Science.gov

Sample records for 3-mea dna glycosylase

  1. [Uracil-DNA glycosylases].

    PubMed

    Pytel, Dariusz; Słupianek, Artur; Ksiazek, Dominika; Skórski, Tomasz; Błasiak, Janusz

    2008-01-01

    Uracil is one of four nitrogen bases, most frequently found in normal RNA. Uracyl can be found also in DNA as a result of enzymatic or non-enzymatic deamination of cytosine as well as misincorporation of dUMP instead of dTMP during DNA replication. Uracil from DNA can be removed by DNA repair enzymes with apirymidine site as an intermediate. However, if uracil is not removed from DNA a pair C:G in parental DNA can be changed into a T:A pair in the daughter DNA molecule. Therefore, uracil in DNA may lead to a mutation. Uracil in DNA, similarly to thymine, forms energetically most favorable hydrogen bonds with adenine, therefore uracil does not change the coding properties of DNA. Uracil in DNA is recognized by uracil DNA glycosylase (UDGs), which initiates DNA base excision repair, leading to removing of uracil from DNA and replacing it by thymine or cytosine, when arose as a result of cytosine deamination. Eukaryotes have at least four nuclear UDGs: UNG2, SMUG1, TDG i MBD4, while UNG1 operates in the mitochondrium. UNG2 is involved in DNA repair associated with DNA replication and interacts with PCNA and RPA proteins. Uracil can also be an intermediate product in the process of antigen-dependent antibody diversification in B lymphocytes. Enzymatic deamination of viral DNA by host cells can be a defense mechanism against viral infection, including HIV-1. UNG2, MBD4 and TDG glycosylases may cooperate with mismatch repair proteins and TDG can be involved in nucleotide excision repair system.

  2. DNA glycosylases in the base excision repair of DNA.

    PubMed Central

    Krokan, H E; Standal, R; Slupphaug, G

    1997-01-01

    A wide range of cytotoxic and mutagenic DNA bases are removed by different DNA glycosylases, which initiate the base excision repair pathway. DNA glycosylases cleave the N-glycosylic bond between the target base and deoxyribose, thus releasing a free base and leaving an apurinic/apyrimidinic (AP) site. In addition, several DNA glycosylases are bifunctional, since they also display a lyase activity that cleaves the phosphodiester backbone 3' to the AP site generated by the glycosylase activity. Structural data and sequence comparisons have identified common features among many of the DNA glycosylases. Their active sites have a structure that can only bind extrahelical target bases, as observed in the crystal structure of human uracil-DNA glycosylase in a complex with double-stranded DNA. Nucleotide flipping is apparently actively facilitated by the enzyme. With bacteriophage T4 endonuclease V, a pyrimidine-dimer glycosylase, the enzyme gains access to the target base by flipping out an adenine opposite to the dimer. A conserved helix-hairpin-helix motif and an invariant Asp residue are found in the active sites of more than 20 monofunctional and bifunctional DNA glycosylases. In bifunctional DNA glycosylases, the conserved Asp is thought to deprotonate a conserved Lys, forming an amine nucleophile. The nucleophile forms a covalent intermediate (Schiff base) with the deoxyribose anomeric carbon and expels the base. Deoxyribose subsequently undergoes several transformations, resulting in strand cleavage and regeneration of the free enzyme. The catalytic mechanism of monofunctional glycosylases does not involve covalent intermediates. Instead the conserved Asp residue may activate a water molecule which acts as the attacking nucleophile. PMID:9224623

  3. Strandwise translocation of a DNA glycosylase on undamaged DNA

    SciTech Connect

    Qi, Yan; Nam, Kwangho; Spong, Marie C.; Banerjee, Anirban; Sung, Rou-Jia; Zhang, Michael; Karplus, Martin; Verdine, Gregory L.

    2012-05-14

    Base excision repair of genotoxic nucleobase lesions in the genome is critically dependent upon the ability of DNA glycosylases to locate rare sites of damage embedded in a vast excess of undamaged DNA, using only thermal energy to fuel the search process. Considerable interest surrounds the question of how DNA glycosylases translocate efficiently along DNA while maintaining their vigilance for target damaged sites. Here, we report the observation of strandwise translocation of 8-oxoguanine DNA glycosylase, MutM, along undamaged DNA. In these complexes, the protein is observed to translocate by one nucleotide on one strand while remaining untranslocated on the complementary strand. We further report that alterations of single base-pairs or a single amino acid substitution (R112A) can induce strandwise translocation. Molecular dynamics simulations confirm that MutM can translocate along DNA in a strandwise fashion. These observations reveal a previously unobserved mode of movement for a DNA-binding protein along the surface of DNA.

  4. Strandwise translocation of a DNA glycosylase on undamaged DNA.

    PubMed

    Qi, Yan; Nam, Kwangho; Spong, Marie C; Banerjee, Anirban; Sung, Rou-Jia; Zhang, Michael; Karplus, Martin; Verdine, Gregory L

    2012-01-24

    Base excision repair of genotoxic nucleobase lesions in the genome is critically dependent upon the ability of DNA glycosylases to locate rare sites of damage embedded in a vast excess of undamaged DNA, using only thermal energy to fuel the search process. Considerable interest surrounds the question of how DNA glycosylases translocate efficiently along DNA while maintaining their vigilance for target damaged sites. Here, we report the observation of strandwise translocation of 8-oxoguanine DNA glycosylase, MutM, along undamaged DNA. In these complexes, the protein is observed to translocate by one nucleotide on one strand while remaining untranslocated on the complementary strand. We further report that alterations of single base-pairs or a single amino acid substitution (R112A) can induce strandwise translocation. Molecular dynamics simulations confirm that MutM can translocate along DNA in a strandwise fashion. These observations reveal a previously unobserved mode of movement for a DNA-binding protein along the surface of DNA. PMID:22219368

  5. Recent Advances in the Structural Mechanisms of DNA Glycosylases

    PubMed Central

    Brooks, Sonja C.; Adhikary, Suraj; Rubinson, Emily H.; Eichman, Brandt F.

    2012-01-01

    DNA glycosylases safeguard the genome by locating and excising a diverse array of aberrant nucleobases created from oxidation, alkylation, and deamination of DNA. Since the discovery 28 years ago that these enzymes employ a base flipping mechanism to trap their substrates, six different protein architectures have been identified to perform the same basic task. Work over the past several years has unraveled details for how the various DNA glycosylases survey DNA, detect damage within the duplex, select for the correct modification, and catalyze base excision. Here, we provide a broad overview of these latest advances in glycosylase mechanisms gleaned from structural enzymology, highlighting features common to all glycosylases as well as key differences that define their particular substrate specificities. PMID:23076011

  6. Structure of a DNA glycosylase searching for lesions.

    PubMed

    Banerjee, Anirban; Santos, Webster L; Verdine, Gregory L

    2006-02-24

    DNA glycosylases must interrogate millions of base pairs of undamaged DNA in order to locate and then excise one damaged nucleobase. The nature of this search process remains poorly understood. Here we report the use of disulfide cross-linking (DXL) technology to obtain structures of a bacterial DNA glycosylase, MutM, interrogating undamaged DNA. These structures, solved to 2.0 angstrom resolution, reveal the nature of the search process: The protein inserts a probe residue into the helical stack and severely buckles the target base pair, which remains intrahelical. MutM therefore actively interrogates the intact DNA helix while searching for damage. PMID:16497933

  7. Thymine DNA glycosylase specifically recognizes 5-carboxylcytosine-modified DNA

    SciTech Connect

    Zhang, Liang; Lu, Xingyu; Lu, Junyan; Liang, Haihua; Dai, Qing; Xu, Guo-Liang; Luo, Cheng; Jiang, Hualiang; He, Chuan

    2012-04-24

    Human thymine DNA glycosylase (hTDG) efficiently excises 5-carboxylcytosine (5caC), a key oxidation product of 5-methylcytosine in genomic DNA, in a recently discovered cytosine demethylation pathway. We present here the crystal structures of the hTDG catalytic domain in complex with duplex DNA containing either 5caC or a fluorinated analog. These structures, together with biochemical and computational analyses, reveal that 5caC is specifically recognized in the active site of hTDG, supporting the role of TDG in mammalian 5-methylcytosine demethylation.

  8. Detection of Damaged DNA Bases by DNA Glycosylase Enzymes†

    PubMed Central

    Friedman, Joshua I.; Stivers, James T.

    2010-01-01

    A fundamental and shared process in all forms of life is the use of DNA glycosylase enzymes to excise rare damaged bases from genomic DNA. Without such enzymes, the highly-ordered primary sequences of genes would rapidly deteriorate. Recent structural and biophysical studies are beginning to reveal a fascinating multistep mechanism for damaged base detection that begins with short-range sliding of the glycosylase along the DNA chain in a distinct conformation we refer to as the search complex (SC). Sliding is frequently punctuated by the formation of a transient “interrogation” complex (IC) where the enzyme extrahelically inspects both normal and damaged bases in an exosite pocket that is distant from the active site. When normal bases are presented in the exosite, the IC rapidly collapses back to the SC, while a damaged base will efficiently partition forward into the active site to form the catalytically competent excision complex (EC). Here we review the unique problems associated with enzymatic detection of rare damaged DNA bases in the genome, and emphasize how each complex must have specific dynamic properties that are tuned to optimize the rate and efficiency of damage site location. PMID:20469926

  9. A DNA enzyme with N-glycosylase activity

    NASA Technical Reports Server (NTRS)

    Sheppard, T. L.; Ordoukhanian, P.; Joyce, G. F.

    2000-01-01

    In vitro evolution was used to develop a DNA enzyme that catalyzes the site-specific depurination of DNA with a catalytic rate enhancement of about 10(6)-fold. The reaction involves hydrolysis of the N-glycosidic bond of a particular deoxyguanosine residue, leading to DNA strand scission at the apurinic site. The DNA enzyme contains 93 nucleotides and is structurally complex. It has an absolute requirement for a divalent metal cation and exhibits optimal activity at about pH 5. The mechanism of the reaction was confirmed by analysis of the cleavage products by using HPLC and mass spectrometry. The isolation and characterization of an N-glycosylase DNA enzyme demonstrates that single-stranded DNA, like RNA and proteins, can form a complex tertiary structure and catalyze a difficult biochemical transformation. This DNA enzyme provides a new approach for the site-specific cleavage of DNA molecules.

  10. Molecular crowding enhances facilitated diffusion of two human DNA glycosylases.

    PubMed

    Cravens, Shannen L; Schonhoft, Joseph D; Rowland, Meng M; Rodriguez, Alyssa A; Anderson, Breeana G; Stivers, James T

    2015-04-30

    Intracellular space is at a premium due to the high concentrations of biomolecules and is expected to have a fundamental effect on how large macromolecules move in the cell. Here, we report that crowded solutions promote intramolecular DNA translocation by two human DNA repair glycosylases. The crowding effect increases both the efficiency and average distance of DNA chain translocation by hindering escape of the enzymes to bulk solution. The increased contact time with the DNA chain provides for redundant damage patrolling within individual DNA chains at the expense of slowing the overall rate of damaged base removal from a population of molecules. The significant biological implication is that a crowded cellular environment could influence the mechanism of damage recognition as much as any property of the enzyme or DNA. PMID:25845592

  11. Binding of undamaged double stranded DNA to vaccinia virus uracil-DNA glycosylase

    SciTech Connect

    Schormann, Norbert; Banerjee, Surajit; Ricciardi, Robert; Chattopadhyay, Debasish

    2015-06-02

    Background: Uracil-DNA glycosylases are evolutionarily conserved DNA repair enzymes. However, vaccinia virus uracil-DNA glycosylase (known as D4), also serves as an intrinsic and essential component of the processive DNA polymerase complex during DNA replication. In this complex D4 binds to a unique poxvirus specific protein A20 which tethers it to the DNA polymerase. At the replication fork the DNA scanning and repair function of D4 is coupled with DNA replication. So far, DNA-binding to D4 has not been structurally characterized. Results: This manuscript describes the first structure of a DNA-complex of a uracil-DNA glycosylase from the poxvirus family. This also represents the first structure of a uracil DNA glycosylase in complex with an undamaged DNA. In the asymmetric unit two D4 subunits bind simultaneously to complementary strands of the DNA double helix. Each D4 subunit interacts mainly with the central region of one strand. DNA binds to the opposite side of the A20-binding surface on D4. In comparison of the present structure with the structure of uracil-containing DNA-bound human uracil-DNA glycosylase suggests that for DNA binding and uracil removal D4 employs a unique set of residues and motifs that are highly conserved within the poxvirus family but different in other organisms. Conclusion: The first structure of D4 bound to a truly non-specific undamaged double-stranded DNA suggests that initial binding of DNA may involve multiple non-specific interactions between the protein and the phosphate backbone.

  12. Binding of undamaged double stranded DNA to vaccinia virus uracil-DNA glycosylase

    DOE PAGES

    Schormann, Norbert; Banerjee, Surajit; Ricciardi, Robert; Chattopadhyay, Debasish

    2015-06-02

    Background: Uracil-DNA glycosylases are evolutionarily conserved DNA repair enzymes. However, vaccinia virus uracil-DNA glycosylase (known as D4), also serves as an intrinsic and essential component of the processive DNA polymerase complex during DNA replication. In this complex D4 binds to a unique poxvirus specific protein A20 which tethers it to the DNA polymerase. At the replication fork the DNA scanning and repair function of D4 is coupled with DNA replication. So far, DNA-binding to D4 has not been structurally characterized. Results: This manuscript describes the first structure of a DNA-complex of a uracil-DNA glycosylase from the poxvirus family. This alsomore » represents the first structure of a uracil DNA glycosylase in complex with an undamaged DNA. In the asymmetric unit two D4 subunits bind simultaneously to complementary strands of the DNA double helix. Each D4 subunit interacts mainly with the central region of one strand. DNA binds to the opposite side of the A20-binding surface on D4. In comparison of the present structure with the structure of uracil-containing DNA-bound human uracil-DNA glycosylase suggests that for DNA binding and uracil removal D4 employs a unique set of residues and motifs that are highly conserved within the poxvirus family but different in other organisms. Conclusion: The first structure of D4 bound to a truly non-specific undamaged double-stranded DNA suggests that initial binding of DNA may involve multiple non-specific interactions between the protein and the phosphate backbone.« less

  13. Excision of 5-hydroxymethylcytosine by DEMETER family DNA glycosylases

    PubMed Central

    Jang, Hosung; Shin, Hosub; Eichman, Brandt F.; Huh, Jin Hoe

    2016-01-01

    In plants and animals, 5-methylcytosine (5mC) serves as an epigenetic mark to repress gene expression, playing critical roles for cellular differentiation and transposon silencing. Mammals also have 5-hydroxymethylcytosine (5hmC), resulting from hydroxylation of 5mC by TET family-enzymes. 5hmC is abundant in mouse Purkinje neurons and embryonic stem cells, and regarded as an important intermediate for active DNA demethylation in mammals. However, the presence of 5hmC in plants has not been clearly demonstrated. In Arabidopsis, the DEMETER (DME) family DNA glycosylases efficiently remove 5mC, which results in DNA demethylation and transcriptional activation of target genes. Here we show that DME and ROS1 have a significant 5hmC excision activity in vitro, although we detected no 5hmC in Arabidopsis, suggesting that it is very unlikely for plants to utilize 5hmC as a DNA demethylation intermediate. Our results indicate that both plants and animals have 5mC in common but DNA demethylation systems have independently evolved with distinct mechanisms. PMID:24661881

  14. Crystal structures of 3-methyladenine DNA glycosylase MagIII and the recognition of alkylated bases.

    PubMed

    Eichman, Brandt F; O'Rourke, Eyleen J; Radicella, J Pablo; Ellenberger, Tom

    2003-10-01

    DNA glycosylases catalyze the excision of chemically modified bases from DNA. Although most glycosylases are specific to a particular base, the 3-methyladenine (m3A) DNA glycosylases include both highly specific enzymes acting on a single modified base, and enzymes with broader specificity for alkylation-damaged DNA. Our structural understanding of these different enzymatic specificities is currently limited to crystal and NMR structures of the unliganded enzymes and complexes with abasic DNA inhibitors. Presented here are high-resolution crystal structures of the m3A DNA glycosylase from Helicobacter pylori (MagIII) in the unliganded form and bound to alkylated bases 3,9-dimethyladenine and 1,N6-ethenoadenine. These are the first structures of a nucleobase bound in the active site of a m3A glycosylase belonging to the helix-hairpin-helix superfamily. MagIII achieves its specificity for positively-charged m3A not by direct interactions with purine or methyl substituent atoms, but rather by stacking the base between two aromatic side chains in a pocket that excludes 7-methylguanine. We report base excision and DNA binding activities of MagIII active site mutants, together with a structural comparison of the HhH glycosylases. PMID:14517230

  15. Neil DNA glycosylases promote substrate turnover by Tdg during DNA demethylation

    PubMed Central

    Arab, Khelifa; Kienhöfer, Sabine; von Seggern, Annika; Niehrs, Christof

    2016-01-01

    DNA 5-methylcytosine is a dynamic epigenetic mark which plays important roles in development and disease. In the Tet-Tdg demethylation pathway, methylated cytosine is iteratively oxidized by Tet dioxygenases and unmodified cytosine is restored via thymine DNA glycosylase (Tdg). Here we show that human NEIL1 and NEIL2 DNA glycosylases coordinate abasic site processing during TET–TDG DNA demethylation. NEIL1 and NEIL2 cooperate with TDG during base excision: TDG occupies the abasic site and is displaced by NEILs, which further process the baseless sugar, thereby stimulating TDG substrate turnover. In early Xenopus embryos Neil2 cooperates with Tdg to remove oxidized methylcytosines and to specify neural crest development together with Tet3. Thus, Neils function as AP lyases in the coordinated AP site hand-over during oxidative DNA demethylation. PMID:26751644

  16. Mutational studies of Pa-AGOG DNA glycosylase from the hyperthermophilic crenarchaeon Pyrobaculum aerophilum.

    PubMed

    Lingaraju, Gondichatnahalli M; Prota, Andrea E; Winkler, Fritz K

    2009-07-01

    In all organisms studied to date, 8-oxoguanine (GO), an important oxidation product of guanine, is removed by highly conserved GO DNA glycosylases. The hyperthermophilic crenarchaeon Pyrobaculum aerophilum encodes a GO DNA glycosylase, Pa-AGOG (Archaeal GO DNA glycosylase) which has become the founding member of a new family within the HhH-GPD superfamily of DNA glycosylases based on unique structural and functional characteristics. In this study, we made quantitative measurements of the DNA glycosylase activity of Pa-AGOG wild type and some engineered variants under single turnover conditions. The mutagenesis study includes residues Trp222 (W222A and W222F), Trp69 (W69F), Gln31 (Q31S) and Lys147 (K147Q) all of which are involved in GO recognition and Asp172 (D172N and D172Q) and Lys140 (K140Q) that are involved in catalysis. Pa-AGOG prefers GO/G mispairs for both base excision and base excision/beta-lyase activities. The mutagenesis studies show that base-stacking between GO and Trp222 is very important for recognition. The contact between Trp69 and the 8-oxo group was found to be dispensable, while that to N7 by Gln31 is indispensable for GO recognition. In contrast to human OGG1 the catalytic mutant, D172Q did not show detectable glycosylase activity. Pa-AGOG mutants K140Q, D172N and D172Q did bind GO containing single-stranded DNA more tightly than double-stranded DNA containing a GO/C base pair. Our studies confirm and extend the unique characteristics of Pa-AGOG, which distinguish it from other mesophilic and thermostable GO DNA glycosylases. PMID:19410520

  17. The Fpg/Nei family of DNA glycosylases: substrates, structures, and search for damage.

    PubMed

    Prakash, Aishwarya; Doublié, Sylvie; Wallace, Susan S

    2012-01-01

    During the initial stages of the base excision DNA repair pathway, DNA glycosylases are responsible for locating and removing the majority of endogenous oxidative base lesions. The bifunctional formamidopyrimidine DNA glycosylase (Fpg) and endonuclease VIII (Nei) are members of the Fpg/Nei family, one of the two families of glycosylases that recognize oxidized DNA bases, the other being the HhH/GPD (or Nth) superfamily. Structural and biochemical developments over the past decades have led to novel insights into the mechanism of damage recognition by the Fpg/Nei family of enzymes. Despite the overall structural similarity among members of this family, these enzymes exhibit distinct features that make them unique. This review summarizes the current structural knowledge of the Fpg/Nei family members, emphasizes their substrate specificities, and describes how these enzymes search for lesions. PMID:22749143

  18. Structural and mutation studies of two DNA demethylation related glycosylases: MBD4 and TDG.

    PubMed

    Hashimoto, Hideharu

    2014-01-01

    Two mammalian DNA glycosylases, methyl-CpG binding domain protein 4 (MBD4) and thymine DNA glycosylase (TDG), are involved in active DNA demethylation via the base excision repair pathway. Both MBD4 and TDG excise the mismatch base from G:X, where X is uracil, thymine, and 5-hydroxymethyluracil (5hmU). In addition, TDG excises 5mC oxidized bases i.e. when X is 5-formylcytosine (5fC), and 5-carboxylcytosine (5caC) not 5-hydroxymethylcytosine (5hmC). A MBD4 inactive mutant and substrate crystal structure clearly explains how MBD4 glycosylase discriminates substrates: 5mC are not able to be directly excised, but a deamination process from 5mC to thymine is required. On the other hand, TDG is much more complicated; in this instance, crystal structures show that TDG recognizes G:X mismatch DNA containing DNA and G:5caC containing DNA from the minor groove of DNA, which suggested that TDG might recognize 5mC oxidized product 5caC like mismatch DNA. In mutation studies, a N157D mutation results in a more 5caC specific glycosylase, and a N191A mutation inhibits 5caC activity while that when X=5fC or T remains. Here I revisit the recent MBD4 glycos ylase domain co-crystal structures with DNA, as well as TDG glycosylase domain co-crystal structures with DNA in conjunction with its mutation studies.

  19. Structural Investigation of a Viral Ortholog of Human NEIL2/3 DNA Glycosylases

    PubMed Central

    Prakash, Aishwarya; Eckenroth, Brian E.; Averill, April M.; Imamura, Kayo; Wallace, Susan S.; Doublié, Sylvie

    2013-01-01

    Assault to DNA that leads to oxidative base damage is repaired by the base excision repair (BER) pathway with specialized enzymes called DNA glycosylases catalyzing the first step of this pathway. These glycosylases can be categorized into two families: the HhH superfamily, which includes endonuclease III (or Nth), and the Fpg/Nei family, which comprises formamidopyrimidine DNA glycosylase (or Fpg) and endonuclease VIII (or Nei). In humans there are three Nei-like (NEIL) glycosylases: NEIL1, 2, and 3. Here we present the first crystal structure of a viral ortholog of the human NEIL2/NEIL3 proteins, Mimivirus Nei2 (MvNei2), determined at 2.04 Å resolution. The C-terminal region of the MvNei2 enzyme comprises two conserved DNA binding motifs: the helix-two-turns-helix (H2TH) motif and a C-H-C-C type zinc-finger similar to that of human NEIL2. The N-terminal region of MvNei2 is most closely related to NEIL3. Like NEIL3, MvNei2 bears a valine at position 2 instead of the usual proline and it lacks two of the three conserved void-filling residues present in other members of the Fpg/Nei family. Mutational analysis of the only conserved void-filling residue methionine 72 to alanine yields an MvNei2 variant with impaired glycosylase activity. Mutation of the adjacent His73 causes the enzyme to be more productive thereby suggesting a plausible role for this residue in the DNA lesion search process. PMID:24120312

  20. Structural investigation of a viral ortholog of human NEIL2/3 DNA glycosylases.

    PubMed

    Prakash, Aishwarya; Eckenroth, Brian E; Averill, April M; Imamura, Kayo; Wallace, Susan S; Doublié, Sylvie

    2013-12-01

    Assault to DNA that leads to oxidative base damage is repaired by the base excision repair (BER) pathway with specialized enzymes called DNA glycosylases catalyzing the first step of this pathway. These glycosylases can be categorized into two families: the HhH superfamily, which includes endonuclease III (or Nth), and the Fpg/Nei family, which comprises formamidopyrimidine DNA glycosylase (or Fpg) and endonuclease VIII (or Nei). In humans there are three Nei-like (NEIL) glycosylases: NEIL1, 2, and 3. Here we present the first crystal structure of a viral ortholog of the human NEIL2/NEIL3 proteins, Mimivirus Nei2 (MvNei2), determined at 2.04Å resolution. The C-terminal region of the MvNei2 enzyme comprises two conserved DNA binding motifs: the helix-two-turns-helix (H2TH) motif and a C-H-C-C type zinc-finger similar to that of human NEIL2. The N-terminal region of MvNei2 is most closely related to NEIL3. Like NEIL3, MvNei2 bears a valine at position 2 instead of the usual proline and it lacks two of the three conserved void-filling residues present in other members of the Fpg/Nei family. Mutational analysis of the only conserved void-filling residue methionine 72 to alanine yields an MvNei2 variant with impaired glycosylase activity. Mutation of the adjacent His73 causes the enzyme to be more productive thereby suggesting a plausible role for this residue in the DNA lesion search process. PMID:24120312

  1. Mammalian 5-formyluracil-DNA glycosylase. 2. Role of SMUG1 uracil-DNA glycosylase in repair of 5-formyluracil and other oxidized and deaminated base lesions.

    PubMed

    Masaoka, Aya; Matsubara, Mayumi; Hasegawa, Rei; Tanaka, Tamon; Kurisu, Satofumi; Terato, Hiroaki; Ohyama, Yoshihiko; Karino, Naoko; Matsuda, Akira; Ide, Hiroshi

    2003-05-01

    In the accompanying paper [Matsubara, M., et al. (2003) Biochemistry 42, 4993-5002], we have partially purified and characterized rat 5-formyluracil (fU)-DNA glycosylase (FDG). Several lines of evidence have indicated that FDG is a rat homologue of single-strand-selective monofunctional uracil-DNA glycosylase (SMUG1). We report here that rat and human SMUG1 (rSMUG1 and hSMUG1) expressed from the corresponding cDNAs indeed excise fU in single-stranded (ss) and double-stranded (ds) DNA. The enzymes also excised uracil (U) and uracil derivatives bearing an oxidized group at C5 [5-hydroxyuracil (hoU) and 5-hydroxymethyluracil (hmU)] in ssDNA and dsDNA but not analogous cytosine derivatives (5-hydroxycytosine and 5-formylcytosine) and other oxidized damage. The damage specificity and the salt concentration dependence of rSMUG1 (and hSMUG1) agreed well with those of FDG, confirming that FDG is rSMUG1. Consistent with the damage specificity above, hSMUG1 removed damaged bases from Fenton-oxidized calf thymus DNA, generating abasic sites. The amount of resulting abasic sites was about 10% of that generated by endonuclease III or 8-oxoguanine glycosylase in the same substrate. The HeLa cell extract and hSMUG1 exhibited a similar damage preference (hoU.G > hmU.A, fU.A), and the activities for fU, hmU, and hoU in the cell extract were effectively neutralized with hSMUG1 antibodies. These data indicate a dual role of hSMUG1 as a backup enzyme for UNG and a primary repair enzyme for a subset of oxidized pyrimidines such as fU, hmU, and hoU.

  2. Mutations at Arginine 276 transform human uracil-DNA glycosylase into a single-stranded DNA-specific uracil-DNA glycosylase

    PubMed Central

    Chen, Cheng-Yao; Mosbaugh, Dale W.; Bennett, Samuel E.

    2011-01-01

    To investigate the role of Arginine 276 in the conserved leucine-loop of human uracil-DNA glycosylase (UNG), the effects of six R276 amino acid substitutions (C, E, H, L, W, and Y) on nucleotide flipping and enzyme conformational change were determined using transient and steady state, fluorescence-based, kinetic analysis. Relative to UNG, the mutant proteins exhibited a 2.6- to 7.7-fold reduction in affinity for a doubled-stranded oligonucleotide containing a pseudouracil residue opposite 2-aminopurine, as judged by steady-state DNA binding-base flipping assays. An anisotropy binding assay was utilized to determine the Kd of UNG and the R276 mutants for carboxyfluorescein-labeled uracil-containing single- and double-stranded oligonucleotides; the binding affinities varied 11-fold for single-stranded uracil-DNA, and 43-fold for double-stranded uracil-DNA. Productive uracil-DNA binding was monitored by rapid quenching of UNG intrinsic protein fluorescence. Relative to UNG, the rate of intrinsic fluorescence quenching of five mutant proteins for binding double-stranded uracil-DNA was reduced approximately 50%; the R276E mutant exhibited 1% of the rate of fluorescence quenching of UNG. When reacted with single-stranded uracil-DNA, the rate of UNG fluorescence quenching increased. Moreover, the rate of fluorescence quenching for all the mutant proteins, except R276E, was slightly faster than UNG. The kcat of the R276 mutants was comparable to UNG on single-stranded DNA and differentially affected by NaCl; however, kcat on double-stranded DNA substrate was reduced 4–12-fold and decreased sharply at NaCl concentrations as low as 20 mM. Taken together, these results indicate that the effects of mutations at Arg276 were largely limited to enzyme interactions with double-stranded uracil-containing DNA, and suggested that mutations at Arg276 effectively transformed UNG into a single-stranded DNA-specific uracil-DNA glycosylase. PMID:15970468

  3. Functional changes in a novel uracil-DNA glycosylase determined by mutational analyses.

    PubMed

    Im, E K; Han, Y S; Chung, J H

    2008-01-01

    Uracil-DNA glycosylase (UDG) is a ubiquitous enzyme found in bacteria and eukaryotes, which removes uracil residues from DNA strands. Methanococcus jannaschii UDG (MjUDG), a novel monofunctional glycosylase, contains a helix-hairpin-helix (HhH) motif and Gly/Pro rich loop (GPD region), which is important for catalytic activity; it shares these features with other glycosylases such as endonuclease III. First, to examine the role of two conserved amino acid residues (Asp150 and Tyr152) in the HhH-GPD region of MjUDG, mutant MjUDG proteins were constructed, in which Asp 150 was replaced with either Glu or Trp (D150E and D150W), Tyr152 was replaced with either Glu or Asn (Y152E and Y152N). Mutant D150W completely lacked DNA glycosylase activity, whereas D150E displayed reduced activity of about 70% of the wild type value. However, the mutants Y152E and Y152N retained unchanged levels of UDG activity. We also replaced Glu132 in the HhH motif with a lysine residue equivalent to Lys120 in endonuclease III. This mutation converted the enzyme into a bifunctional glycosylase/AP lyase capable of both removing uracil at a glycosylic bond and cleaving the phosphodiester backbone at an AP site. Mutant E132K catalyzes a beta-elimination reaction at the AP site via uracil excision and forms a Schiff base intermediate in the form of a protein-DNA complex. PMID:19004346

  4. Analysis of nuclear uracil-DNA glycosylase (nUDG) turnover during the cell cycle.

    PubMed

    Fischer, Jennifer A; Caradonna, Salvatore

    2011-01-01

    Uracil-DNA glycosylases (UDG/UNG) are enzymes that remove uracil from DNA and initiate base-excision repair. These enzymes play a key role in maintaining genomic integrity by reducing the mutagenic events caused by G:C to A:T transition mutations. The recent finding that a family of RNA editing enzymes (AID/APOBECs) can deaminate cytosine in DNA has raised the interest in these base-excision repair enzymes. The methodology presented here focuses on determining the regulation of the nuclear isoform of uracil-DNA glycosylase (nUDG), a 36,000 Da protein. In synchronized HeLa cells, nUDG protein levels decrease to barely detectable levels during the S phase of the cell cycle. Immunoblot analysis of immunoprecipitated or affinity-isolated nUDG reveals ubiquitin-conjugated nUDG when proteolysis is inhibited by agents that block proteasomal-dependent protein degradation. PMID:21755446

  5. Structure determination of uracil-DNA N-glycosylase from Deinococcus radiodurans in complex with DNA.

    PubMed

    Pedersen, Hege Lynum; Johnson, Kenneth A; McVey, Colin E; Leiros, Ingar; Moe, Elin

    2015-10-01

    Uracil-DNA N-glycosylase (UNG) is a DNA-repair enzyme in the base-excision repair (BER) pathway which removes uracil from DNA. Here, the crystal structure of UNG from the extremophilic bacterium Deinococcus radiodurans (DrUNG) in complex with DNA is reported at a resolution of 1.35 Å. Prior to the crystallization experiments, the affinity between DrUNG and different DNA oligonucleotides was tested by electrophoretic mobility shift assays (EMSAs). As a result of this analysis, two 16 nt double-stranded DNAs were chosen for the co-crystallization experiments, one of which (16 nt AU) resulted in well diffracting crystals. The DNA in the co-crystal structure contained an abasic site (substrate product) flipped into the active site of the enzyme, with no uracil in the active-site pocket. Despite the high resolution, it was not possible to fit all of the terminal nucleotides of the DNA complex into electron density owing to disorder caused by a lack of stabilizing interactions. However, the DNA which was in contact with the enzyme, close to the active site, was well ordered and allowed detailed analysis of the enzyme-DNA interaction. The complex revealed that the interaction between DrUNG and DNA is similar to that in the previously determined crystal structure of human UNG (hUNG) in complex with DNA [Slupphaug et al. (1996). Nature (London), 384, 87-92]. Substitutions in a (here defined) variable part of the leucine loop result in a shorter loop (eight residues instead of nine) in DrUNG compared with hUNG; regardless of this, it seems to fulfil its role and generate a stabilizing force with the minor groove upon flipping out of the damaged base into the active site. The structure also provides a rationale for the previously observed high catalytic efficiency of DrUNG caused by high substrate affinity by demonstrating an increased number of long-range electrostatic interactions between the enzyme and the DNA. Interestingly, specific interactions between residues

  6. A discontinuous DNA glycosylase domain in a family of enzymes that excise 5-methylcytosine.

    PubMed

    Ponferrada-Marín, María Isabel; Parrilla-Doblas, Jara Teresa; Roldán-Arjona, Teresa; Ariza, Rafael R

    2011-03-01

    DNA cytosine methylation (5-meC) is a widespread epigenetic mark associated to gene silencing. In plants, DEMETER-LIKE (DML) proteins typified by Arabidopsis REPRESSOR OF SILENCING 1 (ROS1) initiate active DNA demethylation by catalyzing 5-meC excision. DML proteins belong to the HhH-GPD superfamily, the largest and most functionally diverse group of DNA glycosylases, but the molecular properties that underlie their capacity to specifically recognize and excise 5-meC are largely unknown. We have found that sequence similarity to HhH-GPD enzymes in DML proteins is actually distributed over two non-contiguous segments connected by a predicted disordered region. We used homology-based modeling to locate candidate residues important for ROS1 function in both segments, and tested our predictions by site-specific mutagenesis. We found that amino acids T606 and D611 are essential for ROS1 DNA glycosylase activity, whereas mutations in either of two aromatic residues (F589 and Y1028) reverse the characteristic ROS1 preference for 5-meC over T. We also found evidence suggesting that ROS1 uses Q607 to flip out 5-meC, while the contiguous N608 residue contributes to sequence-context specificity. In addition to providing novel insights into the molecular basis of 5-meC excision, our results reveal that ROS1 and its DML homologs possess a discontinuous catalytic domain that is unprecedented among known DNA glycosylases. PMID:21036872

  7. A poxvirus-encoded uracil DNA glycosylase is essential for virus viability.

    PubMed Central

    Stuart, D T; Upton, C; Higman, M A; Niles, E G; McFadden, G

    1993-01-01

    Infection of cultured mammalian cells with the Leporipoxvirus Shope fibroma virus (SFV) causes the induction of a novel uracil DNA glycosylase activity in the cytoplasms of the infected cells. The induction of this activity, early in infection, correlates with the early expression of the SFV BamHI D6R open reading frame which possesses significant protein sequence similarity to eukaryotic and prokaryotic uracil DNA glycosylases. The SFV BamHI D6R open reading frame and the homologous HindIII D4R open reading frame from the Orthopoxvirus vaccinia virus were cloned under the regulation of a phage T7 promoter and expressed in Escherichia coli as insoluble high-molecular-weight aggregates. During electrophoresis on sodium dodecyl sulfate-polyacrylamide gels, the E. coli-expressed proteins migrate with an apparent molecular mass of 25 kDa. The insoluble protein aggregate generated by expression in E. coli was solubilized in urea and, following a subsequent refolding step, displayed the ability to excise uracil residues from double-stranded plasmid DNA substrates, with the subsequent formation of apyrimidinic sites. The viral enzyme, like all other characterized uracil DNA glycosylases, is active in the presence of high concentrations of EDTA, is substrate inhibited by uracil, and does not display any endonuclease activity. Attempts to inactivate the HindIII D4R gene of vaccinia virus by targeted insertion of a dominant xanthine-guanine phosphoribosyltransferase selection marker or direct insertion of a frame-shifted oligonucleotide were uniformly unsuccessful demonstrating that, unlike the uracil DNA glycosylase described for herpesviruses, the poxvirus enzyme is essential for virus viability. Images PMID:8474156

  8. A model for 3-methyladenine recognition by 3-methyladenine DNA glycosylase I (TAG) from Staphylococcus aureus

    PubMed Central

    Zhu, Xiaofeng; Yan, Xuan; Carter, Lester G.; Liu, Huanting; Graham, Shirley; Coote, Peter J.; Naismith, James

    2012-01-01

    The removal of chemically damaged DNA bases such as 3-methyladenine (3-­MeA) is an essential process in all living organisms and is catalyzed by the enzyme 3-MeA DNA glycosylase I. A key question is how the enzyme selectively recognizes the alkylated 3-MeA over the much more abundant adenine. The crystal structures of native and Y16F-mutant 3-MeA DNA glycosylase I from Staphylococcus aureus in complex with 3-MeA are reported to 1.8 and 2.2 Å resolution, respectively. Isothermal titration calorimetry shows that protonation of 3-MeA decreases its binding affinity, confirming previous fluorescence studies that show that charge–charge recognition is not critical for the selection of 3-MeA over adenine. It is hypothesized that the hydrogen-bonding pattern of Glu38 and Tyr16 of 3-MeA DNA glycosylase I with a particular tautomer unique to 3-MeA contributes to recognition and selection. PMID:22684054

  9. Crystal Structure of the Vaccinia Virus Uracil-DNA Glycosylase in Complex with DNA.

    PubMed

    Burmeister, Wim P; Tarbouriech, Nicolas; Fender, Pascal; Contesto-Richefeu, Céline; Peyrefitte, Christophe N; Iseni, Frédéric

    2015-07-17

    Vaccinia virus polymerase holoenzyme is composed of the DNA polymerase catalytic subunit E9 associated with its heterodimeric co-factor A20·D4 required for processive genome synthesis. Although A20 has no known enzymatic activity, D4 is an active uracil-DNA glycosylase (UNG). The presence of a repair enzyme as a component of the viral replication machinery suggests that, for poxviruses, DNA synthesis and base excision repair is coupled. We present the 2.7 Å crystal structure of the complex formed by D4 and the first 50 amino acids of A20 (D4·A201-50) bound to a 10-mer DNA duplex containing an abasic site resulting from the cleavage of a uracil base. Comparison of the viral complex with its human counterpart revealed major divergences in the contacts between protein and DNA and in the enzyme orientation on the DNA. However, the conformation of the dsDNA within both structures is very similar, suggesting a dominant role of the DNA conformation for UNG function. In contrast to human UNG, D4 appears rigid, and we do not observe a conformational change upon DNA binding. We also studied the interaction of D4·A201-50 with different DNA oligomers by surface plasmon resonance. D4 binds weakly to nonspecific DNA and to uracil-containing substrates but binds abasic sites with a Kd of <1.4 μm. This second DNA complex structure of a family I UNG gives new insight into the role of D4 as a co-factor of vaccinia virus DNA polymerase and allows a better understanding of the structural determinants required for UNG action.

  10. Expression and the Peculiar Enzymatic Behavior of the Trypanosoma cruzi NTH1 DNA Glycosylase

    PubMed Central

    Ormeño, Fernando; Barrientos, Camila; Ramirez, Santiago; Ponce, Iván; Valenzuela, Lucía; Sepúlveda, Sofía; Bitar, Mainá; Kemmerling, Ulrike; Machado, Carlos Renato; Cabrera, Gonzalo; Galanti, Norbel

    2016-01-01

    Trypanosoma cruzi, the etiological agent of Chagas’ disease, presents three cellular forms (trypomastigotes, epimastigotes and amastigotes), all of which are submitted to oxidative species in its hosts. However, T. cruzi is able to resist oxidative stress suggesting a high efficiency of its DNA repair machinery.The Base Excision Repair (BER) pathway is one of the main DNA repair mechanisms in other eukaryotes and in T. cruzi as well. DNA glycosylases are enzymes involved in the recognition of oxidative DNA damage and in the removal of oxidized bases, constituting the first step of the BER pathway. Here, we describe the presence and activity of TcNTH1, a nuclear T. cruzi DNA glycosylase. Surprisingly, purified recombinant TcNTH1 does not remove the thymine glycol base, but catalyzes the cleavage of a probe showing an AP site. The same activity was found in epimastigote and trypomastigote homogenates suggesting that the BER pathway is not involved in thymine glycol DNA repair. TcNTH1 DNA-binding properties assayed in silico are in agreement with the absence of a thymine glycol removing function of that parasite enzyme. Over expression of TcNTH1 decrease parasite viability when transfected epimastigotes are submitted to a sustained production of H2O2.Therefore, TcNTH1 is the only known NTH1 orthologous unable to eliminate thymine glycol derivatives but that recognizes and cuts an AP site, most probably by a beta-elimination mechanism. We cannot discard that TcNTH1 presents DNA glycosylase activity on other DNA base lesions. Accordingly, a different DNA repair mechanism should be expected leading to eliminate thymine glycol from oxidized parasite DNA. Furthermore, TcNTH1 may play a role in the AP site recognition and processing. PMID:27284968

  11. Expression and the Peculiar Enzymatic Behavior of the Trypanosoma cruzi NTH1 DNA Glycosylase.

    PubMed

    Ormeño, Fernando; Barrientos, Camila; Ramirez, Santiago; Ponce, Iván; Valenzuela, Lucía; Sepúlveda, Sofía; Bitar, Mainá; Kemmerling, Ulrike; Machado, Carlos Renato; Cabrera, Gonzalo; Galanti, Norbel

    2016-01-01

    Trypanosoma cruzi, the etiological agent of Chagas' disease, presents three cellular forms (trypomastigotes, epimastigotes and amastigotes), all of which are submitted to oxidative species in its hosts. However, T. cruzi is able to resist oxidative stress suggesting a high efficiency of its DNA repair machinery.The Base Excision Repair (BER) pathway is one of the main DNA repair mechanisms in other eukaryotes and in T. cruzi as well. DNA glycosylases are enzymes involved in the recognition of oxidative DNA damage and in the removal of oxidized bases, constituting the first step of the BER pathway. Here, we describe the presence and activity of TcNTH1, a nuclear T. cruzi DNA glycosylase. Surprisingly, purified recombinant TcNTH1 does not remove the thymine glycol base, but catalyzes the cleavage of a probe showing an AP site. The same activity was found in epimastigote and trypomastigote homogenates suggesting that the BER pathway is not involved in thymine glycol DNA repair. TcNTH1 DNA-binding properties assayed in silico are in agreement with the absence of a thymine glycol removing function of that parasite enzyme. Over expression of TcNTH1 decrease parasite viability when transfected epimastigotes are submitted to a sustained production of H2O2.Therefore, TcNTH1 is the only known NTH1 orthologous unable to eliminate thymine glycol derivatives but that recognizes and cuts an AP site, most probably by a beta-elimination mechanism. We cannot discard that TcNTH1 presents DNA glycosylase activity on other DNA base lesions. Accordingly, a different DNA repair mechanism should be expected leading to eliminate thymine glycol from oxidized parasite DNA. Furthermore, TcNTH1 may play a role in the AP site recognition and processing. PMID:27284968

  12. A unique uracil-DNA binding protein of the uracil DNA glycosylase superfamily

    PubMed Central

    Sang, Pau Biak; Srinath, Thiruneelakantan; Patil, Aravind Goud; Woo, Eui-Jeon; Varshney, Umesh

    2015-01-01

    Uracil DNA glycosylases (UDGs) are an important group of DNA repair enzymes, which pioneer the base excision repair pathway by recognizing and excising uracil from DNA. Based on two short conserved sequences (motifs A and B), UDGs have been classified into six families. Here we report a novel UDG, UdgX, from Mycobacterium smegmatis and other organisms. UdgX specifically recognizes uracil in DNA, forms a tight complex stable to sodium dodecyl sulphate, 2-mercaptoethanol, urea and heat treatment, and shows no detectable uracil excision. UdgX shares highest homology to family 4 UDGs possessing Fe-S cluster. UdgX possesses a conserved sequence, KRRIH, which forms a flexible loop playing an important role in its activity. Mutations of H in the KRRIH sequence to S, G, A or Q lead to gain of uracil excision activity in MsmUdgX, establishing it as a novel member of the UDG superfamily. Our observations suggest that UdgX marks the uracil-DNA for its repair by a RecA dependent process. Finally, we observed that the tight binding activity of UdgX is useful in detecting uracils in the genomes. PMID:26304551

  13. Base excision repair: NMR backbone assignments of Escherichia coli formamidopyrimidine-DNA glycosylase

    SciTech Connect

    Buchko, Garry W.; Wallace, Susan S.; Kennedy, Michael A.

    2002-03-01

    Oxidative damage is emerging as one of the most important mechanisms responsible for mutagenesis, carcinogenesis, aging, and various diseases (Farr and Kogma, 1991). One of the potential targets for oxidation is cellular DNA. While exposure to exogenous agents, such as ionizing radiation and chemicals, contributes to damaging DNA, the most important oxidative agents are endogenous, such as the reactive free radicals produced during normal oxidative metabolism (Adelman et., 1988). To mitigate the potentially deleterious effects of oxidative DNA damage virtually all aerobic organisms have developed complex repair mechanisms (Petit and Sancar, 1999). One repair mechanism, base excision repair (BER), appears to be responsible for replacing most oxidative DNA damage (David and Williams, 1998). Formamidopyrimidine-DNA glycosylase (Fpg), a 269-residue metalloprotein with a molecular weight of 30.2 kDa, is a key BER enzyme in prokaryotes (Boiteaux et al., 1987). Substrates recognized and released by Fpg include 7,8-dihydro-8-oxoguanine (8-oxoG), 2,6 diamino-4-hydroxy-5-formamido pyrimidine (Fapy-G), the adenine equivalents 8-oxoA and Fapy-A, 5-hydroxycytosine, 5-hydroxyuracil, B ureidoisobutiric acid, and a-R-hydroxy-B-ureidoisobutiric acid (Freidberg et al., 1995). In vitro Fpg bind double-stranded DNA and performs three catalytic activities: (i) DNA glycosylase, (ii) AP lyase, and (iii) deoxyribophosphodiesterase.

  14. Induction of NEIL1 and NEIL2 DNA glycosylases in aniline-induced splenic toxicity

    SciTech Connect

    Ma Huaxian; Wang Jianling; Abdel-Rahman, Sherif Z.; Hazra, Tapas K.; Boor, Paul J.; Khan, M. Firoze

    2011-02-15

    The mechanisms by which aniline exposure elicits splenotoxic response, especially the tumorigenic response, are not well-understood. Earlier, we have shown that aniline-induced oxidative stress is associated with increased oxidative DNA damage in rat spleen. The base excision repair (BER) pathway is the major mechanism for the repair of oxidative DNA base lesions, and we have shown an up-regulation of 8-oxoguanine glycosylase 1 (OGG1), a specific DNA glycosylase involved in the removal of 8-hydroxy-2'-deoxyguanosine (8-OHdG) adducts, following aniline exposure. Nei-like DNA glycosylases (NEIL1/2) belong to a family of BER proteins that are distinct from other DNA glycosylases, including OGG1. However, contribution of NEIL1/2 in the repair of aniline-induced oxidative DNA damage in the spleen is not known. This study was, therefore, focused on evaluating if NEILs also contribute to the repair of oxidative DNA lesions in the spleen following aniline exposure. To achieve that, male SD rats were subchronically exposed to aniline (0.5 mmol/kg/day via drinking water for 30 days), while controls received drinking water only. The BER activity of NEIL1/2 was assayed using a bubble structure substrate containing 5-OHU (preferred substrates for NEIL1 and NEIL2) and by quantitating the cleavage products. Aniline treatment led to a 1.25-fold increase in the NEIL1/2-associated BER activity in the nuclear extracts of spleen compared to the controls. Real-time PCR analysis for NEIL1 and NEIL2 mRNA expression in the spleen revealed 2.7- and 3.9-fold increases, respectively, in aniline-treated rats compared to controls. Likewise, Western blot analysis showed that protein expression of NEIL1 and NEIL2 in the nuclear extract of spleens from aniline-treated rats was 2.0- and 3.8-fold higher than controls, respectively. Aniline treatment also led to stronger immunoreactivity for NEIL1 and NEIL2 in the spleens, confined to the red pulp areas. These studies, thus, show that aniline

  15. Induction of NEIL1 and NEIL2 DNA glycosylases in aniline-induced splenic toxicity.

    PubMed

    Ma, Huaxian; Wang, Jianling; Abdel-Rahman, Sherif Z; Hazra, Tapas K; Boor, Paul J; Khan, M Firoze

    2011-02-15

    The mechanisms by which aniline exposure elicits splenotoxic response, especially the tumorigenic response, are not well-understood. Earlier, we have shown that aniline-induced oxidative stress is associated with increased oxidative DNA damage in rat spleen. The base excision repair (BER) pathway is the major mechanism for the repair of oxidative DNA base lesions, and we have shown an up-regulation of 8-oxoguanine glycosylase 1 (OGG1), a specific DNA glycosylase involved in the removal of 8-hydroxy-2'-deoxyguanosine (8-OHdG) adducts, following aniline exposure. Nei-like DNA glycosylases (NEIL1/2) belong to a family of BER proteins that are distinct from other DNA glycosylases, including OGG1. However, contribution of NEIL1/2 in the repair of aniline-induced oxidative DNA damage in the spleen is not known. This study was, therefore, focused on evaluating if NEILs also contribute to the repair of oxidative DNA lesions in the spleen following aniline exposure. To achieve that, male SD rats were subchronically exposed to aniline (0.5 mmol/kg/day via drinking water for 30 days), while controls received drinking water only. The BER activity of NEIL1/2 was assayed using a bubble structure substrate containing 5-OHU (preferred substrates for NEIL1 and NEIL2) and by quantitating the cleavage products. Aniline treatment led to a 1.25-fold increase in the NEIL1/2-associated BER activity in the nuclear extracts of spleen compared to the controls. Real-time PCR analysis for NEIL1 and NEIL2 mRNA expression in the spleen revealed 2.7- and 3.9-fold increases, respectively, in aniline-treated rats compared to controls. Likewise, Western blot analysis showed that protein expression of NEIL1 and NEIL2 in the nuclear extract of spleens from aniline-treated rats was 2.0- and 3.8-fold higher than controls, respectively. Aniline treatment also led to stronger immunoreactivity for NEIL1 and NEIL2 in the spleens, confined to the red pulp areas. These studies, thus, show that aniline

  16. Structural Basis for Avoidance of Promutagenic DNA Repair by MutY Adenine DNA Glycosylase*

    PubMed Central

    Wang, Lan; Lee, Seung-Joo; Verdine, Gregory L.

    2015-01-01

    The highly mutagenic A:oxoG (8-oxoguanine) base pair in DNA most frequently arises by aberrant replication of the primary oxidative lesion C:oxoG. This lesion is particularly insidious because neither of its constituent nucleobases faithfully transmit genetic information from the original C:G base pair. Repair of A:oxoG is initiated by adenine DNA glycosylase, which catalyzes hydrolytic cleavage of the aberrant A nucleobase from the DNA backbone. These enzymes, MutY in bacteria and MUTYH in humans, scrupulously avoid processing of C:oxoG because cleavage of the C residue in C:oxoG would actually promote mutagenic conversion to A:oxoG. Here we analyze the structural basis for rejection of C:oxoG by MutY, using a synthetic crystallography approach to capture the enzyme in the process of inspecting the C:oxoG anti-substrate, with which it ordinarily binds only fleetingly. We find that MutY uses two distinct strategies to avoid presentation of C to the enzyme active site. Firstly, MutY possesses an exo-site that serves as a decoy for C, and secondly, repulsive forces with a key active site residue prevent stable insertion of C into the nucleobase recognition pocket within the enzyme active site. PMID:25995449

  17. Structural Basis for Avoidance of Promutagenic DNA Repair by MutY Adenine DNA Glycosylase.

    PubMed

    Wang, Lan; Lee, Seung-Joo; Verdine, Gregory L

    2015-07-10

    The highly mutagenic A:oxoG (8-oxoguanine) base pair in DNA most frequently arises by aberrant replication of the primary oxidative lesion C:oxoG. This lesion is particularly insidious because neither of its constituent nucleobases faithfully transmit genetic information from the original C:G base pair. Repair of A:oxoG is initiated by adenine DNA glycosylase, which catalyzes hydrolytic cleavage of the aberrant A nucleobase from the DNA backbone. These enzymes, MutY in bacteria and MUTYH in humans, scrupulously avoid processing of C:oxoG because cleavage of the C residue in C:oxoG would actually promote mutagenic conversion to A:oxoG. Here we analyze the structural basis for rejection of C:oxoG by MutY, using a synthetic crystallography approach to capture the enzyme in the process of inspecting the C:oxoG anti-substrate, with which it ordinarily binds only fleetingly. We find that MutY uses two distinct strategies to avoid presentation of C to the enzyme active site. Firstly, MutY possesses an exo-site that serves as a decoy for C, and secondly, repulsive forces with a key active site residue prevent stable insertion of C into the nucleobase recognition pocket within the enzyme active site. PMID:25995449

  18. Thermodynamics of the DNA Damage Repair Steps of Human 8-Oxoguanine DNA Glycosylase

    PubMed Central

    Kuznetsov, Nikita A.; Kuznetsova, Alexandra A.; Vorobjev, Yuri N.; Krasnoperov, Lev N.; Fedorova, Olga S.

    2014-01-01

    Human 8-oxoguanine DNA glycosylase (hOGG1) is a key enzyme responsible for initiating the base excision repair of 7,8-dihydro-8-oxoguanosine (oxoG). In this study a thermodynamic analysis of the interaction of hOGG1 with specific and non-specific DNA-substrates is performed based on stopped-flow kinetic data. The standard Gibbs energies, enthalpies and entropies of specific stages of the repair process were determined via kinetic measurements over a temperature range using the van’t Hoff approach. The three steps which are accompanied with changes in the DNA conformations were detected via 2-aminopurine fluorescence in the process of binding and recognition of damaged oxoG base by hOGG1. The thermodynamic analysis has demonstrated that the initial step of the DNA substrates binding is mainly governed by energy due to favorable interactions in the process of formation of the recognition contacts, which results in negative enthalpy change, as well as due to partial desolvation of the surface between the DNA and enzyme, which results in positive entropy change. Discrimination of non-specific G base versus specific oxoG base is occurring in the second step of the oxoG-substrate binding. This step requires energy consumption which is compensated by the positive entropy contribution. The third binding step is the final adjustment of the enzyme/substrate complex to achieve the catalytically competent state which is characterized by large endothermicity compensated by a significant increase of entropy originated from the dehydration of the DNA grooves. PMID:24911585

  19. Thermodynamics of the DNA damage repair steps of human 8-oxoguanine DNA glycosylase.

    PubMed

    Kuznetsov, Nikita A; Kuznetsova, Alexandra A; Vorobjev, Yuri N; Krasnoperov, Lev N; Fedorova, Olga S

    2014-01-01

    Human 8-oxoguanine DNA glycosylase (hOGG1) is a key enzyme responsible for initiating the base excision repair of 7,8-dihydro-8-oxoguanosine (oxoG). In this study a thermodynamic analysis of the interaction of hOGG1 with specific and non-specific DNA-substrates is performed based on stopped-flow kinetic data. The standard Gibbs energies, enthalpies and entropies of specific stages of the repair process were determined via kinetic measurements over a temperature range using the van't Hoff approach. The three steps which are accompanied with changes in the DNA conformations were detected via 2-aminopurine fluorescence in the process of binding and recognition of damaged oxoG base by hOGG1. The thermodynamic analysis has demonstrated that the initial step of the DNA substrates binding is mainly governed by energy due to favorable interactions in the process of formation of the recognition contacts, which results in negative enthalpy change, as well as due to partial desolvation of the surface between the DNA and enzyme, which results in positive entropy change. Discrimination of non-specific G base versus specific oxoG base is occurring in the second step of the oxoG-substrate binding. This step requires energy consumption which is compensated by the positive entropy contribution. The third binding step is the final adjustment of the enzyme/substrate complex to achieve the catalytically competent state which is characterized by large endothermicity compensated by a significant increase of entropy originated from the dehydration of the DNA grooves. PMID:24911585

  20. Listeria monocytogenes DNA Glycosylase AdlP Affects Flagellar Motility, Biofilm Formation, Virulence, and Stress Responses

    PubMed Central

    Zhang, Ting; Bae, Dongryeoul

    2016-01-01

    ABSTRACT The temperature-dependent alteration of flagellar motility gene expression is critical for the foodborne pathogen Listeria monocytogenes to respond to a changing environment. In this study, a genetic determinant, L. monocytogenes f2365_0220 (lmof2365_0220), encoding a putative protein that is structurally similar to the Bacillus cereus alkyl base DNA glycosylase (AlkD), was identified. This determinant was involved in the transcriptional repression of flagellar motility genes and was named adlP (encoding an AlkD-like protein [AdlP]). Deletion of adlP activated the expression of flagellar motility genes at 37°C and disrupted the temperature-dependent inhibition of L. monocytogenes motility. The adlP null strains demonstrated decreased survival in murine macrophage-like RAW264.7 cells and less virulence in mice. Furthermore, the deletion of adlP significantly decreased biofilm formation and impaired the survival of bacteria under several stress conditions, including the presence of a DNA alkylation compound (methyl methanesulfonate), an oxidative agent (H2O2), and aminoglycoside antibiotics. Our findings strongly suggest that adlP may encode a bifunctional protein that transcriptionally represses the expression of flagellar motility genes and influences stress responses through its DNA glycosylase activity. IMPORTANCE We discovered a novel protein that we named AlkD-like protein (AdlP). This protein affected flagellar motility, biofilm formation, and virulence. Our data suggest that AdlP may be a bifunctional protein that represses flagellar motility genes and influences stress responses through its DNA glycosylase activity. PMID:27316964

  1. Single Qdot-labeled glycosylase molecules use a wedge amino acid to probe for lesions while scanning along DNA.

    PubMed

    Dunn, Andrew R; Kad, Neil M; Nelson, Shane R; Warshaw, David M; Wallace, Susan S

    2011-09-01

    Within the base excision repair (BER) pathway, the DNA N-glycosylases are responsible for locating and removing the majority of oxidative base damages. Endonuclease III (Nth), formamidopyrimidine DNA glycosylase (Fpg) and endonuclease VIII (Nei) are members of two glycosylase families: the helix-hairpin-helix (HhH) superfamily and the Fpg/Nei family. The search mechanisms employed by these two families of glycosylases were examined using a single molecule assay to image quantum dot (Qdot)-labeled glycosylases interacting with YOYO-1 stained λ-DNA molecules suspended between 5 µm silica beads. The HhH and Fpg/Nei families were found to have a similar diffusive search mechanism described as a continuum of motion, in keeping with rotational diffusion along the DNA molecule ranging from slow, sub-diffusive to faster, unrestricted diffusion. The search mechanism for an Fpg variant, F111A, lacking a phenylalanine wedge residue no longer displayed slow, sub-diffusive motion compared to wild type, suggesting that Fpg base interrogation may be accomplished by Phe(111) insertion.

  2. Single Qdot-labeled glycosylase molecules use a wedge amino acid to probe for lesions while scanning along DNA.

    PubMed

    Dunn, Andrew R; Kad, Neil M; Nelson, Shane R; Warshaw, David M; Wallace, Susan S

    2011-09-01

    Within the base excision repair (BER) pathway, the DNA N-glycosylases are responsible for locating and removing the majority of oxidative base damages. Endonuclease III (Nth), formamidopyrimidine DNA glycosylase (Fpg) and endonuclease VIII (Nei) are members of two glycosylase families: the helix-hairpin-helix (HhH) superfamily and the Fpg/Nei family. The search mechanisms employed by these two families of glycosylases were examined using a single molecule assay to image quantum dot (Qdot)-labeled glycosylases interacting with YOYO-1 stained λ-DNA molecules suspended between 5 µm silica beads. The HhH and Fpg/Nei families were found to have a similar diffusive search mechanism described as a continuum of motion, in keeping with rotational diffusion along the DNA molecule ranging from slow, sub-diffusive to faster, unrestricted diffusion. The search mechanism for an Fpg variant, F111A, lacking a phenylalanine wedge residue no longer displayed slow, sub-diffusive motion compared to wild type, suggesting that Fpg base interrogation may be accomplished by Phe(111) insertion. PMID:21666255

  3. Active destabilization of base pairs by a DNA glycosylase wedge initiates damage recognition

    PubMed Central

    Kuznetsov, Nikita A.; Bergonzo, Christina; Campbell, Arthur J.; Li, Haoquan; Mechetin, Grigory V.; de los Santos, Carlos; Grollman, Arthur P.; Fedorova, Olga S.; Zharkov, Dmitry O.; Simmerling, Carlos

    2015-01-01

    Formamidopyrimidine-DNA glycosylase (Fpg) excises 8-oxoguanine (oxoG) from DNA but ignores normal guanine. We combined molecular dynamics simulation and stopped-flow kinetics with fluorescence detection to track the events in the recognition of oxoG by Fpg and its mutants with a key phenylalanine residue, which intercalates next to the damaged base, changed to either alanine (F110A) or fluorescent reporter tryptophan (F110W). Guanine was sampled by Fpg, as evident from the F110W stopped-flow traces, but less extensively than oxoG. The wedgeless F110A enzyme could bend DNA but failed to proceed further in oxoG recognition. Modeling of the base eversion with energy decomposition suggested that the wedge destabilizes the intrahelical base primarily through buckling both surrounding base pairs. Replacement of oxoG with abasic (AP) site rescued the activity, and calculations suggested that wedge insertion is not required for AP site destabilization and eversion. Our results suggest that Fpg, and possibly other DNA glycosylases, convert part of the binding energy into active destabilization of their substrates, using the energy differences between normal and damaged bases for fast substrate discrimination. PMID:25520195

  4. Crystal Structure of Human Thymine DNA Glycosylase Bound to DNA Elucidates Sequence-Specific Mismatch Recognition

    SciTech Connect

    Maiti, A.; Morgan, M.T.; Pozharski, E.; Drohat, A.C.

    2009-05-19

    Cytosine methylation at CpG dinucleotides produces m{sup 5}CpG, an epigenetic modification that is important for transcriptional regulation and genomic stability in vertebrate cells. However, m{sup 5}C deamination yields mutagenic G{center_dot}T mispairs, which are implicated in genetic disease, cancer, and aging. Human thymine DNA glycosylase (hTDG) removes T from G{center_dot}T mispairs, producing an abasic (or AP) site, and follow-on base excision repair proteins restore the G{center_dot}C pair. hTDG is inactive against normal A{center_dot}T pairs, and is most effective for G{center_dot}T mispairs and other damage located in a CpG context. The molecular basis of these important catalytic properties has remained unknown. Here, we report a crystal structure of hTDG (catalytic domain, hTDG{sup cat}) in complex with abasic DNA, at 2.8 {angstrom} resolution. Surprisingly, the enzyme crystallized in a 2:1 complex with DNA, one subunit bound at the abasic site, as anticipated, and the other at an undamaged (nonspecific) site. Isothermal titration calorimetry and electrophoretic mobility-shift experiments indicate that hTDG and hTDG{sup cat} can bind abasic DNA with 1:1 or 2:1 stoichiometry. Kinetics experiments show that the 1:1 complex is sufficient for full catalytic (base excision) activity, suggesting that the 2:1 complex, if adopted in vivo, might be important for some other activity of hTDG, perhaps binding interactions with other proteins. Our structure reveals interactions that promote the stringent specificity for guanine versus adenine as the pairing partner of the target base and interactions that likely confer CpG sequence specificity. We find striking differences between hTDG and its prokaryotic ortholog (MUG), despite the relatively high (32%) sequence identity.

  5. Molecular characterization of a putative plant homolog of MBD4 DNA glycosylase.

    PubMed

    Ramiro-Merina, Ángel; Ariza, Rafael R; Roldán-Arjona, Teresa

    2013-11-01

    Methyl-CpG-binding domain 4 (MBD4) DNA glycosylase is involved in excision of spontaneous deamination products of cytosine and 5-methylcytosine in animals, but it is unknown whether related proteins perform similar functions in plants. We report here the isolation and biochemical characterization of a putative MBD4 homolog from Arabidopsis thaliana, designated as MBD4L (MBD4-like). The plant enzyme lacks the MBD domain present in mammalian MBD4 proteins, but conserves a DNA glycosylase domain with critical residues for substrate recognition and catalysis, and it is more closely related to MBD4 homologs than to other members of the HhH-GPD superfamily. Arabidopsis MBD4L excises uracil and thymine opposite G, and the presence of halogen substituents at C5 of the target base greatly increases its excision efficiency. No significant activity is detected on cytosine derivatives such as 5-methylcytosine or 5-hydroxymethylcytosine. The enzyme binds to the abasic site product generated after excision, which decreases its catalytic turnover in vitro. Both the full-length protein and a N-terminal truncated version retaining the catalytic domain exhibit a preference for a CpG sequence context, where most plant DNA methylation is found. Our results suggest that an important function of Arabidopsis MBD4L is to protect the plant genome from the mutagenic consequences of cytosine and 5-methylcytosine deamination. PMID:23994068

  6. The effect of sequence context on the activity of cytosine DNA glycosylases.

    PubMed

    Kimber, Scott T; Brown, Tom; Fox, Keith R

    2015-12-01

    We have prepared single (N204D) and double (N204D:L272A) mutants of human uracil DNA glycosylase (hUDG), generating two cytosine DNA glycosylases (hCDG and hCYDG). Both these enzymes are able to excise cytosine (but not 5-methylcytosine), when this base is part of a mismatched base pair. hCDG is more active than the equivalent E. coli enzyme (eCYDG) and also has some activity when the cytosine is paired with guanine, unlike eCYDG. hCDG also has some activity against single stranded DNA, while having poor activity towards an unnatural base pair that forces the cytosine into an extrahelical conformation (in contrast to eCYDG for which a bulky base enhances the enzyme's activity). We also examined how sequence context affects the activity of these enzymes, determining the effect of flanking base pairs on cleavage efficiency. An abasic site or a hexaethylene glycol linker placed opposite the target cytosine, also causes an increase in activity compared with an AC mismatch. Flanking an AC mismatch with GC base pairs resulted in a 100-fold decrease in excision activity relative to flanking AT base pairs and the 5'-flanking base pair had a greater effect on the rate of cleavage. However, this effect is not simply due to the stability of the flanking base pairs as adjacent GT mismatches also produce low cleavage efficiency. PMID:26463365

  7. Coordination of MYH DNA glycosylase and APE1 endonuclease activities via physical interactions

    PubMed Central

    Luncsford, Paz J.; Manvilla, Brittney A.; Patterson, Dimeka N.; Malik, Shuja S.; Jin, Jin; Hwang, Bor-Jang; Gunther, Randall; Kalvakolanu, Snigdha; Lipinski, Leonora J.; Yuan, Weirong; Lu, Wuyuan; Drohat, Alexander C.; Lu-Chang, A-Lien; Toth, Eric A.

    2013-01-01

    MutY homologue (MYH) is a DNA glycosylase which excises adenine paired with the oxidative lesion 7,8-dihydro-8-oxoguanine (8-oxoG, or G°) during base excision repair (BER). Base excision by MYH results in an apurinic/apyrimidinic (AP) site in the DNA where the DNA sugar-phosphate backbone remains intact. A key feature of MYH activity is its physical interaction and coordination with AP endonuclease I (APE1), which subsequently nicks DNA 5' to the AP site. Because AP sites are mutagenic and cytotoxic, they must be processed by APE1 immediately after the action of MYH glycosylase. Our recent reports show that the interdomain connector (IDC) of human MYH (hMYH) maintains interactions with hAPE1 and the human checkpoint clamp Rad9-Rad1-Hus1 (9-1-1) complex. In this study, we used NMR chemical shift perturbation experiments to determine hMYH-binding site on hAPE1. Chemical shift perturbations indicate that the hMYH IDC peptide binds to the DNA-binding site of hAPE1 and an additional site which is distal to the APE1 DNA-binding interface. In these two binding sites, N212 and Q137 of hAPE1 are key mediators of the MYH/APE1 interaction. Intriguingly, despite the fact that hHus1 and hAPE1 both interact with the MYH IDC, hHus1 does not compete with hAPE1 for binding to hMYH. Rather, hHus1 stabilizes the hMYH/hAPE1 complex both in vitro and in cells. This is consistent with a common theme in BER, namely that the assembly of protein-DNA complexes enhances repair by efficiently coordinating multiple enzymatic steps while simultaneously minimizing the release of harmful repair intermediates. PMID:24209961

  8. Tetrameric structure of the restriction DNA glycosylase R.PabI in complex with nonspecific double-stranded DNA

    PubMed Central

    Wang, Delong; Miyazono, Ken-ichi; Tanokura, Masaru

    2016-01-01

    R.PabI is a type II restriction enzyme that recognizes the 5′-GTAC-3′ sequence and belongs to the HALFPIPE superfamily. Although most restriction enzymes cleave phosphodiester bonds at specific sites by hydrolysis, R.PabI flips the guanine and adenine bases of the recognition sequence out of the DNA helix and hydrolyzes the N-glycosidic bond of the flipped adenine in a similar manner to DNA glycosylases. In this study, we determined the structure of R.PabI in complex with double-stranded DNA without the R.PabI recognition sequence by X-ray crystallography. The 1.9 Å resolution structure of the complex showed that R.PabI forms a tetrameric structure to sandwich the double-stranded DNA and the tetrameric structure is stabilized by four salt bridges. DNA binding and DNA glycosylase assays of the R.PabI mutants showed that the residues that form the salt bridges (R70 and D71) are essential for R.PabI to find the recognition sequence from the sea of nonspecific sequences. R.PabI is predicted to utilize the tetrameric structure to bind nonspecific double-stranded DNA weakly and slide along it to find the recognition sequence. PMID:27731370

  9. The nucleoid-associated protein HU enhances 8-oxoguanine base excision by the formamidopyrimidine-DNA glycosylase.

    PubMed

    Le Meur, Rémy; Culard, Françoise; Nadan, Virginie; Goffinont, Stéphane; Coste, Franck; Guerin, Martine; Loth, Karine; Landon, Céline; Castaing, Bertrand

    2015-10-01

    The nucleoid-associated protein HU is involved in numerous DNA transactions and thus is essential in DNA maintenance and bacterial survival. The high affinity of HU for SSBs (single-strand breaks) has suggested its involvement in DNA protection, repair and recombination. SSB-containing DNA are major intermediates transiently generated by bifunctional DNA N-glycosylases that initiate the BER (base excision repair) pathway. Enzyme kinetics and DNA-binding experiments demonstrate that HU enhances the 8-oxoguanine-DNA glycosylase activity of Fpg (formamidopyrimidine-DNA glycosylase) by facilitating the release of the enzyme from its final DNA product (one nucleoside gap). We propose that the displacement of Fpg from its end-DNA product by HU is an active mechanism in which HU recognizes the product when it is still bound by Fpg. Through DNA binding, the two proteins interplay to form a transient ternary complex Fpg/DNA/HU which results in the release of Fpg and the molecular entrapment of SSBs by HU. These results support the involvement of HU in BER in vivo.

  10. Characterization of a Thermostable 8-Oxoguanine DNA Glycosylase Specific for GO/N Mismatches from the Thermoacidophilic Archaeon Thermoplasma volcanium

    PubMed Central

    Fujii, Miki; Hata, Chieri; Ukita, Munetada; Fukushima, Chie; Matsuura, Chihiro; Kawashima-Ohya, Yoshie; Tomobe, Koji

    2016-01-01

    The oxidation of guanine (G) to 7,8-dihydro-8-oxoguanine (GO) forms one of the major DNA lesions generated by reactive oxygen species (ROS). The GO can be corrected by GO DNA glycosylases (Ogg), enzymes involved in base excision repair (BER). Unrepaired GO induces mismatched base pairing with adenine (A); as a result, the mismatch causes a point mutation, from G paired with cytosine (C) to thymine (T) paired with adenine (A), during DNA replication. Here, we report the characterization of a putative Ogg from the thermoacidophilic archaeon Thermoplasma volcanium. The 204-amino acid sequence of the putative Ogg (TVG_RS00315) shares significant sequence homology with the DNA glycosylases of Methanocaldococcus jannaschii (MjaOgg) and Sulfolobus solfataricus (SsoOgg). The six histidine-tagged recombinant TVG_RS00315 protein gene was expressed in Escherichia coli and purified. The Ogg protein is thermostable, with optimal activity near a pH of 7.5 and a temperature of 60°C. The enzyme displays DNA glycosylase, and apurinic/apyrimidinic (AP) lyase activities on GO/N (where N is A, T, G, or C) mismatch; yet it cannot eliminate U from U/G or T from T/G, as mismatch glycosylase (MIG) can. These results indicate that TvoOgg-encoding TVG_RS00315 is a member of the Ogg2 family of T. volcanium. PMID:27799846

  11. Pa-AGOG, the founding member of a new family of archaeal 8-oxoguanine DNA-glycosylases.

    PubMed

    Sartori, Alessandro A; Lingaraju, Gondichatnahalli M; Hunziker, Peter; Winkler, Fritz K; Jiricny, Josef

    2004-01-01

    Oxidative damage represents a major threat to genomic stability, as the major product of DNA oxidation, 8-oxoguanine (GO), frequently mispairs with adenine during replication. In order to prevent these mutagenic events, organisms have evolved GO-DNA glycosylases that remove this oxidized base from DNA. We were interested to find out how GO is processed in the hyperthermophilic archaeon Pyrobaculum aerophilum, which lives at temperatures around 100 degrees C. To this end, we searched its genome for open reading frames (ORFs) bearing the principal hallmark of GO-DNA glycosylases: a helix-hairpin-helix motif and a glycine/proline-rich sequence followed by an absolutely conserved aspartate (HhH-GPD motif). Interestingly, although the P.aerophilum genome encodes three such ORFs, none of these encodes the potent GO-processing activity detected in P.aerophilum extracts. Fractionation of the extracts, followed by analysis of the active fractions by denaturing polyacrylamide gel electrophoresis, showed that the GO-processing enzyme has a molecular size of approximately 30 kDa. Mass spectrometric analysis of proteins in this size range identified several peptides originating from P.aerophilum ORF PAE2237. We now show that PAE2237 encodes AGOG (Archaeal GO-Glycosylase), the founding member of a new family of DNA glycosylases, which can remove GO from single- and double-stranded substrates with great efficiency. PMID:15604455

  12. Structural Characterization of Human 8-Oxoguanine DNA Glycosylase Variants Bearing Active Site Mutations

    SciTech Connect

    Radom,C.; Banerjee, A.; Verdine, G.

    2007-01-01

    The human 8-oxoguanine DNA glycosylase (hOGG1) protein is responsible for initiating base excision DNA repair of the endogenous mutagen 8-oxoguanine. Like nearly all DNA glycosylases, hOGG1 extrudes its substrate from the DNA helix and inserts it into an extrahelical enzyme active site pocket lined with residues that participate in lesion recognition and catalysis. Structural analysis has been performed on mutant versions of hOGG1 having changes in catalytic residues but not on variants having altered 7,8-dihydro-8-oxoguanine (oxoG) contact residues. Here we report high resolution structural analysis of such recognition variants. We found that Ala substitution at residues that contact the phosphate 5 to the lesion (H270A mutation) and its Watson-Crick face (Q315A mutation) simply removed key functionality from the contact interface but otherwise had no effect on structure. Ala substitution at the only residue making an oxoG-specific contact (G42A mutation) introduced torsional stress into the DNA contact surface of hOGG1, but this was overcome by local interactions within the folded protein, indicating that this oxoG recognition motif is 'hardwired'. Introduction of a side chain intended to sterically obstruct the active site pocket (Q315F mutation) led to two different structures, one of which (Q315F{sup *149}) has the oxoG lesion in an exosite flanking the active site and the other of which (Q315F{sup *292}) has the oxoG inserted nearly completely into the lesion recognition pocket. The latter structure offers a view of the latest stage in the base extrusion pathway yet observed, and its lack of catalytic activity demonstrates that the transition state for displacement of the lesion base is geometrically demanding.

  13. Further evidence for involvement of a noncanonical function of uracil DNA glycosylase in class switch recombination.

    PubMed

    Begum, Nasim A; Stanlie, Andre; Doi, Tomomitsu; Sasaki, Yoko; Jin, Hai Wei; Kim, Yong Sung; Nagaoka, Hitoshi; Honjo, Tasuku

    2009-02-24

    Activation-induced cytidine deaminase (AID) introduces DNA cleavage in the Ig gene locus to initiate somatic hypermutation (SHM) and class switch recombination (CSR) in B cells. The DNA deamination model assumes that AID deaminates cytidine (C) on DNA and generates uridine (U), resulting in DNA cleavage after removal of U by uracil DNA glycosylase (UNG). Although UNG deficiency reduces CSR efficiency to one tenth, we reported that catalytically inactive mutants of UNG were fully proficient in CSR and that several mutants at noncatalytic sites lost CSR activity, indicating that enzymatic activity of UNG is not required for CSR. In this report we show that CSR activity by many UNG mutants critically depends on its N-terminal domain, irrespective of their enzymatic activities. Dissociation of the catalytic and CSR activity was also found in another UNG family member, SMUG1, and its mutants. We also show that Ugi, a specific peptide inhibitor of UNG, inhibits CSR without reducing DNA cleavage of the S (switch) region, confirming dispensability of UNG in DNA cleavage in CSR. It is therefore likely that UNG is involved in a repair step after DNA cleavage in CSR. Furthermore, requirement of the N terminus but not enzymatic activity of UNG mutants for CSR indicates that the UNG protein structure is critical. The present findings support our earlier proposal that CSR depends on a noncanonical function of the UNG protein (e.g., as a scaffold for repair enzymes) that might be required for the recombination reaction after DNA cleavage.

  14. Thymine DNA Glycosylase Is a Positive Regulator of Wnt Signaling in Colorectal Cancer*

    PubMed Central

    Xu, Xuehe; Yu, Tianxin; Shi, Jiandang; Chen, Xi; Zhang, Wen; Lin, Ting; Liu, Zhihong; Wang, Yadong; Zeng, Zheng; Wang, Chi; Li, Mingsong; Liu, Chunming

    2014-01-01

    Wnt signaling plays an important role in colorectal cancer (CRC). Although the mechanisms of β-catenin degradation have been well studied, the mechanism by which β-catenin activates transcription is still not fully understood. While screening a panel of DNA demethylases, we found that thymine DNA glycosylase (TDG) up-regulated Wnt signaling. TDG interacts with the transcription factor TCF4 and coactivator CREB-binding protein/p300 in the Wnt pathway. Knocking down TDG by shRNAs inhibited the proliferation of CRC cells in vitro and in vivo. In CRC patients, TDG levels were significantly higher in tumor tissues than in the adjacent normal tissues. These results suggest that TDG warrants consideration as a potential biomarker for CRC and as a target for CRC treatment. PMID:24532795

  15. Targeting human 8-oxoguanine DNA glycosylase (hOGG1) to mitochondria enhances cisplatin cytotoxicity in hepatoma cells.

    PubMed

    Zhang, Haihong; Mizumachi, Takatsugu; Carcel-Trullols, Jaime; Li, Liwen; Naito, Akihiro; Spencer, Horace J; Spring, Paul M; Smoller, Bruce R; Watson, Amanda J; Margison, Geoffrey P; Higuchi, Masahiro; Fan, Chun-Yang

    2007-08-01

    Many chemoradiation therapies cause DNA damage through oxidative stress. An important cellular mechanism that protects cells against oxidative stress involves DNA repair. One of the primary DNA repair mechanisms for oxidative DNA damage is base excision repair (BER). BER involves the tightly coordinated function of four enzymes (glycosylase, apurinic/apyrimidinic endonuclease, polymerase and ligase), in which 8-oxoguanine DNA glycosylase 1 initiates the cycle. An imbalance in the production of any one of these enzymes may result in the generation of more DNA damage and increased cell killing. In this study, we targeted mitochondrial DNA to enhance cancer chemotherapy by over-expressing a human 8-oxoguanine DNA glycosylase 1 (hOGG1) gene in the mitochondria of human hepatoma cells. Increased hOGG1 transgene expression was achieved at RNA, protein and enzyme activity levels. In parallel, we observed enhanced mitochondrial DNA damage, increased mitochondrial respiration rate, increased membrane potential and elevated free radical production. A greater proportion of the hOGG1-over-expressing hepatoma cells experienced apoptosis. Following exposure to a commonly used chemotherapeutic agent, cisplatin, cancer cells over-expressing hOGG1 displayed much shortened long-term survival when compared with control cells. Our results suggest that over-expression of hOGG1 in mitochondria may promote mitochondrial DNA damage by creating an imbalance in the BER pathway and sensitize cancer cells to cisplatin. These findings support further evaluation of hOGG1 over-expression strategies for cancer therapy.

  16. Dietary exposure to diesel exhaust particles and oxidatively damaged DNA in young oxoguanine DNA glycosylase 1 deficient mice.

    PubMed

    Risom, Lotte; Møller, Peter; Dybdahl, Marianne; Vogel, Ulla; Wallin, Håkan; Loft, Steffen

    2007-12-10

    Pulmonary exposure to diesel exhaust particles (DEP) has been associated with high levels of oxidized DNA in lung cells, whereas long-term oral DEP exposure appears to induce the DNA repair system with concomitant unaltered levels of oxidized DNA in the colon and liver of rats. Here we studied the generation of oxidatively damaged DNA in young wild type (WT) and oxoguanine DNA glycosylase 1 (OGG1) deficient mice after dietary exposure to 0mg/kg, 0.8 mg/kg, or 8 mg/kg Standard Reference Material 1650 in the feed for 21 days. The ingestion of DEP did not increase the levels of 8-oxo-7,8-dihydro-2'-deoxyguanosine and comet assay endpoints in terms of strand break, endonuclease III, and formamidopyrimidine glycosylase (FPG) in the colon, liver, and lung tissue of WT or Ogg1(-/-) mice. The level of OGG1 mRNA could only be measured in WT mice and it was not increased by DEP feeding. On the contrary, the level of FPG sites was twofold higher in the liver and lung of Ogg1(-/-) mice compared to the levels in the WT mice tissues. In conclusion, although Ogg1(-/-) mice have high levels of oxidized guanine lesions, they do not appear to be markedly vulnerable to the genotoxicity by oral administration of DEP. PMID:17964092

  17. Kinetics and binding of the thymine-DNA mismatch glycosylase, Mig-Mth, with mismatch-containing DNA substrates.

    PubMed

    Begley, Thomas J; Haas, Brian J; Morales, Juan C; Kool, Eric T; Cunningham, Richard P

    2003-01-01

    We have examined the removal of thymine residues from T-G mismatches in DNA by the thymine-DNA mismatch glycosylase from Methanobacterium thermoautrophicum (Mig-Mth), within the context of the base excision repair (BER) pathway, to investigate why this glycosylase has such low activity in vitro. Using single-turnover kinetics and steady-state kinetics, we calculated the catalytic and product dissociation rate constants for Mig-Mth, and determined that Mig-Mth is inhibited by product apyrimidinic (AP) sites in DNA. Electrophoretic mobility shift assays (EMSA) provide evidence that the specificity of product binding is dependent upon the base opposite the AP site. The binding of Mig-Mth to DNA containing the non-cleavable substrate analogue difluorotoluene (F) was also analyzed to determine the effect of the opposite base on Mig-Mth binding specificity for substrate-like duplex DNA. The results of these experiments support the idea that opposite strand interactions play roles in determining substrate specificity. Endonuclease IV, which cleaves AP sites in the next step of the BER pathway, was used to analyze the effect of product removal on the overall rate of thymine hydrolysis by Mig-Mth. Our results support the hypothesis that endonuclease IV increases the apparent activity of Mig-Mth significantly under steady-state conditions by preventing reassociation of enzyme to product. PMID:12509271

  18. Neil3 and NEIL1 DNA Glycosylases Remove Oxidative Damages from Quadruplex DNA and Exhibit Preferences for Lesions in the Telomeric Sequence Context*

    PubMed Central

    Zhou, Jia; Liu, Minmin; Fleming, Aaron M.; Burrows, Cynthia J.; Wallace, Susan S.

    2013-01-01

    The telomeric DNA of vertebrates consists of d(TTAGGG)n tandem repeats, which can form quadruplex DNA structures in vitro and likely in vivo. Despite the fact that the G-rich telomeric DNA is susceptible to oxidation, few biochemical studies of base excision repair in telomeric DNA and quadruplex structures have been done. Here, we show that telomeric DNA containing thymine glycol (Tg), 8-oxo-7,8-dihydroguanine (8-oxoG), guanidinohydantoin (Gh), or spiroiminodihydantoin (Sp) can form quadruplex DNA structures in vitro. We have tested the base excision activities of five mammalian DNA glycosylases (NEIL1, NEIL2, mNeil3, NTH1, and OGG1) on these lesion-containing quadruplex substrates and found that only mNeil3 had excision activity on Tg in quadruplex DNA and that the glycosylase exhibited a strong preference for Tg in the telomeric sequence context. Although Sp and Gh in quadruplex DNA were good substrates for mNeil3 and NEIL1, none of the glycosylases had activity on quadruplex DNA containing 8-oxoG. In addition, NEIL1 but not mNeil3 showed enhanced glycosylase activity on Gh in the telomeric sequence context. These data suggest that one role for Neil3 and NEIL1 is to repair DNA base damages in telomeres in vivo and that Neil3 and Neil1 may function in quadruplex-mediated cellular events, such as gene regulation via removal of damaged bases from quadruplex DNA. PMID:23926102

  19. Inhibition of uracil-DNA glycosylase increases SCEs in BrdU-treated and visible light-irradiated cells

    SciTech Connect

    Maldonado, A.; Hernandez, P.; Gutierrez, C.

    1985-11-01

    The authors have approached the study of the ability of different types of lesions produced by DNA-damaging agents to develop sister-chromatid exchanges (SCEs) by analyzing SCE levels observed in Allium cepa L cells with BrdU-substituted DNA and exposed to visible light (VL), an irradiation which produces uracil residues in DNA after debromination of bromouracil and enhances SCE levels but only above a certain dose. They have partially purified an uracil-DNA glycosylase activity from A. cepa L root meristem cells, which removes uracil from DNA, the first step in the excision repair of this lesion. This enzyme was inhibited in vitro by 6-amino-uracil and uracil but not by thymine. When cells exposed to VL, at a dose that did not produce per se an SCE increase, were immediately post-treated with these inhibitors of uracil-DNA glycosylase, a significant increase in SCE levels was obtained. Moreover, SCE levels in irradiated cells dropped to control level when a short holding time elapsed between exposure to VL and the beginning of post-treatment with the inhibitor. Thus, our results showed that inhibitors of uracil-DNA glycosylase enhanced SCE levels in cells with unifilarly BrdU-substituted DNA exposed to visible light; and indicated the existence of a very rapid repair of SCE-inducing lesions produced by visible light irradiation of cells with unifilarly BrdU-containing DNA.

  20. Structural Features of the Interaction between Human 8-Oxoguanine DNA Glycosylase hOGG1 and DNA

    PubMed Central

    Koval, V. V.; Knorre, D. G.; Fedorova, O. S.

    2014-01-01

    The purpose of the present review is to summarize the data related with the structural features of interaction between the human repair enzyme 8-oxoguanine DNA glycosylase (hOGG1) and DNA. The review covers the questions concerning the role of individual amino acids of hOGG1 in the specific recognition of the oxidized DNA bases, formation of the enzyme–substrate complex, and excision of the lesion bases from DNA. Attention is also focused upon conformational changes in the enzyme active site and disruption of enzyme activity as a result of amino acid mutations. The mechanism of damaged bases release from DNA induced by hOGG1 is discussed in the context of structural dynamics. PMID:25349714

  1. Two glycosylase families diffusively scan DNA using a wedge residue to probe for and identify oxidatively damaged bases.

    PubMed

    Nelson, Shane R; Dunn, Andrew R; Kathe, Scott D; Warshaw, David M; Wallace, Susan S

    2014-05-20

    DNA glycosylases are enzymes that perform the initial steps of base excision repair, the principal repair mechanism that identifies and removes endogenous damages that occur in an organism's DNA. We characterized the motion of single molecules of three bacterial glycosylases that recognize oxidized bases, Fpg, Nei, and Nth, as they scan for damages on tightropes of λ DNA. We find that all three enzymes use a key "wedge residue" to scan for damage because mutation of this residue to an alanine results in faster diffusion. Moreover, all three enzymes bind longer and diffuse more slowly on DNA that contains the damages they recognize and remove. Using a sliding window approach to measure diffusion constants and a simple chemomechanical simulation, we demonstrate that these enzymes diffuse along DNA, pausing momentarily to interrogate random bases, and when a damaged base is recognized, they stop to evert and excise it.

  2. Pre-steady-state kinetics shows differences in processing of various DNA lesions by Escherichia coli formamidopyrimidine-DNA glycosylase

    PubMed Central

    Koval, Vladimir V.; Kuznetsov, Nikita A.; Zharkov, Dmitry O.; Ishchenko, Alexander A.; Douglas, Kenneth T.; Nevinsky, Georgy A.; Fedorova, Olga S.

    2004-01-01

    Formamidopyrimidine-DNA-glycosylase (Fpg pro tein, MutM) catalyses excision of 8-oxoguanine (8-oxoG) and other oxidatively damaged purines from DNA in a glycosylase/apurinic/apyrimidinic-lyase reaction. We report pre-steady-state kinetic analysis of Fpg action on oligonucleotide duplexes containing 8-oxo-2′-deoxyguanosine, natural abasic site or tetrahydrofuran (an uncleavable abasic site analogue). Monitoring Fpg intrinsic tryptophan fluorescence in stopped-flow experiments reveals multiple conformational transitions in the protein molecule during the catalytic cycle. At least four and five conformational transitions occur in Fpg during the interaction with abasic and 8-oxoG-containing substrates, respectively, within 2 ms to 10 s time range. These transitions reflect the stages of enzyme binding to DNA and lesion recognition with the mutual adjustment of DNA and enzyme structures to achieve catalytically competent conformation. Unlike these well-defined binding steps, catalytic stages are not associated with discernible fluorescence events. Only a single conformational change is detected for the cleavable substrates at times exceeding 10 s. The data obtained provide evidence that several fast sequential conformational changes occur in Fpg after binding to its substrate, converting the protein into a catalytically active conformation. PMID:14769949

  3. A dynamic checkpoint in oxidative lesion discrimination by formamidopyrimidine–DNA glycosylase

    PubMed Central

    Li, Haoquan; Endutkin, Anton V.; Bergonzo, Christina; Campbell, Arthur J.; de los Santos, Carlos; Grollman, Arthur; Zharkov, Dmitry O.; Simmerling, Carlos

    2016-01-01

    In contrast to proteins recognizing small-molecule ligands, DNA-dependent enzymes cannot rely solely on interactions in the substrate-binding centre to achieve their exquisite specificity. It is widely believed that substrate recognition by such enzymes involves a series of conformational changes in the enzyme–DNA complex with sequential gates favoring cognate DNA and rejecting nonsubstrates. However, direct evidence for such mechanism is limited to a few systems. We report that discrimination between the oxidative DNA lesion, 8-oxoguanine (oxoG) and its normal counterpart, guanine, by the repair enzyme, formamidopyrimidine-DNA glycosylase (Fpg), likely involves multiple gates. Fpg uses an aromatic wedge to open the Watson–Crick base pair and everts the lesion into its active site. We used molecular dynamics simulations to explore the eversion free energy landscapes of oxoG and G by Fpg, focusing on structural and energetic details of oxoG recognition. The resulting energy profiles, supported by biochemical analysis of site-directed mutants disturbing the interactions along the proposed path, show that Fpg selectively facilitates eversion of oxoG by stabilizing several intermediate states, helping the rapidly sliding enzyme avoid full extrusion of every encountered base for interrogation. Lesion recognition through multiple gating intermediates may be a common theme in DNA repair enzymes. PMID:26553802

  4. A dynamic checkpoint in oxidative lesion discrimination by formamidopyrimidine-DNA glycosylase.

    PubMed

    Li, Haoquan; Endutkin, Anton V; Bergonzo, Christina; Campbell, Arthur J; de los Santos, Carlos; Grollman, Arthur; Zharkov, Dmitry O; Simmerling, Carlos

    2016-01-29

    In contrast to proteins recognizing small-molecule ligands, DNA-dependent enzymes cannot rely solely on interactions in the substrate-binding centre to achieve their exquisite specificity. It is widely believed that substrate recognition by such enzymes involves a series of conformational changes in the enzyme-DNA complex with sequential gates favoring cognate DNA and rejecting nonsubstrates. However, direct evidence for such mechanism is limited to a few systems. We report that discrimination between the oxidative DNA lesion, 8-oxoguanine (oxoG) and its normal counterpart, guanine, by the repair enzyme, formamidopyrimidine-DNA glycosylase (Fpg), likely involves multiple gates. Fpg uses an aromatic wedge to open the Watson-Crick base pair and everts the lesion into its active site. We used molecular dynamics simulations to explore the eversion free energy landscapes of oxoG and G by Fpg, focusing on structural and energetic details of oxoG recognition. The resulting energy profiles, supported by biochemical analysis of site-directed mutants disturbing the interactions along the proposed path, show that Fpg selectively facilitates eversion of oxoG by stabilizing several intermediate states, helping the rapidly sliding enzyme avoid full extrusion of every encountered base for interrogation. Lesion recognition through multiple gating intermediates may be a common theme in DNA repair enzymes. PMID:26553802

  5. Non-productive DNA damage binding by DNA glycosylase-like protein Mag2 from Schizosaccharomyces pombe.

    PubMed

    Adhikary, Suraj; Cato, Marilyn C; McGary, Kriston L; Rokas, Antonis; Eichman, Brandt F

    2013-03-01

    Schizosaccharomyces pombe contains two paralogous proteins, Mag1 and Mag2, related to the helix-hairpin-helix (HhH) superfamily of alkylpurine DNA glycosylases from yeast and bacteria. Phylogenetic analysis of related proteins from four Schizosaccharomyces and other fungal species shows that the Mag1/Mag2 duplication is unique to the genus Schizosaccharomyces and most likely occurred in its ancestor. Mag1 excises N3- and N7-alkylguanines and 1,N(6)-ethenoadenine from DNA, whereas Mag2 has been reported to have no detectible alkylpurine base excision activity despite high sequence and active site similarity to Mag1. To understand this discrepancy we determined the crystal structure of Mag2 bound to abasic DNA and compared it to our previously determined Mag1-DNA structure. In contrast to Mag1, Mag2 does not flip the abasic moiety into the active site or stabilize the DNA strand 5' to the lesion, suggesting that it is incapable of forming a catalytically competent protein-DNA complex. Subtle differences in Mag1 and Mag2 interactions with the DNA duplex illustrate how Mag2 can stall at damage sites without fully engaging the lesion. We tested our structural predictions by mutational analysis of base excision and found a single amino acid responsible at least in part for Mag2's lack of activity. Substitution of Mag2 Asp56, which caps the helix at the base of the DNA intercalation loop, with the corresponding serine residue in Mag1 endows Mag2 with ɛA excision activity comparable to Mag1. This work provides novel insight into the chemical and physical determinants by which the HhH glycosylases engage DNA in a catalytically productive manner. PMID:23273506

  6. The DNA glycosylase AlkD uses a non-base-flipping mechanism to excise bulky lesions

    NASA Astrophysics Data System (ADS)

    Mullins, Elwood A.; Shi, Rongxin; Parsons, Zachary D.; Yuen, Philip K.; David, Sheila S.; Igarashi, Yasuhiro; Eichman, Brandt F.

    2015-11-01

    Threats to genomic integrity arising from DNA damage are mitigated by DNA glycosylases, which initiate the base excision repair pathway by locating and excising aberrant nucleobases. How these enzymes find small modifications within the genome is a current area of intensive research. A hallmark of these and other DNA repair enzymes is their use of base flipping to sequester modified nucleotides from the DNA helix and into an active site pocket. Consequently, base flipping is generally regarded as an essential aspect of lesion recognition and a necessary precursor to base excision. Here we present the first, to our knowledge, DNA glycosylase mechanism that does not require base flipping for either binding or catalysis. Using the DNA glycosylase AlkD from Bacillus cereus, we crystallographically monitored excision of an alkylpurine substrate as a function of time, and reconstructed the steps along the reaction coordinate through structures representing substrate, intermediate and product complexes. Instead of directly interacting with the damaged nucleobase, AlkD recognizes aberrant base pairs through interactions with the phosphoribose backbone, while the lesion remains stacked in the DNA duplex. Quantum mechanical calculations revealed that these contacts include catalytic charge-dipole and CH-π interactions that preferentially stabilize the transition state. We show in vitro and in vivo how this unique means of recognition and catalysis enables AlkD to repair large adducts formed by yatakemycin, a member of the duocarmycin family of antimicrobial natural products exploited in bacterial warfare and chemotherapeutic trials. Bulky adducts of this or any type are not excised by DNA glycosylases that use a traditional base-flipping mechanism. Hence, these findings represent a new model for DNA repair and provide insights into catalysis of base excision.

  7. The DNA glycosylase AlkD uses a non-base-flipping mechanism to excise bulky lesions.

    PubMed

    Mullins, Elwood A; Shi, Rongxin; Parsons, Zachary D; Yuen, Philip K; David, Sheila S; Igarashi, Yasuhiro; Eichman, Brandt F

    2015-11-12

    Threats to genomic integrity arising from DNA damage are mitigated by DNA glycosylases, which initiate the base excision repair pathway by locating and excising aberrant nucleobases. How these enzymes find small modifications within the genome is a current area of intensive research. A hallmark of these and other DNA repair enzymes is their use of base flipping to sequester modified nucleotides from the DNA helix and into an active site pocket. Consequently, base flipping is generally regarded as an essential aspect of lesion recognition and a necessary precursor to base excision. Here we present the first, to our knowledge, DNA glycosylase mechanism that does not require base flipping for either binding or catalysis. Using the DNA glycosylase AlkD from Bacillus cereus, we crystallographically monitored excision of an alkylpurine substrate as a function of time, and reconstructed the steps along the reaction coordinate through structures representing substrate, intermediate and product complexes. Instead of directly interacting with the damaged nucleobase, AlkD recognizes aberrant base pairs through interactions with the phosphoribose backbone, while the lesion remains stacked in the DNA duplex. Quantum mechanical calculations revealed that these contacts include catalytic charge-dipole and CH-π interactions that preferentially stabilize the transition state. We show in vitro and in vivo how this unique means of recognition and catalysis enables AlkD to repair large adducts formed by yatakemycin, a member of the duocarmycin family of antimicrobial natural products exploited in bacterial warfare and chemotherapeutic trials. Bulky adducts of this or any type are not excised by DNA glycosylases that use a traditional base-flipping mechanism. Hence, these findings represent a new model for DNA repair and provide insights into catalysis of base excision. PMID:26524531

  8. Characterization of GM-CSF-inhibitory factor and Uracil DNA glycosylase encoding genes from camel pseudocowpoxvirus.

    PubMed

    Nagarajan, G; Swami, Shelesh Kumar; Dahiya, Shyam Singh; Narnaware, S D; Mehta, S C; Singh, P K; Singh, Raghvendar; Tuteja, F C; Patil, N V

    2015-06-01

    The present study describes the PCR amplification of GM-CSF-inhibitory factor (GIF) and Uracil DNA glycosylase (UDG) encoding genes of pseudocowpoxvirus (PCPV) from the Indian Dromedaries (Camelus dromedarius) infected with contagious ecthyma using the primers based on the corresponding gene sequences of human PCPV and reindeer PCPV, respectively. The length of GIF gene of PCPV obtained from camel is 795 bp and due to the addition of one cytosine residue at position 374 and one adenine residue at position 516, the open reading frame (ORF) got altered, resulting in the production of truncated polypeptide. The ORF of UDG encoding gene of camel PCPV is 696 bp encoding a polypeptide of 26.0 kDa. Comparison of amino acid sequence homologies of GIF and UDG of camel PCPV revealed that the camel PCPV is closer to ORFV and PCPV (reference stains of both human and reindeer), respectively. PMID:25816930

  9. Mutational analysis of the damage-recognition and catalytic mechanism of human SMUG1 DNA glycosylase.

    PubMed

    Matsubara, Mayumi; Tanaka, Tamon; Terato, Hiroaki; Ohmae, Eiji; Izumi, Shunsuke; Katayanagi, Katsuo; Ide, Hiroshi

    2004-01-01

    Single-strand selective monofunctional uracil-DNA glycosylase (SMUG1), previously thought to be a backup enzyme for uracil-DNA glycosylase, has recently been shown to excise 5-hydroxyuracil (hoU), 5-hydroxymethyluracil (hmU) and 5-formyluracil (fU) bearing an oxidized group at ring C5 as well as an uracil. In the present study, we used site-directed mutagenesis to construct a series of mutants of human SMUG1 (hSMUG1), and tested their activity for uracil, hoU, hmU, fU and other bases to elucidate the catalytic and damage-recognition mechanism of hSMUG1. The functional analysis of the mutants, together with the homology modeling of the hSMUG1 structure based on that determined recently for Xenopus laevis SMUG1, revealed the crucial residues for the rupture of the N-glycosidic bond (Asn85 and His239), discrimination of pyrimidine rings through pi-pi stacking to the base (Phe98) and specific hydrogen bonds to the Watson-Crick face of the base (Asn163) and exquisite recognition of the C5 substituent through water-bridged (uracil) or direct (hoU, hmU and fU) hydrogen bonds (Gly87-Met91). Integration of the present results and the structural data elucidates how hSMUG1 accepts uracil, hoU, hmU and fU as substrates, but not other oxidized pyrimidines such as 5-hydroxycytosine, 5-formylcytosine and thymine glycol, and intact pyrimidines such as thymine and cytosine.

  10. A DNA glycosylase from Pyrobaculum aerophilum with an 8-oxoguanine binding mode and a noncanonical helix-hairpin-helix structure.

    PubMed

    Lingaraju, Gondichatnahalli M; Sartori, Alessandro A; Kostrewa, Dirk; Prota, Andrea E; Jiricny, Josef; Winkler, Fritz K

    2005-01-01

    Studies of DNA base excision repair (BER) pathways in the hyperthermophilic crenarchaeon Pyrobaculum aerophilum identified an 8-oxoguanine-DNA glycosylase, Pa-AGOG (archaeal GO glycosylase), with distinct functional characteristics. Here, we describe its crystal structure and that of its complex with 8-oxoguanosine at 1.0 and 1.7 A resolution, respectively. Characteristic structural features are identified that confirm Pa-AGOG to be the founding member of a functional class within the helix-hairpin-helix (HhH) superfamily of DNA repair enzymes. Its hairpin structure differs substantially from that of other proteins containing an HhH motif, and we predict that it interacts with the DNA backbone in a distinct manner. Furthermore, the mode of 8-oxoguanine recognition, which involves several hydrogen-bonding and pi-stacking interactions, is unlike that observed in human OGG1, the prototypic 8-oxoguanine HhH-type DNA glycosylase. Despite these differences, the predicted kinked conformation of bound DNA and the catalytic mechanism are likely to resemble those of human OGG1. PMID:15642264

  11. Structural Characterization of Clostridium acetobutylicum 8-Oxoguanine DNA Glycosylase in Its Apo Form and in Complex with 8-Oxodeoxyguanosine

    SciTech Connect

    Faucher, Frédérick; Robey-Bond, Susan M.; Wallace, Susan S.; Doublié, Sylvie

    2009-06-30

    DNA is subject to a multitude of oxidative damages generated by oxidizing agents from metabolism and exogenous sources and by ionizing radiation. Guanine is particularly vulnerable to oxidation, and the most common oxidative product 8-oxoguanine (8-oxoG) is the most prevalent lesion observed in DNA molecules. 8-OxoG can form a normal Watson-Crick pair with cytosine (8-oxoG:C), but it can also form a stable Hoogsteen pair with adenine (8-oxoG:A), leading to a G:C {yields} T:A transversion after replication. Fortunately, 8-oxoG is recognized and excised by either of two DNA glycosylases of the base excision repair pathway: formamidopyrimidine-DNA glycosylase and 8-oxoguanine DNA glycosylase (Ogg). While Clostridium acetobutylicum Ogg (CacOgg) DNA glycosylase can specifically recognize and remove 8-oxoG, it displays little preference for the base opposite the lesion, which is unusual for a member of the Ogg1 family. This work describes the crystal structures of CacOgg in its apo form and in complex with 8-oxo-2'-deoxyguanosine. A structural comparison between the apo form and the liganded form of the enzyme reveals a structural reorganization of the C-terminal domain upon binding of 8-oxoG, similar to that reported for human OGG1. A structural comparison of CacOgg with human OGG1, in complex with 8-oxoG containing DNA, provides a structural rationale for the lack of opposite base specificity displayed by CacOgg.

  12. Factors that influence telomeric oxidative base damage and repair by DNA glycosylase OGG1

    PubMed Central

    Rhee, David B.; Ghosh, Avik; Lu, Jian; Bohr, Vilhelm A.; Liu, Yie

    2010-01-01

    Telomeres are nucleoprotein complexes at the ends of linear chromosomes in eukaryotes, and are essential in preventing chromosome termini from being recognized as broken DNA ends. Telomere shortening has been linked to cellular senescence and human aging, with oxidative stress as a major contributing factor. 7, 8-dihydro-8-oxogaunine (8-oxodG) is one of the most abundant oxidative guanine lesions, and 8-oxoguanine DNA Glycosylase (OGG1) is involved in its removal. In this study, we examined if telomeric DNA is particularly susceptible to oxidative base damage and if telomere-specific factors affect the incision of oxidized guanines by OGG1. We demonstrated that telomeric TTAGGG repeats were more prone to oxidative base damage and repaired less efficiently than non-telomeric TG repeats in vivo. We also showed that the 8-oxodG-incision activity of OGG1 is similar in telomeric and non-telomeric double-stranded substrates. In addition, telomere repeat binding factors TRF1 and TRF2 do not impair OGG1 incision activity. Yet, 8-oxodG in some telomere structures (e.g., fork-opening, 3’-overhang, and D-loop) were less effectively excised by OGG1, depending upon its position in these substrates. Collectively, our data indicate that the sequence context of telomere repeats and certain telomere configurations may contribute to telomere vulnerability to oxidative DNA damage processing. PMID:20951653

  13. Analysis of substrate specificity of Schizosaccharomyces pombe Mag1 alkylpurine DNA glycosylase

    SciTech Connect

    Adhikary, Suraj; Eichman, Brandt F.

    2014-10-02

    DNA glycosylases specialized for the repair of alkylation damage must identify, with fine specificity, a diverse array of subtle modifications within DNA. The current mechanism involves damage sensing through interrogation of the DNA duplex, followed by more specific recognition of the target base inside the active site pocket. To better understand the physical basis for alkylpurine detection, we determined the crystal structure of Schizosaccharomyces pombe Mag1 (spMag1) in complex with DNA and performed a mutational analysis of spMag1 and the close homologue from Saccharomyces cerevisiae (scMag). Despite strong homology, spMag1 and scMag differ in substrate specificity and cellular alkylation sensitivity, although the enzymological basis for their functional differences is unknown. We show that Mag preference for 1,N{sup 6}-ethenoadenine ({var_epsilon}A) is influenced by a minor groove-interrogating residue more than the composition of the nucleobase-binding pocket. Exchanging this residue between Mag proteins swapped their {var_epsilon}A activities, providing evidence that residues outside the extrahelical base-binding pocket have a role in identification of a particular modification in addition to sensing damage.

  14. Structure of the human 3-methyladenine DNA glycosylase gene and localization close to the 16p telomere.

    PubMed Central

    Vickers, M A; Vyas, P; Harris, P C; Simmons, D L; Higgs, D R

    1993-01-01

    We recently reported the presence of four genes lying between the human alpha-globin gene cluster and the telomere of the short arm of chromosome 16 (16p). We now report that one of these genes encodes 3-methyladenine DNA glycosylase, an enzyme important in the repair of DNA after damage by alkylating agents. The gene comprises five exons, representation of which differs in independently isolated cDNA clones. Although the gene is widely expressed, the abundance of its mRNA is considerably higher in a colon adenocarcinoma cell line (HT29) than in other cell lines that were tested. The major positive erythroid-specific regulatory element controlling alpha-globin gene expression lies equidistant between the promoters of the alpha-globin genes and the 3-methyladenine DNA glycosylase gene. Interestingly, in contrast to the alpha-globin genes, expression of the 3-methyladenine DNA glycosylase gene is not influenced by the regulatory element in the human erythroleukemia cell line K562. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:8475094

  15. Role of uracil-DNA glycosylase in mutation avoidance by Streptococcus pneumoniae

    SciTech Connect

    Chen, Jau-Der; Lacks, S.A. )

    1991-01-01

    Uracil-DNA glycosylase activity was found in Streptococcus pneumoniae, and the enzyme was partially purified. An ung mutant lacking the activity was obtained by positive selection of cells transformed with a plasmid containing uracil in its DNA. The effects of the ung mutation on mutagenic processes in S. pneumoniae were examined. The sequence of several malM mutations revertible by nitrous acid showed them to correspond to A {center dot}T{r arrow}G {center dot} C transitions. This confirmed a prior deduction that nitrous acid action on transforming DNA gave only G {center dot} C{r arrow}A {center dot} T mutations. Examination of malM mutant reversion frequencies in ung strains indicated that G {center dot} C{r arrow}A {center dot} T mutation rates generally were 10-fold higher than in wild-type strains, presumably owing to lack of repair of deaminated cytosine residues in DNA. No effect of ung on mutation avoidance by the Hex mismatch repair system was observed, which means that uracil incorporation and removal from nascent DNA cannot be solely responsible for producing strand breaks that target nascent DNA for correction after replication. One malM mutation corresponding to an A {center dot} T{r arrow}G {center dot} C transition showed a 10-fold-higher spontaneous reversion frequency than other such transitions in a wild-type background. This hot spot was located in a directly repeated DNA sequence; it is proposed that transient slippage to the wild-type repeat during replication accounts for the higher reversion frequency.

  16. Computational rationale for the selective inhibition of the herpes simplex virus type 1 uracil-DNA glycosylase enzyme.

    PubMed

    Hendricks, Umraan; Crous, Werner; Naidoo, Kevin J

    2014-12-22

    The herpes simplex virus uracil-DNA glycosylase (hsvUNG) enzyme is responsible for the reactivation of the virus from latency and efficient viral replication in nerve tissue. The lack of uracil-DNA glycosylase enzyme in human neurons and the continuous deamination of cytosine create an environment where the presence of viral uracil-DNA glycosylase is a necessity for the proliferation of the virus. A series of 6-(4-alkylanilino)-uracil inhibitors has been developed that selectively and strongly binds to the hsvUNG enzyme while weakly binding to human uracil-DNA glycosylase (hUNG). Here, by using a combination of sequence and structural comparisons between the two enzymes along with free energy of binding computations and principal component analysis of the ligands, we investigate and rationalize the inhibitory effect of the 6-(4-alkylanilino)-uracil series as a function of alkyl chain length on the hsvUNG. The results of these computations corroborate the experimental finding that the inhibitor with an octyl aliphatic chain selectively binds hsvUNG best. More importantly we find that 6-(4-octylanilino)-uracil's selective inhibition of hsvUNG over hUNG is due to the combination of the solution preconfigured bent conformation of that specific chain length and the position of HIS92 (absent in hUNG) just outside hsvUNG's hydrophobic gorge lying adjacent to its uracil binding pocket. The similarities between the uracil binding pockets in hsvUNG and hUNG obfuscate an understanding of the preferential inhibition of the virus enzyme. However, the differences in the enzymes' shallow hydrophobic grooves adjacent to the binding pockets, such as the gorge we identify here, rationalizes 6-(4-alkylanilino)-uracil with an octyl chain length as an excellent pharmacophore template for hsvUNG inhibitor design.

  17. Ginsenoside Rd Attenuates DNA Damage by Increasing Expression of DNA Glycosylase Endonuclease VIII-like Proteins after Focal Cerebral Ischemia

    PubMed Central

    Yang, Long-Xiu; Zhang, Xiao; Zhao, Gang

    2016-01-01

    Background: Ginsenoside Rd (GSRd), one of the main active ingredients in traditional Chinese herbal Panax ginseng, has been found to have therapeutic effects on ischemic stroke. However, the molecular mechanisms of GSRd's neuroprotective function remain unclear. Ischemic stroke-induced oxidative stress results in DNA damage, which triggers cell death and contributes to poor prognosis. Oxidative DNA damage is primarily processed by the base excision repair (BER) pathway. Three of the five major DNA glycosylases that initiate the BER pathway in the event of DNA damage from oxidation are the endonuclease VIII-like (NEIL) proteins. This study aimed to investigate the effect of GSRd on the expression of DNA glycosylases NEILs in a rat model of focal cerebral ischemia. Methods: NEIL expression patterns were evaluated by quantitative real-time polymerase chain reaction in both normal and middle cerebral artery occlusion (MCAO) rat models. Survival rate and Zea-Longa neurological scores were used to assess the effect of GSRd administration on MCAO rats. Mitochondrial DNA (mtDNA) and nuclear DNA (nDNA) damages were evaluated by the way of real-time analysis of mutation frequency. NEIL expressions were measured in both messenger RNA (mRNA) and protein levels by quantitative polymerase chain reaction and Western blotting analysis. Apoptosis level was quantitated by the expression of cleaved caspase-3 and terminal deoxynucleotidyl transferase-mediated dUTP biotin nick end labeling assay. Results: We found that GSRd administration reduced mtDNA and nDNA damages, which contributed to an improvement in survival rate and neurological function; significantly up-regulated NEIL1 and NEIL3 expressions in both mRNA and protein levels of MCAO rats; and reduced cell apoptosis and the expression of cleaved caspase-3 in rats at 7 days after MCAO. Conclusions: Our results indicated that the neuroprotective function of GSRd for acute ischemic stroke might be partially explained by the up

  18. Rapid determination of the active fraction of DNA repair glycosylases: a novel fluorescence assay for trapped intermediates.

    PubMed

    Blaisdell, Jeffrey O; Wallace, Susan S

    2007-01-01

    Current methods to measure the fraction of active glycosylase molecules in a given enzyme preparation are slow and cumbersome. Here we report a novel assay for rapidly determining the active fraction based on molecular accessibility of a fluorescent DNA minor groove binder, 4',6-diamidino-2-phenylindole (DAPI). Several 5,6-dihydrouracil-containing (DHU) DNA substrates were designed with sequence-dependent DAPI-binding sites to which base excision repair glycosylases were covalently trapped by reduction. Trapped complexes impeded the association of DAPI in a manner dependent on the enzyme used and the location of the DAPI-binding site in relation to the lesion. Of the sequences tested, one was shown to give an accurate measure of the fraction of active molecules for each enzyme tested from both the Fpg/Nei family and HhH-GPD Nth superfamily of DNA glycosylases. The validity of the approach was demonstrated by direct comparison with current gel-based methods. Additionally, the results are supported by in silico modeling based on available crystal structures. PMID:17289752

  19. ATM regulates 3-Methylpurine-DNA glycosylase and promotes therapeutic resistance to alkylating agents

    PubMed Central

    Agnihotri, Sameer; Burrell, Kelly; Buczkowicz, Pawel; Remke, Marc; Golbourn, Brian; Chornenkyy, Yevgen; Gajadhar, Aaron; Fernandez, Nestor A.; Clarke, Ian D.; Barszczyk, Mark S.; Pajovic, Sanja; Ternamian, Christian; Head, Renee; Sabha, Nesrin; Sobol, Robert W.; Taylor, Michael D; Rutka, James T.; Jones, Chris; Dirks, Peter B.; Zadeh, Gelareh; Hawkins, Cynthia

    2014-01-01

    Alkylating agents are a frontline therapy for the treatment of several aggressive cancers including pediatric glioblastoma, a lethal tumor in children. Unfortunately, many tumors are resistant to this therapy. We sought to identify ways of sensitizing tumor cells to alkylating agents while leaving normal cells unharmed; increasing therapeutic response while minimizing toxicity. Using a siRNA screen targeting over 240 DNA damage response genes, we identified novel sensitizers to alkylating agents. In particular the base excision repair (BER) pathway, including 3-methylpurine-DNA glycosylase (MPG), as well as ataxia telangiectasia mutated (ATM) were identified in our screen. Interestingly, we identified MPG as a direct novel substrate of ATM. ATM-mediated phosphorylation of MPG was required for enhanced MPG function. Importantly, combined inhibition or loss of MPG and ATM resulted in increased alkylating agent-induced cytotoxicity in vitro and prolonged survival in vivo. The discovery of the ATM-MPG axis will lead to improved treatment of alkylating agent-resistant tumors. PMID:25100205

  20. Aag DNA Glycosylase Promotes Alkylation-Induced Tissue Damage Mediated by Parp1

    PubMed Central

    Calvo, Jennifer A.; Moroski-Erkul, Catherine A.; Lake, Annabelle; Eichinger, Lindsey W.; Shah, Dharini; Jhun, Iny; Limsirichai, Prajit; Bronson, Roderick T.; Christiani, David C.; Meira, Lisiane B.; Samson, Leona D.

    2013-01-01

    Alkylating agents comprise a major class of front-line cancer chemotherapeutic compounds, and while these agents effectively kill tumor cells, they also damage healthy tissues. Although base excision repair (BER) is essential in repairing DNA alkylation damage, under certain conditions, initiation of BER can be detrimental. Here we illustrate that the alkyladenine DNA glycosylase (AAG) mediates alkylation-induced tissue damage and whole-animal lethality following exposure to alkylating agents. Aag-dependent tissue damage, as observed in cerebellar granule cells, splenocytes, thymocytes, bone marrow cells, pancreatic β-cells, and retinal photoreceptor cells, was detected in wild-type mice, exacerbated in Aag transgenic mice, and completely suppressed in Aag−/− mice. Additional genetic experiments dissected the effects of modulating both BER and Parp1 on alkylation sensitivity in mice and determined that Aag acts upstream of Parp1 in alkylation-induced tissue damage; in fact, cytotoxicity in WT and Aag transgenic mice was abrogated in the absence of Parp1. These results provide in vivo evidence that Aag-initiated BER may play a critical role in determining the side-effects of alkylating agent chemotherapies and that Parp1 plays a crucial role in Aag-mediated tissue damage. PMID:23593019

  1. Kinetics of substrate recognition and cleavage by human 8-oxoguanine-DNA glycosylase

    PubMed Central

    Kuznetsov, Nikita A.; Koval, Vladimir V.; Zharkov, Dmitry O.; Nevinsky, Georgy A.; Douglas, Kenneth T.; Fedorova, Olga S.

    2005-01-01

    Human 8-oxoguanine-DNA glycosylase (hOgg1) excises 8-oxo-7,8-dihydroguanine (8-oxoG) from damaged DNA. We report a pre-steady-state kinetic analysis of hOgg1 mechanism using stopped-flow and enzyme fluorescence monitoring. The kinetic scheme for hOgg1 processing an 8-oxoG:C-containing substrate was found to include at least three fast equilibrium steps followed by two slow, irreversible steps and another equilibrium step. The second irreversible step was rate-limiting overall. By comparing data from Ogg1 intrinsic fluorescence traces and from accumulation of products of different types, the irreversible steps were attributed to two main chemical steps of the Ogg1-catalyzed reaction: cleavage of the N-glycosidic bond of the damaged nucleotide and β-elimination of its 3′-phosphate. The fast equilibrium steps were attributed to enzyme conformational changes during the recognition of 8-oxoG, and the final equilibrium, to binding of the reaction product by the enzyme. hOgg1 interacted with a substrate containing an aldehydic AP site very slowly, but the addition of 8-bromoguanine (8-BrG) greatly accelerated the reaction, which was best described by two initial equilibrium steps followed by one irreversible chemical step and a final product release equilibrium step. The irreversible step may correspond to β-elimination since it is the very step facilitated by 8-BrG. PMID:16024742

  2. Tungsten disulfide nanosheet and exonuclease III co-assisted amplification strategy for highly sensitive fluorescence polarization detection of DNA glycosylase activity.

    PubMed

    Zhao, Jingjin; Ma, Yefei; Kong, Rongmei; Zhang, Liangliang; Yang, Wen; Zhao, Shulin

    2015-08-01

    Herein, we introduced a tungsten disulfide (WS2) nanosheet and exonuclease III (Exo III) co-assisted signal amplification strategy for highly sensitive fluorescent polarization (FP) assay of DNA glycosylase activity. Two DNA glycosylases, uracil-DNA glycosylase (UDG) and human 8-oxoG DNA glycosylase 1 (hOGG1), were tested. A hairpin-structured probe (HP) which contained damaged bases in the stem was used as the substrate. The removal of damaged bases from substrate by DNA glycosylase would lower the melting temperature of HP. The HP was then opened and hybridized with a FAM dye-labeled single strand DNA (DP), generating a duplex with a recessed 3'-terminal of DP. This design facilitated the Exo III-assisted amplification by repeating the hybridization and digestion of DP, liberating numerous FAM fluorophores which could not be adsorbed on WS2 nanosheet. Thus, the final system exhibited a small FP signal. However, in the absence of DNA glycosylases, no hybridization between DP and HP was occurred, hampering the hydrolysis of DP by Exo III. The intact DP was then adsorbed on the surface of WS2 nanosheet that greatly amplified the mass of the labeled-FAM fluorophore, resulting in a large FP value. With the co-assisted amplification strategy, the sensitivity was substantially improved. In addition, this method was applied to detect UDG activity in cell extracts. The study of the inhibition of UDG was also performed. Furthermore, this method is simple in design, easy in implementation, and selective, which holds potential applications in the DNA glycosylase related mechanism research and molecular diagnostics.

  3. Oxidized dNTPs and the OGG1 and MUTYH DNA glycosylases combine to induce CAG/CTG repeat instability

    PubMed Central

    Cilli, Piera; Ventura, Ilenia; Minoprio, Anna; Meccia, Ettore; Martire, Alberto; Wilson, Samuel H.; Bignami, Margherita; Mazzei, Filomena

    2016-01-01

    DNA trinucleotide repeat (TNR) expansion underlies several neurodegenerative disorders including Huntington's disease (HD). Accumulation of oxidized DNA bases and their inefficient processing by base excision repair (BER) are among the factors suggested to contribute to TNR expansion. In this study, we have examined whether oxidation of the purine dNTPs in the dNTP pool provides a source of DNA damage that promotes TNR expansion. We demonstrate that during BER of 8-oxoguanine (8-oxodG) in TNR sequences, DNA polymerase β (POL β) can incorporate 8-oxodGMP with the formation of 8-oxodG:C and 8-oxodG:A mispairs. Their processing by the OGG1 and MUTYH DNA glycosylases generates closely spaced incisions on opposite DNA strands that are permissive for TNR expansion. Evidence in HD model R6/2 mice indicates that these DNA glycosylases are present in brain areas affected by neurodegeneration. Consistent with prevailing oxidative stress, the same brain areas contained increased DNA 8-oxodG levels and expression of the p53-inducible ribonucleotide reductase. Our in vitro and in vivo data support a model where an oxidized dNTPs pool together with aberrant BER processing contribute to TNR expansion in non-replicating cells. PMID:26980281

  4. Folate Deficiency Induces Neurodegeneration and Brain Dysfunction in Mice Lacking Uracil DNA Glycosylase

    PubMed Central

    Kronenberg, Golo; Harms, Christoph; Sobol, Robert W.; Cardozo-Pelaez, Fernando; Linhart, Heinz; Winter, Benjamin; Balkaya, Mustafa; Gertz, Karen; Gay, Shanna B.; Cox, David; Eckart, Sarah; Ahmadi, Michael; Juckel, Georg; Kempermann, Gerd; Hellweg, Rainer; Sohr, Reinhard; Hörtnagl, Heide; Wilson, Samuel H.; Jaenisch, Rudolf

    2008-01-01

    Folate deficiency and resultant increased homocysteine levels have been linked experimentally and epidemiologically with neurodegenerative conditions like stroke and dementia. Moreover, folate deficiency has been implicated in the pathogenesis of psychiatric disorders, most notably depression. We hypothesized that the pathogenic mechanisms include uracil misincorporation and, therefore, analyzed the effects of folate deficiency in mice lacking uracil DNA glycosylase (Ung−/−) versus wild-type controls. Folate depletion increased nuclear mutation rates in Ung−/− embryonic fibroblasts, and conferred death of cultured Ung−/− hippocampal neurons. Feeding animals a folate-deficient diet (FD) for 3 months induced degeneration of CA3 pyramidal neurons in Ung−/− but not Ung+/+ mice along with decreased hippocampal expression of brain-derived neurotrophic factor protein and decreased brain levels of antioxidant glutathione. Furthermore, FD induced cognitive deficits and mood alterations such as anxious and despair-like behaviors that were aggravated in Ung−/− mice. Independent of Ung genotype, FD increased plasma homocysteine levels, altered brain monoamine metabolism, and inhibited adult hippocampal neurogenesis. These results indicate that impaired uracil repair is involved in neurodegeneration and neuropsychiatric dysfunction induced by experimental folate deficiency. PMID:18614692

  5. The DNA glycosylases OGG1 and NEIL3 influence differentiation potential, proliferation, and senescence-associated signs in neural stem cells

    SciTech Connect

    Reis, Amilcar; Hermanson, Ola

    2012-07-13

    Highlights: Black-Right-Pointing-Pointer DNA glycosylases OGG1 and NEIL3 are required for neural stem cell state. Black-Right-Pointing-Pointer No effect on cell viability by OGG1 or NEIL3 knockdown in neural stem cells. Black-Right-Pointing-Pointer OGG1 or NEIL3 RNA knockdown result in decreased proliferation and differentiation. Black-Right-Pointing-Pointer Increased HP1{gamma} immunoreactivity after NEIL3 knockdown suggests premature senescence. -- Abstract: Embryonic neural stem cells (NSCs) exhibit self-renewal and multipotency as intrinsic characteristics that are key parameters for proper brain development. When cells are challenged by oxidative stress agents the resulting DNA lesions are repaired by DNA glycosylases through the base excision repair (BER) pathway as a means to maintain the fidelity of the genome, and thus, proper cellular characteristics. The functional roles for DNA glycosylases in NSCs have however remained largely unexplored. Here we demonstrate that RNA knockdown of the DNA glycosylases OGG1 and NEIL3 decreased NSC differentiation ability and resulted in decreased expression of both neuronal and astrocytic genes after mitogen withdrawal, as well as the stem cell marker Musashi-1. Furthermore, while cell survival remained unaffected, NEIL3 deficient cells displayed decreased cell proliferation rates along with an increase in HP1{gamma} immunoreactivity, a sign of premature senescence. Our results suggest that DNA glycosylases play multiple roles in governing essential neural stem cell characteristics.

  6. Staphylococcus aureus Sepsis and Mitochondrial Accrual of the 8-Oxoguanine DNA Glycosylase DNA Repair Enzyme in Mice

    PubMed Central

    Bartz, Raquel R.; Suliman, Hagir B.; Fu, Ping; Welty-Wolf, Karen; Carraway, Martha Sue; MacGarvey, Nancy Chou; Withers, Crystal M.; Sweeney, Timothy E.; Piantadosi, Claude A.

    2011-01-01

    Rationale: Damage to mitochondrial DNA (mtDNA) by the production of reactive oxygen species during inflammatory states, such as sepsis, is repaired by poorly understood mechanisms. Objectives: To test the hypothesis that the DNA repair enzyme, 8-oxoguanine DNA glycosylase (OGG1), contributes to mtDNA repair in sepsis. Methods: Using a well-characterized mouse model of Staphylococcus aureus sepsis, we analyzed molecular markers for mitochondrial biogenesis and OGG1 translocation into liver mitochondria as well as OGG1 mRNA expression at 0, 24, 48, and 72 hours after infection. The effects of OGG1 RNA silencing on mtDNA content were determined in control, tumor necrosis factor-α, and peptidoglycan-exposed rat hepatoma cells. Based on in situ analysis of the OGG1 promoter region, chromatin immunoprecipitation assays were performed for nuclear respiratory factor (NRF)-1 and NRF-2α GA-binding protein (GABP) binding to the promoter of OGG1. Measurements and Main Results: Mice infected with 107 cfu S. aureus intraperitoneally demonstrated hepatic oxidative mtDNA damage and significantly lower hepatic mtDNA content as well as increased mitochondrial OGG1 protein and enzyme activity compared with control mice. The infection also caused increases in hepatic OGG1 transcript levels and NRF-1 and NRF-2α transcript and protein levels. A bioinformatics analysis of the Ogg1 gene locus identified several promoter sites containing NRF-1 and NRF-2α DNA binding motifs, and chromatin immunoprecipitation assays confirmed in situ binding of both transcription factors to the Ogg1 promoter within 24 hours of infection. Conclusions: These studies identify OGG1 as an early mitochondrial response protein during sepsis under regulation by the NRF-1 and NRF-2α transcription factors that regulate mitochondrial biogenesis. PMID:20732986

  7. Structure of the E. coli DNA Glycosylase AlkA Bound to the Ends of Duplex DNA: A System for the Structure Determination of Lesion-Containing DNA

    SciTech Connect

    Bowman, B.R.; Lee, S.; Wang, S.; Verdine, G.L.

    2008-10-24

    The constant attack on DNA by endogenous and exogenous agents gives rise to nucleobase modifications that cause mutations, which can lead to cancer. Visualizing the effects of these lesions on the structure of duplex DNA is key to understanding their biologic consequences. The most definitive method of obtaining such structures, X-ray crystallography, is troublesome to employ owing to the difficulty of obtaining diffraction-quality crystals of DNA. Here, we present a crystallization system that uses a protein, the DNA glycosylase AlkA, as a scaffold to mediate the crystallization of lesion-containing duplex DNA. We demonstrate the use of this system to facilitate the rapid structure determination of DNA containing the lesion 8-oxoguanine in several different sequence contexts, and also deoxyinosine and 1,N{sup 6}-ethenoadenine, each stabilized as the corresponding 2{prime}-flouro analog. The structures of 8-oxoguanine provide a correct atomic-level view of this important endogenous lesion in DNA.

  8. Repeated inhalations of diesel exhaust particles and oxidatively damaged DNA in young oxoguanine DNA glycosylase (OGG1) deficient mice.

    PubMed

    Risom, Lotte; Dybdahl, Marianne; Møller, Peter; Wallin, Håkan; Haug, Terje; Vogel, Ulla; Klungland, Arne; Loft, Steffen

    2007-02-01

    DNA repair may prevent increased levels of oxidatively damaged DNA from prolonged oxidative stress induced by, e.g. exposure to diesel exhaust particles (DEP). We studied oxidative damage to DNA in broncho-alveolar lavage cells, lungs, and liver after 4 x 1.5 h inhalations of DEP (20 mg/m3) in Ogg1-/- and wild type (WT) mice with similar extent of inflammation. DEP exposure increased lung levels of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) in Ogg1-/- mice, whereas no effect on 8-oxodG or oxidized purines in terms of formamidopyrimidine DNA glycosylase (FPG) sites was observed in WT mice. In both unexposed and exposed Ogg1-/- mice the level of FPG sites in the lungs was 3-fold higher than in WT mice. The high basal level of FPG sites in Ogg1-/- mice probably saturated the assay and prevented detection of DEP-generated damage. In conclusion, Ogg1-/- mice have elevated pulmonary levels of FPG sites and accumulate genomic 8-oxodG after repeated inhalations of DEP. PMID:17364943

  9. The Mbd4 DNA glycosylase protects mice from inflammation-driven colon cancer and tissue injury

    PubMed Central

    Yu, Amy Marie; Calvo, Jennifer A.; Muthupalani, Suresh; Samson, Leona D.

    2016-01-01

    Much of the global cancer burden is associated with longstanding inflammation accompanied by release of DNA-damaging reactive oxygen and nitrogen species. Here, we report that the Mbd4 DNA glycosylase is protective in the azoxymethane/dextran sodium sulfate (AOM/DSS) mouse model of inflammation-driven colon cancer. Mbd4 excises T and U from T:G and U:G mismatches caused by deamination of 5-methylcytosine and cytosine. Since the rate of deamination is higher in inflamed tissues, we investigated the role of Mbd4 in inflammation-driven tumorigenesis. In the AOM/DSS assay, Mbd4−/− mice displayed more severe clinical symptoms, decreased survival, and a greater tumor burden than wild-type (WT) controls. The increased tumor burden in Mbd4−/− mice did not arise from impairment of AOM-induced apoptosis in the intestinal crypt. Histopathological analysis indicated that the colonic epithelium of Mbd4−/− mice is more vulnerable than WT to DSS-induced tissue damage. We investigated the role of the Mbd4−/− immune system in AOM/DSS-mediated carcinogenesis by repeating the assay on WT and Mbd4−/− mice transplanted with WT bone marrow. Mbd4−/− mice with WT bone marrow behaved similarly to Mbd4−/− mice. Together, our results indicate that the colonic epithelium of Mbd4−/− mice is more vulnerable to DSS-induced injury, which exacerbates inflammation-driven tissue injury and cancer. PMID:27086921

  10. A Catalytic Role for C-H/π Interactions in Base Excision Repair by Bacillus cereus DNA Glycosylase AlkD.

    PubMed

    Parsons, Zachary D; Bland, Joshua M; Mullins, Elwood A; Eichman, Brandt F

    2016-09-14

    DNA glycosylases protect genomic integrity by locating and excising aberrant nucleobases. Substrate recognition and excision usually take place in an extrahelical conformation, which is often stabilized by π-stacking interactions between the lesion nucleobase and aromatic side chains in the glycosylase active site. Bacillus cereus AlkD is the only DNA glycosylase known to catalyze base excision without extruding the damaged nucleotide from the DNA helix. Instead of contacting the nucleobase itself, the AlkD active site interacts with the lesion deoxyribose through a series of C-H/π interactions. These interactions are ubiquitous in protein structures, but evidence for their catalytic significance in enzymology is lacking. Here, we show that the C-H/π interactions between AlkD and the lesion deoxyribose participate in catalysis of glycosidic bond cleavage. This is the first demonstration of a catalytic role for C-H/π interactions as intermolecular forces important to DNA repair. PMID:27571247

  11. Expansion Mechanisms and Evolutionary History on Genes Encoding DNA Glycosylases and Their Involvement in Stress and Hormone Signaling.

    PubMed

    Jiang, Shu-Ye; Ramachandran, Srinivasan

    2016-01-01

    DNA glycosylases catalyze the release of methylated bases. They play vital roles in the base excision repair pathway and might also function in DNA demethylation. At least three families of DNA glycosylases have been identified, which included 3'-methyladenine DNA glycosylase (MDG) I, MDG II, and HhH-GPD (Helix-hairpin-Helix and Glycine/Proline/aspartate (D)). However, little is known on their genome-wide identification, expansion, and evolutionary history as well as their expression profiling and biological functions. In this study, we have genome-widely identified and evolutionarily characterized these family members. Generally, a genome encodes only one MDG II gene in most of organisms. No MDG I or MDG II gene was detected in green algae. However, HhH-GPD genes were detectable in all available organisms. The ancestor species contain small size of MDG I and HhH-GPD families. These two families were mainly expanded through the whole-genome duplication and segmental duplication. They were evolutionarily conserved and were generally under purifying selection. However, we have detected recent positive selection among the Oryza genus, which might play roles in species divergence. Further investigation showed that expression divergence played important roles in gene survival after expansion. All of these family genes were expressed in most of developmental stages and tissues in rice plants. High ratios of family genes were downregulated by drought and fungus pathogen as well as abscisic acid (ABA) and jasmonic acid (JA) treatments, suggesting a negative regulation in response to drought stress and pathogen infection through ABA- and/or JA-dependent hormone signaling pathway. PMID:27026054

  12. Expansion Mechanisms and Evolutionary History on Genes Encoding DNA Glycosylases and Their Involvement in Stress and Hormone Signaling

    PubMed Central

    Jiang, Shu-Ye; Ramachandran, Srinivasan

    2016-01-01

    DNA glycosylases catalyze the release of methylated bases. They play vital roles in the base excision repair pathway and might also function in DNA demethylation. At least three families of DNA glycosylases have been identified, which included 3′-methyladenine DNA glycosylase (MDG) I, MDG II, and HhH-GPD (Helix–hairpin–Helix and Glycine/Proline/aspartate (D)). However, little is known on their genome-wide identification, expansion, and evolutionary history as well as their expression profiling and biological functions. In this study, we have genome-widely identified and evolutionarily characterized these family members. Generally, a genome encodes only one MDG II gene in most of organisms. No MDG I or MDG II gene was detected in green algae. However, HhH-GPD genes were detectable in all available organisms. The ancestor species contain small size of MDG I and HhH-GPD families. These two families were mainly expanded through the whole-genome duplication and segmental duplication. They were evolutionarily conserved and were generally under purifying selection. However, we have detected recent positive selection among the Oryza genus, which might play roles in species divergence. Further investigation showed that expression divergence played important roles in gene survival after expansion. All of these family genes were expressed in most of developmental stages and tissues in rice plants. High ratios of family genes were downregulated by drought and fungus pathogen as well as abscisic acid (ABA) and jasmonic acid (JA) treatments, suggesting a negative regulation in response to drought stress and pathogen infection through ABA- and/or JA-dependent hormone signaling pathway. PMID:27026054

  13. The Potential Role of 8-Oxoguanine DNA Glycosylase-Driven DNA Base Excision Repair in Exercise-Induced Asthma

    PubMed Central

    Belanger, KarryAnne K.; Ameredes, Bill T.; Boldogh, Istvan

    2016-01-01

    Asthma is characterized by reversible airway narrowing, shortness of breath, wheezing, coughing, and other symptoms driven by chronic inflammatory processes, commonly triggered by allergens. In 90% of asthmatics, most of these symptoms can also be triggered by intense physical activities and severely exacerbated by environmental factors. This condition is known as exercise-induced asthma (EIA). Current theories explaining EIA pathogenesis involve osmotic and/or thermal alterations in the airways caused by changes in respiratory airflow during exercise. These changes, along with existing airway inflammatory conditions, are associated with increased cellular levels of reactive oxygen species (ROS) affecting important biomolecules including DNA, although the underlying molecular mechanisms have not been completely elucidated. One of the most abundant oxidative DNA lesions is 8-oxoguanine (8-oxoG), which is repaired by 8-oxoguanine DNA glycosylase 1 (OGG1) during the base excision repair (BER) pathway. Whole-genome expression analyses suggest a cellular response to OGG1-BER, involving genes that may have a role in the pathophysiology of EIA leading to mast cell degranulation, airway hyperresponsiveness, and bronchoconstriction. Accordingly, this review discusses a potential new hypothesis in which OGG1-BER-induced gene expression is associated with EIA symptoms. PMID:27524866

  14. BCR-ABL1 kinase inhibits uracil DNA glycosylase UNG2 to enhance oxidative DNA damage and stimulate genomic instability

    PubMed Central

    Slupianek, Artur; Falinski, Rafal; Znojek, Pawel; Stoklosa, Tomasz; Flis, Sylwia; Doneddu, Valentina; Pytel, Dariusz; Synowiec, Ewelina; Blasiak, Janusz; Bellacosa, Alfonso; Skorski, Tomasz

    2013-01-01

    Tyrosine kinase inhibitors (TKIs) revolutionized the treatment of CML-CP. Unfortunately, 25% of TKI-naive patients and 50–90% of TKI-responding patients carry CML clones expressing TKI resistant BCR-ABL1 kinase mutants. We reported that CML-CP leukemia stem and progenitor cell populations accumulate high amounts of reactive oxygen species (ROS), which may result in accumulation of uracil derivatives in genomic DNA. Unfaithful and/or inefficient repair of these lesions generates TKI resistant point mutations in BCR-ABL1 kinase. Using an array of specific substrates and inhibitors/blocking antibodies we found that uracil-DNA glycosylase UNG2 were inhibited in BCR-ABL1 –transformed cell lines and CD34+ CML cells. The inhibitory effect was not accompanied by downregulation of nuclear expression and/or chromatin association of UNG2. The effect was BCR-ABL1 kinase-specific because several other fusion tyrosine kinases did not reduce UNG2 activity. Using UNG2-specific inhibitor UGI we found that reduction of UNG2 activity increased the number of uracil derivatives in genomic DNA detected by modified comet assay and facilitated accumulation of ouabain-resistant point mutations in reporter gene Na+/K+ATPase. In conclusion, we postulate that BCR-ABL1 kinase-mediated inhibition of UNG2 contributes to accumulation of point mutations responsible for TKI-resistance causing the disease relapse, and perhaps also other point mutations facilitating malignant progression of CML. PMID:23047475

  15. Dramatic reduction of sequence artefacts from DNA isolated from formalin-fixed cancer biopsies by treatment with uracil- DNA glycosylase.

    PubMed

    Do, Hongdo; Dobrovic, Alexander

    2012-05-01

    Non-reproducible sequence artefacts are frequently detected in DNA from formalinfixed and paraffin-embedded (FFPE) tissues. However, no rational strategy has been developed for reduction of sequence artefacts from FFPE DNA as the underlying causes of the artefacts are poorly understood. As cytosine deamination to uracil is a common form of DNA damage in ancient DNA, we set out to examine whether treatment of FFPE DNA with uracil-DNA glycosylase (UDG) would lead to the reduction of C>T (and G>A) sequence artefacts. Heteroduplex formation in high resolution melting (HRM)-based assays was used for the detection of sequence variants in FFPE DNA samples. A set of samples that gave false positive HRM results for screening for the E17K mutation in exon 4 of the AKT1 gene were chosen for analysis. Sequencing of these samples showed multiple non-reproducible C:G>T:A artefacts. Treatment of the FFPE DNA with UDG prior to PCR amplification led to a very marked reduction of the sequence artefacts as indicated by both HRM and sequencing analysis, indicating that uracil lesions are the major cause of sequence artefacts. Similar results were shown for the BRAF V600 region in the same sample set and EGFR exon 19 in another sample set. UDG treatment specifically suppressed the formation of artefacts in FFPE DNA as it did not affect the detection of true KRAS codon 12 and true EGFR exon 19 and 20 mutations. We conclude that uracil in FFPE DNA leads to a significant proportion of sequence artefacts. These can be minimised by a simple UDG pretreatment which can be readily carried out, in the same tube, as the PCR immediately prior to commencing thermal cycling. HRM is a convenient way of monitoring both the degree of damage and the effectiveness of the UDG treatment. These findings have immediate and important implications for cancer diagnostics where FFPE DNA is used as the primary genetic material for mutational studies guiding personalised medicine strategies and where simple

  16. Label-free fluorescence turn-on detection of uracil DNA glycosylase activity based on G-quadruplex formation.

    PubMed

    Ma, Changbei; Wu, Kefeng; Liu, Haisheng; Xia, Kun; Wang, Kemin; Wang, Jun

    2016-11-01

    We have developed a new methodology for fluorescence turn-on detection of uracil DNA glycosylase (UDG) activity based on G-quadruplex formation using a thioflavin T probe. In the presence of UDG, it catalyzed the hydrolysis of the uracil bases in the duplex DNA, resulting in the dissociation of the duplex DNA owing to their low melting temperature. Then, the probe DNA can be recognized quickly by the ThT dye and resulting in an increase in fluorescence. This approach is highly selective and sensitive with a detection limit of 0.01U/mL. It is simple and cost effective without requirement of labeling with a fluorophore-quencher pair. This new method could be used to evaluate the inhibition effect of 5-fluorouracil on UDG activity, and become a useful tool in biomedical research. PMID:27591637

  17. Metal inhibition of human alkylpurine-DNA-N-glycosylase activityin base excision repair

    SciTech Connect

    Wang, Ping; Guliaev, Anton B.; Hang, Bo

    2006-02-28

    Cadmium (Cd{sup 2+}), nickel (Ni{sup 2+}) and cobalt (Co{sup 2+}) are human and/or animal carcinogens. Zinc (Zn{sup 2+}) is not categorized as a carcinogen, and rather an essential element to humans. Metals were recently shown to inhibit DNA repair proteins that use metals for their function and/or structure. Here we report that the divalent ions Cd{sup 2+}, Ni{sup 2+}, and Zn{sup 2+} can inhibit the activity of a recombinant human N-methylpurine-DNA glycosylase (MPG) toward a deoxyoligonucleotide with ethenoadenine (var epsilonA). MPG removes a variety of toxic/mutagenic alkylated bases and does not require metal for its catalytic activity or structural integrity. At concentrations starting from 50 to 1000 {micro}M, both Cd{sup 2+} and Zn{sup 2+} showed metal-dependent inhibition of the MPG catalytic activity. Ni{sup 2+} also inhibited MPG, but to a lesser extent. Such an effect can be reversed with EDTA addition. In contrast, Co{sup 2+} and Mg{sup 2+} did not inhibit the MPG activity in the same dose range. Experiments using HeLa cell-free extracts demonstrated similar patterns of inactivation of the var epsilonA excision activity by the same metals. Binding of MPG to the substrate was not significantly affected by Cd{sup 2+}, Zn{sup 2+}, and Ni{sup 2+} at concentrations that show strong inhibition of the catalytic function, suggesting that the reduced catalytic activity is not due to altered MPG binding affinity to the substrate. Molecular dynamics (MD) simulations with Zn{sup 2+} showed that the MPG active site has a potential binding site for Zn{sup 2+}, formed by several catalytically important and conserved residues. Metal binding to such a site is expected to interfere with the catalytic mechanism of this protein. These data suggest that inhibition of MPG activity may contribute to metal genotoxicity and depressed repair of alkylation damage by metals in vivo.

  18. Evidence that OGG1 glycosylase protects neurons against oxidative DNA damage and cell death under ischemic conditions

    PubMed Central

    Liu, Dong; Croteau, Deborah L; Souza-Pinto, Nadja; Pitta, Michael; Tian, Jingyan; Wu, Christopher; Jiang, Haiyang; Mustafa, Khadija; Keijzers, Guido; Bohr, Vilhelm A; Mattson, Mark P

    2011-01-01

    7,8-Dihydro-8-oxoguanine DNA glycosylase (OGG1) is a major DNA glycosylase involved in base-excision repair (BER) of oxidative DNA damage to nuclear and mitochondrial DNA (mtDNA). We used OGG1-deficient (OGG1−/−) mice to examine the possible roles of OGG1 in the vulnerability of neurons to ischemic and oxidative stress. After exposure of cultured neurons to oxidative and metabolic stress levels of OGG1 in the nucleus were elevated and mitochondria exhibited fragmentation and increased levels of the mitochondrial fission protein dynamin-related protein 1 (Drp1) and reduced membrane potential. Cortical neurons isolated from OGG1−/− mice were more vulnerable to oxidative insults than were OGG1+/+ neurons, and OGG1−/− mice developed larger cortical infarcts and behavioral deficits after permanent middle cerebral artery occlusion compared with OGG1+/+ mice. Accumulations of oxidative DNA base lesions (8-oxoG, FapyAde, and FapyGua) were elevated in response to ischemia in both the ipsilateral and contralateral hemispheres, and to a greater extent in the contralateral cortex of OGG1−/− mice compared with OGG1+/+ mice. Ischemia-induced elevation of 8-oxoG incision activity involved increased levels of a nuclear isoform OGG1, suggesting an adaptive response to oxidative nuclear DNA damage. Thus, OGG1 has a pivotal role in repairing oxidative damage to nuclear DNA under ischemic conditions, thereby reducing brain damage and improving functional outcome. PMID:20736962

  19. Base-Excision-Repair-Induced Construction of a Single Quantum-Dot-Based Sensor for Sensitive Detection of DNA Glycosylase Activity.

    PubMed

    Wang, Li-Juan; Ma, Fei; Tang, Bo; Zhang, Chun-Yang

    2016-08-01

    DNA glycosylase is an initiating enzyme of cellular base excision repair pathway which is responsible for the repair of various DNA lesions and the maintenance of genomic stability, and the dysregulation of DNA glycosylase activity is associated with a variety of human pathology. Accurate detection of DNA glycosylase activity is critical to both clinical diagnosis and therapeutics, but conventional methods for the DNA glycosylase assay are usually time-consuming with poor sensitivity. Here, we demonstrate the base-excision-repair-induced construction of a single quantum dot (QD)-based sensor for highly sensitive measurement of DNA glycosylase activity. We use human 8-oxoguanine-DNA glycosylase 1 (hOGG1), which is responsible for specifically repairing the damaged 8-hydroxyguanine (8-oxoG, one of the most abundant and widely studied DNA damage products), as a model DNA glycosylase. In the presence of biotin-labeled DNA substrate, the hOGG1 may catalyze the removal of 8-oxo G from 8-oxoG·C base pairs to generate an apurinic/apyrimidinic (AP) site. With the assistance of apurinic/apyrimidinic endonuclease (APE1), the cleavage of the AP site results in the generation of a single-nucleotide gap. Subsequently, DNA polymerase β incorporates a Cy5-labeled dGTP into the DNA substrate to fill the gap. With the addition of streptavidin-coated QDs, a QD-DNA-Cy5 nanostructure is formed via specific biotin-streptavidin binding, inducing the occurrence of fluorescence resonance energy transfer (FRET) from the QD to Cy5. The resulting Cy5 signal can be simply monitored by total internal reflection fluorescence (TIRF) imaging. The proposed method enables highly sensitive measurement of hOGG1 activity with a detection limit of 1.8 × 10(-6) U/μL. Moreover, it can be used to measure the enzyme kinetic parameters and detect the hOGG1 activity in crude cell extracts, offering a powerful tool for biomedical research and clinical diagnosis. PMID:27401302

  20. Non-specific DNA binding interferes with the efficient excision of oxidative lesions from chromatin by the human DNA glycosylase, NEIL1

    PubMed Central

    Odell, Ian D.; Newick, Kheng; Heintz, Nicholas; Wallace, Susan S.; Pederson, David S.

    2009-01-01

    Although DNA in eukaryotes is packaged in nucleosomes, it remains vulnerable to oxidative damage that can result from normal cellular metabolism, ionizing radiation, and various chemical agents. Oxidatively damaged DNA is repaired in a stepwise fashion via the base excision repair (BER) pathway, which begins with the excision of damaged bases by DNA glycosylases. We reported recently that the human DNA glycosylase hNTH1 (human Endonuclease III), a member of the HhH GpG superfamily of glycosylases, can excise thymine glycol lesions from nucleosomes without requiring or inducing nucleosome disruption; optimally oriented lesions are excised with an efficiency approaching that seen for naked DNA [1]. To determine if this property is shared by human DNA glycoylases in the Fpg/Nei family, we investigated the activity of NEIL1 on defined nucleosome substrates. We report here that the cellular concentrations and apparent kcat/KM ratios for hNTH1 and NEIL1 are similar. Additionally, after adjustment for non-specific DNA binding, hNTH1 and NEIL1 proved to have similar intrinsic activities towards nucleosome substrates. However, NEIL1 and hNTH1 differ in that NEIL1 binds undamaged DNA far more avidly than hNTH1. As a result, hNTH1 is able to excise both accessible and sterically occluded lesions from nucleosomes at physiological concentrations, while the high non-specific DNA affinity of NEIL1 would likely hinder its ability to process sterically occluded lesions in cells. These results suggest that, in vivo, NEIL1 functions either at nucleosome-free regions (such as those near replication forks) or with cofactors that limit its non-specific binding to DNA. PMID:20005182

  1. Non-specific DNA binding interferes with the efficient excision of oxidative lesions from chromatin by the human DNA glycosylase, NEIL1.

    PubMed

    Odell, Ian D; Newick, Kheng; Heintz, Nicholas H; Wallace, Susan S; Pederson, David S

    2010-02-01

    Although DNA in eukaryotes is packaged in nucleosomes, it remains vulnerable to oxidative damage that can result from normal cellular metabolism, ionizing radiation, and various chemical agents. Oxidatively damaged DNA is repaired in a stepwise fashion via the base excision repair (BER) pathway, which begins with the excision of damaged bases by DNA glycosylases. We reported recently that the human DNA glycosylase hNTH1 (human Endonuclease III), a member of the HhH GpG superfamily of glycosylases, can excise thymine glycol lesions from nucleosomes without requiring or inducing nucleosome disruption; optimally oriented lesions are excised with an efficiency approaching that seen for naked DNA [1]. To determine if this property is shared by human DNA glycoylases in the Fpg/Nei family, we investigated the activity of NEIL1 on defined nucleosome substrates. We report here that the cellular concentrations and apparent k(cat)/K(M) ratios for hNTH1 and NEIL1 are similar. Additionally, after adjustment for non-specific DNA binding, hNTH1 and NEIL1 proved to have similar intrinsic activities toward nucleosome substrates. However, NEIL1 and hNTH1 differ in that NEIL1 binds undamaged DNA far more avidly than hNTH1. As a result, hNTH1 is able to excise both accessible and sterically occluded lesions from nucleosomes at physiological concentrations, while the high non-specific DNA affinity of NEIL1 would likely hinder its ability to process sterically occluded lesions in cells. These results suggest that, in vivo, NEIL1 functions either at nucleosome-free regions (such as those near replication forks) or with cofactors that limit its non-specific binding to DNA. PMID:20005182

  2. Structure-function studies of an unusual 3-methyladenine DNA glycosylase II (AlkA) from Deinococcus radiodurans.

    PubMed

    Moe, Elin; Hall, David R; Leiros, Ingar; Monsen, Vivi Talstad; Timmins, Joanna; McSweeney, Sean

    2012-06-01

    3-Methyladenine DNA glycosylase II (AlkA) is a DNA-repair enzyme that removes alkylated bases in DNA via the base-excision repair (BER) pathway. The enzyme belongs to the helix-hairpin-helix (HhH) superfamily of DNA glycosylases and possesses broad substrate specificity. In the genome of Deinococcus radiodurans, two genes encoding putative AlkA have been identified (Dr_2074 and Dr_2584). Dr_2074 is a homologue of human AlkA (MPG or AAG) and Dr_2584 is a homologue of bacterial AlkAs. Here, the three-dimensional structure of Dr_2584 (DrAlkA2) is presented and compared with the previously determined structure of Escherichia coli AlkA (EcAlkA). The results show that the enzyme consists of two helical-bundle domains separated by a wide DNA-binding cleft and contains an HhH motif. Overall, the protein fold is similar to the two helical-bundle domains of EcAlkA, while the third N-terminal mixed α/β domain observed in EcAlkA is absent. Substrate-specificity analyses show that DrAlkA2, like EcAlkA, is able to remove both 3-methyladenine (3meA) and 7-methylguanine (7meG) from DNA; however, the enzyme possesses no activity towards 1,N(6)-ethenoadenine (ℇA) and hypoxanthine (Hx). In addition, it shows activity towards the AlkB dioxygenase substrates 3-methylcytosine (3meC) and 1-methyladenine (1meA). Thus, the enzyme seems to preferentially repair methylated bases with weakened N-glycosidic bonds; this is an unusual specificity for a bacterial AlkA protein and is probably dictated by a combination of the wide DNA-binding cleft and a highly accessible specificity pocket.

  3. Structure-function studies of an unusual 3-methyladenine DNA glycosylase II (AlkA) from Deinococcus radiodurans.

    PubMed

    Moe, Elin; Hall, David R; Leiros, Ingar; Monsen, Vivi Talstad; Timmins, Joanna; McSweeney, Sean

    2012-06-01

    3-Methyladenine DNA glycosylase II (AlkA) is a DNA-repair enzyme that removes alkylated bases in DNA via the base-excision repair (BER) pathway. The enzyme belongs to the helix-hairpin-helix (HhH) superfamily of DNA glycosylases and possesses broad substrate specificity. In the genome of Deinococcus radiodurans, two genes encoding putative AlkA have been identified (Dr_2074 and Dr_2584). Dr_2074 is a homologue of human AlkA (MPG or AAG) and Dr_2584 is a homologue of bacterial AlkAs. Here, the three-dimensional structure of Dr_2584 (DrAlkA2) is presented and compared with the previously determined structure of Escherichia coli AlkA (EcAlkA). The results show that the enzyme consists of two helical-bundle domains separated by a wide DNA-binding cleft and contains an HhH motif. Overall, the protein fold is similar to the two helical-bundle domains of EcAlkA, while the third N-terminal mixed α/β domain observed in EcAlkA is absent. Substrate-specificity analyses show that DrAlkA2, like EcAlkA, is able to remove both 3-methyladenine (3meA) and 7-methylguanine (7meG) from DNA; however, the enzyme possesses no activity towards 1,N(6)-ethenoadenine (ℇA) and hypoxanthine (Hx). In addition, it shows activity towards the AlkB dioxygenase substrates 3-methylcytosine (3meC) and 1-methyladenine (1meA). Thus, the enzyme seems to preferentially repair methylated bases with weakened N-glycosidic bonds; this is an unusual specificity for a bacterial AlkA protein and is probably dictated by a combination of the wide DNA-binding cleft and a highly accessible specificity pocket. PMID:22683793

  4. Expression and function of AtMBD4L, the single gene encoding the nuclear DNA glycosylase MBD4L in Arabidopsis.

    PubMed

    Nota, Florencia; Cambiagno, Damián A; Ribone, Pamela; Alvarez, María E

    2015-06-01

    DNA glycosylases recognize and excise damaged or incorrect bases from DNA initiating the base excision repair (BER) pathway. Methyl-binding domain protein 4 (MBD4) is a member of the HhH-GPD DNA glycosylase superfamily, which has been well studied in mammals but not in plants. Our knowledge on the plant enzyme is limited to the activity of the Arabidopsis recombinant protein MBD4L in vitro. To start evaluating MBD4L in its biological context, we here characterized the structure, expression and effects of its gene, AtMBD4L. Phylogenetic analysis indicated that AtMBD4L belongs to one of the seven families of HhH-GPD DNA glycosylase genes existing in plants, and is unique on its family. Two AtMBD4L transcripts coding for active enzymes were detected in leaves and flowers. Transgenic plants expressing the AtMBD4L:GUS gene confined GUS activity to perivascular leaf tissues (usually adjacent to hydathodes), flowers (anthers at particular stages of development), and the apex of immature siliques. MBD4L-GFP fusion proteins showed nuclear localization in planta. Interestingly, overexpression of the full length MBD4L, but not a truncated enzyme lacking the DNA glycosylase domain, induced the BER gene LIG1 and enhanced tolerance to oxidative stress. These results suggest that endogenous MBD4L acts on particular tissues, is capable of activating BER, and may contribute to repair DNA damage caused by oxidative stress. PMID:25900572

  5. BCR-ABL1 kinase inhibits uracil DNA glycosylase UNG2 to enhance oxidative DNA damage and stimulate genomic instability.

    PubMed

    Slupianek, A; Falinski, R; Znojek, P; Stoklosa, T; Flis, S; Doneddu, V; Pytel, D; Synowiec, E; Blasiak, J; Bellacosa, A; Skorski, T

    2013-03-01

    Tyrosine kinase inhibitors (TKIs) revolutionized the treatment of chronic myeloid leukemia in chronic phase (CML-CP). Unfortunately, 25% of TKI-naive patients and 50-90% of patients developing TKI-resistance carry CML clones expressing TKI-resistant BCR-ABL1 kinase mutants. We reported that CML-CP leukemia stem and progenitor cell populations accumulate high amounts of reactive oxygen species, which may result in accumulation of uracil derivatives in genomic DNA. Unfaithful and/or inefficient repair of these lesions generates TKI-resistant point mutations in BCR-ABL1 kinase. Using an array of specific substrates and inhibitors/blocking antibodies we found that uracil DNA glycosylase UNG2 were inhibited in BCR-ABL1-transformed cell lines and CD34(+) CML cells. The inhibitory effect was not accompanied by downregulation of nuclear expression and/or chromatin association of UNG2. The effect was BCR-ABL1 kinase-specific because several other fusion tyrosine kinases did not reduce UNG2 activity. Using UNG2-specific inhibitor UGI, we found that reduction of UNG2 activity increased the number of uracil derivatives in genomic DNA detected by modified comet assay and facilitated accumulation of ouabain-resistant point mutations in reporter gene Na(+)/K(+)ATPase. In conclusion, we postulate that BCR-ABL1 kinase-mediated inhibition of UNG2 contributes to accumulation of point mutations responsible for TKI resistance causing the disease relapse, and perhaps also other point mutations facilitating malignant progression of CML.

  6. Partial uracil-DNA-glycosylase treatment for screening of ancient DNA.

    PubMed

    Rohland, Nadin; Harney, Eadaoin; Mallick, Swapan; Nordenfelt, Susanne; Reich, David

    2015-01-19

    The challenge of sequencing ancient DNA has led to the development of specialized laboratory protocols that have focused on reducing contamination and maximizing the number of molecules that are extracted from ancient remains. Despite the fact that success in ancient DNA studies is typically obtained by screening many samples to identify a promising subset, ancient DNA protocols have not, in general, focused on reducing the time required to screen samples. We present an adaptation of a popular ancient library preparation method that makes screening more efficient. First, the DNA extract is treated using a protocol that causes characteristic ancient DNA damage to be restricted to the terminal nucleotides, while nearly eliminating it in the interior of the DNA molecules, allowing a single library to be used both to test for ancient DNA authenticity and to carry out population genetic analysis. Second, the DNA molecules are ligated to a unique pair of barcodes, which eliminates undetected cross-contamination from this step onwards. Third, the barcoded library molecules include incomplete adapters of short length that can increase the specificity of hybridization-based genomic target enrichment. The adapters are completed just before sequencing, so the same DNA library can be used in multiple experiments, and the sequences distinguished. We demonstrate this protocol on 60 ancient human samples.

  7. Characterization of a novel DNA glycosylase from S. sahachiroi involved in the reduction and repair of azinomycin B induced DNA damage.

    PubMed

    Wang, Shan; Liu, Kai; Xiao, Le; Yang, LiYuan; Li, Hong; Zhang, FeiXue; Lei, Lei; Li, ShengQing; Feng, Xu; Li, AiYing; He, Jing

    2016-01-01

    Azinomycin B is a hybrid polyketide/nonribosomal peptide natural product and possesses antitumor activity by interacting covalently with duplex DNA and inducing interstrand crosslinks. In the biosynthetic study of azinomycin B, a gene (orf1) adjacent to the azinomycin B gene cluster was found to be essential for the survival of the producer, Streptomyces sahachiroi ATCC33158. Sequence analyses revealed that Orf1 belongs to the HTH_42 superfamily of conserved bacterial proteins which are widely distributed in pathogenic and antibiotic-producing bacteria with unknown functions. The protein exhibits a protective effect against azinomycin B when heterologously expressed in azinomycin-sensitive strains. EMSA assays showed its sequence nonspecific binding to DNA and structure-specific binding to azinomycin B-adducted sites, and ChIP assays revealed extensive association of Orf1 with chromatin in vivo. Interestingly, Orf1 not only protects target sites by protein-DNA interaction but is also capable of repairing azinomycin B-mediated DNA cross-linking. It possesses the DNA glycosylase-like activity and specifically repairs DNA damage induced by azinomycin B through removal of both adducted nitrogenous bases in the cross-link. This bifunctional protein massively binds to genomic DNA to reduce drug attack risk as a novel DNA binding protein and triggers the base excision repair system as a novel DNA glycosylase.

  8. Phosphorylation Sites Identified in the NEIL1 DNA Glycosylase Are Potential Targets for the JNK1 Kinase

    PubMed Central

    Prakash, Aishwarya; Cao, Vy Bao; Doublié, Sylvie

    2016-01-01

    The NEIL1 DNA glycosylase is one of eleven mammalian DNA glycosylases that partake in the first step of the base excision repair (BER) pathway. NEIL1 recognizes and cleaves mainly oxidized pyrimidines from DNA. The past decade has witnessed the identification of an increasing number of post-translational modifications (PTMs) in BER enzymes including phosphorylation, acetylation, and sumoylation, which modulate enzyme function. In this work, we performed the first comprehensive analysis of phosphorylation sites in human NEIL1 expressed in human cells. Mass spectrometry (MS) analysis revealed phosphorylation at three serine residues: S207, S306, and a third novel site, S61. We expressed, purified, and characterized phosphomimetic (glutamate) and phosphoablating (alanine) mutants of the three phosphorylation sites in NEIL1 revealed by the MS analysis. All mutant enzymes were active and bound tightly to DNA, indicating that phosphorylation does not affect DNA binding and enzyme activity at these three serine sites. We also characterized phosphomimetic mutants of two other sites of phosphorylation, Y263 and S269, reported previously, and observed that mutation of Y263 to E yielded a completely inactive enzyme. Furthermore, based on sequence motifs and kinase prediction algorithms, we identified the c-Jun N-terminal kinase 1 (JNK1) as the kinase involved in the phosphorylation of NEIL1. JNK1, a member of the mitogen activated protein kinase (MAPK) family, was detected in NEIL1 immunoprecipitates, interacted with NEIL1 in vitro, and was able to phosphorylate the enzyme at residues S207, S306, and S61. PMID:27518429

  9. Solution-state NMR Investigation of DNA Binding Interactions in Escherichia coli Formamidopyrimidine-DNA Glycosylase (Fpg): A Dynamic Description of the DNA/Protein Interface

    SciTech Connect

    Buchko, Garry W.; McAteer, Kathleen; Wallace, Susan S.; Kennedy, Michael A.

    2005-03-02

    Formamidopyrimidine-DNA glycosylase (Fpg) is a base excision repair protein that removes oxidative DNA lesions. Recent crystal structures of Fpg bound to DNA revealed residues involved in damage recognition and enzyme catalysis, but failed to shed light on the dynamic nature of the processes. To examine the structural and dynamic changes that occur in solution when Fpg binds DNA, NMR spectroscopy was used to study Escherichia coli Fpg free and bound to a double-stranded DNA oligomer (13-PD) containing propanediol, a non-hydrolyzable abasic-site analogue. Only 209 out of a possible 252 (83%) free-precession HSQC cross peaks were observed and 180 of these were assignable, indicating that ~30% of the residues undergo intermediate timescale motion that makes them intractable in backbone assignment experiments. DNA titration experiments revealed line broadening and chemical shift perturbations for backbone amides nearby and distant from the DNA binding surface, but failed to quench the intermediate time-scale motion observed for free Fpg. CPMG-HSQC experiments revealed millisecond to microsecond motion for the backbone amides of D91 and H92 that was quenched upon binding 13-PD. Collectively, these observations reveal that, in solution, Fpg contains highly flexible regions. The dynamic nature of Fpg, especially at the DNA binding surface, may be key to its processive search mechanism.

  10. Interaction of the recombinant human methylpurine-DNA glycosylase (MPG protein) with oligodeoxyribonucleotides containing either hypoxanthine or abasic sites.

    PubMed Central

    Miao, F; Bouziane, M; O'Connor, T R

    1998-01-01

    Methylpurine-DNA glycosylases (MPG proteins, 3-methyladenine-DNA glycosylases) excise numerous damaged bases from DNA during the first step of base excision repair. The damaged bases removed by these proteins include those induced by both alkylating agents and/or oxidizing agents. The intrinsic kinetic parameters (k(cat) and K(m)) for the excision of hypoxanthine by the recombinant human MPG protein from a 39 bp oligodeoxyribonucleotide harboring a unique hypoxanthine were determined. Comparison with other reactions catalyzed by the human MPG protein suggests that the differences in specificity are primarily in product release and not binding. Analysis of MPG protein binding to the 39 bp oligodeoxyribonucleotide revealed that the apparent dissociation constant is of the same order of magnitude as the K(m) and that a 1:1 complex is formed. The MPG protein also forms a strong complex with the product of excision, an abasic site, as well as with a reduced abasic site. DNase I footprinting experiments with the MPG protein on an oligodeoxyribonucleotide with a unique hypoxanthine at a defined position indicate that the protein protects 11 bases on the strand with the hypoxanthine and 12 bases on the complementary strand. Competition experiments with different length, double-stranded, hypoxanthine-containing oligodeoxyribonucleotides show that the footprinted region is relatively small. Despite the small footprint, however, oligodeoxyribonucleotides comprising <15 bp with a hypoxanthine have a 10-fold reduced binding capacity compared with hypoxanthine-containing oligodeoxyribonucleotides >20 bp in length. These results provide a basis for other structural studies of the MPG protein with its targets. PMID:9705516

  11. Using structural-based protein engineering to modulate the differential inhibition effects of SAUGI on human and HSV uracil DNA glycosylase.

    PubMed

    Wang, Hao-Ching; Ho, Chun-Han; Chou, Chia-Cheng; Ko, Tzu-Ping; Huang, Ming-Fen; Hsu, Kai-Cheng; Wang, Andrew H-J

    2016-05-19

    Uracil-DNA glycosylases (UDGs) are highly conserved proteins that can be found in a wide range of organisms, and are involved in the DNA repair and host defense systems. UDG activity is controlled by various cellular factors, including the uracil-DNA glycosylase inhibitors, which are DNA mimic proteins that prevent the DNA binding sites of UDGs from interacting with their DNA substrate. To date, only three uracil-DNA glycosylase inhibitors, phage UGI, p56, and Staphylococcus aureus SAUGI, have been determined. We show here that SAUGI has differential inhibitory effects on UDGs from human, bacteria, Herpes simplex virus (HSV; human herpesvirus 1) and Epstein-Barr virus (EBV; human herpesvirus 4). Newly determined crystal structures of SAUGI/human UDG and a SAUGI/HSVUDG complex were used to explain the differential binding activities of SAUGI on these two UDGs. Structural-based protein engineering was further used to modulate the inhibitory ability of SAUGI on human UDG and HSVUDG. The results of this work extend our understanding of DNA mimics as well as potentially opening the way for novel therapeutic applications for this kind of protein.

  12. Opinion: uracil DNA glycosylase (UNG) plays distinct and non-canonical roles in somatic hypermutation and class switch recombination.

    PubMed

    Yousif, Ashraf S; Stanlie, Andre; Begum, Nasim A; Honjo, Tasuku

    2014-10-01

    Activation-induced cytidine deaminase (AID) is essential to class switch recombination (CSR) and somatic hypermutation (SHM). Uracil DNA glycosylase (UNG), a member of the base excision repair complex, is required for CSR. The role of UNG in CSR and SHM is extremely controversial. AID deficiency in mice abolishes both CSR and SHM, while UNG-deficient mice have drastically reduced CSR but augmented SHM raising a possibility of differential functions of UNG in CSR and SHM. Interestingly, UNG has been associated with a CSR-specific repair adapter protein Brd4, which interacts with acetyl histone 4, γH2AX and 53BP1 to promote non-homologous end joining during CSR. A non-canonical scaffold function of UNG, but not the catalytic activity, can be attributed to the recruitment of essential repair proteins associated with the error-free repair during SHM, and the end joining during CSR.

  13. Structural basis for removal of adenine mispaired with 8-oxoguanine by MutY adenine DNA glycosylase.

    PubMed

    Fromme, J Christopher; Banerjee, Anirban; Huang, Susan J; Verdine, Gregory L

    2004-02-12

    The genomes of aerobic organisms suffer chronic oxidation of guanine to the genotoxic product 8-oxoguanine (oxoG). Replicative DNA polymerases misread oxoG residues and insert adenine instead of cytosine opposite the oxidized base. Both bases in the resulting A*oxoG mispair are mutagenic lesions, and both must undergo base-specific replacement to restore the original C*G pair. Doing so represents a formidable challenge to the DNA repair machinery, because adenine makes up roughly 25% of the bases in most genomes. The evolutionarily conserved enzyme adenine DNA glycosylase (called MutY in bacteria and hMYH in humans) initiates repair of A*oxoG to C*G by removing the inappropriately paired adenine base from the DNA backbone. A central issue concerning MutY function is the mechanism by which A*oxoG mispairs are targeted among the vast excess of A*T pairs. Here we report the use of disulphide crosslinking to obtain high-resolution crystal structures of MutY-DNA lesion-recognition complexes. These structures reveal the basis for recognizing both lesions in the A*oxoG pair and for catalysing removal of the adenine base. PMID:14961129

  14. Repair-deficient 3-methyladenine DNA glycosylase homozygous mutant mouse cells have increased sensitivity to alkylation-induced chromosome damage and cell killing.

    PubMed Central

    Engelward, B P; Dreslin, A; Christensen, J; Huszar, D; Kurahara, C; Samson, L

    1996-01-01

    In Escherichia coli, the repair of 3-methyladenine (3MeA) DNA lesions prevents alkylation-induced cell death because unrepaired 3MeA blocks DNA replication. Whether this lesion is cytotoxic to mammalian cells has been difficult to establish in the absence of 3MeA repair-deficient cell lines. We previously isolated and characterized a mouse 3MeA DNA glycosylase cDNA (Aag) that provides resistance to killing by alkylating agents in E. coli. To determine the in vivo role of Aag, we cloned a large fragment of the Aag gene and used it to create Aag-deficient mouse cells by targeted homologous recombination. Aag null cells have no detectable Aag transcripts or 3MeA DNA glycosylase activity. The loss of Aag renders cells significantly more sensitive to methyl methanesulfonate-induced chromosome damage, and to cell killing induced by two methylating agents, one of which produces almost exclusively 3MeAs. Aag null embryonic stem cells become sensitive to two cancer chemotherapeutic alkylating agents, namely 1,3-bis(2-chloroethyl)-1-nitrosourea and mitomycin C, indicating that Aag status is an important determinant of cellular resistance to these agents. We conclude that this mammalian 3MeA DNA glycosylase plays a pivotal role in preventing alkylation-induced chromosome damage and cytotoxicity. Images PMID:8631315

  15. Prereplicative repair of oxidized bases in the human genome is mediated by NEIL1 DNA glycosylase together with replication proteins.

    PubMed

    Hegde, Muralidhar L; Hegde, Pavana M; Bellot, Larry J; Mandal, Santi M; Hazra, Tapas K; Li, Guo-Min; Boldogh, Istvan; Tomkinson, Alan E; Mitra, Sankar

    2013-08-13

    Base oxidation by endogenous and environmentally induced reactive oxygen species preferentially occurs in replicating single-stranded templates in mammalian genomes, warranting prereplicative repair of the mutagenic base lesions. It is not clear how such lesions (which, unlike bulky adducts, do not block replication) are recognized for repair. Furthermore, strand breaks caused by base excision from ssDNA by DNA glycosylases, including Nei-like (NEIL) 1, would generate double-strand breaks during replication, which are not experimentally observed. NEIL1, whose deficiency causes a mutator phenotype and is activated during the S phase, is present in the DNA replication complex isolated from human cells, with enhanced association with DNA in S-phase cells and colocalization with replication foci containing DNA replication proteins. Furthermore, NEIL1 binds to 5-hydroxyuracil, the oxidative deamination product of C, in replication protein A-coated ssDNA template and inhibits DNA synthesis by DNA polymerase δ. We postulate that, upon encountering an oxidized base during replication, NEIL1 initiates prereplicative repair by acting as a "cowcatcher" and preventing nascent chain growth. Regression of the stalled replication fork, possibly mediated by annealing helicases, then allows lesion repair in the reannealed duplex. This model is supported by our observations that NEIL1, whose deficiency slows nascent chain growth in oxidatively stressed cells, is stimulated by replication proteins in vitro. Furthermore, deficiency of the closely related NEIL2 alone does not affect chain elongation, but combined NEIL1/2 deficiency further inhibits DNA replication. These results support a mechanism of NEIL1-mediated prereplicative repair of oxidized bases in the replicating strand, with NEIL2 providing a backup function.

  16. Differential regulation of S-region hypermutation and class-switch recombination by noncanonical functions of uracil DNA glycosylase.

    PubMed

    Yousif, Ashraf S; Stanlie, Andre; Mondal, Samiran; Honjo, Tasuku; Begum, Nasim A

    2014-03-18

    Activation-induced cytidine deaminase (AID) is essential to class-switch recombination (CSR) and somatic hypermutation (SHM) in both V region SHM and S region SHM (s-SHM). Uracil DNA glycosylase (UNG), a member of the base excision repair (BER) complex, is required for CSR. Strikingly, however, UNG deficiency causes augmentation of SHM, suggesting involvement of distinct functions of UNG in SHM and CSR. Here, we show that noncanonical scaffold functions of UNG regulate s-SHM negatively and CSR positively. The s-SHM suppressive function of UNG is attributed to the recruitment of faithful BER components at the cleaved DNA locus, with competition against error-prone polymerases. By contrast, the CSR-promoting function of UNG enhances AID-dependent S-S synapse formation by recruiting p53-binding protein 1 and DNA-dependent protein kinase, catalytic subunit. Several loss-of-catalysis mutants of UNG discriminated CSR-promoting activity from s-SHM suppressive activity. Taken together, the noncanonical function of UNG regulates the steps after AID-induced DNA cleavage: error-prone repair suppression in s-SHM and end-joining promotion in CSR.

  17. Potential role of 8-oxoguanine DNA glycosylase 1 as a STAT1 coactivator in endotoxin-induced inflammatory response.

    PubMed

    Kim, Hong Sook; Kim, Byung-Hak; Jung, Joo Eun; Lee, Chang Seok; Lee, Hyun Gyu; Lee, Jung Weon; Lee, Kun Ho; You, Ho Jin; Chung, Myung-Hee; Ye, Sang-Kyu

    2016-04-01

    Human 8-oxoguanine DNA glycosylase 1 (OGG1) is the major DNA repair enzyme that plays a key role in excision of oxidative damaged DNA bases such as 8-oxoguainine (8-oxoG). Recent studies suggest another function of OGG1, namely that it may be involved in the endotoxin- or oxidative stress-induced inflammatory response. In this study, we investigated the role of OGG1 in the inflammatory response. OGG1 expression is increased in the organs of endotoxin-induced or myelin oligodendrocyte glycoprotein (MOG)-immunized mice and immune cells, resulting in induction of the expression of pro-inflammatory mediators at the transcriptional levels. Biochemical studies showed that signal transducer and activator of transcription 1 (STAT1) plays a key role in endotoxin-induced OGG1 expression and inflammatory response. STAT1 regulates the transcriptional activity of OGG1 through recruiting and binding to the gamma-interferon activation site (GAS) motif of the OGG1 promoter region, and chromatin remodeling by acetylation and dimethylation of lysine-14 and -4 residues of histone H3. In addition, OGG1 acts as a STAT1 coactivator and has transcriptional activity in the presence of endotoxin. The data presented here identifies a novel mechanism, and may provide new therapeutic strategies for the treatment of endotoxin-mediated inflammatory diseases. PMID:26496208

  18. The efficacy of uracil DNA glycosylase pretreatment in amplicon-based massively parallel sequencing with DNA extracted from archived formalin-fixed paraffin-embedded esophageal cancer tissues.

    PubMed

    Serizawa, Masakuni; Yokota, Tomoya; Hosokawa, Ayumu; Kusafuka, Kimihide; Sugiyama, Toshiro; Tsubosa, Yasuhiro; Yasui, Hirofumi; Nakajima, Takashi; Koh, Yasuhiro

    2015-09-01

    Advances in mutation testing for molecular-targeted cancer therapies have led to the increased use of archived formalin-fixed paraffin-embedded (FFPE) tumors. However, DNA extracted from FFPE tumors (FFPE DNA) is problematic for mutation testing, especially for amplicon-based massively parallel sequencing (MPS), owing to DNA fragmentation and artificial C:G > T:A single nucleotide variants (SNVs) caused by deamination of cytosine to uracil. Therefore, to reduce artificial C:G > T:A SNVs in amplicon-based MPS using FFPE DNA, we evaluated the efficacy of uracil DNA glycosylase (UDG) pretreatment, which can eliminate uracil-containing DNA molecules, with 126 archived FFPE esophageal cancer specimens. We also examined the association between the frequency of C:G > T:A SNVs and DNA quality, as assessed by a quantitative PCR (qPCR)-based assay. UDG pretreatment significantly lowered the frequency of C:G > T:A SNVs in highly fragmented DNA (by approximately 60%). This effect was not observed for good- to moderate-quality DNA, suggesting that a predictive assay (i.e., DNA quality assessment) needs to be performed prior to UDG pretreatment. These results suggest that UDG pretreatment is efficacious for mutation testing by amplicon-based MPS with fragmented DNA from FFPE samples.

  19. Novel dimeric structure of phage φ29-encoded protein p56: insights into uracil-DNA glycosylase inhibition.

    PubMed

    Asensio, Juan Luis; Pérez-Lago, Laura; Lázaro, José M; González, Carlos; Serrano-Heras, Gemma; Salas, Margarita

    2011-12-01

    Protein p56 encoded by the Bacillus subtilis phage φ29 inhibits the host uracil-DNA glycosylase (UDG) activity. To get insights into the structural basis for this inhibition, the NMR solution structure of p56 has been determined. The inhibitor defines a novel dimeric fold, stabilized by a combination of polar and extensive hydrophobic interactions. Each polypeptide chain contains three stretches of anti-parallel β-sheets and a helical region linked by three short loops. In addition, microcalorimetry titration experiments showed that it forms a tight 2:1 complex with UDG, strongly suggesting that the dimer represents the functional form of the inhibitor. This was further confirmed by the functional analysis of p56 mutants unable to assemble into dimers. We have also shown that the highly anionic region of the inhibitor plays a significant role in the inhibition of UDG. Thus, based on these findings and taking into account previous results that revealed similarities between the association mode of p56 and the phage PBS-1/PBS-2-encoded inhibitor Ugi with UDG, we propose that protein p56 might inhibit the enzyme by mimicking its DNA substrate.

  20. The disordered C-terminal domain of human DNA glycosylase NEIL1 contributes to its stability via intramolecular interactions.

    PubMed

    Hegde, Muralidhar L; Tsutakawa, Susan E; Hegde, Pavana M; Holthauzen, Luis Marcelo F; Li, Jing; Oezguen, Numan; Hilser, Vincent J; Tainer, John A; Mitra, Sankar

    2013-07-10

    NEIL1 [Nei (endonuclease VIII)-like protein 1], one of the five mammalian DNA glycosylases that excise oxidized DNA base lesions in the human genome to initiate base excision repair, contains an intrinsically disordered C-terminal domain (CTD; ~100 residues), not conserved in its Escherichia coli prototype Nei. Although dispensable for NEIL1's lesion excision and AP lyase activities, this segment is required for efficient in vivo enzymatic activity and may provide an interaction interface for many of NEIL1's interactions with other base excision repair proteins. Here, we show that the CTD interacts with the folded domain in native NEIL1 containing 389 residues. The CTD is poised for local folding in an ordered structure that is induced in the purified fragment by osmolytes. Furthermore, deletion of the disordered tail lacking both Tyr and Trp residues causes a red shift in NEIL1's intrinsic Trp-specific fluorescence, indicating a more solvent-exposed environment for the Trp residues in the truncated protein, which also exhibits reduced stability compared to the native enzyme. These observations are consistent with stabilization of the native NEIL1 structure via intramolecular, mostly electrostatic, interactions that were disrupted by mutating a positively charged (Lys-rich) cluster of residues (amino acids 355-360) near the C-terminus. Small-angle X-ray scattering (SAXS) analysis confirms the flexibility and dynamic nature of NEIL1's CTD, a feature that may be critical to providing specificity for NEIL1's multiple, functional interactions.

  1. Characterization of the major formamidopyrimidine–DNA glycosylase homolog in Mycobacterium tuberculosis and its linkage to variable tandem repeats

    PubMed Central

    Olsen, Ingrid; Balasingham, Seetha V; Davidsen, Tonje; Debebe, Ephrem; Rødland, Einar A; van Soolingen, Dick; Kremer, Kristin; Alseth, Ingrun; Tønjum, Tone; Brennan, Patrick

    2009-01-01

    The ability to repair DNA damage is likely to play an important role in the survival of facultative intracellular parasites because they are exposed to high levels of reactive oxygen species and nitrogen intermediates inside phagocytes. Correcting oxidative damage in purines and pyrimidines is the primary function of the enzymes formamidopyrimidine (faPy)–DNA glycosylase (Fpg) and endonuclease VIII (Nei) of the base excision repair pathway, respectively. Four gene homologs, belonging to the fpg/nei family, have been identified in Mycobacterium tuberculosis H37Rv. The recombinant protein encoded by M. tuberculosis Rv2924c, termed Mtb-Fpg1, was overexpressed, purified and biochemically characterized. The enzyme removed faPy and 5-hydroxycytosine lesions, as well as 8-oxo-7,8-dihydroguanine (8oxoG) opposite to C, T and G. Mtb-Fpg1 thus exhibited substrate specificities typical for Fpg enzymes. Although Mtb-fpg1 showed nearly complete nucleotide sequence conservation in 32 M. tuberculosis isolates, the region upstream of Mtb-fpg1 in these strains contained tandem repeat motifs of variable length. A relationship between repeat length and Mtb-fpg1 expression level was demonstrated in M. tuberculosis strains, indicating that an increased length of the tandem repeats positively influenced the expression levels of Mtb-fpg1. This is the first example of such a tandem repeat region of variable length being linked to the expression level of a bacterial gene. PMID:19496823

  2. Triphlorethol-A from Ecklonia cava up-regulates the oxidant sensitive 8-oxoguanine DNA glycosylase 1.

    PubMed

    Kim, Ki Cheon; Lee, In Kyung; Kang, Kyoung Ah; Piao, Mei Jing; Ryu, Min Ju; Kim, Jeong Mi; Lee, Nam Ho; Hyun, Jin Won

    2014-11-01

    This study investigated the protective mechanisms of triphlorethol-A, isolated from Ecklonia cava, against oxidative stress-induced DNA base damage, especially 8-oxoguanine (8-oxoG), in Chinese hamster lung fibroblast V79-4 cells. 8-Oxoguanine DNA glycosylase-1 (OGG1) plays an important role in the removal of 8-oxoG during the cellular response to DNA base damage. Triphlorethol-A significantly decreased the levels of 8-oxoG induced by H2O2, and this correlated with increases in OGG1 mRNA and OGG1 protein levels. Furthermore, siOGG1-transfected cell attenuated the protective effect of triphlorethol-A against H2O2 treatment. Nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor for OGG1, and Nrf2 combines with small Maf proteins in the nucleus to bind to antioxidant response elements (ARE) in the upstream promoter region of the OGG1 gene. Triphlorethol-A restored the expression of nuclear Nrf2, small Maf protein, and the Nrf2-Maf complex, all of which were reduced by oxidative stress. Furthermore, triphlorethol-A increased Nrf2 binding to ARE sequences and the resulting OGG1 promoter activity, both of which were also reduced by oxidative stress. The levels of the phosphorylated forms of Akt kinase, downstream of phosphatidylinositol 3-kinase (PI3K), and Erk, which are regulators of OGG1, were sharply decreased by oxidative stress, but these decreases were prevented by triphlorethol-A. Specific PI3K, Akt, and Erk inhibitors abolished the cytoprotective effects of triphlorethol-A, suggesting that OGG1 induction by triphlorethol-A involves the PI3K/Akt and Erk pathways. Taken together, these data indicate that by activating the DNA repair system, triphlorethol-A exerts protective effects against DNA base damage induced by oxidative stress. PMID:25353254

  3. Accelerated Repair and Reduced Mutagenicity of DNA Damage Induced by Cigarette Smoke in Human Bronchial Cells Transfected with E.coli Formamidopyrimidine DNA Glycosylase

    PubMed Central

    Foresta, Mara; Izzotti, Alberto; La Maestra, Sebastiano; Micale, Rosanna; Poggi, Alessandro; Vecchio, Donatella; Frosina, Guido

    2014-01-01

    Cigarette smoke (CS) is associated to a number of pathologies including lung cancer. Its mutagenic and carcinogenic effects are partially linked to the presence of reactive oxygen species and polycyclic aromatic hydrocarbons (PAH) inducing DNA damage. The bacterial DNA repair enzyme formamidopyrimidine DNA glycosylase (FPG) repairs both oxidized bases and different types of bulky DNA adducts. We investigated in vitro whether FPG expression may enhance DNA repair of CS-damaged DNA and counteract the mutagenic effects of CS in human lung cells. NCI-H727 non small cell lung carcinoma cells were transfected with a plasmid vector expressing FPG fused to the Enhanced Green Fluorescent Protein (EGFP). Cells expressing the fusion protein EGFP-FPG displayed accelerated repair of adducts and DNA breaks induced by CS condensate. The mutant frequencies induced by low concentrations of CS condensate to the Na+K+-ATPase locus (ouar) were significantly reduced in cells expressing EGFP-FPG. Hence, expression of the bacterial DNA repair protein FPG stably protects human lung cells from the mutagenic effects of CS by improving cells’ capacity to repair damaged DNA. PMID:24498234

  4. Cell cycle regulation of the glyceraldehyde-3-phosphate dehydrogenase/uracil DNA glycosylase gene in normal human cells.

    PubMed Central

    Mansur, N R; Meyer-Siegler, K; Wurzer, J C; Sirover, M A

    1993-01-01

    The cell cycle regulation of the glyceraldehyde-3-phosphate dehydrogenase (GAPDH)/uracil DNA glycosylase (UDG) gene was examined in normal human cells. Steady state RNA levels were monitored by Northern blot analysis using a plasmid (pChug 20.1) which contained the 1.3 kb GAPDH/UDG cDNA. The biosynthesis of the 37 kDa GAPDH/UDG protein was determined using an anti-human placental GAPDH/UDG monoclonal antibody to immunoprecipitate the radiolabeled protein. Increases in steady state GAPDH/UDG mRNA levels were cell cycle specific. A biphasic pattern was observed resulting in a 19-fold increase in the amount of GAPDH/UDG mRNA. The biosynthesis of the 37 kDa GAPDH/UDG protein displayed a similar biphasic regulation with a 7-fold increase. Pulse-chase experiments revealed a remarkably short half life of less than 1 hr. for the newly synthesized 37 kDa protein, comparable to that previously documented for a number of oncogenes. GAPDH/UDG mRNA levels were markedly reduced at 24 hr. when DNA synthesis was maximal. These results define the GAPDH/UDG gene as cell cycle regulated with a characteristic temporal sequence of expression in relation to DNA synthesis. The cell cycle synthesis of a labile 37 kDa monomer suggests a possible regulatory function for this multidimensional protein. Further, modulation of the GAPDH/UDG gene in the cell cycle may preclude its use as a reporter gene when the proliferative state of the cell is not kept constant. Images PMID:8451199

  5. Thermodynamics of the multi-stage DNA lesion recognition and repair by formamidopyrimidine-DNA glycosylase using pyrrolocytosine fluorescence—stopped-flow pre-steady-state kinetics

    PubMed Central

    Kuznetsov, Nikita A.; Vorobjev, Yuri N.; Krasnoperov, Lev N.; Fedorova, Olga S.

    2012-01-01

    Formamidopyrimidine-DNA glycosylase, Fpg protein from Escherichia coli, initiates base excision repair in DNA by removing a wide variety of oxidized lesions. In this study, we perform thermodynamic analysis of the multi-stage interaction of Fpg with specific DNA-substrates containing 7,8-dihydro-8-oxoguanosine (oxoG), or tetrahydrofuran (THF, an uncleavable abasic site analog) and non-specific (G) DNA-ligand based on stopped-flow kinetic data. Pyrrolocytosine, highly fluorescent analog of the natural nucleobase cytosine, is used to record multi-stage DNA lesion recognition and repair kinetics over a temperature range (10–30°C). The kinetic data were used to obtain the standard Gibbs energy, enthalpy and entropy of the specific stages using van’t Hoff approach. The data suggest that not only enthalpy-driven exothermic oxoG recognition, but also the desolvation-accompanied entropy-driven enzyme-substrate complex adjustment into the catalytically active state play equally important roles in the overall process. PMID:22584623

  6. The murine DNA glycosylase NEIL2 (mNEIL2) and human DNA polymerase beta bind microtubules in situ and in vitro.

    PubMed

    Conlon, Kimberly A; Miller, Holly; Rosenquist, Thomas A; Zharkov, Dmitry O; Berrios, Miguel

    2005-04-01

    8-oxoguanine DNA glycosylase (OGG1), a major DNA repair enzyme in mammalian cells and a component of the base excision repair (BER) pathway, was recently shown to be associated with the microtubule network and the centriole at interphase and the spindle assembly at mitosis. In this study, we determined whether other participants in the BER pathway also bind microtubules in situ and in vitro. Purified recombinant human DNA polymerase beta (DNA Pol beta) and purified recombinant mNEIL2 were chemically conjugated to fluorochromes and photosensitive dyes and used in in situ localization and binding experiments. Results from in situ localization, microtubule co-precipitation and site-directed photochemical experiments showed that recombinant human DNA Pol beta and recombinant mNEIL2 associated with microtubules in situ and in vitro in a manner similar to that shown earlier for another BER pathway component, OGG1. Observations reported in this study suggest that these BER pathway components are microtubule-associated proteins (MAPs) themselves or utilize yet to be identified MAPs to bind microtubules in order to regulate their intracellular trafficking and activities during the cell cycle. PMID:15725623

  7. Partial uracil–DNA–glycosylase treatment for screening of ancient DNA

    PubMed Central

    Rohland, Nadin; Harney, Eadaoin; Mallick, Swapan; Nordenfelt, Susanne; Reich, David

    2015-01-01

    The challenge of sequencing ancient DNA has led to the development of specialized laboratory protocols that have focused on reducing contamination and maximizing the number of molecules that are extracted from ancient remains. Despite the fact that success in ancient DNA studies is typically obtained by screening many samples to identify a promising subset, ancient DNA protocols have not, in general, focused on reducing the time required to screen samples. We present an adaptation of a popular ancient library preparation method that makes screening more efficient. First, the DNA extract is treated using a protocol that causes characteristic ancient DNA damage to be restricted to the terminal nucleotides, while nearly eliminating it in the interior of the DNA molecules, allowing a single library to be used both to test for ancient DNA authenticity and to carry out population genetic analysis. Second, the DNA molecules are ligated to a unique pair of barcodes, which eliminates undetected cross-contamination from this step onwards. Third, the barcoded library molecules include incomplete adapters of short length that can increase the specificity of hybridization-based genomic target enrichment. The adapters are completed just before sequencing, so the same DNA library can be used in multiple experiments, and the sequences distinguished. We demonstrate this protocol on 60 ancient human samples. PMID:25487342

  8. DNA glycosylases involved in base excision repair may be associated with cancer risk in BRCA1 and BRCA2 mutation carriers.

    PubMed

    Osorio, Ana; Milne, Roger L; Kuchenbaecker, Karoline; Vaclová, Tereza; Pita, Guillermo; Alonso, Rosario; Peterlongo, Paolo; Blanco, Ignacio; de la Hoya, Miguel; Duran, Mercedes; Díez, Orland; Ramón Y Cajal, Teresa; Konstantopoulou, Irene; Martínez-Bouzas, Cristina; Andrés Conejero, Raquel; Soucy, Penny; McGuffog, Lesley; Barrowdale, Daniel; Lee, Andrew; Swe-Brca; Arver, Brita; Rantala, Johanna; Loman, Niklas; Ehrencrona, Hans; Olopade, Olufunmilayo I; Beattie, Mary S; Domchek, Susan M; Nathanson, Katherine; Rebbeck, Timothy R; Arun, Banu K; Karlan, Beth Y; Walsh, Christine; Lester, Jenny; John, Esther M; Whittemore, Alice S; Daly, Mary B; Southey, Melissa; Hopper, John; Terry, Mary B; Buys, Saundra S; Janavicius, Ramunas; Dorfling, Cecilia M; van Rensburg, Elizabeth J; Steele, Linda; Neuhausen, Susan L; Ding, Yuan Chun; Hansen, Thomas V O; Jønson, Lars; Ejlertsen, Bent; Gerdes, Anne-Marie; Infante, Mar; Herráez, Belén; Moreno, Leticia Thais; Weitzel, Jeffrey N; Herzog, Josef; Weeman, Kisa; Manoukian, Siranoush; Peissel, Bernard; Zaffaroni, Daniela; Scuvera, Giulietta; Bonanni, Bernardo; Mariette, Frederique; Volorio, Sara; Viel, Alessandra; Varesco, Liliana; Papi, Laura; Ottini, Laura; Tibiletti, Maria Grazia; Radice, Paolo; Yannoukakos, Drakoulis; Garber, Judy; Ellis, Steve; Frost, Debra; Platte, Radka; Fineberg, Elena; Evans, Gareth; Lalloo, Fiona; Izatt, Louise; Eeles, Ros; Adlard, Julian; Davidson, Rosemarie; Cole, Trevor; Eccles, Diana; Cook, Jackie; Hodgson, Shirley; Brewer, Carole; Tischkowitz, Marc; Douglas, Fiona; Porteous, Mary; Side, Lucy; Walker, Lisa; Morrison, Patrick; Donaldson, Alan; Kennedy, John; Foo, Claire; Godwin, Andrew K; Schmutzler, Rita Katharina; Wappenschmidt, Barbara; Rhiem, Kerstin; Engel, Christoph; Meindl, Alfons; Ditsch, Nina; Arnold, Norbert; Plendl, Hans Jörg; Niederacher, Dieter; Sutter, Christian; Wang-Gohrke, Shan; Steinemann, Doris; Preisler-Adams, Sabine; Kast, Karin; Varon-Mateeva, Raymonda; Gehrig, Andrea; Stoppa-Lyonnet, Dominique; Sinilnikova, Olga M; Mazoyer, Sylvie; Damiola, Francesca; Poppe, Bruce; Claes, Kathleen; Piedmonte, Marion; Tucker, Kathy; Backes, Floor; Rodríguez, Gustavo; Brewster, Wendy; Wakeley, Katie; Rutherford, Thomas; Caldés, Trinidad; Nevanlinna, Heli; Aittomäki, Kristiina; Rookus, Matti A; van Os, Theo A M; van der Kolk, Lizet; de Lange, J L; Meijers-Heijboer, Hanne E J; van der Hout, A H; van Asperen, Christi J; Gómez Garcia, Encarna B; Hoogerbrugge, Nicoline; Collée, J Margriet; van Deurzen, Carolien H M; van der Luijt, Rob B; Devilee, Peter; Hebon; Olah, Edith; Lázaro, Conxi; Teulé, Alex; Menéndez, Mireia; Jakubowska, Anna; Cybulski, Cezary; Gronwald, Jacek; Lubinski, Jan; Durda, Katarzyna; Jaworska-Bieniek, Katarzyna; Johannsson, Oskar Th; Maugard, Christine; Montagna, Marco; Tognazzo, Silvia; Teixeira, Manuel R; Healey, Sue; Investigators, Kconfab; Olswold, Curtis; Guidugli, Lucia; Lindor, Noralane; Slager, Susan; Szabo, Csilla I; Vijai, Joseph; Robson, Mark; Kauff, Noah; Zhang, Liying; Rau-Murthy, Rohini; Fink-Retter, Anneliese; Singer, Christian F; Rappaport, Christine; Geschwantler Kaulich, Daphne; Pfeiler, Georg; Tea, Muy-Kheng; Berger, Andreas; Phelan, Catherine M; Greene, Mark H; Mai, Phuong L; Lejbkowicz, Flavio; Andrulis, Irene; Mulligan, Anna Marie; Glendon, Gord; Toland, Amanda Ewart; Bojesen, Anders; Pedersen, Inge Sokilde; Sunde, Lone; Thomassen, Mads; Kruse, Torben A; Jensen, Uffe Birk; Friedman, Eitan; Laitman, Yael; Shimon, Shani Paluch; Simard, Jacques; Easton, Douglas F; Offit, Kenneth; Couch, Fergus J; Chenevix-Trench, Georgia; Antoniou, Antonis C; Benitez, Javier

    2014-04-01

    Single Nucleotide Polymorphisms (SNPs) in genes involved in the DNA Base Excision Repair (BER) pathway could be associated with cancer risk in carriers of mutations in the high-penetrance susceptibility genes BRCA1 and BRCA2, given the relation of synthetic lethality that exists between one of the components of the BER pathway, PARP1 (poly ADP ribose polymerase), and both BRCA1 and BRCA2. In the present study, we have performed a comprehensive analysis of 18 genes involved in BER using a tagging SNP approach in a large series of BRCA1 and BRCA2 mutation carriers. 144 SNPs were analyzed in a two stage study involving 23,463 carriers from the CIMBA consortium (the Consortium of Investigators of Modifiers of BRCA1 and BRCA2). Eleven SNPs showed evidence of association with breast and/or ovarian cancer at p<0.05 in the combined analysis. Four of the five genes for which strongest evidence of association was observed were DNA glycosylases. The strongest evidence was for rs1466785 in the NEIL2 (endonuclease VIII-like 2) gene (HR: 1.09, 95% CI (1.03-1.16), p = 2.7 × 10(-3)) for association with breast cancer risk in BRCA2 mutation carriers, and rs2304277 in the OGG1 (8-guanine DNA glycosylase) gene, with ovarian cancer risk in BRCA1 mutation carriers (HR: 1.12 95%CI: 1.03-1.21, p = 4.8 × 10(-3)). DNA glycosylases involved in the first steps of the BER pathway may be associated with cancer risk in BRCA1/2 mutation carriers and should be more comprehensively studied.

  9. DNA Glycosylases Involved in Base Excision Repair May Be Associated with Cancer Risk in BRCA1 and BRCA2 Mutation Carriers

    PubMed Central

    Osorio, Ana; Milne, Roger L.; Kuchenbaecker, Karoline; Vaclová, Tereza; Pita, Guillermo; Alonso, Rosario; Peterlongo, Paolo; Blanco, Ignacio; de la Hoya, Miguel; Duran, Mercedes; Díez, Orland; Ramón y Cajal, Teresa; Konstantopoulou, Irene; Martínez-Bouzas, Cristina; Andrés Conejero, Raquel; Soucy, Penny; McGuffog, Lesley; Barrowdale, Daniel; Lee, Andrew; SWE-BRCA; Arver, Brita; Rantala, Johanna; Loman, Niklas; Ehrencrona, Hans; Olopade, Olufunmilayo I.; Beattie, Mary S.; Domchek, Susan M.; Nathanson, Katherine; Rebbeck, Timothy R.; Arun, Banu K.; Karlan, Beth Y.; Walsh, Christine; Lester, Jenny; John, Esther M.; Whittemore, Alice S.; Daly, Mary B.; Southey, Melissa; Hopper, John; Terry, Mary B.; Buys, Saundra S.; Janavicius, Ramunas; Dorfling, Cecilia M.; van Rensburg, Elizabeth J.; Steele, Linda; Neuhausen, Susan L.; Ding, Yuan Chun; Hansen, Thomas v. O.; Jønson, Lars; Ejlertsen, Bent; Gerdes, Anne-Marie; Infante, Mar; Herráez, Belén; Moreno, Leticia Thais; Weitzel, Jeffrey N.; Herzog, Josef; Weeman, Kisa; Manoukian, Siranoush; Peissel, Bernard; Zaffaroni, Daniela; Scuvera, Giulietta; Bonanni, Bernardo; Mariette, Frederique; Volorio, Sara; Viel, Alessandra; Varesco, Liliana; Papi, Laura; Ottini, Laura; Tibiletti, Maria Grazia; Radice, Paolo; Yannoukakos, Drakoulis; Garber, Judy; Ellis, Steve; Frost, Debra; Platte, Radka; Fineberg, Elena; Evans, Gareth; Lalloo, Fiona; Izatt, Louise; Eeles, Ros; Adlard, Julian; Davidson, Rosemarie; Cole, Trevor; Eccles, Diana; Cook, Jackie; Hodgson, Shirley; Brewer, Carole; Tischkowitz, Marc; Douglas, Fiona; Porteous, Mary; Side, Lucy; Walker, Lisa; Morrison, Patrick; Donaldson, Alan; Kennedy, John; Foo, Claire; Godwin, Andrew K.; Schmutzler, Rita Katharina; Wappenschmidt, Barbara; Rhiem, Kerstin; Engel, Christoph; Meindl, Alfons; Ditsch, Nina; Arnold, Norbert; Plendl, Hans Jörg; Niederacher, Dieter; Sutter, Christian; Wang-Gohrke, Shan; Steinemann, Doris; Preisler-Adams, Sabine; Kast, Karin; Varon-Mateeva, Raymonda; Gehrig, Andrea; Stoppa-Lyonnet, Dominique; Sinilnikova, Olga M.; Mazoyer, Sylvie; Damiola, Francesca; Poppe, Bruce; Claes, Kathleen; Piedmonte, Marion; Tucker, Kathy; Backes, Floor; Rodríguez, Gustavo; Brewster, Wendy; Wakeley, Katie; Rutherford, Thomas; Caldés, Trinidad; Nevanlinna, Heli; Aittomäki, Kristiina; Rookus, Matti A.; van Os, Theo A. M.; van der Kolk, Lizet; de Lange, J. L.; Meijers-Heijboer, Hanne E. J.; van der Hout, A. H.; van Asperen, Christi J.; Gómez Garcia, Encarna B.; Hoogerbrugge, Nicoline; Collée, J. Margriet; van Deurzen, Carolien H. M.; van der Luijt, Rob B.; Devilee, Peter; HEBON; Olah, Edith; Lázaro, Conxi; Teulé, Alex; Menéndez, Mireia; Jakubowska, Anna; Cybulski, Cezary; Gronwald, Jacek; Lubinski, Jan; Durda, Katarzyna; Jaworska-Bieniek, Katarzyna; Johannsson, Oskar Th.; Maugard, Christine; Montagna, Marco; Tognazzo, Silvia; Teixeira, Manuel R.; Healey, Sue; Investigators, kConFab; Olswold, Curtis; Guidugli, Lucia; Lindor, Noralane; Slager, Susan; Szabo, Csilla I.; Vijai, Joseph; Robson, Mark; Kauff, Noah; Zhang, Liying; Rau-Murthy, Rohini; Fink-Retter, Anneliese; Singer, Christian F.; Rappaport, Christine; Geschwantler Kaulich, Daphne; Pfeiler, Georg; Tea, Muy-Kheng; Berger, Andreas; Phelan, Catherine M.; Greene, Mark H.; Mai, Phuong L.; Lejbkowicz, Flavio; Andrulis, Irene; Mulligan, Anna Marie; Glendon, Gord; Toland, Amanda Ewart; Bojesen, Anders; Pedersen, Inge Sokilde; Sunde, Lone; Thomassen, Mads; Kruse, Torben A.; Jensen, Uffe Birk; Friedman, Eitan; Laitman, Yael; Shimon, Shani Paluch; Simard, Jacques; Easton, Douglas F.; Offit, Kenneth; Couch, Fergus J.; Chenevix-Trench, Georgia; Antoniou, Antonis C.; Benitez, Javier

    2014-01-01

    Single Nucleotide Polymorphisms (SNPs) in genes involved in the DNA Base Excision Repair (BER) pathway could be associated with cancer risk in carriers of mutations in the high-penetrance susceptibility genes BRCA1 and BRCA2, given the relation of synthetic lethality that exists between one of the components of the BER pathway, PARP1 (poly ADP ribose polymerase), and both BRCA1 and BRCA2. In the present study, we have performed a comprehensive analysis of 18 genes involved in BER using a tagging SNP approach in a large series of BRCA1 and BRCA2 mutation carriers. 144 SNPs were analyzed in a two stage study involving 23,463 carriers from the CIMBA consortium (the Consortium of Investigators of Modifiers of BRCA1 and BRCA2). Eleven SNPs showed evidence of association with breast and/or ovarian cancer at p<0.05 in the combined analysis. Four of the five genes for which strongest evidence of association was observed were DNA glycosylases. The strongest evidence was for rs1466785 in the NEIL2 (endonuclease VIII-like 2) gene (HR: 1.09, 95% CI (1.03–1.16), p = 2.7×10−3) for association with breast cancer risk in BRCA2 mutation carriers, and rs2304277 in the OGG1 (8-guanine DNA glycosylase) gene, with ovarian cancer risk in BRCA1 mutation carriers (HR: 1.12 95%CI: 1.03–1.21, p = 4.8×10−3). DNA glycosylases involved in the first steps of the BER pathway may be associated with cancer risk in BRCA1/2 mutation carriers and should be more comprehensively studied. PMID:24698998

  10. Structural genes of wheat and barley 5-methylcytosine DNA glycosylases and their potential applications for human health.

    PubMed

    Wen, Shanshan; Wen, Nuan; Pang, Jinsong; Langen, Gregor; Brew-Appiah, Rhoda A T; Mejias, Jaime H; Osorio, Claudia; Yang, Mingming; Gemini, Richa; Moehs, Charles P; Zemetra, Robert S; Kogel, Karl-Heinz; Liu, Bao; Wang, Xingzhi; von Wettstein, Diter; Rustgi, Sachin

    2012-12-11

    Wheat supplies about 20% of the total food calories consumed worldwide and is a national staple in many countries. Besides being a key source of plant proteins, it is also a major cause of many diet-induced health issues, especially celiac disease. The only effective treatment for this disease is a total gluten-free diet. The present report describes an effort to develop a natural dietary therapy for this disorder by transcriptional suppression of wheat DEMETER (DME) homeologs using RNA interference. DME encodes a 5-methylcytosine DNA glycosylase responsible for transcriptional derepression of gliadins and low-molecular-weight glutenins (LMWgs) by active demethylation of their promoters in the wheat endosperm. Previous research has demonstrated these proteins to be the major source of immunogenic epitopes. In this research, barley and wheat DME genes were cloned and localized on the syntenous chromosomes. Nucleotide diversity among DME homeologs was studied and used for their virtual transcript profiling. Functional conservation of DME enzyme was confirmed by comparing the motif and domain structure within and across the plant kingdom. Presence and absence of CpG islands in prolamin gene sequences was studied as a hallmark of hypo- and hypermethylation, respectively. Finally the epigenetic influence of DME silencing on accumulation of LMWgs and gliadins was studied using 20 transformants expressing hairpin RNA in their endosperm. These transformants showed up to 85.6% suppression in DME transcript abundance and up to 76.4% reduction in the amount of immunogenic prolamins, demonstrating the possibility of developing wheat varieties compatible for the celiac patients. PMID:23184965

  11. A new protein superfamily includes two novel 3-methyladenine DNA glycosylases from Bacillus cereus, AlkC and AlkD.

    PubMed

    Alseth, Ingrun; Rognes, Torbjørn; Lindbäck, Toril; Solberg, Inger; Robertsen, Kristin; Kristiansen, Knut Ivan; Mainieri, Davide; Lillehagen, Lucy; Kolstø, Anne-Brit; Bjørås, Magnar

    2006-03-01

    Soil bacteria are heavily exposed to environmental methylating agents such as methylchloride and may have special requirements for repair of alkylation damage on DNA. We have used functional complementation of an Escherichia coli tag alkA mutant to screen for 3-methyladenine DNA glycosylase genes in genomic libraries of the soil bacterium Bacillus cereus. Three genes were recovered: alkC, alkD and alkE. The amino acid sequence of AlkE is homologous to the E. coli AlkA sequence. AlkC and AlkD represent novel proteins without sequence similarity to any protein of known function. However, iterative and indirect sequence similarity searches revealed that AlkC and AlkD are distant homologues of each other within a new protein superfamily that is ubiquitous in the prokaryotic kingdom. Homologues of AlkC and AlkD were also identified in the amoebas Entamoeba histolytica and Dictyostelium discoideum, but no other eukaryotic counterparts of the superfamily were found. The alkC and alkD genes were expressed in E. coli and the proteins were purified to homogeneity. Both proteins were found to be specific for removal of N-alkylated bases, and showed no activity on oxidized or deaminated base lesions in DNA. B. cereus AlkC and AlkD thus define novel families of alkylbase DNA glycosylases within a new protein superfamily.

  12. A new protein superfamily includes two novel 3-methyladenine DNA glycosylases from Bacillus cereus, AlkC and AlkD

    PubMed Central

    Alseth, Ingrun; Rognes, Torbjørn; Lindbäck, Toril; Solberg, Inger; Robertsen, Kristin; Kristiansen, Knut Ivan; Mainieri, Davide; Lillehagen, Lucy; Kolstø, Anne-Brit; Bjørås, Magnar

    2006-01-01

    Summary Soil bacteria are heavily exposed to environmental methylating agents such as methylchloride and may have special requirements for repair of alkylation damage on DNA. We have used functional complementation of an Escherichia coli tag alkA mutant to screen for 3-methyladenine DNA glycosylase genes in genomic libraries of the soil bacterium Bacillus cereus. Three genes were recovered: alkC, alkD and alkE. The amino acid sequence of AlkE is homologous to the E. coli AlkA sequence. AlkC and AlkD represent novel proteins without sequence similarity to any protein of known function. However, iterative and indirect sequence similarity searches revealed that AlkC and AlkD are distant homologues of each other within a new protein superfamily that is ubiquitous in the prokaryotic kingdom. Homologues of AlkC and AlkD were also identified in the amoebas Entamoeba histolytica and Dictyostelium discoideum, but no other eukaryotic counterparts of the superfamily were found. The alkC and alkD genes were expressed in E. coli and the proteins were purified to homogeneity. Both proteins were found to be specific for removal of N-alkylated bases, and showed no activity on oxidized or deaminated base lesions in DNA. B. cereus AlkC and AlkD thus define novel families of alkylbase DNA glycosylases within a new protein superfamily. PMID:16468998

  13. A new protein superfamily includes two novel 3-methyladenine DNA glycosylases from Bacillus cereus, AlkC and AlkD.

    PubMed

    Alseth, Ingrun; Rognes, Torbjørn; Lindbäck, Toril; Solberg, Inger; Robertsen, Kristin; Kristiansen, Knut Ivan; Mainieri, Davide; Lillehagen, Lucy; Kolstø, Anne-Brit; Bjørås, Magnar

    2006-03-01

    Soil bacteria are heavily exposed to environmental methylating agents such as methylchloride and may have special requirements for repair of alkylation damage on DNA. We have used functional complementation of an Escherichia coli tag alkA mutant to screen for 3-methyladenine DNA glycosylase genes in genomic libraries of the soil bacterium Bacillus cereus. Three genes were recovered: alkC, alkD and alkE. The amino acid sequence of AlkE is homologous to the E. coli AlkA sequence. AlkC and AlkD represent novel proteins without sequence similarity to any protein of known function. However, iterative and indirect sequence similarity searches revealed that AlkC and AlkD are distant homologues of each other within a new protein superfamily that is ubiquitous in the prokaryotic kingdom. Homologues of AlkC and AlkD were also identified in the amoebas Entamoeba histolytica and Dictyostelium discoideum, but no other eukaryotic counterparts of the superfamily were found. The alkC and alkD genes were expressed in E. coli and the proteins were purified to homogeneity. Both proteins were found to be specific for removal of N-alkylated bases, and showed no activity on oxidized or deaminated base lesions in DNA. B. cereus AlkC and AlkD thus define novel families of alkylbase DNA glycosylases within a new protein superfamily. PMID:16468998

  14. Standard role for a conserved aspartate or more direct involvement in deglycosylation? An ONIOM and MD investigation of adenine-DNA glycosylase.

    PubMed

    Kellie, Jennifer L; Wilson, Katie A; Wetmore, Stacey D

    2013-12-01

    8-Oxoguanine (OG) is one of the most frequently occurring forms of DNA damage and is particularly deleterious since it forms a stable Hoogsteen base pair with adenine (A). The repair of an OG:A mispair is initiated by adenine-DNA glycosylase (MutY), which hydrolyzes the sugar-nucleobase bond of the adenine residue before the lesion is processed by other proteins. MutY has been proposed to use a two-part chemical step involving protonation of the adenine nucleobase, followed by SN1 hydrolysis of the glycosidic bond. However, differences between a recent (fluorine recognition complex, denoted as the FLRC) crystal structure and the structure on which most mechanistic conclusions have been based to date (namely, the lesion recognition complex or LRC) raise questions regarding the mechanism used by MutY and the discrete role of various active-site residues. The present work uses both molecular dynamics (MD) and quantum mechanical (ONIOM) models to compare the active-site conformational dynamics in the two crystal structures, which suggests that only the understudied FLRC leads to a catalytically competent reactant. Indeed, all previous computational studies on MutY have been initiated from the LRC structure. Subsequently, for the first time, various mechanisms are examined with detailed ONIOM(M06-2X:PM6) reaction potential energy surfaces (PES) based on the FLRC structure, which significantly extends the mechanistic picture. Specifically, our work reveals that the reaction proceeds through a different route than the commonly accepted mechanism and the catalytic function of various active-site residues (Geobacillus stearothermophilus numbering). Specifically, contrary to proposals based on the LRC, E43 is determined to solely be involved in the initial adenine protonation step and not the deglycosylation reaction as the general base. Additionally, a novel catalytic role is proposed for Y126, whereby this residue plays a significant role in stabilizing the highly charged

  15. Evaluation of the Role of the Vaccinia Virus Uracil DNA Glycosylase and A20 Proteins as Intrinsic Components of the DNA Polymerase Holoenzyme*

    PubMed Central

    Boyle, Kathleen A.; Stanitsa, Eleni S.; Greseth, Matthew D.; Lindgren, Jill K.; Traktman, Paula

    2011-01-01

    The vaccinia virus DNA polymerase is inherently distributive but acquires processivity by associating with a heterodimeric processivity factor comprised of the viral A20 and D4 proteins. D4 is also an enzymatically active uracil DNA glycosylase (UDG). The presence of an active repair protein as an essential component of the polymerase holoenzyme is a unique feature of the replication machinery. We have shown previously that the A20-UDG complex has a stoichiometry of ∼1:1, and our data suggest that A20 serves as a bridge between polymerase and UDG. Here we show that conserved hydrophobic residues in the N′ terminus of A20 are important for its binding to UDG. Our data argue against the assembly of D4 into higher order multimers, suggesting that the processivity factor does not form a toroidal ring around the DNA. Instead, we hypothesize that the intrinsic, processive DNA scanning activity of UDG tethers the holoenzyme to the DNA template. The inclusion of UDG as an essential holoenzyme component suggests that replication and base excision repair may be coupled. Here we show that the DNA polymerase can utilize dUTP as a substrate in vitro. Moreover, uracil moieties incorporated into the nascent strand during holoenzyme-mediated DNA synthesis can be excised by the viral UDG present within this holoenzyme, leaving abasic sites. Finally, we show that the polymerase stalls upon encountering an abasic site in the template strand, indicating that, like many replicative polymerases, the poxviral holoenzyme cannot perform translesion synthesis across an abasic site. PMID:21572084

  16. Naturally occurring polyphenol, morin hydrate, inhibits enzymatic activity of N-methylpurine DNA glycosylase, a DNA repair enzyme with various roles in human disease.

    PubMed

    Dixon, Monica; Woodrick, Jordan; Gupta, Suhani; Karmahapatra, Soumendra Krishna; Devito, Stephen; Vasudevan, Sona; Dakshanamurthy, Sivanesan; Adhikari, Sanjay; Yenugonda, Venkata M; Roy, Rabindra

    2015-03-01

    Interest in the mechanisms of DNA repair pathways, including the base excision repair (BER) pathway specifically, has heightened since these pathways have been shown to modulate important aspects of human disease. Modulation of the expression or activity of a particular BER enzyme, N-methylpurine DNA glycosylase (MPG), has been demonstrated to play a role in carcinogenesis and resistance to chemotherapy as well as neurodegenerative diseases, which has intensified the focus on studying MPG-related mechanisms of repair. A specific small molecule inhibitor for MPG activity would be a valuable biochemical tool for understanding these repair mechanisms. By screening several small molecule chemical libraries, we identified a natural polyphenolic compound, morin hydrate, which inhibits MPG activity specifically (IC50=2.6μM). Detailed mechanism analysis showed that morin hydrate inhibited substrate DNA binding of MPG, and eventually the enzymatic activity of MPG. Computational docking studies with an x-ray derived MPG structure as well as comparison studies with other structurally-related flavonoids offer a rationale for the inhibitory activity of morin hydrate observed. The results of this study suggest that the morin hydrate could be an effective tool for studying MPG function and it is possible that morin hydrate and its derivatives could be utilized in future studies focused on the role of MPG in human disease.

  17. Mitochondrial-targeted DNA repair enzyme 8-oxoguanine DNA glycosylase 1 protects against ventilator-induced lung injury in intact mice

    PubMed Central

    Hashizume, Masahiro; Mouner, Marc; Chouteau, Joshua M.; Gorodnya, Olena M.; Ruchko, Mykhaylo V.; Potter, Barry J.; Wilson, Glenn L.; Gillespie, Mark N.

    2013-01-01

    This study tested the hypothesis that oxidative mitochondrial-targeted DNA (mtDNA) damage triggered ventilator-induced lung injury (VILI). Control mice and mice infused with a fusion protein targeting the DNA repair enzyme, 8-oxoguanine-DNA glycosylase 1 (OGG1) to mitochondria were mechanically ventilated with a range of peak inflation pressures (PIP) for specified durations. In minimal VILI (1 h at 40 cmH2O PIP), lung total extravascular albumin space increased 2.8-fold even though neither lung wet/dry (W/D) weight ratios nor bronchoalveolar lavage (BAL) macrophage inflammatory protein (MIP)-2 or IL-6 failed to differ from nonventilated or low PIP controls. This increase in albumin space was attenuated by OGG1. Moderately severe VILI (2 h at 40 cmH2O PIP) produced a 25-fold increase in total extravascular albumin space, a 60% increase in W/D weight ratio and marked increases in BAL MIP-2 and IL-6, accompanied by oxidative mitochondrial DNA damage, as well as decreases in the total tissue glutathione (GSH) and GSH/GSSH ratio compared with nonventilated lungs. All of these injury indices were attenuated in OGG1-treated mice. At the highest level of VILI (2 h at 50 cmH2O PIP), OGG1 failed to protect against massive lung edema and BAL cytokines or against depletion of the tissue GSH pool. Interestingly, whereas untreated mice died before completing the 2-h protocol, OGG1-treated mice lived for the duration of observation. Thus mitochondrially targeted OGG1 prevented VILI over a range of ventilation times and pressures and enhanced survival in the most severely injured group. These findings support the concept that oxidative mtDNA damage caused by high PIP triggers induction of acute lung inflammation and injury. PMID:23241530

  18. Mitochondrial-targeted DNA repair enzyme 8-oxoguanine DNA glycosylase 1 protects against ventilator-induced lung injury in intact mice.

    PubMed

    Hashizume, Masahiro; Mouner, Marc; Chouteau, Joshua M; Gorodnya, Olena M; Ruchko, Mykhaylo V; Potter, Barry J; Wilson, Glenn L; Gillespie, Mark N; Parker, James C

    2013-02-15

    This study tested the hypothesis that oxidative mitochondrial-targeted DNA (mtDNA) damage triggered ventilator-induced lung injury (VILI). Control mice and mice infused with a fusion protein targeting the DNA repair enzyme, 8-oxoguanine-DNA glycosylase 1 (OGG1) to mitochondria were mechanically ventilated with a range of peak inflation pressures (PIP) for specified durations. In minimal VILI (1 h at 40 cmH(2)O PIP), lung total extravascular albumin space increased 2.8-fold even though neither lung wet/dry (W/D) weight ratios nor bronchoalveolar lavage (BAL) macrophage inflammatory protein (MIP)-2 or IL-6 failed to differ from nonventilated or low PIP controls. This increase in albumin space was attenuated by OGG1. Moderately severe VILI (2 h at 40 cmH(2)O PIP) produced a 25-fold increase in total extravascular albumin space, a 60% increase in W/D weight ratio and marked increases in BAL MIP-2 and IL-6, accompanied by oxidative mitochondrial DNA damage, as well as decreases in the total tissue glutathione (GSH) and GSH/GSSH ratio compared with nonventilated lungs. All of these injury indices were attenuated in OGG1-treated mice. At the highest level of VILI (2 h at 50 cmH(2)O PIP), OGG1 failed to protect against massive lung edema and BAL cytokines or against depletion of the tissue GSH pool. Interestingly, whereas untreated mice died before completing the 2-h protocol, OGG1-treated mice lived for the duration of observation. Thus mitochondrially targeted OGG1 prevented VILI over a range of ventilation times and pressures and enhanced survival in the most severely injured group. These findings support the concept that oxidative mtDNA damage caused by high PIP triggers induction of acute lung inflammation and injury.

  19. Association between oxidative DNA damage and the expression of 8-oxoguanine DNA glycosylase 1 in lung epithelial cells of neonatal rats exposed to hyperoxia

    PubMed Central

    JIN, LINLIN; YANG, HAIPING; FU, JIANHUA; XUE, XINDONG; YAO, LI; QIAO, LIN

    2015-01-01

    Previous studies have demonstrated that oxidative stress-induced lung injury is involved in the occurrence and developmental process of bronchopulmonary dysplasia (BPD). The present study assessed whether oxidative DNA damage occurs in the early stages of hyperoxia-induced BPD in neonatal rats and evaluated the expression and localization of the DNA repair gene, 8-oxoguanine DNA glycosylase 1 (OGG1), upon exposure to hyperoxia. Neonatal rats and primary cultured neonatal rat alveolar epithelial type II (AECII) cells were exposed to hyperoxia (90% O2) or normoxia (21% O2) and the expression levels of 8-hydroxy-2′-deoxyguanosine (8-OHdG) in the lung tissues and AECII cells were determined using a competitive enzyme-linked immunosorbent assay. DNA strand breaks in the AECII cells were detected using a comet assay. The expression and localization of the OGG1 protein in the lung tissues and AECII cells were determined by immunofluorescence confocal microscopy and western blotting. The mRNA expression levels of OGG1 in the lung tissues and AECII cells were determined by reverse transcription polymerase chain reaction. The expression of 8-OHdG was elevated in the hyperoxia-exposed neonatal rat lung tissue and the AECII cells compared with the normoxic controls. The occurrence of DNA strand breaks in the AECII cells increased with increasing duration of hyperoxia exposure. The protein expression of OGG1 was significantly increased in the hyperoxia-exposed lung tissues and AECII cells, with OGG1 preferentially localized to the cytoplasm. No concomitant increase in the mRNA expression of OGG1 was detected. These results revealed that oxidative DNA damage occurred in lung epithelial cells during early-stage BPD, as confirmed by in vitro and in vivo hyperoxia exposure experiments, and the increased expression of OGG1 was associated with this process. PMID:25672835

  20. Expression of T:G mismatch-specific thymidine-DNA glycosylase and DNA methyl transferase genes during development and tumorigenesis.

    PubMed

    Niederreither, K; Harbers, M; Chambon, P; Dollé, P

    1998-09-24

    In situ hybridization was used to characterize the expression pattern of the T:G mismatch-specific thymidine-DNA glycosylase (TDG) gene, encoding a DNA repair enzyme which corrects G:T mismatches that result from the hydrolytic deamination of 5-methyl cytosines. TDG transcripts were uniformly and ubiquitously expressed from 7.5-13.5 days post-coitum, but were then markedly enriched in specific tissues of the developing fetus. At 14.5 gestational days, TDG was strongly expressed in the developing nervous system, thymus, lung, liver, kidney and intestine. At later stages, high levels of expression were detected in the thymus, brain, nasal epithelium and within proliferating regions of the intestine, skin, kidney, teeth and bone. This pattern of expression strongly correlated with those of the methyl transferase (MTase) gene, coding for the enzyme which specifically methylates CpG dinucleotides, and the p53 tumour suppressor gene. However, TDG and MTase were differentially expressed during maturation of the male and female germline. We also report that tumors occuring in mice which overexpress MMTV-v-Ha-ras or MMTV-c-myc transgenes or mice heterozygous for p53 gene disruption, all show elevated TDG and MTase expression specific to the transformed tissue. PMID:9794235

  1. The C-terminal Domain (CTD) of Human DNA Glycosylase NEIL1 Is Required for Forming BERosome Repair Complex with DNA Replication Proteins at the Replicating Genome

    PubMed Central

    Hegde, Pavana M.; Dutta, Arijit; Sengupta, Shiladitya; Mitra, Joy; Adhikari, Sanjay; Tomkinson, Alan E.; Li, Guo-Min; Boldogh, Istvan; Hazra, Tapas K.; Mitra, Sankar; Hegde, Muralidhar L.

    2015-01-01

    The human DNA glycosylase NEIL1 was recently demonstrated to initiate prereplicative base excision repair (BER) of oxidized bases in the replicating genome, thus preventing mutagenic replication. A significant fraction of NEIL1 in cells is present in large cellular complexes containing DNA replication and other repair proteins, as shown by gel filtration. However, how the interaction of NEIL1 affects its recruitment to the replication site for prereplicative repair was not investigated. Here, we show that NEIL1 binarily interacts with the proliferating cell nuclear antigen clamp loader replication factor C, DNA polymerase δ, and DNA ligase I in the absence of DNA via its non-conserved C-terminal domain (CTD); replication factor C interaction results in ∼8-fold stimulation of NEIL1 activity. Disruption of NEIL1 interactions within the BERosome complex, as observed for a NEIL1 deletion mutant (N311) lacking the CTD, not only inhibits complete BER in vitro but also prevents its chromatin association and reduced recruitment at replication foci in S phase cells. This suggests that the interaction of NEIL1 with replication and other BER proteins is required for efficient repair of the replicating genome. Consistently, the CTD polypeptide acts as a dominant negative inhibitor during in vitro repair, and its ectopic expression sensitizes human cells to reactive oxygen species. We conclude that multiple interactions among BER proteins lead to large complexes, which are critical for efficient BER in mammalian cells, and the CTD interaction could be targeted for enhancing drug/radiation sensitivity of tumor cells. PMID:26134572

  2. Germ Line Variants of Human N-Methylpurine DNA Glycosylase Show Impaired DNA Repair Activity and Facilitate 1,N6-Ethenoadenine-induced Mutations*

    PubMed Central

    Adhikari, Sanjay; Chetram, Mahandranauth A.; Woodrick, Jordan; Mitra, Partha S.; Manthena, Praveen V.; Khatkar, Pooja; Dakshanamurthy, Sivanesan; Dixon, Monica; Karmahapatra, Soumendra K.; Nuthalapati, Nikhil K.; Gupta, Suhani; Narasimhan, Ganga; Mazumder, Raja; Loffredo, Christopher A.; Üren, Aykut; Roy, Rabindra

    2015-01-01

    Human N-methylpurine DNA glycosylase (hMPG) initiates base excision repair of a number of structurally diverse purine bases including 1,N6-ethenoadenine, hypoxanthine, and alkylation adducts in DNA. Genetic studies discovered at least eight validated non-synonymous single nucleotide polymorphisms (nsSNPs) of the hMPG gene in human populations that result in specific single amino acid substitutions. In this study, we tested the functional consequences of these nsSNPs of hMPG. Our results showed that two specific arginine residues, Arg-141 and Arg-120, are important for the activity of hMPG as the germ line variants R120C and R141Q had reduced enzymatic activity in vitro as well as in mammalian cells. Expression of these two variants in mammalian cells lacking endogenous MPG also showed an increase in mutations and sensitivity to an alkylating agent compared with the WT hMPG. Real time binding experiments by surface plasmon resonance spectroscopy suggested that these variants have substantial reduction in the equilibrium dissociation constant of binding (KD) of hMPG toward 1,N6-ethenoadenine-containing oligonucleotide (ϵA-DNA). Pre-steady-state kinetic studies showed that the substitutions at arginine residues affected the turnover of the enzyme significantly under multiple turnover condition. Surface plasmon resonance spectroscopy further showed that both variants had significantly decreased nonspecific (undamaged) DNA binding. Molecular modeling suggested that R141Q substitution may have resulted in a direct loss of the salt bridge between ϵA-DNA and hMPG, whereas R120C substitution redistributed, at a distance, the interactions among residues in the catalytic pocket. Together our results suggest that individuals carrying R120C and R141Q MPG variants may be at risk for genomic instability and associated diseases as a consequence. PMID:25538240

  3. A highly conserved family of domains related to the DNA-glycosylase fold helps predict multiple novel pathways for RNA modifications

    PubMed Central

    Burroughs, A Maxwell; Aravind, L

    2014-01-01

    A protein family including mammalian NEMF, Drosophila caliban, yeast Tae2, and bacterial FpbA-like proteins was first defined over a decade ago and found to be universally distributed across the three domains/superkingdoms of life. Since its initial characterization, this family of proteins has been tantalizingly linked to a wide range of biochemical functions. Tapping the enormous wealth of genome information that has accumulated since the initial characterization of these proteins, we perform a detailed computational analysis of the family, identifying multiple conserved domains. Domains identified include an enzymatic domain related to the formamidopyrimidine (Fpg), MutM, and Nei/EndoVIII family of DNA glycosylases, a novel, predicted RNA-binding domain, and a domain potentially mediating protein–protein interactions. Through this characterization, we predict that the DNA glycosylase-like domain catalytically operates on double-stranded RNA, as part of a hitherto unknown base modification mechanism that probably targets rRNAs. At least in archaea, and possibly eukaryotes, this pathway might additionally include the AMMECR1 family of proteins. The predicted RNA-binding domain associated with this family is also observed in distinct architectural contexts in other proteins across phylogenetically diverse prokaryotes. Here it is predicted to play a key role in a new pathway for tRNA 4-thiouridylation along with TusA-like sulfur transfer proteins. PMID:24646681

  4. Germline ablation of SMUG1 DNA glycosylase causes loss of 5-hydroxymethyluracil- and UNG-backup uracil-excision activities and increases cancer predisposition of Ung-/-Msh2-/- mice.

    PubMed

    Kemmerich, Kristin; Dingler, Felix A; Rada, Cristina; Neuberger, Michael S

    2012-07-01

    Deamination of cytosine (C), 5-methylcytosine (mC) and 5-hydroxymethylcytosine (hmC) occurs spontaneously in mammalian DNA with several hundred deaminations occurring in each cell every day. The resulting potentially mutagenic mispairs of uracil (U), thymine (T) or 5-hydroxymethyluracil (hmU) with guanine (G) are substrates for repair by various DNA glycosylases. Here, we show that targeted inactivation of the mouse Smug1 DNA glycosylase gene is sufficient to ablate nearly all hmU-DNA excision activity as judged by assay of tissue extracts from knockout mice as well as by the resistance of their embryo fibroblasts to 5-hydroxymethyldeoxyuridine toxicity. Inactivation of Smug1 when combined with inactivation of the Ung uracil-DNA glycosylase gene leads to a loss of nearly all detectable uracil excision activity. Thus, SMUG1 is the dominant glycosylase responsible for hmU-excision in mice as well as the major UNG-backup for U-excision. Both Smug1-knockout and Smug1/Ung-double knockout mice breed normally and remain apparently healthy beyond 1 year of age. However, combined deficiency in SMUG1 and UNG exacerbates the cancer predisposition of Msh2(-/-) mice suggesting that when both base excision and mismatch repair pathways are defective, the mutagenic effects of spontaneous cytosine deamination are sufficient to increase cancer incidence but do not preclude mouse development.

  5. Influence of local duplex stability and N6-methyladenine on uracil recognition by mismatch-specific uracil-DNA glycosylase (Mug).

    PubMed

    Valinluck, Victoria; Liu, Pingfang; Burdzy, Artur; Ryu, Junichi; Sowers, Lawrence C

    2002-12-01

    To maintain genomic integrity, DNA repair enzymes continually remove damaged bases and lesions resulting from endogenous and exogenous processes. These repair enzymes must distinguish damaged bases from normal bases to prevent the inadvertent removal of normal bases, which would promote genomic instability. The mechanisms by which this high level of specificity is accomplished are as yet unresolved. One member of the uracil-DNA glycosylase family of repair enzymes, Escherichia coli mismatch-specific uracil-DNA glycosylase (Mug), is reported to distinguish U:G mispairs from U:A base pairs based upon specific contacts with the mispaired guanine after flipping the target uracil out of the duplex. However, recent studies suggest other mechanisms for base selection, including local duplex stability. In this study, we used the modified base N6-methyladenine to probe the effect of local helix perturbation on Mug recognition of uracil. N6-Methyladenine is found in E. coli as part of both the mismatch repair and restriction-modification systems. In its cis isomer, N6-methyladenine destabilizes hydrogen bonding by interfering with pseudo-Watson-Crick base pairing. It is observed that the selection of uracil by Mug is sequence dependent and that uracil residues in sequences of reduced thermostability are preferentially removed. The replacement of adenine by N6-methyladenine increases the frequency of removal of the uracil residue paired opposite the modified adenine. These results are in accord with suggestions that local helix stability is an important determinant of base recognition by some DNA repair enzymes and provide a potential strategy for identifying the sequence location of modified bases in DNA. PMID:12482242

  6. Uracil-DNA glycosylase-treated reverse transcription loop-mediated isothermal amplification for rapid detection of avian influenza virus preventing carry-over contamination

    PubMed Central

    Kim, Eun-Mi; Jeon, Hyo-Sung; Kim, Ji-Jung; Shin, Yeun-Kyung; Lee, Youn-Jeong; Yeo, Sang-Geon

    2016-01-01

    Here, we describe a uracil-DNA glycosylase (UNG)-treated reverse transcription loop-mediated isothermal amplification (uRT-LAMP) for the visual detection of all subtypes of avian influenza A virus (AIV). The uRT-LAMP assay can prevent unwanted amplification by carryover contamination of the previously amplified DNA, although the detection limit of the uRT-LAMP assay is 10-fold lower than that of the RT-LAMP without a UNG treatment. To the best of our knowledge, this is the first successful application of deoxyuridine triphosphate/UNG strategy in RT-LAMP for AIV detection, and the assay can be applied for the rapid, and reliable diagnosis of AIVs, even in contaminated samples. PMID:26726027

  7. Distinct functional consequences of MUTYH variants associated with colorectal cancer: Damaged DNA affinity, glycosylase activity and interaction with PCNA and Hus1.

    PubMed

    Brinkmeyer, Megan K; David, Sheila S

    2015-10-01

    MUTYH is a base excision repair (BER) enzyme that prevents mutations in DNA associated with 8-oxoguanine (OG) by catalyzing the removal of adenine from inappropriately formed OG:A base-pairs. Germline mutations in the MUTYH gene are linked to colorectal polyposis and a high risk of colorectal cancer, a syndrome referred to as MUTYH-associated polyposis (MAP). There are over 300 different MUTYH mutations associated with MAP and a large fraction of these gene changes code for missense MUTYH variants. Herein, the adenine glycosylase activity, mismatch recognition properties, and interaction with relevant protein partners of human MUTYH and five MAP variants (R295C, P281L, Q324H, P502L, and R520Q) were examined. P281L MUTYH was found to be severely compromised both in DNA binding and base excision activity, consistent with the location of this variation in the iron-sulfur cluster (FCL) DNA binding motif of MUTYH. Both R295C and R520Q MUTYH were found to have low fractions of active enzyme, compromised affinity for damaged DNA, and reduced rates for adenine excision. In contrast, both Q324H and P502L MUTYH function relatively similarly to WT MUTYH in both binding and glycosylase assays. However, P502L and R520Q exhibited reduced affinity for PCNA (proliferation cell nuclear antigen), consistent with their location in the PCNA-binding motif of MUTYH. Whereas, only Q324H, and not R295C, was found to have reduced affinity for Hus1 of the Rad9-Hus1-Rad1 complex, despite both being localized to the same region implicated for interaction with Hus1. These results underscore the diversity of functional consequences due to MUTYH variants that may impact the progression of MAP.

  8. The levels of 7,8-dihydrodeoxyguanosine (8-oxoG) and 8-oxoguanine DNA glycosylase 1 (OGG1) - A potential diagnostic biomarkers of Alzheimer's disease.

    PubMed

    Sliwinska, Agnieszka; Kwiatkowski, Dominik; Czarny, Piotr; Toma, Monika; Wigner, Paulina; Drzewoski, Jozef; Fabianowska-Majewska, Krystyna; Szemraj, Janusz; Maes, Michael; Galecki, Piotr; Sliwinski, Tomasz

    2016-09-15

    Evidence indicates that oxidative stress contributes to neuronal cell death in Alzheimer's disease (AD). Increased oxidative DNA damage l, as measured with 8-oxoguanine (8-oxoG), and reduced capacity of proteins responsible for removing of DNA damage, including 8-oxoguanine DNA glycosylase 1 (OGG1), were detected in brains of AD patients. In the present study we assessed peripheral blood biomarkers of oxidative DNA damage, i.e. 8- oxoG and OGG1, in AD diagnosis, by comparing their levels between the patients and the controls. Our study was performed on DNA and serum isolated from peripheral blood taken from 100 AD patients and 110 controls. For 8-oxoG ELISA was employed. The OGG1 level was determined using ELISA and Western blot technique. Levels of 8-oxoG were significantly higher in DNA of AD patients. Both ELISA and Western blot showed decreased levels of OGG1 in serum of AD patients. Our results show that oxidative DNA damage biomarkers detected in peripheral tissue could reflect the changes occurring in the brain of patients with AD. These results also suggest that peripheral blood samples may be useful to measure oxidative stress biomarkers in AD. PMID:27538622

  9. Role of Bacillus subtilis DNA Glycosylase MutM in Counteracting Oxidatively Induced DNA Damage and in Stationary-Phase-Associated Mutagenesis

    PubMed Central

    Gómez-Marroquín, Martha; Vidales, Luz E.; Debora, Bernardo N.; Santos-Escobar, Fernando; Obregón-Herrera, Armando; Robleto, Eduardo A.

    2015-01-01

    ABSTRACT Reactive oxygen species (ROS) promote the synthesis of the DNA lesion 8-oxo-G, whose mutagenic effects are counteracted in distinct organisms by the DNA glycosylase MutM. We report here that in Bacillus subtilis, mutM is expressed during the exponential and stationary phases of growth. In agreement with this expression pattern, results of a Western blot analysis confirmed the presence of MutM in both stages of growth. In comparison with cells of a wild-type strain, cells of B. subtilis lacking MutM increased their spontaneous mutation frequency to Rifr and were more sensitive to the ROS promoter agents hydrogen peroxide and 1,1′-dimethyl-4,4′-bipyridinium dichloride (Paraquat). However, despite MutM's proven participation in preventing ROS-induced-DNA damage, the expression of mutM was not induced by hydrogen peroxide, mitomycin C, or NaCl, suggesting that transcription of this gene is not under the control of the RecA, PerR, or σB regulons. Finally, the role of MutM in stationary-phase-associated mutagenesis (SPM) was investigated in the strain B. subtilis YB955 (hisC952 metB5 leuC427). Results revealed that under limiting growth conditions, a mutM knockout strain significantly increased the amount of stationary-phase-associated his, met, and leu revertants produced. In summary, our results support the notion that the absence of MutM promotes mutagenesis that allows nutritionally stressed B. subtilis cells to escape from growth-limiting conditions. IMPORTANCE The present study describes the role played by a DNA repair protein (MutM) in protecting the soil bacterium Bacillus subtilis from the genotoxic effects induced by reactive oxygen species (ROS) promoter agents. Moreover, it reveals that the genetic inactivation of mutM allows nutritionally stressed bacteria to escape from growth-limiting conditions, putatively by a mechanism that involves the accumulation and error-prone processing of oxidized DNA bases. PMID:25825434

  10. Cloning and characterization of uracil-DNA glycosylase and the biological consequences of the loss of its function in the nematode Caenorhabditis elegans.

    PubMed

    Nakamura, Nobuya; Morinaga, Hironobu; Kikuchi, Masahiro; Yonekura, Shin-Ichiro; Ishii, Naoaki; Yamamoto, Kazuo; Yonei, Shuji; Zhang, Qiu-Mei

    2008-09-01

    Uracil arises in DNA from spontaneous deamination of cytosine and through incorporation of dUMP by DNA polymerase during DNA replication. Excision of uracil by the action of uracil-DNA glycosylase (Ung) initiates the base excision repair pathway to counter the promutagenic base modification. In this study, we cloned a cDNA-encoding Caenorhabditis elegans homologue (CeUng-1) of Escherichia coli Ung. There was 49% identity in amino acid sequence between E.coli Ung and CeUng-1. Purified CeUng-1 removed uracil from both U:G and U:A base pairs in DNA. It also removed uracil from single-stranded oligonucleotide substrate less efficiently than double-stranded oligonucleotide. The CeUng-1 activity was inhibited by Bacillus subtilis Ung inhibitor, indicating that CeUng-1 is a member of the family-1 Ung group. The mutation in the ung-1 gene did not affect development, fertility and lifespan in C.elegans, suggesting the existence of backup enzyme. However, we could not detect residual uracil excision activity in the extract derived from the ung-1 mutant. The present experiments also showed that the ung-1 mutant of C.elegans was more resistant to NaHSO(3)-inducing cytosine deamination than wild-type strain.

  11. Structural and biophysical analysis of interactions between cod and human uracil-DNA N-glycosylase (UNG) and UNG inhibitor (Ugi)

    SciTech Connect

    Assefa, Netsanet Gizaw; Niiranen, Laila; Johnson, Kenneth A.; Leiros, Hanna-Kirsti Schrøder; Smalås, Arne Oskar; Willassen, Nils Peder; Moe, Elin

    2014-08-01

    A structural and biophysical study of the interactions between cod and human uracil-DNA N-glycosylase (UNG) and their inhibitor Ugi is presented. The stronger interaction between cod UNG and Ugi can be explained by a greater positive electrostatic surface potential. Uracil-DNA N-glycosylase from Atlantic cod (cUNG) shows cold-adapted features such as high catalytic efficiency, a low temperature optimum for activity and reduced thermal stability compared with its mesophilic homologue human UNG (hUNG). In order to understand the role of the enzyme–substrate interaction related to the cold-adapted properties, the structure of cUNG in complex with a bacteriophage encoded natural UNG inhibitor (Ugi) has been determined. The interaction has also been analyzed by isothermal titration calorimetry (ITC). The crystal structure of cUNG–Ugi was determined to a resolution of 1.9 Å with eight complexes in the asymmetric unit related through noncrystallographic symmetry. A comparison of the cUNG–Ugi complex with previously determined structures of UNG–Ugi shows that they are very similar, and confirmed the nucleotide-mimicking properties of Ugi. Biophysically, the interaction between cUNG and Ugi is very strong and shows a binding constant (K{sub b}) which is one order of magnitude larger than that for hUNG–Ugi. The binding of both cUNG and hUNG to Ugi was shown to be favoured by both enthalpic and entropic forces; however, the binding of cUNG to Ugi is mainly dominated by enthalpy, while the entropic term is dominant for hUNG. The observed differences in the binding properties may be explained by an overall greater positive electrostatic surface potential in the protein–Ugi interface of cUNG and the slightly more hydrophobic surface of hUNG.

  12. Construction of mutants of Salmonella typhimurium deficient in 8-hydroxyguanine DNA glycosylase and their sensitivities to oxidative mutagens and nitro compounds.

    PubMed

    Suzuki, M; Matsui, K; Yamada, M; Kasai, H; Sofuni, T; Nohmi, T

    1997-10-24

    8-Hydroxyguanine (8-OH-G) DNA glycosylase is an enzyme involved in repair of oxidative DNA damage, e.g., 8-OH-G in DNA. In order to assess the roles of 8-OH-G in spontaneous and chemically-induced mutagenesis, the mutMST gene encoding 8-OH-G DNA glycosylase of Salmonella typhimurium was disrupted in several Ames tester strains, i.e., S. typhimurium TA1535 (hisG46, uvrB-, rfa), TA1975 (hisG46, uvr+, rfa) and TA102 (hisG428, uvr+, rfa). The spontaneous mutation frequencies were increased 2.4 and 1.6 times, respectively, by the mutMST deletions in strains TA1535 and TA1975, which are spontaneously reverted to His+ by mutations mainly at G:C base pairs. The resulting strains YG3001 (TA1535 delta mutMST) and YG3002 (TA1975 delta mutMST) were 2 to 8 times more sensitive to the mutagenicities of methylene blue plus visible light, neutral red plus visible light and 2-nitrofluorene than the parent strains. The strain YG3002 but not YG3001 was about 30 times more sensitive to the mutagenicity of 4-nitroquinoline N-oxide than the parent strain TA1975. Neither hydrogen peroxide nor phenazine methosulfate was mutagenic in the mutMST-deletion strains as well as in the parent strains. In contrast, the mutMST deletion did not affect the spontaneous mutation frequency of strain TA102, which has an A:T base pair at the critical site for reversion. The sensitivities of strain TA102 to the chemicals were not enhanced by the mutMST deletion except for hydrogen peroxide. These results suggest that 8-OH-G in DNA plays important roles in spontaneous mutagenesis occurring at G:C base pairs in S. typhimurium, and some nitro aromatics such as 4-nitroquinoline N-oxide or 2-nitrofluorene as well as the photosensitizers plus visible light can produce 8-OH-G in DNA, thereby inducing mutations. In the case of 4-nitroquinoline N-oxide, 8-OH-G rather than DNA adducts seems to play major roles in mutagenesis in uvr+ background. The new strains could be useful for the evaluation of the roles of 8-OH

  13. Entrapment and Structure of an Extrahelical Guanine Attempting to Enter the Active Site of a Bacterial DNA Glycosylase, MutM

    SciTech Connect

    Qi, Yan; Spong, Marie C.; Nam, Kwangho; Karplus, Martin; Verdine, Gregory L.

    2010-09-21

    MutM, a bacterial DNA glycosylase, protects genome integrity by catalyzing glycosidic bond cleavage of 8-oxoguanine (oxoG) lesions, thereby initiating base excision DNA repair. The process of searching for and locating oxoG lesions is especially challenging, because of the close structural resemblance of oxoG to its million-fold more abundant progenitor, G. Extrusion of the target nucleobase from the DNA double helix to an extrahelical position is an essential step in lesion recognition and catalysis by MutM. Although the interactions between the extruded oxoG and the active site of MutM have been well characterized, little is known in structural detail regarding the interrogation of extruded normal DNA bases by MutM. Here we report the capture and structural elucidation of a complex in which MutM is attempting to present an undamaged G to its active site. The structure of this MutM-extrahelical G complex provides insights into the mechanism MutM employs to discriminate against extrahelical normal DNA bases and into the base extrusion process in general.

  14. Oxidative DNA damage in the in utero initiation of postnatal neurodevelopmental deficits by normal fetal and ethanol-enhanced oxidative stress in oxoguanine glycosylase 1 knockout mice.

    PubMed

    Miller-Pinsler, Lutfiya; Pinto, Daniel J; Wells, Peter G

    2015-01-01

    Studies in mice with deficient antioxidative enzymes have shown that physiological levels of reactive oxygen species (ROS) can adversely affect the developing embryo and fetus. Herein, DNA repair-deficient progeny of oxoguanine glycosylase 1 (ogg1)-knockout mice lacking repair of the oxidative DNA lesion 8-oxo-2'-deoxyguanosine (8-oxodGuo) exhibited enhanced postnatal neurodevelopmental deficits, revealing the pathogenic potential of 8-oxodGuo initiated by physiological ROS production in fetal brain and providing the first evidence of a pathological phenotype for ogg1-knockout mice. Moreover, when exposed in utero to ethanol (EtOH), ogg1-knockout progeny exhibited higher levels of 8-oxodGuo in fetal brain and more severe postnatal neurodevelopmental deficits than wild-type littermates, both of which were blocked by pretreatment with the free radical trapping agent phenylbutylnitrone. These results suggest that ROS-initiated DNA oxidation, as distinct from altered signal transduction, contributes to neurodevelopmental deficits caused by in utero EtOH exposure, and fetal DNA repair is a determinant of risk. PMID:25311828

  15. Exercise-Induced Neuroprotection of Hippocampus in APP/PS1 Transgenic Mice via Upregulation of Mitochondrial 8-Oxoguanine DNA Glycosylase

    PubMed Central

    Kang, Weimin; Jiang, Ning; Wang, Xun; Zhang, Yong; Ji, Li Li

    2014-01-01

    Improving mitochondrial function has been proposed as a reasonable therapeutic strategy to reduce amyloid-β (Aβ) load and to modify the progression of Alzheimer's disease (AD). However, the relationship between mitochondrial adaptation and brain neuroprotection caused by physical exercise in AD is poorly understood. This study was undertaken to investigate the effects of long-term treadmill exercise on mitochondrial 8-oxoguanine DNA glycosylase-1 (OGG1) level, mtDNA oxidative damage, and mitochondrial function in the hippocampus of APP/PS1 transgenic mouse model of AD. In the present study, twenty weeks of treadmill training significantly improved the cognitive function and reduced the expression of Aβ-42 in APP/PS1 transgenic (Tg) mice. Training also ameliorated mitochondrial respiratory function by increasing the complexes I, and IV and ATP synthase activities, whereas it attenuated ROS generation and mtDNA oxidative damage in Tg mice. Furthermore, the impaired mitochondrial antioxidant enzymes and mitochondrial OGG1 activities seen in Tg mice were restored with training. Acetylation level of mitochondrial OGG1 and MnSOD was markedly suppressed in Tg mice after exercise training, in parallel with increased level of SIRT3. These findings suggest that exercise training could increase mtDNA repair capacity in the mouse hippocampus, which in turn would result in protection against AD-related mitochondrial dysfunction and phenotypic deterioration. PMID:25538817

  16. Hyperosmotic stress memory in Arabidopsis is mediated by distinct epigenetically labile sites in the genome and is restricted in the male germline by DNA glycosylase activity.

    PubMed

    Wibowo, Anjar; Becker, Claude; Marconi, Gianpiero; Durr, Julius; Price, Jonathan; Hagmann, Jorg; Papareddy, Ranjith; Putra, Hadi; Kageyama, Jorge; Becker, Jorg; Weigel, Detlef; Gutierrez-Marcos, Jose

    2016-01-01

    Inducible epigenetic changes in eukaryotes are believed to enable rapid adaptation to environmental fluctuations. We have found distinct regions of the Arabidopsis genome that are susceptible to DNA (de)methylation in response to hyperosmotic stress. The stress-induced epigenetic changes are associated with conditionally heritable adaptive phenotypic stress responses. However, these stress responses are primarily transmitted to the next generation through the female lineage due to widespread DNA glycosylase activity in the male germline, and extensively reset in the absence of stress. Using the CNI1/ATL31 locus as an example, we demonstrate that epigenetically targeted sequences function as distantly-acting control elements of antisense long non-coding RNAs, which in turn regulate targeted gene expression in response to stress. Collectively, our findings reveal that plants use a highly dynamic maternal 'short-term stress memory' with which to respond to adverse external conditions. This transient memory relies on the DNA methylation machinery and associated transcriptional changes to extend the phenotypic plasticity accessible to the immediate offspring. PMID:27242129

  17. Hyperosmotic stress memory in Arabidopsis is mediated by distinct epigenetically labile sites in the genome and is restricted in the male germline by DNA glycosylase activity

    PubMed Central

    Wibowo, Anjar; Becker, Claude; Marconi, Gianpiero; Durr, Julius; Price, Jonathan; Hagmann, Jorg; Papareddy, Ranjith; Putra, Hadi; Kageyama, Jorge; Becker, Jorg; Weigel, Detlef; Gutierrez-Marcos, Jose

    2016-01-01

    Inducible epigenetic changes in eukaryotes are believed to enable rapid adaptation to environmental fluctuations. We have found distinct regions of the Arabidopsis genome that are susceptible to DNA (de)methylation in response to hyperosmotic stress. The stress-induced epigenetic changes are associated with conditionally heritable adaptive phenotypic stress responses. However, these stress responses are primarily transmitted to the next generation through the female lineage due to widespread DNA glycosylase activity in the male germline, and extensively reset in the absence of stress. Using the CNI1/ATL31 locus as an example, we demonstrate that epigenetically targeted sequences function as distantly-acting control elements of antisense long non-coding RNAs, which in turn regulate targeted gene expression in response to stress. Collectively, our findings reveal that plants use a highly dynamic maternal ‘short-term stress memory’ with which to respond to adverse external conditions. This transient memory relies on the DNA methylation machinery and associated transcriptional changes to extend the phenotypic plasticity accessible to the immediate offspring. DOI: http://dx.doi.org/10.7554/eLife.13546.001 PMID:27242129

  18. Uracil DNA Glycosylase Is Dispensable for Human Immunodeficiency Virus Type 1 Replication and Does Not Contribute to the Antiviral Effects of the Cytidine Deaminase Apobec3G

    PubMed Central

    Kaiser, Shari M.; Emerman, Michael

    2006-01-01

    It is well established that many host factors are involved in the replication of human immunodeficiency virus (HIV) type 1. One host protein, uracil DNA glycosylase 2 (UNG2), binds to multiple viral proteins and is packaged into HIV type 1 virions. UNG initiates the removal of uracils from DNA, and this has been proposed to be important both for reverse transcription and as a mediator to the antiviral effect of virion-incorporated Apobec3G, a cytidine deaminase that generates numerous uracils in the viral DNA during virus replication. We used a natural human UNG−/− cell line as well as cells that express a potent catalytic active-site inhibitor of UNG to assess the effects of removing UNG activity on HIV infectivity. In both cases, we find UNG2 activity and protein to be completely dispensable for virus replication. Moreover, we find that virion-associated UNG2 does not affect the loss of infectivity caused by Apobec3G. PMID:16378989

  19. CRL4Cdt2 E3 ubiquitin ligase and proliferating cell nuclear antigen (PCNA) cooperate to degrade thymine DNA glycosylase in S phase.

    PubMed

    Shibata, Etsuko; Dar, Ashraf; Dutta, Anindya

    2014-08-15

    Thymine DNA glycosylase (TDG) is an essential enzyme playing multiple roles in base excision repair, transcription regulation, and DNA demethylation. TDG mediates the cytotoxicity of the anti-cancer chemotherapeutic drug 5-fluorouracil (5-FU) by prolonging S phase, generating DNA strand breaks, and inducing DNA damage signaling. During S phase of the cell cycle, TDG is degraded via the proteasomal pathway. Here we show that CRL4(Cdt2) E3 ubiquitin ligase promotes ubiquitination and proteasomal degradation of TDG in S phase in a reaction that is dependent on the interaction of TDG with proliferating cell nuclear antigen (PCNA). siRNA-mediated depletion of PCNA or components of CRL4(Cdt2), specifically cullin4A/B or substrate adaptor Cdt2, stabilizes TDG in human cells. Mutations in the PCNA-interacting peptide (PIP) motif of TDG that disrupt the interaction of TDG with PCNA or change critical basic residues essential for the action of the PIP degron prevent the ubiquitination and degradation of TDG. Thus physical interaction of TDG with PCNA through the PIP degron is required for targeting TDG to the CRL4(Cdt2) E3 ubiquitin ligase complex. Compared with forced expression of wild type TDG, CRL4(Cdt2)- resistant TDG (ΔPIP) slows cell proliferation and slightly increases the toxicity of 5-FU. Thus, CRL4(Cdt2)-dependent degradation of TDG occurs in S phase because of the requirement for TDG to interact with chromatin-loaded PCNA, and this degradation is important for preventing toxicity from excess TDG.

  20. Role of Human DNA Glycosylase Nei-like 2 (NEIL2) and Single Strand Break Repair Protein Polynucleotide Kinase 3′-Phosphatase in Maintenance of Mitochondrial Genome*

    PubMed Central

    Mandal, Santi M.; Hegde, Muralidhar L.; Chatterjee, Arpita; Hegde, Pavana M.; Szczesny, Bartosz; Banerjee, Dibyendu; Boldogh, Istvan; Gao, Rui; Falkenberg, Maria; Gustafsson, Claes M.; Sarkar, Partha S.; Hazra, Tapas K.

    2012-01-01

    The repair of reactive oxygen species-induced base lesions and single strand breaks (SSBs) in the nuclear genome via the base excision (BER) and SSB repair (SSBR) pathways, respectively, is well characterize, and important for maintaining genomic integrity. However, the role of mitochondrial (mt) BER and SSBR proteins in mt genome maintenance is not completely clear. Here we show the presence of the oxidized base-specific DNA glycosylase Nei-like 2 (NEIL2) and the DNA end-processing enzyme polynucleotide kinase 3′-phosphatase (PNKP) in purified human mitochondrial extracts (MEs). Confocal microscopy revealed co-localization of PNKP and NEIL2 with the mitochondrion-specific protein cytochrome c oxidase subunit 2 (MT-CO2). Further, chromatin immunoprecipitation analysis showed association of NEIL2 and PNKP with the mitochondrial genes MT-CO2 and MT-CO3 (cytochrome c oxidase subunit 3); importantly, both enzymes also associated with the mitochondrion-specific DNA polymerase γ. In cell association of NEIL2 and PNKP with polymerase γ was further confirmed by proximity ligation assays. PNKP-depleted ME showed a significant decrease in both BER and SSBR activities, and PNKP was found to be the major 3′-phosphatase in human ME. Furthermore, individual depletion of NEIL2 and PNKP in human HEK293 cells caused increased levels of oxidized bases and SSBs in the mt genome, respectively. Taken together, these studies demonstrate the critical role of NEIL2 and PNKP in maintenance of the mammalian mitochondrial genome. PMID:22130663

  1. X4 and R5 HIV-1 have distinct post-entry requirements for uracil DNA glycosylase during infection of primary cells.

    PubMed

    Jones, Kate L; Roche, Michael; Gantier, Michael P; Begum, Nasim A; Honjo, Tasuku; Caradonna, Salvatore; Williams, Bryan R G; Mak, Johnson

    2010-06-11

    It has been assumed that R5 and X4 HIV utilize similar strategies to support viral cDNA synthesis post viral entry. In this study, we provide evidence to show that R5 and X4 HIV have distinct requirements for host cell uracil DNA glycosylase (UNG2) during the early stage of infection. UNG2 has been previously implicated in HIV infection, but its precise role remains controversial. In this study we show that, although UNG2 is highly expressed in different cell lines, UNG2 levels are low in the natural host cells of HIV. Short interfering RNA knockdown of endogenous UNG2 in primary cells showed that UNG2 is required for R5 but not X4 HIV infection and that this requirement is bypassed when HIV enters the target cell via vesicular stomatitis virus envelope-glycoprotein-mediated endocytosis. We also show that short interfering RNA knockdown of UNG2 in virus-producing primary cells leads to defective R5 HIV virions that are unable to complete viral cDNA synthesis. Quantitative PCR analysis revealed that endogenous UNG2 levels are transiently up-regulated post HIV infection, and this increase in UNG2 mRNA is approximately 10-20 times higher in R5 versus X4 HIV-infected cells. Our data show that both virion-associated UNG2 and HIV infection-induced UNG2 expression are critical for reverse transcription during R5 but not X4 HIV infection. More importantly, we have made the novel observation that R5 and X4 HIV have distinct host cell factor requirements and differential capacities to induce gene expression during the early stages of infection. These differences may result from activation of distinct signaling cascades and/or infection of divergent T-lymphocyte subpopulations. PMID:20371602

  2. X4 and R5 HIV-1 Have Distinct Post-entry Requirements for Uracil DNA Glycosylase during Infection of Primary Cells

    PubMed Central

    Jones, Kate L.; Roche, Michael; Gantier, Michael P.; Begum, Nasim A.; Honjo, Tasuku; Caradonna, Salvatore; Williams, Bryan R. G.; Mak, Johnson

    2010-01-01

    It has been assumed that R5 and X4 HIV utilize similar strategies to support viral cDNA synthesis post viral entry. In this study, we provide evidence to show that R5 and X4 HIV have distinct requirements for host cell uracil DNA glycosylase (UNG2) during the early stage of infection. UNG2 has been previously implicated in HIV infection, but its precise role remains controversial. In this study we show that, although UNG2 is highly expressed in different cell lines, UNG2 levels are low in the natural host cells of HIV. Short interfering RNA knockdown of endogenous UNG2 in primary cells showed that UNG2 is required for R5 but not X4 HIV infection and that this requirement is bypassed when HIV enters the target cell via vesicular stomatitis virus envelope-glycoprotein-mediated endocytosis. We also show that short interfering RNA knockdown of UNG2 in virus-producing primary cells leads to defective R5 HIV virions that are unable to complete viral cDNA synthesis. Quantitative PCR analysis revealed that endogenous UNG2 levels are transiently up-regulated post HIV infection, and this increase in UNG2 mRNA is ∼10–20 times higher in R5 versus X4 HIV-infected cells. Our data show that both virion-associated UNG2 and HIV infection-induced UNG2 expression are critical for reverse transcription during R5 but not X4 HIV infection. More importantly, we have made the novel observation that R5 and X4 HIV have distinct host cell factor requirements and differential capacities to induce gene expression during the early stages of infection. These differences may result from activation of distinct signaling cascades and/or infection of divergent T-lymphocyte subpopulations. PMID:20371602

  3. Effects of vaccinia virus uracil DNA glycosylase catalytic site and deoxyuridine triphosphatase deletion mutations individually and together on replication in active and quiescent cells and pathogenesis in mice

    PubMed Central

    De Silva, Frank S; Moss, Bernard

    2008-01-01

    Background Low levels of uracil in DNA result from misincorporation of dUMP or cytosine deamination. Vaccinia virus (VACV), the prototype poxvirus, encodes two enzymes that can potentially reduce the amount of uracil in DNA. Deoxyuridine triphosphatase (dUTPase) hydrolyzes dUTP, generating dUMP for biosynthesis of thymidine nucleotides while decreasing the availability of dUTP for misincorporation; uracil DNA glycosylase (UNG) cleaves uracil N-glycosylic bonds in DNA initiating base excision repair. Studies with actively dividing cells showed that the VACV UNG protein is required for DNA replication but the UNG catalytic site is not, whereas the dUTPase gene can be deleted without impairing virus replication. Recombinant VACV with an UNG catalytic site mutation was attenuated in vivo, while a dUTPase deletion mutant was not. However, the importance of the two enzymes for replication in quiescent cells, their possible synergy and roles in virulence have not been fully assessed. Results VACV mutants lacking the gene encoding dUTPase or with catalytic site mutations in UNG and double UNG/dUTPase mutants were constructed. Replication of UNG and UNG/dUTPase mutants were slightly reduced compared to wild type or the dUTPase mutant in actively dividing cells. Viral DNA replication was reduced about one-third under these conditions. After high multiplicity infection of quiescent fibroblasts, yields of wild type and mutant viruses were decreased by 2-logs with relative differences similar to those observed in active fibroblasts. However, under low multiplicity multi-step growth conditions in quiescent fibroblasts, replication of the dUTPase/UNG mutant was delayed and 5-fold lower than that of either single mutant or parental virus. This difference was exacerbated by 1-day serial passages on quiescent fibroblasts, resulting in 2- to 3-logs lower titer of the double mutant compared to the parental and single mutant viruses. Each mutant was more attenuated than a revertant

  4. Expanding Targets of DNAzyme-based Sensors through Deactivation and Activation of DNAzymes by Single Uracil Removal: Sensitive Fluorescent Assay of Uracil-DNA Glycosylase

    PubMed Central

    Xiang, Yu

    2012-01-01

    Although deoxyribozymes (DNAzymes) have been widely used as biosensors for the detection of their cofactors and the targets of related aptazymes, it is desirable to expand their range of analytes to take advantage of the DNAzyme-based signal amplification for more sensitive detections. In this study, the activity of uracil-DNA glycosylase (UNG) was successfully detected and quantified by deoxyuridine-modified DNAzymes that underwent UNG-dependent deactivation or activation. In one design, the indispensable thymidine T2.1 in the 8–17 DNAzyme was replaced with a deoxyuridine, resulting in minimal change of the DNAzyme’s activity. Since UNG is capable of removing uracils from single- or double-stranded DNAs, the modified DNAzyme was deactivated when the uracil at the indispensable thymidine site was eliminated by UNG. In another design, introducing a deoxyuridine to the 3′ position of the deoxycytidine C13 in the catalytic core of the same DNAzyme caused significant decrease of the activity. However, the removal of the interfering deoxyuridine by UNG activated the DNAzyme. By monitoring the activity change of the DNAzymes through the fluorescence enhancement from the DNAzyme-catalyzed cleavage of DNA substrates labeled by a fluorophore and quencher pair, the UNG activity was measured based on UNG-dependent deactivation and activation of the DNAzymes. The method was found to be able to detect UNG activity as low as 0.0034 U/mL. Such a method can be applied to the detection of other nucleotide-modifying enzymes and expand the analyte range of DNAzyme-based biosensors. PMID:23072386

  5. A unique dual recognition hairpin probe mediated fluorescence amplification method for sensitive detection of uracil-DNA glycosylase and endonuclease IV activities.

    PubMed

    Wu, Yushu; Yan, Ping; Xu, Xiaowen; Jiang, Wei

    2016-03-01

    Uracil-DNA glycosylase (UDG) and endonuclease IV (Endo IV) play cooperative roles in uracil base-excision repair (UBER) and inactivity of either will interrupt the UBER to cause disease. Detection of UDG and Endo IV activities is crucial to evaluate the UBER process in fundamental research and diagnostic application. Here, a unique dual recognition hairpin probe mediated fluorescence amplification method was developed for sensitively and selectively detecting UDG and Endo IV activities. For detecting UDG activity, the uracil base in the probe was excised by the target enzyme to generate an apurinic/apyrimidinic (AP) site, achieving the UDG recognition. Then, the AP site was cleaved by a tool enzyme Endo IV, releasing a primer to trigger rolling circle amplification (RCA) reaction. Finally, the RCA reaction produced numerous repeated G-quadruplex sequences, which interacted with N-methyl-mesoporphyrin IX to generate an enhanced fluorescence signal. Alternatively, for detecting Endo IV activity, the uracil base in the probe was first converted into an AP site by a tool enzyme UDG. Next, the AP site was cleaved by the target enzyme, achieving the Endo IV recognition. The signal was then generated and amplified in the same way as those in the UDG activity assay. The detection limits were as low as 0.00017 U mL(-1) for UDG and 0.11 U mL(-1) for Endo IV, respectively. Moreover, UDG and Endo IV can be well distinguished from their analogs. This method is beneficial for properly evaluating the UBER process in function studies and disease prognoses. PMID:26899234

  6. Structural and biophysical analysis of interactions between cod and human uracil-DNA N-glycosylase (UNG) and UNG inhibitor (Ugi).

    PubMed

    Assefa, Netsanet Gizaw; Niiranen, Laila; Johnson, Kenneth A; Leiros, Hanna-Kirsti Schrøder; Smalås, Arne Oskar; Willassen, Nils Peder; Moe, Elin

    2014-08-01

    Uracil-DNA N-glycosylase from Atlantic cod (cUNG) shows cold-adapted features such as high catalytic efficiency, a low temperature optimum for activity and reduced thermal stability compared with its mesophilic homologue human UNG (hUNG). In order to understand the role of the enzyme-substrate interaction related to the cold-adapted properties, the structure of cUNG in complex with a bacteriophage encoded natural UNG inhibitor (Ugi) has been determined. The interaction has also been analyzed by isothermal titration calorimetry (ITC). The crystal structure of cUNG-Ugi was determined to a resolution of 1.9 Å with eight complexes in the asymmetric unit related through noncrystallographic symmetry. A comparison of the cUNG-Ugi complex with previously determined structures of UNG-Ugi shows that they are very similar, and confirmed the nucleotide-mimicking properties of Ugi. Biophysically, the interaction between cUNG and Ugi is very strong and shows a binding constant (Kb) which is one order of magnitude larger than that for hUNG-Ugi. The binding of both cUNG and hUNG to Ugi was shown to be favoured by both enthalpic and entropic forces; however, the binding of cUNG to Ugi is mainly dominated by enthalpy, while the entropic term is dominant for hUNG. The observed differences in the binding properties may be explained by an overall greater positive electrostatic surface potential in the protein-Ugi interface of cUNG and the slightly more hydrophobic surface of hUNG. PMID:25084329

  7. 8-Oxoguanine DNA glycosylase 1 (ogg1) maintains the function of cardiac progenitor cells during heart formation in zebrafish

    SciTech Connect

    Yan, Lifeng; Zhou, Yong; Yu, Shanhe; Ji, Guixiang; Liu, Wei; Gu, Aihua

    2013-11-15

    Genomic damage may devastate the potential of progenitor cells and consequently impair early organogenesis. We found that ogg1, a key enzyme initiating the base-excision repair, was enriched in the embryonic heart in zebrafish. So far, little is known about DNA repair in cardiogenesis. Here, we addressed the critical role of ogg1 in cardiogenesis for the first time. ogg1 mainly expressed in the anterior lateral plate mesoderm (ALPM), the primary heart tube, and subsequently the embryonic myocardium by in situ hybridisation. Loss of ogg1 resulted in severe cardiac morphogenesis and functional abnormalities, including the short heart length, arrhythmia, decreased cardiomyocytes and nkx2.5{sup +} cardiac progenitor cells. Moreover, the increased apoptosis and repressed proliferation of progenitor cells caused by ogg1 deficiency might contribute to the heart phenotype. The microarray analysis showed that the expression of genes involved in embryonic heart tube morphogenesis and heart structure were significantly changed due to the lack of ogg1. Among those, foxh1 is an important partner of ogg1 in the cardiac development in response to DNA damage. Our work demonstrates the requirement of ogg1 in cardiac progenitors and heart development in zebrafish. These findings may be helpful for understanding the aetiology of congenital cardiac deficits. - Highlights: • A key DNA repair enzyme ogg1 is expressed in the embryonic heart in zebrafish. • We found that ogg1 is essential for normal cardiac morphogenesis in zebrafish. • The production of embryonic cardiomyocytes requires appropriate ogg1 expression. • Ogg1 critically regulated proliferation of cardiac progenitor cells in zebrafish. • foxh1 is a partner of ogg1 in the cardiac development in response to DNA damage.

  8. 8-Oxoguanine DNA glycosylase 1 (OGG1) from the copepod Tigriopus japonicus: molecular characterization and its expression in response to UV-B and heavy metals.

    PubMed

    Kim, Bo-Mi; Rhee, Jae-Sung; Seo, Jung Soo; Kim, Il-Chan; Lee, Young-Mi; Lee, Jae-Seong

    2012-03-01

    8-Oxoguanine DNA glycosylase 1 (EC 3.2.2.23) is encoded by OGG1 gene and plays a key role in removing 8-oxo-7,8-dihydroguanine (8-oxoG) base in DNA lesion by reactive oxygen species (ROS). To identify and characterize OGG1 gene (TJ-OGG1) in the copepod Tigriopus japonicus, the full-length cDNA sequence, genomic structure, and promoter region was analyzed. In addition, to investigate transcriptional change of TJ-OGG1 mRNA under oxidative stress conditions, T. japonicus were exposed to environmental oxidative inducers, H(2)O(2), UV-B, and heavy metals (Cd, Cu, and Zn), respectively. The full-length cDNA of TJ-OGG1 gene was 1708 bp in length, encoding 343 amino acid residues. The deduced amino acid sequences of TJ-OGG1 showed a 56% similarity with human. Two conserved motifs (HhH and PVD loop) and two conserved residues (lysine and aspartic acid) in active sites were also observed. TJ-OGG1 genome structure contained six exons and five introns and putative transcription factor binding sites such as Nrf-2, p53, ERE-half sites, and XRE were detected on the promoter region. TJ-OGG1 mRNA level was increased at approximately three-fold (P<0.05) at 1mM and approximately 4-fold (P<0.01) at 10mM of H(2)O(2), respectively. UV-B enhanced the expression of TJ-OGG1 mRNA at 15kJ/m(2) (P<0.05) and more (P<0.001). In a time-course experiment, TJ-OGG1 gene was highly transcribed within 12h after exposure of 10 kJ/m(2) (P<0.01) and 20 kJ/m(2) (P<0.001). The expression of TJ-OGG1 mRNA after exposure to Cu and Cd for 96 h was significantly up-regulated at 0.1 μg/L and then remarkably reduced in a dose-dependent manner. Their transcript levels did not change at low dose (0.1 and 1 μg/L) but were dose-dependently down-regulated at high dose (10 and 100 μg/L). These findings suggest that H(2)O(2), UV-B, and heavy metals induce oxidative stress and generate oxidatively damaged DNA. Consequently, the enhanced TJ-OGG1 gene expression would be associated with active involvement of TJ-OGG1

  9. Regulation of expression of N-methylpurine DNA glycosylase in human mammary epithelial cells: role of transcription factor AP-2.

    PubMed

    Cerda, S R; Chu, S S; Garcia, P; Chung, J; Grumet, J D; Thimmapaya, B; Weitzman, S A

    1999-11-01

    The DNA repair enzyme, N-methylpurine DNA glyclosylase (MPG), is overexpressed in breast cancer as compared with its expression in normal breast epithelial cells. In an effort to determine the mechanism responsible for this difference in expression, we studied rates and regulation of transcription of the MPG gene in normal (HMEC), spontaneously immortalized (MCF10A), and malignant (T47D) mammary epithelial cells. Steady state levels of MPG mRNA are 3-4-fold greater in T47D cells than in MCF10A cells. Nuclear "run-off" transcription measurements revealed MPG transcription rates to be approximately 3-fold greater in the tumor cells than in normal cells. Characterization of the MPG promoter by deletion analysis and transient transfection experiments revealed that all basal promoter activity resided between nucleotides -227 and -81 upstream from the ATG translation start site. Constructs containing this region were expressed at 4-fold greater levels when transfected into malignant T47D cells (56 x baseline) than in MCF10A cells (14 x baseline). Computer database analysis of the region of nucleotides -227 to -81 revealed multiple overlapping Sp1 consensus binding sites and two overlapping consensus AP-2 binding sites located between bases -181 and -169. Electrophoretic mobility shift assays indicated that while Sp1 bound this region of the promoter, nuclear extracts from both cell types contained equal Sp1 binding activity. In contrast, AP-2 binding activity was significantly greater in T47D cells, and Western blots confirmed increased AP-2 protein levels in these cells. Cotransfection into MCF10A cells of the MPG promoter construct and an AP-2 expression plasmid increased MPG promoter activity 2.1-fold. Cotransfection of a dominant negative mutant of AP-2 into T47D cells reduced the extent of MPG promoter-driven transcription by 50%. To investigate the functional significance of the two overlapping AP-2 consensus binding sites, each site was mutated separately

  10. Compromised incision of oxidized pyrimidines in liver mitochondria of mice deficient in NTH1 and OGG1 glycosylases.

    PubMed

    Karahalil, Bensu; de Souza-Pinto, Nadja C; Parsons, Jason L; Elder, Rhoderick H; Bohr, Vilhelm A

    2003-09-01

    Mitochondrial DNA is constantly exposed to high levels of endogenously produced reactive oxygen species, resulting in elevated levels of oxidative damaged DNA bases. A large spectrum of DNA base alterations can be detected after oxidative stress, and many of these are highly mutagenic. Thus, an efficient repair of these is necessary for survival. Some of the DNA repair pathways involved have been characterized, but others are not yet determined. A DNA repair activity for thymine glycol and other oxidized pyrimidines has been described in mammalian mitochondria, but the nature of the glycosylases involved in this pathway remains unclear. The generation of mouse strains lacking murine thymine glycol-DNA glycosylase (mNTH1) and/or murine 8-oxoguanine-DNA glycosylase (mOGG1), the two major DNA N-glycosylase/apurinic/apyrimidinic (AP) lyases involved in the repair of oxidative base damage in the nucleus, has provided very useful biological model systems for the study of the function of these and other glycosylases in mitochondrial DNA repair. In this study, mouse liver mitochondrial extracts were generated from mNTH1-, mOGG1-, and [mNTH1, mOGG1]-deficient mice to ascertain the role of each of these glycosylases in the repair of oxidized pyrimidine base damage. We also characterized for the first time the incision of various modified bases in mitochondrial extracts from a double-knock-out [mNTH1, mOGG1]-deficient mouse. We show that mNTH1 is responsible for the repair of thymine glycols in mitochondrial DNA, whereas other glycosylase/AP lyases also participate in removing other oxidized pyrimidines, such as 5-hydroxycytosine and 5-hydroxyuracil. We did not detect a backup glycosylase or glycosylase/AP lyase activity for thymine glycol in the mitochondrial mouse extracts.

  11. Crystal structure of the mismatch-specific thymine glycosylase domain of human methyl-CpG-binding protein MBD4.

    PubMed

    Zhang, Wei; Liu, Zhonglai; Crombet, Lissete; Amaya, Maria F; Liu, Yanli; Zhang, Xiaoru; Kuang, Wenhua; Ma, Pengtao; Niu, Liping; Qi, Chao

    2011-09-01

    Methyl-CpG (mCpG) binding domain protein 4 (MBD4) is a member of mammalian DNA glycosylase superfamily. It contains an amino-proximal methyl-CpG binding domain (MBD) and a C-terminal mismatch-specific glycosylase domain, which is an important molecule believed to be involved in maintaining of genome stability. Herein, we determined the crystal structure of C-terminal glycosylase domain of human MBD4. And the structural alignments of other helix-hairpin-helix (HhH) DNA glycosylases show that the human MBD4 glycosylase domain has the similar active site and the catalytic mechanisms as others. But the different residues in the N-terminal of domain result in the change of charge distribution on the surface of the protein, which suggest the different roles that may relate some diseases. PMID:21820404

  12. Advanced uracil DNA glycosylase-supplemented real-time reverse transcription loop-mediated isothermal amplification (UDG-rRT-LAMP) method for universal and specific detection of Tembusu virus.

    PubMed

    Tang, Yi; Chen, Hao; Diao, Youxiang

    2016-06-07

    Tembusu virus (TMUV) is a mosquito-borne flavivirus which threatens both poultry production and public health. In this study we developed a complete open reading frame alignment-based rRT-LAMP method for the universal detection of TUMV. To prevent false-positive results, the reaction was supplemented with uracil DNA glycosylase (UDG) to eliminate carryover contamination. The detection limit of the newly developed UDG-rRT-LAMP for TMUV was as low as 100 copies/reaction of viral RNA and 1 × 10(0.89) - 1 × 10(1.55) tissue culture infectious dose/100 μL of viruses. There were no cross-reactions with other viruses, and the reproducibility of the assay was confirmed by intra- and inter-assay tests with variability ranging from 0.22-3.33%. The new UDG-rRT-LAMP method for TMUV produced the same results as viral isolation combined with RT-PCR as the "gold standard" in 96.88% of cases for 81 clinical samples from subjects with suspected TMUV infection. The addition of UDG can eliminate as much as 1 × 10(-16) g/reaction of contaminants, which can significantly reduce the likelihood of false-positive results during the rRT-LAMP reaction. Our result indicated that our UDG-rRT-LAMP is a rapid, sensitive, specific, and reliable method that can effectively prevent carryover contamination in the detection of TMUV.

  13. Advanced uracil DNA glycosylase-supplemented real-time reverse transcription loop-mediated isothermal amplification (UDG-rRT-LAMP) method for universal and specific detection of Tembusu virus

    PubMed Central

    Tang, Yi; Chen, Hao; Diao, Youxiang

    2016-01-01

    Tembusu virus (TMUV) is a mosquito-borne flavivirus which threatens both poultry production and public health. In this study we developed a complete open reading frame alignment-based rRT-LAMP method for the universal detection of TUMV. To prevent false-positive results, the reaction was supplemented with uracil DNA glycosylase (UDG) to eliminate carryover contamination. The detection limit of the newly developed UDG-rRT-LAMP for TMUV was as low as 100 copies/reaction of viral RNA and 1 × 100.89 − 1 × 101.55 tissue culture infectious dose/100 μL of viruses. There were no cross-reactions with other viruses, and the reproducibility of the assay was confirmed by intra- and inter-assay tests with variability ranging from 0.22–3.33%. The new UDG-rRT-LAMP method for TMUV produced the same results as viral isolation combined with RT-PCR as the “gold standard” in 96.88% of cases for 81 clinical samples from subjects with suspected TMUV infection. The addition of UDG can eliminate as much as 1 × 10−16 g/reaction of contaminants, which can significantly reduce the likelihood of false-positive results during the rRT-LAMP reaction. Our result indicated that our UDG-rRT-LAMP is a rapid, sensitive, specific, and reliable method that can effectively prevent carryover contamination in the detection of TMUV. PMID:27270462

  14. Gas-Phase Studies of Formamidopyrimidine Glycosylase (Fpg) Substrates.

    PubMed

    Kiruba, G S M; Xu, Jiahui; Zelikson, Victoria; Lee, Jeehiun K

    2016-03-01

    Gas-phase thermochemical properties (tautomerism, acidity, and proton affinity) have been measured and calculated for a series of nucleobase derivatives that have not heretofore been examined under vacuum. The studied species are substrates for the enzyme formamidopyrimidine glycosylase (Fpg), which cleaves damaged nucleobases from DNA. The gas-phase results are compared and contrasted to solution-phase data, to afford insight into the Fpg mechanism. Calculations are also used to probe the energetics of various possible mechanisms and to predict isotope effects that could potentially allow for discrimination between different mechanisms. Specifically, (18) O substitution at the ribose O4' is predicted to result in a normal kinetic isotope effect (KIE) for a ring-opening "endocyclic" mechanism and an inverse KIE for a direct base excision "exocyclic" pathway.

  15. Gas-Phase Studies of Formamidopyrimidine Glycosylase (Fpg) Substrates.

    PubMed

    Kiruba, G S M; Xu, Jiahui; Zelikson, Victoria; Lee, Jeehiun K

    2016-03-01

    Gas-phase thermochemical properties (tautomerism, acidity, and proton affinity) have been measured and calculated for a series of nucleobase derivatives that have not heretofore been examined under vacuum. The studied species are substrates for the enzyme formamidopyrimidine glycosylase (Fpg), which cleaves damaged nucleobases from DNA. The gas-phase results are compared and contrasted to solution-phase data, to afford insight into the Fpg mechanism. Calculations are also used to probe the energetics of various possible mechanisms and to predict isotope effects that could potentially allow for discrimination between different mechanisms. Specifically, (18) O substitution at the ribose O4' is predicted to result in a normal kinetic isotope effect (KIE) for a ring-opening "endocyclic" mechanism and an inverse KIE for a direct base excision "exocyclic" pathway. PMID:26894440

  16. Expression of human oxoguanine glycosylase 1 or formamidopyrimidine glycosylase in human embryonic kidney 293 cells exacerbates methylmercury toxicity in vitro

    SciTech Connect

    Ondovcik, Stephanie L.; Preston, Thomas J.; McCallum, Gordon P.; Wells, Peter G.

    2013-08-15

    Exposure to methylmercury (MeHg) acutely at high levels, or via chronic low-level dietary exposure from daily fish consumption, can lead to adverse neurological effects in both the adult and developing conceptus. To determine the impact of variable DNA repair capacity, and the role of reactive oxygen species (ROS) and oxidatively damaged DNA in the mechanism of toxicity, transgenic human embryonic kidney (HEK) 293 cells that stably express either human oxoguanine glycosylase 1 (hOgg1) or its bacterial homolog, formamidopyrimidine glycosylase (Fpg), which primarily repair the oxidative lesion 8-oxo-2′-deoxyguanosine (8-oxodG), were used to assess the in vitro effects of MeHg. Western blotting confirmed the expression of hOgg1 or Fpg in both the nuclear and mitochondrial compartments of their respective cell lines. Following acute (1–2 h) incubations with 0–10 μM MeHg, concentration-dependent decreases in clonogenic survival and cell growth accompanied concentration-dependent increases in lactate dehydrogenase (LDH) release, ROS formation, 8-oxodG levels and apurinic/apyrimidinic (AP) sites, consistent with the onset of cytotoxicity. Paradoxically, hOgg1- and Fpg-expressing HEK 293 cells were more sensitive than wild-type cells stably transfected with the empty vector control to MeHg across all cellular and biochemical parameters, exhibiting reduced clonogenic survival and cell growth, and increased LDH release and DNA damage. Accordingly, upregulation of specific components of the base excision repair (BER) pathway may prove deleterious potentially due to the absence of compensatory enhancement of downstream processes to repair toxic intermediary abasic sites. Thus, interindividual variability in DNA repair activity may constitute an important risk factor for environmentally-initiated, oxidatively damaged DNA and its pathological consequences. - Highlights: • hOgg1 and Fpg repair oxidatively damaged DNA. • hOgg1- and Fpg-expressing cells are more

  17. MutY-glycosylase: an overview on mutagenesis and activities beyond the GO system.

    PubMed

    de Oliveira, Ana Helena Sales; da Silva, Acarízia Eduardo; de Oliveira, Iuri Marques; Henriques, João Antônio Pegas; Agnez-Lima, Lucymara Fassarella

    2014-11-01

    MutY is a glycosylase known for its role in DNA base excision repair (BER). It is critically important in the prevention of DNA mutations derived from 7,8-dihydro-8-oxoguanine (8-oxoG), which are the major lesions resulting from guanine oxidation. MutY has been described as a DNA repair enzyme in the GO system responsible for removing adenine residues misincorporated in 8-oxoG:A mispairs, avoiding G:C to T:A mutations. Further studies have shown that this enzyme binds to other mispairs, interacts with several enzymes, avoids different transversions/transitions in DNA, and is involved in different repair pathways. Additional activities have been reported for MutY, such as the repair of replication errors in newly synthesized DNA strands through its glycosylase activity. Moreover, MutY is a highly conserved enzyme present in several prokaryotic and eukaryotic organisms. MutY defects are associated with a hereditary colorectal cancer syndrome termed MUTYH-associated polyposis (MAP). Here, we have reviewed the roles of MutY in the repair of mispaired bases in DNA as well as its activities beyond the GO system.

  18. Chloroethyinitrosourea-derived ethano cytosine and adenine adducts are substrates for escherichia coli glycosylases excising analogous etheno adducts

    SciTech Connect

    Guliaev, Anton B.; Singer, B.; Hang, Bo

    2004-05-05

    Exocyclic ethano DNA adducts are saturated etheno ring derivatives formed mainly by therapeutic chloroethylnitrosoureas (CNUs), which are also mutagenic and carcinogenic. In this work, we report that two of the ethano adducts, 3,N{sup 4}-ethanocytosine (EC) and 1,N{sup 6}-ethanoadenine (EA), are novel substrates for the Escherichia coli mismatch-specific uracil-DNA glycosylase (Mug) and 3-methyladenine DNA glycosylase II (AlkA), respectively. It has been shown previously that Mug excises 3,N{sup 4}-ethenocytosine ({var_epsilon}C) and AlkA releases 1,N{sup 6}-ethenoadenine ({var_epsilon}A). Using synthetic oligonucleotides containing a single ethano or etheno adduct, we found that both glycosylases had a {approx}20-fold lower excision activity toward EC or EA than that toward their structurally analogous {var_epsilon}C or {var_epsilon}A adduct. Both enzymes were capable of excising the ethano base paired with any of the four natural bases, but with varying efficiencies. The Mug activity toward EC could be stimulated by E. coli endonuclease IV and, more efficiently, by exonuclease III. Molecular dynamics (MD) simulations showed similar structural features of the etheno and ethano derivatives when present in DNA duplexes. However, also as shown by MD, the stacking interaction between the EC base and Phe 30 in the Mug active site is reduced as compared to the {var_epsilon}C base, which could account for the lower EC activity observed in this study.

  19. Adenine Glycosylase MutY of Corynebacterium pseudotuberculosis presents the antimutator phenotype and evidences of glycosylase/AP lyase activity in vitro.

    PubMed

    de Faria, Rafael Cançado; Vila-Nova, Liliane Gonçalves; Bitar, Mainá; Resende, Bruno Carvalho; Arantes, Larissa Sousa; Rebelato, Arnaldo Basso; Azevedo, Vasco Ariston Carvalho; Franco, Glória Regina; Machado, Carlos Renato; Santos, Luciana Lara Dos; de Oliveira Lopes, Débora

    2016-10-01

    Corynebacterium pseudotuberculosis is the etiological agent of caseous lymphadenitis, a disease that predominantly affects small ruminants, causing significant economic losses worldwide. As a facultative intracellular pathogen, this bacterium is exposed to an environment rich in reactive oxygen species (ROS) within macrophages. To ensure its genetic stability, C. pseudotuberculosis relies on efficient DNA repair pathways for excision of oxidative damage such as 8-oxoguanine, a highly mutagenic lesion. MutY is an adenine glycosylase involved in adenine excision from 8-oxoG:A mismatches avoiding genome mutation incorporation. The purpose of this study was to characterize MutY protein from C. pseudotuberculosis and determine its involvement with DNA repair. In vivo functional complementation assay employing mutY gene deficient Escherichia coli transformed with CpmutY showed a 13.5-fold reduction in the rate of spontaneous mutation, compared to cells transformed with empty vector. Also, under oxidative stress conditions, CpMutY protein favored the growth of mutY deficient E. coli, relative to the same strain in the absence of CpMutY. To demonstrate the involvement of this enzyme in recognition and excision of 8-oxoguanine lesion, an in vitro assay was performed. CpMutY protein was capable of recognizing and excising 8-oxoG:A but not 8-oxoG:C presenting evidences of glycosylase/AP lyase activity in vitro. In silico structural characterization revealed the presence of preserved motifs related to the MutY activity on DNA repair, such as catalytic residues involved in glycosylase/AP lyase activity and structural DNA-binding elements, such as the HhH motif and the [4Fe-4S] cluster. The three-dimensional structure of CpMutY, generated by comparative modeling, exhibits a catalytic domain very similar to that of E. coli MutY. Taken together, these results indicate that the CpmutY encodes a functional protein homologous to MutY from E. coli and is involved in the prevention of

  20. Adenine Glycosylase MutY of Corynebacterium pseudotuberculosis presents the antimutator phenotype and evidences of glycosylase/AP lyase activity in vitro.

    PubMed

    de Faria, Rafael Cançado; Vila-Nova, Liliane Gonçalves; Bitar, Mainá; Resende, Bruno Carvalho; Arantes, Larissa Sousa; Rebelato, Arnaldo Basso; Azevedo, Vasco Ariston Carvalho; Franco, Glória Regina; Machado, Carlos Renato; Santos, Luciana Lara Dos; de Oliveira Lopes, Débora

    2016-10-01

    Corynebacterium pseudotuberculosis is the etiological agent of caseous lymphadenitis, a disease that predominantly affects small ruminants, causing significant economic losses worldwide. As a facultative intracellular pathogen, this bacterium is exposed to an environment rich in reactive oxygen species (ROS) within macrophages. To ensure its genetic stability, C. pseudotuberculosis relies on efficient DNA repair pathways for excision of oxidative damage such as 8-oxoguanine, a highly mutagenic lesion. MutY is an adenine glycosylase involved in adenine excision from 8-oxoG:A mismatches avoiding genome mutation incorporation. The purpose of this study was to characterize MutY protein from C. pseudotuberculosis and determine its involvement with DNA repair. In vivo functional complementation assay employing mutY gene deficient Escherichia coli transformed with CpmutY showed a 13.5-fold reduction in the rate of spontaneous mutation, compared to cells transformed with empty vector. Also, under oxidative stress conditions, CpMutY protein favored the growth of mutY deficient E. coli, relative to the same strain in the absence of CpMutY. To demonstrate the involvement of this enzyme in recognition and excision of 8-oxoguanine lesion, an in vitro assay was performed. CpMutY protein was capable of recognizing and excising 8-oxoG:A but not 8-oxoG:C presenting evidences of glycosylase/AP lyase activity in vitro. In silico structural characterization revealed the presence of preserved motifs related to the MutY activity on DNA repair, such as catalytic residues involved in glycosylase/AP lyase activity and structural DNA-binding elements, such as the HhH motif and the [4Fe-4S] cluster. The three-dimensional structure of CpMutY, generated by comparative modeling, exhibits a catalytic domain very similar to that of E. coli MutY. Taken together, these results indicate that the CpmutY encodes a functional protein homologous to MutY from E. coli and is involved in the prevention of

  1. Structure and stereochemistry of the base excision repair glycosylase MutY reveal a mechanism similar to retaining glycosidases

    PubMed Central

    Woods, Ryan D.; O'Shea, Valerie L.; Chu, Aurea; Cao, Sheng; Richards, Jody L.; Horvath, Martin P.; David, Sheila S.

    2016-01-01

    MutY adenine glycosylases prevent DNA mutations by excising adenine from promutagenic 8-oxo-7,8-dihydroguanine (OG):A mismatches. Here, we describe structural features of the MutY active site bound to an azaribose transition state analog which indicate a catalytic role for Tyr126 and approach of the water nucleophile on the same side as the departing adenine base. The idea that Tyr126 participates in catalysis, recently predicted by modeling calculations, is strongly supported by mutagenesis and by seeing close contact between the hydroxyl group of this residue and the azaribose moiety of the transition state analog. NMR analysis of MutY methanolysis products corroborates a mechanism for adenine removal with retention of stereochemistry. Based on these results, we propose a revised mechanism for MutY that involves two nucleophilic displacement steps akin to the mechanisms accepted for ‘retaining’ O-glycosidases. This new-for-MutY yet familiar mechanism may also be operative in related base excision repair glycosylases and provides a critical framework for analysis of human MutY (MUTYH) variants associated with inherited colorectal cancer. PMID:26673696

  2. Structure and stereochemistry of the base excision repair glycosylase MutY reveal a mechanism similar to retaining glycosidases.

    PubMed

    Woods, Ryan D; O'Shea, Valerie L; Chu, Aurea; Cao, Sheng; Richards, Jody L; Horvath, Martin P; David, Sheila S

    2016-01-29

    MutY adenine glycosylases prevent DNA mutations by excising adenine from promutagenic 8-oxo-7,8-dihydroguanine (OG):A mismatches. Here, we describe structural features of the MutY active site bound to an azaribose transition state analog which indicate a catalytic role for Tyr126 and approach of the water nucleophile on the same side as the departing adenine base. The idea that Tyr126 participates in catalysis, recently predicted by modeling calculations, is strongly supported by mutagenesis and by seeing close contact between the hydroxyl group of this residue and the azaribose moiety of the transition state analog. NMR analysis of MutY methanolysis products corroborates a mechanism for adenine removal with retention of stereochemistry. Based on these results, we propose a revised mechanism for MutY that involves two nucleophilic displacement steps akin to the mechanisms accepted for 'retaining' O-glycosidases. This new-for-MutY yet familiar mechanism may also be operative in related base excision repair glycosylases and provides a critical framework for analysis of human MutY (MUTYH) variants associated with inherited colorectal cancer. PMID:26673696

  3. Enforced Presentation of an Extrahelical Guanine to the Lesion Recognition Pocket of Human 8-Oxoguanine Glycosylase, hOGG1

    SciTech Connect

    Crenshaw, Charisse M.; Nam, Kwangho; Oo, Kimberly; Kutchukian, Peter S.; Bowman, Brian R.; Karplus, Martin; Verdine, Gregory L.

    2012-09-05

    A poorly understood aspect of DNA repair proteins is their ability to identify exceedingly rare sites of damage embedded in a large excess of nearly identical undamaged DNA, while catalyzing repair only at the damaged sites. Progress toward understanding this problem has been made by comparing the structures and biochemical behavior of these enzymes when they are presented with either a target lesion or a corresponding undamaged nucleobase. Trapping and analyzing such DNA-protein complexes is particularly difficult in the case of base extrusion DNA repair proteins because of the complexity of the repair reaction, which involves extrusion of the target base from DNA followed by its insertion into the active site where glycosidic bond cleavage is catalyzed. Here we report the structure of a human 8-oxoguanine (oxoG) DNA glycosylase, hOGG1, in which a normal guanine from DNA has been forcibly inserted into the enzyme active site. Although the interactions of the nucleobase with the active site are only subtly different for G versus oxoG, hOGG1 fails to catalyze excision of the normal nucleobase. This study demonstrates that even if hOGG1 mistakenly inserts a normal base into its active site, the enzyme can still reject it on the basis of catalytic incompatibility.

  4. Effect of 8-oxoguanine glycosylase deficiency on aflatoxin B1 tumourigenicity in mice

    PubMed Central

    Mulder, Jeanne E.; Turner, Patricia V.; Massey, Thomas E.

    2015-01-01

    The mycotoxin aflatoxin B1 (AFB1) may initiate cancer by causing oxidatively damaged DNA, specifically by causing 8-oxo-7,8-dihydro-2’-deoxyguanosine (8-oxodG) lesions. Base excision repair removes these lesions, with 8-oxoguanine glycosylase (OGG1) being the rate-limiting enzyme. The aim of this study was to determine the effect of ogg1 deficiency on AFB1-induced oxidatively damaged DNA and tumourigenesis. Female wild-type, heterozygous and homozygous ogg1 null mice were given a single dose of 50mg/kg AFB1 or 40 µl dimethyl sulfoxide (DMSO) ip. Neither ogg1 genotype nor AFB1 treatment affected levels of oxidised guanine in lung or liver 2h post-treatment. AFB1-treated ogg1 null mice showed exacerbated weight loss and mortality relative to DMSO-treated ogg1 null mice, but AFB1 treatment did not significantly increase lung or liver tumour incidence compared with controls, regardless of ogg1 genotype. Suspect lung masses from three of the AFB1-treated mice were adenomas, and masses from two of the mice were osteosarcomas. No osteosarcomas were observed in DMSO-treated mice. All liver masses from AFB1-treated mice were adenomas, and one also contained a hepatocellular carcinoma. In DNA from the lung tumours, the K-ras mutation pattern was inconsistent with initiation by AFB1. In conclusion, ogg1 status did not have a significant effect on AFB1-induced oxidatively damaged DNA or tumourigenesis, but deletion of one or both alleles of ogg1 did increase susceptibility to other aspects of AFB1 toxicity. PMID:25583175

  5. Uracil excision by endogenous SMUG1 glycosylase promotes efficient Ig class switching and impacts on A:T substitutions during somatic mutation.

    PubMed

    Dingler, Felix A; Kemmerich, Kristin; Neuberger, Michael S; Rada, Cristina

    2014-07-01

    Excision of uracil introduced into the immunoglobulin loci by AID is central to antibody diversification. While predominantly carried out by the UNG uracil-DNA glycosylase as reflected by deficiency in immunoglobulin class switching in Ung(-/-) mice, the deficiency is incomplete, as evidenced by the emergence of switched IgG in the serum of Ung(-/-) mice. Lack of switching in mice deficient in both UNG and MSH2 suggested that mismatch repair initiated a backup pathway. We now show that most of the residual class switching in Ung(-/-) mice depends upon the endogenous SMUG1 uracil-DNA glycosylase, with in vitro switching to IgG1 as well as serum IgG3, IgG2b, and IgA greatly diminished in Ung(-/-) Smug1(-/-) mice, and that Smug1 partially compensates for Ung deficiency over time. Nonetheless, using a highly MSH2-dependent mechanism, Ung(-/-) Smug1(-/-) mice can still produce detectable levels of switched isotypes, especially IgG1. While not affecting the pattern of base substitutions, SMUG1 deficiency in an Ung(-/-) background further reduces somatic hypermutation at A:T base pairs. Our data reveal an essential requirement for uracil excision in class switching and in facilitating noncanonical mismatch repair for the A:T phase of hypermutation presumably by creating nicks near the U:G lesion recognized by MSH2.

  6. Active DNA Demethylation in Plants and Animals

    PubMed Central

    Zhang, H.; Zhu, J.-K.

    2013-01-01

    Active DNA demethylation regulates many vital biological processes, including early development and locus-specific gene expression in plants and animals. In Arabidopsis, bifunctional DNA glycosylases directly excise the 5-methylcytosine base and then cleave the DNA backbone at the abasic site. Recent evidence suggests that mammals utilize DNA glycosylases after 5-methylcytosine is oxidized and/or deaminated. In both cases, the resultant single-nucleotide gap is subsequently filled with an unmodified cytosine through the DNA base excision repair pathway. The enzymatic removal of 5-methylcytosine is tightly integrated with histone modifications and possibly noncoding RNAs. Future research will increase our understanding of the mechanisms and critical roles of active DNA demethylation in various cellular processes as well as inspire novel genetic and chemical therapies for epigenetic disorders. PMID:23197304

  7. Catalysts of DNA Strand Cleavage at Apurinic/Apyrimidinic Sites

    PubMed Central

    Minko, Irina G.; Jacobs, Aaron C.; de Leon, Arnie R.; Gruppi, Francesca; Donley, Nathan; Harris, Thomas M.; Rizzo, Carmelo J.; McCullough, Amanda K.; Lloyd, R. Stephen

    2016-01-01

    Apurinic/apyrimidinic (AP) sites are constantly formed in cellular DNA due to instability of the glycosidic bond, particularly at purines and various oxidized, alkylated, or otherwise damaged nucleobases. AP sites are also generated by DNA glycosylases that initiate DNA base excision repair. These lesions represent a significant block to DNA replication and are extremely mutagenic. Some DNA glycosylases possess AP lyase activities that nick the DNA strand at the deoxyribose moiety via a β- or β,δ-elimination reaction. Various amines can incise AP sites via a similar mechanism, but this non-enzymatic cleavage typically requires high reagent concentrations. Herein, we describe a new class of small molecules that function at low micromolar concentrations as both β- and β,δ-elimination catalysts at AP sites. Structure-activity relationships have established several characteristics that appear to be necessary for the formation of an iminium ion intermediate that self-catalyzes the elimination at the deoxyribose ring. PMID:27363485

  8. Catalysts of DNA Strand Cleavage at Apurinic/Apyrimidinic Sites.

    PubMed

    Minko, Irina G; Jacobs, Aaron C; de Leon, Arnie R; Gruppi, Francesca; Donley, Nathan; Harris, Thomas M; Rizzo, Carmelo J; McCullough, Amanda K; Lloyd, R Stephen

    2016-01-01

    Apurinic/apyrimidinic (AP) sites are constantly formed in cellular DNA due to instability of the glycosidic bond, particularly at purines and various oxidized, alkylated, or otherwise damaged nucleobases. AP sites are also generated by DNA glycosylases that initiate DNA base excision repair. These lesions represent a significant block to DNA replication and are extremely mutagenic. Some DNA glycosylases possess AP lyase activities that nick the DNA strand at the deoxyribose moiety via a β- or β,δ-elimination reaction. Various amines can incise AP sites via a similar mechanism, but this non-enzymatic cleavage typically requires high reagent concentrations. Herein, we describe a new class of small molecules that function at low micromolar concentrations as both β- and β,δ-elimination catalysts at AP sites. Structure-activity relationships have established several characteristics that appear to be necessary for the formation of an iminium ion intermediate that self-catalyzes the elimination at the deoxyribose ring. PMID:27363485

  9. DNA repair of oxidative DNA damage in human carcinogenesis

    PubMed Central

    Paz-Elizur, Tamar; Sevilya, Ziv; Leitner-Dagan, Yael; Elinger, Dalia; Roisman, Laila; Livneh, Zvi

    2008-01-01

    Efficient DNA repair mechanisms comprise a critical component in the protection against human cancer, as indicated by the high predisposition to cancer of individuals with germ-line mutations in DNA repair genes. This includes biallelic germ-line mutations in the MUYH gene, encoding a DNA glycosylase that is involved in the repair of oxidative DNA damage, which strongly predispose humans to a rare hereditary form of colorectal cancer. Extensive research efforts including biochemical, enzymological and genetic studies in model organisms established that the oxidative DNA lesion 8-oxoguanine is mutagenic, and that several DNA repair mechanisms operate to prevent its potentially mutagenic and carcinogenic outcome. Epidemiological studies on the association with sporadic cancers of single nucleotide polymorphisms in genes such as OGG1, involved in the repair of 8-oxoguanine yielded conflicting results, and suggest a minor effect at best. A new approach based on the functional analysis of DNA repair enzymatic activity showed that reduced activity of 8-oxoguanine DNA glycosylase (OGG) is a risk factor in lung and head and neck cancer. Moreover, the combination of smoking and low OGG activity was associated with a higher risk, suggesting a potential strategy for risk assessment and prevention of lung cancer, as well as other types of cancer. PMID:18374480

  10. Repair of DNA treated with. gamma. -irradiation and chemical carcinogens. Progress report, March 15, 1979-March 15, 1980

    SciTech Connect

    Goldthwait, D.A.

    1980-01-01

    The identification and purification of 3-methyladenine glycosylase from the cell nuclei of rat liver was completed. The characterization of 7-methylguanine N-glycosylase activity in E. coli is currently under investigation. Alkylated DNA in chromatin structures as a substrate for 3-methyladenine N-glycosylase is discussed. An enzyme from E. coli and mammalian tissue active on 2,6-diamino-4-hydroxy-5-N-methyldormamido-pyrimide is isolated and characterized. Studies are proceeding on the correlation of x-ray sensitivity with removal of alkylated bases from DNA in x-ray sensitive and x-ray resistant lines of lymphoma cells. The reaction of ..beta..-propiolactone with derivatives of adenine and with DNA is discussed.

  11. Base excision DNA repair in the embryonic development of the sea urchin, Strongylocentrotus intermedius.

    PubMed

    Torgasheva, Natalya A; Menzorova, Natalya I; Sibirtsev, Yurii T; Rasskazov, Valery A; Zharkov, Dmitry O; Nevinsky, Georgy A

    2016-06-21

    In actively proliferating cells, such as the cells of the developing embryo, DNA repair is crucial for preventing the accumulation of mutations and synchronizing cell division. Sea urchin embryo growth was analyzed and extracts were prepared. The relative activity of DNA polymerase, apurinic/apyrimidinic (AP) endonuclease, uracil-DNA glycosylase, 8-oxoguanine-DNA glycosylase, and other glycosylases was analyzed using specific oligonucleotide substrates of these enzymes; the reaction products were resolved by denaturing 20% polyacrylamide gel electrophoresis. We have characterized the profile of several key base excision repair activities in the developing embryos (2 blastomers to mid-pluteus) of the grey sea urchin, Strongylocentrotus intermedius. The uracil-DNA glycosylase specific activity sharply increased after blastula hatching, whereas the specific activity of 8-oxoguanine-DNA glycosylase steadily decreased over the course of the development. The AP-endonuclease activity gradually increased but dropped at the last sampled stage (mid-pluteus 2). The DNA polymerase activity was high at the first cleavage division and then quickly decreased, showing a transient peak at blastula hatching. It seems that the developing sea urchin embryo encounters different DNA-damaging factors early in development within the protective envelope and later as a free-floating larva, with hatching necessitating adaptation to the shift in genotoxic stress conditions. No correlation was observed between the dynamics of the enzyme activities and published gene expression data from developing congeneric species, S. purpuratus. The results suggest that base excision repair enzymes may be regulated in the sea urchin embryos at the level of covalent modification or protein stability.

  12. Base excision DNA repair in the embryonic development of the sea urchin, Strongylocentrotus intermedius.

    PubMed

    Torgasheva, Natalya A; Menzorova, Natalya I; Sibirtsev, Yurii T; Rasskazov, Valery A; Zharkov, Dmitry O; Nevinsky, Georgy A

    2016-06-21

    In actively proliferating cells, such as the cells of the developing embryo, DNA repair is crucial for preventing the accumulation of mutations and synchronizing cell division. Sea urchin embryo growth was analyzed and extracts were prepared. The relative activity of DNA polymerase, apurinic/apyrimidinic (AP) endonuclease, uracil-DNA glycosylase, 8-oxoguanine-DNA glycosylase, and other glycosylases was analyzed using specific oligonucleotide substrates of these enzymes; the reaction products were resolved by denaturing 20% polyacrylamide gel electrophoresis. We have characterized the profile of several key base excision repair activities in the developing embryos (2 blastomers to mid-pluteus) of the grey sea urchin, Strongylocentrotus intermedius. The uracil-DNA glycosylase specific activity sharply increased after blastula hatching, whereas the specific activity of 8-oxoguanine-DNA glycosylase steadily decreased over the course of the development. The AP-endonuclease activity gradually increased but dropped at the last sampled stage (mid-pluteus 2). The DNA polymerase activity was high at the first cleavage division and then quickly decreased, showing a transient peak at blastula hatching. It seems that the developing sea urchin embryo encounters different DNA-damaging factors early in development within the protective envelope and later as a free-floating larva, with hatching necessitating adaptation to the shift in genotoxic stress conditions. No correlation was observed between the dynamics of the enzyme activities and published gene expression data from developing congeneric species, S. purpuratus. The results suggest that base excision repair enzymes may be regulated in the sea urchin embryos at the level of covalent modification or protein stability. PMID:27158700

  13. 3CAPS – a structural AP–site analogue as a tool to investigate DNA base excision repair

    PubMed Central

    Schuermann, David; Scheidegger, Simon P.; Weber, Alain R.; Bjørås, Magnar; Leumann, Christian J.; Schär, Primo

    2016-01-01

    Abasic sites (AP-sites) are frequent DNA lesions, arising by spontaneous base hydrolysis or as intermediates of base excision repair (BER). The hemiacetal at the anomeric centre renders them chemically reactive, which presents a challenge to biochemical and structural investigation. Chemically more stable AP-site analogues have been used to avoid spontaneous decay, but these do not fully recapitulate the features of natural AP–sites. With its 3′–phosphate replaced by methylene, the abasic site analogue 3CAPS was suggested to circumvent some of these limitations. Here, we evaluated the properties of 3CAPS in biochemical BER assays with mammalian proteins. 3CAPS-containing DNA substrates were processed by APE1, albeit with comparably poor efficiency. APE1-cleaved 3CAPS can be extended by DNA polymerase β but repaired only by strand displacement as the 5′–deoxyribophosphate (dRP) cannot be removed. DNA glycosylases physically and functionally interact with 3CAPS substrates, underlining its structural integrity and biochemical reactivity. The AP lyase activity of bifunctional DNA glycosylases (NTH1, NEIL1, FPG), however, was fully inhibited. Notably, 3CAPS-containing DNA also effectively inhibited the activity of bifunctional glycosylases on authentic substrates. Hence, the chemically stable 3CAPS with its preserved hemiacetal functionality is a potent tool for BER research and a potential inhibitor of bifunctional DNA glycosylases. PMID:26733580

  14. An Unprecedented Nucleic Acid Capture Mechanism for Excision of DNA Damage

    PubMed Central

    Rubinson, Emily H.; Gowda, A.S. Prakasha; Spratt, Thomas E.; Gold, Barry; Eichman, Brandt F.

    2014-01-01

    DNA glycosylases that remove alkylated and deaminated purine nucleobases are essential DNA repair enzymes that protect the genome, and at the same time confound cancer alkylation therapy, by excising cytotoxic N3-methyladenine bases formed by DNA targeting anticancer compounds. The basis for glycosylase specificity toward N3- and N7-alkylpurines is believed to result from intrinsic instability of the modified bases and not from direct enzyme functional group chemistry. Here, we present crystal structures of the recently discovered Bacillus cereus AlkD glycosylase in complex with DNAs containing alkylated, mismatched, and abasic nucleotides. Unlike other glycosylases, AlkD captures the extrahelical lesion in a solvent-exposed orientation, providing the first illustration for how hydrolysis of N3- and N7-alkylated bases may be facilitated by increased lifetime out of the DNA helix. The structures and supporting biochemical analysis of base flipping and catalysis reveal how AlkD’s HEAT-repeats distort the DNA backbone to detect non-Watson-Crick base pairs without duplex intercalation. PMID:20927102

  15. An unprecedented nucleic acid capture mechanism for excision of DNA damage

    SciTech Connect

    Rubinson, Emily H.; Prakasha Gowda, A.S.; Spratt, Thomas E.; Gold, Barry; Eichmanbrand, Brandt F.

    2010-11-18

    DNA glycosylases that remove alkylated and deaminated purine nucleobases are essential DNA repair enzymes that protect the genome, and at the same time confound cancer alkylation therapy, by excising cytotoxic N3-methyladenine bases formed by DNA-targeting anticancer compounds. The basis for glycosylase specificity towards N3- and N7-alkylpurines is believed to result from intrinsic instability of the modified bases and not from direct enzyme functional group chemistry. Here we present crystal structures of the recently discovered Bacillus cereus AlkD glycosylase in complex with DNAs containing alkylated, mismatched and abasic nucleotides. Unlike other glycosylases, AlkD captures the extrahelical lesion in a solvent-exposed orientation, providing an illustration for how hydrolysis of N3- and N7-alkylated bases may be facilitated by increased lifetime out of the DNA helix. The structures and supporting biochemical analysis of base flipping and catalysis reveal how the HEAT repeats of AlkD distort the DNA backbone to detect non-Watson-Crick base pairs without duplex intercalation.

  16. Listeria monocytogenes DNA glycosylase AdiP affects flagellar motility, biofilm formation, virulence, and stress responses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The temperature-dependent alteration of flagellar motility gene expression is critical for the foodborne pathogen Listeria monocytogenes to respond to a changing environment. In this study, a genetic determinant, L. monocytogenes f2365_0220 (lmof2365_0220), encoding a putative protein that is struct...

  17. DNA.

    ERIC Educational Resources Information Center

    Felsenfeld, Gary

    1985-01-01

    Structural form, bonding scheme, and chromatin structure of and gene-modification experiments with deoxyribonucleic acid (DNA) are described. Indicates that DNA's double helix is variable and also flexible as it interacts with regulatory and other molecules to transfer hereditary messages. (DH)

  18. Conformational Dynamics of DNA Repair by Escherichia coli Endonuclease III*

    PubMed Central

    Kuznetsov, Nikita A.; Kladova, Olga A.; Kuznetsova, Alexandra A.; Ishchenko, Alexander A.; Saparbaev, Murat K.; Zharkov, Dmitry O.; Fedorova, Olga S.

    2015-01-01

    Escherichia coli endonuclease III (Endo III or Nth) is a DNA glycosylase with a broad substrate specificity for oxidized or reduced pyrimidine bases. Endo III possesses two types of activities: N-glycosylase (hydrolysis of the N-glycosidic bond) and AP lyase (elimination of the 3′-phosphate of the AP-site). We report a pre-steady-state kinetic analysis of structural rearrangements of the DNA substrates and uncleavable ligands during their interaction with Endo III. Oligonucleotide duplexes containing 5,6-dihydrouracil, a natural abasic site, its tetrahydrofuran analog, and undamaged duplexes carried fluorescent DNA base analogs 2-aminopurine and 1,3-diaza-2-oxophenoxazine as environment-sensitive reporter groups. The results suggest that Endo III induces several fast sequential conformational changes in DNA during binding, lesion recognition, and adjustment to a catalytically competent conformation. A comparison of two fluorophores allowed us to distinguish between the events occurring in the damaged and undamaged DNA strand. Combining our data with the available structures of Endo III, we conclude that this glycosylase uses a multistep mechanism of damage recognition, which likely involves Gln41 and Leu81 as DNA lesion sensors. PMID:25869130

  19. Finding and Producing Probiotic Glycosylases for the Biocatalysis of Ginsenosides: A Mini Review.

    PubMed

    Ku, Seockmo

    2016-01-01

    Various microorganisms have been widely applied in nutraceutical industries for the processing of phytochemical conversion. Specifically, in the Asian food industry and academia, notable attention is paid to the biocatalytic process of ginsenosides (ginseng saponins) using probiotic bacteria that produce high levels of glycosyl-hydrolases. Multiple groups have conducted experiments in order to determine the best conditions to produce more active and stable enzymes, which can be applicable to produce diverse types of ginsenosides for commercial applications. In this sense, there are various reviews that cover the biofunctional effects of multiple types of ginsenosides and the pathways of ginsenoside deglycosylation. However, little work has been published on the production methods of probiotic enzymes, which is a critical component of ginsenoside processing. This review aims to investigate current preparation methods, results on the discovery of new glycosylases, the application potential of probiotic enzymes and their use for biocatalysis of ginsenosides in the nutraceutical industry. PMID:27196878

  20. Removal of deaminated cytosines and detection of in vivo methylation in ancient DNA.

    PubMed

    Briggs, Adrian W; Stenzel, Udo; Meyer, Matthias; Krause, Johannes; Kircher, Martin; Pääbo, Svante

    2010-04-01

    DNA sequences determined from ancient organisms have high error rates, primarily due to uracil bases created by cytosine deamination. We use synthetic oligonucleotides, as well as DNA extracted from mammoth and Neandertal remains, to show that treatment with uracil-DNA-glycosylase and endonuclease VIII removes uracil residues from ancient DNA and repairs most of the resulting abasic sites, leaving undamaged parts of the DNA fragments intact. Neandertal DNA sequences determined with this protocol have greatly increased accuracy. In addition, our results demonstrate that Neandertal DNA retains in vivo patterns of CpG methylation, potentially allowing future studies of gene inactivation and imprinting in ancient organisms.

  1. Removal of deaminated cytosines and detection of in vivo methylation in ancient DNA.

    PubMed

    Briggs, Adrian W; Stenzel, Udo; Meyer, Matthias; Krause, Johannes; Kircher, Martin; Pääbo, Svante

    2010-04-01

    DNA sequences determined from ancient organisms have high error rates, primarily due to uracil bases created by cytosine deamination. We use synthetic oligonucleotides, as well as DNA extracted from mammoth and Neandertal remains, to show that treatment with uracil-DNA-glycosylase and endonuclease VIII removes uracil residues from ancient DNA and repairs most of the resulting abasic sites, leaving undamaged parts of the DNA fragments intact. Neandertal DNA sequences determined with this protocol have greatly increased accuracy. In addition, our results demonstrate that Neandertal DNA retains in vivo patterns of CpG methylation, potentially allowing future studies of gene inactivation and imprinting in ancient organisms. PMID:20028723

  2. DNA

    ERIC Educational Resources Information Center

    Stent, Gunther S.

    1970-01-01

    This history for molecular genetics and its explanation of DNA begins with an analysis of the Golden Jubilee essay papers, 1955. The paper ends stating that the higher nervous system is the one major frontier of biological inquiry which still offers some romance of research. (Author/VW)

  3. Probing the DNA structural requirements for facilitated diffusion.

    PubMed

    Hedglin, Mark; Zhang, Yaru; O'Brien, Patrick J

    2015-01-20

    DNA glycosylases perform a genome-wide search to locate damaged nucleotides among a great excess of undamaged nucleotides. Many glycosylases are capable of facilitated diffusion, whereby multiple sites along the DNA are sampled during a single binding encounter. Electrostatic interactions between positively charged amino acids and the negatively charged phosphate backbone are crucial for facilitated diffusion, but the extent to which diffusing proteins rely on the double-helical structure DNA is not known. Kinetic assays were used to probe the DNA searching mechanism of human alkyladenine DNA glycosylase (AAG) and to test the extent to which diffusion requires B-form duplex DNA. Although AAG excises εA lesions from single-stranded DNA, it is not processive on single-stranded DNA because dissociation is faster than N-glycosidic bond cleavage. However, the AAG complex with single-stranded DNA is sufficiently stable to allow for DNA annealing when a complementary strand is added. This observation provides evidence of nonspecific association of AAG with single-stranded DNA. Single-strand gaps, bubbles, and bent structures do not impede the search by AAG. Instead, these flexible or bent structures lead to the capture of a nearby site of damage that is more efficient than that of a continuous B-form duplex. The ability of AAG to negotiate these helix discontinuities is inconsistent with a sliding mode of diffusion but can be readily explained by a hopping mode that involves microscopic dissociation and reassociation. These experiments provide evidence of relatively long-range hops that allow a searching protein to navigate around DNA binding proteins that would serve as obstacles to a sliding protein.

  4. OGG1 is essential in oxidative stress induced DNA demethylation.

    PubMed

    Zhou, Xiaolong; Zhuang, Ziheng; Wang, Wentao; He, Lingfeng; Wu, Huan; Cao, Yan; Pan, Feiyan; Zhao, Jing; Hu, Zhigang; Sekhar, Chandra; Guo, Zhigang

    2016-09-01

    DNA demethylation is an essential cellular activity to regulate gene expression; however, the mechanism that triggers DNA demethylation remains unknown. Furthermore, DNA demethylation was recently demonstrated to be induced by oxidative stress without a clear molecular mechanism. In this manuscript, we demonstrated that 8-oxoguanine DNA glycosylase-1 (OGG1) is the essential protein involved in oxidative stress-induced DNA demethylation. Oxidative stress induced the formation of 8-oxoguanine (8-oxoG). We found that OGG1, the 8-oxoG binding protein, promotes DNA demethylation by interacting and recruiting TET1 to the 8-oxoG lesion. Downregulation of OGG1 makes cells resistant to oxidative stress-induced DNA demethylation, while over-expression of OGG1 renders cells susceptible to DNA demethylation by oxidative stress. These data not only illustrate the importance of base excision repair (BER) in DNA demethylation but also reveal how the DNA demethylation signal is transferred to downstream DNA demethylation enzymes.

  5. DNA repair in bacterial cultures and plasmid DNA exposed to infrared laser for treatment of pain

    NASA Astrophysics Data System (ADS)

    Canuto, K. S.; Sergio, L. P. S.; Marciano, R. S.; Guimarães, O. R.; Polignano, G. A. C.; Geller, M.; Paoli, F.; Fonseca, A. S.

    2013-06-01

    Biostimulation of tissues by low intensity lasers has been described on a photobiological basis and clinical protocols are recommended for treatment of various diseases, but their effects on DNA are controversial. The objective of this work was to evaluate effects of low intensity infrared laser exposure on survival and bacterial filamentation in Escherichia coli cultures, and induction of DNA lesions in bacterial plasmids. In E. coli cultures and plasmids exposed to an infrared laser at fluences used to treat pain, bacterial survival and filamentation and DNA lesions in plasmids were evaluated by electrophoretic profile. Data indicate that the infrared laser (i) increases survival of E. coli wild type in 24 h of stationary growth phase, (ii) induces bacterial filamentation, (iii) does not alter topological forms of plasmids and (iv) does not alter the electrophoretic profile of plasmids incubated with exonuclease III or formamidopyrimidine DNA glycosylase. A low intensity infrared laser at the therapeutic fluences used to treat pain can alter survival of E. coli wild type, induce filamentation in bacterial cells, depending on physiologic conditions and DNA repair, and induce DNA lesions other than single or double DNA strand breaks or alkali-labile sites, which are not targeted by exonuclease III or formamidopyrimidine DNA glycosylase.

  6. Removal of deaminated cytosines and detection of in vivo methylation in ancient DNA

    PubMed Central

    Briggs, Adrian W.; Stenzel, Udo; Meyer, Matthias; Krause, Johannes; Kircher, Martin; Pääbo, Svante

    2010-01-01

    DNA sequences determined from ancient organisms have high error rates, primarily due to uracil bases created by cytosine deamination. We use synthetic oligonucleotides, as well as DNA extracted from mammoth and Neandertal remains, to show that treatment with uracil–DNA–glycosylase and endonuclease VIII removes uracil residues from ancient DNA and repairs most of the resulting abasic sites, leaving undamaged parts of the DNA fragments intact. Neandertal DNA sequences determined with this protocol have greatly increased accuracy. In addition, our results demonstrate that Neandertal DNA retains in vivo patterns of CpG methylation, potentially allowing future studies of gene inactivation and imprinting in ancient organisms. PMID:20028723

  7. Comparative Effects of Ions, Molecular Crowding, and Bulk DNA on the Damage Search Mechanisms of hOGG1 and hUNG.

    PubMed

    Cravens, Shannen L; Stivers, James T

    2016-09-20

    The energetic nature of the interactions of DNA base excision repair glycosylases with undamaged and damaged DNA and the nuclear environment are expected to significantly impact the time it takes for these enzymes to search for damaged DNA bases. In particular, the high concentration of monovalent ions, macromolecule crowding, and densely packed DNA chains in the cell nucleus could alter the search mechanisms of these enzymes as compared to findings in dilute buffers typically used in in vitro experiments. Here we utilize an in vitro system where the concerted effects of monovalent ions, macromolecular crowding, and high concentrations of bulk DNA chains on the activity of two paradigm human DNA glycosylases can be determined. We find that the energetic nature of the observed binding free energies of human 8-oxoguanine DNA glycosylase (hOGG1) and human uracil DNA glycosylase (hUNG) for undamaged DNA are derived from different sources. Although hOGG1 uses primarily nonelectrostatic binding interactions with nonspecific DNA, hUNG uses a salt-dependent electrostatic binding mode. Both enzymes turn to a nonelectrostatic mode in their specific complexes with damaged bases in DNA, which enhances damage site specificity at physiological ion concentrations. Neither enzyme was capable of efficiently locating and removing their respective damaged bases in the combined presence of physiological ions and a bulk DNA chain density approximating that found in the nucleus. However, the addition of an inert crowding agent to mimic macromolecular crowding in the nucleus largely restored their ability to track DNA chains and locate damaged sites. These findings suggest how the concerted action of monovalent ions and crowding could contribute to efficient DNA damage recognition in cells. PMID:27571472

  8. Comparative Effects of Ions, Molecular Crowding, and Bulk DNA on the Damage Search Mechanisms of hOGG1 and hUNG.

    PubMed

    Cravens, Shannen L; Stivers, James T

    2016-09-20

    The energetic nature of the interactions of DNA base excision repair glycosylases with undamaged and damaged DNA and the nuclear environment are expected to significantly impact the time it takes for these enzymes to search for damaged DNA bases. In particular, the high concentration of monovalent ions, macromolecule crowding, and densely packed DNA chains in the cell nucleus could alter the search mechanisms of these enzymes as compared to findings in dilute buffers typically used in in vitro experiments. Here we utilize an in vitro system where the concerted effects of monovalent ions, macromolecular crowding, and high concentrations of bulk DNA chains on the activity of two paradigm human DNA glycosylases can be determined. We find that the energetic nature of the observed binding free energies of human 8-oxoguanine DNA glycosylase (hOGG1) and human uracil DNA glycosylase (hUNG) for undamaged DNA are derived from different sources. Although hOGG1 uses primarily nonelectrostatic binding interactions with nonspecific DNA, hUNG uses a salt-dependent electrostatic binding mode. Both enzymes turn to a nonelectrostatic mode in their specific complexes with damaged bases in DNA, which enhances damage site specificity at physiological ion concentrations. Neither enzyme was capable of efficiently locating and removing their respective damaged bases in the combined presence of physiological ions and a bulk DNA chain density approximating that found in the nucleus. However, the addition of an inert crowding agent to mimic macromolecular crowding in the nucleus largely restored their ability to track DNA chains and locate damaged sites. These findings suggest how the concerted action of monovalent ions and crowding could contribute to efficient DNA damage recognition in cells.

  9. Sensitivity to methylmercury toxicity is enhanced in oxoguanine glycosylase 1 knockout murine embryonic fibroblasts and is dependent on cellular proliferation capacity

    SciTech Connect

    Ondovcik, Stephanie L.; Tamblyn, Laura; McPherson, John Peter; Wells, Peter G.

    2013-07-01

    Methylmercury (MeHg) is a persistent environmental contaminant with potent neurotoxic action for which the underlying molecular mechanisms remain to be conclusively delineated. Our objectives herein were twofold: first, to corroborate our previous findings of an increased sensitivity of spontaneously-immortalized oxoguanine glycosylase 1-null (Ogg1{sup −/−}) murine embryonic fibroblasts (MEFs) to MeHg through generation of Simian virus 40 (SV40) large T antigen-immortalized wild-type and Ogg1{sup −/−} MEFs; and second, to determine whether MeHg toxicity is proliferation-dependent. As with the spontaneously-immortalized cells used previously, the SV40 large T antigen-immortalized cells exhibited similar tendencies to undergo MeHg-initiated cell cycle arrest, with increased sensitivity in the Ogg1{sup −/−} MEFs as measured by clonogenic survival and DNA damage. Compared to exponentially growing cells, those seeded at a higher density exhibited compromised proliferation, which proved protective against MeHg-mediated cell cycle arrest and induction of DNA double strand breaks (DSBs), measured by phosphorylation of the core histone H2A variant (H2AX) on serine 139 (γH2AX), and by its functional confirmation by micronucleus assessment. This enhanced sensitivity of Ogg1{sup −/−} MEFs to MeHg toxicity using discrete SV40 immortalization corroborates our previous studies, and suggests a novel role for OGG1 in minimizing MeHg-initiated DNA lesions that trigger replication-associated DSBs. Furthermore, proliferative capacity may determine MeHg toxicity in vivo and in utero. Accordingly, variations in cellular proliferative capacity and interindividual variability in repair activity may modulate the risk of toxicological consequences following MeHg exposure. - Highlights: • SV40 large T antigen-immortalized Ogg1{sup −/−} cells are more sensitive to MeHg. • Sensitivity to MeHg is dependent on cellular proliferation capacity. • OGG1 maintains genomic

  10. Human endonuclease VIII-like (NEIL) proteins in the giant DNA Mimivirus

    PubMed Central

    Bandaru, Viswanath; Zhao, Xiaobei; Newton, Michael R.; Burrows, Cynthia J.; Wallace, Susan S.

    2007-01-01

    Endonuclease VIII (Nei), which recognizes and repairs oxidized pyrimidines in the Base Excision Repair (BER) pathway, is sparsely distributed among both the prokaryotes and eukaryotes. Recently, we and others identified three homologs of E. coli endonuclease VIII-like (NEIL) proteins in humans. Here, we report identification of human NEIL homologs in Mimivirus, a giant DNA virus that infects Acanthamoeba. Characterization of the two mimiviral homologs, MvNei1 and MvNei2, showed that they share not only sequence homology but also substrate specificity to the human NEIL proteins, that is, they recognize oxidized pyrimidines in duplex DNA and in bubble substrates and as well show 5′2-deoxyribose-5-phosphate lyase (dRP lyase) activity. However, unlike MvNei1 and the human NEIL proteins, MvNei2 preferentially cleaves oxidized pyrimidines in single stranded DNA forming products with a different end chemistry. Interestingly, opposite base specificity of MvNei1 resembles human NEIL proteins for pyrimidine base damages whereas it resembles E. coli formamidopyrimidine DNA glycosylase (Fpg) for guanidinohydantoin (Gh), an oxidation product of 8-oxoguanine. Finally, a conserved arginine residue in the “zincless finger” motif, previously identified in human NEIL1, is required for the DNA glycosylase activity of MvNeil. Thus, Mimivirus represents the first example of a virus to carry oxidative DNA glycosylases with substrate specificities that resemble human NEIL proteins. Based on the sequence homology to the human NEIL homologs and novel bacterial NEIL homologs identified here, we predict that Mimivirus may have acquired the DNA glycosylases through the host-mediated lateral transfer from either a bacterium or from vertebrates. PMID:17627905

  11. Tautomerization-dependent recognition and excision of oxidation damage in base-excision DNA repair.

    PubMed

    Zhu, Chenxu; Lu, Lining; Zhang, Jun; Yue, Zongwei; Song, Jinghui; Zong, Shuai; Liu, Menghao; Stovicek, Olivia; Gao, Yi Qin; Yi, Chengqi

    2016-07-12

    NEIL1 (Nei-like 1) is a DNA repair glycosylase guarding the mammalian genome against oxidized DNA bases. As the first enzymes in the base-excision repair pathway, glycosylases must recognize the cognate substrates and catalyze their excision. Here we present crystal structures of human NEIL1 bound to a range of duplex DNA. Together with computational and biochemical analyses, our results suggest that NEIL1 promotes tautomerization of thymine glycol (Tg)-a preferred substrate-for optimal binding in its active site. Moreover, this tautomerization event also facilitates NEIL1-catalyzed Tg excision. To our knowledge, the present example represents the first documented case of enzyme-promoted tautomerization for efficient substrate recognition and catalysis in an enzyme-catalyzed reaction. PMID:27354518

  12. Tautomerization-dependent recognition and excision of oxidation damage in base-excision DNA repair.

    PubMed

    Zhu, Chenxu; Lu, Lining; Zhang, Jun; Yue, Zongwei; Song, Jinghui; Zong, Shuai; Liu, Menghao; Stovicek, Olivia; Gao, Yi Qin; Yi, Chengqi

    2016-07-12

    NEIL1 (Nei-like 1) is a DNA repair glycosylase guarding the mammalian genome against oxidized DNA bases. As the first enzymes in the base-excision repair pathway, glycosylases must recognize the cognate substrates and catalyze their excision. Here we present crystal structures of human NEIL1 bound to a range of duplex DNA. Together with computational and biochemical analyses, our results suggest that NEIL1 promotes tautomerization of thymine glycol (Tg)-a preferred substrate-for optimal binding in its active site. Moreover, this tautomerization event also facilitates NEIL1-catalyzed Tg excision. To our knowledge, the present example represents the first documented case of enzyme-promoted tautomerization for efficient substrate recognition and catalysis in an enzyme-catalyzed reaction.

  13. Molecular genetic and biochemical analyses of a DNA repair gene from Serratia marcescens

    SciTech Connect

    Murphy, K.E.

    1989-01-01

    In Escherichia coli, the SOS response and two 3-methyladenine DNA glycosylases (TagI and TagII) are required for repair of DNA damaged by alkylating agents such as methyl methanesulfonate (MMS). Mutations of the recA gene eliminate the SOS response. TagI and TagII are encoded by the tag and alkA genes, respectively. A gene (rpr) encoding 3-methyladenine DNA glycosylase activity was isolated from the Gram-negative bacterium Serratia marcescens. The gene, localized to a 1.5-kilobase pair SmaI-HindIII restriction fragment, was cloned into plasmid pUC18. The clone complemented E. coli tag alkA and recA mutations for MMS resistance. The rpr gene did not, however, complement recA mutations for resistance to ultraviolet light or the ability to perform homologous recombination reactions, nor did it complement E. coli ada or alkB mutations. Two proteins of molecular weights 42,000 and 16,000 were produced from the rpr locus. Analysis of deletion and insertion mutants of rpr suggested that the 42kD molecule is the active protein. The 16kD protein may either be a breakdown product of the 42kD species or may be encoded by another gene overlapping the reading frame of the rpr gene. Biochemical assays showed that the rpr gene product (Rpr) possesses 3-methyladenine DNA glycosylase activity.

  14. The action of glycosylases on dopachrome (2-carboxy-2,3-dihydroindole-5,6-quinone) tautomerase.

    PubMed Central

    Aroca, P; Martinez-Liarte, J H; Solano, F; García-Borrón, J C; Lozano, J A

    1992-01-01

    It is shown that dopachrome (2-carboxy-2,3-dihydroindole-5,6-quinone) tautomerase (DCT) is a glycoprotein containing N-linked oligosaccharides. The enzymic activity can be stimulated by partial deglycosylation with a number of glycosylases such as neuraminidase, beta-mannosidase and beta-galactosidase. However, the stability of the enzyme after the hydrolytic treatment becomes lower. Thus total deglycosylation with peptide N-glycosidase F directly provokes an inactivation of DCT. The native enzyme also shows a strong affinity for concanavalin A-Sepharose. This affinity decreases after treatment with neuraminidase and/or beta-mannosidase. The DCT associated with coated vesicles seems to be mostly glycosylated, since the action of glycosylases on the enzyme obtained from these vesicles produced a similar stimulation to that with the melanosomal enzyme. Treatment of cultured melanocytes with tunicamycin elicited a decrease in the amount of active DCT inside the cells. All data suggest that the structure of the carbohydrate moiety of DCT should be very similar to, if not identical with, the structure proposed for tyrosinase by Ohkura, Yamashita, Mishima & Kobata (1984) Arch. Biochem. Biophys. 235, 63-77. Images Fig. 1. PMID:1599391

  15. A potential impact of DNA repair on ageing and lifespan in the ageing model organism Podospora anserina: decrease in mitochondrial DNA repair activity during ageing.

    PubMed

    Soerensen, Mette; Gredilla, Ricardo; Müller-Ohldach, Mathis; Werner, Alexandra; Bohr, Vilhelm A; Osiewacz, Heinz D; Stevnsner, Tinna

    2009-08-01

    The free radical theory of ageing states that ROS play a key role in age-related decrease in mitochondrial function via the damage of mitochondrial DNA (mtDNA), proteins and lipids. In the sexually reproducing ascomycete Podospora anserina ageing is, as in other eukaryotes, associated with mtDNA instability and mitochondrial dysfunction. Part of the mtDNA instabilities may arise due to accumulation of ROS induced mtDNA lesions, which, as previously suggested for mammals, may be caused by an age-related decrease in base excision repair (BER). Alignments of known BER protein sequences with the P. anserina genome revealed high homology. We report for the first time the presence of BER activities in P. anserina mitochondrial extracts. DNA glycosylase activities decrease with age, suggesting that the increased mtDNA instability with age may be caused by decreased ability to repair mtDNA damage and hence contribute to ageing and lifespan control in this ageing model. Additionally, we find low DNA glycosylase activities in the long-lived mutants grisea and DeltaPaCox17::ble, which are characterized by low mitochondrial ROS generation. Overall, our data identify a potential role of mtDNA repair in controlling ageing and life span in P. anserina, a mechanism possibly regulated in response to ROS levels.

  16. Microscopic mechanism of DNA damage searching by hOGG1.

    PubMed

    Rowland, Meng M; Schonhoft, Joseph D; McKibbin, Paige L; David, Sheila S; Stivers, James T

    2014-08-01

    The DNA backbone is often considered a track that allows long-range sliding of DNA repair enzymes in their search for rare damage sites in DNA. A proposed exemplar of DNA sliding is human 8-oxoguanine ((o)G) DNA glycosylase 1 (hOGG1), which repairs mutagenic (o)G lesions in DNA. Here we use our high-resolution molecular clock method to show that macroscopic 1D DNA sliding of hOGG1 occurs by microscopic 2D and 3D steps that masquerade as sliding in resolution-limited single-molecule images. Strand sliding was limited to distances shorter than seven phosphate linkages because attaching a covalent chemical road block to a single DNA phosphate located between two closely spaced damage sites had little effect on transfers. The microscopic parameters describing the DNA search of hOGG1 were derived from numerical simulations constrained by the experimental data. These findings support a general mechanism where DNA glycosylases use highly dynamic multidimensional diffusion paths to scan DNA.

  17. Differential age-related changes in mitochondrial DNA repair activities in mouse brain regions

    PubMed Central

    Gredilla, Ricardo; Garm, Christian; Holm, Rikke; Bohr, Vilhelm A.; Stevnsner, Tinna

    2008-01-01

    Aging in the brain is characterized by increased susceptibility to neuronal loss and functional decline, and mitochondrial DNA (mtDNA) mutations are thought to play an important role in these processes. Due to the proximity of mtDNA to the main sites of mitochondrial free radical generation, oxidative stress is a major source of DNA mutations in mitochondria. The base excision repair (BER) pathway removes oxidative lesions from mtDNA, thereby constituting an important mechanism to avoid accumulation of mtDNA mutations. The complexity of the brain implies that exposure and defence against oxidative stress varies among brain regions and hence some regions may be particularly prone to accumulation of mtDNA damages. In the current study we investigated the efficiency of the BER pathway throughout the murine lifespan in mitochondria from cortex and hippocampus, regions that are central in mammalian cognition, and which are severely affected during aging and in neurodegenerative diseases. A regional specific regulation of mitochondrial DNA repair activities was observed with aging. In cortical mitochondria, DNA glycosylase activities peaked at middle-age followed by a significant drop at old age. However, only minor changes were observed in hippocampal mitochondria during the whole lifespan of the animals. Furthermore, DNA glycosylase activities were lower in hippocampal than in cortical mitochondria. Mitochondrial AP endonuclease activity increased in old animals in both brain regions. Our data suggest an important regional specific regulation of mitochondrial BER during aging. PMID:18701195

  18. Selective enzymatic cleavage and labeling for sensitive capillary electrophoresis laser-induced fluorescence analysis of oxidized DNA bases.

    PubMed

    Li, Cuiping; Wang, Hailin

    2015-08-01

    Oxidatively generated DNA damage is considered to be a significant contributing factor to cancer, aging, and age-related human diseases. It is important to detect oxidatively generated DNA damage to understand and clinically diagnosis diseases caused by oxidative damage. In this study, using selective enzymatic cleavage and quantum dot (QD) labeling, we developed a novel capillary electrophoresis-laser induced fluorescence method for the sensitive detection of oxidized DNA bases. First, oxidized DNA bases are recognized and removed by one DNA base excision repair glycosylase, leaving apurinic and apyrimidinic sites (AP sites) at the oxidized positions. The AP sites are further excised by the AP nicking activity of the chosen glycosylase, generating a nucleotide gap with 5'- and 3'- phosphate groups. After dephosphorylation with one alkaline phosphatase, a biotinylated ddNTP is introduced into the nucleotide space within the DNA strand by DNA polymerase I. The biotin-tagged DNA is further labeled with a QD-streptavidin conjugate via non-covalent interactions. The DNA-bound QD is well-separated from excess DNA-unbound QD by highly efficient capillary electrophoresis and is sensitively detected by online coupled laser-induced fluorescence analysis. Using this method, we can assess the trace levels of oxidized DNA bases induced by the Fenton reaction and UV irradiation. Interestingly, the use of the formamidopyrimidine glycosylase (FPG) protein and endonuclease VIII enables the detection of oxidized purine and pyrimidine bases, respectively. Using the synthesized standard DNA, the approach has low limits of detection of 1.1×10(-19)mol in mass and 2.9pM in concentration.

  19. TGF-β triggers HBV cccDNA degradation through AID-dependent deamination.

    PubMed

    Qiao, Ying; Han, Xiaoxu; Guan, Gefei; Wu, Na; Sun, Jianbo; Pak, Vladimir; Liang, Guoxin

    2016-02-01

    The covalently closed circular DNA (cccDNA) of hepatitis B virus (HBV) is a viral center molecule for HBV infection and persistence. However, the cellular restriction factors of HBV cccDNA are not well understood. Here, we show that TGF-β can induce nuclear viral cccDNA degradation and hypermutation via activation-induced cytidine deaminase (AID) deamination activity in hepatocytes. This suppression by TGF-β is abrogated when AID or the activity of uracil-DNA glycosylase (UNG) is absent, which indicates that AID deamination and the UNG-mediated excision of uracil act in concert to degrade viral cccDNA. Moreover, the HBV core protein promotes the interaction between AID and viral cccDNA. Overall, our results indicate a novel molecular mechanism that allows cytokine TGF-β to restrict viral nuclear cccDNA in innate immunity, thereby suggesting a novel method for potentially eliminating cccDNA.

  20. The Mechanisms of Generation, Recognition, and Erasure of DNA 5-Methylcytosine and Thymine Oxidations*

    PubMed Central

    Hashimoto, Hideharu; Zhang, Xing; Vertino, Paula M.; Cheng, Xiaodong

    2015-01-01

    One of the most fundamental questions in the control of gene expression in mammals is how the patterns of epigenetic modifications of DNA are generated, recognized, and erased. This includes covalent cytosine methylation of DNA and its associated oxidation states. An array of AdoMet-dependent methyltransferases, Fe(II)- and α-ketoglutarate-dependent dioxygenases, base excision glycosylases, and sequence-specific transcription factors is responsible for changing, maintaining, and interpreting the modification status of specific regions of chromatin. This review focuses on recent developments in characterizing the functional and structural links between the modification status of two DNA bases 5-methylcytosine and thymine (5-methyluracil). PMID:26152719

  1. Methods for Efficient Elimination of Mitochondrial DNA from Cultured Cells

    PubMed Central

    Spadafora, Domenico; Kozhukhar, Nataliya; Chouljenko, Vladimir N.; Kousoulas, Konstantin G.; Alexeyev, Mikhail F.

    2016-01-01

    Here, we document that persistent mitochondria DNA (mtDNA) damage due to mitochondrial overexpression of the Y147A mutant uracil-N-glycosylase as well as mitochondrial overexpression of bacterial Exonuclease III or Herpes Simplex Virus protein UL12.5M185 can induce a complete loss of mtDNA (ρ0 phenotype) without compromising the viability of cells cultured in media supplemented with uridine and pyruvate. Furthermore, we use these observations to develop rapid, sequence-independent methods for the elimination of mtDNA, and demonstrate utility of these methods for generating ρ0 cells of human, mouse and rat origin. We also demonstrate that ρ0 cells generated by each of these three methods can serve as recipients of mtDNA in fusions with enucleated cells. PMID:27136098

  2. Mitochondrial and nuclear DNA-repair capacity of various brain regions in mouse is altered in an age-dependent manner.

    PubMed

    Imam, Syed Z; Karahalil, Bensu; Hogue, Barbara A; Souza-Pinto, Nadja C; Bohr, Vilhelm A

    2006-08-01

    Aging is associated with increased susceptibility to neuronal loss and disruption of cerebral function either as a component of senescence, or as a consequence of neurodegenerative disease or stroke. Here we report differential changes in the repair of oxidative DNA damage in various brain regions during aging. We evaluated mitochondrial and nuclear incision activities of oxoguanine DNA glycosylase (OGG1), uracil DNA glycosylase (UDG) and the endonuclease III homologue (NTH1) in the caudate nucleus (CN), frontal cortex (FC), hippocampus (Hip), cerebellum (CE) and brain stem (BS) of 6- and 18-month-old male C57Bl/6 mice. We observed a significant age-dependent decrease in incision activities of all three glycosylases in the mitochondria of all brain regions, whereas variable patterns of changes were seen in nuclei. No age- or region-specific changes were observed in the mitochondrial repair synthesis incorporation of uracil-initiated base-excision repair (BER). We did not observe any age or region dependent differences in levels of BER proteins among the five brain regions. In summary, our data suggest that a decreased efficiency of mitochondrial BER-glycosylases and increased oxidative damage to mitochondrial DNA might contribute to the normal aging process. These data provide a novel characterization of oxidative DNA damage processing in different brain regions implicated in various neurodegenerative disorders, and suggest that this process is regulated in an age-dependent manner. Manipulation of DNA repair mechanisms may provide a strategy to prevent neuronal loss during age-dependent neurodegenerative disorders. PMID:16005114

  3. A DNA 3′-phosphatase functions in active DNA demethylation in Arabidopsis

    PubMed Central

    Martínez-Macías, María Isabel; Qian, Weiqiang; Miki, Daisuke; Pontes, Olga; Liu, Yunhua; Tang, Kai; Liu, Renyi; Morales-Ruiz, Teresa; Ariza, Rafael R.; Roldán-Arjona, Teresa; Zhu, Jian-Kang

    2012-01-01

    SUMMARY DNA methylation is an important epigenetic mark established by the combined actions of methylation and demethylation reactions. Plants use a base excision repair pathway for active DNA demethylation. After 5-methylcytosine removal, the Arabidopsis DNA glycosylase/lyase ROS1 incises the DNA backbone and part of the product has a single-nucleotide gap flanked by 3′- and 5′-phosphate termini. Here we show that the DNA phosphatase ZDP removes the blocking 3′-phosphate, allowing subsequent DNA polymerization and ligation steps needed to complete the repair reactions. ZDP and ROS1 interact in vitro and co-localize in vivo in nucleoplasmic foci. Extracts from zdp mutant plants are unable to complete DNA demethylation in vitro, and the mutations cause DNA hypermethylation and transcriptional silencing of a reporter gene. Genome-wide methylation analysis in zdp mutant plants identified hundreds of hypermethylated endogenous loci. Our results show that ZDP functions downstream of ROS1 in one branch of the active DNA demethylation pathway. PMID:22325353

  4. TAT-mediated delivery of a DNA repair enzyme to skin cells rapidly initiates repair of UV-induced DNA damage

    PubMed Central

    Johnson, Jodi L.; Lowell, Brian C.; Ryabinina, Olga P.; Lloyd, R. Stephen; McCullough, Amanda K.

    2011-01-01

    Ultraviolet (UV) light causes DNA damage in skin cells, leading to more than one million cases of non-melanoma skin cancer diagnosed annually in the United States. Although human cells possess a mechanism (Nucleotide Excision Repair, NER) to repair UV-induced DNA damage, mutagenesis still occurs when DNA is replicated prior to repair of these photoproducts. While human cells have all the enzymes necessary to complete an alternate repair pathway, Base Excision Repair (BER), they lack a DNA glycosylase that can initiate BER of dipyrimidine photoproducts. Certain prokaryotes and viruses produce pyrimidine dimer-specific DNA glycosylases (pdgs) that initiate BER of cyclobutane pyrimidine dimers (CPDs), the predominant UV-induced lesions. Such a pdg was identified in the Chlorella virus PBCV-1 and termed Cv-pdg. The Cv-pdg protein was engineered to contain a nuclear localization sequence (NLS) and a membrane permeabilization peptide (TAT). Here, we demonstrate that the Cv-pdg-NLS-TAT protein was delivered to repair-proficient keratinocytes and fibroblasts, and to a human skin model, where it rapidly initiated removal of CPDs. These data suggest a potential strategy for prevention of human skin cancer. PMID:20927123

  5. Infrared laser effects at fluences used for treatment of dentin hypersensitivity on DNA repair in Escherichia coli and plasmids

    NASA Astrophysics Data System (ADS)

    Rocha Teixeira, Gleica; da Silva Marciano, Roberta; da Silva Sergio, Luiz Philippe; Castanheira Polignano, Giovanni Augusto; Roberto Guimarães, Oscar; Geller, Mauro; de Paoli, Flavia; de Souza da Fonseca, Adenilson

    2014-12-01

    Low-intensity infrared lasers are proposed in clinical protocols based on biostimulative effects, yet dosimetry is inaccurate and their effects on DNA at therapeutic doses are controversial. The aim of this work was to evaluate the effects of low-intensity infrared laser on survival and induction of filamentation of Escherichia coli cells, and induction of DNA lesions in bacterial plasmids. E. coli cultures were exposed to laser (808 nm, 100 mW, 40 and 60 J/cm2) to study bacterial survival and filamentation. Also, bacterial plasmids were exposed to laser to study DNA lesions by electrophoretic profile and action of DNA repair enzymes. Data indicate low-intensity infrared laser has no effect on survival of E. coli wild type and exonuclease III, but decreases the survival of formamidopyrimidine DNA glycosylase/MutM protein and endonuclease III deficient cells in stationary growth phase, induces bacterial filamentation, does not alter the electrophoretic profile of plasmids in agarose gels and does not alter the electrophoretic profile of plasmids incubated with endonuclease III, formamidopyrimidine DNA glycosylase/MutM protein and exonuclease III. Our findings show that low-intensity laser exposure causes DNA lesions at sub-lethal level and induces cellular mechanisms involved in repair of oxidative lesions in DNA. Studies about laser dosimetry and safety strategies are necessary for professionals and patients exposed to low-intensity lasers at therapeutic doses.

  6. Impact of ribonucleotide incorporation by DNA polymerases β and λ on oxidative base excision repair

    PubMed Central

    Crespan, Emmanuele; Furrer, Antonia; Rösinger, Marcel; Bertoletti, Federica; Mentegari, Elisa; Chiapparini, Giulia; Imhof, Ralph; Ziegler, Nathalie; Sturla, Shana J.; Hübscher, Ulrich; van Loon, Barbara; Maga, Giovanni

    2016-01-01

    Oxidative stress is a very frequent source of DNA damage. Many cellular DNA polymerases (Pols) can incorporate ribonucleotides (rNMPs) during DNA synthesis. However, whether oxidative stress-triggered DNA repair synthesis contributes to genomic rNMPs incorporation is so far not fully understood. Human specialized Pols β and λ are the important enzymes involved in the oxidative stress tolerance, acting both in base excision repair and in translesion synthesis past the very frequent oxidative lesion 7,8-dihydro-8-oxoguanine (8-oxo-G). We found that Pol β, to a greater extent than Pol λ can incorporate rNMPs opposite normal bases or 8-oxo-G, and with a different fidelity. Further, the incorporation of rNMPs opposite 8-oxo-G delays repair by DNA glycosylases. Studies in Pol β- and λ-deficient cell extracts suggest that Pol β levels can greatly affect rNMP incorporation opposite oxidative DNA lesions. PMID:26917111

  7. Calibration and storage of DNA competitors used for contamination-protected competitive PCR.

    PubMed

    Köhler, T; Rost, A K; Remke, H

    1997-10-01

    DNA fragments used as standards in competitive PCR were precisely calibrated using HPLC and commercially available DNA molecular mass markers. The accuracy of calibration was reflected by data that differed by only 2% from the mean when two independently purified and calibrated competitor preparations were compared. Highly dilute competitor solutions were stable at -20 degrees C for up to 1 year in the presence of carrier HindIII-digested lambda DNA, but progressive loss of competitor DNA with increasing storage time was observed when carrier DNA was omitted from the solution. Applying 0.2 U uracil-DNA glycosylase (UDG) per assay of remaining temperature-stable activity did not effect the ratios of synthesized products. This study describes quality management in PCR quantitation that is useful for the measurement of multidrug resistance-associated protein (MRP) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) gene transcripts.

  8. OGG1 is essential in oxidative stress induced DNA demethylation.

    PubMed

    Zhou, Xiaolong; Zhuang, Ziheng; Wang, Wentao; He, Lingfeng; Wu, Huan; Cao, Yan; Pan, Feiyan; Zhao, Jing; Hu, Zhigang; Sekhar, Chandra; Guo, Zhigang

    2016-09-01

    DNA demethylation is an essential cellular activity to regulate gene expression; however, the mechanism that triggers DNA demethylation remains unknown. Furthermore, DNA demethylation was recently demonstrated to be induced by oxidative stress without a clear molecular mechanism. In this manuscript, we demonstrated that 8-oxoguanine DNA glycosylase-1 (OGG1) is the essential protein involved in oxidative stress-induced DNA demethylation. Oxidative stress induced the formation of 8-oxoguanine (8-oxoG). We found that OGG1, the 8-oxoG binding protein, promotes DNA demethylation by interacting and recruiting TET1 to the 8-oxoG lesion. Downregulation of OGG1 makes cells resistant to oxidative stress-induced DNA demethylation, while over-expression of OGG1 renders cells susceptible to DNA demethylation by oxidative stress. These data not only illustrate the importance of base excision repair (BER) in DNA demethylation but also reveal how the DNA demethylation signal is transferred to downstream DNA demethylation enzymes. PMID:27251462

  9. Fluorogenic DNA ligase and base excision repair enzyme assays using substrates labeled with single fluorophores.

    PubMed

    Nikiforov, Theo T; Roman, Steven

    2015-05-15

    Continuing our work on fluorogenic substrates labeled with single fluorophores for nucleic acid modifying enzymes, here we describe the development of such substrates for DNA ligases and some base excision repair enzymes. These substrates are hairpin-type synthetic DNA molecules with a single fluorophore located on a base close to the 3' ends, an arrangement that results in strong fluorescence quenching. When such substrates are subjected to an enzymatic reaction, the position of the dyes relative to that end of the molecules is altered, resulting in significant fluorescence intensity changes. The ligase substrates described here were 5' phosphorylated and either blunt-ended or carrying short, self-complementary single-stranded 5' extensions. The ligation reactions resulted in the covalent joining of the ends of the molecules, decreasing the quenching effect of the terminal bases on the dyes. To generate fluorogenic substrates for the base excision repair enzymes formamido-pyrimidine-DNA glycosylase (FPG), human 8-oxo-G DNA glycosylase/AP lyase (hOGG1), endonuclease IV (EndoIV), and apurinic/apyrimidinic endonuclease (APE1), we introduced abasic sites or a modified nucleotide, 8-oxo-dG, at such positions that their enzymatic excision would result in the release of a short fluorescent fragment. This was also accompanied by strong fluorescence increases. Overall fluorescence changes ranged from approximately 4-fold (ligase reactions) to more than 20-fold (base excision repair reactions). PMID:25728944

  10. Synthesis and characterization of DNA minor groove binding alkylating agents.

    PubMed

    Iyer, Prema; Srinivasan, Ajay; Singh, Sreelekha K; Mascara, Gerard P; Zayitova, Sevara; Sidone, Brian; Fouquerel, Elise; Svilar, David; Sobol, Robert W; Bobola, Michael S; Silber, John R; Gold, Barry

    2013-01-18

    Derivatives of methyl 3-(1-methyl-5-(1-methyl-5-(propylcarbamoyl)-1H-pyrrol-3-ylcarbamoyl)-1H-pyrrol-3-ylamino)-3-oxopropane-1-sulfonate (1), a peptide-based DNA minor groove binding methylating agent, were synthesized and characterized. In all cases, the N-terminus was appended with an O-methyl sulfonate ester, while the C-terminus group was varied with nonpolar and polar side chains. In addition, the number of pyrrole rings was varied from 2 (dipeptide) to 3 (tripeptide). The ability of the different analogues to efficiently generate N3-methyladenine was demonstrated as was their selectivity for minor groove (N3-methyladenine) versus major groove (N7-methylguanine) methylation. Induced circular dichroism studies were used to measure the DNA equilibrium binding properties of the stable sulfone analogues; the tripeptide binds with affinity that is >10-fold higher than that of the dipeptide. The toxicities of the compounds were evaluated in alkA/tag glycosylase mutant E. coli and in human WT glioma cells and in cells overexpressing and under-expressing N-methylpurine-DNA glycosylase, which excises N3-methyladenine from DNA. The results show that equilibrium binding correlates with the levels of N3-methyladenine produced and cellular toxicity. The toxicity of 1 was inversely related to the expression of MPG in both the bacterial and mammalian cell lines. The enhanced toxicity parallels the reduced activation of PARP and the diminished rate of formation of aldehyde reactive sites observed in the MPG knockdown cells. It is proposed that unrepaired N3-methyladenine is toxic due to its ability to directly block DNA polymerization.

  11. Synthesis and Characterization of DNA Minor Groove Binding Alkylating Agents

    PubMed Central

    Iyer, Prema; Srinivasan, Ajay; Singh, Sreelekha K.; Mascara, Gerard P.; Zayitova, Sevara; Sidone, Brian; Fouquerel, Elise; Svilar, David; Sobol, Robert W.; Bobola, Michael S.; Silber, John R.; Gold, Barry

    2012-01-01

    Derivatives of methyl 3-(1-methyl-5-(1-methyl-5-(propylcarbamoyl)-1H-pyrrol-3-ylcarbamoyl)-1H-pyrrol-3-ylamino)-3-oxopropane-1-sulfonate (1), a peptide-based DNA minor groove binding methylating agent, were synthesized and characterized. In all cases the N-terminus was appended with a O-methyl sulfonate ester while the C-terminus group was varied with non-polar and polar sidechains. In addition, the number of pyrrole rings was varied from 2 (dipeptide) to 3 (tripeptide). The ability of the different analogues to efficiently generate N3-methyladenine was demonstrated as was their selectivity for minor groove (N3-methyladenine) vs. major groove (N7-methylguanine) methylation. Induced circular dichroism studies were used to measure the DNA equilibrium binding properties of the stable sulfone analogues; the tripeptide binds with affinity that is > 10-fold higher than the dipeptide. The toxicities of the compounds were evaluated in alkA/tag glycosylase mutant E. coli and in human WT glioma cells and in cells over-expressing and under-expressing N-methylpurine-DNA glycosylase, which excises N3-methyladenine from DNA. The results show that equilibrium binding correlates with the levels of N3-methyladenine produced and cellular toxicity. The toxicity of 1 was inversely related to expression of MPG in both the bacterial and mammalian cell lines. The enhanced toxicity parallels the reduced activation of PARP and diminished rate of formation of aldehyde reactive sites observed in the MPG knockdown cells. It is proposed that unrepaired N3-methyladenine is toxic due to its ability to directly block DNA polymerization. PMID:23234400

  12. Synthesis and characterization of DNA minor groove binding alkylating agents.

    PubMed

    Iyer, Prema; Srinivasan, Ajay; Singh, Sreelekha K; Mascara, Gerard P; Zayitova, Sevara; Sidone, Brian; Fouquerel, Elise; Svilar, David; Sobol, Robert W; Bobola, Michael S; Silber, John R; Gold, Barry

    2013-01-18

    Derivatives of methyl 3-(1-methyl-5-(1-methyl-5-(propylcarbamoyl)-1H-pyrrol-3-ylcarbamoyl)-1H-pyrrol-3-ylamino)-3-oxopropane-1-sulfonate (1), a peptide-based DNA minor groove binding methylating agent, were synthesized and characterized. In all cases, the N-terminus was appended with an O-methyl sulfonate ester, while the C-terminus group was varied with nonpolar and polar side chains. In addition, the number of pyrrole rings was varied from 2 (dipeptide) to 3 (tripeptide). The ability of the different analogues to efficiently generate N3-methyladenine was demonstrated as was their selectivity for minor groove (N3-methyladenine) versus major groove (N7-methylguanine) methylation. Induced circular dichroism studies were used to measure the DNA equilibrium binding properties of the stable sulfone analogues; the tripeptide binds with affinity that is >10-fold higher than that of the dipeptide. The toxicities of the compounds were evaluated in alkA/tag glycosylase mutant E. coli and in human WT glioma cells and in cells overexpressing and under-expressing N-methylpurine-DNA glycosylase, which excises N3-methyladenine from DNA. The results show that equilibrium binding correlates with the levels of N3-methyladenine produced and cellular toxicity. The toxicity of 1 was inversely related to the expression of MPG in both the bacterial and mammalian cell lines. The enhanced toxicity parallels the reduced activation of PARP and the diminished rate of formation of aldehyde reactive sites observed in the MPG knockdown cells. It is proposed that unrepaired N3-methyladenine is toxic due to its ability to directly block DNA polymerization. PMID:23234400

  13. Persistent damage induces mitochondrial DNA degradation.

    PubMed

    Shokolenko, Inna N; Wilson, Glenn L; Alexeyev, Mikhail F

    2013-07-01

    Considerable progress has been made recently toward understanding the processes of mitochondrial DNA (mtDNA) damage and repair. However, a paucity of information still exists regarding the physiological effects of persistent mtDNA damage. This is due, in part, to experimental difficulties associated with targeting mtDNA for damage, while sparing nuclear DNA. Here, we characterize two systems designed for targeted mtDNA damage based on the inducible (Tet-ON) mitochondrial expression of the bacterial enzyme, exonuclease III, and the human enzyme, uracil-N-glyosylase containing the Y147A mutation. In both systems, damage was accompanied by degradation of mtDNA, which was detectable by 6h after induction of mutant uracil-N-glycosylase and by 12h after induction of exoIII. Unexpectedly, increases in the steady-state levels of single-strand lesions, which led to degradation, were small in absolute terms indicating that both abasic sites and single-strand gaps may be poorly tolerated in mtDNA. mtDNA degradation was accompanied by the loss of expression of mtDNA-encoded COX2. After withdrawal of the inducer, recovery from mtDNA depletion occurred faster in the system expressing exonuclease III, but in both systems reduced mtDNA levels persisted longer than 144h after doxycycline withdrawal. mtDNA degradation was followed by reduction and loss of respiration, decreased membrane potential, reduced cell viability, reduced intrinsic reactive oxygen species production, slowed proliferation, and changes in mitochondrial morphology (fragmentation of the mitochondrial network, rounding and "foaming" of the mitochondria). The mutagenic effects of abasic sites in mtDNA were low, which indicates that damaged mtDNA molecules may be degraded if not rapidly repaired. This study establishes, for the first time, that mtDNA degradation can be a direct and immediate consequence of persistent mtDNA damage and that increased ROS production is not an invariant consequence of mtDNA damage.

  14. Homogenous repair of singlet oxygen-induced DNA damage in differentially transcribed regions and strands of human mitochondrial DNA.

    PubMed Central

    Anson, R M; Croteau, D L; Stierum, R H; Filburn, C; Parsell, R; Bohr, V A

    1998-01-01

    Photoactivated methylene blue was used to damage purified DNA and the mitochondrial DNA (mtDNA) of human fibroblasts in culture. The primary product of this reaction is the DNA lesion 7-hydro-8-oxo-deoxyguanosine (8-oxo-dG). The DNA damage was quantitated using Escherichia coli formamidopyrimidine DNA glycosylase (Fpg) in a gene-specific damage and repair assay. Assay conditions were refined to give incision at all enzyme-sensitive sites with minimal non-specific cutting. Cultured fibroblasts were exposed to photoactivated methylene blue under conditions that would produce an average of three oxidative lesions per double-stranded mitochondrial genome. Within 9 h, 47% of this damage had been removed by the cells. This removal was due to repair rather than to replication, cell loss or degradation of damaged genomes. The rate of repair was measured in both DNA strands of the frequently transcribed ribosomal region of the mitochondrial genome and in both strands of the non-ribosomal region. Fpg-sensitive alkali-resistant oxidative base damage was efficiently removed from human mtDNA with no differences in the rate of repair between strands or between two different regions of the genome that differ substantially with regard to transcriptional activity. PMID:9421531

  15. Beryllium chloride-induced oxidative DNA damage and alteration in the expression patterns of DNA repair-related genes.

    PubMed

    Attia, Sabry M; Harisa, Gamaleldin I; Hassan, Memy H; Bakheet, Saleh A

    2013-09-01

    Beryllium metal has physical properties that make its use essential for very specific applications, such as medical diagnostics, nuclear/fusion reactors and aerospace applications. Because of the widespread human exposure to beryllium metals and the discrepancy of the genotoxic results in the reported literature, detail assessments of the genetic damage of beryllium are warranted. Mice exposed to beryllium chloride at an oral dose of 23mg/kg for seven consecutive days exhibited a significant increase in the level of DNA-strand breaking and micronuclei formation as detected by a bone marrow standard comet assay and micronucleus test. Whereas slight beryllium chloride-induced oxidative DNA damage was detected following formamidopyrimidine DNA glycosylase digestion, digestion with endonuclease III resulted in considerable increases in oxidative DNA damage after the 11.5 and 23mg/kg/day treatment as detected by enzyme-modified comet assays. Increased 8-hydroxydeoxyguanosine was also directly correlated with increased bone marrow micronuclei formation and DNA strand breaks, which further confirm the involvement of oxidative stress in the induction of bone marrow genetic damage after exposure to beryllium chloride. Gene expression analysis on the bone marrow cells from beryllium chloride-exposed mice showed significant alterations in genes associated with DNA damage repair. Therefore, beryllium chloride may cause genetic damage to bone marrow cells due to the oxidative stress and the induced unrepaired DNA damage is probably due to the down-regulation in the expression of DNA repair genes, which may lead to genotoxicity and eventually cause carcinogenicity.

  16. Synthesis and structure of duplex DNA containing the genotoxic nucleobase lesion N7-methylguanine

    SciTech Connect

    Lee, S.; Bowman, B.R.; Ueno, Y.; Wang, S.; Verdine, G.L.

    2008-11-03

    The predominant product of aberrant DNA methylation is the genotoxic lesion N7-methyl-2{prime}-deoxyguanosine (m{sup 7}dG). M{sup 7}dG is recognized and excised by lesion-specific DNA glycosylases, namely AlkA in E. coli and Aag in humans. Structural studies of m{sup 7}dG recognition and catalysis by these enzymes have been hampered due to a lack of efficient means by which to incorporate the chemically labile m{sup 7}dG moiety site-specifically into DNA on a preparative scale. Here we report a solution to this problem. We stabilized the lesion toward acid-catalyzed and glycosylase-catalyzed depurination by 2{prime}-fluorination and toward base-catalyzed degradation using mild, nonaqueous conditions in the DNA deprotection reaction. Duplex DNA containing 2{prime}-fluoro-m{sup 7}dG (Fm{sup 7}dG) cocrystallized with AlkA as a host-guest complex in which the lesion-containing segment of DNA was nearly devoid of protein contacts, thus enabling the first direct visualization of the N7-methylguanine lesion nucleobase in DNA. The structure reveals that the base-pairing mode of Fm{sup 7}dG:C is nearly identical to that of G:C, and Fm{sup 7}dG does not induce any apparent structural disturbance of the duplex structure. These observations suggest that AlkA and Aag must perform a structurally invasive interrogation of DNA in order to detect the presence of intrahelical m{sup 7}dG lesions.

  17. Oxidative damage to DNA during aging: 8-hydroxy-2'-deoxyguanosine in rat organ DNA and urine.

    PubMed Central

    Fraga, C G; Shigenaga, M K; Park, J W; Degan, P; Ames, B N

    1990-01-01

    Oxidative damage to DNA is shown to be extensive and could be a major cause of the physiological changes associated with aging and the degenerative diseases related to aging such as cancer. The oxidized nucleoside, 8-hydroxy-2'-deoxyguanosine (oh8dG), one of the approximately 20 known oxidative DNA damage products, has been measured in DNA isolated from various organs of Fischer 344 rats of different ages. oh8dG was present in the DNA isolated from all the organs studied: liver, brain, kidney, intestine, and testes. Steady-state levels of oh8dG ranged from 8 to 73 residues per 10(6) deoxyguanosine residues or 0.2-2.0 x 10(5) residues per cell. Levels of oh8dG in DNA increased with age in liver, kidney, and intestine but remained unchanged in brain and testes. The urinary excretion of oh8dG, which presumably reflects its repair from DNA by nuclease activity, decreased with age from 481 to 165 pmol per kg of body weight per day for urine obtained from 2-month- and 25-month-old rats, respectively. 8-Hydroxyguanine, the proposed repair product of a glycosylase activity, was also assayed in the urine. We estimate approximately 9 x 10(4) oxidative hits to DNA per cell per day in the rat. The results suggest that the age-dependent accumulation of oh8dG residues observed in DNA from liver, kidney, and intestine is principally due to the slow loss of DNA nuclease activity; however, an increase in the rate of oxidative DNA damage cannot be ruled out. PMID:2352934

  18. DNA oxidation as triggered by H3K9me2 demethylation drives estrogen-induced gene expression.

    PubMed

    Perillo, Bruno; Ombra, Maria Neve; Bertoni, Alessandra; Cuozzo, Concetta; Sacchetti, Silvana; Sasso, Annarita; Chiariotti, Lorenzo; Malorni, Antonio; Abbondanza, Ciro; Avvedimento, Enrico V

    2008-01-11

    Modifications at the N-terminal tails of nucleosomal histones are required for efficient transcription in vivo. We analyzed how H3 histone methylation and demethylation control expression of estrogen-responsive genes and show that a DNA-bound estrogen receptor directs transcription by participating in bending chromatin to contact the RNA polymerase II recruited to the promoter. This process is driven by receptor-targeted demethylation of H3 lysine 9 at both enhancer and promoter sites and is achieved by activation of resident LSD1 demethylase. Localized demethylation produces hydrogen peroxide, which modifies the surrounding DNA and recruits 8-oxoguanine-DNA glycosylase 1 and topoisomeraseIIbeta, triggering chromatin and DNA conformational changes that are essential for estrogen-induced transcription. Our data show a strategy that uses controlled DNA damage and repair to guide productive transcription. PMID:18187655

  19. DNA damage in Fabry patients: An investigation of oxidative damage and repair.

    PubMed

    Biancini, Giovana Brondani; Moura, Dinara Jaqueline; Manini, Paula Regina; Faverzani, Jéssica Lamberty; Netto, Cristina Brinckmann Oliveira; Deon, Marion; Giugliani, Roberto; Saffi, Jenifer; Vargas, Carmen Regla

    2015-06-01

    Fabry disease (FD) is a lysosomal storage disorder associated with loss of activity of the enzyme α-galactosidase A. In addition to accumulation of α-galactosidase A substrates, other mechanisms may be involved in FD pathophysiology, such as inflammation and oxidative stress. Higher levels of oxidative damage to proteins and lipids in Fabry patients were previously reported. However, DNA damage by oxidative species in FD has not yet been studied. We investigated basal DNA damage, oxidative DNA damage, DNA repair capacity, and reactive species generation in Fabry patients and controls. To measure oxidative damage to purines and pyrimidines, the alkaline version of the comet assay was used with two endonucleases, formamidopyrimidine DNA-glycosylase (FPG) and endonuclease III (EndoIII). To evaluate DNA repair, a challenge assay with hydrogen peroxide was performed. Patients presented significantly higher levels of basal DNA damage and oxidative damage to purines. Oxidative DNA damage was induced in both DNA bases by H2O2 in patients. Fabry patients presented efficient DNA repair in both assays (with and without endonucleases) as well as significantly higher levels of oxidative species (measured by dichlorofluorescein content). Even if DNA repair be induced in Fabry patients (as a consequence of continuous exposure to oxidative species), the repair is not sufficient to reduce DNA damage to control levels. PMID:26046974

  20. Circadian Modulation of 8-Oxoguanine DNA Damage Repair

    PubMed Central

    Manzella, Nicola; Bracci, Massimo; Strafella, Elisabetta; Staffolani, Sara; Ciarapica, Veronica; Copertaro, Alfredo; Rapisarda, Venerando; Ledda, Caterina; Amati, Monica; Valentino, Matteo; Tomasetti, Marco; Stevens, Richard G.; Santarelli, Lory

    2015-01-01

    The DNA base excision repair pathway is the main system involved in the removal of oxidative damage to DNA such as 8-Oxoguanine (8-oxoG) primarily via the 8-Oxoguanine DNA glycosylase (OGG1). Our goal was to investigate whether the repair of 8-oxoG DNA damage follow a circadian rhythm. In a group of 15 healthy volunteers, we found a daily variation of Ogg1 expression and activity with higher levels in the morning compared to the evening hours. Consistent with this, we also found lower levels of 8-oxoG in morning hours compared to those in the evening hours. Lymphocytes exposed to oxidative damage to DNA at 8:00 AM display lower accumulation of 8-oxoG than lymphocytes exposed at 8:00 PM. Furthermore, altered levels of Ogg1 expression were also observed in a group of shift workers experiencing a deregulation of circadian clock genes compared to a control group. Moreover, BMAL1 knockdown fibroblasts with a deregulated molecular clock showed an abolishment of circadian variation of Ogg1 expression and an increase of OGG1 activity. Our results suggest that the circadian modulation of 8-oxoG DNA damage repair, according to a variation of Ogg1 expression, could render humans less susceptible to accumulate 8-oxoG DNA damage in the morning hours. PMID:26337123

  1. APE1- and APE2-dependent DNA breaks in immunoglobulin class switch recombination

    PubMed Central

    Guikema, Jeroen E.J.; Linehan, Erin K.; Tsuchimoto, Daisuke; Nakabeppu, Yusaku; Strauss, Phyllis R.; Stavnezer, Janet; Schrader, Carol E.

    2007-01-01

    Antibody class switch recombination (CSR) occurs by an intrachromosomal deletion requiring generation of double-stranded breaks (DSBs) in switch-region DNA. The initial steps in DSB formation have been elucidated, involving cytosine deamination by activation-induced cytidine deaminase and generation of abasic sites by uracil DNA glycosylase. However, it is not known how abasic sites are converted into single-stranded breaks and, subsequently, DSBs. Apurinic/apyrimidinic endonuclease (APE) efficiently nicks DNA at abasic sites, but it is unknown whether APE participates in CSR. We address the roles of the two major mammalian APEs, APE1 and APE2, in CSR. APE1 deficiency causes embryonic lethality in mice; we therefore examined CSR and DSBs in mice deficient in APE2 and haploinsufficient for APE1. We show that both APE1 and APE2 function in CSR, resulting in the DSBs necessary for CSR and thereby describing a novel in vivo function for APE2. PMID:18025127

  2. Oxidative DNA damage and repair in teratogenesis and neurodevelopmental deficits.

    PubMed

    Wells, Peter G; McCallum, Gordon P; Lam, Kyla C H; Henderson, Jeffrey T; Ondovcik, Stephanie L

    2010-06-01

    Several teratogenic agents, including ionizing radiation and xenobiotics such as phenytoin, benzo[a]pyrene, thalidomide, and methamphetamine, can initiate the formation of reactive oxygen species (ROS) that oxidatively damage cellular macromolecules including DNA. Oxidative DNA damage, and particularly the most prevalent 8-oxoguanine lesion, may adversely affect development, likely via alterations in gene transcription rather than via a mutational mechanism. Contributions from oxidative DNA damage do not exclude roles for alternative mechanisms of initiation like receptor-mediated processes or the formation of covalent xenobiotic-macromolecular adducts, damage to other macromolecular targets like proteins and lipids, and other effects of ROS like altered signal transduction. Even in the absence of teratogen exposure, endogenous developmental oxidative stress can have embryopathic consequences in the absence of key pathways for detoxifying ROS or repairing DNA damage. Critical proteins in pathways for DNA damage detection/repair signaling, like p53 and ataxia telangiectasia mutated, and DNA repair itself, like oxoguanine glycosylase 1 and Cockayne syndrome B, can often, but not always, protect the embryo from ROS-initiating teratogens. Protection may be variably dependent upon such factors as the nature of the teratogen and its concentration within the embryo, the stage of development, the species, strain, gender, target tissue and cell type, among other factors.

  3. UV-induced DNA damage and repair: a review.

    PubMed

    Sinha, Rajeshwar P; Häder, Donat P

    2002-04-01

    Increases in ultraviolet radiation at the Earth's surface due to the depletion of the stratospheric ozone layer have recently fuelled interest in the mechanisms of various effects it might have on organisms. DNA is certainly one of the key targets for UV-induced damage in a variety of organisms ranging from bacteria to humans. UV radiation induces two of the most abundant mutagenic and cytotoxic DNA lesions such as cyclobutane-pyrimidine dimers (CPDs) and 6-4 photoproducts (6-4PPs) and their Dewar valence Isomers. However, cells have developed a number of repair or tolerance mechanism to counteract the DNA damage caused by UV or any other stressors. Photoreactivation with the help of the enzyme photolyase is one of the most important and frequently occurring repair mechanisms in a variety of organisms. Excision repair, which can be distinguished into base excision repair (BER) and nucleotide excision repair (NER), also plays an important role in DNA repair in several organisms with the help of a number of glycosylases and polymerases, respectively. In addition, mechanisms such as mutagenic repair or dimer bypass, recombinational repair, cell-cycle checkpoints, apoptosis and certain alternative repair pathways are also operative in various organisms. This review deals with UV-induced DNA damage and the associated repair mechanisms as well as methods of detecting DNA damage and its future perspectives.

  4. The antileishmanial drug miltefosine (Impavido(®)) causes oxidation of DNA bases, apoptosis, and necrosis in mammalian cells.

    PubMed

    Castelo Branco, Patrícia Valéria; Soares, Rossy-Eric Pereira; de Jesus, Luís Cláudio Lima; Moreira, Vanessa Ribeiro; Alves, Hugo José; de Castro Belfort, Marta Regina; Silva, Vera Lucia Maciel; Ferreira Pereira, Silma Regina

    2016-08-01

    Miltefosine was developed to treat skin cancer; further studies showed that the drug also has activity against Leishmania. Miltefosine is the first oral agent for treating leishmaniasis. However, its mechanism of action is not completely understood. We have evaluated the induction of DNA damage by miltefosine. Cytotoxicity and genotoxicity (comet assay) tests were performed on human leukocytes exposed to the drug in vitro. Apoptosis and necrosis were also evaluated. In vivo tests were conducted in Swiss male mice (Mus musculus) treated orally with miltefosine. Oxidation of DNA bases in peripheral blood cells was measured using the comet assay followed by digestion with formamidopyrimidine glycosylase (FPG), which removes oxidized guanine bases. The micronucleus test was performed on bone marrow erythrocytes. Miltefosine caused DNA damage, apoptosis, and necrosis in vitro. Mice treated with miltefosine showed an increase in the DNA damage score, which was further increased following FPG digestion. The micronucleus test was also positive.

  5. The antileishmanial drug miltefosine (Impavido(®)) causes oxidation of DNA bases, apoptosis, and necrosis in mammalian cells.

    PubMed

    Castelo Branco, Patrícia Valéria; Soares, Rossy-Eric Pereira; de Jesus, Luís Cláudio Lima; Moreira, Vanessa Ribeiro; Alves, Hugo José; de Castro Belfort, Marta Regina; Silva, Vera Lucia Maciel; Ferreira Pereira, Silma Regina

    2016-08-01

    Miltefosine was developed to treat skin cancer; further studies showed that the drug also has activity against Leishmania. Miltefosine is the first oral agent for treating leishmaniasis. However, its mechanism of action is not completely understood. We have evaluated the induction of DNA damage by miltefosine. Cytotoxicity and genotoxicity (comet assay) tests were performed on human leukocytes exposed to the drug in vitro. Apoptosis and necrosis were also evaluated. In vivo tests were conducted in Swiss male mice (Mus musculus) treated orally with miltefosine. Oxidation of DNA bases in peripheral blood cells was measured using the comet assay followed by digestion with formamidopyrimidine glycosylase (FPG), which removes oxidized guanine bases. The micronucleus test was performed on bone marrow erythrocytes. Miltefosine caused DNA damage, apoptosis, and necrosis in vitro. Mice treated with miltefosine showed an increase in the DNA damage score, which was further increased following FPG digestion. The micronucleus test was also positive. PMID:27476333

  6. PCR-derived ssDNA probes for fluorescent in situ hybridization to HIV-1 RNA.

    PubMed

    Knuchel, M C; Graf, B; Schlaepfer, E; Kuster, H; Fischer, M; Weber, R; Cone, R W

    2000-02-01

    We developed a simple and rapid technique to synthesize single-stranded DNA (ssDNA) probes for fluorescent in situ hybridization (ISH) to human immunodeficiency virus 1 (HIV-1) RNA. The target HIV-1 regions were amplified by the polymerase chain reaction (PCR) and were simultaneously labeled with dUTP. This product served as template for an optimized asymmetric PCR (one-primer PCR) that incorporated digoxigenin (dig)-labeled dUTP. The input DNA was subsequently digested by uracil DNA glycosylase, leaving intact, single-stranded, digoxigenin-labeled DNA probe. A cocktail of ssDNA probes representing 55% of the HIV-1 genome was hybridized to HIV-1-infected 8E5 T-cells and uninfected H9 T-cells. For comparison, parallel hybridizations were done with a plasmid-derived RNA probe mix covering 85% of the genome and a PCR-derived RNA probe mix covering 63% of the genome. All three probe types produced bright signals, but the best signal-to-noise ratios and the highest sensitivities were obtained with the ssDNA probe. In addition, the ssDNA probe syntheses generated large amounts of probe (0.5 to 1 microg ssDNA probe per synthesis) and were easier to perform than the RNA probe syntheses. These results suggest that ssDNA probes may be preferable to RNA probes for fluorescent ISH. (J Histochem Cytochem 48:285-293, 2000)

  7. DNA damage and repair kinetics of the Alternaria mycotoxins alternariol, altertoxin II and stemphyltoxin III in cultured cells.

    PubMed

    Fleck, Stefanie C; Sauter, Friederike; Pfeiffer, Erika; Metzler, Manfred; Hartwig, Andrea; Köberle, Beate

    2016-03-01

    The Alternaria mycotoxins alternariol (AOH) and altertoxin II (ATX II) have previously been shown to elicit mutagenic and genotoxic effects in bacterial and mammalian cells, although with vastly different activities. For example, ATX II was about 50 times more mutagenic than AOH. We now report that stemphyltoxin III (STTX III) is also highly mutagenic. The more pronounced effects of the perylene quinones ATX II and STTX III at lower concentrations compared to the dibenzo-α-pyrone AOH indicate a marked dependence of the genotoxic potential on the chemical structure and furthermore suggest that the underlying modes of action may be different. We have now further investigated the type of DNA damage induced by AOH, ATX II and STTX III, as well as the repair kinetics and their dependence on the status of nucleotide excision repair (NER). DNA double strand breaks induced by AOH due to poisoning of topoisomerase IIα were completely repaired in less than 2h. Under cell-free conditions, inhibition of topoisomerase IIα could also be measured for ATX II and STTX III at low concentrations, but the perylene quinones were catalytic inhibitors rather than topoisomerase poisons and did not induce DSBs. DNA strand breaks induced by ATX II and STTX III were more persistent and not completely repaired within 24h. A dependence of the repair rate on the NER status could only be demonstrated for STTX III, resulting in an accumulation of DNA damage in NER-deficient cells. Together with the finding that the DNA glycosylase formamidopyrimidine-DNA glycosylase (Fpg), but not T4 endonuclease V, is able to generate additional DNA strand breaks measurable by the alkaline unwinding assay, we conclude that the genotoxicity of the perylene quinones with an epoxide group is probably caused by the formation of DNA adducts which may be converted to Fpg sensitive sites.

  8. The effect of p53-RNAi and p53 knockout on human 8-oxoguanine DNA glycosylase (hOgg1) activity.

    PubMed

    Chatterjee, Aditi; Mambo, Elizabeth; Osada, Motonobu; Upadhyay, Sunil; Sidransky, David

    2006-01-01

    Recent evidence indicates that in vitro p53 augments base excision repair (BER) activities in mammalian cells. To understand the role of p53 in BER, we analyzed the repair activity of hOgg1 in isogenic cell lines HCT116p53+/+ and HCT116p53-/-. We found that hOgg1 activity was significantly decreased in HCT116p53-/- cells as compared with HCT116p53+/+ cells, indicating a functional role for p53 in the regulation of hOGG1. Using gel-shift assays, we showed that p53 binds to its putative cis-elements within the hOGG1 promoter. In addition we demonstrated that supplementing p53 in HCT116p53-/- cells enhanced the transcription of hOGG1. To further strengthen our findings, we used p53-RNAi to study the effects of decreased p53 levels on hOgg1 activity. We observed that p53-RNAi resulted in decreased hOGG1 expression both at the mRNA and protein levels. This decrease in hOGG1 expression was associated with reduced cell viability upon oxidative damage and reduced hOgg1 activity as evidenced by the 8-oxoG incision assay. Taken together, our results indicate that loss of p53 function can lead to decreased hOgg1 repair activity.

  9. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage

    PubMed Central

    Komor, Alexis C.; Kim, Yongjoo B.; Packer, Michael S.; Zuris, John A.; Liu, David R.

    2016-01-01

    Current genome-editing technologies introduce double-stranded (ds) DNA breaks at a target locus as the first step to gene correction.1,2 Although most genetic diseases arise from point mutations, current approaches to point mutation correction are inefficient and typically induce an abundance of random insertions and deletions (indels) at the target locus from the cellular response to dsDNA breaks.1,2 Here we report the development of base editing, a new approach to genome editing that enables the direct, irreversible conversion of one target DNA base into another in a programmable manner, without requiring dsDNA backbone cleavage or a donor template. We engineered fusions of CRISPR/Cas9 and a cytidine deaminase enzyme that retain the ability to be programmed with a guide RNA, do not induce dsDNA breaks, and mediate the direct conversion of cytidine to uridine, thereby effecting a C→T (or G→A) substitution. The resulting “base editors” convert cytidines within a window of approximately five nucleotides (nt), and can efficiently correct a variety of point mutations relevant to human disease. In four transformed human and murine cell lines, second- and third-generation base editors that fuse uracil glycosylase inhibitor (UGI), and that use a Cas9 nickase targeting the non-edited strand, manipulate the cellular DNA repair response to favor desired base-editing outcomes, resulting in permanent correction of ∼15-75% of total cellular DNA with minimal (typically ≤ 1%) indel formation. Base editing expands the scope and efficiency of genome editing of point mutations. PMID:27096365

  10. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage.

    PubMed

    Komor, Alexis C; Kim, Yongjoo B; Packer, Michael S; Zuris, John A; Liu, David R

    2016-05-19

    Current genome-editing technologies introduce double-stranded (ds) DNA breaks at a target locus as the first step to gene correction. Although most genetic diseases arise from point mutations, current approaches to point mutation correction are inefficient and typically induce an abundance of random insertions and deletions (indels) at the target locus resulting from the cellular response to dsDNA breaks. Here we report the development of 'base editing', a new approach to genome editing that enables the direct, irreversible conversion of one target DNA base into another in a programmable manner, without requiring dsDNA backbone cleavage or a donor template. We engineered fusions of CRISPR/Cas9 and a cytidine deaminase enzyme that retain the ability to be programmed with a guide RNA, do not induce dsDNA breaks, and mediate the direct conversion of cytidine to uridine, thereby effecting a C→T (or G→A) substitution. The resulting 'base editors' convert cytidines within a window of approximately five nucleotides, and can efficiently correct a variety of point mutations relevant to human disease. In four transformed human and murine cell lines, second- and third-generation base editors that fuse uracil glycosylase inhibitor, and that use a Cas9 nickase targeting the non-edited strand, manipulate the cellular DNA repair response to favour desired base-editing outcomes, resulting in permanent correction of ~15-75% of total cellular DNA with minimal (typically ≤1%) indel formation. Base editing expands the scope and efficiency of genome editing of point mutations. PMID:27096365

  11. Response of base excision repair enzymes to complex DNA lesions.

    PubMed

    Weinfeld, M; Rasouli-Nia, A; Chaudhry, M A; Britten, R A

    2001-11-01

    There is now increasing evidence that ionizing radiation generates complex DNA damage, i.e. two or more lesions--single-strand breaks or modified nucleosides--located within one to two helical turns on the same strand or on opposite strands. Double-strand breaks are the most readily recognizable clustered lesions, but they may constitute a relatively minor fraction of the total. It is anticipated that clustered lesions may play a significant role in cellular response to ionizing radiation since they may present a major challenge to the DNA repair machinery. The degree of lesion complexity increases with increasing LET. This has potential implications for space travel because of exposure to high-LET cosmic radiation. It is therefore critical that we begin to understand the consequences of such damaged sites, including their influence on DNA repair enzymes. This paper presents a short review of our current knowledge of the action of purified DNA repair enzymes belonging to the base excision repair pathway, including DNA glycosylases and apurinic/apyrimidinic endonucleases, on model complex lesions.

  12. Physiological aspects of UV-excitation of DNA.

    PubMed

    Richa; Sinha, Rajeshwar P; Häder, Donat-P

    2015-01-01

    Solar ultraviolet (UV) radiation, mainly UV-B (280-315 nm), is one of the most potent genotoxic agents that adversely affects living organisms by altering their genomic stability. DNA through its nucleobases has absorption maxima in the UV region and is therefore the main target of the deleterious radiation. The main biological relevance of UV radiation lies in the formation of several cytotoxic and mutagenic DNA lesions such as cyclobutane pyrimidine dimers (CPDs), 6-4 photoproducts (6-4PPs), and their Dewar valence isomers (DEWs), as well as DNA strand breaks. However, to counteract these DNA lesions, organisms have developed a number of highly conserved repair mechanisms such as photoreactivation, excision repair, and mismatch repair (MMR). Photoreactivation involving the enzyme photolyase is the most frequently used repair mechanism in a number of organisms. Excision repair can be classified as base excision repair (BER) and nucleotide excision repair (NER) involving a number of glycosylases and polymerases, respectively. In addition to this, double-strand break repair, SOS response, cell-cycle checkpoints, and programmed cell death (apoptosis) are also operative in various organisms to ensure genomic stability. This review concentrates on the UV-induced DNA damage and the associated repair mechanisms as well as various damage detection methods.

  13. Gadd45a promotes DNA demethylation through TDG

    PubMed Central

    Li, Zheng; Gu, Tian-Peng; Weber, Alain R.; Shen, Jia-Zhen; Li, Bin-Zhong; Xie, Zhi-Guo; Yin, Ruichuan; Guo, Fan; Liu, Xiaomeng; Tang, Fuchou; Wang, Hailin; Schär, Primo; Xu, Guo-Liang

    2015-01-01

    Growth arrest and DNA-damage-inducible protein 45 (Gadd45) family members have been implicated in DNA demethylation in vertebrates. However, it remained unclear how they contribute to the demethylation process. Here, we demonstrate that Gadd45a promotes active DNA demethylation through thymine DNA glycosylase (TDG) which has recently been shown to excise 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC) generated in Ten-eleven-translocation (Tet)—initiated oxidative demethylation. The connection of Gadd45a with oxidative demethylation is evidenced by the enhanced activation of a methylated reporter gene in HEK293T cells expressing Gadd45a in combination with catalytically active TDG and Tet. Gadd45a interacts with TDG physically and increases the removal of 5fC and 5caC from genomic and transfected plasmid DNA by TDG. Knockout of both Gadd45a and Gadd45b from mouse ES cells leads to hypermethylation of specific genomic loci most of which are also targets of TDG and show 5fC enrichment in TDG-deficient cells. These observations indicate that the demethylation effect of Gadd45a is mediated by TDG activity. This finding thus unites Gadd45a with the recently defined Tet-initiated demethylation pathway. PMID:25845601

  14. Involvement of mammalian OGG1(MMH) in excision of the 8-hydroxyguanine residue in DNA.

    PubMed

    Nishimura, Susumu

    2002-05-01

    8-Hydroxyguanine (7,8-dihydro-8-oxoguanine, abbreviated as 8-OH-G or 8-oxoG) is the site of a frequent mutagenic DNA lesion produced by oxidative damage. MutM of E. coli and OGG1 of Saccharomyces cervisiae are known to possess 8-OH-G glycosylase and apurinic (AP) site lyase activity. cDNA clones of four isoforms (types 1a, 1b, 1c, and 2) of human OGG1 homologs (hMMH) were isolated. In order to examine whether expression of hMMH (hOGG1) protein actually occurs in human cells, we prepared type 1a specific antibody, and by using this antibody, we showed that type 1a protein isolated from HeLaS3 has 8-OH-G glycosylase/lyase activity. Furthermore, we showed that type 1a protein is a major enzyme for repair of the 8-OH-G lesion in human cells. In our second study, we generated a mouse line carrying an inactivated mutant Mmh allele by targeted gene disruption. Liver extracts of Mmh homozygous mutant mice were found to have loss of the nicking activity for the 8-OH-G site. In addition, the amount of endogenous 8-OH-G in liver DNA of the homozygous mice increased linearly with age, reaching 7-fold increase in 14 week old mice, over that of wild-type or heterozygous mice. Furthermore, when homozygous mice were fed the oxygen radical-forming agent KBrO3, to provide oxidative stress, the level of 8-OH-G in kidney DNA was tremendously increased: more than 200-fold as that of control mice without oxidative stress after 12 weeks of age. These results indicate that Ogg1/Mmh plays an essential role in the repair of the 8-OH-G residue in DNA produced by oxidative stress. PMID:11978483

  15. Antagonistic role of tea against sodium arsenite-induced oxidative DNA damage and inhibition of DNA repair in Swiss albino mice.

    PubMed

    Sinha, Dona; Roy, Madhumita

    2011-01-01

    Arsenic (As) contamination in groundwater is of increasing health concern in West Bengal, India. Arsenic has been associated with various human cancers, but the precise mechanism of its co-carcinogenic action is not clearly elucidated. Oxidative stress and defective repair mechanisms may promote accumulation of mutations and may be a stepping stone for carcinogenesis. Prevention of arsenic-induced oxidative stress and repair inhibition may reduce the chances of initiation of cancer. Tea polyphenols are reported to have excellent chemopreventive properties against cancer. This study aimed to elucidate the role of tea against arsenic-induced formation of 8-hydroxy-2'-deoxyguanosine (8OHdG) and arsenic-suppressed DNA repair in Swiss albino mice. Both green and black tea gave fruitful results in the reduction of 8OHdG and 8-oxoguanine DNA glycosylase (OGG1) in Swiss albino mice administered sodium arsenite (As III). DNA repair enzymes--such as PARP1, DNA β-polymerase, XRCC1, DNA ligase III, DNA protein kinase (catalytic subunit), XRCC 4, DNA ligase IV, and DNA topoisomerase IIβ--were induced by the phytochemicals at both the protein and genetic levels. Thus, tea polyphenols may prove effective in treating arsenic-induced carcinogenesis.

  16. Base Excision Repair of Oxidative DNA Damage

    PubMed Central

    David, Sheila S.; O’Shea, Valerie L.; Kundu, Sucharita

    2010-01-01

    Base excision repair plays an important role in preventing mutations associated with the common product of oxidative damage, 8-oxoguanine. Recent structural studies have shown that 8-oxoguanine glycosylases use an intricate series of steps to efficiently search and locate 8-oxoguanine lesions within the multitude of undamaged bases. The importance of prevention of mutations associated with 8-oxoguanine has also been illustrated by direct connections between defects in the BER glycosylase MUTYH and colorectal cancer. In addition, the properties of other guanine oxidation products and the BER glycosylases that remove them are being uncovered. This work is providing surprising and intriguing new insights into the process of base excision repair. PMID:17581577

  17. Mechanism of maltal hydration catalyzed by. beta. -amylase: Role of protein structure in controlling the steric outcome of reactions catalyzed by a glycosylase

    SciTech Connect

    Kitahata, Sumio ); Chiba, S. ); Brewer, C.F.; Hehre, E.J. )

    1991-07-09

    Crystalline (monomeric) soybean and (tetrameric) sweet potato {beta}-amylase were shown to catalyze the cis hydration of maltal ({alpha}-D-glucopyranosyl-2-deoxy-D-arabino-hex-1-enitol) to form {beta}-2-deoxymaltose. As reported earlier with the sweet potato enzyme, maltal hydration in D{sub 2}O by soybean {beta}-amylase was found to exhibit an unusually large solvent deuterium kinetic isotope effect (V{sub H}/V{sub D}=6.5), a reaction rate linearly dependent on the mole fraction of deuterium, and 2-deoxy-(2(a)-{sup 2}H)maltose as product. These results indicate (for each {beta}-amylase) that protonation is the rate-limiting step in a reaction involving a nearly symmetric one-proton transition state and that maltal is specifically protonated from above the double bond. That maltal undergoes cis hydration provides evidence in support of a general-acid-catalyzed, carbonium ion mediated reaction. Of fundamental significance is that {beta}-amylase protonates maltal from a direction opposite that assumed for protonating strach, yet creates products of the same anomeric configuration from both. Such stereochemical dichotomy argues for the overriding role of protein structures is dictating the steric outcome of reactions catalyzed by a glycosylase, by limiting the approach and orientation of water or other acceptors to the reaction center.

  18. Low intensity infrared laser effects on Escherichia coli cultures and plasmid DNA

    NASA Astrophysics Data System (ADS)

    Fonseca, A. S.; Teixeira, A. F.; Presta, G. A.; Geller, M.; Valença, S. S.; Paoli, F.

    2012-10-01

    Biostimulative effect of low intensity laser in tissues has been described on a photobiological basis and clinical protocols are recommended for treatment of various diseases. The aim of this work was to evaluate effects of laser exposure on the survival of Escherichia coli cultures and plasmid topological forms. Escherichia coli cultures and plasmids were exposed to infrared laser to study bacterial survival and electrophoretic profile, respectively. Data indicate low intensity infrared laser: (i) had no effect on E. coli wild type, endonuclease IV, exonuclease III, formamidopyrimidine DNA glycosylase/MutM protein and endonuclease III deficient cultures, but decreased the survival of E. coli UvrA protein deficient cultures; (ii) there was no alteration in the electrophoretic profile of plasmids. Exposure to low intensity infrared laser decreases survival of Escherichia coli cultures deficient in nucleotide excision repair of DNA and this effect could depend on fluences, wavelength and tissues conditions.

  19. Base excision repair in Archaea: back to the future in DNA repair.

    PubMed

    Grasso, Stefano; Tell, Gianluca

    2014-09-01

    Together with Bacteria and Eukarya, Archaea represents one of the three domain of life. In contrast with the morphological difference existing between Archaea and Eukarya, these two domains are closely related. Phylogenetic analyses confirm this evolutionary relationship showing that most of the proteins involved in DNA transcription and replication are highly conserved. On the contrary, information is scanty about DNA repair pathways and their mechanisms. In the present review the most important proteins involved in base excision repair, namely glycosylases, AP lyases, AP endonucleases, polymerases, sliding clamps, flap endonucleases, and ligases, will be discussed and compared with bacterial and eukaryotic ones. Finally, possible applications and future perspectives derived from studies on Archaea and their repair pathways, will be taken into account.

  20. Use of the comet assay to measure DNA damage in cells exposed to photosensitizers and gamma radiation

    NASA Astrophysics Data System (ADS)

    Pouget, J.-P.; Ravanat, J.-L.; Douki, T.; Richard, M.-J.; Cadet, J.

    1999-01-01

    We used the comet assay associated with DNA-glycosylases to estimate DNA damage in cells exposed to gamma irradiation or photosensitized either with methylene blue or orange acridine. A calibration performed using irradiation allowed the measurement of the steady-state level and the yield of 8-oxodGuo as well as strand breaks and alkali-labile sites. Nous avons utilisé la méthode des comètes associée à des ADN-glycosylases, pour estimer les dommages de l'ADN dans des cellules après l'exposition à un rayonnement gamma ou après photosensibilisation par le bleu de méthylène ou l'acridine orange. Une calibration de la méthode des comètes a permis de mesurer le niveau basal et les taux de formation de 8-oxodGuo ainsi que le nombre de cassures de brins et de sites alcali labiles.

  1. The Role of Mitochondrial DNA in Mediating Alveolar Epithelial Cell Apoptosis and Pulmonary Fibrosis.

    PubMed

    Kim, Seok-Jo; Cheresh, Paul; Jablonski, Renea P; Williams, David B; Kamp, David W

    2015-01-01

    Convincing evidence has emerged demonstrating that impairment of mitochondrial function is critically important in regulating alveolar epithelial cell (AEC) programmed cell death (apoptosis) that may contribute to aging-related lung diseases, such as idiopathic pulmonary fibrosis (IPF) and asbestosis (pulmonary fibrosis following asbestos exposure). The mammalian mitochondrial DNA (mtDNA) encodes for 13 proteins, including several essential for oxidative phosphorylation. We review the evidence implicating that oxidative stress-induced mtDNA damage promotes AEC apoptosis and pulmonary fibrosis. We focus on the emerging role for AEC mtDNA damage repair by 8-oxoguanine DNA glycosylase (OGG1) and mitochondrial aconitase (ACO-2) in maintaining mtDNA integrity which is important in preventing AEC apoptosis and asbestos-induced pulmonary fibrosis in a murine model. We then review recent studies linking the sirtuin (SIRT) family members, especially SIRT3, to mitochondrial integrity and mtDNA damage repair and aging. We present a conceptual model of how SIRTs modulate reactive oxygen species (ROS)-driven mitochondrial metabolism that may be important for their tumor suppressor function. The emerging insights into the pathobiology underlying AEC mtDNA damage and apoptosis is suggesting novel therapeutic targets that may prove useful for the management of age-related diseases, including pulmonary fibrosis and lung cancer. PMID:26370974

  2. Ochratoxin A induces oxidative DNA damage in liver and kidney after oral dosing to rats.

    PubMed

    Kamp, Hennicke G; Eisenbrand, Gerhard; Janzowski, Christine; Kiossev, Jetchko; Latendresse, John R; Schlatter, Josef; Turesky, Robert J

    2005-12-01

    The nephrotoxic/carcinogenic mycotoxin ochratoxin A (OTA) occurs as a contaminant in food and feed and may be linked to human endemic Balkan nephropathy. The mechanism of OTA-derived carcinogenicity is still under debate, since reactive metabolites of OTA and DNA adducts have not been unambiguously identified. Oxidative DNA damage, however, has been observed in vitro after incubation of mammalian cells with OTA. In this study, we investigated whether OTA induces oxidative DNA damage in vivo as well. Male F344 rats were dosed with 0, 0.03, 0.1, 0.3 mg/kg bw per day OTA for 4 wk (gavage, 7 days/wk, five animals per dose group). Subsequently, oxidative DNA damage was determined in liver and kidney by the comet assay (single cell gel electrophoresis) with/without use of the repair enzyme formamido-pyrimidine-DNA-glycosylase (FPG). The administration of OTA had no effect on basic DNA damage (determined without FPG); however, OTA-mediated oxidative damage was detected with FPG treatment in kidney and liver DNA of all dose groups. Since the doses were in a range that had caused kidney tumors in a 2-year carcinogenicity study with rats, the oxidative DNA damage induced by OTA may help to explain its mechanism of carcinogenicity. For the selective induction of tumors in the kidney, increased oxidative stress in connection with severe cytotoxicity and increased cell proliferation might represent driving factors.

  3. The Role of Mitochondrial DNA in Mediating Alveolar Epithelial Cell Apoptosis and Pulmonary Fibrosis

    PubMed Central

    Kim, Seok-Jo; Cheresh, Paul; Jablonski, Renea P.; Williams, David B.; Kamp, David W.

    2015-01-01

    Convincing evidence has emerged demonstrating that impairment of mitochondrial function is critically important in regulating alveolar epithelial cell (AEC) programmed cell death (apoptosis) that may contribute to aging-related lung diseases, such as idiopathic pulmonary fibrosis (IPF) and asbestosis (pulmonary fibrosis following asbestos exposure). The mammalian mitochondrial DNA (mtDNA) encodes for 13 proteins, including several essential for oxidative phosphorylation. We review the evidence implicating that oxidative stress-induced mtDNA damage promotes AEC apoptosis and pulmonary fibrosis. We focus on the emerging role for AEC mtDNA damage repair by 8-oxoguanine DNA glycosylase (OGG1) and mitochondrial aconitase (ACO-2) in maintaining mtDNA integrity which is important in preventing AEC apoptosis and asbestos-induced pulmonary fibrosis in a murine model. We then review recent studies linking the sirtuin (SIRT) family members, especially SIRT3, to mitochondrial integrity and mtDNA damage repair and aging. We present a conceptual model of how SIRTs modulate reactive oxygen species (ROS)-driven mitochondrial metabolism that may be important for their tumor suppressor function. The emerging insights into the pathobiology underlying AEC mtDNA damage and apoptosis is suggesting novel therapeutic targets that may prove useful for the management of age-related diseases, including pulmonary fibrosis and lung cancer. PMID:26370974

  4. Effects of pH on nicotine-induced DNA damage and oxidative stress.

    PubMed

    Wu, Hui-Ju; Chi, Chin-Wen; Liu, Tsung-Yun

    2005-09-01

    Epidemiological evidence suggests that chewing betel quid and smoking have synergistic potential in the development of oral squamous-cell carcinoma in Taiwan. Chewing betel quid produces alkalization of saliva. This study investigated the response of human oral cancer OEC-M1 cells to nicotine in different pH environments (6.5 and 8) by examining its effects on DNA damage as evidenced by single-cell gel electrophoresis. Nicotine (1 and 10 muM) significantly induced DNA strand breakage when cultured at pH 8 for 6 h but did not induce DNA damage at pH 6.5. Nicotine-induced DNA damage was also time dependent. When cells were pretreated with catalase or N-acetylcysteine, a significant reduction in nicotine-induced DNA damage was observed. Flow cytometric analyses showed that the production of 8-oxoguanine was significantly increased following nicotine (10 muM) treatment. Posttreatment of nicotine-damaged DNA by endonuclease III and formamidopyrimidine-DNA glycosylase, recognizing oxidized DNA bases, increased the extent of DNA damage. These results suggest that nicotine-induced DNA strand breakage is pH dependent, and oxidative stress might be involved in nicotine-induced DNA damage. Finally, cigarette smoke condensate (equivalent to 8 muM nicotine) induced significant DNA strand breaks in OEC-M1 cells at pH 8 and correlated with the generation of oxidative DNA damage. Thus, alkaline saliva generated by chewing betel quid plays an important role in cigarette-related nicotine-induced DNA damage, and reactive oxygen species may be involved in generating this DNA damage. PMID:16076763

  5. Development of enzymatic probes of oxidative and nitrosative DNA damage caused by reactive nitrogen species.

    PubMed

    Dong, Min; Vongchampa, Viengsai; Gingipalli, Lakshmaiah; Cloutier, Jean-Francois; Kow, Yoke W; O'Connor, Timothy; Dedon, Peter C

    2006-02-22

    Chronic inflammation is associated with a variety of human diseases, including cancer, with one possible mechanistic link involving over-production of nitric oxide (NO*) by activated macrophages. Subsequent reaction of NO* with superoxide in the presence of carbon dioxide yields nitrosoperoxycarbonate (ONOOCO2-), a strong oxidant that reacts with guanine in DNA to form a variety of oxidation and nitration products, such 2'-deoxy-8-oxoguanosine. Alternatively, the reaction of NO and O2 leads to the formation of N2O3, a nitrosating agent that causes nucleobase deamination to form 2'-deoxyxanthosine (dX) and 2'-deoxyoxanosine (dO) from dG; 2'-deoxyinosine (dI) from dA; and 2'-deoxyuridine (dU) from dC, in addition to abasic sites and dG-dG cross-links. The presence of both ONOOCO2- and N2O3 at sites of inflammation necessitates definition of the relative roles of oxidative and nitrosative DNA damage in the genetic toxicology of inflammation. To this end, we sought to develop enzymatic probes for oxidative and nitrosative DNA lesions as a means to quantify the two types of DNA damage in in vitro DNA damage assays, such as the comet assay and as a means to differentially map the lesions in genomic DNA by the technique of ligation-mediated PCR. On the basis of fragmentary reports in the literature, we first systematically assessed the recognition of dX and dI by a battery of DNA repair enzymes. Members of the alkylpurine DNA glycosylase family (E. coli AlkA, murine Aag, and human MPG) all showed repair activity with dX (k(cat)/Km 29 x 10(-6), 21 x 10(-6), and 7.8 x 10(-6) nM(-1) min(-1), respectively), though the activity was considerably lower than that of EndoV (8 x 10(-3) nM(-1) min(-1)). Based on these results and other published studies, we focused the development of enzymatic probes on two groups of enzymes, one with activity against oxidative damage (formamidopyrimidine-DNA glycosylase (Fpg); endonuclease III (EndoIII)) and the other with activity against

  6. Sequence-specific DNA damage induced by ultraviolet A-irradiated folic acid via its photolysis product.

    PubMed

    Hirakawa, Kazutaka; Suzuki, Hiroyuki; Oikawa, Shinji; Kawanishi, Shosuke

    2003-02-15

    DNA damage mediated by photosensitizers participates in solar carcinogenesis. Fluorescence measurement and high-performance liquid chromatography analysis demonstrated that photoirradiated folic acid, one of the photosensitizers in cells, generates pterine-6-carboxylic acid (PCA). Experiments using 32P-labeled DNA fragments obtained from a human gene showed that ultraviolet A-irradiated folic acid or PCA caused DNA cleavage specifically at consecutive G residues in double-stranded DNA after Escherichia coli formamidopyrimidine-DNA glycosylase or piperidine treatment. The amount of 8-oxo-7,8-dihydro-2(')-deoxyguanosine formed through this DNA photoreaction in double-stranded DNA exceeded that in single-stranded DNA. Kinetic studies suggested that DNA damage is caused mainly by photoexcited PCA generated from folic acid rather than by folic acid itself. In conclusion, photoirradiated folic acid generates PCA, which induces DNA photooxidation specifically at consecutive G residues through electron transfer. Excess intake of folic acid supplements may increase a risk of skin cancer by solar ultraviolet light. PMID:12573286

  7. DNA damage in lung after oral exposure to diesel exhaust particles in Big Blue rats.

    PubMed

    Müller, Anne K; Farombi, E Olatunde; Møller, Peter; Autrup, Herman N; Vogel, Ulla; Wallin, Håkan; Dragsted, Lars O; Loft, Steffen; Binderup, Mona-Lise

    2004-06-01

    Several chemical mutagens and carcinogens, including polycyclic aromatic hydrocarbons (PAHs) and nitrated PAHs, are adsorbed to the surface of diesel exhaust particles (DEP). DEP can induce formation of reactive oxygen species and cause oxidative DNA damage as well as bulky carcinogen DNA adducts. Lung tissue is a target organ for DEP induced cancer following inhalation. Recent studies have provided evidence that the lung is also a target organ for DNA damage and cancer after oral exposure to other complex mixtures of PAHs. The genotoxic effect of oral administration of DEP was investigated, in terms of markers of DNA damage, mutations and repair, in the lung of Big Blue rats fed a diet with 0, 0.2, 0.8, 2, 8, 20 or 80 mg DEP/kg feed for 21 days. There was no significant increase in the mutation frequency in the cII gene. However, an increase of DNA damage measured as DNA strand breaks (comet assay) and bulky DNA adducts (32P post labeling) was observed. The level of DNA strand breaks increased significantly at all dose levels while the level of DNA adducts increased significantly only at the intermediate dose levels. Similarly, the number of oxidized DNA bases measured as endonuclease III and fapyguanine glycosylase (FPG) sensitive sites increased at the intermediate dose levels. The induction of DNA damage by DEP exposure did not increase the expression of the repair genes OGG1 and ERCC1 at the mRNA level. The present study indicates that the lung is a target organ for primary DNA damage following oral exposure to DEP. DNA damage was induced following exposure to relatively low levels of DEP, but under the conditions used in the present experiment DNA damage did not result in an increased mutation rate. PMID:15135646

  8. Mechanism of maltal hydration catalyzed by beta-amylase: role of protein structure in controlling the steric outcome of reactions catalyzed by a glycosylase.

    PubMed

    Kitahata, S; Chiba, S; Brewer, C F; Hehre, E J

    1991-07-01

    Crystalline (monomeric) soybean and (tetrameric) sweet potato beta-amylase were shown to catalyze the cis hydration of maltal (alpha-D-glucopyranosyl-2-deoxy-D-arabino-hex-1-enitol) to form beta-2-deoxymaltose. As reported earlier with the sweet potato enzyme, maltal hydration in D2O by soybean beta-amylase was found to exhibit an unusually large solvent deuterium kinetic isotope effect (VH/VD = 6.5), a reaction rate linearly dependent on the mole fraction of deuterium, and 2-deoxy-[2(a)-2H]maltose as product. These results indicate (for each beta-amylase) that protonation is the rate-limiting step in a reaction involving a nearly symmetric one-proton transition state and that maltal is specifically protonated from above the double bond. This is a different stereochemistry than reported for starch hydrolysis. With the hydration catalyzed in H2O and analyzed by gas-liquid chromatography, both sweet potato and soybean beta-amylase were found to convert maltal to the beta-anomer of 2-deoxymaltose. That maltal undergoes cis hydration provides evidence in support of a general-acid-catalyzed, carbonium ion mediated reaction. Of fundamental significance is that beta-amylase protonates maltal from a direction opposite that assumed for protonating starch, yet creates products of the same anomeric configuration from both. Such stereochemical dichotomy argues for the overriding role of protein structures in dictating the steric outcome of reactions catalyzed by a glycosylase, by limiting the approach and orientation of water or other acceptors to the reaction center. PMID:1829637

  9. Mechanism of maltal hydration catalyzed by beta-amylase: role of protein structure in controlling the steric outcome of reactions catalyzed by a glycosylase.

    PubMed

    Kitahata, S; Chiba, S; Brewer, C F; Hehre, E J

    1991-07-01

    Crystalline (monomeric) soybean and (tetrameric) sweet potato beta-amylase were shown to catalyze the cis hydration of maltal (alpha-D-glucopyranosyl-2-deoxy-D-arabino-hex-1-enitol) to form beta-2-deoxymaltose. As reported earlier with the sweet potato enzyme, maltal hydration in D2O by soybean beta-amylase was found to exhibit an unusually large solvent deuterium kinetic isotope effect (VH/VD = 6.5), a reaction rate linearly dependent on the mole fraction of deuterium, and 2-deoxy-[2(a)-2H]maltose as product. These results indicate (for each beta-amylase) that protonation is the rate-limiting step in a reaction involving a nearly symmetric one-proton transition state and that maltal is specifically protonated from above the double bond. This is a different stereochemistry than reported for starch hydrolysis. With the hydration catalyzed in H2O and analyzed by gas-liquid chromatography, both sweet potato and soybean beta-amylase were found to convert maltal to the beta-anomer of 2-deoxymaltose. That maltal undergoes cis hydration provides evidence in support of a general-acid-catalyzed, carbonium ion mediated reaction. Of fundamental significance is that beta-amylase protonates maltal from a direction opposite that assumed for protonating starch, yet creates products of the same anomeric configuration from both. Such stereochemical dichotomy argues for the overriding role of protein structures in dictating the steric outcome of reactions catalyzed by a glycosylase, by limiting the approach and orientation of water or other acceptors to the reaction center.

  10. Production of truncated MBD4 protein by frameshift mutation in DNA mismatch repair-deficient cells enhances 5-fluorouracil sensitivity that is independent of hMLH1 status.

    PubMed

    Suzuki, Satoshi; Iwaizumi, Moriya; Tseng-Rogenski, Stephanie; Hamaya, Yasushi; Miyajima, Hiroaki; Kanaoka, Shigeru; Sugimoto, Ken; Carethers, John M

    2016-07-01

    Methyl-CpG binding domain protein 4 (MBD4) is a DNA glycosylase that can remove 5-fluorodeoxyuracil from DNA as well as repair T:G or U:G mismatches. MBD4 is a target for frameshift mutation with DNA mismatch repair (MMR) deficiency, creating a truncated MBD4 protein (TruMBD4) that lacks its glycosylase domain. Here we show that TruMBD4 plays an important role for enhancing 5-fluorouracil (5FU) sensitivity in MMR-deficient colorectal cancer cells. We found biochemically that TruMBD4 binds to 5FU incorporated into DNA with higher affinity than MBD4. TruMBD4 reduced the 5FU affinity of the MMR recognition complexes that determined 5FU sensitivity by previous reports, suggesting other mechanisms might be operative to trigger cytotoxicity. To analyze overall 5FU sensitivity with TruMBD4, we established TruMBD4 overexpression in hMLH1-proficient or -deficient colorectal cancer cells followed by treatment with 5FU. 5FU-treated TruMBD4 cells demonstrated diminished growth characteristics compared to controls, independently of hMLH1 status. Flow cytometry revealed more 5FU-treated TruMBD4 cells in S phase than controls. We conclude that patients with MMR-deficient cancers, which show characteristic resistance to 5FU therapy, may be increased for 5FU sensitivity via secondary frameshift mutation of the base excision repair gene MBD4.

  11. DNA Damage Responses Are Induced by tRNA Anticodon Nucleases and Hygromycin B

    PubMed Central

    Beetz, Anja; Meinhardt, Friedhelm

    2016-01-01

    Previous studies revealed DNA damage to occur during the toxic action of PaT, a fungal anticodon ribonuclease (ACNase) targeting the translation machinery via tRNA cleavage. Here, we demonstrate that other translational stressors induce DNA damage-like responses in yeast as well: not only zymocin, another ACNase from the dairy yeast Kluyveromyces lactis, but also translational antibiotics, most pronouncedly hygromycin B (HygB). Specifically, DNA repair mechanisms BER (base excision repair), HR (homologous recombination) and PRR (post replication repair) provided protection, whereas NHEJ (non-homologous end-joining) aggravated toxicity of all translational inhibitors. Analysis of specific BER mutants disclosed a strong HygB, zymocin and PaT protective effect of the endonucleases acting on apurinic sites. In cells defective in AP endonucleases, inactivation of the DNA glycosylase Ung1 increased tolerance to ACNases and HygB. In addition, Mag1 specifically contributes to the repair of DNA lesions caused by HygB. Consistent with DNA damage provoked by translation inhibitors, mutation frequencies were elevated upon exposure to both fungal ACNases and HygB. Since polymerase ζ contributed to toxicity in all instances, error-prone lesion-bypass probably accounts for the mutagenic effects. The finding that differently acting inhibitors of protein biosynthesis induce alike cellular responses in DNA repair mutants is novel and suggests the dependency of genome stability on translational fidelity. PMID:27472060

  12. Dichromatic laser radiation effects on DNA of Escherichia coli and plasmids

    NASA Astrophysics Data System (ADS)

    Martins, W. A.; Polignano, G. A. C.; Guimarães, O. R.; Geller, M.; Paoli, F.; Fonseca, A. S.

    2015-04-01

    Dichromatic and consecutive laser radiations have attracted increased attention for clinical applications as offering new tools for the treatment of dysfunctional tissues in situations where monochromatic radiation is not effective. This work evaluated the survival, filamentation and morphology of Escherichia coli cells, and the induction of DNA lesions, in plasmid DNA exposed to low-intensity consecutive dichromatic laser radiation. Exponential and stationary wild type and formamidopyrimidine DNA glycosylase/MutM protein deficient E. coli cultures were exposed to consecutive low-intensity dichromatic laser radiation (infrared laser immediately after red laser) to study the survival, filamentation and morphology of bacterial cells. Plasmid DNA samples were exposed to dichromatic radiation to study DNA lesions by electrophoretic profile. Dichromatic laser radiation affects the survival, filamentation and morphology of E. coli cultures depending on the growth phase and the functional repair mechanism of oxidizing lesions in DNA, but does not induce single/double strands breaks or alkali-labile DNA lesions. Results show that low-intensity consecutive dichromatic laser radiation induces biological effects that differ from those induced by monochromatic laser radiation, suggesting that other therapeutic effects could be obtained using dichromatic radiation.

  13. DNA Damage Responses Are Induced by tRNA Anticodon Nucleases and Hygromycin B.

    PubMed

    Wemhoff, Sabrina; Klassen, Roland; Beetz, Anja; Meinhardt, Friedhelm

    2016-01-01

    Previous studies revealed DNA damage to occur during the toxic action of PaT, a fungal anticodon ribonuclease (ACNase) targeting the translation machinery via tRNA cleavage. Here, we demonstrate that other translational stressors induce DNA damage-like responses in yeast as well: not only zymocin, another ACNase from the dairy yeast Kluyveromyces lactis, but also translational antibiotics, most pronouncedly hygromycin B (HygB). Specifically, DNA repair mechanisms BER (base excision repair), HR (homologous recombination) and PRR (post replication repair) provided protection, whereas NHEJ (non-homologous end-joining) aggravated toxicity of all translational inhibitors. Analysis of specific BER mutants disclosed a strong HygB, zymocin and PaT protective effect of the endonucleases acting on apurinic sites. In cells defective in AP endonucleases, inactivation of the DNA glycosylase Ung1 increased tolerance to ACNases and HygB. In addition, Mag1 specifically contributes to the repair of DNA lesions caused by HygB. Consistent with DNA damage provoked by translation inhibitors, mutation frequencies were elevated upon exposure to both fungal ACNases and HygB. Since polymerase ζ contributed to toxicity in all instances, error-prone lesion-bypass probably accounts for the mutagenic effects. The finding that differently acting inhibitors of protein biosynthesis induce alike cellular responses in DNA repair mutants is novel and suggests the dependency of genome stability on translational fidelity. PMID:27472060

  14. Age and metabolic risk factors associated with oxidatively damaged DNA in human peripheral blood mononuclear cells.

    PubMed

    Løhr, Mille; Jensen, Annie; Eriksen, Louise; Grønbæk, Morten; Loft, Steffen; Møller, Peter

    2015-02-20

    Aging is associated with oxidative stress-generated damage to DNA and this could be related to metabolic disturbances. This study investigated the association between levels of oxidatively damaged DNA in peripheral blood mononuclear cells (PBMCs) and metabolic risk factors in 1,019 subjects, aged 18-93 years. DNA damage was analyzed as strand breaks by the comet assay and levels of formamidopyrimidine (FPG-) and human 8-oxoguanine DNA glycosylase 1 (hOGG1)-sensitive sites There was an association between age and levels of FPG-sensitive sites for women, but not for men. The same tendency was observed for the level of hOGG1-sensitive sites, whereas there was no association with the level of strand breaks. The effect of age on oxidatively damaged DNA in women disappeared in multivariate models, which showed robust positive associations between DNA damage and plasma levels of triglycerides, cholesterol and glycosylated hemoglobin (HbA1c). In the group of men, there were significant positive associations between alcohol intake, HbA1c and FPG-sensitive sites in multivariate analysis. The levels of metabolic risk factors were positively associated with age, yet only few subjects fulfilled all metabolic syndrome criteria. In summary, positive associations between age and levels of oxidatively damaged DNA appeared mediated by age-related increases in metabolic risk factors. PMID:25650665

  15. Ionizing radiation-induced DNA damage and its repair in human cells. Final performance report, July 1992--June 1995

    SciTech Connect

    Dizdaroglu, M.

    1995-12-31

    The studies of DNA damage in living cells in vitro and in vivo were continued. A variety of systems including cultured mammalian cells, animals, and human tissues were used to conduct these studies. In addition, enzymatic repair of DNA base damage was studied using several DNA glycosylases. To this end, substrate specificities of these enzymes were examined in terms of a large number of base lesions in DNA. In the first phase of the studies, the author sought to introduce improvements to his methodologies for measurement of DNA damage using the technique of gas chromatography/mass spectrometry (GC/MS). In particular, the quantitative measurement of DNA base damage and DNA-protein crosslinks was improved by incorporation of isotope-dilution mass spectrometry into the methodologies. This is one of the most accurate techniques for quantification of organic compounds. Having improved the measurement technique, studies of DNA damage in living cells and DNA repair by repair enzymes were pursued. This report provides a summary of these studies with references to the original work.

  16. Blast induced neurotrauma causes overpressure dependent changes to the DNA methylation equilibrium.

    PubMed

    Bailey, Zachary S; Grinter, Michael B; De La Torre Campos, Diego; VandeVord, Pamela J

    2015-09-14

    Traumatic brain injury (TBI) has a high prevalence in our society and often leads to morbidity and mortality. TBI also occurs frequently in a military setting where exposure to blast waves is common. Abnormal gene expression involved with oxidative stress, inflammation and neuronal apoptosis has been well documented following blast induced neurotrauma (BINT). Altered epigenetic transcriptional regulation through DNA methylation has been implicated in the pathology of the injury. Imbalance between DNA methylation and DNA demethylation may lead to altered methylation patterns and subsequent changes in gene transcription. DNA methyltransferase enzymes (DNMT1, DNMT3a, and DNMT3b) are responsible for the addition of methyl groups to DNA, DNA methylation. Whereas the combined function of ten-eleven translocation enzymes (TET1, TET2, and TET3) and thymine-DNA glycosylase (TDG) result in the removal of methyl groups from DNA, DNA demethylation. We used an established rodent model of BINT to assess changes in DNA methylation and demethylation enzymes following injury. Three different blast overpressures were investigated (10, 17 and 23psi). Gene expression was investigated in the prefrontal cortex and hippocampus two weeks following injury. We observed DNMT, TET and TDG expression changes between pressure groups and brain regions. The hippocampus was more vulnerable to enzyme expression changes than the prefrontal cortex, which correlated with aberrant DNA methylation. A significant negative correlation was found between global DNA methylation and the magnitude of blast overpressure exposure. Through transcriptional regulation, altered DNA methylation patterns may offer insight into the characteristic outcomes associated with the injury pathology including inflammation, oxidative stress and apoptosis. As such, these enzymes may be important targets to future therapeutic intervention strategies. PMID:26232681

  17. Oxidative DNA damage and its repair in rat spleen following subchronic exposure to aniline

    SciTech Connect

    Ma Huaxian; Wang Jianling; Abdel-Rahman, Sherif Z.; Boor, Paul J.; Khan, M. Firoze

    2008-12-01

    The mechanisms by which aniline exposure elicits splenotoxic response, especially the tumorigenic response, are not well-understood. Splenotoxicity of aniline is associated with iron overload and generation of reactive oxygen species (ROS) which can cause oxidative damage to DNA, proteins and lipids (oxidative stress). 8-Hydroxy-2'-deoxyguanosine (8-OHdG) is one of the most abundant oxidative DNA lesions resulting from ROS, and 8-oxoguanine glycosylase 1 (OGG1), a specific DNA glycosylase/lyase enzyme, plays a key role in the removal of 8-OHdG adducts. This study focused on examining DNA damage (8-OHdG) and repair (OGG1) in the spleen in an experimental condition preceding a tumorigenic response. To achieve that, male Sprague-Dawley rats were subchronically exposed to aniline (0.5 mmol/kg/day via drinking water for 30 days), while controls received drinking water only. Aniline treatment led to a significant increase in splenic oxidative DNA damage, manifested as a 2.8-fold increase in 8-OHdG levels. DNA repair activity, measured as OGG1 base excision repair (BER) activity, increased by {approx} 1.3 fold in the nuclear protein extracts (NE) and {approx} 1.2 fold in the mitochondrial protein extracts (ME) of spleens from aniline-treated rats as compared to the controls. Real-time PCR analysis for OGG1 mRNA expression in the spleen revealed a 2-fold increase in expression in aniline-treated rats than the controls. Likewise, OGG1 protein expression in the NEs of spleens from aniline-treated rats was {approx} 1.5 fold higher, whereas in the MEs it was {approx} 1.3 fold higher than the controls. Aniline treatment also led to stronger immunostaining for both 8-OHdG and OGG1 in the spleens, confined to the red pulp areas. It is thus evident from our studies that aniline-induced oxidative stress is associated with increased oxidative DNA damage. The BER pathway was also activated, but not enough to prevent the accumulation of oxidative DNA damage (8-OHdG). Accumulation of

  18. Enzymatic MPG DNA repair assays for two different oxidative DNA lesions reveal associations with increased lung cancer risk.

    PubMed

    Leitner-Dagan, Yael; Sevilya, Ziv; Pinchev, Mila; Kremer, Ran; Elinger, Dalia; Rennert, Hedy S; Schechtman, Edna; Freedman, Laurence; Rennert, Gad; Livneh, Zvi; Paz-Elizur, Tamar

    2014-12-01

    DNA repair is a major mechanism for minimizing mutations and reducing cancer risk. Here, we present the development of reproducible and specific enzymatic assays for methylpurine DNA glycosylase (MPG) repairing the oxidative lesions 1,N6-ethenoadenine (εA) and hypoxanthine (Hx) in peripheral blood mononuclear cells protein extracts. Association of these DNA repair activities with lung cancer was determined using conditional logistic regression with specimens from a population-based case-control study with 96 lung cancer cases and 96 matched control subjects. The mean MPG-εA in case patients was 15.8 units/μg protein (95% CI 15.3-16.3), significantly higher than in control subjects-15.1 (14.6-15.5), *P = 0.011. The adjusted odds ratio for lung cancer associated with a one SD increase in MPG-εA activity (2.48 units) was significantly bigger than 1 (OR = 1.6, 95% CI = 1.1-2.4; *P = 0.013). When activity of OGG1, a different DNA repair enzyme for oxidative damage, was included in the model, the estimated odds ratio/SD for a combined MPG-εA-OGG1 score was 2.6 (95% CI 1.6-4.2) *P = 0.0001, higher than the odds ratio for each single assay. The MPG enzyme activity assays described provide robust functional risk biomarkers, with increased MPG-εA activity being associated with increased lung cancer risk, similar to the behavior of MPG-Hx. This underscores the notion that imbalances in DNA repair, including high DNA repair, usually perceived as beneficial, can cause cancer risk. Such DNA repair risk biomarkers may be useful for risk assessment of lung cancer and perhaps other cancer types, and for early detection techniques such as low-dose CT.

  19. Growth arrest and DNA-damage-inducible, beta (GADD45b)-mediated DNA demethylation in major psychosis.

    PubMed

    Gavin, David P; Sharma, Rajiv P; Chase, Kayla A; Matrisciano, Francesco; Dong, Erbo; Guidotti, Alessandro

    2012-01-01

    Aberrant neocortical DNA methylation has been suggested to be a pathophysiological contributor to psychotic disorders. Recently, a growth arrest and DNA-damage-inducible, beta (GADD45b) protein-coordinated DNA demethylation pathway, utilizing cytidine deaminases and thymidine glycosylases, has been identified in the brain. We measured expression of several members of this pathway in parietal cortical samples from the Stanley Foundation Neuropathology Consortium (SFNC) cohort. We find an increase in GADD45b mRNA and protein in patients with psychosis. In immunohistochemistry experiments using samples from the Harvard Brain Tissue Resource Center, we report an increased number of GADD45b-stained cells in prefrontal cortical layers II, III, and V in psychotic patients. Brain-derived neurotrophic factor IX (BDNF IXabcd) was selected as a readout gene to determine the effects of GADD45b expression and promoter binding. We find that there is less GADD45b binding to the BDNF IXabcd promoter in psychotic subjects. Further, there is reduced BDNF IXabcd mRNA expression, and an increase in 5-methylcytosine and 5-hydroxymethylcytosine at its promoter. On the basis of these results, we conclude that GADD45b may be increased in psychosis compensatory to its inability to access gene promoter regions.

  20. The cytosolic Fe-S cluster assembly component MET18 is required for the full enzymatic activity of ROS1 in active DNA demethylation

    PubMed Central

    Wang, Xiaokang; Li, Qi; Yuan, Wei; Cao, Zhendong; Qi, Bei; Kumar, Suresh; Li, Yan; Qian, Weiqiang

    2016-01-01

    DNA methylation patterns in plants are dynamically regulated by DNA methylation and active DNA demethylation in response to both environmental changes and development of plant. Beginning with the removal of methylated cytosine by ROS1/DME family of 5-methylcytosine DNA glycosylases, active DNA demethylation in plants occurs through base excision repair. So far, many components involved in active DNA demethylation remain undiscovered. Through a forward genetic screening of Arabidopsis mutants showing DNA hypermethylation at the EPF2 promoter region, we identified the conserved iron-sulfur cluster assembly protein MET18. MET18 dysfunction caused DNA hypermethylation at more than 1000 loci as well as the silencing of reporter genes and some endogenous genes. MET18 can directly interact with ROS1 in vitro and in vivo. ROS1 activity was reduced in the met18 mutant plants and point mutation in the conserved Fe-S cluster binding motif of ROS1 disrupted its biological function. Interestingly, a large number of DNA hypomethylated loci, especially in the CHH context, were identified from the met18 mutants and most of the hypo-DMRs were from TE regions. Our results suggest that MET18 can regulate both active DNA demethylation and DNA methylation pathways in Arabidopsis. PMID:27193999

  1. Surveying the repair of ancient DNA from bones via high-throughput sequencing.

    PubMed

    Mouttham, Nathalie; Klunk, Jennifer; Kuch, Melanie; Fourney, Ron; Poinar, Hendrik

    2015-07-01

    DNA damage in the form of abasic sites, chemically altered nucleotides, and strand fragmentation is the foremost limitation in obtaining genetic information from many ancient samples. Upon cell death, DNA continues to endure various chemical attacks such as hydrolysis and oxidation, but repair pathways found in vivo no longer operate. By incubating degraded DNA with specific enzyme combinations adopted from these pathways, it is possible to reverse some of the post-mortem nucleic acid damage prior to downstream analyses such as library preparation, targeted enrichment, and high-throughput sequencing. Here, we evaluate the performance of two available repair protocols on previously characterized DNA extracts from four mammoths. Both methods use endonucleases and glycosylases along with a DNA polymerase-ligase combination. PreCR Repair Mix increases the number of molecules converted to sequencing libraries, leading to an increase in endogenous content and a decrease in cytosine-to-thymine transitions due to cytosine deamination. However, the effects of Nelson Repair Mix on repair of DNA damage remain inconclusive. PMID:26156780

  2. Alternative Induction of Meiotic Recombination From Single-Base Lesions of DNA Deaminases

    PubMed Central

    Pauklin, Siim; Burkert, Julia S.; Martin, Julie; Osman, Fekret; Weller, Sandra; Boulton, Simon J.; Whitby, Matthew C.; Petersen-Mahrt, Svend K.

    2009-01-01

    Meiotic recombination enhances genetic diversity as well as ensures proper segregation of homologous chromosomes, requiring Spo11-initiated double-strand breaks (DSBs). DNA deaminases act on regions of single-stranded DNA and deaminate cytosine to uracil (dU). In the immunoglobulin locus, this lesion will initiate point mutations, gene conversion, and DNA recombination. To begin to delineate the effect of induced base lesions on meiosis, we analyzed the effect of expressing DNA deaminases (activation-induced deaminase, AID, and APOBEC3C) in germ cells. We show that meiotic dU:dG lesions can partially rescue a spo11Δ phenotype in yeast and worm. In rec12 Schizosaccharomyces pombe, AID expression increased proper chromosome segregation, thereby enhancing spore viability, and induced low-frequency meiotic crossovers. Expression of AID in the germ cells of Caenorhabditis elegans spo-11 induced meiotic RAD-51 foci formation and chromosomal bivalency and segregation, as well as an increase in viability. RNAi experiments showed that this rescue was dependent on uracil DNA-glycosylase (Ung). Furthermore, unlike ionizing radiation-induced spo-11 rescue, AID expression did not induce large numbers of DSBs during the rescue. This suggests that the products of DNA deamination and base excision repair, such as uracil, an abasic site, or a single-stranded nick, are sufficient to initiate and alter meiotic recombination in uni- and multicellular organisms. PMID:19237686

  3. Surveying the repair of ancient DNA from bones via high-throughput sequencing.

    PubMed

    Mouttham, Nathalie; Klunk, Jennifer; Kuch, Melanie; Fourney, Ron; Poinar, Hendrik

    2015-07-01

    DNA damage in the form of abasic sites, chemically altered nucleotides, and strand fragmentation is the foremost limitation in obtaining genetic information from many ancient samples. Upon cell death, DNA continues to endure various chemical attacks such as hydrolysis and oxidation, but repair pathways found in vivo no longer operate. By incubating degraded DNA with specific enzyme combinations adopted from these pathways, it is possible to reverse some of the post-mortem nucleic acid damage prior to downstream analyses such as library preparation, targeted enrichment, and high-throughput sequencing. Here, we evaluate the performance of two available repair protocols on previously characterized DNA extracts from four mammoths. Both methods use endonucleases and glycosylases along with a DNA polymerase-ligase combination. PreCR Repair Mix increases the number of molecules converted to sequencing libraries, leading to an increase in endogenous content and a decrease in cytosine-to-thymine transitions due to cytosine deamination. However, the effects of Nelson Repair Mix on repair of DNA damage remain inconclusive.

  4. DNA repair defects sensitize cells to anticodon nuclease yeast killer toxins.

    PubMed

    Klassen, Roland; Wemhoff, Sabrina; Krause, Jens; Meinhardt, Friedhelm

    2011-03-01

    Killer toxins from Kluyveromyces lactis (zymocin) and Pichia acaciae (PaT) were found to disable translation in target cells by virtue of anticodon nuclease (ACNase) activities on tRNA(Glu) and tRNA(Gln), respectively. Surprisingly, however, ACNase exposure does not only impair translation, but also affects genome integrity and concomitantly DNA damage occurs. Previously, it was shown that homologous recombination protects cells from ACNase toxicity. Here, we have analyzed whether other DNA repair pathways are functional in conferring ACNase resistance as well. In addition to HR, base excision repair (BER) and postreplication repair (PRR) promote clear resistance to either, PaT and zymocin. Comparative toxin sensitivity analysis of BER mutants revealed that its ACNase protective function is due to the endonucleases acting on apurinic (AP) sites, whereas none of the known DNA glycosylases is involved. Because PaT and zymocin require the presence of the ELP3/TRM9-dependent wobble uridine modification 5-methoxy-carbonyl-methyl (mcm(5)) for tRNA cleavage, we analyzed toxin response in DNA repair mutants additionally lacking such tRNA modifications. ACNase resistance caused by elp3 or trm9 mutations was found to rescue hypersensitivity of DNA repair defects, consistent with DNA damage to occur as a consequence of tRNA cleavage. The obtained genetic evidence promises to reveal new aspects into the mechanism linking translational fidelity and genome surveillance. PMID:21188417

  5. An enzymatic activity isolated from Brassica oleracea specific for UV-irradiated DNA

    SciTech Connect

    Gallagher, P.E.; Lenhart, J.R.; Weiss, R.B. )

    1991-03-11

    As a consequence of a breakdown in the ozone layer, an increase in the amount of DNA damage caused by ultraviolet irradiation can be expected. Organisms have evolved mechanisms to repair numerous types of DNA damages. While these DNA repair systems have been well characterized in bacteria and to a lesser extent in mammalian cells, surprisingly little is known about repair of potentially harmful DNA lesions in plants. An enzyme that recognizes and incises UV irradiated DNA has been partially purified from the leaf tissue of Brassica oleracea. Glycosylase-produced base loss sites were detected by a nitrocellulose filter-binding assay using UV-irradiated PM2 viral DNA as the substrate. The optimal temperature for maximal enzyme activity is 47C with a pH optimum between 7.0 and 7.5. In addition, the endonuclease is active in both Tris and phosphate buffers, although it is stimulated by phosphate concentrations up to 25 mM. Currently, a number of synthetic polynucleotides as well as DNAs of defined sequence are being employed as substrates to determine the nature of the UV-induced lesion and the precise mechanism of action of the enzyme.

  6. The Friedreich's ataxia protein frataxin modulates DNA base excision repair in prokaryotes and mammals.

    PubMed

    Thierbach, René; Drewes, Gunnar; Fusser, Markus; Voigt, Anja; Kuhlow, Doreen; Blume, Urte; Schulz, Tim J; Reiche, Carina; Glatt, Hansruedi; Epe, Bernd; Steinberg, Pablo; Ristow, Michael

    2010-11-15

    DNA-repair mechanisms enable cells to maintain their genetic information by protecting it from mutations that may cause malignant growth. Recent evidence suggests that specific DNA-repair enzymes contain ISCs (iron-sulfur clusters). The nuclearencoded protein frataxin is essential for the mitochondrial biosynthesis of ISCs. Frataxin deficiency causes a neurodegenerative disorder named Friedreich's ataxia in humans. Various types of cancer occurring at young age are associated with this disease, and hence with frataxin deficiency. Mice carrying a hepatocyte-specific disruption of the frataxin gene develop multiple liver tumours for unresolved reasons. In the present study, we show that frataxin deficiency in murine liver is associated with increased basal levels of oxidative DNA base damage. Accordingly, eukaryotic V79 fibroblasts overexpressing human frataxin show decreased basal levels of these modifications, while prokaryotic Salmonella enterica serotype Typhimurium TA104 strains transformed with human frataxin show decreased mutation rates. The repair rates of oxidative DNA base modifications in V79 cells overexpressing frataxin were significantly higher than in control cells. Lastly, cleavage activity related to the ISC-independent repair enzyme 8-oxoguanine glycosylase was found to be unaltered by frataxin overexpression. These findings indicate that frataxin modulates DNA-repair mechanisms probably due to its impact on ISC-dependent repair proteins, linking mitochondrial dysfunction to DNA repair and tumour initiation.

  7. Suppression of a DNA base excision repair gene, hOGG1, increases bleomycin sensitivity of human lung cancer cell line

    SciTech Connect

    Wu Mei; Zhang Zunzhen Che Wangjun

    2008-05-01

    Bleomycin (BLM) has been found to induce 8-oxoguanine and DNA strand breaks through producing oxidative free radicals, thereby leading to cell cycle arrest, apoptosis and cell death. Cellular DNA damage repair mechanisms such as single strand DNA break repair/base excision repair (BER) are responsible for removing bleomycin-induced DNA damage, therefore confer chemotherapeutic resistance to bleomycin. In this study, we have investigated if down-regulation of human 8-oxoguanine DNA glycosylase (hOGG1), an important BER enzyme, could alter cellular sensitivity to bleomycin, thereby reducing chemotherapeutic resistance in human tumor cell. A human lung cancer cell line with hOGG1 deficiency (A549-R) was created by ribozyme gene knockdown technique. Bleomycin cellular sensitivity and DNA/chromosomal damages were examined using MTT, colony forming assay, comet assay as well as micronucleus assay. We demonstrated that hOGG1 gene knockdown enhanced bleomycin cytotoxicity and reduced the ability of colony formation of the lung cancer cell lines. We further demonstrated that bleomycin-induced DNA strand breaks resulted in an increase of micronucleus rate. hOGG1 deficiency significantly reduced DNA damage repair capacity of the lung cancer cell lines. Our results indicated that hOGG1 deficiency allowed the accumulation of bleomycin-induced DNA damage and chromosomal breaks by compromising DNA damage repair capacity, thereby increasing cellular sensitivity to bleomycin.

  8. Endonucleolytic activity directed towards 8-(2-hydroxy-2-propyl) purines in double-stranded DNA.

    PubMed

    Livneh, Z; Elad, D; Sperling, J

    1979-11-01

    Photoalkylation of circular covalently closed DNA from phage PM2 with isopropyl alcohol by using a free radical photoinitiator and UV light of lambda greater than 305 nm led to the specific 8-substitution of purine moieties in the DNA, yielding 8-(2-hydroxy-2-propyl)adenine and 8-(2-hydroxy-2-propyl)guanine as the only detectable damage in the DNA. Using this specifically photoalkylated DNA as a substrate, we discovered in extracts of Micrococcus luteus an endonucleolytic activity that is directed towards 8-(2-hydroxy-2-propyl) purines in DNA. The activity is not a combination of a DNA-glycosylase and an apurinic site endonuclease. It is not inhibited by single-stranded DNA, by UV- or gamma-irradiated single-stranded DNA, or by normal or depurinated double-stranded DNA. however, gamma- or UV-(254 nm) irradiated double-stranded DNAs to inhibit the activity, hinting at the possibility of a common type of lesion in these damaged DNAs. Divalent cations are not required for the incising activity, and it is fully active in 1 mM EDTA, whereas caffeine and ATP cause inhibition. Extracts of mutant M. luteus lacking pyrimidine-dimer-directed endonucleases were found to contain the endonucleolytic activity in levels comparable to those present in the wild type. After the incision, we could demonstrate the specific excision of the 8-alkylated purines from the damaged DNA. The special conformational consequences of the 8-alkylation of purines, at the nucleotide level, namely their nonregular syn conformation, suggest that it is the distortion in the DNA that is recognized by the endonuclease. PMID:293658

  9. Exposure to 1800 MHz radiofrequency electromagnetic radiation induces oxidative DNA base damage in a mouse spermatocyte-derived cell line.

    PubMed

    Liu, Chuan; Duan, Weixia; Xu, Shangcheng; Chen, Chunhai; He, Mindi; Zhang, Lei; Yu, Zhengping; Zhou, Zhou

    2013-03-27

    Whether exposure to radiofrequency electromagnetic radiation (RF-EMR) emitted from mobile phones can induce DNA damage in male germ cells remains unclear. In this study, we conducted a 24h intermittent exposure (5 min on and 10 min off) of a mouse spermatocyte-derived GC-2 cell line to 1800 MHz Global System for Mobile Communication (GSM) signals in GSM-Talk mode at specific absorption rates (SAR) of 1 W/kg, 2 W/kg or 4 W/kg. Subsequently, through the use of formamidopyrimidine DNA glycosylase (FPG) in a modified comet assay, we determined that the extent of DNA migration was significantly increased at a SAR of 4 W/kg. Flow cytometry analysis demonstrated that levels of the DNA adduct 8-oxoguanine (8-oxoG) were also increased at a SAR of 4 W/kg. These increases were concomitant with similar increases in the generation of reactive oxygen species (ROS); these phenomena were mitigated by co-treatment with the antioxidant α-tocopherol. However, no detectable DNA strand breakage was observed by the alkaline comet assay. Taking together, these findings may imply the novel possibility that RF-EMR with insufficient energy for the direct induction of DNA strand breaks may produce genotoxicity through oxidative DNA base damage in male germ cells.

  10. Use of a rapid and simple method to extract proviral DNA in the identification of HIV-1 by PCR.

    PubMed

    Tagliaferro, L; Corbelli, M; Maietta, G; Pellegrino, V; Pignatelli, P

    1995-07-01

    DNA extraction is a critical step in PCR analysis and is closely related to its sensitivity. Traditional methods, based on phenol-chloroform extraction, require more time and the use of toxic reagents. GeneReleaser (Bio Ventures Inc.) is a commercial product which releases DNA from whole blood, cell cultures, bacterial colonies and the like. Cells lysis and DNA extraction are accomplished directly in the amplification tube on a thermocycler. We used GeneReleaser in the identification of HIV-1 proviral DNA by PCR on whole blood samples. All samples arrived at our laboratory for HIV-1 detection were treated with two different procedures. The classical one was based on the lysis of separated lymphocytes by proteinase K, while the other consisted in DNA extraction by GeneReleaser from 5 microliters of whole blood in sodium citrate. All samples were amplified for HIV-1 GAG region; to prevent carry-over contamination Uracil N-glycosylase (UNG) sterilization was performed. Amplified sequences were revealed using the DEIA commercial system (Sorin Biomedica, Italy). To verify the suitability both of cell lysates and GeneReleaser DNA-extracted samples for PCR, we amplified a specific sequence of HLA-DQ-alpha gene. Initial data indicate that this new method might reduce the performance time of PCR (DNA extraction time was around 15 minutes) and improve PCR sensitivity.

  11. Catalog of mRNA expression patterns for DNA methylating and demethylating genes in developing mouse lower urinary tract.

    PubMed

    Keil, Kimberly P; Altmann, Helene M; Mehta, Vatsal; Abler, Lisa L; Elton, Erik A; Vezina, Chad M

    2013-12-01

    The mouse prostate develops from a component of the lower urinary tract (LUT) known as the urogenital sinus (UGS). This process requires androgens and signaling between mesenchyme and epithelium. Little is known about DNA methylation during prostate development, including which factors are expressed, whether their expression changes over time, and if DNA methylation contributes to androgen signaling or influences signaling between mesenchyme and epithelium. We used in situ hybridization to evaluate the spatial and temporal expression pattern of mRNAs which encode proteins responsible for establishing, maintaining or remodeling DNA methylation. These include DNA methyltransferases, DNA deaminases, DNA glycosylases, base excision repair and mismatch repair pathway members. The mRNA expression patterns were compared between male and female LUT prior to prostatic bud formation (14.5 days post coitus (dpc)), during prostatic bud formation (17.5 dpc) and during prostatic branching morphogenesis (postnatal day (P) 5). We found dramatic changes in the patterns of these mRNAs over the course of prostate development and identified examples of sexually dimorphic mRNA expression. Future investigation into how DNA methylation patterns are established, maintained and remodeled during the course of embryonic prostatic bud formation may provide insight into prostate morphogenesis and disease.

  12. A network of enzymes involved in repair of oxidative DNA damage in Neisseria meningitidis

    PubMed Central

    Li, Yanwen; Pelicic, Vladimir; Freemont, Paul S.; Baldwin, Geoff S.; Tang, Christoph M.

    2013-01-01

    Although oxidative stress is a key aspect of innate immunity, little is known about how host-restricted pathogens successfully repair DNA damage. Base excision repair (BER) is responsible for correcting nucleobases damaged by oxidative stress, and is essential for bloodstream infection caused by the human pathogen, Neisseria meningitidis. We have characterised meningococcal BER enzymes involved in the recognition and removal of damaged nucleobases, and incision of the DNA backbone. We demonstrate that the bi-functional glycosylase/lyases Nth and MutM share several overlapping activities and functional redundancy. However MutM and other members of the GO system, which deal with 8-oxoG, a common lesion of oxidative damage, are not required for survival of N. meningitidis under oxidative stress. Instead, the mismatch repair pathway provides back-up for the GO system, while the lyase activity of Nth can substitute for the meningococcal AP endonuclease, NApe. Our genetic and biochemical evidence show that DNA repair is achieved through a robust network of enzymes that provides a flexible system of DNA repair. This network is likely to reflect successful adaptation to the human nasopharynx, and might provide a paradigm for DNA repair in other prokaryotes. PMID:22296581

  13. Chlorophenols, chlorocatechols and chloroguaiacols induce DNA base oxidation in human lymphocytes (in vitro).

    PubMed

    Michałowicz, Jaromir; Majsterek, Ireneusz

    2010-02-01

    Phenolic compounds are strong environmental toxicants, which are found in food, drinking water as well as in the indoor and outdoor air environment. In this work we investigated the effect of low concentrations of 0.2, 1 and 5 microg/ml of 2,4,5-trichlorophenol (2,4,5-TCP), pentachlorophenol (PCP), 4,6-dichloroguaiacol (4,6-DCG), tetrachloroguaiacol (TeCG), 4,5-dichlorocatechol (4,5-DCC) and tetrachlorocatechol (TeCC) on DNA bases oxidation in human peripheral blood lymphocytes. The analysis was performed using alkaline single cell gel electrophoresis (the comet assay). To detect oxidized pyrimidynes and purines we used the repair enzymes such as endonuclease III and formamidopyrimidine-DNA glycosylase. DNA oxidation was expressed as a percentage of comet tail, which was formed after the xenobiotics treatment. The obtained results showed that all the compounds examined were able to oxidize DNA bases in human lymphocytes. It was also observed that pyrimidine bases were more strongly oxidized in comparison to purine ones. Finally, it was found that chlorinated catechols and TeCC in particular, revealed a higher oxidative potential in comparison to chlorophenols and chloroguaiacols, and a rise in the number of chlorine atoms in the compound from each group examined led to an increase in DNA bases damage.

  14. Enzymology of repair of DNA adducts produced by N-nitroso compounds

    SciTech Connect

    Setlow, R.B.; Cao, E.H.; Delihas, N.C.

    1983-01-01

    The biological effects of DNA adducts depend on their nature, and on their half-lives relative to the rates of DNA replication and transcription. Their half-lives are determined by the rates of spontaneous decay, such as depurination, and the rates of enzymatic repair of the adducts or their decay products. The principle modes of repair of methylating and ethylating agents are by glycosylase catalyzed depurination of 7-alkylguanine and 3-alkyladenine and by the dealkalation of O/sup 6/-alkylguanine. Repair by dealkylation cannot be detected by the standard methods used to measure DNA repair, but it is easy to estimate the acceptor activity in cell extracts by measuring the transfer of radioactive O/sup 6/-alkyl groups in an exogenous DNA to protein. In extracts of cells treated with alkylating agents the activity is depressed because the endogenous DNA is rapidly dealkylated, using up the acceptor activity. In many cell types the decrease in activity is followed by an increase to the normal constitutive level. In other cells there is no such adaptive response. Differences in constitutive levels of methyl accepting activity in extracts of human lymphocytes and on the acceptor activity in lung macrophages from smokers (low activity) and non-smokers (high activity) have been observed. 46 references.

  15. Mimicking Damaged DNA with a Small Moleclue Inhibitor of Human UNG2

    SciTech Connect

    Krosky,D.; Bianchet, M.; Seiple, L.; Chung, S.; Amzel, L.; Stivers, J.

    2006-01-01

    Human nuclear uracil DNA glycosylase (UNG2) is a cellular DNA repair enzyme that is essential for a number of diverse biological phenomena ranging from antibody diversification to B-cell lymphomas and type-1 human immunodeficiency virus infectivity. During each of these processes, UNG2 recognizes uracilated DNA and excises the uracil base by flipping it into the enzyme active site. We have taken advantage of the extrahelical uracil recognition mechanism to build large small-molecule libraries in which uracil is tethered via flexible alkane linkers to a collection of secondary binding elements. This high-throughput synthesis and screening approach produced two novel uracil-tethered inhibitors of UNG2, the best of which was crystallized with the enzyme. Remarkably, this inhibitor mimics the crucial hydrogen bonding and electrostatic interactions previously observed in UNG2 complexes with damaged uracilated DNA. Thus, the environment of the binding site selects for library ligands that share these DNA features. This is a general approach to rapid discovery of inhibitors of enzymes that recognize extrahelical damaged bases.

  16. Detection of uracil within DNA using a sensitive labeling method for in vitro and cellular applications

    PubMed Central

    Róna, Gergely; Scheer, Ildikó; Nagy, Kinga; Pálinkás, Hajnalka L.; Tihanyi, Gergely; Borsos, Máté; Békési, Angéla; Vértessy, Beáta G.

    2016-01-01

    The role of uracil in genomic DNA has been recently re-evaluated. It is now widely accepted to be a physiologically important DNA element in diverse systems from specific phages to antibody maturation and Drosophila development. Further relevant investigations would largely benefit from a novel reliable and fast method to gain quantitative and qualitative information on uracil levels in DNA both in vitro and in situ, especially since current techniques does not allow in situ cellular detection. Here, starting from a catalytically inactive uracil-DNA glycosylase protein, we have designed several uracil sensor fusion proteins. The designed constructs can be applied as molecular recognition tools that can be detected with conventional antibodies in dot-blot applications and may also serve as in situ uracil-DNA sensors in cellular techniques. Our method is verified on numerous prokaryotic and eukaryotic cellular systems. The method is easy to use and can be applied in a high-throughput manner. It does not require expensive equipment or complex know-how, facilitating its easy implementation in any basic molecular biology laboratory. Elevated genomic uracil levels from cells of diverse genetic backgrounds and/or treated with different drugs can be demonstrated also in situ, within the cell. PMID:26429970

  17. Pathophysiology of Bronchoconstriction: Role of Oxidatively Damaged DNA Repair

    PubMed Central

    Bacsi, Attila; Pan, Lang; Ba, Xueqing; Boldogh, Istvan

    2016-01-01

    Purpose of review To provide an overview on the present understanding of roles of oxidative DNA damage repair in cell signaling underlying bronchoconstriction common to, but not restricted to various forms of asthma and chronic obstructive pulmonary disease Recent findings Bronchoconstriction is a tightening of smooth muscle surrounding the bronchi and bronchioles with consequent wheezing and shortness of breath. Key stimuli include air pollutants, viral infections, allergens, thermal and osmotic changes, and shear stress of mucosal epithelium, triggering a wide range of cellular, vascular and neural events. Although activation of nerve fibers, the role of G-proteins, protein kinases and Ca++, and molecular interaction within contracting filaments of muscle are well defined, the overarching mechanisms by which a wide range of stimuli initiate these events are not fully understood. Many, if not all, stimuli increase levels of reactive oxygen species (ROS), which are signaling and oxidatively modifying macromolecules, including DNA. The primary ROS target in DNA is guanine, and 8-oxoguanine is one of the most abundant base lesions. It is repaired by 8-oxoguanine DNA glycosylase1 (OGG1) during base excision repair processes. The product, free 8-oxoG base, is bound by OGG1 with high affinity, and the complex then functions as an activator of small GTPases, triggering pathways for inducing gene expression and contraction of intracellular filaments in mast and smooth muscle cells. Summary Oxidative DNA damage repair-mediated cell activation signaling result in gene expression that “primes” the mucosal epithelium and submucosal tissues to generate mediators of airway smooth muscle contractions. PMID:26694039

  18. DNA damage in leukocytes of workers occupationally exposed to arsenic in copper smelters.

    PubMed

    Palus, Jadwiga; Lewinska, Dobroslawa; Dziubaltowska, Elzbieta; Stepnik, Maciej; Beck, Jens; Rydzynski, Konrad; Nilsson, Robert

    2005-08-01

    Inorganic arsenic (i-As) is a known human carcinogen; however, humans continue to be exposed to i-As in drinking water and in certain occupational settings. In this study, we used the Comet assay to evaluate DNA damage in the somatic cells of workers from three Polish copper smelters who were occupationally exposed to i-As. Blood samples were collected from 72 male workers and 83 unexposed male controls and used for the detection of DNA damage, oxidative DNA damage, and DNA damage after a 3-hr incubation in culture. Urine samples were collected to assess the level of exposure. The mean concentration of arsenic metabolites in urine [the sum of arsenite (AsIII), arsenate (AsV), monomethylarsenate (MMA) and dimethylarsenate (DMA)] and the concentrations of DMA (the main metabolite in urine) were higher in workers than in controls, but the differences were not statistically significant. By contrast, the level of DNA damage, expressed as the median tail moment, was significantly higher in the leukocytes of workers than in the controls. Comet assays conducted with formamidopyrimidine glycosylase (FPG) digestion to detect oxidative DNA damage indicated that oxidative lesions were present in leukocytes from both the exposed and control groups, but the levels of damage were significantly higher among the workers. Incubation of the cells in culture resulted in a significant reduction in the levels of DNA damage, especially among leukocytes from the workers, suggesting that the DNA damage was subject to repair. Our findings indicate that copper smelter workers have increased levels of DNA damage in somatic cells, suggesting a potential health risk for the workers. Although i-As was present in air samples from the smelters and in urine samples from workers, no clear association could be made between i-As exposure and the DNA damage. PMID:15880732

  19. Mitochondrial DNA.

    ERIC Educational Resources Information Center

    Wright, Russell G.; Bottino, Paul J.

    1986-01-01

    Provides background information for teachers on mitochondrial DNA, pointing out that it may have once been a free-living organism. Includes a ready-to-duplicate exercise titled "Using Microchondrial DNA to Measure Evolutionary Distance." (JN)

  20. Artesunate induces oxidative DNA damage, sustained DNA double-strand breaks, and the ATM/ATR damage response in cancer cells.

    PubMed

    Berdelle, Nicole; Nikolova, Teodora; Quiros, Steve; Efferth, Thomas; Kaina, Bernd

    2011-12-01

    Artesunate, the active agent from Artemisia annua L. used in the traditional Chinese medicine, is being applied as a first-line drug for malaria treatment, and trials are ongoing that include this drug in cancer therapy. Despite increasing interest in its therapeutic application, the mode of cell killing provoked by artesunate in human cells is unknown. Here, we show that artesunate is a powerful inducer of oxidative DNA damage, giving rise to formamidopyrimidine DNA glycosylase-sensitive sites and the formation of 8-oxoguanine and 1,N6-ethenoadenine. Oxidative DNA damage was induced in LN-229 human glioblastoma cells dose dependently and was paralleled by cell death executed by apoptosis and necrosis, which could be attenuated by radical scavengers such as N-acetyl cysteine. Oxidative DNA damage resulted in DNA double-strand breaks (DSB) as determined by γH2AX foci that colocalized with 53BP1. Upon chronic treatment with artesunate, the level of DSB continuously increased over the treatment period up to a steady-state level, which is in contrast to ionizing radiation that induced a burst of DSB followed by a decline due to their repair. Knockdown of Rad51 by short interfering RNA and inactivation of DNA-PK strongly sensitized glioma cells to artesunate. These data indicate that both homologous recombination and nonhomologous end joining are involved in the repair of artesunate-induced DSB. Artesunate provoked a DNA damage response (DDR) with phosphorylation of ATM, ATR, Chk1, and Chk2. Overall, these data revealed that artesunate induces oxidative DNA lesions and DSB that continuously increase during the treatment period and accumulate until they trigger DDR and finally tumor cell death. PMID:21998290

  1. DNA Banking

    SciTech Connect

    Reilly, P.R. )

    1992-11-01

    The author is involved in the ethical, legal, and social issues of banking of DNA and data from DNA analysis. In his attempt to determine the extent of DNA banking in the U.S., the author surveyed some commercial companies performing DNA banking services. This article summarizes the results of that survey, with special emphasis on the procedures the companies use to protect the privacy of individuals. 4 refs.

  2. Partial loss of the DNA repair scaffolding protein, Xrcc1, results in increased brain damage and reduced recovery from ischemic stroke in mice.

    PubMed

    Ghosh, Somnath; Canugovi, Chandrika; Yoon, Jeong Seon; Wilson, David M; Croteau, Deborah L; Mattson, Mark P; Bohr, Vilhelm A

    2015-07-01

    Oxidative DNA damage is mainly repaired by base excision repair (BER). Previously, our laboratory showed that mice lacking the BER glycosylases 8-oxoguanine glycosylase 1 (Ogg1) or nei endonuclease VIII-like 1 (Neil1) recover more poorly from focal ischemic stroke than wild-type mice. Here, a mouse model was used to investigate whether loss of 1 of the 2 alleles of X-ray repair cross-complementing protein 1 (Xrcc1), which encodes a nonenzymatic scaffold protein required for BER, alters recovery from stroke. Ischemia and reperfusion caused higher brain damage and lower functional recovery in Xrcc1(+/-) mice than in wild-type mice. Additionally, a greater percentage of Xrcc1(+/-) mice died as a result of the stroke. Brain samples from human individuals who died of stroke and individuals who died of non-neurological causes were assayed for various steps of BER. Significant losses of thymine glycol incision, abasic endonuclease incision, and single nucleotide incorporation activities were identified, as well as lower expression of XRCC1 and NEIL1 proteins in stroke brains compared with controls. Together, these results suggest that impaired BER is a risk factor in ischemic brain injury and contributes to its recovery.

  3. Partial loss of the DNA repair scaffolding protein, Xrcc1, results in increased brain damage and reduced recovery from ischemic stroke in mice.

    PubMed

    Ghosh, Somnath; Canugovi, Chandrika; Yoon, Jeong Seon; Wilson, David M; Croteau, Deborah L; Mattson, Mark P; Bohr, Vilhelm A

    2015-07-01

    Oxidative DNA damage is mainly repaired by base excision repair (BER). Previously, our laboratory showed that mice lacking the BER glycosylases 8-oxoguanine glycosylase 1 (Ogg1) or nei endonuclease VIII-like 1 (Neil1) recover more poorly from focal ischemic stroke than wild-type mice. Here, a mouse model was used to investigate whether loss of 1 of the 2 alleles of X-ray repair cross-complementing protein 1 (Xrcc1), which encodes a nonenzymatic scaffold protein required for BER, alters recovery from stroke. Ischemia and reperfusion caused higher brain damage and lower functional recovery in Xrcc1(+/-) mice than in wild-type mice. Additionally, a greater percentage of Xrcc1(+/-) mice died as a result of the stroke. Brain samples from human individuals who died of stroke and individuals who died of non-neurological causes were assayed for various steps of BER. Significant losses of thymine glycol incision, abasic endonuclease incision, and single nucleotide incorporation activities were identified, as well as lower expression of XRCC1 and NEIL1 proteins in stroke brains compared with controls. Together, these results suggest that impaired BER is a risk factor in ischemic brain injury and contributes to its recovery. PMID:25971543

  4. Bisphenol A Promotes Cell Survival Following Oxidative DNA Damage in Mouse Fibroblasts

    PubMed Central

    Gassman, Natalie R.; Coskun, Erdem; Stefanick, Donna F.; Horton, Julie K.; Jaruga, Pawel; Dizdaroglu, Miral; Wilson, Samuel H.

    2015-01-01

    Bisphenol A (BPA) is a biologically active industrial chemical used in production of consumer products. BPA has become a target of intense public scrutiny following concerns about its association with human diseases such as obesity, diabetes, reproductive disorders, and cancer. Recent studies link BPA with the generation of reactive oxygen species, and base excision repair (BER) is responsible for removing oxidatively induced DNA lesions. Yet, the relationship between BPA and BER has yet to be examined. Further, the ubiquitous nature of BPA allows continuous exposure of the human genome concurrent with the normal endogenous and exogenous insults to the genome, and this co-exposure may impact the DNA damage response and repair. To determine the effect of BPA exposure on base excision repair of oxidatively induced DNA damage, cells compromised in double-strand break repair were treated with BPA alone or co-exposed with either potassium bromate (KBrO3) or laser irradiation as oxidative damaging agents. In experiments with KBrO3, co-treatment with BPA partially reversed the KBrO3-induced cytotoxicity observed in these cells, and this was coincident with an increase in guanine base lesions in genomic DNA. The improvement in cell survival and the increase in oxidatively induced DNA base lesions were reminiscent of previous results with alkyl adenine DNA glycosylase-deficient cells, suggesting that BPA may prevent initiation of repair of oxidized base lesions. With laser irradiation-induced DNA damage, treatment with BPA suppressed DNA repair as revealed by several indicators. These results are consistent with the hypothesis that BPA can induce a suppression of oxidized base lesion DNA repair by the base excision repair pathway. PMID:25693136

  5. DNA damage and estrogenic activity induced by the environmental pollutant 2-nitrotoluene and its metabolite

    PubMed Central

    Watanabe, Chigusa; Egami, Takashi; Midorikawa, Kaoru; Hiraku, Yusuke; Oikawa, Shinji; Kawanishi, Shosuke

    2010-01-01

    Objectives The environmental pollutant 2-nitrotoluene (2-NO2-T) is carcinogenic and reproductively toxic in animals. In this study, we elucidated the mechanisms of its carcinogenicity and reproductive toxicity. Methods We examined DNA damage induced by 2-NO2-T and its metabolite, 2-nitrosotoluene (2-NO-T), using 32P-5′-end-labeled DNA. We measured 8-oxo-7, 8-dihydro-2′-deoxyguanosine (8-oxodG), an indicator of oxidative DNA damage, in calf thymus DNA and cellular DNA in cultured human leukemia (HL-60) cells treated with 2-NO2-T and 2-NO-T. 8-Oxoguanine DNA glycosylase (OGG1) gene expression in HL-60 cells was measured by real-time polymerase chain reaction (PCR). We examined estrogenic activity using an E-screen assay and a surface plasmon resonance (SPR) sensor. Results In experiments with isolated DNA fragments, 2-NO-T induced oxidative DNA damage in the presence of Cu (II) and β-nicotinamide adenine dinucleotide disodium salt (reduced form) (NADH), while 2-NO2-T did not. 2-NO-T significantly increased levels of 8-oxodG in HL-60 cells. Real-time polymerase chain reaction (PCR) analysis revealed upregulation of OGG1 gene expression induced by 2-NO-T. An E-screen assay using the human breast cancer cell line MCF-7 revealed that 2-NO2-T induced estrogen-dependent cell proliferation. In contrast, 2-NO-T decreased the cell number and suppressed 17β-estradiol-induced cell proliferation. The data obtained with the SPR sensor using estrogen receptor α and the estrogen response element supported the results of the E-screen assay. Conclusions Oxidative DNA damage caused by 2-NO-T and estrogen-disrupting effects caused by 2-NO2-T and 2-NO-T may play a role in the reproductive toxicity and carcinogenicity of these entities. PMID:21432561

  6. Biochemical reconstitution of TET1–TDG–BER-dependent active DNA demethylation reveals a highly coordinated mechanism

    PubMed Central

    Weber, Alain R.; Krawczyk, Claudia; Robertson, Adam B.; Kuśnierczyk, Anna; Vågbø, Cathrine B.; Schuermann, David; Klungland, Arne; Schär, Primo

    2016-01-01

    Cytosine methylation in CpG dinucleotides is an epigenetic DNA modification dynamically established and maintained by DNA methyltransferases and demethylases. Molecular mechanisms of active DNA demethylation began to surface only recently with the discovery of the 5-methylcytosine (5mC)-directed hydroxylase and base excision activities of ten–eleven translocation (TET) proteins and thymine DNA glycosylase (TDG). This implicated a pathway operating through oxidation of 5mC by TET proteins, which generates substrates for TDG-dependent base excision repair (BER) that then replaces 5mC with C. Yet, direct evidence for a productive coupling of TET with BER has never been presented. Here we show that TET1 and TDG physically interact to oxidize and excise 5mC, and proof by biochemical reconstitution that the TET–TDG–BER system is capable of productive DNA demethylation. We show that the mechanism assures a sequential demethylation of symmetrically methylated CpGs, thereby avoiding DNA double-strand break formation but contributing to the mutability of methylated CpGs. PMID:26932196

  7. Dna Sequencing

    DOEpatents

    Tabor, Stanley; Richardson, Charles C.

    1995-04-25

    A method for sequencing a strand of DNA, including the steps off: providing the strand of DNA; annealing the strand with a primer able to hybridize to the strand to give an annealed mixture; incubating the mixture with four deoxyribonucleoside triphosphates, a DNA polymerase, and at least three deoxyribonucleoside triphosphates in different amounts, under conditions in favoring primer extension to form nucleic acid fragments complementory to the DNA to be sequenced; labelling the nucleic and fragments; separating them and determining the position of the deoxyribonucleoside triphosphates by differences in the intensity of the labels, thereby to determine the DNA sequence.

  8. DNA damage and repair capacity by comet assay in lymphocytes of white-collar active smokers and passive smokers (non- and ex-smokers) at workplace.

    PubMed

    Fracasso, Maria Enrica; Doria, Denise; Franceschetti, Paola; Perbellini, Luigi; Romeo, Luciano

    2006-12-01

    The comet assay has been widely used to quantify DNA damage in isolated lymphocytes from subjects exposed to several environmental or occupational substances, especially for estimation of oxidative damage in the DNA, which is well-known to be induced by tobacco smoke. Passive smoking or environmental tobacco smoke (ETS) has been included among those substances that cause cancer with sufficient evidence in humans. In this study, we analyzed, by the alkaline version of comet assay, the lymphocyte DNA damage of white-collar active smokers and non- and ex-smokers exposed to ETS at the workplace. We investigated basal DNA damage, DNA oxidation by formamidopyrimidine glycosylase (Fpg), the repair capacity H2O2-induced DNA damage by kinetics studies and lymphocyte GSH levels, the major intracellular defense against exogenous oxidative stress imposed by cigarette smoking. Our results indicated high basal DNA damage with clear significant correlations with urinary nicotine and cotinine, number of cigarettes/day, and an inverse significant correlation with GSH cellular content in active smokers. Significant Fpg-sensitive sites were found in smokers (> 85%), considerably high but not significant in passive non- and ex-smokers (> 51% and 37%, respectively). The DNA repair capacity had seriously decreased in non-smokers > smokers > ex-smokers, while the same damage was repaired in a short time in never smokers. PMID:17027201

  9. Mitochondrial ROS Induces Cardiac Inflammation via a Pathway through mtDNA Damage in a Pneumonia-Related Sepsis Model.

    PubMed

    Yao, Xiao; Carlson, Deborah; Sun, Yuxiao; Ma, Lisha; Wolf, Steven E; Minei, Joseph P; Zang, Qun S

    2015-01-01

    We have previously shown that mitochondria-targeted vitamin E (Mito-Vit-E), a mtROS specific antioxidant, improves cardiac performance and attenuates inflammation in a pneumonia-related sepsis model. In this study, we applied the same approaches to decipher the signaling pathway(s) of mtROS-dependent cardiac inflammation after sepsis. Sepsis was induced in Sprague Dawley rats by intratracheal injection of S. pneumoniae. Mito-Vit-E, vitamin E or vehicle was administered 30 minutes later. In myocardium 24 hours post-inoculation, Mito-Vit-E, but not vitamin E, significantly protected mtDNA integrity and decreased mtDNA damage. Mito-Vit-E alleviated sepsis-induced reduction in mitochondria-localized DNA repair enzymes including DNA polymerase γ, AP endonuclease, 8-oxoguanine glycosylase, and uracil-DNA glycosylase. Mito-Vit-E dramatically improved metabolism and membrane integrity in mitochondria, suppressed leakage of mtDNA into the cytoplasm, inhibited up-regulation of Toll-like receptor 9 (TLR9) pathway factors MYD88 and RAGE, and limited RAGE interaction with its ligand TFAM in septic hearts. Mito-Vit-E also deactivated NF-κB and caspase 1, reduced expression of the essential inflammasome component ASC, and decreased inflammatory cytokine IL-1β. In vitro, both Mito-Vit-E and TLR9 inhibitor OND-I suppressed LPS-induced up-regulation in MYD88, RAGE, ASC, active caspase 1, and IL-1β in cardiomyocytes. Since free mtDNA escaped from damaged mitochondria function as a type of DAMPs to stimulate inflammation through TLR9, these data together suggest that sepsis-induced cardiac inflammation is mediated, at least partially, through mtDNA-TLR9-RAGE. At last, Mito-Vit-E reduced the circulation of myocardial injury marker troponin-I, diminished apoptosis and amended morphology in septic hearts, suggesting that mitochondria-targeted antioxidants are a potential cardioprotective approach for sepsis. PMID:26448624

  10. Presence and consequence of uracil in preneoplastic DNA from folate/methyl-deficient rats.

    PubMed

    Pogribny, I P; Muskhelishvili, L; Miller, B J; James, S J

    1997-11-01

    Uracil can arise in DNA by misincorporation of dUTP into nascent DNA and/or by cytosine deamination in established DNA. Based on recent findings, both pathways appear to be promoted in the methyl-deficient model of hepatocarcinogenesis. A chronic increase in the ratio dUTP:dTTP with folate/methyl deficiency can result in a futile cycle of excision and reiterative uracil misincorporation leading to premutagenic apyrimidinic (AP) sites, DNA strand breaks, DNA fragmentation and apoptotic cell death. The progressive accumulation of unmethylated cytosines with chronic methyl deficiency will increase the potential for cytosine deamination to uracil and further stress uracil mismatch repair mechanisms. Uracil is removed by a highly specific uracil-DNA glycosylase (UDG) leaving an AP site that is subsequently repaired by sequential action of AP endonuclease, 5'-phosphodiesterase, a DNA polymerase and DNA ligase. Since the DNA polymerases cannot distinguish between dUTP and dTTP, an increase in dUTP:dTTP ratio will promote uracil misincorporation during both DNA replication and repair synthesis. The misincorporation of uracil for thymine (5-methyluracil) may constitute a genetically significant form of DNA hypomethylation distinct from cytosine hypomethylation. In the present study a significant increase in the level of uracil in liver DNA as early as 3 weeks after initiation of folate/methyl deficiency was accompanied by parallel increases in DNA strand breaks, AP sites and increased levels of AP endonuclease mRNA. In addition, uracil was also detected within the p53 gene sequence using UDG PCR techniques. Increased levels of uracil in DNA implies that the capacity for uracil base excision repair is exceeded with chronic folate/methyl deficiency. It is possible that enzyme-induced extrahelical bases, AP sites and DNA strand breaks interact to negatively affect the stability of the DNA helix and stress the structural limits of permissible uracil base excision repair

  11. Archaeal DNA Polymerase-B as a DNA Template Guardian: Links between Polymerases and Base/Alternative Excision Repair Enzymes in Handling the Deaminated Bases Uracil and Hypoxanthine

    PubMed Central

    Ishino, Sonoko; Connolly, Bernard A.

    2016-01-01

    In Archaea repair of uracil and hypoxanthine, which arise by deamination of cytosine and adenine, respectively, is initiated by three enzymes: Uracil-DNA-glycosylase (UDG, which recognises uracil); Endonuclease V (EndoV, which recognises hypoxanthine); and Endonuclease Q (EndoQ), (which recognises both uracil and hypoxanthine). Two archaeal DNA polymerases, Pol-B and Pol-D, are inhibited by deaminated bases in template strands, a feature unique to this domain. Thus the three repair enzymes and the two polymerases show overlapping specificity for uracil and hypoxanthine. Here it is demonstrated that binding of Pol-D to primer-templates containing deaminated bases inhibits the activity of UDG, EndoV, and EndoQ. Similarly Pol-B almost completely turns off EndoQ, extending earlier work that demonstrated that Pol-B reduces catalysis by UDG and EndoV. Pol-B was observed to be a more potent inhibitor of the enzymes compared to Pol-D. Although Pol-D is directly inhibited by template strand uracil, the presence of Pol-B further suppresses any residual activity of Pol-D, to near-zero levels. The results are compatible with Pol-D acting as the replicative polymerase and Pol-B functioning primarily as a guardian preventing deaminated base-induced DNA mutations. PMID:27721668

  12. Age-related increases in human lymphocyte DNA damage: is there a role of aerobic fitness?

    PubMed

    Soares, Jorge Pinto; Mota, Maria Paula; Duarte, José Alberto; Collins, Andrew; Gaivão, Isabel

    2013-12-01

    Oxidative stress has been advanced as one of the major causes of damage to DNA and other macromolecules. Although physical exercise may also increase oxidative stress, an important role has been recognized for regular exercise in improving the overall functionality of the body, as indicated by an increase in maximal aerobic uptake ((V)O2max), and in resistance to cell damage. The aims of this study were 1) to evaluate the association between DNA damage in human lymphocytes and age and 2) to evaluate the association between DNA damage in human lymphocytes and ((V)O2max. The sample was composed of 36 healthy and nonsmoking males, aged from 20 to 84 years. ((V)O2max was evaluated through the Bruce protocol with direct measurement of oxygen consumption. The comet assay was used to evaluate the DNA damage, strand breaks and formamidopyrimidine DNA glycosylase (FPG)-sensitive sites. We found a positive correlation of age with DNA strand breaks but not with FPG-sensitive sites. ((V)O2max was significantly inversely related with DNA strand breaks, but this relation disappeared when adjusted for age. A significantly positive relation between ((V)O2max and FPG-sensitive sites was verified. In conclusion, our results showed that younger subjects have lower DNA strand breaks and higher (V)O2max compared with older subjects and FPG-sensitive sites are positively related with ((V)O2max, probably as transient damage due to the acute effects of daily physical activity. PMID:24446564

  13. Oxidative DNA damage by a common metabolite of carcinogenic nitrofluorene and N-acetylaminofluorene.

    PubMed

    Murata, Mariko; Yoshiki, Yumiko; Tada, Mariko; Kawanishi, Shosuke

    2002-12-01

    Both carcinogenic NF and AAF are metabolized to a common N-hydroxy metabolite, N-OH-AF. We investigated oxidative DNA damage by N-OH-AF, using (32)P-labeled human DNA fragments from the human p53 and p16 tumor-suppressor genes and the c-Ha-ras-1 protooncogene. N-OH-AF caused Cu(II)-mediated DNA damage, and endogenous reductant NADH markedly enhanced this process. Catalase and bathocuproine, a Cu(I)-specific chelator, decreased the DNA damage, suggesting the involvement of H(2)O(2) and Cu(I). N-OH-AF induced piperidine-labile lesions frequently at thymine and cytosine residues. With formamidopyrimidine-DNA glycosylase treatment, N-OH-AF induced cleavage at guanine residues, especially of the ACG sequence complementary to codon 273, a well-known hot spot of the p53 gene. N-OH-AF dose-dependently induced 8-oxodG formation in the presence of Cu(II) and NADH. Treatment with N-OH-AF increased amounts of 8-oxodG in HL-60 cells compared to the H(2)O(2)-resistant clone HP100, supporting the involvement of H(2)O(2). The present study demonstrates that the N-hydroxy metabolite of NF and AAF induces oxidative DNA damage through H(2)O(2) in both a cell-free system and cultured human cells. We conclude that oxidative DNA damage may play an important role in the carcinogenic process of NF and AAF in addition to previously reported DNA adduct formation. PMID:12402298

  14. Analysis of the machinery and intermediates of the 5hmC-mediated DNA demethylation pathway in aging on samples from the MARK-AGE Study

    PubMed Central

    Valentini, Elisabetta; Zampieri, Michele; Malavolta, Marco; Bacalini, Maria Giulia; Calabrese, Roberta; Guastafierro, Tiziana; Reale, Anna; Franceschi, Claudio; Hervonen, Antti; Koller, Bernhard; Bernhardt, Jürgen; Slagboom, P. Eline; Toussaint, Olivier; Sikora, Ewa; Gonos, Efstathios S.; Breusing, Nicolle; Grune, Tilman; Jansen, Eugène; Dollé, Martijn E.T.; Moreno-Villanueva, María; Sindlinger, Thilo; Bürkle, Alexander; Ciccarone, Fabio; Caiafa, Paola

    2016-01-01

    Gradual changes in the DNA methylation landscape occur throughout aging virtually in all human tissues. A widespread reduction of 5-methylcytosine (5mC), associated with highly reproducible site-specific hypermethylation, characterizes the genome in aging. Therefore, an equilibrium seems to exist between general and directional deregulating events concerning DNA methylation controllers, which may underpin the age-related epigenetic changes. In this context, 5mC-hydroxylases (TET enzymes) are new potential players. In fact, TETs catalyze the stepwise oxidation of 5mC to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC), driving the DNA demethylation process based on thymine DNA glycosylase (TDG)-mediated DNA repair pathway. The present paper reports the expression of DNA hydroxymethylation components, the levels of 5hmC and of its derivatives in peripheral blood mononuclear cells of age-stratified donors recruited in several European countries in the context of the EU Project ‘MARK-AGE’. The results provide evidence for an age-related decline of TET1, TET3 and TDG gene expression along with a decrease of 5hmC and an accumulation of 5caC. These associations were independent of confounding variables, including recruitment center, gender and leukocyte composition. The observed impairment of 5hmC-mediated DNA demethylation pathway in blood cells may lead to aberrant transcriptional programs in the elderly. PMID:27587280

  15. Assessment of DNA damage in peripheral blood lymphocytes of individuals susceptible to arsenic induced toxicity in West Bengal, India.

    PubMed

    Basu, Anamika; Som, Arundhati; Ghoshal, Sarbani; Mondal, Lakshmikanta; Chaubey, Ramesh C; Bhilwade, Hari N; Rahman, Mohammad M; Giri, Ashok K

    2005-10-15

    Assessment of DNA damage was carried out using alkaline comet assay in lymphocytes of 30 individuals exposed to high levels of arsenic (247.12+/-18.93 microg/l) through contaminated groundwater in North 24 Parganas district, West Bengal, India. All of them exhibited high arsenic contents in nail (4.20+/-0.67 microg/g), hair (2.06+/-0.20 microg/g) and urine (259.75+/-33.89 microg/l) samples and manifested various arsenical skin lesions. Unexposed samples were collected from 30 residents of the unaffected East Midnapur district with very little or no exposure to arsenic (7.69+/-0.49 microg/l) in drinking water. The results were evaluated principally by manual analysis of comets and partly by computerized image analysis. Both the analytical methods exhibited a high degree of agreement in results. The exposed participants expressed significantly higher DNA damage (p < 0.01) in their lymphocytes than the unexposed participants. Alkaline comet assay was also combined with formamidopyrimidine-DNA glycosylase enzyme digestion to confirm that arsenic induced oxidative base damage in the lymphocytes. Significant positive trend effects of comet lengths in relation to arsenic levels in water prove that DNA damage can be used as a sensitive biomarker of arsenic exposure. This study demonstrates that arsenic induced significant DNA damage in the exposed participants, which could correspond to a higher susceptibility to arsenic induced toxicity and carcinogenicity.

  16. The source and significance of DNA damage in human spermatozoa; a commentary on diagnostic strategies and straw man fallacies.

    PubMed

    Aitken, R J; Bronson, R; Smith, T B; De Iuliis, G N

    2013-08-01

    This article considers the origins of DNA damage in human spermatozoa, the methods that are available to monitor this aspect of semen quality and the clinical significance of such measurements. DNA damage in spermatozoa appears to be largely oxidative in nature, inversely correlated with levels of nuclear protamination and frequently associated with the activation of a truncated apoptotic pathway. DNA base adducts formed as a result of oxidative attack are released from the spermatozoa into the extracellular space through the action of a glycosylase, OGG1. This creates an abasic site, which is not resolved until fertilization because spermatozoa do not possess the molecular machinery needed to continue the base excision repair pathway. The abasic sites so generated in human spermatozoa are readily detected by SCSA or the Comet assay; however, no signal is detectable with TUNEL. This is because spermatozoa lack the enzyme (APE1) needed to create the free 3' hydroxyl groups required by this detection system. Nevertheless, spermatozoa do eventually become TUNEL positive as they enter the perimortem. The American Society of Reproductive Medicine Practice Committee has suggested that DNA damage in spermatozoa should not be assessed because the correlation with pregnancy is inconsistent across independent studies. However, this is a straw man argument. The reason why such assays should be undertaken is not just that they reflect the underlying quality of spermatogenesis but, more importantly, that the DNA damage they reveal may have detrimental effects on the developmental normality of the embryo and the health of possible future children.

  17. Study of gene-specific DNA repair in the comet assay with padlock probes and rolling circle amplification.

    PubMed

    Henriksson, Sara; Shaposhnikov, Sergey; Nilsson, Mats; Collins, Andrew

    2011-04-25

    We used padlock probes to study the rate of gene specific repair of three genes, OGG1 (8-oxoguanine-DNA glycosylase-1), XPD (xeroderma pigmentosum group D), and HPRT (hypoxanthine-guanine phosphoribosyltransferase) in human lymphocytes, in relation to the repair rate of Alu repeats and total genomic DNA. Padlock probes offer highly specific detection of short target sequences by combining detection by ligation and signal amplification. In this approach only genes in sequences containing strand breaks, which become single-stranded in the tail, are available for hybridisation. Thus the total number of signals from the padlock probes per comet gives a direct measure of the amount of damage (strand-breaks) present and allows the repair process to be monitored. This method could provide insights on the organisation of genomic DNA in the comet tail. Alu repeat containing DNA was repaired rapidly in comparison with total genomic DNA, and the studied genes were generally repaired more rapidly than the Alu repeats.

  18. Alzheimer’s Disease Associated Polymorphisms in Human OGG1 Alter Catalytic Activity and Sensitize Cells to DNA Damage

    PubMed Central

    Jacob, Kimberly D.; Hooten, Nicole Noren; Tadokoro, Takashi; Lohani, Althaf; Barnes, Janice; Evans, Michele K.

    2013-01-01

    Brain tissues from Alzheimer’s Disease (AD) patients show increased levels of oxidative DNA damage and 7,8-dihydro-8-oxoguanine (8-oxoG) accumulation. In humans, the base excision repair protein 8-oxoguanine-DNA glycosylase (OGG1) is the major enzyme that recognizes and excises the mutagenic DNA base lesion 8-oxoG. Recently, two polymorphisms of OGG1, A53T and A288V, have been identified in brain tissues of AD patients, but little is known about how these polymorphisms may contribute to AD. We characterized the A53T and A288V polymorphic variants and detected a significant reduction in the catalytic activity for both proteins in vitro and in cells. Additionally, the A53T polymorphism has decreased substrate binding, while the A288V polymorphism has reduced AP lyase activity. Both variants have decreased binding to known OGG1 binding partners PARP-1 and XRCC1. We found that OGG1−/− cells expressing A53T and A288V OGG1 were significantly more sensitive to DNA damage and had significantly decreased survival. Our results provide both biochemical and cellular evidence that A53T and A288V polymorphic proteins have deficiencies in catalytic and protein binding activities that could be related to the increase in oxidative damage to DNA found in AD brains. PMID:23684897

  19. Regulation of Active DNA Demethylation by a Methyl-CpG-Binding Domain Protein in Arabidopsis thaliana

    PubMed Central

    Sun, Han; Zeng, Jun; Cao, Zhendong; Li, Yan; Qian, Weiqiang

    2015-01-01

    Active DNA demethylation plays crucial roles in the regulation of gene expression in both plants and animals. In Arabidopsis thaliana, active DNA demethylation is initiated by the ROS1 subfamily of 5-methylcytosine-specific DNA glycosylases via a base excision repair mechanism. Recently, IDM1 and IDM2 were shown to be required for the recruitment of ROS1 to some of its target loci. However, the mechanism(s) by which IDM1 is targeted to specific genomic loci remains to be determined. Affinity purification of IDM1- and IDM2- associating proteins demonstrated that IDM1 and IDM2 copurify together with two novel components, methyl-CpG-binding domain protein 7 (MBD7) and IDM2-like protein 1 (IDL1). IDL1 encodes an α-crystallin domain protein that shows high sequence similarity with IDM2. MBD7 interacts with IDM2 and IDL1 in vitro and in vivo and they form a protein complex associating with IDM1 in vivo. MBD7 directly binds to the target loci and is required for the H3K18 and H3K23 acetylation in planta. MBD7 dysfunction causes DNA hypermethylation and silencing of reporter genes and a subset of endogenous genes. Our results suggest that a histone acetyltransferase complex functions in active DNA demethylation and in suppression of gene silencing at some loci in Arabidopsis. PMID:25933434

  20. Oxidative DNA damage induced by hair dye components ortho-phenylenediamines and the enhancement by superoxide dismutase.

    PubMed

    Murata, Mariko; Nishimura, Tomoko; Chen, Fang; Kawanishi, Shosuke

    2006-09-01

    There is an association between occupational exposure to hair dyes and incidence of cancers. Permanent oxidant hair dyes are consisted of many chemical components including ortho-phenylenediamines. To clarify the mechanism of carcinogenesis by hair dyes, we examined DNA damage induced by mutagenic ortho-phenylenediamine (o-PD) and its derivatives, 4-chloro-ortho-phenylenediamine (Cl-PD) and 4-nitro-ortho-phenylenediamine (NO(2)-PD), using (32)P-labeled DNA fragments obtained from the human p16 and the p53 tumor suppressor gene. We also measured the content of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG), a marker of oxidative DNA damage, in calf thymus DNA with an electrochemical detector coupled to a high performance liquid chromatograph. Carcinogenic o-PD and Cl-PD caused Cu(II)-mediated DNA damage, including 8-oxodG formation, and antioxidant enzyme superoxide dismutase (SOD) enhanced DNA damage. o-PD and Cl-PD caused piperidine-labile and formamidopyrimidine-DNA glycosylase-sensitive lesions at cytosine and guanine residues respectively in the 5'-ACG-3' sequence, complementary to codon 273, a well-known hotspot of the human p53 tumor suppressor gene. UV-vis spectroscopic studies showed that the spectral change of o-PD and Cl-PD required Cu(II), and addition of SOD enhanced it. This suggested that SOD enhanced the rate of Cu(II)-mediated autoxidation of o-PD and Cl-PD, leading to enhancement of DNA damage. On the other hand, mutagenic but non-carcinogenic NO(2)-PD induced no DNA damage. These results suggest that carcinogenicity of ortho-phenylenediamines is associated with ability to cause oxidative DNA damage rather than bacterial mutagenicity. PMID:16798066

  1. Vitamins at physiological levels cause oxidation to the DNA nucleoside deoxyguanosine and to DNA--alone or in synergism with metals.

    PubMed

    Bergström, Therese; Ersson, Clara; Bergman, Jan; Möller, Lennart

    2012-07-01

    Vitamins with antioxidant properties have the ability to act as pro-oxidants, inducing oxidative damage and oxidative stress as opposed to preventing it. While vitamin supplements are commonly consumed, the scientific evidence for their health beneficial effects is inconclusive. In fact, even harmful effects have been reported. The present study aimed to investigate and compare pro-oxidant properties of different antioxidants and vitamins commonly found in dietary supplements, at concentrations of physiological relevance, alone or in combination with metals also found in supplements. Focus was on damages related to DNA. The vitamins' chemical oxidation potencies were studied by measuring the amount of the oxidation product 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) formed from the DNA nucleoside deoxyguanosine (dG) after vitamin exposure, using a high-performance liquid chromatography system with electrochemical and ultraviolet detection. To study the vitamins' ability to cause DNA damage to cultured cells, promyelocytic leukemia cells (HL-60) were exposed to vitamins, and strand breaks, alkali-labile sites and oxidative DNA lesions, i.e. formamido pyrimidine DNA glycosylase-sensitive sites, were detected using the comet assay. Vitamins A and C chemically induced oxidation of dG, alone and in synergism with iron or copper, whereas only vitamin C and copper induced DNA damage in cultured cells. Contrary, vitamins B1, B2, B3, B6 and B12, β-carotene, folic acid, α-tocopherol, δ-tocopherol or γ-tocopherol did not induce oxidative damage to dG, while lycopene induced a weak dose-response increase. Taken together, vitamin C and copper stood out with the strongest oxidative potency, which is of potential concern since both substances are commonly found in multivitamins. PMID:22466670

  2. Vitamins at physiological levels cause oxidation to the DNA nucleoside deoxyguanosine and to DNA--alone or in synergism with metals.

    PubMed

    Bergström, Therese; Ersson, Clara; Bergman, Jan; Möller, Lennart

    2012-07-01

    Vitamins with antioxidant properties have the ability to act as pro-oxidants, inducing oxidative damage and oxidative stress as opposed to preventing it. While vitamin supplements are commonly consumed, the scientific evidence for their health beneficial effects is inconclusive. In fact, even harmful effects have been reported. The present study aimed to investigate and compare pro-oxidant properties of different antioxidants and vitamins commonly found in dietary supplements, at concentrations of physiological relevance, alone or in combination with metals also found in supplements. Focus was on damages related to DNA. The vitamins' chemical oxidation potencies were studied by measuring the amount of the oxidation product 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) formed from the DNA nucleoside deoxyguanosine (dG) after vitamin exposure, using a high-performance liquid chromatography system with electrochemical and ultraviolet detection. To study the vitamins' ability to cause DNA damage to cultured cells, promyelocytic leukemia cells (HL-60) were exposed to vitamins, and strand breaks, alkali-labile sites and oxidative DNA lesions, i.e. formamido pyrimidine DNA glycosylase-sensitive sites, were detected using the comet assay. Vitamins A and C chemically induced oxidation of dG, alone and in synergism with iron or copper, whereas only vitamin C and copper induced DNA damage in cultured cells. Contrary, vitamins B1, B2, B3, B6 and B12, β-carotene, folic acid, α-tocopherol, δ-tocopherol or γ-tocopherol did not induce oxidative damage to dG, while lycopene induced a weak dose-response increase. Taken together, vitamin C and copper stood out with the strongest oxidative potency, which is of potential concern since both substances are commonly found in multivitamins.

  3. Selenium supplementation reduced oxidative DNA damage in adnexectomized BRCA1 mutations carriers.

    PubMed

    Dziaman, Tomasz; Huzarski, Tomasz; Gackowski, Daniel; Rozalski, Rafal; Siomek, Agnieszka; Szpila, Anna; Guz, Jolanta; Lubinski, Jan; Wasowicz, Wojciech; Roszkowski, Krzysztof; Olinski, Ryszard

    2009-11-01

    Some experimental evidence suggests that BRCA1 plays a role in repair of oxidative DNA damage. Selenium has anticancer properties that are linked with protection against oxidative stress. To assess whether supplementation of BRCA1 mutation carriers with selenium have a beneficial effect concerning oxidative stress/DNA damage in the present double-blinded placebo control study, we determined 8-oxodG level in cellular DNA and urinary excretion of 8-oxodG and 8-oxoGua in the mutation carriers. We found that 8-oxodG level in leukocytes DNA is significantly higher in BRCA1 mutation carriers. In the distinct subpopulation of BRCA1 mutation carriers without symptoms of cancer who underwent adnexectomy and were supplemented with selenium, the level of 8-oxodG in DNA decreased significantly in comparison with the subgroup without supplementation. Simultaneously in the same group, an increase of urinary 8-oxoGua, the product of base excision repair (hOGG1 glycosylase), was observed. Therefore, it is likely that the selenium supplementation of the patients is responsible for the increase of BER enzymes activities, which in turn may result in reduction of oxidative DNA damage. Importantly, in a double-blinded placebo control prospective study, it was shown that in the same patient groups, reduction in cancer incidents was observed. Altogether, these results suggest that BRCA1 deficiency contributes to 8-oxodG accumulation in cellular DNA, which in turn may be a factor responsible for cancer development in women with mutations, and that the risk to developed breast cancer in BRCA1 mutation carriers may be reduced in selenium-supplemented patients who underwent adnexectomy. PMID:19843683

  4. Enzymatic Excision of Uracil Residues in Nucleosomes Depends on Local DNA Structure and Dynamics†

    PubMed Central

    Ye, Yu; Stahley, Mary R.; Xu, Jianqing; Friedman, Joshua I.; Sun, Yan; McKnight, Jeffrey N.; Gray, Jeffrey J.; Bowman, Gregory D.; Stivers, James T.

    2012-01-01

    The excision of uracil bases from DNA is accomplished by the enzyme uracil DNA glycosylase (UNG). Recognition of uracil bases in free DNA is facilitated by uracil base pair dynamics, but it is not known whether this same mechanistic feature is relevant for detection and excision of uracil residues embedded in nucleosomes. Here we investigate this question using nucleosome core particles (NCPs) generated from X. laevis histones and the high-affinity “Widom 601” positioning sequence. The reactivity of uracil residues in NCPs under steady-state multiple turnover conditions was generally decreased as compared to free 601 DNA, mostly due to anticipated steric effects of histones. However, some sites in NCPs had equal or even greater reactivity than free DNA, and the observed reactivities were not readily explained by simple steric considerations, or by global DNA unwrapping models for nucleosome invasion. In particular, some reactive uracils were found in occluded positions, while some unreactive uracils were found in exposed positions. One feature of many exposed reactive sites is a wide DNA minor groove, which allows penetration of a key active site loop of the enzyme. In single-turnover kinetic measurements, multi-phasic reaction kinetics were observed for several uracil sites, where each kinetic transient was independent of the UNG concentration. These kinetic measurements, and supporting structural analyses, support a mechanism where some uracils are transiently exposed to UNG by local, rate-limiting nucleosome conformational dynamics, followed by rapid trapping of the exposed state by the enzyme. We present structural models and plausible reaction mechanisms for the reaction of UNG at three distinct uracil sites in the NCP. PMID:22784353

  5. DNA nanomachines.

    PubMed

    Bath, Jonathan; Turberfield, Andrew J

    2007-05-01

    We are learning to build synthetic molecular machinery from DNA. This research is inspired by biological systems in which individual molecules act, singly and in concert, as specialized machines: our ambition is to create new technologies to perform tasks that are currently beyond our reach. DNA nanomachines are made by self-assembly, using techniques that rely on the sequence-specific interactions that bind complementary oligonucleotides together in a double helix. They can be activated by interactions with specific signalling molecules or by changes in their environment. Devices that change state in response to an external trigger might be used for molecular sensing, intelligent drug delivery or programmable chemical synthesis. Biological molecular motors that carry cargoes within cells have inspired the construction of rudimentary DNA walkers that run along self-assembled tracks. It has even proved possible to create DNA motors that move autonomously, obtaining energy by catalysing the reaction of DNA or RNA fuels.

  6. Solid State 2H NMR Analysis of Furanose Ring Dynamics in DNA Containing Uracil

    PubMed Central

    Kinde-Carson, Monica N.; Ferguson, Crystal; Oyler, Nathan A.; Harbison, Gerard S.; Meints, Gary A.

    2010-01-01

    DNA damage has been implicated in numerous human diseases, particularly cancer, and the aging process. Single-base lesions, such as uracil, in DNA can be cytotoxic or mutagenic and are recognized by a DNA glycosylase during the process of base excision repair. Increased dynamic properties in lesion-containing DNAs have been suggested to assist recognition and specificity. Deuterium solid-state nuclear magnetic resonance (SSNMR) has been used to directly observe local dynamics of the furanose ring within a uracil: adenine (U:A) base pair and compared to a normal thymine:adenine (T:A) base pair. Quadrupole echo lineshapes, ⟨T1Z⟩, and ⟨T2e⟩ relaxation data were collected, and computer modeling was performed. The results indicate that the relaxation times are identical within the experimental error, the solid lineshapes are essentially indistinguishable above the noise level, and our lineshapes are best fit with a model that does not have significant local motions. Therefore, U:A base pair furanose rings appear to have essentially identical dynamic properties as a normal T:A base pair, and the local dynamics of the furanose ring are unlikely to be the sole arbiter for uracil recognition and specificity in U:A base pairs. PMID:20151717

  7. Tai Chi Improves Oxidative Stress Response and DNA Damage/Repair in Young Sedentary Females

    PubMed Central

    Huang, Xing-Yu; Eungpinichpong, Wichai; Silsirivanit, Atit; Nakmareong, Saowanee; Wu, Xiu-Hua

    2014-01-01

    [Purpose] This study was to examine the effects of 12 weeks of Tai Chi (TC) exercise on antioxidant capacity, and DNA damage/repair in young females who did not perform regular physical exercise. [Subjects and Methods] Ten female students from a Chinese university voluntarily participated in this program. All of them practiced the 24-form simplified Tai Chi, 5 times weekly, for 12 weeks. Plasma levels of superoxide dismutase (SOD), glutathione peroxidase (GPx), malondialdehyde (MDA), glutathione (GSH), hydroxyl radical inhibiting capacity (OH·-IC), 8-hydroxy-2’-deoxyguanosine (8-OHdG), and 8-oxoguanine DNA glycosylase (OGG1) were measured at 0, 8, and 12 weeks. Heart rate (HR) was monitored during the last set of the training session at 4, 8, and 12 weeks. [Results] Plasma SOD and OH·-IC levels were increased at 8 and 12 weeks compared to the baseline (0 weeks). Gpx and GSH levels did not change significantly throughout the study period. The plasma MDA level was decreased significantly at 8 weeks but not at 12 weeks compared to the baseline value. While the plasma 8-OHdG level did not change throughout the study period, the plasma OGG1 level was significantly increased at 8 and 12 weeks compared to the baseline value. [Conclusion] TC practice for 12 weeks efficiently improved the oxidative stress response in young females who did not perform regular physical exercise. The TC exercise also increased the DNA repairing capacity. PMID:25013276

  8. Detection of oxidative DNA damage in lymphocytes of patients with Alzheimer's disease.

    PubMed

    Kadioglu, Ela; Sardas, Semra; Aslan, Selcuk; Isik, Erdal; Esat Karakaya, Ali

    2004-01-01

    Oxidative damage to DNA may play an important role in both normal ageing and in neurodegenerative diseases. The deleterious consequences of excessive oxidations and the pathophysiological role of reactive oxygen species have been intensively studied in Alzheimer's disease. Although the role of oxidative stress in the aetiology of Alzheimer's disease is still not clear, the detection of an increased damage status in the cells of patients could have important therapeutic implications. The levels of oxidative damage in peripheral lymphocytes of 24 Alzheimer's disease patients and of 21 age-matched controls were determined by comet assay applied to freshly isolated blood samples with oxidative lesion-specific DNA repair endonucleases (endonuclease III for oxidized pyrimidines, formamidopyrimidine glycosylase for oxidized purines). It was demonstrated that Alzheimer's disease is associated with elevated levels of oxidized pyrimidines and purines (p<0.0001) as compared with age-matched control subjects. It was also demonstrated that the comet assay is useful as a biomarker of oxidative DNA damage when used with oxidative lesion-specific enzymes.

  9. [DNA computing].

    PubMed

    Błasiak, Janusz; Krasiński, Tadeusz; Popławski, Tomasz; Sakowski, Sebastian

    2011-01-01

    Biocomputers can be an alternative for traditional "silicon-based" computers, which continuous development may be limited due to further miniaturization (imposed by the Heisenberg Uncertainty Principle) and increasing the amount of information between the central processing unit and the main memory (von Neuman bottleneck). The idea of DNA computing came true for the first time in 1994, when Adleman solved the Hamiltonian Path Problem using short DNA oligomers and DNA ligase. In the early 2000s a series of biocomputer models was presented with a seminal work of Shapiro and his colleguas who presented molecular 2 state finite automaton, in which the restriction enzyme, FokI, constituted hardware and short DNA oligomers were software as well as input/output signals. DNA molecules provided also energy for this machine. DNA computing can be exploited in many applications, from study on the gene expression pattern to diagnosis and therapy of cancer. The idea of DNA computing is still in progress in research both in vitro and in vivo and at least promising results of these research allow to have a hope for a breakthrough in the computer science. PMID:21735816

  10. Primary sequence and biological functions of a Saccharomyces cerevisiae O6-methylguanine/O4-methylthymine DNA repair methyltransferase gene.

    PubMed Central

    Xiao, W; Derfler, B; Chen, J; Samson, L

    1991-01-01

    We previously identified and characterized biochemically an O6-methylguanine (O6MeG) DNA repair methyltransferase (MTase) in the yeast Saccharomyces cerevisiae and showed that it recognizes both O6MeG and O4-methylthymine (O4MeT) in vitro. Here we characterize the cloned S. cerevisiae O6MeG DNA MTase gene (MGT1) and determine its in vivo role in protecting yeast from DNA alkylation damage. We isolated a yeast DNA fragment that suppressed alkylation-induced killing and mutation in Escherichia coli ada ogt MTase deficient mutants and produced in these cells a protein similar to the yeast MTase. The cloned yeast fragment was mapped to chromosome IV and DNA sequencing identified an open reading frame, designated MGT1, which encodes a 188 amino acid protein with a molecular weight of 21,500 daltons. An 88 amino acid stretch of the MGT1 protein displays remarkable homology with four bacterial MTases and the human DNA MTase. S.cerevisiae mutants bearing an insertion in the MGT1 gene lacked DNA MTase activity and were very sensitive to alkylation induced killing and mutation. MGT1 transcript levels are not increased in response to DNA alkylation damage, nor is the MGT1 MTase involved in the regulation of the yeast 3-methyladenine DNA glycosylase gene (MAG). Expression of the MGT1 gene in E.coli prevented the induction by alkylating agents of both G:C to A:T and A:T to G:C transition mutations indicating that this eukaryotic MTase repairs both O6MeG and O4MeT in vivo. Images PMID:2065659

  11. Compartmentalized self-replication (CSR) selection of Thermococcus litoralis Sh1B DNA polymerase for diminished uracil binding.

    PubMed

    Tubeleviciute, Agne; Skirgaila, Remigijus

    2010-08-01

    The thermostable archaeal DNA polymerase Sh1B from Thermococcus litoralis has a typical uracil-binding pocket, which in nature plays an essential role in preventing the accumulation of mutations caused by cytosine deamination to uracil and subsequent G-C base pair transition to A-T during the genomic DNA replication. The uracil-binding pocket recognizes and binds uracil base in a template strand trapping the polymerase. Since DNA replication stops, the repair systems have a chance to correct the promutagenic event. Archaeal family B DNA polymerases are employed in various PCR applications. Contrary to nature, in PCR the uracil-binding property of archaeal polymerases is disadvantageous and results in decreased DNA amplification yields and lowered sensitivity. Furthermore, in diagnostics qPCR, RT-qPCR and end-point PCR are performed using dNTP mixtures, where dTTP is partially or fully replaced by dUTP. Uracil-DNA glycosylase treatment and subsequent heating of the samples is used to degrade the DNA containing uracil and prevent carryover contamination, which is the main concern in diagnostic laboratories. A thermostable archaeal DNA polymerase with the abolished uracil binding would be a highly desirable and commercially interesting product. An attempt to disable uracil binding in DNA polymerase Sh1B from T. litoralis by generating site-specific mutants did not yield satisfactory results. However, a combination of random mutagenesis of the whole polymerase gene and compartmentalized self-replication was successfully used to select variants of thermostable Sh1B polymerase capable of performing PCR with dUTP instead of dTTP.

  12. Induction and repair of DNA damage measured by the comet assay in human T lymphocytes separated by immunomagnetic cell sorting.

    PubMed

    Bausinger, Julia; Speit, Günter

    2014-11-01

    The comet assay is widely used in human biomonitoring to measure DNA damage in whole blood or isolated peripheral blood mononuclear cells (PBMC) as a marker of exposure to genotoxic agents. Cytogenetic assays with phytohemagglutinin (PHA)-stimulated cultured T lymphocytes are also frequently performed in human biomonitoring. Cytogenetic effects (micronuclei, chromosome aberrations, sister chromatid exchanges) may be induced in vivo but also occur ex vivo during the cultivation of lymphocytes as a consequence of DNA damage present in lymphocytes at the time of sampling. To better understand whether DNA damage measured by the comet assay in PBMC is representative for DNA damage in T cells, we comparatively investigated DNA damage and its repair in PBMC and T cells obtained by immunomagnetic cell sorting. PBMC cultures and T cell cultures were exposed to mutagens with different modes of genotoxic action and DNA damage was measured by the comet assay after the end of a 2h exposure and after 18h post-incubation. The mutagens tested were methyl methanesulfonate (MMS), (±)-anti-B[a]P-7,8-dihydrodiol-9,10-epoxide (BPDE), 4-nitroquinoline-1-oxide (4NQO), styrene oxide and potassium bromate. MMS and potassium bromate were also tested by the modified comet assay with formamido pyrimidine glycosylase (FPG) protein. The results indicate that the mutagens tested induce DNA damage in PBMC and T cells in the same range of concentrations and removal of induced DNA lesions occurs to a comparable extent. Based on these results, we conclude that the comet assay with PBMC is suited to predict DNA damage and its removal in T cells.

  13. OGG1 Involvement in High Glucose-Mediated Enhancement of Bupivacaine-Induced Oxidative DNA Damage in SH-SY5Y Cells.

    PubMed

    Liu, Zhong-Jie; Zhao, Wei; Zhang, Qing-Guo; Li, Le; Lai, Lu-Ying; Jiang, Shan; Xu, Shi-Yuan

    2015-01-01

    Hyperglycemia can inhibit expression of the 8-oxoG-DNA glycosylase (OGG1) which is one of the key repair enzymes for DNA oxidative damage. The effect of hyperglycemia on OGG1 expression in response to local anesthetics-induced DNA damage is unknown. This study was designed to determine whether high glucose inhibits OGG1 expression and aggravates bupivacaine-induced DNA damage via reactive oxygen species (ROS). SH-SY5Y cells were cultured with or without 50 mM glucose for 8 days before they were treated with 1.5 mM bupivacaine for 24 h. OGG1 expression was measured by quantitative real-time polymerase chain reaction (qRT-PCR) and western blot. ROS was estimated using the redox-sensitive fluorescent dye DCFH-DA. DNA damage was investigated with immunostaining for 8-oxodG and comet assays. OGG1 expression was inhibited in cells exposed to high glucose with concomitant increase in ROS production and more severe DNA damage as compared to control culture conditions, and these changes were further exacerbated by bupivacaine. Treatment with the antioxidant N-acetyl-L-cysteine (NAC) prevented high glucose and bupivacaine mediated increase in ROS production and restored functional expression of OGG1, which lead to attenuated high glucose-mediated exacerbation of bupivacaine neurotoxicity. Our findings indicate that subjects with diabetes may experience more detrimental effects following bupivacaine use.

  14. The amino-terminal tails of histones H2A and H3 coordinate efficient base excision repair, DNA damage signaling and postreplication repair in Saccharomyces cerevisiae.

    PubMed

    Meas, Rithy; Smerdon, Michael J; Wyrick, John J

    2015-05-26

    Histone amino-terminal tails (N-tails) are required for cellular resistance to DNA damaging agents; therefore, we examined the role of histone N-tails in regulating DNA damage response pathways in Saccharomyces cerevisiae. Combinatorial deletions reveal that the H2A and H3 N-tails are important for the removal of MMS-induced DNA lesions due to their role in regulating the basal and MMS-induced expression of DNA glycosylase Mag1. Furthermore, overexpression of Mag1 in a mutant lacking the H2A and H3 N-tails rescues base excision repair (BER) activity but not MMS sensitivity. We further show that the H3 N-tail functions in the Rad9/Rad53 DNA damage signaling pathway, but this function does not appear to be the primary cause of MMS sensitivity of the double tailless mutants. Instead, epistasis analyses demonstrate that the tailless H2A/H3 phenotypes are in the RAD18 epistasis group, which regulates postreplication repair. We observed increased levels of ubiquitylated PCNA and significantly lower mutation frequency in the tailless H2A/H3 mutant, indicating a defect in postreplication repair. In summary, our data identify novel roles of the histone H2A and H3 N-tails in (i) regulating the expression of a critical BER enzyme (Mag1), (ii) supporting efficient DNA damage signaling and (iii) facilitating postreplication repair.

  15. DNA cleavage at the AP site via β-elimination mediated by the AP site-binding ligands.

    PubMed

    Abe, Yukiko S; Sasaki, Shigeki

    2016-02-15

    DNA is continuously damaged by endogenous and exogenous factors such as oxidation and alkylation. In the base excision repair pathway, the damaged nucleobases are removed by DNA N-glycosylase to form the abasic sites (AP sites). The alkylating antitumor agent exhibits cytotoxicity through the formation of the AP site. Therefore blockage or modulation of the AP site repair pathway may enhance the antitumor efficacy of DNA alkylating agents. In this study, we have examined the effects of the nucleobase-polyamine conjugated ligands (G-, A-, C- and T-ligands) on the cleavage of the AP site. The G- and A-ligands cleaved DNA at the AP site by promoting β-elimination in a non-selective manner by the G-ligand, and in a selective manner for the opposing dT by the A-ligand. These results suggest that the nucleobase-polyamine conjugate ligands may have the potential for enhancement of the cytotoxicities of the AP site.

  16. MET18 Connects the Cytosolic Iron-Sulfur Cluster Assembly Pathway to Active DNA Demethylation in Arabidopsis

    PubMed Central

    Tang, Kai; Zhang, Huiming; Mangrauthia, Satendra K.; Lei, Mingguang; Hsu, Chuan-Chih; Hou, Yueh-Ju; Wang, Chunguo; Li, Yan; Tao, W. Andy; Zhu, Jian-Kang

    2015-01-01

    DNA demethylation mediated by the DNA glycosylase ROS1 helps determine genomic DNA methylation patterns and protects active genes from being silenced. However, little is known about the mechanism of regulation of ROS1 enzymatic activity. Using a forward genetic screen, we identified an anti-silencing (ASI) factor, ASI3, the dysfunction of which causes transgene promoter hyper-methylation and silencing. Map-based cloning identified ASI3 as MET18, a component of the cytosolic iron-sulfur cluster assembly (CIA) pathway. Mutation in MET18 leads to hyper-methylation at thousands of genomic loci, the majority of which overlap with hypermethylated loci identified in ros1 and ros1dml2dml3 mutants. Affinity purification followed by mass spectrometry indicated that ROS1 physically associates with MET18 and other CIA components. Yeast two-hybrid and split luciferase assays showed that ROS1 can directly interact with MET18 and another CIA component, AE7. Site-directed mutagenesis of ROS1 indicated that the conserved iron-sulfur motif is indispensable for ROS1 enzymatic activity. Our results suggest that ROS1-mediated active DNA demethylation requires MET18-dependent transfer of the iron-sulfur cluster, highlighting an important role of the CIA pathway in epigenetic regulation. PMID:26492035

  17. MET18 Connects the Cytosolic Iron-Sulfur Cluster Assembly Pathway to Active DNA Demethylation in Arabidopsis.

    PubMed

    Duan, Cheng-Guo; Wang, Xingang; Tang, Kai; Zhang, Huiming; Mangrauthia, Satendra K; Lei, Mingguang; Hsu, Chuan-Chih; Hou, Yueh-Ju; Wang, Chunguo; Li, Yan; Tao, W Andy; Zhu, Jian-Kang

    2015-10-01

    DNA demethylation mediated by the DNA glycosylase ROS1 helps determine genomic DNA methylation patterns and protects active genes from being silenced. However, little is known about the mechanism of regulation of ROS1 enzymatic activity. Using a forward genetic screen, we identified an anti-silencing (ASI) factor, ASI3, the dysfunction of which causes transgene promoter hyper-methylation and silencing. Map-based cloning identified ASI3 as MET18, a component of the cytosolic iron-sulfur cluster assembly (CIA) pathway. Mutation in MET18 leads to hyper-methylation at thousands of genomic loci, the majority of which overlap with hypermethylated loci identified in ros1 and ros1dml2dml3 mutants. Affinity purification followed by mass spectrometry indicated that ROS1 physically associates with MET18 and other CIA components. Yeast two-hybrid and split luciferase assays showed that ROS1 can directly interact with MET18 and another CIA component, AE7. Site-directed mutagenesis of ROS1 indicated that the conserved iron-sulfur motif is indispensable for ROS1 enzymatic activity. Our results suggest that ROS1-mediated active DNA demethylation requires MET18-dependent transfer of the iron-sulfur cluster, highlighting an important role of the CIA pathway in epigenetic regulation.

  18. Dancing DNA.

    ERIC Educational Resources Information Center

    Pennisi, Elizabeth

    1991-01-01

    An imaging technique that uses fluorescent dyes and allows scientists to track DNA as it moves through gels or in solution is described. The importance, opportunities, and implications of this technique are discussed. (KR)

  19. DNA Dynamics.

    ERIC Educational Resources Information Center

    Warren, Michael D.

    1997-01-01

    Explains a method to enable students to understand DNA and protein synthesis using model-building and role-playing. Acquaints students with the triplet code and transcription. Includes copies of the charts used in this technique. (DDR)

  20. Dynamic changes of DNA epigenetic marks in mouse oocytes during natural and accelerated aging.

    PubMed

    Qian, Yan; Tu, Jiajie; Tang, Nelson Leung Sang; Kong, Grace Wing Shan; Chung, Jacqueline Pui Wah; Chan, Wai-Yee; Lee, Tin-Lap

    2015-10-01

    Aging is a complex time-dependent biological process that takes place in every cell and organ, eventually leading to degenerative changes that affect normal biological functions. In the past decades, the number of older parents has increased significantly. While it is widely recognized that oocyte aging poses higher birth and reproductive risk, the exact molecular mechanisms remain largely elusive. DNA methylation of 5-cytosine (5mC) and histone modifications are among the key epigenetic mechanisms involved in critical developmental processes and have been linked to aging. However, the impact of oocyte aging on DNA demethylation pathways has not been examined. The recent discovery of Ten-Eleven-Translocation (TET) family proteins, thymine DNA glycosylase (TDG) and the demethylation intermediates 5hmC, 5fC and 5caC has provided novel clues to delineate the molecular mechanisms in DNA demethylation. In this study, we examined the cellular level of modified cytosines (5mC, 5hmC, 5fC and 5caC) and Tet/Tdg expression in oocytes obtained from natural and accelerated oocyte aging conditions. Here we show all the DNA demethylation marks are dynamically regulated in both aging conditions, which are associated with Tet3 over-expression and Tdg repression. Such an aberrant expression pattern was more profound in accelerated aging condition. The results suggest that DNA demethylation may be actively involved in oocyte aging and have implications for development of potential drug targets to rejuvenate aging oocytes. This article is part of a Directed Issue entitled: Epigenetics dynamics in development and disease.

  1. Incorporation of deoxyuridine monophosphate into DNA increases the sister-chromatid exchange yield

    SciTech Connect

    Pardo, E.G.; Hernandez, P.; Gutierrez, C.

    1987-02-01

    The effect of a treatment with 5-fluoro-2'-deoxyuridine (FdUrd) in combination with 2'-deoxyuridine (dUrd) on cell proliferation, incorporation of DNA precursors into DNA and sister-chromatid exchanges (SCEs) has been analyzed in Allium cepa meristem cells. FdUrd in the range 10/sup -9/-5 x 10/sup -7/ M produced a dose- and time-dependent decrease in the amount of cells in mitosis. This inhibitory effect could be reversed by 70-80% in short-term (6 h) experiments, by exogenously supplied dUrd at a concentration of 10/sup -1/ M. However, at the highest FdUrd dose tested (10/sup -7/ M), 10/sup -4/ M dUrd could not reverse the FdUrd effect in long-term experiments as shown by analyzing the kinetics of synchronous cell populations. DNA extracted from cells pulsed with (6-/sup 3/H)dUrd in the presence of FdUrd and 6-amino-uracil (6-AU), an inhibitor of uracil-DNA glycosylase, contained a small amount of label in the form of (6-/sup 3/H)dUMP. Thus the authors conclude that under the experimental conditions, exogenously supplied dUrd may be metabolized intracellularly to 2'-deoxyuridine triphosphate (dUTP) and that this deoxynucleotide may eventually be mis-incorporated into DNA. By analyzing SCE levels in third division chromosomes of cells treated with FdUrd and dUrd during their second cycle, they has scored a 6-fold increase in the reciprocal SCE level which demonstrates that the replication of a dUMP-containing DNA template leads to a higher SCE yield.

  2. A simpler, more robust method for the analysis of 8-oxoguanine in DNA.

    PubMed

    Beckman, K B; Saljoughi, S; Mashiyama, S T; Ames, B N

    2000-08-01

    The oxidized DNA base 8-oxoguanine has been commonly measured by enzymatic digestion of DNA to nucleosides followed by high-performance liquid chromatography (HPLC) separation of the adduct 8-oxodeoxyguanosine. There has recently been an enormous debate surrounding the validity of this approach, from which it has become clear that artifactual oxidation of the native base to 8-oxoguanine can occur at numerous stages in sample preparation. Hence, we have designed an alternative protocol to traditional enzymatic digestion of DNA which (i) limits the potential for artifactual oxidation, (ii) speeds up the assay markedly, (iii) increases the assay's sensitivity moderately, and (iv) addresses criticisms that have been raised concerning the efficiency of DNA digestion by nucleases. In short, we use the Escherichia coli repair enzyme formamidopyrimidine (Fapy) glycosylase to release the base 8-oxoguanine from full-length DNA, then separate 8-oxoguanine from high molecular weight molecules by ultrafiltration (10,000 Da exclusion) and analyze the base adduct by reverse-phase HPLC. Benefits of this approach include (i) rapid removal of the roughly million-fold molar excess of unaltered bases from the sample, (ii) reduction in the length of enzymatic incubations and the number of steps, (iii) elimination of high temperature incubation, (iv) a very clean chromatographic separation, and (v) rapid elution of the analyte and correspondingly greater throughput. Using this improved method, we have followed the induction of 8-oxoguanine in the DNA of peroxide-treated HeLa cells, an experiment that had proved cumbersome with traditional methods. PMID:11035265

  3. DNA damage in rats after a single oral exposure to diesel exhaust particles.

    PubMed

    Danielsen, Pernille Høgh; Risom, Lotte; Wallin, Håkan; Autrup, Herman; Vogel, Ulla; Loft, Steffen; Møller, Peter

    2008-01-01

    The gastrointestinal route of exposure to particulate matter is important because particles are ingested via contaminated foods and inhaled particles are swallowed when removed from the airways by the mucociliary clearance system. We investigated the effect of an intragastric administration by oral gavage of diesel exhaust particles (DEP) in terms of DNA damage, oxidative stress and DNA repair in colon epithelial cells, liver, and lung of rats. Eight rats per group were exposed to Standard Reference Material 2975 at 0.064 or 0.64 mg/kg bodyweight for 6 and 24 h. Increased levels of 8-oxo-7,8-dihydro-2'-deoxyguanosine lesions were observed at the highest dose after 6 and 24 h in all three organs. 8-Oxo-7,8-dihydro-2'-deoxyguanosine is repaired by oxoguanine DNA glycosylase 1 (OGG1); upregulation of this repair system was observed as elevated pulmonary OGG1 mRNA levels after 24 h at both doses of DEP, but not in the colon and liver. A general response of the antioxidant defence system is further indicated by elevated levels of heme oxygenase 1 mRNA in the liver and lung 24 h after administration. The level of bulky DNA adducts was increased in liver and lung at both doses after 6 and 24h (DNA adducts in colon epithelium were not investigated). In summary, DEP administered via the gastrointestinal tract at low doses relative to ambient exposure generates DNA damage and increase the expression of defence mechanisms in organs such as the lung and liver. The oral exposure route should be taken into account in risk assessment of particulate matter. PMID:17764705

  4. Inter-laboratory variation in DNA damage using a standard comet assay protocol.

    PubMed

    Forchhammer, Lykke; Ersson, Clara; Loft, Steffen; Möller, Lennart; Godschalk, Roger W L; van Schooten, Frederik J; Jones, George D D; Higgins, Jennifer A; Cooke, Marcus; Mistry, Vilas; Karbaschi, Mahsa; Collins, Andrew R; Azqueta, Amaya; Phillips, David H; Sozeri, Osman; Routledge, Michael N; Nelson-Smith, Kirsty; Riso, Patrizia; Porrini, Marisa; Matullo, Giuseppe; Allione, Alessandra; Stępnik, Maciej; Steepnik, Maciej; Komorowska, Magdalena; Teixeira, João Paulo; Costa, Solange; Corcuera, Laura-Ana; López de Cerain, Adela; Laffon, Blanca; Valdiglesias, Vanessa; Møller, Peter

    2012-11-01

    There are substantial inter-laboratory variations in the levels of DNA damage measured by the comet assay. The aim of this study was to investigate whether adherence to a standard comet assay protocol would reduce inter-laboratory variation in reported values of DNA damage. Fourteen laboratories determined the baseline level of DNA strand breaks (SBs)/alkaline labile sites and formamidopyrimidine DNA glycosylase (FPG)-sensitive sites in coded samples of mononuclear blood cells (MNBCs) from healthy volunteers. There were technical problems in seven laboratories in adopting the standard protocol, which were not related to the level of experience. Therefore, the inter-laboratory variation in DNA damage was only analysed using the results from laboratories that had obtained complete data with the standard comet assay protocol. This analysis showed that the differences between reported levels of DNA SBs/alkaline labile sites in MNBCs were not reduced by applying the standard assay protocol as compared with the laboratory's own protocol. There was large inter-laboratory variation in FPG-sensitive sites by the laboratory-specific protocol and the variation was reduced when the samples were analysed by the standard protocol. The SBs and FPG-sensitive sites were measured in the same experiment, indicating that the large spread in the latter lesions was the main reason for the reduced inter-laboratory variation. However, it remains worrying that half of the participating laboratories obtained poor results using the standard procedure. This study indicates that future comet assay validation trials should take steps to evaluate the implementation of standard procedures in participating laboratories.

  5. DNA Adductomics

    PubMed Central

    2015-01-01

    Systems toxicology is a broad-based approach to describe many of the toxicological features that occur within a living system under stress or subjected to exogenous or endogenous exposures. The ultimate goal is to capture an overview of all exposures and the ensuing biological responses of the body. The term exposome has been employed to refer to the totality of all exposures, and systems toxicology investigates how the exposome influences health effects and consequences of exposures over a lifetime. The tools to advance systems toxicology include high-throughput transcriptomics, proteomics, metabolomics, and adductomics, which is still in its infancy. A well-established methodology for the comprehensive measurement of DNA damage resulting from every day exposures is not fully developed. During the past several decades, the 32P-postlabeling technique has been employed to screen the damage to DNA induced by multiple classes of genotoxicants; however, more robust, specific, and quantitative methods have been sought to identify and quantify DNA adducts. Although triple quadrupole and ion trap mass spectrometry, particularly when using multistage scanning (LC–MSn), have shown promise in the field of DNA adductomics, it is anticipated that high-resolution and accurate-mass LC–MSn instrumentation will play a major role in assessing global DNA damage. Targeted adductomics should also benefit greatly from improved triple quadrupole technology. Once the analytical MS methods are fully mature, DNA adductomics along with other -omics tools will contribute greatly to the field of systems toxicology. PMID:24437709

  6. What Is Mitochondrial DNA?

    MedlinePlus

    ... DNA What is mitochondrial DNA? What is mitochondrial DNA? Although most DNA is packaged in chromosomes within ... proteins. For more information about mitochondria and mitochondrial DNA: Molecular Expressions, a web site from the Florida ...

  7. Ancient DNA.

    PubMed

    Willerslev, Eske; Cooper, Alan

    2005-01-01

    In the past two decades, ancient DNA research has progressed from the retrieval of small fragments of mitochondrial DNA from a few late Holocene specimens, to large-scale studies of ancient populations, phenotypically important nuclear loci, and even whole mitochondrial genome sequences of extinct species. However, the field is still regularly marred by erroneous reports, which underestimate the extent of contamination within laboratories and samples themselves. An improved understanding of these processes and the effects of damage on ancient DNA templates has started to provide a more robust basis for research. Recent methodological advances have included the characterization of Pleistocene mammal populations and discoveries of DNA preserved in ancient sediments. Increasingly, ancient genetic information is providing a unique means to test assumptions used in evolutionary and population genetics studies to reconstruct the past. Initial results have revealed surprisingly complex population histories, and indicate that modern phylogeographic studies may give misleading impressions about even the recent evolutionary past. With the advent and uptake of appropriate methodologies, ancient DNA is now positioned to become a powerful tool in biological research and is also evolving new and unexpected uses, such as in the search for extinct or extant life in the deep biosphere and on other planets.

  8. Ancient DNA

    PubMed Central

    Willerslev, Eske; Cooper, Alan

    2004-01-01

    In the past two decades, ancient DNA research has progressed from the retrieval of small fragments of mitochondrial DNA from a few late Holocene specimens, to large-scale studies of ancient populations, phenotypically important nuclear loci, and even whole mitochondrial genome sequences of extinct species. However, the field is still regularly marred by erroneous reports, which underestimate the extent of contamination within laboratories and samples themselves. An improved understanding of these processes and the effects of damage on ancient DNA templates has started to provide a more robust basis for research. Recent methodological advances have included the characterization of Pleistocene mammal populations and discoveries of DNA preserved in ancient sediments. Increasingly, ancient genetic information is providing a unique means to test assumptions used in evolutionary and population genetics studies to reconstruct the past. Initial results have revealed surprisingly complex population histories, and indicate that modern phylogeographic studies may give misleading impressions about even the recent evolutionary past. With the advent and uptake of appropriate methodologies, ancient DNA is now positioned to become a powerful tool in biological research and is also evolving new and unexpected uses, such as in the search for extinct or extant life in the deep biosphere and on other planets. PMID:15875564

  9. DNA vaccines

    NASA Astrophysics Data System (ADS)

    Gregersen, Jens-Peter

    2001-12-01

    Immunization by genes encoding immunogens, rather than with the immunogen itself, has opened up new possibilities for vaccine research and development and offers chances for new applications and indications for future vaccines. The underlying mechanisms of antigen processing, immune presentation and regulation of immune responses raise high expectations for new and more effective prophylactic or therapeutic vaccines, particularly for vaccines against chronic or persistent infectious diseases and tumors. Our current knowledge and experience of DNA vaccination is summarized and critically reviewed with particular attention to basic immunological mechanisms, the construction of plasmids, screening for protective immunogens to be encoded by these plasmids, modes of application, pharmacokinetics, safety and immunotoxicological aspects. DNA vaccines have the potential to accelerate the research phase of new vaccines and to improve the chances of success, since finding new immunogens with the desired properties is at least technically less demanding than for conventional vaccines. However, on the way to innovative vaccine products, several hurdles have to be overcome. The efficacy of DNA vaccines in humans appears to be much less than indicated by early studies in mice. Open questions remain concerning the persistence and distribution of inoculated plasmid DNA in vivo, its potential to express antigens inappropriately, or the potentially deleterious ability to insert genes into the host cell's genome. Furthermore, the possibility of inducing immunotolerance or autoimmune diseases also needs to be investigated more thoroughly, in order to arrive at a well-founded consensus, which justifies the widespread application of DNA vaccines in a healthy population.

  10. Base damage within single-strand DNA underlies in vivo hypermutability induced by a ubiquitous environmental agent.

    PubMed

    Chan, Kin; Sterling, Joan F; Roberts, Steven A; Bhagwat, Ashok S; Resnick, Michael A; Gordenin, Dmitry A

    2012-01-01

    Chromosomal DNA must be in single-strand form for important transactions such as replication, transcription, and recombination to occur. The single-strand DNA (ssDNA) is more prone to damage than double-strand DNA (dsDNA), due to greater exposure of chemically reactive moieties in the nitrogenous bases. Thus, there can be agents that damage regions of ssDNA in vivo while being inert toward dsDNA. To assess the potential hazard posed by such agents, we devised an ssDNA-specific mutagenesis reporter system in budding yeast. The reporter strains bear the cdc13-1 temperature-sensitive mutation, such that shifting to 37°C results in telomere uncapping and ensuing 5' to 3' enzymatic resection. This exposes the reporter region, containing three closely-spaced reporter genes, as a long 3' ssDNA overhang. We validated the ability of the system to detect mutagenic damage within ssDNA by expressing a modified human single-strand specific cytosine deaminase, APOBEC3G. APOBEC3G induced a high density of substitutions at cytosines in the ssDNA overhang strand, resulting in frequent, simultaneous inactivation of two reporter genes. We then examined the mutagenicity of sulfites, a class of reactive sulfur oxides to which humans are exposed frequently via respiration and food intake. Sulfites, at a concentration similar to that found in some foods, induced a high density of mutations, almost always as substitutions at cytosines in the ssDNA overhang strand, resulting in simultaneous inactivation of at least two reporter genes. Furthermore, sulfites formed a long-lived adducted 2'-deoxyuracil intermediate in DNA that was resistant to excision by uracil-DNA N-glycosylase. This intermediate was bypassed by error-prone translesion DNA synthesis, frequently involving Pol ζ, during repair synthesis. Our results suggest that sulfite-induced lesions in DNA can be particularly deleterious, since cells might not possess the means to repair or bypass such lesions accurately.

  11. DNA topoisomerases.

    PubMed

    Wang, J C

    1996-01-01

    The various problems of disentangling DNA strands or duplexes in a cell are all rooted in the double-helical structure of DNA. Three distinct subfamilies of enzymes, known as the DNA topoisomerases, have evolved to solve these problems. This review focuses on work in the past decade on the mechanisms and cellular functions of these enzymes. Newly discovered members and recent biochemical and structural results are reviewed, and mechanistic implications of these results are summarized. The primary cellular functions of these enzymes, including their roles in replication, transcription, chromosome condensation, and the maintenance of genome stability, are then discussed. The review ends with a summary of the regulation of the cellular levels of these enzymes and a discussion of their association with other cellular proteins.

  12. Duplex interrogation by a direct DNA repair protein in search of base damage

    SciTech Connect

    Yi, Chengqi; Chen, Baoen; Qi, Bo; Zhang, Wen; Jia, Guifang; Zhang, Liang; Li, Charles J.; Dinner, Aaron R.; Yang, Cai-Guang; He, Chuan

    2012-08-31

    ALKBH2 is a direct DNA repair dioxygenase guarding the mammalian genome against N{sup 1}-methyladenine, N{sup 3}-methylcytosine and 1,N{sup 6}-ethenoadenine damage. A prerequisite for repair is to identify these lesions in the genome. Here we present crystal structures of human ALKBH2 bound to different duplex DNAs. Together with computational and biochemical analyses, our results suggest that DNA interrogation by ALKBH2 has two previously unknown features: (i) ALKBH2 probes base-pair stability and detects base pairs with reduced stability, and (ii) ALKBH2 does not have nor need a damage-checking site, which is critical for preventing spurious base cleavage for several glycosylases. The demethylation mechanism of ALKBH2 insures that only cognate lesions are oxidized and reversed to normal bases, and that a flipped, non-substrate base remains intact in the active site. Overall, the combination of duplex interrogation and oxidation chemistry allows ALKBH2 to detect and process diverse lesions efficiently and correctly.

  13. Endonuclease-sensitive DNA modifications induced by acetone and acetophenone as photosensitizers.

    PubMed Central

    Epe, B; Henzl, H; Adam, W; Saha-Möller, C R

    1993-01-01

    Repair endonucleases, viz. endonuclease III, formamidopyrimidine-DNA glycosylase (FPG protein), endonuclease IV, exonuclease III and UV endonuclease, were used to analyse the modifications induced in bacteriophage PM2 DNA by 333 nm laser irradiation in the presence of acetone or acetophenone. In addition to pyrimidine dimers sensitive to UV endonuclease, 5,6-dihydropyrimidines (sensitive to endonuclease III) and base modifications sensitive to FPG protein were generated. The level of the last in the case of acetone was 50% and in the case of acetophenone 9% of the level of pyrimidine dimers. HPLC analysis of the bases excised by FPG protein revealed that least some of them were 8-hydroxyguanine (7,8-dihydro-8-oxoguanine). In the damage induced by direct excitation of DNA at 254 nm, which was analysed for comparison, the number of FPG protein-sensitive base modifications was only 0.6% of that of the pyrimidine dimers. Mechanistic studies demonstrated that the formation of FPG protein-sensitive modifications did not involve singlet oxygen, as the damage was not increased in D2O as solvent. Hydroxyl radicals, superoxide and H2O2 were also not involved, since the relative number of single strand breaks and of sites of base loss (AP sites) was much lower than in the case of DNA damage induced by hydroxyl radicals and since the presence of SOD or catalase had no effect on the extent of the damage. However, the mechanism did involve an intermediate that was much more efficiently quenched by azide ions than the triplet excited carbonyl compounds and which was possibly a purine radical. Together, the data indicate that excited triplet carbonyl compounds react with DNA not only by triplet-triplet energy transfer yielding pyrimidine dimers, but also by electron transfer yielding preferentially base modifications sensitive to FPG protein, which include 8-hydroxyguanine. PMID:8383842

  14. Whole transcriptome analysis reveals a role for OGG1-initiated DNA repair signaling in airway remodeling

    PubMed Central

    Aguilera-Aguirre, Leopoldo; Hosoki, Koa; Bacsi, Attila; Radák, Zsolt; Sur, Sanjiv; Hegde, Muralidhar L.; Tian, Bing; Saavedra-Molina, Alfredo; Brasier, Allan R.; Ba, Xueqing; Boldogh, Istvan

    2016-01-01

    Reactive oxygen species (ROS) generated by environmental exposures, and endogenously as by-products of respiration, oxidatively modify biomolecules including DNA. Accumulation of ROS-induced DNA damage has been implicated in various diseases that involve inflammatory processes, and efficient DNA repair is considered critical in preventing such diseases. One of the most abundant DNA base lesions is 7,8-dihydro-8-oxoguanine (8-oxoG), which is repaired by the 8-oxoguanine DNA glycosylase 1 (OGG1)-initiated base-excision repair (OGG1-BER) pathway. Recent studies have shown that the OGG1-BER byproduct 8-oxoG base forms a complex with cytosolic OGG1, activating small GTPases and downstream cell signaling in cultured cells and lungs. This implies that persistent OGG1-BER could result in signaling leading to histological changes in airways. To test this, we mimicked OGG1-BER by repeatedly challenging airways with its repair product 8-oxoG base. Gene expression was analyzed by RNA sequencing (RNA-Seq) and qRT-PCR, and datasets were evaluated by gene ontology and statistical tools. RNA-Seq analysis identified 3252 differentially expressed transcripts (2435 up- and 817 downregulated, Z3-fold change). Among the upregulated transcripts, 2080 mRNAs were identified whose encoded protein products were involved in modulation of the actin family cytoskeleton, extracellular matrix, cell adhesion, cadherin, and cell junctions, affecting biological processes such as tissue development, cell-to-cell adhesion, cell communication, and the immune system. These data are supported by histological observations showing epithelial alterations, subepithelial fibrosis, and collagen deposits in the lungs. These data imply that continuous challenge by the environment and consequent OGG1-BER-driven signaling trigger gene expression consistent with airway remodeling. PMID:26187872

  15. Differential repair of etheno-DNA adducts by bacterial and human AlkB proteins

    PubMed Central

    Zdżalik, Daria; Domańska, Anna; Prorok, Paulina; Kosicki, Konrad; van den Born, Erwin; Falnes, Pål Ø.; Rizzo, Carmelo J.; Guengerich, F. Peter; Tudek, Barbara

    2015-01-01

    AlkB proteins are evolutionary conserved Fe(II)/2-oxoglutarate-dependent dioxygenases, which remove alkyl and highly promutagenic etheno (ε)-DNA adducts, but their substrate specificity has not been fully determined. We developed a novel assay for the repair of ε-adducts by AlkB enzymes using oligodeoxynucleotides with a single lesion and specific DNA glycosylases and AP-endonuclease for identification of the repair products. We compared the repair of three ε-adducts, 1,N6-ethenoadenine (εA), 3,N4-ethenocytosine (εC) and 1,N2-ethenoguanine (1,N2-εG) by nine bacterial and two human AlkBs, representing four different structural groups defined on the basis of conserved amino acids in the nucleotide recognition lid, engaged in the enzyme binding to the substrate. Two bacterial AlkB proteins, MT-2B (from Mycobacterium tuberculosis) and SC-2B (Streptomyces coelicolor) did not repair these lesions in either double-stranded (ds) or single-stranded (ss) DNA. Three proteins, RE-2A (Rhizobium etli), SA-2B (Streptomyces avermitilis), and XC-2B (Xanthomonas campestris) efficiently removed all three lesions from the DNA substrates. Interestingly, XC-2B and RE-2A are the first AlkB proteins shown to be specialized for ε-adducts, since they do not repair methylated bases. Three other proteins, EcAlkB (Escherichia coli), SA-1A, and XC-1B removed εA and εC from ds and ssDNA but were inactive toward 1,N2-εG. SC-1A repaired only εA with the preference for dsDNA. The human enzyme ALKBH2 repaired all three ε-adducts in dsDNA, while only εA and εC in ssDNA and repair was less efficient in ssDNA. ALKBH3 repaired only εC in ssDNA Altogether, we have shown for the first time that some AlkB proteins, namely ALKBH2, RE-2A, SA-2B and XC-2B can repair 1,N2-εG and that ALKBH3 removes only εC from ssDNA. Our results also suggest that the nucleotide recognition lid is not the sole determinant of the substrate specificity of AlkB proteins. PMID:25797601

  16. DNA Methylation

    PubMed Central

    Marinus, M.G.; Løbner-Olesen, A.

    2014-01-01

    The DNA of E. coli contains 19,120 6-methyladenines and 12,045 5-methylcytosines in addition to the four regular bases and these are formed by the postreplicative action of three DNA methyltransferases. The majority of the methylated bases are formed by the Dam and Dcm methyltransferases encoded by the dam (DNA adenine methyltransferase) and dcm (DNA cytosine methyltransferase) genes. Although not essential, Dam methylation is important for strand discrimination during repair of replication errors, controlling the frequency of initiation of chromosome replication at oriC, and regulation of transcription initiation at promoters containing GATC sequences. In contrast, there is no known function for Dcm methylation although Dcm recognition sites constitute sequence motifs for Very Short Patch repair of T/G base mismatches. In certain bacteria (e.g., Vibrio cholerae, Caulobacter crescentus) adenine methylation is essential and in C. crescentus, it is important for temporal gene expression which, in turn, is required for coordinating chromosome initiation, replication and division. In practical terms, Dam and Dcm methylation can inhibit restriction enzyme cleavage; decrease transformation frequency in certain bacteria; decrease the stability of short direct repeats; are necessary for site-directed mutagenesis; and to probe eukaryotic structure and function. PMID:26442938

  17. DNA Investigations.

    ERIC Educational Resources Information Center

    Mayo, Ellen S.; Bertino, Anthony J.

    1991-01-01

    Presents a simulation activity that allow students to work through the exercise of DNA profiling and to grapple with some analytical and ethical questions involving a couple arranging with a surrogate mother to have a baby. Can be used to teach the principles of restriction enzyme digestion, gel electrophoresis, and probe hybridization. (MDH)

  18. First-In-Class Small Molecule Inhibitors of the Single-Strand DNA Cytosine Deaminase APOBEC3G

    PubMed Central

    Li, Ming; Shandilya, Shivender M.D.; Carpenter, Michael A.; Rathore, Anurag; Brown, William L.; Perkins, Angela L.; Harki, Daniel A.; Solberg, Jonathan; Hook, Derek J.; Pandey, Krishan K.; Parniak, Michael A.; Johnson, Jeffrey R.; Krogan, Nevan J.; Somasundaran, Mohan; Ali, Akbar; Schiffer, Celia A.; Harris, Reuben S.

    2012-01-01

    APOBEC3G is a single-stranded DNA cytosine deaminase that comprises part of the innate immune response to viruses and transposons. Although APOBEC3G is the prototype for understanding the larger mammalian polynucleotide deaminase family, no specific chemical inhibitors exist to modulate its activity. High-throughput screening identified 34 compounds that inhibit APOBEC3G catalytic activity. 20/34 small molecules contained catechol moieties, which are known to be sulfhydryl reactive following oxidation to the orthoquinone. Located proximal to the active site, C321 was identified as the binding site for the inhibitors by a combination of mutational screening, structural analysis, and mass spectrometry. Bulkier substitutions C321-to-L, F, Y, or W mimicked chemical inhibition. A strong specificity for APOBEC3G was evident, as most compounds failed to inhibit the related APOBEC3A enzyme or the unrelated enzymes E. coli uracil DNA glycosylase, HIV-1 RNase H, or HIV-1 integrase. Partial, but not complete, sensitivity could be conferred to APOBEC3A by introducing the entire C321 loop from APOBEC3G. Thus, a structural model is presented in which the mechanism of inhibition is both specific and competitive, by binding a pocket adjacent to the APOBEC3G active site, reacting with C321, and blocking access substrate DNA cytosines. PMID:22181350

  19. First-In-Class Small Molecule Inhibitors of the Single-Strand DNA Cytosine Deaminase APOBEC3G

    SciTech Connect

    Li, Ming; Shandilya, Shivender M.D.; Carpenter, Michael A.; Rathore, Anurag; Brown, William L.; Perkins, Angela L.; Harki, Daniel A.; Solberg, Jonathan; Hook, Derek J.; Pandey, Krishan K.; Parniak, Michael A.; Johnson, Jeffrey R.; Krogan, Nevan J.; Somasundaran, Mohan; Ali, Akbar; Schiffer, Celia A.; Harris, Reuben S.

    2012-04-04

    APOBEC3G is a single-stranded DNA cytosine deaminase that comprises part of the innate immune response to viruses and transposons. Although APOBEC3G is the prototype for understanding the larger mammalian polynucleotide deaminase family, no specific chemical inhibitors exist to modulate its activity. High-throughput screening identified 34 compounds that inhibit APOBEC3G catalytic activity. Twenty of 34 small molecules contained catechol moieties, which are known to be sulfhydryl reactive following oxidation to the orthoquinone. Located proximal to the active site, C321 was identified as the binding site for the inhibitors by a combination of mutational screening, structural analysis, and mass spectrometry. Bulkier substitutions C321-to-L, F, Y, or W mimicked chemical inhibition. A strong specificity for APOBEC3G was evident, as most compounds failed to inhibit the related APOBEC3A enzyme or the unrelated enzymes E. coli uracil DNA glycosylase, HIV-1 RNase H, or HIV-1 integrase. Partial, but not complete, sensitivity could be conferred to APOBEC3A by introducing the entire C321 loop from APOBEC3G. Thus, a structural model is presented in which the mechanism of inhibition is both specific and competitive, by binding a pocket adjacent to the APOBEC3G active site, reacting with C321, and blocking access to substrate DNA cytosines.

  20. Mapping frequencies of endogenous oxidative damage and the kinetic response to oxidative stress in a region of rat mtDNA.

    PubMed Central

    Driggers, W J; Holmquist, G P; LeDoux, S P; Wilson, G L

    1997-01-01

    Genomic DNA is constantly being damaged and repaired and our genomes exist at lesion equilibrium for damage created by endogenous mutagens. Mitochondrial DNA (mtDNA) has the highest lesion equilibrium frequency recorded; presumably due to damage by H2O2 and free radicals generated during oxidative phosphorylation processes. We measured the frequencies of single strand breaks and oxidative base damage in mtDNA by ligation-mediated PCR and a quantitative Southern blot technique coupled with digestion by the enzymes endonuclease III and formamidopyrimidine DNA glycosylase. Addition of 5 mM alloxan to cultured rat cells increased the rate of oxidative base damage and, by several fold, the lesion frequency in mtDNA. After removal of this DNA damaging agent from culture, the single strand breaks and oxidative base damage frequency decreased to levels slightly below normal at 4 h and returned to normal levels at 8 h, the overshoot at 4 h being attributed to an adaptive up-regulation of mitochondrial excision repair activity. Guanine positions showed the highest endogenous lesion frequencies and were the most responsive positions to alloxan-induced oxidative stress. Although specific bases were consistently hot spots for damage, there was no evidence that removal of these lesions occurred in a strand-specific manner. The data reveal non-random oxidative damage to several nucleotides in mtDNA and an apparent adaptive, non-strand selective response for removal of such damage. These are the first studies to characterize oxidative damage and its subsequent removal at the nucleotide level in mtDNA. PMID:9336469

  1. The eucalyptus oil ingredient 1,8-cineol induces oxidative DNA damage.

    PubMed

    Dörsam, Bastian; Wu, Ching-Fen; Efferth, Thomas; Kaina, Bernd; Fahrer, Jörg

    2015-05-01

    The natural compound 1,8-cineol, also known as eucalyptol, is a major constituent of eucalyptus oil. This epoxy-monoterpene is used as flavor and fragrance in consumer goods as well as medical therapies. Due to its anti-inflammatory properties, 1,8-cineol is also applied to treat upper and lower airway diseases. Despite its widespread use, only little is known about the genotoxicity of 1,8-cineol in mammalian cells. This study investigates the genotoxicity and cytotoxicity of 1,8-cineol in human and hamster cells. First, we observed a significant and concentration-dependent increase in oxidative DNA damage in human colon cancer cells, as detected by the Formamidopyrimidine-DNA glycosylase (Fpg)-modified alkaline comet assay. Pre-treatment of cells with the antioxidant N-acetylcysteine prevented the formation of Fpg-sensitive sites after 1,8-cineol treatment, supporting the notion that 1,8-cineol induces oxidative DNA damage. In the dose range of DNA damage induction, 1,8-cineol did neither reduce the viability of colon cancer cells nor affected their cell cycle distribution, suggesting that cells tolerate 1,8-cineol-induced oxidative DNA damage by engaging DNA repair. To test this hypothesis, hamster cell lines with defects in BRCA2 and Rad51, which are essentials players of homologous recombination (HR)-mediated repair, were treated with 1,8-cineol. The monoterpene induced oxidative DNA damage and subsequent DNA double-strand breaks in the hamster cell lines tested. Intriguingly, we detected a significant concentration-dependent decrease in viability of the HR-defective cells, whereas the corresponding wild-type cell lines with functional HR were not affected. Based on these findings, we conclude that 1,8-cineol is weakly genotoxic, inducing primarily oxidative DNA damage, which is most likely tolerated in DNA repair proficient cells without resulting in cell cycle arrest and cell death. However, cells with deficiency in HR were compromised after 1,8-cineol

  2. The eucalyptus oil ingredient 1,8-cineol induces oxidative DNA damage.

    PubMed

    Dörsam, Bastian; Wu, Ching-Fen; Efferth, Thomas; Kaina, Bernd; Fahrer, Jörg

    2015-05-01

    The natural compound 1,8-cineol, also known as eucalyptol, is a major constituent of eucalyptus oil. This epoxy-monoterpene is used as flavor and fragrance in consumer goods as well as medical therapies. Due to its anti-inflammatory properties, 1,8-cineol is also applied to treat upper and lower airway diseases. Despite its widespread use, only little is known about the genotoxicity of 1,8-cineol in mammalian cells. This study investigates the genotoxicity and cytotoxicity of 1,8-cineol in human and hamster cells. First, we observed a significant and concentration-dependent increase in oxidative DNA damage in human colon cancer cells, as detected by the Formamidopyrimidine-DNA glycosylase (Fpg)-modified alkaline comet assay. Pre-treatment of cells with the antioxidant N-acetylcysteine prevented the formation of Fpg-sensitive sites after 1,8-cineol treatment, supporting the notion that 1,8-cineol induces oxidative DNA damage. In the dose range of DNA damage induction, 1,8-cineol did neither reduce the viability of colon cancer cells nor affected their cell cycle distribution, suggesting that cells tolerate 1,8-cineol-induced oxidative DNA damage by engaging DNA repair. To test this hypothesis, hamster cell lines with defects in BRCA2 and Rad51, which are essentials players of homologous recombination (HR)-mediated repair, were treated with 1,8-cineol. The monoterpene induced oxidative DNA damage and subsequent DNA double-strand breaks in the hamster cell lines tested. Intriguingly, we detected a significant concentration-dependent decrease in viability of the HR-defective cells, whereas the corresponding wild-type cell lines with functional HR were not affected. Based on these findings, we conclude that 1,8-cineol is weakly genotoxic, inducing primarily oxidative DNA damage, which is most likely tolerated in DNA repair proficient cells without resulting in cell cycle arrest and cell death. However, cells with deficiency in HR were compromised after 1,8-cineol

  3. Oxidative DNA damage and total antioxidant status in rats during experimental gram-negative sepsis.

    PubMed

    Kaymak, C; Kadioglu, E; Ozcagli, E; Osmanoglu, G; Izdes, S; Agalar, C; Basar, H; Sardas, S

    2008-06-01

    Sepsis and septic shock remains as leading cause of death in adult intensive care units. It is widely accepted that gram-negative bacteria and their endotoxins cause sepsis and septic shock, predominantly. Enhanced generation of reactive oxygen species may be responsible for tissue injury in septic shock and endotoxemia. The aim of this study was to assess oxidative DNA damage and the total antioxidant status (TAS) in peripheral lymphocytes of rats during different intraperitoneal gram-negative sepsis stages. Adult male Sprague-Dawley rats were divided randomly into four groups. Control group was intraperitoneally inoculated with 2 mL of pyrogene-free saline (Group I, n = 6), and the other rats received an intraperitoneal inoculum with 2 mL of saline containing 2 x 10(8) CFU of Escherichia coli. The animals were killed at time zero (Group I, n = 6), at 6th (Group II, n = 7), 12th (Group III, n = 7), and 24th (Group IV, n = 7) hour after the E. coli inoculation. Oxidative DNA damage in peripheral lymphocytes of rats was evaluated by modified comet assay (single-cell gel electrophoresis). Formamidopyrimidine DNA glycosylase (Fpg) and Endonuclease III (Endo III) were used to detect oxidized purines and pyrimidines, respectively. Total antioxidant quantification was carried out using ABTS+ (2,2'-Azino-di-[3 ethylbenzthiazoline sulphonate]) radical formation kinetics (Randox kit) in serum samples. Significant elevations of basal levels of strand breaks (SB) in Group IV were observed as compared with Group I, II, and III. There was a significant increase in Fpg sites in Group III as compared with Group I and II. However, there was no significant difference in terms of Endo III sites in any of the groups. Although the TAS was decreased with the stages of sepsis, this moderate decrease was significant in only Group IV as compared with Group I. There was no statistically significant correlation between DNA damage and TAS for any of the groups. PMID:18784201

  4. Effects of melatonin on DNA damage induced by cyclophosphamide in rats

    PubMed Central

    Ferreira, S.G.; Peliciari-Garcia, R.A.; Takahashi-Hyodo, S.A.; Rodrigues, A.C.; Amaral, F.G.; Berra, C.M.; Bordin, S.; Curi, R.; Cipolla-Neto, J.

    2013-01-01

    The antioxidant and free radical scavenger properties of melatonin have been well described in the literature. In this study, our objective was to determine the protective effect of the pineal gland hormone against the DNA damage induced by cyclophosphamide (CP), an anti-tumor agent that is widely applied in clinical practice. DNA damage was induced in rats by a single intraperitoneal injection of CP (20 or 50 mg/kg). Animals received melatonin during the dark period for 15 days (1 mg/kg in the drinking water). Rat bone marrow cells were used for the determination of chromosomal aberrations and of formamidopyrimidine DNA glycosylase enzyme (Fpg)-sensitive sites by the comet technique and of Xpf mRNA expression by qRT-PCR. The number (mean ± SE) of chromosomal aberrations in pinealectomized (PINX) animals treated with melatonin and CP (2.50 ± 0.50/100 cells) was lower than that obtained for PINX animals injected with CP (12 ± 1.8/100 cells), thus showing a reduction of 85.8% in the number of chromosomal aberrations. This melatonin-mediated protection was also observed when oxidative lesions were analyzed by the Fpg-sensitive assay, both 24 and 48 h after CP administration. The expression of Xpf mRNA, which is involved in the DNA nucleotide excision repair machinery, was up-regulated by melatonin. The results indicate that melatonin is able to protect bone marrow cells by completely blocking CP-induced chromosome aberrations. Therefore, melatonin administration could be an alternative and effective treatment during chemotherapy. PMID:23471360

  5. Iron inhibits activation-induced cytidine deaminase enzymatic activity and modulates immunoglobulin class switch DNA recombination.

    PubMed

    Li, Guideng; Pone, Egest J; Tran, Daniel C; Patel, Pina J; Dao, Lisa; Xu, Zhenming; Casali, Paolo

    2012-06-15

    Immunoglobulin (Ig) class switch DNA recombination (CSR) and somatic hypermutation (SHM) are critical for the maturation of the antibody response. Activation-induced cytidine deaminase (AID) initiates CSR and SHM by deaminating deoxycytidines (dCs) in switch (S) and V(D)J region DNA, respectively, to generate deoxyuracils (dUs). Processing of dUs by uracil DNA glycosylase (UNG) yields abasic sites, which are excised by apurinic/apyrimidinic endonucleases, eventually generating double strand DNA breaks, the obligatory intermediates of CSR. Here, we found that the bivalent iron ion (Fe(2+), ferrous) suppressed CSR, leading to decreased number of switched B cells, decreased postrecombination Iμ-C(H) transcripts, and reduced titers of secreted class-switched IgG1, IgG3, and IgA antibodies, without alterations in critical CSR factors, such as AID, 14-3-3γ, or PTIP, or in general germline I(H)-S-C(H) transcription. Fe(2+) did not affect B cell proliferation or plasmacytoid differentiation. Rather, it inhibited AID-mediated dC deamination in a dose-dependent fashion. The inhibition of intrinsic AID enzymatic activity by Fe(2+) was specific, as shown by lack of inhibition of AID-mediated dC deamination by other bivalent metal ions, such as Zn(2+), Mn(2+), Mg(2+), or Ni(2+), and the inability of Fe(2+) to inhibit UNG-mediated dU excision. Overall, our findings have outlined a novel role of iron in modulating a B cell differentiation process that is critical to the generation of effective antibody responses to microbial pathogens and tumoral cells. They also suggest a possible role of iron in dampening AID-dependent autoimmunity and neoplastic transformation.

  6. Role of Bacillus subtilis Error Prevention Oxidized Guanine System in Counteracting Hexavalent Chromium-Promoted Oxidative DNA Damage

    PubMed Central

    Santos-Escobar, Fernando; Gutiérrez-Corona, J. Félix

    2014-01-01

    Chromium pollution is potentially detrimental to bacterial soil communities, compromising carbon and nitrogen cycles that are essential for life on earth. It has been proposed that intracellular reduction of hexavalent chromium [Cr(VI)] to trivalent chromium [Cr(III)] may cause bacterial death by a mechanism that involves reactive oxygen species (ROS)-induced DNA damage; the molecular basis of the phenomenon was investigated in this work. Here, we report that Bacillus subtilis cells lacking a functional error prevention oxidized guanine (GO) system were significantly more sensitive to Cr(VI) treatment than cells of the wild-type (WT) strain, suggesting that oxidative damage to DNA is involved in the deleterious effects of the oxyanion. In agreement with this suggestion, Cr(VI) dramatically increased the ROS concentration and induced mutagenesis in a GO-deficient B. subtilis strain. Alkaline gel electrophoresis (AGE) analysis of chromosomal DNA of WT and ΔGO mutant strains subjected to Cr(VI) treatment revealed that the DNA of the ΔGO strain was more susceptible to DNA glycosylase Fpg attack, suggesting that chromium genotoxicity is associated with 7,8-dihydro-8-oxodeoxyguanosine (8-oxo-G) lesions. In support of this notion, specific monoclonal antibodies detected the accumulation of 8-oxo-G lesions in the chromosomes of B. subtilis cells subjected to Cr(VI) treatment. We conclude that Cr(VI) promotes mutagenesis and cell death in B. subtilis by a mechanism that involves radical oxygen attack of DNA, generating 8-oxo-G, and that such effects are counteracted by the prevention and repair GO system. PMID:24973075

  7. Redox-linked effects of green tea on DNA damage and repair, and influence of microsatellite polymorphism in HMOX-1: results of a human intervention trial.

    PubMed

    Choi, Siu-Wai; Yeung, Vincent T F; Collins, Andrew R; Benzie, Iris F F

    2015-01-01

    Green tea has many reported health benefits, including genoprotective and antioxidant effects, but green tea has pro-oxidant activity in vitro. A tea-induced pro-oxidant shift that triggers cytoprotective adaptations has been postulated, but human data are lacking. We investigated effects on oxidation-induced DNA damage and redox-linked cytoprotective factors, including 8-oxoguanine glycosylase (hOGG1) and heme oxygenase 1 (HMOX-1) in lymphocytes in a randomised, placebo-controlled, cross-over supplementation trial. hOGG1 catalyses the first step in base excision repair; increased HMOX-1 is a sign of cytoprotective response to pro-oxidant change. The influence of microsatellite polymorphisms in the HMOX-1 promoter region was also explored. Higher numbers of GT repeats [GT(n)] in this region reportedly diminish response to pro-oxidant change. Green tea [2 × 150 ml of 1% w/v tea/day (or water as control)] was taken for 12 weeks by 43 Type 2 diabetes subjects {20 with short [S/S; GT(n) < 25] and 23 with long [L/L; GT(n) ≥ 25]}. Fasting venous blood was collected before and after each treatment. The formamidopyrimidine DNA glycosylase-assisted comet assay was used to measure DNA damage in lymphocytes. For measuring hOGG1 activity, we used photo-damaged HeLa cells incubated with lymphocyte extracts from test subjects, in combination with the comet assay. Lymphocyte HMOX-1 and hOGG1 protein concentrations and expression (mRNA) of redox-sensitive genes, including HMOX-1 and hOGG1, were also investigated. Results showed significantly (P < 0.01) lower (~15%) DNA damage, higher (~50%) hOGG1 activity and higher (~40%) HMOX-1 protein concentration after tea. No changes in mRNA expression were seen. Baseline HMOX-1 protein and hOGG1 activity were higher (P < 0.05) in the S/S group, but tea-associated responses were similar in both GT(n) groups. Green tea is clearly associated with lowered DNA damage, increased hOGG1 activity and higher HMOX-1 protein levels. Further study is

  8. DNA Microarrays

    NASA Astrophysics Data System (ADS)

    Nguyen, C.; Gidrol, X.

    Genomics has revolutionised biological and biomedical research. This revolution was predictable on the basis of its two driving forces: the ever increasing availability of genome sequences and the development of new technology able to exploit them. Up until now, technical limitations meant that molecular biology could only analyse one or two parameters per experiment, providing relatively little information compared with the great complexity of the systems under investigation. This gene by gene approach is inadequate to understand biological systems containing several thousand genes. It is essential to have an overall view of the DNA, RNA, and relevant proteins. A simple inventory of the genome is not sufficient to understand the functions of the genes, or indeed the way that cells and organisms work. For this purpose, functional studies based on whole genomes are needed. Among these new large-scale methods of molecular analysis, DNA microarrays provide a way of studying the genome and the transcriptome. The idea of integrating a large amount of data derived from a support with very small area has led biologists to call these chips, borrowing the term from the microelectronics industry. At the beginning of the 1990s, the development of DNA chips on nylon membranes [1, 2], then on glass [3] and silicon [4] supports, made it possible for the first time to carry out simultaneous measurements of the equilibrium concentration of all the messenger RNA (mRNA) or transcribed RNA in a cell. These microarrays offer a wide range of applications, in both fundamental and clinical research, providing a method for genome-wide characterisation of changes occurring within a cell or tissue, as for example in polymorphism studies, detection of mutations, and quantitative assays of gene copies. With regard to the transcriptome, it provides a way of characterising differentially expressed genes, profiling given biological states, and identifying regulatory channels.

  9. Optical DNA

    NASA Astrophysics Data System (ADS)

    Vijaywargi, Deepak; Lewis, Dave; Kirovski, Darko

    A certificate of authenticity (COA) is an inexpensive physical object with a random and unique structure S which is hard to near-exactly replicate. An inexpensive device should be able to scan object’s physical “fingerprint,” a set of features that represents S. In this paper, we explore one set of requirements that optical media such as DVDs should satisfy, to be considered as COAs. As manufacturing of such media produces inevitable errors, we use the locations and count of these errors as a “fingerprint” for each optical disc: its optical DNA. The “fingerprint” is signed using publisher’s private-key and the resulting signature is stored onto the optical medium using a post-production process. Standard DVD players with altered firmware that includes publisher’s public-key, should be able to verify the authenticity of DVDs protected with optical DNA. Our key finding is that for the proposed protocol, only DVDs with exceptional wear-and-tear characteristics would result in an inexpensive and viable anti-counterfeiting technology.

  10. Effect of a dCTP:dTTP pool imbalance on DNA replication fidelity in Friend murine erythroleukemia cells.

    PubMed

    Hyland, P L; Keegan, A L; Curran, M D; Middleton, D; McKenna, P G; Barnett, Y A

    2000-01-01

    Nucleotide pool imbalances have been reported to affect the fidelity of DNA replication and repair in prokaryotic and eukaryotic cells. We have reported previously that the mutagen-hypersensitive thymidine kinase (TK)-deficient Friend erythroleukemia (FEL) cells (subclones 707BUF and 707BUE), have a more than sixfold increase in the dCTP:dTTP pool ratio when compared to that of wild-type, TK-positive (TK(+)) clone 707 cells. In this study we present the results of an investigation of the effect of the dCTP:dTTP pool imbalance on the accuracy of DNA replication within 707BUF cells. We examined the spontaneous mutation spectra occurring at the adenine phosphoribosyltransferase (aprt) locus within clone 707 (TK(+)) and 707BUF (TK(-)) FEL cells. Mutations recovered at the aprt locus in FEL cells comprised: base substitutions (43:73), frameshifts (14:13.5), and deletions (43:13.5) [clone 707 (TK(+)):707BUF (TK(-)), respectively, expressed as percentages]. A comparison of the mutation spectra obtained for the two cell lines did not reveal any significant increase in misincorporation of dCTP, the nucleotide in excess, in 707BUF (TK(-)) cells, during DNA replication synthesis. These data suggest that the dCTP:dTTP pool imbalance does not alter the fidelity of DNA replication synthesis in 707BUF (TK(-)) FEL cells. Rather, the predominance of GC --> AT transitions (53%) in the 707BUF (TK(-)) spectrum may reflect a reduced efficiency of repair by uracil DNA glycosylase of uracil residues within these cells.

  11. Ebselen attenuates oxidative DNA damage and enhances its repair activity in the thalamus after focal cortical infarction in hypertensive rats.

    PubMed

    He, Meixia; Xing, Shihui; Yang, Bo; Zhao, Liqun; Hua, Haiying; Liang, Zhijian; Zhou, Wenliang; Zeng, Jinsheng; Pei, Zhong

    2007-11-21

    Oxidative DNA damage has been proposed to be a major contributor to focal cerebral ischemic injury. However, little is known about the role of oxidative DNA damage in remote damage secondary to the primary infarction. In the present study, we investigated oxidative damage within the ventroposterior nucleus (VPN) after distal middle cerebral artery occlusion (MCAO) in hypertensive rats. We also examined the possible protective effect of ebselen, one glutathione peroxidase mimic, on delayed degeneration in the VPN after distal MCAO. Neuronal damage in the ipsilateral VPN was examined by Nissl staining. Oxidative DNA damage and base repair enzyme activity were assessed by analyzing immunoreactivity of 8-hydroxy-2'-deoxyguanosine (8-ohdG) and 8-oxoguanine DNA glycosylase (OGG1), respectively. The number of intact neurons in the ipsilateral VPN decreased by 52% compared to the contralateral side in ischemia group 2 weeks after distal cerebral cortical infarction. The immunoreactivity of 8-ohdG significantly increased while OGG1 immunoreactivity significantly decreased in the ipsilateral VPN 2 weeks after distal cortical infarction (all p<0.01). Compared with vehicle treatment, ebselen significantly attenuated the neuron loss, ameliorated ischemia-induced increase in 8-ohdG level as well as decrease in OGG1 level within the ipsilateral VPN (all p<0.01). OGG1 was further demonstrated to mainly express in neurons. These findings strongly suggest that oxidative DNA damage may be involved in the delayed neuronal death in the VPN region following distal MCAO. Furthermore, ebselen protects against the delayed damage in the VPN when given at 24 h following distal MCAO.

  12. Spaceflight induces both transient and heritable alterations in DNA methylation and gene expression in rice (Oryza sativa L.).

    PubMed

    Ou, Xiufang; Long, Likun; Zhang, Yunhong; Xue, Yiqun; Liu, Jingchun; Lin, Xiuyun; Liu, Bao

    2009-03-01

    Spaceflight represents a complex environmental condition in which several interacting factors such as cosmic radiation, microgravity and space magnetic fields are involved, which may provoke stress responses and jeopardize genome integrity. Given the inherent property of epigenetic modifications to respond to intrinsic as well as external perturbations, it is conceivable that epigenetic markers like DNA methylation may undergo alterations in response to spaceflight. We report here that extensive alteration in both DNA methylation and gene expression occurred in rice plants subjected to a spaceflight, as revealed by a set of characterized sequences including 6 transposable elements (TEs) and 11 cellular genes. We found that several features characterize the alterations: (1) All detected alterations are hypermethylation events; (2) whereas alteration in both CG and CNG methylation occurred in the TEs, only alteration in CNG methylation occurred in the cellular genes; (3) alteration in expression includes both up- and down-regulations, which did not show a general correlation with alteration in methylation; (4) altered methylation patterns in both TEs and cellular genes are heritable to progenies at variable frequencies; however, stochastic reversion to wild-type patterns and further de novo changes in progenies are also apparent; and (5) the altered expression states in both TEs and cellular genes are also heritable to selfed progenies but with markedly lower transmission frequencies than altered DNA methylation states. Furthermore, we found that a set of genes encoding for the various putative DNA methyltransferases, 5-methylcytosine DNA glycosylases, the SWI/SNF chromatin remodeller (DDM1) and siRNA-related proteins are extremely sensitive to perturbation by spaceflight, which might be an underlying cause for the altered methylation patterns in the space-flown plants. We discuss implications of spaceflight-induced epigenetic variations with regard to health safety

  13. Methanol exposure does not produce oxidatively damaged DNA in lung, liver or kidney of adult mice, rabbits or primates

    SciTech Connect

    McCallum, Gordon P.; Siu, Michelle; Sweeting, J. Nicole; Wells, Peter G.

    2011-01-15

    In vitro and in vivo genotoxicity tests indicate methanol (MeOH) is not mutagenic, but carcinogenic potential has been claimed in one controversial long-term rodent cancer bioassay that has not been replicated. To determine whether MeOH could indirectly damage DNA via reactive oxygen species (ROS)-mediated mechanisms, we treated male CD-1 mice, New Zealand white rabbits and cynomolgus monkeys with MeOH (2.0 g/kg ip) and 6 h later assessed oxidative damage to DNA, measured as 8-oxo-2'-deoxyguanosine (8-oxodG) by HPLC with electrochemical detection. We found no MeOH-dependent increases in 8-oxodG in lung, liver or kidney of any species. Chronic treatment of CD-1 mice with MeOH (2.0 g/kg ip) daily for 15 days also did not increase 8-oxodG levels in these organs. These results were corroborated in DNA repair-deficient oxoguanine glycosylase 1 (Ogg1) knockout (KO) mice, which accumulated 8-oxodG in lung, kidney and liver with age, but exhibited no increase following MeOH, despite a 2-fold increase in renal 8-oxodG in Ogg1 KO mice following treatment with a ROS-initiating positive control, the renal carcinogen potassium bromate (KBrO{sub 3}; 100 mg/kg ip). These observations suggest that MeOH exposure does not promote the accumulation of oxidatively damaged DNA in lung, kidney or liver, and that environmental exposure to MeOH is unlikely to initiate carcinogenesis in these organs by DNA oxidation.

  14. Benzene-derived N2-(4-hydroxyphenyl)-deoxyguanosine adduct: UvrABC incision and its conformation in DNA

    SciTech Connect

    Hang, Bo; Rodriguez, Ben; Yang, Yanu; Guliaev, Anton B.; Chenna, Ahmed

    2010-06-14

    Benzene, a ubiquitous human carcinogen, forms DNA adducts through its metabolites such as p-benzoquinone (p-BQ) and hydroquinone (HQ). N(2)-(4-Hydroxyphenyl)-2'-deoxyguanosine (N(2)-4-HOPh-dG) is the principal adduct identified in vivo by (32)P-postlabeling in cells or animals treated with p-BQ or HQ. To study its effect on repair specificity and replication fidelity, we recently synthesized defined oligonucleotides containing a site-specific adduct using phosphoramidite chemistry. We here report the repair of this adduct by Escherichia coli UvrABC complex, which performs the initial damage recognition and incision steps in the nucleotide excision repair (NER) pathway. We first showed that the p-BQ-treated plasmid was efficiently cleaved by the complex, indicating the formation of DNA lesions that are substrates for NER. Using a 40-mer substrate, we found that UvrABC incises the DNA strand containing N(2)-4-HOPh-dG in a dose- and time-dependent manner. The specificity of such repair was also compared with that of DNA glycosylases and damage-specific endonucleases of E. coli, both of which were found to have no detectable activity toward N(2)-4-HOPh-dG. To understand why this adduct is specifically recognized and processed by UvrABC, molecular modeling studies were performed. Analysis of molecular dynamics trajectories showed that stable G:C-like hydrogen bonding patterns of all three Watson-Crick hydrogen bonds are present within the N(2)-4-HOPh-G:C base pair, with the hydroxyphenyl ring at an almost planar position. In addition, N(2)-4-HOPh-dG has a tendency to form more stable stacking interactions than a normal G in B-type DNA. These conformational properties may be critical in differential recognition of this adduct by specific repair enzymes.

  15. DNA mimicry by proteins.

    PubMed

    Dryden, D T F; Tock, M R

    2006-04-01

    It has been discovered recently, via structural and biophysical analyses, that proteins can mimic DNA structures in order to inhibit proteins that would normally bind to DNA. Mimicry of the phosphate backbone of DNA, the hydrogen-bonding properties of the nucleotide bases and the bending and twisting of the DNA double helix are all present in the mimics discovered to date. These mimics target a range of proteins and enzymes such as DNA restriction enzymes, DNA repair enzymes, DNA gyrase and nucleosomal and nucleoid-associated proteins. The unusual properties of these protein DNA mimics may provide a foundation for the design of targeted inhibitors of DNA-binding proteins. PMID:16545103

  16. Novel mechanism of regulation of the DNA repair enzyme OGG1 in tuberin-deficient cells

    PubMed Central

    Habib, Samy L.; Bhandari, Besant K.; Sadek, Nahed; Abboud-Werner, Sherry L.; Abboud, Hanna E.

    2010-01-01

    Tuberin (protein encodes by tuberous sclerosis complex 2, Tsc2) deficiency is associated with the decrease in the DNA repair enzyme 8-oxoG-DNA glycosylase (OGG1) in tumour kidney of tuberous sclerosis complex (TSC) patients. The purpose of this study was to elucidate the mechanisms by which tuberin regulates OGG1. The partial deficiency in tuberin expression that occurs in the renal proximal tubular cells and kidney cortex of the Eker rat is associated with decreased activator protein 4 (AP4) and OGG1 expression. A complete deficiency in tuberin is associated with loss of AP4 and OGG1 expression in kidney tumour from Eker rats and the accumulation of significant levels of 8-oxo-deoxyguanosine. Knockdown of tuberin expression in human renal epithelial cells (HEK293) with small interfering RNA (siRNA) also resulted in a marked decrease in the expression of AP4 and OGG1. In contrast, overexpression of tuberin in HEK293 cells increased the expression of AP4 and OGG1 proteins. Downregulation of AP4 expression using siRNA resulted in a significant decrease in the protein expression of OGG1. Immunoprecipitation studies show that AP4 is associated with tuberin in cells. Gel shift analysis and chromatin immunoprecipitation identified the transcription factor AP4 as a positive regulator of the OGG1 promoter. AP4 DNA-binding activity is significantly reduced in Tsc2−/− as compared with Tsc2+/+ cells. Transcriptional activity of the OGG1 promoter is also decreased in tuberin-null cells compared with wild-type cells. These data indicate a novel role for tuberin in the regulation of OGG1 through the transcription factor AP4. This regulation may be important in the pathogenesis of kidney tumours in patients with TSC disease. PMID:20837600

  17. The LSH/DDM1 Homolog MUS-30 Is Required for Genome Stability, but Not for DNA Methylation in Neurospora crassa

    PubMed Central

    Basenko, Evelina Y.; Kamei, Masayuki; Ji, Lexiang; Schmitz, Robert J.; Lewis, Zachary A.

    2016-01-01

    LSH/DDM1 enzymes are required for DNA methylation in higher eukaryotes and have poorly defined roles in genome maintenance in yeast, plants, and animals. The filamentous fungus Neurospora crassa is a tractable system that encodes a single LSH/DDM1 homolog (NCU06306). We report that the Neurospora LSH/DDM1 enzyme is encoded by mutagen sensitive-30 (mus-30), a locus identified in a genetic screen over 25 years ago. We show that MUS-30-deficient cells have normal DNA methylation, but are hypersensitive to DNA damaging agents. MUS-30 is a nuclear protein, consistent with its predicted role as a chromatin remodeling enzyme, and levels of MUS-30 are increased following DNA damage. MUS-30 co-purifies with Neurospora WDR76, a homolog of yeast Changed Mutation Rate-1 and mammalian WD40 repeat domain 76. Deletion of wdr76 rescued DNA damage-hypersensitivity of Δmus-30 strains, demonstrating that the MUS-30-WDR76 interaction is functionally important. DNA damage-sensitivity of Δmus-30 is partially suppressed by deletion of methyl adenine glycosylase-1, a component of the base excision repair machinery (BER); however, the rate of BER is not affected in Δmus-30 strains. We found that MUS-30-deficient cells are not defective for DSB repair, and we observed a negative genetic interaction between Δmus-30 and Δmei-3, the Neurospora RAD51 homolog required for homologous recombination. Together, our findings suggest that MUS-30, an LSH/DDM1 homolog, is required to prevent DNA damage arising from toxic base excision repair intermediates. Overall, our study provides important new information about the functions of the LSH/DDM1 family of enzymes. PMID:26771905

  18. The effect of selenium supplementation in the prevention of DNA damage in white blood cells of hemodialyzed patients: a pilot study.

    PubMed

    Zachara, Bronislaw A; Gromadzinska, Jolanta; Palus, Jadwiga; Zbrog, Zbigniew; Swiech, Rafal; Twardowska, Ewa; Wasowicz, Wojciech

    2011-09-01

    Patients with chronic kidney disease (CKD) have an increased incidence of cancer. It is well known that long periods of hemodialysis (HD) treatment are linked to DNA damage due to oxidative stress. In this study, we examined the effect of selenium (Se) supplementation to CKD patients on HD on the prevention of oxidative DNA damage in white blood cells. Blood samples were drawn from 42 CKD patients on HD (at the beginning of the study and after 1 and 3 months) and from 30 healthy controls. Twenty-two patients were supplemented with 200 μg Se (as Se-rich yeast) per day and 20 with placebo (baker's yeast) for 3 months. Se concentration in plasma and DNA damage in white blood cells expressed as the tail moment, including single-strand breaks (SSB) and oxidative bases lesion in DNA, using formamidopyrimidine glycosylase (FPG), were measured. Se concentration in patients was significantly lower than in healthy subjects (P < 0.0001) and increased significantly after 3 months of Se supplementation (P < 0.0001). Tail moment (SSB) in patients before the study was three times higher than in healthy subjects (P < 0.01). After 3 months of Se supplementation, it decreased significantly (P < 0.01) and was about 16% lower than in healthy subjects. The oxidative bases lesion in DNA (tail moment, FPG) of HD patients at the beginning of the study was significantly higher (P < 0.01) compared with controls, and 3 months after Se supplementation it was 2.6 times lower than in controls (P < 0.01). No changes in tail moment was observed in the placebo group. In conclusion, our study shows that in CKD patients on HD, DNA damage in white blood cells is higher than in healthy controls, and Se supplementation prevents the damage of DNA. PMID:20661660

  19. Chemical repair of base lesions, AP-sites, and strand breaks on plasmid DNA in dilute aqueous solution by ascorbic acid

    SciTech Connect

    Hata, Kuniki; Urushibara, Ayumi; Yamashita, Shinichi; Shikazono, Naoya; Yokoya, Akinari; Katsumura, Yosuke

    2013-05-03

    Highlights: •We report a novel mechanism of radiation protection of DNA by chemical activity of ascorbic acid. •The “chemical repair” of DNA damage was revealed using biochemical assay and chemical kinetics analysis. •We found that ascorbic acid significantly repairs precursors of nucleobase lesions and abasic sites. •However, ascorbic acid seldom repairs precursors of DNA-strand breaks. -- Abstract: We quantified the damage yields produced in plasmid DNA by γ-irradiation in the presence of low concentrations (10–100 μM) of ascorbic acid, which is a major antioxidant in living systems, to clarify whether it chemically repairs radiation damage in DNA. The yield of DNA single strand breaks induced by irradiation was analyzed with agarose gel electrophoresis as conformational changes in closed circular plasmids. Base lesions and abasic sites were also observed as additional conformational changes by treating irradiated samples with glycosylase proteins. By comparing the suppression efficiencies to the induction of each DNA lesion, in addition to scavenging of the OH radicals derived from water radiolysis, it was found that ascorbic acid promotes the chemical repair of precursors of AP-sites and base lesions more effectively than those of single strand breaks. We estimated the efficiency of the chemical repair of each lesion using a kinetic model. Approximately 50–60% of base lesions and AP-sites were repaired by 10 μM ascorbic acid, although strand breaks were largely unrepaired by ascorbic acid at low concentrations. The methods in this study will provide a route to understanding the mechanistic aspects of antioxidant activity in living systems.

  20. Low-level laser irradiation alters mRNA expression from genes involved in DNA repair and genomic stabilization in myoblasts

    NASA Astrophysics Data System (ADS)

    Trajano, L. A. S. N.; Sergio, L. P. S.; Silva, C. L.; Carvalho, L.; Mencalha, A. L.; Stumbo, A. C.; Fonseca, A. S.

    2016-07-01

    Low-level lasers are used for the treatment of diseases in soft and bone tissues, but few data are available regarding their effects on genomic stability. In this study, we investigated mRNA expression from genes involved in DNA repair and genomic stabilization in myoblasts exposed to low-level infrared laser. C2C12 myoblast cultures in different fetal bovine serum concentrations were exposed to low-level infrared laser (10, 35 and 70 J cm‑2), and collected for the evaluation of DNA repair gene expression. Laser exposure increased gene expression related to base excision repair (8-oxoguanine DNA glycosylase and apurinic/apyrimidinic endonuclease 1), nucleotide excision repair (excision repair cross-complementation group 1 and xeroderma pigmentosum C protein) and genomic stabilization (ATM serine/threonine kinase and tumor protein p53) in normal and low fetal bovine serum concentrations. Results suggest that genomic stability could be part of a biostimulation effect of low-level laser therapy in injured muscles.

  1. Dioxin induces Ahr-dependent robust DNA demethylation of the Cyp1a1 promoter via Tdg in the mouse liver

    PubMed Central

    Amenya, Hesbon Z.; Tohyama, Chiharu; Ohsako, Seiichiroh

    2016-01-01

    The aryl hydrocarbon receptor (Ahr) is a highly conserved nuclear receptor that plays an important role in the manifestation of toxicity induced by polycyclic aromatic hydrocarbons. As a xenobiotic sensor, Ahr is involved in chemical biotransformation through activation of drug metabolizing enzymes. The activated Ahr cooperates with coactivator complexes to induce epigenetic modifications at target genes. Thus, it is conceivable that 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a potent Ahr ligand, may elicit robust epigenetic changes in vivo at the Ahr target gene cytochrome P450 1a1 (Cyp1a1). A single dose of TCDD administered to adult mice induced Ahr-dependent CpG hypomethylation, changes in histone modifications, and thymine DNA glycosylase (Tdg) recruitment at the Cyp1a1 promoter in the liver within 24 hrs. These epigenetic changes persisted until 40 days post-TCDD treatment and there was Cyp1a1 mRNA hyperinduction upon repeat administration of TCDD at this time-point. Our demethylation assay using siRNA knockdown and an in vitro methylated plasmid showed that Ahr, Tdg, and the ten-eleven translocation methyldioxygenases Tet2 and Tet3 are required for the TCDD-induced DNA demethylation. These results provide novel evidence of Ahr-driven active DNA demethylation and epigenetic memory. The epigenetic alterations influence response to subsequent chemical exposure and imply an adaptive mechanism to xenobiotic stress. PMID:27713569

  2. Resistance of CD-1 and ogg1 DNA repair-deficient mice to thalidomide and hydrolysis product embryopathies in embryo culture.

    PubMed

    Lee, Crystal J J; Gonçalves, Luisa L; Wells, Peter G

    2011-07-01

    Thalidomide (TD) displays remarkable species specificity, causing birth defects (teratogenesis) in humans and rabbits, but not rats or mice; yet, few determinants of species susceptibility have been identified. Also, certain mouse strains are susceptible to the embryopathic effects of some teratogens in embryo culture despite their resistance in vivo. Herein we show that CD-1 mouse embryos in culture are resistant to limb embryopathies caused by TD and two of its hydrolysis products, 2-phthalimidoglutaramic acid and 2-phthalimidoglutaric acid, although all three compounds cause these embryopathies in rabbit embryo culture. These results show that the resistance of CD-1 mice to TD teratogenesis is inherent to the embryo and is not dependent upon maternal factors, including differential in vivo exposure to the many hydrolysis products of TD. In utero TD exposure of rabbit but not mouse embryos elevates levels of the teratogenic oxidative DNA lesion 8-oxoguanine, which is repaired by oxoguanine glycosylase 1 (OGG1). However, DNA repair-deficient ogg1 knockout mice proved resistant to TD-initiated embryopathies in culture and teratogenesis in vivo, indicating that the resistance of mice is not due to a higher level of DNA repair.

  3. Dioxin induces Ahr-dependent robust DNA demethylation of the Cyp1a1 promoter via Tdg in the mouse liver

    NASA Astrophysics Data System (ADS)

    Amenya, Hesbon Z.; Tohyama, Chiharu; Ohsako, Seiichiroh

    2016-10-01

    The aryl hydrocarbon receptor (Ahr) is a highly conserved nuclear receptor that plays an important role in the manifestation of toxicity induced by polycyclic aromatic hydrocarbons. As a xenobiotic sensor, Ahr is involved in chemical biotransformation through activation of drug metabolizing enzymes. The activated Ahr cooperates with coactivator complexes to induce epigenetic modifications at target genes. Thus, it is conceivable that 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a potent Ahr ligand, may elicit robust epigenetic changes in vivo at the Ahr target gene cytochrome P450 1a1 (Cyp1a1). A single dose of TCDD administered to adult mice induced Ahr-dependent CpG hypomethylation, changes in histone modifications, and thymine DNA glycosylase (Tdg) recruitment at the Cyp1a1 promoter in the liver within 24 hrs. These epigenetic changes persisted until 40 days post-TCDD treatment and there was Cyp1a1 mRNA hyperinduction upon repeat administration of TCDD at this time-point. Our demethylation assay using siRNA knockdown and an in vitro methylated plasmid showed that Ahr, Tdg, and the ten-eleven translocation methyldioxygenases Tet2 and Tet3 are required for the TCDD-induced DNA demethylation. These results provide novel evidence of Ahr-driven active DNA demethylation and epigenetic memory. The epigenetic alterations influence response to subsequent chemical exposure and imply an adaptive mechanism to xenobiotic stress.

  4. Cytosine deaminations catalyzed by DNA cytosine methyltransferases are unlikely to be the major cause of mutational hot spots at sites of cytosine methylation in Escherichia coli.

    PubMed Central

    Wyszynski, M; Gabbara, S; Bhagwat, A S

    1994-01-01

    Sites of cytosine methylation are hot spots for C to T mutations in Escherichia coli DNA. We have developed a genetic reversion assay that allows direct selection of C to T mutations at a site of methylation. Because the mutant gene is on a plasmid, this system can be used to study mutational effects of biochemical agents in vitro as well as in vivo. Using this system we show that in vitro an E. coli methyltransferase can cause C to U deaminations at a site of methylation. Reaction conditions that are known to inhibit a side reaction of the methyltransferase also suppress reversion frequency, suggesting that this side reaction is required for deamination. Furthermore, a mutation in the enzyme that eliminates its catalytic activity but not its ability to bind DNA eliminates the ability of the enzyme to cause C to U deaminations. Despite this, in vivo experiments strongly suggest that enzyme-catalyzed deaminations of cytosine do not play a major role in making methylation sites in E. coli hot spots for mutations. For example, although uracil-DNA glycosylase (Ung) suppresses the occurrence of mutations due to C to U deaminations, the frequency of C to T mutations at a methylation site remains high in ung+ cells. Furthermore, the reversion frequencies in ung+ and ung- cells are quite similar. Images PMID:8108447

  5. Low-level laser irradiation alters mRNA expression from genes involved in DNA repair and genomic stabilization in myoblasts

    NASA Astrophysics Data System (ADS)

    Trajano, L. A. S. N.; Sergio, L. P. S.; Silva, C. L.; Carvalho, L.; Mencalha, A. L.; Stumbo, A. C.; Fonseca, A. S.

    2016-07-01

    Low-level lasers are used for the treatment of diseases in soft and bone tissues, but few data are available regarding their effects on genomic stability. In this study, we investigated mRNA expression from genes involved in DNA repair and genomic stabilization in myoblasts exposed to low-level infrared laser. C2C12 myoblast cultures in different fetal bovine serum concentrations were exposed to low-level infrared laser (10, 35 and 70 J cm-2), and collected for the evaluation of DNA repair gene expression. Laser exposure increased gene expression related to base excision repair (8-oxoguanine DNA glycosylase and apurinic/apyrimidinic endonuclease 1), nucleotide excision repair (excision repair cross-complementation group 1 and xeroderma pigmentosum C protein) and genomic stabilization (ATM serine/threonine kinase and tumor protein p53) in normal and low fetal bovine serum concentrations. Results suggest that genomic stability could be part of a biostimulation effect of low-level laser therapy in injured muscles.

  6. DNA ligase I, the replicative DNA ligase

    PubMed Central

    Howes, Timothy R.L.; Tomkinson, Alan E.

    2013-01-01

    Multiple DNA ligation events are required to join the Okazaki fragments generated during lagging strand DNA synthesis. In eukaryotes, this is primarily carried out by members of the DNA ligase I family. The C-terminal catalytic region of these enzymes is composed of three domains: a DNA binding domain, an adenylation domain and an OB-fold domain. In the absence of DNA, these domains adopt an extended structure but transition into a compact ring structure when they engage a DNA nick, with each of the domains contacting the DNA. The non-catalytic N-terminal region of eukaryotic DNA ligase I is responsible for the specific participation of these enzymes in DNA replication. This proline-rich unstructured region contains the nuclear localization signal and a PCNA interaction motif that is critical for localization to replication foci and efficient joining of Okazaki fragments. DNA ligase I initially engages the PCNA trimer via this interaction motif which is located at the extreme N-terminus of this flexible region. It is likely that this facilitates an additional interaction between the DNA binding domain and the PCNA ring. The similar size and shape of the rings formed by the PCNA trimer and the DNA ligase I catalytic region when it engages a DNA nick suggest that these proteins interact to form a double-ring structure during the joining of Okazaki fragments. DNA ligase I also interacts with replication factor C, the factor that loads the PCNA trimeric ring onto DNA. This interaction, which is regulated by phosphorylation of the non-catalytic N-terminus of DNA ligase I, also appears to be critical for DNA replication. PMID:22918593

  7. DNA modifications: Another stable base in DNA

    NASA Astrophysics Data System (ADS)

    Brazauskas, Pijus; Kriaucionis, Skirmantas

    2014-12-01

    Oxidation of 5-methylcytosine has been proposed to mediate active and passive DNA demethylation. Tracking the history of DNA modifications has now provided the first solid evidence that 5-hydroxymethylcytosine is a stable epigenetic modification.

  8. Establishment of a non-radioactive cleavage assay to assess the DNA repair capacity towards oxidatively damaged DNA in subcellular and cellular systems and the impact of copper.

    PubMed

    Hamann, Ingrit; Schwerdtle, Tanja; Hartwig, Andrea

    2009-10-01

    Oxidative stress is involved in many diseases, and the search for appropriate biomarkers is one major focus in molecular epidemiology. 8-Oxoguanine (8-oxoG), a potentially mutagenic DNA lesion, is considered to be a sensitive biomarker for oxidative stress. Another approach consists in assessing the repair capacity towards 8-oxoG, mediated predominantly by the human 8-oxoguanine DNA glycosylase 1 (hOGG1). With respect to the latter, during the last few years so-called cleavage assays have been described, investigating the incision of (32)P-labelled and 8-oxoG damaged oligonucleotides by cell extracts. Within the present study, a sensitive non-radioactive test system based on a Cy5-labelled oligonucleotide has been established. Sources of incision activity are isolated proteins or extracts prepared from cultured cells and peripheral blood mononuclear cells (PBMC). After comparing different oligonucleotide structures, a hairpin-like structure was selected which was not degraded by cell extracts. Applying this test system the impact of copper on the activity of isolated hOGG1 and on hOGG activity in A549 cells was examined, showing a distinct inhibition of the isolated protein at low copper concentration as compared to a modest inhibition of hOGG activity in cells at beginning cytotoxic concentrations. For investigating PBMC, all reaction conditions, including the amounts of oligonucleotide and cell extract as well as the reaction time have been optimized. The incision activities of PBMC protein extracts obtained from different donors have been investigated, and inter-individual differences have been observed. In summary, the established method is as sensitive and even faster than the radioactive technique, and additionally, offers the advantage of reduced costs and low health risk. PMID:19505484

  9. Sperm DNA oxidative damage and DNA adducts.

    PubMed

    Jeng, Hueiwang Anna; Pan, Chih-Hong; Chao, Mu-Rong; Lin, Wen-Yi

    2015-12-01

    The objective of this study was to investigate DNA damage and adducts in sperm from coke oven workers who have been exposed to polycyclic aromatic hydrocarbons. A longitudinal study was conducted with repeated measurements during spermatogenesis. Coke-oven workers (n=112) from a coke-oven plant served the PAH-exposed group, while administrators and security personnel (n=67) served the control. Routine semen parameters (concentration, motility, vitality, and morphology) were analyzed simultaneously; the assessment of sperm DNA integrity endpoints included DNA fragmentation, bulky DNA adducts, and 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxo-dGuo). The degree of sperm DNA fragmentation was measured using the terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) assay and sperm chromatin structure assay (SCSA). The PAH-exposed group had a significant increase in bulky DNA adducts and 8-oxo-dGuo compared to the control subjects (Ps=0.002 and 0.045, respectively). Coke oven workers' percentages of DNA fragmentation and denaturation from the PAH-exposed group were not significantly different from those of the control subjects (Ps=0.232 and 0.245, respectively). Routine semen parameters and DNA integrity endpoints were not correlated. Concentrations of 8-oxo-dGuo were positively correlated with percentages of DNA fragmentation measured by both TUNEL and SCSA (Ps=0.045 and 0.034, respectively). However, the concentrations of 8-oxo-dGuo and percentages of DNA fragmentation did not correlate with concentrations of bulky DNA adducts. In summary, coke oven workers with chronic exposure to PAHs experienced decreased sperm DNA integrity. Oxidative stress could contribute to the degree of DNA fragmentation. Bulky DNA adducts may be independent of the formation of DNA fragmentation and oxidative adducts in sperm. Monitoring sperm DNA integrity is recommended as a part of the process of assessing the impact of occupational and environmental toxins on sperm.

  10. Sperm DNA oxidative damage and DNA adducts.

    PubMed

    Jeng, Hueiwang Anna; Pan, Chih-Hong; Chao, Mu-Rong; Lin, Wen-Yi

    2015-12-01

    The objective of this study was to investigate DNA damage and adducts in sperm from coke oven workers who have been exposed to polycyclic aromatic hydrocarbons. A longitudinal study was conducted with repeated measurements during spermatogenesis. Coke-oven workers (n=112) from a coke-oven plant served the PAH-exposed group, while administrators and security personnel (n=67) served the control. Routine semen parameters (concentration, motility, vitality, and morphology) were analyzed simultaneously; the assessment of sperm DNA integrity endpoints included DNA fragmentation, bulky DNA adducts, and 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxo-dGuo). The degree of sperm DNA fragmentation was measured using the terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) assay and sperm chromatin structure assay (SCSA). The PAH-exposed group had a significant increase in bulky DNA adducts and 8-oxo-dGuo compared to the control subjects (Ps=0.002 and 0.045, respectively). Coke oven workers' percentages of DNA fragmentation and denaturation from the PAH-exposed group were not significantly different from those of the control subjects (Ps=0.232 and 0.245, respectively). Routine semen parameters and DNA integrity endpoints were not correlated. Concentrations of 8-oxo-dGuo were positively correlated with percentages of DNA fragmentation measured by both TUNEL and SCSA (Ps=0.045 and 0.034, respectively). However, the concentrations of 8-oxo-dGuo and percentages of DNA fragmentation did not correlate with concentrations of bulky DNA adducts. In summary, coke oven workers with chronic exposure to PAHs experienced decreased sperm DNA integrity. Oxidative stress could contribute to the degree of DNA fragmentation. Bulky DNA adducts may be independent of the formation of DNA fragmentation and oxidative adducts in sperm. Monitoring sperm DNA integrity is recommended as a part of the process of assessing the impact of occupational and environmental toxins on sperm

  11. Synthesis of DNA

    DOEpatents

    Mariella, Jr., Raymond P.

    2008-11-18

    A method of synthesizing a desired double-stranded DNA of a predetermined length and of a predetermined sequence. Preselected sequence segments that will complete the desired double-stranded DNA are determined. Preselected segment sequences of DNA that will be used to complete the desired double-stranded DNA are provided. The preselected segment sequences of DNA are assembled to produce the desired double-stranded DNA.

  12. DNA damage in wounded, hypoxic and acidotic human skin fibroblast cell cultures after low laser irradiation

    NASA Astrophysics Data System (ADS)

    Hawkins Evans, D.; Mbene, A.; Zungu, I.; Houreld, N.; Abrahamse, H.

    2009-02-01

    Phototherapy has become more popular and widely used in the treatment of a variety of medical conditions. To ensure sound results as evidence of its effectiveness, well designed experiments must be conducted when determining the effect of phototherapy. Cell culture models such as hypoxic, acidotic and wounded cell cultures simulating different disease conditions including ischemic heart disease, diabetes and wound healing were used to determine the effect of laser irradiation on the genetic integrity of the cell. Even though phototherapy has been found to be beneficial in a wide spectrum of conditions, it has been shown to induce DNA damage. However, this damage appears to be repairable. The risk lies in the fact that phototherapy may help the medical condition initially but damage DNA at the same time leaving undetected damage that may result in late onset, more severe, induced medical conditions including cancer. Human skin fibroblasts were cultured and used to induce a wound (by the central scratch model), hypoxic (by incubation in an anaerobic jar, 95% N2 and 5% O2) and acidotic (reducing the pH of the media to 6.7) conditions. Different models were irradiated using a Helium-Neon (632.8 nm) laser with a power density of 2.07 mW/cm2 and a fluence of 5 J/cm2 or 16 J/cm2. The effect of the irradiation was determined using the Comet assay 1 and 24 h after irradiation. In addition, the Comet assay was performed with the addition of formamidopyrimidine glycosylase (FPG) obviating strand brakes in oxidized bases at a high fluence of 16 J/cm2. A significant increase in DNA damage was seen in all three injured models at both 1 and 24 h post-irradiation when compared to the normal un-injured cells. However, when compared to non-irradiated controls the acidotic model showed a significant decrease in DNA damage 24 h after irradiation indicating the possible induction of cellular DNA repair mechanisms. When wounded cells were irradiated with higher fluences of 16 J/cm2

  13. DNA encoding a DNA repair protein

    DOEpatents

    Petrini, John H.; Morgan, William Francis; Maser, Richard Scott; Carney, James Patrick

    2006-08-15

    An isolated and purified DNA molecule encoding a DNA repair protein, p95, is provided, as is isolated and purified p95. Also provided are methods of detecting p95 and DNA encoding p95. The invention further provides p95 knock-out mice.

  14. Managing DNA polymerases: coordinating DNA replication, DNA repair, and DNA recombination.

    PubMed

    Sutton, M D; Walker, G C

    2001-07-17

    Two important and timely questions with respect to DNA replication, DNA recombination, and DNA repair are: (i) what controls which DNA polymerase gains access to a particular primer-terminus, and (ii) what determines whether a DNA polymerase hands off its DNA substrate to either a different DNA polymerase or to a different protein(s) for the completion of the specific biological process? These questions have taken on added importance in light of the fact that the number of known template-dependent DNA polymerases in both eukaryotes and in prokaryotes has grown tremendously in the past two years. Most notably, the current list now includes a completely new family of enzymes that are capable of replicating imperfect DNA templates. This UmuC-DinB-Rad30-Rev1 superfamily of DNA polymerases has members in all three kingdoms of life. Members of this family have recently received a great deal of attention due to the roles they play in translesion DNA synthesis (TLS), the potentially mutagenic replication over DNA lesions that act as potent blocks to continued replication catalyzed by replicative DNA polymerases. Here, we have attempted to summarize our current understanding of the regulation of action of DNA polymerases with respect to their roles in DNA replication, TLS, DNA repair, DNA recombination, and cell cycle progression. In particular, we discuss these issues in the context of the Gram-negative bacterium, Escherichia coli, that contains a DNA polymerase (Pol V) known to participate in most, if not all, of these processes.

  15. DNA polymerases and cancer

    PubMed Central

    Lange, Sabine S.; Takata, Kei-ichi; Wood, Richard D.

    2013-01-01

    There are fifteen different DNA polymerases encoded in mammalian genomes, which are specialized for replication, repair or the tolerance of DNA damage. New evidence is emerging for lesion-specific and tissue-specific functions of DNA polymerases. Many point mutations that occur in cancer cells arise from the error-generating activities of DNA polymerases. However, the ability of some of these enzymes to bypass DNA damage may actually defend against chromosome instability in cells and at least one DNA polymerase, POLζ, is a suppressor of spontaneous tumorigenesis. Because DNA polymerases can help cancer cells tolerate DNA damage, some of these enzymes may be viable targets for therapeutic strategies. PMID:21258395

  16. DNA systematics. Volume II

    SciTech Connect

    Dutta, S.K.

    1986-01-01

    This book discusses the following topics: PLANTS: PLANT DNA: Contents and Systematics. Repeated DNA Sequences and Polyploidy in Cereal Crops. Homology of Nonrepeated DNA Sequences in Phylogeny of Fungal Species. Chloropast DNA and Phylogenetic Relationships. rDNA: Evolution Over a Billion Years. 23S rRNA-derived Small Ribosomal RNAs: Their Structure and Evolution with Reference to Plant Phylogeny. Molecular Analysis of Plant DNA Genomes: Conserved and Diverged DNA Sequences. A Critical Review of Some Terminologies Used for Additional DNA in Plant Chromosomes and Index.

  17. Nuclear extracts of chicken embryos promote an active demethylation of DNA by excision repair of 5-methyldeoxycytidine.

    PubMed Central

    Jost, J P

    1993-01-01

    Here I show that nuclear extracts of chicken embryos can promote the active demethylation of DNA. The evidence shows that in hemimethylated DNA (i.e., methylated on one strand only) demethylation of 5mCpG occurs through nucleotide excision repair. The first step of demethylation is the formation of specific nicks 5' from 5-methyldeoxycytidine. Nicks are also observed in vitro on symmetrically methylated CpGs (i.e., methylated on both strands) but they result in breakage of the oligonucleotide with no repair. No specific nicks are observed on the nonmethylated CpG. Nicks are strictly 5mCpG specific and do not occur on 5mCpC, 5mCpT, 5mCpA, or 6mApT. The effect of nonspecific nuclease(s) has been ruled out. The nicking of mCpG takes place in the presence of 20 mM EDTA irrespective of the nature of the sequence surrounding the 5mCpG. No methylcytosine glycosylase activity could be detected. The repair is aphidicolin and N-ethylmaleimide resistant, suggesting a repair action by DNA polymerase beta. In extracts of chicken embryos, the excision repair of mCpG is highest between the 6th and the 12th day of development, whereas it is barely detectable in nuclear extracts from different organs of adults. The possible implications of 5mCpG endonuclease activity in active demethylation of DNA during differentiation is discussed. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 Fig. 8 PMID:8506318

  18. Inhibition of O6-methylguanine-DNA methyltransferase by an alkyltransferase-like protein from Escherichia coli

    PubMed Central

    Pearson, Steven J.; Ferguson, Jennifer; Santibanez-Koref, Mauro; Margison, Geoffrey P.

    2005-01-01

    The alkyltransferase-like (ATL) proteins contain primary sequence motifs resembling those found in DNA repair O6-alkylguanine-DNA alkyltransferase proteins. However, in the putative active site of ATL proteins, a tryptophan (W83) residue replaces the cysteine at the known active site of alkyltransferases. The Escherichia coli atl gene was expressed as a fusion protein and purified. Neither ATL nor C83 or A83 mutants transferred [3H] from [3H]-methylated DNA to themselves, and the levels of O6-methyl guanine (O6-meG) in substrate DNA were not affected by ATL. However, ATL inhibited the transfer of methyl groups to human alkyltransferase (MGMT). Inhibition was reduced by prolonged incubation in the presence of MGMT, again suggesting that O6-meG in the substrate is not changed by ATL. Gel-shift assays show that ATL binds to short single- or double-stranded oligonucleotides containing O6-meG, but not to oligonucleotides containing 8-oxoguanine, ethenoadenine, 5-hydroxycytosine or O4-methylthymine. There was no evidence of demethylation of O6-meG or of glycosylase or endonuclease activity. Overexpression of ATL in E.coli increased, or did not affect, the toxicity of N-methyl-N′-nitro-N-nitrosoguanidine in an alklyltransferase-proficient and -deficient strain, respectively. These results suggest that ATL may act as a damage sensor that flags O6-meG and possibly other O6-alkylation lesions for processing by other repair pathways. PMID:16027108

  19. DNA Nanotechnology-- Architectures Designed with DNA

    NASA Astrophysics Data System (ADS)

    Han, Dongran

    As the genetic information storage vehicle, deoxyribonucleic acid (DNA) molecules are essential to all known living organisms and many viruses. It is amazing that such a large amount of information about how life develops can be stored in these tiny molecules. Countless scientists, especially some biologists, are trying to decipher the genetic information stored in these captivating molecules. Meanwhile, another group of researchers, nanotechnologists in particular, have discovered that the unique and concise structural features of DNA together with its information coding ability can be utilized for nano-construction efforts. This idea culminated in the birth of the field of DNA nanotechnology which is the main topic of this dissertation. The ability of rationally designed DNA strands to self-assemble into arbitrary nanostructures without external direction is the basis of this field. A series of novel design principles for DNA nanotechnology are presented here, from topological DNA nanostructures to complex and curved DNA nanostructures, from pure DNA nanostructures to hybrid RNA/DNA nanostructures. As one of the most important and pioneering fields in controlling the assembly of materials (both DNA and other materials) at the nanoscale, DNA nanotechnology is developing at a dramatic speed and as more and more construction approaches are invented, exciting advances will emerge in ways that we may or may not predict.

  20. DNA vaccines: a simple DNA sensing matter?

    PubMed

    Coban, Cevayir; Kobiyama, Kouji; Jounai, Nao; Tozuka, Miyuki; Ishii, Ken J

    2013-10-01

    Since the introduction of DNA vaccines two decades ago, this attractive strategy has been hampered by its low immunogenicity in humans. Studies conducted to improve the immunogenicity of DNA vaccines have shown that understanding the mechanism of action of DNA vaccines might be the key to successfully improving their immunogenicity. Our current understanding is that DNA vaccines induce innate and adaptive immune responses in two ways: (1) encoded protein (or polypeptide) antigen(s) by the DNA plasmid can be expressed in stromal cells (i.e., muscle cells) as well as DCs, where these antigens are processed and presented to naïve CD4 or CD8 T cells either by direct or cross presentation, respectively; and (2) the transfected DNA plasmid itself may bind to an un-identified cytosolic DNA sensor and activate the TBK1-STING pathway and the production of type I interferons (IFNs) which function as an adjuvant. Recent studies investigating double-stranded cytosolic DNA sensor(s) have highlighted new mechanisms in which cytosolic DNA may release secondary metabolites, which are in turn recognized by a novel DNA sensing machinery. Here, we discuss these new metabolites and the possibilities of translating this knowledge into improved immunogenicity for DNA vaccines.

  1. No oxidative stress or DNA damage in peripheral blood mononuclear cells after exposure to particles from urban street air in overweight elderly

    PubMed Central

    Hemmingsen, Jette Gjerke; Jantzen, Kim; Møller, Peter; Loft, Steffen

    2015-01-01

    Exposure to traffic-related particulate matter (PM) has been associated with increased risk of lung disease, cancer and cardiovascular disease especially in elderly and overweight subjects. The proposed mechanisms involve intracellular production of reactive oxygen species (ROS), inflammation and oxidation-induced DNA damage studied mainly in young normal-weight subjects. We performed a controlled cross-over, randomised, single-blinded, repeated-measure study where 60 healthy subjects (25 males and 35 females) with age 55–83 years and body mass index above 25kg/m2 were exposed for 5h to either particle-filtered or sham-filtered air from a busy street with number of concentrations and PM2.5 levels of 1800/cm3 versus 23 000/cm3 and 3 µg/m3 versus 24 µg/m3, respectively. Peripheral blood mononuclear cells (PBMCs) were collected and assayed for production of ROS with and without ex vivo exposure to nanosized carbon black as well as expression of genes related to inflammation (chemokine (C-C motif) ligand 2, interleukin-8 and tumour necrosis factor), oxidative stress response (heme oxygenase (decycling)-1) and DNA repair (oxoguanine DNA glycosylase). DNA strand breaks and oxidised purines were assayed by the alkaline comet assay. No statistically significant differences were found for any biomarker immediately after exposure to PM from urban street air although strand breaks and oxidised purines combined were significantly associated with the particle number concentration during exposure. In conclusion, 5h of controlled exposure to PM from urban traffic did not change the gene expression related to inflammation, oxidative stress or DNA repair, ROS production or oxidatively damaged DNA in PBMCs from elderly overweight human subjects. PMID:25904586

  2. Quantitative DNA fiber mapping

    DOEpatents

    Gray, Joe W.; Weier, Heinz-Ulrich G.

    1998-01-01

    The present invention relates generally to the DNA mapping and sequencing technologies. In particular, the present invention provides enhanced methods and compositions for the physical mapping and positional cloning of genomic DNA. The present invention also provides a useful analytical technique to directly map cloned DNA sequences onto individual stretched DNA molecules.

  3. Comparison of DNA damage by the comet assay in fresh versus cryopreserved peripheral blood mononuclear cells obtained following dietary intervention.

    PubMed

    Del Bo', Cristian; Fracassetti, Daniela; Lanti, Claudia; Porrini, Marisa; Riso, Patrizia

    2015-01-01

    Endogenous and oxidatively induced DNA damage, as evaluated by the comet assay, are widely used as biomarkers of oxidative stress in numerous dietary intervention studies. This analysis can be performed on fresh peripheral blood mononuclear cells (PBMCs) or on cryopreserved cells. However, information pertaining to the effects of cryopreservation on DNA damage is often missing, and this may be crucial in studies in which samples are analysed before and after intervention. The purpose of this study was to compare DNA damage in fresh versus cryopreserved PBMCs obtained from subjects following a 6-week intervention with wild blueberry drink or placebo drink. Fresh and 12-month-stored PBMCs were analysed for formamidopyrimidine-DNA glycosylase (FPG)-sensitive sites and H2O2-induced DNA damage. The levels of FPG-sensitive sites were significantly higher in the cryopreserved compared with the fresh cells (P < 0.001), while H2O2-induced DNA damage was significantly lower after storage (P < 0.001). Both the fresh and cryopreserved samples showed reductions in FPG-sensitive sites following the wild blueberry treatment (fresh PBMCs: from 12.50 ± 5.61% to 9.62 ± 3.52%, P = 0.039; cryopreserved PBMCs: from 22.7 ± 6.1% to 19.1 ± 7.0%, P = 0.012). In contrast, the decrease in H2O2-induced DNA damage observed in the cryopreserved cells masked the protective effect of the wild blueberry drink documented in the fresh samples (fresh PBMCs: from 44.73 ± 7.46% to 36.34 ± 9.27%, P < 0.001; cryopreserved PBMCs: from 25.8 ± 4.6% to 23.9 ± 4.6%, P = 0.414). In conclusion, our results suggest that FPG-sensitive sites, and more importantly, H2O2-induced DNA damage could be significantly modified following the long-term storage of samples obtained from individuals participating in a dietary intervention study. Because storage may affect the assessment of the protective role of diet against DNA damage as a marker of oxidative stress, further research is needed.

  4. Pretreatment of primary rat cutaneous epidermal keratinocyte culture with a low concentration of MNNG: Effect on DNA cross-linking measured in situ after challenge with bis-2-chloroethyl sulfide

    SciTech Connect

    Sorsher, D.H.; Conolly, R.B. )

    1989-01-01

    Bis-2-chloroethyl sulfide- (BCES-) induced DNA cross-links in confluent, primary cultures of newborn rat cutaneous epidermal keratinocytes were detected using an assay that includes in situ unwinding of the DNA followed by separation of single-stranded DNA and double-stranded DNA (DSDNA) with hydroxylapatite. DNA cross-links in BCES-challenged cultures were inferred form increases in the percentage of DNA the remained double-stranded, compared with control cultures, after a 60-min alkaline unwinding incubation. The amount of DNA cross-linking after 5 or 10 {mu}M BCES was increased when keratinocytes were first pretreated with 0.05 {mu}M MNNG for 1 h at 8 a.m., 2 p.m., and 8 p.m. for two consecutive days and challenged with BCES the following morning. This increase was statistically significant. For example, after 5{mu}M BCES challenge, cultures not pretreated with MNNG had 114.14% control DSDNA, whereas MNNG pretreated cultures had 122.78% control DSDNA. The level of BCES-induced cross-linking was maximal immediately after 30-min challenge and decreased during postchallenge incubation. At 24 and 48 h post 5, 10, or 20 {mu}M BCES challenge, the level of DSDNA was actually depressed below unchallenged levels. This postchallenge decreased in the level of DSDNA, indicative of SSB in DNA, suggests repair activity by glycosylases and endonucleases. However completion of repair (i.e., a return to control levels of DSDNA) was not seen in these experiments. The activity that resulted in decreases in the level of DSDNA during postchallenge incubation response was unaffected by MNNG pretreatment.

  5. EDTA chelation therapy, without added vitamin C, decreases oxidative DNA damage and lipid peroxidation.

    PubMed

    Roussel, Anne Marie; Hininger-Favier, Isabelle; Waters, Robert S; Osman, Mireille; Fernholz, Karen; Anderson, Richard A

    2009-03-01

    Chelation therapy is thought to not only remove contaminating metals but also to decrease free radical production. However, in standard ethylene diamine tetracetic acid (EDTA) chelation therapy, high doses of vitamin C with potential pro-oxidant effects are often added to the chelation solution. The authors demonstrated previously that the intravenous administration of the standard chelation cocktail, containing high amounts of vitamin C, resulted in an acute transitory pro-oxidant burst that should be avoided in the treatment of pathologies at risk of increased oxidative stress such as diabetes and cardiovascular disease. The current study was designed to determine the acute and chronic biochemical effects of chelation therapy on accepted clinical, antioxidant variables. An EDTA chelation cocktail not containing ascorbic acid was administered to six adult patients for five weeks (10 sessions of chelation therapy); antioxidant indicators were monitored. Immediately after the initial chelation session, in contrast with the data previously reported with the standard cocktail containing high doses of vitamin C, none of the oxidative stress markers were adversely modified. After five weeks, plasma peroxide levels, monitored by malondialdehyde, decreased by 20 percent, and DNA damage, monitored by formamidopyrimidine-DNA glycosylase (Fpg) sensitive sites, decreased by 22 percent. Remaining antioxidant-related variables did not change. In summary, this study demonstrates that multiple sessions of EDTA chelation therapy in combination with vitamins and minerals, but without added ascorbic acid, decreases oxidative stress. These results should be beneficial in the treatment of diseases associated with increased oxidative stress such as diabetes and cardiovascular diseases.

  6. DNA Damage, DNA Repair, Aging, and Neurodegeneration.

    PubMed

    Maynard, Scott; Fang, Evandro Fei; Scheibye-Knudsen, Morten; Croteau, Deborah L; Bohr, Vilhelm A

    2015-09-18

    Aging in mammals is accompanied by a progressive atrophy of tissues and organs, and stochastic damage accumulation to the macromolecules DNA, RNA, proteins, and lipids. The sequence of the human genome represents our genetic blueprint, and accumulating evidence suggests that loss of genomic maintenance may causally contribute to aging. Distinct evidence for a role of imperfect DNA repair in aging is that several premature aging syndromes have underlying genetic DNA repair defects. Accumulation of DNA damage may be particularly prevalent in the central nervous system owing to the low DNA repair capacity in postmitotic brain tissue. It is generally believed that the cumulative effects of the deleterious changes that occur in aging, mostly after the reproductive phase, contribute to species-specific rates of aging. In addition to nuclear DNA damage contributions to aging, there is also abundant evidence for a causative link between mitochondrial DNA damage and the major phenotypes associated with aging. Understanding the mechanistic basis for the association of DNA damage and DNA repair with aging and age-related diseases, such as neurodegeneration, would give insight into contravening age-related diseases and promoting a healthy life span.

  7. Activity-based assay for ricin-like toxins

    DOEpatents

    Keener, William K.; Ward, Thomas E.

    2007-02-06

    A method of detecting N-glycosylase activity in a sample involves incubating an oligodeoxyribonucleotide substrate containing a deoxyadenosine or deoxyuridine residue with the sample to be tested such that the N-glycosylase, if present, hydrolyzes the deoxyadenosine or deoxyuridine residue to result in an N-glycosylase product having an abasic site. A primer is annealed to the N-glycosylase product, and the primer is extended with a DNA polymerase, such as Taq DNA polymerase, that pauses at abasic sites. The resulting extension products are melted from the N-glycosylase product, allowed to form hairpins due to self-complementarity, and further extended in the presence of labeled precursors to result in labeled products. Extension products synthesized from undigested substrate as template do not result in labeled products. Thus, detection of labeled products results in detection of N-glycosylase activity. Oligodeoxyribonucleotide substrates, primer, and positive controls and a kit for N-glycosylase assay are also disclosed.

  8. Identification of Escherichia coli ygaQ and rpmG as novel mitomycin C resistance factors implicated in DNA repair.

    PubMed

    Bolt, Edward L; Jenkins, Tabitha; Russo, Valeria Moreira; Ahmed, Sharlene; Cavey, James; Cass, Simon D

    2015-12-24

    Using the ASKA (A Complete Set of Escherichia coli K-12 ORF Archive) library for genome-wide screening of E. coli proteins we identified that expression of ygaQ and rpmG promotes mitomycin C resistance (MMC(R)). YgaQ mediated MMC(R) was independent of homologous recombination involving RecA or RuvABC, but required UvrD. YgaQ is an uncharacterized protein homologous with α-amylases that we identified to have nuclease activity directed to ssDNA of 5' flaps. Nuclease activity was inactivated by mutation of two amino acid motifs, which also abolished MMC(R). RpmG is frequently annotated as a bacterial ribosomal protein, although forms an operon with MutM glycosylase and a putative deubiquitinating (DUB) enzyme, YicR. RpmG associated MMC(R) was dependent on MutM. MMC(R) from RpmG resembles DNA repair phenotypes reported for 'idiosyncratic ribosomal proteins' in eukaryotes.

  9. Non-canonical uracil processing in DNA gives rise to double-strand breaks and deletions: relevance to class switch recombination

    PubMed Central

    Bregenhorn, Stephanie; Kallenberger, Lia; Artola-Borán, Mariela; Peña-Diaz, Javier; Jiricny, Josef

    2016-01-01

    During class switch recombination (CSR), antigen-stimulated B-cells rearrange their immunoglobulin constant heavy chain (CH) loci to generate antibodies with different effector functions. CSR is initiated by activation-induced deaminase (AID), which converts cytosines in switch (S) regions, repetitive sequences flanking the CH loci, to uracils. Although U/G mispairs arising in this way are generally efficiently repaired to C/Gs by uracil DNA glycosylase (UNG)-initiated base excision repair (BER), uracil processing in S-regions of activated B-cells occasionally gives rise to double strand breaks (DSBs), which trigger CSR. Surprisingly, genetic experiments revealed that CSR is dependent not only on AID and UNG, but also on mismatch repair (MMR). To elucidate the role of MMR in CSR, we studied the processing of uracil-containing DNA substrates in extracts of MMR-proficient and –deficient human cells, as well as in a system reconstituted from recombinant BER and MMR proteins. Here, we show that the interplay of these repair systems gives rise to DSBs in vitro and to genomic deletions and mutations in vivo, particularly in an S-region sequence. Our findings further suggest that MMR affects pathway choice in DSB repair. Given its amenability to manipulation, our system represents a powerful tool for the molecular dissection of CSR. PMID:26743004

  10. Identification of Escherichia coli ygaQ and rpmG as novel mitomycin C resistance factors implicated in DNA repair.

    PubMed

    Bolt, Edward L; Jenkins, Tabitha; Russo, Valeria Moreira; Ahmed, Sharlene; Cavey, James; Cass, Simon D

    2016-01-01

    Using the ASKA (A Complete Set of Escherichia coli K-12 ORF Archive) library for genome-wide screening of E. coli proteins we identified that expression of ygaQ and rpmG promotes mitomycin C resistance (MMC(R)). YgaQ mediated MMC(R) was independent of homologous recombination involving RecA or RuvABC, but required UvrD. YgaQ is an uncharacterized protein homologous with α-amylases that we identified to have nuclease activity directed to ssDNA of 5' flaps. Nuclease activity was inactivated by mutation of two amino acid motifs, which also abolished MMC(R). RpmG is frequently annotated as a bacterial ribosomal protein, although forms an operon with MutM glycosylase and a putative deubiquitinating (DUB) enzyme, YicR. RpmG associated MMC(R) was dependent on MutM. MMC(R) from RpmG resembles DNA repair phenotypes reported for 'idiosyncratic ribosomal proteins' in eukaryotes. PMID:26704888

  11. Identification of Escherichia coli ygaQ and rpmG as novel mitomycin C resistance factors implicated in DNA repair

    PubMed Central

    Bolt, Edward L.; Jenkins, Tabitha; Russo, Valeria Moreira; Ahmed, Sharlene; Cavey, James; Cass, Simon D.

    2015-01-01

    Using the ASKA (A Complete Set of Escherichia coli K-12 ORF Archive) library for genome-wide screening of E. coli proteins we identified that expression of ygaQ and rpmG promotes mitomycin C resistance (MMCR). YgaQ mediated MMCR was independent of homologous recombination involving RecA or RuvABC, but required UvrD. YgaQ is an uncharacterized protein homologous with α-amylases that we identified to have nuclease activity directed to ssDNA of 5′ flaps. Nuclease activity was inactivated by mutation of two amino acid motifs, which also abolished MMCR. RpmG is frequently annotated as a bacterial ribosomal protein, although forms an operon with MutM glycosylase and a putative deubiquitinating (DUB) enzyme, YicR. RpmG associated MMCR was dependent on MutM. MMCR from RpmG resembles DNA repair phenotypes reported for ‘idiosyncratic ribosomal proteins’ in eukaryotes. PMID:26704888

  12. Non-canonical uracil processing in DNA gives rise to double-strand breaks and deletions: relevance to class switch recombination.

    PubMed

    Bregenhorn, Stephanie; Kallenberger, Lia; Artola-Borán, Mariela; Peña-Diaz, Javier; Jiricny, Josef

    2016-04-01

    During class switch recombination (CSR), antigen-stimulated B-cells rearrange their immunoglobulin constant heavy chain (CH) loci to generate antibodies with different effector functions. CSR is initiated by activation-induced deaminase (AID), which converts cytosines in switch (S) regions, repetitive sequences flanking the CH loci, to uracils. Although U/G mispairs arising in this way are generally efficiently repaired to C/Gs by uracil DNA glycosylase (UNG)-initiated base excision repair (BER), uracil processing in S-regions of activated B-cells occasionally gives rise to double strand breaks (DSBs), which trigger CSR. Surprisingly, genetic experiments revealed that CSR is dependent not only on AID and UNG, but also on mismatch repair (MMR). To elucidate the role of MMR in CSR, we studied the processing of uracil-containing DNA substrates in extracts of MMR-proficient and -deficient human cells, as well as in a system reconstituted from recombinant BER and MMR proteins. Here, we show that the interplay of these repair systems gives rise to DSBs in vitro and to genomic deletions and mutations in vivo, particularly in an S-region sequence. Our findings further suggest that MMR affects pathway choice in DSB repair. Given its amenability to manipulation, our system represents a powerful tool for the molecular dissection of CSR.

  13. Abundance of BER-related proteins depends on cell proliferation status and the presence of DNA polymerase β

    PubMed Central

    Yamamoto, Mizuki; Yamamoto, Ryohei; Takenaka, Shigeo; Matsuyama, Satoshi; Kubo, Kihei

    2015-01-01

    In mammalian cells, murine N-methylpurine DNA glycosylase (MPG) removes bases damaged spontaneously or by chemical agents through the process called base excision repair (BER). In this study, we investigated the influence of POL β deficiency on MPG-initiated BER efficiency and the expression levels of BER-related proteins in log-phase and growth-arrested (G0) mouse embryonic fibroblasts (MEFs). G0 wild-type (WT) or POL β–deficient (Pol β–KO) cells showed greater resistance to methyl methanesulfonate than did log-phase cells, and repair of methylated bases was less efficient in the G0 cells. Apex1 mRNA expression was significantly lower in Pol β–KO or G0 WT MEFs than in log-phase WT MEFs. Moreover, although Mpg mRNA levels did not differ significantly among cell types, MPG protein levels were significantly higher in log-phase WT cells than in log-phase Pol β–KO cells or either type of G0 cells. Additionally, proliferating cell nuclear antigen protein levels were also reduced in log-phase Pol β–KO cells or either type of G0 cells. These results indicated that MPG-initiated BER functions mainly in proliferating cells, but less so in G0 cells, and that POL β may be involved in regulation of the amount of intracellular repair proteins. PMID:25829532

  14. DNA from plant mitochondria.

    PubMed

    Suyama, Y; Bonner, W D

    1966-03-01

    DNA WAS ISOLATED FROM A MITOCHONDRIAL FRACTION OF EACH OF THE FOLLOWING PLANT MATERIALS: Mung bean (Phaseolus aureus) etiolated hypocotyl; turnip (Brassica rapa) root; sweet potato (Ipomoea batatas) root; and onion (Allium cepa) bulb. It was found that all of these mitochondrial fractions contained DNA, the densities of which were identical (rho=1.706 g.cm(-3)). An additional DNA (rho=1.695) band found in the mitochondrial fraction of Brassica rapa, was identical to DNA separately isolated from the chloroplast-rich fraction. The origin of the second DNA from Allium mitochondrial fraction was not identified.Contrary to the identity of the mitochondrial DNA, DNA from nuclear fractions differed not only with each other but from the corresponding mitochondrial DNA.DNA from Phaseolus and Brassica mitochondria showed the hyperchromicity characteristic of double stranded, native DNA upon heating; Tm's in 0.0195 Na(+) were the same; 72.0 degrees . The amount of DNA within the mitochondrion of Phaseolus was estimated to be 5.0 x 10(-10) mug; this estimate was made by isolating the mitochondrial DNA concomitantly with the known amount of added (15)N(2)H B. subtilis DNA (rho=1.740). Approximately the same amount of DNA was present in the mitochondrion of Brassica or Ipomoea.

  15. An inverse switch in DNA base excision and strand break repair contributes to melphalan resistance in multiple myeloma cells.

    PubMed

    Sousa, Mirta M L; Zub, Kamila Anna; Aas, Per Arne; Hanssen-Bauer, Audun; Demirovic, Aida; Sarno, Antonio; Tian, Erming; Liabakk, Nina B; Slupphaug, Geir

    2013-01-01

    Alterations in checkpoint and DNA repair pathways may provide adaptive mechanisms contributing to acquired drug resistance. Here, we investigated the levels of proteins mediating DNA damage signaling and -repair in RPMI8226 multiple myeloma cells and its Melphalan-resistant derivative 8226-LR5. We observed markedly reduced steady-state levels of DNA glycosylases UNG2, NEIL1 and MPG in the resistant cells and cross-resistance to agents inducing their respective DNA base lesions. Conversely, repair of alkali-labile sites was apparently enhanced in the resistant cells, as substantiated by alkaline comet assay, autoribosylation of PARP-1, and increased sensitivity to PARP-1 inhibition by 4-AN or KU58684. Reduced base-excision and enhanced single-strand break repair would both contribute to the observed reduction in genomic alkali-labile sites, which could jeopardize productive processing of the more cytotoxic Melphalan-induced interstrand DNA crosslinks (ICLs). Furthermore, we found a marked upregulation of proteins in the non-homologous end-joining (NHEJ) pathway of double-strand break (DSB) repair, likely contributing to the observed increase in DSB repair kinetics in the resistant cells. Finally, we observed apparent upregulation of ATR-signaling and downregulation of ATM-signaling in the resistant cells. This was accompanied by markedly increased sensitivity towards Melphalan in the presence of ATR-, DNA-PK, or CHK1/2 inhibitors whereas no sensitizing effect was observed subsequent to ATM inhibition, suggesting that replication blocking lesions are primary triggers of the DNA damage response in the Melphalan resistant cells. In conclusion, Melphalan resistance is apparently contributed by modulation of the DNA damage response at multiple levels, including downregulation of specific repair pathways to avoid repair intermediates that could impair efficient processing of cytotoxic ICLs and ICL-induced DSBs. This study has revealed several novel candidate biomarkers

  16. An electrochemiluminescence biosensor for 8-oxo-7,8-dihydro-2'-deoxyguanosine quantification and DNA repair enzyme activity analysis using a novel bifunctional probe.

    PubMed

    Wu, Yiping; Yang, Xiqiang; Zhang, Bintian; Guo, Liang-Hong

    2015-07-15

    A new electrochemiluminescence (ECL) sensor was developed for 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodGuo) quantification and Escherichia coli formamidopyrimidine-DNA glycosylase (FPG) activity assay. The sensor employed a novel spermine conjugated ruthenium tris-(bipyridine) derivative (spermine-Ru) which binds specifically with 8-oxodGuo through a one-step reaction and also acts as an ECL signal reporter. In the sensor, an 8-oxodGuo-containing ds-DNA film was first immobilized on a gold electrode by self-assembly. The DNA film was then incubated with spermine-Ru under oxidative condition for 8-oxodGuo labeling. The ECL intensity was found to correlate with the amount of 8-oxodGuo on the surface and the detection limit was estimated to be about 1 lesion in 500 DNA bases. Addition of FPG resulted in some loss of the signal due to the excision of 8-oxodGuo by the enzyme. An inverse relationship between ECL intensity and FPG concentration was observed in a range from 0 to 4.0U/µL, demonstrating that this sensor could be used for FPG activity assay. A number of metal ions were screened by the sensor for their inhibition effect on FPG activity. Among them, Hg(2+) and methyl Hg(II) shown very potent inhibition, with IC50 values of 4.04µM and 4.34nM respectively. The result may suggest that interference on the DNA repair system could be another mechanism for the high toxicity of MeHg.

  17. UV Differentially Induces Oxidative Stress, DNA Damage and Apoptosis in BCR-ABL1-Positive Cells Sensitive and Resistant to Imatinib.

    PubMed

    Synowiec, Ewelina; Hoser, Grazyna; Wojcik, Katarzyna; Pawlowska, Elzbieta; Skorski, Tomasz; Błasiak, Janusz

    2015-08-05

    Chronic myeloid leukemia (CML) cells express the active BCR-ABL1 protein, which has been targeted by imatinib in CML therapy, but resistance to this drug is an emerging problem. BCR-ABL1 induces endogenous oxidative stress promoting genomic instability and imatinib resistance. In the present work, we investigated the extent of oxidative stress, DNA damage, apoptosis and expression of apoptosis-related genes in BCR-ABL1 cells sensitive and resistant to imatinib. The resistance resulted either from the Y253H mutation in the BCR-ABL1 gene or incubation in increasing concentrations of imatinib (AR). UV irradiation at a dose rate of 0.12 J/(m2 · s) induced more DNA damage detected by the T4 pyrimidine dimers glycosylase and hOGG1, recognizing oxidative modifications to DNA bases in imatinib-resistant than -sensitive cells. The resistant cells displayed also higher susceptibility to UV-induced apoptosis. These cells had lower native mitochondrial membrane potential than imatinib-sensitive cells, but UV-irradiation reversed that relationship. We observed a significant lowering of the expression of the succinate dehydrogenase (SDHB) gene, encoding a component of the complex II of the mitochondrial respiratory chain, which is involved in apoptosis sensing. Although detailed mechanism of imatinib resistance in AR cells in unknown, we detected the presence of the Y253H mutation in a fraction of these cells. In conclusion, imatinib-resistant cells may display a different extent of genome instability than their imatinib-sensitive counterparts, which may follow their different reactions to both endogenous and exogenous DNA-damaging factors, including DNA repair and apoptosis.

  18. LCAT DNA shearing.

    PubMed

    Okabe, Yuka; Lee, Abraham P

    2014-04-01

    We present a novel method to fragment DNA by using lateral cavity acoustic transducers (LCATs). DNA solution is placed within a microfluidic device containing LCATs. The LCATs cause microstreaming, which fragments DNA within the solution without any need for purification or downstream processing. The LCAT-based DNA fragmentation method offers an easy-to-use, low-cost, low-energy way to fragment DNA that is amenable to integration on microfluidic platforms to further automate DNA processing. Furthermore, the LCAT microdevice requires less than 10 µL of sample, and no external equipment is needed besides a piezoelectric transducer. PMID:23850863

  19. Scaffold functions of 14-3-3 adaptors in B cell immunoglobulin class switch DNA recombination.

    PubMed

    Lam, Tonika; Thomas, Lisa M; White, Clayton A; Li, Guideng; Pone, Egest J; Xu, Zhenming; Casali, Paolo

    2013-01-01

    Class switch DNA recombination (CSR) of the immunoglobulin heavy chain (IgH) locus crucially diversifies antibody biological effector functions. CSR involves the induction of activation-induced cytidine deaminase (AID) expression and AID targeting to switch (S) regions by 14-3-3 adaptors. 14-3-3 adaptors specifically bind to 5'-AGCT-3' repeats, which make up for the core of all IgH locus S regions. They selectively target the upstream and downstream S regions that are set to undergo S-S DNA recombination. We hypothesized that 14-3-3 adaptors function as scaffolds to stabilize CSR enzymatic elements on S regions. Here we demonstrate that all seven 14-3-3β, 14-3-3ε, 14-3-3γ, 14-3-3η, 14-3-3σ, 14-3-3τ and 14-3-3ζ adaptors directly interacted with AID, PKA-Cα (catalytic subunit) and PKA-RIα (regulatory inhibitory subunit) and uracil DNA glycosylase (Ung). 14-3-3 adaptors, however, did not interact with AID C-terminal truncation mutant AIDΔ(180-198) or AIDF193A and AIDL196A point-mutants (which have been shown not to bind to S region DNA and fail to mediate CSR). 14-3-3 adaptors colocalized with AID and replication protein A (RPA) in B cells undergoing CSR. 14-3-3 and AID binding to S region DNA was disrupted by viral protein R (Vpr), an accessory protein of human immunodeficiency virus type-1 (HIV-1), which inhibited CSR without altering AID expression or germline IH-CH transcription. Accordingly, we demonstrated that 14-3-3 directly interact with Vpr, which in turn, also interact with AID, PKA-Cα and Ung. Altogether, our findings suggest that 14-3-3 adaptors play important scaffold functions and nucleate the assembly of multiple CSR factors on S regions. They also show that such assembly can be disrupted by a viral protein, thereby allowing us to hypothesize that small molecule compounds that specifically block 14-3-3 interactions with AID, PKA and/or Ung can be used to inhibit unwanted CSR.

  20. Aryl hydrocarbon receptor facilitates DNA strand breaks and 8-oxo-2'-deoxyguanosine formation by the aldo-keto reductase product benzo[a]pyrene-7,8-dione.

    PubMed

    Park, Jong-Heum; Mangal, Dipti; Frey, Alexander J; Harvey, Ronald G; Blair, Ian A; Penning, Trevor M

    2009-10-23

    Polycyclic aromatic hydrocarbon (PAH) o-quinones produced by aldo-keto reductases are ligands for the aryl hydrocarbon receptor (AhR) (Burczynski, M. E., and Penning, T. M. (2000) Cancer Res. 60, 908-915). They induce oxidative DNA lesions (reactive oxygen species-mediated DNA strand breaks and 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxo-dGuo) formation) in human lung cells. We tested whether the AhR enhances PAH o-quinone-mediated oxidative DNA damage by translocating these ligands to the nucleus. Using the single cell gel electrophoresis (comet) assay to detect DNA strand breaks in murine hepatoma Hepa1c1c7 cells and its AhR- and aryl hydrocarbon receptor nuclear translocator-deficient variants, benzo[a]pyrene-7,8-dione (B[a]P-7,8-dione) produced fewer DNA strand breaks in AhR-deficient cells compared with aryl hydrocarbon receptor nuclear translocator-deficient and wild type Hepa1c1c7 cells. Decreased DNA strand breaks were also observed in human bronchoalveolar H358 cells in which the AhR was silenced by siRNA. The antioxidant alpha-tocopherol and the iron chelator/antioxidant desferal decreased the formation of B[a]P-7,8-dione-mediated DNA strand breaks indicating that they were reactive oxygen species-dependent. By coupling the comet assay to 8-oxoguanine glycosylase (hOGG1), which excises 8-oxo-Gua, strand breaks dependent upon this lesion were measured. hOGG1 treatment produced more DNA single strand breaks in B[a]P-7,8-dione-treated Hepa cells and H358 cells than in its absence. The levels of hOGG1-dependent DNA strand breaks mediated by B[a]P-7,8-dione were lower in AhR-deficient Hepa and AhR knockdown H358 cells. The AhR antagonist alpha-naphthoflavone also attenuated B[a]P-7,8-dione-mediated DNA strand breaks. The decrease in 8-oxo-dGuo levels in AhR-deficient Hepa cells and AhR knockdown H358 cells was validated by immunoaffinity capture stable isotope dilution ([(15)N(5)]8-oxo-dGuo) liquid chromatography-electrospray ionization/multiple reaction

  1. Structural Organization of DNA.

    ERIC Educational Resources Information Center

    Banfalvi, Gaspar

    1986-01-01

    Explains the structural organization of DNA by providing information on the primary, secondary, tertiary, and higher organization levels of the molecule. Also includes illustrations and descriptions of sign-inversion and rotating models for supercoiling of DNA. (ML)

  2. DNA tagged microparticles

    DOEpatents

    Farquar, George Roy; Leif, Roald N; Wheeler, Elizabeth

    2015-05-05

    A simulant that includes a carrier and DNA encapsulated in the carrier. Also a method of making a simulant including the steps of providing a carrier and encapsulating DNA in the carrier to produce the simulant.

  3. Modeling DNA Replication.

    ERIC Educational Resources Information Center

    Bennett, Joan

    1998-01-01

    Recommends the use of a model of DNA made out of Velcro to help students visualize the steps of DNA replication. Includes a materials list, construction directions, and details of the demonstration using the model parts. (DDR)

  4. DNA nanoarchitectonics: assembled DNA at interfaces.

    PubMed

    Howorka, Stefan

    2013-06-18

    DNA is a powerful biomaterial for creating rationally designed and functionally enhanced nanostructures. DNA nanoarchitectures positioned at substrate interfaces can offer unique advantages leading to improved surface properties relevant to biosensing, nanotechnology, materials science, and cell biology. This Perspective highlights the benefits and challenges of using assembled DNA as a nanoscale building block for interfacial layers and surveys their applications in three areas: homogeneous dense surface coatings, bottom-up nanopatterning, and 3D nanoparticle lattices. Possible future research developments are discussed at the end of the Perspective.

  5. The Many Sides of DNA.

    ERIC Educational Resources Information Center

    Flannery, Maura C.

    1997-01-01

    Explores the meaning of DNA. Discusses histories of DNA, literature on DNA, the contributions of Max Delbruck and Barbara McClintock, life, views of control, current research, and the language of DNA. Contains 24 references. (JRH)

  6. DNA Sequencing apparatus

    DOEpatents

    Tabor, Stanley; Richardson, Charles C.

    1992-01-01

    An automated DNA sequencing apparatus having a reactor for providing at least two series of DNA products formed from a single primer and a DNA strand, each DNA product of a series differing in molecular weight and having a chain terminating agent at one end; separating means for separating the DNA products to form a series bands, the intensity of substantially all nearby bands in a different series being different, band reading means for determining the position an This invention was made with government support including a grant from the U.S. Public Health Service, contract number AI-06045. The U.S. government has certain rights in the invention.

  7. Racemic DNA crystallography.

    PubMed

    Mandal, Pradeep K; Collie, Gavin W; Kauffmann, Brice; Huc, Ivan

    2014-12-22

    Racemates increase the chances of crystallization by allowing molecular contacts to be formed in a greater number of ways. With the advent of protein synthesis, the production of protein racemates and racemic-protein crystallography are now possible. Curiously, racemic DNA crystallography had not been investigated despite the commercial availability of L- and D-deoxyribo-oligonucleotides. Here, we report a study into racemic DNA crystallography showing the strong propensity of racemic DNA mixtures to form racemic crystals. We describe racemic crystal structures of various DNA sequences and folded conformations, including duplexes, quadruplexes, and a four-way junction, showing that the advantages of racemic crystallography should extend to DNA.

  8. Apurinic/Apyrimidinic Endonucleases of Mycobacterium tuberculosis Protect against DNA Damage but Are Dispensable for the Growth of the Pathogen in Guinea Pigs

    PubMed Central

    Puri, Rupangi Verma; Reddy, P. Vineel; Tyagi, Anil K.

    2014-01-01

    In host cells, Mycobacterium tuberculosis encounters an array of reactive molecules capable of damaging its genome. Non-bulky DNA lesions are the most common damages produced on the exposure of the pathogen to reactive species and base excision repair (BER) pathway is involved in the repair of such damage. During BER, apurinic/apyrimidinic (AP) endonuclease enzymes repair the abasic sites that are generated after spontaneous DNA base loss or by the action of DNA glycosylases, which if left unrepaired lead to inhibition of replication and transcription. However, the role of AP endonucleases in imparting protection against DNA damage and in the growth and pathogenesis of M.tuberculosis has not yet been elucidated. To demonstrate the biological significance of these enzymes in M.tuberculosis, it would be desirable to disrupt the relevant genes and evaluate the resulting mutants for their ability to grow in the host and cause disease. In this study, we have generated M.tuberculosis mutants of the base excision repair (BER) system, disrupted in either one (MtbΔend or MtbΔxthA) or both the AP endonucleases (MtbΔendΔxthA). We demonstrate that these genes are crucial for bacteria to withstand alkylation and oxidative stress in vitro. In addition, the mutant disrupted in both the AP endonucleases (MtbΔendΔxthA) exhibited a significant reduction in its ability to survive inside human macrophages. However, infection of guinea pigs with either MtbΔend or MtbΔxthA or MtbΔendΔxthA resulted in the similar bacillary load and pathological damage in the organs as observed in the case of infection with wild-type M.tuberculosis. The implications of these observations are discussed. PMID:24800740

  9. Exposure to runoff from coal-tar-sealed pavement induces genotoxicity and impairment of DNA repair capacity in the RTL-W1 fish liver cell line

    USGS Publications Warehouse

    Kienzler, Aude; Mahler, Barbara J.; Van Metre, Peter C.; Schweigert, Nathalie; Devaux, Alain; Bony, Sylvie

    2015-01-01

    Coal-tar-based (CTB) sealcoat, frequently applied to parking lots and driveways in North America, contains elevated concentrations of polycyclic aromatic hydrocarbons (PAHs) and related compounds. The RTL-W1 fish liver cell line was used to investigate two endpoints (genotoxicity and DNA-repair-capacity impairment) associated with exposure to runoff from asphalt pavement with CTB sealcoat or with an asphalt-based sealcoat hypothesized to contain about 7% CTB sealcoat (AS-blend). Genotoxic potential was assessed by the Formamido pyrimidine glycosylase (Fpg)-modified comet assay for 1:10 and 1:100 dilutions of runoff samples collected from 5 h to 36 d following sealcoat application. DNA-repair capacity was assessed by the base excision repair comet assay for 1:10 dilution of samples collected 26 h and 36 d following application. Both assays were run with and without co-exposure to ultraviolet-A radiation (UVA). With co-exposure to UVA, genotoxic effects were significant for both dilutions of CTB runoff for three of four sample times, and for some samples of AS-blend runoff. Base excision repair was significantly impaired for CTB runoff both with and without UVA exposure, and for AS-blend runoff only in the absence of UVA. This study is the first to investigate the effects of exposure to the complex mixture of chemicals in coal tar on DNA repair capacity. The results indicate that co-exposure to runoff from CT-sealcoated pavement and UVA as much as a month after sealcoat application has the potential to cause genotoxicity and impair DNA repair capacity.

  10. Oxidative damage to DNA and repair induced by Norwegian wood smoke particles in human A549 and THP-1 cell lines.

    PubMed

    Danielsen, Pernille Høgh; Loft, Steffen; Kocbach, Anette; Schwarze, Per E; Møller, Peter

    2009-03-31

    Genotoxic effects of traffic-generated particulate matter (PM) are well described, whereas little data are available on PM from combustion of biomass and wood, which contributes substantially to air pollution world wide. The aim of this study was to compare the genotoxicity of wood smoke particulate matter (WSPM), authentic traffic-generated particles, mineral PM and standard reference material (SRM2975) of diesel exhaust particles in human A549 lung epithelial and THP-1 monocytic cell lines. DNA damage was measured as strand breaks (SB) and formamidopyrimidine DNA glycosylase (FPG) sites by the comet assay, whereas cell cytotoxicity was determined as lactate dehydrogenase release. The exposure to WSPM generated SB and FPG sites in both cell lines at concentrations from 2.5 or 25 microg/ml, which were not cytotoxic. Compared to all other studied particles, WSPM generated greater responses in terms of both SB and FPG sites. Organic extracts of WSPM and SRM2975 elicited higher levels of SB than native and washed PM at 25 and 100 microg/ml, whereas assay saturation precluded reliable assessment of FPG sites. During a 6h post-exposure period, in which the medium with PM had been replaced by fresh medium, 60% of the DNA lesions generated by WSPM were removed. In conclusion, WSPM generated more DNA damage than traffic-generated PM per unit mass in human cell lines, possibly due to the high level of polycyclic aromatic hydrocarbons in WSPM. This suggests that exposure to WSPM might be more hazardous than PM collected from vehicle exhaust with respect to development of lung cancer. PMID:19041418

  11. Combined exercise and insulin-like growth factor-1 supplementation induces neurogenesis in old rats, but do not attenuate age-associated DNA damage.

    PubMed

    Koltai, Erika; Zhao, Zhongfu; Lacza, Zsombor; Cselenyak, Attila; Vacz, Gabriella; Nyakas, Csaba; Boldogh, Istvan; Ichinoseki-Sekine, Noriko; Radak, Zsolt

    2011-12-01

    We have investigated the effects of 2 weeks of insulin-like growth factor-1 (IGF-1) supplementation (5 μg/kg per day) and 6 weeks of exercise training (60% of the maximal oxygen consumption [VO₂ max]) on neurogenesis, DNA damage/repair, and sirtuin content in the hippocampus of young (3 months old) and old (26 months old) rats. Exercise improved the spatial memory of the old group, but IGF-1 supplementation eliminated this effect. An age-associated decrease in neurogenesis was attenuated by exercise and IGF-1 treatment. Aging increased the levels of 8-oxo-7,8-dihydroguanine (8-oxoG) and the protein Ku70, indicating the role of DNA damage in age-related neuropathology. Acetylation of 8-oxoguanine DNA glycosylase (OGG1) was detected in vivo, and this decreased with aging. However, in young animals, exercise and IGF-1 treatment increased acetylated (ac) OGG1 levels. Sirtuin 1 (SIRT1) and SIRT3, as DNA damage-associated lysine deacetylases, were measured, and SIRT1 decreased with aging, resulting in a large increase in acetylated lysine residues in the hippocampus. On the other hand, SIRT3 increased with aging. Exercise-induced neurogenesis might not be a causative factor of increased spatial memory, because IGF-1 plus exercise can induce neurogenesis in the hippocampus of older rats. Data revealed that the age-associated increase in 8-oxoG levels is due to decreased acetylation of OGG1. Age-associated decreases in SIRT1 and the associated increase in lysine acetylation, in the hippocampus, could have significant impact on function and thus, could suggest a therapeutic target.

  12. Exposure to runoff from coal-tar-sealed pavement induces genotoxicity and impairment of DNA repair capacity in the RTL-W1 fish liver cell line.

    PubMed

    Kienzler, Aude; Mahler, Barbara J; Van Metre, Peter C; Schweigert, Nathalie; Devaux, Alain; Bony, Sylvie

    2015-07-01

    Coal-tar-based (CTB) sealcoat, frequently applied to parking lots and driveways in North America, contains elevated concentrations of polycyclic aromatic hydrocarbons (PAHs) and related compounds. The RTL-W1 fish liver cell line was used to investigate two endpoints (genotoxicity and DNA-repair-capacity impairment) associated with exposure to runoff from asphalt pavement with CTB sealcoat or with an asphalt-based sealcoat hypothesized to contain about 7% CTB sealcoat (AS-blend). Genotoxic potential was assessed by the Formamido pyrimidine glycosylase (Fpg)-modified comet assay for 1:10 and 1:100 dilutions of runoff samples collected from 5 h to 36 d following sealcoat application. DNA-repair capacity was assessed by the base excision repair comet assay for 1:10 dilution of samples collected 26 h and 36 d following application. Both assays were run with and without co-exposure to ultraviolet-A radiation (UVA). With co-exposure to UVA, genotoxic effects were significant for both dilutions of CTB runoff for three of four sample times, and for some samples of AS-blend runoff. Base excision repair was significantly impaired for CTB runoff both with and without UVA exposure, and for AS-blend runoff only in the absence of UVA. This study is the first to investigate the effects of exposure to the complex mixture of chemicals in coal tar on DNA repair capacity. The results indicate that co-exposure to runoff from CT-sealcoated pavement and UVA as much as a month after sealcoat application has the potential to cause genotoxicity and impair DNA repair capacity.

  13. DNA structure and function.

    PubMed

    Travers, Andrew; Muskhelishvili, Georgi

    2015-06-01

    The proposal of a double-helical structure for DNA over 60 years ago provided an eminently satisfying explanation for the heritability of genetic information. But why is DNA, and not RNA, now the dominant biological information store? We argue that, in addition to its coding function, the ability of DNA, unlike RNA, to adopt a B-DNA structure confers advantages both for information accessibility and for packaging. The information encoded by DNA is both digital - the precise base specifying, for example, amino acid sequences - and analogue. The latter determines the sequence-dependent physicochemical properties of DNA, for example, its stiffness and susceptibility to strand separation. Most importantly, DNA chirality enables the formation of supercoiling under torsional stress. We review recent evidence suggesting that DNA supercoiling, particularly that generated by DNA translocases, is a major driver of gene regulation and patterns of chromosomal gene organization, and in its guise as a promoter of DNA packaging enables DNA to act as an energy store to facilitate the passage of translocating enzymes such as RNA polymerase.

  14. DNA barcoding for plants.

    PubMed

    de Vere, Natasha; Rich, Tim C G; Trinder, Sarah A; Long, Charlotte

    2015-01-01

    DNA barcoding uses specific regions of DNA in order to identify species. Initiatives are taking place around the world to generate DNA barcodes for all groups of living organisms and to make these data publically available in order to help understand, conserve, and utilize the world's biodiversity. For land plants the core DNA barcode markers are two sections of coding regions within the chloroplast, part of the genes, rbcL and matK. In order to create high quality databases, each plant that is DNA barcoded needs to have a herbarium voucher that accompanies the rbcL and matK DNA sequences. The quality of the DNA sequences, the primers used, and trace files should also be accessible to users of the data. Multiple individuals should be DNA barcoded for each species in order to check for errors and allow for intraspecific variation. The world's herbaria provide a rich resource of already preserved and identified material and these can be used for DNA barcoding as well as by collecting fresh samples from the wild. These protocols describe the whole DNA barcoding process, from the collection of plant material from the wild or from the herbarium, how to extract and amplify the DNA, and how to check the quality of the data after sequencing.

  15. Human DNA repair genes.

    PubMed

    Wood, R D; Mitchell, M; Sgouros, J; Lindahl, T

    2001-02-16

    Cellular DNA is subjected to continual attack, both by reactive species inside cells and by environmental agents. Toxic and mutagenic consequences are minimized by distinct pathways of repair, and 130 known human DNA repair genes are described here. Notable features presently include four enzymes that can remove uracil from DNA, seven recombination genes related to RAD51, and many recently discovered DNA polymerases that bypass damage, but only one system to remove the main DNA lesions induced by ultraviolet light. More human DNA repair genes will be found by comparison with model organisms and as common folds in three-dimensional protein structures are determined. Modulation of DNA repair should lead to clinical applications including improvement of radiotherapy and treatment with anticancer drugs and an advanced understanding of the cellular aging process. PMID:11181991

  16. DNA methylation in plants.

    PubMed

    Vanyushin, B F

    2006-01-01

    DNA in plants is highly methylated, containing 5-methylcytosine (m5C) and N6-methyladenine (m6A); m5C is located mainly in symmetrical CG and CNG sequences but it may occur also in other non-symmetrical contexts. m6A but not m5C was found in plant mitochondrial DNA. DNA methylation in plants is species-, tissue-, organelle- and age-specific. It is controlled by phytohormones and changes on seed germination, flowering and under the influence of various pathogens (viral, bacterial, fungal). DNA methylation controls plant growth and development, with particular involvement in regulation of gene expression and DNA replication. DNA replication is accompanied by the appearance of under-methylated, newly formed DNA strands including Okazaki fragments; asymmetry of strand DNA methylation disappears until the end of the cell cycle. A model for regulation of DNA replication by methylation is suggested. Cytosine DNA methylation in plants is more rich and diverse compared with animals. It is carried out by the families of specific enzymes that belong to at least three classes of DNA methyltransferases. Open reading frames (ORF) for adenine DNA methyltransferases are found in plant and animal genomes, and a first eukaryotic (plant) adenine DNA methyltransferase (wadmtase) is described; the enzyme seems to be involved in regulation of the mitochondria replication. Like in animals, DNA methylation in plants is closely associated with histone modifications and it affects binding of specific proteins to DNA and formation of respective transcription complexes in chromatin. The same gene (DRM2) in Arabidopsis thaliana is methylated both at cytosine and adenine residues; thus, at least two different, and probably interdependent, systems of DNA modification are present in plants. Plants seem to have a restriction-modification (R-M) system. RNA-directed DNA methylation has been observed in plants; it involves de novo methylation of almost all cytosine residues in a region of siRNA-DNA

  17. Effect of single mutations on the specificity of Escherichia coli FPG protein for excision of purine lesions from DNA damaged by free radicals.

    PubMed

    Sidorkina, O; Dizdaroglu, M; Laval, J

    2001-09-15

    The formamidopyrimidine N-DNA glycosylase (Fpg protein) of Escherichia coli is a DNA repair enzyme that is specific for the removal of purine-derived lesions from DNA damaged by free radicals and other oxidative processes. We investigated the effect of single mutations on the specificity of this enzyme for three purine-derived lesions in DNA damaged by free radicals. These damaging agents generate a multiplicity of base products in DNA, with the yields depending on the damaging agent. Wild type Fpg protein (wt-Fpg) removes 8-hydroxyguanine (8-OH-Gua), 4,6-diamino-5-formamidopyrimidine (FapyAde), and 2,6-diamino-4-hydroxy-5-formamidopyrimidine (FapyGua) from damaged DNA with similar specificities. We generated five mutant forms of this enzyme with mutations involving Lys-57-->Gly (FpgK57G), Lys-57-->Arg (FpgK57R), Lys-155-->Ala (FpgK155A), Pro-2-->Gly (FpgP2G), and Pro-2-->Glu (FpgP2E), and purified them to homogeneity. FpgK57G and FpgK57R were functional for removal of FapyAde and FapyGua with a reduced activity when compared with wt-Fpg. The removal of 8-OH-Gua was different in that the specificity of FpgK57G was significantly lower for its removal from irradiated DNA, whereas wt-Fpg, FpgK57G, and FpgK57R excised 8-OH-Gua from H2O2/Fe(III)-EDTA/ascorbic acid-treated DNA with almost the same specificity. FpgK155A and FpgP2G had very low activity and FpgP2E exhibited no activity at all. Michaelis-Menten kinetics of excision was measured and kinetic constants were obtained. The results indicate an important role of Lys-57 residue in the activity of Fpg protein for 8-OH-Gua, but a lesser significant role for formamidopyrimidines. Mutations involving Lys-155 and Pro-2 had a dramatic effect with Pro-2-->Glu leading to complete loss of activity, indicating a significant role of these residues. The results show that point mutations significantly change the specificity of Fpg protein and suggest that point mutations are also expected to change specificities of other DNA

  18. Lower oxidative DNA damage despite greater ROS production in muscles from rats selectively bred for high running capacity.

    PubMed

    Tweedie, Constance; Romestaing, Caroline; Burelle, Yan; Safdar, Adeel; Tarnopolsky, Mark A; Seadon, Scott; Britton, Steven L; Koch, Lauren G; Hepple, Russell T

    2011-03-01

    Artificial selection in rat has yielded high-capacity runners (HCR) and low-capacity runners (LCR) that differ in intrinsic (untrained) aerobic exercise ability and metabolic disease risk. To gain insight into how oxygen metabolism may have been affected by selection, we compared mitochondrial function, oxidative DNA damage (8-dihydroxy-guanosine; 8dOHG), and antioxidant enzyme activities in soleus muscle (Sol) and gastrocnemius muscle (Gas) of adult and aged LCR vs. HCR rats. In Sol of adult HCR rats, maximal ADP-stimulated respiration was 37% greater, whereas in Gas of adult HCR rats, there was a 23% greater complex IV-driven respiratory capacity and 54% greater leak as a fraction of electron transport capacity (suggesting looser mitochondrial coupling) vs. LCR rats. H(2)O(2) emission per gram of muscle was 24-26% greater for both muscles in adult HCR rats vs. LCR, although H(2)O(2) emission in Gas was 17% lower in HCR, after normalizing for citrate synthase activity (marker of mitochondrial content). Despite greater H(2)O(2) emission, 8dOHG levels were 62-78% lower in HCR rats due to 62-96% higher superoxide dismutase activity in both muscles and 47% higher catalase activity in Sol muscle in adult HCR rats, with no evidence for higher 8 oxoguanine glycosylase (OGG1; DNA repair enzyme) protein expression. We conclude that genetic segregation for high running capacity has generated a molecular network of cellular adaptations, facilitating a superior response to oxidative stress. PMID:21148474

  19. Ribonucleotides in Bacterial DNA

    PubMed Central

    Schroeder, Jeremy W.; Randall, Justin R.; Matthews, Lindsay A.; Simmons, Lyle A.

    2014-01-01

    In all living cells, DNA is the storage medium for genetic information. Being quite stable, DNA is well-suited for its role in storage and propagation of information, but RNA is also covalently included in DNA through various mechanisms. Recent studies also demonstrate useful aspects of including ribonucleotides in the genome during repair. Therefore, our understanding of the consequences of RNA inclusion into bacterial genomic DNA is just beginning, but with its high frequency of occurrence the consequences and potential benefits are likely to be numerous and diverse. In this review, we discuss the processes that cause ribonucleotide inclusion in genomic DNA, the pathways important for ribonucleotide removal and the consequences that arise should ribonucleotides remain nested in genomic DNA. PMID:25387798

  20. DNA profiles from fingermarks.

    PubMed

    Templeton, Jennifer E L; Linacre, Adrian

    2014-11-01

    Criminal investigations would be considerably improved if DNA profiles could be routinely generated from single fingermarks. Here we report a direct DNA profiling method that was able to generate interpretable profiles from 71% of 170 fingermarks. The data are based on fingermarks from all 5 digits of 34 individuals. DNA was obtained from the fingermarks using a swab moistened with Triton-X, and the fibers were added directly to one of two commercial DNA profiling kits. All profiles were obtained without increasing the number of amplification cycles; therefore, our method is ideally suited for adoption by the forensic science community. We indicate the use of the technique in a criminal case in which a DNA profile was generated from a fingermark on tape that was wrapped around a drug seizure. Our direct DNA profiling approach is rapid and able to generate profiles from touched items when current forensic practices have little chance of success.

  1. Electrocatalysis in DNA Sensors.

    PubMed

    Furst, Ariel; Hill, Michael G; Barton, Jacqueline K

    2014-12-14

    Electrocatalysis is often thought of solely in the inorganic realm, most often applied to energy conversion in fuel cells. However, the ever-growing field of bioelectrocatalysis has made great strides in advancing technology for both biofuel cells as well as biological detection platforms. Within the context of bioelectrocatalytic detection systems, DNA-based platforms are especially prevalent. One subset of these platforms, the one we have developed, takes advantage of the inherent charge transport properties of DNA. Electrocatalysis coupled with DNA-mediated charge transport has enabled specific and sensitive detection of lesions, mismatches and DNA-binding proteins. Even greater signal amplification from these platforms is now being achieved through the incorporation of a secondary electrode to the platform both for patterning DNA arrays and for detection. Here, we describe the evolution of this new DNA sensor technology. PMID:25435647

  2. Electrocatalysis in DNA Sensors

    PubMed Central

    Furst, Ariel; Hill, Michael G.; Barton, Jacqueline K.

    2014-01-01

    Electrocatalysis is often thought of solely in the inorganic realm, most often applied to energy conversion in fuel cells. However, the ever-growing field of bioelectrocatalysis has made great strides in advancing technology for both biofuel cells as well as biological detection platforms. Within the context of bioelectrocatalytic detection systems, DNA-based platforms are especially prevalent. One subset of these platforms, the one we have developed, takes advantage of the inherent charge transport properties of DNA. Electrocatalysis coupled with DNA-mediated charge transport has enabled specific and sensitive detection of lesions, mismatches and DNA-binding proteins. Even greater signal amplification from these platforms is now being achieved through the incorporation of a secondary electrode to the platform both for patterning DNA arrays and for detection. Here, we describe the evolution of this new DNA sensor technology. PMID:25435647

  3. Detection and quantitation of single nucleotide polymorphisms, DNA sequence variations, DNA mutations, DNA damage and DNA mismatches

    DOEpatents

    McCutchen-Maloney, Sandra L.

    2002-01-01

    DNA mutation binding proteins alone and as chimeric proteins with nucleases are used with solid supports to detect DNA sequence variations, DNA mutations and single nucleotide polymorphisms. The solid supports may be flow cytometry beads, DNA chips, glass slides or DNA dips sticks. DNA molecules are coupled to solid supports to form DNA-support complexes. Labeled DNA is used with unlabeled DNA mutation binding proteins such at TthMutS to detect DNA sequence variations, DNA mutations and single nucleotide length polymorphisms by binding which gives an increase in signal. Unlabeled DNA is utilized with labeled chimeras to detect DNA sequence variations, DNA mutations and single nucleotide length polymorphisms by nuclease activity of the chimera which gives a decrease in signal.

  4. DNA-based machines.

    PubMed

    Wang, Fuan; Willner, Bilha; Willner, Itamar

    2014-01-01

    The base sequence in nucleic acids encodes substantial structural and functional information into the biopolymer. This encoded information provides the basis for the tailoring and assembly of DNA machines. A DNA machine is defined as a molecular device that exhibits the following fundamental features. (1) It performs a fuel-driven mechanical process that mimics macroscopic machines. (2) The mechanical process requires an energy input, "fuel." (3) The mechanical operation is accompanied by an energy consumption process that leads to "waste products." (4) The cyclic operation of the DNA devices, involves the use of "fuel" and "anti-fuel" ingredients. A variety of DNA-based machines are described, including the construction of "tweezers," "walkers," "robots," "cranes," "transporters," "springs," "gears," and interlocked cyclic DNA structures acting as reconfigurable catenanes, rotaxanes, and rotors. Different "fuels", such as nucleic acid strands, pH (H⁺/OH⁻), metal ions, and light, are used to trigger the mechanical functions of the DNA devices. The operation of the devices in solution and on surfaces is described, and a variety of optical, electrical, and photoelectrochemical methods to follow the operations of the DNA machines are presented. We further address the possible applications of DNA machines and the future perspectives of molecular DNA devices. These include the application of DNA machines as functional structures for the construction of logic gates and computing, for the programmed organization of metallic nanoparticle structures and the control of plasmonic properties, and for controlling chemical transformations by DNA machines. We further discuss the future applications of DNA machines for intracellular sensing, controlling intracellular metabolic pathways, and the use of the functional nanostructures for drug delivery and medical applications.

  5. DNA-based machines.

    PubMed

    Wang, Fuan; Willner, Bilha; Willner, Itamar

    2014-01-01

    The base sequence in nucleic acids encodes substantial structural and functional information into the biopolymer. This encoded information provides the basis for the tailoring and assembly of DNA machines. A DNA machine is defined as a molecular device that exhibits the following fundamental features. (1) It performs a fuel-driven mechanical process that mimics macroscopic machines. (2) The mechanical process requires an energy input, "fuel." (3) The mechanical operation is accompanied by an energy consumption process that leads to "waste products." (4) The cyclic operation of the DNA devices, involves the use of "fuel" and "anti-fuel" ingredients. A variety of DNA-based machines are described, including the construction of "tweezers," "walkers," "robots," "cranes," "transporters," "springs," "gears," and interlocked cyclic DNA structures acting as reconfigurable catenanes, rotaxanes, and rotors. Different "fuels", such as nucleic acid strands, pH (H⁺/OH⁻), metal ions, and light, are used to trigger the mechanical functions of the DNA devices. The operation of the devices in solution and on surfaces is described, and a variety of optical, electrical, and photoelectrochemical methods to follow the operations of the DNA machines are presented. We further address the possible applications of DNA machines and the future perspectives of molecular DNA devices. These include the application of DNA machines as functional structures for the construction of logic gates and computing, for the programmed organization of metallic nanoparticle structures and the control of plasmonic properties, and for controlling chemical transformations by DNA machines. We further discuss the future applications of DNA machines for intracellular sensing, controlling intracellular metabolic pathways, and the use of the functional nanostructures for drug delivery and medical applications. PMID:24647836

  6. Multiprotein DNA Looping

    NASA Astrophysics Data System (ADS)

    Vilar, Jose M. G.; Saiz, Leonor

    2006-06-01

    DNA looping plays a fundamental role in a wide variety of biological processes, providing the backbone for long range interactions on DNA. Here we develop the first model for DNA looping by an arbitrarily large number of proteins and solve it analytically in the case of identical binding. We uncover a switchlike transition between looped and unlooped phases and identify the key parameters that control this transition. Our results establish the basis for the quantitative understanding of fundamental cellular processes like DNA recombination, gene silencing, and telomere maintenance.

  7. DNA ELECTROPHORESIS AT SURFACES

    SciTech Connect

    RAFAILOVICH, MIRIAM; SOKOLOV, JONATHAN; GERSAPPE, DILIP

    2003-09-01

    During this year we performed two major projects: I. We developed a detailed theoretical model which complements our experiments on surface DNA electrophoresis. We found that it was possible to enhance the separation of DNA chains by imposing a chemical nanoscale pattern on the surface. This approach utilized the surface interaction effect of the DNA chains with the substrate and is a refinement to our previous method in which DNA chains were separated on homogeneous flat surfaces. By introducing the nano-patterns on the surface, the conformational changes of DNA chains of different lengths can be amplified, which results in the different friction strengths with the substrate surface. Our results also show that, when compared to the DNA electrophoresis performed on homogeneous flat surfaces, nanopatterned surfaces offer a larger window in choosing different surface interactions to achieve separation. II. In collaboration with a large international manufacturer of skin care products we also embarked on a project involving photo toxicity of titanium dioxide nanoparticles, which are a key ingredient in sunscreen and cosmetic lotions. The results clearly implicated the nanoparticles in catalyzing damage to chromosomal DNA. We then used this knowledge to develop a polymer/anti-oxidant coating which prevented the photocatalytic reaction on DNA while still retaining the UV absorptive properties of the nanoparticles. The standard gel electrophoresis was not sufficient in determining the extent of the DNA damage. The conclusions of this study were based predominantly on analysis obtained with the surface electrophoresis method.

  8. DNA origami nanopores.

    PubMed

    Bell, Nicholas A W; Engst, Christian R; Ablay, Marc; Divitini, Giorgio; Ducati, Caterina; Liedl, Tim; Keyser, Ulrich F

    2012-01-11

    We demonstrate the assembly of functional hybrid nanopores for single molecule sensing by inserting DNA origami structures into solid-state nanopores. In our experiments, single artificial nanopores based on DNA origami are repeatedly inserted in and ejected from solid-state nanopores with diameters around 15 nm. We show that these hybrid nanopores can be employed for the detection of λ-DNA molecules. Our approach paves the way for future development of adaptable single-molecule nanopore sensors based on the combination of solid-state nanopores and DNA self-assembly.

  9. DNA polymerase profiling.

    PubMed

    Summerer, Daniel

    2008-01-01

    We report a simple homogeneous fluorescence assay for quantification of DNA polymerase function in high throughput. The fluorescence signal is generated by the DNA polymerase triggering opening of a molecular beacon extension of the template strand. A resulting distance alteration is reported by fluorescence reson