with SN. Our studies demonstrate that SN suppressed J5 cell viability by inducing autophagy. Phosphoinositide 3-kinase (PI3K)-I, mammalian target of rapamycin (mTOR) and Akt protein levels decreased, whereas PI3K-III, LC3-II and Beclin-1 protein levels increased following SN treatment in J5 cells. In addition, SN treatment upregulated nuclear p53 and damage-regulated autophagy modulator (DRAM) and downregulated cytosolic p53 and Tp53-induced glycolysis and apoptosis regulator (TIGAR) expression in J5 cells. Furthermore, the cytosolic phosphorylation of inhibitor of kappa B (IκB) and nuclear p65 and the DNA-binding activity of NF-κB increased after SN treatment. These results suggest that SN induces J5 cell autophagy by regulating PI3K, p53 and NF-κB autophagy-associated signaling pathways in J5 cells. PMID:26500073

  2. Sphingosine-1-phosphate receptor 2 mediates endothelial cells dysfunction by PI3K-Akt pathway under high glucose condition.

    PubMed

    Liu, Weihua; Liu, Bin; Liu, Shaojun; Zhang, Jingzhi; Lin, Shuangfeng

    2016-04-01

    Endothelial dysfunction is believed the early stage of development of diabetic cardiovascular complications. Sphingosine-1-phosphate (S1P) regulates various biological activities by binding to sphingosine-1-phosphate receptors (S1PRs) including S1PR1-S1PR5. In the present study, the role of S1P receptors in S1P-induced human coronary artery endothelial cells (HCAECs) dysfunction under high glucose condition was investigated and the underlying mechanism was explored. S1PR1-S1PR5 mRNA levels were detected by quantitative Real-time PCR. NO level and polymorphonuclear neutrophils (PMN)-endothelial cells adhesion were measured by nitrate reductase and myeloperoxidase colorimetric method, respectively. Protein levels of endothelial nitric oxide synthase (eNOS), vascular cell adhesion molecule-1 (VCAM-1), intercellular adhesion molecule-1(ICAM-1), phosphatidylinositol 3-kinase (PI3K) and Akt were measured by Western blot analysis. S1PR2 were found the predominant S1P receptor expressed in HCAECs exposed to high glucose. NO level and eNOS activity were remarkably decreased, while PMN adhesion, VCAM-1 and ICAM-1 protein levels were increased significantly by S1P treatment in HCAECs exposed to high glucose and normal glucose. Blockage of S1PR2 with specific antagonist JTE-013 and small interfering RNA (siRNA) resulted in enhanced NO level and eNOS activity as well as decreased PMN adhesion, reduced protein levels of VCAM-1 and ICAM-1 induced by S1P. Furthermore, Phosphor-PI3K and phosphor-Akt level were markedly increased by S1PR2 blockade in S1P-treated cells exposed to high glucose, which were suppressed by PI3K inhibitor wortmannin. In conclusion, S1P/S1PR2 mediated endothelial dysfunction partly by inhibiting PI3K/Akt signaling pathway under high glucose condition. S1PR2 blockage could ameliorate endothelial dysfunction which might provide a potential therapeutic strategy for diabetic vascular complications. PMID:26921757

  3. Quantitative phosphoproteomic analysis of the PI3K-regulated signaling network.

    PubMed

    Gnad, Florian; Wallin, Jeffrey; Edgar, Kyle; Doll, Sophia; Arnott, David; Robillard, Liliane; Kirkpatrick, Donald S; Stokes, Matthew P; Vijapurkar, Ulka; Hatzivassiliou, Georgia; Friedman, Lori S; Belvin, Marcia

    2016-07-01

    The PI3K pathway is commonly activated in cancer. Only a few studies have attempted to explore the spectrum of phosphorylation signaling downstream of the PI3K cascade. Such insight, however, is imperative to understand the mechanisms responsible for oncogenic phenotypes. By applying MS-based phosphoproteomics, we mapped 2509 phosphorylation sites on 1096 proteins, and quantified their responses to activation or inhibition of PIK3CA using isogenic knock-in derivatives and a series of targeted inhibitors. We uncovered phosphorylation changes in a wide variety of proteins involved in cell growth and proliferation, many of which have not been previously associated with PI3K signaling. A significant update of the posttranslational modification database PHOSIDA (http://www.phosida.com) allows efficient use of the data. All MS data have been deposited in the ProteomeXchange with identifier PXD003899 (http://proteomecentral.proteomexchange.org/dataset/PXD003899). PMID:27282143

  4. Tetramethylpyrazine attenuates TNF-α-induced iNOS expression in human endothelial cells: Involvement of Syk-mediated activation of PI3K-IKK-IκB signaling pathways

    SciTech Connect

    Zheng, Zhen; Li, Zhiliang; Chen, Song; Pan, Jieyi; Ma, Xiaochun

    2013-08-15

    Endothelial cells produce nitric oxide (NO) by activation of constitutive nitric oxide synthase (NOS) and transcription of inducible NO synthase (iNOS). We explored the effect of tetramethylpyrazine (TMP), a compound derived from chuanxiong, on tumor necrosis factor (TNF)-α-induced iNOS in human umbilical vein endothelial cells (HUVECs) and explored the signal pathways involved by using RT-PCR and Western blot. TMP suppressed TNF-α-induced expression of iNOS by inhibiting IκB kinase (IKK) phosphorylation, IκB degradation and nuclear factor κB (NF-κB) nuclear translocation, which were required for NO gene transcription. Exposure to wortmannin abrogated IKK/IκB/NF-κB-mediated iNOS expression, suggesting activation of such a signal pathway might be phosphoinositide-3-kinase (PI3K) dependent. Spleen tyrosine kinase (Syk) inhibitor piceatannol significantly inhibited NO production. Furthermore, piceatannol obviously suppressed TNF-α-induced IκB phosphorylation and the downstream NF-κB activation, suggesting that Syk is an upstream key regulator in the activation of PI3K/IKK/IκB-mediated signaling. TMP significantly inhibited TNF-α-induced phosphorylation of Syk and PI3K. Our data indicate that TMP might repress iNOS expression, at least in part, through its inhibitory effect of Syk-mediated PI3K phosphorylation in TNF-α-stimulated HUVECs. -- Highlights: •TMP suppressed TNF-α-induced expression of iNOS by inhibiting IKK/IκB/NF-κB pathway. •PI3K inhibitor wortmannin abrogated IKK/IκB/NF-κB-mediated iNOS expression. •Syk inhibitor piceatannol repressed PI3K/IKK/IκB mediated NO production. •Syk is an upstream regulator in the activation of PI3K/IKK/IκB-mediated signaling. •TMP might repress iNOS expression through Syk-mediated PI3K pathway.

  5. Spatially distinct roles of class Ia PI3K isoforms in the development and maintenance of PTEN hamartoma tumor syndrome

    PubMed Central

    Wang, Qi; Von, Thanh; Bronson, Roderick; Ruan, Minzi; Mu, Wenxia; Huang, Alan; Maira, Sauveur-Michel; Zhao, Jean J.

    2013-01-01

    PTEN hamartoma tumor syndrome (PHTS) comprises a collection of genetic disorders associated with germline mutations in the tumor suppressor gene PTEN. Therapeutic options and preventative measures for PHTS are limited. Using both genetically engineered mouse models and pharmacological PI3K isoform-selective inhibitors, we found that the roles of PI3K isoforms are spatially distinct in the skin: While p110α is responsible for the sustained survival of suprabasal cells of the epidermis in the absence of PTEN, p110β is important for the hyperproliferation of basal cells in PHTS. Furthermore, we identified a differential expression pattern of p110α and p110β in basal and suprabasal keratinocytes as well as differential PI3K regulation by upstream signals in the basal and suprabasal compartments of the epidermis, providing a potential molecular mechanism underlying the specific roles of PI3K isoforms in the epidermis. Finally, we demonstrate that combined inhibition of both PI3K isoforms prevents the development of PHTS and also reverses skin hamartomas that have reached advanced stages in mice. Together, these results not only advance our overall understanding of the diverse roles of PI3K isoforms, but also have the potential for meaningful translation via the clinical utilization of PI3K inhibitors for both prevention and therapy in PHTS patients. PMID:23873941

  6. PI3K inhibition synergizes with glucocorticoids but antagonizes with methotrexate in T-cell acute lymphoblastic leukemia

    PubMed Central

    Silveira, André Bortolini; Laranjeira, Angelo Brunelli Albertoni; Rodrigues, Gisele Olinto Libanio; Leal, Paulo César; Cardoso, Bruno António; Barata, João Taborda; Yunes, Rosendo Augusto; Zanchin, Nilson Ivo Tonin; Brandalise, Sílvia Regina; Yunes, José Andrés

    2015-01-01

    The PI3K pathway is frequently hyperactivated in primary T-cell acute lymphoblastic leukemia (T-ALL) cells. Activation of the PI3K pathway has been suggested as one mechanism of glucocorticoid resistance in T-ALL, and patients harboring mutations in the PI3K negative regulator PTEN may be at increased risk of induction failure and relapse. By gene expression microarray analysis of T-ALL cells treated with the PI3K inhibitor AS605240, we identified Myc as a prominent downstream target of the PI3K pathway. A significant association was found between the AS605240 gene expression signature and that of glucocorticoid resistance and relapse in T-ALL. AS605240 showed anti-leukemic activity and strong synergism with glucocorticoids both in vitro and in a NOD/SCID xenograft model of T-ALL. In contrast, PI3K inhibition showed antagonism with methotrexate and daunorubicin, drugs that preferentially target dividing cells. This antagonistic interaction, however, could be circumvented by the use of correct drug scheduling schemes. Our data indicate the potential benefits and difficulties for the incorporation of PI3K inhibitors in T-ALL therapy. PMID:25869207

  7. Calycosin-7-O-β-d-glucoside attenuates ischemia-reperfusion injury in vivo via activation of the PI3K/Akt pathway

    PubMed Central

    REN, MIN; WANG, XUDONG; DU, GUOQING; TIAN, JIAWEI; LIU, YUJIE

    2016-01-01

    The aim of the present study was to investigate the effects and mechanisms of calycosin-7-O-β-d-glucoside (CG) on ischemia-reperfusion (I/R) injury in vivo. Hemodynamic parameters, including ejection fraction (EF), fractional shortening (FS), left ventricular end-systolic pressure (LVESP) and left ventricular end-diastolic pressure (LVEDP) were monitored using an ultrasound system, and infarct size was measured using Evans blue/tetrazolium chloride double staining. The activities of serum creatine kinase (CK), lactate dehydrogenase (LDH) and superoxide dismutase (SOD), and the levels of malondialdehyde (MDA) were determined to assess the degree of myocardial injury and oxidative stress-induced damage. The protein expression levels of cleaved-caspase-3, cleaved-caspase-9, phosphorylated (p)-phosphatidylinositol 3-kinase (PI3K) p85, PI3K p85, p-Akt and Akt were determined using western blotting. The results demonstrated that pretreatment with high dose (H)-CG markedly improved cardiac function, as evidenced by upregulated EF, FS and LVESP, and downregulated LVEDP. In addition, administration of CG resulted in significant decreases in infarct size in the I/R+low dose-CG and I/R+H-CG groups, compared with the I/R group. The activities of CK and LDH, and the levels of MDA in the I/R+H-CG group were reduced, compared with those in the I/R group, whereas SOD activity was elevated. Treatment with CG inhibited the cleavage and activity of caspase-3 and caspase-9, and enhanced the phosphorylation of PI3K p85 and Akt. Notably, administration of the PI3K inhibitor, LY294002, markedly lowered the levels of p-PI3K p85/p-Akt, and eradicated the inhibitory effects of H-CG on infarct size, myocardial injury and oxidative stress-induced damage. Taken together, the results suggested that CG may alleviate I/R injury by activating the PI3K/Akt signaling pathway. PMID:26648122

  8. Phosphoinositide 3-kinase mediated signaling in lobster olfactory receptor neurons.

    PubMed

    Corey, Elizabeth A; Bobkov, Yuriy; Pezier, Adeline; Ache, Barry W

    2010-04-01

    In vertebrates and some invertebrates, odorant molecules bind to G protein-coupled receptors on olfactory receptor neurons (ORNs) to initiate signal transduction. Phosphoinositide 3-kinase (PI3K) activity has been implicated physiologically in olfactory signal transduction, suggesting a potential role for a G protein-coupled receptor-activated class I PI3K. Using isoform-specific antibodies, we identified a protein in the olfactory signal transduction compartment of lobster ORNs that is antigenically similar to mammalian PI3Kgamma and cloned a gene for a PI3K with amino acid homology with PI3Kbeta. The lobster olfactory PI3K co-immunoprecipitates with the G protein alpha and beta subunits, and an odorant-evoked increase in phosphatidylinositol (3,4,5)-trisphosphate can be detected in the signal transduction compartment of the ORNs. PI3Kgamma and beta isoform-specific inhibitors reduce the odorant-evoked output of lobster ORNs in vivo. Collectively, these findings provide evidence that PI3K is indeed activated by odorant receptors in lobster ORNs and further support the potential involvement of G protein activated PI3K signaling in olfactory transduction.

  9. Down-regulation of PKHD1 induces cell apoptosis through PI3K and NF-{kappa}B pathways

    SciTech Connect

    Sun, Liping; Wang, Shixuan; Hu, Chaofeng; Zhang, Xinzhou

    2011-04-15

    Mutations in PKHD1 (polycystic kidney and hepatic disease gene 1) gene cause the autosomal recessive polycystic kidney disease (ARPKD). Fibrocystin/polyductin (FPC), encoded by PKHD1, is a membrane-associated receptor-like protein. Although it is widely accepted that cystogenesis is mostly due to aberrant cell proliferation and apoptosis, it is still unclear how apoptosis is regulated. The aim of this study is to analyze the relationship among apoptosis, phosphatidylinositol 3-kinase (PI3K)/Akt and nuclear factor {kappa}B (NF-{kappa}B) in FPC knockdown kidney cells. We show that PKHD1-silenced HEK293 cells demonstrate a higher PI3K/Akt activity. Selective inhibition of PI3K/Akt using LY294002 or wortmannin in these cells increases serum starvation-induced HEK293 cell apoptosis with a concomitant decrease in cell proliferation and higher caspase-3 activity. PI3K/Akt inhibition also leads to increased NF-{kappa}B activity in these cells. We conclude that the PI3K/Akt pathway is involved in apoptotic function in PKHD1-silenced cells, and PI3K/Akt inhibition correlates with upregulation of NF-{kappa}B activity. These observations provide a potential platform for determining FPC function and therapeutic investigation of ARPKD.

  10. Insulin inhibits inflammation and promotes atherosclerotic plaque stability via PI3K-Akt pathway activation.

    PubMed

    Yan, Hao; Ma, Ying; Li, Yan; Zheng, Xiaohui; Lv, Ping; Zhang, Yuan; Li, Jia; Ma, Meijuan; Zhang, Le; Li, Congye; Zhang, Rongqing; Gao, Feng; Wang, Haichang; Tao, Ling

    2016-02-01

    Toll-like receptor (TLR) 4 induced inflammation was reported to play an important role in atherosclerotic plaque stability. Recent studies indicated that insulin could inhibit inflammation by activating phosphatidylinositol 3-kinase-Akt-dependent (PI3K-Akt) signaling pathway. In the current study, we hypothesized that insulin would inhibit TLR4 induced inflammation via promoting PI3K-Akt activation, thus enhancing the stabilization of atherosclerotic plaques. In order to mimic the process of plaque formation, monocyte-macrophage lineage RAW264.7 were cultured and induced to form foam cells by oxidized LDL (ox-LDL). Oil red O staining results showed that insulin significantly restrained ox-LDL-induced foam cell formation. Analysis of inflammatory reaction during foam cell formation indicated that insulin significantly down-regulated the expression of tumor necrosis factor (TNF)-α, interleukin (IL)-6 levels, inhibited TLR4, myeloid differentiation primary response gene (MyD) 88 and nuclear factor (NF)-κB. Further mechanism analysis showed that pretreating with the PI3K blocker, wortmannin dramatically dampened the insulin-induced up-regulation of pAkt expression. Additionally, blockade of PI3K-Akt signaling also dampened the immunosuppression effect brought by insulin. Following the construction of a rodent atherosclerosis model, pretreatment of insulin resulted in an evident decrease in lipid deposition of the blood vessel wall, serum levels of TNF-α and IL-6, and numbers of infiltrated macrophages and foam cells. Taken together, these results suggested that insulin might inhibit inflammation and promote atherosclerotic plaque stability via the PI3K-Akt pathway by targeting TLR4-MyD88-NF-κB signaling. Our findings may provide a potential target for the prevention of cardiovascular disease. PMID:26681144

  11. Metastatic function of BMP-2 in gastric cancer cells: The role of PI3K/AKT, MAPK, the NF-{kappa}B pathway, and MMP-9 expression

    SciTech Connect

    Kang, Myoung Hee; Oh, Sang Cheul; Kang, Han Na; Kim, Jung Lim; Kim, Jun Suk

    2011-07-15

    Bone morphogenetic proteins (BMPs) have been implicated in tumorigenesis and metastatic progression in various types of cancer cells, but the role and cellular mechanism in the invasive phenotype of gastric cancer cells is not known. Herein, we determined the roles of phosphoinositide 3-kinase (PI3K)/AKT, extracellular signal-regulated protein kinase (ERK), nuclear factor (NF)-{kappa}B, and matrix metalloproteinase (MMP) expression in BMP-2-mediated metastatic function in gastric cancer. We found that stimulation of BMP-2 in gastric cancer cells enhanced the phosphorylation of AKT and ERK. Accompanying activation of AKT and ERK kinase, BMP-2 also enhanced phosphorylation/degradation of I{kappa}B{alpha} and the nuclear translocation/activation of NF-{kappa}B. Interestingly, blockade of PI3K/AKT and ERK signaling using LY294002 and PD98059, respectively, significantly inhibited BMP-2-induced motility and invasiveness in association with the activation of NF-{kappa}B. Furthermore, BMP-2-induced MMP-9 expression and enzymatic activity was also significantly blocked by treatment with PI3K/AKT, ERK, or NF-{kappa}B inhibitors. Immunohistochemistry staining of 178 gastric tumor biopsies indicated that expression of BMP-2 and MMP-9 had a significant positive correlation with lymph node metastasis and a poor prognosis. These results indicate that the BMP-2 signaling pathway enhances tumor metastasis in gastric cancer by sequential activation of the PI3K/AKT or MAPK pathway followed by the induction of NF-{kappa}B and MMP-9 activity, indicating that BMP-2 has the potential to be a therapeutic molecular target to decrease metastasis.

  12. Modulation of PI3K-LXRα-dependent lipogenesis mediated by oxidative/nitrosative stress contributes to inhibition of HCV replication by quercetin.

    PubMed

    Pisonero-Vaquero, Sandra; García-Mediavilla, María V; Jorquera, Francisco; Majano, Pedro L; Benet, Marta; Jover, Ramiro; González-Gallego, Javier; Sánchez-Campos, Sonia

    2014-03-01

    There is experimental evidence that some antioxidant flavonoids show therapeutic potential in the treatment of hepatitis C through inhibition of hepatitis C virus (HCV) replication. We examined the effect of treatment with the flavonols quercetin and kaempferol, the flavanone taxifolin and the flavone apigenin on HCV replication efficiency in an in vitro model. While all flavonoids studied were able to reduce viral replication at very low concentrations (ranging from 0.1 to 5 μM), quercetin appeared to be the most effective inhibitor of HCV replication, showing a marked anti-HCV activity in replicon-containing cells when combined with interferon (IFN)α. The contribution of oxidative/nitrosative stress and lipogenesis modulation to inhibition of HCV replication by quercetin was also examined. As expected, quercetin decreased HCV-induced reactive oxygen and nitrogen species (ROS/RNS) generation and lipoperoxidation in replicating cells. Quercetin also inhibited liver X receptor (LXR)α-induced lipid accumulation in LXRα-overexpressing and replicon-containing Huh7 cells. The mechanism underlying the LXRα-dependent lipogenesis modulatory effect of quercetin in HCV-replicating cells seems to involve phosphatidylinositol 3-kinase (PI3K)/AKT pathway inactivation. Thus, inhibition of the PI3K pathway by LY294002 attenuated LXRα upregulation and HCV replication mediated by lipid accumulation, showing an additive effect when combined with quercetin. Inactivation of the PI3K pathway by quercetin may contribute to the repression of LXRα-dependent lipogenesis and to the inhibition of viral replication induced by the flavonol. Combined, our data suggest that oxidative/nitrosative stress blockage and subsequent modulation of PI3K-LXRα-mediated lipogenesis might contribute to the inhibitory effect of quercetin on HCV replication.

  13. Cinnamaldehyde affects the biological behavior of human colorectal cancer cells and induces apoptosis via inhibition of the PI3K/Akt signaling pathway.

    PubMed

    Li, Jiepin; Teng, Yuhao; Liu, Shenlin; Wang, Zifan; Chen, Yan; Zhang, Yingying; Xi, Songyang; Xu, Song; Wang, Ruiping; Zou, Xi

    2016-03-01

    Cinnamaldehyde (CA) is a bioactive compound isolated from the stem bark of Cinnamomum cassia, that has been identified as an antiproliferative substance with pro-apoptotic effects on various cancer cell lines in vitro. In the present study, the effects of CA on human colon cancer cells were investigated at both the molecular and cellular levels. Three types of colorectal cancer cells at various stages of differentiation and invasive ability (SW480, HCT116 and LoVo) were treated with CA at final concentrations of 20, 40 and 80 µg/ml for 24 h. Compared with the control group, the proliferation inhibition rate of the human colorectal cancer cells following treatment with CA increased in a dose- and time-dependent manner. The invasion and adhesion abilities of the cells were significantly inhibited as indicated by Transwell and cell-matrix adhesion assays. Meanwhile, CA also upregulated the expression of E-cadherin and downregulated the expression of matrix metalloproteinase-2 (MMP-2) and MMP-9. CA also elevated the apoptotic rate. The levels of pro-apoptotic genes were upregulated while the levels of apoptosis inhibitory genes were decreased which further confirmed the pro-apoptotic effect of CA. In order to explore the mechanism of CA-induced apoptosis, insulin-like growth factor-1 (IGF-1) and PI3K inhibitor (LY294002) were used to regulate the phosphoinositide 3-kinase (PI3K)/AKT pathway. The transcription activity of PI3K/AKT was markedly inhibited by CA, as well as IGF-1 which functions as an anti-apoptotic factor. In conclusion, CA has the potential to be developed as a new antitumor drug. The mechanisms of action involve the regulation of expression of genes involved in apoptosis, invasion and adhesion via inhibition of the PI3K/Akt signaling pathway. PMID:26677144

  14. Dual inhibition of CDK4/Rb and PI3K/AKT/mTOR pathways by ON123300 induces synthetic lethality in mantle cell lymphomas.

    PubMed

    Divakar, S K A; Ramana Reddy, M V; Cosenza, S C; Baker, S J; Perumal, D; Antonelli, A C; Brody, J; Akula, B; Parekh, S; Reddy, E Premkumar

    2016-01-01

    This study describes the characterization of a novel kinase inhibitor, ON123300, which inhibits CDK4/6 (cyclin-dependent kinases 4 and 6) and phosphatidylinositol 3 kinase-δ (PI3K-δ) and exhibits potent activity against mantle cell lymphomas (MCLs) both in vitro and in vivo. We examined the effects of PD0332991 and ON123300 on cell cycle progression, modulation of the retinoblastoma (Rb) and PI3K/AKT pathways, and the induction of apoptosis in MCL cell lines and patient-derived samples. When Granta 519 and Z138C cells were incubated with PD0332991 and ON123300, both compounds were equally efficient in their ability to inhibit the phosphorylation of Rb family proteins. However, only ON123300 inhibited the phosphorylation of proteins associated with the PI3K/AKT pathway. Cells treated with PD0332991 rapidly accumulated in the G0/G1 phase of cell cycle as a function of increasing concentration. Although ON123300-treated cells arrested similarly at lower concentrations, higher concentrations resulted in the induction of apoptosis, which was not observed in PD0332991-treated samples. Mouse xenograft assays also showed a strong inhibition of MCL tumor growth in ON123300-treated animals. Finally, treatment of ibrutinib-sensitive and -resistant patient-derived MCLs with ON123300 also triggered apoptosis and inhibition of the Rb and PI3K/AKT pathways, suggesting that this compound might be an effective agent in MCL, including ibrutinib-resistant forms of the disease. PMID:26174628

  15. Bone marrow-derived mesenchymal stem cells enhance autophagy via PI3K/AKT signalling to reduce the severity of ischaemia/reperfusion-induced lung injury

    PubMed Central

    Li, Jing; Zhou, Jian; Zhang, Dan; Song, Yuanlin; She, Jun; Bai, Chunxue

    2015-01-01

    Autophagy, a type II programmed cell death, is essential for cell survival under stress, e.g. lung injury, and bone marrow-derived mesenchymal stem cells (BM-MSCs) have great potential for cell therapy. However, the mechanisms underlying the BM-MSC activation of autophagy to provide a therapeutic effect in ischaemia/reperfusion-induced lung injury (IRI) remain unclear. Thus, we investigate the activation of autophagy in IRI following transplantation with BM-MSCs. Seventy mice were pre-treated with BM-MSCs before they underwent lung IRI surgery in vivo. Human pulmonary micro-vascular endothelial cells (HPMVECs) were pre-conditioned with BM-MSCs by oxygen-glucose deprivation/reoxygenation (OGD) in vitro. Expression markers for autophagy and the phosphoinositide 3-kinase/protein kinase B (PI3K/Akt) signalling pathway were analysed. In IRI-treated mice, administration of BM-MSCs significantly attenuated lung injury and inflammation, and increased the level of autophagy. In OGD-treated HPMVECs, co-culture with BM-MSCs attenuated endothelial permeability by decreasing the level of cell death and enhanced autophagic activation. Moreover, administration of BM-MSCs decreased the level of PI3K class I and p-Akt while the expression of PI3K class III was increased. Finally, BM-MSCs-induced autophagic activity was prevented using the inhibitor LY294002. Administration of BM-MSCs attenuated lung injury by improving the autophagy level via the PI3K/Akt signalling pathway. These findings provide further understanding of the mechanisms related to BM-MSCs and will help to develop new cell-based therapeutic strategies in lung injury. PMID:26177266

  16. Cinnamaldehyde affects the biological behavior of human colorectal cancer cells and induces apoptosis via inhibition of the PI3K/Akt signaling pathway.

    PubMed

    Li, Jiepin; Teng, Yuhao; Liu, Shenlin; Wang, Zifan; Chen, Yan; Zhang, Yingying; Xi, Songyang; Xu, Song; Wang, Ruiping; Zou, Xi

    2016-03-01

    Cinnamaldehyde (CA) is a bioactive compound isolated from the stem bark of Cinnamomum cassia, that has been identified as an antiproliferative substance with pro-apoptotic effects on various cancer cell lines in vitro. In the present study, the effects of CA on human colon cancer cells were investigated at both the molecular and cellular levels. Three types of colorectal cancer cells at various stages of differentiation and invasive ability (SW480, HCT116 and LoVo) were treated with CA at final concentrations of 20, 40 and 80 µg/ml for 24 h. Compared with the control group, the proliferation inhibition rate of the human colorectal cancer cells following treatment with CA increased in a dose- and time-dependent manner. The invasion and adhesion abilities of the cells were significantly inhibited as indicated by Transwell and cell-matrix adhesion assays. Meanwhile, CA also upregulated the expression of E-cadherin and downregulated the expression of matrix metalloproteinase-2 (MMP-2) and MMP-9. CA also elevated the apoptotic rate. The levels of pro-apoptotic genes were upregulated while the levels of apoptosis inhibitory genes were decreased which further confirmed the pro-apoptotic effect of CA. In order to explore the mechanism of CA-induced apoptosis, insulin-like growth factor-1 (IGF-1) and PI3K inhibitor (LY294002) were used to regulate the phosphoinositide 3-kinase (PI3K)/AKT pathway. The transcription activity of PI3K/AKT was markedly inhibited by CA, as well as IGF-1 which functions as an anti-apoptotic factor. In conclusion, CA has the potential to be developed as a new antitumor drug. The mechanisms of action involve the regulation of expression of genes involved in apoptosis, invasion and adhesion via inhibition of the PI3K/Akt signaling pathway.

  17. PI3K{gamma} activation by CXCL12 regulates tumor cell adhesion and invasion

    SciTech Connect

    Monterrubio, Maria; Mellado, Mario; Carrera, Ana C.

    2009-10-16

    Tumor dissemination is a complex process, in which certain steps resemble those in leukocyte homing. Specific chemokine/chemokine receptor pairs have important roles in both processes. CXCL12/CXCR4 is the most commonly expressed chemokine/chemokine receptor pair in human cancers, in which it regulates cell adhesion, extravasation, metastatic colonization, angiogenesis, and proliferation. All of these processes require activation of signaling pathways that include G proteins, phosphatidylinositol-3 kinase (PI3K), JAK kinases, Rho GTPases, and focal adhesion-associated proteins. We analyzed these pathways in a human melanoma cell line in response to CXCL12 stimulation, and found that PI3K{gamma} regulates tumor cell adhesion through mechanisms different from those involved in cell invasion. Our data indicate that, following CXCR4 activation after CXCL12 binding, the invasion and adhesion processes are regulated differently by distinct downstream events in these signaling cascades.

  18. The PI3K/Akt Pathway in Tumors of Endocrine Tissues

    PubMed Central

    Robbins, Helen Louise; Hague, Angela

    2016-01-01

    The phosphatidylinositol 3-kinase (PI3K)/Akt pathway is a key driver in carcinogenesis. Defects in this pathway in human cancer syndromes such as Cowden’s disease and Multiple Endocrine Neoplasia result in tumors of endocrine tissues, highlighting its importance in these cancer types. This review explores the growing evidence from multiple animal and in vitro models and from analysis of human tumors for the involvement of this pathway in the following: thyroid carcinoma subtypes, parathyroid carcinoma, pituitary tumors, adrenocortical carcinoma, phaeochromocytoma, neuroblastoma, and gastroenteropancreatic neuroendocrine tumors. While data are not always consistent, immunohistochemistry performed on human tumor tissue has been used alongside other techniques to demonstrate Akt overactivation. We review active Akt as a potential prognostic marker and the PI3K pathway as a therapeutic target in endocrine neoplasia. PMID:26793165

  19. Ganoderma atrum polysaccharide improves aortic relaxation in diabetic rats via PI3K/Akt pathway.

    PubMed

    Zhu, Ke-Xue; Nie, Shao-Ping; Li, Chuan; Gong, Deming; Xie, Ming-Yong

    2014-03-15

    A newly identified polysaccharide (PSG-1) has been purified from Ganoderma atrum. The study was to investigate the protective effect of PSG-1 on diabetes-induced endothelial dysfunction in rat aorta. Rats were fed a high fat diet for 8 weeks and then injected with a low dose of streptozotocin to induce type 2 diabetes. The diabetic rats were orally treated with PSG-1 for 4 weeks. It was found that administration of PSG-1 significantly reduced levels of fasting blood glucose, improved endothelium-dependent aortic relaxation, increased levels of phosphoinositide 3-kinase (PI3K), phospho-Akt (p-Akt), endothelial nitric oxide synthase (eNOS) and nitric oxide in the aorta from diabetic rats, compared to un-treated diabetics. These results suggested that the protective effects of PSG-1 against endothelial dysfunction may be related to activation of the PI3K/Akt/eNOS pathway.

  20. An IκBα phosphorylation inhibitor induces heme oxygenase-1(HO-1) expression through the activation of reactive oxygen species (ROS)-Nrf2-ARE signaling and ROS-PI3K/Akt signaling in an NF-κB-independent mechanism.

    PubMed

    Min, Kyoung-jin; Lee, Jung Tae; Joe, Eun-hye; Kwon, Taeg Kyu

    2011-09-01

    Reactive oxygen species (ROS) are important signaling molecules in cells. Excessive ROS induce expression of inflammatory mediators, such as iNOS and COX2. Antioxidant enzymes, such as, heme oxygenase-1 (HO-1), tightly regulate ROS levels within cells. Here, we show that Bay 11-7082 (Bay) increased HO-1 mRNA and protein expression in human colon cancer HT29 cells. Bay induced translocation of NF-E2-related factor 2 (Nrf2) into nuclei and increased the binding activity of the antioxidant response element (ARE). In addition, PI3K/Akt inhibitor (LY294002) blocked Bay-induced HO-1 expression. Pretreatment with anti-oxidants (N-acetylcysteine (NAC) or glutathione) significantly reduced Bay-induced HO-1 mRNA/protein expression, nuclear translocation of Nrf2 and phosphorylation of Akt. However, PI3K/Akt signaling was independent of Bay-induced Nrf2 translocation and ARE binding activity. Furthermore, other NF-κB inhibitors, such as pyrrolidine dithiocarbamate (PDTC) and MG132, also increased HO-1 mRNA and protein expression. However, although overexpression of dominant negative inhibitory κB (IκB) reduced NF-κB-driven transcriptional activity, IκB overexpression did not increase HO-1 expression. Taken together, our results suggest that in human colon cancer HT29 cells, Bay induces HO-1 expression by increasing ROS production in an Nrf2-ARE and PI3K dependent manner, but Bay acts independently of NF-κB.

  1. Fangchinoline targets PI3K and suppresses PI3K/AKT signaling pathway in SGC7901 cells

    PubMed Central

    TIAN, FENG; DING, DING; LI, DANDAN

    2015-01-01

    Fangchinoline, an important compound in Stephania tetrandra S. Moore, as a novel antitumor agent, has been implicated in several types of cancers cells except gastric cancer. To investigate whether fangchinoline affects gastric cancer cells, we detected the signaling pathway by which fangchinoline plays a role in different human gastric cancer cells lines. We found that fangchinoline effectively suppressed proliferation and invasion of SGC7901 cell lines, but not MKN45 cell lines by inhibiting the expression of PI3K and its downstream pathway. All of the Akt/MMP2/MMP9 pathway, Akt/Bad pathway, and Akt/Gsk3β/CDK2 pathway could be inhibited by fangchinoline through inhibition of PI3K. Taken together, these results suggest that fangchinoline targets PI3K in tumor cells that express PI3K abundantly and inhibits the growth and invasive ability of the tumor cells. PMID:25872479

  2. Fangchinoline targets PI3K and suppresses PI3K/AKT signaling pathway in SGC7901 cells.

    PubMed

    Tian, Feng; Ding, Ding; Li, Dandan

    2015-01-01

    Fangchinoline, an important compound in Stephania tetrandra S. Moore, as a novel antitumor agent, has been implicated in several types of cancers cells except gastric cancer. To investigate whether fangchinoline affects gastric cancer cells, we detected the signaling pathway by which fangchinoline plays a role in different human gastric cancer cells lines. We found that fangchinoline effectively suppressed proliferation and invasion of SGC7901 cell lines, but not MKN45 cell lines by inhibiting the expression of PI3K and its downstream pathway. All of the Akt/MMP2/MMP9 pathway, Akt/Bad pathway, and Akt/Gsk3β/CDK2 pathway could be inhibited by fangchinoline through inhibition of PI3K. Taken together, these results suggest that fangchinoline targets PI3K in tumor cells that express PI3K abundantly and inhibits the growth and invasive ability of the tumor cells. PMID:25872479

  3. Activation of PI3K signaling prevents aminoglycoside-induced hair cell death in the murine cochlea.

    PubMed

    Jadali, Azadeh; Kwan, Kelvin Y

    2016-01-01

    Loss of sensory hair cells of the inner ear due to aminoglycoside exposure is a major cause of hearing loss. Using an immortalized multipotent otic progenitor (iMOP) cell line, specific signaling pathways that promote otic cell survival were identified. Of the signaling pathways identified, the PI3K pathway emerged as a strong candidate for promoting hair cell survival. In aging animals, components for active PI3K signaling are present but decrease in hair cells. In this study, we determined whether activated PI3K signaling in hair cells promotes survival. To activate PI3K signaling in hair cells, we used a small molecule inhibitor of PTEN or genetically ablated PTEN using a conditional knockout animal. Hair cell survival was challenged by addition of gentamicin to cochlear cultures. Hair cells with activated PI3K signaling were more resistant to aminoglycoside-induced hair cell death. These results indicate that increased PI3K signaling in hair cells promote survival and the PI3K signaling pathway is a target for preventing aminoglycoside-induced hearing loss.

  4. Activation of PI3K signaling prevents aminoglycoside-induced hair cell death in the murine cochlea

    PubMed Central

    Jadali, Azadeh

    2016-01-01

    ABSTRACT Loss of sensory hair cells of the inner ear due to aminoglycoside exposure is a major cause of hearing loss. Using an immortalized multipotent otic progenitor (iMOP) cell line, specific signaling pathways that promote otic cell survival were identified. Of the signaling pathways identified, the PI3K pathway emerged as a strong candidate for promoting hair cell survival. In aging animals, components for active PI3K signaling are present but decrease in hair cells. In this study, we determined whether activated PI3K signaling in hair cells promotes survival. To activate PI3K signaling in hair cells, we used a small molecule inhibitor of PTEN or genetically ablated PTEN using a conditional knockout animal. Hair cell survival was challenged by addition of gentamicin to cochlear cultures. Hair cells with activated PI3K signaling were more resistant to aminoglycoside-induced hair cell death. These results indicate that increased PI3K signaling in hair cells promote survival and the PI3K signaling pathway is a target for preventing aminoglycoside-induced hearing loss. PMID:27142333

  5. TDRG1 functions in testicular seminoma are dependent on the PI3K/Akt/mTOR signaling pathway

    PubMed Central

    Wang, Yong; Gan, Yu; Tan, Zhengyu; Zhou, Jun; Kitazawa, Riko; Jiang, Xianzhen; Tang, Yuxin; Yang, Jianfu

    2016-01-01

    Human testis development-related gene 1 (TDRG1) is a recently identified gene that is expressed exclusively in the testes and promotes the development of testicular germ cell tumors. In this study, the role of TDRG1 in the development of testicular seminoma, which is the most common testicular germ cell tumor, was further investigated. Based on polymerase chain reaction, Western blotting, and immunohistochemistry tests, both gene and protein expression levels of TDRG1 were significantly upregulated in testicular seminoma tissues compared with normal testicular tissues. Additionally, the levels of phosphoinositide-3 kinase (PI3K)/p110 and Akt phosphorylation were dramatically upregulated in testicular seminoma tissues. Accordingly, in our cell experiment, seminoma TCam-2 cells were subjected to different treatments: the TDRG1 knockout, TDRG1 overexpression, PI3K inhibition (LY294002 administration), or PI3K activation (insulin-like growth factor-1 administration). Cell proliferation, the proliferation index, apoptosis rate, cell adhesive capacity, and cell invasion capability were assessed. Cells with both TDRG1 knockout and PI3K inhibition exhibited decreased cell proliferation, proliferation indexes, cell adhesion capacity, and cell invasion capability and increased apoptosis rates. Most of these effects were reversed by TDRG1 overexpression or PI3K activation, indicating that both TDRG1- and PI3K-mediated signaling promote proliferation and invasion of testicular seminoma cells. The knockout of TDRG1 significantly decreased the phosphorylation levels of PI3K/p85, PI3K/p110, Akt, and mammalian target of rapamycin (mTOR; Ser2448). Except for PI3K/p110, TDRG1 overexpression had the opposite effects on phosphorylation levels. Phosphorylated mTOR at Ser2481 and Thr2446 was not affected by TDRG1 or PI3K in our tests. Thus, these results indicate that TDRG1 promotes the development and migration of seminoma cells via the regulation of the PI3K/Akt/mTOR signaling pathway

  6. An integrin-targeted, pan-isoform, phosphoinositide-3 kinase inhibitor, SF1126, has activity against multiple myeloma in vivo

    PubMed Central

    De, Pradip; Dey, Nandini; Terakedis, Breanne; Bersagel, Leif; Li, Zhi Hua; Mahadevan, Daruka; Garlich, Joseph R.; Trudel, Suzanne; Makale, Milan T.; Durden, Donald L.

    2013-01-01

    Purpose Multiple reports point to an important role for the phosphoinositide-3 kinase (PI3K) and AKT signaling pathways in tumor survival and chemoresistance in multiple myeloma (MM). The goals of our study were: (1) to generate the preclinical results necessary to justify a Phase I clinical trial of SF1126 in hematopoietic malignancies including multiple myeloma, and (2) to begin combining pan PI-3 kinase inhibitors with other agents to augment antitumor activity of this class of agent in preparation for combination therapy in Phase I/II trials. Methods We determined the in vitro activity of SF1126 with16 human MM cell lines. In vivo tumor growth suppression was determined with human myeloma (MM.1R) xenografts in athymic mice. In addition, we provide evidence that SF1126 has pharmacodynamic activity in the treatment of patients with MM. Results SF1126 was cytotoxic to all tested MM lines and potency was augmented by the addition of bortezomib. SF1126 affected MM.1R cell line signaling in vitro, inhibiting phospho-AKT, phospho-ERK, and the hypoxic stabilization of HIF1α. Tumor growth was 94% inhibited, with a marked decrease in both cellular proliferation (PCNA immunostaining) and angiogenesis (tumor microvessel density via CD31 immunostaining). Our clinical results demonstrate pharmacodynamic knockdown of p-AKT in primary patient derived MM tumor cells in vivo. Conclusions Our results establish three important points: (1) SF1126, a pan PI-3 kinase inhibitor has potent antitumor activity against multiple myeloma in vitro and in vivo, (2) SF1126 displays augmented antimyeloma activity when combined with proteasome inhibitor, bortezomib/Velcade®, and (3) SF1126 blocks the IGF-1 induced activation of AKT in primary MM tumor cells isolated from SF1126 treated patients The results support the ongoing early Phase I clinical trial in MM and suggest a future Phase I trial in combination with bortezomib in hematopoietic malignancies. PMID:23355037

  7. PI3K/Akt activity has variable cell-specific effects on expression of HIF target genes, CA9 and VEGF, in human cancer cell lines.

    PubMed

    Shafee, Norazizah; Kaluz, Stefan; Ru, Ning; Stanbridge, Eric J

    2009-09-01

    The phosphatidylinositol 3-kinase/Akt (PI3K) pathway regulates hypoxia-inducible factor (HIF) activity. Higher expression of HIF-1alpha and carbonic anhydrase IX (CAIX), a hypoxia-inducible gene, in HT10806TG fibrosarcoma cells (mutant N-ras allele), compared to derivative MCH603 cells (deleted mutant N-ras allele), correlated with increased PI3K activity. Constitutive activation of the PI3K pathway in MCH603/PI3K(act) cells increased HIF-1alpha but, surprisingly, decreased CAIX levels. The cell-type specific inhibitory effect on CAIX was confirmed at the transcriptional level whereas epigenetic modifications of CA9 were ruled out. In summary, our data do not substantiate the generalization that PI3K upregulation leads to increased HIF activity. PMID:19342157

  8. Blocking the PI3K/AKT pathway enhances mammalian reovirus replication by repressing IFN-stimulated genes

    PubMed Central

    Tian, Jin; Zhang, Xiaozhan; Wu, Hongxia; Liu, Chunguo; Li, Zhijie; Hu, Xiaoliang; Su, Shuo; Wang, Lin-Fa; Qu, Liandong

    2015-01-01

    Many host cellular signaling pathways were activated and exploited by virus infection for more efficient replication. The PI3K/Akt pathway has recently attracted considerable interest due to its role in regulating virus replication. This study demonstrated for the first time that the mammalian reovirus strains Masked Palm Civet/China/2004 (MPC/04) and Bat/China/2003 (B/03) can induce transient activation of the PI3K/Akt pathway early in infection in vitro. When UV-treated, both viruses activated PI3K/Akt signaling, indicating that the virus/receptor interaction was sufficient to activate PI3K/Akt. Reovirus virions can use both clathrin- and caveolae-mediated endocytosis, but only chlorpromazine, a specific inhibitor of clathrin-mediated endocytosis, or siRNA targeting clathrin suppressed Akt phosphorylation. We also identified the upstream molecules of the PI3K pathway. Virus infection induced phosphorylation of focal adhesion kinase (FAK) but not Gab1, and blockage of FAK phosphorylation suppressed Akt phosphorylation. Blockage of PI3K/Akt activation increased virus RNA synthesis and viral yield. We also found that reovirus infection activated the IFN-stimulated response element (ISRE) in an interferon-independent manner and up-regulated IFN-stimulated genes (ISGs) via the PI3K/Akt/EMSY pathway. Suppression of PI3K/Akt activation impaired the induction of ISRE and down-regulated the expression of ISGs. Overexpression of ISG15 and Viperin inhibited virus replication, and knockdown of either enhanced virus replication. Collectively, these results demonstrate that PI3K/Akt activated by mammalian reovirus serves as a pathway for sensing and then inhibiting virus replication/infection. PMID:26388843

  9. Regulation of the PI3K pathway through a p85α monomer–homodimer equilibrium | Office of Cancer Genomics

    Cancer.gov

    The canonical action of the p85α regulatory subunit of phosphatidylinositol 3-kinase (PI3K) is to associate with the p110α catalytic subunit to allow stimuli-dependent activation of the PI3K pathway. We elucidate a p110α-independent role of homodimerized p85α in the positive regulation of PTEN stability and activity. p110α-free p85α homodimerizes via two intermolecular interactions (SH3:proline-rich region and BH:BH) to selectively bind unphosphorylated activated PTEN.

  10. Nuclear PI3K signaling in cell growth and tumorigenesis

    PubMed Central

    Davis, William J.; Lehmann, Peter Z.; Li, Weimin

    2015-01-01

    The PI3K/Akt signaling pathway is a major driving force in a variety of cellular functions. Dysregulation of this pathway has been implicated in many human diseases including cancer. While the activity of the cytoplasmic PI3K/Akt pathway has been extensively studied, the functions of these molecules and their effector proteins within the nucleus are poorly understood. Harboring key cellular processes such as DNA replication and repair as well as nascent messenger RNA transcription, the nucleus provides a unique compartmental environment for protein–protein and protein–DNA/RNA interactions required for cell survival, growth, and proliferation. Here we summarize recent advances made toward elucidating the nuclear PI3K/Akt signaling cascade and its key components within the nucleus as they pertain to cell growth and tumorigenesis. This review covers the spatial and temporal localization of the major nuclear kinases having PI3K activities and the counteracting phosphatases as well as the role of nuclear PI3K/Akt signaling in mRNA processing and exportation, DNA replication and repair, ribosome biogenesis, cell survival, and tumorigenesis. PMID:25918701

  11. Apoptosis Induction of Human Prostate Carcinoma DU145 Cells by Diallyl Disulfide via Modulation of JNK and PI3K/AKT Signaling Pathways

    PubMed Central

    Shin, Dong Yeok; Kim, Gi-Young; Lee, Jun Hyuk; Choi, Byung Tae; Yoo, Young Hyun; Choi, Yung Hyun

    2012-01-01

    Diallyl disulfide (DADS), a sulfur compound derived from garlic, has various biological properties, such as anticancer, antiangiogenic and anti-inflammatory effects. However, the mechanisms of action underlying the compound’s anticancer activity have not been fully elucidated. In this study, the apoptotic effects of DADS were investigated in DU145 human prostate carcinoma cells. Our results showed that DADS markedly inhibited the growth of the DU145 cells by induction of apoptosis. Apoptosis was accompanied by modulation of Bcl-2 and inhibitor of apoptosis protein (IAP) family proteins, depolarization of the mitochondrial membrane potential (MMP, ΔΨm) and proteolytic activation of caspases. We also found that the expression of death-receptor 4 (DR4) and Fas ligand (FasL) proteins was increased and that the level of intact Bid proteins was down-regulated by DADS. Moreover, treatment with DADS induced phosphorylation of mitogen-activated protein kinases (MAPKs), including extracellular-signal regulating kinase (ERK), p38 MAPK and c-Jun N-terminal kinase (JNK). A specific JNK inhibitor, SP600125, significantly blocked DADS-induced-apoptosis, whereas inhibitors of the ERK (PD98059) and p38 MAPK (SB203580) had no effect. The induction of apoptosis was also accompanied by inactivation of phosphatidylinositol 3-kinase (PI3K)/Akt and the PI3K inhibitor LY29004 significantly increased DADS-induced cell death. These findings provide evidence demonstrating that the proapoptotic effect of DADS is mediated through the activation of JNK and the inhibition of the PI3K/Akt signaling pathway in DU145 cells. PMID:23203057

  12. Therapeutic ultrasound reverses peripheral ischemia in type 2 diabetic mice through PI3K-Akt-eNOS pathway

    PubMed Central

    Lu, Zhao-Yang; Li, Rui-Lin; Zhou, Hong-Sheng; Huang, Jing-Juan; Su, Zhi-Xiao; Qi, Jia; Zhang, Lan; Li, Yue; Shi, Yi-Qin; Hao, Chang-Ning; Duan, Jun-Li

    2016-01-01

    Therapeutic ultrasound (TUS) has been demonstrated to improve endothelial nitric oxide synthase (eNOS) activity, which played a crucial role in the regulation of angiogenesis. Diabetes Mellitus (DM) impairs eNOS activity. We tested the hypothesis that DM may retard unilateral hindlimb ischemia-induced angiogenesis by inhibiting eNOS in high-fat diet (HFD)/streptozocin (STZ) induced diabetic mice, and that TUS may reverse DM-related impairment of angiogenesis. C57BL/6 mice were allocated to four groups: (A) mice were fed standard diet (control); (B) mice were fed standard diet and treated with TUS (control+TUS); (C) type-2 DM mice were induced by HFD/STZ (diabetic); and (D) type-2 DM mice and treated with TUS (dabetic+TUS). All mice were surgically induced unilateral limb ischemia. The ischemic skeletal muscles in groups B and D were irradiated with extracorporeal TUS for 9 minutes/day (frequency of 1 MHz, intensity of 0.3 W/cm2) for 14 consecutive days. The result showed that TUS augmented the blood perfusion, increased capillary density accompanied by an upregulation of angiogenic factors and a downregulation of apoptotic proteins in group D relative to group C. In vitro, TUS inhibited the apoptosis, promoted tubule formation, proliferation and migration capacities, increased angiogenic factors expression and reduced apoptotic protein levels in human umbilical vein endothelial cells (HUVECs). Furthermore, TUS can robust reverse the inhibiting effect induced by high glucose (HG) on HUVECs, and these benefits could be blocked by phosphoinositide 3-kinase (PI3K) inhibitor (LY294002) or eNOS inhibitor (L-NAME). Together, TUS restored type-2 DM-mediated inhibition of ischemia-induced angiogenesis, partially via PI3K-Akt-eNOS signal pathway. PMID:27725849

  13. Erythropoietin-mediated protection of insect brain neurons involves JAK and STAT but not PI3K transduction pathways.

    PubMed

    Miljus, N; Heibeck, S; Jarrar, M; Micke, M; Ostrowski, D; Ehrenreich, H; Heinrich, R

    2014-01-31

    The cytokine erythropoietin (Epo) initiates adaptive cellular responses to both moderate environmental challenges and tissue damaging insults in various non-hematopoietic mammalian tissues including the nervous system. Neuroprotective and neuroregenerative functions of Epo in mammals are mediated through receptor-associated Janus kinase 2 and intracellular signaling cascades that modify the transcription of Epo-regulated genes. Signal transducers and activators of transcription (STAT) and phosphoinositol-3-kinase (PI3K) represent key components of two important Epo-induced transduction pathways. Our previous study on insects revealed neuroprotective and regenerative functions of recombinant human Epo (rhEpo) similar to those in mammalian nervous tissues. Here we demonstrate that rhEpo effectively rescues primary cultured locust brain neurons from apoptotic cell death induced by hypoxia or the chemical compound H-7. The Janus kinase inhibitor AG-490 and the STAT inhibitor sc-355797 abolished protective effects of rhEpo on locust brain neurons. In contrast, inhibition of PI3K with LY294002 had no effect on rhEpo-mediated neuroprotection. The results indicate that rhEpo mediates the protection of locust brain neurons through interference with apoptotic pathways by the activation of a Janus kinase-associated receptor and STAT transcription factor(s). The involvement of similar transduction pathways in mammals and insects for the mediation of neuroprotection and support of neural regeneration by Epo indicates that an Epo/Epo receptor-like signaling system with high structural and functional similarity exists in both groups of animals. Epo-like signaling involved in tissue protection appears to be an ancient beneficial function shared by vertebrates and invertebrates. PMID:24269933

  14. Dual PI-3 kinase/mTOR inhibition impairs autophagy flux and induces cell death independent of apoptosis and necroptosis.

    PubMed

    Button, Robert W; Vincent, Joseph H; Strang, Conor J; Luo, Shouqing

    2016-02-01

    The PI-3 kinase (PI-3K)/mTOR pathway is critical for cell growth and proliferation. Strategies of antagonising this signaling have proven to be detrimental to cell survival. This observation, coupled with the fact many tumours show enhanced growth signaling, has caused dual inhibitors of PI-3K and mTOR to be implicated in cancer treatment, and have thus been studied across various tumour models. Since PI-3K (class-I)/mTOR pathway negatively regulates autophagy, dual inhibitors of PI-3K/mTOR are currently believed to be autophagy activators. However, our present data show that the dual PI-3K/mTOR inhibition (DKI) potently suppresses autophagic flux. We further confirm that inhibition of Vps34/PI3KC3, the class-III PI-3K, causes the blockade to autophagosome-lysosome fusion. Our data suggest that DKI induces cell death independently of apoptosis and necroptosis, whereas autophagy perturbation by DKI may contribute to cell death. Given that autophagy is critical in cellular homeostasis, our study not only clarifies the role of a dual PI-3K/mTOR inhibitor in autophagy, but also suggests that its autophagy inhibition needs to be considered if such an agent is used in cancer chemotherapy.

  15. Dual PI-3 kinase/mTOR inhibition impairs autophagy flux and induces cell death independent of apoptosis and necroptosis

    PubMed Central

    Button, Robert W.; Vincent, Joseph H.; Strang, Conor J.; Luo, Shouqing

    2016-01-01

    The PI-3 kinase (PI-3K)/mTOR pathway is critical for cell growth and proliferation. Strategies of antagonising this signaling have proven to be detrimental to cell survival. This observation, coupled with the fact many tumours show enhanced growth signaling, has caused dual inhibitors of PI-3K and mTOR to be implicated in cancer treatment, and have thus been studied across various tumour models. Since PI-3K (class-I)/mTOR pathway negatively regulates autophagy, dual inhibitors of PI-3K/mTOR are currently believed to be autophagy activators. However, our present data show that the dual PI-3K/mTOR inhibition (DKI) potently suppresses autophagic flux. We further confirm that inhibition of Vps34/PI3KC3, the class-III PI-3K, causes the blockade to autophagosome-lysosome fusion. Our data suggest that DKI induces cell death independently of apoptosis and necroptosis, whereas autophagy perturbation by DKI may contribute to cell death. Given that autophagy is critical in cellular homeostasis, our study not only clarifies the role of a dual PI-3K/mTOR inhibitor in autophagy, but also suggests that its autophagy inhibition needs to be considered if such an agent is used in cancer chemotherapy. PMID:26814436

  16. PI3K-C2γ is a Rab5 effector selectively controlling endosomal Akt2 activation downstream of insulin signalling

    PubMed Central

    Braccini, Laura; Ciraolo, Elisa; Campa, Carlo C.; Perino, Alessia; Longo, Dario L.; Tibolla, Gianpaolo; Pregnolato, Marco; Cao, Yanyan; Tassone, Beatrice; Damilano, Federico; Laffargue, Muriel; Calautti, Enzo; Falasca, Marco; Norata, Giuseppe D.; Backer, Jonathan M.; Hirsch, Emilio

    2015-01-01

    In the liver, insulin-mediated activation of the phosphatidylinositol 3-kinase (PI3K)/Akt pathway is at the core of metabolic control. Multiple PI3K and Akt isoenzymes are found in hepatocytes and whether isoform-selective interplays exist is currently unclear. Here we report that insulin signalling triggers the association of the liver-specific class II PI3K isoform γ (PI3K-C2γ) with Rab5-GTP, and its recruitment to Rab5-positive early endosomes. In these vesicles, PI3K-C2γ produces a phosphatidylinositol-3,4-bisphosphate pool specifically required for delayed and sustained endosomal Akt2 stimulation. Accordingly, loss of PI3K-C2γ does not affect insulin-dependent Akt1 activation as well as S6K and FoxO1-3 phosphorylation, but selectively reduces Akt2 activation, which specifically inhibits glycogen synthase activity. As a consequence, PI3K-C2γ-deficient mice display severely reduced liver accumulation of glycogen and develop hyperlipidemia, adiposity as well as insulin resistance with age or after consumption of a high-fat diet. Our data indicate PI3K-C2γ supports an isoenzyme-specific forking of insulin-mediated signal transduction to an endosomal pool of Akt2, required for glucose homeostasis. PMID:26100075

  17. A genomewide overexpression screen identifies genes involved in the phosphatidylinositol 3-kinase pathway in the human protozoan parasite Entamoeba histolytica.

    PubMed

    Koushik, Amrita B; Welter, Brenda H; Rock, Michelle L; Temesvari, Lesly A

    2014-03-01

    Entamoeba histolytica is a protozoan parasite that causes amoebic dysentery and liver abscess. E. histolytica relies on motility, phagocytosis, host cell adhesion, and proteolysis of extracellular matrix for virulence. In eukaryotic cells, these processes are mediated in part by phosphatidylinositol 3-kinase (PI3K) signaling. Thus, PI3K may be critical for virulence. We utilized a functional genomics approach to identify genes whose products may operate in the PI3K pathway in E. histolytica. We treated a population of trophozoites that were overexpressing genes from a cDNA library with a near-lethal dose of the PI3K inhibitor wortmannin. This screen was based on the rationale that survivors would be overexpressing gene products that directly or indirectly function in the PI3K pathway. We sequenced the overexpressed genes in survivors and identified a cDNA encoding a Rap GTPase, a protein previously shown to participate in the PI3K pathway. This supports the validity of our approach. Genes encoding a coactosin-like protein, EhCoactosin, and a serine-rich E. histolytica protein (SREHP) were also identified. Cells overexpressing EhCoactosin or SREHP were also less sensitive to a second PI3K inhibitor, LY294002. This corroborates the link between these proteins and PI3K. Finally, a mutant cell line with an increased level of phosphatidylinositol (3,4,5)-triphosphate, the product of PI3K activity, exhibited increased expression of SREHP and EhCoactosin. This further supports the functional connection between these proteins and PI3K in E. histolytica. To our knowledge, this is the first forward-genetics screen adapted to reveal genes participating in a signal transduction pathway in this pathogen.

  18. Sensing and Integration of Erk and PI3K Signals by Myc

    PubMed Central

    Lee, Tae; Yao, Guang; Nevins, Joseph; You, Lingchong

    2008-01-01

    The transcription factor Myc plays a central role in regulating cell-fate decisions, including proliferation, growth, and apoptosis. To maintain a normal cell physiology, it is critical that the control of Myc dynamics is precisely orchestrated. Recent studies suggest that such control of Myc can be achieved at the post-translational level via protein stability modulation. Myc is regulated by two Ras effector pathways: the extracellular signal-regulated kinase (Erk) and phosphatidylinositol 3-kinase (PI3K) pathways. To gain quantitative insight into Myc dynamics, we have developed a mathematical model to analyze post-translational regulation of Myc via sequential phosphorylation by Erk and PI3K. Our results suggest that Myc integrates Erk and PI3K signals to result in various cellular responses by differential stability control of Myc protein isoforms. Such signal integration confers a flexible dynamic range for the system output, governed by stability change. In addition, signal integration may require saturation of the input signals, leading to sensitive signal integration to the temporal features of the input signals, insensitive response to their amplitudes, and resistance to input fluctuations. We further propose that these characteristics of the protein stability control module in Myc may be commonly utilized in various cell types and classes of proteins. PMID:18463697

  19. Apelin-13 impedes foam cell formation by activating Class III PI3K/Beclin-1-mediated autophagic pathway.

    PubMed

    Yao, Feng; Lv, Yun-Cheng; Zhang, Min; Xie, Wei; Tan, Yu-Lin; Gong, Duo; Cheng, Hai-Peng; Liu, Dan; Li, Liang; Liu, Xiao-Yan; Zheng, Xi-Long; Tang, Chao-Ke

    2015-10-30

    Apelin-13, an adipokine, promotes cholesterol efflux in macrophages with antiatherosclerotic effect. Autophagy, an evolutionarily ancient response to cellular stress, has been involved in atherosclerosis. Therefore, the purpose of this study was to investigate whether apelin-13 regulates macrophage foam cell cholesterol metabolism through autophagy, and also explore the underlying mechanisms. Here, we revealed that apelin-13 decreased lipid accumulation in THP-1 derived macrophages through markedly enhancing cholesterol efflux. Our study further demonstrated that apelin-13 induced autophagy via activation of Class III phosphoinositide 3-kinase (PI3K) and Beclin-1. Inhibition of Class III PI3K and Beclin-1 suppressed the stimulatory effects of apelin-13 on autophagy activity. The present study concluded that apelin-13 reduces lipid accumulation of foam cells by activating autophagy via Class III PI3K/Beclin-1 pathway. Therefore, our results provide brand new insight about apelin-13 inhibiting foam cell formation and highlight autophagy as a promising therapeutic target in atherosclerosis.

  20. Insulin and IGFs enhance hepatocyte differentiation from human embryonic stem cells via the PI3K/AKT pathway.

    PubMed

    Magner, Nataly L; Jung, Yunjoon; Wu, Jian; Nolta, Jan A; Zern, Mark A; Zhou, Ping

    2013-10-01

    Human embryonic stem cells (hESCs) can be progressively differentiated into definitive endoderm (DE), hepatic progenitors, and hepatocytes, and thus provide an excellent model system for the mechanistic study of hepatocyte differentiation, which is currently poorly understood. Here, we found that insulin enhanced hepatocyte differentiation from hESC-derived DE. Insulin activated the PI3K/AKT pathway, but not the mitogen-activated protein kinase pathway in the DE cells, and inhibition of the PI3K/AKT pathways by inhibitors markedly inhibited hepatocyte differentiation. In addition, insulin-like growth factor 1 (IGF1) and IGF2 also activated the PI3K/AKT pathway in DE cells and their expression was robustly upregulated during hepatocyte differentiation from DE. Furthermore, inhibition of IGF receptor 1 (IGF1R) by a small molecule inhibitor PPP or knockdown of the IGF1R by shRNA attenuated hepatocyte differentiation. Moreover, simultaneous knockdown of the IGF1R and the insulin receptor with shRNAs markedly reduced the activation of AKT and substantially impaired hepatocyte differentiation. The PI3K pathway specifically enhanced the expression of HNF1 and HNF4 to regulate hepatocyte differentiation from DE. Although inhibition of the PI3K pathway was previously shown to be required for the induction of DE from hESCs, our study revealed a positive role of the PI3K pathway in hepatocyte differentiation after the DE stage, and has advanced our understanding of hepatocyte cell fate determination.

  1. Discovery of drug-resistant and drug-sensitizing mutations in the oncogenic PI3K isoform p110α

    PubMed Central

    Zunder, Eli R.; Knight, Zachary A.; Houseman, Benjamin T.; Apsel, Beth; Shokat, Kevan M.

    2009-01-01

    Summary p110α (PIK3CA) is the most frequently mutated kinase in human cancer, and numerous drugs targeting this kinase are currently in pre-clinical development or early stage clinical trials. Clinical resistance to protein kinase inhibitors frequently results from point mutations that block drug binding; similar mutations in p110α are likely, but currently none have been reported. Using a S. cerevisiae screen against a structurally diverse panel of PI3K inhibitors, we have identified a potential hotspot for resistance mutations (I800), a drug-sensitizing mutation (L814C), and a surprising lack of resistance mutations at the “gatekeeper” residue. Our analysis further reveals that clinical resistance to these drugs may be attenuated by using multi-targeted inhibitors that simultaneously inhibit additional PI3K pathway members. Significance Point mutations that block drug binding are likely to be a major mechanism of clinical resistance to PI3K-targeted cancer therapy. Here we report resistance mutations in the oncogenic PI3K isoform p110α, as well as a drug-sensitizing mutation that will be useful for chemical genetic studies. This study anticipates p110α mutations that are likely to emerge against PI3K-targeted drugs, and identifies inhibitor classes that can overcome these resistance mutations. Our experiments in mammalian cells show that multi-targeted inhibitors with additional PI3K pathway targets are less susceptible to drug resistance than selective PI3K inhibitors. The screening protocol described here is applicable to several other drug targets that inhibit S. cerevisiae growth in addition to p110α. PMID:18691552

  2. Ellagic acid protects endothelial cells from oxidized low-density lipoprotein-induced apoptosis by modulating the PI3K/Akt/eNOS pathway

    SciTech Connect

    Ou, Hsiu-Chung; Lee, Wen-Jane; Lee, Shin-Da; Huang, Chih-Yang; Chiu, Tsan-Hung; Tsai, Kun-Ling; Hsu, Wen-Cheng; Sheu, Wayne Huey-Herng

    2010-10-15

    Endothelial apoptosis is a driving force in atherosclerosis development. Oxidized low-density lipoprotein (oxLDL) promotes inflammatory and thrombotic processes and is highly atherogenic, as it stimulates macrophage cholesterol accumulation and foam cell formation. Previous studies have shown that the phosphatidylinositol 3-kinase/Akt/endothelial nitric oxide synthase/nitric oxide (PI3K/Akt/eNOS/NO) pathway is involved in oxLDL-induced endothelial apoptosis. Ellagic acid, a natural polyphenol found in berries and nuts, has in recent years been the subject of intense research within the fields of cancer and inflammation. However, its protective effects against oxLDL-induced injury in vascular endothelial cells have not been clarified. In the present study, we investigated the anti-apoptotic effect of ellagic acid in human umbilical vein endothelial cells (HUVECs) exposed to oxLDL and explored the possible mechanisms. Our results showed that pretreatment with ellagic acid (5-20 {mu}M) significantly attenuated oxLDL-induced cytotoxicity, apoptotic features, and generation of reactive oxygen species (ROS). In addition, the anti-apoptotic effect of ellagic acid was partially inhibited by a PI3K inhibitor (wortmannin) and a specific eNOS inhibitor (cavtratin) but not by an ERK inhibitor (PD98059). In exploring the underlying mechanisms of ellagic acid action, we found that oxLDL decreased Akt and eNOS phosphorylation, which in turn activated NF-{kappa}B and downstream pro-apoptotic signaling events including calcium accumulation, destabilization of mitochondrial permeability, and disruption of the balance between pro- and anti-apoptotic Bcl-2 proteins. Those alterations induced by oxLDL, however, were attenuated by pretreatment with ellagic acid. The inhibition of oxLDL-induced endothelial apoptosis by ellagic acid is due at least in part to its anti-oxidant activity and its ability to modulate the PI3K/Akt/eNOS signaling pathway.

  3. Effects of orexin A on glucose metabolism in human hepatocellular carcinoma in vitro via PI3K/Akt/mTOR-dependent and -independent mechanism.

    PubMed

    Liu, Yuanyuan; Zhao, Yuyan; Guo, Lei

    2016-01-15

    Orexins are hypothalamic neuropeptides that regulate food intake, energy homeostasis, reward system and sleep/wakefulness states. The purpose of this study was to investigate the effects of orexin A on glucose metabolism in human hepatocellular carcinoma cell line, Hep3B, and determine the possible mechanisms. Hep3B cells were incubated with different concentrations of orexin A (10(-9)-10(-7) M) in vitro in the presence or absence of the orexin receptor 1 (OX1R) inhibitor (SB334867), Akt inhibitor (PF-04691502) and mammalian target of rapamycin (mTOR) inhibitor (temsirolimus). Subsequently, OX1R protein expression, glucose transporter 1 (GLUT1) expression, glucose uptake, the mRNA expression of lactate dehydrogenase (LDHA), pyruvate dehydrogenase kinase 1 (PDK1) and pyruvate dehydrogenase B (PDHB), lactate generation and mitochondrial pyruvate dehydrogenase (PDH) enzyme activity were measured. The activity of phosphoinositide 3-kinase (PI3K)/Akt/mTOR signaling was also determined. OX1R was expressed in hepatoma tissues and Hep3B cells. Stimulation of the Hep3B cells with orexin A resulted in a dose-dependent increase of GLUT1 expression and glucose uptake, which was associated with the activation of PI3K/Akt/mTOR pathway. Further, orexin A increased PDHB expression and PDH enzyme activity, decreased LDHA, PDK1 mRNA levels and lactate generation independent of PI3K/Akt/mTOR pathway. Our results demonstrated that orexin A directed the cellular metabolism towards mitochondrial glucose oxidation rather than glycolysis. These findings provide functional evidence of the metabolic actions of orexin A in hepatocellular carcinoma cells.

  4. Regulation of the PI3-K/Akt survival pathway in the rat endometrium.

    PubMed

    Veillette, Annabelle; Grenier, Kathy; Brasseur, Kevin; Fréchette-Frigon, Guylaine; Leblanc, Valérie; Parent, Sophie; Asselin, Eric

    2013-03-01

    The occurrence of apoptosis and cell survival in the receptive uterus is intimately involved in the embryo implantation process in order to facilitate embryo attachment to the maternal endometrium. The initial stimulus leading to successful implantation might be triggered by the conceptus itself. By the end of rat embryo implantation, decidualization begins, followed by the regression of the decidua basalis on Day 14. The phosphatidylinositol 3-kinase (PI3-K) survival pathway and TGF-beta have been thought to play a role in this process. The objective of the present study was to investigate the regulation of the PI3-K/PTEN/Akt pathway in rat endometrium during pregnancy. Rats were killed on different days of pregnancy (Day 1-22 and postpartum) or pseudopregnancy (Day 1-9), and uteri were removed to collect endometrial tissues. The active form of Akt (pAkt) was increased at Day 5 of pregnancy and at Day 3 of pseudopregnancy as well as at Day 12 of pregnancy and at Day 1 postpartum. Of the three Akt isoforms (Akt1, Akt2, and Akt3), Akt3 was the only isoform phosphorylated at Day 5 during the implantation process and at postpartum as demonstrated by immunoprecipitation studies. PI3-K inhibition in vivo blocked Akt phosphorylation, reduced Smad2 phosphorylation, and reduced both TGF-beta2 and XIAP expression. PI3-K inhibition in cultured decidual cells led to inhibition of pAkt and decrease XIAP expression. These results suggest that Akt and XIAP may be important surviving signaling molecules by which apoptosis is regulated in the rat endometrium during pregnancy and that TGF-beta could be linked to this process.

  5. PI3K-GSK3 signalling regulates mammalian axon regeneration by inducing the expression of Smad1

    NASA Astrophysics Data System (ADS)

    Saijilafu; Hur, Eun-Mi; Liu, Chang-Mei; Jiao, Zhongxian; Xu, Wen-Lin; Zhou, Feng-Quan

    2013-10-01

    In contrast to neurons in the central nervous system, mature neurons in the mammalian peripheral nervous system (PNS) can regenerate axons after injury, in part, by enhancing intrinsic growth competence. However, the signalling pathways that enhance the growth potential and induce spontaneous axon regeneration remain poorly understood. Here we reveal that phosphatidylinositol 3-kinase (PI3K) signalling is activated in response to peripheral axotomy and that PI3K pathway is required for sensory axon regeneration. Moreover, we show that glycogen synthase kinase 3 (GSK3), rather than mammalian target of rapamycin, mediates PI3K-dependent augmentation of the growth potential in the PNS. Furthermore, we show that PI3K-GSK3 signal is conveyed by the induction of a transcription factor Smad1 and that acute depletion of Smad1 in adult mice prevents axon regeneration in vivo. Together, these results suggest PI3K-GSK3-Smad1 signalling as a central module for promoting sensory axon regeneration in the mammalian nervous system.

  6. Regulatory role of PI3K-protein kinase B on the release of interleukin-1β in peritoneal macrophages from the ascites of cirrhotic patients.

    PubMed

    Tapia-Abellán, A; Ruiz-Alcaraz, A J; Antón, G; Miras-López, M; Francés, R; Such, J; Martínez-Esparza, M; García-Peñarrubia, P

    2014-12-01

    Great effort has been paid to identify novel targets for pharmaceutical intervention to control inflammation associated with different diseases. We have studied the effect of signalling inhibitors in the secretion of the proinflammatory and profibrogenic cytokine interleukin (IL)-1β in monocyte-derived macrophages (M-DM) obtained from the ascites of cirrhotic patients and compared with those obtained from the blood of healthy donors. Peritoneal M-DM were isolated from non-infected ascites of cirrhotic patients and stimulated in vitro with lipopolysaccharide (LPS) and heat-killed Candida albicans in the presence or absence of inhibitors for c-Jun N-terminal kinase (JNK), mitogen-activated protein kinase kinase 1 (MEK1), p38 mitogen-activated protein kinase (MAPK) and phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K). The IL1B and CASP1 gene expression were evaluated by quantitative reverse transcription-polymerase chain reaction (qRT-PCR). The expression of IL-1β and caspase-1 were determined by Western blot. IL-1β was also assayed by enzyme-linked immunosorbent assay (ELISA) in cell culture supernatants. Results revealed that MEK1 and JNK inhibition significantly reduced the basal and stimulated IL-1β secretion, while the p38 MAPK inhibitor had no effect on IL-1β levels. On the contrary, inhibition of PI3K increased the secretion of IL-1β from stimulated M-DM. The activating effect of PI3K inhibitor on IL-1β release was mediated mainly by the enhancement of the intracellular IL-1β and caspase-1 content release to the extracellular medium and not by increasing the corresponding mRNA and protein expression levels. These data point towards the role of MEK1 and JNK inhibitors, in contrast to the PI3K-protein kinase B inhibitors, as potential therapeutic tools for pharmaceutical intervention to diminish hepatic damage by reducing the inflammatory response mediated by IL-1β associated with liver failure.

  7. Leishmania promastigotes activate PI3K/Akt signalling to confer host cell resistance to apoptosis.

    PubMed

    Ruhland, Aaron; Leal, Nicole; Kima, Peter E

    2007-01-01

    Previous reports have shown that cells infected with promastigotes of some Leishmania species are resistant to the induction of apoptosis. This would suggest that either parasites elaborate factors that block signalling from apoptosis inducers or that parasites engage endogenous host signalling pathways that block apoptosis. To investigate the latter scenario, we determined whether Leishmania infection results in the activation of signalling pathways that have been shown to mediate resistance to apoptosis in other infection models. First, we showed that infection with the promastigote form of Leishmania major, Leishmania pifanoi and Leishmania amazonensis activates signalling through p38 mitogen-activated protein kinase (MAPK), NFkappaB and PI3K/Akt. Then we found that inhibition of signalling through the PI3K/Akt pathway with LY294002 and Akt IV inhibitor reversed resistance of infected bone marrow-derived macrophages and RAW 264.7 macrophages to potent inducers of apoptosis. Moreover, reduction of Akt levels with small interfering RNAs to Akt resulted in the inability of infected macrophages to resist apoptosis. Further evidence of the role of PI3K/Akt signalling in the promotion of cell survival by infected cells was obtained with the finding that Bad, which is a substrate of Akt, becomes phosphorylated during the course of infection. In contrast to the observations with PI3K/Akt signalling, inhibition of p38 MAPK signalling with SB202190 or NFkappaB signalling with wedelolactone had limited effect on parasite-induced resistance to apoptosis. We conclude that Leishmania promastigotes engage PI3K/Akt signalling, which confers to the infected cell, the capacity to resist death from activators of apoptosis.

  8. Acute anorexigenic action of leptin in rainbow trout is mediated by the hypothalamic Pi3k pathway.

    PubMed

    Gong, Ningping; Jönsson, Elisabeth; Björnsson, Björn Thrandur

    2016-04-01

    Leptin (Lep) is an anorexigenic hormone and regulates appetite-related neuropeptides in mammals. A number of neuropeptides have also been linked to appetite regulation in teleost fish, but Lep signaling activation and effects on appetite-regulating neurons are poorly elucidated in early vertebrates. This study uses cellular, tissue and organismal approaches to elucidate the acute, central Lep action in rainbow trout. The results demonstrate that Lep activates phosphorylation of protein kinase B (Akt) and signal transducer and activator of transcription 3 in rainbow trout hypothalamus-derived cells, and that the phosphatidylinositol-3-kinase (Pi3k) inhibitor LY294002 can suppress the Lep-induced Akt phosphorylation. Intracerebroventricular (ICV) Lep administration strongly suppresses food intake at the doses of 0.05 and 0.5 µg Lep fish(-1) At low dose, Lep stimulates hypothalamic transcription of anorexigenic cocaine- and amphetamine-regulated transcript (Cart) and orexigenic neuropeptide Y. At high dose, Lep stimulates hypothalamic transcription of anorexigenic proopiomelanocortin (Pomc) A1, A2, and B, while coinjection with LY294002 reverses this upregulation. The data suggest that the anorexigenic action of Lep in rainbow trout is mediated through stimulation of the anorexigenic neuropeptides Pomc and Cart. Furthermore, ICV Lep treatment increases phosphor-Akt-immunoreactive cells in the nucleus lateralis tuberis, periventricular zone along infundibulum, and lateral recess surrounded by nucleus anterior tuberis, while LY294002 inhibits this effect. Lep receptor-immunoreactive cells are also predominant in these regions. These results demonstrate that Lep activates the Pi3k-Akt pathway in the lateral tuberal hypothalamus of rainbow trout for acute appetite regulation, indicating the conservation of anorexigenic Lep action in the mediobasal hypothalamus.

  9. Cabazitaxel-induced autophagy via the PI3K/Akt/mTOR pathway contributes to A549 cell death

    PubMed Central

    Huo, Ruichao; Wang, Lili; Liu, Peijuan; Zhao, Yong; Zhang, Caiqin; Bai, Bing; Liu, Xueying; Shi, Changhong; Wei, Sanhua; Zhang, Hai

    2016-01-01

    Cabazitaxel has been used to treat castration-resistant prostate cancer since its approval by the US Food and Drug Administration in 2010. However, whether cabazitaxel may inhibit the proliferation of other tissue-derived cancer cells, and its underlying mechanism, remains unknown. In the present study, the A549 lung adenocarcinoma cancer cell line was exposed to cabazitaxel, in order to investigate its cytotoxic effect and determine the underlying mechanism. The results demonstrated that cabazitaxel was able to induce autophagy in A549 cells, as evidenced by the formation of autophagosomes, upregulated LC3-II expression and increased LC3 puncta. Cabazitaxel-induced autophagy had a cytotoxic effect on A549 cells, as evidenced by the induction of cell death and cell cycle arrest at G2/M phase, which was independent of the apoptotic pathway. Furthermore, transfection with Beclin1 small interfering RNA and treatment with the autophagy inhibitor 3-methyladenine protected cells from cabazitaxel-induced cell death, thus confirming that cabazitaxel-induced autophagy contributed to A549 cell death. In addition, cabazitaxel targeted the phosphoinositide 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) pathway to induce autophagy, as indicated by reduced phosphorylation of Akt and mTOR. In conclusion, the present study demonstrated that cabazitaxel exerts a cytotoxic effect on A549 cells by acting on the PI3K/Akt/mTOR pathway to promote autophagic cell death. This result supports the potential use of cabazitaxel as a chemotherapeutic agent for the treatment of lung cancer. PMID:27572899

  10. Lumen LPS inhibits HCO3(-) absorption in the medullary thick ascending limb through TLR4-PI3K-Akt-mTOR-dependent inhibition of basolateral Na+/H+ exchange.

    PubMed

    Watts, Bruns A; George, Thampi; Good, David W

    2013-08-15

    Sepsis and endotoxemia induce defects in renal tubule function, but the mechanisms are poorly understood. Recently, we demonstrated that lipopolysaccharide (LPS) inhibits HCO3(-) absorption in the medullary thick ascending limb (MTAL) through activation of different Toll-like receptor 4 (TLR4) signaling pathways in the basolateral and apical membranes. Basolateral LPS inhibits HCO3(-) absorption through ERK-dependent inhibition of the apical Na(+)/H(+) exchanger NHE3. Here, we examined the mechanisms of inhibition by lumen LPS. Adding LPS to the lumen decreased HCO3(-) absorption by 29% in rat and mouse MTALs perfused in vitro. Inhibitors of phosphoinositide 3-kinase (PI3K) or its effectors Akt and mammalian target of rapamycin (mTOR) eliminated inhibition of HCO3(-) absorption by lumen LPS but had no effect on inhibition by bath LPS. Exposure to LPS for 15 min induced increases in phosphorylation of Akt and mTOR in microdissected MTALs that were blocked by wortmannin, consistent with activation of Akt and mTOR downstream of PI3K. The effects of lumen LPS to activate Akt and inhibit HCO3(-) absorption were eliminated in MTALs from TLR4(-/-) and MyD88(-/-) mice but preserved in tubules lacking Trif or CD14. Inhibition of HCO3(-) absorption by lumen LPS was eliminated under conditions that inhibit basolateral Na(+)/H(+) exchange and prevent inhibition of HCO3(-) absorption mediated through NHE1. Lumen LPS decreased basolateral Na(+)/H(+) exchange activity through PI3K. We conclude that lumen LPS inhibits HCO3(-) absorption in the MTAL through TLR4/MyD88-dependent activation of a PI3K-Akt-mTOR pathway coupled to inhibition of NHE1. Molecular components of the TLR4-PI3K-mTOR pathway represent potential therapeutic targets for sepsis-induced renal tubule dysfunction.

  11. Activation of PI3K/Akt pathway limits JNK-mediated apoptosis during EV71 infection.

    PubMed

    Zhang, Hua; Li, Fengqi; Pan, Ziye; Wu, Zhijun; Wang, Yanhong; Cui, Yudong

    2014-11-01

    Apoptosis is frequently induced to inhibit virus replication during infection of Enterovirus 71 (EV71). On the contrary, anti-apoptotic pathway, such as PI3K/Akt pathway, is simultaneously exploited by EV71 to accomplish the viral life cycle. The relationship by which EV71-induced apoptosis and PI3K/Akt signaling pathway remains to be elucidated. In this study, we demonstrated that EV71 infection altered Bax conformation and triggered its redistribution from the cytosol to mitochondria in RD cells. Subsequently, cytochrome c was released from mitochondria to cytosol. We also found that c-Jun NH2-terminal kinase (JNK) was activated during EV71 infection. The JNK specific inhibitor significantly inhibited Bax activation and cytochrome c release, suggesting that EV71-induced apoptosis was involved into a JNK-dependent manner. Meanwhile, EV71-induced Akt phosphorylation involved a PI3K-dependent mechanism. Inhibition of the PI3K/Akt pathway enhanced JNK phosphorylation and the JNK-mediated apoptosis upon EV71 infection. Moreover, PI3K/Akt pathway phosphorylated apoptosis signal-regulating kinase 1 (ASK1) and negatively regulated the ASK1 activity. Knockdown of ASK1 significantly decreased JNK phosphorylation, which implied that ASK1 phosphorylation by Akt inhibited ASK1-mediated JNK activation. Collectively, these data reveal that activation of the PI3K/Akt pathway limits JNK-mediated apoptosis by phosphorylating and inactivating ASK1 during EV71 infection.

  12. 2,2',4,4'-Tetrabromodiphenyl ether promotes human neuroblastoma SH-SY5Y cells migration via the GPER/PI3K/Akt signal pathway.

    PubMed

    Tian, P-C; Wang, H-L; Chen, G-H; Luo, Q; Chen, Z; Wang, Y; Liu, Y-F

    2016-02-01

    Neuroblastoma is the predominant tumor of early childhood. 2,2',4,4'-Tetrabromodiphenyl ether (BDE-47) has the highest concentration among all polybrominated diphenyl ether (PBDE) congeners in human body, particularly for children. Considering that accumulating evidences showed developmental neurotoxicity of PBDE, there is an urgent need to investigate the effects of BDE-47 on the development of neuroblastoma. This study revealed that BDE-47 had limited effects on the cytotoxicity while significantly increased the in vitro migration and invasion of human neuroblastoma SH-SY5Y cells. This was further confirmed by the results that BDE-47 treatment significantly downregulated the expression of E-cadherin and zona occludin-1 and upregulated the expression of matrix metalloproteinase-9 (MMP-9). Silencing of MMP-9 by specific small interfering RNA significantly abolished the BDE-47-induced migration and invasion of SH-SY5Y cells. Further, the signals G protein-coupled estrogen receptor 1 (GPER)/phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)/protein kinase B (Akt) mediated the BDE-47-induced upregulation of MMP-9 and in vitro migration of SH-SY5Y cells since G15 (GPER inhibitor) and LY 294002 (PI3K/Akt inhibitor) significantly abolished the effects of BDE-47. Our results revealed that BDE-47 significantly triggered the metastasis of human neuroblastoma SH-SY5Y cells via upregulation of MMP-9 by the GPER/PI3K/Akt signal pathway. This study revealed for the first time that BDE-47 can promote the migration of SH-SY5Y cells. It also provided a better understanding about the metastasis of human neuroblastoma induced by environmental endocrine disruptors.

  13. Glucagon-like peptide-1 protects cardiomyocytes from advanced oxidation protein product-induced apoptosis via the PI3K/Akt/Bad signaling pathway.

    PubMed

    Zhang, Hua; Xiong, Zhouyi; Wang, Jiao; Zhang, Shuangshuang; Lei, Lei; Yang, Li; Zhang, Zhen

    2016-02-01

    Cardiomyocyte apoptosis is a major event in the pathogenesis of diabetic cardiomyopathy. Currently, no single effective treatment for diabetic cardiomyopathy exists. The present study investigated whether advanced oxidative protein products (AOPPs) have a detrimental role in the survival of cardiomyocytes and if glucagon-like peptide-1 (GLP-1) exerts a cardioprotective effect under these circumstances. The present study also aimed to determine the underlying mechanisms. H9c2 cells were exposed to increasing concentrations of AOPPs in the presence or absence of GLP-1, and the viability and apoptotic rate were detected using a cell counting kit-8 assay and flow cytometry, respectively. In addition, a phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K) inhibitor, LY294002, was employed to illustrate the mechanism of the antiapoptotic effect of GLP-1. The expression levels of the apoptotic-associated proteins, Akt, B-cell lymphoma (Bcl)-2, Bcl-2-associated death promoter (Bad), Bcl-2-associated X protein (Bax) and caspase-3 were measured by western blotting. It was revealed that GLP-1 significantly attenuated AOPP-induced cell toxicity and apoptosis. AOPPs inactivated the phosphorylation of Akt, reduced the phosphorylation of Bad, decreased the expression of Bcl-2, increased the expression of Bax and the activation of caspase-3 in H9c2 cells. GLP-1 reversed the above changes induced by AOPPs and the protective effects of GLP-1 were abolished by the PI3K inhibitor, LY294002. In conclusion, the present data suggested that GLP-1 protected cardiomyocytes against AOPP-induced apoptosis, predominantly via the PI3K/Akt/Bad pathway. These results provided a conceivable mechanism for the development of diabetic cardiomyopathy and rendered a novel application of GLP-1 exerting favorable cardiac effects for the treatment of diabetic cardiomyopathy.

  14. Glucagon-like peptide-1 protects cardiomyocytes from advanced oxidation protein product-induced apoptosis via the PI3K/Akt/Bad signaling pathway

    PubMed Central

    ZHANG, HUA; XIONG, ZHOUYI; WANG, JIAO; ZHANG, SHUANGSHUANG; LEI, LEI; YANG, LI; ZHANG, ZHEN

    2016-01-01

    Cardiomyocyte apoptosis is a major event in the pathogenesis of diabetic cardiomyopathy. Currently, no single effective treatment for diabetic cardiomyopathy exists. The present study investigated whether advanced oxidative protein products (AOPPs) have a detrimental role in the survival of cardiomyocytes and if glucagon-like peptide-1 (GLP-1) exerts a cardioprotective effect under these circumstances. The present study also aimed to determine the underlying mechanisms. H9c2 cells were exposed to increasing concentrations of AOPPs in the presence or absence of GLP-1, and the viability and apoptotic rate were detected using a cell counting kit-8 assay and flow cytometry, respectively. In addition, a phosphatidylino-sitol-4,5-bisphosphate 3-kinase (PI3K) inhibitor, LY294002, was employed to illustrate the mechanism of the antiapoptotic effect of GLP-1. The expression levels of the apoptotic-associated proteins, Akt, B-cell lymphoma (Bcl)-2, Bcl-2-associated death promoter (Bad), Bcl-2-associated X protein (Bax) and caspase-3 were measured by western blotting. It was revealed that GLP-1 significantly attenuated AOPP-induced cell toxicity and apoptosis. AOPPs inactivated the phosphorylation of Akt, reduced the phosphorylation of Bad, decreased the expression of Bcl-2, increased the expression of Bax and the activation of caspase-3 in H9c2 cells. GLP-1 reversed the above changes induced by AOPPs and the protective effects of GLP-1 were abolished by the PI3K inhibitor, LY294002. In conclusion, the present data suggested that GLP-1 protected cardiomyocytes against AOPP-induced apoptosis, predominantly via the PI3K/Akt/Bad pathway. These results provided a conceivable mechanism for the development of diabetic cardiomyopathy and rendered a novel application of GLP-1 exerting favorable cardiac effects for the treatment of diabetic cardiomyopathy. PMID:26717963

  15. PfIRR Interacts with HrIGF-I and Activates the MAP-kinase and PI3-kinase Signaling Pathways to Regulate Glycogen Metabolism in Pinctada fucata

    PubMed Central

    Shi, Yu; He, Mao-xian

    2016-01-01

    The insulin-induced mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3-kinase (PI3K) pathways are major intracellular signaling modules and conserved among eukaryotes that are known to regulate diverse cellular processes. However, they have not been investigated in the mollusk species Pinctada fucata. Here, we demonstrate that insulin-related peptide receptor of P. fucata (pfIRR) interacts with human recombinant insulin-like growth factor I (hrIGF-I), and stimulates the MAPK and PI3K signaling pathways in P. fucata oocytes. We also show that inhibition of pfIRR by the inhibitor PQ401 significantly attenuates the basal and hrIGF-I-induced phosphorylation of MAPK and PI3K/Akt at amino acid residues threonine 308 and serine 473. Furthermore, our experiments show that there is cross-talk between the MAPK and PI3K/Akt pathways, in which MAPK kinase positively regulates the PI3K pathway, and PI3K positively regulates the MAPK cascade. Intramuscular injection of hrIGF-I stimulates the PI3K and MAPK pathways to increase the expression of pfirr, protein phosphatase 1, glucokinase, and the phosphorylation of glycogen synthase, decreases the mRNA expression of glycogen synthase kinase-3 beta, decreases glucose levels in hemocytes, and increases glycogen levels in digestive glands. These results suggest that the MAPK and PI3K pathways in P. fucata transmit the hrIGF-I signal to regulate glycogen metabolism. PMID:26911653

  16. PfIRR Interacts with HrIGF-I and Activates the MAP-kinase and PI3-kinase Signaling Pathways to Regulate Glycogen Metabolism in Pinctada fucata.

    PubMed

    Shi, Yu; He, Mao-xian

    2016-01-01

    The insulin-induced mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3-kinase (PI3K) pathways are major intracellular signaling modules and conserved among eukaryotes that are known to regulate diverse cellular processes. However, they have not been investigated in the mollusk species Pinctada fucata. Here, we demonstrate that insulin-related peptide receptor of P. fucata (pfIRR) interacts with human recombinant insulin-like growth factor I (hrIGF-I), and stimulates the MAPK and PI3K signaling pathways in P. fucata oocytes. We also show that inhibition of pfIRR by the inhibitor PQ401 significantly attenuates the basal and hrIGF-I-induced phosphorylation of MAPK and PI3K/Akt at amino acid residues threonine 308 and serine 473. Furthermore, our experiments show that there is cross-talk between the MAPK and PI3K/Akt pathways, in which MAPK kinase positively regulates the PI3K pathway, and PI3K positively regulates the MAPK cascade. Intramuscular injection of hrIGF-I stimulates the PI3K and MAPK pathways to increase the expression of pfirr, protein phosphatase 1, glucokinase, and the phosphorylation of glycogen synthase, decreases the mRNA expression of glycogen synthase kinase-3 beta, decreases glucose levels in hemocytes, and increases glycogen levels in digestive glands. These results suggest that the MAPK and PI3K pathways in P. fucata transmit the hrIGF-I signal to regulate glycogen metabolism.

  17. Dual targeting of glioblastoma multiforme with a proteasome inhibitor (Velcade) and a phosphatidylinositol 3-kinase inhibitor (ZSTK474).

    PubMed

    Lin, Lehang; Gaut, Daria; Hu, Kaishun; Yan, Haiyan; Yin, Dong; Koeffler, H Phillip

    2014-02-01

    Proteasome inhibitors have been proven to be effective anticancer compounds in many tumor models, including glioblastoma multiforme (GBM). In this study, we found that the proteasome inhibitor Velcade (PS-341/bortezomib) caused GBM cell death while simultaneously activating the PI3K/Akt pathway. Therefore, we sought to investigate if the PI3K inhibitor ZSTK474 would enhance the effectiveness of Velcade in anticancer therapy. Two GBM cell lines were used to detect the effects of Velcade and ZSTK474 alone or in combination in vitro. The combination of Velcade and ZSTK474 synergistically inhibited the proliferation of GBM cell lines. Cell apoptosis was increased when exposed to Velcade and ZSTK474 in combination as shown by Annexin V analysis. Treatment with both drugs led to downregulation of the p-Akt, p-4EBP1 and p-mTOR proteins as determined by western blot analysis. The anticancer ability of Velcade for glioblastoma multiforme was, therefore, enhanced by combination with the PI3K pathway inhibitor ZSTK474 in glioblastoma multiforme.

  18. Anti-leukaemic effects induced by APR-246 are dependent on induction of oxidative stress and the NFE2L2/HMOX1 axis that can be targeted by PI3K and mTOR inhibitors in acute myeloid leukaemia cells.

    PubMed

    Ali, Dina; Mohammad, Dara K; Mujahed, Huthayfa; Jonson-Videsäter, Kerstin; Nore, Beston; Paul, Christer; Lehmann, Sören

    2016-07-01

    The small molecule APR-246 (PRIMA-1(MET) ) is a novel drug that restores the activity of mutated and unfolded TP53 protein. However, the mechanisms of action and potential off-target effects are not fully understood. Gene expression profiling in TP53 mutant KMB3 acute myeloid leukaemia (AML) cells showed that genes which protected cells from oxidative stress to be the most up-regulated. APR-246 exposure also induced reactive oxygen species (ROS) formation and depleted glutathione in AML cells. The genes most up-regulated by APR-246, confirmed by quantitative real time polymerase chain reaction, were heme oxygenase-1 (HMOX1, also termed HO-1), SLC7A11 and RIT1. Up-regulation of HMOX1, a key regulator of cellular response to ROS, was independent of TP53 mutational status. NFE2L2 (also termed Nrf2), a master regulator of HMOX1 expression, showed transcriptional up-regulation and nuclear translocation by APR-246. Down-regulation of NFE2L2 by siRNA in AML cells significantly increased the antitumoural effects of APR-246. The PI3K inhibitor wortmannin and the mTOR inhibitor rapamycin inhibited APR-246-induced nuclear translocation of NFE2L2 and counteracted the protective cellular responses to APR-246, resulting in synergistic cell killing together with APR-246. In conclusion, ROS induction is important for antileukaemic activities of APR-246 and inhibiting the protective response of the Nrf-2/HMOX1 axis using PI3K inhibitors, enhances the antileukaemic effects.

  19. Differential Water Thermodynamics Determine PI3K-Beta/Delta Selectivity for Solvent-Exposed Ligand Modifications.

    PubMed

    Robinson, Daniel; Bertrand, Thomas; Carry, Jean-Christophe; Halley, Frank; Karlsson, Andreas; Mathieu, Magali; Minoux, Hervé; Perrin, Marc-Antoine; Robert, Benoit; Schio, Laurent; Sherman, Woody

    2016-05-23

    Phosphoinositide 3-kinases (PI3Ks) are involved in important cellular functions and represent desirable targets for drug discovery efforts, especially related to oncology; however, the four PI3K subtypes (α, β, γ, and δ) have highly similar binding sites, making the design of selective inhibitors challenging. A series of inhibitors with selectivity toward the β subtype over δ resulted in compound 3(S), which has entered a phase I/Ib clinical trial for patients with advanced PTEN-deficient cancer. Interestingly, X-ray crystallography revealed that the modifications making inhibitor 3(S) and related compounds selective toward the β-isoform do not interact directly with either PI3Kβ or PI3Kδ, thereby confounding rationalization of the SAR. Here, we apply explicit solvent molecular dynamics and solvent thermodynamic analysis using WaterMap in an effort to understand the unusual affinity and selectivity trends. We find that differences in solvent energetics and water networks, which are modulated upon binding of different ligands, explain the experimental affinity and selectivity trends. This study highlights the critical role of water molecules in molecular recognition and the importance of considering water networks in drug discovery efforts to rationalize and improve selectivity. PMID:27144736

  20. The Neuroprotection of Liraglutide Against Ischaemia-induced Apoptosis through the Activation of the PI3K/AKT and MAPK Pathways

    PubMed Central

    Zhu, Huili; Zhang, Yusheng; Shi, Zhongshan; Lu, Dan; Li, Tingting; Ding, Yan; Ruan, Yiwen; Xu, Anding

    2016-01-01

    Glucagon-like peptide-1 (GLP-1) is an incretin hormone that increases glucose-dependent insulin secretion to reduce the glucose level. Liraglutide, a long-acting GLP-1 analogue, has been found to have neuroprotective action in various experimental models. However, the protective mechanisms of liraglutide in ischaemic stroke remain unclear. Here, we demonstrated that liraglutide significantly decreased the infarct volume, improved neurologic deficits, and lowered stress-related hyperglycaemia without causing hypoglycaemia in a rat model of middle cerebral artery occlusion (MCAO). Liraglutide inhibited cell apoptosis by reducing excessive reactive oxygen species (ROS) and improving the function of mitochondria in neurons under oxygen glucose deprivation (OGD) in vitro and MCAO in vivo. Liraglutide up-regulated the phosphorylation of protein kinase B (AKT) and extracellular signal-regulated kinases (ERK) and inhibited the phosphorylation of c-jun-NH2-terminal kinase (JNK) and p38. Moreover, the phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002 and/or the ERK inhibitor U0126 counteracted the protective effect of liraglutide. Taken together, these results suggest that liraglutide exerts neuroprotective action against ischaemia-induced apoptosis through the reduction of ROS and the activation of the PI3K/AKT and mitogen-activated protein kinase (MAPK) pathways. Therefore, liraglutide has therapeutic potential for patients with ischaemic stroke, especially those with Type 2 diabetes mellitus or stress hyperglycaemia. PMID:27240461

  1. Feedbacks and adaptive capabilities of the PI3K/Akt/mTOR axis in acute myeloid leukemia revealed by pathway selective inhibition and phosphoproteome analysis.

    PubMed

    Bertacchini, J; Guida, M; Accordi, B; Mediani, L; Martelli, A M; Barozzi, P; Petricoin, E; Liotta, L; Milani, G; Giordan, M; Luppi, M; Forghieri, F; De Pol, A; Cocco, L; Basso, G; Marmiroli, S

    2014-11-01

    Acute myeloid leukemia (AML) primary cells express high levels of phosphorylated Akt, a master regulator of cellular functions regarded as a promising drug target. By means of reverse phase protein arrays, we examined the response of 80 samples of primary cells from AML patients to selective inhibitors of the phosphatidylinositol 3 kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) axis. We confirm that >60% of the samples analyzed are characterized by high pathway phosphorylation. Unexpectedly, however, we show here that targeting Akt and mTOR with the specific inhibitors Akti 1/2 and Torin1, alone or in combination, result in paradoxical Akt phosphorylation and activation of downstream signaling in 70% of the samples. Indeed, we demonstrate that cropping Akt or mTOR activity can stabilize the Akt/mTOR downstream effectors Forkhead box O and insulin receptor substrate-1, which in turn potentiate signaling through upregulation of the expression/phosphorylation of selected growth factor receptor tyrosine kinases (RTKs). Activation of RTKs in turn reactivates PI3K and downstream signaling, thus overruling the action of the drugs. We finally demonstrate that dual inhibition of Akt and RTKs displays strong synergistic cytotoxic effects in AML cells and downmodulates Akt signaling to a much greater extent than either drug alone, and should therefore be explored in AML clinical setting.

  2. PI3K/AKT, JNK, and ERK pathways are not crucial for the induction of cholesterol biosynthesis gene transcription in intestinal epithelial cells following treatment with the potato glycoalkaloid alpha-chaconine.

    PubMed

    Mandimika, Tafadzwa; Baykus, Hakan; Poortman, Jenneke; Garza, Cutberto; Kuiper, Harry; Peijnenburg, Ad

    2008-09-24

    We previously reported that exposure of the intestinal epithelial Caco-2 cell line to noncytotoxic concentrations of potato glycoalkaloids resulted in increased expression of cholesterol biosynthesis genes. Genes involved in mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3-kinase (PI3K)/v-akt murine thymoma viral oncogene homologue (AKT) pathways and their downstream effectors such as Jun, c-Myc, and Fos also were induced. MAPK and PI3K/AKT pathways have been described to regulate the activity of sterol regulatory element binding transcription factors (SREBPs) and consequently the expression of cholesterol biosynthesis genes. In this study, to understand the mechanism of induction of cholesterol biosynthesis upon alpha-chaconine treatment, its effect on SREBP-2 protein levels was investigated. We also examined whether MAPK and PI3K/AKT pathways are required for the observed induction of these genes following exposure of cells to alpha-chaconine. Differentiated Caco-2 cells were pretreated with LY294002 (PI3K inhibitor), PD98059 (MEK1 inhibitor), or SP600125 (JNK inhibitor) or a combination of all inhibitors for 24 h prior to coincubation with 10 microM alpha-chaconine for 6 h. Significant increases in precursor and mature protein levels of SREBP-2 were observed after alpha-chaconine exposure. We also observed that alpha-chaconine treatment resulted in significant phosphorylation of AKT, extracellular signal related protein kinase (ERK), and c-jun N terminal protein kinase (JNK) but not that of p38. In general, the kinase inhibitor experiments revealed that phosphorylation of kinases of PI3K/AKT, ERK, and JNK pathways was not crucial for the induction of expression of cholesterol biosynthesis genes, with the exception of SC5DL. The transcription of this later gene was reduced when all three pathways were inhibited. On the basis of these results, it can be postulated that other mechanisms, which may be independent of the MAPK and PI3K/AKT pathways

  3. Targeting the phosphoinositide 3-kinase pathway in hematologic malignancies

    PubMed Central

    Jabbour, Elias; Ottmann, Oliver G.; Deininger, Michael; Hochhaus, Andreas

    2014-01-01

    The phosphoinositide 3-kinase pathway represents an important anticancer target because it has been implicated in cancer cell growth, survival, and motility. Recent studies show that PI3K may also play a role in the development of resistance to currently available therapies. In a broad range of cancers, various components of the phosphoinositide 3-kinase signaling axis are genetically modified, and the pathway can be activated through many different mechanisms. The frequency of genetic alterations in the phosphoinositide 3-kinase pathway, coupled with the impact in oncogenesis and disease progression, make this signaling axis an attractive target in anticancer therapy. A better understanding of the critical function of the phosphoinositide 3-kinase pathway in leukemias and lymphomas has led to the clinical evaluation of novel rationally designed inhibitors in this setting. Three main categories of phosphoinositide 3-kinase inhibitors have been developed so far: agents that target phosphoinositide 3-kinase and mammalian target of rapamycin (dual inhibitors), pan-phosphoinositide 3-kinase inhibitors that target all class I isoforms, and isoform-specific inhibitors that selectively target the α, -β, -γ, or -δ isoforms. Emerging data highlight the promise of phosphoinositide 3-kinase inhibitors in combination with other therapies for the treatment of patients with hematologic malignancies. Further evaluation of phosphoinositide 3-kinase inhibitors in first-line or subsequent regimens may improve clinical outcomes. This article reviews the role of phosphoinositide 3-kinase signaling in hematologic malignancies and the potential clinical utility of inhibitors that target this pathway. PMID:24425689

  4. PI3K signalling in GnRH actions on dispersed goldfish pituitary cells: relationship with PKC-mediated LH and GH release and regulation of long-term effects on secretion and total cellular hormone availability.

    PubMed

    Pemberton, Joshua G; Orr, Michael E; Stafford, James L; Chang, John P

    2014-09-01

    Goldfish pituitary cells are exposed to two GnRHs, salmon (s)GnRH and chicken (c)GnRH-II. Phosphoinositide 3-kinase (PI3K) and protein kinase C (PKC) both participate in acute sGnRH- and cGnRH-II-stimulated LH and GH release. Using goldfish pituitary cells, we examined the relationship between PI3K and PKC in acute LH and GH secretion, and PI3K involvement in chronic hormone release and total LH and GH availability. The PI3K inhibitor LY294002 did not affect PKC agonists-induced LH or GH release, and PKC agonists did not alter PI3K p85 phosphorylation, suggesting PKC activation is not upstream of PI3K in acute hormone release. In 2, 6, 12 and 24h treatments, LY294002 did not affect LH release but stimulated total LH availability at 6h. sGnRH stimulatory actions on LH release and total availability at 12 and 24h, and cGnRH-II effects on these parameters at 6h were inhibited by LY294002. LY294002 enhanced basal GH release at 2 and 6h, but reduced total GH at 12 and 24h. Increased GH release was seen following 6, 12 and 24h of sGnRH, and 2, 6 and 24h of cGnRH-II treatment but total GH availability was only elevated by 24h cGnRH-II treatment. Whereas LY294002 inhibited GH release responses to sGnRH at 12h and cGnRH-II at 6h, it attenuated cGnRH-II-elicited, but not sGnRH-induced, effects on total GH. These results indicate that PI3K differentially modulates long-term basal and GnRH-stimulated hormone release, and total hormone availability, in a time-, cell-type-, and GnRH isoform-selective manner.

  5. Sodium butyrate induces differentiation of gastric cancer cells to intestinal cells via the PTEN/phosphoinositide 3-kinase pathway.

    PubMed

    Bai, Zhigang; Zhang, Zhongtao; Ye, Yingjiang; Wang, Shan

    2010-12-01

    NaB (sodium butyrate) inhibits cell proliferation and induces differentiation in a variety of tumour cells. In this study, we aimed to determine whether NaB induced differentiation and regulated the expression of the mucosal factor MUC2 through the PTEN/PI3K (phosphoinositide 3-kinase) pathway. BGC823 cells treated with NaB for 24-72 h showed marked inhibition of cell proliferation and alteration in cellular morphology. NaB treatment markedly increased the expression of PTEN and MUC2, but it decreased the expression of PI3K. These effects were enhanced by intervention with PI3K inhibitors and were reduced by intervention with PTEN siRNA. Hence, we conclude that NaB increased PTEN expression, promoted the expression of MUC2 and induced the differentiation of gastric cancer cells through the PTEN/PI3K signalling pathway.

  6. ETP-46321, a dual p110α/δ class IA phosphoinositide 3-kinase inhibitor modulates T lymphocyte activation and collagen-induced arthritis.

    PubMed

    Aragoneses-Fenoll, L; Montes-Casado, M; Ojeda, G; Acosta, Y Y; Herranz, J; Martínez, S; Blanco-Aparicio, C; Criado, G; Pastor, J; Dianzani, U; Portolés, P; Rojo, J M

    2016-04-15

    Class IA phosphoinositide 3-kinases (PI3Ks) are essential to function of normal and tumor cells, and to modulate immune responses. T lymphocytes express high levels of p110α and p110δ class IA PI3K. Whereas the functioning of PI3K p110δ in immune and autoimmune reactions is well established, the role of p110α is less well understood. Here, a novel dual p110α/δ inhibitor (ETP-46321) and highly specific p110α (A66) or p110δ (IC87114) inhibitors have been compared concerning T cell activation in vitro, as well as the effect on responses to protein antigen and collagen-induced arthritis in vivo. In vitro activation of naive CD4(+) T lymphocytes by anti-CD3 and anti-CD28 was inhibited more effectively by the p110δ inhibitor than by the p110α inhibitor as measured by cytokine secretion (IL-2, IL-10, and IFN-γ), T-bet expression and NFAT activation. In activated CD4(+) T cells re-stimulated through CD3 and ICOS, IC87114 inhibited Akt and Erk activation, and the secretion of IL-2, IL-4, IL-17A, and IFN-γ better than A66. The p110α/δ inhibitor ETP-46321, or p110α plus p110δ inhibitors also inhibited IL-21 secretion by differentiated CD4(+) T follicular (Tfh) or IL-17-producing (Th17) helper cells. In vivo, therapeutic administration of ETP-46321 significantly inhibited responses to protein antigen as well as collagen-induced arthritis, as measured by antigen-specific antibody responses, secretion of IL-10, IL-17A or IFN-γ, or clinical symptoms. Hence, p110α as well as p110δ Class IA PI3Ks are important to immune regulation; inhibition of both subunits may be an effective therapeutic approach in inflammatory autoimmune diseases like rheumatoid arthritis.

  7. PI-103 and Quercetin Attenuate PI3K-AKT Signaling Pathway in T- Cell Lymphoma Exposed to Hydrogen Peroxide

    PubMed Central

    Maurya, Akhilendra Kumar; Vinayak, Manjula

    2016-01-01

    Phosphatidylinositol 3 kinase—protein kinase B (PI3K-AKT) pathway has been considered as major drug target site due to its frequent activation in cancer. AKT regulates the activity of various targets to promote tumorigenesis and metastasis. Accumulation of reactive oxygen species (ROS) has been linked to oxidative stress and regulation of signaling pathways for metabolic adaptation of tumor microenvironment. Hydrogen peroxide (H2O2) in this context is used as ROS source for oxidative stress preconditioning. Antioxidants are commonly considered to be beneficial to reduce detrimental effects of ROS and are recommended as dietary supplements. Quercetin, a ubiquitous bioactive flavonoid is a dietary component which has attracted much of interest due to its potential health-promoting effects. Present study is aimed to analyze PI3K-AKT signaling pathway in H2O2 exposed Dalton’s lymphoma ascite (DLA) cells. Further, regulation of PI3K-AKT pathway by quercetin as well as PI-103, an inhibitor of PI3K was analyzed. Exposure of H2O2 (1mM H2O2 for 30min) to DLA cells caused ROS accumulation and resulted in increased phosphorylation of PI3K and downstream proteins PDK1 and AKT (Ser-473 and Thr-308), cell survival factors BAD and ERK1/2, as well as TNFR1. However, level of tumor suppressor PTEN was declined. Both PI-103 & quercetin suppressed the enhanced level of ROS and significantly down-regulated phosphorylation of AKT, PDK1, BAD and level of TNFR1 as well as increased the level of PTEN in H2O2 induced lymphoma cells. The overall result suggests that quercetin and PI3K inhibitor PI-103 attenuate PI3K-AKT pathway in a similar mechanism. PMID:27494022

  8. Vesicular trafficking and stress response coupled to PI3K inhibition by LY294002 as revealed by proteomic and cell biological analysis

    PubMed Central

    Takáč, Tomáš; Pechan, Tibor; Šamajová, Olga; Šamaj, Jozef

    2013-01-01

    LY294002 is a synthetic quercetin-like compound which, unlike wortmannin, is an inhibitor of phosphatidylinositol 3-kinase (PI3K). It inhibits endocytosis and vacuolar transport. We report here on the proteome-wide effects of LY294002 on Arabidopsis roots focusing on proteins involved in vesicular trafficking and stress response. At the subcellular level, LY294002 caused swelling and clustering of late endosomes leading to inhibition of vacuolar transport. At the proteome level, this compound caused changes in abundances of proteins categorized to 10 functional classes. Among proteins involved in vesicular trafficking, a small GTPase ARFA1f was more abundant, indicating its possible contribution to the aggregation and fusion of late endosomes triggered by LY294002. Our study provides new information on storage proteins and vacuolar hydrolases in vegetative tissues treated by LY294002. Vacuolar hydrolases were downregulated while storage proteins were more abundant, suggesting that storage proteins were protected from degradation in swollen multivesicular bodies upon LY294002 treatment. Upregulation of 2S albumin was validated by immunoblotting and immunolabelling analyses. Our study also pointed to the control of antioxidant enzyme machinery by PI3K because LY294002 downregulated two isozymes of superoxide dismutase. This most likely occurred via PI3K–mediated downregulation of protein AtDJ1A. Finally, we discuss specificity differences of LY294002 and wortmannin against PI3K which are reflected at the proteome level. Compared to wortmannin, LY294002 showed more narrow and perhaps also more specific effects on proteins as suggested by gene ontology functional annotation. PMID:23931732

  9. Chinese herbal medicine formula tao hong si wu decoction protects against cerebral ischemia-reperfusion injury via PI3K/Akt and the Nrf2 signaling pathway.

    PubMed

    Li, Li; Yang, Na; Nin, Ling; Zhao, Zhilong; Chen, Lu; Yu, Jie; Jiang, Zhuyun; Zhong, Zhendong; Zeng, Daiwen; Qi, Hongyi; Xu, Xiaoyu

    2015-01-01

    The Chinese herbal medicine formula Tao Hong Si Wu decoction (THSWD) is traditionally used for the prevention and treatment of ischemic stroke. Transcription factor NF-E2-related factor 2 (Nrf2) regulates a battery of phase II enzymes and is known as the major mechanism of cellular defense against oxidative stress. The present study aimed to explore the potential effect of THSWD on the Nrf2 signaling pathway and the consequent effect during cerebral ischemia-reperfusion (I/R) injury. We found that THSWD reduced infarct volume and improved neurological function in a rat stroke model induced by middle cerebral artery occlusion (MCAO). Additionally, heme oxygenase 1 (HO-1), a key endogenous antioxidant enzyme regulated by Nrf2, was significantly further induced by THSWD in this in vivo model. In neuronal-like PC12 cells, THSWD remarkably up-regulated HO-1 expression and promoted Nrf2 nuclear translocation. Furthermore, phosphatidylinositol 3-kinase (PI3K)/Akt kinase was found to be involved in the upstream of Nrf2 regulation. In an in vitro oxygen-glucose deprivation/reperfusion (OGD-Rep) model, THSWD treatment significantly reduced cell death induced by OGD-Rep insult. Importantly, the protective action was attenuated while PI3K activity was inhibited by a specific inhibitor, LY294002, and the Nrf2 signaling pathway was blocked by antioxidant response element (ARE) decoy oligonucleotides. Collectively, these results demonstrated that THSWD exhibited notable neuroprotective properties in vitro and in vivo and activation of PI3K/Akt and the Nrf2 signaling pathway may be, at least in part, responsible for the protection. This study provides a better understanding of the molecular mechanism underlying the traditional use of the Chinese herbal medicine formula THSWD.

  10. Inhibition of PI3K-Akt Signaling Blocks Exercise-Mediated Enhancement of Adult Neurogenesis and Synaptic Plasticity in the Dentate Gyrus

    PubMed Central

    Bruel-Jungerman, Elodie; Veyrac, Alexandra; Dufour, Franck; Horwood, Jennifer; Laroche, Serge; Davis, Sabrina

    2009-01-01

    Background Physical exercise has been shown to increase adult neurogenesis in the dentate gyrus and enhances synaptic plasticity. The antiapoptotic kinase, Akt has also been shown to be phosphorylated following voluntary exercise; however, it remains unknown whether the PI3K-Akt signaling pathway is involved in exercise-induced neurogenesis and the associated facilitation of synaptic plasticity in the dentate gyrus. Methodology/Principal Findings To gain insight into the potential role of this signaling pathway in exercise-induced neurogenesis and LTP in the dentate gyrus rats were infused with the PI3K inhibitor, LY294002 or vehicle control solution (icv) via osmotic minipumps and exercised in a running wheel for 10 days. Newborn cells in the dentate gyrus were date-labelled with BrdU on the last 3 days of exercise. Then, they were either returned to the home cage for 2 weeks to assess exercise-induced LTP and neurogenesis in the dentate gyrus, or were killed on the last day of exercise to assess proliferation and activation of the PI3K-Akt cascade using western blotting. Conclusions/Significance Exercise increases cell proliferation and promotes survival of adult-born neurons in the dentate gyrus. Immediately after exercise, we found that Akt and three downstream targets, BAD, GSK3β and FOXO1 were activated. LY294002 blocked exercise-induced phosphorylation of Akt and downstream target proteins. This had no effect on exercise-induced cell proliferation, but it abolished most of the beneficial effect of exercise on the survival of newly generated dentate gyrus neurons and prevented exercise-induced increase in dentate gyrus LTP. These results suggest that activation of the PI3 kinase-Akt signaling pathway plays a significant role via an antiapoptotic function in promoting survival of newly formed granule cells generated during exercise and the associated increase in synaptic plasticity in the dentate gyrus. PMID:19936256

  11. Licochalcone A induces autophagy through PI3K/Akt/mTOR inactivation and autophagy suppression enhances Licochalcone A-induced apoptosis of human cervical cancer cells.

    PubMed

    Tsai, Jen-Pi; Lee, Chien-Hsing; Ying, Tsung-Ho; Lin, Chu-Liang; Lin, Chia-Liang; Hsueh, Jung-Tsung; Hsieh, Yi-Hsien

    2015-10-01

    The use of dietary bioactive compounds in chemoprevention can potentially reverse, suppress, or even prevent cancer progression. However, the effects of licochalcone A (LicA) on apoptosis and autophagy in cervical cancer cells have not yet been clearly elucidated. In this study, LicA treatment was found to significantly induce the apoptotic and autophagic capacities of cervical cancer cells in vitro and in vivo. MTT assay results showed dose- and time-dependent cytotoxicity in four cervical cancer cell lines treated with LicA. We found that LicA induced mitochondria-dependent apoptosis in SiHa cells, with decreasing Bcl-2 expression. LicA also induced autophagy effects were examined by identifying accumulation of Atg5, Atg7, Atg12 and microtubule-associated protein 1 light chain 3 (LC3)-II. Treatment with autophagy-specific inhibitors (3-methyladenine and bafilomycin A1) enhanced LicA-induced apoptosis. In addition, we suggested the inhibition of phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of mTOR pathway by LicA. Furthermore, the inhibition of PI3K/Akt by LY294002/si-Akt or of mTOR by rapamycin augmented LicA-induced apoptosis and autophagy. Finally, the in vivo mice bearing a SiHa xenograft, LicA dosed at 10 or 20 mg/kg significantly inhibited tumor growth. Our findings demonstrate the chemotherapeutic potential of LicA for treatment of human cervical cancer.

  12. Antitumor effect of manumycin on colorectal cancer cells by increasing the reactive oxygen species production and blocking PI3K-AKT pathway

    PubMed Central

    Zhang, Jingyu; Jiang, Hua; Xie, Li; Hu, Jing; Li, Li; Yang, Mi; Cheng, Lei; Liu, Baorui; Qian, Xiaoping

    2016-01-01

    Manumycin is a natural, well-tolerated microbial metabolite and is regarded as a farnesyltransferase inhibitor. Some data suggest that manumycin inhibits proliferation of diverse cancer cells through various pathways. However, the antitumor effect of manumycin on colorectal cancer (CRC) remains unknown. In the present study, we investigated the antitumor effect of manumycin on CRC in vitro and in vivo. The results of cell viability assay revealed that the proliferation of the CRC cells was significantly inhibited by manumycin. Moreover, cell apoptosis induced by manumycin was also found in a time- and dose-dependent manner. Interestingly, treatment of the CRC cells with manumycin resulted in increased generation of reactive oxygen species. Subsequently, manumycin also decreased the phosphorylation of phosphatidylinositol 3-kinase (PI3K) and AKT, as well as the expression of caspase-9 and poly(ADP-ribose) polymerase (PARP) in a time-dependent manner. In addition, we found that N-acetyl-l-cysteine (NAC) attenuated the effect of manumycin on the PI3K-AKT pathway, and wortmannin reduced the effect of manumycin on caspase-9 and PARP expression. More importantly, the anticancer effect of manumycin was also observed in established tumor xenografts. Taken together, these findings supported the potential application of manumycin against colorectal carcinoma. PMID:27307747

  13. FAK mediates a compensatory survival signal parallel to PI3K-AKT in PTEN-null T-ALL cells.

    PubMed

    You, Dewen; Xin, Junping; Volk, Andrew; Wei, Wei; Schmidt, Rachel; Scurti, Gina; Nand, Sucha; Breuer, Eun-Kyoung; Kuo, Paul C; Breslin, Peter; Kini, Ameet R; Nishimura, Michael I; Zeleznik-Le, Nancy J; Zhang, Jiwang

    2015-03-31

    Mutations and inactivation of phosphatase and tensin homolog deleted from chromosome 10 (PTEN) are observed in 15%-25% of cases of human T cell acute lymphoblastic leukemia (T-ALL). Pten deletion induces myeloproliferative disorders (MPDs), acute myeloid leukemia (AML), and/or T-ALL in mice. Previous studies attributed Pten-loss-related hematopoietic defects and leukemogenesis to excessive activation of phosphatidylinositol 3-kinase (PI3K)/AKT/mTOR signaling. Although inhibition of this signal dramatically suppresses the growth of PTEN-null T-ALL cells in vitro, treatment with inhibitors of this pathway does not cause a complete remission in vivo. Here, we report that focal adhesion kinase (Fak), a protein substrate of Pten, also contributes to T-ALL development in Pten-null mice. Inactivation of the FAK signaling pathway by either genetic or pharmacologic methods significantly sensitizes both murine and human PTEN-null T-ALL cells to PI3K/AKT/mTOR inhibition when cultured in vitro on feeder layer cells or a matrix and in vivo. PMID:25801032

  14. Nobiletin, a citrus flavonoid, suppresses invasion and migration involving FAK/PI3K/Akt and small GTPase signals in human gastric adenocarcinoma AGS cells.

    PubMed

    Lee, Yi-Chieh; Cheng, Tsan-Hwang; Lee, Jung-Shin; Chen, Jiun-Hwan; Liao, Yi-Chen; Fong, Yao; Wu, Cheng-Hsun; Shih, Yuan-Wei

    2011-01-01

    Nobiletin, a compound isolated from citrus fruits, is a polymethoxylated flavone derivative shown to have anti-inflammatory, antitumor, and neuroprotective properties. This study has investigated that nobiletin exerted inhibitory effects on the cell adhesion, invasion, and migration abilities of a highly metastatic AGS cells under non-cytotoxic concentrations. Data also showed nobiletin could inhibit the activation of focal adhesion kinase (FAK) and phosphoinositide-3-kinase/Akt (PI3K/Akt) involved in the downregulation of the enzyme activities, protein expressions, messenger RNA levels of matrix metalloproteinase-2 (MMP-2), and matrix metalloproteinase-2 (MMP-9). Also, our data revealed that nobiletin inhibited FAK/PI3K/Akt with concurrent reduction in the protein expressions of Ras, c-Raf, Rac-1, Cdc42, and RhoA by western blotting, whereas the protein level of RhoB increased progressively. Otherwise, nobiletin-treated AGS cells showed tremendously decreased in the phosphorylation and degradation of inhibitor of kappaBα (IκBα), the nuclear level of NF-κB, and the binding ability of NF-κB to NF-κB response element. Furthermore, nobiletin significantly decreased the levels of phospho-Akt and MMP-2/9 in Akt1-cDNA-transfected cells concomitantly with a marked reduction in cell invasion and migration. These results suggest that nobiletin can reduce invasion and migration of AGS cells, and such a characteristic may be of great value in the development of a potential cancer therapy.

  15. The molecular mechanism of polygalasaponin F-mediated decreases in TNFα: emphasizing the role of the TLR4-PI3K/AKT-NF-κB pathway.

    PubMed

    Yan, Wen-Fen; Shao, Qian-Hang; Zhang, Dong-Ming; Yuan, Yu-He; Chen, Nai-Hong

    2015-01-01

    Polygalasaponin F (PS-F), an oleanane-type triterpenoid saponin extracted from Polygala japonica, decreases the release of the inflammatory cytokine tumor necrosis factor α (TNFα), but the precise molecular mechanisms by which this event occurs are not fully understood. To study the anti-neuroinflammatory mechanisms of PS-F, enzyme-linked immunosorbent assay was used to detect the secretion of TNFα from BV-2 microglial cells. Nuclear proteins extracted from BV-2 microglial cells stimulated by lipopolysaccharide (LPS) and pretreated with/without inhibitors were measured by Western blotting, and cell viability was evaluated by MTT analysis. The results indicated that inhibition of toll-like receptor (TLR) 4 (CLI-095 1 μg/ml), phosphatidylinositol 3-kinase (PI3K) (Ly294002 10 μM) or IκBα phosphorylation (Bay11-7082 10 μM) completely prevents the release of TNFα induced by LPS without affecting cell viability and attenuated the nuclear translocation of p65 stimulated by LPS. In addition, PS-F exhibited a similar trend regarding TNFα release, AKT phosphorylation and NF-κB translocation. These results suggest that PS-F reduces neuroinflammatory cytokine secretion through the regulation of the TLR4-PI3K/AKT-NF-κB signaling pathway. PMID:26235355

  16. EPO-dependent activation of PI3K/Akt/FoxO3a signalling mediates neuroprotection in in vitro and in vivo models of Parkinson's disease.

    PubMed

    Jia, Yu; Mo, Shi-Jing; Feng, Qi-Qi; Zhan, Ma-Li; OuYang, Li-Si; Chen, Jia-Chang; Ma, Yu-Xin; Wu, Jia-Jia; Lei, Wan-Long

    2014-05-01

    Erythropoietin (EPO) may become a potential therapeutic candidate for the treatment of the neurodegenerative disorder -- Parkinson's disease (PD), since EPO has been found to prevent neuron apoptosis through the activation of cell survival signalling. However, the underlying mechanisms of how EPO exerts its neuroprotective effect are not fully elucidated. Here we investigated the mechanism by which EPO suppressed 6-hydroxydopamine (6-OHDA)-induced neuron death in in vitro and in vivo models of PD. EPO knockdown conferred 6-OHDA-induced cytotoxicity. This effect was reversed by EPO administration. Treatment of PC12 cells with EPO greatly diminished the toxicity induced by 6-OHDA in a dose- and time-dependent manner. EPO effectively reduced apoptosis of striatal neurons and induced a significant improvement on the neurological function score in the rat models of PD. Furthermore, EPO increased the expression of phosphorylated Akt and phosphorylated FoxO3a, and abrogated the 6-OHDA-induced dysregulation of Bcl-2, Bax and Caspase-3 in PC12 cells and in striatal neurons. Meanwhile, the EPO-dependent neuroprotection was notably reversed by pretreatment with LY294002, a specific inhibitor of phosphatidylinositol 3-kinase (PI3K). Our data suggest that PI3K/Akt/FoxO3a signalling pathway may be a possible mechanism involved in the neuroprotective effect of EPO in PD. PMID:24390959

  17. The molecular mechanism of polygalasaponin F-mediated decreases in TNFα: emphasizing the role of the TLR4-PI3K/AKT-NF-κB pathway.

    PubMed

    Yan, Wen-Fen; Shao, Qian-Hang; Zhang, Dong-Ming; Yuan, Yu-He; Chen, Nai-Hong

    2015-01-01

    Polygalasaponin F (PS-F), an oleanane-type triterpenoid saponin extracted from Polygala japonica, decreases the release of the inflammatory cytokine tumor necrosis factor α (TNFα), but the precise molecular mechanisms by which this event occurs are not fully understood. To study the anti-neuroinflammatory mechanisms of PS-F, enzyme-linked immunosorbent assay was used to detect the secretion of TNFα from BV-2 microglial cells. Nuclear proteins extracted from BV-2 microglial cells stimulated by lipopolysaccharide (LPS) and pretreated with/without inhibitors were measured by Western blotting, and cell viability was evaluated by MTT analysis. The results indicated that inhibition of toll-like receptor (TLR) 4 (CLI-095 1 μg/ml), phosphatidylinositol 3-kinase (PI3K) (Ly294002 10 μM) or IκBα phosphorylation (Bay11-7082 10 μM) completely prevents the release of TNFα induced by LPS without affecting cell viability and attenuated the nuclear translocation of p65 stimulated by LPS. In addition, PS-F exhibited a similar trend regarding TNFα release, AKT phosphorylation and NF-κB translocation. These results suggest that PS-F reduces neuroinflammatory cytokine secretion through the regulation of the TLR4-PI3K/AKT-NF-κB signaling pathway.

  18. Inhibition of the PI3K/Akt/mTOR signaling pathway in diffuse large B-cell lymphoma: current knowledge and clinical significance.

    PubMed

    Majchrzak, Agata; Witkowska, Magdalena; Smolewski, Piotr

    2014-09-11

    Diffuse large B-cell lymphoma (DLBCL) is one of the most common non-Hodgkin lymphomas in adults. The disease is very heterogeneous in its presentation, that is DLBCL patients may differ from each other not only in regard to histology of tissue infiltration, clinical course or response to treatment, but also in respect to diversity in gene expression profiling. A growing body of knowledge on the biology of DLBCL, including abnormalities in intracellular signaling, has allowed the development of new treatment strategies, specifically directed against lymphoma cells. The phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) signaling pathway plays an important role in controlling proliferation and survival of tumor cells in various types of malignancies, including DLBCL, and therefore it may be a promising target for therapeutic intervention. Currently, novel anticancer drugs are undergoing assessment in different phases of clinical trials in aggressive lymphomas, with promising outcomes. In this review we present a state of art review on various classes of small molecule inhibitors selectively involving PI3K/Akt/mTOR pathway and their clinical potential in this disease.

  19. Interleukin-21 promotes osteoclastogenesis in RAW264.7 cells through the PI3K/AKT signaling pathway independently of RANKL.

    PubMed

    Xing, Rui; Zhang, Yingjian; Li, Changhong; Sun, Lin; Yang, Lin; Zhao, Jinxia; Liu, Xiangyuan

    2016-10-01

    Cytokines play a key role in the bone destruction of rheumatoid arthritis (RA). Interleukin-21 (IL-21) promotes osteoclastogenesis in RA in a receptor activator of nuclear factor-κB ligand (RANKL)-dependent way. Whether IL-21 is capable of promoting osteoclastogenesis directly in the absence of RANKL remains unknown. In the present study, we examined the osteoclastogenic activity of IL-21 in RAW264.7 cells in the absence of RANKL. We found that IL-21 enhanced osteoclastogenesis and this was demonstrated by increased numbers of tartrate-resistant acid phosphatase (TRAP)-positive stained, multinucleated cells compared with the negative control. Western blot analysis and immunocytochemistry showed the positive expression of calcitonin receptor (CTR) in the IL-21 group. RT-PCR and RT-qPCR also verified the increased mRNA expression of CTR and cathepsin K in the IL-21 group compared with the negative control. The scanning electronic microscope images showed a few resorption pits on the bone slices cultured with IL-21. The phosphoinositide 3-kinase (PI3K)/AKT pathway inhibitor LY294002 significantly suppressed IL-21-induced osteoclastogenesis. Taken together, these findings suggest that IL-21 has direct osteoclastogenic potential independently of RANKL. IL-21 may promote osteoclastogenesis through the PI3K/AKT signaling pathway. Therapy targeting IL-21 may be of value in preventing bone erosions in patients with RA. PMID:27599586

  20. Interleukin-21 promotes osteoclastogenesis in RAW264.7 cells through the PI3K/AKT signaling pathway independently of RANKL

    PubMed Central

    Xing, Rui; Zhang, Yingjian; Li, Changhong; Sun, Lin; Yang, Lin; Zhao, Jinxia; Liu, Xiangyuan

    2016-01-01

    Cytokines play a key role in the bone destruction of rheumatoid arthritis (RA). Interleukin-21 (IL-21) promotes osteoclastogenesis in RA in a receptor activator of nuclear factor-κB ligand (RANKL)-dependent way. Whether IL-21 is capable of promoting osteoclastogenesis directly in the absence of RANKL remains unknown. In the present study, we examined the osteoclastogenic activity of IL-21 in RAW264.7 cells in the absence of RANKL. We found that IL-21 enhanced osteoclastogenesis and this was demonstrated by increased numbers of tartrate-resistant acid phosphatase (TRAP)-positive stained, multinucleated cells compared with the negative control. Western blot analysis and immunocytochemistry showed the positive expression of calcitonin receptor (CTR) in the IL-21 group. RT-PCR and RT-qPCR also verified the increased mRNA expression of CTR and cathepsin K in the IL-21 group compared with the negative control. The scanning electronic microscope images showed a few resorption pits on the bone slices cultured with IL-21. The phosphoinositide 3-kinase (PI3K)/AKT pathway inhibitor LY294002 significantly suppressed IL-21-induced osteoclastogenesis. Taken together, these findings suggest that IL-21 has direct osteoclastogenic potential independently of RANKL. IL-21 may promote osteoclastogenesis through the PI3K/AKT signaling pathway. Therapy targeting IL-21 may be of value in preventing bone erosions in patients with RA. PMID:27599586

  1. The PI3K/Akt Pathway Regulates Oxygen Metabolism via Pyruvate Dehydrogenase (PDH)-E1α Phosphorylation

    PubMed Central

    Cerniglia, George J.; Dey, Souvik; Gallagher-Colombo, Shannon M.; Daurio, Natalie A; Tuttle, Stephen; Busch, Theresa M.; Lin, Alexander; Sun, Ramon; Esipova, Tatiana V.; Vinogradov, Sergei A.; Denko, Nicholas; Koumenis, Constantinos; Maity, Amit

    2015-01-01

    Inhibition of the PI3K/Akt pathway decreases hypoxia within SQ20B human head and neck cancer xenografts. We set out to understand the molecular mechanism underlying this observation. We measured oxygen consumption using both a Clark electrode and an extracellular flux analyzer. We made these measurements after various pharmacologic and genetic manipulations. Pharmacologic inhibition of the PI3K/mTOR pathway or genetic inhibition of Akt/PI3K decreased the oxygen consumption rate (OCR) in vitro in SQ20B and other cell lines by 30–40%. Pharmacologic inhibition of this pathway increased phosphorylation of the E1α subunit of the pyruvate dehydrogenase (PDH) complex on Ser293, which inhibits activity of this critical gatekeeper of mitochondrial respiration. Expressing wild type PTEN in a doxycycline-inducible manner in a cell line with mutant PTEN led to an increase in PDH-E1α phosphorylation and a decrease in OCR. Pre-treatment of SQ20B cells with dichloroacetate (DCA), which inhibits PDH-E1α phosphorylation by inhibiting dehydrogenase kinases (PDKs), reversed the decrease in OCR in response to PI3K/Akt/mTOR inhibition. Likewise, introduction of exogenous PDH-E1α that contains serine to alanine mutations, which can no longer be regulated by phosphorylation, also blunted the decrease in OCR seen with PI3K/mTOR inhibition. Our findings highlight an association between the PI3K/mTOR pathway and tumor cell oxygen consumption that is regulated in part by PDH phosphorylation. These results have important implications for understanding the effects PI3K pathway activation in tumor metabolism and also in designing cancer therapy trials that use inhibitors of this pathway. PMID:25995437

  2. PI3K/Akt signaling mediated Hexokinase-2 expression inhibits cell apoptosis and promotes tumor growth in pediatric osteosarcoma

    SciTech Connect

    Zhuo, Baobiao; Li, Yuan; Li, Zhengwei; Qin, Haihui; Sun, Qingzeng; Zhang, Fengfei; Shen, Yang; Shi, Yingchun; Wang, Rong

    2015-08-21

    Accumulating evidence has shown that PI3K/Akt pathway is frequently hyperactivated in osteosarcoma (OS) and contributes to tumor initiation and progression. Altered phenotype of glucose metabolism is a key hallmark of cancer cells including OS. However, the relationship between PI3K/Akt pathway and glucose metabolism in OS remains largely unexplored. In this study, we showed that elevated Hexokinase-2 (HK2) expression, which catalyzes the first essential step of glucose metabolism by conversion of glucose into glucose-6-phosphate, was induced by activated PI3K/Akt signaling. Immunohistochemical analysis showed that HK2 was overexpressed in 83.3% (25/30) specimens detected and was closely correlated with Ki67, a cell proliferation index. Silencing of endogenous HK2 resulted in decreased aerobic glycolysis as demonstrated by reduced glucose consumption and lactate production. Inhibition of PI3K/Akt signaling also suppressed aerobic glycolysis and this effect can be reversed by reintroduction of HK2. Furthermore, knockdown of HK2 led to increased cell apoptosis and reduced ability of colony formation; meanwhile, these effects were blocked by 2-Deoxy-D-glucose (2-DG), a glycolysis inhibitor through its actions on hexokinase, indicating that HK2 functions in cell apoptosis and growth were mediated by altered aerobic glycolysis. Taken together, our study reveals a novel relationship between PI3K/Akt signaling and aerobic glycolysis and indicates that PI3K/Akt/HK2 might be potential therapeutic approaches for OS. - Highlights: • PI3K/Akt signaling contributes to elevated expression of HK2 in osteosarcoma. • HK2 inhibits cell apoptosis and promotes tumor growth through enhanced Warburg effect. • Inhibition of glycolysis blocks the oncogenic activity of HK2.

  3. Plumbagin induces cell cycle arrest and autophagy and suppresses epithelial to mesenchymal transition involving PI3K/Akt/mTOR-mediated pathway in human pancreatic cancer cells

    PubMed Central

    Wang, Feng; Wang, Qi; Zhou, Zhi-Wei; Yu, Song-Ning; Pan, Shu-Ting; He, Zhi-Xu; Zhang, Xueji; Wang, Dong; Yang, Yin-Xue; Yang, Tianxing; Sun, Tao; Li, Min; Qiu, Jia-Xuan; Zhou, Shu-Feng

    2015-01-01

    Plumbagin (PLB), an active naphthoquinone compound, has shown potent anticancer effects in preclinical studies; however, the effect and underlying mechanism of PLB for the treatment of pancreatic cancer is unclear. This study aimed to examine the pancreatic cancer cell killing effect of PLB and investigate the underlying mechanism in human pancreatic cancer PANC-1 and BxPC-3 cells. The results showed that PLB exhibited potent inducing effects on cell cycle arrest in PANC-1 and BxPC-3 cells via the modulation of cell cycle regulators including CDK1/CDC2, cyclin B1, cyclin D1, p21 Waf1/Cip1, p27 Kip1, and p53. PLB treatment concentration- and time-dependently increased the percentage of autophagic cells and significantly increased the expression level of phosphatase and tensin homolog, beclin 1, and the ratio of LC3-II over LC3-I in both PANC-1 and BxPC-3 cells. PLB induced inhibition of phosphatidylinositol 3-kinase (PI3K)/protein kinase B/mammalian target of rapamycin and p38 mitogen-activated protein kinase (p38 MAPK) pathways and activation of 5′-AMP-dependent kinase as indicated by their altered phosphorylation, contributing to the proautophagic activities of PLB in both cell lines. Furthermore, SB202190, a selective inhibitor of p38 MAPK, and wortmannin, a potent, irreversible, and selective PI3K inhibitor, remarkably enhanced PLB-induced autophagy in PANC-1 and BxPC-3 cells, indicating the roles of PI3K and p38 MAPK mediated signaling pathways in PLB-induced autophagic cell death in both cell lines. In addition, PLB significantly inhibited epithelial to mesenchymal transition phenotype in both cell lines with an increase in the expression level of E-cadherin and a decrease in N-cadherin. Moreover, PLB treatment significantly suppressed the expression of Sirt1 in both cell lines. These findings show that PLB promotes cell cycle arrest and autophagy but inhibits epithelial to mesenchymal transition phenotype in pancreatic cancer cells with the involvement of

  4. TEIF associated centrosome activity is regulated by EGF/PI3K/Akt signaling.

    PubMed

    Zhao, Jing; Zou, Yongxin; Liu, Haijing; Wang, Huali; Zhang, Hong; Hou, Wei; Li, Xin; Jia, Xinying; Zhang, Jing; Hou, Lin; Zhang, Bo

    2014-09-01

    Centrosome amplification, which is a characteristic of cancer cells, has been understood as a driving force of genetic instability in the development of cancer. In previous work, we demonstrated that TEIF (transcriptional element-interacting factor) distributes in the centrosomes and regulates centrosome status under both physiologic and pathologic conditions. Here we identify TEIF as a downstream effector in EGF/PI3K/Akt signaling. The addition of EGF or transfection of active Akt stimulates centrosome TEIF distribution, resulting in an increase of centrosome splitting and amplification, while inhibitors of either PI3K or Akt attenuate these changes in TEIF and the associated centrosome status. A consensus motif for Akt phosphorylation (RHRVLT) proved to be involved in centrosomal TEIF localization, and the 469-threonine of this motif may be phosphorylated by Akt both in vitro and in vivo. Elimination of this phosphorylated site on TEIF caused reduced centrosome distribution and centrosome splitting or amplification. Moreover, TEIF closely co-localized with C-NAP1 at the proximal ends of centrioles, and centriolar loading of TEIF stimulated by EGF/Akt could displace C-NAP1, resulting in centrosome splitting. These findings reveal linkage of the EGF/PI3K/Akt signaling pathway to regulation of centrosome status which may act as an oncogenic pathway and induce genetic instability in carcinogenesis. PMID:24769208

  5. PI3K/AKT and ERK regulate retinoic acid-induced neuroblastoma cellular differentiation

    SciTech Connect

    Qiao, Jingbo; Paul, Pritha; Lee, Sora; Qiao, Lan; Josifi, Erlena; Tiao, Joshua R.; Chung, Dai H.

    2012-08-03

    Highlights: Black-Right-Pointing-Pointer Retinoic acid (RA) induces neuroblastoma cells differentiation, which is accompanied by G0/G1 cell cycle arrest. Black-Right-Pointing-Pointer RA resulted in neuroblastoma cell survival and inhibition of DNA fragmentation; this is regulated by PI3K pathway. Black-Right-Pointing-Pointer RA activates PI3K and ERK1/2 pathway; PI3K pathway mediates RA-induced neuroblastoma cell differentiation. Black-Right-Pointing-Pointer Upregulation of p21 is necessary for RA-induced neuroblastoma cell differentiation. -- Abstract: Neuroblastoma, the most common extra-cranial solid tumor in infants and children, is characterized by a high rate of spontaneous remissions in infancy. Retinoic acid (RA) has been known to induce neuroblastoma differentiation; however, the molecular mechanisms and signaling pathways that are responsible for RA-mediated neuroblastoma cell differentiation remain unclear. Here, we sought to determine the cell signaling processes involved in RA-induced cellular differentiation. Upon RA administration, human neuroblastoma cell lines, SK-N-SH and BE(2)-C, demonstrated neurite extensions, which is an indicator of neuronal cell differentiation. Moreover, cell cycle arrest occurred in G1/G0 phase. The protein levels of cyclin-dependent kinase inhibitors, p21 and p27{sup Kip}, which inhibit cell proliferation by blocking cell cycle progression at G1/S phase, increased after RA treatment. Interestingly, RA promoted cell survival during the differentiation process, hence suggesting a potential mechanism for neuroblastoma resistance to RA therapy. Importantly, we found that the PI3K/AKT pathway is required for RA-induced neuroblastoma cell differentiation. Our results elucidated the molecular mechanism of RA-induced neuroblastoma cellular differentiation, which may be important for developing novel therapeutic strategy against poorly differentiated neuroblastoma.

  6. PI3K: An Attractive Candidate for the Central Integration of Metabolism and Reproduction

    PubMed Central

    Acosta-Martínez, Maricedes

    2012-01-01

    In neurons, as in a variety of other cell types, the enzyme phosphatidylinositol-3-kinase (PI3K) is a key intermediate that is common to the signaling pathways of a number of peripheral metabolic cues, including insulin and leptin, which are well known to regulate both metabolic and reproductive functions. This review article will explore the possibility that PI3K is a key integrator of metabolic and neural signals regulating gonadotropin releasing hormone (GnRH)/luteinizing hormone (LH) release and explore the hypothesis that this enzyme is pivotal in many disorders where gonadotropin release is at risk. Although the mechanisms mediating the influence of metabolism and nutrition on fertility are currently unclear, the strong association between metabolic disorders and infertility is undeniable. For example, women suffering from anorectic disorders experience amenorrhea as a consequence of malnutrition-induced impairment of LH release, and at the other extreme, obesity is also commonly co-morbid with menstrual dysfunction and infertility. Impaired hypothalamic insulin and leptin receptor signaling is thought to be at the core of reproductive disorders associated with metabolic dysfunction. While low levels of leptin and insulin characterize states of negative energy balance, prolonged nutrient excess is associated with insulin and leptin resistance. Metabolic models known to alter GnRH/LH release such as diabetes, diet-induced obesity, and caloric restriction are also accompanied by impairment of PI3K signaling in insulin and leptin sensitive tissues including the hypothalamus. However, a clear link between this signaling pathway and the control of GnRH release by peripheral metabolic cues has not been established. Investigating the role of the signaling pathways shared by metabolic cues that are critical for a normal reproductive state can help identify possible targets in the treatment of metabolic and reproductive disorders such as polycystic ovarian syndrome

  7. PTEN regulates angiogenesis through PI3K/Akt/VEGF signaling pathway in human pancreatic cancer cells.

    PubMed

    Ma, Jiachi; Sawai, Hirozumi; Ochi, Nobuo; Matsuo, Yoichi; Xu, Donghui; Yasuda, Akira; Takahashi, Hiroki; Wakasugi, Takehiro; Takeyama, Hiromitsu

    2009-11-01

    Phosphoinositide 3-kinase (PI3K) pathway exerts its effects through Akt, its downstream target molecule, and thereby regulates various cell functions including cell proliferation, cell transformation, apoptosis, tumor growth, and angiogenesis. Phosphatase and tensin homolog deleted on chromosome 10 (PTEN) has been implicated in regulating cell survival signaling through the PI3K/Akt pathway. However, the mechanism by PI3K/PTEN signaling regulates angiogenesis and tumor growth in vivo remains to be elucidated. Vascular endothelial growth factor (VEGF) plays a pivotal role in tumor angiogenesis. The effect of PTEN on VEGF-mediated signal in pancreatic cancer is unknown. This study aimed to determine the effect of PTEN on both the expression of VEGF and angiogenesis. Toward that end, we used the siRNA knockdown method to specifically define the role of PTEN in the expression of VEGF and angiogenesis. We found that siRNA-mediated inhibition of PTEN gene expression in pancreatic cancer cells increase their VEGF secretion, up-modulated the proliferation, and migration of co-cultured vascular endothelial cell and enhanced tubule formation by HUVEC. In addition, PTEN modulated VEGF-mediated signaling and affected tumor angiogenesis through PI3K/Akt/VEGF/eNOS pathway.

  8. Aged black garlic extract inhibits HT29 colon cancer cell growth via the PI3K/Akt signaling pathway.

    PubMed

    Dong, Menghua; Yang, Guiqing; Liu, Hanchen; Liu, Xiaoxu; Lin, Sixiang; Sun, Dongning; Wang, Yishan

    2014-03-01

    Accumulating evidence indicates that aged black garlic extract (ABGE) may prove beneficial in preventing or inhibiting oncogenesis; however, the underlying mechanisms have not been fully elucidated. The present study aimed to investigate the effects of ABGE on the proliferation and apoptosis of HT29 colon cancer cells. Our results demonstrated that ABGE inhibited HT29 cell growth via the induction of apoptosis and cell cycle arrest. We further investigated the phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) signal transduction pathway and the molecular mechanisms underlying the ABGE-induced inhibition of HT29 cell proliferation. We observed that ABGE may regulate the function of the PI3K/Akt pathway through upregulating PTEN and downregulating Akt and p-Akt expression, as well as suppressing its downstream target, 70-kDa ribosomal protein S6 kinase 1, at the mRNA and protein levels. In conclusion, these findings suggest that the PI3K/Akt signal transduction pathway is crucial for the development of colon cancer. ABGE inhibited the growth and induced apoptosis in HT29 cells through the inhibition of the PI3K/Akt pathway, suggesting that ABGE may be effective in the prevention and treatment of colon cancer in humans. PMID:24649105

  9. Combination of antibody that inhibits ligand-independent HER3 dimerization and a p110α inhibitor potently blocks PI3K signaling and growth of HER2+ breast cancers.

    PubMed

    Garrett, Joan T; Sutton, Cammie R; Kurupi, Richard; Bialucha, Carl Uli; Ettenberg, Seth A; Collins, Scott D; Sheng, Qing; Wallweber, Jerry; Defazio-Eli, Lisa; Arteaga, Carlos L

    2013-10-01

    We examined the effects of LJM716, an HER3 (ERBB3) neutralizing antibody that inhibits ligand-induced and ligand-independent HER3 dimerization, as a single agent and in combination with BYL719, an ATP competitive p110α-specific inhibitor, against HER2-overexpressing breast and gastric cancers. Treatment with LJM716 reduced HER2-HER3 and HER3-p85 dimers, P-HER3 and P-AKT, both in vitro and in vivo. Treatment with LJM716 alone markedly reduced growth of BT474 xenografts. The combination of LJM716/lapatinib/trastuzumab significantly improved survival of mice with BT474 xenografts compared with lapatinib/trastuzumab (P = 0.0012). LJM716 and BYL719 synergistically inhibited growth in a panel of HER2+ and PIK3CA mutant cell lines. The combination also inhibited P-AKT in HER2-overexpressing breast cancer cells and growth of HER2+ NCI-N87 gastric cancer xenografts more potently than LJM716 or BYL719 alone. Trastuzumab-resistant HER2+/PIK3CA mutant MDA453 xenografts regressed completely after 3 weeks of therapy with LJM716 and BYL719, whereas either single agent inhibited growth only partially. Finally, mice with BT474 xenografts treated with trastuzumab/LJM716, trastuzumab/BYL719, LJM716/BYL719, or trastuzumab/LJM716/BYL719 exhibited similar rates of tumor regression after 3 weeks of treatment. Thirty weeks after treatment discontinuation, 14% of mice were treated with trastuzumab/LJM716/BYL719, whereas >80% in all other treatment groups were sacrificed due to a recurrent large tumor burden (P = 0.0066). These data suggest that dual blockade of the HER2 signaling network with an HER3 antibody that inhibits HER2-HER3 dimers in combination with a p110α-specific inhibitor in the absence of a direct HER2 antagonist is an effective treatment approach against HER2-overexpressing cancers.

  10. The fibrotic role of phosphatidylinositol-3-kinase/Akt pathway in injured skeletal muscle after acute contusion.

    PubMed

    Li, H-Y; Zhang, Q-G; Chen, J-W; Chen, S-Q; Chen, S-Y

    2013-09-01

    Transforming growth factor β (TGF-β) is a multifunctional cytokine with fibrogenic properties. Previous studies demonstrated that Phosphatidylinositol 3-Kinase (PI3K)/Akt/ mammalian target of Ramycin (mTOR), a non-Smad TGF-β pathway, plays an important role in the fibrotic pathogenesis of different organs such as the lung, kidney, skin and liver. However, the role of PI3k-Akt pathway in fibrosis in injured skeletal muscle is still unclear. In this study, we determined the fibrotic role of PI3K-Akt pathway in injured skeletal muscle. We established a mouse model for acute muscle contusion. Western blotting analysis showed that TGF-β, phosphorylated Akt and phosphorylated mTOR were increased in muscles after acute contusion, which indicated that the PI3K-Akt- mTOR pathway was activated in skeletal muscle after acute contusion. The pathway was inhibited by a PI3K inhibitor, LY294002. Moreover, the expression of fibrosis markers vimentin, α SMA and collagen I and the area of scar decreased in injured skeletal muscle after PI3K pathway was blocked. The muscle function improved in terms of both fast-twitch and tetanic strength after PI3K/Akt pathway was inhibited in injured skeletal muscle. In conclusion, activation of PI3K-Akt-mTOR pathway might promote collagen production and scar formation in the acute contused skeletal muscle. Blocking of PI3K-Akt-mTOR pathway could improve the function of injured skeletal muscle. PMID:23444088

  11. A frequent kinase domain mutation that changes the interaction between PI3K[alpha] and the membrane

    SciTech Connect

    Mandelker, Diana; Gabelli, Sandra B.; Schmidt-Kittler, Oleg; Zhu, Jiuxiang; Cheong, Ian; Huang, Chuan-Hsiang; Kinzler, Kenneth W.; Vogelstein, Bert; Amzel, L. Mario

    2009-12-01

    Mutations in oncogenes often promote tumorigenesis by changing the conformation of the encoded proteins, thereby altering enzymatic activity. The PIK3CA oncogene, which encodes p110{alpha}, the catalytic subunit of phosphatidylinositol 3-kinase alpha (PI3K{alpha}), is one of the two most frequently mutated oncogenes in human cancers. We report the structure of the most common mutant of p110{alpha} in complex with two interacting domains of its regulatory partner (p85{alpha}), both free and bound to an inhibitor (wortmannin). The N-terminal SH2 (nSH2) domain of p85{alpha} is shown to form a scaffold for the entire enzyme complex, strategically positioned to communicate extrinsic signals from phosphopeptides to three distinct regions of p110{alpha}. Moreover, we found that Arg-1047 points toward the cell membrane, perpendicular to the orientation of His-1047 in the WT enzyme. Surprisingly, two loops of the kinase domain that contact the cell membrane shift conformation in the oncogenic mutant. Biochemical assays revealed that the enzymatic activity of the p110{alpha} His1047Arg mutant is differentially regulated by lipid membrane composition. These structural and biochemical data suggest a previously undescribed mechanism for mutational activation of a kinase that involves perturbation of its interaction with the cellular membrane.

  12. Effects of inhibitors of vascular endothelial growth factor receptor 2 and downstream pathways of receptor tyrosine kinases involving phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin or mitogen-activated protein kinase in canine hemangiosarcoma cell lines.

    PubMed

    Adachi, Mami; Hoshino, Yuki; Izumi, Yusuke; Sakai, Hiroki; Takagi, Satoshi

    2016-07-01

    Canine hemangiosarcoma (HSA) is a progressive malignant neoplasm with no current effective treatment. Previous studies showed that receptor tyrosine kinases and molecules within their downstream pathways involving phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (m-TOR) or mitogen-activated protein kinase (MAPK) were overexpressed in canine, human, and murine tumors, including HSA. The present study investigated the effects of inhibitors of these pathways in canine splenic and hepatic HSA cell lines using assays of cell viability and apoptosis. Inhibitors of the MAPK pathway did not affect canine HSA cell viability. However, cell viability was significantly reduced by exposure to inhibitors of vascular endothelial growth factor receptor 2 and the PI3K/Akt/m-TOR pathway; these inhibitors also induced apoptosis in these cell lines. These results suggest that these inhibitors reduce the proliferation of canine HSA cells by inducing apoptosis. Further study of these inhibitors, using xenograft mouse models of canine HSA, are warranted to explore their potential for clinical application. PMID:27408334

  13. Effects of dexmedetomidine postconditioning on myocardial ischemia and the role of the PI3K/Akt-dependent signaling pathway in reperfusion injury

    PubMed Central

    CHENG, XIANG YANG; GU, XIAO YU; GAO, QIN; ZONG, QIAO FENG; LI, XIAO HONG; ZHANG, YE

    2016-01-01

    The present study aimed to determine whether post-ischemic treatment with dexmedetomidine (DEX) protected the heart against acute myocardial ischemia/reperfusion (I/R)-induced injury in rats. The phosphatidylinositol-3 kinase/protein kinase B(PI3K/Akt)-dependent signaling pathway was also investigated. Male Sprague Dawley rats (n=64) were subjected to ligation of the left anterior descending artery (LAD), which produced ischemia for 25 min, followed by reperfusion. Following LAD ligation, rats were treated with DEX (5, 10 and 20 µg/kg) or underwent post-ischemic conditioning, which included three cycles of ischemic insult. In order to determine the role of the PI3K/Akt signaling pathway, wortmannin (Wort), a PI3K inhibitor, was used to treat a group of rats that had also been treated with DEX (20 µg/kg). Post-reperfusion, lactate dehydrogenase (LDH), cardiac troponin I (cTnI), creatine kinase isoenzymes (CK-MB), superoxide dismutase (SOD) and malondialdehyde (MDA) serum levels were measured using an ultraviolet spectrophotometer. The protein expression levels of phosphorylated (p)-Akt, Ser9-p-glycogen synthase kinase-3β (p-GSK-3β) and cleaved caspase-3 were detected in heart tissue by western blotting. The mRNA expression levels of B-cell lymphoma 2 (Bcl-2) and Bcl-2-associated X protein (Bax) were detected using reverse transcription-polymerase chain reaction. At the end of the experiment, the hearts were removed and perfused in an isolated perfusion heart apparatus with Evans blue (1%) in order to determine the non-ischemic areas. The risk and infarct areas of the heart were not dyed. As expected, I/R induced myocardial infarction, as determined by the increased serum levels of cTnI, CK-MB and MDA, and the decreased levels of SOD. Post-ischemic treatment with DEX increased the expression levels of p-Akt and p-GSK-3β, whereas caspase-3 expression was reduced following DEX treatment compared with in the I/R group. Compared with the I/R group, the ratio of Bcl

  14. Salidroside Improves Behavioral and Histological Outcomes and Reduces Apoptosis via PI3K/Akt Signaling after Experimental Traumatic Brain Injury

    PubMed Central

    Chen, Szu-Fu; Tsai, Hsin-Ju; Hung, Tai-Ho; Chen, Chien-Cheng; Lee, Chao Yu; Wu, Chun-Hu; Wang, Pei-Yi; Liao, Nien-Chieh

    2012-01-01

    Background Traumatic brain injury (TBI) induces a complex sequence of apopototic cascades that contribute to secondary tissue damage. The aim of this study was to investigate the effects of salidroside, a phenolic glycoside with potent anti-apoptotic properties, on behavioral and histological outcomes, brain edema, and apoptosis following experimental TBI and the possible involvement of the phosphoinositide 3-kinase/protein kinase B (PI3K)/Akt signaling pathway. Methodology/Principal Findings Mice subjected to controlled cortical impact injury received intraperitoneal salidroside (20, or 50 mg/kg) or vehicle injection 10 min after injury. Behavioral studies, histology analysis and brain water content assessment were performed. Levels of PI3K/Akt signaling-related molecules, apoptosis-related proteins, cytochrome C (CytoC), and Smac/DIABLO were also analyzed. LY294002, a PI3K inhibitor, was administered to examine the mechanism of protection. The protective effect of salidroside was also investigated in primary cultured neurons subjected to stretch injury. Treatment with 20 mg/kg salidroside_significantly improved functional recovery and reduced brain tissue damage up to post-injury day 28. Salidroside_also significantly reduced neuronal death, apoptosis, and brain edema at day 1. These changes were associated with significant decreases in cleaved caspase-3, CytoC, and Smac/DIABLO at days 1 and 3. Salidroside increased phosphorylation of Akt on Ser473 and the mitochondrial Bcl-2/Bax ratio at day 1, and enhanced phosphorylation of Akt on Thr308 at day 3. This beneficial effect was abolished by pre-injection of LY294002. Moreover, delayed administration of salidroside at 3 or 6 h post-injury reduced neuronal damage at day 1. Salidroside treatment also decreased neuronal vulnerability to stretch-induced injury in vitro. Conclusions/Significance Post-injury salidroside improved long-term behavioral and histological outcomes and reduced brain edema and apoptosis

  15. 17β-Estradiol modulates the prolactin secretion induced by TRH through membrane estrogen receptors via PI3K/Akt in female rat anterior pituitary cell culture.

    PubMed

    Sosa, Liliana d V; Gutiérrez, Silvina; Petiti, Juan P; Palmeri, Claudia M; Mascanfroni, Iván D; Soaje, Marta; De Paul, Ana L; Torres, Alicia I

    2012-05-01

    Considering that estradiol is a major modulator of prolactin (PRL) secretion, the aim of the present study was to analyze the role of membrane estradiol receptor-α (mERα) in the regulatory effect of this hormone on the PRL secretion induced by thyrotropin-releasing hormone (TRH) by focusing on the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) pathway activation. Anterior pituitary cell cultures from female rats were treated with 17β-estradiol (E(2), 10 nM) and its membrane-impermeable conjugated estradiol (E(2)-BSA, 10 nM) alone or coincubated with TRH (10 nM) for 30 min, with PRL levels being determined by RIA. Although E(2), E(2)-BSA, TRH, and E(2)/TRH differentially increased the PRL secretion, the highest levels were achieved with E(2)-BSA/TRH. ICI-182,780 did not modify the TRH-induced PRL release but significantly inhibited the PRL secretion promoted by E(2) or E(2)-BSA alone or in coincubation with TRH. The PI3K inhibitors LY-294002 and wortmannin partially inhibited the PRL release induced by E(2)-BSA, TRH, and E(2)/TRH and totally inhibited the PRL levels stimulated by E(2)-BSA/TRH, suggesting that the mER mediated the cooperative effect of E(2) on TRH-induced PRL release through the PI3K pathway. Also, the involvement of this kinase was supported by the translocation of its regulatory subunit p85α from the cytoplasm to the plasma membrane in the lactotroph cells treated with E(2)-BSA and TRH alone or in coincubation. A significant increase of phosphorylated Akt was induced by E(2)-BSA/TRH. Finally, the changes of ERα expression in the plasmalemma of pituitary cells were examined by confocal microscopy and flow cytometry, which revealed that the mobilization of intracellular ERα to the plasma membrane of lactotroph cells was only induced by E(2). These finding showed that E(2) may act as a modulator of the secretory response of lactotrophs induced by TRH through mER, with the contribution by PI3K/Akt pathway activation providing a new

  16. MicroRNA-214 acts as a potential oncogene in breast cancer by targeting the PTEN-PI3K/Akt signaling pathway.

    PubMed

    Wang, Fang; Li, Lin; Chen, Zhuo; Zhu, Mingzhi; Gu, Yuanting

    2016-05-01

    Breast cancer ranks as the leading cause of cancer-related mortality in females worldwide. It has been proven that microRNAs (miRNAs or miRs), a type of non‑coding RNA, are involved in tumorigenesis. An increasing number of studies has confirmed the critical role of miR‑214 in certain types of cancer. Nevertheless, the biological function of miR‑214, as well as its underlying mechanisms of action in breast cancer remain largely unknown. In the present study, the expression of miR‑214 was found to be upregulated in four human breast cancer cell lines in contrast to its expression level in the non‑malignant breast epithelial cell line, MCF‑10A. Moreover, the overexpression of miR‑214 markedly increased cell viability and abrogated the apoptosis triggered by serum starvation, indicating that miR‑214 plays a pivotal role in breast cancer cell growth. Further analysis suggested that the upregulation of miR‑214 markedly induced the activation of the phosphoinositide 3-kinase (PI3K)/Akt signaling pathway, which largely accounted for the protective effects of miR‑124 on cancer cell growth. This was further confimed by pre‑treatment with the PI3K/Akt inhibitor, LY294002, which markedly attenuated the miR‑214‑induced increase in cell viability and resistance to apoptosis. Furthermore, the expression of phosphatase and tensin homolog (PTEN) was decreased following transfection wtih miR‑214 mimics and PTEN was confirmed as the direct target of miR‑214 by bioinformatics analysis and a dual‑firefly luciferase reporter assay. Importantly, the introduction of PTEN cDNA lacking the 3' untranslated region (3'UTR) significantly inhibited the miR‑214‑induced activation of the PI3K/Akt signaling pathway, and abrogated the protetive effects of miR‑214 on cell survival and resistance to apoptosis. Taken together, these findings suggest that miR‑214 possesses oncogenic activity and that its effects are mediated through the promotion of cell growth

  17. Basal expression of insulin-like growth factor 1 receptor determines intrinsic resistance of cancer cells to a phosphatidylinositol 3-kinase inhibitor ZSTK474

    PubMed Central

    Isoyama, Sho; Kajiwara, Gensei; Tamaki, Naomi; Okamura, Mutsumi; Yoshimi, Hisashi; Nakamura, Naoki; Kawamura, Kento; Nishimura, Yumiko; Namatame, Nachi; Yamori, Takao; Dan, Shingo

    2015-01-01

    Drug resistance often critically limits the efficacy of molecular targeted drugs. Although pharmacological inhibition of phosphatidylinositol 3-kinase (PI3K) is an attractive therapeutic strategy for cancer therapy, molecular determinants for efficacy of PI3K inhibitors (PI3Kis) remain unclear. We previously identified that overexpression of insulin-like growth factor 1 receptor (IGF1R) contributed to the development of drug resistance after long-term exposure to PI3Kis. In this study, we examined the involvement of basal IGF1R expression in intrinsic resistance of drug-naïve cancer cells to PI3Kis and whether inhibition of IGF1R overcomes the resistance. We found that cancer cells highly expressing IGF1R showed resistance to dephosphorylation of Akt and subsequent antitumor effect by ZSTK474 treatment. Knockdown of IGF1R by siRNAs facilitated the dephosphorylation and enhanced the drug efficacy. These cells expressed tyrosine-phosphorylated insulin receptor substrate 1 at high levels, which was dependent on basal IGF1R expression. In these cells, the efficacy of ZSTK474 in vitro and in vivo was improved by its combination with the IGF1R inhibitor OSI-906. Finally, we found a significant correlation between the basal expression level of IGF1R and the inefficacy of ZSTK474 in an in vivo human cancer panel, as well as in vitro. These results suggest that basal IGF1R expression affects intrinsic resistance of cancer cells to ZSTK474, and IGF1R is a promising target to improve the therapeutic efficacy. The current results provide evidence of combination therapy of PI3Kis with IGF1R inhibitors for treating IGF1R-positive human cancers. PMID:25483727

  18. Insulin-induced Drosophila S6 kinase activation requires phosphoinositide 3-kinase and protein kinase B.

    PubMed Central

    Lizcano, Jose M; Alrubaie, Saif; Kieloch, Agnieszka; Deak, Maria; Leevers, Sally J; Alessi, Dario R

    2003-01-01

    An important mechanism by which insulin regulates cell growth and protein synthesis is through activation of the p70 ribosomal S6 protein kinase (S6K). In mammalian cells, insulin-induced PI3K (phosphoinositide 3-kinase) activation, generates the lipid second messenger PtdIns(3,4,5) P (3), which is thought to play a key role in triggering the activation of S6K. Although the major components of the insulin-signalling pathway are conserved in Drosophila, recent studies suggested that S6K activation does not require PI3K in this system. To investigate further the role of dPI3K (Drosophila PI3K) in dS6K (Drosophila S6K) activation, we examined the effect of two structurally distinct PI3K inhibitors on insulin-induced dS6K activation in Kc167 and S2 Drosophila cell lines. We found that both inhibitors prevented insulin-stimulated phosphorylation and activation of dS6K. To investigate further the role of the dPI3K pathway in regulating dS6K activation, we also used dsRNAi (double-stranded RNA-mediated interference) to decrease expression of dPI3K and the PtdIns(3,4,5) P (3) phosphatase dPTEN ( Drosophila phosphatase and tensin homologue deleted on chromosome 10) in Kc167 and S2 cells. Knock-down of dPI3K prevented dS6K activation, whereas knock-down of dPTEN, which would be expected to increase PtdIns(3,4,5) P (3) levels, stimulated dS6K activity. Moreover, when the expression of the dPI3K target, dPKB (Drosophila protein kinase B), was decreased to undetectable levels, we found that insulin could no longer trigger dS6K activation. This observation provides the first direct demonstration that dPKB is required for insulin-stimulated dS6K activation. We also present evidence that the amino-acid-induced activation of dS6K in the absence of insulin, thought to be mediated by dTOR (Drosophila target of rapamycin), which is unaffected by the inhibition of dPI3K by wortmannin. The results of the present study support the view that, in Drosophila cells, dPI3K and dPKB, as well d

  19. Design, synthesis, and structure-activity relationships of 3-ethynyl-1H-indazoles as inhibitors of Phosphatidylinositol 3-kinase signaling pathway

    PubMed Central

    Barile, Elisa; De, Surya K.; Carlson, Coby B.; Chen, Vida; Knutzen, Christine; Riel-Mehan, Megan; Yang, Li; Dahl, Russell; Chiang, Gary; Pellecchia, Maurizio

    2010-01-01

    A new series of 3-ethynyl-1H–indazoles has been synthesized and evaluated in both biochemical and cell-based assays as potential kinase inhibitors. Interestingly, a selected group of compounds identified from this series exhibited low micromolar inhibition against critical components of the PI3K pathway, targeting PI3K, PDK1 and mTOR kinases. Combination of computational modeling and structure-activity relationships studies reveal a possible novel mode for PI3K inhibition, resulting in a PI3Kα isoform specific compound. Hence, by targeting the most oncogenic mutant isoform of PI3K, the compound displays anti-proliferative activity both in monolayer human cancer cell cultures and in three-dimensional tumor models. Because of its favorable physicochemical, in vitro ADME and drug-like properties, we propose that this novel ATP mimetic scaffold could result useful in deriving novel selecting and multi-kinase inhibitors for clinical use. PMID:21062009

  20. Involvement of PI3K/Akt/FoxO3a and PKA/CREB Signaling Pathways in the Protective Effect of Fluoxetine Against Corticosterone-Induced Cytotoxicity in PC12 Cells.

    PubMed

    Zeng, Bingqing; Li, Yiwen; Niu, Bo; Wang, Xinyi; Cheng, Yufang; Zhou, Zhongzhen; You, Tingting; Liu, Yonggang; Wang, Haitao; Xu, Jiangping

    2016-08-01

    The selective serotonin reuptake inhibitor fluoxetine is neuroprotective in several brain injury models. It is commonly used to treat major depressive disorder and related conditions, but its mechanism of action remains incompletely understood. Activation of the phosphatidylinositol-3-kinase/protein kinase B/forkhead box O3a (PI3K/Akt/FoxO3a) and protein kinase A/cAMP-response element binding protein (PKA/CREB) signaling pathways has been strongly implicated in the pathogenesis of depression and might be the downstream target of fluoxetine. Here, we used PC12 cells exposed to corticosterone (CORT) to study the neuroprotective effects of fluoxetine and the involvement of the PI3K/Akt/FoxO3a and PKA/CREB signaling pathways. Our results show that CORT reduced PC12 cells viability by 70 %, and that fluoxetine showed a concentration-dependent neuroprotective effect. Neuroprotective effects of fluoxetine were abolished by inhibition of PI3K, Akt, and PKA using LY294002, KRX-0401, and H89, respectively. Treatment of PC12 cells with fluoxetine resulted in increased phosphorylation of Akt, FoxO3a, and CREB. Fluoxetine also dose-dependently rescued the phosphorylation levels of Akt, FoxO3a, and CREB, following administration of CORT (from 99 to 110, 56 to 170, 80 to 170 %, respectively). In addition, inhibition of PKA and PI3K/Akt resulted in decreased levels of p-CREB, p-Akt, and p-FoxO3a in the presence of fluoxetine. Furthermore, fluoxetine reversed CORT-induced upregulation of p53-upregulated modulator of apoptosis (Puma) and Bcl-2-interacting mediator of cell death (Bim) via the PI3K/Akt/FoxO3a signaling pathway. H89 treatment reversed the effect of fluoxetine on the mRNA level of brain-derived neurotrophic factor, which was decreased in the presence of CORT. Our data indicate that fluoxetine elicited neuroprotection toward CORT-induced cell death that involves dual regulation from PI3K/Akt/FoxO3a and PKA/CREB pathways. PMID:27412469

  1. Intracellular reactive oxygen species are essential for PI3K/Akt/mTOR-dependent IL-7-mediated viability of T-cell acute lymphoblastic leukemia cells.

    PubMed

    Silva, A; Gírio, A; Cebola, I; Santos, C I; Antunes, F; Barata, J T

    2011-06-01

    Interleukin-7 (IL-7) activates phosphoinositide 3-kinase/Akt/mammalian target of rapamycin (PI3K/Akt/mTOR) pathway, thereby mediating viability, proliferation and growth of T-cell acute lymphoblastic leukemia (T-ALL) cells. Reactive oxygen species (ROS) can be upregulated by growth factors and are known to regulate proliferation and viability. Here, we show that IL-7 upregulates ROS in T-ALL cells in a manner that is dependent on PI3K/Akt/mTOR pathway activity and that relies on both NADPH oxidase and mitochondrial respiratory chain. Conversely, IL-7-induced activation of PI3K signaling pathway requires mitochondrial respiration and ROS. We have previously shown that IL-7-mediated activation of PI3K pathway drives the upregulation of the glucose transporter Glut1, promoting glucose uptake in T-ALL cells. Using phloretin to inhibit Glut function, we demonstrate that glucose uptake is mandatory for ROS upregulation in IL-7-treated T-ALL cells, suggesting that IL-7 stimulation leads to increased ROS via PI3K pathway activation and consequent upregulation of Glut1 and glucose uptake. Overall, our data reveal the existence of a critical crosstalk between PI3K/Akt signaling pathway and ROS that is essential for IL-7-mediated T-ALL cell survival, and that may constitute a novel target for therapeutic intervention. PMID:21455214

  2. MCL-1-independent mechanisms of synergy between dual PI3K/mTOR and BCL-2 inhibition in diffuse large B cell lymphoma

    PubMed Central

    Lee, J. Scott; Tang, Sarah S.; Ortiz, Veronica; Vo, Thanh-Trang; Fruman, David A.

    2015-01-01

    The PI3K/AKT/mTOR axis promotes survival and is a frequently mutated pathway in cancer. Yet, inhibitors targeting this pathway are insufficient to induce cancer cell death as single agents in some contexts, including diffuse large B cell lymphoma (DLBCL). In these situations, combinations with inhibitors targeting BCL-2 survival proteins (ABT-199 and ABT-263) may hold potential. Indeed, studies have demonstrated marked synergy in contexts where PI3K/mTOR inhibitors suppress expression of the pro-survival protein, MCL-1. In this study, we use BH3 profiling to confirm that BCL-2 and BCL-XL support survival following PI3K pathway inhibition, and that the dual PI3K/mTOR inhibitor BEZ235 strongly synergizes with BCL-2 antagonists in DLBCL. However, we identify an alternative mechanism of synergy between PI3K/mTOR and BCL-2 inhibitors, independent of MCL-1 down-regulation. Instead, we show that suppression of AKT activation by BEZ235 can induce the mitochondrial accumulation of pro-apoptotic BAD and BIM, and that expression of a constitutively active form of AKT prevents sensitization to BCL-2 antagonism. Thus, our work identifies an additional mechanism of synergy between PI3K pathway inhibitors and BCL-2 antagonists that strengthens the rationale for testing this combination in DLBCL. PMID:26460954

  3. Tianeptine sodium salt suppresses TNF-α-induced expression of matrix metalloproteinase-9 in human carcinoma cells via suppression of the PI3K/Akt-mediated NF-κB pathway.

    PubMed

    Jayasooriya, Rajapaksha Gedara Prasad Tharanga; Dilshara, Matharage Gayani; Choi, Yung Hyun; Moon, Sung-Kwon; Kim, Wun-Jae; Kim, Gi-Young

    2014-09-01

    Tianeptine sodium salt (TSS) is a selective facilitator of serotonin, but there are no reports regarding anti-invasive effects of TSS. Therefore, we investigated the effect of TSS on the expression of matrix metalloproteinase-9 (MMP-9) and invasion in three different human carcinoma cell lines. Our findings showed that MMP-9 activity was significantly increased in response to tumor necrosis factor-α (TNF-α), and that TSS reduced TNF-α-induced MMP-9 activity in a dose-dependent manner. TSS also downregulated both MMP-9 expression and TNF-α-induced MMP-9 promoter activity. Using a matrigel invasion assay, we showed that TSS significantly attenuated invasive rates in TNF-α-stimulated LNCaP prostate carcinoma cells. Furthermore, TSS suppressed TNF-α-induced NF-κB activity, which is a potential transcriptional factor for regulating many invasive genes, including MMP-9, by suppressing IκB degradation and nuclear translocation of NF-κB subunits in LNCaP prostate carcinoma cells. TSS also downregulated TNF-α-induced phosphorylation of phosphatidyl-inositol 3 kinase (PI3K) and Akt, and a selective PI3K/Akt inhibitor, LY294002, diminished TNF-α-induced NF-κB activation followed by levels of MMP-9, suggesting that TSS also reduces MMP-9 expression by inhibiting the PI3K/Akt-mediated NF-κB pathway. These results indicate that TSS is a potential anti-invasive agent by suppression of TNF-α-induced MMP-9 expression via inhibition of PI3K/Akt-mediated NF-κB activity.

  4. The estrogen-dependent baroreflex dysfunction caused by nicotine in female rats is mediated via NOS/HO inhibition: Role of sGC/PI3K/MAPKERK.

    PubMed

    Fouda, Mohamed A; El-Gowelli, Hanan M; El-Gowilly, Sahar M; El-Mas, Mahmoud M

    2015-12-15

    We have previously reported that estrogen (E2) exacerbates the depressant effect of chronic nicotine on arterial baroreceptor activity in female rats. Here, we tested the hypothesis that this nicotine effect is modulated by nitric oxide synthase (NOS) and/or heme oxygenase (HO) and their downstream soluble guanylate cyclase (sGC)/phosphatidylinositol 3-kinase (PI3K)/mitogen-activated protein kinases (MAPKs) signaling. We investigated the effects of (i) inhibition or facilitation of NOS or HO on the interaction of nicotine (2mg/kg/day i.p., 2 weeks) with reflex bradycardic responses to phenylephrine in ovariectomized (OVX) rats treated with E2 or vehicle, and (ii) central pharmacologic inhibition of sGC, PI3K, or MAPKs on the interaction. The data showed that the attenuation by nicotine of reflex bradycardia in OVXE2 rats was abolished after treatment with hemin (HO inducer) or l-arginine (NOS substrate). The hemin or l-arginine effect disappeared after inhibition of NOS (Nω-Nitro-l-arginine methyl ester hydrochloride, L-NAME) and HO (zinc protoporphyrin IX, ZnPP), respectively, denoting the interaction between the two enzymatic pathways. E2-receptor blockade (ICI 182,780) reduced baroreflexes in OVXE2 rats but had no effect on baroreflex improvement induced by hemin or l-arginine. Moreover, baroreflex enhancement by hemin was eliminated following intracisternal (i.c.) administration of wortmannin, ODQ, or PD98059 (inhibitors of PI3K, sGC, and extracellular signal-regulated kinases, MAPKERK, respectively). In contrast, the hemin effect was preserved after inhibition of MAPKp38 (SB203580) or MAPKJNK (SP600125). Overall, NOS/HO interruption underlies baroreflex dysfunction caused by nicotine in female rats and the facilitation of NOS/HO-coupled sGC/PI3K/MAPKERK signaling might rectify the nicotine effect.

  5. Suppressing the formation of lipid raft-associated Rac1/PI3K/Akt signaling complexes by curcumin inhibits SDF-1α-induced invasion of human esophageal carcinoma cells.

    PubMed

    Lin, Meng-Liang; Lu, Yao-Cheng; Chen, Hung-Yi; Lee, Chuan-Chun; Chung, Jing-Gung; Chen, Shih-Shun

    2014-05-01

    Stromal cell-derived factor-1α (SDF-1α) is a ligand for C-X-C chemokine receptor type 4 (CXCR4), which contributes to the metastasis of cancer cells by promoting cell migration. Here, we show that the SDF-1α/CXCR4 axis can significantly increase invasion of esophageal carcinoma (EC) cells. We accomplished this by examining the effects of CXCR4 knockdown as well as treatment with a CXCR4-neutralizing antibody and the CXCR4-specific inhibitor AMD3100. Curcumin suppressed SDF-1α-induced cell invasion and matrix metalloproteinase-2 (MMP-2) promoter activity, cell surface localization of CXCR4 at lipid rafts, and lipid raft-associated ras-related C3 botulinum toxin substrate 1 (Rac1)/phosphatidylinositol 3-kinase (PI3K) p85α/Akt signaling. Curcumin inhibited SDF-1α-induced cell invasion by suppressing the Rac1-PI3K signaling complex at lipid rafts but did not abrogate lipid raft formation. We further demonstrate that the attenuation of lipid raft-associated Rac1 activity by curcumin was critical for the inhibition of SDF-1α-induced PI3K/Akt/NF-κB activation, cell surface localization of CXCR4 at lipid rafts, MMP-2 promoter activity, and cell invasion. Collectively, our results indicate that curcumin inhibits SDF-1α-induced EC cell invasion by suppressing the formation of the lipid raft-associated Rac1-PI3K-Akt signaling complex, the localization of CXCR4 with lipid rafts at the cell surface, and MMP-2 promoter activity, likely through the inhibition of Rac1 activity.

  6. Tianeptine sodium salt suppresses TNF-α-induced expression of matrix metalloproteinase-9 in human carcinoma cells via suppression of the PI3K/Akt-mediated NF-κB pathway.

    PubMed

    Jayasooriya, Rajapaksha Gedara Prasad Tharanga; Dilshara, Matharage Gayani; Choi, Yung Hyun; Moon, Sung-Kwon; Kim, Wun-Jae; Kim, Gi-Young

    2014-09-01

    Tianeptine sodium salt (TSS) is a selective facilitator of serotonin, but there are no reports regarding anti-invasive effects of TSS. Therefore, we investigated the effect of TSS on the expression of matrix metalloproteinase-9 (MMP-9) and invasion in three different human carcinoma cell lines. Our findings showed that MMP-9 activity was significantly increased in response to tumor necrosis factor-α (TNF-α), and that TSS reduced TNF-α-induced MMP-9 activity in a dose-dependent manner. TSS also downregulated both MMP-9 expression and TNF-α-induced MMP-9 promoter activity. Using a matrigel invasion assay, we showed that TSS significantly attenuated invasive rates in TNF-α-stimulated LNCaP prostate carcinoma cells. Furthermore, TSS suppressed TNF-α-induced NF-κB activity, which is a potential transcriptional factor for regulating many invasive genes, including MMP-9, by suppressing IκB degradation and nuclear translocation of NF-κB subunits in LNCaP prostate carcinoma cells. TSS also downregulated TNF-α-induced phosphorylation of phosphatidyl-inositol 3 kinase (PI3K) and Akt, and a selective PI3K/Akt inhibitor, LY294002, diminished TNF-α-induced NF-κB activation followed by levels of MMP-9, suggesting that TSS also reduces MMP-9 expression by inhibiting the PI3K/Akt-mediated NF-κB pathway. These results indicate that TSS is a potential anti-invasive agent by suppression of TNF-α-induced MMP-9 expression via inhibition of PI3K/Akt-mediated NF-κB activity. PMID:25168152

  7. Apelin induces vascular smooth muscle cells migration via a PI3K/Akt/FoxO3a/MMP-2 pathway.

    PubMed

    Wang, Cheng; Wen, Jianyan; Zhou, Yun; Li, Li; Cui, Xiaobing; Wang, Jinyu; Pan, Lin; Ye, Zhidong; Liu, Peng; Wu, Liling

    2015-12-01

    Apelin is an adipokine that has a critical role in the development of atherosclerosis, which may offer potential for therapy. Because migration of vascular smooth muscle cells (VSMCs) is a key event in the development of atherosclerosis, understanding its effect on the atherosclerotic vasculature is needed. Here we investigated the effect of apelin on VSMC migration and the possible signaling mechanism. In cultured rat VSMCs, apelin dose- and time-dependently promoted VSMC migration. Apelin increased the phosphorylation of Akt, whereas LY294002, an inhibitor of phosphatidylinositol 3-kinase (PI3K), and an Akt1/2 kinase inhibitor blocked the apelin-induced VSMC migration. Apelin dose-dependently induced phosphorylation of Forkhead box O3a (FoxO3a) and promoted its translocation from the nucleus to cytoplasm, which were blocked by LY294002 and Akt1/2 kinase inhibitor. Furthermore, apelin increased matrix metalloproteinase 2 (MMP-2) expression and gelatinolytic activity. Overexpression of a constitutively active, phosphorylation-resistant mutant, TM-FoxO3a, in VSMCs abrogated the effect of apelin on MMP-2 expression and VSMC migration. ARP101, an inhibitor of MMP-2, suppressed apelin-induced VSMC migration. Moreover, the levels of apelin, phosphorylated Akt, FoxO3a, and MMP-2 were higher in human carotid-artery atherosclerotic plaque than in adjacent normal vessels. We demonstrate that PI3K/Akt/FoxO3a signaling may be involved in apelin inducing VSMC migration. Phosphorylation of FoxO3a plays a central role in mediating the apelin-induced MMP-2 activation and VSMC migration.

  8. Oocyte-specific deletion of Pten in mice reveals a stage-specific function of PTEN/PI3K signaling in oocytes in controlling follicular activation.

    PubMed

    Jagarlamudi, Krishna; Liu, Lian; Adhikari, Deepak; Reddy, Pradeep; Idahl, Annika; Ottander, Ulrika; Lundin, Eva; Liu, Kui

    2009-07-09

    Immature ovarian primordial follicles are essential for maintenance of the reproductive lifespan of female mammals. Recently, it was found that overactivation of the phosphatidylinositol 3-kinase (PI3K) signaling in oocytes of primordial follicles by an oocyte-specific deletion of Pten (phosphatase and tensin homolog deleted on chromosome ten), the gene encoding PI3K negative regulator PTEN, results in premature activation of the entire pool of primordial follicles, indicating that activation of the PI3K pathway in oocytes is important for control of follicular activation. To investigate whether PI3K signaling in oocytes of primary and further developed follicles also plays a role at later stages in follicular development and ovulation, we conditionally deleted the Pten gene from oocytes of primary and further developed follicles by using transgenic mice expressing zona pellucida 3 (Zp3) promoter-mediated Cre recombinase. Our results show that Pten was efficiently deleted from oocytes of primary and further developed follicles, as indicated by the elevated phosphorylation of the major PI3K downstream component Akt. However, follicular development was not altered and oocyte maturation was also normal, which led to normal fertility with unaltered litter size in the mutant mice. Our data indicate that properly controlled PTEN/PI3K-Akt signaling in oocytes is essential for control of the development of primordial follicles whereas overactivation of PI3K signaling in oocytes does not appear to affect the development of growing follicles. This suggests that there is a stage-specific function of PTEN/PI3K signaling in mouse oocytes that controls follicular activation.

  9. Exercise improves the dilatation function of mesenteric arteries in postmyocardial infarction rats via a PI3K/Akt/eNOS pathway-mediated mechanism.

    PubMed

    Wang, Youhua; Wang, Shengpeng; Wier, W Gil; Zhang, Quanjiang; Jiang, Hongke; Li, Qiuxia; Chen, Shengfeng; Tian, Zhenjun; Li, Youyou; Yu, Xiaojiang; Zhao, Ming; Liu, Jinjun; Yang, Jing; Zhang, Jing; Zang, Weijin

    2010-12-01

    Myocardial infarction (MI) has been shown to induce endothelial dysfunction in peripheral resistance arteries and thus increase peripheral resistance. This study was designed to investigate the underlying mechanisms of post-MI-related dysfunctional dilatation of peripheral resistance arteries and, furthermore, to examine whether exercise may restore dysfunctional dilatation of peripheral resistance arteries. Adult male Sprague-Dawley rats were divided into three groups: sham-operated, MI, and MI + exercise. Ultrastructure and relaxation function of the mesenteric arteries, as well as phosphatidylinositol-3 kinase (PI3K), Akt kinases (Akt), endothelial nitric oxide synthase (eNOS) activity, and phosphorylation of PI3K, Akt, and eNOS by ACh were determined. Post-MI rats exhibited pronounced ultrastructural changes in mesenteric artery endothelial cells and endothelial dysfunction. In addition, the activities of PI3K, Akt, and eNOS, and their phosphorylation by ACh were significantly attenuated in mesenteric arteries (P < 0.05-0.01). After 8 wk of exercise, not only did endothelial cells appeared more normal in structure, but also ameliorated post-MI-associated mesenteric arterial dysfunction, which were accompanied by elevated activities of PI3K, Akt, and eNOS, and their phosphorylation by ACh (P < 0.05-0.01). Importantly, inhibition of either PI3K or eNOS attenuated exercise-induced restoration of the dilatation function and blocked PI3K, Akt, and eNOS phosphorylation by ACh in the mesenteric arteries. These data demonstrate that MI induces dysfunctional dilation of peripheral resistance arteries by degradation of endothelial structural integrity and attenuating PI3K-Akt-eNOS signaling. Exercise may restore dilatation function of peripheral resistance arteries by protecting endothelial structural integrity and increasing PI3K-Akt-eNOS signaling cascades.

  10. PI3K Phosphorylation Is Linked to Improved Electrical Excitability in an In Vitro Engineered Heart Tissue Disease Model System.

    PubMed

    Kana, Kujaany; Song, Hannah; Laschinger, Carol; Zandstra, Peter W; Radisic, Milica

    2015-09-01

    Myocardial infarction, a prevalent cardiovascular disease, is associated with cardiomyocyte cell death, and eventually heart failure. Cardiac tissue engineering has provided hopes for alternative treatment options, and high-fidelity tissue models for drug discovery. The signal transduction mechanisms relayed in response to mechanoelectrical (physical) stimulation or biochemical stimulation (hormones, cytokines, or drugs) in engineered heart tissues (EHTs) are poorly understood. In this study, an EHT model was used to elucidate the signaling mechanisms involved when insulin was applied in the presence of electrical stimulation, a stimulus that mimics functional heart tissue environment in vitro. EHTs were insulin treated, electrically stimulated, or applied in combination (insulin and electrical stimulation). Electrical excitability parameters (excitation threshold and maximum capture rate) were measured. Protein kinase B (AKT) and phosphatidylinositol-3-kinase (PI3K) phosphorylation revealed that insulin and electrical stimulation relayed electrical excitability through two separate signaling cascades, while there was a negative crosstalk between sustained activation of AKT and PI3K.

  11. HS-133, a novel fluorescent phosphatidylinositol 3-kinase inhibitor as a potential imaging and anticancer agent for targeted therapy

    PubMed Central

    Lee, Hyunseung; Son, Mi Kwon; Yun, Sun-Mi; Ahn, Sung-Hoon; Lee, Kyeong-Ryoon; Lee, Soyoung; Kim, Donghee; Hong, Sungwoo; Hong, Soon-Sun

    2014-01-01

    As PI3K/Akt signaling is frequently deregulated in a wide variety of human tumors, PI3K inhibitors are an emerging class of drugs for cancer treatment. The monitoring of the drug behavior and distribution in the biological system can play an important role for targeted therapy and provide information regarding the response or resistance to available therapies. In this study, therefore, we have developed a family of xanthine derivatives, serving as a dual function exhibiting fluorescence, as well as inhibiting PI3K. Among them, HS-133 showed anti-proliferative effects and was monitored for its subcellular localization by a fluorescence microscopy. HS-133 suppressed the PI3K/Akt pathway and induced cell cycle arrest at the G0/G1 phase. The induction of apoptosis by HS-133 was confirmed by the increases of the cleaved PARP, caspase-3, and caspase-8. Furthermore, HS-133 decreased the protein expression of HIF-1α and VEGF, as well inhibited the tube formation and migration of the human umbilical vein endothelial cells. In vivo imaging also showed that tumors were visualized fluorescent with HS-133, and its oral administration significantly inhibited the growth of tumor in SkBr3 mouse xenograft models. Thus, we suggest that HS-133 may be used as a fluorescent anticancer agent against human breast cancer. PMID:25338206

  12. Non-canonical antagonism of PI3K by the kinase Itpkb delays thymocyte β-selection and renders it Notch-dependent

    PubMed Central

    Westernberg, Luise; Conche, Claire; Huang, Yina Hsing; Rigaud, Stephanie; Deng, Yisong; Siegemund, Sabine; Mukherjee, Sayak; Nosaka, Lyn'Al; Das, Jayajit; Sauer, Karsten

    2016-01-01

    β-selection is the most pivotal event determining αβ T cell fate. Here, surface-expression of a pre-T cell receptor (pre-TCR) induces thymocyte metabolic activation, proliferation, survival and differentiation. Besides the pre-TCR, β-selection also requires co-stimulatory signals from Notch receptors - key cell fate determinants in eukaryotes. Here, we show that this Notch-dependence is established through antagonistic signaling by the pre-TCR/Notch effector, phosphoinositide 3-kinase (PI3K), and by inositol-trisphosphate 3-kinase B (Itpkb). Canonically, PI3K is counteracted by the lipid-phosphatases Pten and Inpp5d/SHIP-1. In contrast, Itpkb dampens pre-TCR induced PI3K/Akt signaling by producing IP4, a soluble antagonist of the Akt-activating PI3K-product PIP3. Itpkb-/- thymocytes are pre-TCR hyperresponsive, hyperactivate Akt, downstream mTOR and metabolism, undergo an accelerated β-selection and can develop to CD4+CD8+ cells without Notch. This is reversed by inhibition of Akt, mTOR or glucose metabolism. Thus, non-canonical PI3K-antagonism by Itpkb restricts pre-TCR induced metabolic activation to enforce coincidence-detection of pre-TCR expression and Notch-engagement. DOI: http://dx.doi.org/10.7554/eLife.10786.001 PMID:26880557

  13. Dual PI3K/ERK inhibition induces necroptotic cell death of Hodgkin Lymphoma cells through IER3 downregulation

    PubMed Central

    Locatelli, Silvia Laura; Careddu, Giuseppa; Stirparo, Giuliano Giuseppe; Castagna, Luca; Santoro, Armando; Carlo-Stella, Carmelo

    2016-01-01

    PI3K/AKT and RAF/MEK/ERK pathways are constitutively activated in Hodgkin lymphoma (HL) patients, thus representing attractive therapeutic targets. Here we report that the PI3K/ERK dual inhibitor AEZS-136 induced significant cell proliferation inhibition in L-540, SUP-HD1, KM-H2 and L-428 HL cell lines, but a significant increase in necroptotic cell death was observed only in two out of four cell lines (L-540 and SUP-HD1). In these cells, AEZS-136-induced necroptosis was associated with mitochondrial dysfunction and reactive oxygen species (ROS) production. JNK was activated by AEZS-136, and AEZS-136-induced necroptosis was blocked by the necroptosis inhibitor necrostatin-1 or the JNK inhibitor SP600125, suggesting that JNK activation is required to trigger necroptosis following dual PI3K/ERK inhibition. Gene expression analysis indicated that the effects of AEZS-136 were associated with the modulation of cell cycle and cell death pathways. In the cell death-resistant cell lines, AEZS-136 induced the expression of immediate early response 3 (IER3) both in vitro and in vivo. Silencing of IER3 restored sensitivity to AEZS-136-induced necroptosis. Furthermore, xenograft studies demonstrated a 70% inhibition of tumor growth and a 10-fold increase in tumor necrosis in AEZS-136-treated animals. Together, these data suggest that dual PI3K/ERK inhibition might be an effective approach for improving therapeutic outcomes in HL. PMID:27767172

  14. p85 regulatory subunit of PI3K mediates cAMP-PKA and estrogens biological effects on growth and survival.

    PubMed

    Cosentino, C; Di Domenico, M; Porcellini, A; Cuozzo, C; De Gregorio, G; Santillo, M R; Agnese, S; Di Stasio, R; Feliciello, A; Migliaccio, A; Avvedimento, E V

    2007-03-29

    Cyclic adenosine 3'5' monophosphate (cAMP) and protein kinase A (PKA) cooperate with phosphatidylinositol 3' kinase (PI3K) signals in the control of growth and survival. To determine the molecular mechanism(s) involved, we identified and mutagenized a specific serine (residue 83) in p85alpha(PI3K), which is phosphorylated in vivo and in vitro by PKA. Expression of p85alpha(PI3K) mutants (alanine or aspartic substitutions) significantly altered the biological responses of the cells to cAMP. cAMP protection from anoikis was reduced in cells expressing the alanine version p85alpha(PI3K). These cells did not arrest in G1 in the presence of cAMP, whereas cells expressing the aspartic mutant p85D accumulated in G1 even in the absence of cAMP. S phase was still efficiently inhibited by cAMP in cells expressing both mutants. The binding of PI3K to Ras p21 was greatly reduced in cells expressing p85A in the presence or absence of cAMP. Conversely, expression of the aspartic mutant stimulated robustly the binding of PI3K to p21 Ras in the presence of cAMP. Mutation in the Ser 83 inhibited cAMP, but not PDGF stimulation of PI3K. Conversely, the p85D aspartic mutant amplified cAMP stimulation of PI3K activity. Phosphorylation of Ser 83 by cAMP-PKA in p85alpha(PI3K) was also necessary for estrogen signaling as expression of p85A or p85D mutants inhibited or amplified, respectively, the binding of estrogen receptor to p85alpha and AKT phosphorylation induced by estrogens. The data presented indicate that: (1) phosphorylation of Ser 83 in p85alpha(PI3K) is critical for cAMP-PKA induced G1 arrest and survival in mouse 3T3 fibroblasts; (2) this site is necessary for amplification of estrogen signals by cAMP-PKA and related receptors. Finally, these data suggest a general mechanism of PI3K regulation by cAMP, operating in various cell types and under different conditions. PMID:17016431

  15. Curcumin inhibited HGF-induced EMT and angiogenesis through regulating c-Met dependent PI3K/Akt/mTOR signaling pathways in lung cancer.

    PubMed

    Jiao, Demin; Wang, Jian; Lu, Wei; Tang, Xiali; Chen, Jun; Mou, Hao; Chen, Qing-Yong

    2016-01-01

    The epithelial-mesenchymal transition (EMT) and angiogenesis have emerged as two pivotal events in cancer progression. Curcumin has been extensively studied in preclinical models and clinical trials of cancer prevention due to its favorable toxicity profile. However, the possible involvement of curcumin in the EMT and angiogenesis in lung cancer remains unclear. This study found that curcumin inhibited hepatocyte growth factor (HGF)-induced migration and EMT-related morphological changes in A549 and PC-9 cells. Moreover, pretreatment with curcumin blocked HGF-induced c-Met phosphorylation and downstream activation of Akt, mTOR, and S6. These effects mimicked that of c-Met inhibitor SU11274 or PI3 kinase inhibitor LY294002 or mTOR inhibitor rapamycin treatment. c-Met gene overexpression analysis further demonstrated that curcumin suppressed lung cancer cell EMT by inhibiting c-Met/Akt/mTOR signaling pathways. In human umbilical vein endothelial cells (HUVECs), we found that curcumin also significantly inhibited PI3K/Akt/mTOR signaling and induced apoptosis and reduced migration and tube formation of HGF-treated HUVEC. Finally, in the experimental mouse model, we showed that curcumin inhibited HGF-stimulated tumor growth and induced an increase in E-cadherin expression and a decrease in vimentin, CD34, and vascular endothelial growth factor (VEGF) expression. Collectively, these findings indicated that curcumin could inhibit HGF-promoted EMT and angiogenesis by targeting c-Met and blocking PI3K/Akt/mTOR pathways. PMID:27525306

  16. Neuritogenic Monoglyceride Derived from the Constituent of a Marine Fish for Activating the PI3K/ERK/CREB Signalling Pathways in PC12 Cells

    PubMed Central

    Yang, Wei; Luo, Yan; Tang, Ruiqi; Zhang, Hui; Ye, Ying; Xiang, Lan; Qi, Jianhua

    2013-01-01

    A neuritogenic monoglyceride, 1-O-(myristoyl) glycerol (MG), was isolated from the head of Ilisha elongate using a PC12 cell bioassay system, and its chemical structure was elucidated using spectroscopic methods. MG significantly induced 42% of the neurite outgrowth of PC12 cells at a concentration of 10 μM. To study the structure-activity relationships of MG, a series of monoglycerides was designed and synthesised. Bioassay results indicated that the alkyl chain length plays a key role in the neuritogenic activity of the monoglycerides. The groups that link the propane-1,2-diol and alkyl chain were also investigated. An ester linkage, rather than an amido one, was found to be optimal for neuritogenic activity. Therefore, 1-O-(stearoyl) glycerol (SG), which induces 57% of the neurite outgrowth of PC12 cells at 10 μM, was determined to be a lead compound for neuritogenic activity. We then investigated the mechanism of action of neurite outgrowth induced by SG on PC12 cells using protein specific inhibitors and Western blot analysis. The mitogen-activated kinase/ERK kinase (MEK) inhibitor U0126 and the phosphatidylinositol-3 kinase (PI3K) inhibitor LY294002 significantly decreased neurite outgrowth. At the same time, SG increased phosphorylation of CREB in protein level. Thus, SG-induced neuritogenic activity depends on the activation of the extracellular-regulated protein kinase (ERK), cAMP responsive element-binding protein (CREB) and PI3K signalling pathways in PC12 cells. PMID:24351811

  17. Curcumin inhibited HGF-induced EMT and angiogenesis through regulating c-Met dependent PI3K/Akt/mTOR signaling pathways in lung cancer

    PubMed Central

    Jiao, Demin; Wang, Jian; Lu, Wei; Tang, Xiali; Chen, Jun; Mou, Hao; Chen, Qing-yong

    2016-01-01

    The epithelial-mesenchymal transition (EMT) and angiogenesis have emerged as two pivotal events in cancer progression. Curcumin has been extensively studied in preclinical models and clinical trials of cancer prevention due to its favorable toxicity profile. However, the possible involvement of curcumin in the EMT and angiogenesis in lung cancer remains unclear. This study found that curcumin inhibited hepatocyte growth factor (HGF)-induced migration and EMT-related morphological changes in A549 and PC-9 cells. Moreover, pretreatment with curcumin blocked HGF-induced c-Met phosphorylation and downstream activation of Akt, mTOR, and S6. These effects mimicked that of c-Met inhibitor SU11274 or PI3 kinase inhibitor LY294002 or mTOR inhibitor rapamycin treatment. c-Met gene overexpression analysis further demonstrated that curcumin suppressed lung cancer cell EMT by inhibiting c-Met/Akt/mTOR signaling pathways. In human umbilical vein endothelial cells (HUVECs), we found that curcumin also significantly inhibited PI3K/Akt/mTOR signaling and induced apoptosis and reduced migration and tube formation of HGF-treated HUVEC. Finally, in the experimental mouse model, we showed that curcumin inhibited HGF-stimulated tumor growth and induced an increase in E-cadherin expression and a decrease in vimentin, CD34, and vascular endothelial growth factor (VEGF) expression. Collectively, these findings indicated that curcumin could inhibit HGF-promoted EMT and angiogenesis by targeting c-Met and blocking PI3K/Akt/mTOR pathways. PMID:27525306

  18. Halofuginone inhibits Smad3 phosphorylation via the PI3K/Akt and MAPK/ERK pathways in muscle cells: Effect on myotube fusion

    SciTech Connect

    Roffe, Suzy; Hagai, Yosey; Pines, Mark; Halevy, Orna

    2010-04-01

    Halofuginone, a novel inhibitor of Smad3 phosphorylation, has been shown to inhibit muscle fibrosis and to improve cardiac and skeletal muscle functions in the mdx mouse model of Duchenne muscular dystrophy. Here, we demonstrate that halofuginone promotes the phosphorylation of Akt and mitogen-activated protein kinase (MAPK) family members in a C2 muscle cell line and in primary myoblasts derived from wild-type and mdx mice diaphragms. Halofuginone enhanced the association of phosphorylated Akt and MAPK/extracellular signal-regulated protein kinase (ERK) with the non-phosphorylated form of Smad3, accompanied by a reduction in Smad3 phosphorylation levels. This reduction was reversed by inhibitors of the phosphoinositide 3'-kinase/Akt (PI3K/Akt) and MAPK/ERK pathways, suggesting their specific role in mediating halofuginone's inhibitory effect on Smad3 phosphorylation. Halofuginone enhanced Akt, MAPK/ERK and p38 MAPK phosphorylation and inhibited Smad3 phosphorylation in myotubes, all of which are crucial for myotube fusion. In addition, halofuginone increased the association Akt and MAPK/ERK with Smad3. As a consequence, halofuginone promoted myotube fusion, as reflected by an increased percentage of C2 and mdx myotubes containing high numbers of nuclei, and this was reversed by specific inhibitors of the PI3K and MAPK/ERK pathways. Together, the data suggest a role, either direct or via inhibition of Smad3 phosphorylation, for Akt or MAPK/ERK in halofuginone-enhanced myotube fusion, a feature which is crucial to improving muscle function in muscular dystrophies.

  19. Cyclic mechanical strain maintains Nanog expression through PI3K/Akt signaling in mouse embryonic stem cells

    SciTech Connect

    Horiuchi, Rie; Akimoto, Takayuki; Hong, Zhang; Ushida, Takashi

    2012-08-15

    Mechanical strain has been reported to affect the proliferation/differentiation of many cell types; however, the effects of mechanotransduction on self-renewal as well as pluripotency of embryonic stem (ES) cells remains unknown. To investigate the effects of mechanical strain on mouse ES cell fate, we examined the expression of Nanog, which is an essential regulator of self-renewal and pluripotency as well as Nanog-associated intracellular signaling during uniaxial cyclic mechanical strain. The mouse ES cell line, CCE was plated onto elastic membranes, and we applied 10% strain at 0.17 Hz. The expression of Nanog was reduced during ES cell differentiation in response to the withdrawal of leukemia inhibitory factor (LIF); however, two days of cyclic mechanical strain attenuated this reduction of Nanog expression. On the other hand, the cyclic mechanical strain promoted PI3K-Akt signaling, which is reported as an upstream of Nanog transcription. The cyclic mechanical strain-induced Akt phosphorylation was blunted by the PI3K inhibitor wortmannin. Furthermore, cytochalasin D, an inhibitor of actin polymerization, also inhibited the mechanical strain-induced increase in phospho-Akt. These findings imply that mechanical force plays a role in regulating Nanog expression in ES cells through the actin cytoskeleton-PI3K-Akt signaling. -- Highlights: Black-Right-Pointing-Pointer The expression of Nanog, which is an essential regulator of 'stemness' was reduced during embryonic stem (ES) cell differentiation. Black-Right-Pointing-Pointer Cyclic mechanical strain attenuated the reduction of Nanog expression. Black-Right-Pointing-Pointer Cyclic mechanical strain promoted PI3K-Akt signaling and mechanical strain-induced Akt phosphorylation was blunted by the PI3K inhibitor and an inhibitor of actin polymerization.

  20. Transmigration characteristics of breast cancer and melanoma cells through the brain endothelium: Role of Rac and PI3K.

    PubMed

    Molnár, Judit; Fazakas, Csilla; Haskó, János; Sipos, Orsolya; Nagy, Krisztina; Nyúl-Tóth, Ádám; Farkas, Attila E; Végh, Attila G; Váró, György; Galajda, Péter; Krizbai, István A; Wilhelm, Imola

    2016-05-01

    Brain metastases are common and devastating complications of both breast cancer and melanoma. Although mammary carcinoma brain metastases are more frequent than those originating from melanoma, this latter has the highest tropism to the brain. Using static and dynamic in vitro approaches, here we show that melanoma cells have increased adhesion to the brain endothelium in comparison to breast cancer cells. Moreover, melanoma cells can transmigrate more rapidly and in a higher number through brain endothelial monolayers than breast cancer cells. In addition, melanoma cells have increased ability to impair tight junctions of cerebral endothelial cells. We also show that inhibition of Rac or PI3K impedes adhesion of breast cancer cells and melanoma cells to the brain endothelium. In addition, inhibition of Rac or PI3K inhibits the late phase of transmigration of breast cancer cells and the early phase of transmigration of melanoma cells. On the other hand, the Rac inhibitor EHT1864 impairs the junctional integrity of the brain endothelium, while the PI3K inhibitor LY294002 has no damaging effect on interendothelial junctions. We suggest that targeting the PI3K/Akt pathway may represent a novel opportunity in preventing the formation of brain metastases of melanoma and breast cancer.

  1. Activation of the PI3K/mTOR Pathway following PARP Inhibition in Small Cell Lung Cancer

    PubMed Central

    Mukherjee, Seema; Diao, Lixia; Tong, Pan; Stewart, C. Allison; Masrorpour, Fatemeh; Fan, YouHong; Nilsson, Monique; Shen, Yuqiao; Heymach, John V.; Wang, Jing; Byers, Lauren A.

    2016-01-01

    Small cell lung cancer (SCLC) is an aggressive malignancy with limited treatment options. We previously found that PARP is overexpressed in SCLC and that targeting PARP reduces cell line and tumor growth in preclinical models. However, SCLC cell lines with PI3K/mTOR pathway activation were relatively less sensitive to PARP inhibition. In this study, we investigated the proteomic changes in PI3K/mTOR and other pathways that occur following PAPR inhibition and/or knockdown in vitro and in vivo. Using reverse-phase protein array, we found the proteins most significantly upregulated following treatment with the PARP inhibitors olaparib and rucaparib were in the PI3K/mTOR pathway (p-mTOR, p-AKT, and pS6) (p≤0.02). Furthermore, amongst the most significantly down-regulated proteins were LKB1 and its targets AMPK and TSC, which negatively regulate the PI3K pathway (p≤0.042). Following PARP knockdown in cell lines, phosphorylated mTOR, AKT and S6 were elevated and LKB1 signaling was diminished. Global ATP concentrations increased following PARP inhibition (p≤0.02) leading us to hypothesize that the observed increased PI3K/mTOR pathway activation following PARP inhibition results from decreased ATP usage and a subsequent decrease in stress response signaling via LKB1. Based on these results, we then investigated whether co-targeting with a PARP and PI3K inhibitor (BKM-120) would work better than either single agent alone. A majority of SCLC cell lines were sensitive to BKM-120 at clinically achievable doses, and cMYC expression was the strongest biomarker of response. At clinically achievable doses of talazoparib (the most potent PARP inhibitor in SCLC clinical testing) and BKM-120, an additive effect was observed in vitro. When tested in two SCLC animal models, a greater than additive interaction was seen (p≤0.008). The data presented here suggest that combining PARP and PI3K inhibitors enhances the effect of either agent alone in preclinical models of SCLC

  2. Targeting the PI3K/Akt pathway in murine MDS/MPN driven by hyperactive Ras

    PubMed Central

    Akutagawa, Jon; Huang, Tannie Q.; Epstein, Inbal; Chang, Tiffany; Quirindongo-Crespo, Maricel; Cottonham, Charisa L.; Dail, Monique; Slusher, Barbara S.; Friedman, Lori S.; Sampath, Deepak; Braun, Benjamin S.

    2016-01-01

    Chronic and juvenile myelomonocytic leukemias (CMML and JMML) are myelodysplastic/myeloproliferative neoplasia (MDS/MPN) overlap syndromes that respond poorly to conventional treatments. Aberrant Ras activation due to NRAS, KRAS, PTPN11, CBL, and NF1 mutations is common in CMML and JMML. However, no mechanism-based treatments currently exist for cancers with any of these mutations. An alternative therapeutic strategy involves targeting Ras-regulated effector pathways that are aberrantly activated in CMML and JMML, which include the Raf/MEK/ERK and phosphoinositide-3´-OH kinase (PI3K)/Akt cascades. Mx1-Cre, KrasD12 and Mx1-Cre, Nf1flox/− mice accurately model many aspects of CMML and JMML. Treating Mx1-Cre, KrasD12 mice with GDC-0941 (also referred to as pictilisib), an orally bioavailable inhibitor of class I PI3K isoforms, reduced leukocytosis, anemia, and splenomegaly while extending survival. However, GDC-0941 treatment attenuated activation of both PI3K/Akt and Raf/MEK/ERK pathways in primary hematopoietic cells, suggesting it could be acting through suppression of Raf/MEK/ERK signals. To interrogate the importance of the PI3K/Akt pathway specifically, we treated mice with the allosteric Akt inhibitor MK-2206. This compound had no effect on Raf/MEK/ERK signaling, yet it also induced robust hematologic responses in Kras and Nf1 mice with MPN. These data support investigating PI3K/Akt pathway inhibitors as a therapeutic strategy in JMML and CMML patients. PMID:26965285

  3. The Regulation of Lipid Deposition by Insulin in Goose Liver Cells Is Mediated by the PI3K-AKT-mTOR Signaling Pathway

    PubMed Central

    Han, Chunchun; Wei, Shouhai; He, Fang; Liu, Dandan; Wan, Huofu; Liu, Hehe; Li, Liang; Xu, Hongyong; Du, Xiaohui; Xu, Feng

    2015-01-01

    Background We previously showed that the fatty liver formations observed in overfed geese are accompanied by the activation of the PI3K-Akt-mTOR pathway and an increase in plasma insulin concentrations. Recent studies have suggested a crucial role for the PI3K-Akt-mTOR pathway in regulating lipid metabolism; therefore, we hypothesized that insulin affects goose hepatocellular lipid metabolism through the PI3K-Akt-mTOR signaling pathway. Methods Goose primary hepatocytes were isolated and treated with serum-free media supplemented with PI3K-Akt-mTOR pathway inhibitors (LY294002, rapamycin, and NVP-BEZ235, respectively) and 50 or 150 nmol/L insulin. Results Insulin induced strong effects on lipid accumulation as well as the mRNA and protein levels of genes involved in lipogenesis, fatty acid oxidation, and VLDL-TG assembly and secretion in primary goose hepatocytes. The stimulatory effect of insulin on lipogenesis was significantly decreased by treatment with PI3K-Akt-mTOR inhibitors. These inhibitors also rescued the insulin-induced down-regulation of fatty acid oxidation and VLDL-TG assembly and secretion. Conclusion These findings suggest that the stimulatory effect of insulin on lipid deposition is mediated by PI3K-Akt-mTOR regulation of lipogenesis, fatty acid oxidation, and VLDL-TG assembly and secretion in goose hepatocytes. PMID:25945932

  4. Potential Molecular Targeted Therapeutics: Role of PI3-K/Akt/mTOR Inhibition in Cancer.

    PubMed

    Sokolowski, Kevin M; Koprowski, Steven; Kunnimalaiyaan, Selvi; Balamurugan, Mariappan; Gamblin, T Clark; Kunnimalaiyaan, Muthusamy

    2016-01-01

    Primary liver cancer is one of the most commonly occurring cancers worldwide. Hepatocellular carcinoma (HCC) represents the majority of primary liver cancer and is the 3rd most common cause of cancer-related deaths globally. Survival rates of patients with HCC are dependent upon early detection as concomitant liver dysfunction and advanced disease limits traditional therapeutic options such as resection or ablation. Unfortunately, at the time of diagnosis, most patients are not eligible for curative surgery and have a five-year relative survival rate less than 20%, leading to systemic therapy as the only option. Currently, sorafenib is the only approved systemic therapy; however, it has a limited survival advantage and low efficacy prompting alternative strategies. The inception of sorafenib for HCC systemic therapy and the understanding involved of cancer therapy have led to an enhanced focus of the PI3-k/Akt/mTOR pathway as a potential area of targeting including pan and isoform-specific PI3-K inhibitors, Akt blockade, and mTOR suppression. The multitude, expanding roles, and varying clinical trials of these inhibitors have led to an increase in knowledge and availability for current and future studies. In this review, we provide a review of the literature with the aim to focus on potential targets for HCC therapies as well as an in depth focus on Akt inhibition.

  5. Epidermal growth factor receptor regulates MT1-MMP and MMP-2 synthesis in SiHa cells via both PI3-K/AKT and MAPK/ERK pathways.

    PubMed

    Zhang, Zongfeng; Song, Tiefang; Jin, Yinglan; Pan, Jiaqi; Zhang, Liying; Wang, Lingdi; Li, Peiling

    2009-08-01

    Matrix metalloproteinase 2 (MMP-2) and membrane type 1 matrix metalloproteinase (MT1-MMP) have been identified as important participants in tumor invasion, metastasis, and angiogenesis. Membrane type 1 matrix metalloproteinase has also been recognized as a major activator of MMP-2. The purpose of this study was to investigate epidermal growth factor (EGF) mediating signal pathways in the regulation of MMP-2 and MT1-MMP in SiHa cells, a cervical cancer cell line. We showed here that EGF induced the expression of MT1-MMP and inhibited the expression of MMP-2 at both the mRNA and protein levels. Membrane type 1 matrix metalloproteinase induction was blocked by mitogen-activated protein kinase or extracellular signal-regulated kinase inhibitors PD98059 and U0126 but not by phosphatidylinositol-3 kinase (PI3-K) inhibitors LY294002 and wortmannin. Interestingly, the mitogen-activated protein kinase or extracellular signal-regulated kinase inhibitors PD98059 and U0126 actually increased MMP-2 mRNA and protein synthesis, whereas the PI3-K inhibitors LY294002 and wortmannin further suppressed the expression of MMP-2. Our results suggest that EGF receptor up-regulated the expression of MT1-MMP and down-regulated the synthesis of MMP-2 through the mitogen-activated protein kinase/extracellular signal-regulated kinase pathway while concomitantly transmitting a mild positive regulatory signal to the expression of MMP-2 via the PI3-K/AKT pathway in SiHa cells. Furthermore, we found that EGF elevated the activity of MMP-2 in culture media.

  6. Lipopolysaccharide induces VCAM-1 expression and neutrophil adhesion to human tracheal smooth muscle cells: Involvement of Src/EGFR/PI3-K/Akt pathway

    SciTech Connect

    Lin, W.-N.; Luo, S.-F.; Wu, C.-B.; Lin, C.-C.; Yang, C.-M.

    2008-04-15

    In our previous study, LPS has been shown to induce vascular cell adhesion molecule-1(VCAM-1) expression through MAPKs and NF-{kappa}B in human tracheal smooth muscle cells (HTSMCs). In addition to these pathways, the non-receptor tyrosine kinases (Src), EGF receptor (EGFR), and phosphatidylinositol 3-kinase (PI3K) have been shown to be implicated in the expression of several inflammatory target proteins. Here, we reported that LPS-induced up-regulation of VCAM-1 enhanced the adhesion of neutrophils onto HTSMC monolayer, which was inhibited by LY294002 and wortmannin. LPS stimulated phosphorylation of protein tyrosine kinases including Src, PYK2, and EGFR, which were further confirmed using specific anti-phospho-Src, PYK2, or EGFR Ab, respectively, revealed by Western blotting. LPS-stimulated Src, PYK2, EGFR, and Akt phosphorylation and VCAM-1 expression were attenuated by the inhibitors of Src (PP1), EGFR (AG1478), PI3-K (LY294002 and wortmannin), and Akt (SH-5), respectively, or transfection with siRNAs of Src or Akt and shRNA of p110. LPS-induced VCAM-1 expression was also blocked by pretreatment with curcumin (a p300 inhibitor) or transfection with p300 siRNA. LPS-stimulated Akt activation translocated into nucleus and associated with p300 and VCAM-1 promoter region was further confirmed by immunofluorescence, immunoprecipitation, and chromatin immunoprecipitation assays. This association of Akt and p300 to VCAM-1 promoter was inhibited by pretreatment with PP1, AG1478, wortmannin, and SH-5. LPS-induced p300 activation enhanced VCAM-1 promoter activity and VCAM-1 mRNA expression. These results suggested that in HTSMCs, Akt phosphorylation mediated through transactivation of Src/PYK2/EGFR promoted the transcriptional p300 activity and eventually led to VCAM-1 expression induced by LPS.

  7. Folic Acid Represses Hypoxia-Induced Inflammation in THP-1 Cells through Inhibition of the PI3K/Akt/HIF-1α Pathway.

    PubMed

    Huang, Xiaoyan; He, Zhiying; Jiang, Xinwei; Hou, Mengjun; Tang, Zhihong; Zhen, Xiaozhou; Liang, Yuming; Ma, Jing

    2016-01-01

    Though hypoxia has been implicated as a cause of inflammation, the underlying mechanism is not well understood. Folic acid has been shown to provide protection against oxidative stress and inflammation in patients with cardiovascular disease and various models approximating insult to tissue via inflammation. It has been reported that hypoxia-induced inflammation is associated with oxidative stress, upregulation of hypoxia-inducible factor 1-alpha (HIF-1α), and production of pro-inflammatory molecules. Whether folic acid protects human monocytic cells (THP-1 cells) against hypoxia-induced damage, however, remains unknown. We used THP-1 cells to establish a hypoxia-induced cellular injury model. Pretreating THP-1 cells with folic acid attenuated hypoxia-induced inflammatory responses, including a decrease in protein and mRNA levels of interleukin (IL)-1β and tumor necrosis factor-alpha (TNF-α), coupled with increased levels of IL-10. Folic acid also reduced hypoxia-induced Akt phosphorylation and decreased nuclear accumulation of HIF-1α protein. Both LY294002 (a selective inhibitor of phosphatidyl inositol-3 kinase, PI3K) and KC7F2 (a HIF-1α inhibitor) reduced levels of hypoxia-induced inflammatory cytokines. We also found that insulin (an Akt activator) and dimethyloxallyl glycine (DMOG, a HIF-1α activator) induced over-expression of inflammatory cytokines, which could be blocked by folic acid. Taken together, these findings demonstrate how folic acid attenuates the hypoxia-induced inflammatory responses of THP-1 cells through inhibition of the PI3K/Akt/HIF-1α pathway.

  8. Berberine inhibits Chlamydia pneumoniae infection-induced vascular smooth muscle cell migration through downregulating MMP3 and MMP9 via PI3K.

    PubMed

    Ma, Lu; Zhang, Lijun; Wang, Beibei; Wei, Junyan; Liu, Jingya; Zhang, Lijun

    2015-05-15

    The mechanisms by which Chlamydia pneumoniae infection promote vascular smooth muscle cell (VSMC) migration required in the development of atherosclerosis have not yet been fully clarified. Matrix metalloproteinases (MMPs) have important roles in VSMC migration. However, it is still unknown whether MMPs are involved in C. pneumoniae infection-induced VSMC migration. In addition, whether berberine can exert its inhibitory effects on the infection-induced VSMC migration also remains unclear. Accordingly, we investigated the effects of berberine on C. pneumoniae infection-induced VSMC migration and explored the possible mechanisms involved in this process. Herein, we found that C. pneumoniae infection could induce VSMC migration through Matrigel-coated membrane (P<0.05), which can be significantly inhibited by the broad-spectrum MMP inhibitor GM6001 (P<0.05). Our results also showed that C. pneumoniae infection upregulated both mRNA and protein expressions of MMP3 and MMP9 (P<0.05). The specific phosphoinositide 3-kinase (PI3K) inhibitor LY294002 significantly suppressed the increases in MMP3 and MMP9 protein expressions induced by C. pneumoniae infection (P<0.05). Further experiments showed that berberine significantly attenuated C. pneumoniae infection-induced VSMC migration (P<0.05). Moreover, berberine suppressed the protein expressions of MMP3 and MMP9 caused by C. pneumoniae infection in a dose-dependent manner (P<0.05). C. pneumoniae infection-induced increase in the phosphorylation level of Akt at Ser473 was inhibited by the treatment with berberine (P<0.05). Taken together, our data suggest that berberine inhibits C. pneumoniae infection-induced VSMC migration by downregulating the expressions of MMP3 and MMP9 via PI3K.

  9. LY294002 inhibits glucocorticoid-induced COX-2 gene expression in cardiomyocytes through a phosphatidylinositol 3 kinase-independent mechanism

    SciTech Connect

    Sun Haipeng; Xu Beibei; Sheveleva, Elena; Chen, Qin M.

    2008-10-01

    Glucocorticoids induce COX-2 expression in rat cardiomyocytes. While investigating whether phosphatidylinositol 3 kinase (PI3K) plays a role in corticosterone (CT)-induced COX-2, we found that LY294002 (LY29) but not wortmannin (WM) attenuates CT from inducing COX-2 gene expression. Expression of a dominant-negative mutant of p85 subunit of PI3K failed to inhibit CT from inducing COX-2 expression. CT did not activate PI3K/AKT signaling pathway whereas LY29 and WM decreased the activity of PI3K. LY303511 (LY30), a structural analogue and a negative control for PI3K inhibitory activity of LY29, also suppressed COX-2 induction. These data suggest PI3K-independent mechanisms in regulating CT-induced COX-2 expression. LY29 and LY30 do not inhibit glucocorticoid receptor transactivity. Both compounds have been reported to inhibit Casein Kinase 2 activity and modulate potassium and calcium levels independent of PI3K, while LY29 has been reported to inhibit mammalian Target of Rapamycin (mTOR), and DNA-dependent Protein Kinase (DNA-PK). Inhibitor of Casein Kinase 2 (CK2), mTOR or DNA-PK failed to prevent CT from inducing COX-2 expression. Tetraethylammonium (TEA), a potassium channel blocker, and nimodipine, a calcium channel blocker, both attenuated CT from inducing COX-2 gene expression. CT was found to increase intracellular Ca{sup 2+} concentration, which can be inhibited by LY29, TEA or nimodipine. These data suggest a possible role of calcium instead of PI3K in CT-induced COX-2 expression in cardiomyocytes.

  10. Reversing HOXA9 Oncogene Activation by PI3K Inhibition: Epigenetic Mechanism and Prognostic Significance in Human Glioblastoma

    PubMed Central

    Costa, Bruno M.; Smith, Justin S.; Chen, Ying; Chen, Justin; Phillips, Heidi S.; Aldape, Kenneth D.; Zardo, Giuseppe; Nigro, Janice; James, C. David; Fridlyand, Jane; Reis, Rui M.; Costello, Joseph F.

    2010-01-01

    HOXA genes encode critical transcriptional regulators of embryonic development that have been implicated in cancer. In this study, we documented functional relevance and mechanism of activation of HOXA9 in glioblastoma (GBM), the most common malignant brain tumor. Expression of HOXA genes was investigated using RT-PCR in primary gliomas and glioblastoma cell lines and was validated in two sets of expression array data. In a subset of GBM, HOXA genes are aberrantly activated within confined chromosomal domains. Transcriptional activation of the HOXA cluster was reversible by a PI3K inhibitor through an epigenetic mechanism involving histone H3K27 trimethylation. Functional studies of HOXA9 showed its capacity to decrease apoptosis and increase cellular proliferation along with TRAIL resistance. Notably, aberrant expression of HOXA9 was independently predictive of shorter overall and progression-free survival in two GBM patient sets, and improved survival prediction by MGMT promoter methylation. Thus, HOXA9 activation is a novel, independent and negative prognostic marker in GBM that is reversible through a PI3K-associated epigenetic mechanism. Our findings suggest a transcriptional pathway through which PI3K activates oncogenic HOXA expression with implications for mTOR or PI3K targeted therapies. PMID:20068170

  11. PTEN posttranslational inactivation and hyperactivation of the PI3K/Akt pathway sustain primary T cell leukemia viability

    PubMed Central

    Silva, Ana; Yunes, J. Andrés; Cardoso, Bruno A.; Martins, Leila R.; Jotta, Patrícia Y.; Abecasis, Miguel; Nowill, Alexandre E.; Leslie, Nick R.; Cardoso, Angelo A.; Barata, Joao T.

    2008-01-01

    Mutations in the phosphatase and tensin homolog (PTEN) gene leading to PTEN protein deletion and subsequent activation of the PI3K/Akt signaling pathway are common in cancer. Here we show that PTEN inactivation in human T cell acute lymphoblastic leukemia (T-ALL) cells is not always synonymous with PTEN gene lesions and diminished protein expression. Samples taken from patients with T-ALL at the time of diagnosis very frequently showed constitutive hyperactivation of the PI3K/Akt pathway. In contrast to immortalized cell lines, most primary T-ALL cells did not harbor PTEN gene alterations, displayed normal PTEN mRNA levels, and expressed higher PTEN protein levels than normal T cell precursors. However, PTEN overexpression was associated with decreased PTEN lipid phosphatase activity, resulting from casein kinase 2 (CK2) overexpression and hyperactivation. In addition, T-ALL cells had constitutively high levels of ROS, which can also downmodulate PTEN activity. Accordingly, both CK2 inhibitors and ROS scavengers restored PTEN activity and impaired PI3K/Akt signaling in T-ALL cells. Strikingly, inhibition of PI3K and/or CK2 promoted T-ALL cell death without affecting normal T cell precursors. Overall, our data indicate that T-ALL cells inactivate PTEN mostly in a nondeletional, posttranslational manner. Pharmacological manipulation of these mechanisms may open new avenues for T-ALL treatment. PMID:18830414

  12. PI3K-Akt-mTOR signal inhibition affects expression of genes related to endoplasmic reticulum stress.

    PubMed

    Song, Q; Han, C C; Xiong, X P; He, F; Gan, W; Wei, S H; Liu, H H; Li, L; Xu, H Y

    2016-01-01

    PI3K-Akt-mTOR signaling pathway is associated with endoplasmic reticulum (ER) stress. However, it is not clear how this signaling pathway affects the ER stress. The present study aimed to determine whether the PI3K-Akt-mTOR signaling pathway regulates tunicamycin (TM)-induced increases in mRNA levels of genes involved in the ER stress, to help elucidate the mechanism by which this pathway affects the ER stress in primary goose hepatocytes. Primary hepatocytes were isolated from geese and cultured in vitro. After 12 h in a serum-free medium, the hepatocytes were incubated for 24 h in a medium with either no addition (control) or with supplementation of TM or TM together with PI3K-Akt-mTOR signaling pathway inhibitors (LY294002, rapamycin, NVP-BEZ235). Thereafter, the expression levels of genes involved in the ER stress (BIP, EIF2a, ATF6, and XBP1) were assessed. The results indicated that the mRNA level of BIP was up-regulated in 0.2, 2, and 20 μM TM treatment group (P < 0.05), whereas the mRNA levels of EIF2a, ATF6, and XBP1 were up-regulated in the 2 μM TM treatment group (P < 0.05). However, the TM mediated induction of mRNA levels of genes involved in the ER stress (BIP, EIF2a, ATF6, and XBP1) was down-regulated after the treatment with PI3K-Akt-mTOR pathway inhibitors (LY294002, NVP-BEZ235, and rapamycin). Therefore, our results strongly suggest that the PI3K-Akt-mTOR signaling pathway might be involved in the down-regulation of the TM-induced ER stress in primary goose hepatocytes. PMID:27525855

  13. Modulatory effects of yerba maté (Ilex paraguariensis) on the PI3K-AKT signaling pathway.

    PubMed

    Arçari, Demétrius Paiva; Santos, Juliana Carvalho; Gambero, Alessandra; Ferraz, Lucio Fábio Caldas; Ribeiro, Marcelo Lima

    2013-10-01

    The aim of this study was to evaluate the effects of yerba maté (YM) extract on the phosphatidylinositol 3-kinase (PI3K)-AKT signaling pathway in vivo. The mice were introduced to either standard- or high-fat diet (HFD). After 8 weeks on an HFD, mice were randomly assigned to one of the two treatment conditions, water or yerba maté extract at 1.0 g/kg. After treatment, glucose blood level and hepatic insulin response were evaluated. Liver tissue was examined to determine the mRNA levels using the PI3K-AKT PCR array. The nuclear translocation of forkhead box O1 (FOXO1) was determined by an electrophoretic mobility-shift assay. Our data demonstrated that yerba maté extract significantly decreased the final body weight, glucose blood levels, and insulin resistance of mice. Molecular analysis demonstrated that an HFD downregulated Akt2, Irs1, Irs2, Pi3kca, Pi3kcg, and Pdk1; after yerba maté treatment, the levels of those genes returned to baseline. In addition, an HFD upregulated Pepck and G6pc and increased FOXO1 nuclear translocation. The intervention downregulated these genes by decreasing FOXO1 nuclear translocation. The results obtained demonstrate for the first time the specific action of yerba maté on the PI3K-AKT pathway, which contributed to the observed improvement in hepatic insulin signaling.

  14. Delayed glial clearance of degenerating axons in aged Drosophila is due to reduced PI3K/Draper activity.

    PubMed

    Purice, Maria D; Speese, Sean D; Logan, Mary A

    2016-01-01

    Advanced age is the greatest risk factor for neurodegenerative disorders, but the mechanisms that render the senescent brain vulnerable to disease are unclear. Glial immune responses provide neuroprotection in a variety of contexts. Thus, we explored how glial responses to neurodegeneration are altered with age. Here we show that glia-axon phagocytic interactions change dramatically in the aged Drosophila brain. Aged glia clear degenerating axons slowly due to low phosphoinositide-3-kinase (PI3K) signalling and, subsequently, reduced expression of the conserved phagocytic receptor Draper/MEGF10. Importantly, boosting PI3K/Draper activity in aged glia significantly reverses slow phagocytic responses. Moreover, several hours post axotomy, early hallmarks of Wallerian degeneration (WD) are delayed in aged flies. We propose that slow clearance of degenerating axons is mechanistically twofold, resulting from deferred initiation of axonal WD and reduced PI3K/Draper-dependent glial phagocytic function. Interventions that boost glial engulfment activity, however, can substantially reverse delayed clearance of damaged neuronal debris. PMID:27647497

  15. High expression of VEGF and PI3K in glioma stem cells provides new criteria for the grading of gliomas

    PubMed Central

    WANG, LEI; ZHANG, LUYAO; SHEN, WEIGAO; LIU, YANBO; LUO, YINAN

    2016-01-01

    Glioma is a type of tumor derived from glial cells, which is associated with a high level of incidence and mortality. At present, the generation of a fast and efficient method to evaluate the malignancy grade of glioma is required. Cancer stem cells (CSCs) are currently attracting attention in oncological studies; therefore, the present study aimed to investigate novel biomarkers of glioma CSCs, in order to provide new criteria for the grading of glioma. The mRNA expression levels of CD133, (sex determining region Y)-box 2, nestin, vascular endothelial growth factor (VEGF) and phosphoinositide-3-kinase (PI3K) were detected in 15 human samples of high-malignancy glioma and 12 human samples of low-malignancy glioma in vitro. The mRNA expression levels of VEGF and PI3K were higher in the high-malignancy group, as compared with in the low-malignancy group. In conclusion, the mRNA expression levels of VEGF and PI3K in glioma CSCs may be considered a novel criteria for the grading of glioma. PMID:26893649

  16. Delayed glial clearance of degenerating axons in aged Drosophila is due to reduced PI3K/Draper activity

    PubMed Central

    Purice, Maria D.; Speese, Sean D.; Logan, Mary A.

    2016-01-01

    Advanced age is the greatest risk factor for neurodegenerative disorders, but the mechanisms that render the senescent brain vulnerable to disease are unclear. Glial immune responses provide neuroprotection in a variety of contexts. Thus, we explored how glial responses to neurodegeneration are altered with age. Here we show that glia–axon phagocytic interactions change dramatically in the aged Drosophila brain. Aged glia clear degenerating axons slowly due to low phosphoinositide-3-kinase (PI3K) signalling and, subsequently, reduced expression of the conserved phagocytic receptor Draper/MEGF10. Importantly, boosting PI3K/Draper activity in aged glia significantly reverses slow phagocytic responses. Moreover, several hours post axotomy, early hallmarks of Wallerian degeneration (WD) are delayed in aged flies. We propose that slow clearance of degenerating axons is mechanistically twofold, resulting from deferred initiation of axonal WD and reduced PI3K/Draper-dependent glial phagocytic function. Interventions that boost glial engulfment activity, however, can substantially reverse delayed clearance of damaged neuronal debris. PMID:27647497

  17. Fucosylated chondroitin sulfate from sea cucumber improves insulin sensitivity via activation of PI3K/PKB pathway.

    PubMed

    Hu, Shiwei; Chang, Yaoguang; He, Min; Wang, Jingfeng; Wang, Yuming; Xue, Changhu

    2014-07-01

    This study was to investigate the effects of fucosylated chondroitin sulfate (CHS) from sea cucumber on insulin sensitivity in skeletal muscle of type 2 diabetic mice induced by a high-fat high-sucrose diet (HFSD). CHS supplementation for 19 wk significantly improved insulin sensitivity by 20%, and reduced blood glucose and insulin levels. Western blotting assay showed that CHS significantly increased insulin-stimulated glucose transporter 4 (GLUT4) translocation to 1.7-fold, phosphorylation of phosphoinositide 3-kinase (PI3K) at p85 to 5.0-fold, protein kinase B (PKB) at Ser473 to 1.5-fold, and Thr308 to 1.6-fold in skeletal muscle. However, PI3K, PKB, and GLUT4 total proteins expression were unchangeable. In addition, qRT-PCR analysis proved that the insulin signaling was activated by CHS treatment, showing the increased mRNA expressions of glucose uptake-related key genes. It indicated that CHS improved insulin sensitivity by activation of PI3K/PKB signaling in skeletal muscle of type 2 diabetic mice. Identification of potential mechanism by which CHS increased insulin sensitivity might provide a new functional food or pharmaceutical application of sea cucumber.

  18. Loss of NDRG2 expression activates PI3K-AKT signalling via PTEN phosphorylation in ATLL and other cancers

    PubMed Central

    Nakahata, Shingo; Ichikawa, Tomonaga; Maneesaay, Phudit; Saito, Yusuke; Nagai, Kentaro; Tamura, Tomohiro; Manachai, Nawin; Yamakawa, Norio; Hamasaki, Makoto; Kitabayashi, Issay; Arai, Yasuhito; Kanai, Yae; Taki, Tomohiko; Abe, Takaya; Kiyonari, Hiroshi; Shimoda, Kazuya; Ohshima, Koichi; Horii, Akira; Shima, Hiroshi; Taniwaki, Masafumi; Yamaguchi, Ryoji; Morishita, Kazuhiro

    2014-01-01

    Constitutive phosphatidylinositol 3-kinase (PI3K)-AKT activation has a causal role in adult T-cell leukaemia-lymphoma (ATLL) and other cancers. ATLL cells do not harbour genetic alterations in PTEN and PI3KCA but express high levels of PTEN that is highly phosphorylated at its C-terminal tail. Here we report a mechanism for the N-myc downstream-regulated gene 2 (NDRG2)-dependent regulation of PTEN phosphatase activity via the dephosphorylation of PTEN at the Ser380, Thr382 and Thr383 cluster within the C-terminal tail. We show that NDRG2 is a PTEN-binding protein that recruits protein phosphatase 2A (PP2A) to PTEN. The expression of NDRG2 is frequently downregulated in ATLL, resulting in enhanced phosphorylation of PTEN at the Ser380/Thr382/Thr383 cluster and enhanced activation of the PI3K-AKT pathway. Given the high incidence of T-cell lymphoma and other cancers in NDRG2-deficient mice, PI3K-AKT activation via enhanced PTEN phosphorylation may be critical for the development of cancer. PMID:24569712

  19. Differential regulatory functions of three classes of phosphatidylinositol and phosphoinositide 3-kinases in autophagy.

    PubMed

    Yu, Xinlei; Long, Yun Chau; Shen, Han-Ming

    2015-01-01

    Autophagy is an evolutionarily conserved and exquisitely regulated self-eating cellular process with important biological functions. Phosphatidylinositol 3-kinases (PtdIns3Ks) and phosphoinositide 3-kinases (PI3Ks) are involved in the autophagic process. Here we aim to recapitulate how 3 classes of these lipid kinases differentially regulate autophagy. Generally, activation of the class I PI3K suppresses autophagy, via the well-established PI3K-AKT-MTOR (mechanistic target of rapamycin) complex 1 (MTORC1) pathway. In contrast, the class III PtdIns3K catalytic subunit PIK3C3/Vps34 forms a protein complex with BECN1 and PIK3R4 and produces phosphatidylinositol 3-phosphate (PtdIns3P), which is required for the initiation and progression of autophagy. The class II enzyme emerged only recently as an alternative source of PtdIns3P and autophagic initiator. However, the orthodox paradigm is challenged by findings that the PIK3CB catalytic subunit of class I PI3K acts as a positive regulator of autophagy, and PIK3C3 was thought to be an amino acid sensor for MTOR, which curbs autophagy. At present, a number of PtdIns3K and PI3K inhibitors, including specific PIK3C3 inhibitors, have been developed for suppression of autophagy and for clinical applications in autophagy-related human diseases.

  20. Differential regulatory functions of three classes of phosphatidylinositol and phosphoinositide 3-kinases in autophagy

    PubMed Central

    Yu, Xinlei; Long, Yun Chau; Shen, Han-Ming

    2015-01-01

    Autophagy is an evolutionarily conserved and exquisitely regulated self-eating cellular process with important biological functions. Phosphatidylinositol 3-kinases (PtdIns3Ks) and phosphoinositide 3-kinases (PI3Ks) are involved in the autophagic process. Here we aim to recapitulate how 3 classes of these lipid kinases differentially regulate autophagy. Generally, activation of the class I PI3K suppresses autophagy, via the well-established PI3K-AKT-MTOR (mechanistic target of rapamycin) complex 1 (MTORC1) pathway. In contrast, the class III PtdIns3K catalytic subunit PIK3C3/Vps34 forms a protein complex with BECN1 and PIK3R4 and produces phosphatidylinositol 3-phosphate (PtdIns3P), which is required for the initiation and progression of autophagy. The class II enzyme emerged only recently as an alternative source of PtdIns3P and autophagic initiator. However, the orthodox paradigm is challenged by findings that the PIK3CB catalytic subunit of class I PI3K acts as a positive regulator of autophagy, and PIK3C3 was thought to be an amino acid sensor for MTOR, which curbs autophagy. At present, a number of PtdIns3K and PI3K inhibitors, including specific PIK3C3 inhibitors, have been developed for suppression of autophagy and for clinical applications in autophagy-related human diseases. PMID:26018563

  1. Activation of PI3K/Akt/mTOR signaling in the tumor stroma drives endocrine therapy-dependent breast tumor regression

    PubMed Central

    Polo, María Laura; Riggio, Marina; May, María; Rodríguez, María Jimena; Perrone, María Cecilia; Stallings-Mann, Melody; Kaen, Diego; Frost, Marlene; Goetz, Matthew; Boughey, Judy; Lanari, Claudia; Radisky, Derek; Novaro, Virginia

    2015-01-01

    Improved efficacy of neoadjuvant endocrine-targeting therapies in luminal breast carcinomas could be achieved with optimal use of pathway targeting agents. In a mouse model of ductal breast carcinoma we identify a tumor regressive stromal reaction that is induced by neoadjuvant endocrine therapy. This reparative reaction is characterized by tumor neovascularization accompanied by infiltration of immune cells and carcinoma-associated fibroblasts that stain for phosphorylated ribosomal protein S6 (pS6), downstream the PI3K/Akt/mTOR pathway. While tumor variants with higher PI3K/Akt/mTOR activity respond well to a combination of endocrine and PI3K/Akt/mTOR inhibitors, tumor variants with lower PI3K/Akt/mTOR activity respond more poorly to the combination therapy than to the endocrine therapy alone, associated with inhibition of stromal pS6 and the reparative reaction. In human breast cancer xenografts we confirm that such differential sensitivity to therapy is primarily determined by the level of PI3K/Akt/mTOR in tumor cells. We further show that the clinical response of breast cancer patients undergoing neoadjuvant endocrine therapy is associated with the reparative stromal reaction. We conclude that tumor level and localization of pS6 are associated with therapeutic response in breast cancer and represent biomarkers to distinguish which tumors will benefit from the incorporation of PI3K/Akt/mTOR inhibitors with neoadjuvant endocrine therapy. PMID:26098779

  2. Lycium barbarum Polysaccharides Protect against Trimethyltin Chloride-Induced Apoptosis via Sonic Hedgehog and PI3K/Akt Signaling Pathways in Mouse Neuro-2a Cells

    PubMed Central

    Zhao, Wanyun; Pan, Xiaoqi; Li, Tao; Zhang, Changchun; Shi, Nian

    2016-01-01

    Trimethyltin chloride (TMT) is a classic neurotoxicant that can cause severe neurodegenerative diseases. Some signaling pathways involving cell death play pivotal roles in the central nervous system. In this study, the role of Sonic Hedgehog (Shh) and PI3K/Akt pathways in TMT-induced apoptosis and protective effect of Lycium barbarum polysaccharides (LBP) on mouse neuro-2a (N2a) cells were investigated. Results showed that TMT treatment significantly enhanced apoptosis, upregulated proapoptotic Bax, downregulated antiapoptotic Bcl-2 expression, and increased caspase-3 activity in a dose-dependent manner in N2a cells. TMT induced oxidative stress in cells, performing reactive oxygen species (ROS) and malondialdehyde (MDA) excessive generation, and superoxide dismutase (SOD) activity reduction. TMT significantly decreased phosphorylated glycogen synthase kinase-3β (GSK-3β) and inhibited Shh and PI3K/Akt pathways. However, the addition of LBP upregulated GSK-3β phosphorylation, activated Shh and PI3K/Akt pathways, and eventually reduced apoptosis and oxidative stress caused by TMT. The interaction between Shh and PI3K/Akt pathways was clarified by specific PI3K inhibitor LY294002 or Shh inhibitor GDC-0449. Moreover, LY294002 and GDC-0449 pretreatment both induced phosphorylated GSK-3β downregulation and significantly promoted apoptosis induced by TMT. These results suggest that LBP could reduce TMT-induced N2a cells apoptosis by regulating GSK-3β phosphorylation, Shh, and PI3K/Akt signaling pathways. PMID:27143997

  3. The Phosphoinositide 3-Kinase Pathway in Human Cancer: Genetic Alterations and Therapeutic Implications

    PubMed Central

    Arcaro, Alexandre; Guerreiro, Ana S

    2007-01-01

    The phosphoinositide 3-kinase (PI3K) pathway is frequently activated in human cancer and represents an attractive target for therapies based on small molecule inhibitors. PI3K isoforms play an essential role in the signal transduction events activated by cell surface receptors including receptor tyrosine kinases (RTKs) and G-protein-coupled receptors (GPCRs). There are eight known PI3K isoforms in humans, which have been subdivided into three classes (I-III). Therefore PI3Ks show considerable diversity and it remains unclear which kinases in this family should be targeted in cancer. The class IA of PI3K comprises the p110α, p110β and p110δ isoforms, which associate with activated RTKs. In human cancer, recent reports have described activating mutations in the PIK3CA gene encoding p110α, and inactivating mutations in the phosphatase and tensin homologue (PTEN) gene, a tumour suppressor and antagonist of the PI3K pathway. The PIK3CA mutations described in cancer constitutively activate p110α and, when expressed in cells drive oncogenic transformation. Moreover, these mutations cause the constitutive activation of downstream signaling molecules such as Akt/protein kinase B (PKB), mammalian target of rapamycin (mTOR) and ribosomal protein S6 kinase (S6K) that is commonly observed in cancer cells. In addition to p110α, the other isoforms of the PI3K family may also play a role in human cancer, although their individual functions remain to be precisely identified. In this review we will discuss the evidence implicating individual PI3K isoforms in human cancer and their potential as drug targets in this context. PMID:19384426

  4. The phosphoinositide 3-kinase signaling pathway is involved in the control of modified low-density lipoprotein uptake by human macrophages.

    PubMed

    Michael, Daryn R; Davies, Thomas S; Laubertová, Lucia; Gallagher, Hayley; Ramji, Dipak P

    2015-03-01

    The transformation of macrophages into lipid-loaded foam cells is a critical early event in the pathogenesis of atherosclerosis. Both receptor-mediated uptake of modified LDL, mediated primarily by scavenger receptors-A (SR-A) and CD36 along with other proteins such as lipoprotein lipase (LPL), and macropinocytosis contribute to macrophage foam cell formation. The signaling pathways that are involved in the control of foam cell formation are not fully understood. In this study, we have investigated the role of phosphoinositide 3-kinase (PI3K) in relation to foam cell formation in human macrophages. The pan PI3K inhibitor LY294002 attenuated the uptake of modified LDL and macropinocytosis, as measured by Lucifer Yellow uptake, by human macrophages. In addition, the expression of SR-A, CD36 and LPL was attenuated by LY294002. The use of isoform-selective PI3K inhibitors showed that PI3K-β, -γ and -δ were all required for the expression of SR-A and CD36 whereas only PI3K-γ was necessary in the case of LPL. These studies reveal a pivotal role of PI3K in the control of macrophage foam cell formation and provide further evidence for their potential as therapeutic target against atherosclerosis. PMID:25663263

  5. The phosphoinositide 3-kinase signaling pathway is involved in the control of modified low-density lipoprotein uptake by human macrophages.

    PubMed

    Michael, Daryn R; Davies, Thomas S; Laubertová, Lucia; Gallagher, Hayley; Ramji, Dipak P

    2015-03-01

    The transformation of macrophages into lipid-loaded foam cells is a critical early event in the pathogenesis of atherosclerosis. Both receptor-mediated uptake of modified LDL, mediated primarily by scavenger receptors-A (SR-A) and CD36 along with other proteins such as lipoprotein lipase (LPL), and macropinocytosis contribute to macrophage foam cell formation. The signaling pathways that are involved in the control of foam cell formation are not fully understood. In this study, we have investigated the role of phosphoinositide 3-kinase (PI3K) in relation to foam cell formation in human macrophages. The pan PI3K inhibitor LY294002 attenuated the uptake of modified LDL and macropinocytosis, as measured by Lucifer Yellow uptake, by human macrophages. In addition, the expression of SR-A, CD36 and LPL was attenuated by LY294002. The use of isoform-selective PI3K inhibitors showed that PI3K-β, -γ and -δ were all required for the expression of SR-A and CD36 whereas only PI3K-γ was necessary in the case of LPL. These studies reveal a pivotal role of PI3K in the control of macrophage foam cell formation and provide further evidence for their potential as therapeutic target against atherosclerosis.

  6. Inhibition of phosphatidylinositol-3-kinase causes increased sensitivity to radiation through a PKB-dependent mechanism

    SciTech Connect

    Gottschalk, Alexander R. . E-mail: gottschalk@radonc17.ucsf.edu; Doan, Albert; Nakamura, Jean L.; Stokoe, David; Haas-Kogan, Daphne A.

    2005-11-15

    Purpose: To identify whether inhibition of phosphatidylinositol-3-kinase (PI3K) causes increased radiosensitivity through inhibition of protein kinase B (PKB), implicating PKB as an important therapeutic target in prostate cancer. Methods and Materials: The prostate cancer cell line LNCaP was treated with the PI3K inhibitor LY294002, radiation, and combinations of the two therapies. Apoptosis and survival were measured by cell cycle analysis, Western blot analysis for cleaved poly (ADP-ribose) polymerase, and clonogenic survival. To test the hypothesis that inhibition of PKB is responsible for LY294002-induced radiosensitivity, LNCaP cells expressing a constitutively active form of PKB were used. Results: The combination of PI3K inhibition and radiation caused an increase in apoptosis and a decrease in clonogenic survival when compared to either modality alone. The expression of constitutively activated PKB blocked apoptosis induced by combination of PI3K inhibition and radiation and prevented radiosensitization by LY294002. Conclusion: These data indicate that PI3K inhibition increases sensitivity of prostate cancer cell lines to ionizing radiation through inactivation of PKB. Therefore, PTEN mutations, which lead to PKB activation, may play an important role in the resistance of prostate cancer to radiation therapy. Targeted therapy against PKB could be beneficial in the management of prostate cancer patients.

  7. Ramentaceone, a Naphthoquinone Derived from Drosera sp., Induces Apoptosis by Suppressing PI3K/Akt Signaling in Breast Cancer Cells

    PubMed Central

    Kawiak, Anna; Lojkowska, Ewa

    2016-01-01

    The phosphoinositide 3-kinase (PI3K) signaling pathway plays an important role in processes critical for breast cancer progression and its upregulation confers increased resistance of cancer cells to chemotherapy and radiation. The present study aimed at determining the activity of ramentaceone, a constituent of species in the plant genera Drosera, toward breast cancer cells and defining the involvement of PI3K/Akt inhibition in ramentaceone-mediated cell death induction. The results showed that ramentaceone exhibited high antiproliferative activity toward breast cancer cells, in particular HER2-overexpressing breast cancer cells. The mode of cell death induced by ramentaceone was through apoptosis as determined by cytometric analysis of caspase activity and Annexin V staining. Apoptosis induction was found to be mediated by inhibition of PI3K/Akt signaling and through targeting its downstream anti-apoptotic effectors. Ramentaceone inhibited PI3-kinase activity, reduced the expression of the PI3K protein and inhibited the phosphorylation of the Akt protein in breast cancer cells. The expression of the anti-apoptotic Bcl-2 protein was decreased and the levels of the pro-apoptotic proteins, Bax and Bak, were elevated. Moreover, inhibition of PI3K and silencing of Akt expression increased the sensitivity of cells to ramentaceone-induced apoptosis. In conclusion, our results indicate that ramentaceone induces apoptosis in breast cancer cells through PI3K/Akt signaling inhibition. These findings suggest further investigation of ramentaceone as a potential therapeutic agent in breast cancer therapy, in particular HER2-positive breast cancer. PMID:26840401

  8. Flavonoids Extraction from Propolis Attenuates Pathological Cardiac Hypertrophy through PI3K/AKT Signaling Pathway

    PubMed Central

    Sun, Guang-wei; Qiu, Zhi-dong; Wang, Wei-nan; Sui, Xin

    2016-01-01

    Propolis, a traditional medicine, has been widely used for a thousand years as an anti-inflammatory and antioxidant drug. The flavonoid fraction is the main active component of propolis, which possesses a wide range of biological activities, including activities related to heart disease. However, the role of the flavonoids extraction from propolis (FP) in heart disease remains unknown. This study shows that FP could attenuate ISO-induced pathological cardiac hypertrophy (PCH) and heart failure in mice. The effect of the two fetal cardiac genes, atrial natriuretic factor (ANF) and β-myosin heavy chain (β-MHC), on PCH was reversed by FP. Echocardiography analysis revealed cardiac ventricular dilation and contractile dysfunction in ISO-treated mice. This finding is consistent with the increased heart weight and cardiac ANF protein levels, massive replacement fibrosis, and myocardial apoptosis. However, pretreatment of mice with FP could attenuate cardiac dysfunction and hypertrophy in vivo. Furthermore, the cardiac protection of FP was suppressed by the pan-PI3K inhibitor wortmannin. FP is a novel cardioprotective agent that can attenuate adverse cardiac dysfunction, hypertrophy, and associated disorder, such as fibrosis. The effects may be closely correlated with PI3K/AKT signaling. FP may be clinically used to inhibit PCH progression and heart failure. PMID:27213000

  9. PREX2 promotes the proliferation, invasion and migration of pancreatic cancer cells by modulating the PI3K signaling pathway

    PubMed Central

    Yang, Jianyi; Gong, Xuejun; Ouyang, Lu; He, Wen; Xiao, Rou; Tan, Li

    2016-01-01

    Phosphatidylinositol-3,4,5-trisphosphate-dependent Rac exchanger factor 2 (PREX2) is a novel regulator of the small guanosine triphosphatase Rac, and has been observed to be implicated in human cancer by inhibiting the activity of phosphatase and tensin homolog (PTEN), thus upregulating the activity of the phosphoinositide 3-kinase (PI3K) signaling pathway. However, the exact role of PREX2 in pancreatic cancer has not been reported to date. In the present study, the expression levels of PREX2 were observed to be frequently increased in pancreatic cancer specimens compared with those in their matched adjacent normal tissues. In addition, PREX2 expression was also frequently upregulated in several pancreatic cancer cell lines, including AsPC-1, BxPC-3, PANC-1 and CFAPC-1, compared with that in the normal pancreatic epithelial cell line HPC-Y5. Overexpression of PREX2 significantly promoted the proliferation, invasion and migration of pancreatic cancer PANC-1 cells, while small interfering RNA-induced knockdown of PREX2 expression significantly inhibited the proliferation, invasion and migration of these cells. Investigation of the molecular mechanism revealed that the overexpression of PREX2 upregulated the phosphorylation levels of PTEN, indicating that the activity of PTEN was reduced, which further increased the phosphorylation levels of AKT, which indicated that the activity of the PI3K signaling pathway was upregulated. By contrast, knockdown of PREX2 upregulated the activity of PTEN and inhibited the activity of the PI3K signaling pathway. In conclusion, the present study demonstrated that PREX2 regulates the proliferation, invasion and migration of pancreatic cancer cells, probably at least via modulation of the activity of PTEN and the PI3K signaling pathway. PMID:27446408

  10. PTEN Contributes to Profound PI3K/Akt Signaling Pathway Deregulation in Dystrophin-Deficient Dog Muscle

    PubMed Central

    Feron, Marie; Guevel, Laetitia; Rouger, Karl; Dubreil, Laurence; Arnaud, Marie-Claire; Ledevin, Mireille; Megeney, Lynn A.; Cherel, Yan; Sakanyan, Vehary

    2009-01-01

    Duchenne muscular dystrophy is the most common and severe form of muscular dystrophy, and although the genetic basis of this disease is well defined, the overall mechanisms that define its pathogenesis remain obscure. Alterations in individual signaling pathways have been described, but little information is available regarding their putative implications in Duchenne muscular dystrophy pathogenesis. Here, we studied the status of various major signaling pathways in the Golden Retriever muscular dystrophy dog that specifically reproduces the full spectrum of human pathology. Using antibody arrays, we found that Akt1, glycogen synthase kinase-3β (GSK3β), 70-kDa ribosomal protein S6 kinase (p70S6K), extracellular signal-regulated kinases 1/2, and p38δ and p38γ kinases all exhibited decreased phosphorylation in muscle from a 4-month-old animal with Golden Retriever muscular dystrophy, revealing a deep alteration of the phosphatidylinositol 3-kinase (PI3K)/Akt and mitogen-activated protein kinase pathways. Immunohistochemistry analysis revealed the presence of muscle fibers exhibiting a cytosolic accumulation of Akt1, GSK3β, and phosphatidylinositol-3,4,5-trisphosphate 3-phosphatase (PTEN), an enzyme counteracting PI3K-mediated Akt activation. Enzymatic assays established that these alterations in phosphorylation and expression levels were associated with decreased Akt and increased GSK3β and PTEN activities. PTEN/GSK3β-positive fibers were also observed in muscle sections from 3- and 36-month-old animals, indicating long-term PI3K/Akt pathway alteration. Collectively, our data suggest that increased PTEN expression and activity play a central role in PI3K/Akt/GSK3β and p70S6K pathway modulation, which could exacerbate the consequences of dystrophin deficiency. PMID:19264909

  11. Heterozygous splice mutation in PIK3R1 causes human immunodeficiency with lymphoproliferation due to dominant activation of PI3K

    PubMed Central

    Lucas, Carrie L.; Zhang, Yu; Venida, Anthony; Wang, Ying; Hughes, Jason; McElwee, Joshua; Butrick, Morgan; Matthews, Helen; Price, Susan; Biancalana, Matthew; Wang, Xiaochuan; Richards, Michael; Pozos, Tamara; Barlan, Isil; Ozen, Ahmet; Rao, V. Koneti; Su, Helen C.

    2014-01-01

    Class IA phosphatidylinositol 3-kinases (PI3K), which generate PIP3 as a signal for cell growth and proliferation, exist as an intracellular complex of a catalytic subunit bound to a regulatory subunit. We and others have previously reported that heterozygous mutations in PIK3CD encoding the p110δ catalytic PI3K subunit cause a unique disorder termed p110δ-activating mutations causing senescent T cells, lymphadenopathy, and immunodeficiency (PASLI) disease. We report four patients from three families with a similar disease who harbor a recently reported heterozygous splice site mutation in PIK3R1, which encodes the p85α, p55α, and p50α regulatory PI3K subunits. These patients suffer from recurrent sinopulmonary infections and lymphoproliferation, exhibit hyperactive PI3K signaling, and have prominent expansion and skewing of peripheral blood CD8+ T cells toward terminally differentiated senescent effector cells with short telomeres. The PIK3R1 splice site mutation causes skipping of an exon, corresponding to loss of amino acid residues 434–475 in the inter-SH2 domain. The mutant p85α protein is expressed at low levels in patient cells and activates PI3K signaling when overexpressed in T cells from healthy subjects due to qualitative and quantitative binding changes in the p85α–p110δ complex and failure of the C-terminal region to properly inhibit p110δ catalytic activity. PMID:25488983

  12. Effects of low-intensity pulsed ultrasound on integrin-FAK-PI3K/Akt mechanochemical transduction in rabbit osteoarthritis chondrocytes.

    PubMed

    Cheng, Kai; Xia, Peng; Lin, Qiang; Shen, Shihao; Gao, Mingxia; Ren, Shasha; Li, Xueping

    2014-07-01

    The effect of low-intensity pulsed ultrasound (LIPUS) on extracellular matrix (ECM) production via modulation of the integrin/focal adhesion kinase (FAK)/phosphatidylinositol 3-kinase (PI3K)/Akt pathway has been investigated in previous studies in normal chondrocytes, but not in osteoarthritis (OA). Therefore, we investigated the LIPUS-induced integrin β1/FAK/PI3K/Akt mechanochemical transduction pathway in a single study in rabbit OA chondrocytes. Normal and OA chondrocytes were exposed to LIPUS, and mRNA and protein expression of cartilage, metalloproteinases and integrin-FAK-PI3K/Akt signal pathway-related genes was determined by quantitative reverse transcription polymerase chain reaction and Western blotting, respectively. Compared with levels in normal chondrocytes, expression levels of ECM-related genes were significantly lower in OA chondrocytes and those of metalloproteinase-related genes were significantly higher. In addition, integrin β1 gene expression and the phosphorylation of FAK, PI3K and Akt were significantly higher in OA chondrocytes. The expression of all tested genes was significantly increased except for that of metalloproteinase, which was significantly decreased in the LIPUS-treated OA group compared to the untreated OA group. LIPUS may affect the integrin-FAK-PI3K/Akt mechanochemical transduction pathway and alter ECM production by OA chondrocytes. Our findings will aid the future development of a treatment or even cure for OA.

  13. Suppression of Virulent Porcine Epidemic Diarrhea Virus Proliferation by the PI3