Science.gov

Sample records for 3-kinase pi3k protein

  1. Infectious bursal disease virus activates the phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway by interaction of VP5 protein with the p85{alpha} subunit of PI3K

    SciTech Connect

    Wei Li; Hou Lei; Zhu Shanshan; Wang Jing; Zhou Jiao; Liu Jue

    2011-08-15

    Phosphatidylinositol 3-kinase (PI3K)/Akt signaling is commonly activated upon virus infection and has been implicated in the regulation of diverse cellular functions such as proliferation and apoptosis. The present study demonstrated for the first time that infectious bursal disease virus (IBDV), the causative agent of a highly contagious disease in chickens, can induce Akt phosphorylation in cultured cells, by a mechanism that is dependent on PI3K. Inhibition of PI3K activation greatly enhanced virus-induced cytopathic effect and apoptotic cell death as evidenced by cleavage of poly-ADP ribose polymerase and activation of caspase-3. Investigations into the mechanism of PI3K/Akt activation revealed that IBDV activates PI3K/Akt signaling through binding of the non-structural protein VP5 to regulatory subunit p85{alpha} of PI3K resulting in the suppression of premature apoptosis and improved virus growth after infection. The results presented here provide a basis for understanding molecular mechanism of IBDV infection.

  2. E6 variants of human papillomavirus 18 differentially modulate the protein kinase B/phosphatidylinositol 3-kinase (akt/PI3K) signaling pathway

    SciTech Connect

    Contreras-Paredes, Adriana

    2009-01-05

    Intra-type genome variations of high risk Human papillomavirus (HPV) have been associated with a differential threat for cervical cancer development. In this work, the effect of HPV18 E6 isolates in Akt/PKB and Mitogen-associated protein kinase (MAPKs) signaling pathways and its implication in cell proliferation were analyzed. E6 from HPV types 16 and 18 are able to bind and promote degradation of Human disc large (hDlg). Our results show that E6 variants differentially modulate hDlg degradation, rebounding in levels of activated PTEN and PKB. HPV18 E6 variants are also able to upregulate phospho-PI3K protein, strongly correlating with activated MAPKs and cell proliferation. Data was supported by the effect of E6 silencing in HPV18-containing HeLa cells, as well as hDlg silencing in the tested cells. Results suggest that HPV18 intra-type variations may derive in differential abilities to activate cell-signaling pathways such as Akt/PKB and MAPKs, directly involved in cell survival and proliferation.

  3. Discovery of Bifunctional Oncogenic Target Inhibitors against Allosteric Mitogen-Activated Protein Kinase (MEK1) and Phosphatidylinositol 3-Kinase (PI3K).

    PubMed

    Van Dort, Marcian E; Hong, Hao; Wang, Hanxiao; Nino, Charles A; Lombardi, Rachel L; Blanks, Avery E; Galbán, Stefanie; Ross, Brian D

    2016-03-24

    The synthesis of a series of single entity, bifunctional MEK1/PI3K inhibitors achieved by covalent linking of structural analogs of the ATP-competitive PI3K inhibitor ZSTK474 and the ATP-noncompetitive MEK inhibitor PD0325901 is described. Inhibitors displayed potent in vitro inhibition of MEK1 (0.015 < IC50 (nM) < 56.7) and PI3K (54 < IC50 (nM) < 341) in enzymatic inhibition assays. Concurrent MEK1 and PI3K inhibition was demonstrated with inhibitors 9 and 14 in two tumor cell lines (A549, D54). Inhibitors produced dose-dependent decreased cell viability similar to the combined administration of equivalent doses of ZSTK474 and PD0325901. In vivo efficacy of 14 following oral administration was demonstrated in D54 glioma and A549 lung tumor bearing mice. Compound 14 showed a 95% and 67% inhibition of tumor ERK1/2 and Akt phosphorylation, respectively, at 2 h postadministration by Western blot analysis, confirming the bioavailability and efficacy of this bifunctional inhibitor strategy toward combined MEK1/PI3K inhibition. PMID:26943489

  4. Berberine Induced Apoptosis of Human Osteosarcoma Cells by Inhibiting Phosphoinositide 3 Kinase/Protein Kinase B (PI3K/Akt) Signal Pathway Activation

    PubMed Central

    2016-01-01

    Background: Osteosarcoma is a malignant tumor with high mortality but effective therapy has not yet been developed. Berberine, an isoquinoline alkaloid component in several Chinese herbs including Huanglian, has been shown to induce growth inhibition and the apoptosis of certain cancer cells. The aim of this study was to determine the role of berberine on human osteosarcoma cell lines U2OS and its potential mechanism. Methods: The proliferation effect of U20S was exanimed by 3-(4,5)-dimethylthiahiazo(-z-y1)-3,5-di- phenytetrazoliumromide (MTT) and the percentage of apoptotic cells were determined by flow cytometric analysis. The expression of PI3K, p-Akt, Bax, Bcl-2, cleavage-PARP and Caspase3 were detected by Western blott. Results: Berberine treatment caused dose-dependent inhibiting proliferation and inducing apoptosis of U20S cell. Mechanistically, berberine inhibits PI3K/AKT activation that, in turn, results in up-regulating the expression of Bax, and PARP and down-regulating the expression of Bcl-2 and caspase3. In all, berberine can suppress the proliferation and induce the apoptosis of U2OS cell through inhibiting the PI3K/Akt signaling pathway activation. Conclusion: Berberine can suppress the proliferation and induce the apoptosis of U2OS cell through inhibiting the PI3K/Akt signaling pathway activation. PMID:27398330

  5. Targeting the phosphoinositide 3-kinase (PI3K) pathway in cancer

    PubMed Central

    Liu, Pixu; Cheng, Hailing; Roberts, Thomas M.; Zhao, Jean J.

    2011-01-01

    The phosphoinositide 3-kinase (PI3K) pathway, a critical signal transduction system linking oncogenes and multiple receptor classes to many essential cellular functions, is perhaps the most commonly activated signaling pathway in human cancer. This pathway thus presents both an opportunity and a challenge for cancer therapy. Even as inhibitors that target PI3K isoforms and other major nodes in the pathway including AKT and mTOR reach clinical trials, major issues remain. Here we highlight recent progress made in our understanding of the PI3K pathway and discuss both the promises and challenges for the therapeutic development of agents targeting the PI3K pathway in cancer. PMID:19644473

  6. Icaritin requires Phosphatidylinositol 3 kinase (PI3K)/Akt signaling to counteract skeletal muscle atrophy following mechanical unloading

    PubMed Central

    ZHANG, Zong-Kang; LI, Jie; LIU, Jin; GUO, Baosheng; LEUNG, Albert; ZHANG, Ge; ZHANG, Bao-Ting

    2016-01-01

    Counteracting muscle atrophy induced by mechanical unloading/inactivity is of great clinical need and challenge. A therapeutic agent that could counteract muscle atrophy following mechanical unloading in safety is desired. This study showed that natural product Icaritin (ICT) could increase the phosphorylation level of Phosphatidylinositol 3 kinase (PI3K) at p110 catalytic subunit and promote PI3K/Akt signaling markers in C2C12 cells. This study further showed that the high dose ICT treatment could significantly attenuate the decreases in the phosphorylation level of PI3K at p110 catalytic subunit and its downstream markers related to protein synthesis, and inhibit the increases in protein degradation markers at mRNA and protein levels in rat soleus muscle following 28-day hindlimb unloading. In addition, the decreases in soleus muscle mass, muscle fiber cross-sectional area, twitch force, specific force, contraction time and half relaxation time could be significantly attenuated by the high dose ICT treatment. The low dose ICT treatment could moderately attenuate the above changes induced by unloading. Wortmannin, a specific inhibitor of PI3K at p110 catalytic subunit, could abolish the above effects of ICT in vitro and in vivo, indicating that PI3K/Akt signaling could be required by ICT to counteract skeletal muscle atrophy following mechanical unloading. PMID:26831566

  7. A Potent Inhibitor of Phosphoinositide 3-Kinase (PI3K) and Mitogen Activated Protein (MAP) Kinase Signalling, Quercetin (3, 3', 4', 5, 7-Pentahydroxyflavone) Promotes Cell Death in Ultraviolet (UV)-B-Irradiated B16F10 Melanoma Cells

    PubMed Central

    Rafiq, Rather A.; Quadri, Afnan; Nazir, Lone A.; Peerzada, Kaiser; Ganai, Bashir A.; Tasduq, Sheikh A.

    2015-01-01

    Ultraviolet (UV) radiation–induced skin damage contributes strongly to the formation of melanoma, a highly lethal form of skin cancer. Quercetin (Qu), the most widely consumed dietary bioflavonoid and well known inhibitor of phosphoinositide 3-kinase (PI3K) and mitogen activated protein (MAP) kinase signalling, has been reported to be chemopreventive in several forms of non-melanoma skin cancers. Here, we report that the treatment of ultraviolet (UV)-B-irradiated B16F10 melanoma cells with quercetin resulted in a dose dependent reduction in cell viability and increased apoptosis. The present study has brought out that the pro-apoptotic effects of quercetin in UVB-irradiated B16F10 cells are mediated through the elevation of intracellular reactive oxygen species (ROS) formation, calcium homeostasis imbalance, modulation of anti-oxidant defence response and depolarization of mitochondrial membrane potential (ΔΨM). Promotion of UVB-induced cell death by quercetin was further revealed by cleavage of chromosomal DNA, caspase activation, poly (ADP) ribose polymerase (PARP) cleavage, and an increase in sub-G1 cells. Quercetin markedly attenuated MEK-ERK signalling, influenced PI3K/Akt pathway, and potentially enhanced the UVB-induced NF-κB nuclear translocation. Furthermore, combined UVB and quercetin treatment decreased the ratio of Bcl-2 to that of Bax, and upregulated the expression of Bim and apoptosis inducing factor (AIF). Overall, these results suggest the possibility of using quercetin in combination with UVB as a possible treatment option for melanoma in future. PMID:26148186

  8. A Potent Inhibitor of Phosphoinositide 3-Kinase (PI3K) and Mitogen Activated Protein (MAP) Kinase Signalling, Quercetin (3, 3', 4', 5, 7-Pentahydroxyflavone) Promotes Cell Death in Ultraviolet (UV)-B-Irradiated B16F10 Melanoma Cells.

    PubMed

    Rafiq, Rather A; Quadri, Afnan; Nazir, Lone A; Peerzada, Kaiser; Ganai, Bashir A; Tasduq, Sheikh A

    2015-01-01

    Ultraviolet (UV) radiation-induced skin damage contributes strongly to the formation of melanoma, a highly lethal form of skin cancer. Quercetin (Qu), the most widely consumed dietary bioflavonoid and well known inhibitor of phosphoinositide 3-kinase (PI3K) and mitogen activated protein (MAP) kinase signalling, has been reported to be chemopreventive in several forms of non-melanoma skin cancers. Here, we report that the treatment of ultraviolet (UV)-B-irradiated B16F10 melanoma cells with quercetin resulted in a dose dependent reduction in cell viability and increased apoptosis. The present study has brought out that the pro-apoptotic effects of quercetin in UVB-irradiated B16F10 cells are mediated through the elevation of intracellular reactive oxygen species (ROS) formation, calcium homeostasis imbalance, modulation of anti-oxidant defence response and depolarization of mitochondrial membrane potential (ΔΨM). Promotion of UVB-induced cell death by quercetin was further revealed by cleavage of chromosomal DNA, caspase activation, poly (ADP) ribose polymerase (PARP) cleavage, and an increase in sub-G1 cells. Quercetin markedly attenuated MEK-ERK signalling, influenced PI3K/Akt pathway, and potentially enhanced the UVB-induced NF-κB nuclear translocation. Furthermore, combined UVB and quercetin treatment decreased the ratio of Bcl-2 to that of Bax, and upregulated the expression of Bim and apoptosis inducing factor (AIF). Overall, these results suggest the possibility of using quercetin in combination with UVB as a possible treatment option for melanoma in future. PMID:26148186

  9. PI3K is negatively regulated by PIK3IP1, a novel p110 interacting protein

    SciTech Connect

    Zhu, Zhenqi; He, Xin; Johnson, Carla; Stoops, John; Eaker, Amanda E.; Stoffer, David S.; Bell, Aaron; Zarnegar, Reza; DeFrances, Marie C. . E-mail: defrancesmc@upmc.edu

    2007-06-22

    Signaling initiated by Class Ia phosphatidylinositol-3-kinases (PI3Ks) is essential for cell proliferation and survival. We discovered a novel protein we call PI3K interacting protein 1 (PIK3IP1) that shares homology with the p85 regulatory PI3K subunit. Using a variety of in vitro and cell based assays, we demonstrate that PIK3IP1 directly binds to the p110 catalytic subunit and down modulates PI3K activity. Our studies suggest that PIK3IP1 is a new type of PI3K regulator.

  10. Single-Cell Analysis of Phosphoinositide 3-Kinase (PI3K) and Phosphatase and Tensin Homolog (PTEN) Activation

    PubMed Central

    Jiang, Dechen; Sims, Christopher Eldridge; Allbritton, Nancy Lynn

    2010-01-01

    Summary A single-cell assay was developed to measure the activation of phosphoinositide 3-kinase (PI3K) using microanalytical chemical separations and a fluorescently labeled lipid substrate. Phosphatidyl-inositol 4,5 bisphosphate labeled on its acyl chain with Bodipy fluorescein (Bodipy Fl PIP2) was utilized as a substrate for both in vitro and cell-based assays. Detection limits for the substrate and product of the PI3K reaction were 10 to 20 zeptomoles. In vitro assays with PI3K with and without pharmacologic inhibitors demonstrated that Bodipy Fl PIP2 was converted to phosphatidyl-inositol 3,4,5 trisphosphate (Bodipy Fl PIP3 ). Bodipy Fl PIP3 could be back converted to Bodipy Fl PIP2 by the phosphatase PTEN. When Bodipy Fl PIP2 was added to a cell lysate, 1.4 fmoles of the Bodipy Fl PIP3 were produced per ng of protein in the cytoplasmic extract in 10 min. Addition of Bodipy Fl PIP3 to a cell lysate yielded 3 fmoles of Bodipy Fl PIP2 per ng of protein in 8 min. Both Bodipy Fl PIP2 and Bodipy Fl PIP3 were measureable in single cells and the two species could be inter-converted. Under the appropriate conditions, a fluorescent diacylglycerol was also detected in single cells. When the FcεR1 receptor on the cells loaded with the fluorescent lipid was cross-linked, the amount of Bodipy Fl PIP3 generated per cell increased 4-fold over that of unstimulated cells. This production of Bodipy Fl PIP3 was blocked by wortmannin. Chemical cytometry utilizing the fluorescent lipids will be of value in understanding lipid metabolism at the single-cell level. PMID:21221426

  11. Ras, Rac1, and phosphatidylinositol-3-kinase (PI3K) signaling in nitric oxide induced endothelial cell migration.

    PubMed

    Eller-Borges, Roberta; Batista, Wagner L; da Costa, Paulo E; Tokikawa, Rita; Curcio, Marli F; Strumillo, Scheilla T; Sartori, Adriano; Moraes, Miriam S; de Oliveira, Graciele A; Taha, Murched O; Fonseca, Fábio V; Stern, Arnold; Monteiro, Hugo P

    2015-05-01

    The small GTP-binding proteins Ras and Rac1 are molecular switches exchanging GDP for GTP and converting external signals in response to a variety of stimuli. Ras and Rac1 play an important role in cell proliferation, cell differentiation, and cell migration. Rac1 is directly involved in the reorganization and changes in the cytoskeleton during cell motility. Nitric oxide (NO) stimulates the Ras - ERK1/2 MAP kinases signaling pathway and is involved in the interaction between Ras and the phosphatidyl-inositol-3 Kinase (PI3K) signaling pathway and cell migration. This study utilizes bradykinin (BK), which promotes endogenous production of NO, in an investigation of the role of NO in the activation of Rac1 in rabbit aortic endothelial cells (RAEC). NO-derived from BK stimulation of RAEC and incubation of the cells with the s-nitrosothiol S-nitrosoglutathione (GSNO) activated Rac1. NO-derived from BK stimulation promoted RAEC migration over a period of 12 h. The use of RAEC permanently transfected with the dominant negative mutant of Ras (Ras(N17)) or with the non-nitrosatable mutant of Ras (Ras(C118S)); and the use of specific inhibitors of: Ras, PI3K, and Rac1 resulted in inhibition of NO-mediated Rac1 activation. BK-stimulated s-nitrosylation of Ras in RAEC mediates Rac1 activation and cell migration. Inhibition of NO-mediated Rac1 activation resulted in inhibition of endothelial cell migration. In conclusion, the NO indirect activation of Rac1 involves the direct participation of Ras and PI3K in the migration of endothelial cells stimulated with BK. PMID:25819133

  12. Clozapine Interaction with Phosphatidyl Inositol 3-Kinase (PI3K)/Insulin Signaling Pathway in Caenorhabditis elegans

    PubMed Central

    Karmacharya, Rakesh; Sliwoski, Gregory R.; Lundy, Miriam Y.; Suckow, Raymond F.; Cohen, Bruce M.; Buttner, Edgar A.

    2012-01-01

    Clozapine has superior and unique effects as an antipsychotic agent, but the mediators of these effects are not known. We studied behavioral and developmental effects of clozapine in Caenorhabditis elegans, as a model system to identify previously undiscovered mechanisms of drug action. Clozapine induced early larval arrest, a phenotype that was also seen with the clozapine metabolite N-desmethyl clozapine but not with any other typical or atypical antipsychotic drug tested. Mutations in the insulin receptor/daf-2 and the phosphatidyl inositol 3-kinase (PI3K)/age-1 suppressed clozapine-induced larval arrest, suggesting that clozapine may activate the insulin signaling pathway. Consistent with this notion, clozapine also increased expression of an age-1::GFP reporter. Activation of the insulin signaling pathway leads to cytoplasmic localization of the fork head transcription factor FOXO/daf-16. Clozapine produced cytoplasmic localization of DAF-16::GFP in arrested L1 larvae, in contrast to stressors such as starvation or high temperature which produce nuclear localization of DAF-16::GFP in arrested L1 larvae. Clozapine also inhibited pharyngeal pumping in C. elegans, an effect that may contribute to but did not explain clozapine-induced larval arrest. Our findings demonstrate a drug-specific interaction between clozapine and the PI3K/insulin signaling pathway in C. elegans. As this pathway is conserved across species, the results may have implications for understanding the unique effects of clozapine in humans. PMID:19322168

  13. Shiga toxin type-2 (Stx2) induces glutamate release via phosphoinositide 3-kinase (PI3K) pathway in murine neurons

    PubMed Central

    Obata, Fumiko; Hippler, Lauren M.; Saha, Progyaparamita; Jandhyala, Dakshina M.; Latinovic, Olga S.

    2015-01-01

    Shiga toxin-producing Escherichia coli (STEC) can cause central nervous system (CNS) damage resulting in paralysis, seizures, and coma. The key STEC virulence factors associated with systemic illness resulting in CNS impairment are Shiga toxins (Stx). While neurons express the Stx receptor globotriaosylceramide (Gb3) in vivo, direct toxicity to neurons by Stx has not been studied. We used murine neonatal neuron cultures to study the interaction of Shiga toxin type 2 (Stx2) with cell surface expressed Gb3. Single molecule imaging three dimensional STochastic Optical Reconstruction Microscopy—Total Internal Reflection Fluorescence (3D STORM-TIRF) allowed visualization and quantification of Stx2-Gb3 interactions. Furthermore, we demonstrate that Stx2 increases neuronal cytosolic Ca2+, and NMDA-receptor inhibition blocks Stx2-induced Ca2+ influx, suggesting that Stx2-mediates glutamate release. Phosphoinositide 3-kinase (PI3K)-specific inhibition by Wortmannin reduces Stx2-induced intracellular Ca2+ indicating that the PI3K signaling pathway may be involved in Stx2-associated glutamate release, and that these pathways may contribute to CNS impairment associated with STEC infection. PMID:26236186

  14. A Cross-Species Study of PI3K Protein-Protein Interactions Reveals the Direct Interaction of P85 and SHP2

    PubMed Central

    Breitkopf, Susanne B.; Yang, Xuemei; Begley, Michael J.; Kulkarni, Meghana; Chiu, Yu-Hsin; Turke, Alexa B.; Lauriol, Jessica; Yuan, Min; Qi, Jie; Engelman, Jeffrey A.; Hong, Pengyu; Kontaridis, Maria I.; Cantley, Lewis C.; Perrimon, Norbert; Asara, John M.

    2016-01-01

    Using a series of immunoprecipitation (IP) – tandem mass spectrometry (LC-MS/MS) experiments and reciprocal BLAST, we conducted a fly-human cross-species comparison of the phosphoinositide-3-kinase (PI3K) interactome in a drosophila S2R+ cell line and several NSCLC and human multiple myeloma cell lines to identify conserved interacting proteins to PI3K, a critical signaling regulator of the AKT pathway. Using H929 human cancer cells and drosophila S2R+ cells, our data revealed an unexpected direct binding of Corkscrew, the drosophila ortholog of the non-receptor protein tyrosine phosphatase type II (SHP2) to the Pi3k21B (p60) regulatory subunit of PI3K (p50/p85 human ortholog) but no association with Pi3k92e, the human ortholog of the p110 catalytic subunit. The p85-SHP2 association was validated in human cell lines, and formed a ternary regulatory complex with GRB2-associated-binding protein 2 (GAB2). Validation experiments with knockdown of GAB2 and Far-Western blots proved the direct interaction of SHP2 with p85, independent of adaptor proteins and transfected FLAG-p85 provided evidence that SHP2 binding on p85 occurred on the SH2 domains. A disruption of the SHP2-p85 complex took place after insulin/IGF1 stimulation or imatinib treatment, suggesting that the direct SHP2-p85 interaction was both independent of AKT activation and positively regulates the ERK signaling pathway. PMID:26839216

  15. A Cross-Species Study of PI3K Protein-Protein Interactions Reveals the Direct Interaction of P85 and SHP2

    NASA Astrophysics Data System (ADS)

    Breitkopf, Susanne B.; Yang, Xuemei; Begley, Michael J.; Kulkarni, Meghana; Chiu, Yu-Hsin; Turke, Alexa B.; Lauriol, Jessica; Yuan, Min; Qi, Jie; Engelman, Jeffrey A.; Hong, Pengyu; Kontaridis, Maria I.; Cantley, Lewis C.; Perrimon, Norbert; Asara, John M.

    2016-02-01

    Using a series of immunoprecipitation (IP) - tandem mass spectrometry (LC-MS/MS) experiments and reciprocal BLAST, we conducted a fly-human cross-species comparison of the phosphoinositide-3-kinase (PI3K) interactome in a drosophila S2R+ cell line and several NSCLC and human multiple myeloma cell lines to identify conserved interacting proteins to PI3K, a critical signaling regulator of the AKT pathway. Using H929 human cancer cells and drosophila S2R+ cells, our data revealed an unexpected direct binding of Corkscrew, the drosophila ortholog of the non-receptor protein tyrosine phosphatase type II (SHP2) to the Pi3k21B (p60) regulatory subunit of PI3K (p50/p85 human ortholog) but no association with Pi3k92e, the human ortholog of the p110 catalytic subunit. The p85-SHP2 association was validated in human cell lines, and formed a ternary regulatory complex with GRB2-associated-binding protein 2 (GAB2). Validation experiments with knockdown of GAB2 and Far-Western blots proved the direct interaction of SHP2 with p85, independent of adaptor proteins and transfected FLAG-p85 provided evidence that SHP2 binding on p85 occurred on the SH2 domains. A disruption of the SHP2-p85 complex took place after insulin/IGF1 stimulation or imatinib treatment, suggesting that the direct SHP2-p85 interaction was both independent of AKT activation and positively regulates the ERK signaling pathway.

  16. A Cross-Species Study of PI3K Protein-Protein Interactions Reveals the Direct Interaction of P85 and SHP2.

    PubMed

    Breitkopf, Susanne B; Yang, Xuemei; Begley, Michael J; Kulkarni, Meghana; Chiu, Yu-Hsin; Turke, Alexa B; Lauriol, Jessica; Yuan, Min; Qi, Jie; Engelman, Jeffrey A; Hong, Pengyu; Kontaridis, Maria I; Cantley, Lewis C; Perrimon, Norbert; Asara, John M

    2016-01-01

    Using a series of immunoprecipitation (IP)-tandem mass spectrometry (LC-MS/MS) experiments and reciprocal BLAST, we conducted a fly-human cross-species comparison of the phosphoinositide-3-kinase (PI3K) interactome in a drosophila S2R+ cell line and several NSCLC and human multiple myeloma cell lines to identify conserved interacting proteins to PI3K, a critical signaling regulator of the AKT pathway. Using H929 human cancer cells and drosophila S2R+ cells, our data revealed an unexpected direct binding of Corkscrew, the drosophila ortholog of the non-receptor protein tyrosine phosphatase type II (SHP2) to the Pi3k21B (p60) regulatory subunit of PI3K (p50/p85 human ortholog) but no association with Pi3k92e, the human ortholog of the p110 catalytic subunit. The p85-SHP2 association was validated in human cell lines, and formed a ternary regulatory complex with GRB2-associated-binding protein 2 (GAB2). Validation experiments with knockdown of GAB2 and Far-Western blots proved the direct interaction of SHP2 with p85, independent of adaptor proteins and transfected FLAG-p85 provided evidence that SHP2 binding on p85 occurred on the SH2 domains. A disruption of the SHP2-p85 complex took place after insulin/IGF1 stimulation or imatinib treatment, suggesting that the direct SHP2-p85 interaction was both independent of AKT activation and positively regulates the ERK signaling pathway. PMID:26839216

  17. EB-virus latent membrane protein 1 potentiates the stemness of nasopharyngeal carcinoma via preferential activation of PI3K/AKT pathway by a positive feedback loop.

    PubMed

    Yang, C-F; Yang, G-D; Huang, T-J; Li, R; Chu, Q-Q; Xu, L; Wang, M-S; Cai, M-D; Zhong, L; Wei, H-J; Huang, H-B; Huang, J-L; Qian, C-N; Huang, B-J

    2016-06-30

    Our previous study reported that Epstein-Barr virus(EBV)-encoded latent membrane protein 1 (LMP1) could induce development of CD44(+/High) stem-like cells in nasopharyngeal carcinoma (NPC). However, the molecular mechanisms that underlie modulation of cancer stem cells (CSCs) in NPC remain unclear. Here, we show that LMP1 induced CSC-like properties through promotion of the expression of epithelial-mesenchymal transition-like cellular markers and through alterations in differentiation markers. Furthermore, LMP1 activated and triggered phosphoinositide 3-kinase/protein kinase B (PI3K/AKT) pathway, which subsequently stimulated expression of CSC markers, development of side population and tumor sphere formation. This suggests that PI3K/AKT pathway has an important role in the induction and maintenance of CSC properties in NPC. Similarly, PI3K/AKT pathway was also activated by phosphorylase in LMP1-induced CD44(+/High) cells. In addition, LMP1 greatly increased expression of miR-21 and downregulated expression of the miR-21 target, PTEN. Overexpression of miR-21 by transfection of miR-21 mimics into LMP1-transformed cells led to phosphorylase-mediated activation of the PI3K/AKT pathway and induction of CSCs. On the contrary, phosphorylation of the PI3K/AKT pathway and the expression of CSC were reversed by an miR-21 inhibitor. The specific inhibitor (Ly294002) of PI3K/AKT pathway significantly decreased expression of miR-21 and CSC markers and upregulated the expression of PTEN, which indicates that miR-21 and PTEN are the downstream effectors of PI3K/AKT and that expression of these two effectors are related to the development of NPC CSCs. Taken together, our novel findings indicate that LMP1, PI3K/AKT, miR-21 and PTEN constitute a positive feedback loop and have a key role in LMP1-induced CSCs in NPC. PMID:26568302

  18. Progress in the Preclinical Discovery and Clinical Development of Class I and Dual Class I/IV Phosphoinositide 3-Kinase (PI3K) Inhibitors

    PubMed Central

    Shuttleworth, S.J; Silva, F.A; Cecil, A.R.L; Tomassi, C.D; Hill, T.J; Raynaud, F.I; Clarke, P.A; Workman, P

    2011-01-01

    The phosphoinositide 3-kinases (PI3Ks) constitute an important family of lipid kinase enzymes that control a range of cellular processes through their regulation of a network of signal transduction pathways, and have emerged as important therapeutic targets in the context of cancer, inflammation and cardiovascular diseases. Since the mid-late 1990s, considerable progress has been made in the discovery and development of small molecule ATP-competitive PI3K inhibitors, a number of which have entered early phase human trials over recent years from which key clinical results are now being disclosed. This review summarizes progress made to date, primarily on the discovery and characterization of class I and dual class I/IV subtype inhibitors, together with advances that have been made in translational and clinical research, notably in cancer. PMID:21649578

  19. Major vault protein supports glioblastoma survival and migration by upregulating the EGFR/PI3K signalling axis

    PubMed Central

    Lötsch, Daniela; Steiner, Elisabeth; Holzmann, Klaus; Spiegl-Kreinecker, Sabine; Pirker, Christine; Hlavaty, Juraj; Petznek, Helga; Hegedus, Balazs; Garay, Tamas; Mohr, Thomas; Sommergruber, Wolfgang; Grusch, Michael; Berger, Walter

    2013-01-01

    Despite their ubiquitous expression and high conservation during evolution, precise cellular functions of vault ribonucleoparticles, mainly built of multiple major vault protein (MVP) copies, are still enigmatic. With regard to cancer, vaults were shown to be upregulated during drug resistance development as well as malignant transformation and progression. Such in a previous study we demonstrated that human astrocytic brain tumours including glioblastoma are generally high in vault levels while MVP expression in normal brain is comparably low. However a direct contribution to the malignant phenotype in general and that of glioblastoma in particular has not been established so far. Thus we address the questions whether MVP itself has a pro-tumorigenic function in glioblastoma. Based on a large tissue collection, we re-confirm strong MVP expression in gliomas as compared to healthy brain. Further, the impact of MVP on human glioblastoma aggressiveness was analysed by using gene transfection, siRNA knock-down and dominant-negative genetic approaches. Our results demonstrate that MVP/vaults significantly support migratory and invasive competence as well as starvation resistance of glioma cells in vitro and in vivo. The enhanced aggressiveness was based on MVP-mediated stabilization of the epidermal growth factor receptor (EGFR)/phosphatidyl-inositol-3-kinase (PI3K) signalling axis. Consequently, MVP overexpression resulted in enhanced growth and brain invasion in human glioblastoma xenograft models. Our study demonstrates, for the first time, that vaults have a tumour-promoting potential by stabilizing EGFR/PI3K-mediated migration and survival pathways in human glioblastoma. PMID:24243798

  20. RAS Interaction with PI3K

    PubMed Central

    Castellano, Esther; Downward, Julian

    2011-01-01

    RAS proteins are small GTPases known for their involvement in oncogenesis: around 25% of human tumors present mutations in a member of this family. RAS operates in a complex signaling network with multiple activators and effectors, which allows them to regulate many cellular functions such as cell proliferation, differentiation, apoptosis, and senescence. Phosphatidylinositol 3-kinase (PI3K) is one of the main effector pathways of RAS, regulating cell growth, cell cycle entry, cell survival, cytoskeleton reorganization, and metabolism. However, it is the involvement of this pathway in human tumors that has attracted most attention. PI3K has proven to be necessary for RAS-induced transformation in vitro, and more importantly, mice with mutations in the PI3K catalytic subunit p110α that block its ability to interact with RAS are highly resistant to endogenous oncogenic KRAS-induced lung tumorigenesis and HRAS-induced skin carcinogenesis. These animals also have a delayed development of the lymphatic vasculature. Many PI3K inhibitors have been developed that are now in clinical trials. However, it is a complex pathway with many feedback loops, and interactions with other pathways make the results of its inhibition hard to predict. Combined therapy with another RAS-regulated pathway such as RAF/MEK/ERK may be the most effective way to treat cancer, at least in animal models mimicking the human disease. In this review, we will summarize current knowledge about how RAS regulates one of its best-known effectors, PI3K. PMID:21779497

  1. Role of Extracellular Matrix Renal Tubulo-interstitial Nephritis Antigen (TINag) in Cell Survival Utilizing Integrin αvβ3/Focal Adhesion Kinase (FAK)/Phosphatidylinositol 3-Kinase (PI3K)/Protein Kinase B-Serine/Threonine Kinase (AKT) Signaling Pathway*

    PubMed Central

    Xie, Ping; Kondeti, Vinay K.; Lin, Sun; Haruna, Yoshisuke; Raparia, Kirtee; Kanwar, Yashpal S.

    2011-01-01

    Tubulo-interstitial nephritis antigen (TINag) is an extracellular matrix protein expressed in tubular basement membranes. Combined mutations in TINag and nephrocystin-1 genes lead to nephronophthisis with reduced cell survival. Because certain extracellular matrix proteins are known to modulate cell survival, studies were initiated in Lewis rats lacking TINag to assess if they are more susceptible to cisplatin-induced injury. Cisplatin induced a higher degree of tubular cell damage and apoptosis in regions where TINag is expressed in a parental Wistar strain. This was accompanied by an accentuated increase in serum creatinine and Kim-1 RNA and renal expression of Bax, p53, and its nuclear accumulation, mtDNA fragmentation, and a decrease of Bcl-2. Cisplatin induced fulminant apoptosis of HK-2 cells with increased caspase3/7 activity, mtDNA fragmentation, and a reduced cell survival. These effects were partially reversed in cells maintained on TINag substratum. Far Western/solid phase assays established TINag binding with integrin αvβ3 comparable with vitronectin. Transfection of cells with αv-siRNA accentuated cisplatin-induced apoptosis, aberrant translocation of cytochrome c and Bax, and reduced cell survival. The αv-siRNA decreased expression of integrin-recruited focal adhesion kinase (FAK) and p-FAK, while increasing the expression of p53 and p-p53. Similarly, p-AKT was reduced although ILK was unaffected. Inhibition of PI3K had similar adverse cellular effects. These effects were ameliorated in cells on TINag substratum. In vivo, a higher degree of decrease in the expression of p-FAK and pAKT was observed in Lewis rats following cisplatin treatment. These in vivo and in vitro studies demonstrate an essential role of TINag in cellular survival to maintain proper tubular homeostasis utilizing integrin αvβ3 and downstream effectors. PMID:21795690

  2. PI3K inhibitors prime neuroblastoma cells for chemotherapy by shifting the balance towards pro-apoptotic Bcl-2 proteins and enhanced mitochondrial apoptosis.

    PubMed

    Bender, A; Opel, D; Naumann, I; Kappler, R; Friedman, L; von Schweinitz, D; Debatin, K-M; Fulda, S

    2011-01-27

    We recently identified activation of phosphatidylinositol 3'-kinase (PI3K)/Akt as a novel predictor of poor outcome in neuroblastoma. Here, we investigated the effect of small-molecule PI3K inhibitors on chemosensitivity. We provide first evidence that PI3K inhibitors, for example PI103, synergize with various chemotherapeutics (Doxorubicin, Etoposide, Topotecan, Cisplatin, Vincristine and Taxol) to trigger apoptosis in neuroblastoma cells (combination index: high synergy). Mechanistic studies reveal that PI103 cooperates with Doxorubicin to reduce Mcl-1 expression and Bim(EL) phosphorylation and to upregulate Noxa and Bim(EL) levels. This shifted ratio of pro- and antiapoptotic Bcl-2 proteins results in increased Bax/Bak conformational change, loss of mitochondrial membrane potential, cytochrome c release, caspase activation and caspase-dependent apoptosis. Although Mcl-1 knockdown enhances Doxorubicin- and PI103-induced apoptosis, silencing of Noxa, Bax/Bak or p53 reduces apoptosis, underscoring the functional relevance of the Doxorubicin- and PI103-mediated modulation of these proteins for chemosensitization. Bcl-2 overexpression inhibits Bax activation, mitochondrial perturbations, cleavage of caspases and Bid, and apoptosis, confirming the central role of the mitochondrial pathway for chemosensitization. Interestingly, the broad-range caspase inhibitor zVAD.fmk does not interfere with Bax activation or mitochondrial outer membrane permeabilization, whereas it blocks caspase activation and apoptosis, thus placing mitochondrial events upstream of caspase activation. Importantly, PI103 and Doxorubicin cooperate to induce apoptosis and to suppress tumor growth in patients' derived primary neuroblastoma cells and in an in vivo neuroblastoma model, underlining the clinical relevance of the results. Thus, targeting PI3K presents a novel and promising strategy to sensitize neuroblastoma cells for chemotherapy-induced apoptosis, which has important implications for the

  3. Novel cytoprotective mechanism of anti-parkinsonian drug deprenyl: PI3K and Nrf2-derived induction of antioxidative proteins

    SciTech Connect

    Nakaso, Kazuhiro . E-mail: kazuhiro@grape.med.tottori-u.ac.jp; Nakamura, Chiharu; Sato, Hiromi; Imamura, Keiko; Takeshima, Takao; Nakashima, Kenji

    2006-01-20

    Neuroprotection has received considerable attention as a strategy for the treatment of Parkinson's disease (PD). Deprenyl (Selegiline) is a promising candidate for neuroprotection; however, its cytoprotective mechanism has not been fully clarified. Here, we report a novel cytoprotective mechanism of deprenyl involving PI3K and Nrf2-mediated induction of oxidative stress-related proteins. Deprenyl increased the expression of HO-1, PrxI, TrxI, TrxRxI, {gamma}GCS, and p62/A170 in SH-SY5Y cells. Deprenyl also induced the nuclear accumulation of Nrf2 and increased the binding activity of Nrf2 to the enhancer region of human genomic HO-1. The Nrf2-mediated induction of antioxidative molecules was controlled by PI3K. Indeed, furthermore, neurotrophin receptor TrkB was identified as an upstream signal for PI3K-Nrf2 activation by deprenyl. These results suggest that the cytoprotective effect of deprenyl is, in part, dependent on Nrf2-mediated induction of antioxidative proteins, suggesting that activation of the PI3K-Nrf2 system may be a useful therapeutic strategy for PD.

  4. Elevated PI3K signaling drives multiple Breast Cancer subtypes

    PubMed Central

    Adams, Jessica R.; Schachter, Nathan F.; Liu, Jeff C.; Zacksenhaus, Eldad; Egan, Sean E.

    2011-01-01

    Most human breast tumors have mutations that elevate signaling through a key metabolic pathway that is induced by insulin and a number of growth factors. This pathway serves to activate an enzyme known as phosphatidylinositol 3' kinase (PI3K) as well as to regulate proteins that signal in response to lipid products of PI3K. The specific mutations that activate this pathway in breast cancer can occur in genes coding for tyrosine kinase receptors, adaptor proteins linked to PI3K, catalytic and regulatory subunits of PI3K, serine/threonine kinases that function downstream of PI3K, and also phosphatidylinositol phosphatase tumor suppressors that function to antagonize this pathway. While each genetic change results in net elevation of PI3K pathway signaling, and all major breast cancer subtypes show pathway activation, the specific mutation(s) involved in any one tumor may play an important role in defining tumor subtype, prognosis and even sensitivity to therapy. Here, we describe mouse models of breast cancer with elevated PI3K signaling, and how they may be used to guide development of novel therapeutics. PMID:21646685

  5. Phosphoinositide 3-kinase (PI3K) and the nutrient sensing mTOR (mammalian target of rapamycin) pathways control T cell migration

    PubMed Central

    Finlay, David; Cantrell, Doreen

    2012-01-01

    The established role for Phosphatidylinositol (3,4,5) triphosphate (PI(3,4,5)P3) signalling pathways is to regulate cell metabolism. More recently it has emerged that PI(3,4,5)P3 signalling via mTOR and Foxo transcription factors also controls lymphocyte trafficking by determining the repertoire of adhesion and chemokine receptors expressed by T lymphocytes. In quiescent T cells, non-phosphorylated active Foxos maintain expression of KLF2, a transcription factor that regulates expression of the chemokine receptors CCR7 and S1P1and the adhesion receptor CD62L that together control T cell transmigration into secondary lymphoid tissues. PI(3,4,5)P3 mediated activation of Protein Kinase B phosphorylates and inactivates Foxos thereby terminating expression of KLF2 and its target genes. The correct localization of lymphocytes is essential for effective immune responses and the ability of PI3K and mTOR to regulate expression of chemokine receptor and adhesion molecules puts these signaling molecules at the core of the molecular mechanisms that control lymphocyte trafficking. PMID:20146713

  6. Novel pharmacodynamic biomarkers for MYCN protein and PI3K/AKT/mTOR pathway signaling in children with neuroblastoma.

    PubMed

    Smith, Jennifer R; Moreno, Lucas; Heaton, Simon P; Chesler, Louis; Pearson, Andrew D J; Garrett, Michelle D

    2016-04-01

    There is an urgent need for improved therapies for children with high-risk neuroblastoma where survival rates remain low. MYCN amplification is the most common genomic change associated with aggressive neuroblastoma and drugs targeting PI3K/AKT/mTOR, to activate MYCN oncoprotein degradation, are entering clinical evaluation. Our aim was to develop and validate pharmacodynamic (PD) biomarkers to evaluate both proof of mechanism and proof of concept for drugs that block PI3K/AKT/mTOR pathway activity in children with neuroblastoma. We have addressed the issue of limited access to tumor biopsies for quantitative detection of protein biomarkers by optimizing a three-color fluorescence activated cell sorting (FACS) method to purify CD45-/GD2+/CD56+ neuroblastoma cells from bone marrow. We then developed a novel quantitative measurement of MYCN protein in these isolated neuroblastoma cells, providing the potential to demonstrate proof of concept for drugs that inhibit PI3K/AKT/mTOR signaling in this disease. In addition we have established quantitative detection of three biomarkers for AKT pathway activity (phosphorylated and total AKT, GSK3β and P70S6K) in surrogate platelet-rich plasma (PRP) from pediatric patients. Together our new approach to neuroblastoma cell isolation for protein detection and suite of PD assays provides for the first time the opportunity for robust, quantitative measurement of protein-based PD biomarkers in this pediatric patient population. These will be ideal tools to support clinical evaluation of PI3K/AKT/mTOR pathway drugs and their ability to target MYCN oncoprotein in upcoming clinical trials in neuroblastoma. PMID:26686971

  7. Glucagon-like peptide-1 protects cardiomyocytes from advanced oxidation protein product-induced apoptosis via the PI3K/Akt/Bad signaling pathway

    PubMed Central

    ZHANG, HUA; XIONG, ZHOUYI; WANG, JIAO; ZHANG, SHUANGSHUANG; LEI, LEI; YANG, LI; ZHANG, ZHEN

    2016-01-01

    Cardiomyocyte apoptosis is a major event in the pathogenesis of diabetic cardiomyopathy. Currently, no single effective treatment for diabetic cardiomyopathy exists. The present study investigated whether advanced oxidative protein products (AOPPs) have a detrimental role in the survival of cardiomyocytes and if glucagon-like peptide-1 (GLP-1) exerts a cardioprotective effect under these circumstances. The present study also aimed to determine the underlying mechanisms. H9c2 cells were exposed to increasing concentrations of AOPPs in the presence or absence of GLP-1, and the viability and apoptotic rate were detected using a cell counting kit-8 assay and flow cytometry, respectively. In addition, a phosphatidylino-sitol-4,5-bisphosphate 3-kinase (PI3K) inhibitor, LY294002, was employed to illustrate the mechanism of the antiapoptotic effect of GLP-1. The expression levels of the apoptotic-associated proteins, Akt, B-cell lymphoma (Bcl)-2, Bcl-2-associated death promoter (Bad), Bcl-2-associated X protein (Bax) and caspase-3 were measured by western blotting. It was revealed that GLP-1 significantly attenuated AOPP-induced cell toxicity and apoptosis. AOPPs inactivated the phosphorylation of Akt, reduced the phosphorylation of Bad, decreased the expression of Bcl-2, increased the expression of Bax and the activation of caspase-3 in H9c2 cells. GLP-1 reversed the above changes induced by AOPPs and the protective effects of GLP-1 were abolished by the PI3K inhibitor, LY294002. In conclusion, the present data suggested that GLP-1 protected cardiomyocytes against AOPP-induced apoptosis, predominantly via the PI3K/Akt/Bad pathway. These results provided a conceivable mechanism for the development of diabetic cardiomyopathy and rendered a novel application of GLP-1 exerting favorable cardiac effects for the treatment of diabetic cardiomyopathy. PMID:26717963

  8. Inhibition of Protein Kinase C Delta Attenuates Allergic Airway Inflammation through Suppression of PI3K/Akt/mTOR/HIF-1 Alpha/VEGF Pathway

    PubMed Central

    Li, Liang chang; Yan, Guang Hai

    2013-01-01

    Vascular endothelial growth factor (VEGF) is supposed to contribute to the pathogenesis of allergic airway disease. VEGF expression is regulated by a variety of stimuli such as nitric oxide, growth factors, and hypoxia-inducible factor-1 alpha (HIF-1α). Recently, inhibition of the mammalian target of rapamycin (mTOR) has been shown to alleviate cardinal asthmatic features, including airway hyperresponsiveness, eosinophilic inflammation, and increased vascular permeability in asthma models. Based on these observations, we have investigated whether mTOR is associated with HIF-1α-mediated VEGF expression in allergic asthma. In studies with the mTOR inhibitor rapamycin, we have elucidated the stimulatory role of a mTOR-HIF-1α-VEGF axis in allergic response. Next, the mechanisms by which mTOR is activated to modulate this response have been evaluated. mTOR is known to be regulated by phosphoinositide 3-kinase (PI3K)/Akt or protein kinase C-delta (PKC δ) in various cell types. Consistent with these, our results have revealed that suppression of PKC δ by rottlerin leads to the inhibition of PI3K/Akt activity and the subsequent blockade of a mTOR-HIF-1α-VEGF module, thereby attenuating typical asthmatic attack in a murine model. Thus, the present data indicate that PKC δ is necessary for the modulation of the PI3K/Akt/mTOR signaling cascade, resulting in a tight regulation of HIF-1α activity and VEGF expression. In conclusion, PKC δ may represent a valuable target for innovative therapeutic treatment of allergic airway disease. PMID:24312355

  9. Regulatory role of PI3K-protein kinase B on the release of interleukin-1β in peritoneal macrophages from the ascites of cirrhotic patients

    PubMed Central

    Tapia-Abellán, A; Ruiz-Alcaraz, A J; Antón, G; Miras-López, M; Francés, R; Such, J; Martínez-Esparza, M; García-Peñarrubia, P

    2014-01-01

    Great effort has been paid to identify novel targets for pharmaceutical intervention to control inflammation associated with different diseases. We have studied the effect of signalling inhibitors in the secretion of the proinflammatory and profibrogenic cytokine interleukin (IL)-1β in monocyte-derived macrophages (M-DM) obtained from the ascites of cirrhotic patients and compared with those obtained from the blood of healthy donors. Peritoneal M-DM were isolated from non-infected ascites of cirrhotic patients and stimulated in vitro with lipopolysaccharide (LPS) and heat-killed Candida albicans in the presence or absence of inhibitors for c-Jun N-terminal kinase (JNK), mitogen-activated protein kinase kinase 1 (MEK1), p38 mitogen-activated protein kinase (MAPK) and phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K). The IL1B and CASP1 gene expression were evaluated by quantitative reverse transcription–polymerase chain reaction (qRT–PCR). The expression of IL-1β and caspase-1 were determined by Western blot. IL-1β was also assayed by enzyme-linked immunosorbent assay (ELISA) in cell culture supernatants. Results revealed that MEK1 and JNK inhibition significantly reduced the basal and stimulated IL-1β secretion, while the p38 MAPK inhibitor had no effect on IL-1β levels. On the contrary, inhibition of PI3K increased the secretion of IL-1β from stimulated M-DM. The activating effect of PI3K inhibitor on IL-1β release was mediated mainly by the enhancement of the intracellular IL-1β and caspase-1 content release to the extracellular medium and not by increasing the corresponding mRNA and protein expression levels. These data point towards the role of MEK1 and JNK inhibitors, in contrast to the PI3K-protein kinase B inhibitors, as potential therapeutic tools for pharmaceutical intervention to diminish hepatic damage by reducing the inflammatory response mediated by IL-1β associated with liver failure. PMID:25080058

  10. PI3K inhibitors for cancer therapy: what has been achieved so far?

    PubMed

    Wu, Peng; Liu, Tao; Hu, Yongzhou

    2009-01-01

    PI3K is a large duel lipid and protein kinase that catalyzes phosphorylation of the 3-hydroxyl position of phosphatidylinositides (PIs) and plays a crucial role in the cellular signaling network. Inhibition of the phosphatidylinositol 3-kinase (PI3K) signaling pathway is a newly identified strategy for the discovery and development of certain therapeutic agents. Among the various subtypes of PI3K, class IA PI3Kalpha has gained increasing attention as a promising drug target for the treatment of cancer due to its frequent mutations and amplifications in various human cancers. Here, we discuss the insights gained so far relevant to the development of PI3K inhibitors for the treatment of human cancers. Emphasis is on the structure-activity relationship of PI3K inhibitors which bear the most significant PI3Kalpha inhibitory activities. We also highlight PI3K inhibitors that are currently under clinical trials for cancers. PMID:19275602

  11. Phosphoinositide 3-Kinase (PI3K) Subunit p110δ Is Essential for Trophoblast Cell Differentiation and Placental Development in Mouse

    PubMed Central

    Hu, Xiwen; Li, Jiangchao; Zhang, Qianqian; Zheng, Lingyun; Wang, Guang; Zhang, Xiaohan; Zhang, Jingli; Gu, Quliang; Ye, Yuxiang; Guo, Sun-Wei; Yang, Xuesong; Wang, Lijing

    2016-01-01

    Maternal PI3K p110δ has been implicated in smaller litter sizes in mice, but its underlying mechanism remains unclear. The placenta is an indispensable chimeric organ that supports mammalian embryonic development. Using a mouse model of genetic inactivation of PI3K p110δ (p110δD910A/D910A), we show that fetuses carried by p110δD910A/D910A females were growth retarded and showed increased mortality in utero mainly during placentation. The placentas in p110δD910A/D910A females were anomalously anemic, exhibited thinner spongiotrophoblast layer and looser labyrinth zone, which indicate defective placental vasculogenesis. In addition, p110δ was detected in primary trophoblast giant cells (P-TGC) at early placentation. Maternal PI3K p110δ inactivation affected normal TGCs generation and expansion, impeded the branching of chorioallantoic placenta but enhanced the expression of matrix metalloproteinases (MMP-2, MMP-12). Poor vasculature support for the developing fetoplacental unit resulted in fetal death or gross growth retardation. These data, taken together, provide the first in vivo evidence that p110δ may play an important role in placental vascularization through manipulating trophoblast giant cell. PMID:27306493

  12. Pike. A nuclear gtpase that enhances PI3kinase activity and is regulated by protein 4.1N.

    PubMed

    Ye, K; Hurt, K J; Wu, F Y; Fang, M; Luo, H R; Hong, J J; Blackshaw, S; Ferris, C D; Snyder, S H

    2000-12-01

    While cytoplasmic PI3Kinase (PI3K) is well characterized, regulation of nuclear PI3K has been obscure. A novel protein, PIKE (PI3Kinase Enhancer), interacts with nuclear PI3K to stimulate its lipid kinase activity. PIKE encodes a 753 amino acid nuclear GTPase. Dominant-negative PIKE prevents the NGF enhancement of PI3K and upregulation of cyclin D1. NGF treatment also leads to PIKE interactions with 4.1N, which has translocated to the nucleus, fitting with the initial identification of PIKE based on its binding 4.1N in a yeast two-hybrid screen. Overexpression of 4.1N abolishes PIKE effects on PI3K. Activation of nuclear PI3K by PIKE is inhibited by the NGF-stimulated 4.1N translocation to the nucleus. Thus, PIKE physiologically modulates the activation by NGF of nuclear PI3K. PMID:11136977

  13. Involvement of phosphoinositide 3-kinase class IA (PI3K 110α) and NADPH oxidase 1 (NOX1) in regulation of vascular differentiation induced by vascular endothelial growth factor (VEGF) in mouse embryonic stem cells.

    PubMed

    Bekhite, Mohamed M; Müller, Veronika; Tröger, Sebastian H; Müller, Jörg P; Figulla, Hans-Reiner; Sauer, Heinrich; Wartenberg, Maria

    2016-04-01

    The impact of reactive oxygen species and phosphoinositide 3-kinase (PI3K) in differentiating embryonic stem (ES) cells is largely unknown. Here, we show that the silencing of the PI3K catalytic subunit p110α and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 1 (NOX1) by short hairpin RNA or pharmacological inhibition of NOX and ras-related C3 botulinum toxin substrate 1 (Rac1) abolishes superoxide production by vascular endothelial growth factor (VEGF) in mouse ES cells and in ES-cell-derived fetal liver kinase-1(+) (Flk-1(+)) vascular progenitor cells, whereas the mitochondrial complex I inhibitor rotenone does not have an effect. Silencing p110α or inhibiting Rac1 arrests vasculogenesis at initial stages in embryoid bodies, even under VEGF treatment, as indicated by platelet endothelial cell adhesion molecule-1 (PECAM-1)-positive areas and branching points. In the absence of p110α, tube-like structure formation on matrigel and cell migration of Flk-1(+) cells in scratch migration assays are totally impaired. Silencing NOX1 causes a reduction in PECAM-1-positive areas, branching points, cell migration and tube length upon VEGF treatment, despite the expression of vascular differentiation markers. Interestingly, silencing p110α but not NOX1 inhibits the activation of Rac1, Ras homologue gene family member A (RhoA) and Akt leading to the abrogation of VEGF-induced lamellipodia structure formation. Thus, our data demonstrate that the PI3K p110α-Akt/Rac1 and NOX1 signalling pathways play a pivotal role in VEGF-induced vascular differentiation and cell migration. Rac1, RhoA and Akt phosphorylation occur downstream of PI3K and upstream of NOX1 underscoring a role of PI3K p110α in the regulation of cell polarity and migration. PMID:26553657

  14. The phosphoinositide-3-kinase (PI3K)-delta and gamma inhibitor, IPI-145 (Duvelisib), overcomes signals from the PI3K/AKT/S6 pathway and promotes apoptosis in CLL.

    PubMed

    Balakrishnan, K; Peluso, M; Fu, M; Rosin, N Y; Burger, J A; Wierda, W G; Keating, M J; Faia, K; O'Brien, S; Kutok, J L; Gandhi, V

    2015-09-01

    The functional relevance of the B-cell receptor (BCR) and the evolution of protein kinases as therapeutic targets have recently shifted the paradigm for treatment of B-cell malignancies. Inhibition of p110δ with idelalisib has shown clinical activity in chronic lymphocytic leukemia (CLL). The dynamic interplay of isoforms p110δ and p110γ in leukocytes support the hypothesis that dual blockade may provide a therapeutic benefit. IPI-145, an oral inhibitor of p110δ and p110γ isoforms, sensitizes BCR-stimulated and/or stromal co-cultured primary CLL cells to apoptosis (median 20%, n=57; P<0.0001) including samples with poor prognostic markers, unmutated IgVH (n=28) and prior treatment (n=15; P<0.0001). IPI-145 potently inhibits the CD40L/IL-2/IL-10 induced proliferation of CLL cells with an IC50 in sub-nanomolar range. A corresponding dose-responsive inhibition of pAKT(Ser473) is observed with an IC50 of 0.36 nM. IPI-145 diminishes the BCR-induced chemokines CCL3 and CCL4 secretion to 17% and 37%, respectively. Pre-treatment with 1 μM IPI-145 inhibits the chemotaxis toward CXCL12; reduces pseudoemperipolesis to median 50%, inferring its ability to interfere with homing capabilities of CLL cells. BCR-activated signaling proteins AKT(Ser473), BAD(Ser112), ERK(Thr202/Tyr204) and S6(Ser235/236) are mitigated by IPI-145. Importantly, for clinical development in hematological malignancies, IPI-145 is selective to CLL B cells, sparing normal B- and T-lymphocytes. PMID:25917267

  15. Synergistic Therapeutic Effect of Cisplatin and Phosphatidylinositol 3-Kinase (PI3K) Inhibitors in Cancer Growth and Metastasis of Brca1 Mutant Tumors*

    PubMed Central

    Vassilopoulos, Athanassios; Xiao, Cuiying; Chisholm, Cristine; Chen, Weiping; Xu, Xiaoling; Lahusen, Tyler J.; Bewley, Carole; Deng, Chu-Xia

    2014-01-01

    Drug resistance and cancer metastasis are two major problems in cancer research. During a course of therapeutic treatment in Brca1-associated tumors, we found that breast cancer stem cells (CSCs) exhibit an intrinsic ability to metastasize and acquire drug resistance through distinct signaling pathways. Microarray analysis indicated that the cytoskeletal remodeling pathway was differentially regulated in CSCs, and this was further evidenced by the inhibitory role of reagents that impair this pathway in the motility of cancer cells. We showed that cisplatin treatment, although initially inhibiting cancer growth, preventing metastasis through blocking cytoskeletal remodeling, and retarding CSC motility, eventually led to drug resistance associated with a marked increase in the number of CSCs. This event was at least partially attributed to the activation of PI3K signaling, and it could be significantly inhibited by co-treatment with rapamycin. These results provide strong evidence that cytoskeletal rearrangement and PI3K/AKT signaling play distinct roles in mediating CSC mobility and viability, respectively, and blocking both pathways synergistically may inhibit primary and metastatic cancer growth. PMID:25006250

  16. PI3K/AKT signaling modulates transcriptional expression of EWS/FLI1 through specificity protein 1

    PubMed Central

    Giorgi, Chiara; Boro, Aleksandar; Rechfeld, Florian; Lopez-Garcia, Laura A.; Gierisch, Maria E.; Schäfer, Beat W.; Niggli, Felix K.

    2015-01-01

    Ewing sarcoma (ES) is the second most frequent bone cancer in childhood and is characterized by the presence of the balanced translocation t(11;22)(q24;q12) in more than 85% of cases, generating a dysregulated transcription factor EWS/FLI1. This fusion protein is an essential oncogenic component of ES development which is necessary for tumor cell maintenance and represents an attractive therapeutic target. To search for modulators of EWS/FLI1 activity we screened a library of 153 targeted compounds and identified inhibitors of the PI3K pathway to directly modulate EWS/FLI1 transcription. Surprisingly, treatment of four different ES cell lines with BEZ235 resulted in down regulation of EWS/FLI1 mRNA and protein by ∼50% with subsequent modulation of target gene expression. Analysis of the EWS/FLI1 promoter region (−2239/+67) using various deletion constructs identified two 14bp minimal elements as being important for EWS/FLI1 transcription. We identified SP1 as modulator of EWS/FLI1 gene expression and demonstrated direct binding to one of these regions in the EWS/FLI1 promoter by EMSA and ChIP experiments. These results provide the first insights on the transcriptional regulation of EWS/FLI1, an area that has not been investigated so far, and offer an additional molecular explanation for the known sensitivity of ES cell lines to PI3K inhibition. PMID:26336820

  17. Sevoflurane postconditioning reduces myocardial reperfusion injury in rat isolated hearts via activation of PI3K/Akt signaling and modulation of Bcl-2 family proteins*

    PubMed Central

    Yu, Li-na; Yu, Jing; Zhang, Feng-jiang; Yang, Mei-juan; Ding, Ting-ting; Wang, Jun-kuan; He, Wei; Fang, Tao; Chen, Gang; Yan, Min

    2010-01-01

    Sevoflurane postconditioning reduces myocardial infarct size. The objective of this study was to examine the role of the phosphatidylinositol-3-kinase (PI3K)/Akt pathway in anesthetic postconditioning and to determine whether PI3K/Akt signaling modulates the expression of pro- and antiapoptotic proteins in sevoflurane postconditioning. Isolated and perfused rat hearts were prepared first, and then randomly assigned to the following groups: Sham-operation (Sham), ischemia/reperfusion (Con), sevoflurane postconditioning (SPC), Sham plus 100 nmol/L wortmannin (Sham+Wort), Con+Wort, SPC+Wort, and Con+dimethylsulphoxide (DMSO). Sevoflurane postconditioning was induced by administration of sevoflurane (2.5%, v/v) for 10 min from the onset of reperfusion. Left ventricular developed pressure (LVDP), left ventricular end-diastolic pressure (LVEDP), maximum increase in rate of LVDP (+dP/dt), maximum decrease in rate of LVDP (−dP/dt), heart rate (HR), and coronary flow (CF) were measured at baseline, R30 min (30 min of reperfusion), R60 min, R90 min, and R120 min. Creatine kinase (CK) and lactate dehydrogenase (LDH) were measured after 5 min and 10 min reperfusion. Infarct size was determined by triphenyltetrazolium chloride staining at the end of reperfusion. Total Akt and phosphorylated Akt (phospho-Akt), Bax, Bcl-2, Bad, and phospho-Bad were determined by Western blot analysis. Analysis of variance (ANOVA) and Student-Newman-Keuls’ test were used to investigate the significance of differences between groups. The LVDP, ±dP/dt, and CF were higher and LVEDP was lower in the SPC group than in the Con group at all points of reperfusion (P<0.05). The SPC group had significantly reduced CK and LDH release and decreased infarct size compared with the Con group [(22.9±8)% vs. (42.4±9.4)%, respectively; P<0.05]. The SPC group also had increased the expression of phosphor-Akt, Bcl-2, and phospho-Bad, and decreased the expression of Bax. Wortmannin abolished the

  18. The hepatitis B virus X protein promotes pancreatic cancer through modulation of the PI3K/AKT signaling pathway.

    PubMed

    Chen, Yiwen; Bai, Xueli; Zhang, Qi; Wen, Liang; Su, Wei; Fu, Qihan; Sun, Xu; Lou, Yu; Yang, Jiaqi; Zhang, Jingying; Chen, Qi; Wang, Jianxin; Liang, Tingbo

    2016-09-28

    Pancreatic ductal adenocarcinoma (PDAC) is an aggressive and lethal cancer, with poor outcomes. Infection with the hepatitis B virus (HBV) may be associated as a worse prognosis for PDAC patients; however, the mechanisms involved in this process are unclear. We evaluated whether HBV infection leads to PDAC with a more aggressive phenotype, and attempted to elucidate the mechanisms involved. Clinicopathological data and outcomes from 64 patients with PDAC were collected and compared between serum HBsAg+ and HBsAg- patients. Furthermore, we examined the effects of the HBV X protein (HBx) on proliferation and migration of the pancreatic cancer cell lines PANC-1 and SW1990. We investigated expression changes of over 500 proteins by protein array analysis and identified several HBV- and PDAC-related candidates, which were further validated by immunoblotting and enzyme-linked immunosorbent assay. No differences in clinicopathological features were observed between HBsAg+ and HBsAg- patients; however, HBsAg+ patients had a shorter median survival time (8 vs. 13 months), although the differences were not significant. HBV DNA was detected in clinical specimens, even in PDAC patients considered "HBV-free", potentially due to occult infection. HBx expression significantly enhanced cellular proliferation and migration and induced an epithelial-mesenchymal transition phenotype. Expression of ErbB4 and TGF-α was increased in parallel with HBx expression, and several downstream pathways including PI3K/AKT, MAPK, and ERK were upregulated. Inhibition of the PI3K/AKT pathway reversed the effects of HBx in PDAC cell lines. HBx may, therefore, contribute to the progression of PDAC through modulation of these pathways. PMID:27339327

  19. Monomeric C-reactive protein and Notch-3 co-operatively increase angiogenesis through PI3K signalling pathway.

    PubMed

    Boras, Emhamed; Slevin, Mark; Alexander, M Yvonne; Aljohi, Ali; Gilmore, William; Ashworth, Jason; Krupinski, Jerzy; Potempa, Lawrence A; Al Abdulkareem, Ibrahim; Elobeid, Adila; Matou-Nasri, Sabine

    2014-10-01

    C-reactive protein (CRP) is the most acute-phase reactant serum protein of inflammation and a strong predictor of cardiovascular disease. Its expression is associated with atherosclerotic plaque instability and the formation of immature micro-vessels. We have previously shown that CRP upregulates endothelial-derived Notch-3, a key receptor involved in vascular development, remodelling and maturation. In this study, we investigated the links between the bioactive monomeric CRP (mCRP) and Notch-3 signalling in angiogenesis. We used in vitro (cell counting, wound-healing and tubulogenesis assays) and in vivo (chorioallantoic membrane) angiogenic assays and Western blotting to study the angiogenic signalling pathways induced by mCRP and Notch-3 activator chimera protein (Notch-3/Fc). Our results showed an additive effect on angiogenesis of mCRP stimulatory effect combined with Notch-3/Fc promoting bovine aortic endothelial cell (BAEC) proliferation, migration, tube formation in Matrigel(TM) with up-regulation of phospho-Akt expression. The pharmacological blockade of PI3K/Akt survival pathway by LY294002 fully inhibited in vitro and in vivo angiogenesis induced by mCRP/Notch-3/Fc combination while blocking Notch signalling by gamma-secretase inhibitor (DAPT) partially inhibited mCRP/Notch-3/Fc-induced angiogenesis. Using a BAEC vascular smooth muscle cell co-culture sprouting angiogenesis assay and transmission electron microscopy, we showed that activation of both mCRP and Notch-3 signalling induced the formation of thicker sprouts which were shown later by Western blotting to be associated with an up-regulation of N-cadherin expression and a down-regulation of VE-cadherin expression. Thus, mCRP combined with Notch-3 activator promote angiogenesis through the PI3K/Akt pathway and their therapeutic combination has potential to promote and stabilize vessel formation whilst reducing the risk of haemorrhage from unstable plaques. PMID:24972386

  20. First-in-human Phase I study of Pictilisib (GDC-0941), a potent pan-class I phosphatidylinositol-3-kinase (PI3K) inhibitor, in patients with advanced solid tumors

    PubMed Central

    Baird, Richard; Kristeleit, Rebecca; Shah, Krunal; Moreno, Victor; Clarke, Paul A.; Raynaud, Florence I.; Levy, Gallia; Ware, Joseph A; Mazina, Kathryn; Lin, Ray; Wu, Jenny; Fredrickson, Jill; Spoerke, Jill M; Lackner, Mark R; Yan, Yibing; Friedman, Lori S.; Kaye, Stan B.; Derynck, Mika K.; Workman, Paul; de Bono, Johann S.

    2014-01-01

    Purpose This first-in-human dose-escalation trial evaluated the safety, tolerability, maximal tolerated dose (MTD), dose limiting toxicities (DLTs), pharmacokinetics, pharmacodynamics and preliminary clinical activity of pictilisib (GDC-0941), an oral, potent and selective inhibitor of the Class I phosphatidylinositol-3-kinases (PI3K). Patients and Methods Sixty patients with solid tumors received pictilisib at 14 dose levels from 15 to 450mg once-daily, initially on days 1-21 every 28 days and later, utilizing continuous dosing for selected dose levels. Pharmacodynamic studies incorporated 18F-FDG-PET, and assessment of phosphorylated AKT and S6 ribosomal protein in platelet-rich plasma and tumor tissue. Results Pictilisib was well-tolerated. The most common toxicities were grade 1-2 nausea, rash and fatigue while the DLT was grade 3 maculopapular rash (450mg, 2 of 3 patients; 330mg, 1 of 7 patients). The pharmacokinetic profile was dose-proportional and supported once-daily dosing. Levels of phosphorylated serine-473 AKT were suppressed >90% in platelet rich plasma at 3 hours post-dose at the MTD and in tumor at pictilisib doses associated with AUC >20uM.hr. Significant increase in plasma insulin and glucose levels, and >25% decrease in 18F-FDG uptake by PET in 7 of 32 evaluable patients confirmed target modulation. A patient with V600E BRAF mutant melanoma and another with platinum-refractory epithelial ovarian cancer exhibiting PTEN loss and PIK3CA amplification demonstrated partial response by RECIST and GCIG-CA125 criteria, respectively. Conclusion Pictilisib was safely administered with a dose-proportional pharmacokinetic profile, on-target pharmacodynamic activity at dose levels ≥100mg and signs of antitumor activity. The recommended Phase II dose was continuous dosing at 330mg once-daily. PMID:25370471

  1. A Phase Ib Study of BEZ235, a Dual Inhibitor of Phosphatidylinositol 3-Kinase (PI3K) and Mammalian Target of Rapamycin (mTOR), in Patients With Advanced Renal Cell Carcinoma

    PubMed Central

    Carlo, Maria I.; Molina, Ana M.; Lakhman, Yulia; Patil, Sujata; Woo, Kaitlin; DeLuca, John; Lee, Chung-Han; Hsieh, James J.; Feldman, Darren R.; Motzer, Robert J.

    2016-01-01

    Lessons Learned Our results highlight additional toxicities of dual PI3K/mTOR inhibition in the clinical setting that were unforeseen from preclinical models. Because of toxicity and lack of efficacy, BEZ235 should not be further developed in the current formulation for patients with renal cell carcinoma. Background. Allosteric inhibitors of the mammalian target of rapamycin complex 1 (mTORC1) are approved for advanced renal cell carcinoma (RCC). Preclinical models have suggested that dual inhibition of phosphatidylinositol 3-kinase (PI3K) and mTOR kinase may establish superior anticancer effect. We aimed to establish safety for BEZ235, a potent inhibitor of both PI3K and mTOR, in advanced RCC. Methods. Patients with advanced RCC who had previously failed standard therapy received escalating doses of BEZ235 in sachet formulation twice daily until progression or unacceptable toxicity. Primary endpoints were to identify the maximally tolerated dose (MTD) and to determine the recommended dose for the phase II study. Results. The study was terminated early because of high incidence of dose-limiting toxicities (DLTs) across all dose levels tested. Ten patients were treated with BEZ235—six with clear cell and four with non-clear cell subtypes. Five of these patients suffered DLTs: 2 of 2 patients in the original 400 mg b.i.d. cohort, 1 of 6 in the 200 mg b.i.d. cohort, and 2 of 2 in the 300 mg b.i.d. cohort. DLTs included fatigue, rash, nausea and vomiting, diarrhea, mucositis, anorexia, and dysgeusia. Five patients were evaluable for response: Two had stable disease as best response, and three had progressive disease. Conclusion. BEZ235 twice daily resulted in significant toxicity without objective responses; further development of this compound will not be pursued in this disease. PMID:27286790

  2. Colon Cancer Tumorigenesis Initiated by the H1047R Mutant PI3K.

    PubMed

    Yueh, Alexander E; Payne, Susan N; Leystra, Alyssa A; Van De Hey, Dana R; Foley, Tyler M; Pasch, Cheri A; Clipson, Linda; Matkowskyj, Kristina A; Deming, Dustin A

    2016-01-01

    The phosphoinositide 3-kinase (PI3K) signaling pathway is critical for multiple important cellular functions, and is one of the most commonly altered pathways in human cancers. We previously developed a mouse model in which colon cancers were initiated by a dominant active PI3K p110-p85 fusion protein. In that model, well-differentiated mucinous adenocarcinomas developed within the colon and initiated through a non-canonical mechanism that is not dependent on WNT signaling. To assess the potential relevance of PI3K mutations in human cancers, we sought to determine if one of the common mutations in the human disease could also initiate similar colon cancers. Mice were generated expressing the Pik3caH1047R mutation, the analog of one of three human hotspot mutations in this gene. Mice expressing a constitutively active PI3K, as a result of this mutation, develop invasive adenocarcinomas strikingly similar to invasive adenocarcinomas found in human colon cancers. These tumors form without a polypoid intermediary and also lack nuclear CTNNB1 (β-catenin), indicating a non-canonical mechanism of tumor initiation mediated by the PI3K pathway. These cancers are sensitive to dual PI3K/mTOR inhibition indicating dependence on the PI3K pathway. The tumor tissue remaining after treatment demonstrated reduction in cellular proliferation and inhibition of PI3K signaling. PMID:26863299

  3. Colon Cancer Tumorigenesis Initiated by the H1047R Mutant PI3K

    PubMed Central

    Yueh, Alexander E.; Payne, Susan N.; Leystra, Alyssa A.; Van De Hey, Dana R.; Foley, Tyler M.; Pasch, Cheri A.; Clipson, Linda; Matkowskyj, Kristina A.; Deming, Dustin A.

    2016-01-01

    The phosphoinositide 3-kinase (PI3K) signaling pathway is critical for multiple important cellular functions, and is one of the most commonly altered pathways in human cancers. We previously developed a mouse model in which colon cancers were initiated by a dominant active PI3K p110-p85 fusion protein. In that model, well-differentiated mucinous adenocarcinomas developed within the colon and initiated through a non-canonical mechanism that is not dependent on WNT signaling. To assess the potential relevance of PI3K mutations in human cancers, we sought to determine if one of the common mutations in the human disease could also initiate similar colon cancers. Mice were generated expressing the Pik3caH1047R mutation, the analog of one of three human hotspot mutations in this gene. Mice expressing a constitutively active PI3K, as a result of this mutation, develop invasive adenocarcinomas strikingly similar to invasive adenocarcinomas found in human colon cancers. These tumors form without a polypoid intermediary and also lack nuclear CTNNB1 (β-catenin), indicating a non-canonical mechanism of tumor initiation mediated by the PI3K pathway. These cancers are sensitive to dual PI3K/mTOR inhibition indicating dependence on the PI3K pathway. The tumor tissue remaining after treatment demonstrated reduction in cellular proliferation and inhibition of PI3K signaling. PMID:26863299

  4. iTRAQ Protein Profile Differential Analysis of Dormant and Germinated Grassbur Twin Seeds Reveals that Ribosomal Synthesis and Carbohydrate Metabolism Promote Germination Possibly Through the PI3K Pathway.

    PubMed

    Zhang, Guo-Liang; Zhu, Yue; Fu, Wei-Dong; Wang, Peng; Zhang, Rui-Hai; Zhang, Yan-Lei; Song, Zhen; Xia, Gui-Xian; Wu, Jia-He

    2016-06-01

    Grassbur is a destructive and invasive weed in pastures, and its burs can cause gastric damage to animals. The strong adaptability and reproductive potential of grassbur are partly due to a unique germination mechanism whereby twin seeds develop in a single bur: one seed germinates, but the other remains dormant. To investigate the molecular mechanism of seed germination in twin seeds, we used isobaric tags for relative and absolute quantitation (iTRAQ) to perform a dynamic proteomic analysis of germination and dormancy. A total of 1,984 proteins were identified, 161 of which were considered to be differentially accumulated. The differentially accumulated proteins comprised 102 up-regulated and 59 down-regulated proteins. These proteins were grouped into seven functional categories, ribosomal proteins being the predominant group. The authenticity and accuracy of the results were confirmed by enzyme-linked immunosorbent assay (ELISA) and quantitative real-time reverse transcription-PCR (qPCR). A dynamic proteomic analysis revealed that ribosome synthesis and carbohydrate metabolism affect seed germination possibly through the phosphoinositide 3-kinase (PI3K) pathway. As the PI3K pathway is generally activated by insulin, analyses of seeds treated with exogenous insulin by qPCR, ELISA and iTRAQ confirmed that the PI3K pathway can be activated, which suppresses dormancy and promotes germination in twin grassbur seeds. Together, these results show that the PI3K pathway may play roles in stimulating seed germination in grassbur by modulating ribosomal synthesis and carbohydrate metabolism. PMID:27296714

  5. Adaptive Mitochondrial Reprogramming and Resistance to PI3K Therapy

    PubMed Central

    Ghosh, Jagadish C.; Siegelin, Markus D.; Vaira, Valentina; Faversani, Alice; Tavecchio, Michele; Chae, Young Chan; Lisanti, Sofia; Rampini, Paolo; Giroda, Massimo; Caino, M. Cecilia; Seo, Jae Ho; Kossenkov, Andrew V.; Michalek, Ryan D.; Schultz, David C.; Bosari, Silvano; Languino, Lucia R.

    2015-01-01

    Background: Small molecule inhibitors of phosphatidylinositol-3 kinase (PI3K) have been developed as molecular therapy for cancer, but their efficacy in the clinic is modest, hampered by resistance mechanisms. Methods: We studied the effect of PI3K therapy in patient-derived tumor organotypic cultures (from five patient samples), three glioblastoma (GBM) tumor cell lines, and an intracranial model of glioblastoma in immunocompromised mice (n = 4–5 mice per group). Mechanisms of therapy-induced tumor reprogramming were investigated in a global metabolomics screening, analysis of mitochondrial bioenergetics and cell death, and modulation of protein phosphorylation. A high-throughput drug screening was used to identify novel preclinical combination therapies with PI3K inhibitors, and combination synergy experiments were performed. All statistical methods were two-sided. Results: PI3K therapy induces global metabolic reprogramming in tumors and promotes the recruitment of an active pool of the Ser/Thr kinase, Akt2 to mitochondria. In turn, mitochondrial Akt2 phosphorylates Ser31 in cyclophilin D (CypD), a regulator of organelle functions. Akt2-phosphorylated CypD supports mitochondrial bioenergetics and opposes tumor cell death, conferring resistance to PI3K therapy. The combination of a small-molecule antagonist of CypD protein folding currently in preclinical development, Gamitrinib, plus PI3K inhibitors (PI3Ki) reverses this adaptive response, produces synergistic anticancer activity by inducing mitochondrial apoptosis, and extends animal survival in a GBM model (vehicle: median survival = 28.5 days; Gamitrinib+PI3Ki: median survival = 40 days, P = .003), compared with single-agent treatment (PI3Ki: median survival = 32 days, P = .02; Gamitrinib: median survival = 35 days, P = .008 by two-sided unpaired t test). Conclusions: Small-molecule PI3K antagonists promote drug resistance by repurposing mitochondrial functions in bioenergetics and cell survival. Novel

  6. IL13 Receptor α2 Signaling Requires a Scaffold Protein, FAM120A, to Activate the FAK and PI3K Pathways in Colon Cancer Metastasis.

    PubMed

    Bartolomé, Rubén A; García-Palmero, Irene; Torres, Sofía; López-Lucendo, María; Balyasnikova, Irina V; Casal, J Ignacio

    2015-06-15

    IL13 signaling through its receptor IL13Rα2 plays a critical role in colon cancer invasion and liver metastasis, but the mechanistic features of this process are obscure. In this study, we identified a scaffold protein, FAM120A (C9ORF10), as a signaling partner in this process. FAM120A was overexpressed in human colon cancer cell lines and 55% of human colon cancer specimens. IL13Rα2-FAM120A coimmunoprecipitation experiments revealed further signaling network associations that could regulate the activity of IL13Rα2, including FAK, SRC, PI3K, G-protein-coupled receptors, and TRAIL receptors. In addition, FAM120A associated with kinesins and motor proteins involved in cargo movement along microtubules. IL13Rα2-triggered activation of the FAK and PI3K/AKT/mTOR pathways was mediated by FAM120A, which also recruited PI3K and functioned as a scaffold protein to enable phosphorylation and activation of PI3K by Src family kinases. FAM120A silencing abolished IL13-induced cell migration, invasion, and survival. Finally, antibody blockade of IL13Rα2 or FAM120A silencing precluded liver colonization in nude mice or metastasis. In conclusion, we identified FAM120A in the IL13/IL13Rα2 signaling pathway as a key mediator of invasion and liver metastasis in colon cancer. PMID:25896327

  7. Pik3ip1 modulates cardiac hypertrophy by inhibiting PI3K pathway.

    PubMed

    Song, Hong Ki; Kim, Jiyeon; Lee, Jong Sub; Nho, Kyoung Jin; Jeong, Hae Chang; Kim, Jihwa; Ahn, Youngkeun; Park, Woo Jin; Kim, Do Han

    2015-01-01

    Cardiac hypertrophy is an adaptive response to various physiological and pathological stimuli. Phosphoinositide-3 kinase (PI3K) is a highly conserved lipid kinase involved in physiological cardiac hypertrophy (PHH). PI3K interacting protein1 (Pik3ip1) shares homology with the p85 regulatory subunit of PI3K and is known to interact with the p110 catalytic subunit of PI3K, leading to attenuation of PI3K activity in liver and immune cells. However, the role of Pik3ip1 in the heart remains unknown. In the present study, the effects of Pik3ip1 on cardiac hypertrophy were examined. We found that the expression level of Pik3ip1 was markedly higher in cardiomyocytes than in fibroblasts. The interaction of Pik3ip1 with the p110a subunit of PI3K in the heart was identified by immunoprecipitation using neonatal rat cardiomyocytes (NRCM). Approximately 35% knockdown of Pik3ip1 was sufficient to induce myocardial hypertrophy. Pik3ip1 deficiency was shown to lead to activation of PI3K/protein kinase B (AKT)/ mammalian target of rapamycin (mTOR) signaling pathway, increasing protein synthesis and cell size. However, adenovirus-mediated overexpression of Pik3ip1 attenuated PI3K-mediated cardiac hypertrophy. Pik3ip1 was upregulated by PHH due to swimming training, but not by pathological cardiac hypertrophy (PAH) due to pressure-overload, suggesting that Pik3ip1 plays a compensatory negative role for PHH. Collectively, our results elucidate the mechanisms for the roles of Pik3ip1 in PI3K/AKT signaling pathway. PMID:25826393

  8. Analysis of PI3K pathway components in human cancers

    PubMed Central

    DARAGMEH, JAMILA; BARRIAH, WASEIM; SAAD, BASHAR; ZAID, HILAL

    2016-01-01

    Recent advances in genomics, proteomics, cell biology and biochemistry of tumors have revealed new pathways that are aberrantly activated in numerous cancer types. However, the enormous amount of data available in this field may mislead scientists in focused research. As cancer cell growth and progression is often dependent upon the phosphoinositide 3-kinase (PI3K)/AKT pathway, there has been extensive research into the proteins implicated in the PI3K pathway. Using data available in the Human Protein Atlas database, the current study investigated the expression of 25 key proteins that are known to be involved with PI3K pathway activation in a distinct group of 20 cancer types. These proteins are AKTIP, ARP1, BAD, GSK3A, GSK3B, MERTK-1, PIK3CA, PRR5, PSTPIP2, PTEN, FOX1, RHEB, RPS6KB1, TSC1, TP53, BCL2, CCND1, WFIKKN2, CREBBP, caspase-9, PTK2, EGFR, FAS, CDKN1A and XIAP. The analysis revealed pronounced expression of specific proteins in distinct cancer tissues, which may have the potential to serve as targets for treatments and provide insights into the molecular basis of cancer. PMID:27073576

  9. α-Lipoic Acids Promote the Protein Synthesis of C2C12 Myotubes by the TLR2/PI3K Signaling Pathway.

    PubMed

    Jing, Yuanyuan; Cai, Xingcai; Xu, Yaqiong; Zhu, Canjun; Wang, Lina; Wang, Songbo; Zhu, Xiaotong; Gao, Ping; Zhang, Yongliang; Jiang, Qingyan; Shu, Gang

    2016-03-01

    Skeletal muscle protein turnover is regulated by endocrine hormones, nutrients, and inflammation. α-Lipoic acid (ALA) plays an important role in energy homeostasis. Therefore, the aim of this study was to investigate the effects of ALA on protein synthesis in skeletal muscles and reveal the underlying mechanism. ALA (25 μM) significantly increased the protein synthesis and phosphorylation of Akt, mTOR, and S6 in C2C12 myotubes with attenuated phosphorylation of AMPK, Ikkα/β, and eIF2α. Intraperitoneal injection of 50 mg/kg ALA also produced the same results in mouse gastrocnemius. Both the PI3K (LY294002) and mTOR (rapamycin) inhibitors abolished the effects of ALA on protein synthesis in the C2C12 myotubes. However, AICAR (AMPK agonist) failed to block the activation of mTOR and S6 by ALA. ALA increased TLR2 and MyD88 mRNA expression in the C2C12 myotubes. TLR2 knockdown by siRNA almost eliminated the effects of ALA on protein synthesis and the Akt/mTOR pathway in the C2C12 myotubes. Immunoprecipitation data showed that ALA enhanced the p85 subunit of PI3K binding to MyD88. These findings indicate that ALA induces protein synthesis and the PI3K/Akt signaling pathway by TLR2. PMID:26855124

  10. Abnormal Protein Glycosylation and Activated PI3K/Akt/mTOR Pathway: Role in Bladder Cancer Prognosis and Targeted Therapeutics

    PubMed Central

    Lima, Luís; Peixoto, Andreia; Fernandes, Elisabete; Neves, Diogo; Neves, Manuel; Gaiteiro, Cristiana; Tavares, Ana; Gil da Costa, Rui M.; Cruz, Ricardo; Amaro, Teresina; Oliveira, Paula A.; Ferreira, José Alexandre; Santos, Lúcio L.

    2015-01-01

    Muscle invasive bladder cancer (MIBC, stage ≥T2) is generally associated with poor prognosis, constituting the second most common cause of death among genitourinary tumours. Due to high molecular heterogeneity significant variations in the natural history and disease outcome have been observed. This has also delayed the introduction of personalized therapeutics, making advanced stage bladder cancer almost an orphan disease in terms of treatment. Altered protein glycosylation translated by the expression of the sialyl-Tn antigen (STn) and its precursor Tn as well as the activation of the PI3K/Akt/mTOR pathway are cancer-associated events that may hold potential for patient stratification and guided therapy. Therefore, a retrospective design, 96 bladder tumours of different stages (Ta, T1-T4) was screened for STn and phosphorylated forms of Akt (pAkt), mTOR (pmTOR), S6 (pS6) and PTEN, related with the activation of the PI3K/Akt/mTOR pathway. In our series the expression of Tn was residual and was not linked to stage or outcome, while STn was statically higher in MIBC when compared to non-muscle invasive tumours (p = 0.001) and associated decreased cancer-specific survival (log rank p = 0.024). Conversely, PI3K/Akt/mTOR pathway intermediates showed an equal distribution between non-muscle invasive bladder cancer (NMIBC) and MIBC and did not associate with cancer-specif survival (CSS) in any of these groups. However, the overexpression of pAKT, pmTOR and/or pS6 allowed discriminating STn-positive advanced stage bladder tumours facing worst CSS (p = 0.027). Furthermore, multivariate Cox regression analysis revealed that overexpression of PI3K/Akt/mTOR pathway proteins in STn+ MIBC was independently associated with approximately 6-fold risk of death by cancer (p = 0.039). Mice bearing advanced stage chemically-induced bladder tumours mimicking the histological and molecular nature of human tumours were then administrated with mTOR-pathway inhibitor sirolimus (rapamycin

  11. Mice Expressing Activated PI3K Rapidly Develop Advanced Colon Cancer

    PubMed Central

    Leystra, Alyssa A.; Deming, Dustin A.; Zahm, Christopher D.; Farhoud, Mohammed; Paul Olson, Terrah J.; Hadac, Jamie N.; Nettekoven, Laura A.; Albrecht, Dawn M.; Clipson, Linda; Sullivan, Ruth; Washington, Mary Kay; Torrealba, Jose R.; Weichert, Jamey P.; Halberg, Richard B.

    2012-01-01

    Aberrations in the phosphatidylinositide-3-kinase (PI3K) signaling pathway play a key role in the pathogenesis of numerous cancers by altering cellular growth, metabolism, proliferation, and apoptosis (1). Mutations in the catalytic domain of PI3K that generate a dominantly active kinase are commonly found in human colorectal cancers and have been thought to drive tumor progression, but not initiation (2). However, the effects of constitutively activated PI3K upon the intestinal mucosa have not been previously studied in animal models. Here, we demonstrate that the expression of a dominantly active form of the PI3K protein in the mouse intestine results in hyperplasia and advanced neoplasia. Mice expressing constitutively active PI3K in the epithelial cells of the distal small bowel and colon rapidly developed invasive adenocarcinomas in the colon that spread into the mesentery and adjacent organs. The histological characteristics of these tumors were strikingly similar to invasive mucinous colon cancers in humans. Interestingly, these tumors formed without a benign polypoid intermediary, consistent with the lack of aberrant WNT signaling observed. Together, our findings indicate a non-canonical mechanism of colon tumor initiation that is mediated through activation of PI3K. This unique model has the potential to further our understanding of human disease and facilitate the development of therapeutics through pharmacologic screening and biomarker identification. PMID:22525701

  12. Signaling through the Phosphatidylinositol 3-Kinase (PI3K)/Mammalian Target of Rapamycin (mTOR) Axis Is Responsible for Aerobic Glycolysis mediated by Glucose Transporter in Epidermal Growth Factor Receptor (EGFR)-mutated Lung Adenocarcinoma*

    PubMed Central

    Makinoshima, Hideki; Takita, Masahiro; Saruwatari, Koichi; Umemura, Shigeki; Obata, Yuuki; Ishii, Genichiro; Matsumoto, Shingo; Sugiyama, Eri; Ochiai, Atsushi; Abe, Ryo; Goto, Koichi; Esumi, Hiroyasu; Tsuchihara, Katsuya

    2015-01-01

    Oncogenic epidermal growth factor receptor (EGFR) signaling plays an important role in regulating global metabolic pathways, including aerobic glycolysis, the pentose phosphate pathway (PPP), and pyrimidine biosynthesis. However, the molecular mechanism by which EGFR signaling regulates cancer cell metabolism is still unclear. To elucidate how EGFR signaling is linked to metabolic activity, we investigated the involvement of the RAS/MEK/ERK and PI3K/AKT/mammalian target of rapamycin (mTOR) pathways on metabolic alteration in lung adenocarcinoma (LAD) cell lines with activating EGFR mutations. Although MEK inhibition did not alter lactate production and the extracellular acidification rate, PI3K/mTOR inhibitors significantly suppressed glycolysis in EGFR-mutant LAD cells. Moreover, a comprehensive metabolomics analysis revealed that the levels of glucose 6-phosphate and 6-phosphogluconate as early metabolites in glycolysis and PPP were decreased after inhibition of the PI3K/AKT/mTOR pathway, suggesting a link between PI3K signaling and the proper function of glucose transporters or hexokinases in glycolysis. Indeed, PI3K/mTOR inhibition effectively suppressed membrane localization of facilitative glucose transporter 1 (GLUT1), which, instead, accumulated in the cytoplasm. Finally, aerobic glycolysis and cell proliferation were down-regulated when GLUT1 gene expression was suppressed by RNAi. Taken together, these results suggest that PI3K/AKT/mTOR signaling is indispensable for the regulation of aerobic glycolysis in EGFR-mutated LAD cells. PMID:26023239

  13. PI3K and AKT: Unfaithful Partners in Cancer.

    PubMed

    Faes, Seraina; Dormond, Olivier

    2015-01-01

    The phosphatidylinositol 3-kinase (PI3K)/AKT signaling pathway regulates multiple cellular processes. An overactivation of the pathway is frequently present in human malignancies and plays a key role in cancer progression. Hence, its inhibition has become a promising approach in cancer therapy. However, the development of resistances, such as the abrogation of negative feedback mechanisms or the activation of other proliferative signaling pathways, has considerably limited the anticancer efficacy of PI3K/AKT inhibitors. In addition, emerging evidence points out that although AKT is acknowledged as the major downstream effector of PI3K, both PI3K and AKT can operate independently of each other in cancer, revealing another level of complexity in this pathway. Here, we highlight the complex relationship between PI3K and AKT in cancer and further discuss the consequences of this relationship for cancer therapy. PMID:26404259

  14. PI3K and AKT: Unfaithful Partners in Cancer

    PubMed Central

    Faes, Seraina; Dormond, Olivier

    2015-01-01

    The phosphatidylinositol 3-kinase (PI3K)/AKT signaling pathway regulates multiple cellular processes. An overactivation of the pathway is frequently present in human malignancies and plays a key role in cancer progression. Hence, its inhibition has become a promising approach in cancer therapy. However, the development of resistances, such as the abrogation of negative feedback mechanisms or the activation of other proliferative signaling pathways, has considerably limited the anticancer efficacy of PI3K/AKT inhibitors. In addition, emerging evidence points out that although AKT is acknowledged as the major downstream effector of PI3K, both PI3K and AKT can operate independently of each other in cancer, revealing another level of complexity in this pathway. Here, we highlight the complex relationship between PI3K and AKT in cancer and further discuss the consequences of this relationship for cancer therapy. PMID:26404259

  15. The Role of PI3K/Akt in Human Herpesvirus Infection: from the Bench to the Bedside

    PubMed Central

    Liu, XueQiao; Cohen, Jeffrey I.

    2015-01-01

    The phosphatidylinositol-3-kinase (PI3K)-Akt signaling pathway regulates several key cellular functions including protein synthesis, cell growth, glucose metabolism, and inflammation. Many viruses have evolved mechanisms to manipulate this signaling pathway to ensure successful virus replication. The human herpesviruses undergo both latent and lytic infection, but differ in cell tropism, growth kinetics, and disease manifestations. Herpesviruses express multiple proteins that target the PI3K/Akt cell signaling pathway during the course of their life cycle to facilitate viral infection, replication, latency, and reactivation. Rare human genetic disorders with mutations in either the catalytic or regulatory subunit of PI3K that result in constitutive activation of the protein predispose to severe herpesvirus infections as well as to virus-associated malignancies. Inhibiting the PI3K/Akt pathway or its downstream proteins using drugs already approved for other diseases can block herpesvirus lytic infection and may reduce malignancies associated with latent herpesvirus infections. PMID:25798530

  16. The role of PI3K/Akt in human herpesvirus infection: From the bench to the bedside.

    PubMed

    Liu, XueQiao; Cohen, Jeffrey I

    2015-05-01

    The phosphatidylinositol-3-kinase (PI3K)-Akt signaling pathway regulates several key cellular functions including protein synthesis, cell growth, glucose metabolism, and inflammation. Many viruses have evolved mechanisms to manipulate this signaling pathway to ensure successful virus replication. The human herpesviruses undergo both latent and lytic infection, but differ in cell tropism, growth kinetics, and disease manifestations. Herpesviruses express multiple proteins that target the PI3K/Akt cell signaling pathway during the course of their life cycle to facilitate viral infection, replication, latency, and reactivation. Rare human genetic disorders with mutations in either the catalytic or regulatory subunit of PI3K that result in constitutive activation of the protein predispose to severe herpesvirus infections as well as to virus-associated malignancies. Inhibiting the PI3K/Akt pathway or its downstream proteins using drugs already approved for other diseases can block herpesvirus lytic infection and may reduce malignancies associated with latent herpesvirus infections. PMID:25798530

  17. PI3K/PTEN Signaling in Angiogenesis and Tumorigenesis

    PubMed Central

    Jiang, Bing-Hua; Liu, Ling-Zhi

    2010-01-01

    Phosphatidylinositol 3-kinase (PI3K) and phosphatase and tensin homolog deleted on chromosome 10 (PTEN) signaling pathway play an important role in multiple cellular functions such as cell metabolism, proliferation, cell-cycle progression, and survival. PI3K is activated by growth factors and angiogenesis inducers such as vascular endothelial growth factor (VEGF) and angiopoietins. The amplification and mutations of PI3K and the loss of the tumor suppressor PTEN are common in various kinds of human solid tumors. The genetic alterations of upstream and downstream of PI3K signaling molecules such as receptor tyrosine kinases and AKT, respectively, are also frequently altered in human cancer. PI3K signaling regulates tumor growth and angiogenesis by activating AKT and other targets, and by inducing HIF-1 and VEGF expression. Angiogenesis is required for tumor growth and metastasis. In this review, we highlight the recent studies on the roles and mechanisms of PI3K and PTEN in regulating tumorigenesis and angiogenesis, and the roles of the downstream targets of PI3K for transmitting the signals. We also discuss the crosstalk of these signaling molecules and cellular events during tumor growth, metastasis, and tumor angiogenesis. Finally, we summarize the potential applications of PI3K, AKT, and mTOR inhibitors and their outcome in clinical trials for cancer treatment. PMID:19595306

  18. Phosphatidylethanolamine-binding protein 4 promotes lung cancer cells proliferation and invasion via PI3K/Akt/mTOR axis

    PubMed Central

    Yu, Guiping; Chen, Guoqiang; Mi, Yedong

    2015-01-01

    Background While phosphatidylethanolamine-binding protein 4 (PEBP4) is a key factor in the malignant proliferation and metastasis of tumor cells, the exact regulatory network governing its roles remains unclear. This study was designed to investigate the effect of PEBP4 on PI3K/Akt/mTOR pathway and explore its molecular network that governs the proliferation and metastasis of tumor cells. Methods After the recombinant plasmid pcDNA3.1-PEBP4 was constructed, the recombinant plasmid pcDNA3.1-PEBP4 and PEBP4-targeting siRNA were transfected into lung cancer HCC827 cell line. The expressions of PI3K/Akt/mTOR pathway components in HCC827 cells in each group were determined using Western blotting. In the HCC827 cells, the effect of PI3K pathway inhibitor LY294002 on the expressions of PI3K/Akt/mTOR pathway components under the effect of PEBP4 was determined using Western blotting, and the effects of LY294002 on the cell viability, proliferation, and migration capabilities under the overexpression of PEBP4 were determined using MTT method, flow cytometry, and Transwell migration assay. Furthermore, the effect of mTOR inhibitor rapamycin (RAPA) on the expressions of PI3K/Akt/mTOR pathway components under the effect of PEBP4 was determined using Western blotting, and the effects of RAPA on the cell viability, proliferation, and migration capabilities under the overexpression of PEBP4 were determined using MTT method, flow cytometry, and Transwell migration assay. Results As shown by Western blotting, the protein expressions of p-Akt and phosphorylated mTOR (p-mTOR) were significantly higher in the pcDNA3.1-PEBP4-transfected group than in the normal control group and PEBP4 siRNA group (P<0.05); furthermore, the protein expressions of p-Akt and p-mTOR significantly decreased in the PEBP4 targeting siRNA-transfected group (P<0.05). Treatment with LY294002 significantly inhibited the protein expressions of p-Akt and p-mTOR in HCC827 cells (P<0.05). In contrast, treatment with

  19. Cell surface protein C23 affects EGF-EGFR induced activation of ERK and PI3K-AKT pathways.

    PubMed

    Lv, Shunzeng; Dai, Congxin; Liu, Yuting; Sun, Bowen; Shi, Ranran; Han, Mingzhi; Bian, Ruixiang; Wang, Renzhi

    2015-02-01

    The epidermal growth factor (EGF) pathway has been reported as canonical causes in cancer development. Meanwhile, the involvement of C23 in multiple signaling pathways has been also investigated (Lv et al., 2014). However, the effect of C23 on EGF pathway in glioblastoma is not fully characterized. In the present study, C23 and the epidermal growth factor receptor (EGFR) of U251 cell line were inhibited by C23 and EGFR antibodies, respectively; and then C23 and EGFR siRNAs were used to knock down endogenous C23 and EGFR, respectively. In addition, soft-agar and MTT assay were also introduced. Compared with control, either C23 or EGFR antibodies efficiently repressed the phosphorylation levels of ERK1/2 (p<0.000) and AKT (p<0.000). Similarly, either C23 or EGFR siRNAs indeed resulted in C23 and EGFR knockdown, and further suppressed the expression of p-ERK1/2 and p-AKT. Most importantly, immunoprecipitation revealed C23 interacted with EGFR once U251 was exposed to EGF treatment. In addition, the MTT and soft-agar assay also identified that C23 or EGFR siRNAs could obviously affected cell growth (p=0.004) and invasiveness, as cell viability and colony formation decreased markedly. Our results suggest that C23 plays a crucial role in activation of EGF-induced ERK and PI3K-AKT pathways via interacting with EGFR; furthermore, C23 could be indicative of an important factor in glioblastoma development and a useful target for glioblastoma treatment. PMID:25015231

  20. Discovery of GSK2126458, a Highly Potent Inhibitor of PI3K and the Mammalian Target of Rapamycin

    SciTech Connect

    Knight, Steven D.; Adams, Nicholas D.; Burgess, Joelle L.; Chaudhari, Amita M.; Darcy, Michael G.; Donatelli, Carla A.; Luengo, Juan I.; Newlander, Ken A.; Parrish, Cynthia A.; Ridgers, Lance H.; Sarpong, Martha A.; Schmidt, Stanley J.; Aller, Glenn S.Van; Carson, Jeffrey D.; Diamond, Melody A.; Elkins, Patricia A.; Gardiner, Christine M.; Garver, Eric; Gilbert, Seth A.; Gontarek, Richard R.; Jackson, Jeffrey R.; Kershner, Kevin L.; Luo, Lusong; Raha, Kaushik; Sherk, Christian S.; Sung, Chiu-Mei; Sutton, David; Tummino, Peter J.; Wegrzyn, Ronald J.; Auger, Kurt R.; Dhanak, Dashyant

    2010-09-30

    Phosphoinositide 3-kinase {alpha} (PI3K{alpha}) is a critical regulator of cell growth and transformation, and its signaling pathway is the most commonly mutated pathway in human cancers. The mammalian target of rapamycin (mTOR), a class IV PI3K protein kinase, is also a central regulator of cell growth, and mTOR inhibitors are believed to augment the antiproliferative efficacy of PI3K/AKT pathway inhibition. 2,4-Difluoro-N-{l_brace}2-(methyloxy)-5-[4-(4-pyridazinyl)-6-quinolinyl]-3-pyridinyl{r_brace}benzenesulfonamide (GSK2126458, 1) has been identified as a highly potent, orally bioavailable inhibitor of PI3K{alpha} and mTOR with in vivo activity in both pharmacodynamic and tumor growth efficacy models. Compound 1 is currently being evaluated in human clinical trials for the treatment of cancer.

  1. Computational studies of Ras and PI3K

    NASA Technical Reports Server (NTRS)

    Ren, Lei; Cucinotta, Francis A.

    2004-01-01

    Until recently, experimental techniques in molecular cell biology have been the primary means to investigate biological risk upon space radiation. However, computational modeling provides an alternative theoretical approach, which utilizes various computational tools to simulate proteins, nucleotides, and their interactions. In this study, we are focused on using molecular mechanics (MM) and molecular dynamics (MD) to study the mechanism of protein-protein binding and to estimate the binding free energy between proteins. Ras is a key element in a variety of cell processes, and its activation of phosphoinositide 3-kinase (PI3K) is important for survival of transformed cells. Different computational approaches for this particular study are presented to calculate the solvation energies and binding free energies of H-Ras and PI3K. The goal of this study is to establish computational methods to investigate the roles of different proteins played in the cellular responses to space radiation, including modification of protein function through gene mutation, and to support the studies in molecular cell biology and theoretical kinetics models for our risk assessment project.

  2. Insulin-induced Drosophila S6 kinase activation requires phosphoinositide 3-kinase and protein kinase B.

    PubMed Central

    Lizcano, Jose M; Alrubaie, Saif; Kieloch, Agnieszka; Deak, Maria; Leevers, Sally J; Alessi, Dario R

    2003-01-01

    An important mechanism by which insulin regulates cell growth and protein synthesis is through activation of the p70 ribosomal S6 protein kinase (S6K). In mammalian cells, insulin-induced PI3K (phosphoinositide 3-kinase) activation, generates the lipid second messenger PtdIns(3,4,5) P (3), which is thought to play a key role in triggering the activation of S6K. Although the major components of the insulin-signalling pathway are conserved in Drosophila, recent studies suggested that S6K activation does not require PI3K in this system. To investigate further the role of dPI3K (Drosophila PI3K) in dS6K (Drosophila S6K) activation, we examined the effect of two structurally distinct PI3K inhibitors on insulin-induced dS6K activation in Kc167 and S2 Drosophila cell lines. We found that both inhibitors prevented insulin-stimulated phosphorylation and activation of dS6K. To investigate further the role of the dPI3K pathway in regulating dS6K activation, we also used dsRNAi (double-stranded RNA-mediated interference) to decrease expression of dPI3K and the PtdIns(3,4,5) P (3) phosphatase dPTEN ( Drosophila phosphatase and tensin homologue deleted on chromosome 10) in Kc167 and S2 cells. Knock-down of dPI3K prevented dS6K activation, whereas knock-down of dPTEN, which would be expected to increase PtdIns(3,4,5) P (3) levels, stimulated dS6K activity. Moreover, when the expression of the dPI3K target, dPKB (Drosophila protein kinase B), was decreased to undetectable levels, we found that insulin could no longer trigger dS6K activation. This observation provides the first direct demonstration that dPKB is required for insulin-stimulated dS6K activation. We also present evidence that the amino-acid-induced activation of dS6K in the absence of insulin, thought to be mediated by dTOR (Drosophila target of rapamycin), which is unaffected by the inhibition of dPI3K by wortmannin. The results of the present study support the view that, in Drosophila cells, dPI3K and dPKB, as well d

  3. Repression of CD24 surface protein expression by oncogenic Ras is relieved by inhibition of Raf but not MEK or PI3K

    PubMed Central

    Pallegar, Nikitha K.; Ayre, D. Craig; Christian, Sherri L.

    2015-01-01

    CD24 is a dynamically regulated cell surface protein. High expression of CD24 leads to progression of lung, prostrate, colon, and pancreatic cancers, among others. In contrast, low expression of CD24 leads to cell proliferation and metastasis of breast cancer stem cells (BCSCs). Activating mutations in Ras are found in 30% of all human cancers. Oncogenic Ras constitutively stimulates the Raf, PI3K, and Ral GDS signaling pathways, leading to cellular transformation. Previous studies have shown that expression of oncogenic Ras in breast cancer cells generates CD24− cells from CD24+ cells. However, the molecular mechanisms involved in the generation of CD24− cells were not determined. Here, we demonstrate that oncogenic Ras (RasV12) expression suppresses CD24 mRNA, protein, and promoter levels when expressed in NIH/3T3 cells. Furthermore, activation of only the Raf pathway was sufficient to downregulate CD24 mRNA and protein expression to levels similar to those seen in with RasV12 expression. In contrast, activation of the PI3K pathway downregulated mRNA expression with a partial effect on protein expression whereas activation of the RalGDS pathway only partially affected protein expression. Surprisingly, inhibition of MEK with U0126 only partially restored CD24 mRNA expression but not surface protein expression. In contrast, inhibition of Raf with sorafenib did not restore CD24 mRNA expression but significantly increased the proportion of RasV12 cells expressing CD24. Therefore, the Raf pathway is the major repressor of CD24 mRNA and protein expression, with PI3K also able to substantially inhibit CD24 expression. Moreover, these data indicate that the levels of CD24 mRNA and surface protein are independently regulated. Although inhibition of Raf by sorafenib only partially restored CD24 expression, sorafenib should still be considered as a potential therapeutic strategy to alter CD24 expression in CD24− cells, such as BCSCs. PMID:26301220

  4. Sauchinone augments cardiomyocyte viability by enhancing autophagy proteins -PI3K, ERK(1/2), AMPK and Beclin-1 during early ischemia-reperfusion injury in vitro

    PubMed Central

    Thapalia, Bisharad Anil; Zhou, Zhen; Lin, Xianhe

    2016-01-01

    Background. Sauchinone has proved its anti-oxidant and anti-inflammatory properties in various animal tissues. This study sought to illustrate its regulatory nature on autophagy associated proteins (PI3K, ERK1/2, AMPK, and Beclin-1) during early cardiomyocyte ischemia and subsequent reperfusion. Methods. Cultured cardiomyocytes were subjected to simulated Ischemia/reperfusion with and without Sauchinone pretreatment and also in the presence of autophagy inhibitor (3-MA). Colorimetric analysis of CCK-8, LDH antibody assay as well as Western blot analysis were performed to observe the expressions of LC3B (II) and Beclin-1 protein (markers of autophagy), autophagy proteins (PI3K, ERK1/2 and AMPK) and apoptotic proteins (Bax and Bcl-2) and the results were quantified into their grey values and subjected to statistical analysis. Results. Sauchinone demonstrated cell survival enhancing properties with increase in CCK-8 (SD = 0.553±0.012) and decrease in LDH (SD = 0.183±0.054) expressions, both of which were best observed at test dose of 20 µmol/L. At this dose, there was increment in cellular autophagy as demonstrated by peaking of autophagy markers LC3B-II (p<0.05) and Beclin-1 (p<0.05) with strong correlations (r = 0.99). Similarly, the autophagy proteins, compared to control and I/R model, also showed a significant increased level with PI3K (p<0.0001), total p-ERK1/2 (p<0.0001) and p-AMPKα (p<0.0001). Simultaneously, a decrease in expressions of pro-apoptotic molecules Bax (r = 0.989, p<0.0001) with increment of in the anti-apoptotic protein Bcl-2 (r = 0.996, p<0.0001) was observed. The observed effects on cell density, viability and autophagy was abrogated in presence of 3-MA. Conclusions. Sauchinone enhances cell survival by promoting autophagy and inhibiting apoptosis in cardiomyocytes during early stages of Ischemia/reperfusion injury. PMID:27508047

  5. MiR-27a Regulates Apoptosis in Nucleus Pulposus Cells by Targeting PI3K

    PubMed Central

    Chen, Huajiang; Yuan, Wen; Wang, Jianxi; Tang, Xianye

    2013-01-01

    The precise role of apoptosis in the pathogenesis of intervertebral disc degeneration (IDD) remains to be elucidated. We analyzed degenerative nucleus pulposus (NP) cells and found that the expression of miR-27a was increased. The overexpression of miR-27a was further verified using real-time RT-PCR. Bioinformatics target prediction identified phosphoinositide-3 kinases (PI3K) as putative targets of miR-27a. Furthermore, miR-27a inhibited PI3K expression by directly targeting their 3’-UTRs, and this inhibition was abolished by mutation of the miR-27a binding sites. Various cellular processes including cell growth, proliferation, migration and adhesion are regulated by activation of the PI3K/AKT signaling pathway, and nucleus pulposus cells are known to strongly express the phosphorylated survival protein AKT. Our results identify PI3K as a novel target of miR-27a. Upregulation of miR-27a thus targets PI3K, initiating apoptosis of nucleus pulposus cells. This present study revealed that downregulated miR-27a might develop a novel intervention for IDD treatment through the prevention of apoptosis in Nucleus pulposus Cells. PMID:24086481

  6. MiR-27a regulates apoptosis in nucleus pulposus cells by targeting PI3K.

    PubMed

    Liu, Gang; Cao, Peng; Chen, Huajiang; Yuan, Wen; Wang, Jianxi; Tang, Xianye

    2013-01-01

    The precise role of apoptosis in the pathogenesis of intervertebral disc degeneration (IDD) remains to be elucidated. We analyzed degenerative nucleus pulposus (NP) cells and found that the expression of miR-27a was increased. The overexpression of miR-27a was further verified using real-time RT-PCR. Bioinformatics target prediction identified phosphoinositide-3 kinases (PI3K) as putative targets of miR-27a. Furthermore, miR-27a inhibited PI3K expression by directly targeting their 3'-UTRs, and this inhibition was abolished by mutation of the miR-27a binding sites. Various cellular processes including cell growth, proliferation, migration and adhesion are regulated by activation of the PI3K/AKT signaling pathway, and nucleus pulposus cells are known to strongly express the phosphorylated survival protein AKT. Our results identify PI3K as a novel target of miR-27a. Upregulation of miR-27a thus targets PI3K, initiating apoptosis of nucleus pulposus cells. This present study revealed that downregulated miR-27a might develop a novel intervention for IDD treatment through the prevention of apoptosis in Nucleus pulposus Cells. PMID:24086481

  7. PI3K and Cancer: Lessons, Challenges and Opportunities

    PubMed Central

    Fruman, David A.; Rommel, Christian

    2014-01-01

    Summary The central role of phosphoinositide 3-kinase (PI3K) activation in tumor cell biology has prompted a sizeable effort to target PI3K and/or downstream kinases such as AKT and mTOR in cancer. However, emerging clinical data show limited single agent activity of PI3K/AKT/mTOR inhibitors at tolerated doses. One exception is the response to PI3Kδ inhibitors in chronic lymphocytic leukemia, where a combination of cell-intrinsic and -extrinsic activities drive efficacy. Here we review key challenges and opportunities for clinical development of PI3K/AKT/mTOR inhibitors. Through a greater focus on patient selection, increased understanding of immune modulation, and strategic application of rational combinations, it should be possible to realize the potential of this promising class of targeted anti-cancer agents. PMID:24481312

  8. PI3K inhibition results in enhanced HER signaling and acquired ERK dependency in HER2-overexpressing breast cancer

    PubMed Central

    Serra, V; Scaltriti, M; Prudkin, L; Eichhorn, P J A; Ibrahim, Y H; Chandarlapaty, S; Markman, B; Rodriguez, O; Guzman, M; Rodriguez, S; Gili, M; Russillo, M; Parra, J L; Singh, S; Arribas, J; Rosen, N; Baselga, J

    2011-01-01

    There is a strong rationale to therapeutically target the phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR) pathway in breast cancer since it is highly deregulated in this disease and it also mediates resistance to anti-HER2 therapies. However, initial studies with rapalogs, allosteric inhibitors of mTORC1, have resulted in limited clinical efficacy probably due to the release of a negative regulatory feedback loop that triggers AKT and ERK signaling. Since activation of AKT occurs via PI3K, we decided to explore whether PI3K inhibitors prevent the activation of these compensatory pathways. Using HER2-overexpressing breast cancer cells as a model, we observed that PI3K inhibitors abolished AKT activation. However, PI3K inhibition resulted in a compensatory activation of the ERK signaling pathway. This enhanced ERK signaling occurred as a result of activation of HER family receptors as evidenced by induction of HER receptors dimerization and phosphorylation, increased expression of HER3 and binding of adaptor molecules to HER2 and HER3. The activation of ERK was prevented with either MEK inhibitors or anti-HER2 monoclonal antibodies and tyrosine kinase inhibitors. Combined administration of PI3K inhibitors with either HER2 or MEK inhibitors resulted in decreased proliferation, enhanced cell death and superior anti-tumor activity compared with single agent PI3K inhibitors. Our findings indicate that PI3K inhibition in HER2-overexpressing breast cancer activates a new compensatory pathway that results in ERK dependency. Combined anti-MEK or anti-HER2 therapy with PI3K inhibitors may be required in order to achieve optimal efficacy in HER2-overexpressing breast cancer. This approach warrants clinical evaluation. PMID:21278786

  9. Discovery of a potent, selective, and orally available class I phosphatidylinositol 3-kinase (PI3K)/mammalian target of rapamycin (mTOR) kinase inhibitor (GDC-0980) for the treatment of cancer.

    PubMed

    Sutherlin, Daniel P; Bao, Linda; Berry, Megan; Castanedo, Georgette; Chuckowree, Irina; Dotson, Jenna; Folks, Adrian; Friedman, Lori; Goldsmith, Richard; Gunzner, Janet; Heffron, Timothy; Lesnick, John; Lewis, Cristina; Mathieu, Simon; Murray, Jeremy; Nonomiya, Jim; Pang, Jodie; Pegg, Niel; Prior, Wei Wei; Rouge, Lionel; Salphati, Laurent; Sampath, Deepak; Tian, Qingping; Tsui, Vickie; Wan, Nan Chi; Wang, Shumei; Wei, Binqing; Wiesmann, Christian; Wu, Ping; Zhu, Bing-Yan; Olivero, Alan

    2011-11-10

    The discovery of 2 (GDC-0980), a class I PI3K and mTOR kinase inhibitor for oncology indications, is described. mTOR inhibition was added to the class I PI3K inhibitor 1 (GDC-0941) scaffold primarily through the substitution of the indazole in 1 for a 2-aminopyrimidine. This substitution also increased the microsomal stability and the free fraction of compounds as evidenced through a pairwise comparison of molecules that were otherwise identical. Highlighted in detail are analogues of an advanced compound 4 that were designed to improve solubility, resulting in 2. This compound, is potent across PI3K class I isoforms with IC(50)s of 5, 27, 7, and 14 nM for PI3Kα, β, δ, and γ, respectively, inhibits mTOR with a K(i) of 17 nM yet is highly selective versus a large panel of kinases including others in the PIKK family. On the basis of the cell potency, low clearance in mouse, and high free fraction, 2 demonstrated significant efficacy in mouse xenografts when dosed as low as 1 mg/kg orally and is currently in phase I clinical trials for cancer. PMID:21981714

  10. Profiling the HER3/PI3K Pathway in Breast Tumors Using Proximity-Directed Assays Identifies Correlations between Protein Complexes and Phosphoproteins

    PubMed Central

    Mukherjee, Ali; Badal, Youssouf; Nguyen, Xuan-Thao; Miller, Johanna; Chenna, Ahmed; Tahir, Hasan; Newton, Alicia; Parry, Gordon; Williams, Stephen

    2011-01-01

    Background The identification of patients for targeted antineoplastic therapies requires accurate measurement of therapeutic targets and associated signaling complexes. HER3 signaling through heterodimerization is an important growth-promoting mechanism in several tumor types and may be a principal resistance mechanism by which EGFR and HER2 expressing tumors elude targeted therapies. Current methods that can study these interactions are inadequate for formalin-fixed, paraffin-embedded (FFPE) tumor samples. Methodology and Principal Findings Herein, we describe a panel of proximity-directed assays capable of measuring protein-interactions and phosphorylation in FFPE samples in the HER3/PI3K/Akt pathway and examine the capability of these assays to inform on the functional state of the pathway. We used FFPE breast cancer cell line and tumor models for this study. In breast cancer cell lines we observe both ligand-dependent and independent activation of the pathway and strong correlations between measured activation of key analytes. When selected cell lines are treated with HER2 inhibitors, we not only observe the expected molecular effects based on mechanism of action knowledge, but also novel effects of HER2 inhibition on key targets in the HER receptor pathway. Significantly, in a xenograft model of delayed tumor fixation, HER3 phosphorylation is unstable, while alternate measures of pathway activation, such as formation of the HER3PI3K complex is preserved. Measurements in breast tumor samples showed correlations between HER3 phosphorylation and receptor interactions, obviating the need to use phosphorylation as a surrogate for HER3 activation. Significance This assay system is capable of quantitatively measuring therapeutically relevant responses and enables molecular profiling of receptor networks in both preclinical and tumor models. PMID:21297994

  11. Glycoprotein nonmetastatic melanoma protein B extracellular fragment shows neuroprotective effects and activates the PI3K/Akt and MEK/ERK pathways via the Na+/K+-ATPase

    PubMed Central

    Ono, Yoko; Tsuruma, Kazuhiro; Takata, Masafumi; Shimazawa, Masamitsu; Hara, Hideaki

    2016-01-01

    Glycoprotein nonmetastatic melanoma protein B (GPNMB) plays important roles in various types of cancer and amyotrophic lateral sclerosis (ALS). The details of GPNMB function and its interacting protein have not been clarified. Therefore, to identify GPNMB binding partners on the cell membrane, we used membrane protein library/BLOTCHIP-MS technology, which enables us to analyze all cell membrane proteins as binding partners of the GPNMB extracellular fragment. As a result of a comprehensive search, we identified the alpha subunits of Na+/K+-ATPase (NKA) as a possible binding partner. We confirmed the interaction between the GPNMB extracellular fragment and NKA by immunoprecipitation and immunostaining in NSC-34 cells. Indeed, endogenous GPNMB extracellular fragment bound to and colocalized with NKA alpha subunits. Furthermore, exogenous GPNMB extracellular fragment, i.e., human recombinant GPNMB, also bound to and colocalized with NKA alpha subunits. Additionally, we found that the GPNMB extracellular fragment had neuroprotective effects and activated the phosphoinositide 3-kinase (PI3K)/Akt and mitogen-activated protein kinase (MAPK)-extracellular signal-regulated kinase (ERK) kinase (MEK)/ERK pathways via NKA. These findings indicated that NKA may act as a novel “receptor” for the GPNMB extracellular fragment, offering additional molecular targets for the treatment of GPNMB-related diseases, including various types of cancer and ALS. PMID:26988030

  12. BRD7, a tumor suppressor, interacts with p85alpha and regulates PI3K activity

    PubMed Central

    Chiu, Yu-Hsin; Lee, Jennifer Y.; Cantley, Lewis C.

    2014-01-01

    SUMMARY Phosphoinositide 3-kinase (PI3K) activity is important for regulating cell growth, survival and motility. We report here the identification of bromodomain-containing protein 7 (BRD7) as a p85α-interacting protein that negatively regulates PI3K signaling. BRD7 binds to the inter-SH2 (iSH2) domain of p85 through an evolutionarily conserved region located at the C-terminus of BRD7. Via this interaction, BRD7 facilitates nuclear translocation of p85α. The BRD7-dependent depletion of p85 from the cytosol impairs formation of p85/p110 complexes in the cytosol, leading to a decrease in p110 proteins and in PI3K pathway signaling. In contrast, silencing of endogenous BRD7 expression by RNAi increases the steady state level of p110 proteins and enhances Akt phosphorylation after stimulation. These data suggest that BRD7 and p110 compete for the interaction to p85. The unbound p110 protein is unstable, leading to the attenuation of PI3K activity. Therefore, BRD7 functions as a potential tumor suppressor to regulate cell growth. PMID:24657164

  13. Tanshinone IIA decreases the protein expression of EGFR, and IGFR blocking the PI3K/Akt/mTOR pathway in gastric carcinoma AGS cells both in vitro and in vivo.

    PubMed

    Su, Chin-Cheng; Chiu, Tsung-Lang

    2016-08-01

    Tan-IIA exerts powerful inhibitory effects in gastric cancer AGS cells. The PI3K/AKT/mTOR pathway is one of the most frequently dysregulated kinase cascades in human cancer. In the present study, we investigated the protein expression levels of PI3K, AKT and mTOR in AGS cells treated with Tan-IIA both in vitro and in vivo. The AGS cells were treated with Tan-IIA for different durations in vitro. In the in vivo study, AGS cell xerograft SCID mice were treated with Tan-IIA for 8 weeks. Subsequently, the protein expression of EGFR, IGFR, PI3K, AKT and mTOR was measured by western blotting. The results showed that Tan-IIA was able to decrease the protein expression levels of EGFR, IGFR, PI3K, AKT and mTOR significantly and dose-dependently in vitro and in vivo. In conclusion, these findings indicate Tan-IIA could inhibit AGS cells through decreasing the protein expression of EGFR, IGFR and blocking PI3K/AKT/mTOR pathway both in vitro and in vivo. PMID:27277844

  14. Down-regulation of PKHD1 induces cell apoptosis through PI3K and NF-{kappa}B pathways

    SciTech Connect

    Sun, Liping; Wang, Shixuan; Hu, Chaofeng; Zhang, Xinzhou

    2011-04-15

    Mutations in PKHD1 (polycystic kidney and hepatic disease gene 1) gene cause the autosomal recessive polycystic kidney disease (ARPKD). Fibrocystin/polyductin (FPC), encoded by PKHD1, is a membrane-associated receptor-like protein. Although it is widely accepted that cystogenesis is mostly due to aberrant cell proliferation and apoptosis, it is still unclear how apoptosis is regulated. The aim of this study is to analyze the relationship among apoptosis, phosphatidylinositol 3-kinase (PI3K)/Akt and nuclear factor {kappa}B (NF-{kappa}B) in FPC knockdown kidney cells. We show that PKHD1-silenced HEK293 cells demonstrate a higher PI3K/Akt activity. Selective inhibition of PI3K/Akt using LY294002 or wortmannin in these cells increases serum starvation-induced HEK293 cell apoptosis with a concomitant decrease in cell proliferation and higher caspase-3 activity. PI3K/Akt inhibition also leads to increased NF-{kappa}B activity in these cells. We conclude that the PI3K/Akt pathway is involved in apoptotic function in PKHD1-silenced cells, and PI3K/Akt inhibition correlates with upregulation of NF-{kappa}B activity. These observations provide a potential platform for determining FPC function and therapeutic investigation of ARPKD.

  15. Tyrosine Phosphorylation of the Guanine Nucleotide Exchange Factor GIV Promotes Activation of PI3K During Cell Migration

    PubMed Central

    Lin, Changsheng; Ear, Jason; Pavlova, Yelena; Mittal, Yash; Kufareva, Irina; Ghassemian, Majid; Abagyan, Ruben; Garcia-Marcos, Mikel; Ghosh, Pradipta

    2014-01-01

    GIV (Gα-interacting vesicle-associated protein; also known as Girdin), enhances Akt activation downstream of multiple growth factor– and G-protein–coupled receptors to trigger cell migration and cancer invasion. Here we demonstrate that GIV is a tyrosine phosphoprotein that directly binds to and activates phosphoinositide 3-kinase (PI3K). Upon ligand stimulation of various receptors, GIV was phosphorylated at Tyr1764 and Tyr1798 by both receptor and non-receptor tyrosine kinases. These phosphorylation events enabled direct binding of GIV to the N- and C-terminal SH2 domains of p85α, a regulatory subunit of PI3K, stabilized receptor association with PI3K, and enhanced PI3K activity at the plasma membrane to trigger cell migration. Tyrosine phosphorylation of GIV and its association with p85α increased during metastatic progression of a breast carcinoma. These results suggest a mechanism by which multiple receptors activate PI3K through tyrosine phosphorylation of GIV, thereby making the GIVPI3K interaction a potential therapeutic target within the PI3K-Akt pathway. PMID:21954290

  16. Pelota Regulates Epidermal Differentiation by Modulating BMP and PI3K/AKT Signaling Pathways.

    PubMed

    Elkenani, Manar; Nyamsuren, Gunsmaa; Raju, Priyadharsini; Liakath-Ali, Kifayathullah; Hamdaoui, Aicha; Kata, Aleksandra; Dressel, Ralf; Klonisch, Thomas; Watt, Fiona M; Engel, Wolfgang; Thliveris, James A; Krishna Pantakani, D V; Adham, Ibrahim M

    2016-08-01

    The depletion of evolutionarily conserved pelota protein causes impaired differentiation of embryonic and spermatogonial stem cells. In this study, we show that temporal deletion of pelota protein before epidermal barrier acquisition leads to neonatal lethality due to perturbations in permeability barrier formation. Further analysis indicated that this phenotype is a result of failed processing of profilaggrin into filaggrin monomers, which promotes the formation of a protective epidermal layer. Molecular analyses showed that pelota protein negatively regulates the activities of bone morphogenetic protein and phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) signaling pathways in the epidermis. To address whether elevated activities of bone morphogenetic protein and PI3K/AKT signaling pathways were the cause for the perturbed epidermal barrier in Pelo-deficient mice, we made use of organotypic cultures of skin explants from control and mutant embryos at embryonic day 15.5. Inhibition of PI3K/AKT signaling did not significantly affect the bone morphogenetic protein activity. However, inhibition of bone morphogenetic protein signaling caused a significant attenuation of PI3K/AKT activity in mutant skin and, more interestingly, the restoration of profilaggrin processing and normal epidermal barrier function. Therefore, increased activity of the PI3K/AKT signaling pathway in Pelo-deficient skin might conflict with the dephosphorylation of profilaggrin and thereby affect its proper processing into filaggrin monomers and ultimately the epidermal differentiation. PMID:27164299

  17. Interfering with resistance to smoothened antagonists by inhibition of the PI3K pathway in medulloblastoma.

    PubMed

    Buonamici, Silvia; Williams, Juliet; Morrissey, Michael; Wang, Anlai; Guo, Ribo; Vattay, Anthony; Hsiao, Kathy; Yuan, Jing; Green, John; Ospina, Beatriz; Yu, Qunyan; Ostrom, Lance; Fordjour, Paul; Anderson, Dustin L; Monahan, John E; Kelleher, Joseph F; Peukert, Stefan; Pan, Shifeng; Wu, Xu; Maira, Sauveur-Michel; García-Echeverría, Carlos; Briggs, Kimberly J; Watkins, D Neil; Yao, Yung-mae; Lengauer, Christoph; Warmuth, Markus; Sellers, William R; Dorsch, Marion

    2010-09-29

    The malignant brain cancer medulloblastoma is characterized by mutations in Hedgehog (Hh) signaling pathway genes, which lead to constitutive activation of the G protein (heterotrimeric guanosine triphosphate-binding protein)-coupled receptor Smoothened (Smo). The Smo antagonist NVP-LDE225 inhibits Hh signaling and induces tumor regression in animal models of medulloblastoma. However, evidence of resistance was observed during the course of treatment. Molecular analysis of resistant tumors revealed several resistance mechanisms. We noted chromosomal amplification of Gli2, a downstream effector of Hh signaling, and, more rarely, point mutations in Smo that led to reactivated Hh signaling and restored tumor growth. Analysis of pathway gene expression signatures also, unexpectedly, identified up-regulation of phosphatidylinositol 3-kinase (PI3K) signaling in resistant tumors as another potential mechanism of resistance. Probing the relevance of increased PI3K signaling, we demonstrated that addition of the PI3K inhibitor NVP-BKM120 or the dual PI3K-mTOR (mammalian target of rapamycin) inhibitor NVP-BEZ235 to the initial treatment with the Smo antagonist markedly delayed the development of resistance. Our findings may be useful in informing treatment strategies for medulloblastoma. PMID:20881279

  18. A cytotoxic protein (BF-CT1) purified from Bungarus fasciatus venom acts through apoptosis, modulation of PI3K/AKT, MAPKinase pathway and cell cycle regulation.

    PubMed

    Bhattacharya, Shamik; Das, Tanaya; Biswas, Archita; Gomes, Aparna; Gomes, Antony; Dungdung, Sandhya Rekha

    2013-11-01

    BF-CT1, a 13 kDa protein isolated from Bungarus fasciatus snake venom through CM cellulose ion exchange chromatography at 0.02 M NaCl salt gradient showed cytotoxicity in in vitro and in vivo experimental models. In in vivo Ehrlich ascites carcinoma (EAC) induced BALB/c mice model, BF-CT1 treatment reduced EAC cell count significantly through apoptotic cell death pathway as evidenced by FACS analysis, increased caspase 3, 9 activity and altered pro, antiapoptotic protein expression. BF-CT1 treatment caused cell shrinkage, chromatin condensation and induced apoptosis through increased caspase 3, caspase 9 activity, PARP cleavage and down regulation of heat shock proteins in U937 leukemic cell line. Cytosolic cytochrome C production was increased after BF-CT1 treatment upon U937 cell line. BF-CT1 treated U937 cell showed cell cycle arrest at sub G1 phase through cyclin D and CDK down regulation with up regulation of p15 and p16. It also down regulated PI3K/AKT pathway and MAPkinase pathway and promoted apoptosis and regulated cell proliferation in U937 cells. BF-CT1 prevented angiogenesis in in vitro U937 cell line through decreased VEGF and TGF-β1 production. PMID:23981271

  19. Trim32 reduces PI3K-Akt-FoxO signaling in muscle atrophy by promoting plakoglobin-PI3K dissociation.

    PubMed

    Cohen, Shenhav; Lee, Donghoon; Zhai, Bo; Gygi, Steven P; Goldberg, Alfred L

    2014-03-01

    Activation of the PI3K-Akt-FoxO pathway induces cell growth, whereas its inhibition reduces cell survival and, in muscle, causes atrophy. Here, we report a novel mechanism that suppresses PI3K-Akt-FoxO signaling. Although skeletal muscle lacks desmosomes, it contains multiple desmosomal components, including plakoglobin. In normal muscle plakoglobin binds the insulin receptor and PI3K subunit p85 and promotes PI3K-Akt-FoxO signaling. During atrophy, however, its interaction with PI3K-p85 is reduced by the ubiquitin ligase Trim32 (tripartite motif containing protein 32). Inhibition of Trim32 enhanced plakoglobin binding to PI3K-p85 and promoted PI3K-Akt-FoxO signaling. Surprisingly, plakoglobin overexpression alone enhanced PI3K-Akt-FoxO signaling. Furthermore, Trim32 inhibition in normal muscle increased PI3K-Akt-FoxO signaling, enhanced glucose uptake, and induced fiber growth, whereas plakoglobin down-regulation reduced PI3K-Akt-FoxO signaling, decreased glucose uptake, and caused atrophy. Thus, by promoting plakoglobin-PI3K dissociation, Trim32 reduces PI3K-Akt-FoxO signaling in normal and atrophying muscle. This mechanism probably contributes to insulin resistance during fasting and catabolic diseases and perhaps to the myopathies and cardiomyopathies seen with Trim32 and plakoglobin mutations. PMID:24567360

  20. Conjugation of SUMO to p85 leads to a novel mechanism of PI3K regulation.

    PubMed

    de la Cruz-Herrera, C F; Baz-Martínez, M; Lang, V; El Motiam, A; Barbazán, J; Couceiro, R; Abal, M; Vidal, A; Esteban, M; Muñoz-Fontela, C; Nieto, A; Rodríguez, M S; Collado, M; Rivas, C

    2016-06-01

    Class IA phosphatidylinositol 3-kinases (PI3Ks) are composed of p110 catalytic and p85 regulatory subunits. How regulatory subunits modulate PI3K activity remains only partially understood. Here we identified SUMO (small ubiquitin-related modifier) as a new player modulating this regulation. We demonstrate that both p85β and p85α are conjugated to SUMO1 and SUMO2. We identified two lysine residues located at the inter-SH2 domain on p85β, a critical region required for inhibition of p110, as being required for SUMO conjugation. A SUMOylation-defective mutant p85β shows higher activation of the PI3K pathway, and increased cell migration and transformation. Moreover, the cancer-related KS459del mutant in p85α was less efficiently SUMOylated compared with the wild-type protein. Finally, our results show that SUMO modulates p85 tyrosine phosphorylation, a modification correlating with PI3K pathway activation. Thus, SUMO reduces the levels of tyrosine-phosphorylated-p85 while loss of SUMOylation results in increased tyrosine phosphorylation of p85. In summary, we identify SUMO as a new important player in the regulation of the PI3K pathway through modulation of p85. PMID:26411363

  1. The PTEN/PI3K/AKT Pathway in vivo, Cancer Mouse Models

    PubMed Central

    Carnero, Amancio; Paramio, Jesus M.

    2014-01-01

    When PI3K (phosphatidylinositol-3 kinase) is activated by receptor tyrosine kinases, it phosphorylates PIP2 to generate PIP3 and activates the signaling pathway. Phosphatase and tensin homolog deleted on chromosome 10 dephosphorylates PIP3 to PIP2, and thus, negatively regulates the pathway. AKT (v-akt murine thymoma viral oncogene homolog; protein kinase B) is activated downstream of PIP3 and mediates physiological processes. Furthermore, substantial crosstalk exists with other signaling networks at all levels of the PI3K pathway. Because of its diverse array, gene mutations, and amplifications and also as a consequence of its central role in several signal transduction pathways, the PI3K-dependent axis is frequently activated in many tumors and is an attractive therapeutic target. The preclinical testing and analysis of these novel therapies requires appropriate and well-tailored systems. Mouse models in which this pathway has been genetically modified have been essential in understanding the role that this pathway plays in the tumorigenesis process. Here, we review cancer mouse models in which the PI3K/AKT pathway has been genetically modified. PMID:25295225

  2. The role of the PI3K-Akt signal transduction pathway in Autographa californica multiple nucleopolyhedrovirus infection of Spodoptera frugiperda cells

    SciTech Connect

    Xiao Wei; Yang Yi; Weng Qingbei; Lin Tiehao; Yuan Meijin; Yang Kai; Pang Yi

    2009-08-15

    Many viruses activate the phosphatidylinositol 3-kinase (PI3K)-Akt signaling pathway, thereby modulating diverse downstream signaling pathways associated with antiapoptosis, proliferation, cell cycling, protein synthesis and glucose metabolism, in order to augment their replication. To date, the role of the PI3K-Akt pathway in Baculovirus replication has not been defined. In the present study, we demonstrate that infection of Sf9 cells with Autographa californica multiple nucleopolyhedrovirus (AcMNPV) elevated cellular Akt phosphorylation at 1 h post-infection. The maximum Akt phosphorylation occurred at 6 h post-infection and remained unchanged until 18 h post-infection. The PI3K-specific inhibitor, LY294002, suppressed Akt phosphorylation in a dose-dependent manner, suggesting that AcMNPV-induced Akt phosphorylation is PI3K-dependent. The inhibition of PI3K-Akt activation by LY294002 significantly reduced the viral yield, including a reduction in budded viruses and occlusion bodies. The virus production was reduced only when the inhibitor was added within 24 h of infection, implying that activation of PI3K occurred early in infection. Correspondingly, both viral DNA replication and late (VP39) and very late (POLH) viral protein expression were impaired by LY294002 treatment; LY294002 had no effect on immediate-early (IE1) and early-late (GP64) protein expression. These results demonstrate that the PI3K-Akt pathway is required for efficient Baculovirus replication.

  3. TDRG1 functions in testicular seminoma are dependent on the PI3K/Akt/mTOR signaling pathway.

    PubMed

    Wang, Yong; Gan, Yu; Tan, Zhengyu; Zhou, Jun; Kitazawa, Riko; Jiang, Xianzhen; Tang, Yuxin; Yang, Jianfu

    2016-01-01

    Human testis development-related gene 1 (TDRG1) is a recently identified gene that is expressed exclusively in the testes and promotes the development of testicular germ cell tumors. In this study, the role of TDRG1 in the development of testicular seminoma, which is the most common testicular germ cell tumor, was further investigated. Based on polymerase chain reaction, Western blotting, and immunohistochemistry tests, both gene and protein expression levels of TDRG1 were significantly upregulated in testicular seminoma tissues compared with normal testicular tissues. Additionally, the levels of phosphoinositide-3 kinase (PI3K)/p110 and Akt phosphorylation were dramatically upregulated in testicular seminoma tissues. Accordingly, in our cell experiment, seminoma TCam-2 cells were subjected to different treatments: the TDRG1 knockout, TDRG1 overexpression, PI3K inhibition (LY294002 administration), or PI3K activation (insulin-like growth factor-1 administration). Cell proliferation, the proliferation index, apoptosis rate, cell adhesive capacity, and cell invasion capability were assessed. Cells with both TDRG1 knockout and PI3K inhibition exhibited decreased cell proliferation, proliferation indexes, cell adhesion capacity, and cell invasion capability and increased apoptosis rates. Most of these effects were reversed by TDRG1 overexpression or PI3K activation, indicating that both TDRG1- and PI3K-mediated signaling promote proliferation and invasion of testicular seminoma cells. The knockout of TDRG1 significantly decreased the phosphorylation levels of PI3K/p85, PI3K/p110, Akt, and mammalian target of rapamycin (mTOR; Ser(2448)). Except for PI3K/p110, TDRG1 overexpression had the opposite effects on phosphorylation levels. Phosphorylated mTOR at Ser(2481) and Thr(2446) was not affected by TDRG1 or PI3K in our tests. Thus, these results indicate that TDRG1 promotes the development and migration of seminoma cells via the regulation of the PI3K/Akt/mTOR signaling

  4. Pharmacodynamic Biomarker Development for PI3K Pathway Therapeutics

    PubMed Central

    Josephs, Debra H.; Sarker, Debashis

    2015-01-01

    The phosphatidylinositol 3-kinase (PI3K) signaling pathway is integral to many essential cell processes, including cell growth, differentiation, proliferation, motility, and metabolism. Somatic mutations and genetic amplifications that result in activation of the pathway are frequently detected in cancer. This has led to the development of rationally designed therapeutics targeting key members of the pathway. Critical to the successful development of these drugs are pharmacodynamic biomarkers that aim to define the degree of target and pathway inhibition. In this review, we discuss the pharmacodynamic biomarkers that have been utilized in early-phase clinical trials of PI3K pathway inhibitors. We focus on the challenges related to development and interpretation of these assays, their optimal integration with pharmacokinetic and predictive biomarkers, and future strategies to ensure successful development of PI3K pathway inhibitors within a personalized medicine paradigm for cancer. PMID:26917948

  5. Activation of the PI3K/Akt signal transduction pathway and increased levels of insulin receptor in protein repair-deficient mice.

    PubMed

    Farrar, Christine; Houser, Carolyn R; Clarke, Steven

    2005-02-01

    Protein L-isoaspartate (D-aspartate) O-methyltransferase is an enzyme that catalyses the repair of isoaspartyl damage in proteins. Mice lacking this enzyme (Pcmt1-/- mice) have a progressive increase in brain size compared with wild-type mice (Pcmt1+/+ mice), a phenotype that can be associated with alterations in the PI3K/Akt signal transduction pathway. Here we show that components of this pathway, including Akt, GSK3beta and PDK-1, are more highly phosphorylated in the brains of Pcmt1-/- mice, particularly in cells of the hippocampus, in comparison with Pcmt1+/+ mice. Examination of upstream elements of this pathway in the hippocampus revealed that Pcmt1-/- mice have increased activation of insulin-like growth factor-I (IGF-I) receptor and/or insulin receptor. Western blot analysis revealed an approximate 200% increase in insulin receptor protein levels and an approximate 50% increase in IGF-I receptor protein levels in the hippocampus of Pcmt1-/- mice. Higher levels of the insulin receptor protein were also found in other regions of the adult brain and in whole tissue extracts of brain, liver, heart and testes of both juvenile and adult Pcmt1-/- mice. There were no significant differences in plasma insulin levels for adult Pcmt1-/- mice during glucose tolerance tests. However, they did show higher peak levels of blood glucose, suggesting a mild impairment in glucose tolerance. We propose that Pcmt1-/- mice have altered regulation of the insulin pathway, possibly as a compensatory response to altered glucose uptake or metabolism or as an adaptive response to a general accumulation of isoaspartyl protein damage in the brain and other tissues. PMID:15659208

  6. PI3K{gamma} activation by CXCL12 regulates tumor cell adhesion and invasion

    SciTech Connect

    Monterrubio, Maria; Mellado, Mario; Carrera, Ana C.

    2009-10-16

    Tumor dissemination is a complex process, in which certain steps resemble those in leukocyte homing. Specific chemokine/chemokine receptor pairs have important roles in both processes. CXCL12/CXCR4 is the most commonly expressed chemokine/chemokine receptor pair in human cancers, in which it regulates cell adhesion, extravasation, metastatic colonization, angiogenesis, and proliferation. All of these processes require activation of signaling pathways that include G proteins, phosphatidylinositol-3 kinase (PI3K), JAK kinases, Rho GTPases, and focal adhesion-associated proteins. We analyzed these pathways in a human melanoma cell line in response to CXCL12 stimulation, and found that PI3K{gamma} regulates tumor cell adhesion through mechanisms different from those involved in cell invasion. Our data indicate that, following CXCR4 activation after CXCL12 binding, the invasion and adhesion processes are regulated differently by distinct downstream events in these signaling cascades.

  7. Roles of the PI3K/Akt pathway in Epstein-Barr virus-induced cancers and therapeutic implications.

    PubMed

    Chen, Jiezhong

    2012-12-12

    Viruses have been shown to be responsible for 10%-15% of cancer cases. Epstein-Barr virus (EBV) is the first virus to be associated with human malignancies. EBV can cause many cancers, including Burkett's lymphoma, Hodgkin's lymphoma, post-transplant lymphoproliferative disorders, nasopharyngeal carcinoma and gastric cancer. Evidence shows that phosphoinositide 3-kinase/protein kinase B (PI3K/Akt) plays a key role in EBV-induced malignancies. The main EBV oncoproteins latent membrane proteins (LMP) 1 and LMP2A can activate the PI3K/Akt pathway, which, in turn, affects cell survival, apoptosis, proliferation and genomic instability via its downstream target proteins to cause cancer. It has also been demonstrated that the activation of the PI3K/Akt pathway can result in drug resistance to chemotherapy. Thus, the inhibition of this pathway can increase the therapeutic efficacy of EBV-associated cancers. For example, PI3K inhibitor Ly294002 has been shown to increase the effect of 5-fluorouracil in an EBV-associated gastric cancer cell line. At present, dual inhibitors of PI3K and its downstream target mammalian target of rapamycin have been used in clinical trials and may be included in treatment regimens for EBV-associated cancers. PMID:24175221

  8. Total saponin from Korean Red Ginseng inhibits binding of adhesive proteins to glycoprotein IIb/IIIa via phosphorylation of VASP (Ser157) and dephosphorylation of PI3K and Akt

    PubMed Central

    Kwon, Hyuk-Woo; Shin, Jung-Hae; Cho, Hyun-Jeong; Rhee, Man Hee; Park, Hwa-Jin

    2015-01-01

    Background Binding of adhesive proteins (i.e., fibrinogen, fibronectin, vitronectin) to platelet integrin glycoprotein IIb/IIIa (αIIb/β3) by various agonists (thrombin, collagen, adenosine diphosphate) involve in strength of thrombus. This study was carried out to evaluate the antiplatelet effect of total saponin from Korean Red Ginseng (KRG-TS) by investigating whether KRG-TS inhibits thrombin-induced binding of fibrinogen and fibronectin to αIIb/β3. Methods We investigated the effect of KRG-TS on phosphorylation of vasodilator-stimulated phosphoprotein (VASP) and dephosphorylation of phosphatidylinositol 3-kinase (PI3K) and Akt, affecting binding of fibrinogen and fibronectin to αIIb/β3, and clot retraction. Results KRG-TS had an antiplatelet effect by inhibiting the binding of fibrinogen and fibronectin to αIIb/β3 via phosphorylation of VASP (Ser157), and dephosphorylation of PI3K and Akt on thrombin-induced platelet aggregation. Moreover, A-kinase inhibitor Rp-8-Br-cyclic adenosine monophosphates (cAMPs) reduced KRG-TS-increased VASP (Ser157) phosphorylation, and increased KRG-TS-inhibited fibrinogen-, and fibronectin-binding to αIIb/β3. These findings indicate that KRG-TS interferes with the binding of fibrinogen and fibronectin to αIIb/β3 via cAMP-dependent phosphorylation of VASP (Ser157). In addition, KRG-TS decreased the rate of clot retraction, reflecting inhibition of αIIb/β3 activation. In this study, we clarified ginsenoside Ro (G-Ro) in KRG-TS inhibited thrombin-induced platelet aggregation via both inhibition of [Ca2+]i mobilization and increase of cAMP production. Conclusion These results strongly indicate that KRG-TS is a beneficial herbal substance inhibiting fibrinogen-, and fibronectin-binding to αIIb/β3, and clot retraction, and may prevent platelet αIIb/β3-mediated thrombotic disease. In addition, we demonstrate that G-Ro is a novel compound with antiplatelet characteristics of KRG-TS. PMID:26843825

  9. Shikonin promotes autophagy in BXPC-3 human pancreatic cancer cells through the PI3K/Akt signaling pathway

    PubMed Central

    SHI, SHUQING; CAO, HAIMEI

    2014-01-01

    The present study aimed to investigate the effect of shikonin on autophagy in BXPC-3 human pancreatic cancer cells and its underlying mechanism. Cell viability was assessed using the Cell Counting Kit-8 assay and the expression of light chain (LC) 3, p62, phosphoinositide 3-kinase (PI3K), Akt, phosphorylated (p)-PI3K and p-Akt was analyzed using western blot analysis. Following treatment with 1 μmol/l shikonin for 48 h and 2.5 and 5 μmol/l shikonin for 24 and 48 h, the viability of the BXPC-3 cells was found to be significantly reduced and the protein expression of LC3-II/LC3-I was observed to be increased, while the protein expression of p62, PI3K, Akt, p-PI3K and p-Akt was decreased. These findings suggest that shikonin promotes autophagy in BXPC-3 cells and that the underlying mechanism may be associated with the PI3K/Akt signaling pathway. PMID:25120662

  10. PI3K pathway alterations in cancer: variations on a theme

    PubMed Central

    Yuan, TL; Cantley, LC

    2012-01-01

    The high frequency of phosphoinositide 3-kinase (PI3K) pathway alterations in cancer has led to a surge in the development of PI3K inhibitors. Many of these targeted therapies are currently in clinical trials and show great promise for the treatment of PI3K-addicted tumors. These recent developments call for a re-evaluation of the oncogenic mechanisms behind PI3K pathway alterations. This pathway is unique in that every major node is frequently mutated or amplified in a wide variety of solid tumors. Receptor tyrosine kinases upstream of PI3K, the p110α catalytic subunit of PI3K, the downstream kinase, AKT, and the negative regulator, PTEN, are all frequently altered in cancer. In this review, we will examine the oncogenic properties of these genetic alterations to understand whether they are redundant or distinct and propose treatment strategies tailored for these genetic lesions. PMID:18794884

  11. PI3K/Akt pathway restricts epithelial adhesion of Dr+ Escherichia coli by down-regulating the expression of Decay Accelerating Factor (DAF)

    PubMed Central

    Banadakoppa, Manu; Goluszko, Pawel; Liebenthal, Daniel; Nowicki, Bogdan J.; Nowicki, Stella; Yallampalli, Chandra

    2014-01-01

    The urogenital microbial infection in pregnancy is an important cause of maternal and neonatal morbidity and mortality. Uropathogenic Escherichia coli strains which express Dr fimbriae (Dr+) are associated with unique gestational virulence and they utilize cell surface decay accelerating factor (DAF or CD55) as one of the cellular receptor before invading the epithelial cells. Previous studies in our laboratory established that nitric oxide reduces the rate of E. coli invasion by delocalizing the DAF protein from cell surface lipid rafts and down-regulating its expression. The phosphoinositide 3-kinase/ protein kinase B (PI3K/Akt) cell signal pathway plays an important role in host-microbe interaction because many bacteria including E. coli activate this pathway in order to establish infection. In the present study we showed that the PI3K/Akt pathway negatively regulates the expression of DAF on the epithelial cell surface and thus inhibits the adhesion of Dr+ E. coli to epithelial cells. Initially, using two human cell lines Ishikawa and HeLa which differ in constitutive activity of PI3K/Akt we showed that DAF levels were associated with the PI3K/Akt pathway. We then showed that the DAF gene expression was up-regulated and the Dr+ E. coli adhesion increased after the suppression of PI3K/Akt pathway in Ishikawa cells using inhibitor LY-294002, and a plasmid which allowed the expression of PI3K/Akt regulatory protein PTEN. The down-regulation of PTEN protein using PTEN-specific siRNA activated the PI3K/Akt pathway, down-regulated the DAF and decreased the adhesion of Dr+ E. coli. We conclude that the PI3K/Akt pathway regulated the DAF expression in a nitric oxide independent manner. PMID:24599886

  12. Reactivation of AKT signaling following treatment of cancer cells with PI3K inhibitors attenuates their antitumor effects

    SciTech Connect

    Dufour, Marc; Dormond-Meuwly, Anne; Pythoud, Catherine; Demartines, Nicolas; Dormond, Olivier

    2013-08-16

    Highlights: •PI3K inhibitors inhibit AKT only transiently. •Re-activation of AKT limits the anti-cancer effect of PI3K inhibitors. •The results suggest to combine PI3K and AKT inhibitors in cancer therapy. -- Abstract: Targeting the phosphatidylinositol-3-kinase (PI3K) is a promising approach in cancer therapy. In particular, PI3K blockade leads to the inhibition of AKT, a major downstream effector responsible for the oncogenic activity of PI3K. However, we report here that small molecule inhibitors of PI3K only transiently block AKT signaling. Indeed, treatment of cancer cells with PI3K inhibitors results in a rapid inhibition of AKT phosphorylation and signaling which is followed by the reactivation of AKT signaling after 48 h as observed by Western blot. Reactivation of AKT signaling occurs despite effective inhibition of PI3K activity by PI3K inhibitors. In addition, wortmannin, a broad range PI3K inhibitor, did not block AKT reactivation suggesting that AKT signals independently of PI3K. In a therapeutical perspective, combining AKT and PI3K inhibitors exhibit stronger anti-proliferative and pro-apoptotic effects compared to AKT or PI3K inhibitors alone. Similarly, in a tumor xenograft mouse model, concomitant PI3K and AKT blockade results in stronger anti-cancer activity compared with either blockade alone. This study shows that PI3K inhibitors only transiently inhibit AKT which limits their antitumor activities. It also provides the proof of concept to combine PI3K inhibitors with AKT inhibitors in cancer therapy.

  13. Nuclear PI3K signaling in cell growth and tumorigenesis

    PubMed Central

    Davis, William J.; Lehmann, Peter Z.; Li, Weimin

    2015-01-01

    The PI3K/Akt signaling pathway is a major driving force in a variety of cellular functions. Dysregulation of this pathway has been implicated in many human diseases including cancer. While the activity of the cytoplasmic PI3K/Akt pathway has been extensively studied, the functions of these molecules and their effector proteins within the nucleus are poorly understood. Harboring key cellular processes such as DNA replication and repair as well as nascent messenger RNA transcription, the nucleus provides a unique compartmental environment for protein–protein and protein–DNA/RNA interactions required for cell survival, growth, and proliferation. Here we summarize recent advances made toward elucidating the nuclear PI3K/Akt signaling cascade and its key components within the nucleus as they pertain to cell growth and tumorigenesis. This review covers the spatial and temporal localization of the major nuclear kinases having PI3K activities and the counteracting phosphatases as well as the role of nuclear PI3K/Akt signaling in mRNA processing and exportation, DNA replication and repair, ribosome biogenesis, cell survival, and tumorigenesis. PMID:25918701

  14. mTOR inhibition elicits a dramatic response in PI3K-dependent colon cancers.

    PubMed

    Deming, Dustin A; Leystra, Alyssa A; Farhoud, Mohammed; Nettekoven, Laura; Clipson, Linda; Albrecht, Dawn; Washington, Mary Kay; Sullivan, Ruth; Weichert, Jamey P; Halberg, Richard B

    2013-01-01

    The phosphatidylinositide-3-kinase (PI3K) signaling pathway is critical for multiple cellular functions including metabolism, proliferation, angiogenesis, and apoptosis, and is the most commonly altered pathway in human cancers. Recently, we developed a novel mouse model of colon cancer in which tumors are initiated by a dominant active PI3K (FC PIK3ca). The cancers in these mice are moderately differentiated invasive mucinous adenocarcinomas of the proximal colon that develop by 50 days of age. Interestingly, these cancers form without a benign intermediary or aberrant WNT signaling, indicating a non-canonical mechanism of tumorigenesis. Since these tumors are dependent upon the PI3K pathway, we investigated the potential for tumor response by the targeting of this pathway with rapamycin, an mTOR inhibitor. A cohort of FC PIK3ca mice were treated with rapamycin at a dose of 6 mg/kg/day or placebo for 14 days. FDG dual hybrid PET/CT imaging demonstrated a dramatic tumor response in the rapamycin arm and this was confirmed on necropsy. The tumor tissue remaining after treatment with rapamycin demonstrated increased pERK1/2 or persistent phosphorylated ribosomal protein S6 (pS6), indicating potential resistance mechanisms. This unique model will further our understanding of human disease and facilitate the development of therapeutics through pharmacologic screening and biomarker identification. PMID:23593290

  15. Targeting the PI3K/AKT/mTOR Signaling Axis in Children with Hematologic Malignancies

    PubMed Central

    Barrett, David; Brown, Valerie I.; Grupp, Stephan A.; Teachey, David T.

    2014-01-01

    The phosphatidylinositiol 3-kinase (PI3K), AKT, mammalian target of rapamycin (mTOR) signaling pathway (PI3K/AKT/mTOR) is frequently dysregulated in disorders of cell growth and survival, including a number of pediatric hematologic malignancies. The pathway can be abnormally activated in childhood acute lymphoblastic leukemia (ALL), acute myelogenous leukemia (AML), and chronic myelogenous leukemia (CML), as well as in some pediatric lymphomas and lymphoproliferative disorders. Most commonly, this abnormal activation occurs as a consequence of constitutive activation of AKT, providing a compelling rationale to target this pathway in many of these conditions. A variety of agents, beginning with the rapamycin analogue (rapalog) sirolimus, have been used successfully to target this pathway in a number of pediatric hematologic malignancies. Rapalogs demonstrate significant preclinical activity against ALL, which has led to a number of clinical trials. Moreover, rapalogs can synergize with a number of conventional cytotoxic agents and overcome pathways of chemotherapeutic resistance for drugs commonly used in ALL treatment, including methotrexate and corticosteroids. Based on preclinical data, rapalogs are also being studied in AML, CML, and non-Hodgkin’s lymphoma. Recently, significant progress has been made using rapalogs to treat pre-malignant lymphoproliferative disorders, including the autoimmune lymphoproliferative syndrome (ALPS); complete remissions in children with otherwise therapy-resistant disease have been seen. Rapalogs only block one component of the pathway (mTORC1), and newer agents are under preclinical and clinical development that can target different and often multiple protein kinases in the PI3K/AKT/mTOR pathway. Most of these agents have been tolerated in early-phase clinical trials. A number of PI3K inhibitors are under investigation. Of note, most of these also target other protein kinases. Newer agents are under development that target both m

  16. Sur8/Shoc2 promotes cell motility and metastasis through activation of Ras-PI3K signaling

    PubMed Central

    Kaduwal, Saluja; Jeong, Woo-Jeong; Park, Jong-Chan; Lee, Kug Hwa; Lee, Young-Mi; Jeon, Soung-Hoo; Lim, Yong-Beom; Min, Do Sik; Choi, Kang-Yell

    2015-01-01

    Sur8 (also known as Shoc2) is a Ras-Raf scaffold protein that modulates signaling through extracellular signal-regulated kinase (ERK) pathway. Although Sur8 has been shown to be a scaffold protein of the Ras-ERK pathway, its interaction with other signaling pathways and its involvement in tumor malignancy has not been reported. We identified that Sur8 interacts with the p110α subunit of phosphatidylinositol 3-kinase (PI3K), as well as with Ras and Raf, and these interactions are increased in an epidermal growth factor (EGF)- and oncogenic Ras-dependent manner. Sur8 regulates cell migration and invasion via activation of Rac and matrix metalloproteinases (MMPs). Interestingly, using inhibitors of MEK and PI3K we found Sur8 mediates these cellular behaviors predominantly through PI3K pathway. We further found that human metastatic melanoma tissues had higher Sur8 content followed by activations of Akt, ERK, and Rac. Lentivirus-mediated Sur8-knockdown attenuated metastatic potential of highly invasive B16-F10 melanoma cells indicating the role of Sur8 in melanoma metastasis. This is the first report to identify the role of scaffold protein Sur8 in regulating cell motility, invasion, and metastasis through activation of both ERK and PI3K pathways. PMID:26384305

  17. Aged black garlic extract inhibits HT29 colon cancer cell growth via the PI3K/Akt signaling pathway.

    PubMed

    Dong, Menghua; Yang, Guiqing; Liu, Hanchen; Liu, Xiaoxu; Lin, Sixiang; Sun, Dongning; Wang, Yishan

    2014-03-01

    Accumulating evidence indicates that aged black garlic extract (ABGE) may prove beneficial in preventing or inhibiting oncogenesis; however, the underlying mechanisms have not been fully elucidated. The present study aimed to investigate the effects of ABGE on the proliferation and apoptosis of HT29 colon cancer cells. Our results demonstrated that ABGE inhibited HT29 cell growth via the induction of apoptosis and cell cycle arrest. We further investigated the phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) signal transduction pathway and the molecular mechanisms underlying the ABGE-induced inhibition of HT29 cell proliferation. We observed that ABGE may regulate the function of the PI3K/Akt pathway through upregulating PTEN and downregulating Akt and p-Akt expression, as well as suppressing its downstream target, 70-kDa ribosomal protein S6 kinase 1, at the mRNA and protein levels. In conclusion, these findings suggest that the PI3K/Akt signal transduction pathway is crucial for the development of colon cancer. ABGE inhibited the growth and induced apoptosis in HT29 cells through the inhibition of the PI3K/Akt pathway, suggesting that ABGE may be effective in the prevention and treatment of colon cancer in humans. PMID:24649105

  18. Endothelial PI3K-C2α, a class II PI3K, has an essential role in angiogenesis and vascular barrier function.

    PubMed

    Yoshioka, Kazuaki; Yoshida, Kotaro; Cui, Hong; Wakayama, Tomohiko; Takuwa, Noriko; Okamoto, Yasuo; Du, Wa; Qi, Xun; Asanuma, Ken; Sugihara, Kazushi; Aki, Sho; Miyazawa, Hidekazu; Biswas, Kuntal; Nagakura, Chisa; Ueno, Masaya; Iseki, Shoichi; Schwartz, Robert J; Okamoto, Hiroshi; Sasaki, Takehiko; Matsui, Osamu; Asano, Masahide; Adams, Ralf H; Takakura, Nobuyuki; Takuwa, Yoh

    2012-10-01

    The class II α-isoform of phosphatidylinositol 3-kinase (PI3K-C2α) is localized in endosomes, the trans-Golgi network and clathrin-coated vesicles; however, its functional role is not well understood. Global or endothelial-cell-specific deficiency of PI3K-C2α resulted in embryonic lethality caused by defects in sprouting angiogenesis and vascular maturation. PI3K-C2α knockdown in endothelial cells resulted in a decrease in the number of PI3-phosphate-enriched endosomes, impaired endosomal trafficking, defective delivery of VE-cadherin to endothelial cell junctions and defective junction assembly. PI3K-C2α knockdown also impaired endothelial cell signaling, including vascular endothelial growth factor receptor internalization and endosomal RhoA activation. Together, the effects of PI3K-C2α knockdown led to defective endothelial cell migration, proliferation, tube formation and barrier integrity. Endothelial PI3K-C2α deficiency in vivo suppressed postischemic and tumor angiogenesis and diminished vascular barrier function with a greatly augmented susceptibility to anaphylaxis and a higher incidence of dissecting aortic aneurysm formation in response to angiotensin II infusion. Thus, PI3K-C2α has a crucial role in vascular formation and barrier integrity and represents a new therapeutic target for vascular disease. PMID:22983395

  19. The Human Adenovirus E4-ORF1 Protein Subverts Discs Large 1 to Mediate Membrane Recruitment and Dysregulation of Phosphatidylinositol 3-Kinase

    PubMed Central

    Kong, Kathleen; Kumar, Manish; Taruishi, Midori; Javier, Ronald T.

    2014-01-01

    Adenoviruses infect epithelial cells lining mucous membranes to cause acute diseases in people. They are also utilized as vectors for vaccination and for gene and cancer therapy, as well as tools to discover mechanisms of cancer due to their tumorigenic potential in experimental animals. The adenovirus E4-ORF1 gene encodes an oncoprotein that promotes viral replication, cell survival, and transformation by activating phosphatidylinositol 3-kinase (PI3K). While the mechanism of activation is not understood, this function depends on a complex formed between E4-ORF1 and the membrane-associated cellular PDZ protein Discs Large 1 (Dlg1), a common viral target having both tumor suppressor and oncogenic functions. Here, we report that in human epithelial cells, E4-ORF1 interacts with the regulatory and catalytic subunits of PI3K and elevates their levels. Like PI3K activation, PI3K protein elevation by E4-ORF1 requires Dlg1. We further show that Dlg1, E4-ORF1, and PI3K form a ternary complex at the plasma membrane. At this site, Dlg1 also co-localizes with the activated PI3K effector protein Akt, indicating that the ternary complex mediates PI3K signaling. Signifying the functional importance of the ternary complex, the capacity of E4-ORF1 to induce soft agar growth and focus formation in cells is ablated either by a mutation that prevents E4-ORF1 binding to Dlg1 or by a PI3K inhibitor drug. These results demonstrate that E4-ORF1 interacts with Dlg1 and PI3K to assemble a ternary complex where E4-ORF1 hijacks the Dlg1 oncogenic function to relocate cytoplasmic PI3K to the membrane for constitutive activation. This novel mechanism of Dlg1 subversion by adenovirus to dysregulate PI3K could be used by other pathogenic viruses, such as human papillomavirus, human T-cell leukemia virus type 1, and influenza A virus, which also target Dlg1 and activate PI3K in cells. PMID:24788832

  20. Mesomesenchymal transition of pleural mesothelial cells is PI3K and NF-κB dependent.

    PubMed

    Owens, Shuzi; Jeffers, Ann; Boren, Jake; Tsukasaki, Yoshikazu; Koenig, Kathleen; Ikebe, Mitsuo; Idell, Steven; Tucker, Torry A

    2015-06-15

    Pleural organization follows acute injury and is characterized by pleural fibrosis, which may involve the visceral and parietal pleural surfaces. This process affects patients with complicated parapneumonic pleural effusions, empyema, and other pleural diseases prone to pleural fibrosis and loculation. Pleural mesothelial cells (PMCs) undergo a process called mesothelial mesenchymal transition (MesoMT), by which PMCs acquire a profibrotic phenotype characterized by cellular enlargement and elongation, increased expression of α-smooth muscle actin (α-SMA), and matrix proteins including collagen-1. Although MesoMT contributes to pleural fibrosis and lung restriction in mice with carbon black/bleomycin-induced pleural injury and procoagulants and fibrinolytic proteases strongly induce MesoMT in vitro, the mechanism by which this transition occurs remains unclear. We found that thrombin and plasmin potently induce MesoMT in vitro as does TGF-β. Furthermore, these mediators of MesoMT activate phosphatidylinositol-3-kinase (PI3K)/Akt and NF-κB signaling pathways. Inhibition of PI3K/Akt signaling prevented TGF-β-, thrombin-, and plasmin-mediated induction of the MesoMT phenotype exhibited by primary human PMCs. Similar effects were demonstrated through blockade of the NF-κB signaling cascade using two distinctly different NF-κB inhibitors, SN50 and Bay-11 7085. Conversely, expression of constitutively active Akt-induced mesenchymal transition in human PMCs whereas the process was blocked by PX866 and AKT8. Furthermore, thrombin-mediated MesoMT is dependent on PAR-1 expression, which is linked to PI3K/Akt signaling downstream. These are the first studies to demonstrate that PI3K/Akt and/or NF-κB signaling is critical for induction of MesoMT. PMID:25888576

  1. PIK3CA mutations can initiate pancreatic tumorigenesis and are targetable with PI3K inhibitors

    PubMed Central

    Payne, S N; Maher, M E; Tran, N H; Van De Hey, D R; Foley, T M; Yueh, A E; Leystra, A A; Pasch, C A; Jeffrey, J J; Clipson, L; Matkowskyj, K A; Deming, D A

    2015-01-01

    Aberrations in the phosphoinositide 3-kinase (PI3K) signaling pathway have a key role in the pathogenesis of numerous cancers by altering cell growth, metabolism, proliferation and apoptosis. Interest in targeting the PI3K signaling cascade continues, as new agents are being clinically evaluated. PIK3CA mutations result in a constitutively active PI3K and are present in a subset of pancreatic cancers. Here we examine mutant PIK3CA-mediated pancreatic tumorigenesis and the response of PIK3CA mutant pancreatic cancers to dual PI3K/mammalian target of rapamycin (mTOR) inhibition. Two murine models were generated expressing a constitutively active PI3K within the pancreas. An increase in acinar-to-ductal metaplasia and pancreatic intraepithelial neoplasms (PanINs) was identified. In one model these lesions were detected as early as 10 days of age. Invasive pancreatic ductal adenocarcinoma developed in these mice as early as 20 days of age. These cancers were highly sensitive to treatment with dual PI3K/mTOR inhibition. In the second model, PanINs and invasive cancer develop with a greater latency owing to a lesser degree of PI3K pathway activation in this murine model. In addition to PI3K pathway activation, increased ERK1/2 signaling is common in human pancreatic cancers. Phosphorylation of ERK1/2 was also investigated in these models. Phosphorylation of ERK1/2 is demonstrated in the pre-neoplastic lesions and invasive cancers. This activation of ERK1/2 is diminished with dual PI3K/mTOR inhibition. In summary, PIK3CA mutations can initiate pancreatic tumorigenesis and these cancers are particularly sensitive to dual PI3K/mTOR inhibition. Future studies of PI3K pathway inhibitors for patients with PIK3CA mutant pancreatic cancers are warranted. PMID:26436951

  2. The PI3K/AKT pathway in the pathogenesis of prostate cancer.

    PubMed

    Chen, Huixing; Zhou, Lan; Wu, Xiaorong; Li, Rongbing; Wen, Jiling; Sha, Jianjun; Wen, Xiaofei

    2016-01-01

    Despite recent advances in our understanding of the biological behavior of prostate cancer (PCa), PCa is becoming the most common malignancy in men worldwide. The phosphatidylinositol 3-kinase (PI3K)/AKT pathway has been implicated in prostate carcinogenesis. Inflammatory cytokines (CCR9, IL-6, and TLR3) regulate PI3K/AKT signaling during apoptosis of PCa cells, and PI3K/AKT signaling participates with androgen-, 1alpha,25(OH)2-vitamin D3-, and prostaglandin-associated mechanisms and is regulated by ErbB, EGFR, and the HER family during cell growth. During metastasis of PCa cells, the PI3K/AKT/NF-kappaB/BMP-2-Smad axis, PTEN/PI3K/AKT pathway, and PI3K/AKT/mTOR signaling regulates tumor cell metastasis and invasion. The present review focuses on the PI3K/AKT signal pathway and discusses the role of the PI3K/AKT signal pathway in PCa tumorigenesis. PMID:27100493

  3. Drugging PI3K in cancer: refining targets and therapeutic strategies.

    PubMed

    Yap, Timothy A; Bjerke, Lynn; Clarke, Paul A; Workman, Paul

    2015-08-01

    The phosphatidylinositol-3 kinase (PI3K) pathway is one of the most frequently activated pathogenic signalling routes in human cancers, making it a rational and important target for innovative anticancer drug development and precision medicine. The three main classes of PI3K inhibitors currently in clinical testing comprise dual pan-Class I PI3K/mTOR inhibitors, pan-Class I PI3K inhibitors lacking significant mTOR activity and isoform-selective PI3K inhibitors. A major step forward in recent years is the progression of over 30 small molecule PI3K inhibitors into clinical trials and the first regulatory approval of the PI3Kδ inhibitor idelalisib for multiple B-cell malignancies. This review article focuses on the progress made in the discovery and development of novel PI3K inhibitors, with an emphasis on antitumour activity and tolerability profiles for agents that have entered clinical trials. We also discuss the key issues of drug resistance, patient selection approaches and rational targeted combinations. Finally, we envision the future development and use of PI3K inhibitors for the treatment of patients with a range of malignancies. PMID:26117819

  4. Drugging PI3K in cancer: refining targets and therapeutic strategies

    PubMed Central

    Yap, Timothy A; Bjerke, Lynn; Clarke, Paul A; Workman, Paul

    2015-01-01

    The phosphatidylinositol-3 kinase (PI3K) pathway is one of the most frequently activated pathogenic signalling routes in human cancers, making it a rational and important target for innovative anticancer drug development and precision medicine. The three main classes of PI3K inhibitors currently in clinical testing comprise dual pan-Class I PI3K/mTOR inhibitors, pan-Class I PI3K inhibitors lacking significant mTOR activity and isoform-selective PI3K inhibitors. A major step forward in recent years is the progression of over 30 small molecule PI3K inhibitors into clinical trials and the first regulatory approval of the PI3Kδ inhibitor idelalisib for multiple B-cell malignancies. This review article focuses on the progress made in the discovery and development of novel PI3K inhibitors, with an emphasis on antitumour activity and tolerability profiles for agents that have entered clinical trials. We also discuss the key issues of drug resistance, patient selection approaches and rational targeted combinations. Finally, we envision the future development and use of PI3K inhibitors for the treatment of patients with a range of malignancies. PMID:26117819

  5. Vav1 and PI3K are required for phagocytosis of beta-glucan and subsequent superoxide generation by microglia.

    PubMed

    Shah, Vaibhav B; Ozment-Skelton, Tammy R; Williams, David L; Keshvara, Lakhu

    2009-05-01

    Microglia are the resident innate immune cells that are critical for innate and adaptive immune responses within the CNS. They recognize and are activated by pathogen-associated molecular patterns (PAMPs) present on the surface of pathogens. beta-glucans, the major PAMP present within fungal cell walls, are recognized by Dectin-1, which mediates numerous intracellular events invoked by beta-glucans in various immune cells. Previously, we showed that Dectin-1 mediates phagocytosis of beta-glucan and subsequent superoxide production in microglia. Here, we report that the guanine nucleotide exchange factor Vav1 as well as phosphoinositide-3 kinase (PI3K) are downstream mediators of what is now recognized as the Dectin-1 signaling pathway. Both Vav1 and PI3K are activated upon stimulation of microglia with beta-glucans, and the two proteins are required for phagocytosis of the glucan particles and for subsequent superoxide production. We also show that Vav1 functions upstream of PI3K and is required for activation of PI3K. Together, our results provide an important insight into the mechanistic aspects of microglial activation in response to beta-glucans. PMID:19232731

  6. Sat-Nav for T cells: Role of PI3K isoforms and lipid phosphatases in migration of T lymphocytes.

    PubMed

    Ward, Stephen G; Westwick, John; Harris, Stephanie

    2011-07-01

    Phosphoinositide 3-kinase (PI3K)-dependent signaling has been placed at the heart of conserved biochemical mechanisms that facilitate cell migration of leukocytes in response to a range of chemoattractant stimuli. This review assesses the evidence for and against PI3K-dependent mechanisms of T lymphocyte migration and whether pharmacological targeting of PI3K isoforms is likely to offer potential benefit for T cell mediated pathologies. PMID:21333676

  7. PI3K – From the Bench to the Clinic and Back

    PubMed Central

    Vanhaesebroeck, Bart; Vogt, Peter K.; Rommel, Christian

    2010-01-01

    From humble beginnings over 25 years ago as a lipid kinase activity associated with certain oncoproteins, PI3K (phosphoinositide 3-kinase) has been catapulted to the forefront of drug development in cancer, immunity and thrombosis, with the first clinical trials of PI3K pathway inhibitors now in progress. Here we give a brief overview of some key discoveries in the PI3K area and their impact, and include thoughts on the current state of the field, and where it could go from here. PMID:20549473

  8. PI3K in cancer: divergent roles of isoforms, modes of activation, and therapeutic targeting

    PubMed Central

    Thorpe, Lauren M.; Yuzugullu, Haluk; Zhao, Jean J.

    2015-01-01

    Preface Phosphatidylinositol 3-Kinases (PI3Ks) are critical coordinators of intracellular signaling in response to extracellular stimuli. Hyperactivation of PI3K signaling cascades is one of the most common events in human cancers. In this Review, we discuss recent advances in our knowledge of the roles of distinct PI3K isoforms in normal and oncogenic signaling, the different ways in which PI3K can be upregulated, and the current state and future potential of targeting this pathway in the clinic. PMID:25533673

  9. Avian reovirus σA and σNS proteins activate the phosphatidylinositol 3-kinase-dependent Akt signalling pathway.

    PubMed

    Xie, Liji; Xie, Zhixun; Huang, Li; Fan, Qing; Luo, Sisi; Huang, Jiaoling; Deng, Xianwen; Xie, Zhiqin; Zeng, Tingting; Zhang, Yanfang; Wang, Sheng

    2016-08-01

    The present study was conducted to identify avian reovirus (ARV) proteins that can activate the phosphatidylinositol 3-kinase (PI3K)-dependent Akt pathway. Based on ARV protein amino acid sequence analysis, σA, σNS, μA, μB and μNS were identified as putative proteins capable of mediating PI3K/Akt pathway activation. The recombinant plasmids σA-pcAGEN, σNS-pcAGEN, μA-pcAGEN, μB-pcAGEN and μNS-pcAGEN were constructed and used to transfect Vero cells, and the expression levels of the corresponding genes were quantified by immunofluorescence and Western blot analysis. Phosphorylated Akt (P-Akt) levels in the transfected cells were measured by flow cytometry and Western blot analysis. The results showed that the σA, σNS, μA, μB and μNS genes were expressed in Vero cells. σA-expressing and σNS-expressing cells had higher P-Akt levels than negative control cells, pcAGEN-expressing cells and cells designed to express other proteins (i.e., μA, μB and μNS). Pre-treatment with the PI3K inhibitor LY294002 inhibited Akt phosphorylation in σA- and σNS-expressing cells. These results indicate that the σA and σNS proteins can activate the PI3K/Akt pathway. PMID:27233800

  10. PI3K/Akt signalling pathway and cancer.

    PubMed

    Fresno Vara, Juan Angel; Casado, Enrique; de Castro, Javier; Cejas, Paloma; Belda-Iniesta, Cristóbal; González-Barón, Manuel

    2004-04-01

    Phosphatidylinositol-3 kinases, PI3Ks, constitute a lipid kinase family characterized by their ability to phosphorylate inositol ring 3'-OH group in inositol phospholipids to generate the second messenger phosphatidylinositol-3,4,5-trisphosphate (PI-3,4,5-P(3)). RPTK activation results in PI(3,4,5)P(3) and PI(3,4)P(2) production by PI3K at the inner side of the plasma membrane. Akt interacts with these phospholipids, causing its translocation to the inner membrane, where it is phosphorylated and activated by PDK1 and PDK2. Activated Akt modulates the function of numerous substrates involved in the regulation of cell survival, cell cycle progression and cellular growth. In recent years, it has been shown that PI3K/Akt signalling pathway components are frequently altered in human cancers. Cancer treatment by chemotherapy and gamma-irradiation kills target cells primarily by the induction of apoptosis. However, the development of resistance to therapy is an important clinical problem. Failure to activate the apoptotic programme represents an important mode of drug resistance in tumor cells. Survival signals induced by several receptors are mediated mainly by PI3K/Akt, hence this pathway may decisively contribute to the resistant phenotype. Many of the signalling pathways involved in cellular transformation have been elucidated and efforts are underway to develop treatment strategies that target these specific signalling molecules or their downstream effectors. The PI3K/Akt pathway is involved in many of the mechanisms targeted by these new drugs, thus a better understanding of this crossroad can help to fully exploit the potential benefits of these new agents. PMID:15023437

  11. Ramentaceone, a Naphthoquinone Derived from Drosera sp., Induces Apoptosis by Suppressing PI3K/Akt Signaling in Breast Cancer Cells.

    PubMed

    Kawiak, Anna; Lojkowska, Ewa

    2016-01-01

    The phosphoinositide 3-kinase (PI3K) signaling pathway plays an important role in processes critical for breast cancer progression and its upregulation confers increased resistance of cancer cells to chemotherapy and radiation. The present study aimed at determining the activity of ramentaceone, a constituent of species in the plant genera Drosera, toward breast cancer cells and defining the involvement of PI3K/Akt inhibition in ramentaceone-mediated cell death induction. The results showed that ramentaceone exhibited high antiproliferative activity toward breast cancer cells, in particular HER2-overexpressing breast cancer cells. The mode of cell death induced by ramentaceone was through apoptosis as determined by cytometric analysis of caspase activity and Annexin V staining. Apoptosis induction was found to be mediated by inhibition of PI3K/Akt signaling and through targeting its downstream anti-apoptotic effectors. Ramentaceone inhibited PI3-kinase activity, reduced the expression of the PI3K protein and inhibited the phosphorylation of the Akt protein in breast cancer cells. The expression of the anti-apoptotic Bcl-2 protein was decreased and the levels of the pro-apoptotic proteins, Bax and Bak, were elevated. Moreover, inhibition of PI3K and silencing of Akt expression increased the sensitivity of cells to ramentaceone-induced apoptosis. In conclusion, our results indicate that ramentaceone induces apoptosis in breast cancer cells through PI3K/Akt signaling inhibition. These findings suggest further investigation of ramentaceone as a potential therapeutic agent in breast cancer therapy, in particular HER2-positive breast cancer. PMID:26840401

  12. Ramentaceone, a Naphthoquinone Derived from Drosera sp., Induces Apoptosis by Suppressing PI3K/Akt Signaling in Breast Cancer Cells

    PubMed Central

    Kawiak, Anna; Lojkowska, Ewa

    2016-01-01

    The phosphoinositide 3-kinase (PI3K) signaling pathway plays an important role in processes critical for breast cancer progression and its upregulation confers increased resistance of cancer cells to chemotherapy and radiation. The present study aimed at determining the activity of ramentaceone, a constituent of species in the plant genera Drosera, toward breast cancer cells and defining the involvement of PI3K/Akt inhibition in ramentaceone-mediated cell death induction. The results showed that ramentaceone exhibited high antiproliferative activity toward breast cancer cells, in particular HER2-overexpressing breast cancer cells. The mode of cell death induced by ramentaceone was through apoptosis as determined by cytometric analysis of caspase activity and Annexin V staining. Apoptosis induction was found to be mediated by inhibition of PI3K/Akt signaling and through targeting its downstream anti-apoptotic effectors. Ramentaceone inhibited PI3-kinase activity, reduced the expression of the PI3K protein and inhibited the phosphorylation of the Akt protein in breast cancer cells. The expression of the anti-apoptotic Bcl-2 protein was decreased and the levels of the pro-apoptotic proteins, Bax and Bak, were elevated. Moreover, inhibition of PI3K and silencing of Akt expression increased the sensitivity of cells to ramentaceone-induced apoptosis. In conclusion, our results indicate that ramentaceone induces apoptosis in breast cancer cells through PI3K/Akt signaling inhibition. These findings suggest further investigation of ramentaceone as a potential therapeutic agent in breast cancer therapy, in particular HER2-positive breast cancer. PMID:26840401

  13. 1,25-Dihydroxyvitamin D{sub 3} induces biphasic NF-{kappa}B responses during HL-60 leukemia cells differentiation through protein induction and PI3K/Akt-dependent phosphorylation/degradation of I{kappa}B

    SciTech Connect

    Tse, A.K.-W.; Wan, C.-K.; Shen, X.-L.; Zhu, G.-Y.; Cheung, H.-Y.; Yang, M.; Fong, W.-F. . E-mail: wffong@hkbu.edu.hk

    2007-05-01

    1,25-Dihydroxyvitamin D{sub 3} (VD{sub 3}) induces differentiation in a number of leukemia cell lines and under various conditions is able to either stimulate or inhibit nuclear factor kappa B (NF-{kappa}B) activity. Here we report a time-dependent biphasic regulation of NF-{kappa}B in VD{sub 3}-treated HL-60 leukemia cells. After VD{sub 3} treatment there was an early {approx} 4 h suppression and a late 8-72 h prolonged reactivation of NF-{kappa}B. The reactivation of NF-{kappa}B was concomitant with increased IKK activities, IKK-mediated I{kappa}B{alpha} phosphorylation, p65 phosphorylation at residues S276 and S536, p65 nuclear translocation and p65 recruitment to the NF-{kappa}B/vitamin D responsive element promoters. In parallel with NF-{kappa}B stimulation, there was an up-regulation of NF-{kappa}B controlled inflammatory and anti-apoptotic genes such as TNF{alpha}, IL-1{beta} and Bcl-xL. VD{sub 3}-triggered reactivation of NF-{kappa}B was associated with PI3K/Akt phosphorylation. PI3K/Akt antagonists suppressed VD{sub 3}-stimulated I{kappa}B{alpha} phosphorylation as well as NF-{kappa}B-controlled gene expression. The early {approx} 4 h VD{sub 3}-mediated NF-{kappa}B suppression coincided with a prolonged increase of I{kappa}B{alpha} protein which require de novo protein synthesis, lasted for as least 72 h and was insensitive to MAPK, IKK or PI3K/Akt inhibitors. Our data suggest a novel biphasic regulation of NF-{kappa}B in VD{sub 3}-treated leukemia cells and our results may have provided the first molecular explanation for the contradictory observations reported on VD{sub 3}-mediated immune-regulation.

  14. MicroRNA-21 promotes phosphatase gene and protein kinase B/phosphatidylinositol 3-kinase expression in colorectal cancer

    PubMed Central

    Sheng, Wei-Zhong; Chen, Yu-Sheng; Tu, Chuan-Tao; He, Juan; Zhang, Bo; Gao, Wei-Dong

    2016-01-01

    AIM: To explore the regulatory mechanism of the target gene of microRNA-21 (miR-21), phosphatase gene (PTEN), and its downstream proteins, protein kinase B (AKT) and phosphatidylinositol 3-kinase (PI3K), in colorectal cancer (CRC) cells. METHODS: Quantitative real-time PCR (qRT-PCR) and Western blot were used to detect the expression levels of miR-21 and PTEN in HCT116, HT29, Colo32 and SW480 CRC cell lines. Also, the expression levels of PTEN mRNA and its downstream proteins AKT and PI3K in HCT116 cells after downregulating miR-21 were investigated. RESULTS: Comparing the miR-21 expression in CRC cells, the expression levels of miR-21 were highest in HCT116 cells, and the expression levels of miR-21 were lowest in SW480 cells. In comparing miR-21 and PTEN expression in CRC cells, we found that the protein expression levels of miR-21 and PTEN were inversely correlated (P < 0.05); when miR-21 expression was reduced, mRNA expression levels of PTEN did not significantly change (P > 0.05), but the expression levels of its protein significantly increased (P < 0.05). In comparing the levels of PTEN protein and downstream AKT and PI3K in HCT116 cells after downregulation of miR-21 expression, the levels of AKT and PI3K protein expression significantly decreased (P < 0.05). CONCLUSION: PTEN is one of the direct target genes of miR-21. Thus, phosphatase gene and its downstream AKT and PI3K expression levels can be regulated by regulating the expression levels of miR-21, which in turn regulates the development of CRC. PMID:27350731

  15. Brain-derived Neurotrophic Factor Prevents Phencyclidine-induced Apoptosis in Developing Brain by Parallel Activation of both the ERK and PI-3K/Akt Pathways

    PubMed Central

    Xia, Yan; Wang, Cheng Z.; Liu, Jie; Anastasio, Noelle C.; Johnson, Kenneth M.

    2009-01-01

    Summary Phencyclidine is an N-methyl D-aspartate receptor (NMDAR) blocker that has been reported to induce neuronal apoptosis during development and schizophrenia-like behaviors in rats later in life. Brain derived neurotrophic factor (BDNF) has been shown to prevent neuronal death caused by NMDAR blockade, but the precise mechanism is unknown. This study examined the role of the phosphatidylinositol-3 kinase (PI3K)/Akt and extracellular signal-regulated kinase (ERK) pathways in BDNF protection of PCP-induced apoptosis in corticostriatal organotypic cultures. It was observed that BDNF inhibited PCP-induced apoptosis in a concentration dependent fashion. BDNF effectively prevented PCP-induced inhibition of the ERK and PI-3K/Akt pathways and suppressed GSK-3β activation. Blockade of either PI-3K/Akt or ERK activation abolished BDNF protection. Western blot analysis revealed that the PI-3K inhibitor LY294002 prevented the stimulating effect of BDNF on the PI-3K/Akt pathway, but had no effect on the ERK pathway. Similarly, the ERK inhibitor PD98059 prevented the stimulating effect of BDNF on the ERK pathway, but not the PI-3K/Akt pathway. Co-application of LY294002 and PD98059 had no additional effect on BDNF-evoked activation of Akt or ERK. However, concurrent exposure to PD98059 and LY294002 caused much greater inhibition of BDNF-evoked phosphorylation of GSK-3β at serine 9 than did LY294002 alone. Finally, either BDNF or GSK-3β inhibition prevented PCP-induced suppression of cyclic-AMP response element binding protein (CREB) phosphorylation. These data demonstrate that the protective effect of BDNF against PCP-induced apoptosis is mediated by parallel activation of the PI-3K/Akt and ERK pathways, most likely involves inhibition of GSK-3β and activation of CREB. PMID:19887077

  16. Combined inhibition of PI3K-related DNA damage response kinases and mTORC1 induces apoptosis in MYC-driven B-cell lymphomas.

    PubMed

    Shortt, Jake; Martin, Benjamin P; Newbold, Andrea; Hannan, Katherine M; Devlin, Jennifer R; Baker, Adele J; Ralli, Rachael; Cullinane, Carleen; Schmitt, Clemens A; Reimann, Maurice; Hall, Michael N; Wall, Meaghan; Hannan, Ross D; Pearson, Richard B; McArthur, Grant A; Johnstone, Ricky W

    2013-04-11

    Pharmacological strategies capable of directly targeting MYC are elusive. Previous studies have shown that MYC-driven lymphomagenesis is associated with mammalian target of rapamycin (mTOR) activation and a MYC-evoked DNA damage response (DDR) transduced by phosphatidylinositol-3-kinase (PI3K)-related kinases (DNA-PK, ATM, and ATR). Here we report that BEZ235, a multitargeted pan-PI3K/dual-mTOR inhibitor, potently killed primary Myc-driven B-cell lymphomas and human cell lines bearing IG-cMYC translocations. Using pharmacologic and genetic dissection of PI3K/mTOR signaling, dual DDR/mTORC1 inhibition was identified as a key mediator of apoptosis. Moreover, apoptosis was initiated at drug concentrations insufficient to antagonize PI3K/mTORC2-regulated AKT phosphorylation. p53-independent induction of the proapoptotic BH3-only protein BMF was identified as a mechanism by which dual DDR/mTORC1 inhibition caused lymphoma cell death. BEZ235 treatment induced apoptotic tumor regressions in vivo that correlated with suppression of mTORC1-regulated substrates and reduced H2AX phosphorylation and also with feedback phosphorylation of AKT. These mechanistic studies hold important implications for the use of multitargeted PI3K inhibitors in the treatment of hematologic malignancies. In particular, the newly elucidated role of PI3K-related DDR kinases in response to PI3K inhibitors offers a novel therapeutic opportunity for the treatment of hematologic malignancies with an MYC-driven DDR. PMID:23403624

  17. Deguelin-induced blockade of PI3K/protein kinase B/MAP kinase signaling in zebrafish and breast cancer cell lines is mediated by down-regulation of fibroblast growth factor receptor 4 activity.

    PubMed

    Wu, Wei; Hai, Yang; Chen, Lu; Liu, Rui-Jin; Han, Yu-Xiang; Li, Wen-Hao; Li, Song; Lin, Shuo; Wu, Xin-Rong

    2016-04-01

    Deguelin, a natural component derived from leguminous plants, has been used as pesticide in some regions. Accumulating evidence show that deguelin has promising chemopreventive and therapeutic activities against cancer cells. This study shows that low concentrations of deguelin can lead to significant delay in zebrafish embryonic development through growth inhibition and induction of apoptosis. Furthermore, we identified fibroblast growth factor receptor 4 (FGFR4) as the putative target of deguelin. The candidate was initially identified by a microarray approach and then validated through in vitro experiments using hormone-responsive (MCF-7) and nonresponsive (MDA-MB-231) human breast cancer cell lines. The results show that deguelin suppressed cell proliferation and induced apoptosis in both cancer cell lines, but not in Hs 578Bst cells, by blocking PI3K/AKT and mitogen-activated protein kinases (MAPK) signaling. The FGFR4 mRNA and protein level also diminished in a dose-dependent manner. Interestingly, we found that forced FGFR4 overexpression attenuated deguelin-induced proliferative suppression and apoptotic cell death in both zebrafish and MCF-7 cell lines, p-AKT and p-ERK levels were restored upon FGFR4 overexpression. Taken together, our results strongly suggest that deguelin inhibition of PI3K/AKT and MAPK signaling in zebrafish and breast cancer cell lines is partially mediated through down-regulation of FGFR4 activity. PMID:27069628

  18. The Heart Protection Effect of Alcalase Potato Protein Hydrolysate Is through IGF1R-PI3K-Akt Compensatory Reactivation in Aging Rats on High Fat Diets

    PubMed Central

    Hu, Wei-Syun; Ting, Wei-Jen; Chiang, Wen-Dee; Pai, Peiying; Yeh, Yu-Lan; Chang, Chung-Ho; Lin, Wan-Teng; Huang, Chih-Yang

    2015-01-01

    The prevalence of obesity is high in older adults. Alcalase potato protein hydrolysate (APPH), a nutraceutical food, might have greater benefits and be more economical than hypolipidemic drugs. In this study, serum lipid profiles and heart protective effects were evaluated in high fat diet (HFD) induced hyperlipidemia in aging rats treated with APPH (15, 45 and 75 mg/kg/day) and probucol (500 mg/kg/day). APPH treatments reduced serum triacylglycerol (TG), total cholesterol (TC), and low density lipoprotein (LDL) levels to the normal levels expressed in the control group. Additionally, the IGF1R-PI3K-Akt survival pathway was reactivated, and Fas-FADD (Fas-associated death domain) induced apoptosis was inhibited by APPH treatments (15 and 45 mg/kg/day) in HFD aging rat hearts. APPH (75 mg/kg/day) rather than probucol (500 mg/kg/day) treatment could reduce serum lipids without affecting HDL expression. The heart protective effect of APPH in aging rats with hyperlipidemia was through lowering serum lipids and enhancing the activation of the compensatory IGF1R-PI3K-Akt survival pathway. PMID:25950762

  19. The Heart Protection Effect of Alcalase Potato Protein Hydrolysate Is through IGF1R-PI3K-Akt Compensatory Reactivation in Aging Rats on High Fat Diets.

    PubMed

    Hu, Wei-Syun; Ting, Wei-Jen; Chiang, Wen-Dee; Pai, Peiying; Yeh, Yu-Lan; Chang, Chung-Ho; Lin, Wan-Teng; Huang, Chih-Yang

    2015-01-01

    The prevalence of obesity is high in older adults. Alcalase potato protein hydrolysate (APPH), a nutraceutical food, might have greater benefits and be more economical than hypolipidemic drugs. In this study, serum lipid profiles and heart protective effects were evaluated in high fat diet (HFD) induced hyperlipidemia in aging rats treated with APPH (15, 45 and 75 mg/kg/day) and probucol (500 mg/kg/day). APPH treatments reduced serum triacylglycerol (TG), total cholesterol (TC), and low density lipoprotein (LDL) levels to the normal levels expressed in the control group. Additionally, the IGF1R-PI3K-Akt survival pathway was reactivated, and Fas-FADD (Fas-associated death domain) induced apoptosis was inhibited by APPH treatments (15 and 45 mg/kg/day) in HFD aging rat hearts. APPH (75 mg/kg/day) rather than probucol (500 mg/kg/day) treatment could reduce serum lipids without affecting HDL expression. The heart protective effect of APPH in aging rats with hyperlipidemia was through lowering serum lipids and enhancing the activation of the compensatory IGF1R-PI3K-Akt survival pathway. PMID:25950762

  20. PI3K/Akt signaling pathway is involved in the neurotrophic effect of senegenin.

    PubMed

    Pi, Ting; Zhou, Xiao-Wen; Cai, Liang; Zhang, Wei; Su, Chao-Fen; Wu, Wu-Tian; Ren, Xiao-Ming; Luo, Huan-Min

    2016-02-01

    Neurodegenerative diseases are frequently associated with the loss of synapses and neurons. Senegenin, extracted from the Chinese herb Polygala tenuifolia Willd, was previously found to promote neurite outgrowth and neuronal survival in primary cultured rat cortical neurons. The aim of the present study was to investigate the underlying mechanisms of senegenin-induced neurotrophic effects on rat cortical neurons. Primary cortical rat neurons were treated with various pharmacological antagonists and with or without senegenin, and subjected to MTT and western blot analysis to explore the effects of senegenin on cell survival as well as the activation of signaling pathways. Neurite outgrowth and neuronal survival induced by senegenin were significantly inhibited by A2A receptor antagonist ZM241385 and specific phosphoinositide-3 kinase (PI3K) inhibitor LY294002, but not by tropomyosin receptor kinase A receptor inhibitor K252a, mitogen-activated protein kinase kinase inhibitor PD98059 or protein kinase C inhibitor GÖ6976. Furthermore, senegenin enhanced the phosphorylation of Akt, which was blocked by LY294002. The present study revealed that the PI3K/Akt signaling pathway may be involved in the neurotrophic effects of senegenin. PMID:26647727

  1. Pioglitazone inhibition of lipopolysaccharide-induced nitric oxide synthase is associated with altered activity of p38 MAP kinase and PI3K/Akt

    PubMed Central

    Xing, Bin; Xin, Tao; Hunter, Randy Lee; Bing, Guoying

    2008-01-01

    Background Previous studies have suggested that peroxisome proliferator activated receptor-gamma (PPAR-γ)-mediated neuroprotection involves inhibition of microglial activation and decreased expression and activity of inducible nitric oxide synthase (iNOS); however, the underlying molecular mechanisms have not yet been well established. In the present study we explored: (1) the effect of the PPAR-γ agonist pioglitazone on lipopolysaccharide (LPS)-induced iNOS activity and nitric oxide (NO) generation by microglia; (2) the differential role of p38 mitogen-activated protein kinase (p38 MAPK), c-Jun NH(2)-terminal kinase (JNK), and phosphoinositide 3-kinase (PI3K) on LPS-induced NO generation; and (3) the regulation of p38 MAPK, JNK, and PI3K by pioglitazone. Methods Mesencephalic neuron-microglia mixed cultures, and microglia-enriched cultures were treated with pioglitazone and/or LPS. The protein levels of iNOS, p38 MAPK, JNK, PPAR-γ, PI3K, and protein kinase B (Akt) were measured by western blot. Different specific inhibitors of iNOS, p38MAPK, JNK, PI3K, and Akt were used in our experiment, and NO generation was measured using a nitrite oxide assay kit. Tyrosine hydroxylase (TH)-positive neurons were counted in mesencephalic neuron-microglia mixed cultures. Results Our results showed that pioglitazone inhibits LPS-induced iNOS expression and NO generation, and inhibition of iNOS is sufficient to protect dopaminergic neurons against LPS insult. In addition, inhibition of p38 MAPK, but not JNK, prevented LPS-induced NO generation. Further, and of interest, pioglitazone inhibited LPS-induced phosphorylation of p38 MAPK. Wortmannin, a specific PI3K inhibitor, enhanced p38 MAPK phosphorylation upon LPS stimulation of microglia. Elevations of phosphorylated PPAR-γ, PI3K, and Akt levels were observed with pioglitazone treatment, and inhibition of PI3K activity enhanced LPS-induced NO production. Furthermore, wortmannin prevented the inhibitory effect of pioglitazone on

  2. PI3K-resistant GSK3 controls adiponectin formation and protects from metabolic syndrome.

    PubMed

    Chen, Hong; Fajol, Abul; Hoene, Miriam; Zhang, Bingbing; Schleicher, Erwin D; Lin, Yun; Calaminus, Carsten; Pichler, Bernd J; Weigert, Cora; Häring, Hans U; Lang, Florian; Föller, Michael

    2016-05-17

    Metabolic syndrome is characterized by insulin resistance, obesity, and dyslipidemia. It is the consequence of an imbalance between caloric intake and energy consumption. Adiponectin protects against metabolic syndrome. Insulin-induced signaling includes activation of PI3 kinase and protein kinase B (PKB)/Akt. PKB/Akt in turn inactivates glycogen synthase kinase (GSK) 3, a major regulator of metabolism. Here, we studied the significance of PI3K-dependent GSK3 inactivation for adiponectin formation in diet-induced metabolic syndrome. Mice expressing PI3K-insensitive GSK3 (gsk3(KI)) and wild-type mice (gsk3(WT)) were fed a high-fat diet. Compared with gsk3(WT) mice, gsk3(KI) mice were protected against the development of metabolic syndrome as evident from a markedly lower weight gain, lower total body and liver fat accumulation, better glucose tolerance, stronger hepatic insulin-dependent PKB/Akt phosphorylation, lower serum insulin, cholesterol, and triglyceride levels, as well as higher energy expenditure. Serum adiponectin concentration and the activity of transcription factor C/EBPα controlling the expression of adiponectin in adipose tissue was significantly higher in gsk3(KI) mice than in gsk3(WT) mice. Treatment with GSK3 inhibitor lithium significantly decreased the serum adiponectin concentration of gsk3(KI) mice and abrogated the difference in C/EBPα activity between the genotypes. Taken together, our data demonstrate that the expression of PI3K-insensitive GSK3 stimulates the production of adiponectin and protects from diet-induced metabolic syndrome. PMID:27140617

  3. Involvement of PI3K and MAPK Signaling in bcl-2-induced Vascular Endothelial Growth Factor Expression in Melanoma Cells

    PubMed Central

    Trisciuoglio, Daniela; Iervolino, Angela; Zupi, Gabriella; Del Bufalo, Donatella

    2005-01-01

    We have previously demonstrated that bcl-2 overexpression in tumor cells exposed to hypoxia increases the expression of vascular endothelial growth factor (VEGF) gene through the hypoxia-inducible factor-1 (HIF-1). In this article, we demonstrate that exposure of bcl-2 overexpressing melanoma cells to hypoxia induced phosphorylation of AKT and extracellular signal-regulated kinase (ERK)1/2 proteins. On the contrary, no modulation of these pathways by bcl-2 was observed under normoxic conditions. When HIF-1α expression was reduced by RNA interference, AKT and ERK1/2 phosphorylation were still induced by bcl-2. Pharmacological inhibition of mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3-kinase (PI3K) signaling pathways reduced the induction of VEGF and HIF-1 in response to bcl-2 overexpression in hypoxia. No differences were observed between control and bcl-2-overexpressing cells in normoxia, in terms of VEGF protein secretion and in response to PI3K and MAPK inhibitors. We also demonstrated that RNA interference-mediated down-regulation of bcl-2 expression resulted in a decrease in the ERK1/2 phosphorylation and VEGF secretion only in bcl-2-overexpressing cell exposed to hypoxia but not in control cells. In conclusion, our results indicate, for the first time, that bcl-2 synergizes with hypoxia to promote expression of angiogenesis factors in melanoma cells through both PI3K- and MAPK-dependent pathways. PMID:15987743

  4. Tregs utilize beta-galactoside-binding protein to transiently inhibit PI3K/p21ras activity of human CD8+ T cells to block their TCR-mediated ERK activity and proliferation.

    PubMed

    Baatar, Dolgor; Olkhanud, Purevdorj B; Wells, Valerie; Indig, Fred E; Mallucci, Livio; Biragyn, Arya

    2009-10-01

    Regulatory T cells (Tregs) and beta-galactoside-binding protein (betaGBP), a regulatory protein often found expressed at sites of immunological privilege, have similar functions. Their presence affects the outcome of harmful autoimmunity and cancers, including experimental autoimmune encephalomyelitis and malignant gliomas. Here we report a novel pathway by which Tregs express and utilize betaGBP to control CD8(+) T cell responses partially activating TCR signaling but blocking PI3K activity. As a result, this leads to a loss of p21(ras), ERK and Akt activities despite activation of TCR proximal signals, such as phosphorylation of CD3zeta, Zap70, Lat and PKCtheta. Although non-processive TCR signaling often leads to cell anergy, Tregs/betaGBP did not affect cell viability. Instead, betaGBP/Tregs transiently prevented activation of CD8(+) T cells with self-antigens, while keeping their responses to xenogeneic antigens unaffected. PMID:19520156

  5. Long-term p110α PI3K inactivation exerts a beneficial effect on metabolism

    PubMed Central

    Foukas, Lazaros C; Bilanges, Benoit; Bettedi, Lucia; Pearce, Wayne; Ali, Khaled; Sancho, Sara; Withers, Dominic J; Vanhaesebroeck, Bart

    2013-01-01

    The insulin/insulin-like growth factor-1 signalling (IIS) pathway regulates cellular and organismal metabolism and controls the rate of aging. Gain-of-function mutations in p110α, the principal mammalian IIS-responsive isoform of PI 3-kinase (PI3K), promote cancer. In contrast, loss-of-function mutations in p110α impair insulin signalling and cause insulin resistance, inducing a pre-diabetic state. It remains unknown if long-term p110α inactivation induces further metabolic deterioration over time, leading to overt unsustainable pathology. Surprisingly, we find that chronic p110α partial inactivation in mice protects from age-related reduction in insulin sensitivity, glucose tolerance and fat accumulation, and extends the lifespan of male mice. This beneficial effect of p110α inactivation derives in part from a suppressed down-regulation of insulin receptor substrate (IRS) protein levels induced by age-related hyperinsulinemia, and correlates with enhanced insulin-induced Akt signalling in aged p110α-deficient mice. This temporal metabolic plasticity upon p110α inactivation indicates that prolonged PI3K inhibition, as intended in human cancer treatment, might not negatively impact on organismal metabolism. PMID:23483710

  6. GLCCI1 is a novel component associated with the PI3K signaling pathway in podocyte foot processes

    PubMed Central

    Kim, Sang-Hoon; Kim, Hyun-Jung; Kim, Chan-Wha

    2016-01-01

    Podocyte foot processes are interdigitated to form the slit diaphragm and are crucial for the glomerular filtration barrier. Glucocorticoid-induced transcript 1 (GLCCI1) is transcriptionally regulated, but its signaling pathway in podocytes is unknown. The main objective of this study was to investigate the regulation of podocyte foot process proteins and to investigate the role of GLCCI1 in the phosphoinositide 3-kinase (PI3K) pathway using high glucose-induced podocytes and streptozotocin-induced diabetic rats. In podocytes and rat kidneys, GLCCI1 was found to be highly specific for the glomerulus and podocyte foot processes similar to other podocyte-specific proteins (nephrin, podocin, synatopodin and podocalyxin) based on reverse transcription-PCR, western blotting, immunofluorescence and immunoelectron microscopy analyses. In addition, the decrease in the GLCCI1 expression level under hyperglycemic conditions was restored by treatment with a PI3K inhibitor (wortmannin). Immunofluorescence analysis confirmed that GLCCI1 colocalized with nephrin and synaptopodin both in vivo and in vitro. Finally, immunoelectron microscopy data from streptozotocin-induced diabetic rats showed that GLCCI1 also localized in podocyte foot processes. Hence, GLCCI1 is a component of podocyte foot processes, and its expression appears to be regulated via the PI3K pathway. PMID:27174202

  7. DISC1 regulates expression of the neurotrophin VGF through the PI3K/AKT/CREB pathway.

    PubMed

    Rodríguez-Seoane, Carmen; Ramos, Adriana; Korth, Carsten; Requena, Jesús R

    2015-11-01

    Disrupted in schizophrenia (DISC1) is a risk factor for chronic mental disease. In a previous proteomic study, we reported that knocking down DISC1 results in a sharp decrease in the levels of the neuropeptide precursor VGF (non-acronymic) and leads to reduced activation of cAMP response element-binding protein (CREB) and protein kinase B (AKT) in neurons. The main objective of this study is to complete the characterization of the route, or routes, involving AKT and CREB through which DISC1 modulates the expression of VGF. For that we explored known players upstream of AKT and the DISC1 binding partners glycogen synthase kinase-3 beta and Phosphodiesterase-4, which might in turn reach out to CREB in murine neuron primary culture. We found that DISC1 modulates the activation of Phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K). Furthermore, pharmacological inhibition of PI3K resulted in decreased expression of VGF. All this suggests that the PI3K/AKT pathway plays a role in mediating the effects of DISC1 silencing on VGF expression. Given the important roles of VGF in mental disease, and its drugability, the DISC1-VGF connection might prove to be important for efforts to develop new therapies for these diseases. PMID:26212236

  8. Measurement of constitutive MAPK and PI3K/AKT signaling activity in human cancer cell lines

    PubMed Central

    Paraiso, Kim H.T.; Van Der Kooi, Kaisa; Messina, Jane L.; Smalley, Keiran S. M.

    2014-01-01

    The growth and survival of cancer cells is often driven by constitutive activity in the mitogen activated protein kinase (MAPK) and phospho-inositide 3-kinase (PI3K)/AKT signaling pathways. Activity in these signal transduction cascades is known to contribute to the uncontrolled growth and resistance to apoptosis that characterizes tumor progression. There is now a great deal of interest in therapeutically targeting these pathways in cancer using small molecule inhibitors. In this chapter we describe methods to measure constitutive MAPK and AKT activity in melanoma cell lines, with a focus upon Western blotting, phospho-flow cytometry and immunofluorescence staining techniques. PMID:21036250

  9. Estrogen increases Nrf2 activity through activation of the PI3K pathway in MCF-7 breast cancer cells

    SciTech Connect

    Wu, Juanjuan; Williams, Devin; Walter, Grant A.; Thompson, Winston E.; Sidell, Neil

    2014-11-01

    The actions of the transcription factor Nuclear factor erythroid 2-related factor (Nrf2) in breast cancer have been shown to include both pro-oncogenic and anti-oncogenic activities which is influenced, at least in part, by the hormonal environment. However, direct regulation of Nrf2 by steroid hormones (estrogen and progesterone) has received only scant attention. Nrf2 is known to be regulated by its cytosolic binding protein, Kelch-like ECH-associated protein 1 (Keap1), and by a Keap1-independent mechanism involving a series of phosphorylation steps mediated by phosphatidylinositol 3-kinase (PI3K) and glycogen synthase kinase 3 beta (GSK3β). Here, we report that estrogen (E2) increases Nrf2 activity in MCF7 breast cancer cells through activation of the PI3K/GSK3β pathway. Utilizing antioxidant response element (ARE)-containing luciferase reporter constructs as read-outs for Nrf2 activity, our data indicated that E2 increased ARE activity >14-fold and enhanced the action of the Nrf2 activators, tertiary butylhydroquinone (tBHQ) and sulforaphane (Sul) 4 to 9 fold compared with cells treated with tBHQ or Sul as single agents. This activity was shown to be an estrogen receptor-mediated phenomenon and was antagonized by progesterone. In addition to its action on the reporter constructs, mRNA and protein levels of heme oxygenase 1, an endogenous target gene of Nrf2, was markedly upregulated by E2 both alone and in combination with tBHQ. Importantly, E2-induced Nrf2 activation was completely suppressed by the PI3K inhibitors LY294002 and Wortmannin while the GSK3β inhibitor CT99021 upregulated Nrf2 activity. Confirmation that E2 was, at least partly, acting through the PI3K/GSK3β pathway was indicated by our finding that E2 increased the phosphorylation status of both GSK3β and Akt, a well-characterized downstream target of PI3K. Together, these results demonstrate a novel mechanism by which E2 can regulate Nrf2 activity in estrogen receptor-positive breast cancer

  10. Differential regulation of protrusion and polarity by PI(3)K during neutrophil motility in live zebrafish

    PubMed Central

    Yoo, Sa Kan; Deng, Qing; Cavnar, Peter J.; Wu, Yi I.; Hahn, Klaus M.; Huttenlocher, Anna

    2010-01-01

    Summary Cell polarity is crucial for directed migration. Here we show that phosphoinositide 3-kinase (PI(3)K) mediates neutrophil migration in vivo by differentially regulating cell protrusion and polarity. The dynamics of PI(3)K products PI(3,4,5)P3-PI(3,4)P2 during neutrophil migration were visualized in living zebrafish, revealing that PI(3)K activation at the leading edge is critical for neutrophil motility in intact tissues. A genetically encoded photoactivatable Rac was used to demonstrate that localized activation of Rac is sufficient to direct migration with precise temporal and spatial control in vivo. Similar stimulation of PI(3)K-inhibited cells did not direct migration. Localized Rac activation rescued membrane protrusion but not anteroposterior polarization of F-actin dynamics of PI(3)K-inhibited cells. Uncoupling Rac-mediated protrusion and polarization suggests a paradigm of two-tiered PI(3)K-mediated regulation of cell motility. This work provides new insight into how cell signaling at the front and back of the cell is coordinated during polarized cell migration in intact tissues within a multicellular organism. PMID:20159593

  11. The PI3K inhibitor taselisib overcomes letrozole resistance in a breast cancer model expressing aromatase

    PubMed Central

    Edgar, Kyle A.; O'Brien, Carol; Savage, Heidi; Wilson, Timothy R.; Neve, Richard M.; Friedman, Lori S.; Wallin, Jeffrey J.

    2016-01-01

    Letrozole is a commonly used treatment option for metastatic hormone receptor-positive (HR+) breast cancer, but many patients ultimately relapse. Due to the importance of phosphoinositide-3 kinase (PI3K) in breast cancer, PI3K inhibitors such as taselisib are attractive for combination with endocrine therapies such as letrozole. Taselisib was evaluated as a single agent and in combination with letrozole in a breast cancer cell line engineered to express aromatase. The combination of taselisib and letrozole decreased cellular viability and increased apoptosis relative to either single agent. Signaling cross-talk between the PI3K and ER pathways was associated with efficacy for the combination. In a secreted factor screen, multiple soluble factors, including members of the epidermal and fibroblast growth factor families, rendered breast cancer cells non-responsive to letrozole. It was discovered that many of these factors signal through the PI3K pathway and cells remained sensitive to taselisib in the presence of the soluble factors. We also found that letrozole resistant lines have elevated PI3K pathway signaling due to an increased level of p110α, but are still sensitive to taselisib. These data provide rationale for clinical evaluation of PI3K inhibitors to overcome resistance to endocrine therapies in ER+ breast cancer.

  12. Will targeting PI3K/Akt/mTOR signaling work in hematopoietic malignancies?

    PubMed Central

    Gao, Yanan; Yuan, Chase Y.

    2016-01-01

    The constitutive activation of phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/Akt/mTOR) signaling pathway has been demonstrated to be critical in clinical cancer patients as well as in laboratory cancer models including hematological malignancies. Great efforts have been made to develop inhibitors targeting this pathway in hematological malignancies but so far the efficacies of these inhibitors were not as good as expected. By analyzing existing literatures and datasets available, we found that mutations of genes in the pathway only constitute a very small subset of hematological malignancies. Deep understanding of the function of gene, the pathway and/or its regulators, and the cellular response to inhibitors, may help us design better drugs targeting the hematological malignancies. PMID:27583254

  13. PI3K isoform-selective inhibitors: next-generation targeted cancer therapies

    PubMed Central

    Wang, Xiang; Ding, Jian; Meng, Ling-hua

    2015-01-01

    The pivotal roles of phosphatidylinositol 3-kinases (PI3Ks) in human cancers have inspired active development of small molecules to inhibit these lipid kinases. However, the first-generation pan-PI3K and dual-PI3K/mTOR inhibitors have encountered problems in clinical trials, with limited efficacies as a monotherapeutic agent as well as a relatively high rate of side effects. It is increasingly recognized that different PI3K isoforms play non-redundant roles in particular tumor types, which has prompted the development of isoform-selective inhibitors for pre-selected patients with the aim for improving efficacy while decreasing undesirable side effects. The success of PI3K isoform-selective inhibitors is represented by CAL101 (Idelalisib), a first-in-class PI3Kδ-selective small-molecule inhibitor that has been approved by the FDA for the treatment of chronic lymphocytic leukemia, indolent B-cell non-Hodgkin's lymphoma and relapsed small lymphocytic lymphoma. Inhibitors targeting other PI3K isoforms are also being extensively developed. This review focuses on the recent progress in development of PI3K isoform-selective inhibitors for cancer therapy. A deeper understanding of the action modes of novel PI3K isoform-selective inhibitors will provide valuable information to further validate the concept of targeting specific PI3K isoforms, while the identification of biomarkers to stratify patients who are likely to benefit from the therapy will be essential for the success of these agents. PMID:26364801

  14. PI3K isoform-selective inhibitors: next-generation targeted cancer therapies.

    PubMed

    Wang, Xiang; Ding, Jian; Meng, Ling-hua

    2015-10-01

    The pivotal roles of phosphatidylinositol 3-kinases (PI3Ks) in human cancers have inspired active development of small molecules to inhibit these lipid kinases. However, the first-generation pan-PI3K and dual-PI3K/mTOR inhibitors have encountered problems in clinical trials, with limited efficacies as a monotherapeutic agent as well as a relatively high rate of side effects. It is increasingly recognized that different PI3K isoforms play non-redundant roles in particular tumor types, which has prompted the development of isoform-selective inhibitors for pre-selected patients with the aim for improving efficacy while decreasing undesirable side effects. The success of PI3K isoform-selective inhibitors is represented by CAL101 (Idelalisib), a first-in-class PI3Kδ-selective small-molecule inhibitor that has been approved by the FDA for the treatment of chronic lymphocytic leukemia, indolent B-cell non-Hodgkin's lymphoma and relapsed small lymphocytic lymphoma. Inhibitors targeting other PI3K isoforms are also being extensively developed. This review focuses on the recent progress in development of PI3K isoform-selective inhibitors for cancer therapy. A deeper understanding of the action modes of novel PI3K isoform-selective inhibitors will provide valuable information to further validate the concept of targeting specific PI3K isoforms, while the identification of biomarkers to stratify patients who are likely to benefit from the therapy will be essential for the success of these agents. PMID:26364801

  15. Arctigenin Increases Hemeoxygenase-1 Gene Expression by Modulating PI3K/AKT Signaling Pathway in Rat Primary Astrocytes

    PubMed Central

    Jeong, Yeon-Hui; Park, Jin-Sun; Kim, Dong-Hyun; Kim, Hee-Sun

    2014-01-01

    In the present study, we found that the natural compound arctigenin inhibited hydrogen peroxide-induced reactive oxygen species (ROS) production in rat primary astrocytes. Since hemeoxygenase-1 (HO-1) plays a critical role as an antioxidant defense factor in the brain, we examined the effect of arctigenin on HO-1 expression in rat primary astrocytes. We found that arctigenin increased HO-1 mRNA and protein levels. Arctigenin also increases the nuclear translocation and DNA binding of Nrf2/c-Jun to the antioxidant response element (ARE) on HO-1 promoter. In addition, arctigenin increased ARE-mediated transcriptional activities in rat primary astrocytes. Further mechanistic studies revealed that arctigenin increased the phosphorylation of AKT, a downstream substrate of phosphatidylinositol 3-kinase (PI3K). Treatment of cells with a PI3K-specific inhibitor, LY294002, suppressed the HO-1 expression, Nrf2 DNA binding and ARE-mediated transcriptional activities in arctigenin-treated astrocyte cells. The results collectively suggest that PI3K/AKT signaling pathway is at least partly involved in HO-1 expression by arctigenin via modulation of Nrf2/ARE axis in rat primary astrocytes. PMID:25489416

  16. Arctigenin Increases Hemeoxygenase-1 Gene Expression by Modulating PI3K/AKT Signaling Pathway in Rat Primary Astrocytes.

    PubMed

    Jeong, Yeon-Hui; Park, Jin-Sun; Kim, Dong-Hyun; Kim, Hee-Sun

    2014-11-01

    In the present study, we found that the natural compound arctigenin inhibited hydrogen peroxide-induced reactive oxygen species (ROS) production in rat primary astrocytes. Since hemeoxygenase-1 (HO-1) plays a critical role as an antioxidant defense factor in the brain, we examined the effect of arctigenin on HO-1 expression in rat primary astrocytes. We found that arctigenin increased HO-1 mRNA and protein levels. Arctigenin also increases the nuclear translocation and DNA binding of Nrf2/c-Jun to the antioxidant response element (ARE) on HO-1 promoter. In addition, arctigenin increased ARE-mediated transcriptional activities in rat primary astrocytes. Further mechanistic studies revealed that arctigenin increased the phosphorylation of AKT, a downstream substrate of phosphatidylinositol 3-kinase (PI3K). Treatment of cells with a PI3K-specific inhibitor, LY294002, suppressed the HO-1 expression, Nrf2 DNA binding and ARE-mediated transcriptional activities in arctigenin-treated astrocyte cells. The results collectively suggest that PI3K/AKT signaling pathway is at least partly involved in HO-1 expression by arctigenin via modulation of Nrf2/ARE axis in rat primary astrocytes. PMID:25489416

  17. Hibiscus sabdariffa L. water extract inhibits the adipocyte differentiation through the PI3-K and MAPK pathway.

    PubMed

    Kim, Jin-Kyung; So, Hongseob; Youn, Myung-Ja; Kim, Hyung-Jin; Kim, Yunha; Park, Channy; Kim, Se-Jin; Ha, Young-Ae; Chai, Kyu-Yun; Kim, Shin-Moo; Kim, Ki-Young; Park, Raekil

    2007-11-01

    Hibiscus sabdariffa L., a tropical beverage material and medical herb, is used commonly as in folk medicines against hypertension, pyrexia, inflammation, liver disorders, and obesity. This report was designed to investigate the inhibitory mechanisms of hibiscus extract on adipocyte differentiation in 3T3-L1 preadipocytes. The possible inhibitory pathways that regulate the adipocyte differentiation contain the adipogenic transcription factors, C/EBPalpha and PPARgamma, PI3-kinase, and MAPK pathway. In this study, we examined whether hibiscus extract affected the adipogenesis via these three pathways. To differentiate preadipocyte in adipocyte, confluent 3T3-L1 preadipocytes were treated with the hormone mixture including isobutylmethylxanthine, dexamethasone, and insulin (MDI). Hibiscus extract inhibited significantly the lipid droplet accumulation by MDI in a dose-dependent manner and attenuated dramatically the protein and mRNA expressions of adipogenic transcriptional factors, C/EBPalpha and PPARgamma, during adipogenesis. The increase of phosphorylation and expression of PI3-K/Akt during adipocytic differentiation was markedly inhibited by treatment with hibiscus extract or PI3-K inhibitors. Furthermore, the phosphorylation and expression of MEK-1/ERK known to regulate the early phase of adipogenesis were clearly decreased with the addition of hibiscus extract. Taken together, this report suggests that hibiscus extract inhibits the adipocyte differentiation through the modulation of PI3-K/Akt and ERK pathway that play pivotal roles during adipogenesis. PMID:17904778

  18. Targeting the PI3K/Akt signaling pathway in gastric carcinoma: A reality for personalized medicine?

    PubMed Central

    Singh, Shikha Satendra; Yap, Wei Ney; Arfuso, Frank; Kar, Shreya; Wang, Chao; Cai, Wanpei; Dharmarajan, Arunasalam M; Sethi, Gautam; Kumar, Alan Prem

    2015-01-01

    Frequent activation of phosphatidylinositol-3 kinases (PI3K)/Akt/mTOR signaling pathway in gastric cancer (GC) is gaining immense popularity with identification of mutations and/or amplifications of PIK3CA gene or loss of function of PTEN, a tumor suppressor protein, to name a few; both playing a crucial role in regulating this pathway. These aberrations result in dysregulation of this pathway eventually leading to gastric oncogenesis, hence, there is a need for targeted therapy for more effective anticancer treatment. Several inhibitors are currently in either preclinical or clinical stages for treatment of solid tumors like GC. With so many inhibitors under development, further studies on predictive biomarkers are needed to measure the specificity of any therapeutic intervention. Herein, we review the common dysregulation of PI3K/Akt/mTOR pathway in GC and the various types of single or dual pathway inhibitors under development that might have a superior role in GC treatment. We also summarize the recent developments in identification of predictive biomarkers and propose use of predictive biomarkers to facilitate more personalized cancer therapy with effective PI3K/Akt/mTOR pathway inhibition. PMID:26604635

  19. The PI3K/Akt/mTOR pathway in ovarian cancer: therapeutic opportunities and challenges

    PubMed Central

    Cheaib, Bianca; Auguste, Aurélie; Leary, Alexandra

    2015-01-01

    The phosphatidylinositol 3 kinase (PI3K) pathway is frequently altered in cancer, including ovarian cancer (OC). Unfortunately, despite a sound biological rationale and encouraging activity in preclinical models, trials of first-generation inhibitors of mammalian target of rapamycin (mTOR) in OC have demonstrated negative results. The lack of patient selection as well as resistance to selective mTOR complex-1 (mTORC1) inhibitors could explain the disappointing results thus far. Nonetheless, a number of novel agents are being investigated, including dual mTORC1/mTORC2, Akt, and PI3K inhibitors. Although it is likely that inhibition of the PI3K/Akt/mTOR pathway may have little effect in unselected OC patients, certain histological types, such as clear cell or endometrioid OC with frequent phosphatidylinositol-4,5-biphosphate 3-kinase, catalytic subunit alpha (PIK3CA) and/or phosphatase and tensin homolog (PTEN) alterations, may be particularly suited to this approach. Given the complexity and redundancy of the PI3K signaling network, PI3K pathway inhibition may be most useful in combination with either chemotherapy or other targeted therapies, such as MEK inhibitors, anti-angiogenic therapy, and hormonal therapy, in appropriately selected OC patients. Here, we discuss the relevance of the PI3K pathway in OC and provide an up-to-date review of clinical trials of novel PI3K inhibitors alone or in combination with cytotoxics and novel therapies in OC. In addition, the challenges of drug resistance and predictive biomarkers are addressed. PMID:25556614

  20. Gefitinib induces lung cancer cell autophagy and apoptosis via blockade of the PI3K/AKT/mTOR pathway

    PubMed Central

    ZHAO, ZHONG-QUAN; YU, ZHONG-YANG; LI, JIE; OUYANG, XUE-NONG

    2016-01-01

    Gefitinib is a selective inhibitor of the tyrosine kinase epidermal growth factor receptor, which inhibits tumor pathogenesis, metastasis and angiogenesis, as well as promoting apoptosis. Therefore, gefitinib presents an effective drug for the targeted therapy of lung cancer. However, the underlying mechanisms by which gefitinib induces lung cancer cell death remain unclear. To investigate the effects of gefitinib on lung cancer cells and the mechanism of such, the present study analyzed the effect of gefitinib on the autophagy, apoptosis and proliferation of the A549 and A549-gefitinib-resistant (GR) cell lines GR. The regulation of the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT)/ mammalian target of rapamycin (mTOR) pathway was also investigated. Acridine orange staining revealed that gefitinib induced autophagy of A549 cells but not A549-GR cells. In addition, gefitinib promoted apoptosis and inhibited proliferation of A549 cells but not A549-GR cells. Furthermore, western blot analysis demonstrated that gefitinib treatment led to the downregulation of PI3K, AKT, pAKT, mTOR and phosphorylated-mTOR protein expression in A549 cells but not A549-GR cells. LY294002 blocked the PI3K/AKT/mTOR pathway and induced autophagy and apoptosis of A549 cells, however, no synergistic effect was observed following combined treatment with gefitinib and LY294002. In conclusion, the results of the present study indicate that gefitinib promotes autophagy and apoptosis of lung cancer cells via blockade of the PI3K/AKT/mTOR pathway, which leads to lung cancer cell death. PMID:27347100

  1. Anticancer effect of celastrol on human triple negative breast cancer: possible involvement of oxidative stress, mitochondrial dysfunction, apoptosis and PI3K/Akt pathways.

    PubMed

    Shrivastava, Shweta; Jeengar, Manish Kumar; Reddy, V Sudhakar; Reddy, G Bhanuprakash; Naidu, V G M

    2015-06-01

    Signaling via the phosphatidylinositol-3 kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) is crucial for divergent physiological processes including transcription, translation, cell-cycle progression and apoptosis. The aim of work was to elucidate the anti-cancer effect of celastrol and the signal transduction pathways involved. Cytotoxic effect of celastrol was assessed by MTT assay on human triple negative breast cancer cells (TNBCs) and compared with that of MCF-7. Apoptosis induction was determined by AO/EtBr staining, mitochondrial membrane potential by JC-1, Annexin binding assays and modulation of apoptotic proteins and its effect on PI3K/Akt/mTOR pathway by western blotting. Celastrol induced apoptosis in TNBC cells, were supported by DNA fragmentation, caspase-3 activation and PARP cleavage. Meanwhile, celastrol triggered reactive oxygen species production with collapse of mitochondrial membrane potential, down-regulation of Bcl-2 and up-regulation of Bax expression. Celastrol effectively decreased PI3K 110α/85α enzyme activity, phosphorylation of Akt(ser473) and p70S6K1 and 4E-BP1. Although insulin treatment increased the phosphorylation of Akt(ser473), p70S6K1, 4E-BP1, celastrol abolished the insulin mediated phosphorylation. It clearly indicates that celastrol acts through PI3k/Akt/mTOR axis. We also found that celastrol inhibited the Akt/GSK3β and Akt/NFkB survival pathway. PI3K/Akt/mTOR inhibitor, PF-04691502 and mTOR inhibitor rapamycin enhanced the apoptosis-inducing effect of celastrol. These data demonstrated that celastrol induces apoptosis in TNBC cells and indicated that apoptosis might be mediated through mitochondrial dysfunction and PI3K/Akt signaling pathway. PMID:25818165

  2. Genetics Home Reference: activated PI3K-delta syndrome

    MedlinePlus

    ... Health Conditions activated PI3K-delta syndrome activated PI3K-delta syndrome Enable Javascript to view the expand/collapse ... PDF Open All Close All Description Activated PI3K-delta syndrome is a disorder that impairs the immune ...

  3. Angiogenesis effect of therapeutic ultrasound on HUVECs through activation of the PI3K-Akt-eNOS signal pathway.

    PubMed

    Huang, Jing-Juan; Shi, Yi-Qin; Li, Rui-Lin; Hu, An; Lu, Zhao-Yang; Weng, Liang; Wang, Shen-Qi; Han, Yi-Peng; Zhang, Lan; Li, Bao; Hao, Chang-Ning; Duan, Jun-Li

    2015-01-01

    Therapeutic angiogenic effects of low-intensity ultrasound have been reported in endothelial cells and animal models of hind limb ischemia. It has been shown that the proliferation, migration, and tube formation of endothelial cells play critical roles in angiogenesis. The purpose of this study was to determine the underlying mechanism of low-intensity continuous therapeutic ultrasound on angiogenesis in endothelial cells. In the present study, human umbilical vein endothelial cells (HUVECs) were simulated of low-intensity therapeutic ultrasound (TUS, 1 MHz, 0.3 W/cm(2), 9 minute per day) for 3 days, and we observed migration, tube formation, and expression of endothelial nitric oxide synthase (eNOS) and serine/threonine kinase (Akt) in HUVECs. Specific inhibitors of eNOS and phosphoinositide 3-kinase (PI3K) were added to the culture medium and TUS-induced changes in the pathways that mediate angiogenesis were investigated. After exposure to TUS, HUVECs tube formation and migration were significantly promoted, which was blocked by the eNOS inhibitor Immunofluorescence assay and Western blotting analysis demonstrated that eNOS expression in the HUVECs was significantly increased after TUS exhibition. Proteins of phosphorylated eNOS and Akt were both up-regulated after TUS stimulation. However, the specific inhibitor of PI3K not only significantly decreased the expression of p-Akt, but also down-regulated the p-eNOS. This suggested that the PI3K/Akt signal pathway might participate in modulating the activity of eNOS. In short, TUS therapy promotes angiogenesis through activation of the PI3K-Akt-eNOS signal cascade in HUVECs. PMID:26279754

  4. Progesterone is neuroprotective against ischemic brain injury through its effects on the PI3K/Akt signaling pathway

    PubMed Central

    Ishrat, Tauheed; Sayeed, Iqbal; Atif, Fahim; Hua, Fang; Stein, Donald G.

    2012-01-01

    We tested the hypothesis that the phosphatidylinositol-3 kinase (PI3K/Akt) pathway mediates some of the neuroprotective effects of progesterone (PROG) after ischemic stroke. We examined whether PROG acting through the PI3K/Akt pathway could affect the expression of vascular endothelial growth factor (VEGF) and brain-derived neurotrophic factor (BDNF). Rats underwent permanent focal cerebral ischemia (pMCAO) by electro-coagulation and received intraperitoneal injections of PROG (8mg/kg) or vehicle at 1h post-occlusion and subcutaneous injections at 6, 24, and 48h. PAkt/Akt levels, apoptosis and apoptosis-related proteins (pBAD, BAD, caspase-3, and cleaved caspase-3) were analyzed by TUNEL assays, Western blotting and immunohistochemistry at 24h post-pMCAO. VEGF and BDNF were analyzed at 24, 72h and 14 days post-pMCAO with Western blots. Following pMCAO, PROG treatment significantly (p<0.05) reduced ischemic lesion size and edema. Treatment with PROG significantly (p<0.05) decreased VEGF at 24 and 72h but increased VEGF expression 14d after injury. The treatment also increased BDNF, and attenuated apoptosis by increasing Akt phosphorylation compared to vehicle-alone. The selective PI3K inhibitor Wortmannin compromised PROG-induced neuroprotective effects and reduced the elevation of pAkt levels in the ischemic penumbra. Our findings lead us to suggest that the PI3K/Akt pathway can play a role in mediating the neuroprotective effects of PROG after stroke by altering the expression of trophic factors in the brain. PMID:22450229

  5. Activation of the PI3K/AKT pathway correlates with prognosis in stage II colon cancer

    PubMed Central

    Malinowsky, K; Nitsche, U; Janssen, K-P; Bader, F G; Späth, C; Drecoll, E; Keller, G; Höfler, H; Slotta-Huspenina, J; Becker, K-F

    2014-01-01

    Background: Patients with UICC/AJCC stage II colon cancer have a high 5-year overall survival rate after surgery. Nevertheless, a significant subgroup of patients develops tumour recurrence. Currently, there are no clinically established biomarkers available to identify this patient group. We applied reverse-phase protein arrays (RPPA) for phosphatidylinositide-3-kinase pathway activation mapping to stratify patients according to their risk of tumour recurrence after surgery. Methods: Full-length proteins were extracted from formalin-fixed, paraffin-embedded tissue samples of 118 patients who underwent curative resection. RPPA technology was used to analyse expression and/or phosphorylation levels of six major factors of the phosphatidylinositide-3-kinase pathway. Oncogenic mutations of KRAS and BRAF, and DNA microsatellite status, currently discussed as prognostic markers, were analysed in parallel. Results: Expression of phospho-AKT (HR=3.52; P=0.032), S6RP (HR=6.3; P=0.044), and phospho-4E-BP1 (HR=4.12; P=0.011) were prognostic factors for disease-free survival. None of the molecular genetic alterations were significantly associated with prognosis. Conclusions: Our data indicate that activation of the PI3K/AKT pathway evidenced on the protein level might be a valuable prognostic marker to stratify patients for their risk of tumour recurrence. Beside adjuvant chemotherapy targeting of upregulated PI3K/AKT signalling may be an attractive strategy for treatment of high-risk patients. PMID:24619078

  6. The Prolyl Peptidases PRCP/PREP Regulate IRS-1 Stability Critical for Rapamycin-induced Feedback Activation of PI3K and AKT*

    PubMed Central

    Duan, Lei; Ying, Guoguang; Danzer, Brian; Perez, Ricardo E.; Shariat-Madar, Zia; Levenson, Victor V.; Maki, Carl G.

    2014-01-01

    The phosphatidylinositol 3-kinase (PI3K)/protein kinase B (PKB/AKT)/mammalian target of rapamycin (mTOR) pathway conveys signals from receptor tyrosine kinases (RTKs) to regulate cell metabolism, proliferation, survival, and motility. Previously we found that prolylcarboxypeptidase (PRCP) regulate proliferation and survival in breast cancer cells. In this study, we found that PRCP and the related family member prolylendopeptidase (PREP) are essential for proliferation and survival of pancreatic cancer cells. Depletion/inhibition of PRCP and PREP-induced serine phosphorylation and degradation of IRS-1, leading to inactivation of the cellular PI3K and AKT. Notably, depletion/inhibition of PRCP/PREP destabilized IRS-1 in the cells treated with rapamycin, blocking the feedback activation PI3K/AKT. Consequently, inhibition of PRCP/PREP enhanced rapamycin-induced cytotoxicity. Thus, we have identified PRCP and PREP as a stabilizer of IRS-1 which is critical for PI3K/AKT/mTOR signaling in pancreatic cancer cells. PMID:24936056

  7. Identification of differential PI3K pathway target dependencies in T-cell acute lymphoblastic leukemia through a large cancer cell panel screen.

    PubMed

    Lynch, James T; McEwen, Robert; Crafter, Claire; McDermott, Ultan; Garnett, Mathew J; Barry, Simon T; Davies, Barry R

    2016-04-19

    Selective phosphoinositide 3-kinase (PI3K)/AKT/mTOR inhibitors are currently under evaluation in clinical studies. To identify tumor types that are sensitive to PI3K pathway inhibitors we screened compounds targeting PI3Kα/δ (AZD8835), PI3Kβ/δ (AZD8186), AKT (AZD5363) and mTORC1/2 (AZD2014) against a cancer cell line panel (971 cell lines). There was an enrichment of hematological malignancies that were sensitive to AKT and mTOR inhibition, with the greatest degree of sensitivity observed in T-cell acute lymphoblastic leukemia (T-ALL). We found that all NOTCH mutant T-ALL cell lines were sensitive to AKT and mTORC1/2 inhibitors, with only partial sensitivity to agents that target the PI3K α, β or δ isoforms. Induction of apoptosis only occurred following AKTi treatment in cell lines with PTEN protein loss and high levels of active AKT. In summary, we have demonstrated that T-ALL cell lines show differential sensitivity to inhibition at different nodes in the PI3K/AKT/mTOR pathway and inhibiting AKT or mTOR may have a therapeutic benefit in this disease setting. PMID:26989080

  8. Ketamine affects the neurogenesis of rat fetal neural stem progenitor cells via the PI3K/Akt-p27 signaling pathway

    PubMed Central

    Dong, Chaoxuan; Rovnaghi, Cynthia R.; Anand, KJS

    2014-01-01

    Ketamine is widely used as an anesthetic, analgesic, or sedative in pediatric patients. We reported that ketamine alters the normal neurogenesis of rat fetal neural stem progenitor cells (NSPCs) in the developing brain, but the underlying mechanisms remain unknown. The PI3K-PKB/Akt (Phosphatidylinositide 3-kinases/protein kinase B) signaling pathway plays many important roles in cell survival, apoptosis, and proliferation. We hypothesized that PI3K-PKB/Akt signaling may be involved in ketamine-altered neurogenesis of cultured NSPCs in vitro. NSPCs were isolated from Sprague-Dawley rat fetuses on gestational day 17. BrdU (bromodeoxyuridine) incorporation, Ki67 staining, and differentiation tests were utilized to identify primary cultured NSPCs. Immunofluorescent staining was used to detect Akt expression, whereas, Western blots measured phosphorylated Akt and p27 expression in NSPCs exposed to different treatments. We report that cultured NSPCs had properties of neurogenesis: proliferation and neural differentiation. PKB/Akt was expressed in cultured rat fetal cortical NSPCs. Ketamine inhibited the phosphorylation of Akt and further enhanced p27 expression in cultured NSPCs. All ketamine-induced PI3K/Akt signaling changes could be recovered by NMDA (N-Methyl-D-aspartate) receptor agonist, NMDA. These data suggest that inhibition of PI3K/Akt-p27 signaling may be involved in ketamine-induced neurotoxicity in the developing brain, whereas excitatory NMDA receptor activation may reverse these effects. PMID:25231110

  9. Identification of differential PI3K pathway target dependencies in T-cell acute lymphoblastic leukemia through a large cancer cell panel screen

    PubMed Central

    Lynch, James T.; McEwen, Robert; Crafter, Claire; McDermott, Ultan; Garnett, Mathew J.; Barry, Simon T.; Davies, Barry R.

    2016-01-01

    Selective phosphoinositide 3-kinase (PI3K)/AKT/mTOR inhibitors are currently under evaluation in clinical studies. To identify tumor types that are sensitive to PI3K pathway inhibitors we screened compounds targeting PI3Kα/δ (AZD8835), PI3Kβ/δ (AZD8186), AKT (AZD5363) and mTORC1/2 (AZD2014) against a cancer cell line panel (971 cell lines). There was an enrichment of hematological malignancies that were sensitive to AKT and mTOR inhibition, with the greatest degree of sensitivity observed in T-cell acute lymphoblastic leukemia (T-ALL). We found that all NOTCH mutant T-ALL cell lines were sensitive to AKT and mTORC1/2 inhibitors, with only partial sensitivity to agents that target the PI3K α, β or δ isoforms. Induction of apoptosis only occurred following AKTi treatment in cell lines with PTEN protein loss and high levels of active AKT. In summary, we have demonstrated that T-ALL cell lines show differential sensitivity to inhibition at different nodes in the PI3K/AKT/mTOR pathway and inhibiting AKT or mTOR may have a therapeutic benefit in this disease setting. PMID:26989080

  10. PI3K/Akt Pathway Contributes to Neurovascular Unit Protection of Xiao-Xu-Ming Decoction against Focal Cerebral Ischemia and Reperfusion Injury in Rats

    PubMed Central

    Xiang, Jun; Zhang, Yong; Wang, Guo-Hua; Bao, Jie; Li, Wen-Wei; Zhang, Wen; Xu, Li-Li; Cai, Ding-Fang

    2013-01-01

    In the present study, we used a focal cerebral ischemia and reperfusion rat model to investigate the protective effects of Xiao-Xu-Ming decoction (XXMD) on neurovascular unit and to examine the role of PI3K (phosphatidylinositol 3-kinase)/Akt pathway in this protection. The cerebral ischemia was induced by 90 min of middle cerebral artery occlusion. Cerebral infarct area was measured by tetrazolium staining, and neurological function was observed at 24 h after reperfusion. DNA fragmentation assay, combined with immunofluorescence, was performed to evaluate apoptosis of neuron, astrocyte, and vascular endothelial cell which constitute neurovascular unit. The expression levels of proteins involved in PI3K/Akt pathway were detected by Western blot. The results showed that XXMD improved neurological function, decreased cerebral infarct area and neuronal damage, and attenuated cellular apoptosis in neurovascular unit, while these effects were abolished by inhibition of PI3K/Akt with LY294002. We also found that XXMD upregulated p-PDKl, p-Akt, and p-GSK3β expression levels, which were partly reversed by LY294002. In addition, the increases of p-PTEN and p-c-Raf expression levels on which LY294002 had no effect were also observed in response to XXMD treatment. The data indicated the protective effects of XXMD on neurovascular unit partly through the activation of PI3K/Akt pathway. PMID:23781261

  11. Emerging concepts for PI3K/mTOR inhibition as a potential treatment for osteosarcoma.

    PubMed

    Bishop, Michael W; Janeway, Katherine A

    2016-01-01

    Patients with metastatic and recurrent osteosarcoma fare poorly, and new therapeutic strategies are needed to improve survival. Several recent complementary genomic and pathway analyses of both murine and human osteosarcoma have revealed common aberrations of the phosphoinositide 3-kinase (PI3K)/mammalian target of rapamycin (mTOR) pathway in osteosarcoma. Preclinical data demonstrate that inhibition of PI3K and mTOR with either a combination of single agents or dual inhibiting compounds can decrease cell proliferation and induce cell cycle arrest and apoptosis. With a lack of available clinical agents active in osteosarcoma, PI3K/mTOR inhibition represents a potential vulnerability in osteosarcoma that warrants clinical investigation. PMID:27441088

  12. Emerging concepts for PI3K/mTOR inhibition as a potential treatment for osteosarcoma

    PubMed Central

    Bishop, Michael W.; Janeway, Katherine A.

    2016-01-01

    Patients with metastatic and recurrent osteosarcoma fare poorly, and new therapeutic strategies are needed to improve survival. Several recent complementary genomic and pathway analyses of both murine and human osteosarcoma have revealed common aberrations of the phosphoinositide 3-kinase (PI3K)/mammalian target of rapamycin (mTOR) pathway in osteosarcoma. Preclinical data demonstrate that inhibition of PI3K and mTOR with either a combination of single agents or dual inhibiting compounds can decrease cell proliferation and induce cell cycle arrest and apoptosis. With a lack of available clinical agents active in osteosarcoma, PI3K/mTOR inhibition represents a potential vulnerability in osteosarcoma that warrants clinical investigation. PMID:27441088

  13. CCN1/Cyr61-PI3K/AKT signaling promotes retinal neovascularization in oxygen-induced retinopathy

    PubMed Central

    DI, YU; ZHANG, YIOU; NIE, QINGZHU; CHEN, XIAOLONG

    2015-01-01

    Retinal neovascularization (RNV) is a characteristic pathological finding of retinopathy of prematurity (ROP). Cysteine-rich 61 [Cyr61, also known as CCN family member 1 (CCN1)] has been reported to mediate angiogenesis. The aim of the present study was to investigate the mechanisms of CCN1/Cyr61-phosphoinositide 3-kinase (PI3K)/AKT signaling in ROP. The contribution of CCN1 to human umbilical vein endothelial cell (HUVEC) proliferation and apoptosis under hypoxic conditions was determined using a cell counting kit-8 (CCK-8) and Annexin V/propidium iodide (PI) staining, respectively, as well as using siRNA targeting CCN1 (CCN1 siRNA). The cells exposed to hypoxia were also treated with the PI3K/AKT inhibitor, LY294002. In addition, mouse pups with oxygen-induced retinopathy (OIR) were administered an intravitreal injection of CCN1 siRNA. RNV was assessed by magnesium-activated adenosine diphosphatease (ADPase) staining. RT-qPCR, western blot analysis, immunofluorescence staining and immunohistochemistry were used to detect the distribution and expression of CCN1, PI3K and AKT. Exposure to hypoxia increased the neovascularization clock hour scores (from 1.23±0.49 to 5.60±0.73, P<0.05) and the number of preretinal neovascular cells, as well as the mRNA and protein expression levels of CCN1, PI3K and AKT (all P<0.05). The injection of CCN1 siRNA decreased the neovascularization clock hour scores and the number of preretinal neovascular cells (1.53±0.72 vs. 4.76±1.04; 12.0±2.8 vs. 31.4±2.6, respectively, both P<0.05), as well as the mRNA and protein expression levels of CCN1, PI3K and AKT (protein, −45.3, −22.5 and −28.4%; mRNA, −43.7, −58.7 and −42.9%, respectively, all P<0.05) compared to the administration of scrambled siRNA under hypoxic conditions. Treatment with LY294002 decreased the mRNA and protein expression levels of CCN1 in the cells exposed to hypoxia (both P<0.05). The administration of CCN1 siRNA resulted in less severe

  14. Regulation of the cell cycle and PI3K/Akt/mTOR signaling pathway by tanshinone I in human breast cancer cell lines

    PubMed Central

    WANG, LI; WU, JIANZHONG; LU, JIANWEI; MA, RONG; SUN, DAWEI; TANG, JINHAI

    2015-01-01

    Breast cancer is the second leading cause of cancer-related mortality in females worldwide. Therefore, identifying alternative strategies to combat the disease mortality is important. The aim of the present study was to investigate the effect of tanshinone I (Tan I) on the tumorigenicity of estrogen-responsive MCF-7 and estrogen-independent MDA-MB-453 human breast cancer cells. The cytotoxicity of Tan I was evaluated using a Cell Counting Kit-8 assay, the apoptosis and cell cycle distribution were detected using flow cytometry and the cell morphology was observed using a fluorescence microscope. In addition, the cell cycle regulatory proteins and apoptosis-associated proteins involved in the phosphatidylinositide 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) signaling pathway were detected using western blot analysis using specific protein antibodies. The MCF-7 and MDA-MB-453 cells were equally sensitive to Tan I regardless of their responsiveness to estrogen. Tan I exerted similar antiproliferative activities and induction of apoptosis, resulting in S phase arrest accompanied by decreases in cyclin B and increases in cyclin E and cyclin A proteins, which may have been associated with the upregulation of cyclin-dependent kinase inhibitors p21Cip1 and p27Kip1. In addition, Tan I was found to downregulate anti-apoptotic and upregulate associated apoptotic components of the PI3K/Akt/mTOR signaling pathway. Notably, treatment with the PI3K inhibitor, LY294002, decreased the levels of phosphorylated (p)-PI3K, p-Akt and p-mTOR. These results clearly indicated that the mechanism of action of Tan I involved, at least partially, an effect on the PI3K/Akt/mTOR signaling pathway, providing new information for anticancer drug design and development. PMID:25355053

  15. Amyloid precursor protein cooperates with c-KIT mutation/overexpression to regulate cell apoptosis in AML1-ETO-positive leukemia via the PI3K/AKT signaling pathway.

    PubMed

    Yu, Guopan; Yin, Changxin; Jiang, Ling; Zheng, Zhongxin; Wang, Zhixiang; Wang, Chunli; Zhou, Hongsheng; Jiang, Xuejie; Liu, Qifa; Meng, Fanyi

    2016-09-01

    It has been reported that amyloid precursor protein (APP) promotes cell proliferation and metastasis in various types of solid cancers. In our previous study, we showed that APP is highly expressed and regulates leukemia cell migration in AML1‑ETO-positive (AE) leukemia. Whether APP is involved in the regulation of AE leukemia cell proliferation or apoptosis is unclear. In the present study we focused on the correlation of APP with c-KIT mutation/overexpression and cell proliferation and apoptosis in AE leukemia. APP and c-KIT expression detected by quantitative real-time (qPCR) method, and c-KIT mutations screened using PCR in bone marrow cells from 65 patients with AE leukemia before their first chemotherapy, were simultaneously assessed. Furthermore, the Kasumi-1 cell line was chosen as the cell model, and the APP gene was knocked down using siRNA technology. The correlation of cell cycle distribution and apoptosis and c-Kit expression with APP expression levels, as well as the regulation of the PI3K/AKT signaling pathway by APP were analyzed in the Kasumi-1 cell line. The results showed that peripheral white blood cell counts (P=0.008) and bone marrow cellularity (P=0.031), but not bone marrow blasts, were correlated with APP expression. Moreover, the patients with APP high expression had a significantly higher incidence of c-KIT mutations (P<0.001) and increased levels of c-KIT expression (P=0.001) and poorer disease outcome. In the Kasumi-1 cell line, as compared with the wild-type and negative control cells, cell apoptosis, both early (P<0.001) and late (P<0.001), was significantly increased when the APP gene was knocked down, concomitant with reduced levels of anti-apoptotic protein Bcl-2 and increased levels of caspase-3 and -9, however, no apparent change was observed in the cell cycle distribution (P>0.05). Moreover, the knockdown of APP markedly decreased c-KIT expression at both the transcription (as evidenced by qPCR analysis) and translation

  16. The Role of PI3K/Akt/mTOR Signaling in Gastric Carcinoma

    PubMed Central

    Matsuoka, Tasuku; Yashiro, Masakazu

    2014-01-01

    The phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) pathway is one of the key signaling pathways induced by various receptor-tyrosine kinases. Accumulating evidence shows that this pathway is an important promoter of cell growth, metabolism, survival, metastasis, and resistance to chemotherapy. Genetic alterations in the PI3K/Akt/mTOR pathway in gastric carcinoma have often been demonstrated. Many kinds of molecular targeting therapies are currently undergoing clinical testing in patients with solid tumors. However, with the exception of the ErbB2-targeting antibody, targeting agents, including PI3K/Akt/mTOR inhibitors, have not been approved for treatment of patients with gastric carcinoma. This review summarizes the current knowledge on PI3K/Akt/mTOR signaling in the pathogenesis of gastric carcinoma and the possible therapeutic targets for gastric carcinoma. Improved knowledge of the PI3K/Akt/mTOR pathway in gastric carcinoma will be useful in understanding the mechanisms of tumor development and for identifying ideal targets of anticancer therapy for gastric carcinoma. PMID:25003395

  17. Genomic Determinants of PI3K Pathway Inhibitor Response in Cancer

    PubMed Central

    Weigelt, Britta; Downward, Julian

    2012-01-01

    The phosphoinositide 3-kinase (PI3K) pathway is frequently activated in cancer as a result of genetic (e.g., amplifications, mutations, deletions) and epigenetic (e.g., methylation, regulation by non-coding RNAs) aberrations targeting its key components. Several lines of evidence demonstrate that tumors from different anatomical sites depend on the continued activation of this pathway for the maintenance of their malignant phenotype. The PI3K pathway therefore is an attractive candidate for therapeutic intervention, and inhibitors targeting different components of this pathway are in various stages of clinical development. Burgeoning data suggest that the genomic features of a given tumor determine its response to targeted small molecule inhibitors. Importantly, alterations of different components of the PI3K pathway may result in distinct types of dependencies and response to specific therapeutic agents. In this review, we will focus on the genomic determinants of response to PI3K, dual PI3K/mechanistic target of rapamycin (mTOR), mTOR, and AKT inhibitors in cancer identified in preclinical models and clinical trials to date, and the development of molecular tools for the stratification of cancer patients. PMID:22970424

  18. Eupatilin inhibits EGF-induced JB6 cell transformation by targeting PI3K.

    PubMed

    Li, Feng; Tao, Ya; Qiao, Yan; Li, Ke; Jiang, Yanan; Cao, Chang; Ren, Shuxin; Chang, Xiaobin; Wang, Xiaona; Wang, Yanhong; Xie, Yifei; Dong, Ziming; Zhao, Jimin; Liu, Kangdong

    2016-09-01

    Phosphatidylinositol 3-kinases (PI3Ks) are lipid kinases that play fundamental roles in regulation of multiple signaling pathways, including cell proliferation, survival and cell cycle. Increasing evidence has shown that abnormal activation of PI3K pathway contributes to tumorigenesis and progression of various malignant tumors. Therefore, it is an attractive target of chemoprevention and chemotherapy. Eupatilin, a natural flavone compound extracted from Artemisia vulgaris, has antitumor and anti-inflammation efficacy. However, the direct target(s) of eupatilin in cancer chemoprevention are still elusive. In the present study, we reported eupatilin suppressed JB6 cell proliferation and its EGF-induced colony formation. Eupatilin attenuated phosphorylation of PI3K downstream signaling molecules. Downregulation of cyclin D1 expression and arresting in G1 phase were induced through eupatilin treatment. Furthermore, we found it could bind to the p110α, a catalytic subunit of PI3K, by computational docking methods. Pull down assay outcomes also verified the binding of eupatilin with PI3K. Taken together, our results suggest that epatilin is a potential chemopreventive agent in inhibition of skin cell transformation by targeting PI3K. PMID:27573489

  19. The PI3K pathway: clinical inhibition in chronic lymphocytic leukemia.

    PubMed

    Brown, Jennifer R

    2016-04-01

    Constitutive or mutational activation of the phosphatidylinositol 3 kinase, or PI3K, has been implicated in many cancers, including chronic lymphocytic leukemia (CLL). The δ isoform of the p110 catalytic subunit of PI3K has its primary physiologic function in B cells and appears to be the predominant mediator of most PI3K signals in CLL cells. Idelalisib is a first-in-class inhibitor of the PI3K delta isoform that shows near complete inhibition of AKT phosphorylation in CLL cells in vitro and in vivo. Idelalisib shows the classic pattern of response to BCR inhibition in CLL, with rapid nodal response and transient increase in lymphocytosis. The phase I study established the recommended dose as 150 mg twice per day. Subsequent registration trials have focused predominantly on antibody combinations, leading to the US Food and Drug Administration (FDA) approval of idelalisib with rituximab for relapsed CLL patients for whom rituximab is appropriate therapy in summer 2014. The median progression-free survival (PFS) of idelalisib-rituximab in this heavily pretreated CLL population with multiple comorbidities and frequent 17p deletion was an impressive 19.4 months. The success of idelalisib has paved the way for the development of other PI3K inhibitors in CLL, including duvelisib and TGR-1202, which are in or moving toward registration trials. PMID:27040704

  20. Regulation of PI3K by PKC and MARCKS: Single-Molecule Analysis of a Reconstituted Signaling Pathway.

    PubMed

    Ziemba, Brian P; Burke, John E; Masson, Glenn; Williams, Roger L; Falke, Joseph J

    2016-04-26

    In chemotaxing ameboid cells, a complex leading-edge signaling circuit forms on the cytoplasmic leaflet of the plasma membrane and directs both actin and membrane remodeling to propel the leading edge up an attractant gradient. This leading-edge circuit includes a putative amplification module in which Ca(2+)-protein kinase C (Ca(2+)-PKC) is hypothesized to phosphorylate myristoylated alanine-rich C kinase substrate (MARCKS) and release phosphatidylinositol-4,5-bisphosphate (PIP2), thereby stimulating production of the signaling lipid phosphatidylinositol-3,4,5-trisphosphate (PIP3) by the lipid kinase phosphoinositide-3-kinase (PI3K). We investigated this hypothesized Ca(2+)-PKC-MARCKS-PIP2-PI3K-PIP3 amplification module and tested its key predictions using single-molecule fluorescence to measure the surface densities and activities of its protein components. Our findings demonstrate that together Ca(2+)-PKC and the PIP2-binding peptide of MARCKS modulate the level of free PIP2, which serves as both a docking target and substrate lipid for PI3K. In the off state of the amplification module, the MARCKS peptide sequesters PIP2 and thereby inhibits PI3K binding to the membrane. In the on state, Ca(2+)-PKC phosphorylation of the MARCKS peptide reverses the PIP2 sequestration, thereby releasing multiple PIP2 molecules that recruit multiple active PI3K molecules to the membrane surface. These findings 1) show that the Ca(2+)-PKC-MARCKS-PIP2-PI3K-PIP3 system functions as an activation module in vitro, 2) reveal the molecular mechanism of activation, 3) are consistent with available in vivo data, and 4) yield additional predictions that are testable in live cells. More broadly, the Ca(2+)-PKC-stimulated release of free PIP2 may well regulate the membrane association of other PIP2-binding proteins, and the findings illustrate the power of single-molecule analysis to elucidate key dynamic and mechanistic features of multiprotein signaling pathways on membrane surfaces

  1. The Chinese herbal medicine FTZ attenuates insulin resistance via IRS1 and PI3K in vitro and in rats with metabolic syndrome

    PubMed Central

    2014-01-01

    Background Insulin resistance plays an important role in the development of metabolic syndrome (MS). Fu Fang Zhen Zhu Tiao Zhi formula (FTZ), a Chinese medicinal decoction, has been used to relieve hyperlipidemia, atherosclerosis and other symptoms associated with metabolic disorders in the clinic. Methods To evaluate the effect of FTZ on insulin resistance, HepG2 cells were induced with high insulin as a model of insulin resistance and treated with FTZ at one of three dosages. Next, the levels of glucose content, insulin receptor substrate1 (IRS1) protein expression and phosphatidylinositol 3-kinase (PI3K) subunit p85 mRNA expression were measured. Alternatively, MS was induced in rats via gavage feeding of a high-fat diet for four consecutive weeks followed by administration of FTZ for eight consecutive weeks. Body weight and the plasma levels of lipids, insulin and glucose were evaluated. Finally, the expression of PI3K p85 mRNA in adipose tissue of rats was measured. Results Our results revealed that FTZ attenuated glucose content and up-regulated the expression of PI3K p85 mRNA and IRS1 protein in insulin-resistant HepG2 cells in vitro. Moreover, FTZ reduced body weight and the plasma concentrations of triacylglycerol, cholesterol, fasting glucose and insulin in insulin resistant MS rats. FTZ also elevated the expression of PI3K p85 mRNA in the adipose tissues of MS rats. Conclusion FTZ attenuated MS symptoms by decreasing the plasma levels of glucose and lipids. The underlying mechanism was attenuation of the reduced expression of PI3K p85 mRNA and IRS1 protein in both insulin-resistant HepG2 cells and MS rats. PMID:24555840

  2. Combination of the PI3K inhibitor ZSTK474 with a PSMA-targeted immunotoxin accelerates apoptosis and regression of prostate cancer.

    PubMed

    Baiz, Daniele; Hassan, Sazzad; Choi, Young A; Flores, Anabel; Karpova, Yelena; Yancey, Dana; Pullikuth, Ashok; Sui, Guangchao; Sadelain, Michel; Debinski, Waldemar; Kulik, George

    2013-10-01

    The phosphoinositide 3-kinase (PI3K) pathway is activated in most advanced prostate cancers, yet so far treatments with PI3K inhibitors have been at best tumorostatic in preclinical cancer models and do not show significant antitumor efficacy in clinical trials. Results from tissue culture experiments in prostate cancer cells suggest that PI3K inhibitors should be combined with other cytotoxic agents; however, the general toxicity of such combinations prevents translating these experimental data into preclinical and clinical models. We investigated the emerging concept of tumor-targeted synthetic lethality in prostate cancer cells by using the pan-PI3K inhibitor ZSTK474 and the immunotoxin J591PE, a protein chimera between the single-chain variable fragment of the monoclonal antibody J591 against the prostate-specific membrane antigen (PSMA) and the truncated form of the Pseudomonas aeruginosa exotoxin A (PE38QQR). The combination of ZSTK474 and J591PE increased apoptosis within 6 hours and cell death (monitored at 24-48 hours) in the PSMA-expressing cells LNCaP, C4-2, and C4-2Luc but not in control cells that do not express PSMA (PC3 and BT549 cells). Mechanistic analysis suggested that induction of apoptosis requires Bcl-2-associated death promoter (BAD) dephosphorylation and decreased expression of myeloid leukemia cell differentiation protein 1 (MCL-1). A single injection of ZSTK474 and J591PE into engrafted prostate cancer C4-2Luc cells led to consistent and stable reduction of luminescence within 6 days. These results suggest that the combination of a PI3K inhibitor and a PSMA-targeted protein synthesis inhibitor toxin represents a promising novel strategy for advanced prostate cancer therapy that should be further investigated. PMID:24204196

  3. PI3K/Akt is involved in brown adipogenesis mediated by growth differentiation factor-5 in association with activation of the Smad pathway

    SciTech Connect

    Hinoi, Eiichi; Iezaki, Takashi; Fujita, Hiroyuki; Watanabe, Takumi; Odaka, Yoshiaki; Ozaki, Kakeru; Yoneda, Yukio

    2014-07-18

    Highlights: • Akt is preferentially phosphorylated in BAT and sWAT of aP2-GDF5 mice. • PI3K/Akt signaling is involved in GDF5-induced brown adipogenesis. • PI3K/Akt signaling regulates GDF5-induced Smad5 phosphorylation. - Abstract: We have previously demonstrated promotion by growth differentiation factor-5 (GDF5) of brown adipogenesis for systemic energy expenditure through a mechanism relevant to activating the bone morphological protein (BMP) receptor/mothers against decapentaplegic homolog (Smad)/peroxisome proliferator-activated receptor gamma co-activator 1α (PGC-1α) pathway. Here, we show the involvement of the phosphatidylinositol 3-kinase (PI3K)/Akt pathway in brown adipogenesis mediated by GDF5. Overexpression of GDF5 in cells expressing adipocyte protein-2 markedly accelerated the phosphorylation of Smad1/5/8 and Akt in white and brown adipose tissues. In brown adipose tissue from heterozygous GDF5{sup Rgsc451} mutant mice expressing a dominant-negative (DN) GDF5 under obesogenic conditions, the basal phosphorylation of Smad1/5/8 and Akt was significantly attenuated. Exposure to GDF5 not only promoted the phosphorylation of both Smad1/5/8 and Akt in cultured brown pre-adipocytes, but also up-regulated Pgc1a and uncoupling protein-1 expression in a manner sensitive to the PI3K/Akt inhibitor Ly294002 as well as retroviral infection with DN-Akt. GDF5 drastically promoted BMP-responsive luciferase reporter activity in a Ly294002-sensitive fashion. Both Ly294002 and DN-Akt markedly inhibited phosphorylation of Smad5 in the nuclei of brown pre-adipocytes. These results suggest that PI3K/Akt signals play a role in the GDF5-mediated brown adipogenesis through a mechanism related to activation of the Smad pathway.

  4. THE PI3K-AKT-mTOR PATHWAY IN INITIATION AND PROGRESSION OF THYROID TUMORS

    PubMed Central

    Saji, Motoyasu; Ringel, Matthew D.

    2009-01-01

    The Phosphoinositide 3 (OH) kinase (PI3K) signaling cascade is involved in regulating glucose uptake and metabolism, growth, motility, and other essential functions for cell survival. Unregulated activation of this pathway commonly occurs in cancer through a variety of mechanisms, including genetic mutations of kinases and regulatory proteins, epigenetic alterations that alter gene expression and translation, and posttranslational modifications. In thyroid cancer, constitutive activation of PI3K signaling has been shown to play a role in the genetic predisposition for thyroid neoplasia in Cowden’s syndrome, and is recognized to be frequently overactivated in sporadic forms of thyroid cancer including those with aggressive clinical behaviors. In this review, the key signaling molecules in the PI3K signaling cascade, the abnormalities known to occur in thyroid cancer, and the potential for therapeutic targeting of PI3K pathway members will be discussed. PMID:19897009

  5. Mango polyphenolics suppressed tumor growth in breast cancer xenografts in mice: role of the PI3K/AKT pathway and associated microRNAs.

    PubMed

    Banerjee, Nivedita; Kim, Hyemee; Krenek, Kimberly; Talcott, Stephen T; Mertens-Talcott, Susanne U

    2015-08-01

    The cytotoxic and anti-inflammatory properties of mango polyphenolics including gallic acid and gallotannins have been demonstrated in numerous types of cancers. We hypothesized that the phosphoinositide 3-kinase (PI3K)/AKT pathway and the expression of related miRNAs are involved in the chemotherapeutic activities of mango polyphenolics in a mouse xenograft model for breast cancer. The objectives of this research were to determine the tumor-cytotoxic activities of mango polyphenolics and the underlying molecular mechanisms involving posttranscriptional targets in BT474 breast cancer cells and xenografts in mice. In vitro findings showed cytotoxic effects of mango polyphenolics in BT474 breast cancer cells within a concentration range of 2.5 to 20 mg/L gallic acid equivalents. Mango polyphenolics suppressed the expression of PI3K, AKT, hypoxia inducible factor-1α, and vascular endothelial growth factor (VEGF) mRNA, and pAKT, AKT, pPI3K (p85), VEGF and nuclear factor-kappa B protein levels. The involvement of miR-126 was verified by using antagomiR for miR-126, where mango reversed the effect of the antagomiR of miR-126. In vivo, the intake of mango polyphenolics decreased the tumor volume by 73% in BT474 xenograft-bearing mice compared with the control group. In addition, mango reduced the expression of nuclear factor-kappa B (p65), pAKT, pPI3K, mammalian target of rapamycin, hypoxia inducible factor-1α, and VEGF protein in athymic nude mice. A screening for miRNA expression changes confirmed that mango polyphenolics modulated the expression of cancer-associated miRNAs including miR-126 in the xenografted tumors. In summary, mango polyphenolics have a chemotherapeutic potential against breast cancer that at least in part is mediated through the PI3K/AKT pathway and miR-126. PMID:26194618

  6. Psoralidin inhibits proliferation and enhances apoptosis of human esophageal carcinoma cells via NF-κB and PI3K/Akt signaling pathways

    PubMed Central

    Jin, Zhiliang; Yan, Wei; Jin, Hui; Ge, Changzheng; Xu, Yanhua

    2016-01-01

    Esophageal cancer is the most common gastrointestinal cancer. Psoralidin exhibits antioxidant, anti-apoptotic, anti-inflammatory and antitumor effects, which result in the inhibition of cancer formation. The present study aimed to investigate the effect of psoralidin on esophageal carcinoma proliferation and growth, and to elucidate its underlying mechanism of action. The effect of psoralidin on cell proliferation was investigated using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Using an annexin V-fluorescein isothiocyanate/propidium iodide apoptosis detection kit and 4′,6-diamidino-2-phenylindole staining assay, the present study demonstrated that psoralidin significantly enhanced apoptosis of human esophageal carcinoma Eca9706 cells. In addition, caspase-3 activity was analyzed with a caspase-3 colorimetric assay kit, while nuclear factor (NF)-κB activity and protein phosphatidylinositol 3-kinase (PI3K)/Akt expression were measured with an NF-κB enzyme-linked immunosorbent assay kit and western blot analysis, respectively. Eca9706 cells were treated with a PI3K agonist in order to investigate the mechanism of action of psoralidin. It was observed that psoralidin was able to decrease the proliferation and promote the cellular apoptosis of Eca9706 cells in a dose-dependent manner. Furthermore, psoralidin was also able to inhibit the caspase-3 activity of Eca9706 cells in a dose-dependent manner. In addition, psoralidin inhibited NF-κB activity and reduced PI3K and Akt protein expression in Eca9706 cells. Notably, the PI3K agonist was able to reverse the effect of psoralidin on Eca9706 cells. The results of the present study demonstrated that psoralidin was able to inhibit proliferation and enhance apoptosis of human esophageal carcinoma cells via the NF-κB and PI3K/Akt signaling pathways. PMID:27446379

  7. Electroacupuncture Ameliorates Acute Renal Injury in Lipopolysaccharide-Stimulated Rabbits via Induction of HO-1 through the PI3K/Akt/Nrf2 Pathways

    PubMed Central

    Gong, Li-rong; Dong, Shu-an; Cao, Xin-shun; Wu, Li-li; Wu, Li-na

    2015-01-01

    Electroacupuncture at select acupoints have been verified to protect against organ dysfunctions during endotoxic shock. And, heme oxygenase (HO)-1 as a phase II enzyme and antioxidant contributed to the protection of kidney in septic shock rats. The phosphatidylinositol 3-kinase (PI3K)-Akt pathway mediated the activation of NF-E2 related factor-2 (Nrf2), which was involved in HO-1 induction. To understand the efficacy of electroacupuncture stimulation in ameliorating acute kidney injury (AKI) through the PI3K/Akt/Nrf2 pathway and subsequent HO-1 upregulation, a dose of LPS 5mg/kg was administered intravenously to replicate the rabbit model of AKI induced by endotoxic shock. Electroacupuncture pretreatment was handled bilaterally at Zusanli and Neiguan acupoints for five consecutive days while sham electroacupuncture at non-acupoints as control. Results displayed that electroacupuncture stimulation significantly alleviated the morphologic renal damage, attenuated renal tubular apoptosis, suppressed the elevated biochemical indicators of AKI caused by LPS, enhanced the expressions of phospho-Akt, HO-1protein, Nrf2 total and nucleoprotein, and highlighted the proportions of Nrf2 nucleoprotein as a parallel. Furthermore, partial protective effects of elecroacupuncture were counteracted by preconditioning with wortmannin (the selective PI3K inhibitor), indicating a direct involvement of PI3K/Akt pathway. Inconsistently, wortmannin pretreatment made little difference to the expressions of HO-1, Nrf2 nucleoprotein and total protein, which indicated that PI3K/Akt may be not the only pathway responsible for electroacupuncture-afforded protection against LPS-induced AKI. These findings provide new insights into the potential future clinical applications of electroacupuncture for AKI induced by endotoxic shock instead of traditional remedies. PMID:26524181

  8. Upregulated WDR26 serves as a scaffold to coordinate PI3K/AKT pathway-driven breast cancer cell growth, migration, and invasion

    PubMed Central

    Ye, Yuanchao; Tang, Xiaoyun; Sun, Zhizeng; Chen, Songhai

    2016-01-01

    The phosphatidylinositol 3-kinase (PI3K)/AKT pathway transmits signals downstream of receptor tyrosine kinases and G protein-coupled receptors (GPCRs), and is one of the most dysregulated pathways in breast cancer. PI3Ks and AKTs consist of multiple isoforms that play distinct and even opposite roles in breast cancer cell growth and metastasis. However, it remains unknown how the activities of various PI3K and AKT isoforms are coordinated during breast cancer progression. Previously, we showed WDR26 is a novel WD40 protein that binds Gβγ and promotes Gβγ signaling. Here, we demonstrate that WDR26 is overexpressed in highly malignant breast tumor cell lines and human breast cancer samples, and that WDR26 overexpression correlates with shortened survival of breast cancer patients. In highly malignant cell lines (MDA-MB231, DU4475 and BT549), downregulation of WDR26 expression selectively alleviated GPCR- but not EGF receptor-stimulated PI3K/AKT signaling and tumor cell growth, migration and invasion. In contrast, in a less malignant cell line (MCF7), WDR26 overexpression had the opposite effect. Additional studies indicate that downstream of GPCR stimulation, WDR26 serves as a scaffold that fosters assembly of a specific signaling complex consisting of Gβγ, PI3Kβ and AKT2. In an orthotopic xenograft mouse model of breast cancer, disrupting formation of this complex, by overexpressing WDR26 mutants in MDA-MB231 cells, abrogated PI3K/AKT activation and tumor cell growth and metastasis. Together, our results identify a novel mechanism regulating GPCR-dependent activation of the PI3K/AKT signaling axis in breast tumor cells, and pinpoint WDR26 as a potential therapeutic target for breast cancer. PMID:26895380

  9. Soluble epoxide hydrolase inhibition ameliorates proteinuria-induced epithelial-mesenchymal transition by regulating the PI3K-Akt-GSK-3β signaling pathway.

    PubMed

    Liang, Yaoxian; Jing, Ziyang; Deng, Hui; Li, Zhengqian; Zhuang, Zhen; Wang, Song; Wang, Yue

    Soluble epoxide hydrolase (sEH) plays an essential role in chronic kidney disease by hydrolyzing renoprotective epoxyeicosatrienoic acids to the corresponding inactive dihydroxyeicosatrienoic acids. However, there have been few mechanistic studies elucidating the role of sEH in epithelial-mesenchymal transition (EMT). The present study investigated, in vitro and in vivo, the role of sEH in proteinuria-induced renal tubular EMT and the underlying signaling pathway. We report that urinary protein (UP) induced EMT in cultured NRK-52E cells, as evidenced by decreased E-cadherin expression, increased alpha-smooth muscle actin (α-SMA) expression, and the morphological conversion to a myofibroblast-like phenotype. UP incubation also resulted in upregulated sEH, activated phosphatidylinositol 3-kinase (PI3K)-protein kinase B (PKB/Akt) signaling and increased phosphorylated glycogen synthase kinase-3β (GSK-3β). The PI3K inhibitor LY-294002 inhibited phosphorylation of Akt and GSK-3β as well as blocking EMT. Importantly, pharmacological inhibition of sEH with 12-(3-adamantan-1-yl- ureido)-dodecanoic acid (AUDA) markedly suppressed PI3K-Akt activation and GSK-3β phosphorylation. EMT associated E-cadherin suppression, α-SMA elevation and phenotypic transition were also attenuated by AUDA. Furthermore, in rats with chronic proteinuric renal disease, AUDA treatment inhibited PI3K-Akt activation and GSK-3β phosphorylation, while attenuating levels of EMT markers. Overall, our findings suggest that sEH inhibition ameliorates proteinuria-induced renal tubular EMT by regulating the PI3K-Akt-GSK-3β signaling pathway. Targeting sEH might be a potential strategy for the treatment of EMT and renal fibrosis. PMID:25986738

  10. The Emerging Role of PI3K Inhibitors in the Treatment of Hematological Malignancies: Preclinical Data and Clinical Progress to Date.

    PubMed

    Seiler, Till; Hutter, Grit; Dreyling, Martin

    2016-04-01

    The phosphoinositide 3-kinase (PI3K)/Akt/mTOR pathway is implicated in the pathogenesis of lymphoma. Deeper understanding of the diversity and biological impact of this pathway has led to the development of specific inhibitors to this pathway. Preclinical data in cell lines, patient samples and disease models have broadened our understanding of PI3K inhibition. Several PI3K inhibitors are currently in advanced stages of clinical development. Idelalisib is the first agent of this new substance class to be approved in chronic lymphocytic leukemia and follicular lymphoma. Other agents specifically target different PI3K isoforms and show promising clinical efficacy. PMID:27052260

  11. Inhibition of PI3K Pathway Reduces Invasiveness and Epithelial-to-Mesenchymal Transition in Squamous Lung Cancer Cell Lines Harboring PIK3CA Gene Alterations.

    PubMed

    Bonelli, Mara A; Cavazzoni, Andrea; Saccani, Francesca; Alfieri, Roberta R; Quaini, Federico; La Monica, Silvia; Galetti, Maricla; Cretella, Daniele; Caffarra, Cristina; Madeddu, Denise; Frati, Caterina; Lagrasta, Costanza Annamaria; Falco, Angela; Rossetti, Pietro; Fumarola, Claudia; Tiseo, Marcello; Petronini, Pier Giorgio; Ardizzoni, Andrea

    2015-08-01

    A prominent role in the pathogenesis of squamous cell carcinoma of the lung (SQCLC) has been attributed to the aberrant activation of the PI3K signaling pathway, due to amplification or mutations of the p110α subunit of class I phosphatidylinositol 3-kinase (PIK3CA) gene. The aim of our study was to determine whether different genetic alterations of PIK3CA affect the biologic properties of SQCLC and to evaluate the response to specific targeting agents in vitro and in vivo. The effects of NVP-BEZ235, NVP-BKM120, and NVP-BYL719 on two-dimensional/three-dimensional (2D/3D) cellular growth, epithelial-to-mesenchymal transition, and invasiveness were evaluated in E545K or H1047R PIK3CA-mutated SQCLC cells and in newly generated clones carrying PIK3CA alterations, as well as in a xenograft model. PIK3CA mutated/amplified cells showed increased growth rate and enhanced migration and invasiveness, associated with an increased activity of RhoA family proteins and the acquisition of a mesenchymal phenotype. PI3K inhibitors reverted this aggressive phenotype by reducing metalloproteinase production, RhoA activity, and the expression of mesenchymal markers, with the specific PI3K inhibitors NVP-BKM120 and NVP-BYL719 being more effective than the dual PI3K/mTOR inhibitor NVP-BEZ235. A xenograft model of SQCLC confirmed that PIK3CA mutation promotes the acquisition of a mesenchymal phenotype in vivo and proved the efficacy of its specific targeting drug NVP-BYL719 in reducing the growth and the expression of mesenchymal markers in xenotransplanted tumors. These data indicate that PIK3CA mutation/amplification may represent a good predictive feature for the clinical application of specific PI3K inhibitors in SQCLC patients. PMID:26013318

  12. Reactive oxygen species and PI3K/Akt signaling in cancer.

    PubMed

    Jin, Seo Yeon; Lee, Hye Sun; Kim, Eun Kyoung; Ha, Jung Min; Kim, Young Whan; Bae, SunSik

    2014-10-01

    Reactive oxygen species (ROS) are chemically reactive molecules containing oxygen and associates with multiple cellular functions such as cell proliferation, differentiation, and apoptosis. In the present study, we showed that Insulin-like growth factor-1(IGF-1) modulates SKOV-3 ovarian cancer cell by regulation of generation of ROS. Akt mediates cellular signaling pathways in association with mammalian target of rapamycin complex (mTOR) and Rac small G protein. Insulin-like growth factor-1 (IGF-1)-induced generation of ROS was completely abolished by phosphatidylinositol 3-kinase (PI3K) (LY294002, 10?µM) or Akt inhibitors (SH-5, 50?µM), whereas inhibition of extracellular-regulated kinase by an ERK inhibitor (PD98059, 10?µM) or inhibition of mammalian target of rapamycin complex 1 (mTORC1) by an mTORC1 inhibitor (Rapamycin, 100?nM) did not affect IGF-1-induced generation of ROS. Inactivation of mTORC2 by silencing Rapamycin-insensitive companion of mTOR (Rictor), abolished IGF-1-induced SKOV-3 cell migration as well as activation of Akt. However, inactivation of mTORC1 by silencing of Raptor had no effect. Silencing of Akt1 but not Akt2 attenuated IGF-1-induced generation of ROS. Expression of PIP3-dependent Rac exchanger1 (P-Rex1), a Rac guanosine exchange factor and a component of the mTOR complex. Silencing of P-Rex1 abolished IGF-1-induced generation of ROS. Finally, inhibition of NADPH oxidase system completely blunted IGF-1-induced generation of ROS, whereas inhibition of xanthine oxiase,cyclooxygenase, and mitochondrial respiratory chain complex was not effective. Given these results, we suggest that IGF-1 induces ROS generation through the PI3K/Akt/ mTOR2/NADPH oxidase signaling axis. PMID:26461347

  13. Molecular Pathways: Targeting the PI3K Pathway in Cancer-BET Inhibitors to the Rescue.

    PubMed

    Stratikopoulos, Elias E; Parsons, Ramon E

    2016-06-01

    The PI3K signaling pathway is a complex and tightly regulated network that is critical for many physiologic processes, such as cell growth, proliferation, metabolism, and survival. Aberrant activation of this pathway can occur through mutation of almost any of its major nodes and has been implicated in a number of human diseases, including cancer. The high frequency of mutations in this pathway in multiple types of cancer has led to the development of small-molecule inhibitors of PI3K, several of which are currently in clinical trials. However, several feedback mechanisms either within the PI3K pathway or in compensatory pathways can render tumor cells resistant to therapy. Recently, targeting proteins of the bromodomain and extraterminal (BET) family of epigenetic readers of histone acetylation has been shown to effectively block adaptive signaling response of cancer cells to inhibitors of the PI3K pathway, which at least in some cases can restore sensitivity. BET inhibitors also enforce blockade of the MAPK, JAK/STAT, and ER pathways, suggesting they may be a rational combinatorial partner for divergent oncogenic signals that are subject to homeostatic regulation. Here, we review the PI3K pathway as a target for cancer therapy and discuss the potential use of BET inhibition to enhance the clinical efficacy of PI3K inhibitors. Clin Cancer Res; 22(11); 2605-10. ©2016 AACR. PMID:27250929

  14. Astaxanthin reduces isoflurane-induced neuroapoptosis via the PI3K/Akt pathway.

    PubMed

    Wang, Chun-Mei; Cai, Xiao-Lan; Wen, Qing-Ping

    2016-05-01

    Astaxanthin is an oxygen-containing derivative of carotenoids that effectively suppresses reactive oxygen and has nutritional and medicinal value. The mechanisms underlying the effects of astaxanthin on isoflurane‑induced neuroapoptosis remain to be fully understood. The present study was conducted to evaluate the protective effect of astaxanthin to reduce isoflurane‑induced neuroapoptosis and to investigate the underlying mechanisms. The results demonstrated that isoflurane induced brain damage, increased caspase‑3 activity and suppressed the phosphatidylinositol 3‑kinase (PI3K)/protein kinase B (Akt) signaling pathway in an in vivo model. However, treatment with astaxanthin significantly inhibited brain damage, suppressed caspase‑3 activity and upregulated the PI3K/Akt pathway in the isoflurane‑induced rats. Furthermore, isoflurane suppressed cell growth, induced cell apoptosis, enhanced caspase‑3 activity and downregulated the PI3K/Akt pathway in organotypic hippocampal slice culture. Administration of astaxanthin significantly promoted cell growth, reduced cell apoptosis and caspase‑3 activity, and upregulated the PI3K/Akt pathway and isoflurane‑induced neuroapoptosis. The present study demonstrated that downregulation of the PI3K/Akt pathway reduced the effect of astaxanthin to protect against isoflurane‑induced neuroapoptosis in the in vitro model. The results of the current study suggested that the protective effect of astaxanthin reduces the isoflurane-induced neuroapoptosis via activation of the PI3K/Akt signaling pathway. PMID:27035665

  15. RICTOR involvement in the PI3K/AKT pathway regulation in melanocytes and melanoma

    PubMed Central

    Laugier, Florence; Finet-Benyair, Adeline; André, Jocelyne; Rachakonda, P. Sivaramakrishna; Kumar, Rajiv; Bensussan, Armand; Dumaz, Nicolas

    2015-01-01

    Several studies have highlighted the importance of the PI3K pathway in melanocytes and its frequent over-activation in melanoma. However, little is known about regulation of the PI3K pathway in melanocytic cells. We showed that normal human melanocytes are less sensitive to selective PI3K or mTOR inhibitors than to dual PI3K/mTOR inhibitors. The resistance to PI3K inhibitor was due to a rapid AKT reactivation limiting the inhibitor effect on proliferation. Reactivation of AKT was linked to a feedback mechanism involving the mTORC2 complex and in particular its scaffold protein RICTOR. RICTOR overexpression in melanocytes disrupted the negative feedback, activated the AKT pathway and stimulated clonogenicity highlighting the importance of this feedback to restrict melanocyte proliferation. We found that the RICTOR locus is frequently amplified and overexpressed in melanoma and that RICTOR over-expression in NRAS-transformed melanocytes stimulates their clonogenicity, demonstrating that RICTOR amplification can cooperate with NRAS mutation to stimulate melanoma proliferation. These results show that RICTOR plays a central role in PI3K pathway negative feedback in melanocytes and that its deregulation could be involved in melanoma development. PMID:26356562

  16. Low-dose testosterone alleviates vascular damage caused by castration in male rats in puberty via modulation of the PI3K/AKT signaling pathway

    PubMed Central

    Zhao, Jing; Liu, Ge-Li; Wei, Ying; Jiang, Li-Hong; Bao, Peng-Li; Yang, Qing-Yan

    2016-01-01

    The aim of the present study was to investigate the effect of testosterone on glucolipid metabolism and vascular injury in male rats, and examine the underlying molecular mechanisms. A total of 40 male Sprague-Dawley rats were divided into a control group (n=10), high-fat-diet + castration group (n=10), high-fat-diet + castration + low dose testosterone group (n=10), and high-fat-diet + castration + high dose testosterone group (n=10). Hematoxylin and eosin staining was performed to evaluate the morphology of the thoracic aortic tissues. Immunohistochemical staining was used to detect biomarkers of the phosphoinositide 3-kinase (PI3K) signaling pathway. The mRNA and protein expression levels of PI3K, AKT, insulin receptor substrate-1 (IRS-1), glucose transporter type 4 (GLUT-4), nuclear factor (NF)-κB and tumor necrosis factor (TNF)-α in the aortas were determined using quantitative polymerase chain reaction and Western blot analyses, respectively. Apoptosis in the aortic tissues was detected using a TUNEL assay. Castration induced apoptosis in the animals fed a high-fat-diet, whereas low dose testosterone replacement ameliorated the apoptosis in the aorta. However, the levels of apoptosis was more severe following high-dose testosterone treatment. Low-dose testosterone induced upregulation in the levels of IRS-1, AKT, GLUT-4 protein, NF-κB, TNF-α and PI3K, compared with those in the animals fed a high-fat diet following castration. A high dose of testosterone resulted in a significant decrease in the levels of IRS-1, AKT, GLUT-4, NF-κB, TNF-α and PI3K. Compared with the rats in the high-fat diet + castration group, a low dose of testosterone induced upregulation in the mRNA levels of IRS-1, AKT and GLUT-4, and downregulation of the mRNA levels of NF-κB, TNF-α and PI3K. A high dose of testosterone resulted in a significant decrease in the levels of IRS-1, AKT and GLUT-4, and marked increases in the mRNA levels of NF-κB, TNF-α and PI3K, compared with the

  17. Distinct roles of class IA PI3K isoforms in primary and immortalised macrophages.

    PubMed

    Papakonstanti, Evangelia A; Zwaenepoel, Olivier; Bilancio, Antonio; Burns, Emily; Nock, Gemma E; Houseman, Benjamin; Shokat, Kevan; Ridley, Anne J; Vanhaesebroeck, Bart

    2008-12-15

    The class IA isoforms of phosphoinositide 3-kinase (p110alpha, p110beta and p110delta) often have non-redundant functions in a given cell type. However, for reasons that are unclear, the role of a specific PI3K isoform can vary between cell types. Here, we compare the relative contributions of PI3K isoforms in primary and immortalised macrophages. In primary macrophages stimulated with the tyrosine kinase ligand colony-stimulating factor 1 (CSF1), all class IA PI3K isoforms participate in the regulation of Rac1, whereas p110delta selectively controls the activities of Akt, RhoA and PTEN, in addition to controlling proliferation and chemotaxis. The prominent role of p110delta in these cells correlates with it being the main PI3K isoform that is recruited to the activated CSF1 receptor (CSF1R). In immortalised BAC1.2F5 macrophages, however, the CSF1R also engages p110alpha, which takes up a more prominent role in CSF1R signalling, in processes including Akt phosphorylation and regulation of DNA synthesis. Cell migration, however, remains dependent mainly on p110delta. In other immortalised macrophage cell lines, such as IC-21 and J774.2, p110alpha also becomes more prominently involved in CSF1-induced Akt phosphorylation, at the expense of p110delta.These data show that PI3K isoforms can be differentially regulated in distinct cellular contexts, with the dominant role of the p110delta isoform in Akt phosphorylation and proliferation being lost upon cell immortalisation. These findings suggest that p110delta-selective PI3K inhibitors may be more effective in inflammation than in cancer. PMID:19033389

  18. Effects of PI3K inhibition and low docosahexaenoic acid on cognition and behavior.

    PubMed

    Bandaru, Sathyajit S; Lin, Kristen; Roming, Stephanie L; Vellipuram, Ramana; Harney, Jacob P

    2010-06-01

    Alterations in two components of the brain's insulin signaling pathway, docosahexaenoic acid (DHA) content and phosphoinositide 3-kinase (PI3K) activity, have been implicated in the insulin resistance that is central to type II diabetes mellitus (DM). A 2- to 3-fold increased risk of developing Alzheimer's disease (AD) in patients with type II DM suggests a potential link between cognition and insulin action. The current study was designed to examine the impact of DHA dietary content and PI3K activity on learning, memory, depression, and anxiety in rodents. Mice were divided into the following groups: (1) control diet and vehicle injection (control PI3K), (2) control diet and wortmannin injection (PI3K inhibition), (3) low DHA diet and vehicle, and (4) low DHA diet and wortmannin. Each group was assessed for effects on activity, cognition, depression, and anxiety. Concentrations of glucose and insulin in plasma were quantified to confirm insulin resistance. Results showed significant increases in depression, anxiety, plasma insulin and glucose, and significant decreases in activity in wortmannin-treated mice regardless of diet. The control diet/wortmannin-treated group showed a significant decrease in memory compared to all other groups. The low DHA diet/wortmannin-treated group had slightly improved memory and lower levels of depression compared to the control diet/wortmannin-treated group. Results of the present study suggest that inhibition of PI3K decreases activity and memory while increasing insulin resistance, depression, and anxiety. In addition, these results suggest a possible compensatory role of low DHA in decreasing the effects of dysfunctional PI3K in AD associated cognitive decline and depression. PMID:19914265

  19. PI-3K Inhibitors Preferentially Target CD15+ Cancer Stem Cell Population in SHH Driven Medulloblastoma

    PubMed Central

    Singh, Alok R.; Joshi, Shweta; Zulcic, Muamera; Alcaraz, Michael; Garlich, Joseph R.; Morales, Guillermo A.; Cho, Yoon J.; Bao, Lei; Levy, Michael L.; Newbury, Robert; Malicki, Denise; Messer, Karen; Crawford, John; Durden, Donald L.

    2016-01-01

    Sonic hedgehog (SHH) medulloblastoma (MB) subtype is driven by a proliferative CD15+ tumor propagating cell (TPC), also considered in the literature as a putative cancer stem cell (CSC). Despite considerable research, much of the biology of this TPC remains unknown. We report evidence that phosphatase and tensin homolog (PTEN) and phosphoinositide 3-kinase (PI-3K) play a crucial role in the propagation, survival and potential response to therapy in this CD15+ CSC/TPC-driven malignant disease. Using the ND2-SmoA1 transgenic mouse model for MB, mouse genetics and patient-derived xenografts (PDXs), we demonstrate that the CD15+TPCs are 1) obligately required for SmoA1Tg-driven tumorigenicity 2) regulated by PTEN and PI-3K signaling 3) selectively sensitive to the cytotoxic effects of pan PI-3K inhibitors in vitro and in vivo but resistant to chemotherapy 4) in the SmoA1Tg mouse model are genomically similar to the SHH human MB subgroup. The results provide the first evidence that PTEN plays a role in MB TPC signaling and biology and that PI-3K inhibitors target and suppress the survival and proliferation of cells within the mouse and human CD15+ cancer stem cell compartment. In contrast, CD15+ TPCs are resistant to cisplatinum, temozolomide and the SHH inhibitor, NVP-LDE-225, agents currently used in treatment of medulloblastoma. These studies validate the therapeutic efficacy of pan PI-3K inhibitors in the treatment of CD15+ TPC dependent medulloblastoma and suggest a sequential combination of PI-3K inhibitors and chemotherapy will have augmented efficacy in the treatment of this disease. PMID:26938241

  20. PI-3K Inhibitors Preferentially Target CD15+ Cancer Stem Cell Population in SHH Driven Medulloblastoma.

    PubMed

    Singh, Alok R; Joshi, Shweta; Zulcic, Muamera; Alcaraz, Michael; Garlich, Joseph R; Morales, Guillermo A; Cho, Yoon J; Bao, Lei; Levy, Michael L; Newbury, Robert; Malicki, Denise; Messer, Karen; Crawford, John; Durden, Donald L

    2016-01-01

    Sonic hedgehog (SHH) medulloblastoma (MB) subtype is driven by a proliferative CD15+ tumor propagating cell (TPC), also considered in the literature as a putative cancer stem cell (CSC). Despite considerable research, much of the biology of this TPC remains unknown. We report evidence that phosphatase and tensin homolog (PTEN) and phosphoinositide 3-kinase (PI-3K) play a crucial role in the propagation, survival and potential response to therapy in this CD15+ CSC/TPC-driven malignant disease. Using the ND2-SmoA1 transgenic mouse model for MB, mouse genetics and patient-derived xenografts (PDXs), we demonstrate that the CD15+TPCs are 1) obligately required for SmoA1Tg-driven tumorigenicity 2) regulated by PTEN and PI-3K signaling 3) selectively sensitive to the cytotoxic effects of pan PI-3K inhibitors in vitro and in vivo but resistant to chemotherapy 4) in the SmoA1Tg mouse model are genomically similar to the SHH human MB subgroup. The results provide the first evidence that PTEN plays a role in MB TPC signaling and biology and that PI-3K inhibitors target and suppress the survival and proliferation of cells within the mouse and human CD15+ cancer stem cell compartment. In contrast, CD15+ TPCs are resistant to cisplatinum, temozolomide and the SHH inhibitor, NVP-LDE-225, agents currently used in treatment of medulloblastoma. These studies validate the therapeutic efficacy of pan PI-3K inhibitors in the treatment of CD15+ TPC dependent medulloblastoma and suggest a sequential combination of PI-3K inhibitors and chemotherapy will have augmented efficacy in the treatment of this disease. PMID:26938241

  1. Garlic Oil Suppressed Nitrosodiethylamine-Induced Hepatocarcinoma in Rats by Inhibiting PI3K-AKT-NF-κB Pathway.

    PubMed

    Zhang, Cui-Li; Zeng, Tao; Zhao, Xiu-Lan; Xie, Ke-Qin

    2015-01-01

    To explore the underlying mechanisms for the protective effects of garlic oil (GO) against nitrosodiethylamine (NDEA)-induced hepatocarcinoma, 60 male Wistar rats were randomized into 4 groups (n=15): control group, NDEA group, and two GO plus NDEA groups. The rats in GO plus NDEA groups were pretreated with GO (20 or 40 mg/kg) for 7 days. Then, all rats except those in control group were gavaged with NDEA for 20 weeks, and the rats in GO plus NDEA groups were continuously administered with GO. The results showed that GO co-treatment significantly suppressed the NDEA-induced increases of alpha fetal protein (AFP) level in serum, nuclear atypia in H&E staining, sirius red-positive areas and proliferating cell nuclear antigen (PCNA) expression. The molecular mechanisms exploration revealed that the protein levels of phosphatidylinositol 3 kinase (PI3K)-p85, PI3K-p110, total AKT, p-AKT (Ser473) and p-AKT (Thr308) in the liver of NDEA group rats were higher than those in control group rats. In addition, NDEA treatment induced IκB degradation and NF-κB p65 phosphorylation, and up-regulated the protein levels of downstream pro-inflammatory mediators. GO co-treatment significantly reversed all the above adverse effects induced by NDEA. These results suggested that the protective effects of GO against NDEA-induced hepatocarcinoma might be associated with the suppression of PI3K- AKT-NF-κB pathway. PMID:25999787

  2. PI3K in the ventromedial hypothalamic nucleus mediates estrogenic actions on energy expenditure in female mice

    PubMed Central

    Saito, Kenji; He, Yanlin; Yang, Yongjie; Zhu, Liangru; Wang, Chunmei; Xu, Pingwen; Hinton, Antentor Othrell; Yan, Xiaofeng; Zhao, Jean; Fukuda, Makoto; Tong, Qingchun; Clegg, Deborah J.; Xu, Yong

    2016-01-01

    Estrogens act in the ventromedial hypothalamic nucleus (VMH) to regulate body weight homeostasis. However, the molecular mechanisms underlying these estrogenic effects are unknown. We show that activation of estrogen receptor-α (ERα) stimulates neural firing of VMH neurons expressing ERα, and these effects are blocked with intracellular application of a pharmacological inhibitor of the phosphatidyl inositol 3-kinase (PI3K). Further, we demonstrated that mice with genetic inhibition of PI3K activity in VMH neurons showed a sexual dimorphic obese phenotype, with only female mutants being affected. In addition, inhibition of VMH PI3K activity blocked effects of 17β-estradiol to stimulate energy expenditure, but did not affect estrogen-induced anorexia. Collectively, our results indicate that PI3K activity in VMH neurons plays a physiologically relevant role in mediating estrogenic actions on energy expenditure in females. PMID:26988598

  3. PI3K in the ventromedial hypothalamic nucleus mediates estrogenic actions on energy expenditure in female mice.

    PubMed

    Saito, Kenji; He, Yanlin; Yang, Yongjie; Zhu, Liangru; Wang, Chunmei; Xu, Pingwen; Hinton, Antentor Othrell; Yan, Xiaofeng; Zhao, Jean; Fukuda, Makoto; Tong, Qingchun; Clegg, Deborah J; Xu, Yong

    2016-01-01

    Estrogens act in the ventromedial hypothalamic nucleus (VMH) to regulate body weight homeostasis. However, the molecular mechanisms underlying these estrogenic effects are unknown. We show that activation of estrogen receptor-α (ERα) stimulates neural firing of VMH neurons expressing ERα, and these effects are blocked with intracellular application of a pharmacological inhibitor of the phosphatidyl inositol 3-kinase (PI3K). Further, we demonstrated that mice with genetic inhibition of PI3K activity in VMH neurons showed a sexual dimorphic obese phenotype, with only female mutants being affected. In addition, inhibition of VMH PI3K activity blocked effects of 17β-estradiol to stimulate energy expenditure, but did not affect estrogen-induced anorexia. Collectively, our results indicate that PI3K activity in VMH neurons plays a physiologically relevant role in mediating estrogenic actions on energy expenditure in females. PMID:26988598

  4. Coordinate activation of Shh and PI3K signaling in PTEN-deficient glioblastoma: new therapeutic opportunities.

    PubMed

    Filbin, Mariella Gruber; Dabral, Sukriti K; Pazyra-Murphy, Maria F; Ramkissoon, Shakti; Kung, Andrew L; Pak, Ekaterina; Chung, Jarom; Theisen, Matthew A; Sun, Yanping; Franchetti, Yoko; Sun, Yu; Shulman, David S; Redjal, Navid; Tabak, Barbara; Beroukhim, Rameen; Wang, Qi; Zhao, Jean; Dorsch, Marion; Buonamici, Silvia; Ligon, Keith L; Kelleher, Joseph F; Segal, Rosalind A

    2013-11-01

    In glioblastoma, phosphatidylinositol 3-kinase (PI3K) signaling is frequently activated by loss of the tumor suppressor phosphatase and tensin homolog (PTEN). However, it is not known whether inhibiting PI3K represents a selective and effective approach for treatment. We interrogated large databases and found that sonic hedgehog (SHH) signaling is activated in PTEN-deficient glioblastoma. We demonstrate that the SHH and PI3K pathways synergize to promote tumor growth and viability in human PTEN-deficient glioblastomas. A combination of PI3K and SHH signaling inhibitors not only suppressed the activation of both pathways but also abrogated S6 kinase (S6K) signaling. Accordingly, targeting both pathways simultaneously resulted in mitotic catastrophe and tumor apoptosis and markedly reduced the growth of PTEN-deficient glioblastomas in vitro and in vivo. The drugs tested here appear to be safe in humans; therefore, this combination may provide a new targeted treatment for glioblastoma. PMID:24076665

  5. Avian Reovirus Protein p17 Functions as a Nucleoporin Tpr Suppressor Leading to Activation of p53, p21 and PTEN and Inactivation of PI3K/AKT/mTOR and ERK Signaling Pathways.

    PubMed

    Huang, Wei-Ru; Chiu, Hung-Chuan; Liao, Tsai-Ling; Chuang, Kuo-Pin; Shih, Wing-Ling; Liu, Hung-Jen

    2015-01-01

    Avian reovirus (ARV) protein p17 has been shown to regulate cell cycle and autophagy by activation of p53/PTEN pathway; nevertheless, it is still unclear how p53 and PTEN are activated by p17. Here, we report for the first time that p17 functions as a nucleoporin Tpr suppressor that leads to p53 nuclear accumulation and consequently activates p53, p21, and PTEN. The nuclear localization signal (119IAAKRGRQLD128) of p17 has been identified for Tpr binding. This study has shown that Tpr suppression occurs by p17 interacting with Tpr and by reducing the transcription level of Tpr, which together inhibit Tpr function. In addition to upregulation of PTEN by activation of p53 pathway, this study also suggests that ARV protein p17 acts as a positive regulator of PTEN. ARV p17 stabilizes PTEN by stimulating phosphorylation of cytoplasmic PTEN and by elevating Rak-PTEN association to prevent it from E3 ligase NEDD4-1 targeting. To activate PTEN, p17 is able to promote β-arrestin-mediated PTEN translocation from the cytoplasm to the plasma membrane via a Rock-1-dependent manner. The accumulation of p53 in the nucleus induces the PTEN- and p21-mediated downregulation of cyclin D1 and CDK4. Furthermore, Tpr and CDK4 knockdown increased virus production in contrast to depletion of p53, PTEN, and LC3 reducing virus yield. Taken together, our data suggest that p17-mediated Tpr suppression positively regulates p53, PTEN, and p21 and negatively regulates PI3K/AKT/mTOR and ERK signaling pathways, both of which are beneficial for virus replication. PMID:26244501

  6. Avian Reovirus Protein p17 Functions as a Nucleoporin Tpr Suppressor Leading to Activation of p53, p21 and PTEN and Inactivation of PI3K/AKT/mTOR and ERK Signaling Pathways

    PubMed Central

    Huang, Wei-Ru; Chiu, Hung-Chuan; Liao, Tsai-Ling; Chuang, Kuo-Pin; Shih, Wing-Ling; Liu, Hung-Jen

    2015-01-01

    Avian reovirus (ARV) protein p17 has been shown to regulate cell cycle and autophagy by activation of p53/PTEN pathway; nevertheless, it is still unclear how p53 and PTEN are activated by p17. Here, we report for the first time that p17 functions as a nucleoporin Tpr suppressor that leads to p53 nuclear accumulation and consequently activates p53, p21, and PTEN. The nuclear localization signal (119IAAKRGRQLD128) of p17 has been identified for Tpr binding. This study has shown that Tpr suppression occurs by p17 interacting with Tpr and by reducing the transcription level of Tpr, which together inhibit Tpr function. In addition to upregulation of PTEN by activation of p53 pathway, this study also suggests that ARV protein p17 acts as a positive regulator of PTEN. ARV p17 stabilizes PTEN by stimulating phosphorylation of cytoplasmic PTEN and by elevating Rak-PTEN association to prevent it from E3 ligase NEDD4-1 targeting. To activate PTEN, p17 is able to promote β-arrestin-mediated PTEN translocation from the cytoplasm to the plasma membrane via a Rock-1-dependent manner. The accumulation of p53 in the nucleus induces the PTEN- and p21-mediated downregulation of cyclin D1 and CDK4. Furthermore, Tpr and CDK4 knockdown increased virus production in contrast to depletion of p53, PTEN, and LC3 reducing virus yield. Taken together, our data suggest that p17-mediated Tpr suppression positively regulates p53, PTEN, and p21 and negatively regulates PI3K/AKT/mTOR and ERK signaling pathways, both of which are beneficial for virus replication. PMID:26244501

  7. Crossroads of PI3K and Rac pathways

    PubMed Central

    Campa, Carlo C; Ciraolo, Elisa; Ghigo, Alessandra; Germena, Giulia; Hirsch, Emilio

    2015-01-01

    Rac and PI3Ks are intracellular signal transducers able to regulate multiple signaling pathways fundamental for cell behavior. PI3Ks are lipid kinases that produce phosphorylated lipids which, in turn, transduce extracellular cues within the cell, while Rac is a small G protein that impacts on actin organization. Compelling evidence indicates that in multiple circumstances the 2 signaling pathways appear intermingled. For instance, phosphorylated lipids produced by PI3Ks recruit and activate GEF and GAP proteins, key modulators of Rac function. Conversely, PI3Ks interact with activated Rac, leading to Rac signaling amplification. This review summarizes the molecular mechanisms underlying the cross-talk between Rac and PI3K signaling in 2 different processes, cell migration and ROS production. PMID:25942647

  8. Targeting EMP3 suppresses proliferation and invasion of hepatocellular carcinoma cells through inactivation of PI3K/Akt pathway.

    PubMed

    Hsieh, Yi-Hsien; Hsieh, Shu-Ching; Lee, Chien-Hsing; Yang, Shun-Fa; Cheng, Chun-Wen; Tang, Meng-Ju; Lin, Chia-Liang; Lin, Chu-Liang; Chou, Ruey-Hwang

    2015-10-27

    Epithelial membrane protein-3 (EMP3), a typical member of the epithelial membrane protein (EMP) family, is epigenetically silenced in some cancer types, and has been proposed to be a tumor suppressor gene. However, its effects on tumor suppression are controversial and its roles in development and malignancy of hepatocellular carcinoma (HCC) remain unclear. In the present study, we found that EMP3 was highly expressed in the tumorous tissues comparing to the matched normal tissues, and negatively correlated with differentiated degree of HCC patients. Knockdown of EMP3 significantly reduced cell proliferation, arrested cell cycle at G1 phase, and inhibited the motility and invasiveness in accordance with the decreased expression and activity of urokinase plasminogen activator (uPA) and matrix metalloproteinase 9 (MMP-9) in HCC cells. The in vivo tumor growth of HCC was effectively suppressed by knockdown of EMP3 in a xenograft mouse model. The EMP3 knockdown-reduced cell proliferation and invasion were attenuated by inhibition of phosphatidylinositol 3-kinase (PI3K) or knockdown of Akt, and rescued by overexpression of Akt in HCC cells. Clinical positive correlations of EMP3 with p85 regulatory subunit of PI3K, p-Akt, uPA, as well as MMP-9 were observed in the tissue sections from HCC patients. Here, we elucidated the tumor progressive effects of EMP3 through PI3K/Akt pathway and uPA/MMP-9 cascade in HCC cells. The findings provided a new insight into EMP3, which might be a potential molecular target for diagnosis and treatment of HCC. PMID:26472188

  9. Effects of hydrogen sulfide on myocardial fibrosis and PI3K/AKT1-regulated autophagy in diabetic rats.

    PubMed

    Xiao, Ting; Luo, Jian; Wu, Zhixiong; Li, Fang; Zeng, Ou; Yang, Jun

    2016-02-01

    Myocardial fibrosis is the predominant pathological characteristic of diabetic myocardial damage. Previous studies have indicated that hydrogen sulfide (H2S) has beneficial effects in the treatment of various cardiovascular diseases. However, there is little research investigating the effect of H2S on myocardial fibrosis in diabetes. The present study aimed to investigate the effects of H2S on the progression of myocardial fibrosis induced by diabetes. Diabetes was induced in rats by intraperitoneal injection of streptozotocin. Sodium hydrosulfide (NaHS) was used as an exogenous donor of H2S. After 8 weeks, expression levels of cystathionine-γ-lyase were determined by western blot analysis and morphological changes in the myocardium were assessed by hematoxylin and eosin staining and Masson staining. The hydroxyproline content and fibrosis markers were determined by a basic hydrolysis method and western blot analysis, respectively. Autophagosomes were observed under transmission electron microscopy. Expression levels of autophagy-associated proteins and their upstream signaling molecules were also evaluated by western blotting. The results of the current study indicated that diabetes induced marked myocardial fibrosis, enhanced myocardial autophagy and suppressed the phosphatidylinositol-4,5-bisphosphate 3-kinase/RAC-α serine/threonine-protein kinase (PI3K/AKT1) signaling pathway. By contrast, following treatment with NaHS, myocardial fibrosis was ameliorated, myocardial autophagy was decreased and the PI3K/AKT1 pathway suppression was reversed. The results of the present study demonstrated that the protective effect of H2S against diabetes-induced myocardial fibrosis may be associated with the attenuation of autophagy via the upregulation of the PI3K/AKT1 signaling pathway. PMID:26676365

  10. Vitamin E succinate induces apoptosis via the PI3K/AKT signaling pathways in EC109 esophageal cancer cells

    PubMed Central

    Yang, Peng; Zhao, Jiaying; Hou, Liying; Yang, Lei; Wu, Kun; Zhang, Linyou

    2016-01-01

    Esophageal cancer is the fourth most common gastrointestinal cancer, it generally has a poor prognosis and novel strategies are required for prevention and treatment. Vitamin E succinate (VES) is a potential chemical agent for cancer prevention and therapy as it exerts anti-tumor effects in a variety of cancers. However, the role of VES in tumorigenesis and progression of cancer remains to be elucidated. The present study aimed to determine the effects of VES in regulating the survival and apoptosis of human esophageal cancer cells. EC109 human esophageal cancer cells were used to investigate the anti-proliferative effects of VES. The MTT and Annexin V-fluorescein isothiocyanate/propidium iodide assays demonstrated that VES inhibited cell proliferation and induced apoptosis in esophageal cancer cells. Furthermore, VES downregulated constitutively active basal levels of phosphorylated (p)-serine-threonine kinase AKT (AKT) and p-mammalian target of rapamycin (mTOR), and decreased the phosphorylation of AKT substrates Bcl-2-associated death receptor and caspase-9, in addition to mTOR effectors, ribosomal protein S6 kinase β1 and eIF4E-binding protein 1. Phosphoinositide-3-kinase (PI3K) inhibitor, LY294002 suppressed p-AKT and p-mTOR, indicating PI3K is a common upstream mediator. The apoptosis induced by VES was increased by inhibition of AKT or mTOR with their respective inhibitor in esophageal cancer cells. The results of the present study suggested that VES targeted the PI3K/AKT signaling pathways and induced apoptosis in esophageal cancer cells. Furthermore, the current study suggests that VES may be useful in a combinational therapeutic strategy employing an mTOR inhibitor. PMID:27357907

  11. Activation of group IV cytosolic phospholipase A2 in human eosinophils by phosphoinositide 3-kinase through a mitogen-activated protein kinase-independent pathway.

    PubMed

    Myou, Shigeharu; Leff, Alan R; Myo, Saori; Boetticher, Evan; Meliton, Angelo Y; Lambertino, Anissa T; Liu, Jie; Xu, Chang; Munoz, Nilda M; Zhu, Xiangdong

    2003-10-15

    Activation of group IV cytosolic phospholipase A(2) (gIV-PLA(2)) is the essential first step in the synthesis of inflammatory eicosanoids and in integrin-mediated adhesion of leukocytes. Prior investigations have demonstrated that phosphorylation of gIV-PLA(2) results from activation of at least two isoforms of mitogen-activated protein kinase (MAPK). We investigated the potential role of phosphoinositide 3-kinase (PI3K) in the activation of gIV-PLA(2) and the hydrolysis of membrane phosphatidylcholine in fMLP-stimulated human blood eosinophils. Transduction into eosinophils of Deltap85, a dominant negative form of class IA PI3K adaptor subunit, fused to an HIV-TAT protein transduction domain (TAT-Deltap85) concentration dependently inhibited fMLP-stimulated phosphorylation of protein kinase B, a downstream target of PI3K. FMLP caused increased arachidonic acid (AA) release and secretion of leukotriene C(4) (LTC(4)). TAT-Deltap85 and LY294002, a PI3K inhibitor, blocked the phosphorylation of gIV-PLA(2) at Ser(505) caused by fMLP, thus inhibiting gIV-PLA(2) hydrolysis and production of AA and LTC(4) in eosinophils. FMLP also caused extracellular signal-related kinases 1 and 2 and p38 MAPK phosphorylation in eosinophils; however, neither phosphorylation of extracellular signal-related kinases 1 and 2 nor p38 was inhibited by TAT-Deltap85 or LY294002. Inhibition of 1) p70 S6 kinase by rapamycin, 2) protein kinase B by Akt inhibitor, or 3) protein kinase C by Ro-31-8220, the potential downstream targets of PI3K for activation of gIV-PLA(2), had no effect on AA release or LTC(4) secretion caused by fMLP. We find that PI3K is required for gIV-PLA(2) activation and hydrolytic production of AA in activated eosinophils. Our data suggest that this essential PI3K independently activates gIV-PLA(2) through a pathway that does not involve MAPK. PMID:14530366

  12. Simultaneous Inhibition of EGFR and PI3K Enhances Radiosensitivity in Human Breast Cancer

    SciTech Connect

    Li Ping; Zhang Qing; Torossian, Artour; Li Zhaobin; Xu Wencai; Lu Bo; Fu Shen

    2012-07-01

    Purpose: Mutations in the epidermal growth factor receptor (EGFR)/phosphoinositide 3-kinase (PI3K)/Akt signaling transduction pathway are common in cancer. This pathway is imperative to the radiosensitivity of cancer cells. We aimed to investigate the radiosensitizing effects of the simultaneous inhibition of EGFR and PI3K in breast cancer cells. Methods and Materials: MCF-7 cell lines with low expression of EGFR and wild-type PTEN and MDA-MB-468 cell lines with high expression of EGFR and mutant PTEN were used. The radiosensitizing effects by the inhibition of EGFR with AG1478 and/or PI3K with Ly294002 were determined by colony formation assay, Western blot was used to investigate the effects on downstream signaling. Flow cytometry was used for apoptosis and cell cycle analysis. Mice-bearing xenografts of MDA-MB-468 breast cancer cells were also used to observe the radiosensitizing effect. Results: Simultaneous inhibition of EGFR and PI3K greatly enhanced radiosensitizing effect in MDA-MB-468 in terms of apoptosis and mitotic death, either inhibition of EGFR or PI3K alone could enhance radiosensitivity with a dose-modifying factor (DMF{sub SF2}) of 1.311 and 1.437, radiosensitizing effect was further enhanced by simultaneous inhibition of EGFR and PI3K with a DMF{sub SF2} at 2.698. DNA flow cytometric analysis indicated that dual inhibition combined with irradiation significantly induced G0/G1 phase arrest in MDA-MB-468 cells. The expression of phosphor-Akt and phosphor-Erk1/2 (induced by irradiation and PI3K inhibitor) were fully attenuated by simultaneous treatment with both inhibitors in combination with irradiation. In addition, dual inhibition combined with irradiation induced dramatic tumor growth delay in MDA-MB-468 xenografts. Conclusions: Our study indicated that simultaneous inhibition of EGFR and PI3K could further sensitize the cancer cells to irradiation compared to the single inhibitor with irradiation in vitro and in vivo. The approach may have

  13. PI3K regulates endocytosis after insulin secretion by mediating signaling crosstalk between Arf6 and Rab27a.

    PubMed

    Yamaoka, Mami; Ando, Tomomi; Terabayashi, Takeshi; Okamoto, Mitsuhiro; Takei, Masahiro; Nishioka, Tomoki; Kaibuchi, Kozo; Matsunaga, Kohichi; Ishizaki, Ray; Izumi, Tetsuro; Niki, Ichiro; Ishizaki, Toshimasa; Kimura, Toshihide

    2016-02-01

    In secretory cells, endocytosis is coupled to exocytosis to enable proper secretion. Although endocytosis is crucial to maintain cellular homeostasis before and after secretion, knowledge about secretagogue-induced endocytosis in secretory cells is still limited. Here, we searched for proteins that interacted with the Rab27a GTPase-activating protein (GAP) EPI64 (also known as TBC1D10A) and identified the Arf6 guanine-nucleotide-exchange factor (GEF) ARNO (also known as CYTH2) in pancreatic β-cells. We found that the insulin secretagogue glucose promotes phosphatidylinositol (3,4,5)-trisphosphate (PIP3) generation through phosphoinositide 3-kinase (PI3K), thereby recruiting ARNO to the intracellular side of the plasma membrane. Peripheral ARNO promotes clathrin assembly through its GEF activity for Arf6 and regulates the early stage of endocytosis. We also found that peripheral ARNO recruits EPI64 to the same area and that the interaction requires glucose-induced endocytosis in pancreatic β-cells. Given that GTP- and GDP-bound Rab27a regulate exocytosis and the late stage of endocytosis, our results indicate that the glucose-induced activation of PI3K plays a pivotal role in exocytosis-endocytosis coupling, and that ARNO and EPI64 regulate endocytosis at distinct stages. PMID:26683831

  14. Fragile Histidine Triad (FHIT) Suppresses Proliferation and Promotes Apoptosis in Cholangiocarcinoma Cells by Blocking PI3K-Akt Pathway

    PubMed Central

    Huang, Qiang; Liu, Zhen; Xie, Fang; Liu, Chenhai; Shao, Feng; Zhu, Cheng-lin; Hu, Sanyuan

    2014-01-01

    Fragile histidine triad (FHIT) is a tumor suppressor protein that regulates cancer cell proliferation and apoptosis. However, its exact mechanism of action is poorly understood. Phosphatidylinositol 3-OH kinase (PI3K)-Akt-survivin is an important signaling pathway that was regulated by FHIT in lung cancer cells. To determine whether FHIT can regulate this pathway in cholangiocarcinoma QBC939 cells, we constructed an FHIT expression plasmid and used it to transfect QBC939 cells. Protein and mRNA expression were measured by western blotting and qRT-PCR, respectively. The viability and apoptosis of QBC939 cells were then assessed using MTT assays and flow cytometry. Our results revealed that the expression of survivin and Bcl-2 was downregulated, and caspase 3 was upregulated, in cells overexpressing FHIT. In addition, FHIT suppressed the phosphorylation of Akt. The changes in cell proliferation and apoptosis were obvious in cells overexpressing FHIT which parallels that of treatment with LY294002, a potent inhibitor of phosphoinositide 3-kinases. Treatment with LY294002 further decreased the expression of survivin and Bcl-2 and increased caspase-3 levels. These results suggest that FHIT can block the PI3K-Akt-survivin pathway by suppressing the phosphorylation of Akt and the expression of survivin and Bcl-2 and upregulating caspase 3. PMID:24757411

  15. Allosteric modulation of Ras and the PI3K/AKT/mTOR pathway: emerging therapeutic opportunities

    PubMed Central

    Hubbard, Paul A.; Moody, Colleen L.; Murali, Ramachandran

    2014-01-01

    GTPases and kinases are two predominant signaling modules that regulate cell fate. Dysregulation of Ras, a GTPase, and the three eponymous kinases that form key nodes of the associated phosphatidylinositol 4,5-bisphosphate 3-kinase (PI3K)/AKT/mTOR pathway have been implicated in many cancers, including pancreatic cancer, a disease noted for its current lack of effective therapeutics. The K-Ras isoform of Ras is mutated in over 90% of pancreatic ductal adenocarcinomas (PDAC) and there is growing evidence linking aberrant PI3K/AKT/mTOR pathway activity to PDAC. Although these observations suggest that targeting one of these nodes might lead to more effective treatment options for patients with pancreatic and other cancers, the complex regulatory mechanisms and the number of sequence-conserved isoforms of these proteins have been viewed as significant barriers in drug development. Emerging insights into the allosteric regulatory mechanisms of these proteins suggest novel opportunities for development of selective allosteric inhibitors with fragment-based drug discovery (FBDD) helping make significant inroads. The fact that allosteric inhibitors of Ras and AKT are currently in pre-clinical development lends support to this approach. In this article, we will focus on the recent advances and merits of developing allosteric drugs targeting these two inter-related signaling pathways. PMID:25566081

  16. Allosteric modulation of Ras and the PI3K/AKT/mTOR pathway: emerging therapeutic opportunities.

    PubMed

    Hubbard, Paul A; Moody, Colleen L; Murali, Ramachandran

    2014-01-01

    GTPases and kinases are two predominant signaling modules that regulate cell fate. Dysregulation of Ras, a GTPase, and the three eponymous kinases that form key nodes of the associated phosphatidylinositol 4,5-bisphosphate 3-kinase (PI3K)/AKT/mTOR pathway have been implicated in many cancers, including pancreatic cancer, a disease noted for its current lack of effective therapeutics. The K-Ras isoform of Ras is mutated in over 90% of pancreatic ductal adenocarcinomas (PDAC) and there is growing evidence linking aberrant PI3K/AKT/mTOR pathway activity to PDAC. Although these observations suggest that targeting one of these nodes might lead to more effective treatment options for patients with pancreatic and other cancers, the complex regulatory mechanisms and the number of sequence-conserved isoforms of these proteins have been viewed as significant barriers in drug development. Emerging insights into the allosteric regulatory mechanisms of these proteins suggest novel opportunities for development of selective allosteric inhibitors with fragment-based drug discovery (FBDD) helping make significant inroads. The fact that allosteric inhibitors of Ras and AKT are currently in pre-clinical development lends support to this approach. In this article, we will focus on the recent advances and merits of developing allosteric drugs targeting these two inter-related signaling pathways. PMID:25566081

  17. Following the trail of lipids: Signals initiated by PI3K function at multiple cellular membranes.

    PubMed

    Naguib, Adam

    2016-01-01

    Phosphatidylinositol 3,4,5-trisphosphate [PtdIns(3,4,5)P3] is the signaling currency of the phosphoinositide 3-kinase (PI3K)/AKT pathway; transduction through this axis depends on this signaling lipid. Formation of PtdIns(3,4,5)P3 is dictated not only by PI3K activation but also by the localization and access of PI3K to its substrate PtdIns(4,5)P2 (phosphatidylinositol 4,5-bisphosphate). PI3K/AKT-mediated signaling is antagonized by PtdIns(3,4,5)P3 dephosphorylation. Although previously typically considered an event associated with the plasma membrane, it is now appreciated that the formation and metabolism of PtdIns(3,4,5)P3 occur on multiple membranes with distinct kinetics. Modulated activity of phosphatidylinositol lipid kinases and phosphatases contributes to intricately orchestrated lipid gradients that define the signaling status of the pathway at multiple sites within the cell. PMID:27188443

  18. PI3K at the crossroads of tumor angiogenesis signaling pathways

    PubMed Central

    Soler, Adriana; Angulo-Urarte, Ana; Graupera, Mariona

    2015-01-01

    Tumors need blood vessels for their growth, thus providing the rationale for antiangiogenic therapy in cancer treatment. However, intrinsic and acquired resistance and low response rates have turned out to be major limitations of antiangiogenic therapy. This emphasizes the need to further understand how the vasculature in cancer can be targeted. Although endothelial cells (ECs) rely on multiple growth factors and cytokines to grow, antiangiogenic therapies have mainly centered on targeting vascular endothelial growth factor (VEGF). Phosphoinositide 3-kinases (PI3Ks) form a family of 8 isoenzymes with non-redundant functions in normal biology and cancer. The subgroup of class I PI3Ks are situated at the crossroad of a plethora of proangiogenic signals and control cell growth, survival, motility, and metabolism. These isoenzymes have pleiotropic roles in the tumor microenvironment, including cell-autonomous functions in ECs, underscoring the complexity of targeting this pathway in cancer. Here, we describe how the PI3K axis influences angiogenesis in different cell compartments and summarize the diversity of vascular responses to PI3K inhibition. Targeting PI3K signaling by isoform-selective inhibitors, together with readjusting the current doses below the maximum tolerated dose, may improve clinical responses to class I PI3K anticancer agents. PMID:27308431

  19. Regulation of the PI3K pathway through a p85α monomer–homodimer equilibrium

    PubMed Central

    Cheung, Lydia WT; Walkiewicz, Katarzyna W; Besong, Tabot MD; Guo, Huifang; Hawke, David H; Arold, Stefan T; Mills, Gordon B

    2015-01-01

    The canonical action of the p85α regulatory subunit of phosphatidylinositol 3-kinase (PI3K) is to associate with the p110α catalytic subunit to allow stimuli-dependent activation of the PI3K pathway. We elucidate a p110α-independent role of homodimerized p85α in the positive regulation of PTEN stability and activity. p110α-free p85α homodimerizes via two intermolecular interactions (SH3:proline-rich region and BH:BH) to selectively bind unphosphorylated activated PTEN. As a consequence, homodimeric but not monomeric p85α suppresses the PI3K pathway by protecting PTEN from E3 ligase WWP2-mediated proteasomal degradation. Further, the p85α homodimer enhances the lipid phosphatase activity and membrane association of PTEN. Strikingly, we identified cancer patient-derived oncogenic p85α mutations that target the homodimerization or PTEN interaction surface. Collectively, our data suggest the equilibrium of p85α monomer–dimers regulates the PI3K pathway and disrupting this equilibrium could lead to disease development. DOI: http://dx.doi.org/10.7554/eLife.06866.001 PMID:26222500

  20. Invention of a novel photodynamic therapy for tumors using a photosensitizing PI3K inhibitor.

    PubMed

    Hayashida, Yushi; Ikeda, Yuka; Sawada, Koichi; Kawai, Katsuhisa; Kato, Takuma; Kakehi, Yoshiyuki; Araki, Nobukazu

    2016-08-01

    XL147 (SAR245408, pilaralisib), an ATP-competitive pan-class I phosphoinositide 3-kinase (PI3K) inhibitor, is a promising new anticancer drug. We examined the effect of the PI3K inhibitor on PC3 prostate cancer cells under a fluorescence microscope and found that XL147-treated cancer cells are rapidly injured by blue wavelength (430 nm) light irradiation. During the irradiation, the cancer cells treated with 0.2-2 μM XL147 showed cell surface blebbing and cytoplasmic vacuolation and died within 15 min. The extent of cell injury/death was dependent on the dose of XL147 and the light power of the irradiation. These findings suggest that XL147 might act as a photosensitizing reagent in photodynamic therapy (PDT) for cancer. Moreover, the cytotoxic effect of photosensitized XL147 was reduced by pretreatment with other ATP-competitive PI3K inhibitors such as LY294002, suggesting that the cytotoxic effect of photosensitized XL147 is facilitated by binding to PI3K in cells. In a single-cell illumination analysis using a fluorescent probe to identify reactive oxygen species (ROS), significantly increased ROS production was observed in the XL147-treated cells when the cell was illuminated with blue light. Taken together, it is conceivable that XL147, which is preferentially accumulated in cancer cells, could be photosensitized by blue light to produce ROS to kill cancer cells. This study will open up new possibilities for PDT using anticancer drugs. PMID:26989815

  1. Interfering with Resistance to Smoothened Antagonists by Inhibition of the PI3K Pathway in Medulloblastoma

    PubMed Central

    Buonamici, Silvia; Williams, Juliet; Morrissey, Michael; Wang, Anlai; Guo, Ribo; Vattay, Anthony; Hsiao, Kathy; Yuan, Jing; Green, John; Ospina, Beatrice; Yu, Qunyan; Ostrom, Lance; Fordjour, Paul; Anderson, Dustin L.; Monahan, John E.; Kelleher, Joseph F.; Peukert, Stefan; Pan, Shifeng; Wu, Xu; Maira, Sauveur-Michel; Garcia-Echeverria, Carlos; Briggs, Kimberly J.; Watkins, D. Neil; Yao, Yung-mae; Lengauer, Christoph; Warmuth, Markus; Sellers, William R.; Dorsch, Marion

    2012-01-01

    Mutations in Hedgehog (Hh) pathway genes, leading to constitutive activation of Smoothened (Smo), occur in medulloblastoma. Antagonists of Smo induce tumor regression in mouse models of medulloblastoma and hold great promise for treating this disease. However, acquired resistance has emerged as a challenge to targeted therapeutics and may limit their anti-cancer efficacy. Here, we describe novel mechanisms of acquired resistance to Smo antagonists in medulloblastoma. NVP-LDE225, a potent and selective Smo antagonist, inhibits Hh signaling and induces tumor regressions in allograft models of medulloblastoma that are driven by mutations of Patched (Ptch), a tumor suppressor in the Hh pathway. However, evidence of resistance was observed during the course of treatment. Molecular analysis of resistant tumors revealed distinct resistance mechanisms. Chromosomal amplification of Gli2, a downstream effector of Hh signaling, or more rarely point mutations in Smo led to reactivated Hh signaling and restored tumor growth. Unexpectedly, analysis of pathway gene-expression signatures selectively deregulated in resistant tumors identified increased phosphoinositide 3-kinase (PI3K) signaling as another potential resistance mechanism. Probing the functional relevance of increased PI3K signaling, we demonstrated that the combination of NVP-LDE225 with the PI3K class I inhibitor NVP-BKM120 or the dual PI3K/mTOR inhibitor NVP-BEZ235 markedly delayed the development of resistance. Our findings have important clinical implications for future treatment strategies in medulloblastoma. PMID:20881279

  2. PI3K regulates BMAL1/CLOCK-mediated circadian transcription from the Dbp promoter.

    PubMed

    Morishita, Yoshikazu; Miura, Daiki; Kida, Satoshi

    2016-06-01

    The circadian rhythm generated by circadian clock underlies a molecular mechanism of rhythmic transcriptional regulation by transcription factor BMAL1/CLOCK. Importantly, the circadian clock is coordinated by exogenous cues to accommodate to changes in the external environment. However, the molecular mechanisms by which intracellular-signaling pathways mediate the adjustments of the circadian transcriptional rhythms remain unclear. In this study, we found that pharmacological inhibition or shRNA-mediated knockdown of phosphatidylinositol 3-kinase (PI3K) blocked upregulation of Dbp mRNA induced by serum shock in NIH 3T3 cells. Moreover, the inhibition of PI3K significantly reduced the promoter activity of the Dbp gene, as well as decreased the recruitment of BMAL1/CLOCK to the E-box in the Dbp promoter. Interestingly, the inhibition of PI3K blocked heterodimerization of BMAL1 and CLOCK. Our findings suggest that PI3K signaling plays a modulatory role in the regulation of the transcriptional rhythm of the Dbp gene by targeting BMAL1 and CLOCK. PMID:27022680

  3. Erythropoietin pretreatment suppresses inflammation by activating the PI3K/Akt signaling pathway in myocardial ischemia-reperfusion injury

    PubMed Central

    RONG, REN; XIJUN, XIAO

    2015-01-01

    Erythropoietin (EPO), a glycoprotein originally known for its important role in the stimulation of erythropoiesis, has recently been shown to have significant protective effects in animal models of kidney and intestinal ischemia-reperfusion injury (IRI). However, the mechanism underlying these protective effects remains unclear. The aim of the current study was to evaluate the effects of EPO on myocardial IRI and to investigate the mechanism underlying these effects. A total of 18 male Sprague Dawley rats were randomly divided into three groups, namely the sham, IRI-saline and IRI-EPO groups. Rats in the IRI-EPO group were administered 5,000 U/kg EPO intraperitoneally 24 h prior to the induction of IRI. IRI was induced by ligating the left descending coronary artery for 30 min, followed by reperfusion for 3 h. Pathological changes in the myocardial tissue were observed and scored. The levels of the proinflammatory cytokines, interleukin (IL)-6, IL-1β and tumor necrosis factor (TNF)-α, were evaluated in the serum and myocardial tissue. Furthermore, the effects of EPO on phosphoinositide 3-kinase/protein kinase B (PI3K/Akt) signaling and EPO receptor (EPOR) phosphorylation were measured. Pathological changes in the myocardial tissue, increased expression levels of TNF-α, IL-6 and IL-1β in the myocardium, and increased serum levels of these mediators, as a result of IRI, were significantly decreased by EPO pretreatment. The effects of EPO were found to be associated with the activation of PI3K/Akt signaling, which suppressed the inflammatory responses, following the initiation of EPOR activation by EPO. Therefore, EPO pretreatment was demonstrated to decrease myocardial IRI, which was associated with activation of EPOR, subsequently increasing PI3K/Akt signaling to inhibit the production and release of inflammatory mediators. Thus, the results of the present study indicated that EPO may be useful for preventing myocardial IRI. PMID:26622330

  4. Platelet-derived-growth-factor stimulation of the p42/p44 mitogen-activated protein kinase pathway in airway smooth muscle: role of pertussis-toxin-sensitive G-proteins, c-Src tyrosine kinases and phosphoinositide 3-kinase.

    PubMed Central

    Conway, A M; Rakhit, S; Pyne, S; Pyne, N J

    1999-01-01

    The mechanism used by the platelet-derived growth factor receptor (PDGFR) to activate the mitogen-activated- protein-kinase (p42/p44 MAPK) pathway was investigated in cultured airway smooth muscle (ASM) cells. We have found that pertussis toxin (PTX, which was used to inactivate the heterotrimeric G-protein Gi) induced an approx. 40-50% decrease in the activation of c-Src and p42/p44 MAPK by PDGF. An essential role for c-Src was confirmed using the c-Src inhibitor, PP1, which abolished p42/p44 MAPK activation (PP1 and PTX were without effect on PDGFR tyrosine phosphorylation). Furthermore, the PTX-dependent decrease in c-Src and p42/p44 MAPK activation appeared correlated. These findings suggest that the PDGFR can utilize the PTX-sensitive G-protein, Gi, to regulate c-Src and subsequent p42/p44 MAPK activation. Phosphoinositide 3-kinase (PI3K) has been shown by others to be involved in p42/p44 MAPK activation. This is confirmed here by experiments which showed that PI3K inhibitors (wortmannin and LY294002) reduced the activation of p42/p44 MAPK by PDGF. PI3K activity was increased in Grb-2 immunoprecipitates from PDGF-stimulated cells and was decreased by pretreating these cells with PTX. These findings show that Gi might also promote Grb-2-PI3K complex formation and that Grb-2 may be a site at which PI3K is integrated into the p42/p44 MAPK cascade. In conclusion, our results demonstrate that Gi enables the PDGFR to signal more efficiently to p42/p44 MAPK, and this appears to be achieved through the regulation of c-Src and Grb-2/PI3K, which are intermediates in the p42/p44 MAPK cascade. PMID:9882612

  5. Sedanolide induces autophagy through the PI3K, p53 and NF-κB signaling pathways in human liver cancer cells.

    PubMed

    Hsieh, Shu-Ling; Chen, Chi-Tsai; Wang, Jyh-Jye; Kuo, Yu-Hao; Li, Chien-Chun; Hsieh, Lan-Chi; Wu, Chih-Chung

    2015-12-01

    Sedanolide (SN), a phthalide-like compound from celery seed oil, possesses antioxidant effects. However, the effect of SN on cell death in human liver cancer cells has yet to be determined. In this study, cell viability determination, monodansylcadaverine (MDC) fluorescent staining and immunoblot analysis were performed to determine autophagy induction and autophagy-induced protein expression changes via molecular examination after human liver cancer (J5) cells were treated with SN. Our studies demonstrate that SN suppressed J5 cell viability by inducing autophagy. Phosphoinositide 3-kinase (PI3K)-I, mammalian target of rapamycin (mTOR) and Akt protein levels decreased, whereas PI3K-III, LC3-II and Beclin-1 protein levels increased following SN treatment in J5 cells. In addition, SN treatment upregulated nuclear p53 and damage-regulated autophagy modulator (DRAM) and downregulated cytosolic p53 and Tp53-induced glycolysis and apoptosis regulator (TIGAR) expression in J5 cells. Furthermore, the cytosolic phosphorylation of inhibitor of kappa B (IκB) and nuclear p65 and the DNA-binding activity of NF-κB increased after SN treatment. These results suggest that SN induces J5 cell autophagy by regulating PI3K, p53 and NF-κB autophagy-associated signaling pathways in J5 cells. PMID:26500073

  6. Trastuzumab-resistant cells rely on a HER2-PI3K-FoxO-survivin axis and are sensitive to PI3K inhibitors.

    PubMed

    Chakrabarty, Anindita; Bhola, Neil E; Sutton, Cammie; Ghosh, Ritwik; Kuba, María Gabriela; Dave, Bhuvanesh; Chang, Jenny C; Arteaga, Carlos L

    2013-02-01

    The antibody trastuzumab is approved for treatment of patients with HER2 (ERBB2)-overexpressing breast cancer. A significant fraction of these tumors are either intrinsically resistant or acquire resistance rendering the drug ineffective. The development of resistance has been attributed to failure of the antibody to inhibit phosphoinositide 3-kinase (PI3K), which is activated by the HER2 network. Herein, we examined the effects of PI3K blockade in trastuzumab-resistant breast cancer cell lines. Treatment with the pan-PI3K inhibitor XL147 and trastuzumab reduced proliferation and pAKT levels, triggering apoptosis of trastuzumab-resistant cells. Compared with XL147 alone, the combination exhibited a superior antitumor effect against trastuzumab-resistant tumor xenografts. Furthermore, treatment with XL147 and trastuzumab reduced the cancer stem-cell (CSC) fraction within trastuzumab-resistant cells both in vitro and in vivo. These effects were associated with FoxO-mediated inhibition of transcription of the antiapoptosis gene survivin (BIRC5) and the CSC-associated cytokine interleukin-8. RNA interference-mediated or pharmacologic inhibition of survivin restored sensitivity to trastuzumab in resistant cells. In a cohort of patients with HER2-overexpressing breast cancer treated with trastuzumab, higher pretreatment tumor levels of survivin RNA correlated with poor response to therapy. Together, our results suggest that survivin blockade is required for therapeutic responses to trastuzumab and that by combining trastuzumab and PI3K inhibitors, CSCs can be reduced within HER2(+) tumors, potentially preventing acquired resistance to anti-HER2 therapy. PMID:23204226

  7. Sphingosine-1-phosphate receptor 2 mediates endothelial cells dysfunction by PI3K-Akt pathway under high glucose condition.

    PubMed

    Liu, Weihua; Liu, Bin; Liu, Shaojun; Zhang, Jingzhi; Lin, Shuangfeng

    2016-04-01

    Endothelial dysfunction is believed the early stage of development of diabetic cardiovascular complications. Sphingosine-1-phosphate (S1P) regulates various biological activities by binding to sphingosine-1-phosphate receptors (S1PRs) including S1PR1-S1PR5. In the present study, the role of S1P receptors in S1P-induced human coronary artery endothelial cells (HCAECs) dysfunction under high glucose condition was investigated and the underlying mechanism was explored. S1PR1-S1PR5 mRNA levels were detected by quantitative Real-time PCR. NO level and polymorphonuclear neutrophils (PMN)-endothelial cells adhesion were measured by nitrate reductase and myeloperoxidase colorimetric method, respectively. Protein levels of endothelial nitric oxide synthase (eNOS), vascular cell adhesion molecule-1 (VCAM-1), intercellular adhesion molecule-1(ICAM-1), phosphatidylinositol 3-kinase (PI3K) and Akt were measured by Western blot analysis. S1PR2 were found the predominant S1P receptor expressed in HCAECs exposed to high glucose. NO level and eNOS activity were remarkably decreased, while PMN adhesion, VCAM-1 and ICAM-1 protein levels were increased significantly by S1P treatment in HCAECs exposed to high glucose and normal glucose. Blockage of S1PR2 with specific antagonist JTE-013 and small interfering RNA (siRNA) resulted in enhanced NO level and eNOS activity as well as decreased PMN adhesion, reduced protein levels of VCAM-1 and ICAM-1 induced by S1P. Furthermore, Phosphor-PI3K and phosphor-Akt level were markedly increased by S1PR2 blockade in S1P-treated cells exposed to high glucose, which were suppressed by PI3K inhibitor wortmannin. In conclusion, S1P/S1PR2 mediated endothelial dysfunction partly by inhibiting PI3K/Akt signaling pathway under high glucose condition. S1PR2 blockage could ameliorate endothelial dysfunction which might provide a potential therapeutic strategy for diabetic vascular complications. PMID:26921757

  8. Thymoquinone attenuates liver fibrosis via PI3K and TLR4 signaling pathways in activated hepatic stellate cells.

    PubMed

    Bai, Ting; Lian, Li-Hua; Wu, Yan-Ling; Wan, Ying; Nan, Ji-Xing

    2013-02-01

    Thymoquinone (TQ) is the major active compound derived from the medicinal Nigella sativa. In the present study, we investigated the anti-fibrotic mechanism of TQ in lipopolysaccharide (LPS)-activated rat hepatic stellate cells line, T-HSC/Cl-6. T-HSC/Cl-6 cells were treated with TQ (3.125, 6.25 and 12.5μM) prior to LPS (1μg/ml). Our data demonstrated that TQ effectively decreased activated T-HSC/Cl-6 cell viability. TQ significantly attenuated the expression of CD14 and Toll-like receptor 4 (TLR4). TQ also significantly inhibited phosphatidylinositol 3-kinase (PI3K) and serine/threonine kinase-protein kinase B (Akt) phosphorylation. The expression of α-SMA and collagen-I were significantly decreased by TQ. Furthermore, TQ decreased X linked inhibitor of apoptosis (XIAP) and cellular FLIP (c-FLIPL) expression, which are related with the regulation of apoptosis. Furthermore, TQ significantly increased the survival against LPS challenge in d-galactosamine (d-GlaN)-sensitized mice, and decreased the levels of serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST), which were in line with in vitro results. Our data demonstrated that TQ attenuates liver fibrosis partially via blocking TLR4 expression and PI3K phosphorylation on the activated HSCs. Therefore, TQ may be a potential candidate for the therapy of hepatic fibrosis. PMID:23318601

  9. Dimethyl Cardamonin Exhibits Anti-inflammatory Effects via Interfering with the PI3K-PDK1-PKCα Signaling Pathway

    PubMed Central

    Yu, Wan-Guo; He, Hao; Yao, Jing-Yun; Zhu, Yi-Xiang; Lu, Yan-Hua

    2015-01-01

    Consumption of herbal tea [flower buds of Cleistocalyx operculatus (Roxb.) Merr. et Perry (Myrtaceae)] is associated with health beneficial effects against multiple diseases including diabetes, asthma, and inflammatory bowel disease. Emerging evidences have reported that High mobility group box 1 (HMGB1) is considered as a key “late” proinflammatory factor by its unique secretion pattern in aforementioned diseases. Dimethyl cardamonin (2′,4′-dihydroxy-6′-methoxy-3′,5′-dimethylchalcone, DMC) is a major ingredient of C. operculatus flower buds. In this study, the anti-inflammatory effects of DMC and its underlying molecular mechanisms were investigated on lipopolysaccharide (LPS)-induced macrophages. DMC notably suppressed the mRNA expressions of TNF-α, IL-1β, IL-6, and HMGB1, and also markedly decreased their productions in a time- and dose-dependent manner. Intriguingly, DMC could notably reduce LPS-stimulated HMGB1 secretion and its nucleo-cytoplasmic translocation. Furthermore, DMC dose-dependently inhibited the activation of phosphatidylinositol 3-kinase (PI3K), phosphoinositide-dependent kinase 1 (PDK1), and protein kinase C alpha (PKCα). All these data demonstrated that DMC had anti-inflammatory effects through reducing both early (TNF-α, IL-1β, and IL-6) and late (HMGB1) cytokines expressions via interfering with the PI3K-PDK1-PKCα signaling pathway. PMID:26535080

  10. Hypoxia enhances chondrogenesis and prevents terminal differentiation through PI3K/Akt/FoxO dependent anti-apoptotic effect.

    PubMed

    Lee, Hsieh-Hsing; Chang, Chia-Chi; Shieh, Ming-Jium; Wang, Jung-Pan; Chen, Yi-Te; Young, Tai-Horng; Hung, Shih-Chieh

    2013-01-01

    Hypoxia, a common environmental condition, influences cell signals and functions. Here, we compared the effects of hypoxia (1% oxygen) and normoxia (air) on chondrogenic differentiation of human mesenchymal stem cells (MSCs). For in vitro chondrogenic differentiation, MSCs were concentrated to form pellets and subjected to conditions appropriate for chondrogenic differentiation under normoxia and hypoxia, followed by the analysis for the expression of genes and proteins of chondrogenesis and endochondral ossification. MSCs induced for differentiation under hypoxia increased in chondrogenesis, but decreased in endochondral ossification compared to those under normoxia. MSCs induced for differentiation were more resistant to apoptosis under hypoxia compared to those under normoxia. The hypoxia-dependent protection of MSCs from chondrogenesis-induced apoptosis correlated with an increase in the activation of the phosphatidylinositol 3-kinase (PI3K)/Akt/FoxO pathway. These results suggest that the PI3K/Akt/FoxO survival pathway activated by hypoxia in MSCs enhances chondrogenesis and plays an important role in preventing endochondral ossification. PMID:24042188

  11. VEGF Silencing Inhibits Human Osteosarcoma Angiogenesis and Promotes Cell Apoptosis via PI3K/AKT Signaling Pathway.

    PubMed

    Zhao, Jian; Zhang, Zi-Ru; Zhao, Na; Ma, Bao-An; Fan, Qing-Yu

    2015-11-01

    Vascular endothelial growth factor (VEGF) is one of the most effective angiogenic factors that promote generation of tumor vasculature. VEGF is usually up-regulated in multiple cancers including osteosarcoma and glioma. To further explore the potential molecular mechanism that inhibits tumor growth induced by interference of VEGF expression, we constructed a Lv-shVEGF vector and assessed the efficiency of VEGF silencing and its influence in U2OS cells. The data demonstrate that Lv-shVEGF has high inhibition efficiency on VEGF expression, which inhibits proliferation and promotes apoptosis of U2OS cells in vitro. Our results also indicate that inhibition of VEGF expression suppresses osteosarcoma tumor growth in vivo and reduces osteosarcoma angiogenesis. We also found that the activations of phosphoinositide 3-kinase (PI3K) and protein kinase B (AKT) were considerably reduced after osteosarcoma cells were treated with Lv-shVEGF. Taken together, our data demonstrate that VEGF silencing suppresses cell proliferation, promotes cell apoptosis, and reduces osteosarcoma angiogenesis through inactivation of PI3K/AKT signaling pathway. PMID:27352347

  12. Rat white adipocytes activate p85/p110 PI3K and induce PM GLUT4 in response to adrenoceptor agonists or aluminum fluoride.

    PubMed

    Ohsaka, Y; Nomura, Y

    2016-03-01

    Adipocyte responses to adrenergic and ß-adrenoceptor(-AR) (adrenoceptor) regulation are not sufficiently understood, and information helpful for elucidating the adrenoceptor-responsive machinery is insufficient. Here we show by using immunoprecipitated kinase analysis with a phosphatidylinositol 3-kinase (PI3K) p85 antibody that PI3K activation was induced by treatment with 10 or 100 µM norepinephrine (NE) for 15 min or with 10 mM aluminum fluoride (AF, a guanosine triphosphate (GTP)-binding (G) protein activator) for 20 min in white adipocytes (rat epididymal adipocytes) and that treatment with pertussis toxin (PTX, a G-protein inactivator) inhibited PI3K activation induced by the 20-min treatment with AF in the cells. In addition, western blot analysis revealed that glucose transporter 4 (GLUT4) level in the adipocyte plasma membrane (PM) fraction was increased by treatment with 10 µM NE, 100 µM dobutamine (DOB, a ß1-AR agonist), or 0.1 µM CL316243 (CL, a ß3-AR agonist) for 30 min or with 10 mM AF for 20 min. NE or AF treatment triggered 2-deoxyglucose (2-DG) uptake into adipocytes under the above conditions. Our results advance the understanding of responses to adrenoceptor regulation in white adipocytes and provide possible clues for clarifying the machinery involved in adrenergic and ß-AR responses in the cells. PMID:27030626

  13. Sanguinarine Induces Apoptosis of Human Oral Squamous Cell Carcinoma KB Cells via Inactivation of the PI3K/Akt Signaling Pathway.

    PubMed

    Lee, Tae Kyung; Park, Cheol; Jeong, Soon-Jeong; Jeong, Moon-Jin; Kim, Gi-Young; Kim, Wun-Jae; Choi, Yung Hyun

    2016-08-01

    Preclinical Research Sanguinarine, an alkaloid isolated from the root of Sanguinaria canadensis and other plants of the Papaveraceae family, selectively induces apoptotic cell death in a variety of human cancer cells, but its mechanism of action requires further elaboration. The present study investigated the pro-apoptotic effects of sanguinarine in human oral squamous cell carcinoma KB cells. Sanguinarine treatment increased DR5/TRAILR2 (death receptor 5/TRAIL receptor 2) expression and enhanced the activation of caspase-8 and cleavage of its substrate, Bid. Sanguinarine also induced the mitochondrial translocation of pro-apoptotic Bax, mitochondrial dysfunction, cytochrome c release to the cytosol, and activation of caspase-9 and -3. However, a pan-caspase inhibitor, z-VAD-fmk, reversed the growth inhibition and apoptosis induced by sanguinarine. Sanguinarine also suppressed the phosphorylation of phosphoinositide 3-kinase (PI3K) and Akt in KB cells, while co-treatment of cells with sanguinarine and a PI3K inhibitor revealed synergistic apoptotic effects. However, pharmacological inhibition of AMP-activated protein kinase and mitogen-activated protein kinases did not reduce or enhance sanguinarine-induced growth inhibition and apoptosis. Collectively, these findings indicate that the pro-apoptotic effects of sanguinarine in KB cells may be regulated by a caspase-dependent cascade via activation of both intrinsic and extrinsic signaling pathways and inactivation of PI3K/Akt signaling. Drug Dev Res 77 : 227-240, 2016.   © 2016 Wiley Periodicals, Inc. PMID:27363951

  14. Crosstalk Between MAPK/ERK and PI3K/AKT Signal Pathways During Brain Ischemia/Reperfusion

    PubMed Central

    Zhou, Jing; Du, Ting; Li, Baoman; Rong, Yan; Verkhratsky, Alexei

    2015-01-01

    The epidermal growth factor receptor (EGFR) is linked to the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) and Raf/mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK1/2) signaling pathways. During brain ischemia/reperfusion, EGFR could be transactivated, which stimulates these intracellular signaling cascades that either protect cells or potentiate cell injury. In the present study, we investigated the activation of EGFR, PI3K/AKT, and Raf/MAPK/ERK1/2 during ischemia or reperfusion of the brain using the middle cerebral artery occlusion model. We found that EGFR was phosphorylated and transactivated during both ischemia and reperfusion periods. During ischemia, the activity of PI3K/AKT pathway was significantly increased, as judged from the strong phosphorylation of AKT; this activation was suppressed by the inhibitors of EGFR and Zn-dependent metalloproteinase. Ischemia, however, did not induce ERK1/2 phosphorylation, which was dependent on reperfusion. Coimmunoprecipitation of Son of sevenless 1 (SOS1) with EGFR showed increased association between the receptor and SOS1 in ischemia, indicating the inhibitory node downstream of SOS1. The inhibitory phosphorylation site of Raf-1 at Ser259, but not its stimulatory phosphorylation site at Ser338, was phosphorylated during ischemia. Furthermore, ischemia prompted the interaction between Raf-1 and AKT, while both the inhibitors of PI3K and AKT not only abolished AKT phosphorylation but also restored ERK1/2 phosphorylation. All these findings suggest that Raf/MAPK/ERK1/2 signal pathway is inhibited by AKT via direct phosphorylation and inhibition at Raf-1 node during ischemia. During reperfusion, we observed a significant increase of ERK1/2 phosphorylation but no change in AKT phosphorylation. Inhibitors of reactive oxygen species and phosphatase and tensin homolog restored AKT phosphorylation but abolished ERK1/2 phosphorylation, suggesting that the reactive oxygen species

  15. Regulation of O2 consumption by the PI3K and mTOR pathways contributes to tumor hypoxia

    PubMed Central

    Kelly, Catherine J.; Hussien, Kamila; Fokas, Emmanouil; Kannan, Pavitra; Shipley, Rebecca J.; Ashton, Thomas M.; Stratford, Michael; Pearson, Natalie; Muschel, Ruth J.

    2014-01-01

    Background Inhibitors of the phosphatidylinositol 3-kinase (PI3K) and the mammalian target of rapamycin (mTOR) pathway are currently in clinical trials. In addition to antiproliferative and proapoptotic effects, these agents also diminish tumor hypoxia. Since hypoxia is a major cause of resistance to radiotherapy, we sought to understand how it is regulated by PI3K/mTOR inhibition. Methods Whole cell, mitochondrial, coupled and uncoupled oxygen consumption were measured in cancer cells after inhibition of PI3K (Class I) and mTOR by pharmacological means or by RNAi. Mitochondrial composition was assessed by immunoblotting. Hypoxia was measured in spheroids, in tumor xenografts and predicted with mathematical modeling. Results Inhibition of PI3K and mTOR reduced oxygen consumption by cancer cell lines is predominantly due to reduction of mitochondrial respiration coupled to ATP production. Hypoxia in tumor spheroids was reduced, but returned after removal of the drug. Murine tumors had increased oxygenation even in the absence of average perfusion changes or tumor necrosis. Conclusions Targeting the PI3K/mTOR pathway substantially reduces mitochondrial oxygen consumption thereby reducing tumor hypoxia. These alterations in tumor hypoxia should be considered in the design of clinical trials using PI3K/mTOR inhibitors, particularly in conjunction with radiotherapy. PMID:24631147

  16. Inactivation of the Class II PI3K-C2β Potentiates Insulin Signaling and Sensitivity

    PubMed Central

    Alliouachene, Samira; Bilanges, Benoit; Chicanne, Gaëtan; Anderson, Karen E.; Pearce, Wayne; Ali, Khaled; Valet, Colin; Posor, York; Low, Pei Ching; Chaussade, Claire; Scudamore, Cheryl L.; Salamon, Rachel S.; Backer, Jonathan M.; Stephens, Len; Hawkins, Phill T.; Payrastre, Bernard; Vanhaesebroeck, Bart

    2015-01-01

    Summary In contrast to the class I phosphoinositide 3-kinases (PI3Ks), the organismal roles of the kinase activity of the class II PI3Ks are less clear. Here, we report that class II PI3K-C2β kinase-dead mice are viable and healthy but display an unanticipated enhanced insulin sensitivity and glucose tolerance, as well as protection against high-fat-diet-induced liver steatosis. Despite having a broad tissue distribution, systemic PI3K-C2β inhibition selectively enhances insulin signaling only in metabolic tissues. In a primary hepatocyte model, basal PI3P lipid levels are reduced by 60% upon PI3K-C2β inhibition. This results in an expansion of the very early APPL1-positive endosomal compartment and altered insulin receptor trafficking, correlating with an amplification of insulin-induced, class I PI3K-dependent Akt signaling, without impacting MAPK activity. These data reveal PI3K-C2β as a critical regulator of endosomal trafficking, specifically in insulin signaling, and identify PI3K-C2β as a potential drug target for insulin sensitization. PMID:26655903

  17. Heterophyllin B inhibits the adhesion and invasion of ECA-109 human esophageal carcinoma cells by targeting PI3K/AKT/β-catenin signaling

    PubMed Central

    TANTAI, JI-CHENG; ZHANG, YAO; ZHAO, HENG

    2016-01-01

    The present study aimed to measure the effect of heterophyllin B (HB) on the adhesion and invasion of ECA-109 human esophageal carcinoma cells, and examine the possible mechanism involved. A Cell Counting kit 8 assay was performed to determine the cell viability. Cell adhesion and invasion were determined following treatment of the ECA-109 cells with HB (0, 10, 25 and 50 µM) for 24 h. The levels of phosphorylated (p-)ATK and p-phosphoinositide 3-kinase (PI3K), and the protein levels of β-catenin were measured using western blot analysis. The mRNA and protein expression levels of E-cadherin, vimentin, snail, matrix metalloproteinase (MMP)2 and MMP9 were detected using reverse trancsription-quantitative polymerase chain reaction and western blot analyses, respectively. HB (10, 25 and 50 µM) significantly suppressed the adhesion and invasion of the ECA-109 human esophageal carcinoma cells in a dose-dependant manner. The expression levels of p-ATK, p-PI3K and β-catenin were markedly decreased. The expression of E-cadherin was promoted, whereas the expression levels of snail, vimentin, MMP 2 and MMP 9 were decreased significantly in the ECA-109 cells treated with HB. In addition, HB inhibited the adhesion and invasion induced by PI3K activating peptide in the ECA-109 cells, and the protein expression levels were also adjusted. These results suggested that HB effectively suppressed the adhesion and invasion of the human esophageal carcinoma cells by mediating the PI3K/AKT/β-catenin pathways and regulating the expression levels of adhesion- and invasion-associated genes. PMID:26647768

  18. Heterophyllin B inhibits the adhesion and invasion of ECA-109 human esophageal carcinoma cells by targeting PI3K/AKT/β-catenin signaling.

    PubMed

    Tantai, Ji-Cheng; Zhang, Yao; Zhao, Heng

    2016-02-01

    The present study aimed to measure the effect of heterophyllin B (HB) on the adhesion and invasion of ECA-109 human esophageal carcinoma cells, and examine the possible mechanism involved. A Cell Counting kit 8 assay was performed to determine the cell viability. Cell adhesion and invasion were determined following treatment of the ECA-109 cells with HB (0, 10, 25 and 50 µM) for 24 h. The levels of phosphorylated (p-)ATK and p-phosphoinositide 3-kinase (PI3K), and the protein levels of β-catenin were measured using western blot analysis. The mRNA and protein expression levels of E-cadherin, vimentin, snail, matrix metalloproteinase (MMP)2 and MMP9 were detected using reverse transcription-quantitative polymerase chain reaction and western blot analyses, respectively. HB (10, 25 and 50 µM) significantly suppressed the adhesion and invasion of the ECA-109 human esophageal carcinoma cells in a dose-dependant manner. The expression levels of p-ATK, p-PI3K and β-catenin were markedly decreased. The expression of E-cadherin was promoted, whereas the expression levels of snail, vimentin, MMP 2 and MMP 9 were decreased significantly in the ECA-109 cells treated with HB. In addition, HB inhibited the adhesion and invasion induced by PI3K activating peptide in the ECA-109 cells, and the protein expression levels were also adjusted. These results suggested that HB effectively suppressed the adhesion and invasion of the human esophageal carcinoma cells by mediating the PI3K/AKT/β-catenin pathways and regulating the expression levels of adhesion- and invasion-associated genes. PMID:26647768

  19. Class I PI3K in oncogenic cellular transformation

    PubMed Central

    Zhao, Li; Vogt, Peter K.

    2009-01-01

    Class I phosphoinositide 3-kinase (PI3K) is a dimeric enzyme, consisting of a catalytic and a regulatory subunit. The catalytic subunit occurs in four isoforms designated as p110α, p110β, p110γ and p110δ. These combine with several regulatory subunits; for p110α, β and δ the standard regulatory subunit is p85, for p110γ it is p101. PI3Ks play important roles in human cancer. PIK3CA, the gene encoding p110α, is mutated frequently in common cancers, including carcinoma of the breast, prostate, colon and endometrium. Eighty percent of these mutations are represented by one of three amino acid substitutions in the helical or kinase domains of the enzyme. The mutant p110α shows a gain of function in enzymatic and signaling activity and is oncogenic in cell culture and in animal model systems. Structural and genetic data suggest that the mutations affect regulatory inter- and intramolecular interactions and support the conclusion that there are at least two molecular mechanisms for the gain-of-function in p110α. One of these mechanisms operates largely independently of binding to p85, the other abolishes the requirement for an interaction with Ras. The non-alpha isoforms of p110 do not show cancer-specific mutations. However, they are often differentially expressed in cancer and, in contrast to p110α, wild-type non-alpha isoforms of p110 are oncogenic when overexpressed in cell culture. The isoforms of p110 have become promising drug targets. Isoform-selective inhibitors have been identified. Inhibitors that target exclusively the cancer-specific mutants of p110α constitute an important goal and challenge for current drug development. PMID:18794883

  20. Quantitative phosphoproteomic analysis of the PI3K-regulated signaling network.

    PubMed

    Gnad, Florian; Wallin, Jeffrey; Edgar, Kyle; Doll, Sophia; Arnott, David; Robillard, Liliane; Kirkpatrick, Donald S; Stokes, Matthew P; Vijapurkar, Ulka; Hatzivassiliou, Georgia; Friedman, Lori S; Belvin, Marcia

    2016-07-01

    The PI3K pathway is commonly activated in cancer. Only a few studies have attempted to explore the spectrum of phosphorylation signaling downstream of the PI3K cascade. Such insight, however, is imperative to understand the mechanisms responsible for oncogenic phenotypes. By applying MS-based phosphoproteomics, we mapped 2509 phosphorylation sites on 1096 proteins, and quantified their responses to activation or inhibition of PIK3CA using isogenic knock-in derivatives and a series of targeted inhibitors. We uncovered phosphorylation changes in a wide variety of proteins involved in cell growth and proliferation, many of which have not been previously associated with PI3K signaling. A significant update of the posttranslational modification database PHOSIDA (http://www.phosida.com) allows efficient use of the data. All MS data have been deposited in the ProteomeXchange with identifier PXD003899 (http://proteomecentral.proteomexchange.org/dataset/PXD003899). PMID:27282143

  1. Oxidant Stress and Signal Transduction in the Nervous System with the PI 3-K, Akt, and mTOR Cascade

    PubMed Central

    Maiese, Kenneth; Chong, Zhao Zhong; Wang, Shaohui; Shang, Yan Chen

    2012-01-01

    Oxidative stress impacts multiple systems of the body and can lead to some of the most devastating consequences in the nervous system especially during aging. Both acute and chronic neurodegenerative disorders such as diabetes mellitus, cerebral ischemia, trauma, Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, and tuberous sclerosis through programmed cell death pathways of apoptosis and autophagy can be the result of oxidant stress. Novel therapeutic avenues that focus upon the phosphoinositide 3-kinase (PI 3-K), Akt (protein kinase B), and the mammalian target of rapamycin (mTOR) cascade and related pathways offer exciting prospects to address the onset and potential reversal of neurodegenerative disorders. Effective clinical translation of these pathways into robust therapeutic strategies requires intimate knowledge of the complexity of these pathways and the ability of this cascade to influence biological outcome that can vary among disorders of the nervous system. PMID:23203037

  2. Inhibition of PI3K Signalling Selectively Affects Medulloblastoma Cancer Stem Cells.

    PubMed

    Frasson, Chiara; Rampazzo, Elena; Accordi, Benedetta; Beggio, Giacomo; Pistollato, Francesca; Basso, Giuseppe; Persano, Luca

    2015-01-01

    Medulloblastoma is the most common malignant brain tumor of childhood. Although survival has slowly increased in the past years, the prognosis of these patients remains unfavourable. In this context, it has been recently shown that the intracellular signaling pathways activated during embryonic cerebellar development are deregulated in MDB. One of the most important is PI3K/AKT/mTOR, implicated in cell proliferation, survival, growth, and protein synthesis. Moreover, a fraction of MDB cells has been shown to posses stemlike features, to express typical neuronal precursor markers (Nestin and CD133), and to be maintained by the hypoxic cerebellar microenvironment. This subpopulation of MDB cells is considered to be responsible for treatment resistance and recurrence. In this study, we evaluated the effects of PI3K/AKT pathway inhibition on primary cultures of MDB and particularly on the cancer stem cell (CSC) population (CD133(+)). PI3K inhibition was able to counteract MDB cell growth and to promote differentiation of stemlike MDB cells. Moreover, PI3K/AKT pathway suppression induced dramatic cell death through activation of the mitochondrial proapoptotic cascade. Finally, analysis on the stem cells fraction revealed that the MDB CSC population is more sensitive to PI3K targeting compared to the whole cancerous population and its nonstem cell counterpart. PMID:26557719

  3. PTEN Tumor Suppressor Network in PI3K-Akt Pathway Control.

    PubMed

    Georgescu, Maria-Magdalena

    2010-12-01

    The PI3K-Akt pathway is a major survival pathway activated in cancer. Efforts to develop targeted therapies have not been fully successful, mainly because of extensive internal intrapathway or external interpathway negative feedback loops or because of networking between pathway suppressors. The PTEN tumor suppressor is the major brake of the pathway and a common target for inactivation in somatic cancers. This review will highlight the networking of PTEN with other inhibitors of the pathway, relevant to cancer progression. PTEN constitutes the main node of the inhibitory network, and a series of convergences at different levels in the PI3K-Akt pathway, starting from those with growth factor receptors, will be described. As PTEN exerts enzymatic activity as a phosphatidylinositol-3,4,5-trisphosphate (PIP(3)) phosphatase, thus opposing the activity of PI3K, the concerted actions to increase the availability of PIP(3) in cancer cells, relying either on other phosphoinositide enzymes or on the intrinsic regulation of PTEN activity by other molecules, will be discussed. In particular, the synergy between PTEN and the circle of its direct interacting proteins will be brought forth in an attempt to understand both the activation of the PI3K-Akt pathway and the connections with other parallel oncogenic pathways. The understanding of the interplay between the modulators of the PI3K-Akt pathway in cancer should eventually lead to the design of therapeutic approaches with increased efficacy in the clinic. PMID:21779440

  4. Dual PI3K/mTOR inhibition is required to effectively impair microenvironment survival signals in mantle cell lymphoma

    PubMed Central

    Rosich, Laia; Montraveta, Arnau; Xargay-Torrent, Sílvia; López-Guerra, Mónica; Roldán, Jocabed; Aymerich, Marta; Salaverria, Itziar; Beà, Sílvia; Campo, Elías; Pérez-Galán, Patricia; Roué, Gaël; Colomer, Dolors

    2014-01-01

    Phosphatidylinositol-3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) pathway activation contributes to mantle cell lymphoma (MCL) pathogenesis and drug resistance. Antitumor activity has been observed with mTOR inhibitors. However, they have shown limited clinical efficacy in relation to drug activation of feedback loops. Selective PI3K inhibition or dual PI3K/mTOR catalytic inhibition are different therapeutic approaches developed to achieve effective pathway blockage. Here, we have performed a comparative analysis of the mTOR inhibitor everolimus, the pan-PI3K inhibitor NVP-BKM120 and the dual PI3K/mTOR inhibitor NVP-BEZ235 in primary MCL cells. We found NVP-BEZ235 to be more powerful than everolimus or NVP-BKM120 in PI3K/Akt/mTOR signaling inhibition, indicating that targeting the PI3K/Akt/mTOR pathway at multiple levels is likely to be a more effective strategy for the treatment of MCL than single inhibition of these kinases. Among the three drugs, NVP-BEZ235 induced the highest change in gene expression profile. Functional validation demonstrated that NVP-BEZ235 inhibited angiogenesis, migration and tumor invasiveness in MCL cells. NVP-BEZ235 was the only drug able to block IL4 and IL6/STAT3 signaling which compromise the therapeutic effect of chemotherapy in MCL. Our findings support the use of the dual PI3K/mTOR inhibitor NVP-BEZ235 as a promising approach to interfere with the microenvironment-related processes in MCL. PMID:25216518

  5. Deoxycholyltaurine rescues human colon cancer cells from apoptosis by activating EGFR-dependent PI3K/Akt signaling.

    PubMed

    Raufman, Jean-Pierre; Shant, Jasleen; Guo, Chang Yue; Roy, Sanjit; Cheng, Kunrong

    2008-05-01

    Recent studies indicate that secondary bile acids promote colon cancer cell proliferation but their role in maintaining cell survival has not been explored. We found that deoxycholyltaurine (DCT) markedly attenuated both unstimulated and TNF-alpha-stimulated programmed cell death in colon cancer cells by a phosphatidylinositol 3-kinase (PI3K)-dependent mechanism. To examine the role of bile acids and PI3K signaling in maintaining colon cancer cell survival, we explored the role of signaling downstream of bile acid-induced activation of the epidermal growth factor receptor (EGFR) in regulating both apoptosis and proliferation of HT-29 and H508 human colon cancer cells. DCT caused dose- and time-dependent Akt (Ser(473)) phosphorylation, a commonly used marker of activated PI3K/Akt signaling. Both EGFR kinase and PI3K inhibitors attenuated DCT-induced Akt phosphorylation and Akt activation, as demonstrated by reduced phosphorylation of a GSK-3-paramyosin substrate. Transfection of HT-29 cells with kinase-dead EGFR (K721M) reduced DCT-induced Akt phosphorylation. In HT-29 cells, EGFR and PI3K inhibitors as well as transfection with dominant negative AKT attenuated DCT-induced cell proliferation. DCT-induced PI3K/Akt activation resulted in downstream phosphorylation of GSK-3 (Ser(21/9)) and BAD (Ser(136)), and nuclear translocation (activation) of NF-kappaB, thereby confirming that DCT-induced activation of PI3K/Akt signaling regulates both proproliferative and prosurvival signals. Collectively, these results indicate that DCT-induced activation of post-EGFR PI3K/Akt signaling stimulates both colon cancer cell survival and proliferation. PMID:18064605

  6. Salidroside Mitigates Sepsis-Induced Myocarditis in Rats by Regulating IGF-1/PI3K/Akt/GSK-3β Signaling.

    PubMed

    He, He; Chang, Xiayun; Gao, Jin; Zhu, Lingpeng; Miao, Mingxing; Yan, Tianhua

    2015-12-01

    Sepsis-induced myocardial injury (SIMI) is caused by various mechanisms. The aim of this study was to investigate the effects of salidroside (Sal) on SIMI and its mechanisms in rats. The sepsis model was established by intraperitoneal injection of lipopolysaccharide (LPS) (15 mg/kg in sterile saline). Sal decreased the serum levels of creatine kinase (CK), lactate dehydrogenase (LDH), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and interleukin-1β (IL-1β), whereas the expressions of insulin-like growth factor-1 (IGF-1) signaling-related proteins, such as IGF-1 and its corresponding receptor (IGF-1R), phosphatidylinositol 3-kinase (PI3K), p-PI3K, Akt, p-Akt, and glycogen synthase kinase-3β (GSK-3β), in the heart were decreased with Sal pretreatment. Mitigated myocardial cell swelling, degeneration, loss of transverse striations, and inflammatory cell infiltration were also observed in the LPS + Sal groups. Thus, Sal is assumed to exert pronounced cardioprotective effects in rats subjected to LPS, probably through regulation of IGF-1/PI3K/Akt/GSK-3β signaling. PMID:26104971

  7. Apoptosis initiation of β-ionone in SGC-7901 gastric carcinoma cancer cells via a PI3K-AKT pathway.

    PubMed

    Liu, Qian; Dong, Hong-Wei; Sun, Wen-Guang; Liu, Ming; Ibla, Juan C; Liu, Lian-Xin; Parry, John W; Han, Xiao-Hui; Li, Ming-Song; Liu, Jia-Ren

    2013-03-01

    β-ionone has been shown to hold potent anti-proliferative and apoptosis induction properties in vitro and in vivo. To investigate the effects of β-ionone on apoptosis initiation and its possible mechanisms of action, we qualified cell apoptosis, proteins related to apoptosis and a phosphatidylinositol 3-kinase (PI3K)-AKT pathway in human gastric adenocarcinoma cancer SGC-7901 cells. The results demonstrated that β-ionone-induced apoptosis in a dose-dependent manner in SGC-7901 cells treated with β-ionone (25, 50, 100 and 200 μmol/L) for 24 h. β-ionone was also shown to induce the expression of cleaved-caspase-3 and inhibit bcl-2 expression in SGC-7901 cells in a dose-dependent manner. The significantly decreased levels of p-PI3K and p-AKT expression were observed in SGC-7901 cells after β-ionone treatments in a time- and dose-dependent manner (P < 0.01). Thus, the apoptosis induction in SGC-7901 cells by β-ionone may be regulated through a PI3K-AKT pathway. These results demonstrate a potential mechanism by which β-ionone to induce apoptosis initiation in SGC-7901 cells. PMID:23100158

  8. Type 2 Iodothyronine Deiodinase Activity Is Required for Rapid Stimulation of PI3K by Thyroxine in Human Umbilical Vein Endothelial Cells

    PubMed Central

    Aoki, Tomoyuki; Tsunekawa, Katsuhiko; Araki, Osamu; Ogiwara, Takayuki; Nara, Makoto; Sumino, Hiroyuki; Kimura, Takao

    2015-01-01

    Thyroid hormones (THs) exert a number of physiological effects on the cardiovascular system. Some of the nongenomic actions of T3 are achieved by cross coupling the TH receptor (TR) with the phosphatidylinositol 3-kinase (PI3K)/protein kinase Akt (Akt) pathway. We observed that both T3 and T4 rapidly stimulated Akt phosphorylation and Ras-related C3 botulinum toxin substrate 1 (Rac1) activation, which resulted in cell migration, in a PI3K-dependent manner in human umbilical vein endothelial cells (HUVECs). We identified the expression of type 2 iodothyronine deiodinase (D2), which converts T4 to T3, and TRα1 in HUVECs. D2 activity was significantly stimulated by (Bu)2cAMP in HUVECs. The blockade of D2 activity through transfection of small interfering RNA (siRNA) specific to D2 as well as by addition of iopanoic acid, a potent D2 inhibitor, abolished Akt phosphorylation, Rac activation, and cell migration induced by T4 but not by T3. The inhibition of TRα1 expression by the transfection of siRNA for TRα1 canceled Akt phosphorylation, Rac activation, and cell migration induced by T3 and T4. These findings suggest that conversion of T4 to T3 by D2 is required for TRα1/PI3K-mediated nongenomic actions of T4 in HUVECs, including stimulation of Akt phosphorylation and Rac activation, which result in cell migration. PMID:26284425

  9. Targeting the PI3K signaling pathway in cancer

    PubMed Central

    Wong, Kwok-Kin; Engelman, Jeffrey A; Cantley, Lewis C

    2009-01-01

    The PI3K pathway is activated in a variety of different human cancers, and inhibitors of this pathway are under active development as anti-cancer therapeutics. In this review, we discuss the data supporting the use of PI3K pathway inhibitors in genetically and clinically defined cancers. This review focuses on their efficacy as single-agents and in combination with other targeted therapies, specifically those targeting the MEK-ERK signaling pathway. PMID:20006486

  10. The PI3K/Akt Pathway in Tumors of Endocrine Tissues

    PubMed Central

    Robbins, Helen Louise; Hague, Angela

    2016-01-01

    The phosphatidylinositol 3-kinase (PI3K)/Akt pathway is a key driver in carcinogenesis. Defects in this pathway in human cancer syndromes such as Cowden’s disease and Multiple Endocrine Neoplasia result in tumors of endocrine tissues, highlighting its importance in these cancer types. This review explores the growing evidence from multiple animal and in vitro models and from analysis of human tumors for the involvement of this pathway in the following: thyroid carcinoma subtypes, parathyroid carcinoma, pituitary tumors, adrenocortical carcinoma, phaeochromocytoma, neuroblastoma, and gastroenteropancreatic neuroendocrine tumors. While data are not always consistent, immunohistochemistry performed on human tumor tissue has been used alongside other techniques to demonstrate Akt overactivation. We review active Akt as a potential prognostic marker and the PI3K pathway as a therapeutic target in endocrine neoplasia. PMID:26793165

  11. PI3K therapy reprograms mitochondrial trafficking to fuel tumor cell invasion.

    PubMed

    Caino, M Cecilia; Ghosh, Jagadish C; Chae, Young Chan; Vaira, Valentina; Rivadeneira, Dayana B; Faversani, Alice; Rampini, Paolo; Kossenkov, Andrew V; Aird, Katherine M; Zhang, Rugang; Webster, Marie R; Weeraratna, Ashani T; Bosari, Silvano; Languino, Lucia R; Altieri, Dario C

    2015-07-14

    Molecular therapies are hallmarks of "personalized" medicine, but how tumors adapt to these agents is not well-understood. Here we show that small-molecule inhibitors of phosphatidylinositol 3-kinase (PI3K) currently in the clinic induce global transcriptional reprogramming in tumors, with activation of growth factor receptors, (re)phosphorylation of Akt and mammalian target of rapamycin (mTOR), and increased tumor cell motility and invasion. This response involves redistribution of energetically active mitochondria to the cortical cytoskeleton, where they support membrane dynamics, turnover of focal adhesion complexes, and random cell motility. Blocking oxidative phosphorylation prevents adaptive mitochondrial trafficking, impairs membrane dynamics, and suppresses tumor cell invasion. Therefore, "spatiotemporal" mitochondrial respiration adaptively induced by PI3K therapy fuels tumor cell invasion, and may provide an important antimetastatic target. PMID:26124089

  12. Dual inhibition of CDK4/Rb and PI3K/AKT/mTOR pathways by ON123300 induces synthetic lethality in mantle cell lymphomas.

    PubMed

    Divakar, S K A; Ramana Reddy, M V; Cosenza, S C; Baker, S J; Perumal, D; Antonelli, A C; Brody, J; Akula, B; Parekh, S; Reddy, E Premkumar

    2016-01-01

    This study describes the characterization of a novel kinase inhibitor, ON123300, which inhibits CDK4/6 (cyclin-dependent kinases 4 and 6) and phosphatidylinositol 3 kinase-δ (PI3K-δ) and exhibits potent activity against mantle cell lymphomas (MCLs) both in vitro and in vivo. We examined the effects of PD0332991 and ON123300 on cell cycle progression, modulation of the retinoblastoma (Rb) and PI3K/AKT pathways, and the induction of apoptosis in MCL cell lines and patient-derived samples. When Granta 519 and Z138C cells were incubated with PD0332991 and ON123300, both compounds were equally efficient in their ability to inhibit the phosphorylation of Rb family proteins. However, only ON123300 inhibited the phosphorylation of proteins associated with the PI3K/AKT pathway. Cells treated with PD0332991 rapidly accumulated in the G0/G1 phase of cell cycle as a function of increasing concentration. Although ON123300-treated cells arrested similarly at lower concentrations, higher concentrations resulted in the induction of apoptosis, which was not observed in PD0332991-treated samples. Mouse xenograft assays also showed a strong inhibition of MCL tumor growth in ON123300-treated animals. Finally, treatment of ibrutinib-sensitive and -resistant patient-derived MCLs with ON123300 also triggered apoptosis and inhibition of the Rb and PI3K/AKT pathways, suggesting that this compound might be an effective agent in MCL, including ibrutinib-resistant forms of the disease. PMID:26174628

  13. PI3K p110α/Akt Signaling Negatively Regulates Secretion of the Intestinal Peptide Neurotensin Through Interference of Granule Transport

    PubMed Central

    Li, Jing; Song, Jun; Cassidy, Margaret G.; Rychahou, Piotr; Starr, Marlene E.; Liu, Jianyu; Li, Xin; Epperly, Garretson; Weiss, Heidi L.; Townsend, Courtney M.; Gao, Tianyan

    2012-01-01

    Neurotensin (NT), an intestinal peptide secreted from N cells in the small bowel, regulates a variety of physiological functions of the gastrointestinal tract, including secretion, gut motility, and intestinal growth. The class IA phosphatidylinositol 3-kinase (PI3K) family, which comprised of p110 catalytic (α, β and δ) and p85 regulatory subunits, has been implicated in the regulation of hormone secretion from endocrine cells. However, the underlying mechanisms remain poorly understood. In particular, the role of PI3K in intestinal peptide secretion is not known. Here, we show that PI3K catalytic subunit, p110α, negatively regulates NT secretion in vitro and in vivo. We demonstrate that inhibition of p110α, but not p110β, induces NT release in BON, a human endocrine cell line, which expresses NT mRNA and produces NT peptide in a manner analogous to N cells, and QGP-1, a pancreatic endocrine cell line that produces NT peptide. In contrast, overexpression of p110α decreases NT secretion. Consistently, p110α-inhibition increases plasma NT levels in mice. To further delineate the mechanisms contributing to this effect, we demonstrate that inhibition of p110α increases NT granule trafficking by up-regulating α-tubulin acetylation; NT secretion is prevented by overexpression of HDAC6, an α-tubulin deacetylase. Moreover, ras-related protein Rab27A (a small G protein) and kinase D-interacting substrate of 220 kDa (Kidins220), which are associated with NT granules, play a negative and positive role, respectively, in p110α-inhibition-induced NT secretion. Our findings identify the critical role and novel mechanisms for the PI3K signaling pathway in the control of intestinal hormone granule transport and release. PMID:22700584

  14. PI3K p110α/Akt signaling negatively regulates secretion of the intestinal peptide neurotensin through interference of granule transport.

    PubMed

    Li, Jing; Song, Jun; Cassidy, Margaret G; Rychahou, Piotr; Starr, Marlene E; Liu, Jianyu; Li, Xin; Epperly, Garretson; Weiss, Heidi L; Townsend, Courtney M; Gao, Tianyan; Evers, B Mark

    2012-08-01

    Neurotensin (NT), an intestinal peptide secreted from N cells in the small bowel, regulates a variety of physiological functions of the gastrointestinal tract, including secretion, gut motility, and intestinal growth. The class IA phosphatidylinositol 3-kinase (PI3K) family, which comprised of p110 catalytic (α, β and δ) and p85 regulatory subunits, has been implicated in the regulation of hormone secretion from endocrine cells. However, the underlying mechanisms remain poorly understood. In particular, the role of PI3K in intestinal peptide secretion is not known. Here, we show that PI3K catalytic subunit, p110α, negatively regulates NT secretion in vitro and in vivo. We demonstrate that inhibition of p110α, but not p110β, induces NT release in BON, a human endocrine cell line, which expresses NT mRNA and produces NT peptide in a manner analogous to N cells, and QGP-1, a pancreatic endocrine cell line that produces NT peptide. In contrast, overexpression of p110α decreases NT secretion. Consistently, p110α-inhibition increases plasma NT levels in mice. To further delineate the mechanisms contributing to this effect, we demonstrate that inhibition of p110α increases NT granule trafficking by up-regulating α-tubulin acetylation; NT secretion is prevented by overexpression of HDAC6, an α-tubulin deacetylase. Moreover, ras-related protein Rab27A (a small G protein) and kinase D-interacting substrate of 220 kDa (Kidins220), which are associated with NT granules, play a negative and positive role, respectively, in p110α-inhibition-induced NT secretion. Our findings identify the critical role and novel mechanisms for the PI3K signaling pathway in the control of intestinal hormone granule transport and release. PMID:22700584

  15. Metastatic function of BMP-2 in gastric cancer cells: The role of PI3K/AKT, MAPK, the NF-{kappa}B pathway, and MMP-9 expression

    SciTech Connect

    Kang, Myoung Hee; Oh, Sang Cheul; Kang, Han Na; Kim, Jung Lim; Kim, Jun Suk

    2011-07-15

    Bone morphogenetic proteins (BMPs) have been implicated in tumorigenesis and metastatic progression in various types of cancer cells, but the role and cellular mechanism in the invasive phenotype of gastric cancer cells is not known. Herein, we determined the roles of phosphoinositide 3-kinase (PI3K)/AKT, extracellular signal-regulated protein kinase (ERK), nuclear factor (NF)-{kappa}B, and matrix metalloproteinase (MMP) expression in BMP-2-mediated metastatic function in gastric cancer. We found that stimulation of BMP-2 in gastric cancer cells enhanced the phosphorylation of AKT and ERK. Accompanying activation of AKT and ERK kinase, BMP-2 also enhanced phosphorylation/degradation of I{kappa}B{alpha} and the nuclear translocation/activation of NF-{kappa}B. Interestingly, blockade of PI3K/AKT and ERK signaling using LY294002 and PD98059, respectively, significantly inhibited BMP-2-induced motility and invasiveness in association with the activation of NF-{kappa}B. Furthermore, BMP-2-induced MMP-9 expression and enzymatic activity was also significantly blocked by treatment with PI3K/AKT, ERK, or NF-{kappa}B inhibitors. Immunohistochemistry staining of 178 gastric tumor biopsies indicated that expression of BMP-2 and MMP-9 had a significant positive correlation with lymph node metastasis and a poor prognosis. These results indicate that the BMP-2 signaling pathway enhances tumor metastasis in gastric cancer by sequential activation of the PI3K/AKT or MAPK pathway followed by the induction of NF-{kappa}B and MMP-9 activity, indicating that BMP-2 has the potential to be a therapeutic molecular target to decrease metastasis.

  16. Fangchinoline targets PI3K and suppresses PI3K/AKT signaling pathway in SGC7901 cells.

    PubMed

    Tian, Feng; Ding, Ding; Li, Dandan

    2015-01-01

    Fangchinoline, an important compound in Stephania tetrandra S. Moore, as a novel antitumor agent, has been implicated in several types of cancers cells except gastric cancer. To investigate whether fangchinoline affects gastric cancer cells, we detected the signaling pathway by which fangchinoline plays a role in different human gastric cancer cells lines. We found that fangchinoline effectively suppressed proliferation and invasion of SGC7901 cell lines, but not MKN45 cell lines by inhibiting the expression of PI3K and its downstream pathway. All of the Akt/MMP2/MMP9 pathway, Akt/Bad pathway, and Akt/Gsk3β/CDK2 pathway could be inhibited by fangchinoline through inhibition of PI3K. Taken together, these results suggest that fangchinoline targets PI3K in tumor cells that express PI3K abundantly and inhibits the growth and invasive ability of the tumor cells. PMID:25872479

  17. Fangchinoline targets PI3K and suppresses PI3K/AKT signaling pathway in SGC7901 cells

    PubMed Central

    TIAN, FENG; DING, DING; LI, DANDAN

    2015-01-01

    Fangchinoline, an important compound in Stephania tetrandra S. Moore, as a novel antitumor agent, has been implicated in several types of cancers cells except gastric cancer. To investigate whether fangchinoline affects gastric cancer cells, we detected the signaling pathway by which fangchinoline plays a role in different human gastric cancer cells lines. We found that fangchinoline effectively suppressed proliferation and invasion of SGC7901 cell lines, but not MKN45 cell lines by inhibiting the expression of PI3K and its downstream pathway. All of the Akt/MMP2/MMP9 pathway, Akt/Bad pathway, and Akt/Gsk3β/CDK2 pathway could be inhibited by fangchinoline through inhibition of PI3K. Taken together, these results suggest that fangchinoline targets PI3K in tumor cells that express PI3K abundantly and inhibits the growth and invasive ability of the tumor cells. PMID:25872479

  18. Lithium Protection of Phencyclidine-induced Neurotoxicity in Developing Brain: the Role of PI-3K/Akt and MEK/ERK Signaling Pathways

    PubMed Central

    Xia, Yan; Wang, Cheng Z; Liu, Jie; Anastasio, Noelle C.; Johnson, Kenneth M.

    2008-01-01

    Phencyclidine (PCP) and other N-methyl-D-aspartate (NMDA) receptor antagonists have been shown to be neurotoxic to developing brains and to result in schizophrenia-like behaviors later in development. Prevention of both effects by antischizophrenic drugs suggests the validity of PCP neurodevelopmental toxicity as a heuristic model of schizophrenia. Lithium is used for the treatment of bipolar and schizoaffective disorders and has recently been shown to have neuroprotective properties. The present study used organotypic corticostriatal slices taken from postnatal day 2 rat pups to investigate the protective effect of lithium and the role of the phosphatidylinositol-3 kinase (PI-3K)/Akt and mitogen-activated protein kinase kinase/extracellular regulated kinase (MEK/ERK) pathways in PCP-induced cell death. Lithium pretreatment dose-dependently reduced PCP-induced caspase-3 activation and DNA fragmentation in layer II-IV of the cortex. PCP elicited time-dependent inhibition of the MEK/ERK and PI-3K/Akt pathways, as indicated by dephosphorylation of ERK1/2 and Akt. The pro-apoptotic factor glycogen synthase kinase-3β (GSK-3β) was also dephosphorylated at serine 9 and thus activated. Lithium prevented PCP-induced inhibition of the two pathways and activation of GSK-3β. Furthermore, blocking either PI-3K/Akt or MEK/ERK pathway abolished the protective effect of lithium, while inhibiting GSK-3β activity mimicked the protective effect of lithium. However, no crosstalk between the two pathways was found. Finally, specific GSK-3β inhibition did not prevent PCP-induced dephosphorylation of Akt and ERK. These data strongly suggest that the protective effect of lithium against PCP-induced neuroapoptosis is mediated through independent stimulation of the PI-3K/Akt and ERK pathways and suppression of GSK-3β activity. PMID:18544676

  19. Activation of the PI3K/mTOR pathway is involved in cystic proliferation of cholangiocytes of the PCK rat.

    PubMed

    Ren, Xiang Shan; Sato, Yasunori; Harada, Kenichi; Sasaki, Motoko; Furubo, Shinichi; Song, Jing Yu; Nakanuma, Yasuni

    2014-01-01

    The polycystic kidney (PCK) rat is an animal model of Caroli's disease as well as autosomal recessive polycystic kidney disease (ARPKD). The signaling pathways involving the mammalian target of rapamycin (mTOR) are aberrantly activated in ARPKD. This study investigated the effects of inhibitors for the cell signaling pathways including mTOR on cholangiocyte proliferation of the PCK rat. Cultured PCK cholangiocytes were treated with rapamycin and everolimus [inhibitors of mTOR complex 1 (mTOC1)], LY294002 [an inhibitor of phosphatidylinositol 3-kinase (PI3K)] and NVP-BEZ235 (an inhibitor of PI3K and mTORC1/2), and the cell proliferative activity was determined in relation to autophagy and apoptosis. The expression of phosphorylated (p)-mTOR, p-Akt, and PI3K was increased in PCK cholangiocytes compared to normal cholangiocytes. All inhibitors significantly inhibited the cell proliferative activity of PCK cholangiocytes, where NVP-BEZ235 had the most prominent effect. NVP-BEZ235, but not rapamycin and everolimus, further inhibited biliary cyst formation in the three-dimensional cell culture system. Rapamycin and everolimus induced apoptosis in PCK cholangiocytes, whereas NVP-BEZ235 inhibited cholangiocyte apoptosis. Notably, the autophagic response was significantly induced following the treatment with NVP-BEZ235, but not rapamycin and everolimus. Inhibition of autophagy using siRNA against protein-light chain3 and 3-methyladenine significantly increased the cell proliferative activity of PCK cholangiocytes treated with NVP-BEZ235. In vivo, treatment of the PCK rat with NVP-BEZ235 attenuated cystic dilatation of the intrahepatic bile ducts, whereas renal cyst development was unaffected. These results suggest that the aberrant activation of the PI3K/mTOR pathway is involved in cystic proliferation of cholangiocytes of the PCK rat, and inhibition of the pathway can reduce cholangiocyte proliferation via the mechanism involving apoptosis and/or autophagy. PMID:24498161

  20. RES-529: a PI3K/AKT/mTOR pathway inhibitor that dissociates the mTORC1 and mTORC2 complexes

    PubMed Central

    2016-01-01

    RES-529 (previously named Palomid 529, P529) is a phosphoinositide 3-kinase (PI3K)/AKT/mechanistic target of rapamycin (mTOR) pathway inhibitor that interferes with the pathway through both mTOR complex 1 (mTORC1) and mTOR complex 2 (mTORC2) dissociation. This compound is currently being developed in oncology and ophthalmology. The oncology focus is for the treatment of glioblastoma, where it has received orphan designation by the US Food and Drug Administration, and prostate cancer. We present a review of the PI3K/AKT/mTOR pathway, its role in tumorigenesis, and the potential of RES-529 in cancer treatment. RES-529 inhibits mTORC1/mTORC2 activity in various cancer cell lines, as noted by decreased phosphorylation of substrates including ribosomal protein S6, 4E-BP1, and AKT, leading to cell growth inhibition and death, with activity generally in the range of 5–15 μmol/l. In animal tumor models where the PI3K/AKT/mTOR pathway is abnormally activated (i.e. glioblastoma, prostate cancer, and breast cancer), RES-529 reduces tumor growth by as much as 78%. RES-529 treatment is synergistic with radiation therapy, chemotherapy, and hormonal therapy in reducing tumor growth, potentially by preventing PI3K/AKT/mTOR pathway activation associated with these treatments. Furthermore, this compound has shown antiangiogenic activity in several animal models. mTORC1 and mTORC2 have redundant and distinct activities that contribute toward oncogenesis. Current inhibitors of this pathway have primarily targeted mTORC1, but have shown limited clinical efficacy. Inhibitors of mTORC1 and mTORC2 such as RES-529 may therefore have the potential to overcome the deficiencies found in targeting only mTORC1. PMID:26918392

  1. RES-529: a PI3K/AKT/mTOR pathway inhibitor that dissociates the mTORC1 and mTORC2 complexes.

    PubMed

    Weinberg, Mark A

    2016-07-01

    RES-529 (previously named Palomid 529, P529) is a phosphoinositide 3-kinase (PI3K)/AKT/mechanistic target of rapamycin (mTOR) pathway inhibitor that interferes with the pathway through both mTOR complex 1 (mTORC1) and mTOR complex 2 (mTORC2) dissociation. This compound is currently being developed in oncology and ophthalmology. The oncology focus is for the treatment of glioblastoma, where it has received orphan designation by the US Food and Drug Administration, and prostate cancer. We present a review of the PI3K/AKT/mTOR pathway, its role in tumorigenesis, and the potential of RES-529 in cancer treatment. RES-529 inhibits mTORC1/mTORC2 activity in various cancer cell lines, as noted by decreased phosphorylation of substrates including ribosomal protein S6, 4E-BP1, and AKT, leading to cell growth inhibition and death, with activity generally in the range of 5-15 μmol/l. In animal tumor models where the PI3K/AKT/mTOR pathway is abnormally activated (i.e. glioblastoma, prostate cancer, and breast cancer), RES-529 reduces tumor growth by as much as 78%. RES-529 treatment is synergistic with radiation therapy, chemotherapy, and hormonal therapy in reducing tumor growth, potentially by preventing PI3K/AKT/mTOR pathway activation associated with these treatments. Furthermore, this compound has shown antiangiogenic activity in several animal models. mTORC1 and mTORC2 have redundant and distinct activities that contribute toward oncogenesis. Current inhibitors of this pathway have primarily targeted mTORC1, but have shown limited clinical efficacy. Inhibitors of mTORC1 and mTORC2 such as RES-529 may therefore have the potential to overcome the deficiencies found in targeting only mTORC1. PMID:26918392

  2. Suppression of the PI3K Pathway In Vivo Reduces Cystitis-Induced Bladder Hypertrophy and Restores Bladder Capacity Examined by Magnetic Resonance Imaging

    PubMed Central

    Shen, Shanwei; Corwin, Frank D.; Liu, Miao; Guan, Ruijuan; Grider, John R.; Qiao, Li-Ya

    2014-01-01

    This study utilized magnetic resonance imaging (MRI) to monitor the real-time status of the urinary bladder in normal and diseased states following cyclophosphamide (CYP)-induced cystitis, and also examined the role of the phosphoinositide 3-kinase (PI3K) pathway in the regulation of urinary bladder hypertrophy in vivo. Our results showed that under MRI visualization the urinary bladder wall was significantly thickened at 8 h and 48 h post CYP injection. The intravesical volume of the urinary bladder was also markedly reduced. Treatment of the cystitis animals with a specific PI3K inhibitor LY294002 reduced cystitis-induced bladder wall thickening and enlarged the intravesical volumes. To confirm the MRI results, we performed H&E stain postmortem and examined the levels of type I collagen by real-time PCR and western blot. Inhibition of the PI3K in vivo reduced the levels of type I collagen mRNA and protein in the urinary bladder ultimately attenuating cystitis-induced bladder hypertrophy. The bladder mass calculated according to MRI data was consistent to the bladder weight measured ex vivo under each drug treatment. MRI results also showed that the urinary bladder from animals with cystitis demonstrated high magnetic signal intensity indicating considerable inflammation of the urinary bladder when compared to normal animals. This was confirmed by examination of the pro-inflammatory factors showing that interleukin (IL)-1α, IL-6 and tumor necrosis factor (TNF)α levels in the urinary bladder were increased with cystitis. Our results suggest that MRI can be a useful technique in tracing bladder anatomy and examining bladder hypertrophy in vivo during disease development and the PI3K pathway has a critical role in regulating bladder hypertrophy during cystitis. PMID:25486122

  3. Irisin inhibits hepatic gluconeogenesis and increases glycogen synthesis via the PI3K/Akt pathway in type 2 diabetic mice and hepatocytes.

    PubMed

    Liu, Tong-Yan; Shi, Chang-Xiang; Gao, Run; Sun, Hai-Jian; Xiong, Xiao-Qing; Ding, Lei; Chen, Qi; Li, Yue-Hua; Wang, Jue-Jin; Kang, Yu-Ming; Zhu, Guo-Qing

    2015-11-01

    Increased glucose production and reduced hepatic glycogen storage contribute to metabolic abnormalities in diabetes. Irisin, a newly identified myokine, induces the browning of white adipose tissue, but its effects on gluconeogenesis and glycogenesis are unknown. In the present study, we investigated the effects and underlying mechanisms of irisin on gluconeogenesis and glycogenesis in hepatocytes with insulin resistance, and its therapeutic role in type 2 diabetic mice. Insulin resistance was induced by glucosamine (GlcN) or palmitate in human hepatocellular carcinoma (HepG2) cells and mouse primary hepatocytes. Type 2 diabetes was induced by streptozotocin/high-fat diet (STZ/HFD) in mice. In HepG2 cells, irisin ameliorated the GlcN-induced increases in glucose production, phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6Pase) expression, and glycogen synthase (GS) phosphorylation; it prevented GlcN-induced decreases in glycogen content and the phosphoinositide 3-kinase (PI3K) p110α subunit level, and the phosphorylation of Akt/protein kinase B, forkhead box transcription factor O1 (FOXO1) and glycogen synthase kinase-3 (GSK3). These effects of irisin were abolished by the inhibition of PI3K or Akt. The effects of irisin were confirmed in mouse primary hepatocytes with GlcN-induced insulin resistance and in human HepG2 cells with palmitate-induced insulin resistance. In diabetic mice, persistent subcutaneous perfusion of irisin improved the insulin sensitivity, reduced fasting blood glucose, increased GSK3 and Akt phosphorylation, glycogen content and irisin level, and suppressed GS phosphorylation and PEPCK and G6Pase expression in the liver. Irisin improves glucose homoeostasis by reducing gluconeogenesis via PI3K/Akt/FOXO1-mediated PEPCK and G6Pase down-regulation and increasing glycogenesis via PI3K/Akt/GSK3-mediated GS activation. Irisin may be regarded as a novel therapeutic strategy for insulin resistance and type 2 diabetes. PMID

  4. Bone marrow-derived mesenchymal stem cells enhance autophagy via PI3K/AKT signalling to reduce the severity of ischaemia/reperfusion-induced lung injury

    PubMed Central

    Li, Jing; Zhou, Jian; Zhang, Dan; Song, Yuanlin; She, Jun; Bai, Chunxue

    2015-01-01

    Autophagy, a type II programmed cell death, is essential for cell survival under stress, e.g. lung injury, and bone marrow-derived mesenchymal stem cells (BM-MSCs) have great potential for cell therapy. However, the mechanisms underlying the BM-MSC activation of autophagy to provide a therapeutic effect in ischaemia/reperfusion-induced lung injury (IRI) remain unclear. Thus, we investigate the activation of autophagy in IRI following transplantation with BM-MSCs. Seventy mice were pre-treated with BM-MSCs before they underwent lung IRI surgery in vivo. Human pulmonary micro-vascular endothelial cells (HPMVECs) were pre-conditioned with BM-MSCs by oxygen-glucose deprivation/reoxygenation (OGD) in vitro. Expression markers for autophagy and the phosphoinositide 3-kinase/protein kinase B (PI3K/Akt) signalling pathway were analysed. In IRI-treated mice, administration of BM-MSCs significantly attenuated lung injury and inflammation, and increased the level of autophagy. In OGD-treated HPMVECs, co-culture with BM-MSCs attenuated endothelial permeability by decreasing the level of cell death and enhanced autophagic activation. Moreover, administration of BM-MSCs decreased the level of PI3K class I and p-Akt while the expression of PI3K class III was increased. Finally, BM-MSCs-induced autophagic activity was prevented using the inhibitor LY294002. Administration of BM-MSCs attenuated lung injury by improving the autophagy level via the PI3K/Akt signalling pathway. These findings provide further understanding of the mechanisms related to BM-MSCs and will help to develop new cell-based therapeutic strategies in lung injury. PMID:26177266

  5. Regulation of the PI3K pathway through a p85α monomer–homodimer equilibrium | Office of Cancer Genomics

    Cancer.gov

    The canonical action of the p85α regulatory subunit of phosphatidylinositol 3-kinase (PI3K) is to associate with the p110α catalytic subunit to allow stimuli-dependent activation of the PI3K pathway. We elucidate a p110α-independent role of homodimerized p85α in the positive regulation of PTEN stability and activity. p110α-free p85α homodimerizes via two intermolecular interactions (SH3:proline-rich region and BH:BH) to selectively bind unphosphorylated activated PTEN.

  6. [6]-Shogaol inhibits α-MSH-induced melanogenesis through the acceleration of ERK and PI3K/Akt-mediated MITF degradation.

    PubMed

    Huang, Huey-Chun; Chang, Shu-Jen; Wu, Chia-Yin; Ke, Hui-Ju; Chang, Tsong-Min

    2014-01-01

    [6]-Shogaol is the main biologically active component of ginger. Previous reports showed that [6]-shogaol has several pharmacological characteristics, such as antioxidative, anti-inflammatory, antimicrobial, and anticarcinogenic properties. However, the effects of [6]-shogaol on melanogenesis remain to be elucidated. The study aimed to evaluate the potential skin whitening mechanisms of [6]-shogaol. The effects of [6]-shogaol on cell viability, melanin content, tyrosinase activity, and the expression of the tyrosinase and microphthalmia-associated transcription factor (MITF) were measured. The results revealed that [6]-shogaol effectively suppresses tyrosinase activity and the amount of melanin and that those effects are more pronounced than those of arbutin. It was also found that [6]-shogaol decreased the protein expression levels of tyrosinase-related protein 1 (TRP-1) and microphthalmia-associated transcriptional factor (MITF). In addition, the MITF mRNA levels were also effectively decreased in the presence of 20 μM [6]-shogaol. The degradation of MITF protein was inhibited by the MEK 1-inhibitor (U0126) or phosphatidylinositol-3-kinase inhibitor (PI3K inhibitor) (LY294002). Further immunofluorescence staining assay implied the involvement of the proteasome in the downregulation of MITF by [6]-shogaol. Our confocal assay results also confirmed that [6]-shogaol inhibited α-melanocyte stimulating hormone- (α-MSH-) induced melanogenesis through the acceleration of extracellular responsive kinase (ERK) and phosphatidylinositol-3-kinase- (PI3K/Akt-) mediated MITF degradation. PMID:25045707

  7. [6]-Shogaol Inhibits α-MSH-Induced Melanogenesis through the Acceleration of ERK and PI3K/Akt-Mediated MITF Degradation

    PubMed Central

    Huang, Huey-Chun; Chang, Shu-Jen; Wu, Chia-Yin; Ke, Hui-Ju; Chang, Tsong-Min

    2014-01-01

    [6]-Shogaol is the main biologically active component of ginger. Previous reports showed that [6]-shogaol has several pharmacological characteristics, such as antioxidative, anti-inflammatory, antimicrobial, and anticarcinogenic properties. However, the effects of [6]-shogaol on melanogenesis remain to be elucidated. The study aimed to evaluate the potential skin whitening mechanisms of [6]-shogaol. The effects of [6]-shogaol on cell viability, melanin content, tyrosinase activity, and the expression of the tyrosinase and microphthalmia-associated transcription factor (MITF) were measured. The results revealed that [6]-shogaol effectively suppresses tyrosinase activity and the amount of melanin and that those effects are more pronounced than those of arbutin. It was also found that [6]-shogaol decreased the protein expression levels of tyrosinase-related protein 1 (TRP-1) and microphthalmia-associated transcriptional factor (MITF). In addition, the MITF mRNA levels were also effectively decreased in the presence of 20 μM [6]-shogaol. The degradation of MITF protein was inhibited by the MEK 1-inhibitor (U0126) or phosphatidylinositol-3-kinase inhibitor (PI3K inhibitor) (LY294002). Further immunofluorescence staining assay implied the involvement of the proteasome in the downregulation of MITF by [6]-shogaol. Our confocal assay results also confirmed that [6]-shogaol inhibited α-melanocyte stimulating hormone- (α-MSH-) induced melanogenesis through the acceleration of extracellular responsive kinase (ERK) and phosphatidylinositol-3-kinase- (PI3K/Akt-) mediated MITF degradation. PMID:25045707

  8. BMX acts downstream of PI3K to promote colorectal cancer cell survival and pathway inhibition sensitizes to the BH3 mimetic ABT-737.

    PubMed

    Potter, Danielle S; Kelly, Paul; Denneny, Olive; Juvin, Veronique; Stephens, Len R; Dive, Caroline; Morrow, Christopher J

    2014-02-01

    Evasion of apoptosis is a hallmark of cancer, and reversing this process by inhibition of survival signaling pathways is a potential therapeutic strategy. Phosphoinositide 3-kinase (PI3K) signaling can promote cell survival and is upregulated in solid tumor types, including colorectal cancer (CRC), although these effects are context dependent. The role of PI3K in tumorigenesis combined with their amenability to specific inhibition makes them attractive drug targets. However, we observed that inhibition of PI3K in HCT116, DLD-1, and SW620 CRC cells did not induce apoptotic cell death. Moreover, these cells were relatively resistant to the Bcl-2 homology domain 3 (BH3) mimetic ABT-737, which directly targets the Bcl-2 family of apoptosis regulators. To test the hypothesis that PI3K inhibition lowers the apoptotic threshold without causing apoptosis per se, PI3K inhibitors were combined with ABT-737. PI3K inhibition enhanced ABT-737-induced apoptosis by 2.3- to 4.5-fold and reduced expression levels of MCL-1, the resistance biomarker for ABT-737. PI3K inhibition enhanced ABT-737-induced apoptosis a further 1.4- to 2.4-fold in CRC cells with small interfering RNA-depleted MCL-1, indicative of additional sensitizing mechanisms. The observation that ABT-737-induced apoptosis was unaffected by inhibition of PI3K downstream effectors AKT and mTOR, implicated a novel PI3K-dependant pathway. To elucidate this, an RNA interference (RNAi) screen of potential downstream effectors of PI3K signaling was conducted, which demonstrated that knockdown of the TEC kinase BMX sensitized to ABT-737. This suggests that BMX is an antiapoptotic downstream effector of PI3K, independent of AKT. PMID:24709422

  9. PI3K-C2γ is a Rab5 effector selectively controlling endosomal Akt2 activation downstream of insulin signalling

    PubMed Central

    Braccini, Laura; Ciraolo, Elisa; Campa, Carlo C.; Perino, Alessia; Longo, Dario L.; Tibolla, Gianpaolo; Pregnolato, Marco; Cao, Yanyan; Tassone, Beatrice; Damilano, Federico; Laffargue, Muriel; Calautti, Enzo; Falasca, Marco; Norata, Giuseppe D.; Backer, Jonathan M.; Hirsch, Emilio

    2015-01-01

    In the liver, insulin-mediated activation of the phosphatidylinositol 3-kinase (PI3K)/Akt pathway is at the core of metabolic control. Multiple PI3K and Akt isoenzymes are found in hepatocytes and whether isoform-selective interplays exist is currently unclear. Here we report that insulin signalling triggers the association of the liver-specific class II PI3K isoform γ (PI3K-C2γ) with Rab5-GTP, and its recruitment to Rab5-positive early endosomes. In these vesicles, PI3K-C2γ produces a phosphatidylinositol-3,4-bisphosphate pool specifically required for delayed and sustained endosomal Akt2 stimulation. Accordingly, loss of PI3K-C2γ does not affect insulin-dependent Akt1 activation as well as S6K and FoxO1-3 phosphorylation, but selectively reduces Akt2 activation, which specifically inhibits glycogen synthase activity. As a consequence, PI3K-C2γ-deficient mice display severely reduced liver accumulation of glycogen and develop hyperlipidemia, adiposity as well as insulin resistance with age or after consumption of a high-fat diet. Our data indicate PI3K-C2γ supports an isoenzyme-specific forking of insulin-mediated signal transduction to an endosomal pool of Akt2, required for glucose homeostasis. PMID:26100075

  10. PI3K-C2γ is a Rab5 effector selectively controlling endosomal Akt2 activation downstream of insulin signalling.

    PubMed

    Braccini, Laura; Ciraolo, Elisa; Campa, Carlo C; Perino, Alessia; Longo, Dario L; Tibolla, Gianpaolo; Pregnolato, Marco; Cao, Yanyan; Tassone, Beatrice; Damilano, Federico; Laffargue, Muriel; Calautti, Enzo; Falasca, Marco; Norata, Giuseppe D; Backer, Jonathan M; Hirsch, Emilio

    2015-01-01

    In the liver, insulin-mediated activation of the phosphatidylinositol 3-kinase (PI3K)/Akt pathway is at the core of metabolic control. Multiple PI3K and Akt isoenzymes are found in hepatocytes and whether isoform-selective interplays exist is currently unclear. Here we report that insulin signalling triggers the association of the liver-specific class II PI3K isoform γ (PI3K-C2γ) with Rab5-GTP, and its recruitment to Rab5-positive early endosomes. In these vesicles, PI3K-C2γ produces a phosphatidylinositol-3,4-bisphosphate pool specifically required for delayed and sustained endosomal Akt2 stimulation. Accordingly, loss of PI3K-C2γ does not affect insulin-dependent Akt1 activation as well as S6K and FoxO1-3 phosphorylation, but selectively reduces Akt2 activation, which specifically inhibits glycogen synthase activity. As a consequence, PI3K-C2γ-deficient mice display severely reduced liver accumulation of glycogen and develop hyperlipidemia, adiposity as well as insulin resistance with age or after consumption of a high-fat diet. Our data indicate PI3K-C2γ supports an isoenzyme-specific forking of insulin-mediated signal transduction to an endosomal pool of Akt2, required for glucose homeostasis. PMID:26100075

  11. A component of green tea (-)-epigallocatechin-3-gallate, promotes apoptosis in T24 human bladder cancer cells via modulation of the PI3K/Akt pathway and Bcl-2 family proteins

    SciTech Connect

    Qin Jie; Xie Liping . E-mail: xielp@zjuem.zju.edu.cn; Zheng Xiangyi; Wang Yunbin; Bai Yu; Shen Huafeng; Li Longcheng; Dahiya, Rajvir

    2007-03-23

    Bladder cancer is the fourth most common cancer in men and ninth most common in women. It has a protracted course of progression and is thus an ideal candidate for chemoprevention strategies and trials. This study was conducted to evaluate the chemopreventive/antiproliferative potential of (-)-epigallocatechin gallate (EGCG, the major phytochemical in green tea) against bladder cancer and its mechanism of action. Using the T24 human bladder cancer cell line, we found that EGCG treatment caused dose- and time-dependent inhibition of cellular proliferation and cell viability, and induced apoptosis. Mechanistically, EGCG inhibits phosphatidylinositol 3'-kinase/Akt activation that, in turn, results in modulation of Bcl-2 family proteins, leading to enhanced apoptosis of T24 cells. These findings suggest that EGCG may be an important chemoprevention agent for the management of bladder cancer.

  12. A Genomewide Overexpression Screen Identifies Genes Involved in the Phosphatidylinositol 3-Kinase Pathway in the Human Protozoan Parasite Entamoeba histolytica

    PubMed Central

    Koushik, Amrita B.; Welter, Brenda H.; Rock, Michelle L.

    2014-01-01

    Entamoeba histolytica is a protozoan parasite that causes amoebic dysentery and liver abscess. E. histolytica relies on motility, phagocytosis, host cell adhesion, and proteolysis of extracellular matrix for virulence. In eukaryotic cells, these processes are mediated in part by phosphatidylinositol 3-kinase (PI3K) signaling. Thus, PI3K may be critical for virulence. We utilized a functional genomics approach to identify genes whose products may operate in the PI3K pathway in E. histolytica. We treated a population of trophozoites that were overexpressing genes from a cDNA library with a near-lethal dose of the PI3K inhibitor wortmannin. This screen was based on the rationale that survivors would be overexpressing gene products that directly or indirectly function in the PI3K pathway. We sequenced the overexpressed genes in survivors and identified a cDNA encoding a Rap GTPase, a protein previously shown to participate in the PI3K pathway. This supports the validity of our approach. Genes encoding a coactosin-like protein, EhCoactosin, and a serine-rich E. histolytica protein (SREHP) were also identified. Cells overexpressing EhCoactosin or SREHP were also less sensitive to a second PI3K inhibitor, LY294002. This corroborates the link between these proteins and PI3K. Finally, a mutant cell line with an increased level of phosphatidylinositol (3,4,5)-triphosphate, the product of PI3K activity, exhibited increased expression of SREHP and EhCoactosin. This further supports the functional connection between these proteins and PI3K in E. histolytica. To our knowledge, this is the first forward-genetics screen adapted to reveal genes participating in a signal transduction pathway in this pathogen. PMID:24442890

  13. The Role of the PI3K Signaling Pathway in CD4+ T Cell Differentiation and Function

    PubMed Central

    Han, Jonathan M.; Patterson, Scott J.; Levings, Megan K.

    2012-01-01

    The relative activity of regulatory versus conventional CD4+ T cells ultimately maintains the delicate balance between immune tolerance and inflammation. At the molecular level, the activity of phosphatidylinositol 3-kinase (PI3K) and its downstream positive and negative regulators has a major role in controlling the balance between immune regulation and activation of different subsets of effector CD4+ T cells. In contrast to effector T cells which require activation of the PI3K to differentiate and mediate their effector function, regulatory T cells rely on minimal activation of this pathway to develop and maintain their characteristic phenotype, function, and metabolic state. In this review, we discuss the role of the PI3K signaling pathway in CD4+ T cell differentiation and function, and focus on how modulation of this pathway in T cells can alter the outcome of an immune response, ultimately tipping the balance between tolerance and inflammation. PMID:22905034

  14. OX40 Complexes with PI3K and PKB to Augment TCR-Dependent PKB Signaling

    PubMed Central

    So, Takanori; Choi, Heonsik; Croft, Michael

    2011-01-01

    T lymphocyte activation requires signal 1 from the T cell receptor (TCR) and signal 2 from co-stimulatory receptors. For long-lasting immunity, growth and survival signals imparted through the Akt/PKB pathway in activated or effector T cells are important, and these can be strongly influenced by signaling from OX40 (CD134), a member of the TNFR superfamily. In the absence of OX40, T cells do not expand efficiently to antigen and memory formation is impaired. How most costimulatory receptors integrate their signals with those from antigen through the TCR is not clear, including whether OX40 directly recruits PKB or molecules that regulate PKB. We show that OX40 after ligation by OX40L assembled a signaling complex that contained the adaptor TRAF2 as well as PKB and its upstream activator PI-3-Kinase. Recruitment of PKB and PI3K were dependent on TRAF2 and on translocation of OX40 into detergent insoluble membrane lipid microdomains, but independent of TCR engagement. However, OX40 only resulted in strong phosphorylation and functional activation of the PI3K/PKB pathway when antigen was recognized. Therefore OX40 primarily functions to augment PKB signaling in T cells by enhancing the amount of PI3K and PKB available to the TCR. This highlights a quantitative role of this TNFR family second signal to supplement signal 1. PMID:21289304

  15. Adiponectin Induces Oncostatin M Expression in Osteoblasts through the PI3K/Akt Signaling Pathway

    PubMed Central

    Su, Chen-Ming; Lee, Wei-Lin; Hsu, Chin-Jung; Lu, Ting-Ting; Wang, Li-Hong; Xu, Guo-Hong; Tang, Chih-Hsin

    2015-01-01

    Rheumatoid arthritis (RA), a common autoimmune disorder, is associated with a chronic inflammatory response and unbalanced bone metabolism within the articular microenvironment. Adiponectin, an adipokine secreted by adipocytes, is involved in multiple functions, including lipid metabolism and pro-inflammatory activity. However, the mechanism of adiponectin performance within arthritic inflammation remains unclear. In this study, we observed the effect of adiponectin on the expression of oncostatin M (OSM), a pro-inflammatory cytokine, in human osteoblastic cells. Pretreatment of cells with inhibitors of phosphatidylinositol 3-kinase (PI3K), Akt, and nuclear factor (NF)-κB reduced the adiponectin-induced OSM expression in osteoblasts. Stimulation of the cells with adiponectin increased phosphorylation of PI3K, Akt, and p65. Adiponectin treatment of osteoblasts increased OSM-luciferase activity and p65 binding to NF-κB on the OSM promoter. Our results indicate that adiponectin increased OSM expression via the PI3K, Akt, and NF-κB signaling pathways in osteoblastic cells, suggesting that adiponectin is a novel target for arthritis treatment. PMID:26712749

  16. Targeting the RTK-PI3K-mTOR Axis in Malignant Glioma: Overcoming Resistance

    PubMed Central

    Fan, Qi-Wen

    2010-01-01

    Gliomas represent the most common primary brain tumor and among the most aggressive of cancers. Patients with glioma typically relapse within a year of initial diagnosis. Recurrent glioma is associated with acquired therapeutic resistance. Although neurosurgical resection, radiation and chemotherapy provide clear benefit, survival remains disappointing. It is, therefore, critical that we identify effective medical therapies and appropriate tumor biomarkers in patients at initial presentation, to promote durable responses in glioma. Pathways linking receptor tyrosine kinases, PI3 kinase, Akt, and mTOR feature prominently in this disease and represent therapeutic targets. Small molecules that inhibit one or more of these kinases are now being introduced into the clinic and may have some activity. Disappointingly, however, preclinical studies demonstrate these agents to be primarily cytostatic rather than cytotoxic to glioma cells. Here, we detail activation of the EGFR-PI3K-Akt-mTOR signaling network in glioma, review class I PI3K inhibitors, discuss roles for Akt, PKC and mTOR, and the importance of biomarkers. We further delineate attempts to target both single and multiple components within the EGFR-PI3K-Akt-mTOR axes. Lastly, we discuss the need to combine targeted therapies with cytotoxic chemotherapy, radiation and with inhibitors of survival signaling to improve outcomes in glioma. PMID:20535652

  17. Vasculogenic Mimicry in Prostate Cancer: The Roles of EphA2 and PI3K

    PubMed Central

    Wang, Hua; Lin, Hao; Pan, Jincheng; Mo, Chengqiang; Zhang, Faming; Huang, Bin; Wang, Zongren; Chen, Xu; Zhuang, Jintao; Wang, Daohu; Qiu, Shaopeng

    2016-01-01

    BACKGROUND. Aggressive tumor cells can form perfusable networks that mimic normal vasculature and enhance tumor growth and metastasis. A number of molecular players have been implicated in such vasculogenic mimicry, among them the receptor tyrosine kinase EphA2, which is aberrantly expressed in aggressive tumors. Here we study the role and regulation of EphA2 in vasculogenic mimicry in prostate cancer where this phenomenon is still poorly understood. METHODS. Vasculogenic mimicry was characterized by tubules whose cellular lining was negative for the endothelial cell marker CD34 but positive for periodic acid-Schiff staining, and/or contained red blood cells. Vasculogenic mimicry was assessed in 92 clinical samples of prostate cancer and analyzed in more detail in three prostate cancer cell lines kept in three-dimensional culture. Tissue samples and cell lines were also assessed for total and phosphorylated levels of EphA2 and its potential regulator, Phosphoinositide 3-Kinase (PI3K). In addition, the role of EphA2 in vasculogenic mimicry and in cell migration and invasion were investigated by manipulating the levels of EphA2 through specific siRNAs. Furthermore, the role of PI3K in vasculogenic mimicry and in regulating EphA2 was tested by application of an inhibitor, LY294002. RESULTS. Immunohistochemistry of prostate cancers showed a significant correlation between vasculogenic mimicry and high expression levels of EphA2, high Gleason scores, advanced TNM stage, and the presence of lymph node and distant metastases. Likewise, two prostate cancer cell lines (PC3 and DU-145) formed vasculogenic networks on Matrigel and expressed high EphA2 levels, while one line (LNCaP) showed no vasculogenic networks and lower EphA2 levels. Specific silencing of EphA2 in PC3 and DU-145 cells decreased vasculogenic mimicry as well as cell migration and invasion. Furthermore, high expression levels of PI3K and EphA2 phosphorylation at Ser897 significantly correlated with the

  18. Selective Sparing of Human Tregs by Pharmacologic Inhibitors of the Phosphatidylinositol 3-Kinase and MEK Pathways

    PubMed Central

    Zwang, N. A.; Zhang, R.; Germana, S.; Fan, M. Y.; Hastings, W. D.; Cao, A.; Turka, L. A.

    2016-01-01

    Phosphatidylinositol 3-kinase (PI3K) and mitogen-activated protein kinase/extracellular signal-regulated (MEK) signaling are central to the survival and proliferation of many cell types. Multiple lines of investigation in murine models have shown that control of the PI3K pathway is particularly important for regulatory T cell (Treg) stability and function. PI3K and MEK inhibitors are being introduced into the clinic, and we hypothesized that pharmacologic inhibition of PI3K, and possibly MEK, in mixed cultures of human mononuclear cells would preferentially affect CD4+ and CD8+ lymphocytes compared with Tregs. We tested this hypothesis using four readouts: proliferation, activation, functional suppression, and signaling. Results showed that Tregs were less susceptible to inhibition by both δ and α isoform–specific PI3K inhibitors and by an MEK inhibitor compared with their conventional CD4+ and CD8+ counterparts. These studies suggest less functional reliance on PI3K and MEK signaling in Tregs compared with conventional CD4+ and CD8+ lymphocytes. Therefore, the PI3K and MEK pathways are attractive pharmacologic targets for transplantation and treatment of autoimmunity. PMID:27017850

  19. Targeting PI3K/mTOR signaling in cancer.

    PubMed

    Emerling, Brooke M; Akcakanat, Argun

    2011-12-15

    The American Association for Cancer Research (AACR) Special Conference on Targeting PI3K/mTOR Signaling in Cancer was held in San Francisco, California from February 24 to 27, 2011. The meeting was cochaired by Drs. Lewis C. Cantley, David M. Sabatini, and Funda Meric-Bernstam. The main focus of this event was the therapeutic potential of drugs targeting the PI3K/mTOR signaling pathway for the treatment of cancer. This article summarizes the recent discoveries in the field, with particular emphasis on the major themes of the conference. PMID:21987725

  20. PI3K mutations in breast cancer: prognostic and therapeutic implications

    PubMed Central

    Mukohara, Toru

    2015-01-01

    The PI3K pathway is the most frequently enhanced oncogenic pathway in breast cancer. Among mechanisms of PI3K enhancement, PIK3CA mutations are most frequently (∼30%) observed, along with protein loss of PTEN. Since the first discovery of PIK3CA mutations in solid malignancies in 2004, numerous studies have revealed the prognostic and therapeutic implications of these mutations. Although many issues remain unconfirmed, some have been carved in stone by the level of consistency they have shown among studies: 1) PIK3CA mutations are most likely to be observed in ER-positive/HER2-negative tumors, and are associated with other good prognostic characters; 2) PIK3CA mutations can coexist with other PI3K-enhancing mechanisms, such as HER2 amplification and PTEN protein loss; 3) PIK3CA mutations are potentially a good prognostic marker; 4) PIK3CA may predict a poorer tumor response to trastuzumab-based therapies, but its impact on disease-free survival and overall survival is uncertain; and 5) based on reports of early clinical trials, PIK3CA mutations do not guarantee a dramatic response to PI3K inhibitors. Collectively, there is currently no sufficient evidence to recommend routine genotyping of PIK3CA in clinical practice. Given that PIK3CA-mutant breast cancer appears to have a distinct tumor biology, development of more individualized targeted therapies based on the PIK3CA genotype is awaited. PMID:26028978

  1. PI3K-GSK3 signalling regulates mammalian axon regeneration by inducing the expression of Smad1

    NASA Astrophysics Data System (ADS)

    Saijilafu; Hur, Eun-Mi; Liu, Chang-Mei; Jiao, Zhongxian; Xu, Wen-Lin; Zhou, Feng-Quan

    2013-10-01

    In contrast to neurons in the central nervous system, mature neurons in the mammalian peripheral nervous system (PNS) can regenerate axons after injury, in part, by enhancing intrinsic growth competence. However, the signalling pathways that enhance the growth potential and induce spontaneous axon regeneration remain poorly understood. Here we reveal that phosphatidylinositol 3-kinase (PI3K) signalling is activated in response to peripheral axotomy and that PI3K pathway is required for sensory axon regeneration. Moreover, we show that glycogen synthase kinase 3 (GSK3), rather than mammalian target of rapamycin, mediates PI3K-dependent augmentation of the growth potential in the PNS. Furthermore, we show that PI3K-GSK3 signal is conveyed by the induction of a transcription factor Smad1 and that acute depletion of Smad1 in adult mice prevents axon regeneration in vivo. Together, these results suggest PI3K-GSK3-Smad1 signalling as a central module for promoting sensory axon regeneration in the mammalian nervous system.

  2. Inhibitory Effects of Isoquinoline Alkaloid Berberine on Ischemia-Induced Apoptosis via Activation of Phosphoinositide 3-Kinase/Protein Kinase B Signaling Pathway

    PubMed Central

    Kim, Mia; Shin, Mal Soon; Lee, Jae Min; Cho, Han Sam; Kim, Chang Ju; Kim, Young Joon; Choi, Hey Ran

    2014-01-01

    Purpose Berberine is a type of isoquinoline alkaloid that has been used to treat various diseases. A neuroprotective effect of berberine against cerebral ischemia has been reported; however, the effects of berberine on apoptosis in relation to reactive astrogliosis and microglia activation under ischemic conditions have not yet been fully evaluated. In the present study, we investigated the effects of berberine on global ischemia-induced apoptosis, and focused on the phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) signaling pathway in the hippocampus using gerbils. Methods Gerbils received berberine orally once a day for 14 consecutive days, starting one day after surgery. In this study, a step-down avoidance task was used to assess short-term memory. Furthermore, we employed the terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) assay to evaluate DNA fragmentation, immunohistochemistry to investigate glial fibriallary acidic protein, CD11b, and caspase-3, and western blot to assess PI3K, Akt, Bax, Bcl-2, and cytochrome c. Results Our results revealed that berberine treatment alleviated ischemia-induced short-term memory impairment. Treatment with berbeine also attenuated ischemia-induced apoptosis and inhibited reactive astrogliosis and microglia activation. Furthermore, berberine enhanced phospho-PI3K and phospho-Akt expression in the hippocampus of ischemic gerbils. Conclusions Berberine exerted a neuroprotective effect against ischemic insult by inhibiting neuronal apoptosis via activation of the PI3K/Akt signaling pathway. The antiapoptotic effect of berberine was achieved through inhibition of reactive astrogliosis and microglia activation. Berberine may therefore serve as a therapeutic agent for stroke-induced neurourological problems. PMID:25279238

  3. Eicosapentaenoic acid-enriched phosphatidylcholine isolated from Cucumaria frondosa exhibits anti-hyperglycemic effects via activating phosphoinositide 3-kinase/protein kinase B signal pathway.

    PubMed

    Hu, Shiwei; Xu, Leilei; Shi, Di; Wang, Jingfeng; Wang, Yuming; Lou, Qiaoming; Xue, Changhu

    2014-04-01

    Eicosapentaenoic acid-enriched phosphatidylcholine was isolated from the sea cucumber Cucumaria frondosa (Cucumaria-PC) and its effects on streptozotocin (STZ)-induced hyperglycemic rats were investigated. Male Sprague-Dawley rats were randomly divided into normal control, model control (STZ), low- and high-dose Cucumaria-PC groups (STZ + Cucumaria-PC at 25 and 75 mg/Kg·b·wt, intragastrically, respectively). Blood glucose, insulin, glycogen in liver and gastrocnemius were determined over 60 days. Insulin signaling in the rats' gastrocnemius was determined by reverse transcriptase-polymerase chain reaction (RT-PCR) and Western blotting. The results showed that Cucumaria-PC significantly decreased blood glucose level, increased insulin secretion and glycogen synthesis in diabetic rats. RT-PCR analysis revealed that Cucumaria-PC significantly promoted the expressions of glycometabolism-related genes of insulin receptor (IR), insulin receptor substrate-1 (IRS-1), phosphoinositide 3-kinase (PI3K), protein kinase B (PKB), and glucose transporter 4 (GLUT4) in gastrocnemius. Western blotting assay demonstrated that Cucumaria-PC remarkably enhanced the proteins abundance of IR-β, PI3K, PKB, GLUT4, as well as phosphorylation of Tyr-IR-β, p85-PI3K, Ser473-PKB (P < 0.05 and P < 0.01). These findings suggested that Cucumaria-PC exhibited significant anti-hyperglycemic activities through up-regulating PI3K/PKB signal pathway mediated by insulin. Nutritional supplementation with Cucumaria-PC, if validated for human studies, may offer an adjunctive therapy for diabetes mellitus. PMID:24168893

  4. The determinants of head and neck cancer: Unmasking the PI3K pathway mutations

    PubMed Central

    Giudice, Fernanda S.; Squarize, Cristiane H.

    2014-01-01

    Studies attempting to identify and understand the function of mutated genes and deregulated molecular pathways in cancer have been ongoing for many years. The PI3K-PTEN-mTOR signaling pathway is one of the most frequently deregulated pathways in cancer. PIK3CA mutations are found 11%–33% of head and neck cancer (HNC). The hotspot mutation sites for PIK3CA are E542K, E545K and H1047R/L. The PTEN somatic mutations are in 9–23% of HNC, and they frequently cluster in the phosphatase domain of PTEN protein. PTEN loss of heterozygosity (LOH) ranges from 41%–71% and loss of PTEN protein expression occurs in 31.2% of the HNC samples. PIK3CA and PTEN are key molecules in the PI3K-PTEN-mTOR signaling pathway. In this review, we provided a comprehensive overview of mutations in the PI3K-PTEN-mTOR molecular circuitry in HNC, including PI3K family members, TSC1/TSC2, PTEN, AKT, and mTORC1 and mTORC2 complexes. We discussed how these genetic alterations may affect protein structure and function. We also highlight the latest discoveries in protein kinase and tumor suppressor families, emphasizing how mutations in these families interfere with PI3K signaling. A better understanding of the mechanisms underlying cancer formation, progression and resistance to therapy will inform selection of novel genomic-based personalized therapies for head and neck cancer patients. PMID:25126449

  5. Vesicular trafficking and stress response coupled to PI3K inhibition by LY294002 as revealed by proteomic and cell biological analysis

    PubMed Central

    Takáč, Tomáš; Pechan, Tibor; Šamajová, Olga; Šamaj, Jozef

    2013-01-01

    LY294002 is a synthetic quercetin-like compound which, unlike wortmannin, is an inhibitor of phosphatidylinositol 3-kinase (PI3K). It inhibits endocytosis and vacuolar transport. We report here on the proteome-wide effects of LY294002 on Arabidopsis roots focusing on proteins involved in vesicular trafficking and stress response. At the subcellular level, LY294002 caused swelling and clustering of late endosomes leading to inhibition of vacuolar transport. At the proteome level, this compound caused changes in abundances of proteins categorized to 10 functional classes. Among proteins involved in vesicular trafficking, a small GTPase ARFA1f was more abundant, indicating its possible contribution to the aggregation and fusion of late endosomes triggered by LY294002. Our study provides new information on storage proteins and vacuolar hydrolases in vegetative tissues treated by LY294002. Vacuolar hydrolases were downregulated while storage proteins were more abundant, suggesting that storage proteins were protected from degradation in swollen multivesicular bodies upon LY294002 treatment. Upregulation of 2S albumin was validated by immunoblotting and immunolabelling analyses. Our study also pointed to the control of antioxidant enzyme machinery by PI3K because LY294002 downregulated two isozymes of superoxide dismutase. This most likely occurred via PI3K–mediated downregulation of protein AtDJ1A. Finally, we discuss specificity differences of LY294002 and wortmannin against PI3K which are reflected at the proteome level. Compared to wortmannin, LY294002 showed more narrow and perhaps also more specific effects on proteins as suggested by gene ontology functional annotation. PMID:23931732

  6. Differential Effects of PI3K and Dual PI3K/mTOR Inhibition in Rat Prolactin-Secreting Pituitary Tumors.

    PubMed

    Chanal, Marie; Chevallier, Pascale; Raverot, Véronique; Fonteneau, Guillaume; Lucia, Kristin; Monteserin Garcia, Jose Luis; Rachwan, Alexa; Jouanneau, Emmanuel; Trouillas, Jacqueline; Honnorat, Jérôme; Auger, Carole; Theodoropoulou, Marily; Raverot, Gérald

    2016-06-01

    Aggressive pituitary tumors are rare but difficult to manage, as there is no effective chemotherapy to restrict their growth and cause their shrinkage. Within these tumors, growth-promoting cascades, like the PI3K/mTOR pathway, appear to be activated. We tested the efficacy of two inhibitors of this pathway, NVP-BKM120 (Buparlisib; pan-PI3K) and NVP-BEZ235 (dual PI3K/mTOR), both in vitro on immortalized pituitary tumor cells (GH3) and on primary cell cultures of human pituitary tumors and in vivo on a rat model of prolactin (PRL) tumors (SMtTW3). In vitro, NVP-BEZ235 had a potent apoptotic and cytostatic effect that was characterized by decreased cyclin D/E and Cdk4/2 protein levels and subsequent accumulation of cells in G1 In vivo, the effect was transient, with a decrease in mitotic index and increase in apoptosis; long-term treatment had no significant inhibitory effect on tumor growth. In contrast, while NVP-BKM120 had little effect in vitro, it dramatically limited tumor growth in vivo Increased Akt phosphorylation observed only in the NVP-BEZ235-treated tumors may explain the differential response to the two inhibitors. Primary cell cultures of human PRL pituitary tumors responded to NVP-BEZ235 with reduced cell viability and decreased hormone secretion, whereas NVP-BKM120 had little effect. Altogether, these results show a potential for PI3K inhibitors in the management of aggressive pituitary tumors. Mol Cancer Ther; 15(6); 1261-70. ©2016 AACR. PMID:26983879

  7. Role of phosphatidylinositol 3-kinase-gamma in mediating lung neutrophil sequestration and vascular injury induced by E. coli sepsis.

    PubMed

    Ong, Evan; Gao, Xiao-Pei; Predescu, Dan; Broman, Michael; Malik, Asrar B

    2005-12-01

    We addressed the in vivo role of phosphatidylinositol 3-kinase-gamma (PI3K-gamma) in signaling the sequestration of polymorphonuclear leukocytes (PMNs) in lungs and in the mechanism of inflammatory lung vascular injury. We studied mice with deletion of the p110 catalytic subunit of PI3K-gamma (PI3K-gamma(-/-) mice). We measured lung tissue PMN sequestration, microvascular permeability, and edema formation after bacteremia induced by intraperitoneal Escherichia coli challenge. PMN infiltration into the lung interstitium in PI3K-gamma(-/-) mice as assessed morphometrically was increased 100% over that in control mice within 1 h after bacterial challenge. PI3K-gamma(-/-) mice also developed a greater increase in lung microvascular permeability after E. coli challenge, resulting in edema formation. The augmented lung tissue PMN sequestration in PI3K-gamma(-/-) mice was associated with increased expression of the PMN adhesive proteins CD47 and beta(3)-integrins. We observed increased association of CD47 and beta(3)-integrins with the extracellular matrix protein vitronectin in lungs of PI3K-gamma(-/-) mice after E. coli challenge. PMNs from these mice also showed increased beta(3)-integrin expression and augmented beta(3)-integrin-dependent PMN adhesion to vitronectin. These results point to a key role of PMN PI3K-gamma in negatively regulating CD47 and beta(3)-integrin expression in gram-negative sepsis. PI3K-gamma activation in PMNs induced by E. coli may modulate the extent of lung tissue PMN sequestration secondary to CD47 and beta(3)-integrin expression. Therefore, the level of PI3K-gamma activation may be an important determinant of PMN-dependent lung vascular injury. PMID:16183669

  8. NVP-BKM120, a novel PI3K inhibitor, shows synergism with a STAT3 inhibitor in human gastric cancer cells harboring KRAS mutations

    PubMed Central

    PARK, EUNJU; PARK, JINAH; HAN, SAE-WON; IM, SEOCK-AH; KIM, TAE-YOU; OH, DO-YOUN; BANG, YUNG-JUE

    2012-01-01

    Aberrations of Phosphoinositide 3-kinase (PI3K)/AKT signaling are frequently observed in many types of cancer, promoting its emergence as a promising target for cancer treatment. PI3K can become activated by various pathways, one of which includes RAS. RAS can not only directly activate the PI3K/AKT pathway via binding to p110 of PI3K, but also regulates mTOR via ERK or RSK independently of the PI3K/AKT pathway. Thus, actively mutated RAS can constitutively activate PI3K signaling. Additionally, in RAS tumorigenic transformation, signal transducer and activator of transcription 3 (STAT3) has been known also to be required. In this study, we examined the efficacy of NVP-BKM120, a pan-class I PI3K inhibitor in human gastric cancer cells and hypothesized that the combined inhibition of PI3K and STAT3 would be synergistic in KRAS mutant gastric cancer cells. NVP-BKM120 demonstrated anti-proliferative activity in 11 human gastric cancer cell lines by decreasing mTOR downstream signaling. But NVP-BKM120 treatment increased p-AKT by subsequent abrogation of feedback inhibition by stabilizing insulin receptor substrate-1. In KRAS mutant gastric cancer cells, either p-ERK or p-STAT3 was also increased upon treatment of NVP-BKM120. The synergistic efficacy study demonstrated that dual PI3K and STAT3 blockade showed a synergism in cells harboring mutated KRAS by inducing apoptosis. The synergistic effect was not seen in KRAS wild-type cells. Together, these findings suggest for the first time that the dual inhibition of PI3K and STAT3 signaling may be an effective therapeutic strategy for KRAS mutant gastric cancer patients. PMID:22159814

  9. Ether-linked diglycerides inhibit vascular smooth muscle cell growth via decreased MAPK and PI3K/Akt signaling.

    PubMed

    Houck, Kristy L; Fox, Todd E; Sandirasegarane, Lakshman; Kester, Mark

    2008-10-01

    Diglycerides (DGs) are phospholipid-derived second messengers that regulate PKC-dependent signaling pathways. Distinct species of DGs are generated from inflammatory cytokines and growth factors. Growth factors increase diacyl- but not ether-linked DG species, whereas inflammatory cytokines predominately generate alkyl, acyl- and alkenyl, acyl-linked DG species in rat mesenchymal cells. These DG species have been shown to differentially regulate protein kinase C (PKC) isotypes. Ester-linked diacylglycerols activate PKC-epsilon and cellular proliferation in contrast to ether-linked DGs, which lead to growth arrest through the inactivation of PKC-epsilon. It is now hypothesized that ether-linked DGs inhibit mitogenesis through the inactivation of ERK and/or Akt signaling cascades. We demonstrate that cell-permeable ether-linked DGs reduce vascular smooth muscle cell growth by inhibiting platelet-derived growth factor-stimulated ERK in a PKC-epsilon-dependent manner. This inhibition is specific to the ERK pathway, since ether-linked DGs do not affect growth factor-induced activation of other family members of the MAPKs, including p38 MAPK and c-Jun NH(2)-terminal kinases. We also demonstrate that ether-linked DGs reduce prosurvival phosphatidylinositol 3-kinase (PI3K)/Akt signaling, independent of PKC-epsilon, by diminishing an interaction between the subunits of PI3K and not by affecting protein phosphatase 2A or lipid (phosphatase and tensin homologue deleted in chromosome 10) phosphatases. Taken together, our studies identify ether-linked DGs as potential adjuvant therapies to limit vascular smooth muscle migration and mitogenesis in atherosclerotic and restenotic models. PMID:18723771

  10. Silica nanoparticles induce autophagy and endothelial dysfunction via the PI3K/Akt/mTOR signaling pathway

    PubMed Central

    Duan, Junchao; Yu, Yongbo; Yu, Yang; Li, Yang; Wang, Ji; Geng, Weijia; Jiang, Lizhen; Li, Qiuling; Zhou, Xianqing; Sun, Zhiwei

    2014-01-01

    Although nanoparticles have a great potential for biomedical applications, there is still a lack of a correlative safety evaluation on the cardiovascular system. This study is aimed to clarify the biological behavior and influence of silica nanoparticles (Nano-SiO2) on endothelial cell function. The results showed that the Nano-SiO2 were internalized into endothelial cells in a dose-dependent manner. Monodansylcadaverine staining, autophagic ultrastructural observation, and LC3-I/LC3-II conversion were employed to verify autophagy activation induced by Nano-SiO2, and the whole autophagic process was also observed in endothelial cells. In addition, the level of nitric oxide (NO), the activities of NO synthase (NOS) and endothelial (e)NOS were significantly decreased in a dose-dependent way, while the activity of inducible (i)NOS was markedly increased. The expression of C-reactive protein, as well as the production of proinflammatory cytokines (tumor necrosis factor α, interleukin [IL]-1β, and IL-6) were significantly elevated. Moreover, Nano-SiO2 had an inhibitory effect on the phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) signaling pathway. Our findings demonstrated that Nano-SiO2 could disturb the NO/NOS system, induce inflammatory response, activate autophagy, and eventually lead to endothelial dysfunction via the PI3K/Akt/mTOR pathway. This indicates that exposure to Nano-SiO2 is a potential risk factor for cardiovascular diseases. PMID:25395850

  11. PfIRR Interacts with HrIGF-I and Activates the MAP-kinase and PI3-kinase Signaling Pathways to Regulate Glycogen Metabolism in Pinctada fucata

    PubMed Central

    Shi, Yu; He, Mao-xian

    2016-01-01

    The insulin-induced mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3-kinase (PI3K) pathways are major intracellular signaling modules and conserved among eukaryotes that are known to regulate diverse cellular processes. However, they have not been investigated in the mollusk species Pinctada fucata. Here, we demonstrate that insulin-related peptide receptor of P. fucata (pfIRR) interacts with human recombinant insulin-like growth factor I (hrIGF-I), and stimulates the MAPK and PI3K signaling pathways in P. fucata oocytes. We also show that inhibition of pfIRR by the inhibitor PQ401 significantly attenuates the basal and hrIGF-I-induced phosphorylation of MAPK and PI3K/Akt at amino acid residues threonine 308 and serine 473. Furthermore, our experiments show that there is cross-talk between the MAPK and PI3K/Akt pathways, in which MAPK kinase positively regulates the PI3K pathway, and PI3K positively regulates the MAPK cascade. Intramuscular injection of hrIGF-I stimulates the PI3K and MAPK pathways to increase the expression of pfirr, protein phosphatase 1, glucokinase, and the phosphorylation of glycogen synthase, decreases the mRNA expression of glycogen synthase kinase-3 beta, decreases glucose levels in hemocytes, and increases glycogen levels in digestive glands. These results suggest that the MAPK and PI3K pathways in P. fucata transmit the hrIGF-I signal to regulate glycogen metabolism. PMID:26911653

  12. Apoptosis Induction of Human Prostate Carcinoma DU145 Cells by Diallyl Disulfide via Modulation of JNK and PI3K/AKT Signaling Pathways

    PubMed Central

    Shin, Dong Yeok; Kim, Gi-Young; Lee, Jun Hyuk; Choi, Byung Tae; Yoo, Young Hyun; Choi, Yung Hyun

    2012-01-01

    Diallyl disulfide (DADS), a sulfur compound derived from garlic, has various biological properties, such as anticancer, antiangiogenic and anti-inflammatory effects. However, the mechanisms of action underlying the compound’s anticancer activity have not been fully elucidated. In this study, the apoptotic effects of DADS were investigated in DU145 human prostate carcinoma cells. Our results showed that DADS markedly inhibited the growth of the DU145 cells by induction of apoptosis. Apoptosis was accompanied by modulation of Bcl-2 and inhibitor of apoptosis protein (IAP) family proteins, depolarization of the mitochondrial membrane potential (MMP, ΔΨm) and proteolytic activation of caspases. We also found that the expression of death-receptor 4 (DR4) and Fas ligand (FasL) proteins was increased and that the level of intact Bid proteins was down-regulated by DADS. Moreover, treatment with DADS induced phosphorylation of mitogen-activated protein kinases (MAPKs), including extracellular-signal regulating kinase (ERK), p38 MAPK and c-Jun N-terminal kinase (JNK). A specific JNK inhibitor, SP600125, significantly blocked DADS-induced-apoptosis, whereas inhibitors of the ERK (PD98059) and p38 MAPK (SB203580) had no effect. The induction of apoptosis was also accompanied by inactivation of phosphatidylinositol 3-kinase (PI3K)/Akt and the PI3K inhibitor LY29004 significantly increased DADS-induced cell death. These findings provide evidence demonstrating that the proapoptotic effect of DADS is mediated through the activation of JNK and the inhibition of the PI3K/Akt signaling pathway in DU145 cells. PMID:23203057

  13. Relaxin Protects Rat Lungs from Ischemia-Reperfusion Injury via Inducible NO Synthase: Role of ERK-1/2, PI3K, and Forkhead Transcription Factor FKHRL1

    PubMed Central

    Alexiou, Konstantin; Wilbring, Manuel; Matschke, Klaus; Dschietzig, Thomas

    2013-01-01

    Introduction Early allograft dysfunction following lung transplantation is mainly an ischemia/reperfusion (IR) injury. We showed that relaxin-2 (relaxin) exerts a protective effect in lung IR, attributable to decreases in endothelin-1 (ET-1) production, leukocyte recruitment, and free radical generation. Here, we summarize our investigations into relaxin’s signalling. Materials and Methods Isolated rat lungs were perfused with vehicle or 5 nM relaxin (n = 6–10 each). Thereafter, experiments were conducted in the presence of relaxin plus vehicle, the protein kinase A inhibitors H-89 and KT-5720, the NO synthase (NOS) inhibitor L-NAME, the iNOS inhibitor 1400W, the nNOS inhibitor SMTC, the extracellular signal-regulated kinase-1/2 (ERK-1/2) inhibitor PD-98059, the phosphatidylinositol-3 kinase (PI3K) inhibitor wortmannin, the endothelin type-B (ETB) antagonist A-192621, or the glucocorticoid receptor (GR) antagonist RU-486. After 90 min ischemia and 90 min reperfusion we determined wet-to-dry (W/D) weight ratio, mean pulmonary arterial pressure (MPAP), vascular release of ET-1, neutrophil elastase (NE), myeloperoxidase (MPO), and malondialdehyde (MDA). Primary rat pulmonary vascular cells were similarly treated. Results IR lungs displayed significantly elevated W/D ratios, MPAP, as well as ET-1, NE, MDA, and MPO. In the presence of relaxin, all of these parameters were markedly improved. This protective effect was completely abolished by L-NAME, 1400W, PD-98059, and wortmannin whereas neither PKA and nNOS inhibition nor ETB and GR antagonism were effective. Analysis of NOS gene expression and activity revealed that the relaxin-induced early and moderate iNOS stimulation is ERK-1/2-dependent and counter-balanced by PI3K. Relaxin-PI3K-related phosphorylation of a forkhead transcription factor, FKHRL1, paralleled this regulation. In pulmonary endothelial and smooth muscle cells, FKHRL1 was essential to relaxin-PI3K signalling towards iNOS. Conclusion In this

  14. Metadherin Regulation of Vascular Endothelial Growth Factor Expression Is Dependent Upon the PI3K/Akt Pathway in Squamous Cell Carcinoma of the Head and Neck

    PubMed Central

    Zhu, Gang-cai; Yu, Chang-yun; She, Li; Tan, Hao-lei; Li, Guo; Ren, Su-ling; Su, Zhong-wu; Wei, Ming; Huang, Dong-hai; Tian, Yong-quan; Su, Ri-na; Liu, Yong; Zhang, Xin

    2015-01-01

    Abstract Our previous study indicated overexpression of metadherin (MTDH) is an adverse prognostic factor in squamous cell carcinoma of the head and neck (SCCHN) and promotes SCCHN cell proliferation and invasion. However, its mechanism remains unclear. Recent studies have indicated that MTDH is a cancer-metastasis-associated molecule that participates in the process of angiogenesis. Therefore, the study is aimed to investigate that whether vascular endothelial growth factor (VEGF), as one of the most potent proangiogenic cytokines, is regulated by MTDH and the role of the phosphatidylinositide 3-kinases/Protein Kinase B (PI3K/Akt) pathway in this process of regulation and the clinical significance of both MTDH and VEGF in SCCHN. Immunohistochemistry was used to assay the expression of MTDH and VEGF in a cohort of 189 SCCHN patients with intact follow-up information. The expression of MTDH was then upregulated or inhibited by lentivirus-mediated MTDH Complementary deoxyribonucleic acid or MTDH short hairpin ribonucleic acid (shRNA) to observe the resulting alterations in VEGF expression and the PI3K/Akt signaling pathway in SCCHN cell lines. In addition, the PI3K/Akt pathway was modulated to observe the resulting changes in the MTDH-mediated expression of VEGF. The immunohistochemistry data showed that MTDH expression is positively correlated with VEGF expression in SCCHN tissues. Moreover, the overexpression of MTDH in SCCHN Tu686 and 5-8F cells led to increases in the expression of VEGF, and this effect was accompanied by activation of the PI3K/Akt pathway. Conversely, shRNA-mediated knockdown of MTDH led to decreased VEGF expression. In addition, inhibition of the Akt signaling pathway reversed the upregulation of VEGF resulting from MTDH overexpression. Moreover, the survival analysis revealed that VEGF is an independent prognostic factor, and a combined survival analysis based on both MTDH and VEGF showed synergistic effects in the prognosis evaluation of

  15. Metadherin regulation of vascular endothelial growth factor expression is dependent upon the PI3K/Akt pathway in squamous cell carcinoma of the head and neck.

    PubMed

    Zhu, Gang-Cai; Yu, Chang-Yun; She, Li; Tan, Hao-Lei; Li, Guo; Ren, Su-Ling; Su, Zhong-Wu; Wei, Ming; Huang, Dong-Hai; Tian, Yong-Quan; Su, Ri-Na; Liu, Yong; Zhang, Xin

    2015-02-01

    Our previous study indicated overexpression of metadherin (MTDH) is an adverse prognostic factor in squamous cell carcinoma of the head and neck (SCCHN) and promotes SCCHN cell proliferation and invasion. However, its mechanism remains unclear. Recent studies have indicated that MTDH is a cancer-metastasis-associated molecule that participates in the process of angiogenesis. Therefore, the study is aimed to investigate that whether vascular endothelial growth factor (VEGF), as one of the most potent proangiogenic cytokines, is regulated by MTDH and the role of the phosphatidylinositide 3-kinases/Protein Kinase B (PI3K/Akt) pathway in this process of regulation and the clinical significance of both MTDH and VEGF in SCCHN.Immunohistochemistry was used to assay the expression of MTDH and VEGF in a cohort of 189 SCCHN patients with intact follow-up information. The expression of MTDH was then upregulated or inhibited by lentivirus-mediated MTDH Complementary deoxyribonucleic acid or MTDH short hairpin ribonucleic acid (shRNA) to observe the resulting alterations in VEGF expression and the PI3K/Akt signaling pathway in SCCHN cell lines. In addition, the PI3K/Akt pathway was modulated to observe the resulting changes in the MTDH-mediated expression of VEGF.The immunohistochemistry data showed that MTDH expression is positively correlated with VEGF expression in SCCHN tissues. Moreover, the overexpression of MTDH in SCCHN Tu686 and 5-8F cells led to increases in the expression of VEGF, and this effect was accompanied by activation of the PI3K/Akt pathway. Conversely, shRNA-mediated knockdown of MTDH led to decreased VEGF expression. In addition, inhibition of the Akt signaling pathway reversed the upregulation of VEGF resulting from MTDH overexpression. Moreover, the survival analysis revealed that VEGF is an independent prognostic factor, and a combined survival analysis based on both MTDH and VEGF showed synergistic effects in the prognosis evaluation of SCCHN patients

  16. Glycyrrhiza polysaccharide induces apoptosis and inhibits proliferation of human hepatocellular carcinoma cells by blocking PI3K/AKT signal pathway.

    PubMed

    Chen, Jiayu; Jin, Xiaoyan; Chen, Jie; Liu, Chibo

    2013-06-01

    To study the antitumor effect of glycyrrhiza polysaccharide (GPS) on human hepatocellular carcinoma cells and its mechanism, GPS was extracted and identified with phenol-sulfuric acid assay, Limulus amebocytes lysate assay, gel permeation chromatography, and infrared spectroscopy analysis. To study its antitumor function, 4-5-week-old imprinting control region mice were subcutaneously implanted with H22 cells and intragastrically subjected to 1 ml GPS (25, 50, and 75 mg/kg/day), 150 mg/kg cyclophosphamide in a dose of 150 mg/kg, or equal volume of phosphate buffered saline as control. Tumor weights were detected 10 days later. Apoptosis of intraperitoneally cultured and GPS-treated H22 cells was identified by flow cytometry and 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolyl-carbocyanine iodide. In vitro, the function of GPS on cell proliferation was applied on BEL7402 cells and confirmed by 4,6-diamidino-z-phenylindole staining. Assessment of the effect of GPS on P53 gene was analyzed by real-time PCR and Western blot, and the effects of GPS on phosphatidylinositol-3 kinase (PI3K), AKT, p-PI3K, and p-AKT were analyzed by Western blot. We extracted the GPS, and it dose-dependently inhibited the tumorigenicity of hepatocellular carcinoma cells in nude mice. GPS treatment resulted in a significant (P<0.05) dose-dependent increase in the number of apoptotic cells in vivo and a significant (P<0.05) dose-dependent decrease in hepatocellular carcinoma cell proliferation in vitro. GPS modified multiple key enzymes (p-PI3K, p-AKT, and P53) in P53/PI3K/AKT signaling pathways on DNA or protein levels. Taken together, we extracted the GPS successfully and our findings suggest that GPS functions as a tumor suppressor through influencing the P53/PI3K/AKT pathway in the carcinogenesis of hepatocellular carcinoma and may have therapeutic implications for the clinical management of hepatocellular carcinoma patients. PMID:23580179

  17. Induction of Pi form of glutathione S-transferase by carnosic acid is mediated through PI3K/Akt/NF-κB pathway and protects against neurotoxicity.

    PubMed

    Lin, Chia-Yuan; Chen, Jing-Hsien; Fu, Ru-Huei; Tsai, Chia-Wen

    2014-11-17

    Carnosic acid (CA), a diterpene found in the rosemary (Rosmarinus officinalis), has been reported to have a neuroprotective effect. Glutathione S-transferase (GST) P (GSTP) is a phase II detoxifying enzyme that provides a neuroprotective effect. The aim of this study was to explore whether the neuroprotective effect of CA is via an upregulation of GSTP expression and the possible signaling pathways involved. SH-SY5Y cells were pretreated with 1 μM CA followed by treatment with 100 μM 6-hydroxydopamine (6-OHDA). Both immunoblotting and enzyme activity results show that CA also induced protein expression and enzyme activity of GSTP. Moreover, CA significantly increased the phosphorylation of phosphatidylinositol 3-kinase (PI3K)/Akt, the nuclear translocation of p65, but not mitogen-activated protein kinases (p < 0.05). Pretreatment with LY294002 (a PI3K/Akt inhibitor) suppressed the CA-induced phosphorylation of IκB kinase (IKK) and IκBα, p65 nuclear translocation, and nuclear factor-kappa B (NF-κB)-DNA binding activity as well as GSTP protein expression. Furthermore, CA attenuated 6-OHDA-induced caspase 3 activation, and cell death was reversed by GSTP siRNA or LY294002 treatment. Additionally, male Wistar rats with lesions induced by 6-OHDA treatment in the right striatum responded to treatment with CA, which significantly reversed the reduction in GSTP protein expression that resulted from lesioning. We suggest that CA prevents 6-OHDA-induced apoptosis through an increase in GSTP expression via activation of the PI3K/Akt/NF-κB pathway. Therefore, CA may be a promising candidate for use in the prevention of Parkinson's disease. PMID:25271104

  18. Quercetin Protects against Okadaic Acid-Induced Injury via MAPK and PI3K/Akt/GSK3β Signaling Pathways in HT22 Hippocampal Neurons.

    PubMed

    Jiang, Wei; Luo, Tao; Li, Sheng; Zhou, Yue; Shen, Xiu-Yin; He, Feng; Xu, Jie; Wang, Hua-Qiao

    2016-01-01

    Increasing evidence shows that oxidative stress and the hyperphosphorylation of tau protein play essential roles in the progression of Alzheimer's disease (AD). Quercetin is a major flavonoid that has anti-oxidant, anti-cancer and anti-inflammatory properties. We investigated the neuroprotective effects of quercetin to HT22 cells (a cell line from mouse hippocampal neurons). We found that Okadaic acid (OA) induced the hyperphosphorylation of tau protein at Ser199, Ser396, Thr205, and Thr231 and produced oxidative stress to the HT22 cells. The oxidative stress suppressed the cell viability and decreased the levels of lactate dehydrogenase (LDH), superoxide dismutase (SOD), mitochondria membrane potential (MMP) and Glutathione peroxidase (GSH-Px). It up-regulated malondialdehyde (MDA) production and intracellular reactive oxygen species (ROS). In addition, phosphoinositide 3 kinase/protein kinase B/Glycogen synthase kinase3β (PI3K/Akt/GSK3β) and mitogen activated protein kinase (MAPK) were also involved in this process. We found that pre-treatment with quercetin can inhibited OA-induced the hyperphosphorylation of tau protein and oxidative stress. Moreover, pre-treatment with quercetin not only inhibited OA-induced apoptosis via the reduction of Bax, and up-regulation of cleaved caspase 3, but also via the inhibition of PI3K/Akt/GSK3β, MAPKs and activation of NF-κB p65. Our findings suggest the therapeutic potential of quercetin to treat AD. PMID:27050422

  19. Quercetin Protects against Okadaic Acid-Induced Injury via MAPK and PI3K/Akt/GSK3β Signaling Pathways in HT22 Hippocampal Neurons

    PubMed Central

    Li, Sheng; Zhou, Yue; Shen, Xiu-Yin; He, Feng; Xu, Jie; Wang, Hua-Qiao

    2016-01-01

    Increasing evidence shows that oxidative stress and the hyperphosphorylation of tau protein play essential roles in the progression of Alzheimer’s disease (AD). Quercetin is a major flavonoid that has anti-oxidant, anti-cancer and anti-inflammatory properties. We investigated the neuroprotective effects of quercetin to HT22 cells (a cell line from mouse hippocampal neurons). We found that Okadaic acid (OA) induced the hyperphosphorylation of tau protein at Ser199, Ser396, Thr205, and Thr231 and produced oxidative stress to the HT22 cells. The oxidative stress suppressed the cell viability and decreased the levels of lactate dehydrogenase (LDH), superoxide dismutase (SOD), mitochondria membrane potential (MMP) and Glutathione peroxidase (GSH-Px). It up-regulated malondialdehyde (MDA) production and intracellular reactive oxygen species (ROS). In addition, phosphoinositide 3 kinase/protein kinase B/Glycogen synthase kinase3β (PI3K/Akt/GSK3β) and mitogen activated protein kinase (MAPK) were also involved in this process. We found that pre-treatment with quercetin can inhibited OA-induced the hyperphosphorylation of tau protein and oxidative stress. Moreover, pre-treatment with quercetin not only inhibited OA-induced apoptosis via the reduction of Bax, and up-regulation of cleaved caspase 3, but also via the inhibition of PI3K/Akt/GSK3β, MAPKs and activation of NF-κB p65. Our findings suggest the therapeutic potential of quercetin to treat AD. PMID:27050422

  20. Involvement of PI3K and ERK1/2 pathways in hepatocyte growth factor-induced cholangiocarcinoma cell invasion

    PubMed Central

    Menakongka, Apaporn; Suthiphongchai, Tuangporn

    2010-01-01

    AIM: To investigate the role of hepatocyte growth factor (HGF) in cholangiocarcinoma (CCA) cell invasiveness and the mechanisms underlying such cellular responses. METHODS: Effects of HGF on cell invasion and motility were investigated in two human CCA cell lines, HuCCA-1 and KKU-M213, using Transwell in vitro assay. Levels of proteins of interest and their phosphorylated forms were determined by Western blotting. Localization of E-cadherin was analyzed by immunofluorescence staining and visualized under confocal microscope. Activities of matrix degrading enzymes were determined by zymography. RESULTS: Both CCA cell lines expressed higher Met levels than the H69 immortalized cholangiocyte cell line. HGF induced invasion and motility of the cell lines and altered E-cadherin from membrane to cytoplasm localization, but did not affect the levels of secreted matrix metalloproteinase (MMP)-2, MMP-9 and urokinase plasminogen activator, key matrix degrading enzymes involved in cell invasion. Concomitantly, HGF stimulated Akt and extracellular signal-regulated kinase (ERK)1/2 phosphorylation but with slightly different kinetic profiles in the two cell lines. Inhibition of the phosphoinositide 3-kinase (PI3K)/Akt pathway by the PI3K inhibitor, LY294002, markedly suppressed HGF-stimulated invasion of both CCA cell lines, and inhibition of the ERK pathway by U0126 suppressed HGF-induced invasion of the KKU-M213 cell line but had a moderate effect on HuCCA-1 cells. CONCLUSION: These data indicate that HGF promotes CCA cell invasiveness through dys-localization of E-cadherin and induction of cell motility by distinct signaling pathways depending on cell line type. PMID:20135719

  1. Polycomb complex protein BMI-1 promotes invasion and metastasis of pancreatic cancer stem cells by activating PI3K/AKT signaling, an ex vivo, in vitro, and in vivo study

    PubMed Central

    Wang, Min-Cong; Jiao, Min; Wu, Tao; Jing, Li; Cui, Jie; Guo, Hui; Tian, Tao; Ruan, Zhi-ping; Wei, Yong-Chang; Jiang, Li-Li; Sun, Hai-Feng; Huang, Lan-Xuan; Nan, Ke-Jun; Li, Chun-Li

    2016-01-01

    Cancer stem cell theory indicates cancer stem cells are the key to promote tumor invasion and metastasis. Studies showed that BMI-1 could promote self-renew, differentiation and tumor formation of CSCs and invasion/metastasis of human cancer. However, whether BMI-1 could regulate invasion and metastasis ability of CSCs is still unclear. In our study, we found that up-regulated expression of BMI-1 was associated with tumor invasion, metastasis and poor survival of pancreatic cancer patients. CD133+ cells were obtained by using magnetic cell sorting and identified of CSCs properties such as self-renew, multi-differentiation and tumor formation ability. Then, we found that BMI-1 expression was up-regulated in pancreatic cancer stem cells. Knockdown of BMI-1 expression attenuated invasion ability of pancreatic cancer stem cells in Transwell system and liver metastasis capacity in nude mice which were injected CSCs through the caudal vein. We are the first to reveal that BMI-1 could promote invasion and metastasis ability of pancreatic cancer stem cells. Finally, we identified that BMI-1 expression activating PI3K/AKT singing pathway by negative regulating PTEN was the main mechanism of promoting invasion and metastasis ability of pancreatic CSCs. In summary, our findings indicate that BMI-1 could be used as the therapeutic target to inhibiting CSCs-mediated pancreatic cancer metastasis. PMID:26840020

  2. ADAM17-siRNA inhibits MCF-7 breast cancer through EGFR-PI3K-AKT activation.

    PubMed

    Meng, Xiangchao; Hu, Baoshan; Hossain, Mohammad Monir; Chen, Guofu; Sun, Ying; Zhang, Xuepeng

    2016-08-01

    A disintegrin and metalloproteinase-17 (ADAM17) can cut and release a wide variety of epidermal growth factor receptor (EGFR) ligands to promote survival, invasion and proliferation of cancer cell, and therefore, is considered to be a potential therapeutic target for cancer. The main goal of the present study was to observe the effects of ADAM17 small interfering RNA (ADAM17-siRNA) on human MCF-7 breast cancer and investigate its activation pathway. In vitro, MCF-7 cells were divided into ADAM17-siRNA groups, nonsense siRNA groups, AG1478 (selective EGFR blocker) groups, LY294002 [phosphatidylinositol 3-kinase (PI3K) phosphorylation inhibitor] groups, PD0325901 [mitogen extracellular kinase (MEK) inhibitor] groups and control groups. In vivo, MCF-7 cells were implanted subcutaneously into nude mice and then these mice were randomly divided into ADAM17-siRNA groups, vector groups and control groups. Our data showed that compared with the control groups, ADAM17-siRNA, AG1478 and LY294002 could inhibit the migration and proliferation of MCF-7 cells, but PD0325901 and nonsense siRNA did not show this effect. Except that specific ADAM17-siRNA could inhibit the expression of ADAM17 mRNA, others did not change it. Western blot analysis further confirmed that EGFR-PI3K-AKT signaling pathway is involved in ADAM17-siRNA inhibiting migration and proliferation of MCF-7 cells. Similarly to the former, the growth of MCF-7 breast cancer in nude mice was significantly inhibited by ADAM17-siRNA. Compared with the control group and the vector group, the tumor volume was smaller in the ADAM17-siRNA group, the tissues developed large areas of necrosis, immunohistochemistry showed low expressions of ADAM17 and Ki-67 and western blot analysis proved that the expression of ADAM17 protein in the tissue was also reduced. The present study suggests that ADAM17-siRNA inhibits MCF-7 breast cancer and is activated through the EGFR-PI3K-AKT signaling pathway. PMID:27221510

  3. Aging impairs PI3K/Akt signaling and NO-mediated dilation in soleus muscle feed arteries.

    PubMed

    Trott, Daniel W; Luttrell, Meredith J; Seawright, John W; Woodman, Christopher R

    2013-08-01

    We tested the hypothesis that impaired nitric oxide (NO)-mediated, endothelium-dependent dilation in aged soleus muscle feed arteries (SFA) is due to an age-related decline in the potential for PI3-kinase (PI3K)/protein kinase B (Akt)-dependent phosphorylation of endothelial NO synthase (eNOS) on serine residue 1177 (p-eNOS(ser1177)). SFA from young (4 months) and old (24 months) Fischer 344 rats were cannulated for examination of endothelium-dependent [flow or acetylcholine (ACh)] and endothelium-independent [sodium nitroprusside (SNP)] vasodilator function. To determine the mechanism by which aging affected vasodilation to flow and ACh, vasodilator responses were assessed in the presence of N (ω)-nitro-L-arginine (L-NNA, to inhibit NOS), LY-294002 (to inhibit PI3K), or 1L6-hydroxymethyl-chiro-inositol-2-(R)-2-O-methyl-3-O-octadecyl-sn-glycerocarbonate (AktI, to inhibit Akt). Flow- and ACh-induced vasodilator responses were significantly impaired in old SFA, whereas endothelium-independent dilation to SNP was not compromised. Age-group differences in flow- and ACh-induced dilations were abolished in the presence of L-NNA, LY-294002, or AktI. In a separate experiment, SFA were cannulated and stimulated with ACh (10(-4) M, 3 min), flow (60 μl/min, 5 min), or remained unstimulated (3 min). SFA were removed from the pipettes and immunoblot analysis was used to assess ACh- and flow-stimulated phosphorylation of eNOS on ser(1177). Stimulation with ACh or flow increased phosphorylation of eNOS on ser(1177) in young (not old) SFA. Preincubation of young SFA with LY-294002, abolished the ACh-induced phosphorylation of eNOS in young SFA. Collectively, these results indicate that impaired NO-mediated, endothelium-dependent dilation in old SFA is due, in part, to an impaired potential for PI3K/Akt-dependent phosphorylation of eNOS on ser(1177). PMID:23563601

  4. Role of the PTEN/PI3K/VEGF pathway in the development of Kawasaki disease

    PubMed Central

    AN, XINJIANG; LV, HAITAO; TIAN, JING; HE, XIUHUA; LING, NAN

    2016-01-01

    Kawasaki disease (KD) is a disease of unknown etiology and the leading cause of childhood acquired heart disease. In this study, the significance of the phosphatase and tensin homolog (PTEN)/phosphoinositide 3-kinase (PI3K)/vascular endothelial growth factor (VEGF) pathway in the development of KD was investigated in a rabbit model. Rabbits were divided into the control group, which received saline injection, and the experimental group, which was treated with bovine serum albumin to induce arthritis and KD. After 1, 7 and 30 days the animals were sacrificed, and the white blood cell count, serum VEGF, and serum creatine kinase (CK) levels were measured. The coronary artery was examined histologically as well as immunohistochemically for PTEN and PI3K. After the induction of arthritis, coronary artery of the rabbits showed endothelial cell swelling, osteoporosis, necrosis and inflammatory cell infiltration. PTEN expression in these rabbits increased with the increasing number of modeling days. The expression of PI3K showed a decreasing trend. The number of white blood cells in rabbits after KD modeling were significantly higher than those in the controls. One day and 7 days after modeling the serum VEGF level in KD rabbits was significantly higher than that in the control group after 1 and 7 days followed by a decrease by 30 days. There was no significant change in serum CK on the day after the modeling, and the serum CK level was significantly higher after 7 and 30 days. In conclusion, the expression of PTEN/PI3K was altered at different stages of KD. PTEN expression gradually increased with the disease progression, while the expression of PI3K gradually decreased. Serum markers indicated that the PTEN/PI3K/VEGF signaling pathway is important in the vascular injury in KD. PMID:27073442

  5. Transformation by v-Src: Ras-MAPK and PI3K-mTOR mediate parallel pathways.

    PubMed

    Penuel, E; Martin, G S

    1999-06-01

    An increase in the level of active, GTP-bound Ras is not necessary for transformation of chicken embryo fibroblasts (CEF) by v-Src. This suggests that other Ras-independent pathways contribute to transformation by v-Src. To address the possibility that activation of phosphatidylinositol-3-kinase (PI3K) and the mammalian target of rapamycin (mTOR/FRAP), represents one of these pathways, we have examined the effect of simultaneous inhibition of the Ras-MAPK and PI3K-mTOR pathways on transformation of CEF by v-Src. Transformation was assessed by the standard parameters of morphological alteration, increased hexose uptake, loss of density inhibition, and anchorage-independent growth. Inhibition of the Ras-MAPK pathway by expression of the dominant-negative Ras mutant HRasN17 or by addition of the MAPK kinase (MEK) inhibitor PD98059 reduced several of these parameters but failed to block transformation. Similarly, inhibition of the PI3K-mTOR pathway by addition of the PI3K inhibitor 2-[4-morpholinyl]-8-phenyl-4H-1-benzopyran-4-one (LY294002) or the mTOR inhibitor rapamycin, although reducing several parameters of transformation, also failed to block transformation. However, simultaneous inhibition of signaling by the Ras-MAPK pathway and the PI3K-mTOR pathway essentially blocked transformation. These data indicate that transformation of CEF by v-Src is mediated by two parallel pathways, the Ras-MAPK pathway and the PI-3K-mTOR pathway, which both contribute to transformation. The possibility that simultaneous activation of other pathways is also required is not excluded. PMID:10359590

  6. Transformation by v-Src: Ras-MAPK and PI3K-mTOR Mediate Parallel Pathways

    PubMed Central

    Penuel, Elicia; Martin, G. Steven

    1999-01-01

    An increase in the level of active, GTP-bound Ras is not necessary for transformation of chicken embryo fibroblasts (CEF) by v-Src. This suggests that other Ras-independent pathways contribute to transformation by v-Src. To address the possibility that activation of phosphatidylinositol-3-kinase (PI3K) and the mammalian target of rapamycin (mTOR/FRAP), represents one of these pathways, we have examined the effect of simultaneous inhibition of the Ras-MAPK and PI3K-mTOR pathways on transformation of CEF by v-Src. Transformation was assessed by the standard parameters of morphological alteration, increased hexose uptake, loss of density inhibition, and anchorage-independent growth. Inhibition of the Ras-MAPK pathway by expression of the dominant-negative Ras mutant HRasN17 or by addition of the MAPK kinase (MEK) inhibitor PD98059 reduced several of these parameters but failed to block transformation. Similarly, inhibition of the PI3K-mTOR pathway by addition of the PI3K inhibitor 2-[4-morpholinyl]-8-phenyl-4H-1-benzopyran-4-one (LY294002) or the mTOR inhibitor rapamycin, although reducing several parameters of transformation, also failed to block transformation. However, simultaneous inhibition of signaling by the Ras-MAPK pathway and the PI3K-mTOR pathway essentially blocked transformation. These data indicate that transformation of CEF by v-Src is mediated by two parallel pathways, the Ras-MAPK pathway and the PI-3K-mTOR pathway, which both contribute to transformation. The possibility that simultaneous activation of other pathways is also required is not excluded. PMID:10359590

  7. Astragalus polysaccharide protects human cardiac microvascular endothelial cells from hypoxia/reoxygenation injury: The role of PI3K/AKT, Bax/Bcl-2 and caspase-3.

    PubMed

    Xie, Liandi; Wu, Yang; Fan, Zongjing; Liu, Yang; Zeng, Jixiang

    2016-07-01

    In the present study, the mechanisms associated with the Astragalus polysaccharide (APS)-mediated protection of human cardiac microvascular endothelial cells (HCMEC) against hypoxia/reoxygenation (HR) injury were investigated. Pretreatment of HCMECs with APS at various concentrations was performed prior to Na2S2O4-induced HR injury. Subsequently, cell viability and apoptosis were measured by MTT and Hoechst assays, respectively. The viability of HCMECs was reduced by Na2S2O4 and apoptosis was enhanced; however, cell viability was observed to be increased by APS via inhibition of apoptosis. Additionally, intracellular reactive oxygen species (ROS), Ca2+, nitric oxide (NO), malondialdehyde (MDA), superoxide dismutase (SOD), phosphatidylinositol 3-kinase (PI3K)-protein kinase B (AKT), B‑cell lymphoma‑2 (Bcl‑2), Bcl‑2 associated X protein (Bax) and caspase‑3 were measured using detection kits or western blot analysis. In HCMECs with HR injury, the levels of ROS and Ca2+, MDA and Bax expression levels, and the activity of caspase‑3 were elevated. By contrast, the level of NO, the protein expression levels of SOD, Bcl‑2 and PI3K, and the phosphorylation of AKT were decreased. However, compared with the HR group, the effects of HR injury were significantly reduced by APS, with APS providing a protective effect on HCMECs, particularly at higher doses. The current study concluded that APS protects HCMECs from Na2S2O4‑induced HR injury by reducing the levels of ROS, Ca2+, MDA and Bax, inhibiting the activity of caspase‑3, and enhancing the levels of NO, SOD, Bcl‑2, PI3K and phosphorylated AKT. These results may provide an insight into the clinical application of APS and novel therapeutic strategies for HR injury. PMID:27220872

  8. Akt-mediated regulation of NFκB and the essentialness of NFκB for the oncogenicity of PI3K and Akt

    PubMed Central

    Bai, Dong; Ueno, Lynn; Vogt, Peter K.

    2009-01-01

    The serine/threonine kinase Akt (cellular homolog of murine thymoma virus akt8 oncogene), also known as PKB (protein kinase B), is activated by lipid products of phosphatidylinositol 3-kinase (PI3K). Akt phosphorylates numerous protein targets that control cell survival, proliferation and motility. Previous studies suggest that Akt regulates transcriptional activity of the nuclear factor-κB (NFκB) by inducing phosphorylation and subsequent degradation of inhibitor of κB (IκB). We show here that NFκB-driven transcription increases in chicken embryonic fibroblasts (CEF) transformed by myristylated Akt (myrAkt). Accordingly, both a dominant negative mutant of Akt and Akt inhibitors repress NFκB-dependent transcription. The degradation of the IκB protein is strongly enhanced in Akt-transformed cells, and the loss of NFκB activity by introduction of a super-repressor of NFκB, IκBSR, interferes with PI3K- and Akt-induced oncogenic transformation of CEF. The phosphorylation of the p65 subunit of NFκB at serine 534 is also upregulated in Akt-transformed cells. Our data suggest that the stimulation of NFκB by Akt is dependent on the phosphorylation of p65 at S534, mediated by IKK (IκB kinase) α and β. Akt phosphorylates IKKα on T23, and this phosphorylation event is a prerequisite for the phosphorylation of p65 at S534 by IKKα and β. Our results demonstrate two separate functions of the IKK complex in NFκB activation in cells with constitutive Akt activity: the phosphorylation and consequent degradation of IκB and the phosphorylation of p65. The data further support the conclusion that NFκB activity is essential for PI3K- and Akt-induced oncogenic transformation. PMID:19609947

  9. The p110α and p110β isoforms of PI3K play divergent roles in mammary gland development and tumorigenesis

    PubMed Central

    Utermark, Tamara; Rao, Trisha; Cheng, Hailing; Wang, Qi; Lee, Sang Hyun; Wang, Zhigang C.; Iglehart, J. Dirk; Roberts, Thomas M.; Muller, William J.; Zhao, Jean J.

    2012-01-01

    Class Ia phosphatidylinositol 3 kinase (PI3K) is required for oncogenic receptor-mediated transformation; however, the individual roles of the two commonly expressed class Ia PI3K isoforms in oncogenic receptor signaling have not been elucidated in vivo. Here, we show that genetic ablation of p110α blocks tumor formation in both polyoma middle T antigen (MT) and HER2/Neu transgenic models of breast cancer. Surprisingly, p110β ablation results in both increased ductal branching and tumorigenesis. Biochemical analyses suggest a competition model in which the less active p110β competes with the more active p110α for receptor binding sites, thereby modulating the level of PI3K activity associated with activated receptors. Our findings demonstrate a novel p110β-based regulatory role in receptor-mediated PI3K activity and identify p110α as an important target for treatment of HER2-positive disease. PMID:22802530

  10. Phophatidylinositol-3 kinase/mammalian target of rapamycin/p70S6K regulates contractile protein accumulation in airway myocyte differentiation.

    PubMed

    Halayko, Andrew J; Kartha, Sreedharan; Stelmack, Gerald L; McConville, John; Tam, John; Camoretti-Mercado, Blanca; Forsythe, Sean M; Hershenson, Marc B; Solway, Julian

    2004-09-01

    Increased airway smooth muscle in airway remodeling results from myocyte proliferation and hypertrophy. Skeletal and vascular smooth muscle hypertrophy is induced by phosphatidylinositide-3 kinase (PI(3) kinase) via mammalian target of rapamycin (mTOR) and p70S6 kinase (p70S6K). We tested the hypothesis that this pathway regulates contractile protein accumulation in cultured canine airway myocytes acquiring an elongated contractile phenotype in serum-free culture. In vitro assays revealed a sustained activation of PI(3) kinase and p70S6K during serum deprivation up to 12 d, with concomitant accumulation of SM22 and smooth muscle myosin heavy chain (smMHC) proteins. Immunocytochemistry revealed that activation of PI3K/mTOR/p70S6K occurred almost exclusively in myocytes that acquire the contractile phenotype. Inhibition of PI(3) kinase or mTOR with LY294002 or rapamycin blocked p70S6K activation, prevented formation of large elongated contractile phenotype myocytes, and blocked accumulation of SM22 and smMHC. Inhibition of MEK had no effect. Steady-state mRNA abundance for SM22 and smMHC was unaffected by blocking p70S6K activation. These studies provide primary evidence that PI(3) kinase and mTOR activate p70S6K in airway myocytes leading to the accumulation of contractile apparatus proteins, differentiation, and growth of large, elongated contractile phenotype airway smooth muscle cells. PMID:15105162

  11. Structural Effects of Oncogenic PI3K alpha Mutations

    SciTech Connect

    S Gabelli; C Huang; D Mandelker; O Schmidt-Kittler; B Vogelstein; L Amzel

    2011-12-31

    Physiological activation of PI3K{alpha} is brought about by the release of the inhibition by p85 when the nSH2 binds the phosphorylated tyrosine of activated receptors or their substrates. Oncogenic mutations of PI3K{alpha} result in a constitutively activated enzyme that triggers downstream pathways that increase tumor aggressiveness and survival. Structural information suggests that some mutations also activate the enzyme by releasing p85 inhibition. Other mutations work by different mechanisms. For example, the most common mutation, His1047Arg, causes a conformational change that increases membrane association resulting in greater accessibility to the substrate, an integral membrane component. These effects are examples of the subtle structural changes that result in increased activity. The structures of these and other mutants are providing the basis for the design of isozyme-specific, mutation-specific inhibitors for individualized cancer therapies.

  12. Phosphatidylinositol 3 kinase modulation of trophoblast cell differentiation

    PubMed Central

    2010-01-01

    Background The trophoblast lineage arises as the first differentiation event during embryogenesis. Trophoblast giant cells are one of several end-stage products of trophoblast cell differentiation in rodents. These cells are located at the maternal-fetal interface and are capable of invasive and endocrine functions, which are necessary for successful pregnancy. Rcho-1 trophoblast stem cells can be effectively used as a model for investigating trophoblast cell differentiation. In this report, we evaluated the role of the phosphatidylinositol 3-kinase (PI3K) signaling pathway in the regulation of trophoblast cell differentiation. Transcript profiles from trophoblast stem cells, differentiated trophoblast cells, and differentiated trophoblast cells following disruption of PI3K signaling were generated and characterized. Results Prominent changes in gene expression accompanied the differentiation of trophoblast stem cells. PI3K modulated the expression of a subset of trophoblast cell differentiation-dependent genes. Among the PI3K-responsive genes were those encoding proteins contributing to the invasive and endocrine phenotypes of trophoblast giant cells. Conclusions Genes have been identified with differential expression patterns associated with trophoblast stem cells and trophoblast cell differentiation; a subset of these genes are regulated by PI3K signaling, including those impacting the differentiated trophoblast giant cell phenotype. PMID:20840781

  13. PI3K signalling in GnRH actions on dispersed goldfish pituitary cells: relationship with PKC-mediated LH and GH release and regulation of long-term effects on secretion and total cellular hormone availability.

    PubMed

    Pemberton, Joshua G; Orr, Michael E; Stafford, James L; Chang, John P

    2014-09-01

    Goldfish pituitary cells are exposed to two GnRHs, salmon (s)GnRH and chicken (c)GnRH-II. Phosphoinositide 3-kinase (PI3K) and protein kinase C (PKC) both participate in acute sGnRH- and cGnRH-II-stimulated LH and GH release. Using goldfish pituitary cells, we examined the relationship between PI3K and PKC in acute LH and GH secretion, and PI3K involvement in chronic hormone release and total LH and GH availability. The PI3K inhibitor LY294002 did not affect PKC agonists-induced LH or GH release, and PKC agonists did not alter PI3K p85 phosphorylation, suggesting PKC activation is not upstream of PI3K in acute hormone release. In 2, 6, 12 and 24h treatments, LY294002 did not affect LH release but stimulated total LH availability at 6h. sGnRH stimulatory actions on LH release and total availability at 12 and 24h, and cGnRH-II effects on these parameters at 6h were inhibited by LY294002. LY294002 enhanced basal GH release at 2 and 6h, but reduced total GH at 12 and 24h. Increased GH release was seen following 6, 12 and 24h of sGnRH, and 2, 6 and 24h of cGnRH-II treatment but total GH availability was only elevated by 24h cGnRH-II treatment. Whereas LY294002 inhibited GH release responses to sGnRH at 12h and cGnRH-II at 6h, it attenuated cGnRH-II-elicited, but not sGnRH-induced, effects on total GH. These results indicate that PI3K differentially modulates long-term basal and GnRH-stimulated hormone release, and total hormone availability, in a time-, cell-type-, and GnRH isoform-selective manner. PMID:24681225

  14. Relationship between PI3K pathway and angiogenesis in CIA rat synovium.

    PubMed

    Zou, Lin; Zhang, Guichun; Liu, Lifeng; Chen, Chen; Cao, Xuecheng; Cai, Jinfang

    2016-01-01

    To investigate the expression of hypoxia inducible factor (HIF-1α) and vascular endothelial growth factor (VEGF) in the synovium of collagen-induced arthritis (CIA) joint, and whether the PI3K pathway regulates angiogenesis in rheumatoid arthritis or not. A randomized controlled according to the principle of the rats were divided into normal control group (10 rats) and the experimental group (40 rats). The experimental group rats were established as type II collagen plus adjuvant Freund's complete adjuvant-induced arthritis model. HIF-1α and VEGF proteins' expression in serum of CIA rats group and normal control group were detected by ELISA. Microvessel density (MVD) in synovial tissue of CIA rats group and normal control group were detected by immunohistochemistry (IHC) staining. The protein expression of PTEN, PI3K, and AKT in synovial tissue were detected by Western Blot. Compared with normal control group, toes and ankle swelling and arthritis index (AI) of CIA rat increased, and the expression of VEGF and HIF-1α proteins in peripheral serum increased, IHC showed that MVD was significantly higher than that of the control group, and the difference was statistically significant (p<0.05). Western Blot results showed that PI3K and AKT proteins expression in CIA synovial tissue of rats increased, while the expression of PTEN protein decreased. Correlation analysis showed that VEGF and HIF-1 levels in the peripheral serum of CIA rats were positively correlated with arthritis index (AI); the contents of HIF-1α and VEGF in the peripheral serum of CIA rats were positively correlated with MVD in synovium tissue. The CIA rat model regulated the expression of HIF-1α and VEGF proteins in peripheral serum by PI3K signaling pathway, and then regulated neovascularization in RA. PMID:27508035

  15. Fucoidan from sea cucumber Cucumaria frondosa exhibits anti-hyperglycemic effects in insulin resistant mice via activating the PI3K/PKB pathway and GLUT4.

    PubMed

    Wang, Yiming; Wang, Jingfeng; Zhao, Yanlei; Hu, Shiwei; Shi, Di; Xue, Changhu

    2016-01-01

    The present study investigated the anti-hyperglycemic properties and mechanisms of fucoidan, isolated from Cucumaria frondosa (Cf-FUC), in insulin resistant mice. Male C57BL/6J mice were fed regular diet or high-fat/high-sucrose diet for 19 weeks. Model animals were dietary administrated either rosiglitazone (RSG, 1 mg/kg·bw), fucoidan (Cf-FUC, 80 mg/kg·bw) or their combinations. Results showed that Cf-FUC significantly reduced fasting blood glucose and insulin levels, and enhanced glucose tolerance and insulin tolerance in insulin-resistant mice. Quantitative real-time PCR analysis showed that Cf-FUC increased the mRNA expressions of insulin receptors (IR), insulin receptor substrate 1 (IRS-1), phosphatidylinositol 3 kinase (PI3K), protein kinase B (PKB), and glucose transporter 4 (GLUT4). Western blot assays demonstrated that Cf-FUC showed no effect on total protein expression but nevertheless enhanced the phosphorylation of proteins listed above and increased translocation of GLUT4 to the cell membrane. Furthermore, Cf-FUC enhanced the effects of RSG. These results indicated that Cf-FUC exhibited significant anti-hyperglycemic effects via activating PI3K/PKB pathway and GLUT4 in skeletal muscle and adipose tissue. PMID:26194305

  16. Salvianolic acid A reverses paclitaxel resistance in human breast cancer MCF-7 cells via targeting the expression of transgelin 2 and attenuating PI3 K/Akt pathway.

    PubMed

    Cai, Jiangxia; Chen, Siying; Zhang, Weipeng; Zheng, Xiaowei; Hu, Sasa; Pang, Chengsen; Lu, Jun; Xing, Jianfeng; Dong, Yalin

    2014-10-15

    Chemotherapy resistance represents a major problem for the treatment of patients with breast cancer and greatly restricts the use of first-line chemotherapeutics paclitaxel. The purpose of this study was to investigate the role of transgelin 2 in human breast cancer paclitaxel resistance cell line (MCF-7/PTX) and the reversal mechanism of salvianolic acid A (SAA), a phenolic active compound extracted from Salvia miltiorrhiza. Western blotting and real-time quantitative polymerase chain reaction (qRT-PCR) indicated that transgelin 2 may mediate paclitaxel resistance by activating the phosphatidylinositol 3-kinase (PI3 K)/Akt signaling pathway to suppress MCF-7/PTX cells apoptosis. The reversal ability of SAA was confirmed by MTT assay and flow cytometry, with a superior 9.1-fold reversal index and enhancement of the apoptotic cytotoxicity induced by paclitaxel. In addition, SAA effectively prevented transgelin 2 and adenosine-triphosphate binding cassette transporter (ABC transporter) including P-glycoprotein (P-gp), multidrug resistance associated protein 1 (MRP1), and breast cancer resistance protein (BCRP) up-regulation and exhibited inhibitory effect on PI3 K/Akt signaling pathway in MCF-7/PTX cells. Taken together, SAA can reverse paclitaxel resistance through suppressing transgelin 2 expression by mechanisms involving attenuation of PI3 K/Akt pathway activation and ABC transporter up-regulation. These results not only provide insight into the potential application of SAA in reversing paclitaxel resistance, thus facilitating the sensitivity of breast cancer chemotherapy, but also highlight a potential role of transgelin 2 in the development of paclitaxel resistance in breast cancer. PMID:25442283

  17. Gardenamide A Protects RGC-5 Cells from H2O2-Induced Oxidative Stress Insults by Activating PI3K/Akt/eNOS Signaling Pathway

    PubMed Central

    Wang, Rikang; Peng, Lizhi; Zhao, Jiaqiang; Zhang, Laitao; Guo, Cuiping; Zheng, Wenhua; Chen, Heru

    2015-01-01

    Gardenamide A (GA) protects the rat retinal ganglion (RGC-5) cells against cell apoptosis induced by H2O2. The protective effect of GA was completely abrogated by the specific phosphoinositide 3-kinase (PI3K) inhibitor LY294002, and the specific protein kinase B (Akt) inhibitor Akt VIII respectively, indicating that the protective mechanism of GA is mediated by the PI3K/Akt signaling pathway. The specific extracellular signal-regulated kinase (ERK1/2) inhibitor PD98059 could not block the neuroprotection of GA. GA attenuated the levels of reactive oxygen species (ROS) and malondialdehyde (MDA) induced by H2O2. Western blotting showed that GA promoted the phosphorylation of ERK1/2, Akt and endothelial nitric oxide synthase (eNOS), respectively, and effectively reversed the H2O2-inhibited phosphorylation of these three proteins. LY294002 completely inhibited the GA-activated phosphorylation of Akt, while only partially inhibiting eNOS. This evidence implies that eNOS may be activated directly by GA. PD98059 attenuated only partially the GA-induced phosphorylation of ERK1/2 with/without the presence of H2O2, indicating that GA may activate ERK1/2 directly. All these results put together confirm that GA protects RGC-5 cells from H2O2 insults via the activation of PI3K/Akt/eNOS signaling pathway. Whether the ERK1/2 signaling pathway is involved requires further investigations. PMID:26389892

  18. Nerve Regeneration Potential of Protocatechuic Acid in RSC96 Schwann Cells by Induction of Cellular Proliferation and Migration through IGF-IR-PI3K-Akt Signaling.

    PubMed

    Ju, Da-Tong; Liao, Hung-En; Shibu, Marthandam Asokan; Ho, Tsung-Jung; Padma, Viswanadha Vijaya; Tsai, Fuu-Jen; Chung, Li-Chin; Day, Cecilia Hsuan; Lin, Chien-Chung; Huang, Chih-Yang

    2015-12-31

    Peripheral nerve injuries, caused by accidental trauma, acute compression or surgery, often result in temporary or life-long neuronal dysfunctions and inflict great economic or social burdens on the patients. Nerve cell proliferation is an essential process to restore injured nerves of adults. Schwann cells play a crucial role in endogenous repair of peripheral nerves due to their ability to proliferate, migrate and provide trophic support to axons via expression of various neurotrophic factors, such as the nerve growth factor (NGF), especially after nerve injury. Protocatechuic acid (PCA) is a dihydroxybenzoic acid, a type of phenolic acid, isolated from the kernels of Alpinia oxyphylla Miq (AOF), a traditional Chinese herbal medicine the fruits of which are widely used as a tonic, aphrodisiac, anti-salivation and anti-diarrheatic. This study investigated the molecular mechanisms by which PCA induces Schwann cell proliferation by activating IGF-IR-PI3K-Akt pathway. Treatment with PCA induces phosphorylation of the insulin-like growth factor-I (IGF-I)-mediated phosphatidylinositol 3 kinase/serine - threonine kinase (PI3K/Akt) pathway, and activates expression of cell nuclear antigen (PCNA) in a dose-dependent manner. Cell cycle analysis after 18 h of treatment showed that proliferation of the RSC96 cells was enhanced by PCA treatment. The PCA induced proliferation was accompanied by modulation in the expressions of cell cycle proteins cyclin D1, cyclin E and cyclin A. Knockdown of PI3K using small interfering RNA (siRNA) and inhibition of IGF-IR receptor resulted in the reduction in cell survival proteins. The results collectively showed that PCA treatment promoted cell proliferation and cell survival via IGF-I signaling. PMID:26717920

  19. Suppression of Nkx3.2 by phosphatidylinositol-3-kinase signaling regulates cartilage development by modulating chondrocyte hypertrophy

    PubMed Central

    Kim, Jeong-Ah; Im, Suhjean; Cantley, Lewis C.; Kim, Dae-Won

    2016-01-01

    Phosphatidylinositol-3-kinase (PI3K) is a key regulator of diverse biological processes including cell proliferation, migration, survival, and differentiation. While a role of PI3K in chondrocyte differentiation has been suggested, its precise mechanisms of action are poorly understood. Here we show that PI3K signaling can down-regulate Nkx3.2 at both mRNA and protein levels in various chondrocyte cultures in vitro. In addition, we have intriguingly found that p85β, not p85α, is specifically employed as a regulatory subunit for PI3K-mediated Nkx3.2 suppression. Furthermore, we found that regulation of Nkx3.2 by PI3K requires Rac1–PAK1, but not Akt, signaling downstream of PI3K. Finally, using embryonic limb bud cultures, ex vivo long bone cultures, and p85β knockout mice, we demonstrated that PI3K-mediated suppression of Nkx3.2 in chondrocytes plays a role in the control of cartilage hypertrophy during skeletal development in vertebrates. PMID:26363466

  20. Suppression of Nkx3.2 by phosphatidylinositol-3-kinase signaling regulates cartilage development by modulating chondrocyte hypertrophy.

    PubMed

    Kim, Jeong-Ah; Im, Suhjean; Cantley, Lewis C; Kim, Dae-Won

    2015-12-01

    Phosphatidylinositol-3-kinase (PI3K) is a key regulator of diverse biological processes including cell proliferation, migration, survival, and differentiation. While a role of PI3K in chondrocyte differentiation has been suggested, its precise mechanisms of action are poorly understood. Here we show that PI3K signaling can down-regulate Nkx3.2 at both mRNA and protein levels in various chondrocyte cultures in vitro. In addition, we have intriguingly found that p85β, not p85α, is specifically employed as a regulatory subunit for PI3K-mediated Nkx3.2 suppression. Furthermore, we found that regulation of Nkx3.2 by PI3K requires Rac1-PAK1, but not Akt, signaling downstream of PI3K. Finally, using embryonic limb bud cultures, ex vivo long bone cultures, and p85β knockout mice, we demonstrated that PI3K-mediated suppression of Nkx3.2 in chondrocytes plays a role in the control of cartilage hypertrophy during skeletal development in vertebrates. PMID:26363466

  1. Relationship between PI3K pathway and angiogenesis in CIA rat synovium

    PubMed Central

    Zou, Lin; Zhang, Guichun; Liu, Lifeng; Chen, Chen; Cao, Xuecheng; Cai, Jinfang

    2016-01-01

    To investigate the expression of hypoxia inducible factor (HIF-1α) and vascular endothelial growth factor (VEGF) in the synovium of collagen-induced arthritis (CIA) joint, and whether the PI3K pathway regulates angiogenesis in rheumatoid arthritis or not. A randomized controlled according to the principle of the rats were divided into normal control group (10 rats) and the experimental group (40 rats). The experimental group rats were established as type II collagen plus adjuvant Freund’s complete adjuvant-induced arthritis model. HIF-1α and VEGF proteins’ expression in serum of CIA rats group and normal control group were detected by ELISA. Microvessel density (MVD) in synovial tissue of CIA rats group and normal control group were detected by immunohistochemistry (IHC) staining. The protein expression of PTEN, PI3K, and AKT in synovial tissue were detected by Western Blot. Compared with normal control group, toes and ankle swelling and arthritis index (AI) of CIA rat increased, and the expression of VEGF and HIF-1α proteins in peripheral serum increased, IHC showed that MVD was significantly higher than that of the control group, and the difference was statistically significant (p<0.05). Western Blot results showed that PI3K and AKT proteins expression in CIA synovial tissue of rats increased, while the expression of PTEN protein decreased. Correlation analysis showed that VEGF and HIF-1 levels in the peripheral serum of CIA rats were positively correlated with arthritis index (AI); the contents of HIF-1α and VEGF in the peripheral serum of CIA rats were positively correlated with MVD in synovium tissue. The CIA rat model regulated the expression of HIF-1α and VEGF proteins in peripheral serum by PI3K signaling pathway, and then regulated neovascularization in RA. PMID:27508035

  2. v-Crk activates the phosphoinositide 3-kinase/AKT pathway in transformation

    PubMed Central

    Akagi, Tsuyoshi; Shishido, Tomoyuki; Murata, Kazutaka; Hanafusa, Hidesaburo

    2000-01-01

    v-Crk induces cellular tyrosine phosphorylation and transformation of chicken embryo fibroblasts (CEF). We studied the molecular mechanism of the v-Crk-induced transformation. Experiments with Src homology (SH)2 and SH3 domain mutants revealed that the induction of tyrosine phosphorylation of cellular proteins requires only the SH2 domain, but both the SH2 and SH3 domains are required for complete transformation. Analysis of three well defined signaling pathways, the mitogen-activated protein kinase (MAPK) pathway, the Jun N-terminal kinase (JNK) pathway, and the phosphoinositide 3-kinase (PI3K)/AKT pathway, demonstrated that only the PI3K/AKT pathway is constitutively activated in v-Crk-transformed CEF. Both the SH2 and SH3 domains are required for this activation of the PI3K/AKT pathway in CEF. We also found that the colony formation of CEF is strongly induced by a constitutively active PI3K mutant, and that a PI3K inhibitor, LY294002, suppresses the v-Crk-induced transformation. These results strongly suggest that constitutive activation of the PI3K/AKT pathway plays an essential role in v-Crk-induced transformation of CEF. PMID:10852971

  3. Sinulariolide Suppresses Human Hepatocellular Carcinoma Cell Migration and Invasion by Inhibiting Matrix Metalloproteinase-2/-9 through MAPKs and PI3K/Akt Signaling Pathways

    PubMed Central

    Wu, Yu-Jen; Neoh, Choo-Aun; Tsao, Chia-Yu; Su, Jui-Hsin; Li, Hsing-Hui

    2015-01-01

    Sinulariolide is an active compound isolated from the cultured soft coral Sinularia flexibilis. In this study, we investigate the migration and invasion effects of sinulariolide in hepatocellular carcinoma cell HA22T. Sinulariolide inhibited the migration and invasion effects of hepatocellular carcinoma cells in a concentration-dependent manner. The results of zymography assay showed that sinulariolide suppressed the activities of matrix metalloproteinase (MMP)-2 and MMP-9. Moreover, protein levels of MMP-2, MMP-9, and urokinase-type plasminogen activator (uPA) were reduced by sinulariolide in a concentration-dependent manner. Sinulariolide also exerted an inhibitory effect on phosphorylation of c-Jun N-terminal kinase (JNK), extracellular signal-regulated kinases (ERK), phosphatidylinositol 3-kinase (PI3K), Akt, Focal adhesion kinase (FAK), growth factor receptor-bound protein 2 (GRB2). Taken together, these results demonstrated that sinulariolide could inhibit hepatocellular carcinoma cell migration and invasion and alter HA22T cell metastasis by reduction of MMP-2, MMP-9, and uPA expression through the suppression of MAPKs, PI3K/Akt, and the FAK/GRB2 signaling pathway. These findings suggest that sinulariolide merits further evaluation as a chemotherapeutic agent for human hepatocellular carcinoma. PMID:26204832

  4. Sinulariolide Suppresses Human Hepatocellular Carcinoma Cell Migration and Invasion by Inhibiting Matrix Metalloproteinase-2/-9 through MAPKs and PI3K/Akt Signaling Pathways.

    PubMed

    Wu, Yu-Jen; Neoh, Choo-Aun; Tsao, Chia-Yu; Su, Jui-Hsin; Li, Hsing-Hui

    2015-01-01

    Sinulariolide is an active compound isolated from the cultured soft coral Sinularia flexibilis. In this study, we investigate the migration and invasion effects of sinulariolide in hepatocellular carcinoma cell HA22T. Sinulariolide inhibited the migration and invasion effects of hepatocellular carcinoma cells in a concentration-dependent manner. The results of zymography assay showed that sinulariolide suppressed the activities of matrix metalloproteinase (MMP)-2 and MMP-9. Moreover, protein levels of MMP-2, MMP-9, and urokinase-type plasminogen activator (uPA) were reduced by sinulariolide in a concentration-dependent manner. Sinulariolide also exerted an inhibitory effect on phosphorylation of c-Jun N-terminal kinase (JNK), extracellular signal-regulated kinases (ERK), phosphatidylinositol 3-kinase (PI3K), Akt, Focal adhesion kinase (FAK), growth factor receptor-bound protein 2 (GRB2). Taken together, these results demonstrated that sinulariolide could inhibit hepatocellular carcinoma cell migration and invasion and alter HA22T cell metastasis by reduction of MMP-2, MMP-9, and uPA expression through the suppression of MAPKs, PI3K/Akt, and the FAK/GRB2 signaling pathway. These findings suggest that sinulariolide merits further evaluation as a chemotherapeutic agent for human hepatocellular carcinoma. PMID:26204832

  5. The Neuroprotection of Liraglutide Against Ischaemia-induced Apoptosis through the Activation of the PI3K/AKT and MAPK Pathways

    PubMed Central

    Zhu, Huili; Zhang, Yusheng; Shi, Zhongshan; Lu, Dan; Li, Tingting; Ding, Yan; Ruan, Yiwen; Xu, Anding

    2016-01-01

    Glucagon-like peptide-1 (GLP-1) is an incretin hormone that increases glucose-dependent insulin secretion to reduce the glucose level. Liraglutide, a long-acting GLP-1 analogue, has been found to have neuroprotective action in various experimental models. However, the protective mechanisms of liraglutide in ischaemic stroke remain unclear. Here, we demonstrated that liraglutide significantly decreased the infarct volume, improved neurologic deficits, and lowered stress-related hyperglycaemia without causing hypoglycaemia in a rat model of middle cerebral artery occlusion (MCAO). Liraglutide inhibited cell apoptosis by reducing excessive reactive oxygen species (ROS) and improving the function of mitochondria in neurons under oxygen glucose deprivation (OGD) in vitro and MCAO in vivo. Liraglutide up-regulated the phosphorylation of protein kinase B (AKT) and extracellular signal-regulated kinases (ERK) and inhibited the phosphorylation of c-jun-NH2-terminal kinase (JNK) and p38. Moreover, the phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002 and/or the ERK inhibitor U0126 counteracted the protective effect of liraglutide. Taken together, these results suggest that liraglutide exerts neuroprotective action against ischaemia-induced apoptosis through the reduction of ROS and the activation of the PI3K/AKT and mitogen-activated protein kinase (MAPK) pathways. Therefore, liraglutide has therapeutic potential for patients with ischaemic stroke, especially those with Type 2 diabetes mellitus or stress hyperglycaemia. PMID:27240461

  6. Hypoglycemic effect of D-chiro-inositol in type 2 diabetes mellitus rats through the PI3K/Akt signaling pathway.

    PubMed

    Gao, Yun-Feng; Zhang, Meng-Na; Wang, Tian-Xin; Wu, Tian-Chen; Ai, Ru-Dan; Zhang, Ze-Sheng

    2016-09-15

    In this investigation, a model of type 2 diabetes mellitus (T2DM) was used on Sprague-Dawley (SD) rats to clarify more details of the mechanism in the therapy of T2DM. D-chiro-inositol (DCI) was administrated to the diabetic rats as two doses [30, 60 mg/(kg·body weight·day)]. The biochemical indices revealed that DCI had a positive effect on hypoglycemic activity and promoted the glycogen synthesis. The rats in DCI high-dosage group had a blood glucose reduction rate of 21.5% after 5 weeks of treatment, and had insulin content in serum about 15.3 ± 2.37 mIU/L which was significantly decreased than diabetes control group. Real-time polymerase chain reaction (RT-PCR) results revealed that DCI gave a positive regulation on glycogen synthase (GS) and protein glucose transporter-4 (Glut4). Western blotting suggested that DCI could up-regulated the expression of the phosphatidylinositol-3-kinase (PI3K) p85, PI3Kp110, GS as well as the phosphorylation of protein kinase B (Akt) both in the liver and the skeletal muscle. The results also revealed that DCI enhanced the Glut4 expression on skeletal muscle. Above all, DCI played a positive role in regulating insulin-mediated glucose uptake through the PI3K/Akt signaling pathway in T2DM rats. PMID:27212205

  7. The Neuroprotection of Liraglutide Against Ischaemia-induced Apoptosis through the Activation of the PI3K/AKT and MAPK Pathways.

    PubMed

    Zhu, Huili; Zhang, Yusheng; Shi, Zhongshan; Lu, Dan; Li, Tingting; Ding, Yan; Ruan, Yiwen; Xu, Anding

    2016-01-01

    Glucagon-like peptide-1 (GLP-1) is an incretin hormone that increases glucose-dependent insulin secretion to reduce the glucose level. Liraglutide, a long-acting GLP-1 analogue, has been found to have neuroprotective action in various experimental models. However, the protective mechanisms of liraglutide in ischaemic stroke remain unclear. Here, we demonstrated that liraglutide significantly decreased the infarct volume, improved neurologic deficits, and lowered stress-related hyperglycaemia without causing hypoglycaemia in a rat model of middle cerebral artery occlusion (MCAO). Liraglutide inhibited cell apoptosis by reducing excessive reactive oxygen species (ROS) and improving the function of mitochondria in neurons under oxygen glucose deprivation (OGD) in vitro and MCAO in vivo. Liraglutide up-regulated the phosphorylation of protein kinase B (AKT) and extracellular signal-regulated kinases (ERK) and inhibited the phosphorylation of c-jun-NH2-terminal kinase (JNK) and p38. Moreover, the phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002 and/or the ERK inhibitor U0126 counteracted the protective effect of liraglutide. Taken together, these results suggest that liraglutide exerts neuroprotective action against ischaemia-induced apoptosis through the reduction of ROS and the activation of the PI3K/AKT and mitogen-activated protein kinase (MAPK) pathways. Therefore, liraglutide has therapeutic potential for patients with ischaemic stroke, especially those with Type 2 diabetes mellitus or stress hyperglycaemia. PMID:27240461

  8. Reversing HOXA9 oncogene activation by PI3K inhibition: epigenetic mechanism and prognostic significance in human glioblastoma.

    PubMed

    Costa, Bruno M; Smith, Justin S; Chen, Ying; Chen, Justin; Phillips, Heidi S; Aldape, Kenneth D; Zardo, Giuseppe; Nigro, Janice; James, C David; Fridlyand, Jane; Reis, Rui M; Costello, Joseph F

    2010-01-15

    HOXA genes encode critical transcriptional regulators of embryonic development that have been implicated in cancer. In this study, we documented functional relevance and mechanism of activation of HOXA9 in glioblastoma (GBM), the most common malignant brain tumor. Expression of HOXA genes was investigated using reverse transcription-PCR in primary gliomas and glioblastoma cell lines and was validated in two sets of expression array data. In a subset of GBM, HOXA genes are aberrently activated within confined chromosomal domains. Transcriptional activation of the HOXA cluster was reversible by a phosphoinostide 3-kinase (PI3K) inhibitor through an epigenetic mechanism involving histone H3K27 trimethylation. Functional studies of HOXA9 showed its capacity to decrease apoptosis and increase cellular proliferation along with tumor necrosis factor-related apoptosis-including ligand resistance. Notably, aberrant expression of HOXA9 was independently predictive of shorter overall and progression-free survival in two GBM patient sets and improved survival prediction by MGMT promoter methylation. Thus, HOXA9 activation is a novel, independent, and negative prognostic marker in GBM that is reversible through a PI3K-associated epigenetic mechanism. Our findings suggest a transcriptional pathway through which PI3K activates oncogenic HOXA expression with implications for mTOR or PI3K targeted therapies. PMID:20068170

  9. The ERα-PI3K Cascade in Proopiomelanocortin Progenitor Neurons Regulates Feeding and Glucose Balance in Female Mice.

    PubMed

    Zhu, Liangru; Xu, Pingwen; Cao, Xuehong; Yang, Yongjie; Hinton, Antentor Othrell; Xia, Yan; Saito, Kenji; Yan, Xiaofeng; Zou, Fang; Ding, Hongfang; Wang, Chunmei; Yan, Chunling; Saha, Pradip; Khan, Sohaib A; Zhao, Jean; Fukuda, Makoto; Tong, Qingchun; Clegg, Deborah J; Chan, Lawrence; Xu, Yong

    2015-12-01

    Estrogens act upon estrogen receptor (ER)α to inhibit feeding and improve glucose homeostasis in female animals. However, the intracellular signals that mediate these estrogenic actions remain unknown. Here, we report that anorexigenic effects of estrogens are blunted in female mice that lack ERα specifically in proopiomelanocortin (POMC) progenitor neurons. These mutant mice also develop insulin resistance and are insensitive to the glucose-regulatory effects of estrogens. Moreover, we showed that propyl pyrazole triol (an ERα agonist) stimulates the phosphatidyl inositol 3-kinase (PI3K) pathway specifically in POMC progenitor neurons, and that blockade of PI3K attenuates propyl pyrazole triol-induced activation of POMC neurons. Finally, we show that effects of estrogens to inhibit food intake and to improve insulin sensitivity are significantly attenuated in female mice with PI3K genetically inhibited in POMC progenitor neurons. Together, our results indicate that an ERα-PI3K cascade in POMC progenitor neurons mediates estrogenic actions to suppress food intake and improve insulin sensitivity. PMID:26375425

  10. Dissecting the PI3K Signaling Axis in Pediatric Solid Tumors: Novel Targets for Clinical Integration

    PubMed Central

    Loh, Amos H. P.; Brennan, Rachel C.; Lang, Walter H.; Hickey, Robert J.; Malkas, Linda H.; Sandoval, John A.

    2013-01-01

    Children with solid tumors represent a unique population. Recent improvements in pediatric solid tumor survival rates have been confined to low- and moderate-risk cancers, whereas minimal to no notable improvement in survival have been observed in high-risk and advanced-stage childhood tumors. Treatments for patients with advanced disease are rarely curative, and responses to therapy are often followed by relapse, which highlights the large unmet need for novel therapies. Recent advances in cancer treatment have focused on personalized therapy, whereby patients are treated with agents that best target the molecular drivers of their disease. Thus, a better understanding of the pathways that drive cancer or drug resistance is of critical importance. One such example is the phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) pathway, which is activated in many solid cancer patients and represents a target for therapy. PI3K/Akt/mTOR pathway activation has also been observed in tumors resistant to agents targeting upstream receptor tyrosine kinases (RTKs). Agents that target this pathway have the potential to shut down survival pathways, and are being explored both in the setting of pathway-activating mutations and for their ability to restore sensitivity to upstream signaling targeted agents. Here, we examine the role of the PI3K/Akt/mTOR pathway in pediatric solid tumors, review the novel agents being explored to target this pathway, and explore the potential role of the inhibition of this pathway in the clinical development of these agents in children. PMID:23638435

  11. PI3K: An Attractive Candidate for the Central Integration of Metabolism and Reproduction

    PubMed Central

    Acosta-Martínez, Maricedes

    2012-01-01

    In neurons, as in a variety of other cell types, the enzyme phosphatidylinositol-3-kinase (PI3K) is a key intermediate that is common to the signaling pathways of a number of peripheral metabolic cues, including insulin and leptin, which are well known to regulate both metabolic and reproductive functions. This review article will explore the possibility that PI3K is a key integrator of metabolic and neural signals regulating gonadotropin releasing hormone (GnRH)/luteinizing hormone (LH) release and explore the hypothesis that this enzyme is pivotal in many disorders where gonadotropin release is at risk. Although the mechanisms mediating the influence of metabolism and nutrition on fertility are currently unclear, the strong association between metabolic disorders and infertility is undeniable. For example, women suffering from anorectic disorders experience amenorrhea as a consequence of malnutrition-induced impairment of LH release, and at the other extreme, obesity is also commonly co-morbid with menstrual dysfunction and infertility. Impaired hypothalamic insulin and leptin receptor signaling is thought to be at the core of reproductive disorders associated with metabolic dysfunction. While low levels of leptin and insulin characterize states of negative energy balance, prolonged nutrient excess is associated with insulin and leptin resistance. Metabolic models known to alter GnRH/LH release such as diabetes, diet-induced obesity, and caloric restriction are also accompanied by impairment of PI3K signaling in insulin and leptin sensitive tissues including the hypothalamus. However, a clear link between this signaling pathway and the control of GnRH release by peripheral metabolic cues has not been established. Investigating the role of the signaling pathways shared by metabolic cues that are critical for a normal reproductive state can help identify possible targets in the treatment of metabolic and reproductive disorders such as polycystic ovarian syndrome

  12. PI-103 and Quercetin Attenuate PI3K-AKT Signaling Pathway in T- Cell Lymphoma Exposed to Hydrogen Peroxide

    PubMed Central

    Maurya, Akhilendra Kumar; Vinayak, Manjula

    2016-01-01

    Phosphatidylinositol 3 kinase—protein kinase B (PI3K-AKT) pathway has been considered as major drug target site due to its frequent activation in cancer. AKT regulates the activity of various targets to promote tumorigenesis and metastasis. Accumulation of reactive oxygen species (ROS) has been linked to oxidative stress and regulation of signaling pathways for metabolic adaptation of tumor microenvironment. Hydrogen peroxide (H2O2) in this context is used as ROS source for oxidative stress preconditioning. Antioxidants are commonly considered to be beneficial to reduce detrimental effects of ROS and are recommended as dietary supplements. Quercetin, a ubiquitous bioactive flavonoid is a dietary component which has attracted much of interest due to its potential health-promoting effects. Present study is aimed to analyze PI3K-AKT signaling pathway in H2O2 exposed Dalton’s lymphoma ascite (DLA) cells. Further, regulation of PI3K-AKT pathway by quercetin as well as PI-103, an inhibitor of PI3K was analyzed. Exposure of H2O2 (1mM H2O2 for 30min) to DLA cells caused ROS accumulation and resulted in increased phosphorylation of PI3K and downstream proteins PDK1 and AKT (Ser-473 and Thr-308), cell survival factors BAD and ERK1/2, as well as TNFR1. However, level of tumor suppressor PTEN was declined. Both PI-103 & quercetin suppressed the enhanced level of ROS and significantly down-regulated phosphorylation of AKT, PDK1, BAD and level of TNFR1 as well as increased the level of PTEN in H2O2 induced lymphoma cells. The overall result suggests that quercetin and PI3K inhibitor PI-103 attenuate PI3K-AKT pathway in a similar mechanism. PMID:27494022

  13. Hypoxia-induced mitogenic factor promotes vascular adhesion molecule-1 expression via the PI-3K/Akt-NF-kappaB signaling pathway.

    PubMed

    Tong, Qiangsong; Zheng, Liduan; Lin, Li; Li, Bo; Wang, Danming; Li, Dechun

    2006-10-01

    Hypoxia-induced mitogenic factor (HIMF), also known as FIZZ1 (found in inflammatory zone 1), is an important player in lung inflammation. However, the effects of HIMF on cell adhesion molecules involved in lung inflammation remain largely unknown. In the present work, we tested whether HIMF modulates vascular adhesion molecule (VCAM)-1 expression, and dissected the possible signaling pathways that link HIMF to VCAM-1 upregulation. Recombinant HIMF protein, instilled intratracheally into adult mouse lungs, results in a significant increase of VCAM-1 production in vascular endothelial, alveolar type II, and airway epithelial cells. In cultured mouse endothelial SVEC 4-10 and lung epithelial MLE-12 cells, we demonstrated that HIMF induces VCAM-1 expression via the phosphatidylinositol-3 kinase (PI-3K)/Akt-nuclear factor (NF)-kappaB signaling pathway. Knockdown of HIMF expression by small interference RNA attenuated LPS-induced VCAM-1 expression in vitro. We showed that HIMF induced phosphorylation of the IkappaB kinase signalsome and, subsequently, IkappaBalpha, leading to activation of NF-kappaB. Meanwhile, VCAM-1 production was correspondingly upregulated. Blocking NF-kappaB signaling pathway by expression of dominant-negative mutants of IkappaB kinase and IkappaBalpha suppressed HIMF-induced VCAM-1 upregulation. HIMF also strongly induced phosphorylation of Akt. A dominant-negative mutant of PI-3K, Deltap85, as well as PI-3K inhibitor, LY294002, also blocked HIMF-induced NF-kappaB activation and attenuated VCAM-1 production. Furthermore, LY294002 pretreatment abolished HIMF-enhanced mononuclear cells adhesion to endothelial and epithelial cells. Our findings connect HIMF to signaling pathways that regulate inflammation, and thus reveal the critical roles that HIMF plays in lung inflammation. PMID:16709959

  14. Heat Stress-Induced PI3K/mTORC2-Dependent AKT Signaling Is a Central Mediator of Hepatocellular Carcinoma Survival to Thermal Ablation Induced Heat Stress.

    PubMed

    Thompson, Scott M; Callstrom, Matthew R; Jondal, Danielle E; Butters, Kim A; Knudsen, Bruce E; Anderson, Jill L; Lien, Karen R; Sutor, Shari L; Lee, Ju-Seog; Thorgeirsson, Snorri S; Grande, Joseph P; Roberts, Lewis R; Woodrum, David A

    2016-01-01

    Thermal ablative therapies are important treatment options in the multidisciplinary care of patients with hepatocellular carcinoma (HCC), but lesions larger than 2-3 cm are plagued with high local recurrence rates and overall survival of these patients remains poor. Currently no adjuvant therapies exist to prevent local HCC recurrence in patients undergoing thermal ablation. The molecular mechanisms mediating HCC resistance to thermal ablation induced heat stress and local recurrence remain unclear. Here we demonstrate that the HCC cells with a poor prognostic hepatic stem cell subtype (Subtype HS) are more resistant to heat stress than HCC cells with a better prognostic hepatocyte subtype (Subtype HC). Moreover, sublethal heat stress rapidly induces phosphoinositide 3-kinase (PI3K)/mammalian target of rapamycin (mTOR) dependent-protein kinase B (AKT) survival signaling in HCC cells in vitro and at the tumor ablation margin in vivo. Conversely, inhibition of PI3K/mTOR complex 2 (mTORC2)-dependent AKT phosphorylation or direct inhibition of AKT function both enhance HCC cell killing and decrease HCC cell survival to sublethal heat stress in both poor and better prognostic HCC subtypes while mTOR complex 1 (mTORC1)-inhibition has no impact. Finally, we showed that AKT isoforms 1, 2 and 3 are differentially upregulated in primary human HCCs and that overexpression of AKT correlates with worse tumor biology and pathologic features (AKT3) and prognosis (AKT1). Together these findings define a novel molecular mechanism whereby heat stress induces PI3K/mTORC2-dependent AKT survival signaling in HCC cells and provide a mechanistic rationale for adjuvant AKT inhibition in combination with thermal ablation as a strategy to enhance HCC cell killing and prevent local recurrence, particularly at the ablation margin. PMID:27611696

  15. Stimulation of EphB2 attenuates tau phosphorylation through PI3K/Akt-mediated inactivation of glycogen synthase kinase-3β

    PubMed Central

    Jiang, Jun; Wang, Zhi-Hao; Qu, Min; Gao, Di; Liu, Xiu-Ping; Zhu, Ling-Qiang; Wang, Jian-Zhi

    2015-01-01

    Abnormal tau hyperphosphorylation is an early pathological marker of Alzheimer’s disease (AD), however, the upstream factors that regulate tau phosphorylation are not illustrated and there is no efficient strategy to arrest tau hyperphosphorylation. Here, we find that activation of endogenous EphB2 receptor by ligand stimulation (ephrinB1/Fc) or by ectopic expression of EphB2 plus the ligand stimulation induces a remarkable tau dephosphorylation at multiple AD-associated sites in SK-N-SH cells and human embryonic kidney cells that stably express human tau (HEK293-tau). In cultured hippocampal neurons and the hippocampus of human tau transgenic mice, dephosphorylation of tau proteins was also detected by stimulation of EphB2 receptor. EphB2 activation inhibits glycogen synthase kinase-3β (GSK-3β), a crucial tau kinase, and activates phosphatidylinositol-3-kinase (PI3K)/Akt both in vitro and in vivo, whereas simultaneous inhibition of PI3K or upregulation of GSK-3β abolishes the EphB2 stimulation-induced tau dephosphorylation. Finally, we confirm that ephrinB1/Fc treatment induces tyrosine phosphorylation (activation) of EphB2, while deletion of the tyrosine kinase domain (VM) of EphB2 eliminates the receptor stimulation-induced GSK-3β inhibition and tau dephosphorylation. We conclude that activation of EphB2 receptor kinase arrests tau hyperphosphorylation through PI3K-/Akt-mediated GSK-3β inhibition. Our data provide a novel membranous target to antagonize AD-like tau pathology. PMID:26119563

  16. Ellagic acid protects endothelial cells from oxidized low-density lipoprotein-induced apoptosis by modulating the PI3K/Akt/eNOS pathway

    SciTech Connect

    Ou, Hsiu-Chung; Lee, Wen-Jane; Lee, Shin-Da; Huang, Chih-Yang; Chiu, Tsan-Hung; Tsai, Kun-Ling; Hsu, Wen-Cheng; Sheu, Wayne Huey-Herng

    2010-10-15

    Endothelial apoptosis is a driving force in atherosclerosis development. Oxidized low-density lipoprotein (oxLDL) promotes inflammatory and thrombotic processes and is highly atherogenic, as it stimulates macrophage cholesterol accumulation and foam cell formation. Previous studies have shown that the phosphatidylinositol 3-kinase/Akt/endothelial nitric oxide synthase/nitric oxide (PI3K/Akt/eNOS/NO) pathway is involved in oxLDL-induced endothelial apoptosis. Ellagic acid, a natural polyphenol found in berries and nuts, has in recent years been the subject of intense research within the fields of cancer and inflammation. However, its protective effects against oxLDL-induced injury in vascular endothelial cells have not been clarified. In the present study, we investigated the anti-apoptotic effect of ellagic acid in human umbilical vein endothelial cells (HUVECs) exposed to oxLDL and explored the possible mechanisms. Our results showed that pretreatment with ellagic acid (5-20 {mu}M) significantly attenuated oxLDL-induced cytotoxicity, apoptotic features, and generation of reactive oxygen species (ROS). In addition, the anti-apoptotic effect of ellagic acid was partially inhibited by a PI3K inhibitor (wortmannin) and a specific eNOS inhibitor (cavtratin) but not by an ERK inhibitor (PD98059). In exploring the underlying mechanisms of ellagic acid action, we found that oxLDL decreased Akt and eNOS phosphorylation, which in turn activated NF-{kappa}B and downstream pro-apoptotic signaling events including calcium accumulation, destabilization of mitochondrial permeability, and disruption of the balance between pro- and anti-apoptotic Bcl-2 proteins. Those alterations induced by oxLDL, however, were attenuated by pretreatment with ellagic acid. The inhibition of oxLDL-induced endothelial apoptosis by ellagic acid is due at least in part to its anti-oxidant activity and its ability to modulate the PI3K/Akt/eNOS signaling pathway.

  17. Modulation by Central MAPKs/PI3K/sGc of the TNF-α/iNOS-dependent Hypotension and Compromised Cardiac Autonomic Control in Endotoxic Rats.

    PubMed

    Sallam, Marwa Y; El-Gowilly, Sahar M; Abdel-Galil, Abdel-Galil A; El-Mas, Mahmoud M

    2016-08-01

    Reduced blood pressure (BP) and cardiac autonomic activity are early manifestations of endotoxemia. We investigated whether these effects are modulated by central mitogen-activated protein kinases (MAPKs) and related phosphoinositide-3-kinase (PI3K)/soluble guanylate cyclase (sGC) signaling in conscious rats. The effect of pharmacologic inhibition of these molecular substrates on BP, heart rate (HR), and heart rate variability (HRV) responses evoked by intravascular lipopolysaccharide (LPS) (10 mg/kg) were assessed. LPS (1) lowered BP (2) increased HR, (3) reduced time [SD of beat-to-beat intervals (SDNN), and root mean square of successive differences in R-R intervals (rMSSD)], and frequency domain indices of HRV (total power and spectral bands of low and high-frequency), and (4) elevated serum tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) levels. The inhibition of TNF-α (pentoxifylline) or inducible nitric oxide synthase (iNOS, aminoguanidine) abolished hemodynamic, HRV, and inflammatory actions of LPS. Intracisternal (i.c.) injection of ODQ (sGC inhibitor), wortmannin (PI3K inhibitor), and SP600125 (MAPKJNK inhibitor) mitigated the hypotensive and tachycardic actions of LPS but failed to affect associated decreases in HRV. MAPKp38 inhibition by i.c. SB203580 produced exactly opposite effects. None of the LPS effects was altered after i.c. PD98059 (MAPKERK1/2 inhibitor). Overall, central MAPKs/PI3K/sGC pathways variably contribute to the TNF-α/iNOS-dependent reductions in BP and HRV seen during endotoxic shock. PMID:27110744

  18. The neuroprotective action of pyrroloquinoline quinone against glutamate-induced apoptosis in hippocampal neurons is mediated through the activation of PI3K/Akt pathway

    SciTech Connect

    Zhang Qi; Shen Mi; Ding Mei; Shen Dingding; Ding Fei

    2011-04-01

    Pyrroloquinoline quinone (PQQ), a cofactor in several enzyme-catalyzed redox reactions, possesses a potential capability of scavenging reactive oxygen species (ROS) and inhibiting cell apoptosis. In this study, we investigated the effects of PQQ on glutamate-induced cell death in primary cultured hippocampal neurons and the possible underlying mechanisms. We found that glutamate-induced apoptosis in cultured hippocampal neurons was significantly attenuated by the ensuing PQQ treatment, which also inhibited the glutamate-induced increase in Ca2+ influx, caspase-3 activity, and ROS production, and reversed the glutamate-induced decrease in Bcl-2/Bax ratio. The examination of signaling pathways revealed that PQQ treatment activated the phosphorylation of Akt and suppressed the glutamate-induced phosphorylation of c-Jun N-terminal protein kinase (JNK). And inhibition of phosphatidylinositol-3-kinase (PI3K)/Akt cascade by LY294002 and wortmannin significantly blocked the protective effects of PQQ, and alleviated the increase in Bcl-2/Bax ratio. Taken together, our results indicated that PQQ could protect primary cultured hippocampal neurons against glutamate-induced cell damage by scavenging ROS, reducing Ca2+ influx, and caspase-3 activity, and suggested that PQQ-activated PI3K/Akt signaling might be responsible for its neuroprotective action through modulation of glutamate-induced imbalance between Bcl-2 and Bax. - Research Highlights: >PQQ attenuated glutamate-induced cell apoptosis of cultured hippocampal neurons. >PQQ inhibited glutamate-induced Ca{sup 2+} influx and caspase-3 activity. >PQQ reduced glutamate-induced increase in ROS production. >PQQ affected phosphorylation of Akt and JNK signalings after glutamate injury. >PI3K/Akt was required for neuroprotection of PQQ by modulating Bcl-2/Bax ratio.

  19. Sphingosine 1-phosphate stimulation of the p42/p44 mitogen-activated protein kinase pathway in airway smooth muscle. Role of endothelial differentiation gene 1, c-Src tyrosine kinase and phosphoinositide 3-kinase.

    PubMed Central

    Rakhit, S; Conway, A M; Tate, R; Bower, T; Pyne, N J; Pyne, S

    1999-01-01

    We report here that cultured airway smooth muscle cells contain transcripts of endothelial differentiation gene 1 (EDG-1), a prototypical orphan Gi-coupled receptor whose natural ligand is sphingosine 1-phosphate (S1P). This is consistent with data that showed that S1P activated both c-Src and p42/p44 mitogen-activated protein kinase (p42/p44 MAPK) in a pertussis toxin (PTX)-sensitive manner in these cells. An essential role for c-Src was confirmed by using the c-Src inhibitor, PP1, which markedly decreased p42/p44 MAPK activation. We have also shown that phosphoinositide 3-kinase (PI-3K) inhibitors (wortmannin and LY294002) decreased p42/p44 MAPK activation. An essential role for PI-3K was supported by experiments that showed that PI-3K activity was increased in Grb-2 immunoprecipitates from S1P-stimulated cells. Significantly, Grb-2 associated PI-3K activity was decreased by pretreatment of cells with PTX. Finally, we have shown that the co-stimulation of cells with platelet-derived growth factor (PDGF) and S1P (which failed to stimulate DNA synthesis) elicited a larger p42/p44 MAPK activation over a 30 min stimulation compared with each agonist alone. This was associated with a S1P-dependent increase in PDGF-stimulated DNA synthesis. These results demonstrate that S1P activates c-Src and Grb-2-PI-3K (intermediates in the p42/p44 MAPK cascade) via a PTX-sensitive mechanism. This action of S1P is consistent with the stimulation of EDG-1 receptors. S1P might also function as a co-mitogen with PDGF, producing a more robust activation of a common permissive signal transduction pathway linked to DNA synthesis. PMID:10051434

  20. Deletion of PTEN Produces Deficits in Conditioned Fear and Increases Fragile X Mental Retardation Protein

    ERIC Educational Resources Information Center

    Lugo, Joaquin N.; Smith, Gregory D.; Morrison, Jessica B.; White, Jessika

    2013-01-01

    The phosphatase and tensin homolog detected on chromosome 10 (PTEN) gene product modulates activation of the phosphatidylinositol 3-kinase (PI3K)/AKT pathway. The PI3K pathway has been found to be involved in the regulation of the fragile X mental retardation protein, which is important for long-term depression and in the formation of new…

  1. PI3K-Akt1 expression and its significance in liver tissues with chronic fluorosis

    PubMed Central

    Fan, Bin; Yu, Yanni; Zhang, Ying

    2015-01-01

    This study was to explore the effect and significance of PI3K signal pathway on mechanism of liver injury in chronic fluorosis. We used 48 Sprague-Dawley rats which were randomly divided into 4 groups according to the body weight, 12 in each group, half of male and female. The control group was fed with the solid feed (the fluorine content was 1.5 mg/kg). The fluorosis animals were fed with the corn containing fluorine content of 17 mg/kg from the endemic fluorosis areas. Blocking agent LY294002 was injected in the blocking group and phosphate buffer solution was injected in the blocking control in the caudal vein with 10 mg/kg once every other day in the one week before the end of the experiment. The animals were drunk by tap water freely. The fluoride contents of urinary and skeletal were determined by the F-ion selective electrode method. The mRNA and protein expressions of PI3K, Akt1 in the liver tissues were determined by real-time polymerase chain reaction, and streptavidin-perosidase and Western blot, respectively. Results showed that fluoride contents of the urine and bone were increased in the fluorosis compared to those in the control. The expression of PI3K and Akt1 mRNA and proteins was significantly increased in fluorosis hepatocytes, and lower than that of the fluorosis in the blocking. The apoptosis and the intracellular calcium concentration were increased. Therefore, we conclude that PI3K-Akt signaling pathway may be one of the signaling pathways in the pathogenesis of liver injury caused by fluorosis. PMID:25973007

  2. PI3K-Akt1 expression and its significance in liver tissues with chronic fluorosis.

    PubMed

    Fan, Bin; Yu, Yanni; Zhang, Ying

    2015-01-01

    This study was to explore the effect and significance of PI3K signal pathway on mechanism of liver injury in chronic fluorosis. We used 48 Sprague-Dawley rats which were randomly divided into 4 groups according to the body weight, 12 in each group, half of male and female. The control group was fed with the solid feed (the fluorine content was 1.5 mg/kg). The fluorosis animals were fed with the corn containing fluorine content of 17 mg/kg from the endemic fluorosis areas. Blocking agent LY294002 was injected in the blocking group and phosphate buffer solution was injected in the blocking control in the caudal vein with 10 mg/kg once every other day in the one week before the end of the experiment. The animals were drunk by tap water freely. The fluoride contents of urinary and skeletal were determined by the F-ion selective electrode method. The mRNA and protein expressions of PI3K, Akt1 in the liver tissues were determined by real-time polymerase chain reaction, and streptavidin-perosidase and Western blot, respectively. Results showed that fluoride contents of the urine and bone were increased in the fluorosis compared to those in the control. The expression of PI3K and Akt1 mRNA and proteins was significantly increased in fluorosis hepatocytes, and lower than that of the fluorosis in the blocking. The apoptosis and the intracellular calcium concentration were increased. Therefore, we conclude that PI3K-Akt signaling pathway may be one of the signaling pathways in the pathogenesis of liver injury caused by fluorosis. PMID:25973007

  3. PHOSPHATIDYLINOSITIDE 3-KINASE AND PROTEIN KINASE C ZETA MEDIATE RETINOIC ACID INDUCTION OF DARPP-32 IN MEDIUM SIZE SPINY NEURONS IN VITRO

    PubMed Central

    Pedrini, Steve; Bogush, Alexey; Ehrlich, Michelle E

    2016-01-01

    Mature striatal medium size spiny neurons express the dopamine and cyclic AMP-regulated phosphoprotein, 32 kDa (DARPP-32), but little is known about the mechanisms regulating its levels, or the specification of fully differentiated neuronal subtypes. Cell extrinsic molecules that increase DARPP-32 mRNA and/or protein levels include retinoic acid (RA), brain-derived neurotrophic factor (BDNF), and estrogen (E2). We now demonstrate that RA regulates DARPP-32 mRNA and protein in primary striatal neuronal cultures. Furthermore, DARPP-32 induction by RA in vitro requires phosphatidylinositide 3-kinase (PI3K), but is independent of tropomyosin-related kinase b (TrkB), cyclin-dependent kinase 5 (cdk5), and protein kinase B (Akt). Using pharmacologic inhibitors of various isoforms of protein kinase C, we also demonstrate that DARPP-32 induction by RA in vitro is dependent on protein kinase C zeta (PKCζ). Thus, the signal transduction pathways mediated by RA are very different than those mediating DARPP-32 induction by brain derived neurotrophic factor (BDNF). These data support the presence of multiple signal transduction pathways mediating expression of DARPP-32 in vitro, including a novel, important pathway via which PI3K regulates the contribution of PKCζ. PMID:18485106

  4. PI3K/Akt/mTOR inhibitors in breast cancer

    PubMed Central

    Lee, Joycelyn JX; Loh, Kiley; Yap, Yoon-Sim

    2015-01-01

    Activation of the phosphoinositide 3 kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) pathway is common in breast cancer. There is preclinical data to support inhibition of the pathway, and phase I to III trials involving inhibitors of the pathway have been or are being conducted in solid tumors and breast cancer. Everolimus, an mTOR inhibitor, is currently approved for the treatment of hormone receptor (HR)-positive, human epidermal growth factor receptor 2 (HER2)-negative breast cancer. In this review, we summarise the efficacy and toxicity findings from the randomised clinical trials, with simplified guidelines on the management of potential adverse effects. Education of healthcare professionals and patients is critical for safety and compliance. While there is some clinical evidence of activity of mTOR inhibition in HR-positive and HER2-positive breast cancers, the benefits may be more pronounced in selected subsets rather than in the overall population. Further development of predictive biomarkers will be useful in the selection of patients who will benefit from inhibition of the PI3K/Akt/mTOR (PAM) pathway. PMID:26779371

  5. Phosphoinositide 3-kinase enhancer (PIKE) in the brain: is it simply a phosphoinositide 3-kinase/Akt enhancer?

    PubMed Central

    Chan, Chi Bun; Ye, Keqiang

    2013-01-01

    Since its discovery in 2000, phosphoinositide 3-kinase enhancer (PIKE) has been recognized as a class of GTPase that controls the enzymatic activities of phosphoinositide 3-kinase (PI3K) and Akt in the central nervous system (CNS). However, recent studies suggest that PIKEs are not only enhancers to PI3K/Akt but also modulators to other kinases including insulin receptor tyrosine kinase and focal adhesion kinases. Moreover, they regulate transcription factors such as signal transducer and activator of transcription and nuclear factor κB. Indeed, PIKE proteins participate in multiple cellular processes including control of cell survival, brain development, memory formation, gene transcription, and metabolism. In this review, we have summarized the functions of PIKE proteins in CNS and discussed their potential implications in various neurological disorders. PMID:22499674

  6. Effects of dexmedetomidine postconditioning on myocardial ischemia and the role of the PI3K/Akt-dependent signaling pathway in reperfusion injury

    PubMed Central

    CHENG, XIANG YANG; GU, XIAO YU; GAO, QIN; ZONG, QIAO FENG; LI, XIAO HONG; ZHANG, YE

    2016-01-01

    The present study aimed to determine whether post-ischemic treatment with dexmedetomidine (DEX) protected the heart against acute myocardial ischemia/reperfusion (I/R)-induced injury in rats. The phosphatidylinositol-3 kinase/protein kinase B(PI3K/Akt)-dependent signaling pathway was also investigated. Male Sprague Dawley rats (n=64) were subjected to ligation of the left anterior descending artery (LAD), which produced ischemia for 25 min, followed by reperfusion. Following LAD ligation, rats were treated with DEX (5, 10 and 20 µg/kg) or underwent post-ischemic conditioning, which included three cycles of ischemic insult. In order to determine the role of the PI3K/Akt signaling pathway, wortmannin (Wort), a PI3K inhibitor, was used to treat a group of rats that had also been treated with DEX (20 µg/kg). Post-reperfusion, lactate dehydrogenase (LDH), cardiac troponin I (cTnI), creatine kinase isoenzymes (CK-MB), superoxide dismutase (SOD) and malondialdehyde (MDA) serum levels were measured using an ultraviolet spectrophotometer. The protein expression levels of phosphorylated (p)-Akt, Ser9-p-glycogen synthase kinase-3β (p-GSK-3β) and cleaved caspase-3 were detected in heart tissue by western blotting. The mRNA expression levels of B-cell lymphoma 2 (Bcl-2) and Bcl-2-associated X protein (Bax) were detected using reverse transcription-polymerase chain reaction. At the end of the experiment, the hearts were removed and perfused in an isolated perfusion heart apparatus with Evans blue (1%) in order to determine the non-ischemic areas. The risk and infarct areas of the heart were not dyed. As expected, I/R induced myocardial infarction, as determined by the increased serum levels of cTnI, CK-MB and MDA, and the decreased levels of SOD. Post-ischemic treatment with DEX increased the expression levels of p-Akt and p-GSK-3β, whereas caspase-3 expression was reduced following DEX treatment compared with in the I/R group. Compared with the I/R group, the ratio of Bcl

  7. C-terminal domain of p42 Ebp1 is essential for down regulation of p85 subunit of PI3K, inhibiting tumor growth.

    PubMed

    Hwang, Inwoo; Kim, Chung Kwon; Ko, Hyo Rim; Park, Kye Won; Cho, Sung-Woo; Ahn, Jee-Yin

    2016-01-01

    Potential tumor suppressor p42, ErbB3-binding protein 1 (EBP1) inhibits phosphoinositide 3-kinase (PI3K) activity reducing the p85 regulatory subunit. In this study, we demonstrated that overexpression of p42 promoted not only a reduction of wild type of p85 subunit but also oncogenic mutant forms of p85 which were identified in human cancers. Moreover, we identified the small fragment of C-terminal domain of p42 is sufficient to exhibit tumor suppressing activity of p42-WT, revealing that this small fragment (280-394) of p42 is required for the binding of both HSP70 and CHIP for a degradation of p85. Furthermore, we showed the small fragment of p42 markedly inhibited the tumor growth in mouse xenograft models of brain and breast cancer, resembling tumor suppressing activity of p42. Through identification of the smallest fragment of p42 that is responsible for its tumor suppressor activity, our findings represent a novel approach for targeted therapy of cancers that overexpress PI3K. PMID:27464702

  8. C-terminal domain of p42 Ebp1 is essential for down regulation of p85 subunit of PI3K, inhibiting tumor growth

    PubMed Central

    Hwang, Inwoo; Kim, Chung Kwon; Ko, Hyo Rim; Park, Kye Won; Cho, Sung-Woo; Ahn, Jee-Yin

    2016-01-01

    Potential tumor suppressor p42, ErbB3-binding protein 1 (EBP1) inhibits phosphoinositide 3-kinase (PI3K) activity reducing the p85 regulatory subunit. In this study, we demonstrated that overexpression of p42 promoted not only a reduction of wild type of p85 subunit but also oncogenic mutant forms of p85 which were identified in human cancers. Moreover, we identified the small fragment of C-terminal domain of p42 is sufficient to exhibit tumor suppressing activity of p42-WT, revealing that this small fragment (280–394) of p42 is required for the binding of both HSP70 and CHIP for a degradation of p85. Furthermore, we showed the small fragment of p42 markedly inhibited the tumor growth in mouse xenograft models of brain and breast cancer, resembling tumor suppressing activity of p42. Through identification of the smallest fragment of p42 that is responsible for its tumor suppressor activity, our findings represent a novel approach for targeted therapy of cancers that overexpress PI3K. PMID:27464702

  9. The molecular mechanism of polygalasaponin F-mediated decreases in TNFα: emphasizing the role of the TLR4-PI3K/AKT-NF-κB pathway.

    PubMed

    Yan, Wen-Fen; Shao, Qian-Hang; Zhang, Dong-Ming; Yuan, Yu-He; Chen, Nai-Hong

    2015-01-01

    Polygalasaponin F (PS-F), an oleanane-type triterpenoid saponin extracted from Polygala japonica, decreases the release of the inflammatory cytokine tumor necrosis factor α (TNFα), but the precise molecular mechanisms by which this event occurs are not fully understood. To study the anti-neuroinflammatory mechanisms of PS-F, enzyme-linked immunosorbent assay was used to detect the secretion of TNFα from BV-2 microglial cells. Nuclear proteins extracted from BV-2 microglial cells stimulated by lipopolysaccharide (LPS) and pretreated with/without inhibitors were measured by Western blotting, and cell viability was evaluated by MTT analysis. The results indicated that inhibition of toll-like receptor (TLR) 4 (CLI-095 1 μg/ml), phosphatidylinositol 3-kinase (PI3K) (Ly294002 10 μM) or IκBα phosphorylation (Bay11-7082 10 μM) completely prevents the release of TNFα induced by LPS without affecting cell viability and attenuated the nuclear translocation of p65 stimulated by LPS. In addition, PS-F exhibited a similar trend regarding TNFα release, AKT phosphorylation and NF-κB translocation. These results suggest that PS-F reduces neuroinflammatory cytokine secretion through the regulation of the TLR4-PI3K/AKT-NF-κB signaling pathway. PMID:26235355

  10. Daucus carota Pentane-Based Fractions Suppress Proliferation and Induce Apoptosis in Human Colon Adenocarcinoma HT-29 Cells by Inhibiting the MAPK and PI3K Pathways.

    PubMed

    Shebaby, Wassim N; Bodman-Smith, K B; Mansour, Anthony; Mroueh, Mohamad; Taleb, Robin I; El-Sibai, Mirvat; Daher, Costantine F

    2015-07-01

    Daucus carota L. ssp. carota (Apiacea, wild carrot, Queen Anne's lace) has been used in folk medicine throughout the world and recently was shown to possess anticancer and antioxidant activities. This study aims to determine the anticancer activity of the pentane fraction (F1) and the 1:1 pentane:diethyl ether fraction (F2) of the Daucus Carota oil extract (DCOE) against human colon adenocarcinoma cell lines (HT-29 and Caco-2). Treatment of cells with various concentrations of F1 or F2 fractions produced a dose-dependent inhibition of cell proliferation. Flow cytometric analysis indicated that both fractions induced sub-G1 phase accumulation and increased apoptotic cell death. Western blot revealed the activation of caspase-3, PARP cleavage, and a considerable increase in Bax and p53 levels, and a decrease in Bcl-2 level. Treatment of HT-29 cells with either fraction markedly decreased the levels of both phosphorylated Erk and Akt. Furthermore, the combined treatment of F1 or F2 with wortmannin showed no added inhibition of cell survival suggesting an effect of F1 or F2 through the phosphatidyl inositol 3-kinase (PI3K) pathway. This study proposes that DCOE fractions (F1 and F2) inhibit cell proliferation by inducing cell cycle arrest and apoptosis in HT-29 cells through the suppression of mitogen-activated protein kinase (MAPK)/Erk and PI3K/Akt pathways. PMID:25599142

  11. Isoangustone A, a novel licorice compound, inhibits cell proliferation by targeting PI3K, MKK4, and MKK7 in human melanoma.

    PubMed

    Song, Nu Ry; Lee, Eunjung; Byun, Sanguine; Kim, Jong-Eun; Mottamal, Madhusoodanan; Park, Jung Han Yoon; Lim, Soon Sung; Bode, Ann M; Lee, Hyong Joo; Lee, Ki Won; Dong, Zigang

    2013-12-01

    Licorice root is known to possess various bioactivities, including anti-inflammatory and anticancer effects. Glycyrrhizin, a triterpene compound, is the most abundant constituent of dried licorice root. However, high intake or long-term consumption of glycyrrhizin causes several side effects, such as hypertension, hypertensive encephalopathy, and hypokalemia. Therefore, finding additional active compounds other than glycyrrhizin in licorice that exhibit anticancer effects is worthwhile. We found that isoangustone A (IAA), a novel flavonoid from licorice root, suppressed proliferation of human melanoma cells. IAA significantly blocked cell-cycle progression at the G1-phase and inhibited the expression of G1-phase regulatory proteins, including cyclins D1 and E in the SK-MEL-28 human melanoma cell line. IAA suppressed the phosphorylation of Akt, GSK-3β, and JNK1/2. IAA also bound to phosphoinositide 3-kinase (PI3K), MKK4, and MKK7, strongly inhibiting their kinase activities in an ATP-competitive manner. Moreover, in a xenograft mouse model, IAA significantly decreased tumor growth, volume, and weight of SK-MEL-28 xenografts. Collectively, these results suggest that PI3K, MKK4, and MKK7 are the primary molecular targets of IAA in the suppression of cell proliferation. This insight into the biologic actions of IAA provides a molecular basis for the potential development of a new chemotherapeutic agent. PMID:24104352

  12. Hyperactive RAS/PI3-K/MAPK Signaling Cascade in Migration and Adhesion of Nf1 Haploinsufficient Mesenchymal Stem/Progenitor Cells.

    PubMed

    Zhou, Yuan; He, Yongzheng; Sharma, Richa; Xing, Wen; Estwick, Selina A; Wu, Xiaohua; Rhodes, Steven D; Xu, Mingjiang; Yang, Feng-Chun

    2015-01-01

    Neurofibromatosis type 1 (NF1) is an autosomal dominant disease caused by mutations in the NF1 tumor suppressor gene, which affect approximately 1 out of 3000 individuals. Patients with NF1 suffer from a range of malignant and nonmalignant manifestations such as plexiform neurofibromas and skeletal abnormalities. We previously demonstrated that Nf1 haploinsufficiency in mesenchymal stem/progenitor cells (MSPCs) results in impaired osteoblastic differentiation, which may be associated with the skeletal manifestations in NF1 patients. Here we sought to further ascertain the role of Nf1 in modulating the migration and adhesion of MSPCs of the Nf1 haploinsufficient (Nf1(+/-)) mice. Nf1(+/-) MSPCs demonstrated increased nuclear-cytoplasmic ratio, increased migration, and increased actin polymerization as compared to wild-type (WT) MSPCs. Additionally, Nf1(+/-) MSPCs were noted to have significantly enhanced cell adhesion to fibronectin with selective affinity for CH271 with an overexpression of its complimentary receptor, CD49e. Nf1(+/-) MSPCs also showed hyperactivation of phosphoinositide 3-kinase (PI3-K) and mitogen activated protein kinase (MAPK) signaling pathways when compared to WT MSPCs, which were both significantly reduced in the presence of their pharmacologic inhibitors, LY294002 and PD0325901, respectively. Collectively, our study suggests that both PI3-K and MAPK signaling pathways play a significant role in enhanced migration and adhesion of Nf1 haploinsufficient MSPCs. PMID:26039236

  13. FAK mediates a compensatory survival signal parallel to PI3K-AKT in PTEN-null T-ALL cells.

    PubMed

    You, Dewen; Xin, Junping; Volk, Andrew; Wei, Wei; Schmidt, Rachel; Scurti, Gina; Nand, Sucha; Breuer, Eun-Kyoung; Kuo, Paul C; Breslin, Peter; Kini, Ameet R; Nishimura, Michael I; Zeleznik-Le, Nancy J; Zhang, Jiwang

    2015-03-31

    Mutations and inactivation of phosphatase and tensin homolog deleted from chromosome 10 (PTEN) are observed in 15%-25% of cases of human T cell acute lymphoblastic leukemia (T-ALL). Pten deletion induces myeloproliferative disorders (MPDs), acute myeloid leukemia (AML), and/or T-ALL in mice. Previous studies attributed Pten-loss-related hematopoietic defects and leukemogenesis to excessive activation of phosphatidylinositol 3-kinase (PI3K)/AKT/mTOR signaling. Although inhibition of this signal dramatically suppresses the growth of PTEN-null T-ALL cells in vitro, treatment with inhibitors of this pathway does not cause a complete remission in vivo. Here, we report that focal adhesion kinase (Fak), a protein substrate of Pten, also contributes to T-ALL development in Pten-null mice. Inactivation of the FAK signaling pathway by either genetic or pharmacologic methods significantly sensitizes both murine and human PTEN-null T-ALL cells to PI3K/AKT/mTOR inhibition when cultured in vitro on feeder layer cells or a matrix and in vivo. PMID:25801032

  14. The PI3K class III complex promotes axon pruning by downregulating a Ptc-derived signal via endosome-lysosomal degradation.

    PubMed

    Issman-Zecharya, Noa; Schuldiner, Oren

    2014-11-24

    Developmental axon pruning is essential for wiring the mature nervous system, but its regulation remains poorly understood. Here we show that the endosomal-lysosomal pathway regulates developmental pruning of Drosophila mushroom body γ neurons. We demonstrate that the UV radiation resistance-associated gene (UVRAG) functions together with all core components of the phosphatidylinositol 3-kinase class III (PI3K-cIII) complex to promote pruning via the endocytic pathway. By studying several PI(3)P binding proteins, we found that Hrs, a subunit of the ESCRT-0 complex, required for multivesicular body (MVB) maturation, is essential for normal pruning progression. Thus, we hypothesized the existence of an inhibitory signal that needs to be downregulated. Finally, our data suggest that the Hedgehog receptor, Patched, is the source of this inhibitory signal likely functioning in a Smo-independent manner. Taken together, our in vivo study demonstrates that the PI3K-cIII complex is essential for downregulating Patched via the endosomal-lysosomal pathway to execute axon pruning. PMID:25458013

  15. PI3K pan-inhibition impairs more efficiently proliferation and survival of T-cell acute lymphoblastic leukemia cell lines when compared to isoform-selective PI3K inhibitors

    PubMed Central

    Spartà, Antonino Maria; Chiarini, Francesca; Buontempo, Francesca; Evangelisti, Camilla; Evangelisti, Cecilia; Orsini, Ester; McCubrey, James A.; Martelli, Alberto Maria

    2015-01-01

    Class I phosphatidylinositol 3-kinases (PI3Ks) are frequently activated in T-cell acute lymphoblastic leukemia (T-ALL), mainly due to the loss of PTEN function. Therefore, targeting PI3Ks is a promising innovative approach for T-ALL treatment, however at present no definitive evidence indicated which is the better therapeutic strategy between pan or selective isoform inhibition, as all the four catalytic subunits might participate in leukemogenesis. Here, we demonstrated that in both PTEN deleted and PTEN non deleted T-ALL cell lines, PI3K pan-inhibition exerted the highest cytotoxic effects when compared to both selective isoform inhibition or dual p110γ/δ inhibition. Intriguingly, the dual p110γ/δ inhibitor IPI-145 was effective in Loucy cells, which are representative of early T-precursor (ETP)-ALL, a T-ALL subtype associated with a poor outcome. PTEN gene deletion did not confer a peculiar reliance of T-ALL cells on PI3K activity for their proliferation/survival, as PTEN was inactivated in PTEN non deleted cells, due to posttranslational mechanisms. PI3K pan-inhibition suppressed Akt activation and induced caspase-independent apoptosis. We further demonstrated that in some T-ALL cell lines, autophagy could exert a protective role against PI3K inhibition. Our findings strongly support clinical application of class I PI3K pan-inhibitors in T-ALL treatment, with the possible exception of ETP-ALL cases. PMID:25871383

  16. Arctigenin, a Potent Ingredient of Arctium lappa L., Induces Endothelial Nitric Oxide Synthase and Attenuates Subarachnoid Hemorrhage-Induced Vasospasm through PI3K/Akt Pathway in a Rat Model

    PubMed Central

    Chang, Chih-Zen; Wu, Shu-Chuan; Chang, Chia-Mao; Lin, Chih-Lung; Kwan, Aij-Lie

    2015-01-01

    Upregulation of protein kinase B (PKB, also known as Akt) is observed within the cerebral arteries of subarachnoid hemorrhage (SAH) animals. This study is of interest to examine Arctigenin, a potent antioxidant, on endothelial nitric oxide synthase (eNOS) and Akt pathways in a SAH in vitro study. Basilar arteries (BAs) were obtained to examine phosphatidylinositol-3-kinase (PI3K), phospho-PI3K, Akt, phospho-Akt (Western blot) and morphological examination. Endothelins (ETs) and eNOS evaluation (Western blot and immunostaining) were also determined. Arctigenin treatment significantly alleviates disrupted endothelial cells and tortured internal elastic layer observed in the SAH groups (p < 0.01). The reduced eNOS protein and phospho-Akt expression in the SAH groups were relieved by the treatment of Arctigenin (p < 0.01). This result confirmed that Arctigenin might exert dural effects in preventing SAH-induced vasospasm through upregulating eNOS expression via the PI3K/Akt signaling pathway and attenuate endothelins after SAH. Arctigenin shows therapeutic promise in the treatment of cerebral vasospasm following SAH. PMID:26539501

  17. Arctigenin, a Potent Ingredient of Arctium lappa L., Induces Endothelial Nitric Oxide Synthase and Attenuates Subarachnoid Hemorrhage-Induced Vasospasm through PI3K/Akt Pathway in a Rat Model.

    PubMed

    Chang, Chih-Zen; Wu, Shu-Chuan; Chang, Chia-Mao; Lin, Chih-Lung; Kwan, Aij-Lie

    2015-01-01

    Upregulation of protein kinase B (PKB, also known as Akt) is observed within the cerebral arteries of subarachnoid hemorrhage (SAH) animals. This study is of interest to examine Arctigenin, a potent antioxidant, on endothelial nitric oxide synthase (eNOS) and Akt pathways in a SAH in vitro study. Basilar arteries (BAs) were obtained to examine phosphatidylinositol-3-kinase (PI3K), phospho-PI3K, Akt, phospho-Akt (Western blot) and morphological examination. Endothelins (ETs) and eNOS evaluation (Western blot and immunostaining) were also determined. Arctigenin treatment significantly alleviates disrupted endothelial cells and tortured internal elastic layer observed in the SAH groups (p < 0.01). The reduced eNOS protein and phospho-Akt expression in the SAH groups were relieved by the treatment of Arctigenin (p < 0.01). This result confirmed that Arctigenin might exert dural effects in preventing SAH-induced vasospasm through upregulating eNOS expression via the PI3K/Akt signaling pathway and attenuate endothelins after SAH. Arctigenin shows therapeutic promise in the treatment of cerebral vasospasm following SAH. PMID:26539501

  18. PI3K/AKT and ERK regulate retinoic acid-induced neuroblastoma cellular differentiation

    SciTech Connect

    Qiao, Jingbo; Paul, Pritha; Lee, Sora; Qiao, Lan; Josifi, Erlena; Tiao, Joshua R.; Chung, Dai H.

    2012-08-03

    Highlights: Black-Right-Pointing-Pointer Retinoic acid (RA) induces neuroblastoma cells differentiation, which is accompanied by G0/G1 cell cycle arrest. Black-Right-Pointing-Pointer RA resulted in neuroblastoma cell survival and inhibition of DNA fragmentation; this is regulated by PI3K pathway. Black-Right-Pointing-Pointer RA activates PI3K and ERK1/2 pathway; PI3K pathway mediates RA-induced neuroblastoma cell differentiation. Black-Right-Pointing-Pointer Upregulation of p21 is necessary for RA-induced neuroblastoma cell differentiation. -- Abstract: Neuroblastoma, the most common extra-cranial solid tumor in infants and children, is characterized by a high rate of spontaneous remissions in infancy. Retinoic acid (RA) has been known to induce neuroblastoma differentiation; however, the molecular mechanisms and signaling pathways that are responsible for RA-mediated neuroblastoma cell differentiation remain unclear. Here, we sought to determine the cell signaling processes involved in RA-induced cellular differentiation. Upon RA administration, human neuroblastoma cell lines, SK-N-SH and BE(2)-C, demonstrated neurite extensions, which is an indicator of neuronal cell differentiation. Moreover, cell cycle arrest occurred in G1/G0 phase. The protein levels of cyclin-dependent kinase inhibitors, p21 and p27{sup Kip}, which inhibit cell proliferation by blocking cell cycle progression at G1/S phase, increased after RA treatment. Interestingly, RA promoted cell survival during the differentiation process, hence suggesting a potential mechanism for neuroblastoma resistance to RA therapy. Importantly, we found that the PI3K/AKT pathway is required for RA-induced neuroblastoma cell differentiation. Our results elucidated the molecular mechanism of RA-induced neuroblastoma cellular differentiation, which may be important for developing novel therapeutic strategy against poorly differentiated neuroblastoma.

  19. Rationale for targeting the PI3K/Akt/mTOR pathway in myeloproliferative neoplasms.

    PubMed

    Bartalucci, Niccolò; Guglielmelli, Paola; Vannucchi, Alessandro M

    2013-09-01

    The chronic myeloproliferative neoplasms (MPNs), are characterized by a Janus Kinase (JAK)-2 V617F point mutation but this molecular abnormality does not explain by itself the pathogenesis of these disorders, or the phenotypic diversity associated with essential thrombocythemia, polycythemia vera (PV), and myelofibrosis. Beyond the JAK/signal transducer and activator of transcription network, a wide number of molecular alterations were described in MPN including the fosfatidilinositolo-3-chinasi (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) pathway constitutive activation. Several pathway inhibitors were developed, including everolimus, up to the latest class of catalytic inhibitors such as BKM120 and BEZ235. In this review, we present some clinical and experimental evidence showing that the PI3K/Akt/mTOR pathway could represent a therapeutic target in MPNs. In in vitro studies, everolimus has been shown to inhibit cell proliferation and clonogenic potential in human and murine JAK2 V617F mutated cell lines. Patients with PV and primary myelofibrosis hematopoietic progenitors were significantly more sensitive to everolimus compared with healthy control subjects. Of much interest, a combination of everolimus and the JAK1/2 inhibitor, ruxolitinib, showed strong synergism in inducing cell cycle arrest and blockade of cell proliferation. Similar data were obtained using a dual PI3K/mTOR inhibitor, BEZ235, with activity that was also shown in preclinical murine models. A multicenter phase I/II trial with everolimus in myelofibrosis documented a well tolerated clinical efficiency in terms of spleen size reduction and resolution of systemic symptoms and pruritus. These observations indicate that the PI3K/Akt/mTOR pathway might represent a novel target for treatment in MPN. The synergism demonstrated in vitro with JAK2 inhibitors could open additional therapeutic possibilities based on concurrent targeting of different pathways that might optimize

  20. Detecting PTEN and PI3K signaling in brain

    PubMed Central

    Zhu, Guo; Baker, Suzanne J.

    2016-01-01

    Summary The central nervous system is comprised of multiple cell types including neurons, glia and other supporting cells that may differ dramatically in levels of signaling pathway activation. Immunohistochemistry in conjunction with drug interference are powerful tools that allow evaluation of signaling pathways in different cell types of the mouse central nervous system in vivo. Here we provide detailed protocols for immunohistochemistry to evaluate three essential components in the PI3K pathway in mouse brain: Pten, p-Akt and p-4ebp1, and for rapamycin treatment to modulate mTOR signaling in vivo. PMID:27033070

  1. ESAT-6 induced COX-2 expression involves coordinated interplay between PI3K and MAPK signaling.

    PubMed

    A, Senthil Kumar; Bansal, Kushagra; Holla, Sahana; Verma-Kumar, Shalu; Sharma, Pawan; Balaji, Kithiganahalli Narayanaswamy

    2012-01-01

    Macrophages, as sentinels of robust host immunity, are key regulators of innate immune responses against invading mycobacteria; however, pathogenic mycobacteria survive in the infected host by subverting host innate immunity. Infection dependent expression of early secreted antigenic target protein 6 (ESAT-6) by Mycobacterium tuberculosis is strongly correlated with subversion of innate immune responses against invading mycobacteria. As a part of multifaceted immunity to mycobacterial infection, induced expression of cyclooxygenase-2 (COX-2) may act as an important influencing factor towards effective host immunity. In the current investigation, we demonstrate that ESAT-6 triggers COX-2 expression both in vitro and in vivo in a TLR2 dependent manner. Signaling perturbation data suggest that signaling dynamics of PI3K and p38 and JNK1/2 MAPK assume critical importance in ESAT-6 triggered expression of COX-2 in macrophages. Interestingly, ESAT-6 triggered PI3K-MAPK signaling axis holds the capacity to regulate coordinated activation of NF-κB and AP-1. Overall, current investigation provides mechanistic insights into ESAT-6 induced COX-2 expression and unravels TLR2 mediated interplay of PI3K and MAPK signaling axis as a rate-determining step during intricate host immune responses. These findings would serve as a paradigm to understand pathogenesis of mycobacterial infection and clearly pave a way towards development of novel therapeutics. PMID:22154837

  2. p38 MAPK and PI3K/AKT Signalling Cascades inParkinson’s Disease

    PubMed Central

    Jha, Saurabh Kumar; Jha, Niraj Kumar; Kar, Rohan; Ambasta, Rashmi K; Kumar, Pravir

    2015-01-01

    Parkinson's disease (PD) is a chronic neurodegenerative condition which has the second largest incidence rate among all other neurodegenerative disorders barring Alzheimer's disease (AD). Currently there is no cure and researchers continue to probe the therapeutic prospect in cell cultures and animal models of PD. Out of the several factors contributing to PD prognosis, the role of p38 MAPK (Mitogen activated protein-kinase) and PI3K/AKT signalling module in PD brains is crucial because the impaired balance between the pro- apoptotic and anti-apoptotic pathways trigger unwanted phenotypes such as microglia activation, neuroinflammation, oxidative stress and apoptosis. These factors continue challenging the brain homeostasis in initial stages thereby essentially assisting the dopaminergic (DA) neurons towards progressive degeneration in PD. Neurotherapeutics against PD shall then be targeted against the misregulated accomplices of the p38 and PI3K/AKT cascades. In this review, we have outlined many such established mechanisms involving the p38 MAPK and PI3K/AKT pathways which can offer therapeutic windows for the rectification of aberrant DA neuronal dynamics in PD brains. PMID:26261796

  3. Involvement of IGF-1 and MEOX2 in PI3K/Akt1/2 and ERK1/2 pathways mediated proliferation and differentiation of perivascular adipocytes

    SciTech Connect

    Liu, Ping; Kong, Feng; Wang, Jue; Lu, Qinghua; Xu, Haijia; Qi, Tonggang; Meng, Juan

    2015-02-01

    Perivascular adipocyte (PVAC) proliferation and differentiation were closely involved in cardiovascular disease. We aimed to investigate whether phosphatidylinositol 3-kinase (PI3K) and mitogen-activated protein kinase (MAPK) signaling pathways enhance PVAC functions activated by insulin-like growth factor 1(IGF-1) and suppressed by mesenchyme homeobox 2 (MEOX2). In this study, PVACs from primary culture were cultured and induced to differentiate. Cell viability assays demonstrated that IGF-1 promoted PVAC proliferation and differentiation. However MEOX2 counteracted these IGF-1-mediated actions. Flow Cytometry revealed that IGF-1 increased S phase cells and decreased apoptosis; however, MEOX2 decreased S phase cells, increased G0–G1 phase cells, and promoted apoptosis. During PVAC proliferation and differentiation, IGF-1 activated PI3K/Akt1/2 and ERK1/2 signaling pathways, upregulated the expression of these signaling proteins and FAS, and increased PVAC lipid content. In contrast, MEOX2 constrained the phosphorylation of ERK1/2 and Akt1/2 protein, down-regulated these signaling molecules and FAS, and decreased PVAC lipid content. Instead, MEOX2 knockdown enhanced the ERK1/2 and Akt1/2 phosphorylation, augmented the expression of these signaling molecules and FAS, and increased PVAC lipid content. Our findings suggested that PI3K/Akt1/2 and ERK1/2 activation mediated by IGF-1 is essential for PVAC proliferation and differentiation, and MEOX2 is a promising therapeutic gene to intervene in the signaling pathways and inhibit PVAC functions. - Highlights: • IGF-1 activated PI3K/Akt2 and ERK1/2 pathways to mediate PVAC proliferation and differentiation. • The expression of ERK1, ERK 2, PI3K, Akt1 and Akt2 showed different change trends between PVAC proliferation and differentiation. • MEOX2 effectively expressed in PVAC, increased early and late cellular apoptosis, and inhibited its proliferation. • MEOX2 depressed PVAC differentiation and FAS expression

  4. Involvement of PI3K/Akt/FoxO3a and PKA/CREB Signaling Pathways in the Protective Effect of Fluoxetine Against Corticosterone-Induced Cytotoxicity in PC12 Cells.

    PubMed

    Zeng, Bingqing; Li, Yiwen; Niu, Bo; Wang, Xinyi; Cheng, Yufang; Zhou, Zhongzhen; You, Tingting; Liu, Yonggang; Wang, Haitao; Xu, Jiangping

    2016-08-01

    The selective serotonin reuptake inhibitor fluoxetine is neuroprotective in several brain injury models. It is commonly used to treat major depressive disorder and related conditions, but its mechanism of action remains incompletely understood. Activation of the phosphatidylinositol-3-kinase/protein kinase B/forkhead box O3a (PI3K/Akt/FoxO3a) and protein kinase A/cAMP-response element binding protein (PKA/CREB) signaling pathways has been strongly implicated in the pathogenesis of depression and might be the downstream target of fluoxetine. Here, we used PC12 cells exposed to corticosterone (CORT) to study the neuroprotective effects of fluoxetine and the involvement of the PI3K/Akt/FoxO3a and PKA/CREB signaling pathways. Our results show that CORT reduced PC12 cells viability by 70 %, and that fluoxetine showed a concentration-dependent neuroprotective effect. Neuroprotective effects of fluoxetine were abolished by inhibition of PI3K, Akt, and PKA using LY294002, KRX-0401, and H89, respectively. Treatment of PC12 cells with fluoxetine resulted in increased phosphorylation of Akt, FoxO3a, and CREB. Fluoxetine also dose-dependently rescued the phosphorylation levels of Akt, FoxO3a, and CREB, following administration of CORT (from 99 to 110, 56 to 170, 80 to 170 %, respectively). In addition, inhibition of PKA and PI3K/Akt resulted in decreased levels of p-CREB, p-Akt, and p-FoxO3a in the presence of fluoxetine. Furthermore, fluoxetine reversed CORT-induced upregulation of p53-upregulated modulator of apoptosis (Puma) and Bcl-2-interacting mediator of cell death (Bim) via the PI3K/Akt/FoxO3a signaling pathway. H89 treatment reversed the effect of fluoxetine on the mRNA level of brain-derived neurotrophic factor, which was decreased in the presence of CORT. Our data indicate that fluoxetine elicited neuroprotection toward CORT-induced cell death that involves dual regulation from PI3K/Akt/FoxO3a and PKA/CREB pathways. PMID:27412469

  5. Salidroside Improves Behavioral and Histological Outcomes and Reduces Apoptosis via PI3K/Akt Signaling after Experimental Traumatic Brain Injury

    PubMed Central

    Chen, Szu-Fu; Tsai, Hsin-Ju; Hung, Tai-Ho; Chen, Chien-Cheng; Lee, Chao Yu; Wu, Chun-Hu; Wang, Pei-Yi; Liao, Nien-Chieh

    2012-01-01

    Background Traumatic brain injury (TBI) induces a complex sequence of apopototic cascades that contribute to secondary tissue damage. The aim of this study was to investigate the effects of salidroside, a phenolic glycoside with potent anti-apoptotic properties, on behavioral and histological outcomes, brain edema, and apoptosis following experimental TBI and the possible involvement of the phosphoinositide 3-kinase/protein kinase B (PI3K)/Akt signaling pathway. Methodology/Principal Findings Mice subjected to controlled cortical impact injury received intraperitoneal salidroside (20, or 50 mg/kg) or vehicle injection 10 min after injury. Behavioral studies, histology analysis and brain water content assessment were performed. Levels of PI3K/Akt signaling-related molecules, apoptosis-related proteins, cytochrome C (CytoC), and Smac/DIABLO were also analyzed. LY294002, a PI3K inhibitor, was administered to examine the mechanism of protection. The protective effect of salidroside was also investigated in primary cultured neurons subjected to stretch injury. Treatment with 20 mg/kg salidroside_significantly improved functional recovery and reduced brain tissue damage up to post-injury day 28. Salidroside_also significantly reduced neuronal death, apoptosis, and brain edema at day 1. These changes were associated with significant decreases in cleaved caspase-3, CytoC, and Smac/DIABLO at days 1 and 3. Salidroside increased phosphorylation of Akt on Ser473 and the mitochondrial Bcl-2/Bax ratio at day 1, and enhanced phosphorylation of Akt on Thr308 at day 3. This beneficial effect was abolished by pre-injection of LY294002. Moreover, delayed administration of salidroside at 3 or 6 h post-injury reduced neuronal damage at day 1. Salidroside treatment also decreased neuronal vulnerability to stretch-induced injury in vitro. Conclusions/Significance Post-injury salidroside improved long-term behavioral and histological outcomes and reduced brain edema and apoptosis

  6. Intracellular reactive oxygen species are essential for PI3K/Akt/mTOR-dependent IL-7-mediated viability of T-cell acute lymphoblastic leukemia cells.

    PubMed

    Silva, A; Gírio, A; Cebola, I; Santos, C I; Antunes, F; Barata, J T

    2011-06-01

    Interleukin-7 (IL-7) activates phosphoinositide 3-kinase/Akt/mammalian target of rapamycin (PI3K/Akt/mTOR) pathway, thereby mediating viability, proliferation and growth of T-cell acute lymphoblastic leukemia (T-ALL) cells. Reactive oxygen species (ROS) can be upregulated by growth factors and are known to regulate proliferation and viability. Here, we show that IL-7 upregulates ROS in T-ALL cells in a manner that is dependent on PI3K/Akt/mTOR pathway activity and that relies on both NADPH oxidase and mitochondrial respiratory chain. Conversely, IL-7-induced activation of PI3K signaling pathway requires mitochondrial respiration and ROS. We have previously shown that IL-7-mediated activation of PI3K pathway drives the upregulation of the glucose transporter Glut1, promoting glucose uptake in T-ALL cells. Using phloretin to inhibit Glut function, we demonstrate that glucose uptake is mandatory for ROS upregulation in IL-7-treated T-ALL cells, suggesting that IL-7 stimulation leads to increased ROS via PI3K pathway activation and consequent upregulation of Glut1 and glucose uptake. Overall, our data reveal the existence of a critical crosstalk between PI3K/Akt signaling pathway and ROS that is essential for IL-7-mediated T-ALL cell survival, and that may constitute a novel target for therapeutic intervention. PMID:21455214

  7. Yes and PI3K bind CD95 to signal invasion of glioblastoma.

    PubMed

    Kleber, Susanne; Sancho-Martinez, Ignacio; Wiestler, Benedict; Beisel, Alexandra; Gieffers, Christian; Hill, Oliver; Thiemann, Meinolf; Mueller, Wolf; Sykora, Jaromir; Kuhn, Andreas; Schreglmann, Nina; Letellier, Elisabeth; Zuliani, Cecilia; Klussmann, Stefan; Teodorczyk, Marcin; Gröne, Hermann-Josef; Ganten, Tom M; Sültmann, Holger; Tüttenberg, Jochen; von Deimling, Andreas; Regnier-Vigouroux, Anne; Herold-Mende, Christel; Martin-Villalba, Ana

    2008-03-01

    Invasion of surrounding brain tissue by isolated tumor cells represents one of the main obstacles to a curative therapy of glioblastoma multiforme. Here we unravel a mechanism regulating glioma infiltration. Tumor interaction with the surrounding brain tissue induces CD95 Ligand expression. Binding of CD95 Ligand to CD95 on glioblastoma cells recruits the Src family member Yes and the p85 subunit of phosphatidylinositol 3-kinase to CD95, which signal invasion via the glycogen synthase kinase 3-beta pathway and subsequent expression of matrix metalloproteinases. In a murine syngeneic model of intracranial GBM, neutralization of CD95 activity dramatically reduced the number of invading cells. Our results uncover CD95 as an activator of PI3K and, most importantly, as a crucial trigger of basal invasion of glioblastoma in vivo. PMID:18328427

  8. miR-93 Promotes Cell Proliferation in Gliomas through Activation of PI3K/Akt Signaling Pathway

    PubMed Central

    Jiang, Lili; Wang, Chanjuan; Lei, Fangyong; Zhang, Longjuan; Zhang, Xin; Liu, Aibin; Wu, Geyan; Zhu, Jinrong; Song, Libing

    2015-01-01

    The PI3K/Akt signaling pathway is frequently activated in various human cancer types and plays essential roles in development and progression of cancers. Multiple regulators, such as phosphatase and tensin homolog (PTEN) and PH domain leucine rich repeat protein phosphatases (PHLPP), have also found to be involved in suppression of the PI3K/Akt signaling pathway. However, how suppressive effects mediated by these regulators are concomitantly disrupted in cancers, which display constitutively activated PI3K/Akt signaling, remains puzzling. In the present study, we reported that the expression of miR-93 was markedly upregulated in glioma cell lines and clinical glioma tissues. Statistical analysis revealed that miR-93 levels significantly correlated with clinicopathologic grade and overall survival in gliomas. Furthermore, we found that overexpressing miR-93 promoted, but inhibition of miR-93 reduced, glioma cell proliferation and cell-cycle progression. We demonstrated that miR-93 activated PI3K/Akt signaling through directly suppressing PTEN, PHLPP2 and FOXO3 expression via targeting their 3′UTRs. Therefore, our results suggest that miR-93 might play an important role in glioma progression and uncover a novel mechanism for constitutive PI3K/Akt activation in gliomas. PMID:25823655

  9. A novel PI3K inhibitor PIK-C98 displays potent preclinical activity against multiple myeloma

    PubMed Central

    Yu, Yang; Qi, Huixin; Han, Kunkun; Tang, Juan; Zhang, Zubin; Zeng, Yuanying; Cao, Biyin; Qiao, Chunhua; Zhang, Hongjian; Hou, Tingjun; Mao, Xinliang

    2015-01-01

    Recent clinical trials have demonstrated targeting PI3K pathway is a promising strategy for the treatment of blood cancers. To identify novel PI3K inhibitors, we performed a high throughput virtual screen and identified several novel small molecule compounds, including PIK-C98 (C98). The cell-free enzymatic studies showed that C98 inhibited all class I PI3Ks at nano- or low micromolar concentrations but had no effects on AKT or mTOR activity. Molecular docking analysis revealed that C98 interfered with the ATP-binding pockets of PI3Ks by forming H-bonds and arene-H interactions with specific amino acid residues. The cellular assays demonstrated that C98 specifically inhibited PI3K/AKT/mTOR signaling pathway, but had no effects on other kinases and proteins including IGF-1R, ERK, p38, c-Src, PTEN, and STAT3. Inhibition of PI3K by C98 led to myeloma cell apoptosis. Furthermore, oral administration of C98 delayed tumor growth in two independent human myeloma xenograft models in nude mice but did not show overt toxicity. Pharmacokinetic analyses showed that C98 was well penetrated into myeloma tumors. Therefore, through a high throughput virtual screen we identified a novel PI3K inhibitor that is orally active against multiple myeloma with great potential for further development. PMID:25474140

  10. 17β-Estradiol modulates the prolactin secretion induced by TRH through membrane estrogen receptors via PI3K/Akt in female rat anterior pituitary cell culture.

    PubMed

    Sosa, Liliana d V; Gutiérrez, Silvina; Petiti, Juan P; Palmeri, Claudia M; Mascanfroni, Iván D; Soaje, Marta; De Paul, Ana L; Torres, Alicia I

    2012-05-01

    Considering that estradiol is a major modulator of prolactin (PRL) secretion, the aim of the present study was to analyze the role of membrane estradiol receptor-α (mERα) in the regulatory effect of this hormone on the PRL secretion induced by thyrotropin-releasing hormone (TRH) by focusing on the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) pathway activation. Anterior pituitary cell cultures from female rats were treated with 17β-estradiol (E(2), 10 nM) and its membrane-impermeable conjugated estradiol (E(2)-BSA, 10 nM) alone or coincubated with TRH (10 nM) for 30 min, with PRL levels being determined by RIA. Although E(2), E(2)-BSA, TRH, and E(2)/TRH differentially increased the PRL secretion, the highest levels were achieved with E(2)-BSA/TRH. ICI-182,780 did not modify the TRH-induced PRL release but significantly inhibited the PRL secretion promoted by E(2) or E(2)-BSA alone or in coincubation with TRH. The PI3K inhibitors LY-294002 and wortmannin partially inhibited the PRL release induced by E(2)-BSA, TRH, and E(2)/TRH and totally inhibited the PRL levels stimulated by E(2)-BSA/TRH, suggesting that the mER mediated the cooperative effect of E(2) on TRH-induced PRL release through the PI3K pathway. Also, the involvement of this kinase was supported by the translocation of its regulatory subunit p85α from the cytoplasm to the plasma membrane in the lactotroph cells treated with E(2)-BSA and TRH alone or in coincubation. A significant increase of phosphorylated Akt was induced by E(2)-BSA/TRH. Finally, the changes of ERα expression in the plasmalemma of pituitary cells were examined by confocal microscopy and flow cytometry, which revealed that the mobilization of intracellular ERα to the plasma membrane of lactotroph cells was only induced by E(2). These finding showed that E(2) may act as a modulator of the secretory response of lactotrophs induced by TRH through mER, with the contribution by PI3K/Akt pathway activation providing a new

  11. A frequent kinase domain mutation that changes the interaction between PI3K[alpha] and the membrane

    SciTech Connect

    Mandelker, Diana; Gabelli, Sandra B.; Schmidt-Kittler, Oleg; Zhu, Jiuxiang; Cheong, Ian; Huang, Chuan-Hsiang; Kinzler, Kenneth W.; Vogelstein, Bert; Amzel, L. Mario

    2009-12-01

    Mutations in oncogenes often promote tumorigenesis by changing the conformation of the encoded proteins, thereby altering enzymatic activity. The PIK3CA oncogene, which encodes p110{alpha}, the catalytic subunit of phosphatidylinositol 3-kinase alpha (PI3K{alpha}), is one of the two most frequently mutated oncogenes in human cancers. We report the structure of the most common mutant of p110{alpha} in complex with two interacting domains of its regulatory partner (p85{alpha}), both free and bound to an inhibitor (wortmannin). The N-terminal SH2 (nSH2) domain of p85{alpha} is shown to form a scaffold for the entire enzyme complex, strategically positioned to communicate extrinsic signals from phosphopeptides to three distinct regions of p110{alpha}. Moreover, we found that Arg-1047 points toward the cell membrane, perpendicular to the orientation of His-1047 in the WT enzyme. Surprisingly, two loops of the kinase domain that contact the cell membrane shift conformation in the oncogenic mutant. Biochemical assays revealed that the enzymatic activity of the p110{alpha} His1047Arg mutant is differentially regulated by lipid membrane composition. These structural and biochemical data suggest a previously undescribed mechanism for mutational activation of a kinase that involves perturbation of its interaction with the cellular membrane.

  12. AKT hyper-phosphorylation associated with PI3K mutations in lymphatic endothelial cells from a patient with lymphatic malformation

    PubMed Central

    Boscolo, Elisa; Coma, Silvia; Luks, Valerie L.; Greene, Arin; Klagsbrun, Michael; Warman, Matthew L.; Bischoff, Joyce

    2014-01-01

    Lymphatic malformations (LM) are characterized by abnormal formation of lymphatic vessels and tissue overgrowth. The lymphatic vessels present in LM lesions may become blocked and enlarged as lymphatic fluid collects, forming a mass or cyst. Lesions are typically diagnosed during childhood, and are often disfiguring and life threatening. Available treatments consist of sclerotherapy, surgical removal and therapies to diminish complications. We isolated lymphatic endothelial cells (LM-LEC) from a surgically removed microcystic LM lesion. LM-LEC and normal human dermal-LEC (HD-LEC) expressed endothelial (CD31, VE-Cadherin) as well as lymphatic endothelial (Podoplanin, PROX1, LYVE1)-specific markers. Targeted gene sequencing analysis in patient-derived LM-LEC revealed the presence of two mutations in class I phosphoinositide 3-kinases (PI3K) genes. One is an inherited, premature stop codon in the PI3K regulatory subunit PIK3R3. The second is a somatic missense mutation in the PI3K catalytic subunit PIK3CA; this mutation has been found in association with overgrowth syndromes and cancer growth. LM-LEC exhibited angiogenic properties: both cellular proliferation and sprouting in collagen were significantly increased compared to HD-LEC. AKT-Thr308 was constitutively hyper-phosphorylated in LM-LEC. Treatment of LM-LEC with PI3-Kinase inhibitors Wortmannin and LY294 decreased cellular proliferation and prevented the phosphorylation of AKT-Thr308 in both HD-LEC and LM-LEC. Treatment with the mTOR inhibitor rapamycin also diminished cellular proliferation, sprouting and AKT phosphorylation, but only in LM-LEC. Our results implicate disrupted PI3K-AKT signaling in LEC isolated from a human lymphatic malformation lesion. PMID:25424831

  13. Structure-Based Design of an Organoruthenium Phosphatidyl-inositol-3-Kinase Inhibitor Reveals a Switch Governing Lipid Kinase Potency and Selectivity

    SciTech Connect

    Xie,P.; Williams, D.; Atilla-Gokcumen, G.; Milk, L.; Xiao, M.; Smalley, K.; Herlyn, M.; Meggers, E.; Marmorstein, R.

    2008-01-01

    Mutations that constitutively activate the phosphatidyl-inositol-3-kinase (PI3K) signaling pathway, including alterations in PI3K, PTEN, and AKT, are found in a variety of human cancers, implicating the PI3K lipid kinase as an attractive target for the development of therapeutic agents to treat cancer and other related diseases. In this study, we report on the combination of a novel organometallic kinase inhibitor scaffold with structure-based design to develop a PI3K inhibitor, called E5E2, with an IC50 potency in the mid-low-nanomolar range and selectivity against a panel of protein kinases. We also show that E5E2 inhibits phospho-AKT in human melanoma cells and leads to growth inhibition. Consistent with a role for the PI3K pathway in tumor cell invasion, E5E2 treatment also inhibits the migration of melanoma cells in a 3D spheroid assay. The structure of the PI3K?/E5E2 complex reveals the molecular features that give rise to this potency and selectivity toward lipid kinases with implications for the design of a subsequent generation of PI3K-isoform-specific organometallic inhibitors.

  14. A Screen for Novel Phosphoinositide 3-kinase Effector Proteins*

    PubMed Central

    Dixon, Miles J.; Gray, Alexander; Boisvert, François-Michel; Agacan, Mark; Morrice, Nicholas A.; Gourlay, Robert; Leslie, Nicholas R.; Downes, C. Peter; Batty, Ian H.

    2011-01-01

    Class I phosphoinositide 3-kinases exert important cellular effects through their two primary lipid products, phosphatidylinositol 3,4,5-trisphosphate and phosphatidylinositol 3,4-bisphosphate (PtdIns(3,4)P2). As few molecular targets for PtdIns(3,4)P2 have yet been identified, a screen for PI 3-kinase-responsive proteins that is selective for these is described. This features a tertiary approach incorporating a unique, primary recruitment of target proteins in intact cells to membranes selectively enriched in PtdIns(3,4)P2. A secondary purification of these proteins, optimized using tandem pleckstrin homology domain containing protein-1 (TAPP-1), an established PtdIns(3,4)P2 selective ligand, yields a fraction enriched in proteins of potentially similar lipid binding character that are identified by liquid chromatography-tandem MS. Thirdly, this approach is coupled to stable isotope labeling with amino acids in cell culture using differential isotope labeling of cells stimulated in the absence and presence of the PI 3-kinase inhibitor wortmannin. This provides a ratio-metric readout that distinguishes authentically responsive components from copurifying background proteins. Enriched fractions thus obtained from astrocytoma cells revealed a subset of proteins that exhibited ratios indicative of their initial, cellular responsiveness to PI 3-kinase activation. The inclusion among these of tandem pleckstrin homology domain containing protein-1, three isoforms of Akt, switch associated protein-70, early endosome antigen-1 and of additional proteins expressing recognized lipid binding domains demonstrates the utility of this strategy and lends credibility to the novel candidate proteins identified. The latter encompass a broad set of proteins that include the gene product of TBC1D2A, a putative Rab guanine nucleotide triphosphatase activating protein (GAP) and IQ motif containing GAP1, a potential tumor promoter. A sequence comparison of the former protein indicates

  15. Metformin inhibits the proliferation of A431 cells by modulating the PI3K/Akt signaling pathway

    PubMed Central

    LIU, YINGSHAN; ZHANG, YAN; JIA, KUN; DONG, YUHAO; MA, WEIYUAN

    2015-01-01

    The ability of metformin, an antidiabetic drug with wide applications, to inhibit tumor cell growth has recently been discovered. The PI3K/Akt signaling pathway has been found to play an important role in the survival, proliferation and apoptosis of tumor cells. The aim of the present study was to explore the effect of metformin on the proliferation of A431 human squamous cell carcinoma cells and the underlying molecular mechanisms. A431 cells in the logarithmic growth phase were treated with 0, 15, 30, 45 and 60 mM metformin for 12, 24 and 36 h, respectively. Cell morphology with 45 mM metformin treatment for 24 h was observed under a microscope. The proliferation of A431 cells was detected by the Cell Counting kit-8 colorimetric method. The mRNA expression levels of PI3K and Akt were detected by reverse transcription-polymerase chain reaction (RT-PCR). The protein expression levels of PI3K, Akt and phosphorylated (p)-Akt were detected by western blot analysis. Metformin treatment caused morphological change in A431 cells and inhibited their proliferation in a significant time- and dose-dependent manner. RT-PCR results showed that the mRNA expression of PI3K was inhibited by metformin in a time- and dose-dependent manner (P<0.05). However, there was no significant change in the mRNA expression of Akt following metformin treatment (P>0.05). Western blotting results showed that the protein expression levels of PI3K and p-Akt were inhibited by metformin in a time- and dose-dependent manner (P<0.05). In conclusion, metformin significantly inhibited the proliferation of A431 cells in the current study, which may be strongly associated with the inhibition of the PI3K/Akt signaling pathway. PMID:25780442

  16. Activation of transient receptor potential vanilloid 4 induces apoptosis in hippocampus through downregulating PI3K/Akt and upregulating p38 MAPK signaling pathways

    PubMed Central

    Jie, P; Hong, Z; Tian, Y; Li, Y; Lin, L; Zhou, L; Du, Y; Chen, L; Chen, L

    2015-01-01

    Transient receptor potential vanilloid 4 (TRPV4) is a calcium-permeable cation channel that is sensitive to cell swelling, arachidonic acid and its metabolites, epoxyeicosatrienoic acids, which are associated with cerebral ischemia. The activation of TRPV4 induces cytotoxicity in many types of cells, accompanied by an increase in the intracellular free calcium concentration. TRPV4 activation modulates the mitogen-activated protein kinase (MAPK) and phosphatidyl inositol 3 kinase (PI3K)/ protein kinase B (Akt) signaling pathways that regulate cell death and survival. Herein, we examined TRPV4-induced neuronal apoptosis by intracerebroventricular (ICV) injection of a TRPV4 agonist (GSK1016790A) and assessed its involvement in cerebral ischemic injury. ICV injection of GSK1016790A dose-dependently induced apoptosis in the mouse hippocampi (GSK-injected mice). The protein level of phosphorylated p38 MAPK (p-p38 MAPK) was markedly increased and that of phosphorylated c-Jun N-terminal protein kinase (p-JNK) was virtually unchanged. TRPV4 activation also decreased Bcl-2/Bax protein ratio and increased the cleaved caspase-3 protein level, and these effects were blocked by a PI3K agonist and a p38 MAPK antagonist, but were unaffected by a JNK antagonist. ICV injection of the TRPV4 antagonist HC-067047 reduced brain infarction after reperfusion for 48 h in mice with middle cerebral artery occlusion (MCAO). In addition, HC-067047 treatment attenuated the decrease in the phosphorylated Akt protein level and the increase in p-p38 MAPK protein level at 48 h after MCAO, while the increase in p-JNK protein level remained unchanged. Finally, the decreased Bcl-2/Bax protein ratio and the increased cleaved caspase-3 protein level at 48 h after MCAO were markedly attenuated by HC-067047. We conclude that activation of TRPV4 induces apoptosis by downregulating PI3K/Akt and upregulating p38 MAPK signaling pathways, which is involved in cerebral ischemic injury. PMID:26043075

  17. Insulin Receptor Substrate 1, the Hub Linking Follicle-stimulating Hormone to Phosphatidylinositol 3-Kinase Activation.

    PubMed

    Law, Nathan C; Hunzicker-Dunn, Mary E

    2016-02-26

    The ubiquitous phosphatidylinositol 3-kinase (PI3K) signaling pathway regulates many cellular functions. However, the mechanism by which G protein-coupled receptors (GPCRs) signal to activate PI3K is poorly understood. We have used ovarian granulosa cells as a model to investigate this pathway, based on evidence that the GPCR agonist follicle-stimulating hormone (FSH) promotes the protein kinase A (PKA)-dependent phosphorylation of insulin receptor substrate 1 (IRS1) on tyrosine residues that activate PI3K. We report that in the absence of FSH, granulosa cells secrete a subthreshold concentration of insulin-like growth factor-1 (IGF-1) that primes the IGF-1 receptor (IGF-1R) but fails to promote tyrosine phosphorylation of IRS1. FSH via PKA acts to sensitize IRS1 to the tyrosine kinase activity of the IGF-1R by activating protein phosphatase 1 (PP1) to promote dephosphorylation of inhibitory Ser/Thr residues on IRS1, including Ser(789). Knockdown of PP1β blocks the ability of FSH to activate PI3K in the presence of endogenous IGF-1. Activation of PI3K thus requires both PKA-mediated relief of IRS1 inhibition and IGF-1R-dependent tyrosine phosphorylation of IRS1. Treatment with FSH and increasing concentrations of exogenous IGF-1 triggers synergistic IRS1 tyrosine phosphorylation at PI3K-activating residues that persists downstream through protein kinase B (AKT) and FOXO1 (forkhead box protein O1) to drive synergistic expression of genes that underlies follicle maturation. Based on the ability of GPCR agonists to synergize with IGFs to enhance gene expression in other cell types, PP1 activation to relieve IRS1 inhibition may be a more general mechanism by which GPCRs act with the IGF-1R to activate PI3K/AKT. PMID:26702053

  18. The estrogen-dependent baroreflex dysfunction caused by nicotine in female rats is mediated via NOS/HO inhibition: Role of sGC/PI3K/MAPKERK.

    PubMed

    Fouda, Mohamed A; El-Gowelli, Hanan M; El-Gowilly, Sahar M; El-Mas, Mahmoud M

    2015-12-15

    We have previously reported that estrogen (E2) exacerbates the depressant effect of chronic nicotine on arterial baroreceptor activity in female rats. Here, we tested the hypothesis that this nicotine effect is modulated by nitric oxide synthase (NOS) and/or heme oxygenase (HO) and their downstream soluble guanylate cyclase (sGC)/phosphatidylinositol 3-kinase (PI3K)/mitogen-activated protein kinases (MAPKs) signaling. We investigated the effects of (i) inhibition or facilitation of NOS or HO on the interaction of nicotine (2mg/kg/day i.p., 2 weeks) with reflex bradycardic responses to phenylephrine in ovariectomized (OVX) rats treated with E2 or vehicle, and (ii) central pharmacologic inhibition of sGC, PI3K, or MAPKs on the interaction. The data showed that the attenuation by nicotine of reflex bradycardia in OVXE2 rats was abolished after treatment with hemin (HO inducer) or l-arginine (NOS substrate). The hemin or l-arginine effect disappeared after inhibition of NOS (Nω-Nitro-l-arginine methyl ester hydrochloride, L-NAME) and HO (zinc protoporphyrin IX, ZnPP), respectively, denoting the interaction between the two enzymatic pathways. E2-receptor blockade (ICI 182,780) reduced baroreflexes in OVXE2 rats but had no effect on baroreflex improvement induced by hemin or l-arginine. Moreover, baroreflex enhancement by hemin was eliminated following intracisternal (i.c.) administration of wortmannin, ODQ, or PD98059 (inhibitors of PI3K, sGC, and extracellular signal-regulated kinases, MAPKERK, respectively). In contrast, the hemin effect was preserved after inhibition of MAPKp38 (SB203580) or MAPKJNK (SP600125). Overall, NOS/HO interruption underlies baroreflex dysfunction caused by nicotine in female rats and the facilitation of NOS/HO-coupled sGC/PI3K/MAPKERK signaling might rectify the nicotine effect. PMID:26597895

  19. Protective Effect of Tempol on Acute Kidney Injury Through PI3K/Akt/Nrf2 Signaling Pathway

    PubMed Central

    Zhang, Gensheng; Wang, Qiaoling; Zhou, Qin; Wang, Renjun; Xu, Minze; Wang, Huiping; Wang, Lei; Wilcox, Christopher S.; Liu, Ruisheng; Lai, En Yin

    2016-01-01

    Background/Aims Tempol is a protective antioxidant against ischemic injury in many animal models. The molecular mechanisms are not well understood. Nuclear factor erythroid 2-related factor (Nrf2) is a master transcription factor during oxidative stress, which is enhanced by activation of protein kinase C (PKC) pathway. Another factor, tubular epithelial apoptosis, is mediated by activation of phosphoinositide 3-kinase (PI3K)/protein kinase B (PKB, Akt) signaling pathway during renal ischemic injury. We tested the hypothesis that tempol activates PKC or PI3K/Akt/Nrf2 pathways to transcribe many genes that coordinate endogenous antioxidant defense. Methods The right renal pedicle was clamped for 45 minutes and the left kidney was removed to study renal ischemia/reperfusion (I/R) injury in C57BL/6 mice. The response was assessed from serum parameters, renal morphology and renal expression of PKC, phosphorylated-PKC (p-PKC), Nrf2, heme oxygenase-1 (HO-1), Akt, phosphorylated-Akt (p-Akt), pro-caspase-3 and cleaved caspase-3 in groups of sham and I/R mice given vehicle, or tempol (50 or 100 mg/kg, intraperitoneal injection). Results The serum malondialdehyde (MDA, marker of reactive oxygen species) doubled and the BUN and creatinine increased 5- to 10-fold after I/R injury. Tempol (50 or 100 mg/kg) prevented the increases in MDA but only tempol (50 mg/kg) lessened the increases in BUN and creatinine and moderated the acute tubular necrosis. I/R did not change expression of PKC or p-PKC but reduced renal expression of Nrf2, p-Akt, HO-1 and pro-caspase-3 and increased cleaved caspase-3. Tempol (50 mg/kg) prevented these changes produced by I/R whereas tempol (100 mg/kg) had lesser or inconsistent effects. Conclusion Tempol (50 mg/kg) prevents lipid peroxidation and attenuates renal damage after I/R injury. The beneficial pathway apparently is not dependent on upregulation or phosphorylation of PKC, at lower tempol doses, does implicate upregulation of Akt with expression

  20. Inhibition of PI3K/BMX Cell Survival Pathway Sensitizes to BH3 Mimetics in SCLC.

    PubMed

    Potter, Danielle S; Galvin, Melanie; Brown, Stewart; Lallo, Alice; Hodgkinson, Cassandra L; Blackhall, Fiona; Morrow, Christopher J; Dive, Caroline

    2016-06-01

    Most small cell lung cancer (SCLC) patients are initially responsive to cytotoxic chemotherapy, but almost all undergo fatal relapse with progressive disease, highlighting an urgent need for improved therapies and better patient outcomes in this disease. The proapoptotic BH3 mimetic ABT-737 that targets BCL-2 family proteins demonstrated good single-agent efficacy in preclinical SCLC models. However, so far clinical trials of the BH3 mimetic Navitoclax have been disappointing. We previously demonstrated that inhibition of a PI3K/BMX cell survival signaling pathway sensitized colorectal cancer cells to ABT-737. Here, we show that SCLC cell lines, which express high levels of BMX, become sensitized to ABT-737 upon inhibition of PI3K in vitro, and this is dependent on inhibition of the PI3K-BMX-AKT/mTOR signaling pathway. Consistent with these cell line data, when combined with Navitoclax, PI3K inhibition suppressed tumor growth in both an established SCLC xenograft model and in a newly established circulating tumor cell-derived explant (CDX) model generated from a blood sample obtained at presentation from a chemorefractory SCLC patient. These data show for the first time that a PI3K/BMX signaling pathway plays a role in SCLC cell survival and that a BH3 mimetic plus PI3K inhibition causes prolonged tumor regression in a chemorefractory SCLC patient-derived model in vivo These data add to a body of evidence that this combination should move toward the clinic. Mol Cancer Ther; 15(6); 1248-60. ©2016 AACR. PMID:27197306

  1. Guggulsterone Targets Smokeless Tobacco Induced PI3K/Akt Pathway in Head and Neck Cancer Cells

    PubMed Central

    Macha, Muzafar A.; Matta, Ajay; Chauhan, Shyam Singh; Siu, K. W. Michael; Ralhan, Ranju

    2011-01-01

    Background Epidemiological association of head and neck cancer with smokeless tobacco (ST) emphasizes the need to unravel the molecular mechanisms implicated in cancer development, and identify pharmacologically safe agents for early intervention and prevention of disease recurrence. Guggulsterone (GS), a biosafe nutraceutical, inhibits the PI3K/Akt pathway that plays a critical role in HNSCC development. However, the potential of GS to suppress ST and nicotine (major component of ST) induced HNSCC remains unexplored. We hypothesized GS can abrogate the effects of ST and nicotine on apoptosis in HNSCC cells, in part by activation of PI3K/Akt pathway and its downstream targets, Bax and Bad. Methods and Results Our results showed ST and nicotine treatment resulted in activation of PI3K, PDK1, Akt, and its downstream proteins - Raf, GSK3β and pS6 while GS induced a time dependent decrease in activation of PI3K/Akt pathway. ST and nicotine treatment also resulted in induction of Bad and Bax phosphorylation, increased the association of Bad with 14-3-3ζresulting in its sequestration in the cytoplasm of head and neck cancer cells, thus blocking its pro-apoptotic function. Notably, GS pre-treatment inhibited ST/nicotine induced activation of PI3K/Akt pathway, and inhibited the Akt mediated phosphorylation of Bax and Bad. Conclusions In conclusion, GS treatment not only inhibited proliferation, but also induced apoptosis by abrogating the effects of ST / nicotine on PI3K/Akt pathway in head and neck cancer cells. These findings provide a rationale for designing future studies to evaluate the chemopreventive potential of GS in ST / nicotine associated head and neck cancer. PMID:21383988

  2. Development of a robust flow cytometry-based pharmacodynamic assay to detect phospho-protein signals for phosphatidylinositol 3-kinase inhibitors in multiple myeloma

    PubMed Central

    2013-01-01

    Background The phosphatidylinositol 3-kinase (PI3K) pathway plays an important role in multiple myeloma (MM), a blood cancer associated with uncontrolled proliferation of bone marrow plasma cells. This study aimed to develop a robust clinical pharmacodynamic (PD) assay to measure the on-target PD effects of the selective PI3K inhibitor GDC-0941 in MM patients. Methods We conducted an in vitro drug wash-out study to evaluate the feasibility of biochemical approaches in measuring the phosphorylation of S6 ribosomal protein (S6), one of the commonly used PD markers for PI3K pathway inhibition. We then developed a 7-color phospho-specific flow cytometry assay, or phospho flow assay, to measure the phosphorylation state of intracellular S6 in bone marrow aspirate (BMA) and peripheral blood (PB). Integrated mean fluorescence intensity (iMFI) was used to calculate fold changes of phosphorylation. Assay sensitivity was evaluated by comparing phospho flow with Meso Scale Discovery (MSD) and immunohistochemistry (IHC) assays. Finally, a sample handling method was developed to maintain the integrity of phospho signal during sample shipping and storage to ensure clinical application. Results The phospho flow assay provided single-cell PD monitoring of S6 phosphorylation in tumor and surrogate cells using fixed BMA and PB, assessing pathway modulation in response to GDC-0941 with sensitivity similar to that of MSD assay. The one-shot sample fixation and handling protocol herein demonstrated exceptional preservation of protein phosphorylation. In contrast, the IHC assay was less sensitive in terms of signal quantification while the biochemical approach (MSD) was less suitable to assess PD activities due to the undesirable impact associated with cell isolation on the protein phosphorylation in tumor cells. Conclusions We developed a robust PD biomarker assay for the clinical evaluation of PI3K inhibitors in MM, allowing one to decipher the PD response in a relevant cell

  3. Phosphorylation of Src by phosphoinositide 3-kinase regulates beta-adrenergic receptor-mediated EGFR transactivation.

    PubMed

    Watson, Lewis J; Alexander, Kevin M; Mohan, Maradumane L; Bowman, Amber L; Mangmool, Supachoke; Xiao, Kunhong; Naga Prasad, Sathyamangla V; Rockman, Howard A

    2016-10-01

    β2-Adrenergic receptors (β2AR) transactivate epidermal growth factor receptors (EGFR) through formation of a β2AR-EGFR complex that requires activation of Src to mediate signaling. Here, we show that both lipid and protein kinase activities of the bifunctional phosphoinositide 3-kinase (PI3K) enzyme are required for β2AR-stimulated EGFR transactivation. Mechanistically, the generation of phosphatidylinositol (3,4,5)-tris-phosphate (PIP3) by the lipid kinase function stabilizes β2AR-EGFR complexes while the protein kinase activity of PI3K regulates Src activation by direct phosphorylation. The protein kinase activity of PI3K phosphorylates serine residue 70 on Src to enhance its activity and induce EGFR transactivation following βAR stimulation. This newly identified function for PI3K, whereby Src is a substrate for the protein kinase activity of PI3K, is of importance since Src plays a key role in pathological and physiological signaling. PMID:27169346

  4. [Recent studies on PI3K/AKT/mTOR signaling pathway in hematopoietic stem cells].

    PubMed

    Zhang, Ying-Chi; Cheng, Tao; Yuan, Wei-Ping

    2013-02-01

    PI3K/AKT/mTOR signaling pathway plays an essential role in the growth, proliferation and survival of various type of cells and also hematopoietic stem cells (HSC). Aberrant activation of PI3K/AKT/mTOR signaling pathway leads to exhaustion of HSC, while the inhibition of PI3K/AKT/mTOR signaling pathway results in blocking of B cell differentiation. This article reviews the latest advances on the role of key components involved in the PI3K/AKT/mTOR signaling pathway, including PI3K, AKT, mTOR, FoxO and GSK-3 in HSC. PMID:23484729

  5. Astaxanthin protects ARPE-19 cells from oxidative stress via upregulation of Nrf2-regulated phase II enzymes through activation of PI3K/Akt

    PubMed Central

    Li, Zhongrui; Dong, Xin; Liu, Hongling; Chen, Xi; Shi, Huanqi; Fan, Yan; Hou, Dingshan

    2013-01-01

    Purpose Oxidative stress on retinal pigment epithelial (RPE) cells is thought to play a crucial role in the development and progression of age-related macular degeneration. Astaxanthin (AST) is a carotenoid that shows significant antioxidant properties. This study was designed to investigate the protective effect of AST on ARPE-19 cells against oxidative stress and the possible underlying mechanism. Methods ARPE-19 cells exposed to different doses of H2O2 were incubated with various concentrations of AST and cell viability subsequently detected with the (4-[3-[4-iodophenyl]-2–4(4-nitrophenyl)-2H-5- tetrazolio-1,3-benzene disulfonate]; WST-1) assay. The apoptosis rate and intracellular levels of reactive oxygen species (ROS) were measured with flow cytometry. NAD(P)H quinine oxidoreductase 1 (NQO1), hemeoxygenase-1 (HO-1), glutamate-cysteine ligase modifier subunit (GCLM), and glutamate-cysteine ligase catalytic subunit (GCLC) expression were examined with real-time PCR and western blotting. The nuclear localization of nuclear factor (erythroid-derived 2)-like 2 (Nrf2) protein and the expression levels of cleaved caspase-3 and protein kinase B proteins were evaluated with western blotting. Results AST clearly reduced H2O2-induced cell viability loss, cell apoptosis, and intracellular generation of ROS. Furthermore, treatment with AST activated the Nrf2-ARE pathway by inducing Nrf2 nuclear localization. Consequently, Phase II enzymes NQO1, HO-1, GCLM, and GCLC mRNA and proteins were increased. AST inhibited expression of H2O2-induced cleaved caspase-3 protein. Activation of the phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) pathway was involved in the protective effect of AST on the ARPE-19 cells. Conclusions AST protected ARPE-19 cells against H2O2-induced oxidative stress via Nrf2-mediated upregulation of the expression of Phase II enzymes involving the PI3K/Akt pathway. PMID:23901249

  6. Pharmacological targeting of PI3K isoforms as a therapeutic strategy in chronic lymphocytic leukaemia

    PubMed Central

    Blunt, Matthew D.; Steele, Andrew J.

    2015-01-01

    PI3Kδ inhibitors such as idelalisib are providing improved therapeutic options for the treatment of chronic lymphocytic leukaemia (CLL). However under certain conditions, inhibition of a single PI3K isoform can be compensated by the other PI3K isoforms, therefore PI3K inhibitors which target multiple PI3K isoforms may provide greater efficacy. The development of compounds targeting multiple PI3K isoforms (α, β, δ, and γ) in CLL cells, in vitro, resulted in sustained inhibition of BCR signalling but with enhanced cytotoxicity and the potential for improve clinical responses. This review summarises the progress of PI3K inhibitor development and describes the rationale and potential for targeting multiple PI3K isoforms. PMID:26500849

  7. Deciphering downstream gene targets of PI3K/mTOR/p70S6K pathway in breast cancer

    PubMed Central

    Heinonen, Henna; Nieminen, Anni; Saarela, Matti; Kallioniemi, Anne; Klefström, Juha; Hautaniemi, Sampsa; Monni, Outi

    2008-01-01

    Background The 70 kDa ribosomal protein S6 kinase (RPS6KB1), located at 17q23, is amplified and overexpressed in 10–30% of primary breast cancers and breast cancer cell lines. p70S6K is a serine/threonine kinase regulated by PI3K/mTOR pathway, which plays a crucial role in control of cell cycle, growth and survival. Our aim was to determine p70S6K and PI3K/mTOR/p70S6K pathway dependent gene expression profiles by microarrays using five breast cancer cell lines with predefined gene copy number and gene expression alterations. The p70S6K dependent profiles were determined by siRNA silencing of RPS6KB1 in two breast cancer cell lines overexpressing p70S6K. These profiles were further correlated with gene expression alterations caused by inhibition of PI3K/mTOR pathway with PI3K inhibitor Ly294002 or mTOR inhibitor rapamycin. Results Altogether, the silencing of p70S6K altered the expression of 109 and 173 genes in two breast cancer cell lines and 67 genes were altered in both cell lines in addition to RPS6KB1. Furthermore, 17 genes including VTCN1 and CDKN2B showed overlap with genes differentially expressed after PI3K or mTOR inhibition. The gene expression signatures responsive to both PI3K/mTOR pathway and p70S6K inhibitions revealed previously unidentified genes suggesting novel downstream targets for PI3K/mTOR/p70S6K pathway. Conclusion Since p70S6K overexpression is associated with aggressive disease and poor prognosis of breast cancer patients, the potential downstream targets of p70S6K and the whole PI3K/mTOR/p70S6K pathway identified in our study may have diagnostic value. PMID:18652687

  8. Chronic alcohol exposure exacerbates inflammation and triggers pancreatic acinar-to-ductal metaplasia through PI3K/Akt/IKK

    PubMed Central

    HUANG, XIN; LI, XUQI; MA, QINGYONG; XU, QINHONG; DUAN, WANXING; LEI, JIANJUN; ZHANG, LUN; WU, ZHENG

    2015-01-01

    Pancreatic acinar-to-ductal metaplasia (ADM) has been identified as an initiating event that can progress to pancreatic intraepithelial neoplasia (PanIN) or pancreatic ductal adenocarcinoma (PDAC). Acini transdifferentiation can be induced by persistent inflammation. Notably, compelling evidence has emerged that chronic alcohol exposure may trigger an inflammatory response of macrophages/monocytes stimulated by endotoxins. In the present study, we aimed to evaluate the role of inflammation induced by chronic alcohol and lipopolysaccharide (LPS) exposure in the progression of pancreatic ADM, as well as to elucidate the possible mechanisms involved. For this purpose, cultured macrophages were exposed to varying doses of alcohol for 1 week prior to stimulation with LPS. Tumor necrosis factor-α (TNF-α) and regulated upon activation, normal T cell expression and secreted (RANTES) expression were upregulated in the intoxicated macrophages with activated nuclear factor-κB (NF-κB). Following treatment with the supernatant of intoxicated macrophages, ADM of primary acinar cells was induced. Furthermore, the expression of TNF-α and RANTES, as well as the phosphatidylinositol-3-kinase (PI3K)/protein kinase B(Akt)/inhibitory κB kinase (IKK) signaling pathway have been proven to be involved in the ADM of acinar cells. Moreover, Sprague-Dawley (SD) rats were employed to further explore the induction of pancreatic ADM by chronic alcohol and LPS exposure in vivo. At the end of the treatment period, a number of physiological parameters, such as body weight, liver weight and pancreatic weight were reduced in the exposed rats. Plasma alcohol concentrations and oxidative stress levels in the serum, as well as TNF-α and RANTES expression in monocytes were also induced following chronic alcohol and LPS exposure. In addition, pancreatic ADM was induced through the PI3K/Akt/IKK signaling pathway by the augmented TNF-α and RANTES expression levels in the exposed rats. Overall, we

  9. The Phosphoinositide 3-Kinase Pathway in Human Cancer: Genetic Alterations and Therapeutic Implications

    PubMed Central

    Arcaro, Alexandre; Guerreiro, Ana S

    2007-01-01

    The phosphoinositide 3-kinase (PI3K) pathway is frequently activated in human cancer and represents an attractive target for therapies based on small molecule inhibitors. PI3K isoforms play an essential role in the signal transduction events activated by cell surface receptors including receptor tyrosine kinases (RTKs) and G-protein-coupled receptors (GPCRs). There are eight known PI3K isoforms in humans, which have been subdivided into three classes (I-III). Therefore PI3Ks show considerable diversity and it remains unclear which kinases in this family should be targeted in cancer. The class IA of PI3K comprises the p110α, p110β and p110δ isoforms, which associate with activated RTKs. In human cancer, recent reports have described activating mutations in the PIK3CA gene encoding p110α, and inactivating mutations in the phosphatase and tensin homologue (PTEN) gene, a tumour suppressor and antagonist of the PI3K pathway. The PIK3CA mutations described in cancer constitutively activate p110α and, when expressed in cells drive oncogenic transformation. Moreover, these mutations cause the constitutive activation of downstream signaling molecules such as Akt/protein kinase B (PKB), mammalian target of rapamycin (mTOR) and ribosomal protein S6 kinase (S6K) that is commonly observed in cancer cells. In addition to p110α, the other isoforms of the PI3K family may also play a role in human cancer, although their individual functions remain to be precisely identified. In this review we will discuss the evidence implicating individual PI3K isoforms in human cancer and their potential as drug targets in this context. PMID:19384426

  10. Novel roles for class II Phosphoinositide 3-Kinase C2β in signalling pathways involved in prostate cancer cell invasion

    PubMed Central

    Mavrommati, Ioanna; Cisse, Ouma; Falasca, Marco; Maffucci, Tania

    2016-01-01

    Phosphoinositide 3-kinases (PI3Ks) regulate several cellular functions such as proliferation, growth, survival and migration. The eight PI3K isoforms are grouped into three classes and the three enzymes belonging to the class II subfamily (PI3K-C2α, β and γ) are the least investigated amongst all PI3Ks. Interest on these isoforms has been recently fuelled by the identification of specific physiological roles for class II PI3Ks and by accumulating evidence indicating their involvement in human diseases. While it is now established that these isoforms can regulate distinct cellular functions compared to other PI3Ks, there is still a limited understanding of the signalling pathways that can be specifically regulated by class II PI3Ks. Here we show that PI3K-C2β regulates mitogen-activated protein kinase kinase (MEK1/2) and extracellular signal-regulated kinase (ERK1/2) activation in prostate cancer (PCa) cells. We further demonstrate that MEK/ERK and PI3K-C2β are required for PCa cell invasion but not proliferation. In addition we show that PI3K-C2β but not MEK/ERK regulates PCa cell migration as well as expression of the transcription factor Slug. These data identify novel signalling pathways specifically regulated by PI3K-C2β and they further identify this enzyme as a key regulator of PCa cell migration and invasion. PMID:26983806

  11. Role of mechanical strain-activated PI3K/Akt signaling pathway in pelvic organ prolapse

    PubMed Central

    LI, BING-SHU; GUO, WEN-JUN; HONG, LI; LIU, YAO-DAN; LIU, CHENG; HONG, SHA-SHA; WU, DE-BIN; MIN, JIE

    2016-01-01

    Mechanical loading on pelvic supports contributes to pelvic organ prolapse (POP). However, the underlying mechanisms remain to be elucidated. Our previous study identified that mechanical strain induced oxidative stress (OS) and promoted apoptosis and senescence in pelvic support fibroblasts. The aim of the present study is to investigate the molecular signaling pathway linking mechanical force with POP. Using a four-point bending device, human uterosacral ligament fibroblasts (hUSLF) were exposed to mechanical tensile strain at a frequency of 0.3 Hz and intensity of 5333 µε, in the presence or absence of LY294002. The applied mechanical strain on hUSLF resulted in apoptosis and senescence, and decreased expression of procollagen type I α1. Mechanical strain activated phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)/Akt signaling and resulted in downregulated expression of glutathione peroxidase 1 and Mn-superoxide dismutase, and accumulation of intracellular reactive oxygen species. These effects were blocked by administration of LY294002. Furthermore, it was demonstrated that PI3K/Akt was activated in the uterosacral ligaments of POP patients, and that OS was increased and collagen type I production reduced. The results from the present study suggest that mechanical strain promotes apoptosis and senescence, and reduces collagen type I production via activation of PI3K/Akt-mediated OS signaling pathway in hUSLF. This process may be involved in the pathogenesis of POP as it results in relaxation and dysfunction of pelvic supports. PMID:27176043

  12. IL-6 cytoprotection in hyperoxic acute lung injury occurs via PI3K/Akt-mediated Bax phosphorylation

    PubMed Central

    Kolliputi, Narasaiah; Waxman, Aaron B.

    2009-01-01

    IL-6 overexpression protects mice from hyperoxic acute lung injury in vivo, and treatment with IL-6 protects cells from oxidant-mediated death in vitro. The mechanisms of protection, however, are not clear. We characterized the expression, localization, and regulation of Bax, a proapoptotic member of the Bcl-2 family, in wild-type (WT) and IL-6 lung-specific transgenic (Tg+) mice exposed to 100% O2 and in human umbilical vein endothelial cells (HUVEC) treated with H2O2 and IL-6. In control HUVEC treated with H2O2 or in WT mice exposed to 100% O2, a marked induction of Bax translocation and dimerization was associated with increased JNK and p38 kinase activity. In contrast, specific JNK or p38 kinase inhibitors or treatment with IL-6 inhibited Bax mitochondrial translocation and apoptosis of HUVEC. IL-6 Tg+ mice exposed to 100% O2 exhibited enhanced phosphatidylinositol 3-kinase (PI3K)/Akt kinase and increased serine phosphorylation of Bax at Ser184 compared with WT mice. The PI3K-specific inhibitor LY-2940002 blocked this IL-6-induced Bax phosphorylation and promoted cell death. Furthermore, IL-6 potently blocked hyperoxia- or oxidant-induced Bax insertion into mitochondrial membranes. Thus IL-6 functions in a cytoprotective manner, in part, by suppressing Bax translocation and dimerization through PI3K/Akt-mediated Bax phosphorylation. PMID:19376889

  13. High expression of VEGF and PI3K in glioma stem cells provides new criteria for the grading of gliomas

    PubMed Central

    WANG, LEI; ZHANG, LUYAO; SHEN, WEIGAO; LIU, YANBO; LUO, YINAN

    2016-01-01

    Glioma is a type of tumor derived from glial cells, which is associated with a high level of incidence and mortality. At present, the generation of a fast and efficient method to evaluate the malignancy grade of glioma is required. Cancer stem cells (CSCs) are currently attracting attention in oncological studies; therefore, the present study aimed to investigate novel biomarkers of glioma CSCs, in order to provide new criteria for the grading of glioma. The mRNA expression levels of CD133, (sex determining region Y)-box 2, nestin, vascular endothelial growth factor (VEGF) and phosphoinositide-3-kinase (PI3K) were detected in 15 human samples of high-malignancy glioma and 12 human samples of low-malignancy glioma in vitro. The mRNA expression levels of VEGF and PI3K were higher in the high-malignancy group, as compared with in the low-malignancy group. In conclusion, the mRNA expression levels of VEGF and PI3K in glioma CSCs may be considered a novel criteria for the grading of glioma. PMID:26893649

  14. Exogenous leptin administered intramuscularly induces sex hormone disorder and Ca loss via downregulation of Gnrh and PI3K expression.

    PubMed

    Wu, Lihong; Liu, Wen; Bayaer, Nashun; Gu, Weiwang; Song, Jieli

    2014-01-01

    Obesity is a public health problem that increases the risk of metabolic disease, infertility, and other chronic health problems. The present study aimed to develop a new rat model for sex hormone disorder with overweight and Ca loss by intramuscular injection of exogenous leptin (LEP). Thirty female Sprague-Dawley (SD) rats (40 days old) were injected thrice intramuscularly with LEP or keyhole limpet hemocyanin immunogen. The following analyses were performed to determine the development of appetite, overweight, reproductive related-hormones, and calcium (Ca)/phosphorus (Pi) in SD rats: measurement of Lee's index, body weight, food intake; serum Ca, Pi, and hormone tests by enzyme-linked immunosorbent analysis; histological analysis of abdominal fat; real-time polymerase chain reaction analysis of neuropeptide Y, pro-opiomelanocortin, gonadotropin-releasing hormone (Gnrh) mRNA, and gonadotropin-releasing hormone receptor (Gnrhr) mRNA expression; and western blotting analysis of enzyme phosphatidylinositol-3-kinase (PI3K). Rats injected with LEP immunogen displayed significantly increased body weight, food intake, Lee's index, serum LEP, serum cortisol, fat deposition in the abdomen, and decreased hormones including follicle stimulating hormone, luteinizing hormone, estradiol, cholecystokinin, and Ca. Exogenous LEP administered intramuscularly also downregulate Gnrh and PI3K. In conclusion, exogenous LEP administered intramuscularly is a novel animal model for sex hormones disorder with overweight and Ca loss in SD rats. The downregulation of PI3K and Gnrh may be involved in the development of this animal model. PMID:25048263

  15. Exogenous Leptin Administered Intramuscularly Induces Sex Hormone Disorder and Ca Loss via Downregulation of Gnrh and PI3K Expression

    PubMed Central

    Wu, Lihong; Liu, Wen; Bayaer, Nashun; Gu, Weiwang; Song, Jieli

    2014-01-01

    Obesity is a public health problem that increases the risk of metabolic disease, infertility, and other chronic health problems. The present study aimed to develop a new rat model for sex hormone disorder with overweight and Ca loss by intramuscular injection of exogenous leptin (LEP). Thirty female Sprague-Dawley (SD) rats (40 days old) were injected thrice intramuscularly with LEP or keyhole limpet hemocyanin immunogen. The following analyses were performed to determine the development of appetite, overweight, reproductive related-hormones, and calcium (Ca)/phosphorus (Pi) in SD rats: measurement of Lee’s index, body weight, food intake; serum Ca, Pi, and hormone tests by enzyme-linked immunosorbent analysis; histological analysis of abdominal fat; real-time polymerase chain reaction analysis of neuropeptide Y, pro-opiomelanocortin, gonadotropin-releasing hormone (Gnrh) mRNA, and gonadotropin-releasing hormone receptor (Gnrhr) mRNA expression; and western blotting analysis of enzyme phosphatidylinositol-3-kinase (PI3K). Rats injected with LEP immunogen displayed significantly increased body weight, food intake, Lee’s index, serum LEP, serum cortisol, fat deposition in the abdomen, and decreased hormones including follicle stimulating hormone, luteinizing hormone, estradiol, cholecystokinin, and Ca. Exogenous LEP administered intramuscularly also downregulate Gnrh and PI3K. In conclusion, exogenous LEP administered intramuscularly is a novel animal model for sex hormones disorder with overweight and Ca loss in SD rats. The downregulation of PI3K and Gnrh may be involved in the development of this animal model. PMID:25048263

  16. The p110α Isoform of Phosphoinositide 3-Kinase is Essential for Cone Photoreceptor Survival

    PubMed Central

    Rajala, Raju V.S.; Ranjo-Bishop, Michelle; Wang, Yuhong; Rajala, Ammaji; Anderson, Robert E.

    2015-01-01

    Phosphoinositide 3-kinases (PI3Ks) are a family of lipid kinases that phosphorylates the 3'OH of the inositol ring of phosphoinositides (PIs). They are responsible for coordinating a diverse range of cellular functions. Class IA PI3K is a heterodimeric protein composed of a regulatory p85 and a catalytic p110 subunit. In this study, we conditionally deleted the p110α-subunit of PI3K in cone photoreceptor cells using the Cre-loxP system. Cone photoreceptors allow for color vision in bright light (daylight vision). Cone-specific deletion of p110α resulted in cone degeneration. Our studies suggest that PI3K signaling is essential for cone photoreceptor functions. PMID:25742742

  17. PTEN posttranslational inactivation and hyperactivation of the PI3K/Akt pathway sustain primary T cell leukemia viability

    PubMed Central

    Silva, Ana; Yunes, J. Andrés; Cardoso, Bruno A.; Martins, Leila R.; Jotta, Patrícia Y.; Abecasis, Miguel; Nowill, Alexandre E.; Leslie, Nick R.; Cardoso, Angelo A.; Barata, Joao T.

    2008-01-01

    Mutations in the phosphatase and tensin homolog (PTEN) gene leading to PTEN protein deletion and subsequent activation of the PI3K/Akt signaling pathway are common in cancer. Here we show that PTEN inactivation in human T cell acute lymphoblastic leukemia (T-ALL) cells is not always synonymous with PTEN gene lesions and diminished protein expression. Samples taken from patients with T-ALL at the time of diagnosis very frequently showed constitutive hyperactivation of the PI3K/Akt pathway. In contrast to immortalized cell lines, most primary T-ALL cells did not harbor PTEN gene alterations, displayed normal PTEN mRNA levels, and expressed higher PTEN protein levels than normal T cell precursors. However, PTEN overexpression was associated with decreased PTEN lipid phosphatase activity, resulting from casein kinase 2 (CK2) overexpression and hyperactivation. In addition, T-ALL cells had constitutively high levels of ROS, which can also downmodulate PTEN activity. Accordingly, both CK2 inhibitors and ROS scavengers restored PTEN activity and impaired PI3K/Akt signaling in T-ALL cells. Strikingly, inhibition of PI3K and/or CK2 promoted T-ALL cell death without affecting normal T cell precursors. Overall, our data indicate that T-ALL cells inactivate PTEN mostly in a nondeletional, posttranslational manner. Pharmacological manipulation of these mechanisms may open new avenues for T-ALL treatment. PMID:18830414

  18. PI3K/AKT Signaling Pathway Is Essential for Survival of Induced Pluripotent Stem Cells

    PubMed Central

    Hossini, Amir M.; Quast, Annika S.; Plötz, Michael; Grauel, Katharina; Exner, Tarik; Küchler, Judit; Stachelscheid, Harald; Eberle, Jürgen; Rabien, Anja

    2016-01-01

    Apoptosis is a highly conserved biochemical mechanism which is tightly controlled in cells. It contributes to maintenance of tissue homeostasis and normally eliminates highly proliferative cells with malignant properties. Induced pluripotent stem cells (iPSCs) have recently been described with significant functional and morphological similarities to embryonic stem cells. Human iPSCs are of great hope for regenerative medicine due to their broad potential to differentiate into specialized cell types in culture. They may be useful for exploring disease mechanisms and may provide the basis for future cell-based replacement therapies. However, there is only poor insight into iPSCs cell signaling as the regulation of apoptosis. In this study, we focused our attention on the apoptotic response of Alzheimer fibroblast-derived iPSCs and two other Alzheimer free iPSCs to five biologically relevant kinase inhibitors as well as to the death ligand TRAIL. To our knowledge, we are the first to report that the relatively high basal apoptotic rate of iPSCs is strongly suppressed by the pancaspase inhibitor QVD-Oph, thus underlining the dependency on proapoptotic caspase cascades. Furthermore, wortmannin, an inhibitor of phosphoinositid-3 kinase / Akt signaling (PI3K-AKT), dramatically and rapidly induced apoptosis in iPSCs. In contrast, parental fibroblasts as well as iPSC-derived neuronal cells were not responsive. The resulting condensation and fragmentation of DNA and decrease of the membrane potential are typical features of apoptosis. Comparable effects were observed with an AKT inhibitor (MK-2206). Wortmannin resulted in disappearance of phosphorylated AKT and activation of the main effector caspase-3 in iPSCs. These results clearly demonstrate for the first time that PI3K-AKT represents a highly essential survival signaling pathway in iPSCs. The findings provide improved understanding on the underlying mechanisms of apoptosis regulation in iPSCs. PMID:27138223

  19. PI3K/AKT Signaling Pathway Is Essential for Survival of Induced Pluripotent Stem Cells.

    PubMed

    Hossini, Amir M; Quast, Annika S; Plötz, Michael; Grauel, Katharina; Exner, Tarik; Küchler, Judit; Stachelscheid, Harald; Eberle, Jürgen; Rabien, Anja; Makrantonaki, Evgenia; Zouboulis, Christos C

    2016-01-01

    Apoptosis is a highly conserved biochemical mechanism which is tightly controlled in cells. It contributes to maintenance of tissue homeostasis and normally eliminates highly proliferative cells with malignant properties. Induced pluripotent stem cells (iPSCs) have recently been described with significant functional and morphological similarities to embryonic stem cells. Human iPSCs are of great hope for regenerative medicine due to their broad potential to differentiate into specialized cell types in culture. They may be useful for exploring disease mechanisms and may provide the basis for future cell-based replacement therapies. However, there is only poor insight into iPSCs cell signaling as the regulation of apoptosis. In this study, we focused our attention on the apoptotic response of Alzheimer fibroblast-derived iPSCs and two other Alzheimer free iPSCs to five biologically relevant kinase inhibitors as well as to the death ligand TRAIL. To our knowledge, we are the first to report that the relatively high basal apoptotic rate of iPSCs is strongly suppressed by the pancaspase inhibitor QVD-Oph, thus underlining the dependency on proapoptotic caspase cascades. Furthermore, wortmannin, an inhibitor of phosphoinositid-3 kinase / Akt signaling (PI3K-AKT), dramatically and rapidly induced apoptosis in iPSCs. In contrast, parental fibroblasts as well as iPSC-derived neuronal cells were not responsive. The resulting condensation and fragmentation of DNA and decrease of the membrane potential are typical features of apoptosis. Comparable effects were observed with an AKT inhibitor (MK-2206). Wortmannin resulted in disappearance of phosphorylated AKT and activation of the main effector caspase-3 in iPSCs. These results clearly demonstrate for the first time that PI3K-AKT represents a highly essential survival signaling pathway in iPSCs. The findings provide improved understanding on the underlying mechanisms of apoptosis regulation in iPSCs. PMID:27138223

  20. Effects of PI3K inhibitor NVP-BKM120 on overcoming drug resistance and eliminating cancer stem cells in human breast cancer cells

    PubMed Central

    Hu, Y; Guo, R; Wei, J; Zhou, Y; Ji, W; Liu, J; Zhi, X; Zhang, J

    2015-01-01

    The multidrug resistance (MDR) phenotype often accompanies activation of the phosphatidylinositol 3-kinase (PI3K)/AKT pathway, which renders a survival signal to withstand cytotoxic anticancer drugs and enhances cancer stem cell (CSC) characteristics. As a result, PI3K/AKT-blocking approaches have been proposed as antineoplastic strategies, and inhibitors of PI3K/AKT are currently being trailed clinically in breast cancer patients. However, the effects of PI3K inhibitors on MDR breast cancers have not yet been elucidated. In the present study, the tumorigenic properties of three MDR breast cancer cell lines to a selective inhibitor of PI3K, NVP-BKM120 (BKM120), were assessed. We found that BKM120 showed a significant cytotoxic activity on MDR breast cancer cells both in vitro and in vivo. When doxorubicin (DOX) was combined with BKM120, strong synergistic antiproliferative effect was observed. BKM120 activity induced the blockage of PI3K/AKT signaling and NF-κB expression, which in turn led to activate caspase-3/7 and caspase-9 and changed the expression of several apoptosis-related gene expression. Furthermore, BKM120 effectively eliminated CSC subpopulation and reduced sphere formation of these drug-resistant cells. Our findings indicate that BKM120 partially overcomes the MDR phenotype in chemoresistant breast cancer through cell apoptosis induction and CSC abolishing, which appears to be mediated by the inhibition of the PI3K/AKT/NF-κB axis. This offers a strong rationale to explore the therapeutic strategy of using BKM120 alone or in combination for chemotherapy-nonresponsive breast cancer patients. PMID:26673665

  1. Learning deficits and agenesis of synapses and myelinated axons in phosphoinositide-3 kinase-deficient mice.

    PubMed

    Tohda, Chihiro; Nakanishi, Ruiko; Kadowaki, Makoto

    Although previous studies have reported a role for phosphoinositide-3 kinase (PI3K) in axonal definition and growth in vitro, it is not clear whether PI3K regulates axonal formation and synaptogenesis in vivo. The goal of the present study was to clarify the role of PI3K in behavioral functions and some underlying neuroanatomical structures. Immunohistochemistry, an electron-microscopic analysis and behavioral tests were carried out. Knockout mice lacking the p85alpha regulatory subunit of PI3K (p85alpha-/- mice) significantly showed learning deficits, restlessness and motivation deficit. Expression of phosphorylated Akt, which indirectly shows the activity of PI3K, was high in myelinated axons, especially in axonal bundles in the striatum of wild-type mice, but was significantly low in the striatum, cerebral cortex and the hippocampal CA3 of p85alpha-/- mice. The axonal marker protein level decreased mainly in the striatum and cerebral cortex of p85alpha-/- mice. In these two regions, myelinated axons are rich in the wild-type mice. However, the density of myelinated axons and myelin thickness were significantly low in the striatum and cerebral cortex of p85alpha-/- mice. Synaptic protein level was clearly decreased in the striatum, cerebral cortex, and hippocampus of p85alpha-/- mice when compared with wild mice. The present results suggest that PI3K plays a role in the generation and/or maintenance of synapses and myelinated axons in the brain and that deficiencies in PI3K activity result in abnormalities in several neuronal functions, including learning, restlessness and motivation. PMID:17901711

  2. Neuritogenic Monoglyceride Derived from the Constituent of a Marine Fish for Activating the PI3K/ERK/CREB Signalling Pathways in PC12 Cells

    PubMed Central

    Yang, Wei; Luo, Yan; Tang, Ruiqi; Zhang, Hui; Ye, Ying; Xiang, Lan; Qi, Jianhua

    2013-01-01

    A neuritogenic monoglyceride, 1-O-(myristoyl) glycerol (MG), was isolated from the head of Ilisha elongate using a PC12 cell bioassay system, and its chemical structure was elucidated using spectroscopic methods. MG significantly induced 42% of the neurite outgrowth of PC12 cells at a concentration of 10 μM. To study the structure-activity relationships of MG, a series of monoglycerides was designed and synthesised. Bioassay results indicated that the alkyl chain length plays a key role in the neuritogenic activity of the monoglycerides. The groups that link the propane-1,2-diol and alkyl chain were also investigated. An ester linkage, rather than an amido one, was found to be optimal for neuritogenic activity. Therefore, 1-O-(stearoyl) glycerol (SG), which induces 57% of the neurite outgrowth of PC12 cells at 10 μM, was determined to be a lead compound for neuritogenic activity. We then investigated the mechanism of action of neurite outgrowth induced by SG on PC12 cells using protein specific inhibitors and Western blot analysis. The mitogen-activated kinase/ERK kinase (MEK) inhibitor U0126 and the phosphatidylinositol-3 kinase (PI3K) inhibitor LY294002 significantly decreased neurite outgrowth. At the same time, SG increased phosphorylation of CREB in protein level. Thus, SG-induced neuritogenic activity depends on the activation of the extracellular-regulated protein kinase (ERK), cAMP responsive element-binding protein (CREB) and PI3K signalling pathways in PC12 cells. PMID:24351811

  3. MiR-126 regulates proliferation and invasion in the bladder cancer BLS cell line by targeting the PIK3R2-mediated PI3K/Akt signaling pathway

    PubMed Central

    Xiao, Jun; Lin, Huan-Yi; Zhu, Yuan-Yuan; Zhu, Yu-Ping; Chen, Ling-Wu

    2016-01-01

    Objective To assess whether microRNA-126 (miR-126) targets phosphatidylinositol 3-kinase regulatory subunit beta (PIK3R2) and to determine the potential roles of miR-126 in regulating proliferation and invasion via the PIK3R2-mediated phosphatidylinositol 3 kinase (PI3K)-protein kinase B (Akt) signaling pathway in the human bladder BLS cell line. Materials and methods A recombinant lentivirus (Lv) vector expressing miR-216 (Lv-miR-126) was successfully constructed, and Lv-miR-126 and Lv vector were transfected into the BLS cell line. A direct regulatory relationship between miR-126 and the PIK3R2 gene was demonstrated by luciferase reporter assays. To determine whether PIK3R2 directly participates in the miR-126-induced effects in BLS cells, anti-miR-126 and a PIK3R2 small interfering RNA (siRNA) were transfected into the BLS cells. Quantitative real-time polymerase chain reaction was used to measure miR-126 and PIK3R2 expressions. 5-Ethynyl-2′-deoxyuridine and colony formation assays to assess cell proliferation, flow cytometry for cell apoptosis and cell cycle analysis, Transwell assays for cell migration and invasion, and Western blots for PIK3R2, PI3K, phosphorylated PI3K (p-PI3K), Akt, and phosphorylated Akt (p-Akt) protein expressions were performed. Results Lv-miR-126 significantly enhanced the relative expression of miR-126 in the BLS cells after infection (P<0.0001). MiR-126 overexpression inhibited the proliferation, cloning, migration, and invasion of BLS cells, promoted cell apoptosis, and induced S phase arrest (all P<0.05). PIK3R2, p-PI3K, and p-Akt protein expressions were significantly decreased in the BLS cells infected with Lv-miR-126. Luciferase assays showed that miR-126 significantly inhibited the PIK3R2 3′ untranslated region (3′UTR) luciferase reporter activity (P<0.05). The anti-miR-126 + PIK3R2 siRNA group had significantly decreased PIK3R2, p-PI3K, and p-Akt expressions compared with those of anti-miR-126 alone, as well as

  4. RAS and RHO families of GTPases directly regulate distinct phosphoinositide 3-kinase isoforms.

    PubMed

    Fritsch, Ralph; de Krijger, Inge; Fritsch, Kornelia; George, Roger; Reason, Beth; Kumar, Madhu S; Diefenbacher, Markus; Stamp, Gordon; Downward, Julian

    2013-05-23

    RAS proteins are important direct activators of p110α, p110γ, and p110δ type I phosphoinositide 3-kinases (PI3Ks), interacting via an amino-terminal RAS-binding domain (RBD). Here, we investigate the regulation of the ubiquitous p110β isoform of PI3K, implicated in G-protein-coupled receptor (GPCR) signaling, PTEN-loss-driven cancers, and thrombocyte function. Unexpectedly, RAS is unable to interact with p110β, but instead RAC1 and CDC42 from the RHO subfamily of small GTPases bind and activate p110β via its RBD. In fibroblasts, GPCRs couple to PI3K through Dock180/Elmo1-mediated RAC activation and subsequent interaction with p110β. Cells from mice carrying mutations in the p110β RBD show reduced PI3K activity and defective chemotaxis, and these mice are resistant to experimental lung fibrosis. These findings revise our understanding of the regulation of type I PI3K by showing that both RAS and RHO family GTPases directly regulate distinct ubiquitous PI3K isoforms and that RAC activates p110β downstream of GPCRs. PMID:23706742

  5. Anger Emotional Stress Influences VEGF/VEGFR2 and Its Induced PI3K/AKT/mTOR Signaling Pathway

    PubMed Central

    Sun, Peng; Wei, Sheng; Wei, Xia; Wang, Jieqiong; Zhang, Yuanyuan; Qiao, Mingqi; Wu, Jibiao

    2016-01-01

    Objective. We discuss the influence of anger emotional stress upon VEGF/VEGFR2 and its induced PI3K/AKT/mTOR signal pathway. Methods. We created a rat model of induced anger (anger-out and anger-in) emotional response using social isolation and resident-intruder paradigms and assessed changes in hippocampus' VEGF content, neuroplasticity, and the PI3K/AKT/mTOR signaling pathway. Results. The resident-intruder method successfully generated anger-out and anger-in models that differed significantly in composite aggression score, aggression incubation, open field behavior, sucrose preference, and weight gain. Anger emotional stress decreased synaptic connections and VEGFR2 expression. Anger emotional stress led to abnormal expression of VEGF/VEGFR2 mRNA and protein and disorderly expression of key factors in the PI3K/AKT/mTOR signal pathway. Fluoxetine administration ameliorated behavioral abnormalities and damage to hippocampal neurons caused by anger emotional stress, as well as abnormal expression of some proteins in VEGF/VEGFR2 and its induced PI3K/AKT/mTOR signal pathway. Conclusion. This research provides a detailed classification of anger emotion and verifies its influence upon VEGF and the VEGF-induced signaling pathway, thus providing circumstantial evidence of mechanisms by which anger emotion damages neurogenesis. As VEGFR2 can promote neurogenesis and vasculogenesis in the hippocampus and frontal lobe, these results suggest that anger emotional stress can result in decreased neurogenesis. PMID:27057362

  6. Anger Emotional Stress Influences VEGF/VEGFR2 and Its Induced PI3K/AKT/mTOR Signaling Pathway.

    PubMed

    Sun, Peng; Wei, Sheng; Wei, Xia; Wang, Jieqiong; Zhang, Yuanyuan; Qiao, Mingqi; Wu, Jibiao

    2016-01-01

    Objective. We discuss the influence of anger emotional stress upon VEGF/VEGFR2 and its induced PI3K/AKT/mTOR signal pathway. Methods. We created a rat model of induced anger (anger-out and anger-in) emotional response using social isolation and resident-intruder paradigms and assessed changes in hippocampus' VEGF content, neuroplasticity, and the PI3K/AKT/mTOR signaling pathway. Results. The resident-intruder method successfully generated anger-out and anger-in models that differed significantly in composite aggression score, aggression incubation, open field behavior, sucrose preference, and weight gain. Anger emotional stress decreased synaptic connections and VEGFR2 expression. Anger emotional stress led to abnormal expression of VEGF/VEGFR2 mRNA and protein and disorderly expression of key factors in the PI3K/AKT/mTOR signal pathway. Fluoxetine administration ameliorated behavioral abnormalities and damage to hippocampal neurons caused by anger emotional stress, as well as abnormal expression of some proteins in VEGF/VEGFR2 and its induced PI3K/AKT/mTOR signal pathway. Conclusion. This research provides a detailed classification of anger emotion and verifies its influence upon VEGF and the VEGF-induced signaling pathway, thus providing circumstantial evidence of mechanisms by which anger emotion damages neurogenesis. As VEGFR2 can promote neurogenesis and vasculogenesis in the hippocampus and frontal lobe, these results suggest that anger emotional stress can result in decreased neurogenesis. PMID:27057362

  7. The Effect of Tianmai Xiaoke Pian on Insulin Resistance through PI3-K/AKT Signal Pathway.

    PubMed

    Wang, Nana; Li, Tiegang; Han, Ping

    2016-01-01

    In the clinical setting, given the potential adverse effects of thiazolidinediones and biguanides, we often have difficulty in treatment that no other insulin sensitizers are available for use in type 2 diabetic mellitus (T2DM) patients. Tianmai Xiaoke Pian (TMXKP) is a traditional Chinese medicine tablet, which is comprised of chromium picolinate, Tianhuafen, Maidong, and Wuweizi. To understand its mechanism of action on insulin resistance, TMXKP (50 mg/kg orally) was tested in T2DM rats (induced by a high-fat diet and streptozotocin). Eight weeks later, fasting blood glucose (FBG) and oral glucose tolerance tests (OGTT) were performed. Area under the curve (AUC) and homeostatic model assessment of insulin resistance (HOMA-IR) were calculated, and PI3-K/AKT signal pathway-related genes and proteins were tested by reverse transcription-polymerase chain reaction (RT-PCR) and western blot analysis in muscle, adipose, and liver tissues, respectively. TMXKP significantly reduced FBG, OGTT, AUC, and HOMA-IR in diabetic rats (P < 0.05). Furthermore, we also observed that TMXKP could significantly decrease IRS-1, IRS-2, PI3-K p85α, and AKT2 gene expression and also IRS-1, IRS-2, PI3-K, AKT2, and p-AKT2 protein expression levels (P < 0.05) in diabetic rats. These findings confirm that TMXKP can alleviate insulin resistance in T2DM rats through the PI3K/AKT pathway. Thus TMXKP appears to be a promising insulin sensitizer. PMID:26640808

  8. Inhibition of PI3K by ZSTK474 suppressed tumor growth not via apoptosis but G{sub 0}/G{sub 1} arrest

    SciTech Connect

    Dan, Shingo; Yoshimi, Hisashi; Okamura, Mutsumi; Mukai, Yumiko; Yamori, Takao

    2009-01-30

    Phosphoinositide 3-kinase (PI3K) is a potential target in cancer therapy. Inhibition of PI3K is believed to induce apoptosis. We recently developed a novel PI3K inhibitor ZSTK474 with antitumor efficacy. In this study, we have examined the underlying mode of action by which ZSTK474 exerts its antitumor efficacy. In vivo, ZSTK474 effectively inhibited the growth of human cancer xenografts. In parallel, ZSTK474 treatment suppressed the expression of phospho-Akt, suggesting effective PI3K inhibition, and also suppressed the expression of nuclear cyclin D1 and Ki67, both of which are hallmarks of proliferation. However, ZSTK474 treatment did not increase TUNEL-positive apoptotic cells. In vitro, ZSTK474 induced marked G{sub 0}/G{sub 1} arrest, but did not increase the subdiploid cells or activate caspase, both of which are hallmarks of apoptosis. These results clearly indicated that inhibition of PI3K by ZSTK474 did not induce apoptosis but rather induced strong G{sub 0}/G{sub 1} arrest, which might cause its efficacy in tumor cells.

  9. Suppression of Virulent Porcine Epidemic Diarrhea Virus Proliferation by the PI3K/Akt/GSK-3α/β Pathway.

    PubMed

    Kong, Ning; Wu, Yongguang; Meng, Qiong; Wang, Zhongze; Zuo, Yewen; Pan, Xi; Tong, Wu; Zheng, Hao; Li, Guoxin; Yang, Shen; Yu, Hai; Zhou, En-Min; Shan, Tongling; Tong, Guangzhi

    2016-01-01

    Porcine epidemic diarrhea virus (PEDV) has recently caused high mortality in suckling piglets with subsequent large economic losses to the swine industry. Many intracellular signaling pathways, including the phosphatidylinositol 3-kinase (PI3K)/Akt pathway, are activated by viral infection. The PI3K/Akt pathway is an important cellular pathway that has been shown to be required for virus replication. In the present study, we found that the PEDV JS-2013 strain activated Akt in Vero cells at early (5-15 min) and late stages (8-10 h) of infection. Inhibiting PI3K, an upstream activator of Akt, enhanced PEDV replication. Inhibiting GSK-3α/β, one of the downstream effectors of PI3K/Akt pathway and regulated by Akt during PEDV infected Vero cells, also enhanced PEDV replication. Collectively, our data suggest that PI3K/Akt/GSK-3α/β signaling pathway is activated by PEDV and functions in inhibiting PEDV replication. PMID:27560518

  10. Suppression of Virulent Porcine Epidemic Diarrhea Virus Proliferation by the PI3K/Akt/GSK-3α/β Pathway

    PubMed Central

    Kong, Ning; Wu, Yongguang; Meng, Qiong; Wang, Zhongze; Zuo, Yewen; Pan, Xi; Tong, Wu; Zheng, Hao; Li, Guoxin; Yang, Shen; Yu, Hai; Zhou, En-min; Shan, Tongling; Tong, Guangzhi

    2016-01-01

    Porcine epidemic diarrhea virus (PEDV) has recently caused high mortality in suckling piglets with subsequent large economic losses to the swine industry. Many intracellular signaling pathways, including the phosphatidylinositol 3-kinase (PI3K)/Akt pathway, are activated by viral infection. The PI3K/Akt pathway is an important cellular pathway that has been shown to be required for virus replication. In the present study, we found that the PEDV JS-2013 strain activated Akt in Vero cells at early (5–15 min) and late stages (8–10 h) of infection. Inhibiting PI3K, an upstream activator of Akt, enhanced PEDV replication. Inhibiting GSK-3α/β, one of the downstream effectors of PI3K/Akt pathway and regulated by Akt during PEDV infected Vero cells, also enhanced PEDV replication. Collectively, our data suggest that PI3K/Akt/GSK-3α/β signaling pathway is activated by PEDV and functions in inhibiting PEDV replication. PMID:27560518

  11. PREX2 promotes the proliferation, invasion and migration of pancreatic cancer cells by modulating the PI3K signaling pathway

    PubMed Central

    Yang, Jianyi; Gong, Xuejun; Ouyang, Lu; He, Wen; Xiao, Rou; Tan, Li

    2016-01-01

    Phosphatidylinositol-3,4,5-trisphosphate-dependent Rac exchanger factor 2 (PREX2) is a novel regulator of the small guanosine triphosphatase Rac, and has been observed to be implicated in human cancer by inhibiting the activity of phosphatase and tensin homolog (PTEN), thus upregulating the activity of the phosphoinositide 3-kinase (PI3K) signaling pathway. However, the exact role of PREX2 in pancreatic cancer has not been reported to date. In the present study, the expression levels of PREX2 were observed to be frequently increased in pancreatic cancer specimens compared with those in their matched adjacent normal tissues. In addition, PREX2 expression was also frequently upregulated in several pancreatic cancer cell lines, including AsPC-1, BxPC-3, PANC-1 and CFAPC-1, compared with that in the normal pancreatic epithelial cell line HPC-Y5. Overexpression of PREX2 significantly promoted the proliferation, invasion and migration of pancreatic cancer PANC-1 cells, while small interfering RNA-induced knockdown of PREX2 expression significantly inhibited the proliferation, invasion and migration of these cells. Investigation of the molecular mechanism revealed that the overexpression of PREX2 upregulated the phosphorylation levels of PTEN, indicating that the activity of PTEN was reduced, which further increased the phosphorylation levels of AKT, which indicated that the activity of the PI3K signaling pathway was upregulated. By contrast, knockdown of PREX2 upregulated the activity of PTEN and inhibited the activity of the PI3K signaling pathway. In conclusion, the present study demonstrated that PREX2 regulates the proliferation, invasion and migration of pancreatic cancer cells, probably at least via modulation of the activity of PTEN and the PI3K signaling pathway. PMID:27446408

  12. LY294002 inhibits glucocorticoid-induced COX-2 gene expression in cardiomyocytes through a phosphatidylinositol 3 kinase-independent mechanism

    SciTech Connect

    Sun Haipeng; Xu Beibei; Sheveleva, Elena; Chen, Qin M.

    2008-10-01

    Glucocorticoids induce COX-2 expression in rat cardiomyocytes. While investigating whether phosphatidylinositol 3 kinase (PI3K) plays a role in corticosterone (CT)-induced COX-2, we found that LY294002 (LY29) but not wortmannin (WM) attenuates CT from inducing COX-2 gene expression. Expression of a dominant-negative mutant of p85 subunit of PI3K failed to inhibit CT from inducing COX-2 expression. CT did not activate PI3K/AKT signaling pathway whereas LY29 and WM decreased the activity of PI3K. LY303511 (LY30), a structural analogue and a negative control for PI3K inhibitory activity of LY29, also suppressed COX-2 induction. These data suggest PI3K-independent mechanisms in regulating CT-induced COX-2 expression. LY29 and LY30 do not inhibit glucocorticoid receptor transactivity. Both compounds have been reported to inhibit Casein Kinase 2 activity and modulate potassium and calcium levels independent of PI3K, while LY29 has been reported to inhibit mammalian Target of Rapamycin (mTOR), and DNA-dependent Protein Kinase (DNA-PK). Inhibitor of Casein Kinase 2 (CK2), mTOR or DNA-PK failed to prevent CT from inducing COX-2 expression. Tetraethylammonium (TEA), a potassium channel blocker, and nimodipine, a calcium channel blocker, both attenuated CT from inducing COX-2 gene expression. CT was found to increase intracellular Ca{sup 2+} concentration, which can be inhibited by LY29, TEA or nimodipine. These data suggest a possible role of calcium instead of PI3K in CT-induced COX-2 expression in cardiomyocytes.

  13. Activation of the PI3K/mTOR Pathway following PARP Inhibition in Small Cell Lung Cancer

    PubMed Central

    Mukherjee, Seema; Diao, Lixia; Tong, Pan; Stewart, C. Allison; Masrorpour, Fatemeh; Fan, YouHong; Nilsson, Monique; Shen, Yuqiao; Heymach, John V.; Wa