Science.gov

Sample records for 3-methyl-4-nitrophenol 4-nitro-m-cresol pnmc

  1. Anti-androgenic activity of 3-methyl-4-nitrophenol in diesel exhaust particles.

    PubMed

    Li, ChunMei; Taneda, Shinji; Suzuki, Akira K; Furuta, Chie; Watanabe, Gen; Taya, Kazuyoshi

    2006-08-14

    In our continuing studies on nitrophenol derivatives as vasodilators in diesel exhaust particles, we have reported that nitrophenols in diesel exhaust particles possess not only vasodilatory activity but also estrogenic activity in vitro and in vivo, as well as anti-androgenic activity in vitro. Our efforts here were focused on the in vitro and in vivo anti-androgenic activity of 3-methyl-4-nitrophenol (4-nitro-m-cresol; PNMC), known a degradation product of the insecticide fenitrothion, in diesel exhaust particles. We investigated its anti-androgenic activity using an in vitro recombinant yeast screen and in vivo Hershberger assays. Recombinant yeast screen assay showed that PNMC possesses anti-androgenic activity at low concentrations. Furthermore, castrated 28-day-old immature male rats each implanted with a 5-mm-long silastic tube containing crystalline testosterone and injected with PNMC subcutaneously at doses from as low as 0.01 and 0.1 mg/kg up to 1 mg/kg for 5 consecutive days showed significantly decreased weights of the seminal vesicles, ventral prostate, and glans penis. Plasma follicle-stimulating hormone (FSH) and luteinizing hormone (LH) levels were significantly increased in the 0.1 mg/kg PNMC treatment group. Our results demonstrate that PNMC in diesel exhaust particles clearly has anti-androgenic activity both in vitro and in vivo and can therefore be considered as an endocrine-disrupting chemical. PMID:16822498

  2. Walnut Polyphenol Extract Attenuates Immunotoxicity Induced by 4-Pentylphenol and 3-methyl-4-nitrophenol in Murine Splenic Lymphocyte.

    PubMed

    Yang, Lubing; Ma, Sihui; Han, Yu; Wang, Yuhan; Guo, Yan; Weng, Qiang; Xu, Meiyu

    2016-01-01

    4-pentylphenol (PP) and 3-methyl-4-nitrophenol (PNMC), two important components of vehicle emissions, have been shown to confer toxicity in splenocytes. Certain natural products, such as those derived from walnuts, exhibit a range of antioxidative, antitumor, and anti-inflammatory properties. Here, we investigated the effects of walnut polyphenol extract (WPE) on immunotoxicity induced by PP and PNMC in murine splenic lymphocytes. Treatment with WPE was shown to significantly enhance proliferation of splenocytes exposed to PP or PNMC, characterized by increases in the percentages of splenic T lymphocytes (CD3+ T cells) and T cell subsets (CD4+ and CD8+ T cells), as well as the production of T cell-related cytokines and granzymes (interleukin-2, interleukin-4, and granzyme-B) in cells exposed to PP or PNMC. These effects were associated with a decrease in oxidative stress, as evidenced by changes in OH, SOD, GSH-Px, and MDA levels. The total phenolic content of WPE was 34,800 ± 200 mg gallic acid equivalents/100 g, consisting of at least 16 unique phenols, including ellagitannins, quercetin, valoneic acid dilactone, and gallic acid. Taken together, these results suggest that walnut polyphenols significantly attenuated PP and PNMC-mediated immunotoxicity and improved immune function by inhibiting oxidative stress. PMID:27187455

  3. Walnut Polyphenol Extract Attenuates Immunotoxicity Induced by 4-Pentylphenol and 3-methyl-4-nitrophenol in Murine Splenic Lymphocyte

    PubMed Central

    Yang, Lubing; Ma, Sihui; Han, Yu; Wang, Yuhan; Guo, Yan; Weng, Qiang; Xu, Meiyu

    2016-01-01

    4-pentylphenol (PP) and 3-methyl-4-nitrophenol (PNMC), two important components of vehicle emissions, have been shown to confer toxicity in splenocytes. Certain natural products, such as those derived from walnuts, exhibit a range of antioxidative, antitumor, and anti-inflammatory properties. Here, we investigated the effects of walnut polyphenol extract (WPE) on immunotoxicity induced by PP and PNMC in murine splenic lymphocytes. Treatment with WPE was shown to significantly enhance proliferation of splenocytes exposed to PP or PNMC, characterized by increases in the percentages of splenic T lymphocytes (CD3+ T cells) and T cell subsets (CD4+ and CD8+ T cells), as well as the production of T cell-related cytokines and granzymes (interleukin-2, interleukin-4, and granzyme-B) in cells exposed to PP or PNMC. These effects were associated with a decrease in oxidative stress, as evidenced by changes in OH, SOD, GSH-Px, and MDA levels. The total phenolic content of WPE was 34,800 ± 200 mg gallic acid equivalents/100 g, consisting of at least 16 unique phenols, including ellagitannins, quercetin, valoneic acid dilactone, and gallic acid. Taken together, these results suggest that walnut polyphenols significantly attenuated PP and PNMC-mediated immunotoxicity and improved immune function by inhibiting oxidative stress. PMID:27187455

  4. In vitro effect of 4-pentylphenol and 3-methyl-4-nitrophenol on murine splenic lymphocyte populations and cytokine/granzyme production.

    PubMed

    Yang, Lubing; Ma, Sihui; Wan, Yifang; Duan, Shuqi; Ye, Siyan; Du, Shengjie; Ruan, Xinwei; Sheng, Xia; Weng, Qiang; Taya, Kazuyoshi; Xu, Meiyu

    2016-07-01

    Gasoline exhaust particles (GEP) and diesel exhaust particles (DEP) are considered to be some of the most important air pollutants. Among the many constituents in these pollutant particles, 4-pentylphenol (PP) and 3-methyl-4-nitrophenol (PNMC) are considered important phenolics in GEP and DEP, respectively. The aim of this study was to investigate the effect of in vitro exposure to commercially-supplied PP and PNMC on populations of, and production of interleukin (IL)-2, IL-4 and granzyme-B by, mouse splenic lymphocytes. After in vitro exposure to PP or PNMC for 48 h, splenocyte viability was measured, cell phenotypes, e.g. B-cell (CD19), T-cells (CD3), T-cell subsets (CD4 and CD8), were quantified by flow cytometry and production of IL-2, IL-4 and granzyme-B was assessed via ELISA. The oxidative toxicity of PP and PNMC toward the splenocytes was also evaluated using measures of hydroxyl radical and malondiadehyde production and changes in glutathione peroxidase and superoxide dismutase activities. Results showed that in vitro exposure to PP and PNMC inhibited splenic cell parameters in a dose-related manner. Exposure to PP and PNMC decreased splenic T-lymphocyte populations and splenocyte production of cytokines and granzyme B, as well as induced oxidative stress in the splenocytes. The results also showed that the percentages of CD3(+) T-cells overall and of CD4(+) and CD8(+) T-cells therein, among exposed splenocytes, were reduced; neither compound appeared to affect levels of CD19(+) B-cells. Overall, the suppressive effects of PP were stronger than PNMC. The data here provide support for the proposal that PP-/PNMC-induced toxicity in splenocytes may be due at least in part to oxidative damage and that PP and PNMC - as components of GEP and DEP - might significantly impact on splenic T-cell formation/release of cytokines/granzymes in situ. PMID:27031367

  5. Metabolism of fenitrothion and conjugation of 3-methyl-4-nitrophenol in tomato plant (Lycopersicon esculentum).

    PubMed

    Fukushima, Masao; Fujisawa, Takuo; Katagi, Toshiyuki; Takimoto, Yoshiyuki

    2003-08-13

    The metabolism of (14)C-labeled fenitrothion (Sumithion, [O,O-dimethyl-O-(3-methyl-4-nitrophenyl)phosphorothioate]) in tomato plant (Lycopersicon esculentum Mill., cv. Ponderosa) grown in the greenhouse equipped with quartz glass was conducted to investigate the effect of sunlight on the behavior of fenitrothion and to elucidate the detailed structure of conjugated metabolites. Tomato plants (BBCH 85) were topically treated with (14)C-labeled fenitrothion twice with a 2 week interval between applications. At 15 days after the second application, more than half of the recovered (14)C was detected as unaltered fenitrothion, glucose, and cellobiose esters of 3-methyl-4-nitrophenol (NMC) in extracts from tomato fruit. The photoinduced formation of the S-methyl isomer of fenitrothion via thiono-thiolo rearrangement was detected only in the surface rinse but at trace amounts. In the whole tomato fruit, fenitrothion, the S isomer, NMC-beta-glucoside, and NMC cellobioside were detected at 34.16, 1.28, 7.47, and 15.07% of the recovered (14)C, respectively. Trace amounts of the oxon analogue of fenitrothion were detected only on tomato leaves. The chemical structure of the cellobiose conjugate of NMC, 1-O-beta-d-glucopyranosyl-(1-->4)-beta-d-glucopyranosyl-3-methyl-4-nitrophenol, was determined by spectroscopic analyses (liquid chromatography-mass spectrometry, NMR), using the metabolite obtained from leaves and stems of tomato plant hydroponically grown with (14)C-labeled NMC. PMID:12903963

  6. Biochemical Characterization of 3-Methyl-4-nitrophenol Degradation in Burkholderia sp. Strain SJ98

    PubMed Central

    Min, Jun; Lu, Yang; Hu, Xiaoke; Zhou, Ning-Yi

    2016-01-01

    Several strains have been reported to grow on 3-methyl-4-nitrophenol (3M4NP), the primary breakdown product of the excessively used insecticide fenitrothion. However, the microbial degradation of 3M4NP at molecular and biochemical levels remains unknown. Here, methyl-1,4-benzoquinone (MBQ) and methylhydroquinone (MHQ), rather than catechol proposed previously, were identified as the intermediates before ring cleavage during 3M4NP degradation by Burkholderia sp. strain SJ98. Real-time quantitative PCR analysis indicated that the pnpABA1CDEF cluster involved in para-nitrophenol (PNP) and 2-chloro-4-nitrophenol (2C4NP) catabolism was also likely responsible for 3M4NP degradation in this strain. Purified PNP 4-monooxygenase (PnpA) is able to catalyze the monooxygenation of 3M4NP to MBQ and exhibited an apparent Km value of 20.3 ± 2.54 μM for 3M4NP, and pnpA is absolutely necessary for the catabolism of 3M4NP by gene knock-out and complementation. PnpB, a 1,4-benzoquinone reductase catalyzes the reduction of MBQ to MHQ, and also found to enhance PnpA activity in vitro in the conversion of 3M4NP to MBQ. By sequential catalysis assays, PnpCD, PnpE, and PnpF were likely involved in the lower pathway of 3M4NP catabolism. Although NpcCD, NpcE, and NpcF are able to catalyze the sequential conversion of MHQ in vitro, these enzymes are unlikely involved in 3M4NP catabolism because their coding genes were not upregulated by 3M4NP induction in vivo. These results revealed that the enzymes involved in PNP and 2C4NP catabolism were also responsible for 3M4NP degradation in strain SJ98. This fills a gap in our understanding of the microbial degradation of 3M4NP at molecular and biochemical levels and also provides another example to illustrate the adaptive flexibility in microbial catabolism for structurally similar compounds. PMID:27252697

  7. Biochemical Characterization of 3-Methyl-4-nitrophenol Degradation in Burkholderia sp. Strain SJ98.

    PubMed

    Min, Jun; Lu, Yang; Hu, Xiaoke; Zhou, Ning-Yi

    2016-01-01

    Several strains have been reported to grow on 3-methyl-4-nitrophenol (3M4NP), the primary breakdown product of the excessively used insecticide fenitrothion. However, the microbial degradation of 3M4NP at molecular and biochemical levels remains unknown. Here, methyl-1,4-benzoquinone (MBQ) and methylhydroquinone (MHQ), rather than catechol proposed previously, were identified as the intermediates before ring cleavage during 3M4NP degradation by Burkholderia sp. strain SJ98. Real-time quantitative PCR analysis indicated that the pnpABA1CDEF cluster involved in para-nitrophenol (PNP) and 2-chloro-4-nitrophenol (2C4NP) catabolism was also likely responsible for 3M4NP degradation in this strain. Purified PNP 4-monooxygenase (PnpA) is able to catalyze the monooxygenation of 3M4NP to MBQ and exhibited an apparent K m value of 20.3 ± 2.54 μM for 3M4NP, and pnpA is absolutely necessary for the catabolism of 3M4NP by gene knock-out and complementation. PnpB, a 1,4-benzoquinone reductase catalyzes the reduction of MBQ to MHQ, and also found to enhance PnpA activity in vitro in the conversion of 3M4NP to MBQ. By sequential catalysis assays, PnpCD, PnpE, and PnpF were likely involved in the lower pathway of 3M4NP catabolism. Although NpcCD, NpcE, and NpcF are able to catalyze the sequential conversion of MHQ in vitro, these enzymes are unlikely involved in 3M4NP catabolism because their coding genes were not upregulated by 3M4NP induction in vivo. These results revealed that the enzymes involved in PNP and 2C4NP catabolism were also responsible for 3M4NP degradation in strain SJ98. This fills a gap in our understanding of the microbial degradation of 3M4NP at molecular and biochemical levels and also provides another example to illustrate the adaptive flexibility in microbial catabolism for structurally similar compounds. PMID:27252697

  8. Nitrophenols isolated from diesel exhaust particles promote the growth of MCF-7 breast adenocarcinoma cells

    SciTech Connect

    Furuta, Chie; Suzuki, Akira K.; Watanabe, Gen; Li, ChunMei; Taneda, Shinji; Taya, Kazuyoshi

    2008-08-01

    Diesel exhaust particles (DEPs) cause many adverse health problems, and reports indicate increased risk of breast cancer in men and women through exposure to gasoline and vehicle exhaust. However, DEPs include vast numbers of compounds, and the specific compound(s) responsible for these actions are not clear. We recently isolated two nitrophenols from DEPs-3-methyl-4-nitrophenol (4-nitro-m-cresol; PNMC) and 4-nitro-3-phenylphenol (PNMPP)-and showed that they had estrogenic and anti-androgenic activities. Here, we tried to clarify the involvement of these two nitrophenols in promoting the growth of the MCF-7 breast cancer cell line. First, comet assay was used to detect the genotoxicity of PNMC and PNMPP in a CHO cell line. At all doses tested, PNMC and PNMPP showed negative genotoxicity, indicating that they had no tumor initiating activity. Next, the estrogen-responsive breast cancer cell line MCF-7 was used to assess cell proliferation. Proliferation of MCF-7 cells was stimulated by PNMC, PNMPP, and estradiol-17{beta} and the anti-estrogens 4-hydroxytamoxifen and ICI 182,780 inhibited the proliferation. To further investigate transcriptional activity through the estrogen receptor, MCF-7 cells were transfected with a receptor gene that allowed expression of luciferase enzyme under the control of the estrogen regulatory element. PNMC and PNMPP induced luciferase activity in a dose-dependent manner at submicromolar concentrations. ICI 182,780 inhibited the luciferase activity induced by PNMC and PNMPP. These results clearly indicate that PNMC and PNMPP do not show genotoxicity but act as tumor promoters in an estrogen receptor {alpha}-predominant breast cancer cell line.

  9. Nitrophenols isolated from diesel exhaust particles regulate steroidogenic gene expression and steroid synthesis in the human H295R adrenocortical cell line

    SciTech Connect

    Furuta, Chie; Noda, Shiho; Li Chunmei; Suzuki, Akira K; Taneda, Shinji; Watanabe, Gen; Taya, Kazuyoshi

    2008-05-15

    Studies of nitrophenols isolated from diesel exhaust particles (DEPs), 3-methyl-4-nitrophenol (PNMC) and 4-nitro-3-phenylphenol (PNMPP) have revealed that these chemicals possess estrogenic and anti-androgenic activity in vitro and in vivo and that PNMC accumulate in adrenal glands in vivo. However, the impacts of exposure to these compounds on adrenal endocrine disruption and steroidogenesis have not been investigated. To elucidate the non-receptor mediated effects of PNMC and PNMPP, we investigated the production of the steroid hormones progesterone, cortisol, testosterone, and estradiol-17{beta} and modulation of nine major enzyme genes involved in the synthesis of steroid hormones (CYP11A, CYP11B1, CYP17, CYP19, 17{beta}HSD1, 17{beta}HSD4, CYP21, 3{beta}HSD2, StAR) in human adrenal H295R cells supplied with cAMP. Exposure to 10{sup -7} to 10{sup -5} M PNMC and 1 mM 8-Br-cAMP for 48 h decreased testosterone, cortisol, and estradiol-17{beta} levels and increased progesterone secretion. At 10{sup -5} M, PNMC with 1 mM 8-Br-cAMP significantly stimulated expression of the 17{beta}HSD4 and significantly suppressed expression of 3{beta}HSD2. In comparison, 10{sup -7} to 2 x 10{sup -5} M PNMPP with 1 mM 8-Br-cAMP for 48 h decreased concentrations of estradiol-17{beta}, increased progesterone levels, but did not affect testosterone and cortisol secretion due to the significant suppression of CYP17 and the non-significant but obvious suppression of CYP19. Our results clarified steroidogenic enzymes as candidates responsible for the inhibition or stimulation for the production of steroid hormones in the steroidogenic pathway, thus providing the first experimental evidence for multiple mechanisms of disruption of endocrine pathways by these nitrophenols.

  10. Degradation and induction specificity in actinomycetes that degrade p-nitrophenol

    SciTech Connect

    Hanne, L.F.; Kirk, L.L.; Appel, S.M.; Narayan, A.D.; Bains, K.K. )

    1993-10-01

    We have isolated two soil bacteria (identified as Arthrobacter aurescens TW17 and Nocardia sp. strain TW2) capable of degrading p-nitrophenol (PNP) and numerous other phenolic compounds. A. aurescens TW17 contains a large plasmid which correlated with the PNP degradation phenotype. Degradation of PNP by A. aurescens TW 17 was induced by preexposure to PNP, 4-nitrocatechol, 3-methyl-4-nitrophenol, or m-nitrophenol, whereas PNP degradation by Nocardia sp. strain TW2 was induced by PNP, 4-nitrocatechol, phenol, p-cresol, or m-nitrophenol. A. aurescens TW17 initially degraded PNP to hydroquinone and nitrite. Nocardia sp. strain TW2 initially converted PNP to hydroquinone or 4-nitrocatechol, depending upon the inducing compound.

  11. Abatement and degradation pathways of toluene in indoor air by positive corona discharge.

    PubMed

    Van Durme, J; Dewulf, J; Sysmans, W; Leys, C; Van Langenhove, H

    2007-08-01

    Indoor air concentrations of volatile organic compounds often exceed outdoor levels by a factor of 5. There is much interest in developing new technologies in order to improve indoor air quality. In this work non-thermal plasma (DC positive corona discharge) is explored as an innovative technology for indoor air purification. An inlet gas stream of 10 l min(-1) containing 0.50+/-0.02 ppm toluene was treated by the plasma reactor in atmospheric conditions. Toluene removal proved to be achievable with a characteristic energy density epsilon(0) of 50 J l(-1). Removal efficiencies were higher for 26% relative humidity (epsilon(0)=35 J l(-1)), compared with those at increased humidities (50% relative humidity, epsilon(0)=49 J l(-1)). Reaction products such as formic acid, benzaldehyde, benzyl alcohol, 3-methyl-4-nitrophenol, 4-methyl-2-nitrophenol, 4-methyl-2-propyl furan, 5-methyl-2-nitrophenol, 4-nitrophenol, 2-methyl-4,6-dinitrophenol are identified by means of mass spectrometry. Based on these by-products a toluene degradation mechanism is proposed. PMID:17490711

  12. Behavior of Phenols and Phenoxyacids on a Bisphenol-A Imprinted Polymer. Application for Selective Solid-Phase Extraction from Water and Urine Samples

    PubMed Central

    Herrero-Hernández, Eliseo; Carabias-Martínez, Rita; Rodríguez-Gonzalo, Encarnacion

    2011-01-01

    A molecularly imprinted polymer (MIP), obtained by precipitation polymerisation with 4-vinylpyridine as the functional monomer, ethylene glycol dimethacrylate as cross-linker, and bisphenol-A (BPA) as template, was prepared. The binding site configuration of the BPA-MIP was examined using Scatchard analysis. Moreover, the behaviour of the BPA-MIP for the extraction of several phenolic compounds (bisphenol-A, bisphenol-F, 4-nitrophenol, 3-methyl-4-nitrophenol) and phenoxyacid herbicides such as 2,4-D, 2,4,5-T and 2,4,5-TP has been studied in organic and aqueous media in the presence of other pesticides in common use. It was possible to carry out the selective preconcentration of the target analytes from the organic medium with recoveries of higher than 70%. In an aqueous medium, hydrophobic interactions were found to exert a remarkably non-specific contribution to the overall binding process. Several parameters affecting the extraction efficiency of the BPA-MIP were evaluated to achieve the selective preconcentration of phenols and phenoxyacids from aqueous samples. The possibility of using the BPA-MIP as a selective sorbent to preconcentrate these compounds from other samples such as urine and river water was also explored. PMID:21686187

  13. Biosensor for Direct Determination of Fenitrothion and EPN Using Recombinant Pseudomonas putida JS444 with Surface Expressed Organophosphorus Hydrolase. 1. Modified Clark Oxygen Electrode

    PubMed Central

    Lei, Yu; Mulchandani, Priti; Chen, Wilfred; Mulchandani, Ashok

    2006-01-01

    This paper reports a first microbial biosensor for rapid and cost-effective determination of organophosphorus pesticides fenitrothion and EPN. The biosensor consisted of recombinant PNP-degrading/oxidizing bacteria Pseudomonas putida JS444 anchoring and displaying organophosphorus hydrolase (OPH) on its cell surface as biological sensing element and a dissolved oxygen electrode as the transducer. Surface-expressed OPH catalyzed the hydrolysis of fenitrothion and EPN to release 3-methyl-4-nitrophenol and p-nitrophenol, respectively, which were oxidized by the enzymatic machinery of Pseudomonas putida JS444 to carbon dioxide while consuming oxygen, which was measured and correlated to the concentration of organophosphates. Under the optimum operating conditions, the biosensor was able to measure as low as 277 ppb of fenitrothion and 1.6 ppm of EPN without interference from phenolic compounds and other commonly used pesticides such as carbamate pesticides, triazine herbicides and organophosphate pesticides without nitrophenyl substituent. The applicability of the biosensor to lake water was also demonstrated.

  14. Toxicity of the organophosphate insecticide fenitrothion and its metabolism by blue crabs, Callinectes sapidus

    SciTech Connect

    Johnston, J.J.

    1986-01-01

    The LC/sub 50/ for Callinectes sapidus exposed to fenitrothion for 96 hours at 22/sup 0/C and a salinity of 34 ppt (parts per thousand) was estimated to be 8.6 ..mu..g/liter. Acute toxicity was shown to decrease with decreasing salinity and decreasing temperature. Exposure to a simulated tidal cycle increased the acute toxicity of fenitrothion to Callinectes. The autotomization response in Callinectes was shown to be affected at subacute exposure levels as low as 0.1 ..mu..g/liter. In vitro studies showed that the rates of formation of 3-methyl-4-nitrophenol and desmethyl fenitrothion were greater and the rate of formation of fenitrooxon was less in subcellular fractions prepared from the hepatopancreas of crabs which had been acclimated to lower salinity seawater. All three of these metabolites were formed at faster rates in subcellular fractions prepared from crabs which had been acclimated to and incubated at 22/sup 0/C than at 17/sup 0/C. Tissue distribution of aniline hydroxylase and glutathione-S-transferase activity was also determined. The uptake of /sup 14/C-fenitrothion at a level in a seawater of 5.2 ..mu..g/liter was greater at 22/sup 0/C than at 17/sup 0/C and from 34 ppt than from 17 ppt seawater. Tissue distribution of radioactivity was determined as well as the nature of radiolabelled metabolites in the hepatopancreas and in seawater. There was no significant difference in the overall level of metabolites detected in the 22/sup 0/C than in the 17/sup 0/C seawater. The rate of uptake of fenitrothion by Callinectes also affects the toxicity as the uptake of fenitrothion was more rapid at the higher salinity as well as at the higher temperature.

  15. Chemometric extraction of analyte-specific chromatograms in on-line gradient LC-infrared spectrometry.

    PubMed

    Kuligowski, Julia; Quintás, Guillermo; Garrigues, Salvador; de la Guardia, Miguel

    2009-12-01

    This work exploits the possibilities offered by the recently developed multivariate method named Science-Based Calibration (SBC), for the extraction of 'analyte-specific' chromatograms in on-line gradient reversed phase LC-infrared spectrometry (IR) in the presence of a high spectral and chromatographic overlapping between the analyte of interest, co-eluting sample matrix constituents and the mobile phase components. The SBC method uses an experimentally measured single response spectrum of the analyte of interest and representative noise to calculate an optimum regression vector (b(opt(1))). Then, the b(opt(1)) vector is used to predict the concentration of the analyte of interest in the spectra of the LC-IR sample chromatograms. To evaluate the advantages and pitfalls of the proposed approach, two different situations were analysed on real LC-IR data sets obtained from the injection of a series of standard solutions of four nitrophenols (p-nitrophenol, 3-methyl-4-nitrophenol, 2,4-dinitrophenol and 4-nitrophenol) in a reversed phase system under gradient conditions. In the first situation, the extraction of the 'analyte-specific' chromatogram was carried out without previous knowledge of the spectral features of other interferents present in the sample matrix. In a second situation evaluated, data obtained from the LC injection of a sample blank is available. Results show the potential applicability of this technique in a variety of situations and evidenced that the proposed chemometric approach improves the selectivity and sensitivity of the LC-IR hyphenation. PMID:19877149

  16. Fenitrothion, an organophosphorous insecticide, impairs locomotory function and alters body temperatures in Sminthopsis macroura (Gould 1845) without reducing metabolic rates during running endurance and thermogenic performance tests.

    PubMed

    Story, Paul G; French, Kris; Astheimer, Lee B; Buttemer, William A

    2016-01-01

    Endemic Australian mammal species are exposed to pesticides used for locust control as they occupy the same habitat as the target insect. The authors examined the impact of an ultra-low volume formulation of the organophosphorous insecticide fenitrothion (O,O-dimethyl-O-[3-methyl-4-nitrophenol]-phosphorothioate) on a suite of physiological measures that affect the ability of animals to survive in free-living conditions: locomotory and thermogenic functions, metabolic performance, body mass, and hematocrit and hemoglobin levels. Plasma and brain cholinesterase activity in relation to time since exposure to pesticide were also determined. An orally applied dose of 90 mg kg(-1) fenitrothion reduced running endurance in the stripe-faced dunnart, Sminthopsis macroura, by 80% the day after exposure concomitantly with a reduction of approximately 50% in plasma and 45% in brain acetylcholinesterase activity. These adverse effects disappeared by 10 d postexposure. Maximal metabolic rates reached during running were unaffected by pesticide, as were body mass and hemoglobin and hematocrit levels. Maximal cold-induced metabolic rate (measured as peak 2 min metabolic rate attained during cold exposure), time taken to reach peak metabolic rate on cold exposure, cumulative total oxygen consumed during shivering thermogenesis, and body temperature before and after cold exposure were unaffected by fenitrothion. Dunnart rectal temperatures showed a reduction of up to 5 °C after exposure to fenitrothion but returned to pre-exposure levels by 10 d postdose. Such physiological compromises in otherwise asymptomatic animals demonstrate the importance of considering performance-based measures in pesticide risk assessments. PMID:26184692

  17. Extraction of correlated count rates using various gate generation techniques: Part I theory

    NASA Astrophysics Data System (ADS)

    Croft, S.; Henzlova, D.; Hauck, D. K.

    2012-11-01

    This paper presents an overview of different gate generation techniques that can be used to extract correlated counting rates from neutron pulse trains in the context of Passive Neutron Multiplicity Counting (PNMC). PNMC based on shift register pulse train time autocorrelation analyzers is an important Non-Destructive Assay (NDA) method used in the quantification of plutonium and other spontaneously fissile materials across the nuclear fuel cycle. Traditionally PNMC employs signal-triggered gate generation followed by a random gate, separated from the trigger pulse by a long delay, to extract the totals rate (gross or singles), the pairs (coincidences or doubles) rate, and the triplets (or triples) rate of correlated neutron pulse trains. In this paper we provide expressions for singles, doubles and triples rates using the information available in both, the random and signal-triggered gates (traditional shift register analysis), in the randomly triggered gates only, and introduce a third approach to extract the correlated rates using signal-triggered gates only. In addition, we expand the formalism for randomly triggered gate generation to include Fast Accidental Sampling (FAS) and consecutive gate generation.

  18. Environmental exposure to organophosphorus and pyrethroid pesticides in South Australian preschool children: a cross sectional study.

    PubMed

    Babina, Kateryna; Dollard, Maureen; Pilotto, Louis; Edwards, John W

    2012-11-01

    Organophosphorus (OP) and pyrethroid (PYR) compounds are the most widely used insecticides. OPs and PYRs are developmental neurotoxicants. Understanding the extent of exposure in the general population and especially in young children is important for the development of public health policy on regulation and use of these chemicals. Presented here are the results of the first investigation into the extent of environmental exposure to neurotoxic insecticides in preschool children in South Australia (SA). Children were enrolled from different areas of SA and assigned into urban, periurban and rural groups according to their residential address. Residential proximity to agricultural activity, parental occupational contact to insecticides and use of insecticides within the household were investigated as potential indirect measures of exposure. We used liquid chromatography/tandem mass spectrometry to measure the following metabolites of OPs and PYRs in urine samples as direct indicators of exposure: dialkylphosphates, p-nitrophenol, 3-methyl-4-nitrophenol, 3,5,6-trichloro-2-pyridinol, cis- and trans-3-(2,2-dichlorovinyl)-2,2-dimethyl-cyclopropane-1-carboxylic acid, cis-3-(2,2-dibromovinyl)-2,2-dimethyl-cyclopropane-1-carboxylic acid, 2-methyl-3phenylbenzoic acid and 3-phenoxybenzoic acid. Results were analysed to assess factors affecting the risk and level of exposure. Results were also compared to the published data in similar age groups from US and German studies. The results of this study demonstrate that there was widespread chronic exposure to OPs and and PYRs in SA children. OP metabolites were detected more commonly than PYR. Exposure to more than one chemical and contemporaneous exposure to chemicals from both OP and PYR groups was common in the study population. There were some differences in risks and levels of exposure between the study groups. Exposure to some restricted use of chemicals, for example, fenitrothion, was higher in periurban and rural children

  19. Analysis of experimental measurements of PWR fresh and spent fuel assemblies using Self-Interrogation Neutron Resonance Densitometry

    NASA Astrophysics Data System (ADS)

    LaFleur, Adrienne M.; Menlove, Howard O.

    2015-05-01

    Self-Interrogation Neutron Resonance Densitometry (SINRD) is a new NDA technique that was developed at Los Alamos National Laboratory (LANL) to improve existing nuclear safeguards measurements for LWR fuel assemblies. The SINRD detector consists of four fission chambers (FCs) wrapped with different absorber filters to isolate different parts of the neutron energy spectrum and one ion chamber (IC) to measure the gross gamma rate. As a result, two different techniques can be utilized using the same SINRD detector unit and hardware. These techniques are the Passive Neutron Multiplication Counter (PNMC) method and the SINRD method. The focus of the work described in this paper is the analysis of experimental measurements of fresh and spent PWR fuel assemblies that were performed at LANL and the Korea Atomic Energy Research Institute (KAERI), respectively, using the SINRD detector. The purpose of these experiments was to assess the following capabilities of the SINRD detector: 1) reproducibility of measurements to quantify systematic errors, 2) sensitivity to water gap between detector and fuel assembly, 3) sensitivity and penetrability to the removal of fuel rods from the assembly, and 4) use of PNMC/SINRD ratios to quantify neutron multiplication and/or fissile content. The results from these simulations and measurements provide valuable experimental data that directly supports safeguards research and development (R&D) efforts on the viability of passive neutron NDA techniques and detector designs for partial defect verification of spent fuel assemblies.

  20. Development of a hollow fibre liquid-phase micro extraction method coupled with capillary electrophoresis/mass spectrometry for determining nitrophenolic compounds from atmospheric particles

    NASA Astrophysics Data System (ADS)

    Teich, Monique; van Pinxteren, Dominik; Herrmann, Hartmut

    2014-05-01

    Nitrophenolic compounds present in the atmosphere gained a lot of attention as they are known for their negative effect on human health as well as for their phytotoxity being a cause for forest decline. Moreover, nitrophenols have the ability to absorb light in the range of near ultra violet to visible light, thus they are also contributing to the so-called brown carbon. Most of the available methods for determining nitrophenols in particulate matter are using organic solvents for extraction. Those methods are not applicable if one wants to focus only on the water-soluble fraction. Therefore, a method using a three-phase hollow fibre liquid-phase micro extraction (HF-LPME) was developed to enrich nine nitrophenolic compounds (2-Nitrophenol, 3-Nitrophenol, 4-Nitrophenol, 2-Methyl-4-nitrophenol, 3-Methyl-4-nitrophenol, 4-Nitrocatechol, 2,6-Dimethyl-4-nitrophenol, 2,4-Dinitrophenol, 3,4-Dinitrophenol) from aqueous extracts of atmospheric particles. Analysis was performed by capillary electrophoresis coupled with electrospray ionisation mass spectrometry (CE-ESI-MS). The background electrolyte composition was optimised to a 20 mM ammonium acetate buffer at pH 9.7 containing 15% methanol (v/v). Persistent peak tailing during electrophoretic separation was observed for 4-Nitrocatechol. Flushing the capillary with Ethylenediaminetetraacetic acid (EDTA) prior sample injection strongly improved the peak shape. Four extraction parameters (composition of organic liquid membrane, pH of acceptor phase, salting out effect, extraction time) and their effect on the analyte recoveries were examined. The HF-LPME consisted of 1.8 mL sample solution kept at pH 2 as donor phase and 15 µl 100 mM aqueous ammonia solution as acceptor phase inserted into a hollow fibre. Dihexyl ether was used to form a supported liquid membrane inside the pores of the hollow fibre. As a result low detection limits in the range of nmol L-1 were achieved and the developed method was found to be competitive

  1. Simulation of Rate-Related (Dead-Time) Losses In Passive Neutron Multiplicity Counting Systems

    SciTech Connect

    Evans, L.G.; Norman, P.I.; Leadbeater, T.W.; Croft, S.; Philips, S.

    2008-07-01

    Passive Neutron Multiplicity Counting (PNMC) based on Multiplicity Shift Register (MSR) electronics (a form of time correlation analysis) is a widely used non-destructive assay technique for quantifying spontaneously fissile materials such as Pu. At high event rates, dead-time losses perturb the count rates with the Singles, Doubles and Triples being increasingly affected. Without correction these perturbations are a major source of inaccuracy in the measured count rates and assay values derived from them. This paper presents the simulation of dead-time losses and investigates the effect of applying different dead-time models on the observed MSR data. Monte Carlo methods have been used to simulate neutron pulse trains for a variety of source intensities and with ideal detection geometry, providing an event by event record of the time distribution of neutron captures within the detection system. The action of the MSR electronics was modelled in software to analyse these pulse trains. Stored pulse trains were perturbed in software to apply the effects of dead-time according to the chosen physical process; for example, the ideal paralysable (extending) and non-paralysable models with an arbitrary dead-time parameter. Results of the simulations demonstrate the change in the observed MSR data when the system dead-time parameter is varied. In addition, the paralysable and non-paralysable models of deadtime are compared. These results form part of a larger study to evaluate existing dead-time corrections and to extend their application to correlated sources. (authors)