Science.gov

Sample records for 3-methyladenine dna glycosylase

  1. Two DNA glycosylases in Esherichia coli which release primarily 3-methyladenine

    SciTech Connect

    Thomas, L.; Yang, C.; Goldthwait, D.A.

    1982-01-01

    Two enzymes have been partially purified from Escherichia coli and designated 3-methyladenine DNA glycosylases I and II. The apparent molecular weight of glycosylase I is 20,000, and that of II is 27,000. Glycosylase I releases 3-methyladenine (3-MeA) while II releases 3-MeA, 3-methylguanine (3-MeG), 7-methylguanine (7-MeG), and 7-methyladenine (7-MeA). The rate of release of 3-MeA by glycosylase II is 30 times that of 7-MeG. Glycosylase I is missing in mutants tag 1 and tag 2. In crude extracts, the 3-MeA activity of II is approximately 10% of the total 3-MeA activity. A 50% inactivation at 48/sup 0/C required 5 min for I and 65 min for II. The 3-MeA and 7-MeG activities of the glycosylase II preparation could not be separated by isoelectric focusing, by chromatography of DEAE, Sephadex G-100, phosphocellulose, DNA-cellulose, or carboxymethylcellulose, or by heating at 50/sup 0/C.

  2. Release of 3-methyladenine from linker and core DNA of chromatin by a purified DNA glycosylase

    SciTech Connect

    Heller, E.P.; Goldthwait, D.A.

    1983-12-01

    Oligonucleosomes were isolated from (/sub 14/C)thymidine-labeled HeLa cells by digestion of the nuclei with micrococcal nuclease and were then alkylated with (/sub 3/H)methylnitrosourea. Nucleosome core particles were also prepared by further digestion of the oligonucleosomes. The distribution of /sub 3/H-labeled methyl groups in the linker versus the core DNA was established by a determination of /sub 3/H:/sub 14/C ratios in oligonucleosome and core DNA. The ratios in the core DNA of 145 and 165 base pair DNA fragments were 5.2 and 5.4, respectively, while the ratio in the oligonucleosomal DNA was 8.2. Assuming an equal mixture (as determined) of 145 and 165 base pair fragments of DNA in the 185 base pair repeat, the relative concentration of /sub 3/H methyl groups in the linker versus the core DNA was 4.2. Thus, 45% of the /sub 3/H methyl groups were in the linker DNA, and 55% were in the core DNA. Some shielding of the DNA was evident during alkylation. The concentrations of alkyl groups on the linker and core DNA were 67 and 12% of that found on free DNA alkylated under comparable conditions. No evidence for preferential shielding of the major or minor groove was observed. The purified 3-methyladenine DNA glycosylase I of Escherichia coli released approximately 37% of the 3-methyladenine from the linker DNA and 13% from the core DNA. The limited enzymatic removal of 3-methyladenine in vitro compared to the efficient removal in vivo suggests that conformational changes of the oligonucleosome and core structure must occur for total repair.

  3. Substrate specificity and sequence-dependent activity of the Saccharomyces cerevisiae 3-methyladenine DNA glycosylase (Mag).

    PubMed

    Lingaraju, Gondichatnahalli M; Kartalou, Maria; Meira, Lisiane B; Samson, Leona D

    2008-06-01

    DNA glycosylases initiate base excision repair by first binding, then excising aberrant DNA bases. Saccharomyces cerevisiae encodes a 3-methyladenine (3MeA) DNA glycosylase, Mag, that recognizes 3MeA and various other DNA lesions including 1,N6-ethenoadenine (epsilon A), hypoxanthine (Hx) and abasic (AP) sites. In the present study, we explore the relative substrate specificity of Mag for these lesions and in addition, show that Mag also recognizes cisplatin cross-linked adducts, but does not catalyze their excision. Through competition binding and activity studies, we show that in the context of a random DNA sequence Mag binds epsilon A and AP-sites the most tightly, followed by the cross-linked 1,2-d(ApG) cisplatin adduct. While epsilon A binding and excision by Mag was robust in this sequence context, binding and excision of Hx was extremely poor. We further studied the recognition of epsilon A and Hx by Mag, when these lesions are present at different positions within A:T and G:C tracts. Overall, epsilon A was slightly less well excised from each position within the A:T and G:C tracts compared to excision from the random sequence, whereas Hx excision was greatly increased in these sequence contexts (by up to 7-fold) compared to the random sequence. However, given most sequence contexts, Mag had a clear preference for epsilon A relative to Hx, except in the TTXTT (X=epsilon A or Hx) sequence context from which Mag removed both lesions with almost equal efficiency. We discuss how DNA sequence context affects base excision by various 3MeA DNA glycosylases.

  4. Interplay between base excision repair activity and toxicity of 3-methyladenine DNA glycosylases in an E. coli complementation system.

    PubMed

    Troll, Christopher J; Adhikary, Suraj; Cueff, Marie; Mitra, Ileena; Eichman, Brandt F; Camps, Manel

    2014-01-01

    DNA glycosylases carry out the first step of base excision repair by removing damaged bases from DNA. The N3-methyladenine (3MeA) DNA glycosylases specialize in alkylation repair and are either constitutively expressed or induced by exposure to alkylating agents. To study the functional and evolutionary significance of constitutive versus inducible expression, we expressed two closely related yeast 3MeA DNA glycosylases - inducible Saccharomyces cerevisiae MAG and constitutive S. pombe Mag1 - in a glycosylase-deficient Escherichia coli strain. In both cases, constitutive expression conferred resistance to alkylating agent exposure. However, in the absence of exogenous alkylation, high levels of expression of both glycosylases were deleterious. We attribute this toxicity to excessive glycosylase activity, since suppressing spMag1 expression correlated with improved growth in liquid culture, and spMag1 mutants exhibiting decreased glycosylase activity showed improved growth and viability. Selection of a random spMag1 mutant library for increased survival in the presence of exogenous alkylation resulted in the selection of hypomorphic mutants, providing evidence for the presence of a genetic barrier to the evolution of enhanced glycosylase activity when constitutively expressed. We also show that low levels of 3MeA glycosylase expression improve fitness in our glycosylase-deficient host, implying that 3MeA glycosylase activity is likely necessary for repair of endogenous lesions. These findings suggest that 3MeA glycosylase activity is evolutionarily conserved for repair of endogenously produced alkyl lesions, and that inducible expression represents a common strategy to rectify deleterious effects of excessive 3MeA activity in the absence of exogenous alkylation challenge.

  5. DNA alkylation lesions and their repair in human cells: modification of the comet assay with 3-methyladenine DNA glycosylase (AlkD).

    PubMed

    Hašplová, Katarína; Hudecová, Alexandra; Magdolénová, Zuzana; Bjøras, Magnar; Gálová, Eliška; Miadoková, Eva; Dušinská, Mária

    2012-01-05

    3-methyladenine DNA glycosylase (AlkD) belongs to a new family of DNA glycosylases; it initiates repair of cytotoxic and promutagenic alkylated bases (its main substrates being 3-methyladenine and 7-methylguanine). The modification of the comet assay (single cell gel electrophoresis) using AlkD enzyme thus allows assessment of specific DNA alkylation lesions. The resulting baseless sugars are alkali-labile, and under the conditions of the alkaline comet assay they appear as DNA strand breaks. The alkylating agent methyl methanesulfonate (MMS) was used to induce alkylation lesions and to optimize conditions for the modified comet assay method with AlkD on human lymphoblastoid (TK6) cells. We also studied cellular and in vitro DNA repair of alkylated bases in DNA in TK6 cells after treatment with MMS. Results from cellular repair indicate that 50% of DNA alkylation is repaired in the first 60 min. The in vitro repair assay shows that while AlkD recognises most alkylation lesions after 60 min, a cell extract from TK6 cells recognises most of the MMS-induced DNA adducts already in the first 15 min of incubation, with maximum detection of lesions after 60 min' incubation. Additionally, we tested the in vitro repair capacity of human lymphocyte extracts from 5 individuals and found them to be able to incise DNA alkylations in the same range as AlkD. The modification of the comet assay with AlkD can be useful for in vitro and in vivo genotoxicity studies to detect alkylation damage and repair and also for human biomonitoring and molecular epidemiology studies.

  6. Interactions of the human, rat, Saccharomyces cerevisiae and Escherichia coli 3-methyladenine-DNA glycosylases with DNA containing dIMP residues

    PubMed Central

    Saparbaev, Murat; Mani, Jean-Claude; Laval, Jacques

    2000-01-01

    In DNA, the deamination of dAMP generates 2′-deoxyinosine 5′-monophosphate (dIMP). Hypoxanthine (HX) residues are mutagenic since they give rise to A·T→G·C transition. They are excised, although with different efficiencies, by an activity of the 3-methyladenine (3-meAde)-DNA glycosylases from Escherichia coli (AlkA protein), human cells (ANPG protein), rat cells (APDG protein) and yeast (MAG protein). Comparison of the kinetic constants for the excision of HX residues by the four enzymes shows that the E.coli and yeast enzymes are quite inefficient, whereas for the ANPG and the APDG proteins they repair the HX residues with an efficiency comparable to that of alkylated bases, which are believed to be the primary substrates of these DNA glycosylases. Since the use of various substrates to monitor the activity of HX-DNA glycosylases has generated conflicting results, the efficacy of the four 3-meAde-DNA glycosylases of different origin was compared using three different substrates. Moreover, using oligonucleotides containing a single dIMP residue, we investigated a putative sequence specificity of the enzymes involving the bases next to the HX residue. We found up to 2–5-fold difference in the rates of HX excision between the various sequences of the oligonucleotides studied. When the dIMP residue was placed opposite to each of the four bases, a preferential recognition of dI:T over dI:dG, dI:dC and dI:dA mismatches was observed for both human (ANPG) and E.coli (AlkA) proteins. At variance, the yeast MAG protein removed more efficiently HX from a dI:dG over dI:dC, dI:T and dI:dA mismatches. PMID:10684927

  7. Biomarkers of cigarette smoking and DNA methylating agents: Raman, SERS and DFT study of 3-methyladenine and 7-methyladenine

    NASA Astrophysics Data System (ADS)

    Harroun, Scott G.; Zhang, Yaoting; Chen, Tzu-Heng; Ku, Ching-Rong; Chang, Huan-Tsung

    2017-04-01

    3-Methyladenine and 7-methyladenine are biomarkers of DNA damage from exposure to methylating agents. For example, the concentration of 3-methyladenine increases significantly in the urine of cigarette smokers. Surface-enhanced Raman spectroscopy (SERS) has shown much potential for detection of biomolecules, including DNA. Much work has been dedicated to the canonical nucleobases, with comparatively fewer investigations of modified DNA and modified DNA nucleobases. Herein, Raman spectroscopy and SERS are used to examine the adsorption orientations of 3-methyladenine and 7-methyladenine on Ag nanoparticles. Density functional theory (DFT) calculations at the B3LYP level are used to support the conclusions via simulated spectra of the nucleobases and of Ag+/nucleobase complexes. The results herein show that 7-methyladenine adsorbs upright via its N3 and N9 atoms side, similarly to adenine. 3-Methyladenine adsorbs in a very tilted or flat orientation on the Ag nanoparticles. These findings will be useful for future SERS or other nanoparticle-based bioanalytical assays for detection of these methyladenines or other modified nucleobases.

  8. Strandwise translocation of a DNA glycosylase on undamaged DNA

    SciTech Connect

    Qi, Yan; Nam, Kwangho; Spong, Marie C.; Banerjee, Anirban; Sung, Rou-Jia; Zhang, Michael; Karplus, Martin; Verdine, Gregory L.

    2012-05-14

    Base excision repair of genotoxic nucleobase lesions in the genome is critically dependent upon the ability of DNA glycosylases to locate rare sites of damage embedded in a vast excess of undamaged DNA, using only thermal energy to fuel the search process. Considerable interest surrounds the question of how DNA glycosylases translocate efficiently along DNA while maintaining their vigilance for target damaged sites. Here, we report the observation of strandwise translocation of 8-oxoguanine DNA glycosylase, MutM, along undamaged DNA. In these complexes, the protein is observed to translocate by one nucleotide on one strand while remaining untranslocated on the complementary strand. We further report that alterations of single base-pairs or a single amino acid substitution (R112A) can induce strandwise translocation. Molecular dynamics simulations confirm that MutM can translocate along DNA in a strandwise fashion. These observations reveal a previously unobserved mode of movement for a DNA-binding protein along the surface of DNA.

  9. Recent Advances in the Structural Mechanisms of DNA Glycosylases

    PubMed Central

    Brooks, Sonja C.; Adhikary, Suraj; Rubinson, Emily H.; Eichman, Brandt F.

    2012-01-01

    DNA glycosylases safeguard the genome by locating and excising a diverse array of aberrant nucleobases created from oxidation, alkylation, and deamination of DNA. Since the discovery 28 years ago that these enzymes employ a base flipping mechanism to trap their substrates, six different protein architectures have been identified to perform the same basic task. Work over the past several years has unraveled details for how the various DNA glycosylases survey DNA, detect damage within the duplex, select for the correct modification, and catalyze base excision. Here, we provide a broad overview of these latest advances in glycosylase mechanisms gleaned from structural enzymology, highlighting features common to all glycosylases as well as key differences that define their particular substrate specificities. PMID:23076011

  10. Expansion Mechanisms and Evolutionary History on Genes Encoding DNA Glycosylases and Their Involvement in Stress and Hormone Signaling.

    PubMed

    Jiang, Shu-Ye; Ramachandran, Srinivasan

    2016-04-25

    DNA glycosylases catalyze the release of methylated bases. They play vital roles in the base excision repair pathway and might also function in DNA demethylation. At least three families of DNA glycosylases have been identified, which included 3'-methyladenine DNA glycosylase (MDG) I, MDG II, and HhH-GPD (Helix-hairpin-Helix and Glycine/Proline/aspartate (D)). However, little is known on their genome-wide identification, expansion, and evolutionary history as well as their expression profiling and biological functions. In this study, we have genome-widely identified and evolutionarily characterized these family members. Generally, a genome encodes only one MDG II gene in most of organisms. No MDG I or MDG II gene was detected in green algae. However, HhH-GPD genes were detectable in all available organisms. The ancestor species contain small size of MDG I and HhH-GPD families. These two families were mainly expanded through the whole-genome duplication and segmental duplication. They were evolutionarily conserved and were generally under purifying selection. However, we have detected recent positive selection among the Oryza genus, which might play roles in species divergence. Further investigation showed that expression divergence played important roles in gene survival after expansion. All of these family genes were expressed in most of developmental stages and tissues in rice plants. High ratios of family genes were downregulated by drought and fungus pathogen as well as abscisic acid (ABA) and jasmonic acid (JA) treatments, suggesting a negative regulation in response to drought stress and pathogen infection through ABA- and/or JA-dependent hormone signaling pathway.

  11. Poxvirus uracil-DNA glycosylase-An unusual member of the family I uracil-DNA glycosylases: Poxvirus Uracil-DNA Glycosylase

    SciTech Connect

    Schormann, Norbert; Zhukovskaya, Natalia; Bedwell, Gregory; Nuth, Manunya; Gillilan, Richard; Prevelige, Peter E.; Ricciardi, Robert P.; Banerjee, Surajit; Chattopadhyay, Debasish

    2016-11-02

    We report that uracil-DNA glycosylases are ubiquitous enzymes, which play a key role repairing damages in DNA and in maintaining genomic integrity by catalyzing the first step in the base excision repair pathway. Within the superfamily of uracil-DNA glycosylases family I enzymes or UNGs are specific for recognizing and removing uracil from DNA. These enzymes feature conserved structural folds, active site residues and use common motifs for DNA binding, uracil recognition and catalysis. Within this family the enzymes of poxviruses are unique and most remarkable in terms of amino acid sequences, characteristic motifs and more importantly for their novel non-enzymatic function in DNA replication. UNG of vaccinia virus, also known as D4, is the most extensively characterized UNG of the poxvirus family. D4 forms an unusual heterodimeric processivity factor by attaching to a poxvirus-specific protein A20, which also binds to the DNA polymerase E9 and recruits other proteins necessary for replication. D4 is thus integrated in the DNA polymerase complex, and its DNA-binding and DNA scanning abilities couple DNA processivity and DNA base excision repair at the replication fork. In conclusion, the adaptations necessary for taking on the new function are reflected in the amino acid sequence and the three-dimensional structure of D4. We provide an overview of the current state of the knowledge on the structure-function relationship of D4.

  12. A DNA enzyme with N-glycosylase activity

    NASA Technical Reports Server (NTRS)

    Sheppard, T. L.; Ordoukhanian, P.; Joyce, G. F.

    2000-01-01

    In vitro evolution was used to develop a DNA enzyme that catalyzes the site-specific depurination of DNA with a catalytic rate enhancement of about 10(6)-fold. The reaction involves hydrolysis of the N-glycosidic bond of a particular deoxyguanosine residue, leading to DNA strand scission at the apurinic site. The DNA enzyme contains 93 nucleotides and is structurally complex. It has an absolute requirement for a divalent metal cation and exhibits optimal activity at about pH 5. The mechanism of the reaction was confirmed by analysis of the cleavage products by using HPLC and mass spectrometry. The isolation and characterization of an N-glycosylase DNA enzyme demonstrates that single-stranded DNA, like RNA and proteins, can form a complex tertiary structure and catalyze a difficult biochemical transformation. This DNA enzyme provides a new approach for the site-specific cleavage of DNA molecules.

  13. Molecular crowding enhances facilitated diffusion of two human DNA glycosylases

    PubMed Central

    Cravens, Shannen L.; Schonhoft, Joseph D.; Rowland, Meng M.; Rodriguez, Alyssa A.; Anderson, Breeana G.; Stivers, James T.

    2015-01-01

    Intracellular space is at a premium due to the high concentrations of biomolecules and is expected to have a fundamental effect on how large macromolecules move in the cell. Here, we report that crowded solutions promote intramolecular DNA translocation by two human DNA repair glycosylases. The crowding effect increases both the efficiency and average distance of DNA chain translocation by hindering escape of the enzymes to bulk solution. The increased contact time with the DNA chain provides for redundant damage patrolling within individual DNA chains at the expense of slowing the overall rate of damaged base removal from a population of molecules. The significant biological implication is that a crowded cellular environment could influence the mechanism of damage recognition as much as any property of the enzyme or DNA. PMID:25845592

  14. Repair of DNA treated with. gamma. -irradiation and chemical carcinogens. Progress report, 1980-1983

    SciTech Connect

    Goldthwait, D.A.

    1984-02-01

    We have studied in vitro DNA repair with the isolation and characterization of DNA glycosylases active in the removable of 3-methyladenine and the problem of repair of DNA in chromatin. The second area of focus has been on transposable elements and carcinogen action. The work on DNA adducts with ..beta..-propiolactone was done to define potential new substrates useful in a search for new glycosylases.

  15. Binding of undamaged double stranded DNA to vaccinia virus uracil-DNA glycosylase

    SciTech Connect

    Schormann, Norbert; Banerjee, Surajit; Ricciardi, Robert; Chattopadhyay, Debasish

    2015-06-02

    Background: Uracil-DNA glycosylases are evolutionarily conserved DNA repair enzymes. However, vaccinia virus uracil-DNA glycosylase (known as D4), also serves as an intrinsic and essential component of the processive DNA polymerase complex during DNA replication. In this complex D4 binds to a unique poxvirus specific protein A20 which tethers it to the DNA polymerase. At the replication fork the DNA scanning and repair function of D4 is coupled with DNA replication. So far, DNA-binding to D4 has not been structurally characterized. Results: This manuscript describes the first structure of a DNA-complex of a uracil-DNA glycosylase from the poxvirus family. This also represents the first structure of a uracil DNA glycosylase in complex with an undamaged DNA. In the asymmetric unit two D4 subunits bind simultaneously to complementary strands of the DNA double helix. Each D4 subunit interacts mainly with the central region of one strand. DNA binds to the opposite side of the A20-binding surface on D4. In comparison of the present structure with the structure of uracil-containing DNA-bound human uracil-DNA glycosylase suggests that for DNA binding and uracil removal D4 employs a unique set of residues and motifs that are highly conserved within the poxvirus family but different in other organisms. Conclusion: The first structure of D4 bound to a truly non-specific undamaged double-stranded DNA suggests that initial binding of DNA may involve multiple non-specific interactions between the protein and the phosphate backbone.

  16. Binding of undamaged double stranded DNA to vaccinia virus uracil-DNA glycosylase

    DOE PAGES

    Schormann, Norbert; Banerjee, Surajit; Ricciardi, Robert; ...

    2015-06-02

    Background: Uracil-DNA glycosylases are evolutionarily conserved DNA repair enzymes. However, vaccinia virus uracil-DNA glycosylase (known as D4), also serves as an intrinsic and essential component of the processive DNA polymerase complex during DNA replication. In this complex D4 binds to a unique poxvirus specific protein A20 which tethers it to the DNA polymerase. At the replication fork the DNA scanning and repair function of D4 is coupled with DNA replication. So far, DNA-binding to D4 has not been structurally characterized. Results: This manuscript describes the first structure of a DNA-complex of a uracil-DNA glycosylase from the poxvirus family. This alsomore » represents the first structure of a uracil DNA glycosylase in complex with an undamaged DNA. In the asymmetric unit two D4 subunits bind simultaneously to complementary strands of the DNA double helix. Each D4 subunit interacts mainly with the central region of one strand. DNA binds to the opposite side of the A20-binding surface on D4. In comparison of the present structure with the structure of uracil-containing DNA-bound human uracil-DNA glycosylase suggests that for DNA binding and uracil removal D4 employs a unique set of residues and motifs that are highly conserved within the poxvirus family but different in other organisms. Conclusion: The first structure of D4 bound to a truly non-specific undamaged double-stranded DNA suggests that initial binding of DNA may involve multiple non-specific interactions between the protein and the phosphate backbone.« less

  17. Glycosylases utilize ``stop and go'' motion to locate DNA damage

    NASA Astrophysics Data System (ADS)

    Nelson, Shane

    2015-03-01

    Oxidative damage to DNA results in alterations that are mutagenic or even cytotoxic. Base excision repair is a mechanism that functions to identify and correct these lesions, and is present in organisms ranging from bacteria to humans. DNA glycosylases are the first enzymes in this pathway and function to locate and remove oxidatively damaged bases, and do so utilizing only thermal energy. However, the question remains of how these enzymes locate and recognize a damaged base among millions of undamaged bases. Utilizing fluorescence video microscopy with high spatial and temporal resolution, we have observed a number of different fluorescently labeled glycosylases (including bacterial FPG, NEI, and NTH as well as mammalian MutyH and OGG). These enzymes diffuse along DNA tightropes at approximately 0.01 +/- 0.005 μm2/s with binding lifetimes ranging from one second to several minutes. Chemically induced damage to the DNA substrate causes a ~ 50% reduction in diffusion coefficients and a ~ 400% increase in binding lifetimes, while mutation of the key ``wedge residue'' - which has been shown to be responsible for damage detection - results in a 200% increase in the diffusion coefficient. Utilizing a sliding window approach to measure diffusion coefficients within individual trajectories, we observe that distributions of diffusion coefficients are bimodal, consistent with periods of diffusive motion interspersed with immobile periods. Utilizing a unique chemo-mechanical simulation approach, we demonstrate that the motion of these glycosylases can be explained as free diffusion along the helical pitch of the DNA, punctuated with two different types of pauses: 1) rapid, short-lived pauses as the enzyme rapidly probes DNA bases to interrogate for damage and, 2) less frequent, longer lived pauses that reflect the enzyme bound to and catalytically removing a damaged base. These simulations also indicate that the wedge residue is critical for interrogation and recognition of

  18. Excision of 5-hydroxymethylcytosine by DEMETER family DNA glycosylases

    PubMed Central

    Jang, Hosung; Shin, Hosub; Eichman, Brandt F.; Huh, Jin Hoe

    2016-01-01

    In plants and animals, 5-methylcytosine (5mC) serves as an epigenetic mark to repress gene expression, playing critical roles for cellular differentiation and transposon silencing. Mammals also have 5-hydroxymethylcytosine (5hmC), resulting from hydroxylation of 5mC by TET family-enzymes. 5hmC is abundant in mouse Purkinje neurons and embryonic stem cells, and regarded as an important intermediate for active DNA demethylation in mammals. However, the presence of 5hmC in plants has not been clearly demonstrated. In Arabidopsis, the DEMETER (DME) family DNA glycosylases efficiently remove 5mC, which results in DNA demethylation and transcriptional activation of target genes. Here we show that DME and ROS1 have a significant 5hmC excision activity in vitro, although we detected no 5hmC in Arabidopsis, suggesting that it is very unlikely for plants to utilize 5hmC as a DNA demethylation intermediate. Our results indicate that both plants and animals have 5mC in common but DNA demethylation systems have independently evolved with distinct mechanisms. PMID:24661881

  19. An evolutionary analysis of the helix-hairpin-helix superfamily of DNA repair glycosylases.

    PubMed

    Denver, Dee R; Swenson, Stephanie L; Lynch, Michael

    2003-10-01

    The helix-hairpin-helix (HhH) superfamily of base excision repair DNA glycosylases is composed of multiple phylogenetically diverse enzymes that are capable of excising varying spectra of oxidatively and methyl-damaged bases. Although these DNA repair glycosylases have been widely studied through genetic, biochemical, and biophysical approaches, the evolutionary relationships of different HhH homologs and the extent to which they are conserved across phylogeny remain enigmatic. We provide an evolutionary framework for this pervasive and versatile superfamily of DNA glycosylases. Six HhH gene families (named AlkA: alkyladenine glycosylase; MpgII: N-methylpurine glycosylase II; MutY/Mig: A/G-specific adenine glycosylase/mismatch glycosylase; Nth: endonuclease III; OggI: 8-oxoguanine glycosylase I; and OggII: 8-oxoguanine glycosylase II) are identified through phylogenetic analysis of 234 homologs found in 94 genomes (16 archaea, 64 bacteria, and 14 eukaryotes). The number of homologs in each gene family varies from 117 in the Nth family (nearly every genome surveyed harbors at least one Nth homolog) to only five in the divergent OggII family (all from archaeal genomes). Sequences from all three domains of life are included in four of the six gene families, suggesting that the HhH superfamily diversified very early in evolution. The phylogeny provides evidence for multiple lineage-specific gene duplication events, most of which involve eukaryotic homologs in the Nth and AlkA gene families. We observe extensive variation in the number of HhH superfamily glycosylase genes present in different genomes, possibly reflecting major differences among species in the mechanisms and pathways by which damaged bases are repaired and/or disparities in the basic rates and spectra of mutation experienced by different genomes.

  20. Role of the Arabidopsis DNA glycosylase/lyase ROS1 in active DNA demethylation

    PubMed Central

    Agius, Fernanda; Kapoor, Avnish; Zhu, Jian-Kang

    2006-01-01

    DNA methylation is a stable epigenetic mark for transcriptional gene silencing in diverse organisms including plants and many animals. In contrast to the well characterized mechanism of DNA methylation by methyltransferases, the mechanisms and function of active DNA demethylation have been controversial. Genetic evidence suggested that the DNA glycosylase domain-containing protein ROS1 of Arabidopsis is a putative DNA demethylase, because loss-of-function ros1 mutations cause DNA hypermethylation and enhance transcriptional gene silencing. We report here the biochemical characterization of ROS1 and the effect of its overexpression on the DNA methylation of target genes. Our data suggest that the DNA glycosylase activity of ROS1 removes 5-methylcytosine from the DNA backbone and then its lyase activity cleaves the DNA backbone at the site of 5-methylcytosine removal by successive β- and δ-elimination reactions. Overexpression of ROS1 in transgenic plants led to a reduced level of cytosine methylation and increased expression of a target gene. These results demonstrate that ROS1 is a 5-methylcytosine DNA glycosylase/lyase important for active DNA demethylation in Arabidopsis. PMID:16864782

  1. Neil DNA glycosylases promote substrate turnover by Tdg during DNA demethylation

    PubMed Central

    Arab, Khelifa; Kienhöfer, Sabine; von Seggern, Annika; Niehrs, Christof

    2016-01-01

    DNA 5-methylcytosine is a dynamic epigenetic mark which plays important roles in development and disease. In the Tet-Tdg demethylation pathway, methylated cytosine is iteratively oxidized by Tet dioxygenases and unmodified cytosine is restored via thymine DNA glycosylase (Tdg). Here we show that human NEIL1 and NEIL2 DNA glycosylases coordinate abasic site processing during TET–TDG DNA demethylation. NEIL1 and NEIL2 cooperate with TDG during base excision: TDG occupies the abasic site and is displaced by NEILs, which further process the baseless sugar, thereby stimulating TDG substrate turnover. In early Xenopus embryos Neil2 cooperates with Tdg to remove oxidized methylcytosines and to specify neural crest development together with Tet3. Thus, Neils function as AP lyases in the coordinated AP site hand-over during oxidative DNA demethylation. PMID:26751644

  2. Synergistic Actions of Ogg1 and Mutyh DNA Glycosylases Modulate Anxiety-like Behavior in Mice.

    PubMed

    Bjørge, Monica D; Hildrestrand, Gunn A; Scheffler, Katja; Suganthan, Rajikala; Rolseth, Veslemøy; Kuśnierczyk, Anna; Rowe, Alexander D; Vågbø, Cathrine B; Vetlesen, Susanne; Eide, Lars; Slupphaug, Geir; Nakabeppu, Yusaku; Bredy, Timothy W; Klungland, Arne; Bjørås, Magnar

    2015-12-29

    Ogg1 and Mutyh DNA glycosylases cooperate to prevent mutations caused by 8-oxoG, a major premutagenic DNA lesion associated with cognitive decline. We have examined behavior and cognitive function in mice deficient of these glycosylases. Ogg1(-/-)Mutyh(-/-) mice were more active and less anxious, with impaired learning ability. In contrast, Mutyh(-/-) mice showed moderately improved memory. We observed no apparent change in genomic 8-oxoG levels, suggesting that Ogg1 and Mutyh play minor roles in global repair in adult brain. Notably, transcriptome analysis of hippocampus revealed that differentially expressed genes in the mutants belong to pathways known to be involved in anxiety and cognition. Esr1 targets were upregulated, suggesting a role of Ogg1 and Mutyh in repression of Esr1 signaling. Thus, beyond their involvement in DNA repair, Ogg1 and Mutyh regulate hippocampal gene expression related to cognition and behavior, suggesting a role for the glycosylases in regulating adaptive behavior.

  3. Repair of oxidatively induced DNA damage by DNA glycosylases: Mechanisms of action, substrate specificities and excision kinetics.

    PubMed

    Dizdaroglu, Miral; Coskun, Erdem; Jaruga, Pawel

    Endogenous and exogenous reactive species cause oxidatively induced DNA damage in living organisms by a variety of mechanisms. As a result, a plethora of mutagenic and/or cytotoxic products are formed in cellular DNA. This type of DNA damage is repaired by base excision repair, although nucleotide excision repair also plays a limited role. DNA glycosylases remove modified DNA bases from DNA by hydrolyzing the glycosidic bond leaving behind an apurinic/apyrimidinic (AP) site. Some of them also possess an accompanying AP-lyase activity that cleaves the sugar-phosphate chain of DNA. Since the first discovery of a DNA glycosylase, many studies have elucidated the mechanisms of action, substrate specificities and excision kinetics of these enzymes present in all living organisms. For this purpose, most studies used single- or double-stranded oligodeoxynucleotides with a single DNA lesion embedded at a defined position. High-molecular weight DNA with multiple base lesions has been used in other studies with the advantage of the simultaneous investigation of many DNA base lesions as substrates. Differences between the substrate specificities and excision kinetics of DNA glycosylases have been found when these two different substrates were used. Some DNA glycosylases possess varying substrate specificities for either purine-derived lesions or pyrimidine-derived lesions, whereas others exhibit cross-activity for both types of lesions. Laboratory animals with knockouts of the genes of DNA glycosylases have also been used to provide unequivocal evidence for the substrates, which had previously been found in in vitro studies, to be the actual substrates in vivo as well. On the basis of the knowledge gained from the past studies, efforts are being made to discover small molecule inhibitors of DNA glycosylases that may be used as potential drugs in cancer therapy.

  4. The NEIL glycosylases remove oxidized guanine lesions from telomeric and promoter quadruplex DNA structures

    PubMed Central

    Zhou, Jia; Fleming, Aaron M.; Averill, April M.; Burrows, Cynthia J.; Wallace, Susan S.

    2015-01-01

    G-quadruplex is a four-stranded G-rich DNA structure that is highly susceptible to oxidation. Despite the important roles that G-quadruplexes play in telomere biology and gene transcription, neither the impact of guanine lesions on the stability of quadruplexes nor their repair are well understood. Here, we show that the oxidized guanine lesions 8-oxo-7,8-dihydroguanine (8-oxoG), guanidinohydantoin (Gh) and spiroiminodihydantoin (Sp) reduce the thermostability and alter the folding of telomeric quadruplexes in a location-dependent manner. Also, the NEIL1 and NEIL3 DNA glycosylases can remove hydantoin lesions but none of the glycosylases, including OGG1, are able to remove 8-oxoG from telomeric quadruplexes. Interestingly, a hydantoin lesion at the site most prone to oxidation in quadruplex DNA is not efficiently removed by NEIL1 or NEIL3. However, NEIL1, NEIL2 and NEIL3 remove hydantoins from telomeric quadruplexes formed by five TTAGGG repeats much more rapidly than the commonly studied four-repeat quadruplex structures. We also show that APE1 cleaves furan in selected positions in Na+-coordinated telomeric quadruplexes. In promoter G-quadruplex DNA, the NEIL glycosylases primarily remove Gh from Na+-coordinated antiparallel quadruplexes but not K+-coordinated parallel quadruplexes containing VEGF or c-MYC promoter sequences. Thus, the NEIL DNA glycosylases may be involved in both telomere maintenance and in gene regulation. PMID:25813041

  5. 5-Methylcytosine DNA glycosylase activity is also present in the human MBD4 (G/T mismatch glycosylase) and in a related avian sequence.

    PubMed

    Zhu, B; Zheng, Y; Angliker, H; Schwarz, S; Thiry, S; Siegmann, M; Jost, J P

    2000-11-01

    A 1468 bp cDNA coding for the chicken homolog of the human MBD4 G/T mismatch DNA glycosylase was isolated and sequenced. The derived amino acid sequence (416 amino acids) shows 46% identity with the human MBD4 and the conserved catalytic region at the C-terminal end (170 amino acids) has 90% identity. The non-conserved region of the avian protein has no consensus sequence for the methylated DNA binding domain. The recombinant proteins from human and chicken have G/T mismatch as well as 5-methylcytosine (5-MeC) DNA glycosylase activities. When tested by gel shift assays, human recombinant protein with or without the methylated DNA binding domain binds equally well to symmetrically, hemimethylated DNA and non-methylated DNA. However, the enzyme has only 5-MeC DNA glycosylase activity with the hemimethylated DNA. Footprinting of human MBD4 and of an N-terminal deletion mutant with partially depurinated and depyrimidinated substrate reveal a selective binding of the proteins to the modified substrate around the CpG. As for 5-MeC DNA glycosylase purified from chicken embryos, MBD4 does not use oligonucleotides containing mCpA, mCpT or mCpC as substrates. An mCpG within an A+T-rich oligonucleotide is a much better substrate than an A+T-poor sequence. The K:(m) of human MBD4 for hemimethylated DNA is approximately 10(-7) M with a V:(max) of approximately 10(-11) mol/h/microgram protein. Deletion mutations show that G/T mismatch and 5-MeC DNA glycosylase are located in the C-terminal conserved region. In sharp contrast to the 5-MeC DNA glycosylase isolated from the chicken embryo DNA demethylation complex, the two enzymatic activities of MBD4 are strongly inhibited by RNA. In situ hybridization with antisense RNA indicate that MBD4 is only located in dividing cells of differentiating embryonic tissues.

  6. Structural Investigation of a Viral Ortholog of Human NEIL2/3 DNA Glycosylases

    PubMed Central

    Prakash, Aishwarya; Eckenroth, Brian E.; Averill, April M.; Imamura, Kayo; Wallace, Susan S.; Doublié, Sylvie

    2013-01-01

    Assault to DNA that leads to oxidative base damage is repaired by the base excision repair (BER) pathway with specialized enzymes called DNA glycosylases catalyzing the first step of this pathway. These glycosylases can be categorized into two families: the HhH superfamily, which includes endonuclease III (or Nth), and the Fpg/Nei family, which comprises formamidopyrimidine DNA glycosylase (or Fpg) and endonuclease VIII (or Nei). In humans there are three Nei-like (NEIL) glycosylases: NEIL1, 2, and 3. Here we present the first crystal structure of a viral ortholog of the human NEIL2/NEIL3 proteins, Mimivirus Nei2 (MvNei2), determined at 2.04 Å resolution. The C-terminal region of the MvNei2 enzyme comprises two conserved DNA binding motifs: the helix-two-turns-helix (H2TH) motif and a C-H-C-C type zinc-finger similar to that of human NEIL2. The N-terminal region of MvNei2 is most closely related to NEIL3. Like NEIL3, MvNei2 bears a valine at position 2 instead of the usual proline and it lacks two of the three conserved void-filling residues present in other members of the Fpg/Nei family. Mutational analysis of the only conserved void-filling residue methionine 72 to alanine yields an MvNei2 variant with impaired glycosylase activity. Mutation of the adjacent His73 causes the enzyme to be more productive thereby suggesting a plausible role for this residue in the DNA lesion search process. PMID:24120312

  7. The carboxy-terminal domain of ROS1 is essential for 5-methylcytosine DNA glycosylase activity

    PubMed Central

    Hong, Samuel; Hashimoto, Hideharu; Kow, Yoke Wah; Zhang, Xing; Cheng, Xiaodong

    2014-01-01

    Arabidopsis thaliana Repressor of silencing 1 (ROS1) is a multi-domain bifunctional DNA glycosylase/lyase, which excises 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC) as well as thymine and 5-hydroxymethyluracil (i.e., the deamination products of 5mC and 5hmC) when paired with a guanine, leaving an apyrimidinic (AP) site that is subsequently incised by the lyase activity. ROS1 is slow in base excision and fast in AP lyase activity, indicating that the recognition of pyrimidine modifications might be a rate-limiting step. In the C-terminal half, the enzyme harbors a Helix-hairpin-Helix DNA glycosylase domain followed by a unique C-terminal domain. We show that the isolated glycosylase domain is inactive for base excision, but retains partial AP lyase activity. Addition of the C-terminal domain restores the base excision activity and increases the AP lyase activity as well. Furthermore, the two domains remain tightly associated and can be co-purified by chromatography. We suggest that the C-terminal domain of ROS1 is indispensable for the 5mC DNA glycosylase activity of ROS1. PMID:25240767

  8. Structure of a DNA glycosylase that unhooks interstrand cross-links.

    PubMed

    Mullins, Elwood A; Warren, Garrett M; Bradley, Noah P; Eichman, Brandt F

    2017-04-10

    DNA glycosylases are important editing enzymes that protect genomic stability by excising chemically modified nucleobases that alter normal DNA metabolism. These enzymes have been known only to initiate base excision repair of small adducts by extrusion from the DNA helix. However, recent reports have described both vertebrate and microbial DNA glycosylases capable of unhooking highly toxic interstrand cross-links (ICLs) and bulky minor groove adducts normally recognized by Fanconi anemia and nucleotide excision repair machinery, although the mechanisms of these activities are unknown. Here we report the crystal structure of Streptomyces sahachiroi AlkZ (previously Orf1), a bacterial DNA glycosylase that protects its host by excising ICLs derived from azinomycin B (AZB), a potent antimicrobial and antitumor genotoxin. AlkZ adopts a unique fold in which three tandem winged helix-turn-helix motifs scaffold a positively charged concave surface perfectly shaped for duplex DNA. Through mutational analysis, we identified two glutamine residues and a β-hairpin within this putative DNA-binding cleft that are essential for catalytic activity. Additionally, we present a molecular docking model for how this active site can unhook either or both sides of an AZB ICL, providing a basis for understanding the mechanisms of base excision repair of ICLs. Given the prevalence of this protein fold in pathogenic bacteria, this work also lays the foundation for an emerging role of DNA repair in bacteria-host pathogenesis.

  9. Functional changes in a novel uracil-DNA glycosylase determined by mutational analyses.

    PubMed

    Im, E K; Han, Y S; Chung, J H

    2008-01-01

    Uracil-DNA glycosylase (UDG) is a ubiquitous enzyme found in bacteria and eukaryotes, which removes uracil residues from DNA strands. Methanococcus jannaschii UDG (MjUDG), a novel monofunctional glycosylase, contains a helix-hairpin-helix (HhH) motif and Gly/Pro rich loop (GPD region), which is important for catalytic activity; it shares these features with other glycosylases such as endonuclease III. First, to examine the role of two conserved amino acid residues (Asp150 and Tyr152) in the HhH-GPD region of MjUDG, mutant MjUDG proteins were constructed, in which Asp 150 was replaced with either Glu or Trp (D150E and D150W), Tyr152 was replaced with either Glu or Asn (Y152E and Y152N). Mutant D150W completely lacked DNA glycosylase activity, whereas D150E displayed reduced activity of about 70% of the wild type value. However, the mutants Y152E and Y152N retained unchanged levels of UDG activity. We also replaced Glu132 in the HhH motif with a lysine residue equivalent to Lys120 in endonuclease III. This mutation converted the enzyme into a bifunctional glycosylase/AP lyase capable of both removing uracil at a glycosylic bond and cleaving the phosphodiester backbone at an AP site. Mutant E132K catalyzes a beta-elimination reaction at the AP site via uracil excision and forms a Schiff base intermediate in the form of a protein-DNA complex.

  10. Atomic substitution reveals the structural basis for substrate adenine recognition and removal by adenine DNA glycosylase

    SciTech Connect

    Lee, Seongmin; Verdine, Gregory L.

    2010-01-14

    Adenine DNA glycosylase catalyzes the glycolytic removal of adenine from the promutagenic A {center_dot} oxoG base pair in DNA. The general features of DNA recognition by an adenine DNA glycosylase, Bacillus stearothermophilus MutY, have previously been revealed via the X-ray structure of a catalytically inactive mutant protein bound to an A:oxoG-containing DNA duplex. Although the structure revealed the substrate adenine to be, as expected, extruded from the DNA helix and inserted into an extrahelical active site pocket on the enzyme, the substrate adenine engaged in no direct contacts with active site residues. This feature was paradoxical, because other glycosylases have been observed to engage their substrates primarily through direct contacts. The lack of direct contacts in the case of MutY suggested that either MutY uses a distinctive logic for substrate recognition or that the X-ray structure had captured a noncatalytically competent state in lesion recognition. To gain further insight into this issue, we crystallized wild-type MutY bound to DNA containing a catalytically inactive analog of 2'-deoxyadenosine in which a single 2'-H atom was replaced by fluorine. The structure of this fluorinated lesion-recognition complex (FLRC) reveals the substrate adenine buried more deeply into the active site pocket than in the prior structure and now engaged in multiple direct hydrogen bonding and hydrophobic interactions. This structure appears to capture the catalytically competent state of adenine DNA glycosylases, and it suggests a catalytic mechanism for this class of enzymes, one in which general acid-catalyzed protonation of the nucleobase promotes glycosidic bond cleavage.

  11. A discontinuous DNA glycosylase domain in a family of enzymes that excise 5-methylcytosine

    PubMed Central

    Ponferrada-Marín, María Isabel; Parrilla-Doblas, Jara Teresa; Roldán-Arjona, Teresa; Ariza, Rafael R.

    2011-01-01

    DNA cytosine methylation (5-meC) is a widespread epigenetic mark associated to gene silencing. In plants, DEMETER-LIKE (DML) proteins typified by Arabidopsis REPRESSOR OF SILENCING 1 (ROS1) initiate active DNA demethylation by catalyzing 5-meC excision. DML proteins belong to the HhH-GPD superfamily, the largest and most functionally diverse group of DNA glycosylases, but the molecular properties that underlie their capacity to specifically recognize and excise 5-meC are largely unknown. We have found that sequence similarity to HhH-GPD enzymes in DML proteins is actually distributed over two non-contiguous segments connected by a predicted disordered region. We used homology-based modeling to locate candidate residues important for ROS1 function in both segments, and tested our predictions by site-specific mutagenesis. We found that amino acids T606 and D611 are essential for ROS1 DNA glycosylase activity, whereas mutations in either of two aromatic residues (F589 and Y1028) reverse the characteristic ROS1 preference for 5-meC over T. We also found evidence suggesting that ROS1 uses Q607 to flip out 5-meC, while the contiguous N608 residue contributes to sequence-context specificity. In addition to providing novel insights into the molecular basis of 5-meC excision, our results reveal that ROS1 and its DML homologs possess a discontinuous catalytic domain that is unprecedented among known DNA glycosylases. PMID:21036872

  12. 5-Methylcytosine Recognition by Arabidopsis thaliana DNA Glycosylases DEMETER and DML3

    PubMed Central

    2015-01-01

    Methylation of cytosine to 5-methylcytosine (5mC) is important for gene expression, gene imprinting, X-chromosome inactivation, and transposon silencing. Active demethylation in animals is believed to proceed by DNA glycosylase removal of deaminated or oxidized 5mC. In plants, 5mC is removed from the genome directly by the DEMETER (DME) family of DNA glycosylases. Arabidopsis thaliana DME excises 5mC to activate expression of maternally imprinted genes. Although the related Repressor of Silencing 1 (ROS1) enzyme has been characterized, the molecular basis for 5mC recognition by DME has not been investigated. Here, we present a structure–function analysis of DME and the related DME-like 3 (DML3) glycosylases for 5mC and its oxidized derivatives. Relative to 5mC, DME and DML3 exhibited robust activity toward 5-hydroxymethylcytosine, limited activity for 5-carboxylcytosine, and no activity for 5-formylcytosine. We used homology modeling and mutational analysis of base excision and DNA binding to identify residues important for recognition of 5mC within the context of DNA and inside the enzyme active site. Our results indicate that the 5mC binding pocket is composed of residues from discrete domains and is responsible for discrimination against 5mC derivatives, and suggest that DME, ROS1, and DML3 utilize subtly different mechanisms to probe the DNA duplex for cytosine modifications. PMID:24678721

  13. Activation of cellular signaling by 8-oxoguanine DNA glycosylase-1-initiated DNA base excision repair.

    PubMed

    German, Peter; Szaniszlo, Peter; Hajas, Gyorgy; Radak, Zsolt; Bacsi, Attila; Hazra, Tapas K; Hegde, Muralidhar L; Ba, Xueqing; Boldogh, Istvan

    2013-10-01

    Accumulation of 8-oxo-7,8-dihydroguanine (8-oxoG) in the DNA results in genetic instability and mutagenesis, and is believed to contribute to carcinogenesis, aging processes and various aging-related diseases. 8-OxoG is removed from the DNA via DNA base excision repair (BER), initiated by 8-oxoguanine DNA glycosylase-1 (OGG1). Our recent studies have shown that OGG1 binds its repair product 8-oxoG base with high affinity at a site independent from its DNA lesion-recognizing catalytic site and the OGG1•8-oxoG complex physically interacts with canonical Ras family members. Furthermore, exogenously added 8-oxoG base enters the cells and activates Ras GTPases; however, a link has not yet been established between cell signaling and DNA BER, which is the endogenous source of the 8-oxoG base. In this study, we utilized KG-1 cells expressing a temperature-sensitive mutant OGG1, siRNA ablation of gene expression, and a variety of molecular biological assays to define a link between OGG1-BER and cellular signaling. The results show that due to activation of OGG1-BER, 8-oxoG base is released from the genome in sufficient quantities for activation of Ras GTPase and resulting in phosphorylation of the downstream Ras targets Raf1, MEK1,2 and ERK1,2. These results demonstrate a previously unrecognized mechanism for cellular responses to OGG1-initiated DNA BER.

  14. A New Protein Architecture for Processing Alkylation Damaged DNA: The Crystal Structure of DNA Glycosylase AlkD

    SciTech Connect

    Rubinson, Emily H.; Metz, Audrey H.; O'Quin, Jami; Eichman, Brandt F.

    2008-12-15

    DNA glycosylases safeguard the genome by locating and excising chemically modified bases from DNA. AlkD is a recently discovered bacterial DNA glycosylase that removes positively charged methylpurines from DNA, and was predicted to adopt a protein fold distinct from from those of other DNA repair proteins. The crystal structure of Bacillus cereus AlkD presented here shows that the protein is composed exclusively of helical HEAT-like repeats, which form a solenoid perfectly shaped to accommodate a DNA duplex on the concave surface. Structural analysis of the variant HEAT repeats in AlkD provides a rationale for how this protein scaffolding motif has been modified to bind DNA. We report 7mG excision and DNA binding activities of AlkD mutants, along with a comparison of alkylpurine DNA glycosylase structures. Together, these data provide important insight into the requirements for alkylation repair within DNA and suggest that AlkD utilizes a novel strategy to manipulate DNA in its search for alkylpurine bases.

  15. Physical and functional interaction of human nuclear uracil-DNA glycosylase with proliferating cell nuclear antigen☆

    PubMed Central

    Ko, Rinkei; Bennett, Samuel E.

    2011-01-01

    Uracil residues arise in DNA by the misincorporation of dUMP in place of dTMP during DNA replication or by the deamination of cytosine in DNA. Uracil-DNA glycosylase initiates DNA base excision repair of uracil residues by catalyzing the hydrolysis of the N-glycosylic bond linking the uracil base to deoxyribose. In human cells, the nuclear form of uracil-DNA glycosylase (UNG2) contains a conserved PCNA-binding motif located at the N-terminus that has been implicated experimentally in binding PCNA. Here we use purified preparations of UNG2 and PCNA to demonstrate that UNG2 physically associates with PCNA. UNG2 co-eluted with PCNA during size exclusion chromatography and bound to a PCNA affinity column. Association of UNG2 with PCNA was abolished by the addition of 100 mM NaCl, and significantly decreased in the presence of 10 mM MgCl2. The functional significance of the UNG2·PCNA association was demonstrated by UNG2 activity assays. Addition of PCNA (30–810 pmol) to standard uracil-DNA glycosylase reactions containing linear [uracil-3H]DNA stimulated UNG2 catalytic activity up to 2.6-fold. UNG2 activity was also stimulated by 7.5 mM MgCl2. The stimulatory effect of PCNA was increased by the addition of MgCl2; however, the dependence on PCNA concentration was the same, indicating that the effects of MgCl2 and PCNA on UNG2 activity occurred by independent mechanisms. Loading of PCNA onto the DNA substrate was required for stimulation, as the activity of UNG2 on circular DNA substrates was not affected by the addition of PCNA. Addition of replication factor C and ATP to reactions containing 90 pmol of PCNA resulted in two-fold stimulation of UNG2 activity on circular DNA. PMID:16216562

  16. Expression and the Peculiar Enzymatic Behavior of the Trypanosoma cruzi NTH1 DNA Glycosylase

    PubMed Central

    Ormeño, Fernando; Barrientos, Camila; Ramirez, Santiago; Ponce, Iván; Valenzuela, Lucía; Sepúlveda, Sofía; Bitar, Mainá; Kemmerling, Ulrike; Machado, Carlos Renato; Cabrera, Gonzalo; Galanti, Norbel

    2016-01-01

    Trypanosoma cruzi, the etiological agent of Chagas’ disease, presents three cellular forms (trypomastigotes, epimastigotes and amastigotes), all of which are submitted to oxidative species in its hosts. However, T. cruzi is able to resist oxidative stress suggesting a high efficiency of its DNA repair machinery.The Base Excision Repair (BER) pathway is one of the main DNA repair mechanisms in other eukaryotes and in T. cruzi as well. DNA glycosylases are enzymes involved in the recognition of oxidative DNA damage and in the removal of oxidized bases, constituting the first step of the BER pathway. Here, we describe the presence and activity of TcNTH1, a nuclear T. cruzi DNA glycosylase. Surprisingly, purified recombinant TcNTH1 does not remove the thymine glycol base, but catalyzes the cleavage of a probe showing an AP site. The same activity was found in epimastigote and trypomastigote homogenates suggesting that the BER pathway is not involved in thymine glycol DNA repair. TcNTH1 DNA-binding properties assayed in silico are in agreement with the absence of a thymine glycol removing function of that parasite enzyme. Over expression of TcNTH1 decrease parasite viability when transfected epimastigotes are submitted to a sustained production of H2O2.Therefore, TcNTH1 is the only known NTH1 orthologous unable to eliminate thymine glycol derivatives but that recognizes and cuts an AP site, most probably by a beta-elimination mechanism. We cannot discard that TcNTH1 presents DNA glycosylase activity on other DNA base lesions. Accordingly, a different DNA repair mechanism should be expected leading to eliminate thymine glycol from oxidized parasite DNA. Furthermore, TcNTH1 may play a role in the AP site recognition and processing. PMID:27284968

  17. Excised damaged base determines the turnover of human N-methylpurine-DNA glycosylase.

    PubMed

    Adhikari, Sanjay; Uren, Aykut; Roy, Rabindra

    2009-10-02

    N-Methylpurine-DNA glycosylase (MPG) initiates base excision repair in DNA by removing a wide variety of alkylated, deaminated, and lipid peroxidation-induced purine adducts. In this study, we tested the role of excised base on MPG enzymatic activity. After the reaction, MPG produced two products: free damaged base and AP-site containing DNA. Our results showed that MPG excises 1,N(6)-ethenoadenine (varepsilonA) from varepsilonA-containing oligonucleotide (varepsilonA-DNA) at a similar or slightly increased efficiency than it does hypoxanthine (Hx) from Hx-containing oligonucleotide (Hx-DNA) under similar conditions. Real-time binding experiments by surface plasmon resonance (SPR) spectroscopy suggested that both the substrate DNAs have a similar equilibrium binding constant (K(D)) towards MPG, but under single-turnover (STO) condition there is apparently no effect on catalytic chemistry; however, the turnover of the enzyme under multiple-turnover (MTO) condition is higher for varepsilonA-DNA than it is for Hx-DNA. Real-time binding experiments by SPR spectroscopy further showed that the dissociation of MPG from its product, AP-site containing DNA, is faster than the overall turnover of either Hx- or varepsilonA-DNA reaction. We thereby conclude that the excised base plays a critical role in product inhibition and, hence, is essential for MPG glycosylase activity. Thus, the results provide the first evidence that the excised base rather than AP-site could be rate-limiting for DNA-glycosylase reactions.

  18. Small Molecule Inhibitors of 8-Oxoguanine DNA Glycosylase-1 (OGG1).

    PubMed

    Donley, Nathan; Jaruga, Pawel; Coskun, Erdem; Dizdaroglu, Miral; McCullough, Amanda K; Lloyd, R Stephen

    2015-10-16

    The DNA base excision repair (BER) pathway, which utilizes DNA glycosylases to initiate repair of specific DNA lesions, is the major pathway for the repair of DNA damage induced by oxidation, alkylation, and deamination. Early results from clinical trials suggest that inhibiting certain enzymes in the BER pathway can be a useful anticancer strategy when combined with certain DNA-damaging agents or tumor-specific genetic deficiencies. Despite this general validation of BER enzymes as drug targets, there are many enzymes that function in the BER pathway that have few, if any, specific inhibitors. There is a growing body of evidence that suggests inhibition of 8-oxoguanine DNA glycosylase-1 (OGG1) could be useful as a monotherapy or in combination therapy to treat certain types of cancer. To identify inhibitors of OGG1, a fluorescence-based screen was developed to analyze OGG1 activity in a high-throughput manner. From a primary screen of ∼50,000 molecules, 13 inhibitors were identified, 12 of which were hydrazides or acyl hydrazones. Five inhibitors with an IC50 value of less than 1 μM were chosen for further experimentation and verified using two additional biochemical assays. None of the five OGG1 inhibitors reduced DNA binding of OGG1 to a 7,8-dihydro-8-oxoguanine (8-oxo-Gua)-containing substrate, but all five inhibited Schiff base formation during OGG1-mediated catalysis. All of these inhibitors displayed a >100-fold selectivity for OGG1 relative to several other DNA glycosylases involved in repair of oxidatively damaged bases. These inhibitors represent the most potent and selective OGG1 inhibitors identified to date.

  19. Human immunodeficiency virus type 1 Vpr protein binds to the uracil DNA glycosylase DNA repair enzyme.

    PubMed Central

    Bouhamdan, M; Benichou, S; Rey, F; Navarro, J M; Agostini, I; Spire, B; Camonis, J; Slupphaug, G; Vigne, R; Benarous, R; Sire, J

    1996-01-01

    The role of the accessory gene product Vpr during human immunodeficiency virus type 1 infection remains unclear. We have used the yeast two-hybrid system to identify cellular proteins that interact with Vpr and could be involved in its function. A cDNA clone which encodes the human uracil DNA glycosylase (UNG), a DNA repair enzyme involved in removal of uracil in DNA, has been isolated. Interaction between Vpr and UNG has been demonstrated by in vitro protein-protein binding assays using translated, radiolabeled Vpr and UNG recombinant proteins expressed as a glutathione S-transferase fusion protein. Conversely, purified UNG has been demonstrated to interact with Vpr recombinant protein expressed as a glutathione S-transferase fusion protein. Coimmunoprecipitation experiments confirmed that Vpr and UNG are associated within cells expressing Vpr. By using a panel of C- and N-terminally deleted Vpr mutants, we have determined that the core protein of Vpr, spanning amino acids 15 to 77, is involved in the interaction with UNG. We also demonstrate by in vitro experiments that the enzymatic activity of UNG is retained upon interaction with Vpr. PMID:8551605

  20. Thymine DNA Glycosylase Is Essential for Active DNA Demethylation by Linked Deamination-Base Excision Repair

    PubMed Central

    Cortellino, Salvatore; Xu, Jinfei; Sannai, Mara; Moore, Robert; Caretti, Elena; Cigliano, Antonio; Le Coz, Madeleine; Devarajan, Karthik; Wessels, Andy; Soprano, Dianne; Abramowitz, Lara K.; Bartolomei, Marisa S.; Rambow, Florian; Bassi, Maria Rosaria; Bruno, Tiziana; Fanciulli, Maurizio; Renner, Catherine; Klein-Szanto, Andres J.; Matsumoto, Yoshihiro; Kobi, Dominique; Davidson, Irwin; Alberti, Christophe; Larue, Lionel; Bellacosa, Alfonso

    2011-01-01

    Summary DNA methylation is a major epigenetic mechanism for gene silencing. While methyltransferases mediate cytosine methylation, it is less clear how unmethylated regions in mammalian genomes are protected from de novo methylation and whether an active demethylating activity is involved. Here we show that either knockout or catalytic inactivation of the DNA repair enzyme Thymine DNA Glycosylase (TDG) leads to embryonic lethality in mice. TDG is necessary for recruiting p300 to retinoic acid (RA)-regulated promoters, protection of CpG islands from hypermethylation, and active demethylation of tissue-specific, developmentally- and hormonally-regulated promoters and enhancers. TDG interacts with the deaminase AID and the damage-response protein GADD45a. These findings highlight a dual role for TDG in promoting proper epigenetic states during development and suggest a two-step mechanism for DNA demethylation in mammals, whereby 5-methylcytosine and 5-hydroxymethylcytosine are first deaminated by AID to thymine and 5-hydroxymethyluracil, respectively, followed by TDG-mediated thymine and 5-hydroxymethyluracil excision repair. PMID:21722948

  1. Zinc finger oxidation of Fpg/Nei DNA glycosylases by 2-thioxanthine: biochemical and X-ray structural characterization

    PubMed Central

    Biela, Artur; Coste, Franck; Culard, Françoise; Guerin, Martine; Goffinont, Stéphane; Gasteiger, Karola; Cieśla, Jarosław; Winczura, Alicja; Kazimierczuk, Zygmunt; Gasparutto, Didier; Carell, Thomas; Tudek, Barbara; Castaing, Bertrand

    2014-01-01

    DNA glycosylases from the Fpg/Nei structural superfamily are base excision repair enzymes involved in the removal of a wide variety of mutagen and potentially lethal oxidized purines and pyrimidines. Although involved in genome stability, the recent discovery of synthetic lethal relationships between DNA glycosylases and other pathways highlights the potential of DNA glycosylase inhibitors for future medicinal chemistry development in cancer therapy. By combining biochemical and structural approaches, the physical target of 2-thioxanthine (2TX), an uncompetitive inhibitor of Fpg, was identified. 2TX interacts with the zinc finger (ZnF) DNA binding domain of the enzyme. This explains why the zincless hNEIL1 enzyme is resistant to 2TX. Crystal structures of the enzyme bound to DNA in the presence of 2TX demonstrate that the inhibitor chemically reacts with cysteine thiolates of ZnF and induces the loss of zinc. The molecular mechanism by which 2TX inhibits Fpg may be generalized to all prokaryote and eukaryote ZnF-containing Fpg/Nei-DNA glycosylases. Cell experiments show that 2TX can operate in cellulo on the human Fpg/Nei DNA glycosylases. The atomic elucidation of the determinants for the interaction of 2TX to Fpg provides the foundation for the future design and synthesis of new inhibitors with high efficiency and selectivity. PMID:25143530

  2. Induction of NEIL1 and NEIL2 DNA glycosylases in aniline-induced splenic toxicity.

    PubMed

    Ma, Huaxian; Wang, Jianling; Abdel-Rahman, Sherif Z; Hazra, Tapas K; Boor, Paul J; Khan, M Firoze

    2011-02-15

    The mechanisms by which aniline exposure elicits splenotoxic response, especially the tumorigenic response, are not well-understood. Earlier, we have shown that aniline-induced oxidative stress is associated with increased oxidative DNA damage in rat spleen. The base excision repair (BER) pathway is the major mechanism for the repair of oxidative DNA base lesions, and we have shown an up-regulation of 8-oxoguanine glycosylase 1 (OGG1), a specific DNA glycosylase involved in the removal of 8-hydroxy-2'-deoxyguanosine (8-OHdG) adducts, following aniline exposure. Nei-like DNA glycosylases (NEIL1/2) belong to a family of BER proteins that are distinct from other DNA glycosylases, including OGG1. However, contribution of NEIL1/2 in the repair of aniline-induced oxidative DNA damage in the spleen is not known. This study was, therefore, focused on evaluating if NEILs also contribute to the repair of oxidative DNA lesions in the spleen following aniline exposure. To achieve that, male SD rats were subchronically exposed to aniline (0.5 mmol/kg/day via drinking water for 30 days), while controls received drinking water only. The BER activity of NEIL1/2 was assayed using a bubble structure substrate containing 5-OHU (preferred substrates for NEIL1 and NEIL2) and by quantitating the cleavage products. Aniline treatment led to a 1.25-fold increase in the NEIL1/2-associated BER activity in the nuclear extracts of spleen compared to the controls. Real-time PCR analysis for NEIL1 and NEIL2 mRNA expression in the spleen revealed 2.7- and 3.9-fold increases, respectively, in aniline-treated rats compared to controls. Likewise, Western blot analysis showed that protein expression of NEIL1 and NEIL2 in the nuclear extract of spleens from aniline-treated rats was 2.0- and 3.8-fold higher than controls, respectively. Aniline treatment also led to stronger immunoreactivity for NEIL1 and NEIL2 in the spleens, confined to the red pulp areas. These studies, thus, show that aniline

  3. Induction of NEIL1 and NEIL2 DNA glycosylases in aniline-induced splenic toxicity

    SciTech Connect

    Ma Huaxian; Wang Jianling; Abdel-Rahman, Sherif Z.; Hazra, Tapas K.; Boor, Paul J.; Khan, M. Firoze

    2011-02-15

    The mechanisms by which aniline exposure elicits splenotoxic response, especially the tumorigenic response, are not well-understood. Earlier, we have shown that aniline-induced oxidative stress is associated with increased oxidative DNA damage in rat spleen. The base excision repair (BER) pathway is the major mechanism for the repair of oxidative DNA base lesions, and we have shown an up-regulation of 8-oxoguanine glycosylase 1 (OGG1), a specific DNA glycosylase involved in the removal of 8-hydroxy-2'-deoxyguanosine (8-OHdG) adducts, following aniline exposure. Nei-like DNA glycosylases (NEIL1/2) belong to a family of BER proteins that are distinct from other DNA glycosylases, including OGG1. However, contribution of NEIL1/2 in the repair of aniline-induced oxidative DNA damage in the spleen is not known. This study was, therefore, focused on evaluating if NEILs also contribute to the repair of oxidative DNA lesions in the spleen following aniline exposure. To achieve that, male SD rats were subchronically exposed to aniline (0.5 mmol/kg/day via drinking water for 30 days), while controls received drinking water only. The BER activity of NEIL1/2 was assayed using a bubble structure substrate containing 5-OHU (preferred substrates for NEIL1 and NEIL2) and by quantitating the cleavage products. Aniline treatment led to a 1.25-fold increase in the NEIL1/2-associated BER activity in the nuclear extracts of spleen compared to the controls. Real-time PCR analysis for NEIL1 and NEIL2 mRNA expression in the spleen revealed 2.7- and 3.9-fold increases, respectively, in aniline-treated rats compared to controls. Likewise, Western blot analysis showed that protein expression of NEIL1 and NEIL2 in the nuclear extract of spleens from aniline-treated rats was 2.0- and 3.8-fold higher than controls, respectively. Aniline treatment also led to stronger immunoreactivity for NEIL1 and NEIL2 in the spleens, confined to the red pulp areas. These studies, thus, show that aniline

  4. Listeria monocytogenes DNA Glycosylase AdlP Affects Flagellar Motility, Biofilm Formation, Virulence, and Stress Responses

    PubMed Central

    Zhang, Ting; Bae, Dongryeoul

    2016-01-01

    ABSTRACT The temperature-dependent alteration of flagellar motility gene expression is critical for the foodborne pathogen Listeria monocytogenes to respond to a changing environment. In this study, a genetic determinant, L. monocytogenes f2365_0220 (lmof2365_0220), encoding a putative protein that is structurally similar to the Bacillus cereus alkyl base DNA glycosylase (AlkD), was identified. This determinant was involved in the transcriptional repression of flagellar motility genes and was named adlP (encoding an AlkD-like protein [AdlP]). Deletion of adlP activated the expression of flagellar motility genes at 37°C and disrupted the temperature-dependent inhibition of L. monocytogenes motility. The adlP null strains demonstrated decreased survival in murine macrophage-like RAW264.7 cells and less virulence in mice. Furthermore, the deletion of adlP significantly decreased biofilm formation and impaired the survival of bacteria under several stress conditions, including the presence of a DNA alkylation compound (methyl methanesulfonate), an oxidative agent (H2O2), and aminoglycoside antibiotics. Our findings strongly suggest that adlP may encode a bifunctional protein that transcriptionally represses the expression of flagellar motility genes and influences stress responses through its DNA glycosylase activity. IMPORTANCE We discovered a novel protein that we named AlkD-like protein (AdlP). This protein affected flagellar motility, biofilm formation, and virulence. Our data suggest that AdlP may be a bifunctional protein that represses flagellar motility genes and influences stress responses through its DNA glycosylase activity. PMID:27316964

  5. Active destabilization of base pairs by a DNA glycosylase wedge initiates damage recognition.

    PubMed

    Kuznetsov, Nikita A; Bergonzo, Christina; Campbell, Arthur J; Li, Haoquan; Mechetin, Grigory V; de los Santos, Carlos; Grollman, Arthur P; Fedorova, Olga S; Zharkov, Dmitry O; Simmerling, Carlos

    2015-01-01

    Formamidopyrimidine-DNA glycosylase (Fpg) excises 8-oxoguanine (oxoG) from DNA but ignores normal guanine. We combined molecular dynamics simulation and stopped-flow kinetics with fluorescence detection to track the events in the recognition of oxoG by Fpg and its mutants with a key phenylalanine residue, which intercalates next to the damaged base, changed to either alanine (F110A) or fluorescent reporter tryptophan (F110W). Guanine was sampled by Fpg, as evident from the F110W stopped-flow traces, but less extensively than oxoG. The wedgeless F110A enzyme could bend DNA but failed to proceed further in oxoG recognition. Modeling of the base eversion with energy decomposition suggested that the wedge destabilizes the intrahelical base primarily through buckling both surrounding base pairs. Replacement of oxoG with abasic (AP) site rescued the activity, and calculations suggested that wedge insertion is not required for AP site destabilization and eversion. Our results suggest that Fpg, and possibly other DNA glycosylases, convert part of the binding energy into active destabilization of their substrates, using the energy differences between normal and damaged bases for fast substrate discrimination.

  6. Cadmium(II) inhibition of human uracil-DNA glycosylase by catalytic water supplantation

    NASA Astrophysics Data System (ADS)

    Gokey, Trevor; Hang, Bo; Guliaev, Anton B.

    2016-12-01

    Toxic metals are known to inhibit DNA repair but the underlying mechanisms of inhibition are still not fully understood. DNA repair enzymes such as human uracil-DNA glycosylase (hUNG) perform the initial step in the base excision repair (BER) pathway. In this work, we showed that cadmium [Cd(II)], a known human carcinogen, inhibited all activity of hUNG at 100 μM. Computational analyses based on 2 μs equilibrium, 1.6 μs steered molecular dynamics (SMD), and QM/MM MD determined that Cd(II) ions entered the enzyme active site and formed close contacts with both D145 and H148, effectively replacing the catalytic water normally found in this position. Geometry refinement by density functional theory (DFT) calculations showed that Cd(II) formed a tetrahedral structure with D145, P146, H148, and one water molecule. This work for the first time reports Cd(II) inhibition of hUNG which was due to replacement of the catalytic water by binding the active site D145 and H148 residues. Comparison of the proposed metal binding site to existing structural data showed that D145:H148 followed a general metal binding motif favored by Cd(II). The identified motif offered structural insights into metal inhibition of other DNA repair enzymes and glycosylases.

  7. Cadmium(II) inhibition of human uracil-DNA glycosylase by catalytic water supplantation

    PubMed Central

    Gokey, Trevor; Hang, Bo; Guliaev, Anton B.

    2016-01-01

    Toxic metals are known to inhibit DNA repair but the underlying mechanisms of inhibition are still not fully understood. DNA repair enzymes such as human uracil-DNA glycosylase (hUNG) perform the initial step in the base excision repair (BER) pathway. In this work, we showed that cadmium [Cd(II)], a known human carcinogen, inhibited all activity of hUNG at 100 μM. Computational analyses based on 2 μs equilibrium, 1.6 μs steered molecular dynamics (SMD), and QM/MM MD determined that Cd(II) ions entered the enzyme active site and formed close contacts with both D145 and H148, effectively replacing the catalytic water normally found in this position. Geometry refinement by density functional theory (DFT) calculations showed that Cd(II) formed a tetrahedral structure with D145, P146, H148, and one water molecule. This work for the first time reports Cd(II) inhibition of hUNG which was due to replacement of the catalytic water by binding the active site D145 and H148 residues. Comparison of the proposed metal binding site to existing structural data showed that D145:H148 followed a general metal binding motif favored by Cd(II). The identified motif offered structural insights into metal inhibition of other DNA repair enzymes and glycosylases. PMID:27974818

  8. Crystal Structure of Human Thymine DNA Glycosylase Bound to DNA Elucidates Sequence-Specific Mismatch Recognition

    SciTech Connect

    Maiti, A.; Morgan, M.T.; Pozharski, E.; Drohat, A.C.

    2009-05-19

    Cytosine methylation at CpG dinucleotides produces m{sup 5}CpG, an epigenetic modification that is important for transcriptional regulation and genomic stability in vertebrate cells. However, m{sup 5}C deamination yields mutagenic G{center_dot}T mispairs, which are implicated in genetic disease, cancer, and aging. Human thymine DNA glycosylase (hTDG) removes T from G{center_dot}T mispairs, producing an abasic (or AP) site, and follow-on base excision repair proteins restore the G{center_dot}C pair. hTDG is inactive against normal A{center_dot}T pairs, and is most effective for G{center_dot}T mispairs and other damage located in a CpG context. The molecular basis of these important catalytic properties has remained unknown. Here, we report a crystal structure of hTDG (catalytic domain, hTDG{sup cat}) in complex with abasic DNA, at 2.8 {angstrom} resolution. Surprisingly, the enzyme crystallized in a 2:1 complex with DNA, one subunit bound at the abasic site, as anticipated, and the other at an undamaged (nonspecific) site. Isothermal titration calorimetry and electrophoretic mobility-shift experiments indicate that hTDG and hTDG{sup cat} can bind abasic DNA with 1:1 or 2:1 stoichiometry. Kinetics experiments show that the 1:1 complex is sufficient for full catalytic (base excision) activity, suggesting that the 2:1 complex, if adopted in vivo, might be important for some other activity of hTDG, perhaps binding interactions with other proteins. Our structure reveals interactions that promote the stringent specificity for guanine versus adenine as the pairing partner of the target base and interactions that likely confer CpG sequence specificity. We find striking differences between hTDG and its prokaryotic ortholog (MUG), despite the relatively high (32%) sequence identity.

  9. Correlated Mutation in the Evolution of Catalysis in Uracil DNA Glycosylase Superfamily

    PubMed Central

    Xia, Bo; Liu, Yinling; Guevara, Jose; Li, Jing; Jilich, Celeste; Yang, Ye; Wang, Liangjiang; Dominy, Brian N.; Cao, Weiguo

    2017-01-01

    Enzymes in Uracil DNA glycosylase (UDG) superfamily are essential for the removal of uracil. Family 4 UDGa is a robust uracil DNA glycosylase that only acts on double-stranded and single-stranded uracil-containing DNA. Based on mutational, kinetic and modeling analyses, a catalytic mechanism involving leaving group stabilization by H155 in motif 2 and water coordination by N89 in motif 3 is proposed. Mutual Information analysis identifies a complexed correlated mutation network including a strong correlation in the EG doublet in motif 1 of family 4 UDGa and in the QD doublet in motif 1 of family 1 UNG. Conversion of EG doublet in family 4 Thermus thermophilus UDGa to QD doublet increases the catalytic efficiency by over one hundred-fold and seventeen-fold over the E41Q and G42D single mutation, respectively, rectifying the strong correlation in the doublet. Molecular dynamics simulations suggest that the correlated mutations in the doublet in motif 1 position the catalytic H155 in motif 2 to stabilize the leaving uracilate anion. The integrated approach has important implications in studying enzyme evolution and protein structure and function.

  10. The oxidative DNA glycosylases of Mycobacterium tuberculosis exhibit different substrate preferences from their Escherichia coli counterparts

    PubMed Central

    Guo, Yin; Bandaru, Viswanath; Jaruga, Pawel; Zhao, Xiaobei; Burrows, Cynthia J.; Iwai, Shigenori; Dizdaroglu, Miral; Bond, Jeffrey P.; Wallace, Susan S.

    2010-01-01

    The DNA glycosylases that remove oxidized DNA bases fall into two general families: the Fpg/Nei family and the Nth superfamily. Based on protein sequence alignments, we identified four putative Fpg/Nei family members, as well as a putative Nth protein in Mycobacterium tuberculosis H37Rv. All four Fpg/Nei proteins were successfully overexpressed using a bicistronic vector created in our laboratory. The MtuNth protein was also overexpressed in soluble form. The substrate specificities of the purified enzymes were characterized in vitro with oligodeoxynucleotide substrates containing single lesions. Some were further characterized by gas chromatography/mass spectrometry (GC/MS) analysis of products released from γ-irradiated DNA. MtuFpg1 has a substrate specificity similar to that of EcoFpg. Both EcoFpg and MtuFpg1 are more efficient at removing spiroiminodihydantoin (Sp) than 7,8-dihydro-8-oxoguanine (8-oxoG). However, MtuFpg1 shows a substantially increased opposite base discrimination compared to EcoFpg. MtuFpg2 contains only the C-terminal domain of an Fpg protein and has no detectable DNA binding activity or DNA glycosylase/lyase activity and thus appears to be a pseudogene. MtuNei1 recognizes oxidized pyrimidines on both double-stranded and single-stranded DNA and exhibits uracil DNA glycosylase activity. MtuNth recognizes a variety of oxidized bases, including urea, 5,6-dihydrouracil (DHU), 5-hydroxyuracil (5-OHU), 5-hydroxycytosine (5-OHC) and methylhydantoin (MeHyd). Both MtuNei1 and MtuNth excise thymine glycol (Tg); however, MtuNei1 strongly prefers the (5R) isomers, whereas MtuNth recognizes only the (5S) isomers. MtuNei2 did not demonstrate activity in vitro as a recombinant protein, but like MtuNei1 when expressed in Escherichia coli, it decreased the spontaneous mutation frequency of both the fpg mutY nei triple and nei nth double mutants, suggesting that MtuNei2 is functionally active in vivo recognizing both guanine and cytosine oxidation products

  11. Structural basis of damage recognition by thymine DNA glycosylase: Key roles for N-terminal residues

    PubMed Central

    Coey, Christopher T.; Malik, Shuja S.; Pidugu, Lakshmi S.; Varney, Kristen M.; Pozharski, Edwin; Drohat, Alexander C.

    2016-01-01

    Thymine DNA Glycosylase (TDG) is a base excision repair enzyme functioning in DNA repair and epigenetic regulation. TDG removes thymine from mutagenic G·T mispairs arising from deamination of 5-methylcytosine (mC), and it processes other deamination-derived lesions including uracil (U). Essential for DNA demethylation, TDG excises 5-formylcytosine and 5-carboxylcytosine, derivatives of mC generated by Tet (ten-eleven translocation) enzymes. Here, we report structural and functional studies of TDG82-308, a new construct containing 29 more N-terminal residues than TDG111-308, the construct used for previous structures of DNA-bound TDG. Crystal structures and NMR experiments demonstrate that most of these N-terminal residues are disordered, for substrate- or product-bound TDG82-308. Nevertheless, G·T substrate affinity and glycosylase activity of TDG82-308 greatly exceeds that of TDG111-308 and is equivalent to full-length TDG. We report the first high-resolution structures of TDG in an enzyme-substrate complex, for G·U bound to TDG82-308 (1.54 Å) and TDG111-308 (1.71 Å), revealing new enzyme-substrate contacts, direct and water-mediated. We also report a structure of the TDG82-308 product complex (1.70 Å). TDG82-308 forms unique enzyme–DNA interactions, supporting its value for structure-function studies. The results advance understanding of how TDG recognizes and removes modified bases from DNA, particularly those resulting from deamination. PMID:27580719

  12. Tetrameric structure of the restriction DNA glycosylase R.PabI in complex with nonspecific double-stranded DNA

    PubMed Central

    Wang, Delong; Miyazono, Ken-ichi; Tanokura, Masaru

    2016-01-01

    R.PabI is a type II restriction enzyme that recognizes the 5′-GTAC-3′ sequence and belongs to the HALFPIPE superfamily. Although most restriction enzymes cleave phosphodiester bonds at specific sites by hydrolysis, R.PabI flips the guanine and adenine bases of the recognition sequence out of the DNA helix and hydrolyzes the N-glycosidic bond of the flipped adenine in a similar manner to DNA glycosylases. In this study, we determined the structure of R.PabI in complex with double-stranded DNA without the R.PabI recognition sequence by X-ray crystallography. The 1.9 Å resolution structure of the complex showed that R.PabI forms a tetrameric structure to sandwich the double-stranded DNA and the tetrameric structure is stabilized by four salt bridges. DNA binding and DNA glycosylase assays of the R.PabI mutants showed that the residues that form the salt bridges (R70 and D71) are essential for R.PabI to find the recognition sequence from the sea of nonspecific sequences. R.PabI is predicted to utilize the tetrameric structure to bind nonspecific double-stranded DNA weakly and slide along it to find the recognition sequence. PMID:27731370

  13. Characterization of a Thermostable 8-Oxoguanine DNA Glycosylase Specific for GO/N Mismatches from the Thermoacidophilic Archaeon Thermoplasma volcanium

    PubMed Central

    Fujii, Miki; Hata, Chieri; Ukita, Munetada; Fukushima, Chie; Matsuura, Chihiro; Kawashima-Ohya, Yoshie; Tomobe, Koji

    2016-01-01

    The oxidation of guanine (G) to 7,8-dihydro-8-oxoguanine (GO) forms one of the major DNA lesions generated by reactive oxygen species (ROS). The GO can be corrected by GO DNA glycosylases (Ogg), enzymes involved in base excision repair (BER). Unrepaired GO induces mismatched base pairing with adenine (A); as a result, the mismatch causes a point mutation, from G paired with cytosine (C) to thymine (T) paired with adenine (A), during DNA replication. Here, we report the characterization of a putative Ogg from the thermoacidophilic archaeon Thermoplasma volcanium. The 204-amino acid sequence of the putative Ogg (TVG_RS00315) shares significant sequence homology with the DNA glycosylases of Methanocaldococcus jannaschii (MjaOgg) and Sulfolobus solfataricus (SsoOgg). The six histidine-tagged recombinant TVG_RS00315 protein gene was expressed in Escherichia coli and purified. The Ogg protein is thermostable, with optimal activity near a pH of 7.5 and a temperature of 60°C. The enzyme displays DNA glycosylase, and apurinic/apyrimidinic (AP) lyase activities on GO/N (where N is A, T, G, or C) mismatch; yet it cannot eliminate U from U/G or T from T/G, as mismatch glycosylase (MIG) can. These results indicate that TvoOgg-encoding TVG_RS00315 is a member of the Ogg2 family of T. volcanium. PMID:27799846

  14. The nucleoid-associated protein HU enhances 8-oxoguanine base excision by the formamidopyrimidine-DNA glycosylase.

    PubMed

    Le Meur, Rémy; Culard, Françoise; Nadan, Virginie; Goffinont, Stéphane; Coste, Franck; Guerin, Martine; Loth, Karine; Landon, Céline; Castaing, Bertrand

    2015-10-01

    The nucleoid-associated protein HU is involved in numerous DNA transactions and thus is essential in DNA maintenance and bacterial survival. The high affinity of HU for SSBs (single-strand breaks) has suggested its involvement in DNA protection, repair and recombination. SSB-containing DNA are major intermediates transiently generated by bifunctional DNA N-glycosylases that initiate the BER (base excision repair) pathway. Enzyme kinetics and DNA-binding experiments demonstrate that HU enhances the 8-oxoguanine-DNA glycosylase activity of Fpg (formamidopyrimidine-DNA glycosylase) by facilitating the release of the enzyme from its final DNA product (one nucleoside gap). We propose that the displacement of Fpg from its end-DNA product by HU is an active mechanism in which HU recognizes the product when it is still bound by Fpg. Through DNA binding, the two proteins interplay to form a transient ternary complex Fpg/DNA/HU which results in the release of Fpg and the molecular entrapment of SSBs by HU. These results support the involvement of HU in BER in vivo.

  15. Structural Characterization of Human 8-Oxoguanine DNA Glycosylase Variants Bearing Active Site Mutations

    SciTech Connect

    Radom,C.; Banerjee, A.; Verdine, G.

    2007-01-01

    The human 8-oxoguanine DNA glycosylase (hOGG1) protein is responsible for initiating base excision DNA repair of the endogenous mutagen 8-oxoguanine. Like nearly all DNA glycosylases, hOGG1 extrudes its substrate from the DNA helix and inserts it into an extrahelical enzyme active site pocket lined with residues that participate in lesion recognition and catalysis. Structural analysis has been performed on mutant versions of hOGG1 having changes in catalytic residues but not on variants having altered 7,8-dihydro-8-oxoguanine (oxoG) contact residues. Here we report high resolution structural analysis of such recognition variants. We found that Ala substitution at residues that contact the phosphate 5 to the lesion (H270A mutation) and its Watson-Crick face (Q315A mutation) simply removed key functionality from the contact interface but otherwise had no effect on structure. Ala substitution at the only residue making an oxoG-specific contact (G42A mutation) introduced torsional stress into the DNA contact surface of hOGG1, but this was overcome by local interactions within the folded protein, indicating that this oxoG recognition motif is 'hardwired'. Introduction of a side chain intended to sterically obstruct the active site pocket (Q315F mutation) led to two different structures, one of which (Q315F{sup *149}) has the oxoG lesion in an exosite flanking the active site and the other of which (Q315F{sup *292}) has the oxoG inserted nearly completely into the lesion recognition pocket. The latter structure offers a view of the latest stage in the base extrusion pathway yet observed, and its lack of catalytic activity demonstrates that the transition state for displacement of the lesion base is geometrically demanding.

  16. Repair of Alkylation Damage in Eukaryotic Chromatin Depends on Searching Ability of Alkyladenine DNA Glycosylase.

    PubMed

    Zhang, Yaru; O'Brien, Patrick J

    2015-11-20

    Human alkyladenine DNA glycosylase (AAG) initiates the base excision repair pathway by excising alkylated and deaminated purine lesions. In vitro biochemical experiments demonstrate that AAG uses facilitated diffusion to efficiently search DNA to find rare sites of damage and suggest that electrostatic interactions are critical to the searching process. However, it remains an open question whether DNA searching limits the rate of DNA repair in vivo. We constructed AAG mutants with altered searching ability and measured their ability to protect yeast from alkylation damage in order to address this question. Each of the conserved arginine and lysine residues that are near the DNA binding interface were mutated, and the functional impacts were evaluated using kinetic and thermodynamic analysis. These mutations do not perturb catalysis of N-glycosidic bond cleavage, but they decrease the ability to capture rare lesion sites. Nonspecific and specific DNA binding properties are closely correlated, suggesting that the electrostatic interactions observed in the specific recognition complex are similarly important for DNA searching complexes. The ability of the mutant proteins to complement repair-deficient yeast cells is positively correlated with the ability of the proteins to search DNA in vitro, suggesting that cellular resistance to DNA alkylation is governed by the ability to find and efficiently capture cytotoxic lesions. It appears that chromosomal access is not restricted and toxic sites of alkylation damage are readily accessible to a searching protein.

  17. Demethylation initiated by ROS1 glycosylase involves random sliding along DNA

    PubMed Central

    Ponferrada-Marín, María Isabel; Roldán-Arjona, Teresa; Ariza, Rafael R.

    2012-01-01

    Active DNA demethylation processes play a critical role in shaping methylation patterns, yet our understanding of the mechanisms involved is still fragmented and incomplete. REPRESSOR OF SILENCING 1 (ROS1) is a prototype member of a family of plant 5-methylcytosine DNA glycosylases that initiate active DNA demethylation through a base excision repair pathway. As ROS1 binds DNA non-specifically, we have critically tested the hypothesis that facilitated diffusion along DNA may contribute to target location by the enzyme. We have found that dissociation of ROS1 from DNA is severely restricted when access to both ends is obstructed by tetraloops obstacles. Unblocking any end facilitates protein dissociation, suggesting that random surface sliding is the main route to a specific target site. We also found that removal of the basic N-terminal domain of ROS1 significantly impairs the sliding capacity of the protein. Finally, we show that sliding increases the catalytic efficiency of ROS1 on 5-meC:G pairs, but not on T:G mispairs, thus suggesting that the enzyme achieves recognition and excision of its two substrate bases by different means. A model is proposed to explain how ROS1 finds its potential targets on DNA. PMID:23034804

  18. Demethylation initiated by ROS1 glycosylase involves random sliding along DNA.

    PubMed

    Ponferrada-Marín, María Isabel; Roldán-Arjona, Teresa; Ariza, Rafael R

    2012-12-01

    Active DNA demethylation processes play a critical role in shaping methylation patterns, yet our understanding of the mechanisms involved is still fragmented and incomplete. REPRESSOR OF SILENCING 1 (ROS1) is a prototype member of a family of plant 5-methylcytosine DNA glycosylases that initiate active DNA demethylation through a base excision repair pathway. As ROS1 binds DNA non-specifically, we have critically tested the hypothesis that facilitated diffusion along DNA may contribute to target location by the enzyme. We have found that dissociation of ROS1 from DNA is severely restricted when access to both ends is obstructed by tetraloops obstacles. Unblocking any end facilitates protein dissociation, suggesting that random surface sliding is the main route to a specific target site. We also found that removal of the basic N-terminal domain of ROS1 significantly impairs the sliding capacity of the protein. Finally, we show that sliding increases the catalytic efficiency of ROS1 on 5-meC:G pairs, but not on T:G mispairs, thus suggesting that the enzyme achieves recognition and excision of its two substrate bases by different means. A model is proposed to explain how ROS1 finds its potential targets on DNA.

  19. Inhibition of uracil-DNA glycosylase increases SCEs in BrdU-treated and visible light-irradiated cells

    SciTech Connect

    Maldonado, A.; Hernandez, P.; Gutierrez, C.

    1985-11-01

    The authors have approached the study of the ability of different types of lesions produced by DNA-damaging agents to develop sister-chromatid exchanges (SCEs) by analyzing SCE levels observed in Allium cepa L cells with BrdU-substituted DNA and exposed to visible light (VL), an irradiation which produces uracil residues in DNA after debromination of bromouracil and enhances SCE levels but only above a certain dose. They have partially purified an uracil-DNA glycosylase activity from A. cepa L root meristem cells, which removes uracil from DNA, the first step in the excision repair of this lesion. This enzyme was inhibited in vitro by 6-amino-uracil and uracil but not by thymine. When cells exposed to VL, at a dose that did not produce per se an SCE increase, were immediately post-treated with these inhibitors of uracil-DNA glycosylase, a significant increase in SCE levels was obtained. Moreover, SCE levels in irradiated cells dropped to control level when a short holding time elapsed between exposure to VL and the beginning of post-treatment with the inhibitor. Thus, our results showed that inhibitors of uracil-DNA glycosylase enhanced SCE levels in cells with unifilarly BrdU-substituted DNA exposed to visible light; and indicated the existence of a very rapid repair of SCE-inducing lesions produced by visible light irradiation of cells with unifilarly BrdU-containing DNA.

  20. The DNA glycosylase AlkD uses a non-base-flipping mechanism to excise bulky lesions

    NASA Astrophysics Data System (ADS)

    Mullins, Elwood A.; Shi, Rongxin; Parsons, Zachary D.; Yuen, Philip K.; David, Sheila S.; Igarashi, Yasuhiro; Eichman, Brandt F.

    2015-11-01

    Threats to genomic integrity arising from DNA damage are mitigated by DNA glycosylases, which initiate the base excision repair pathway by locating and excising aberrant nucleobases. How these enzymes find small modifications within the genome is a current area of intensive research. A hallmark of these and other DNA repair enzymes is their use of base flipping to sequester modified nucleotides from the DNA helix and into an active site pocket. Consequently, base flipping is generally regarded as an essential aspect of lesion recognition and a necessary precursor to base excision. Here we present the first, to our knowledge, DNA glycosylase mechanism that does not require base flipping for either binding or catalysis. Using the DNA glycosylase AlkD from Bacillus cereus, we crystallographically monitored excision of an alkylpurine substrate as a function of time, and reconstructed the steps along the reaction coordinate through structures representing substrate, intermediate and product complexes. Instead of directly interacting with the damaged nucleobase, AlkD recognizes aberrant base pairs through interactions with the phosphoribose backbone, while the lesion remains stacked in the DNA duplex. Quantum mechanical calculations revealed that these contacts include catalytic charge-dipole and CH-π interactions that preferentially stabilize the transition state. We show in vitro and in vivo how this unique means of recognition and catalysis enables AlkD to repair large adducts formed by yatakemycin, a member of the duocarmycin family of antimicrobial natural products exploited in bacterial warfare and chemotherapeutic trials. Bulky adducts of this or any type are not excised by DNA glycosylases that use a traditional base-flipping mechanism. Hence, these findings represent a new model for DNA repair and provide insights into catalysis of base excision.

  1. [An effective scheme to produce recombinant uracil-DNA glycosylase of Escherichia coli for PCR diagnostics].

    PubMed

    Dmitrochenko, A E; Turiianskaia, O M; Gilep, A A; Usanov, S A; Iantsevich, A V

    2014-01-01

    An effective scheme has been developed to produce recombinant uracil-DNA glycosylase of Escherichia coli K12 intended to be used for PCR diagnostics, making it possible to achieve a high yield of the end product using a two-stage purification. The gene encoding this enzyme was cloned into the pCWori vector within the same reading frame with six residues of histidine in the C-erminal sequence. Using this vector and the E. coli DH5alpha, a host-vector expression system has been developed and conditions for protein synthesis have been optimized. To purify the protein, metal affinity chromatography with further dialysis was used to remove imidazole. The enzyme yield was no less than 60 mg of the end protein per 1 L of the culture medium. The concordance between amino acid sequences of the recombinant and native enzymes was proved by peptide mass fingerprinting and mass spectrometry. A rapid test to determine the activity of the enzyme preparation was suggested. It was found that the activity of 1.0 mg of the recombinant protein is no less than 3 x 10(3) units. The recombinant enzyme was most stable at pH 8.0 and an ionic strength of the solution equal to 200 mM; it lost its activity completely for 10 min at 60 degrees C. Storage during 1 h at 20 degrees C resulted in the loss of no more than 30% of activity. In the enzyme preparation, the activity of DNase was absent. The free energy of the unfolding of the protein globule of the recombinant uracil-DNA glycosylase is 23.1 +/- 0.2 kJ/mol. The data obtained indicate that the recombinant enzyme may be recommended for use in PCR diagnostics to prevent the appearance of false positive results caused by pollution of the reaction mixture by products of the preceding reactions.

  2. Chloroethyinitrosourea-derived ethano cytosine and adenine adducts are substrates for escherichia coli glycosylases excising analogous etheno adducts

    SciTech Connect

    Guliaev, Anton B.; Singer, B.; Hang, Bo

    2004-05-05

    Exocyclic ethano DNA adducts are saturated etheno ring derivatives formed mainly by therapeutic chloroethylnitrosoureas (CNUs), which are also mutagenic and carcinogenic. In this work, we report that two of the ethano adducts, 3,N{sup 4}-ethanocytosine (EC) and 1,N{sup 6}-ethanoadenine (EA), are novel substrates for the Escherichia coli mismatch-specific uracil-DNA glycosylase (Mug) and 3-methyladenine DNA glycosylase II (AlkA), respectively. It has been shown previously that Mug excises 3,N{sup 4}-ethenocytosine ({var_epsilon}C) and AlkA releases 1,N{sup 6}-ethenoadenine ({var_epsilon}A). Using synthetic oligonucleotides containing a single ethano or etheno adduct, we found that both glycosylases had a {approx}20-fold lower excision activity toward EC or EA than that toward their structurally analogous {var_epsilon}C or {var_epsilon}A adduct. Both enzymes were capable of excising the ethano base paired with any of the four natural bases, but with varying efficiencies. The Mug activity toward EC could be stimulated by E. coli endonuclease IV and, more efficiently, by exonuclease III. Molecular dynamics (MD) simulations showed similar structural features of the etheno and ethano derivatives when present in DNA duplexes. However, also as shown by MD, the stacking interaction between the EC base and Phe 30 in the Mug active site is reduced as compared to the {var_epsilon}C base, which could account for the lower EC activity observed in this study.

  3. Structural Characterization of Clostridium acetobutylicum 8-Oxoguanine DNA Glycosylase in Its Apo Form and in Complex with 8-Oxodeoxyguanosine

    SciTech Connect

    Faucher, Frédérick; Robey-Bond, Susan M.; Wallace, Susan S.; Doublié, Sylvie

    2009-06-30

    DNA is subject to a multitude of oxidative damages generated by oxidizing agents from metabolism and exogenous sources and by ionizing radiation. Guanine is particularly vulnerable to oxidation, and the most common oxidative product 8-oxoguanine (8-oxoG) is the most prevalent lesion observed in DNA molecules. 8-OxoG can form a normal Watson-Crick pair with cytosine (8-oxoG:C), but it can also form a stable Hoogsteen pair with adenine (8-oxoG:A), leading to a G:C {yields} T:A transversion after replication. Fortunately, 8-oxoG is recognized and excised by either of two DNA glycosylases of the base excision repair pathway: formamidopyrimidine-DNA glycosylase and 8-oxoguanine DNA glycosylase (Ogg). While Clostridium acetobutylicum Ogg (CacOgg) DNA glycosylase can specifically recognize and remove 8-oxoG, it displays little preference for the base opposite the lesion, which is unusual for a member of the Ogg1 family. This work describes the crystal structures of CacOgg in its apo form and in complex with 8-oxo-2'-deoxyguanosine. A structural comparison between the apo form and the liganded form of the enzyme reveals a structural reorganization of the C-terminal domain upon binding of 8-oxoG, similar to that reported for human OGG1. A structural comparison of CacOgg with human OGG1, in complex with 8-oxoG containing DNA, provides a structural rationale for the lack of opposite base specificity displayed by CacOgg.

  4. A DNA machine-based fluorescence amplification strategy for sensitive detection of uracil-DNA glycosylase activity.

    PubMed

    Wu, Yushu; Wang, Lei; Zhu, Jing; Jiang, Wei

    2015-06-15

    Sensitive detection of uracil-DNA glycosylase (UDG) activity is critical for function study of UDG and clinical diagnosis. Here, we developed a novel fluorescent strategy for sensitive detection of UDG activity based on the signal amplification by a label-free and enzyme-free DNA machine. A double-strand DNA (dsDNA) probe P1-P2 with uracil bases and trigger sequence was designed for UDG recognition and signal transduction. Two hairpin probes H1 and H2 which were partially complementary were employed to construct the label-free and enzyme-free DNA machine. Under the action of UDG, uracil bases were removed from the P1-P2 dsDNA probe, and then a strand P2' with abasic sites was released. Subsequently, the liberated P2' activated the DNA machine and generated numerous H1-H2 complexes containing G-quadruplex (G4) structures in the end. Finally, the G4 structures could bind with N-methylmesoporphyrin IX (NMM) to form G4-NMM complexes with the enhanced fluorescence responses. This strategy could detect UDG activity as low as 0.00044 U/mL. In addition, the strategy was also applied for the analysis of UDG activity in HeLa cells lysate with low effect of cellular components. Moreover, this strategy was successfully applied for assaying the inhibition of UDG using uracil glycosylase inhibitor (UGI). This strategy provided a potential tool for sensitive quantification of UDG activity in UDG functional study and clinical diagnosis.

  5. Germ-line variant of human NTH1 DNA glycosylase induces genomic instability and cellular transformation.

    PubMed

    Galick, Heather A; Kathe, Scott; Liu, Minmin; Robey-Bond, Susan; Kidane, Dawit; Wallace, Susan S; Sweasy, Joann B

    2013-08-27

    Base excision repair (BER) removes at least 20,000 DNA lesions per human cell per day and is critical for the maintenance of genomic stability. We hypothesize that aberrant BER, resulting from mutations in BER genes, can lead to genomic instability and cancer. The first step in BER is catalyzed by DNA N-glycosylases. One of these, n(th) endonuclease III-like (NTH1), removes oxidized pyrimidines from DNA, including thymine glycol. The rs3087468 single nucleotide polymorphism of the NTH1 gene is a G-to-T base substitution that results in the NTH1 D239Y variant protein that occurs in ∼6.2% of the global population and is found in Europeans, Asians, and sub-Saharan Africans. In this study, we functionally characterize the effect of the D239Y variant expressed in immortal but nontransformed human and mouse mammary epithelial cells. We demonstrate that expression of the D239Y variant in cells also expressing wild-type NTH1 leads to genomic instability and cellular transformation as assessed by anchorage-independent growth, focus formation, invasion, and chromosomal aberrations. We also show that cells expressing the D239Y variant are sensitive to ionizing radiation and hydrogen peroxide and accumulate double strand breaks after treatment with these agents. The DNA damage response is also activated in D239Y-expressing cells. In combination, our data suggest that individuals possessing the D239Y variant are at risk for genomic instability and cancer.

  6. Factors that influence telomeric oxidative base damage and repair by DNA glycosylase OGG1.

    PubMed

    Rhee, David B; Ghosh, Avik; Lu, Jian; Bohr, Vilhelm A; Liu, Yie

    2011-01-02

    Telomeres are nucleoprotein complexes at the ends of linear chromosomes in eukaryotes, and are essential in preventing chromosome termini from being recognized as broken DNA ends. Telomere shortening has been linked to cellular senescence and human aging, with oxidative stress as a major contributing factor. 7,8-Dihydro-8-oxogaunine (8-oxodG) is one of the most abundant oxidative guanine lesions, and 8-oxoguanine DNA glycosylase (OGG1) is involved in its removal. In this study, we examined if telomeric DNA is particularly susceptible to oxidative base damage and if telomere-specific factors affect the incision of oxidized guanines by OGG1. We demonstrated that telomeric TTAGGG repeats were more prone to oxidative base damage and repaired less efficiently than non-telomeric TG repeats in vivo. We also showed that the 8-oxodG-incision activity of OGG1 is similar in telomeric and non-telomeric double-stranded substrates. In addition, telomere repeat binding factors TRF1 and TRF2 do not impair OGG1 incision activity. Yet, 8-oxodG in some telomere structures (e.g., fork-opening, 3'-overhang, and D-loop) were less effectively excised by OGG1, depending upon its position in these substrates. Collectively, our data indicate that the sequence context of telomere repeats and certain telomere configurations may contribute to telomere vulnerability to oxidative DNA damage processing.

  7. Analysis of substrate specificity of Schizosaccharomyces pombe Mag1 alkylpurine DNA glycosylase

    SciTech Connect

    Adhikary, Suraj; Eichman, Brandt F.

    2014-10-02

    DNA glycosylases specialized for the repair of alkylation damage must identify, with fine specificity, a diverse array of subtle modifications within DNA. The current mechanism involves damage sensing through interrogation of the DNA duplex, followed by more specific recognition of the target base inside the active site pocket. To better understand the physical basis for alkylpurine detection, we determined the crystal structure of Schizosaccharomyces pombe Mag1 (spMag1) in complex with DNA and performed a mutational analysis of spMag1 and the close homologue from Saccharomyces cerevisiae (scMag). Despite strong homology, spMag1 and scMag differ in substrate specificity and cellular alkylation sensitivity, although the enzymological basis for their functional differences is unknown. We show that Mag preference for 1,N{sup 6}-ethenoadenine ({var_epsilon}A) is influenced by a minor groove-interrogating residue more than the composition of the nucleobase-binding pocket. Exchanging this residue between Mag proteins swapped their {var_epsilon}A activities, providing evidence that residues outside the extrahelical base-binding pocket have a role in identification of a particular modification in addition to sensing damage.

  8. DNA bending and a flip-out mechanism for base excision by the helix–hairpin–helix DNA glycosylase, Escherichia coli AlkA

    PubMed Central

    Hollis, Thomas; Ichikawa, Yoshitaka; Ellenberger, Tom

    2000-01-01

    The Escherichia coli AlkA protein is a base excision repair glycosylase that removes a variety of alkylated bases from DNA. The 2.5 Å crystal structure of AlkA complexed to DNA shows a large distortion in the bound DNA. The enzyme flips a 1–azaribose abasic nucleotide out of DNA and induces a 66° bend in the DNA with a marked widening of the minor groove. The position of the 1–azaribose in the enzyme active site suggests an SN1-type mechanism for the glycosylase reaction, in which the essential catalytic Asp238 provides direct assistance for base removal. Catalytic selectivity might result from the enhanced stacking of positively charged, alkylated bases against the aromatic side chain of Trp272 in conjunction with the relative ease of cleaving the weakened glycosylic bond of these modified nucleotides. The structure of the AlkA–DNA complex offers the first glimpse of a helix–hairpin–helix (HhH) glycosylase complexed to DNA. Modeling studies suggest that other HhH glycosylases can bind to DNA in a similar manner. PMID:10675345

  9. Alkyladenine DNA glycosylase (AAG) localizes to mitochondria and interacts with mitochondrial single-stranded binding protein (mtSSB).

    PubMed

    van Loon, Barbara; Samson, Leona D

    2013-03-01

    Due to a harsh environment mitochondrial genomes accumulate high levels of DNA damage, in particular oxidation, hydrolytic deamination, and alkylation adducts. While repair of alkylated bases in nuclear DNA has been explored in detail, much less is known about the repair of DNA alkylation damage in mitochondria. Alkyladenine DNA glycosylase (AAG) recognizes and removes numerous alkylated bases, but to date AAG has only been detected in the nucleus, even though mammalian mitochondria are known to repair DNA lesions that are specific substrates of AAG. Here we use immunofluorescence to show that AAG localizes to mitochondria, and we find that native AAG is present in purified human mitochondrial extracts, as well as that exposure to alkylating agent promotes AAG accumulation in the mitochondria. We identify mitochondrial single-stranded binding protein (mtSSB) as a novel interacting partner of AAG; interaction between mtSSB and AAG is direct and increases upon methyl methanesulfonate (MMS) treatment. The consequence of this interaction is specific inhibition of AAG glycosylase activity in the context of a single-stranded DNA (ssDNA), but not a double-stranded DNA (dsDNA) substrate. By inhibiting AAG-initiated processing of damaged bases, mtSSB potentially prevents formation of DNA breaks in ssDNA, ensuring that base removal primarily occurs in dsDNA. In summary, our findings suggest the existence of AAG-initiated BER in mitochondria and further support a role for mtSSB in DNA repair.

  10. The alpha/beta fold uracil DNA glycosylases: a common origin with diverse fates

    PubMed Central

    Aravind, L; Koonin, Eugene V

    2000-01-01

    Background: Uracil DNA glycosylases (UDGs) are major repair enzymes that protect DNA from mutational damage caused by uracil incorporated as a result of a polymerase error or deamination of cytosine. Four distinct families of UDGs have been identified, which show very limited sequence similarity to each other, although two of them have been shown to possess the same structural fold. The structural and evolutionary relationships between the rest of the UDGs remain uncertain. Results: Using sequence profile searches, multiple alignment analysis and protein structure comparisons, we show here that all known UDGs possess the same fold and must have evolved from a common ancestor. Although all UDGs catalyze essentially the same reaction, significant changes in the configuration of the catalytic residues were detected within their common fold, which probably results in differences in the biochemistry of these enzymes. The extreme sequence divergence of the UDGs, which is unusual for enzymes with the same principal activity, is probably due to the major role of the uracil-flipping caused by the conformational strain enacted by the enzyme on uracil-containing DNA, as compared with the catalytic action of individual polar residues. We predict two previously undetected families of UDGs and delineate a hypothetical scenario for their evolution. Conclusions: UDGs form a single protein superfamily with a distinct structural fold and a common evolutionary origin. Differences in the catalytic mechanism of the different families combined with the construction of the catalytic pocket have, however, resulted in extreme sequence divergence of these enzymes. PMID:11178247

  11. Inroads into base excision repair II. The discovery of DNA glycosylases. "An N-glycosidase from Escherichia coli that releases free uracil from DNA containing deaminated cytosine residues," Proc. Nat. Acad. Sci. USA, 1974.

    PubMed

    Friedberg, Errol C; Lindahl, Tomas

    2004-11-02

    The discovery of a DNA glycosylase that specifically removes uracil from DNA, opened the door for uncovering a large class of such enzymes that are fundamental to the process of base excision repair of DNA.

  12. Cell cycle regulation as a mechanism for functional separation of the apparently redundant uracil DNA glycosylases TDG and UNG2

    PubMed Central

    Hardeland, Ulrike; Kunz, Christophe; Focke, Frauke; Szadkowski, Marta; Schär, Primo

    2007-01-01

    Human Thymine-DNA Glycosylase (TDG) is a member of the uracil DNA glycosylase (UDG) superfamily. It excises uracil, thymine and a number of chemical base lesions when mispaired with guanine in double-stranded DNA. These activities are not unique to TDG; at least three additional proteins with similar enzymatic properties are present in mammalian cells. The successful co-evolution of these enzymes implies the existence of non-redundant biological functions that must be coordinated. Here, we report cell cycle regulation as a mechanism for the functional separation of apparently redundant DNA glycosylases. We show that cells entering S-phase eliminate TDG through the ubiquitin–proteasome system and then maintain a TDG-free condition until G2. Incomplete degradation of ectopically expressed TDG impedes S-phase progression and cell proliferation. The mode of cell cycle regulation of TDG is strictly inverse to that of UNG2, which peaks in and throughout S-phase and then declines to undetectable levels until it appears again just before the next S-phase. Thus, TDG- and UNG2-dependent base excision repair alternates throughout the cell cycle, and the ubiquitin–proteasome pathway constitutes the underlying regulatory system. PMID:17526518

  13. Genetic mapping of nth, a gene affecting endonuclease III (thymine glycol-DNA glycosylase) in Escherichia coli K-12.

    PubMed Central

    Weiss, B; Cunningham, R P

    1985-01-01

    The nth gene of Escherichia coli affects the production of endonuclease III, a glycosylase-endonuclease that attacks DNA damaged by oxidizing agents or by ionizing radiation. An nth insertion mutant and a deletion mutant were studied. nth is located between add and tyrS on the linkage map of E. coli K-12 and was 97% linked to tyrS in a transduction with phage P1. PMID:3886628

  14. Replication-Dependent Unhooking of DNA Interstrand Cross-Links by the NEIL3 Glycosylase.

    PubMed

    Semlow, Daniel R; Zhang, Jieqiong; Budzowska, Magda; Drohat, Alexander C; Walter, Johannes C

    2016-10-06

    During eukaryotic DNA interstrand cross-link (ICL) repair, cross-links are resolved ("unhooked") by nucleolytic incisions surrounding the lesion. In vertebrates, ICL repair is triggered when replication forks collide with the lesion, leading to FANCI-FANCD2-dependent unhooking and formation of a double-strand break (DSB) intermediate. Using Xenopus egg extracts, we describe here a replication-coupled ICL repair pathway that does not require incisions or FANCI-FANCD2. Instead, the ICL is unhooked when one of the two N-glycosyl bonds forming the cross-link is cleaved by the DNA glycosylase NEIL3. Cleavage by NEIL3 is the primary unhooking mechanism for psoralen and abasic site ICLs. When N-glycosyl bond cleavage is prevented, unhooking occurs via FANCI-FANCD2-dependent incisions. In summary, we identify an incision-independent unhooking mechanism that avoids DSB formation and represents the preferred pathway of ICL repair in a vertebrate cell-free system.

  15. Aag DNA glycosylase promotes alkylation-induced tissue damage mediated by Parp1.

    PubMed

    Calvo, Jennifer A; Moroski-Erkul, Catherine A; Lake, Annabelle; Eichinger, Lindsey W; Shah, Dharini; Jhun, Iny; Limsirichai, Prajit; Bronson, Roderick T; Christiani, David C; Meira, Lisiane B; Samson, Leona D

    2013-04-01

    Alkylating agents comprise a major class of front-line cancer chemotherapeutic compounds, and while these agents effectively kill tumor cells, they also damage healthy tissues. Although base excision repair (BER) is essential in repairing DNA alkylation damage, under certain conditions, initiation of BER can be detrimental. Here we illustrate that the alkyladenine DNA glycosylase (AAG) mediates alkylation-induced tissue damage and whole-animal lethality following exposure to alkylating agents. Aag-dependent tissue damage, as observed in cerebellar granule cells, splenocytes, thymocytes, bone marrow cells, pancreatic β-cells, and retinal photoreceptor cells, was detected in wild-type mice, exacerbated in Aag transgenic mice, and completely suppressed in Aag⁻/⁻ mice. Additional genetic experiments dissected the effects of modulating both BER and Parp1 on alkylation sensitivity in mice and determined that Aag acts upstream of Parp1 in alkylation-induced tissue damage; in fact, cytotoxicity in WT and Aag transgenic mice was abrogated in the absence of Parp1. These results provide in vivo evidence that Aag-initiated BER may play a critical role in determining the side-effects of alkylating agent chemotherapies and that Parp1 plays a crucial role in Aag-mediated tissue damage.

  16. Crystal structure and functional insights into uracil-DNA glycosylase inhibition by phage ϕ29 DNA mimic protein p56

    PubMed Central

    Baños-Sanz, José Ignacio; Mojardín, Laura; Sanz-Aparicio, Julia; Lázaro, José M.; Villar, Laurentino; Serrano-Heras, Gemma; González, Beatriz; Salas, Margarita

    2013-01-01

    Uracil-DNA glycosylase (UDG) is a key repair enzyme responsible for removing uracil residues from DNA. Interestingly, UDG is the only enzyme known to be inhibited by two different DNA mimic proteins: p56 encoded by the Bacillus subtilis phage ϕ29 and the well-characterized protein Ugi encoded by the B. subtilis phage PBS1/PBS2. Atomic-resolution crystal structures of the B. subtilis UDG both free and in complex with p56, combined with site-directed mutagenesis analysis, allowed us to identify the key amino acid residues required for enzyme activity, DNA binding and complex formation. An important requirement for complex formation is the recognition carried out by p56 of the protruding Phe191 residue from B. subtilis UDG, whose side-chain is inserted into the DNA minor groove to replace the flipped-out uracil. A comparative analysis of both p56 and Ugi inhibitors enabled us to identify their common and distinctive features. Thereby, our results provide an insight into how two DNA mimic proteins with different structural and biochemical properties are able to specifically block the DNA-binding domain of the same enzyme. PMID:23671337

  17. Crystal structure and functional insights into uracil-DNA glycosylase inhibition by phage Φ29 DNA mimic protein p56.

    PubMed

    Baños-Sanz, José Ignacio; Mojardín, Laura; Sanz-Aparicio, Julia; Lázaro, José M; Villar, Laurentino; Serrano-Heras, Gemma; González, Beatriz; Salas, Margarita

    2013-07-01

    Uracil-DNA glycosylase (UDG) is a key repair enzyme responsible for removing uracil residues from DNA. Interestingly, UDG is the only enzyme known to be inhibited by two different DNA mimic proteins: p56 encoded by the Bacillus subtilis phage 29 and the well-characterized protein Ugi encoded by the B. subtilis phage PBS1/PBS2. Atomic-resolution crystal structures of the B. subtilis UDG both free and in complex with p56, combined with site-directed mutagenesis analysis, allowed us to identify the key amino acid residues required for enzyme activity, DNA binding and complex formation. An important requirement for complex formation is the recognition carried out by p56 of the protruding Phe191 residue from B. subtilis UDG, whose side-chain is inserted into the DNA minor groove to replace the flipped-out uracil. A comparative analysis of both p56 and Ugi inhibitors enabled us to identify their common and distinctive features. Thereby, our results provide an insight into how two DNA mimic proteins with different structural and biochemical properties are able to specifically block the DNA-binding domain of the same enzyme.

  18. Physical association of the 2,6-diamino-4-hydroxy-5N-formamidopyrimidine-DNA glycosylase of Escherichia coli and an activity nicking DNA at apurinic/apyrimidinic sites.

    PubMed Central

    O'Connor, T R; Laval, J

    1989-01-01

    The 2,6-diamino-4-hydroxy-5N-formamidopyrimidine (Fapy)-DNA glycosylase of Escherichia coli, which is coded for by the fpg gene, excises purine bases with ring-opened imidazoles. In addition to the DNA glycosylase activity, we report that the Fapy-DNA glycosylase of E. coli has an associated activity, resistant to EDTA, that nicks DNA at apurinic/apyrimidinic (AP) sites. The levels of Fapy-DNA glycosylase and AP-nicking activity were parallel in crude lysates of E. coli HB101 harboring different plasmids constructed from the fpg gene. The fpg gene is different from the xth, nth, and nfo genes of E. coli, whose gene products also cleave DNA at AP sites. The Fapy-DNA glycosylase was purified to electrophoretic homogeneity. During this purification, the Fapy-DNA glycosylase copurified with an AP-nicking activity using chromatographic separations based on ion-exchange, molecular weight exclusion, and hydrophobicity. The cleavage at AP sites by the Fapy-DNA glycosylase left a 5'-phosphomonoester nucleotide at one terminus. In addition, DNA containing reduced AP sites was not nicked by the Fapy-DNA glycosylase. These data suggest that the mechanism of cleavage involved beta elimination. Therefore, this activity of the Fapy-DNA glycosylase nicking DNA at AP sites should be referred to as an AP lyase. The 3' terminus did not prime nick-translation by E. coli DNA polymerase I. However, the 3' terminus becomes a substrate for nick-translation if first allowed to react with calf intestine phosphatase or the E. coli exonuclease III. These data suggest that the repair of the Fapy lesion at least to some extent results in the formation of both 5'- and 3'-phosphomonoester nucleotides and the release of the deoxyribose. Images PMID:2664776

  19. Tungsten disulfide nanosheet and exonuclease III co-assisted amplification strategy for highly sensitive fluorescence polarization detection of DNA glycosylase activity.

    PubMed

    Zhao, Jingjin; Ma, Yefei; Kong, Rongmei; Zhang, Liangliang; Yang, Wen; Zhao, Shulin

    2015-08-05

    Herein, we introduced a tungsten disulfide (WS2) nanosheet and exonuclease III (Exo III) co-assisted signal amplification strategy for highly sensitive fluorescent polarization (FP) assay of DNA glycosylase activity. Two DNA glycosylases, uracil-DNA glycosylase (UDG) and human 8-oxoG DNA glycosylase 1 (hOGG1), were tested. A hairpin-structured probe (HP) which contained damaged bases in the stem was used as the substrate. The removal of damaged bases from substrate by DNA glycosylase would lower the melting temperature of HP. The HP was then opened and hybridized with a FAM dye-labeled single strand DNA (DP), generating a duplex with a recessed 3'-terminal of DP. This design facilitated the Exo III-assisted amplification by repeating the hybridization and digestion of DP, liberating numerous FAM fluorophores which could not be adsorbed on WS2 nanosheet. Thus, the final system exhibited a small FP signal. However, in the absence of DNA glycosylases, no hybridization between DP and HP was occurred, hampering the hydrolysis of DP by Exo III. The intact DP was then adsorbed on the surface of WS2 nanosheet that greatly amplified the mass of the labeled-FAM fluorophore, resulting in a large FP value. With the co-assisted amplification strategy, the sensitivity was substantially improved. In addition, this method was applied to detect UDG activity in cell extracts. The study of the inhibition of UDG was also performed. Furthermore, this method is simple in design, easy in implementation, and selective, which holds potential applications in the DNA glycosylase related mechanism research and molecular diagnostics.

  20. DNA Base Excision Repair (BER) and Cancer Gene Therapy: Use of the Human N-mythlpurien DNA Glycosylase (MPG) to Sensitize Breast Cancer Cells to Low Dose Chemotherapy

    DTIC Science & Technology

    2003-06-01

    has found that the overexpression of this DNA repair protein is cytotoxic to tumor cells in response to the classic alkylating agent, methyl...SUBJECT TERMS 15. NUMBER OF PAGES DNA repair, methylpurine DNA glycosylase, breast cancer 5 16. PRICE CODE 17. SECURITY CLASSIFICATION 18 . SECURITY...NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. Z39- 18 298-102 BEST AVAILABLE COPY Table of Contents Cover

  1. Folate deficiency induces neurodegeneration and brain dysfunction in mice lacking uracil DNA glycosylase.

    PubMed

    Kronenberg, Golo; Harms, Christoph; Sobol, Robert W; Cardozo-Pelaez, Fernando; Linhart, Heinz; Winter, Benjamin; Balkaya, Mustafa; Gertz, Karen; Gay, Shanna B; Cox, David; Eckart, Sarah; Ahmadi, Michael; Juckel, Georg; Kempermann, Gerd; Hellweg, Rainer; Sohr, Reinhard; Hörtnagl, Heide; Wilson, Samuel H; Jaenisch, Rudolf; Endres, Matthias

    2008-07-09

    Folate deficiency and resultant increased homocysteine levels have been linked experimentally and epidemiologically with neurodegenerative conditions like stroke and dementia. Moreover, folate deficiency has been implicated in the pathogenesis of psychiatric disorders, most notably depression. We hypothesized that the pathogenic mechanisms include uracil misincorporation and, therefore, analyzed the effects of folate deficiency in mice lacking uracil DNA glycosylase (Ung-/-) versus wild-type controls. Folate depletion increased nuclear mutation rates in Ung-/- embryonic fibroblasts, and conferred death of cultured Ung-/- hippocampal neurons. Feeding animals a folate-deficient diet (FD) for 3 months induced degeneration of CA3 pyramidal neurons in Ung-/- but not Ung+/+ mice along with decreased hippocampal expression of brain-derived neurotrophic factor protein and decreased brain levels of antioxidant glutathione. Furthermore, FD induced cognitive deficits and mood alterations such as anxious and despair-like behaviors that were aggravated in Ung-/- mice. Independent of Ung genotype, FD increased plasma homocysteine levels, altered brain monoamine metabolism, and inhibited adult hippocampal neurogenesis. These results indicate that impaired uracil repair is involved in neurodegeneration and neuropsychiatric dysfunction induced by experimental folate deficiency.

  2. Selective excision of 5-carboxylcytosine by a thymine DNA glycosylase mutant

    PubMed Central

    Hashimoto, Hideharu; Zhang, Xing; Cheng, Xiaodong

    2013-01-01

    The mammalian thymine DNA glycosylase (TDG) excises the mismatched base, uracil, thymine, or 5-hydroxymethyluracil (5hmU), as well as removes 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC) when paired with a guanine. In the previously solved structure of TDG in complex with DNA containing 5caC, the side chain of asparagine 157 (N157) contacts the 5-carboxyl moiety of 5caC via a weak hydrogen bond. We examined the role of N157 in recognition of 5caC by mutagenesis. The asparagine-to-alanine (N157A) mutant has no detectable base excision activity for a G:T mismatch, and its excision activity is reduced for other substrates including G:5caC. Unexpectedly, the asparagine-to-aspartate (N157D) mutant has a comparable base excision rate for G:5caC substrate to that of wild type, but it only has residual activity for G:U and no detectable activity for other substrates. We further show that the N157D mutant has higher activity for 5caC at a lower pH (6.0), suggesting that increased protonation of the carboxylate of 5caC and the aspartate facilitates base excision. The N157D mutant remains highly specific for 5caC even in the presence of large excess of genomic DNA, a property that can potentially be used for mapping the very low amount of 5caC in genomes. PMID:23337108

  3. Base excision of oxidative purine and pyrimidine DNA damage in Saccharomyces cerevisiae by a DNA glycosylase with sequence similarity to endonuclease III from Escherichia coli.

    PubMed

    Eide, L; Bjørås, M; Pirovano, M; Alseth, I; Berdal, K G; Seeberg, E

    1996-10-01

    One gene locus on chromosome I in Saccharomyces cerevisiae encodes a protein (YAB5_YEAST; accession no. P31378) with local sequence similarity to the DNA repair glycosylase endonuclease III from Escherichia coli. We have analyzed the function of this gene, now assigned NTG1 (endonuclease three-like glycosylase 1), by cloning, mutant analysis, and gene expression in E. coli. Targeted gene disruption of NTG1 produces a mutant that is sensitive to H2O2 and menadione, indicating that NTG1 is required for repair of oxidative DNA damage in vivo. Northern blot analysis and expression studies of a NTG1-lacZ gene fusion showed that NTG1 is induced by cell exposure to different DNA damaging agents, particularly menadione, and hence belongs to the DNA damage-inducible regulon in S. cerevisiae. When expressed in E. coli, the NTG1 gene product cleaves plasmid DNA damaged by osmium tetroxide, thus, indicating specificity for thymine glycols in DNA similarly as is the case for EndoIII. However, NTG1 also releases formamidopyrimidines from DNA with high efficiency and, hence, represents a glycosylase with a novel range of substrate recognition. Sequences similar to NTG1 from other eukaryotes, including Caenorhabditis elegans, Schizosaccharomyces pombe, and mammals, have recently been entered in the GenBank suggesting the universal presence of NTG1-like genes in higher organisms. S. cerevisiae NTG1 does not have the [4Fe-4S] cluster DNA binding domain characteristic of the other members of this family.

  4. The DNA glycosylases OGG1 and NEIL3 influence differentiation potential, proliferation, and senescence-associated signs in neural stem cells

    SciTech Connect

    Reis, Amilcar; Hermanson, Ola

    2012-07-13

    Highlights: Black-Right-Pointing-Pointer DNA glycosylases OGG1 and NEIL3 are required for neural stem cell state. Black-Right-Pointing-Pointer No effect on cell viability by OGG1 or NEIL3 knockdown in neural stem cells. Black-Right-Pointing-Pointer OGG1 or NEIL3 RNA knockdown result in decreased proliferation and differentiation. Black-Right-Pointing-Pointer Increased HP1{gamma} immunoreactivity after NEIL3 knockdown suggests premature senescence. -- Abstract: Embryonic neural stem cells (NSCs) exhibit self-renewal and multipotency as intrinsic characteristics that are key parameters for proper brain development. When cells are challenged by oxidative stress agents the resulting DNA lesions are repaired by DNA glycosylases through the base excision repair (BER) pathway as a means to maintain the fidelity of the genome, and thus, proper cellular characteristics. The functional roles for DNA glycosylases in NSCs have however remained largely unexplored. Here we demonstrate that RNA knockdown of the DNA glycosylases OGG1 and NEIL3 decreased NSC differentiation ability and resulted in decreased expression of both neuronal and astrocytic genes after mitogen withdrawal, as well as the stem cell marker Musashi-1. Furthermore, while cell survival remained unaffected, NEIL3 deficient cells displayed decreased cell proliferation rates along with an increase in HP1{gamma} immunoreactivity, a sign of premature senescence. Our results suggest that DNA glycosylases play multiple roles in governing essential neural stem cell characteristics.

  5. Staphylococcus aureus Sepsis and Mitochondrial Accrual of the 8-Oxoguanine DNA Glycosylase DNA Repair Enzyme in Mice

    PubMed Central

    Bartz, Raquel R.; Suliman, Hagir B.; Fu, Ping; Welty-Wolf, Karen; Carraway, Martha Sue; MacGarvey, Nancy Chou; Withers, Crystal M.; Sweeney, Timothy E.; Piantadosi, Claude A.

    2011-01-01

    Rationale: Damage to mitochondrial DNA (mtDNA) by the production of reactive oxygen species during inflammatory states, such as sepsis, is repaired by poorly understood mechanisms. Objectives: To test the hypothesis that the DNA repair enzyme, 8-oxoguanine DNA glycosylase (OGG1), contributes to mtDNA repair in sepsis. Methods: Using a well-characterized mouse model of Staphylococcus aureus sepsis, we analyzed molecular markers for mitochondrial biogenesis and OGG1 translocation into liver mitochondria as well as OGG1 mRNA expression at 0, 24, 48, and 72 hours after infection. The effects of OGG1 RNA silencing on mtDNA content were determined in control, tumor necrosis factor-α, and peptidoglycan-exposed rat hepatoma cells. Based on in situ analysis of the OGG1 promoter region, chromatin immunoprecipitation assays were performed for nuclear respiratory factor (NRF)-1 and NRF-2α GA-binding protein (GABP) binding to the promoter of OGG1. Measurements and Main Results: Mice infected with 107 cfu S. aureus intraperitoneally demonstrated hepatic oxidative mtDNA damage and significantly lower hepatic mtDNA content as well as increased mitochondrial OGG1 protein and enzyme activity compared with control mice. The infection also caused increases in hepatic OGG1 transcript levels and NRF-1 and NRF-2α transcript and protein levels. A bioinformatics analysis of the Ogg1 gene locus identified several promoter sites containing NRF-1 and NRF-2α DNA binding motifs, and chromatin immunoprecipitation assays confirmed in situ binding of both transcription factors to the Ogg1 promoter within 24 hours of infection. Conclusions: These studies identify OGG1 as an early mitochondrial response protein during sepsis under regulation by the NRF-1 and NRF-2α transcription factors that regulate mitochondrial biogenesis. PMID:20732986

  6. Increased Risk of Lung Cancer Associated with a Functionally Impaired Polymorphic Variant of the Human DNA Glycosylase NEIL2

    PubMed Central

    Dey, Sanjib; Maiti, Amit K; Hegde, Muralidhar L; Hegde, Pavana M; Boldogh, Istvan; Sarkar, Partha S; Abdel-Rahman, Sherif Z; Sarker, Altaf H.; Hang, Bo; Xie, Jingwu; Tomkinson, Alan E; Zhou, Mian; Shen, Binghui; Wang, Guanghai; Wu, Chen; Yu, Dianke; Lin, Dongxin; Cardenas, Victor; Hazra, Tapas K

    2012-01-01

    Human NEIL2, one of five oxidized base-specific DNA glycosylases, is unique in preferentially repairing oxidative damage in transcribed genes. Here we show that depletion of NEIL2 causes a 6- to 7-fold increase in spontaneous mutation frequency in the HPRT gene of the V79 Chinese hamster lung cell line. This prompted us to screen for NEIL2 variants in lung cancer patients’ genomic DNA. We identified several polymorphic variants, among which R103Q and R257L were frequently observed in lung cancer patients. We then characterized these variants biochemically, and observed a modest decrease in DNA glycosylase activity relative to the wild type (WT) only with the R257L mutant protein. However, in reconstituted repair assays containing WT NEIL2 or its R257L and R103Q variants together with other DNA base excision repair (BER) proteins (PNKP, Polβ, Lig IIIα and XRCC1) or using NEIL2-FLAG immunocomplexes, an ~ 5-fold decrease in repair was observed with the R257L variant compared to WT or R103Q NEIL2, apparently due to the R257L mutant’s lower affinity for other repair proteins, particularly Polβ. Notably, increased endogenous DNA damage was observed in NEIL2 variant (R257L)-expressing cells relative to WT cells. Taken together, our results suggest that the decreased DNA repair capacity of the R257L variant can induce mutations that lead to lung cancer development. PMID:22497777

  7. O-GlcNAcylation of 8-Oxoguanine DNA Glycosylase (Ogg1) Impairs Oxidative Mitochondrial DNA Lesion Repair in Diabetic Hearts.

    PubMed

    Cividini, Federico; Scott, Brian T; Dai, Anzhi; Han, Wenlong; Suarez, Jorge; Diaz-Juarez, Julieta; Diemer, Tanja; Casteel, Darren E; Dillmann, Wolfgang H

    2016-12-16

    mtDNA damage in cardiac myocytes resulting from increased oxidative stress is emerging as an important factor in the pathogenesis of diabetic cardiomyopathy. A prevalent lesion that occurs in mtDNA damage is the formation of 8-hydroxy-2'-deoxyguanosine (8-OHdG), which can cause mutations when not repaired properly by 8-oxoguanine DNA glycosylase (Ogg1). Although the mtDNA repair machinery has been described in cardiac myocytes, the regulation of this repair has been incompletely investigated. Here we report that the hearts of type 1 diabetic mice, despite having increased Ogg1 protein levels, had significantly lower Ogg1 activity than the hearts of control, non-type 1 diabetic mice. In diabetic hearts, we further observed increased levels of 8-OHdG and an increased amount of mtDNA damage. Interestingly, Ogg1 was found to be highly O-GlcNAcylated in diabetic mice compared with controls. In vitro experiments demonstrated that O-GlcNAcylation inhibits Ogg1 activity, which could explain the mtDNA lesion accumulation observed in vivo Reducing Ogg1 O-GlcNAcylation in vivo by introducing a dominant negative O-GlcNAc transferase mutant (F460A) restored Ogg1 enzymatic activity and, consequently, reduced 8-OHdG and mtDNA damage despite the adverse hyperglycemic milieu. Taken together, our results implicate hyperglycemia-induced O-GlcNAcylation of Ogg1 in increased mtDNA damage and, therefore, provide a new plausible biochemical mechanism for diabetic cardiomyopathy.

  8. A Catalytic Role for C-H/π Interactions in Base Excision Repair by Bacillus cereus DNA Glycosylase AlkD.

    PubMed

    Parsons, Zachary D; Bland, Joshua M; Mullins, Elwood A; Eichman, Brandt F

    2016-09-14

    DNA glycosylases protect genomic integrity by locating and excising aberrant nucleobases. Substrate recognition and excision usually take place in an extrahelical conformation, which is often stabilized by π-stacking interactions between the lesion nucleobase and aromatic side chains in the glycosylase active site. Bacillus cereus AlkD is the only DNA glycosylase known to catalyze base excision without extruding the damaged nucleotide from the DNA helix. Instead of contacting the nucleobase itself, the AlkD active site interacts with the lesion deoxyribose through a series of C-H/π interactions. These interactions are ubiquitous in protein structures, but evidence for their catalytic significance in enzymology is lacking. Here, we show that the C-H/π interactions between AlkD and the lesion deoxyribose participate in catalysis of glycosidic bond cleavage. This is the first demonstration of a catalytic role for C-H/π interactions as intermolecular forces important to DNA repair.

  9. Expansion Mechanisms and Evolutionary History on Genes Encoding DNA Glycosylases and Their Involvement in Stress and Hormone Signaling

    PubMed Central

    Jiang, Shu-Ye; Ramachandran, Srinivasan

    2016-01-01

    DNA glycosylases catalyze the release of methylated bases. They play vital roles in the base excision repair pathway and might also function in DNA demethylation. At least three families of DNA glycosylases have been identified, which included 3′-methyladenine DNA glycosylase (MDG) I, MDG II, and HhH-GPD (Helix–hairpin–Helix and Glycine/Proline/aspartate (D)). However, little is known on their genome-wide identification, expansion, and evolutionary history as well as their expression profiling and biological functions. In this study, we have genome-widely identified and evolutionarily characterized these family members. Generally, a genome encodes only one MDG II gene in most of organisms. No MDG I or MDG II gene was detected in green algae. However, HhH-GPD genes were detectable in all available organisms. The ancestor species contain small size of MDG I and HhH-GPD families. These two families were mainly expanded through the whole-genome duplication and segmental duplication. They were evolutionarily conserved and were generally under purifying selection. However, we have detected recent positive selection among the Oryza genus, which might play roles in species divergence. Further investigation showed that expression divergence played important roles in gene survival after expansion. All of these family genes were expressed in most of developmental stages and tissues in rice plants. High ratios of family genes were downregulated by drought and fungus pathogen as well as abscisic acid (ABA) and jasmonic acid (JA) treatments, suggesting a negative regulation in response to drought stress and pathogen infection through ABA- and/or JA-dependent hormone signaling pathway. PMID:27026054

  10. The human Werner syndrome protein stimulates repair of oxidative DNA base damage by the DNA glycosylase NEIL1.

    PubMed

    Das, Aditi; Boldogh, Istvan; Lee, Jae Wan; Harrigan, Jeanine A; Hegde, Muralidhar L; Piotrowski, Jason; de Souza Pinto, Nadja; Ramos, William; Greenberg, Marc M; Hazra, Tapas K; Mitra, Sankar; Bohr, Vilhelm A

    2007-09-07

    The mammalian DNA glycosylase, NEIL1, specific for repair of oxidatively damaged bases in the genome via the base excision repair pathway, is activated by reactive oxygen species and prevents toxicity due to radiation. We show here that the Werner syndrome protein (WRN), a member of the RecQ family of DNA helicases, associates with NEIL1 in the early damage-sensing step of base excision repair. WRN stimulates NEIL1 in excision of oxidative lesions from bubble DNA substrates. The binary interaction between NEIL1 and WRN (K(D) = 60 nM) involves C-terminal residues 288-349 of NEIL1 and the RecQ C-terminal (RQC) region of WRN, and is independent of the helicase activity WRN. Exposure to oxidative stress enhances the NEIL-WRN association concomitant with their strong nuclear co-localization. WRN-depleted cells accumulate some prototypical oxidized bases (e.g. 8-oxoguanine, FapyG, and FapyA) indicating a physiological function of WRN in oxidative damage repair in mammalian genomes. Interestingly, WRN deficiency does not have an additive effect on in vivo damage accumulation in NEIL1 knockdown cells suggesting that WRN participates in the same repair pathway as NEIL1.

  11. ROS1 5-methylcytosine DNA glycosylase is a slow-turnover catalyst that initiates DNA demethylation in a distributive fashion.

    PubMed

    Ponferrada-Marín, María Isabel; Roldán-Arjona, Teresa; Ariza, Rafael R

    2009-07-01

    Arabidopsis ROS1 belongs to a family of plant 5-methycytosine DNA glycosylases that initiate DNA demethylation through base excision. ROS1 displays the remarkable capacity to excise 5-meC, and to a lesser extent T, while retaining the ability to discriminate effectively against C and U. We found that replacement of the C5-methyl group by halogen substituents greatly decreased excision of the target base. Furthermore, 5-meC was excised more efficiently from mismatches, whereas excision of T only occurred when mispaired with G. These results suggest that ROS1 specificity arises by a combination of selective recognition at the active site and thermodynamic stability of the target base. We also found that ROS1 is a low-turnover catalyst because it binds tightly to the abasic site left after 5-meC removal. This binding leads to a highly distributive behaviour of the enzyme on DNA substrates containing multiple 5-meC residues, and may help to avoid generation of double-strand breaks during processing of bimethylated CG dinucleotides. We conclude that the biochemical properties of ROS1 are consistent with its proposed role in protecting the plant genome from excess methylation.

  12. The Potential Role of 8-Oxoguanine DNA Glycosylase-Driven DNA Base Excision Repair in Exercise-Induced Asthma

    PubMed Central

    Belanger, KarryAnne K.; Ameredes, Bill T.; Boldogh, Istvan

    2016-01-01

    Asthma is characterized by reversible airway narrowing, shortness of breath, wheezing, coughing, and other symptoms driven by chronic inflammatory processes, commonly triggered by allergens. In 90% of asthmatics, most of these symptoms can also be triggered by intense physical activities and severely exacerbated by environmental factors. This condition is known as exercise-induced asthma (EIA). Current theories explaining EIA pathogenesis involve osmotic and/or thermal alterations in the airways caused by changes in respiratory airflow during exercise. These changes, along with existing airway inflammatory conditions, are associated with increased cellular levels of reactive oxygen species (ROS) affecting important biomolecules including DNA, although the underlying molecular mechanisms have not been completely elucidated. One of the most abundant oxidative DNA lesions is 8-oxoguanine (8-oxoG), which is repaired by 8-oxoguanine DNA glycosylase 1 (OGG1) during the base excision repair (BER) pathway. Whole-genome expression analyses suggest a cellular response to OGG1-BER, involving genes that may have a role in the pathophysiology of EIA leading to mast cell degranulation, airway hyperresponsiveness, and bronchoconstriction. Accordingly, this review discusses a potential new hypothesis in which OGG1-BER-induced gene expression is associated with EIA symptoms. PMID:27524866

  13. ROS1 5-methylcytosine DNA glycosylase is a slow-turnover catalyst that initiates DNA demethylation in a distributive fashion

    PubMed Central

    Ponferrada-Marín, María Isabel; Roldán-Arjona, Teresa; Ariza, Rafael R.

    2009-01-01

    Arabidopsis ROS1 belongs to a family of plant 5-methycytosine DNA glycosylases that initiate DNA demethylation through base excision. ROS1 displays the remarkable capacity to excise 5-meC, and to a lesser extent T, while retaining the ability to discriminate effectively against C and U. We found that replacement of the C5-methyl group by halogen substituents greatly decreased excision of the target base. Furthermore, 5-meC was excised more efficiently from mismatches, whereas excision of T only occurred when mispaired with G. These results suggest that ROS1 specificity arises by a combination of selective recognition at the active site and thermodynamic stability of the target base. We also found that ROS1 is a low-turnover catalyst because it binds tightly to the abasic site left after 5-meC removal. This binding leads to a highly distributive behaviour of the enzyme on DNA substrates containing multiple 5-meC residues, and may help to avoid generation of double-strand breaks during processing of bimethylated CG dinucleotides. We conclude that the biochemical properties of ROS1 are consistent with its proposed role in protecting the plant genome from excess methylation. PMID:19443451

  14. Inhibition of uracil DNA glycosylase sensitizes cancer cells to 5-fluorodeoxyuridine through replication fork collapse-induced DNA damage

    PubMed Central

    Yan, Yan; Han, Xiangzi; Qing, Yulan; Condie, Allison G.; Gorityala, Shashank; Yang, Shuming; Xu, Yan; Zhang, Youwei; Gerson, Stanton L.

    2016-01-01

    5-fluorodeoxyuridine (5-FdU, floxuridine) is active against multiple cancers through the inhibition of thymidylate synthase, which consequently introduces uracil and 5-FU incorporation into the genome. Uracil DNA glycosylase (UDG) is one of the main enzymes responsible for the removal of uracil and 5-FU. However, how exactly UDG mediates cellular sensitivity to 5-FdU, and if so whether it is through its ability to remove uracil and 5-FU have not been well characterized. In this study, we report that UDG depletion led to incorporation of uracil and 5-FU in DNA following 5-FdU treatment and significantly enhanced 5-FdU's cytotoxicity in cancer cell lines. Co-treatment, but not post-treatment with thymidine prevented cell death of UDG depleted cells by 5-FdU, indicating that the enhanced cytotoxicity is due to the retention of uracil and 5-FU in genomic DNA in the absence of UDG. Furthermore, UDG depleted cells were arrested at late G1 and early S phase by 5-FdU, followed by accumulation of sub-G1 population indicating cell death. Mechanistically, 5-FdU dramatically reduced DNA replication speed in UDG depleted cells. UDG depletion also greatly enhanced DNA damage as shown by γH2AX foci formation. Notably, the increased γH2AX foci formation was not suppressed by caspase inhibitor treatment, suggesting that DNA damage precedes cell death induced by 5-FdU. Together, these data provide novel mechanistic insights into the roles of UDG in DNA replication, damage repair, and cell death in response to 5-FdU and suggest that UDG is a target for improving the anticancer effect of this agent. PMID:27517750

  15. Sequence-dependent Structural Variation in DNA Undergoing Intrahelical Inspection by the DNA glycosylase MutM

    SciTech Connect

    Sung, Rou-Jia; Zhang, Michael; Qi, Yan; Verdine, Gregory L.

    2012-08-31

    MutM, a bacterial DNA-glycosylase, plays a critical role in maintaining genome integrity by catalyzing glycosidic bond cleavage of 8-oxoguanine (oxoG) lesions to initiate base excision DNA repair. The task faced by MutM of locating rare oxoG residues embedded in an overwhelming excess of undamaged bases is especially challenging given the close structural similarity between oxoG and its normal progenitor, guanine (G). MutM actively interrogates the DNA to detect the presence of an intrahelical, fully base-paired oxoG, whereupon the enzyme promotes extrusion of the target nucleobase from the DNA duplex and insertion into the extrahelical active site. Recent structural studies have begun to provide the first glimpse into the protein-DNA interactions that enable MutM to distinguish an intrahelical oxoG from G; however, these initial studies left open the important question of how MutM can recognize oxoG residues embedded in 16 different neighboring sequence contexts (considering only the 5'- and 3'-neighboring base pairs). In this study we set out to understand the manner and extent to which intrahelical lesion recognition varies as a function of the 5'-neighbor. Here we report a comprehensive, systematic structural analysis of the effect of the 5'-neighboring base pair on recognition of an intrahelical oxoG lesion. These structures reveal that MutM imposes the same extrusion-prone ('extrudogenic') backbone conformation on the oxoG lesion irrespective of its 5'-neighbor while leaving the rest of the DNA relatively free to adjust to the particular demands of individual sequences.

  16. Crystallization and preliminary X-ray diffraction analysis of three recombinant mutants of Vaccinia virus uracil DNA glycosylase.

    PubMed

    Sartmatova, Darika; Nash, Taishayla; Schormann, Norbert; Nuth, Manunya; Ricciardi, Robert; Banerjee, Surajit; Chattopadhyay, Debasish

    2013-03-01

    Amino-acid residues located at a highly flexible area in the uracil DNA glycosylase of Vaccinia virus were mutated. In the crystal structure of wild-type D4 these residues lie at the dimer interface. Specifically, three mutants were generated: (i) residue Arg167 was replaced with an alanine (R167AD4), (ii) residues Glu171, Ser172 and Pro173 were substituted with three glycine residues (3GD4) and (iii) residues Glu171 and Ser172 were deleted (Δ171-172D4). Mutant proteins were expressed, purified and crystallized in order to investigate the effects of these mutations on the structure of the protein.

  17. The human oxidative DNA glycosylase NEIL1 excises psoralen-induced interstrand DNA cross-links in a three-stranded DNA structure.

    PubMed

    Couvé, Sophie; Macé-Aimé, Gaëtane; Rosselli, Filippo; Saparbaev, Murat K

    2009-05-01

    Previously, we have demonstrated that human oxidative DNA glycosylase NEIL1 excises photoactivated psoralen-induced monoadducts but not genuine interstrand cross-links (ICLs) in duplex DNA. It has been postulated that the repair of ICLs in mammalian cells is mainly linked to DNA replication and proceeds via dual incisions in one DNA strand that bracket the cross-linked site. This process, known as "unhooking," enables strand separation and translesion DNA synthesis through the gap, yielding a three-stranded DNA repair intermediate composed of a short unhooked oligomer covalently bound to the duplex. At present, the detailed molecular mechanism of ICL repair in mammalian cells remains unclear. Here, we constructed and characterized three-stranded DNA structures containing a single ICL as substrates for the base excision repair proteins. We show that NEIL1 excises with high efficiency the unhooked ICL fragment within a three-stranded DNA structure. Complete reconstitution of the repair of unhooked ICL shows that it can be processed in a short patch base excision repair pathway. The new substrate specificity of NEIL1 points to a preferential involvement in the replication-associated repair of ICLs. Based on these data, we propose a model for the mechanism of ICL repair in mammalian cells that implicates the DNA glycosylase activity of NEIL1 downstream of Xeroderma Pigmentosum group F/Excision Repair Cross-Complementing 1 endonuclease complex (XPF/ERCC1) and translesion DNA synthesis repair steps. Finally, our data demonstrate that Nei-like proteins from Escherichia coli to human cells can excise bulky unhooked psoralen-induced ICLs via hydrolysis of glycosidic bond between cross-linked base and deoxyribose sugar, thus providing an alternative heuristic solution for the removal of complex DNA lesions.

  18. Structural and Biochemical Analysis of DNA Helix Invasion by the Bacterial 8-Oxoguanine DNA Glycosylase MutM*

    PubMed Central

    Sung, Rou-Jia; Zhang, Michael; Qi, Yan; Verdine, Gregory L.

    2013-01-01

    MutM is a bacterial DNA glycosylase that serves as the first line of defense against the highly mutagenic 8-oxoguanine (oxoG) lesion, catalyzing glycosidic bond cleavage of oxoG to initiate base excision DNA repair. Previous work has shown that MutM actively interrogates DNA for the presence of an intrahelical oxoG lesion. This interrogation process involves significant buckling and bending of the DNA to promote extrusion of oxoG from the duplex. Structural snapshots have revealed several different highly conserved residues that are prominently inserted into the duplex in the vicinity of the target oxoG before and after base extrusion has occurred. However, the roles of these helix-invading residues during the lesion recognition and base extrusion process remain unclear. In this study, we set out to probe the function of residues Phe114 and Met77 in oxoG recognition and repair. Here we report a detailed biochemical and structural characterization of MutM variants containing either a F114A or M77A mutation, both of which showed significant decreases in the efficiency of oxoG repair. These data reveal that Met77 plays an important role in stabilizing the lesion-extruded conformation of the DNA. Phe114, on the other hand, appears to destabilize the intrahelical state of the oxoG lesion, primarily by buckling the target base pair. We report the observation of a completely unexpected interaction state, in which the target base pair is ruptured but remains fully intrahelical; this structure vividly illustrates the disruptive influence of MutM on the target base pair. PMID:23404556

  19. Metal inhibition of human alkylpurine-DNA-N-glycosylase activityin base excision repair

    SciTech Connect

    Wang, Ping; Guliaev, Anton B.; Hang, Bo

    2006-02-28

    Cadmium (Cd{sup 2+}), nickel (Ni{sup 2+}) and cobalt (Co{sup 2+}) are human and/or animal carcinogens. Zinc (Zn{sup 2+}) is not categorized as a carcinogen, and rather an essential element to humans. Metals were recently shown to inhibit DNA repair proteins that use metals for their function and/or structure. Here we report that the divalent ions Cd{sup 2+}, Ni{sup 2+}, and Zn{sup 2+} can inhibit the activity of a recombinant human N-methylpurine-DNA glycosylase (MPG) toward a deoxyoligonucleotide with ethenoadenine (var epsilonA). MPG removes a variety of toxic/mutagenic alkylated bases and does not require metal for its catalytic activity or structural integrity. At concentrations starting from 50 to 1000 {micro}M, both Cd{sup 2+} and Zn{sup 2+} showed metal-dependent inhibition of the MPG catalytic activity. Ni{sup 2+} also inhibited MPG, but to a lesser extent. Such an effect can be reversed with EDTA addition. In contrast, Co{sup 2+} and Mg{sup 2+} did not inhibit the MPG activity in the same dose range. Experiments using HeLa cell-free extracts demonstrated similar patterns of inactivation of the var epsilonA excision activity by the same metals. Binding of MPG to the substrate was not significantly affected by Cd{sup 2+}, Zn{sup 2+}, and Ni{sup 2+} at concentrations that show strong inhibition of the catalytic function, suggesting that the reduced catalytic activity is not due to altered MPG binding affinity to the substrate. Molecular dynamics (MD) simulations with Zn{sup 2+} showed that the MPG active site has a potential binding site for Zn{sup 2+}, formed by several catalytically important and conserved residues. Metal binding to such a site is expected to interfere with the catalytic mechanism of this protein. These data suggest that inhibition of MPG activity may contribute to metal genotoxicity and depressed repair of alkylation damage by metals in vivo.

  20. Effect of the multifunctional proteins RPA, YB-1, and XPC repair factor on AP site cleavage by DNA glycosylase NEIL1.

    PubMed

    Pestryakov, Pavel; Zharkov, Dmitry O; Grin, Inga; Fomina, Elizaveta E; Kim, Ekaterina R; Hamon, Loïc; Eliseeva, Irina A; Petruseva, Irina O; Curmi, Patrick A; Ovchinnikov, Lev P; Lavrik, Olga I

    2012-04-01

    DNA glycosylases are key enzymes in the first step of base excision DNA repair, recognizing DNA damage and catalyzing the release of damaged nucleobases. Bifunctional DNA glycosylases also possess associated apurinic/apyrimidinic (AP) lyase activity that nick the damaged DNA strand at an abasic (or AP) site, formed either spontaneously or at the first step of repair. NEIL1 is a bifunctional DNA glycosylase capable of processing lesions, including AP sites, not only in double-stranded but also in single-stranded DNA. Here, we show that proteins participating in DNA damage response, YB-1 and RPA, affect AP site cleavage by NEIL1. Stimulation of the AP lyase activity of NEIL1 was observed when an AP site was located in a 60 nt-long double-stranded DNA. Both RPA and YB-1 inhibited AP site cleavage by NEIL1 when the AP site was located in single-stranded DNA. Taking into account a direct interaction of YB-1 with the AP site, located in single-stranded DNA, and the high affinity of both YB-1 and RPA for single-stranded DNA, this behavior is presumably a consequence of a competition with NEIL1 for the DNA substrate. Xeroderma pigmentosum complementation group C protein (XPC), a key protein of another DNA repair pathway, was shown to interact directly with AP sites but had no effect on AP site cleavage by NEIL1.

  1. Expression and function of AtMBD4L, the single gene encoding the nuclear DNA glycosylase MBD4L in Arabidopsis.

    PubMed

    Nota, Florencia; Cambiagno, Damián A; Ribone, Pamela; Alvarez, María E

    2015-06-01

    DNA glycosylases recognize and excise damaged or incorrect bases from DNA initiating the base excision repair (BER) pathway. Methyl-binding domain protein 4 (MBD4) is a member of the HhH-GPD DNA glycosylase superfamily, which has been well studied in mammals but not in plants. Our knowledge on the plant enzyme is limited to the activity of the Arabidopsis recombinant protein MBD4L in vitro. To start evaluating MBD4L in its biological context, we here characterized the structure, expression and effects of its gene, AtMBD4L. Phylogenetic analysis indicated that AtMBD4L belongs to one of the seven families of HhH-GPD DNA glycosylase genes existing in plants, and is unique on its family. Two AtMBD4L transcripts coding for active enzymes were detected in leaves and flowers. Transgenic plants expressing the AtMBD4L:GUS gene confined GUS activity to perivascular leaf tissues (usually adjacent to hydathodes), flowers (anthers at particular stages of development), and the apex of immature siliques. MBD4L-GFP fusion proteins showed nuclear localization in planta. Interestingly, overexpression of the full length MBD4L, but not a truncated enzyme lacking the DNA glycosylase domain, induced the BER gene LIG1 and enhanced tolerance to oxidative stress. These results suggest that endogenous MBD4L acts on particular tissues, is capable of activating BER, and may contribute to repair DNA damage caused by oxidative stress.

  2. Partial uracil-DNA-glycosylase treatment for screening of ancient DNA.

    PubMed

    Rohland, Nadin; Harney, Eadaoin; Mallick, Swapan; Nordenfelt, Susanne; Reich, David

    2015-01-19

    The challenge of sequencing ancient DNA has led to the development of specialized laboratory protocols that have focused on reducing contamination and maximizing the number of molecules that are extracted from ancient remains. Despite the fact that success in ancient DNA studies is typically obtained by screening many samples to identify a promising subset, ancient DNA protocols have not, in general, focused on reducing the time required to screen samples. We present an adaptation of a popular ancient library preparation method that makes screening more efficient. First, the DNA extract is treated using a protocol that causes characteristic ancient DNA damage to be restricted to the terminal nucleotides, while nearly eliminating it in the interior of the DNA molecules, allowing a single library to be used both to test for ancient DNA authenticity and to carry out population genetic analysis. Second, the DNA molecules are ligated to a unique pair of barcodes, which eliminates undetected cross-contamination from this step onwards. Third, the barcoded library molecules include incomplete adapters of short length that can increase the specificity of hybridization-based genomic target enrichment. The adapters are completed just before sequencing, so the same DNA library can be used in multiple experiments, and the sequences distinguished. We demonstrate this protocol on 60 ancient human samples.

  3. Down-regulation of 8-oxoguanine DNA glycosylase 1 expression in the airway epithelium ameliorates allergic lung inflammation.

    PubMed

    Bacsi, Attila; Aguilera-Aguirre, Leopoldo; Szczesny, Bartosz; Radak, Zsolt; Hazra, Tapas K; Sur, Sanjiv; Ba, Xueqing; Boldogh, Istvan

    2013-01-01

    Allergic airway inflammation is characterized by increased expression of pro-inflammatory mediators, inflammatory cell infiltration, mucus hypersecretion, and airway hyperresponsiveness, in parallel with oxidative DNA base and strand damage, whose etiological role is not understood. Our goal was to establish the role of 8-oxoguanine (8-oxoG), a common oxidatively damaged base, and its repair by 8-oxoguanine DNA glycosylase 1 (Ogg1) in allergic airway inflammatory processes. Airway inflammation was induced by intranasally administered ragweed (Ambrosia artemisiifolia) pollen grain extract (RWPE) in sensitized BALB/c mice. We utilized siRNA technology to deplete Ogg1 from airway epithelium; 8-oxoG and DNA strand break levels were quantified by Comet assays. Inflammatory cell infiltration and epithelial methaplasia were determined histologically, mucus and cytokines levels biochemically and enhanced pause was used as the main index of airway hyperresponsiveness. Decreased Ogg1 expression and thereby 8-oxoG repair in the airway epithelium conveyed a lower inflammatory response after RWPE challenge of sensitized mice, as determined by expression of Th2 cytokines, eosinophilia, epithelial methaplasia, and airway hyperresponsiveness. In contrast, 8-oxoG repair in Ogg1-proficient airway epithelium was coupled to an increase in DNA single-strand break (SSB) levels and exacerbation of allergen challenge-dependent inflammation. Decreased expression of the Nei-like glycosylases Neil1 and Neil2 that preferentially excise ring-opened purines and 5-hydroxyuracil, respectively, did not alter the above parameters of allergic immune responses to RWPE. These results show that DNA SSBs formed during Ogg1-mediated repair of 8-oxoG augment antigen-driven allergic immune responses. A transient modulation of OGG1 expression/activity in airway epithelial cells could have clinical benefits.

  4. Phosphorylation Sites Identified in the NEIL1 DNA Glycosylase Are Potential Targets for the JNK1 Kinase

    PubMed Central

    Prakash, Aishwarya; Cao, Vy Bao; Doublié, Sylvie

    2016-01-01

    The NEIL1 DNA glycosylase is one of eleven mammalian DNA glycosylases that partake in the first step of the base excision repair (BER) pathway. NEIL1 recognizes and cleaves mainly oxidized pyrimidines from DNA. The past decade has witnessed the identification of an increasing number of post-translational modifications (PTMs) in BER enzymes including phosphorylation, acetylation, and sumoylation, which modulate enzyme function. In this work, we performed the first comprehensive analysis of phosphorylation sites in human NEIL1 expressed in human cells. Mass spectrometry (MS) analysis revealed phosphorylation at three serine residues: S207, S306, and a third novel site, S61. We expressed, purified, and characterized phosphomimetic (glutamate) and phosphoablating (alanine) mutants of the three phosphorylation sites in NEIL1 revealed by the MS analysis. All mutant enzymes were active and bound tightly to DNA, indicating that phosphorylation does not affect DNA binding and enzyme activity at these three serine sites. We also characterized phosphomimetic mutants of two other sites of phosphorylation, Y263 and S269, reported previously, and observed that mutation of Y263 to E yielded a completely inactive enzyme. Furthermore, based on sequence motifs and kinase prediction algorithms, we identified the c-Jun N-terminal kinase 1 (JNK1) as the kinase involved in the phosphorylation of NEIL1. JNK1, a member of the mitogen activated protein kinase (MAPK) family, was detected in NEIL1 immunoprecipitates, interacted with NEIL1 in vitro, and was able to phosphorylate the enzyme at residues S207, S306, and S61. PMID:27518429

  5. Arabidopsis ZDP DNA 3'-phosphatase and ARP endonuclease function in 8-oxoG repair initiated by FPG and OGG1 DNA glycosylases.

    PubMed

    Córdoba-Cañero, Dolores; Roldán-Arjona, Teresa; Ariza, Rafael R

    2014-09-01

    Oxidation of guanine in DNA generates 7,8-dihydro-8-oxoguanine (8-oxoG), an ubiquitous lesion with mutagenic properties. 8-oxoG is primarily removed by DNA glycosylases distributed in two families, typified by bacterial Fpg proteins and eukaryotic Ogg1 proteins. Interestingly, plants possess both Fpg and Ogg1 homologs but their relative contributions to 8-oxoG repair remain uncertain. In this work we used Arabidopsis cell-free extracts to monitor 8-oxoG repair in wild-type and mutant plants. We found that both FPG and OGG1 catalyze excision of 8-oxoG in Arabidopsis cell extracts by a DNA glycosylase/lyase mechanism, and generate repair intermediates with blocked 3'-termini. An increase in oxidative damage is detected in both nuclear and mitochondrial DNA from double fpg ogg1 mutants, but not in single mutants, which suggests that a single deficiency in one of these DNA glycosylases may be compensated by the other. We also found that the DNA 3'-phosphatase ZDP (zinc finger DNA 3'-phosphoesterase) and the AP(apurinic/apyirmidinic) endonuclease ARP(apurinic endonuclease redox protein) are required in the 8-oxoG repair pathway to process the 3'-blocking ends generated by FPG and OGG1. Furthermore, deficiencies in ZDP and/or ARP decrease germination ability after seed deteriorating conditions. Altogether, our results suggest that Arabidopsis cells use both FPG and OGG1 to repair 8-oxoG in a pathway that requires ZDP and ARP in downstream steps.

  6. Clostridium acetobutylicum 8-Oxoguanine DNA Glycosylase (Ogg) Differs from Eukaryotic Oggs with Respect to Opposite Base Discrimination†

    PubMed Central

    Robey-Bond, Susan M.; Barrantes-Reynolds, Ramiro; Bond, Jeffrey P.; Wallace, Susan S.; Bandaru, Viswanath

    2008-01-01

    During repair of damaged DNA, the oxidized base 8-oxoguanine (8-oxoG) is removed by 8-oxoguanine—DNA glycosylase (Ogg) in eukaryotes and most archaea, whereas in most bacteria it is removed by formamidopyrimidine—DNA glycosylase (Fpg). We report the first characterization of a bacterial Ogg, Clostridium acetobutylicum Ogg (CacOgg). Like human OGG1 and Escherichia coli Fpg (EcoFpg), CacOgg excised 8-oxoguanine. However, unlike hOGG1 and EcoFpg, CacOgg showed little preference for the base opposite the damage during base excision and removed 8-oxoguanine from single-stranded DNA. Thus, our results showed unambiguous qualitative functional differences in vitro between CacOgg and both hOGG1 and EcoFpg. CacOgg differs in sequence from the eukaryotic enzymes at two sequence positions, M132 and F179, which align with amino acids (R154 and Y203) in human OGG1 (hOGG1) found to be involved in opposite base interaction. To address the sequence basis for functional differences with respect to opposite base interactions, we prepared three CacOgg variants, M132R, F179Y, and M132R/F179Y. All three variants showed a substantial increase in specificity for 8-oxoG·C relative to 8-oxoG·A. While we were unable to definitively associate these qualitative functional differences with differences in selective pressure between eukaryotes, Clostridia, and other bacteria, our results are consistent with the idea that evolution of Ogg function is based on kinetic control of repair. PMID:18578506

  7. Structure of Escherichia coli AlkA in Complex with Undamaged DNA*

    PubMed Central

    Bowman, Brian R.; Lee, Seongmin; Wang, Shuyu; Verdine, Gregory L.

    2010-01-01

    Because DNA damage is so rare, DNA glycosylases interact for the most part with undamaged DNA. Whereas the structural basis for recognition of DNA lesions by glycosylases has been studied extensively, less is known about the nature of the interaction between these proteins and undamaged DNA. Here we report the crystal structures of the DNA glycosylase AlkA in complex with undamaged DNA. The structures revealed a recognition mode in which the DNA is nearly straight, with no amino acid side chains inserted into the duplex, and the target base pair is fully intrahelical. A comparison of the present structures with that of AlkA recognizing an extrahelical lesion revealed conformational changes in both the DNA and protein as the glycosylase transitions from the interrogation of undamaged DNA to catalysis of nucleobase excision. Modeling studies with the cytotoxic lesion 3-methyladenine and accompanying biochemical experiments suggested that AlkA actively interrogates the minor groove of the DNA while probing for the presence of lesions. PMID:20843803

  8. Structure of Escherichia coli AlkA in Complex with Undamaged DNA

    DOE PAGES

    Bowman, Brian R.; Lee, Seongmin; Wang, Shuyu; ...

    2010-11-22

    Because DNA damage is so rare, DNA glycosylases interact for the most part with undamaged DNA. Whereas the structural basis for recognition of DNA lesions by glycosylases has been studied extensively, less is known about the nature of the interaction between these proteins and undamaged DNA. Here we report the crystal structures of the DNA glycosylase AlkA in complex with undamaged DNA. The structures revealed a recognition mode in which the DNA is nearly straight, with no amino acid side chains inserted into the duplex, and the target base pair is fully intrahelical. A comparison of the present structures withmore » that of AlkA recognizing an extrahelical lesion revealed conformational changes in both the DNA and protein as the glycosylase transitions from the interrogation of undamaged DNA to catalysis of nucleobase excision. Modeling studies with the cytotoxic lesion 3-methyladenine and accompanying biochemical experiments suggested that AlkA actively interrogates the minor groove of the DNA while probing for the presence of lesions.« less

  9. Solution-state NMR Investigation of DNA Binding Interactions in Escherichia coli Formamidopyrimidine-DNA Glycosylase (Fpg): A Dynamic Description of the DNA/Protein Interface

    SciTech Connect

    Buchko, Garry W.; McAteer, Kathleen; Wallace, Susan S.; Kennedy, Michael A.

    2005-03-02

    Formamidopyrimidine-DNA glycosylase (Fpg) is a base excision repair protein that removes oxidative DNA lesions. Recent crystal structures of Fpg bound to DNA revealed residues involved in damage recognition and enzyme catalysis, but failed to shed light on the dynamic nature of the processes. To examine the structural and dynamic changes that occur in solution when Fpg binds DNA, NMR spectroscopy was used to study Escherichia coli Fpg free and bound to a double-stranded DNA oligomer (13-PD) containing propanediol, a non-hydrolyzable abasic-site analogue. Only 209 out of a possible 252 (83%) free-precession HSQC cross peaks were observed and 180 of these were assignable, indicating that ~30% of the residues undergo intermediate timescale motion that makes them intractable in backbone assignment experiments. DNA titration experiments revealed line broadening and chemical shift perturbations for backbone amides nearby and distant from the DNA binding surface, but failed to quench the intermediate time-scale motion observed for free Fpg. CPMG-HSQC experiments revealed millisecond to microsecond motion for the backbone amides of D91 and H92 that was quenched upon binding 13-PD. Collectively, these observations reveal that, in solution, Fpg contains highly flexible regions. The dynamic nature of Fpg, especially at the DNA binding surface, may be key to its processive search mechanism.

  10. Using structural-based protein engineering to modulate the differential inhibition effects of SAUGI on human and HSV uracil DNA glycosylase.

    PubMed

    Wang, Hao-Ching; Ho, Chun-Han; Chou, Chia-Cheng; Ko, Tzu-Ping; Huang, Ming-Fen; Hsu, Kai-Cheng; Wang, Andrew H-J

    2016-05-19

    Uracil-DNA glycosylases (UDGs) are highly conserved proteins that can be found in a wide range of organisms, and are involved in the DNA repair and host defense systems. UDG activity is controlled by various cellular factors, including the uracil-DNA glycosylase inhibitors, which are DNA mimic proteins that prevent the DNA binding sites of UDGs from interacting with their DNA substrate. To date, only three uracil-DNA glycosylase inhibitors, phage UGI, p56, and Staphylococcus aureus SAUGI, have been determined. We show here that SAUGI has differential inhibitory effects on UDGs from human, bacteria, Herpes simplex virus (HSV; human herpesvirus 1) and Epstein-Barr virus (EBV; human herpesvirus 4). Newly determined crystal structures of SAUGI/human UDG and a SAUGI/HSVUDG complex were used to explain the differential binding activities of SAUGI on these two UDGs. Structural-based protein engineering was further used to modulate the inhibitory ability of SAUGI on human UDG and HSVUDG. The results of this work extend our understanding of DNA mimics as well as potentially opening the way for novel therapeutic applications for this kind of protein.

  11. Molecular cloning and functional expression of a human cDNA encoding the antimutator enzyme 8-hydroxyguanine-DNA glycosylase

    PubMed Central

    Roldán-Arjona, Teresa; Wei, Ying-Fei; Carter, Kenneth C.; Klungland, Arne; Anselmino, Catherine; Wang, Rui-Ping; Augustus, Meena; Lindahl, Tomas

    1997-01-01

    The major mutagenic base lesion in DNA caused by exposure to reactive oxygen species is 8-hydroxyguanine (8-oxo-7,8-dihydroguanine). In bacteria and Saccharomyces cerevisiae, this damaged base is excised by a DNA glycosylase with an associated lyase activity for chain cleavage. We have cloned, sequenced, and expressed a human cDNA with partial sequence homology to the relevant yeast gene. The encoded 47-kDa human enzyme releases free 8-hydroxyguanine from oxidized DNA and introduces a chain break in a double-stranded oligonucleotide specifically at an 8-hydroxyguanine residue base paired with cytosine. Expression of the human protein in a DNA repair-deficient E. coli mutM mutY strain partly suppresses its spontaneous mutator phenotype. The gene encoding the human enzyme maps to chromosome 3p25. These results show that human cells have an enzyme that can initiate base excision repair at mutagenic DNA lesions caused by active oxygen. PMID:9223306

  12. Rat MYH, a glycosylase for repair of oxidatively damaged DNA, has brain-specific isoforms that localize to neuronal mitochondria.

    PubMed

    Englander, Ella W; Hu, Zhaoyong; Sharma, Abha; Lee, Heung-Man; Wu, Zhao-Hui; Greeley, George H

    2002-12-01

    Mitochondrial genomes are exposed to a heavy load of reactive oxygen species (ROS) that damage DNA. Since in neurons, mitochondrial DNA integrity must be maintained over the entire mammalian life span, neuronal mitochondria most likely repair oxidatively damaged DNA. We show that the Escherichia coli MutY DNA glycosylase homolog (MYH) in rat (rMYH) involved in repair of oxidative damage is abundantly expressed in the rat brain, with isoforms that are exclusive to brain tissue. Confocal microscopy and western analyses reveal localization of rMYH in neuronal mitochondria. To assess involvement of MYH in the neuronal response to oxidative DNA damage, we used a rat model of respiratory hypoxia, in which acutely reduced blood oxygenation leads to generation of superoxide, and formation and subsequent removal of 8-hydroxy-2'-deoxyguanosine (8OHdG). Removal of 8OHdG is accompanied by a spatial increase in rMYH immunoreactivity in the brain and an increase in levels of one of the three mitochondrial MYH isoforms, suggesting that inducible and non-inducible MYH isoforms exist in the brain. The mitochondrial localization of oxidative DNA damage repair enzymes in neurons may represent a specialized neuronal mechanism that safeguards mitochondrial genomes in the face of routine and accidental exposures to heavy loads of injurious ROS.

  13. Opinion: uracil DNA glycosylase (UNG) plays distinct and non-canonical roles in somatic hypermutation and class switch recombination.

    PubMed

    Yousif, Ashraf S; Stanlie, Andre; Begum, Nasim A; Honjo, Tasuku

    2014-10-01

    Activation-induced cytidine deaminase (AID) is essential to class switch recombination (CSR) and somatic hypermutation (SHM). Uracil DNA glycosylase (UNG), a member of the base excision repair complex, is required for CSR. The role of UNG in CSR and SHM is extremely controversial. AID deficiency in mice abolishes both CSR and SHM, while UNG-deficient mice have drastically reduced CSR but augmented SHM raising a possibility of differential functions of UNG in CSR and SHM. Interestingly, UNG has been associated with a CSR-specific repair adapter protein Brd4, which interacts with acetyl histone 4, γH2AX and 53BP1 to promote non-homologous end joining during CSR. A non-canonical scaffold function of UNG, but not the catalytic activity, can be attributed to the recruitment of essential repair proteins associated with the error-free repair during SHM, and the end joining during CSR.

  14. Toehold-mediated strand displacement reaction-dependent fluorescent strategy for sensitive detection of uracil-DNA glycosylase activity.

    PubMed

    Wu, Yushu; Wang, Lei; Jiang, Wei

    2017-03-15

    Sensitive detection of uracil-DNA glycosylase (UDG) activity is beneficial for evaluating the repairing process of DNA lesions. Here, toehold-mediated strand displacement reaction (TSDR)-dependent fluorescent strategy was constructed for sensitive detection of UDG activity. A single-stranded DNA (ssDNA) probe with two uracil bases and a trigger sequence were designed. A hairpin probe with toehold domain was designed, and a reporter probe was also designed. Under the action of UDG, two uracil bases were removed from ssDNA probe, generating apurinic/apyrimidinic (AP) sites. Then, the AP sites could inhibit the TSDR between ssDNA probe and hairpin probe, leaving the trigger sequence in ssDNA probe still free. Subsequently, the trigger sequence was annealed with the reporter probe, initiating the polymerization and nicking amplification reaction. As a result, numerous G-quadruplex (G4) structures were formed, which could bind with N-methyl-mesoporphyrin IX (NMM) to generate enhanced fluorescent signal. In the absence of UDG, the ssDNA probe could hybridize with the toehold domain of the hairpin probe to initiate TSDR, blocking the trigger sequence, and then the subsequent amplification reaction would not occur. The proposed strategy was successfully implemented for detecting UDG activity with a detection limit of 2.7×10(-5)U/mL. Moreover, the strategy could distinguish UDG well from other interference enzymes. Furthermore, the strategy was also applied for detecting UDG activity in HeLa cells lysate with low effect of cellular components. These results indicated that the proposed strategy offered a promising tool for sensitive quantification of UDG activity in UDG-related function study and disease prognosis.

  15. Early steps of active DNA demethylation initiated by ROS1 glycosylase require three putative helix-invading residues.

    PubMed

    Parrilla-Doblas, Jara Teresa; Ponferrada-Marín, María Isabel; Roldán-Arjona, Teresa; Ariza, Rafael R

    2013-10-01

    Active DNA demethylation is crucial for epigenetic control, but the underlying enzymatic mechanisms are incompletely understood. REPRESSOR OF SILENCING 1 (ROS1) is a 5-methylcytosine (5-meC) DNA glycosylase/lyase that initiates DNA demethylation in plants through a base excision repair process. The enzyme binds DNA nonspecifically and slides along the substrate in search of 5-meC. In this work, we have used homology modelling and biochemical analysis to gain insight into the mechanism of target location and recognition by ROS1. We have found that three putative helix-intercalating residues (Q607, R903 and M905) are required for processing of 5-meC:G pairs, but dispensable for excision of mismatched 5-meC. Mutant proteins Q607A, R903A and M905G retain the capacity to process an abasic site opposite G, thus suggesting that all three residues play a critical role in early steps of the base extrusion process and likely contribute to destabilization of 5-meC:G pairs. While R903 and M905 are not essential for DNA binding, mutation of Q607 abrogates stable binding to both methylated and nonmethylated DNA. However, the mutant protein Q607A can form stable complexes with DNA substrates containing blocked ends, which suggests that Q607 intercalates into the helix and inhibits sliding. Altogether, our results suggest that ROS1 uses three predicted helix-invading residues to actively interrogate DNA in search for 5-meC.

  16. Single-turnover and pre-steady-state kinetics of the reaction of the adenine glycosylase MutY with mismatch-containing DNA substrates.

    PubMed

    Porello, S L; Leyes, A E; David, S S

    1998-10-20

    The DNA repair enzyme MutY plays an important role in the prevention of DNA mutations resulting from the presence of the oxidatively damaged lesion 7,8-dihydro-8-oxo-2'-deoxyguanosine (OG) in DNA by the removal of misincorporated adenine residues in OG:A mispairs. MutY also exhibits adenine glycosylase activity toward adenine in G:A and C:A mismatches, although the importance of this activity in vivo has not been established. We have investigated the kinetic properties of MutY's glycosylase activity with OG:A and G:A containing DNA duplexes. Our results indicate that MutY's processing of these two substrates is distinctly different. By using single-turnover experiments, the intrinsic rate for adenine removal by MutY from an OG:A substrate was found to be at least 6-fold faster than that from the corresponding G:A substrate. However, under conditions where [MutY] < [DNA], OG:A substrates are not quantitatively converted to product due to the inefficient turnover resulting from slow product release. In contrast, with a G:A substrate MutY's dissociation from the corresponding product is more facile, such that complete conversion of the substrate to product can be achieved under similar conditions. The kinetic results illustrate that the glycosylase reaction catalyzed by MutY has significant differences depending on the characteristics of the substrate. The lingering of MutY with the product of its reaction with OG:A mispairs may be biologically significant to prevent premature removal of OG. Thus, this approach is providing insight into factors that may be influencing the repair of damaged and mismatched DNA in vivo by base-excision repair glycosylases.

  17. An invariant aspartic acid in the DNA glycosylase domain of DEMETER is necessary for transcriptional activation of the imprinted MEDEA gene

    PubMed Central

    Choi, Yeonhee; Harada, John J.; Goldberg, Robert B.; Fischer, Robert L.

    2004-01-01

    Helix-hairpin-helix DNA glycosylases are typically small proteins that initiate repair of DNA by excising damaged or mispaired bases. An invariant aspartic acid in the active site is involved in catalyzing the excision reaction. Replacement of this critical residue with an asparagine severely reduces catalytic activity but preserves enzyme stability and structure. The Arabidopsis DEMETER (DME) gene encodes a large 1,729-aa polypeptide with a 200-aa DNA glycosylase domain. DME is expressed primarily in the central cell of the female gametophyte. DME activates maternal allele expression of the imprinted MEDEA (MEA) gene in the central cell and is required for seed viability. We mutated the invariant aspartic acid at position 1304 in DME to asparagine (D1304N) to determine whether the catalytic activity of the DNA glycosylase domain is required for DME function in vivo. Transgenes expressing wild-type DME in the central cell rescue seed abortion caused by a mutation in the endogenous DME gene and activate maternal MEA:GFP transcription. However, transgenes expressing the D1304N mutant DME do not rescue seed abortion or activate maternal MEA:GFP transcription. Whereas ectopic expression of the wild-type DME polypeptide in pollen is sufficient to activate ectopic paternal MEA and MEA:GUS expression, equivalent expression of the D1304N mutant DME in pollen failed to do so. These results show that the conserved aspartic acid residue is necessary for DME to function in vivo and suggest that an active DNA glycosylase domain, normally associated with DNA repair, promotes gene transcription that is essential for gene imprinting. PMID:15128940

  18. Structure/Function Analysis of DNA-glycosylases That Repair Oxidized Purines and Pyrimidines and the Influence of Surrounding DNA Sequence on Their Interactions

    SciTech Connect

    Wallace, Susan S.

    2005-08-22

    The overall goal of this project was to elucidate the structure/function relationships between oxidized DNA bases and the DNA repair enzymes that recognize and remove them. The NMR solution structure of formamidopyrimidine DNA glycosylase (Fpg) that recognizes oxidized DNA purines was to be determined. Furthermore, the solution structures of DNA molecules containing specific lesions recognized by Fpg was to be determined in sequence contexts that either facilitate or hinder this recognition. These objectives were in keeping with the long-term goals of the Principal Investigator's laboratory, that is, to understand the basic mechanisms that underpin base excision repair processing of oxidative DNA lesions and to elucidate the interactions of unrepaired lesions with DNA polymerases. The results of these two DNA transactions can ultimately determine the fate of the cell. These objectives were also in keeping with the goals of our collaborator, Dr. Michael Kennedy, who is studying the repair and recognition of damaged DNA. Overall the goals of this project were congruent with those of the Department of Energy's Health Effects and Life Sciences Research Program, especially to the Structural Biology, the Human Genome and the Health Effects Programs. The mission of the latter Program includes understanding the biological effects and consequences of DNA damages produced by toxic agents in the many DOE waste sites so that cleanup can be accomplished in a safe, effective and timely manner.

  19. Mechanism of the Glycosidic Bond Cleavage of Mismatched Thymine in Human Thymine DNA Glycosylase Revealed by Classical Molecular Dynamics and Quantum Mechanical/Molecular Mechanical Calculations.

    PubMed

    Kanaan, Natalia; Crehuet, Ramon; Imhof, Petra

    2015-09-24

    Base excision of mismatched or damaged nucleotides catalyzed by glycosylase enzymes is the first step of the base excision repair system, a machinery preserving the integrity of DNA. Thymine DNA glycosylase recognizes and removes mismatched thymine by cleaving the C1'-N1 bond between the base and the sugar ring. Our quantum mechanical/molecular mechanical calculations of this reaction in human thymine DNA glycosylase reveal a requirement for a positive charge in the active site to facilitate C1'-N1 bond scission: protonation of His151 significantly lowers the free energy barrier for C1'-N1 bond dissociation compared to the situation with neutral His151. Shuttling a proton from His151 to the thymine base further reduces the activation free energy for glycosidic bond cleavage. Classical molecular dynamics simulations of the H151A mutant suggest that the mutation to the smaller, neutral, residue increases the water accessibility of the thymine base, rendering direct proton transfer from the bulk feasible. Quantum mechanical/molecular mechanical calculations of the glycosidic bond cleavage reaction in the H151A mutant show that the activation free energy is slightly lower than in the wild-type enzyme, explaining the experimentally observed higher reaction rates in this mutant.

  20. Triphlorethol-A from Ecklonia cava Up-Regulates the Oxidant Sensitive 8-Oxoguanine DNA Glycosylase 1

    PubMed Central

    Kim, Ki Cheon; Lee, In Kyung; Kang, Kyoung Ah; Piao, Mei Jing; Ryu, Min Ju; Kim, Jeong Mi; Lee, Nam Ho; Hyun, Jin Won

    2014-01-01

    This study investigated the protective mechanisms of triphlorethol-A, isolated from Ecklonia cava, against oxidative stress-induced DNA base damage, especially 8-oxoguanine (8-oxoG), in Chinese hamster lung fibroblast V79-4 cells. 8-Oxoguanine DNA glycosylase-1 (OGG1) plays an important role in the removal of 8-oxoG during the cellular response to DNA base damage. Triphlorethol-A significantly decreased the levels of 8-oxoG induced by H2O2, and this correlated with increases in OGG1 mRNA and OGG1 protein levels. Furthermore, siOGG1-transfected cell attenuated the protective effect of triphlorethol-A against H2O2 treatment. Nuclear factor erythroid 2–related factor 2 (Nrf2) is a transcription factor for OGG1, and Nrf2 combines with small Maf proteins in the nucleus to bind to antioxidant response elements (ARE) in the upstream promoter region of the OGG1 gene. Triphlorethol-A restored the expression of nuclear Nrf2, small Maf protein, and the Nrf2-Maf complex, all of which were reduced by oxidative stress. Furthermore, triphlorethol-A increased Nrf2 binding to ARE sequences and the resulting OGG1 promoter activity, both of which were also reduced by oxidative stress. The levels of the phosphorylated forms of Akt kinase, downstream of phosphatidylinositol 3-kinase (PI3K), and Erk, which are regulators of OGG1, were sharply decreased by oxidative stress, but these decreases were prevented by triphlorethol-A. Specific PI3K, Akt, and Erk inhibitors abolished the cytoprotective effects of triphlorethol-A, suggesting that OGG1 induction by triphlorethol-A involves the PI3K/Akt and Erk pathways. Taken together, these data indicate that by activating the DNA repair system, triphlorethol-A exerts protective effects against DNA base damage induced by oxidative stress. PMID:25353254

  1. An unprecedented nucleic acid capture mechanism for excision of DNA damage

    SciTech Connect

    Rubinson, Emily H.; Prakasha Gowda, A.S.; Spratt, Thomas E.; Gold, Barry; Eichmanbrand, Brandt F.

    2010-11-18

    DNA glycosylases that remove alkylated and deaminated purine nucleobases are essential DNA repair enzymes that protect the genome, and at the same time confound cancer alkylation therapy, by excising cytotoxic N3-methyladenine bases formed by DNA-targeting anticancer compounds. The basis for glycosylase specificity towards N3- and N7-alkylpurines is believed to result from intrinsic instability of the modified bases and not from direct enzyme functional group chemistry. Here we present crystal structures of the recently discovered Bacillus cereus AlkD glycosylase in complex with DNAs containing alkylated, mismatched and abasic nucleotides. Unlike other glycosylases, AlkD captures the extrahelical lesion in a solvent-exposed orientation, providing an illustration for how hydrolysis of N3- and N7-alkylated bases may be facilitated by increased lifetime out of the DNA helix. The structures and supporting biochemical analysis of base flipping and catalysis reveal how the HEAT repeats of AlkD distort the DNA backbone to detect non-Watson-Crick base pairs without duplex intercalation.

  2. 7,8-Dihydroxyflavone suppresses oxidative stress-induced base modification in DNA via induction of the repair enzyme 8-oxoguanine DNA glycosylase-1.

    PubMed

    Kim, Ki Cheon; Lee, In Kyung; Kang, Kyoung Ah; Cha, Ji Won; Cho, Suk Ju; Na, Soo Young; Chae, Sungwook; Kim, Hye Sun; Kim, Suhkmann; Hyun, Jin Won

    2013-01-01

    The modified guanine base 8-oxoguanine (8-oxoG) is abundantly produced by oxidative stress, can contribute to carcinogenesis, and can be removed from DNA by 8-oxoguanine DNA glycosylase-1 (OGG1), which acts as an 8-oxoG glycosylase and endonuclease. This study investigated the mechanism by which 7,8-dihydroxyflavone (DHF) inhibits oxidative stress-induced 8-oxoG formation in hamster lung fibroblasts (V79-4). DHF significantly reduced the amount of 8-oxoG induced by hydrogen peroxide (H₂O₂) and elevated the levels of OGG1 mRNA and protein. DHF increased the binding of nuclear factor erythroid 2-related factor 2 (Nrf2) to antioxidant response element sequences in the upstream promoter region of OGG1. Moreover, DHF increased the nuclear levels of Nrf2, small Maf proteins, and the Nrf2/small Maf complex, all of which are decreased by H₂O₂ treatment. Likewise, the level of phosphorylated Akt, which activates Nrf2, was decreased by H₂O₂ treatment but restored by DHF treatment. The levels of OGG1 and nuclear translocation of Nrf2 protein were decreased upon treatment with PI3K inhibitor or Akt inhibitor, and DHF treatment did not restore OGG1 and nuclear Nrf2 levels in these inhibitor-treated cells. Furthermore, PI3K and Akt inhibitors abolished the protective effects of DHF in cells undergoing oxidative stress. These data indicate that DHF induces OGG1 expression via the PI3K-Akt pathway and protects cells against oxidative DNA base damage by activating DNA repair systems.

  3. 7,8-Dihydroxyflavone Suppresses Oxidative Stress-Induced Base Modification in DNA via Induction of the Repair Enzyme 8-Oxoguanine DNA Glycosylase-1

    PubMed Central

    Kim, Ki Cheon; Lee, In Kyung; Kang, Kyoung Ah; Cha, Ji Won; Cho, Suk Ju; Na, Soo Young; Chae, Sungwook; Kim, Hye Sun; Hyun, Jin Won

    2013-01-01

    The modified guanine base 8-oxoguanine (8-oxoG) is abundantly produced by oxidative stress, can contribute to carcinogenesis, and can be removed from DNA by 8-oxoguanine DNA glycosylase-1 (OGG1), which acts as an 8-oxoG glycosylase and endonuclease. This study investigated the mechanism by which 7,8-dihydroxyflavone (DHF) inhibits oxidative stress-induced 8-oxoG formation in hamster lung fibroblasts (V79-4). DHF significantly reduced the amount of 8-oxoG induced by hydrogen peroxide (H2O2) and elevated the levels of OGG1 mRNA and protein. DHF increased the binding of nuclear factor erythroid 2-related factor 2 (Nrf2) to antioxidant response element sequences in the upstream promoter region of OGG1. Moreover, DHF increased the nuclear levels of Nrf2, small Maf proteins, and the Nrf2/small Maf complex, all of which are decreased by H2O2 treatment. Likewise, the level of phosphorylated Akt, which activates Nrf2, was decreased by H2O2 treatment but restored by DHF treatment. The levels of OGG1 and nuclear translocation of Nrf2 protein were decreased upon treatment with PI3K inhibitor or Akt inhibitor, and DHF treatment did not restore OGG1 and nuclear Nrf2 levels in these inhibitor-treated cells. Furthermore, PI3K and Akt inhibitors abolished the protective effects of DHF in cells undergoing oxidative stress. These data indicate that DHF induces OGG1 expression via the PI3K-Akt pathway and protects cells against oxidative DNA base damage by activating DNA repair systems. PMID:24151624

  4. Ion pairs and their role in modulating stability of cold- and warm-active uracil DNA glycosylase.

    PubMed

    Olufsen, Magne; Papaleo, Elena; Smalås, Arne Oskar; Brandsdal, Bjørn Olav

    2008-05-15

    MD simulations and continuum electrostatics calculations have been used to study the observed differences in thermostability of cold- and warm-active uracil DNA glycosylase (UDG). The present study focuses on the role of ion pairs and how they affect the thermal stability of the two enzymes. Analysis of the MD generated structural ensembles show that cod UDG (cUDG) and human UDG (hUDG) have 11 and 12 ion pairs which are present in at least 30% of the conformations. The electrostatic contribution of the ion pairs, computed using continuum electrostatics, is slightly more favorable in cUDG at 298 K. This is primarily attributed to more optimized interactions between the ion pairs and nearby dipoles/charges in cUDG. More global salt bridges are found in hUDG and are more stabilizing when compared to cUDG, possibly playing a role in maintaining overall stability and reducing conformational entropy. Both enzymes contain one three-member ionic network, but the one found in hUDG is far more stabilizing. Our results also suggest that care should be taken when performing statistical analysis of crystal structures with respect to ion pairs, and that crystallization conditions must be carefully examined when performing such analysis.

  5. Chimeras between single-stranded DNA-binding proteins from Escherichia coli and Mycobacterium tuberculosis reveal that their C-terminal domains interact with uracil DNA glycosylases.

    PubMed

    Handa, P; Acharya, N; Varshney, U

    2001-05-18

    Uracil, a promutagenic base in DNA can arise by spontaneous deamination of cytosine or incorporation of dUMP by DNA polymerase. Uracil is removed from DNA by uracil DNA glycosylase (UDG), the first enzyme in the uracil excision repair pathway. We recently reported that the Escherichia coli single-stranded DNA binding protein (SSB) facilitated uracil excision from certain structured substrates by E. coli UDG (EcoUDG) and suggested the existence of interaction between SSB and UDG. In this study, we have made use of the chimeric proteins obtained by fusion of N- and C-terminal domains of SSBs from E. coli and Mycobacterium tuberculosis to investigate interactions between SSBs and UDGs. The EcoSSB or a chimera containing its C-terminal domain interacts with EcoUDG in a binary (SSB-UDG) or a ternary (DNA-SSB-UDG) complex. However, the chimera containing the N-terminal domain from EcoSSB showed no interactions with EcoUDG. Thus, the C-terminal domain (48 amino acids) of EcoSSB is necessary and sufficient for interaction with EcoUDG. The data also suggest that the C-terminal domain (34 amino acids) of MtuSSB is a predominant determinant for mediating its interaction with MtuUDG. The mechanism of how the interactions between SSB and UDG could be important in uracil excision repair pathway has been discussed.

  6. HO* radicals induce an unexpected high proportion of tandem base lesions refractory to repair by DNA glycosylases.

    PubMed

    Bergeron, François; Auvré, Frédéric; Radicella, J Pablo; Ravanat, Jean-Luc

    2010-03-23

    Reaction of HO(*) radicals with double-stranded calf thymus DNA produces high levels of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodGuo) and, to a minor extent, 8-oxo-7,8-dihydro-2'-deoxyadenosine (8-oxodAdo). Formation of the hydroxylated purine lesions is explained by addition of HO(*) to the C8 position of the purine moiety. It has been reported that tandem lesions containing a formylamine residue neighboring 8-oxodGuo could be produced through addition of a transiently generated pyrimidine peroxyl radical onto the C8 of an adjacent purine base. Formation of such tandem lesions accounted for approximately 10% of the total 8-oxodGuo. In the present work we show that addition of HO(*) onto the C8 of purine accounts for only approximately 5% of the generated 8-oxodGuo. About 50% of the 8-hydroxylated purine lesions, including 8-oxodGuo and 8-oxodAdo, are involved in tandem damage and are produced by peroxyl addition onto the C8 of a vicinal purine base. In addition, the remaining 45% of the 8-oxodGuo are produced by an electron transfer reaction, providing an explanation for the higher yield of formation of 8-oxodGuo compared to 8-oxodAdo. Interestingly, we show that >40% of the 8-oxodGuo involved in tandem lesions is refractory to excision by DNA glycosylases. Altogether our results demonstrate that, subsequently to a single oxidation event, peroxidation reactions significantly increase the yield of formation of hydroxylated purine modifications, generating a high proportion of tandem lesions partly refractory to base excision repair.

  7. Partial uracil–DNA–glycosylase treatment for screening of ancient DNA

    PubMed Central

    Rohland, Nadin; Harney, Eadaoin; Mallick, Swapan; Nordenfelt, Susanne; Reich, David

    2015-01-01

    The challenge of sequencing ancient DNA has led to the development of specialized laboratory protocols that have focused on reducing contamination and maximizing the number of molecules that are extracted from ancient remains. Despite the fact that success in ancient DNA studies is typically obtained by screening many samples to identify a promising subset, ancient DNA protocols have not, in general, focused on reducing the time required to screen samples. We present an adaptation of a popular ancient library preparation method that makes screening more efficient. First, the DNA extract is treated using a protocol that causes characteristic ancient DNA damage to be restricted to the terminal nucleotides, while nearly eliminating it in the interior of the DNA molecules, allowing a single library to be used both to test for ancient DNA authenticity and to carry out population genetic analysis. Second, the DNA molecules are ligated to a unique pair of barcodes, which eliminates undetected cross-contamination from this step onwards. Third, the barcoded library molecules include incomplete adapters of short length that can increase the specificity of hybridization-based genomic target enrichment. The adapters are completed just before sequencing, so the same DNA library can be used in multiple experiments, and the sequences distinguished. We demonstrate this protocol on 60 ancient human samples. PMID:25487342

  8. Whole transcriptome analysis reveals an 8-oxoguanine DNA glycosylase-1-driven DNA repair-dependent gene expression linked to essential biological processes

    PubMed Central

    Aguilera-Aguirre, Leopoldo; Hosoki, Koa; Bacsi, Attila; Radák, Zsolt; Wood, Thomas G.; Widen, Steven G.; Sur, Sanjiv; Ameredes, Bill T.; Saavedra-Molina, Alfredo; Brasier, Allan R.; Ba, Xueqing; Boldogh, Istvan

    2015-01-01

    Reactive oxygen species inflict oxidative modifications on various biological molecules, including DNA. One of the most abundant DNA base lesions 8-oxo-7,8-dihydroguanine (8-oxoG) is repaired by 8-oxoguanine DNA glycosylase-1 (OGG1) during DNA base excision repair (OGG1-BER). 8-OxoG accumulation in DNA has been associated with various pathological and aging processes, while its role is unclear. The lack of OGG1-BER in Ogg1-/- mice resulted in decreased inflammatory responses, increased susceptibility to infections and metabolic disorders. Therefore, we proposed that OGG1 and/or 8-oxoG base may have a role in immune and homeostatic processes. To test our hypothesis, we challenged mouse lungs with OGG1-BER product 8-oxoG base and changes in gene expression were determined by RNA sequencing and data were analyzed by gene ontology and statistical tools. RNA-Seq analysis identified 1592 differentially expressed (≥ 3-fold change) transcripts. The upregulated mRNAs were related to biological processes, including homeostatic, immune-system, macrophage activation, regulation of liquid-surface tension, and response to stimulus. These processes were mediated by chemokines, cytokines, gonadotropin-releasing hormone receptor, integrin and interleukin signaling pathways. Taken together, these findings points to a new paradigm showing that OGG1-BER plays a role in various biological processes that may benefit host, but when is in excess could be implicated in disease and/or aging processes. PMID:25614460

  9. In vivo treatment with aflatoxin B1 increases DNA oxidation, base excision repair activity and 8-oxoguanine DNA glycosylase 1 levels in mouse lung.

    PubMed

    Guindon-Kezis, Katherine A; Mulder, Jeanne E; Massey, Thomas E

    2014-07-03

    Carcinogenicity of the mycotoxin aflatoxin B1 (AFB1), which is produced by Aspergillus fungi, is associated with bioactivation of AFB1 to AFB1-8,9-exo-epoxide and formation of DNA adducts. However, AFB1 also causes 8-hydroxy-2'-deoxyguanosine (8-OHdG) formation in mouse lung DNA, suggesting that oxidative DNA damage may also contribute to AFB1 carcinogenicity. The oxidative DNA damage 5-hydroxy-2'-deoxycytidine (5-OHdC) may also contribute to AFB1 carcinogenicity. The objective of the present study was to determine the effect of treatment of mice with AFB1 on pulmonary and hepatic: 8-OHdG and 5-OHdC levels; base excision repair (BER, which repairs oxidative DNA damage) activities; and on levels of 8-oxoguanine DNA glycosylase (OGG1, the rate-limiting enzyme in the BER of 8-OHdG). Female A/J mice were treated with vehicle (dimethyl sulfoxide) or 50 mg/kg AFB1 ip. Oxidative DNA damage was measured using HPLC with electrochemical detection, BER activity was assessed using an in vitro assay that employs a substrate plasmid DNA with 8-OHdG lesions, and OGG1 protein levels were determined by immunoblotting. Two hours post treatment, AFB1 increased 8-OHdG levels in mouse lung DNA by approximately 69% relative to control (p<0.05), but did not alter 8-OHdG levels in liver or 5-OHdC levels in lung or liver (p>0.05). AFB1 treatment also increased BER activity in mouse lung by approximately 87% (p<0.05) but did not affect hepatic BER activity (p>0.05). Levels of OGG1 immunoreactive protein were increased in both lung (20%) and liver (60%) (p<0.05). These results are consistent with oxidative DNA damage contributing to the carcinogenicity of AFB1 in this model.

  10. DNA glycosylases involved in base excision repair may be associated with cancer risk in BRCA1 and BRCA2 mutation carriers.

    PubMed

    Osorio, Ana; Milne, Roger L; Kuchenbaecker, Karoline; Vaclová, Tereza; Pita, Guillermo; Alonso, Rosario; Peterlongo, Paolo; Blanco, Ignacio; de la Hoya, Miguel; Duran, Mercedes; Díez, Orland; Ramón Y Cajal, Teresa; Konstantopoulou, Irene; Martínez-Bouzas, Cristina; Andrés Conejero, Raquel; Soucy, Penny; McGuffog, Lesley; Barrowdale, Daniel; Lee, Andrew; Swe-Brca; Arver, Brita; Rantala, Johanna; Loman, Niklas; Ehrencrona, Hans; Olopade, Olufunmilayo I; Beattie, Mary S; Domchek, Susan M; Nathanson, Katherine; Rebbeck, Timothy R; Arun, Banu K; Karlan, Beth Y; Walsh, Christine; Lester, Jenny; John, Esther M; Whittemore, Alice S; Daly, Mary B; Southey, Melissa; Hopper, John; Terry, Mary B; Buys, Saundra S; Janavicius, Ramunas; Dorfling, Cecilia M; van Rensburg, Elizabeth J; Steele, Linda; Neuhausen, Susan L; Ding, Yuan Chun; Hansen, Thomas V O; Jønson, Lars; Ejlertsen, Bent; Gerdes, Anne-Marie; Infante, Mar; Herráez, Belén; Moreno, Leticia Thais; Weitzel, Jeffrey N; Herzog, Josef; Weeman, Kisa; Manoukian, Siranoush; Peissel, Bernard; Zaffaroni, Daniela; Scuvera, Giulietta; Bonanni, Bernardo; Mariette, Frederique; Volorio, Sara; Viel, Alessandra; Varesco, Liliana; Papi, Laura; Ottini, Laura; Tibiletti, Maria Grazia; Radice, Paolo; Yannoukakos, Drakoulis; Garber, Judy; Ellis, Steve; Frost, Debra; Platte, Radka; Fineberg, Elena; Evans, Gareth; Lalloo, Fiona; Izatt, Louise; Eeles, Ros; Adlard, Julian; Davidson, Rosemarie; Cole, Trevor; Eccles, Diana; Cook, Jackie; Hodgson, Shirley; Brewer, Carole; Tischkowitz, Marc; Douglas, Fiona; Porteous, Mary; Side, Lucy; Walker, Lisa; Morrison, Patrick; Donaldson, Alan; Kennedy, John; Foo, Claire; Godwin, Andrew K; Schmutzler, Rita Katharina; Wappenschmidt, Barbara; Rhiem, Kerstin; Engel, Christoph; Meindl, Alfons; Ditsch, Nina; Arnold, Norbert; Plendl, Hans Jörg; Niederacher, Dieter; Sutter, Christian; Wang-Gohrke, Shan; Steinemann, Doris; Preisler-Adams, Sabine; Kast, Karin; Varon-Mateeva, Raymonda; Gehrig, Andrea; Stoppa-Lyonnet, Dominique; Sinilnikova, Olga M; Mazoyer, Sylvie; Damiola, Francesca; Poppe, Bruce; Claes, Kathleen; Piedmonte, Marion; Tucker, Kathy; Backes, Floor; Rodríguez, Gustavo; Brewster, Wendy; Wakeley, Katie; Rutherford, Thomas; Caldés, Trinidad; Nevanlinna, Heli; Aittomäki, Kristiina; Rookus, Matti A; van Os, Theo A M; van der Kolk, Lizet; de Lange, J L; Meijers-Heijboer, Hanne E J; van der Hout, A H; van Asperen, Christi J; Gómez Garcia, Encarna B; Hoogerbrugge, Nicoline; Collée, J Margriet; van Deurzen, Carolien H M; van der Luijt, Rob B; Devilee, Peter; Hebon; Olah, Edith; Lázaro, Conxi; Teulé, Alex; Menéndez, Mireia; Jakubowska, Anna; Cybulski, Cezary; Gronwald, Jacek; Lubinski, Jan; Durda, Katarzyna; Jaworska-Bieniek, Katarzyna; Johannsson, Oskar Th; Maugard, Christine; Montagna, Marco; Tognazzo, Silvia; Teixeira, Manuel R; Healey, Sue; Investigators, Kconfab; Olswold, Curtis; Guidugli, Lucia; Lindor, Noralane; Slager, Susan; Szabo, Csilla I; Vijai, Joseph; Robson, Mark; Kauff, Noah; Zhang, Liying; Rau-Murthy, Rohini; Fink-Retter, Anneliese; Singer, Christian F; Rappaport, Christine; Geschwantler Kaulich, Daphne; Pfeiler, Georg; Tea, Muy-Kheng; Berger, Andreas; Phelan, Catherine M; Greene, Mark H; Mai, Phuong L; Lejbkowicz, Flavio; Andrulis, Irene; Mulligan, Anna Marie; Glendon, Gord; Toland, Amanda Ewart; Bojesen, Anders; Pedersen, Inge Sokilde; Sunde, Lone; Thomassen, Mads; Kruse, Torben A; Jensen, Uffe Birk; Friedman, Eitan; Laitman, Yael; Shimon, Shani Paluch; Simard, Jacques; Easton, Douglas F; Offit, Kenneth; Couch, Fergus J; Chenevix-Trench, Georgia; Antoniou, Antonis C; Benitez, Javier

    2014-04-01

    Single Nucleotide Polymorphisms (SNPs) in genes involved in the DNA Base Excision Repair (BER) pathway could be associated with cancer risk in carriers of mutations in the high-penetrance susceptibility genes BRCA1 and BRCA2, given the relation of synthetic lethality that exists between one of the components of the BER pathway, PARP1 (poly ADP ribose polymerase), and both BRCA1 and BRCA2. In the present study, we have performed a comprehensive analysis of 18 genes involved in BER using a tagging SNP approach in a large series of BRCA1 and BRCA2 mutation carriers. 144 SNPs were analyzed in a two stage study involving 23,463 carriers from the CIMBA consortium (the Consortium of Investigators of Modifiers of BRCA1 and BRCA2). Eleven SNPs showed evidence of association with breast and/or ovarian cancer at p<0.05 in the combined analysis. Four of the five genes for which strongest evidence of association was observed were DNA glycosylases. The strongest evidence was for rs1466785 in the NEIL2 (endonuclease VIII-like 2) gene (HR: 1.09, 95% CI (1.03-1.16), p = 2.7 × 10(-3)) for association with breast cancer risk in BRCA2 mutation carriers, and rs2304277 in the OGG1 (8-guanine DNA glycosylase) gene, with ovarian cancer risk in BRCA1 mutation carriers (HR: 1.12 95%CI: 1.03-1.21, p = 4.8 × 10(-3)). DNA glycosylases involved in the first steps of the BER pathway may be associated with cancer risk in BRCA1/2 mutation carriers and should be more comprehensively studied.

  11. DNA Glycosylases Involved in Base Excision Repair May Be Associated with Cancer Risk in BRCA1 and BRCA2 Mutation Carriers

    PubMed Central

    Osorio, Ana; Milne, Roger L.; Kuchenbaecker, Karoline; Vaclová, Tereza; Pita, Guillermo; Alonso, Rosario; Peterlongo, Paolo; Blanco, Ignacio; de la Hoya, Miguel; Duran, Mercedes; Díez, Orland; Ramón y Cajal, Teresa; Konstantopoulou, Irene; Martínez-Bouzas, Cristina; Andrés Conejero, Raquel; Soucy, Penny; McGuffog, Lesley; Barrowdale, Daniel; Lee, Andrew; SWE-BRCA; Arver, Brita; Rantala, Johanna; Loman, Niklas; Ehrencrona, Hans; Olopade, Olufunmilayo I.; Beattie, Mary S.; Domchek, Susan M.; Nathanson, Katherine; Rebbeck, Timothy R.; Arun, Banu K.; Karlan, Beth Y.; Walsh, Christine; Lester, Jenny; John, Esther M.; Whittemore, Alice S.; Daly, Mary B.; Southey, Melissa; Hopper, John; Terry, Mary B.; Buys, Saundra S.; Janavicius, Ramunas; Dorfling, Cecilia M.; van Rensburg, Elizabeth J.; Steele, Linda; Neuhausen, Susan L.; Ding, Yuan Chun; Hansen, Thomas v. O.; Jønson, Lars; Ejlertsen, Bent; Gerdes, Anne-Marie; Infante, Mar; Herráez, Belén; Moreno, Leticia Thais; Weitzel, Jeffrey N.; Herzog, Josef; Weeman, Kisa; Manoukian, Siranoush; Peissel, Bernard; Zaffaroni, Daniela; Scuvera, Giulietta; Bonanni, Bernardo; Mariette, Frederique; Volorio, Sara; Viel, Alessandra; Varesco, Liliana; Papi, Laura; Ottini, Laura; Tibiletti, Maria Grazia; Radice, Paolo; Yannoukakos, Drakoulis; Garber, Judy; Ellis, Steve; Frost, Debra; Platte, Radka; Fineberg, Elena; Evans, Gareth; Lalloo, Fiona; Izatt, Louise; Eeles, Ros; Adlard, Julian; Davidson, Rosemarie; Cole, Trevor; Eccles, Diana; Cook, Jackie; Hodgson, Shirley; Brewer, Carole; Tischkowitz, Marc; Douglas, Fiona; Porteous, Mary; Side, Lucy; Walker, Lisa; Morrison, Patrick; Donaldson, Alan; Kennedy, John; Foo, Claire; Godwin, Andrew K.; Schmutzler, Rita Katharina; Wappenschmidt, Barbara; Rhiem, Kerstin; Engel, Christoph; Meindl, Alfons; Ditsch, Nina; Arnold, Norbert; Plendl, Hans Jörg; Niederacher, Dieter; Sutter, Christian; Wang-Gohrke, Shan; Steinemann, Doris; Preisler-Adams, Sabine; Kast, Karin; Varon-Mateeva, Raymonda; Gehrig, Andrea; Stoppa-Lyonnet, Dominique; Sinilnikova, Olga M.; Mazoyer, Sylvie; Damiola, Francesca; Poppe, Bruce; Claes, Kathleen; Piedmonte, Marion; Tucker, Kathy; Backes, Floor; Rodríguez, Gustavo; Brewster, Wendy; Wakeley, Katie; Rutherford, Thomas; Caldés, Trinidad; Nevanlinna, Heli; Aittomäki, Kristiina; Rookus, Matti A.; van Os, Theo A. M.; van der Kolk, Lizet; de Lange, J. L.; Meijers-Heijboer, Hanne E. J.; van der Hout, A. H.; van Asperen, Christi J.; Gómez Garcia, Encarna B.; Hoogerbrugge, Nicoline; Collée, J. Margriet; van Deurzen, Carolien H. M.; van der Luijt, Rob B.; Devilee, Peter; HEBON; Olah, Edith; Lázaro, Conxi; Teulé, Alex; Menéndez, Mireia; Jakubowska, Anna; Cybulski, Cezary; Gronwald, Jacek; Lubinski, Jan; Durda, Katarzyna; Jaworska-Bieniek, Katarzyna; Johannsson, Oskar Th.; Maugard, Christine; Montagna, Marco; Tognazzo, Silvia; Teixeira, Manuel R.; Healey, Sue; Investigators, kConFab; Olswold, Curtis; Guidugli, Lucia; Lindor, Noralane; Slager, Susan; Szabo, Csilla I.; Vijai, Joseph; Robson, Mark; Kauff, Noah; Zhang, Liying; Rau-Murthy, Rohini; Fink-Retter, Anneliese; Singer, Christian F.; Rappaport, Christine; Geschwantler Kaulich, Daphne; Pfeiler, Georg; Tea, Muy-Kheng; Berger, Andreas; Phelan, Catherine M.; Greene, Mark H.; Mai, Phuong L.; Lejbkowicz, Flavio; Andrulis, Irene; Mulligan, Anna Marie; Glendon, Gord; Toland, Amanda Ewart; Bojesen, Anders; Pedersen, Inge Sokilde; Sunde, Lone; Thomassen, Mads; Kruse, Torben A.; Jensen, Uffe Birk; Friedman, Eitan; Laitman, Yael; Shimon, Shani Paluch; Simard, Jacques; Easton, Douglas F.; Offit, Kenneth; Couch, Fergus J.; Chenevix-Trench, Georgia; Antoniou, Antonis C.; Benitez, Javier

    2014-01-01

    Single Nucleotide Polymorphisms (SNPs) in genes involved in the DNA Base Excision Repair (BER) pathway could be associated with cancer risk in carriers of mutations in the high-penetrance susceptibility genes BRCA1 and BRCA2, given the relation of synthetic lethality that exists between one of the components of the BER pathway, PARP1 (poly ADP ribose polymerase), and both BRCA1 and BRCA2. In the present study, we have performed a comprehensive analysis of 18 genes involved in BER using a tagging SNP approach in a large series of BRCA1 and BRCA2 mutation carriers. 144 SNPs were analyzed in a two stage study involving 23,463 carriers from the CIMBA consortium (the Consortium of Investigators of Modifiers of BRCA1 and BRCA2). Eleven SNPs showed evidence of association with breast and/or ovarian cancer at p<0.05 in the combined analysis. Four of the five genes for which strongest evidence of association was observed were DNA glycosylases. The strongest evidence was for rs1466785 in the NEIL2 (endonuclease VIII-like 2) gene (HR: 1.09, 95% CI (1.03–1.16), p = 2.7×10−3) for association with breast cancer risk in BRCA2 mutation carriers, and rs2304277 in the OGG1 (8-guanine DNA glycosylase) gene, with ovarian cancer risk in BRCA1 mutation carriers (HR: 1.12 95%CI: 1.03–1.21, p = 4.8×10−3). DNA glycosylases involved in the first steps of the BER pathway may be associated with cancer risk in BRCA1/2 mutation carriers and should be more comprehensively studied. PMID:24698998

  12. Structural genes of wheat and barley 5-methylcytosine DNA glycosylases and their potential applications for human health.

    PubMed

    Wen, Shanshan; Wen, Nuan; Pang, Jinsong; Langen, Gregor; Brew-Appiah, Rhoda A T; Mejias, Jaime H; Osorio, Claudia; Yang, Mingming; Gemini, Richa; Moehs, Charles P; Zemetra, Robert S; Kogel, Karl-Heinz; Liu, Bao; Wang, Xingzhi; von Wettstein, Diter; Rustgi, Sachin

    2012-12-11

    Wheat supplies about 20% of the total food calories consumed worldwide and is a national staple in many countries. Besides being a key source of plant proteins, it is also a major cause of many diet-induced health issues, especially celiac disease. The only effective treatment for this disease is a total gluten-free diet. The present report describes an effort to develop a natural dietary therapy for this disorder by transcriptional suppression of wheat DEMETER (DME) homeologs using RNA interference. DME encodes a 5-methylcytosine DNA glycosylase responsible for transcriptional derepression of gliadins and low-molecular-weight glutenins (LMWgs) by active demethylation of their promoters in the wheat endosperm. Previous research has demonstrated these proteins to be the major source of immunogenic epitopes. In this research, barley and wheat DME genes were cloned and localized on the syntenous chromosomes. Nucleotide diversity among DME homeologs was studied and used for their virtual transcript profiling. Functional conservation of DME enzyme was confirmed by comparing the motif and domain structure within and across the plant kingdom. Presence and absence of CpG islands in prolamin gene sequences was studied as a hallmark of hypo- and hypermethylation, respectively. Finally the epigenetic influence of DME silencing on accumulation of LMWgs and gliadins was studied using 20 transformants expressing hairpin RNA in their endosperm. These transformants showed up to 85.6% suppression in DME transcript abundance and up to 76.4% reduction in the amount of immunogenic prolamins, demonstrating the possibility of developing wheat varieties compatible for the celiac patients.

  13. Structural genes of wheat and barley 5-methylcytosine DNA glycosylases and their potential applications for human health

    PubMed Central

    Wen, Shanshan; Wen, Nuan; Pang, Jinsong; Langen, Gregor; Brew-Appiah, Rhoda A. T.; Mejias, Jaime H.; Osorio, Claudia; Yang, Mingming; Gemini, Richa; Moehs, Charles P.; Zemetra, Robert S.; Kogel, Karl-Heinz; Liu, Bao; Wang, Xingzhi; von Wettstein, Diter; Rustgi, Sachin

    2012-01-01

    Wheat supplies about 20% of the total food calories consumed worldwide and is a national staple in many countries. Besides being a key source of plant proteins, it is also a major cause of many diet-induced health issues, especially celiac disease. The only effective treatment for this disease is a total gluten-free diet. The present report describes an effort to develop a natural dietary therapy for this disorder by transcriptional suppression of wheat DEMETER (DME) homeologs using RNA interference. DME encodes a 5-methylcytosine DNA glycosylase responsible for transcriptional derepression of gliadins and low-molecular-weight glutenins (LMWgs) by active demethylation of their promoters in the wheat endosperm. Previous research has demonstrated these proteins to be the major source of immunogenic epitopes. In this research, barley and wheat DME genes were cloned and localized on the syntenous chromosomes. Nucleotide diversity among DME homeologs was studied and used for their virtual transcript profiling. Functional conservation of DME enzyme was confirmed by comparing the motif and domain structure within and across the plant kingdom. Presence and absence of CpG islands in prolamin gene sequences was studied as a hallmark of hypo- and hypermethylation, respectively. Finally the epigenetic influence of DME silencing on accumulation of LMWgs and gliadins was studied using 20 transformants expressing hairpin RNA in their endosperm. These transformants showed up to 85.6% suppression in DME transcript abundance and up to 76.4% reduction in the amount of immunogenic prolamins, demonstrating the possibility of developing wheat varieties compatible for the celiac patients. PMID:23184965

  14. The metabolic syndrome resulting from a knockout of the NEIL1 DNA glycosylase

    PubMed Central

    Vartanian, Vladimir; Lowell, Brian; Minko, Irina G.; Wood, Thomas G.; Ceci, Jeffrey D.; George, Shakeeta; Ballinger, Scott W.; Corless, Christopher L.; McCullough, Amanda K.; Lloyd, R. Stephen

    2006-01-01

    Endogenously formed reactive oxygen species continuously damage cellular constituents including DNA. These challenges, coupled with exogenous exposure to agents that generate reactive oxygen species, are both associated with normal aging processes and linked to cardiovascular disease, cancer, cataract formation, and fatty liver disease. Although not all of these diseases have been definitively shown to originate from mutations in nuclear DNA or mitochondrial DNA, repair of oxidized, saturated, and ring-fragmented bases via the base excision repair pathway is known to be critical for maintaining genomic stability. One enzyme that initiates base excision repair of ring-fragmented purines and some saturated pyrimidines is NEIL1, a mammalian homolog to Escherichia coli endonuclease VIII. To investigate the organismal consequences of a deficiency in NEIL1, a knockout mouse model was created. In the absence of exogenous oxidative stress, neil1 knockout (neil1−/−) and heterozygotic (neil1+/−) mice develop severe obesity, dyslipidemia, and fatty liver disease and also have a tendency to develop hyperinsulinemia. In humans, this combination of clinical manifestations, including hypertension, is known as the metabolic syndrome and is estimated to affect >40 million people in the United States. Additionally, mitochondrial DNA from neil1−/− mice show increased levels of steady-state DNA damage and deletions relative to wild-type controls. These data suggest an important role for NEIL1 in the prevention of the diseases associated with the metabolic syndrome. PMID:16446448

  15. A chicken embryo protein related to the mammalian DEAD box protein p68 is tightly associated with the highly purified protein-RNA complex of 5-MeC-DNA glycosylase.

    PubMed

    Jost, J P; Schwarz, S; Hess, D; Angliker, H; Fuller-Pace, F V; Stahl, H; Thiry, S; Siegmann, M

    1999-08-15

    We have shown previously that DNA demethylation by chick embryo 5-methylcytosine (5-MeC)-DNA glycosylase needs both protein and RNA. Amino acid sequences of nine peptides derived from a highly purified 5-MeC-DNA glycosylase complex were identified by Nanoelectrospray ionisation mass spectrometry to be identical to the mammalian nuclear DEAD box protein p68 RNA helicase. Antibodies directed against human p68 helicase cross-reacted with the purified 5-MeC-DNA glycosylase complex and immunoprecipitated the glycosylase activity. A 2690 bp cDNA coding for the chicken homologue of mammalian p68 was isolated and sequenced. Its derived amino acid sequence is almost identical to the human p68 DEAD box protein up to amino acid position 473 (from a total of 595). This sequence contains all the essential conserved motifs from the DEAD box proteins which are the ATPase, RNA unwinding and RNA binding motifs. The rest of the 122 amino acids in the C-terminal region rather diverge from the human p68 RNA helicase sequence. The recombinant chicken DEAD box protein expressed in Escherichia coli cross-reacts with the same p68 antibodies as the purified chicken embryo 5-MeC-DNA glycosylase complex. The recombinant protein has an RNA-dependent ATPase and an ATP-dependent helicase activity. However, in the presence or absence of RNA the recombinant protein had no 5-MeC-DNA glycosylase activity. In situ hybridisation of 5 day-old chicken embryos with antisense probes of the chicken DEAD box protein shows a high abundance of its transcripts in differentiating embryonic tissues.

  16. RPA physically interacts with the human DNA glycosylase NEIL1 to regulate excision of oxidative DNA base damage in primer-template structures.

    PubMed

    Theriot, Corey A; Hegde, Muralidhar L; Hazra, Tapas K; Mitra, Sankar

    2010-06-04

    The human DNA glycosylase NEIL1, activated during the S-phase, has been shown to excise oxidized base lesions in single-strand DNA substrates. Furthermore, our previous work demonstrating functional interaction of NEIL1 with PCNA and flap endonuclease 1 (FEN1) suggested its involvement in replication-associated repair. Here we show interaction of NEIL1 with replication protein A (RPA), the heterotrimeric single-strand DNA binding protein that is essential for replication and other DNA transactions. The NEIL1 immunocomplex isolated from human cells contains RPA, and its abundance in the complex increases after exposure to oxidative stress. NEIL1 directly interacts with the large subunit of RPA (K(d) approximately 20 nM) via the common interacting interface (residues 312-349) in NEIL1's disordered C-terminal region. RPA inhibits the base excision activity of both wild-type NEIL1 (389 residues) and its C-terminal deletion CDelta78 mutant (lacking the interaction domain) for repairing 5-hydroxyuracil (5-OHU) in a primer-template structure mimicking the DNA replication fork. This inhibition is reduced when the damage is located near the primer-template junction. Contrarily, RPA moderately stimulates wild-type NEIL1 but not the CDelta78 mutant when 5-OHU is located within the duplex region. While NEIL1 is inhibited by both RPA and Escherichia coli single-strand DNA binding protein, only inhibition by RPA is relieved by PCNA. These results showing modulation of NEIL1's activity on single-stranded DNA substrate by RPA and PCNA support NEIL1's involvement in repairing the replicating genome.

  17. Evaluation of the Role of the Vaccinia Virus Uracil DNA Glycosylase and A20 Proteins as Intrinsic Components of the DNA Polymerase Holoenzyme*

    PubMed Central

    Boyle, Kathleen A.; Stanitsa, Eleni S.; Greseth, Matthew D.; Lindgren, Jill K.; Traktman, Paula

    2011-01-01

    The vaccinia virus DNA polymerase is inherently distributive but acquires processivity by associating with a heterodimeric processivity factor comprised of the viral A20 and D4 proteins. D4 is also an enzymatically active uracil DNA glycosylase (UDG). The presence of an active repair protein as an essential component of the polymerase holoenzyme is a unique feature of the replication machinery. We have shown previously that the A20-UDG complex has a stoichiometry of ∼1:1, and our data suggest that A20 serves as a bridge between polymerase and UDG. Here we show that conserved hydrophobic residues in the N′ terminus of A20 are important for its binding to UDG. Our data argue against the assembly of D4 into higher order multimers, suggesting that the processivity factor does not form a toroidal ring around the DNA. Instead, we hypothesize that the intrinsic, processive DNA scanning activity of UDG tethers the holoenzyme to the DNA template. The inclusion of UDG as an essential holoenzyme component suggests that replication and base excision repair may be coupled. Here we show that the DNA polymerase can utilize dUTP as a substrate in vitro. Moreover, uracil moieties incorporated into the nascent strand during holoenzyme-mediated DNA synthesis can be excised by the viral UDG present within this holoenzyme, leaving abasic sites. Finally, we show that the polymerase stalls upon encountering an abasic site in the template strand, indicating that, like many replicative polymerases, the poxviral holoenzyme cannot perform translesion synthesis across an abasic site. PMID:21572084

  18. Acanthopanax versus 3-Methyladenine Ameliorates Sodium Taurocholate-Induced Severe Acute Pancreatitis by Inhibiting the Autophagic Pathway in Rats

    PubMed Central

    Zhou, Guoxiong; Liu, Chun; Wei, Ronglong; Zhu, Shunxing; Xu, Yuefen; Wu, Mengjie; Miao, Qing

    2016-01-01

    Objectives. To observe the therapeutic effects of Acanthopanax and 3-methyladenine against severe acute pancreatitis (SAP). Methods. Sodium taurocholate-induced SAP rats were equally randomized into a SAP group, an Acanthopanax group, and a 3-methyladenine group. Serum amylase levels were determined by ELISA; protein and mRNA expression levels of nucleus nuclear factor kappa B (NF-κB) p65, light chain 3II (LC3-II), and Beclin-1 and mRNA expression levels of Class III phosphatidylinositol 3-kinase (PI3K-III) in pancreas tissue were detected by Western blot and quantitative real-time PCR, respectively; mortality and pathological change of the pancreas were observed at 3, 12, and 24 h after operation. Results. There was no significant difference in mortality between SAP group and both treatment groups (P > 0.05). Serum amylase levels, protein, and mRNA expression levels of nucleus NF-κB p65, LC3-II, and Beclin-1 protein, mRNA expression levels of PI3K-III, and pathological score of the pancreas in both treatment groups were significantly lower than those in SAP group at 12 and 24 h after operation (P < 0.05 or 0.01). The number of autophagosomes and autophagolysosomes of pancreatic acinar cells in both treatment groups was smaller than that in SAP group at 12 and 24 h. Conclusions. Acanthopanax and 3-methyladenine had similar therapeutic effects against SAP in rats. The mechanism may be through inhibiting abnormal autophagy activation of pancreatic acinar cells. PMID:28115794

  19. Selective inhibition by methoxyamine of the apurinic/apyrimidinic endonuclease activity associated with pyrimidine dimer-DNA glycosylases from Micrococcus luteus and bacteriophage T4

    SciTech Connect

    Liuzzi, M.; Weinfeld, M.; Paterson, M.C.

    1987-06-16

    The UV endonucleases from Micrococcus luteus and bacteriophage T4 possess two catalytic activities specific for the site of cyclobutane pyrimidine dimers in UV-irradiated DNA: a DNA glycosylase that cleaves the 5'-glycosyl bond of the dimerized pyrimidines and an apurinic/apyrimidinic (AP) endonuclease that thereupon incises the phosphodiester bond 3' to the resulting apyrimidinic site. The authors have explored the potential use of methoxyamine, a chemical that reacts at neutral pH with AP sites in DNA, as a selective inhibitor of the AP endonuclease activities residing in the M. luteus and T4 enzymes. The presence of 50 mM methoxyamine during incubation of UV-treated, (/sup 3/H)thymine-labeled poly(dA) x poly(dT) with either enzyme preparation was found to protect completely the irradiated copolymer from endonucleolytic attack at dimer sites, as assayed by yield of acid-soluble radioactivity. In contrast, the dimer-DNA glycosylase activity of each enzyme remained fully functional, as monitored retrospectively by release of free thymine after either photochemical-(5 kJ/m/sup 2/, 254 nm) or photoenzymic- (Escherichia coli photolyase plus visible light) induced reversal of pyrimidine dimers in the UV-damaged substrate. The data demonstrate that the inhibition of the strand-incision reaction arises because of chemical modification of the AP sites and is not due to inactivation of the enzyme by methoxyamine. The results, combined with earlier findings for 5'-acting AP endonucleases, strongly suggest that methoxyamine is a highly specific inhibitor of virtually all AP endonucleases, irrespective of their modes of action, and may therefore prove useful in a wide variety of DNA repair studies.

  20. Human DNA glycosylases of the bacterial Fpg/MutM superfamily: an alternative pathway for the repair of 8-oxoguanine and other oxidation products in DNA.

    PubMed

    Morland, Ingrid; Rolseth, Veslemøy; Luna, Luisa; Rognes, Torbjørn; Bjørås, Magnar; Seeberg, Erling

    2002-11-15

    The mild phenotype associated with targeted disruption of the mouse OGG1 and NTH1 genes has been attributed to the existence of back-up activities and/or alternative pathways for the removal of oxidised DNA bases. We have characterised two new genes in human cells that encode DNA glycosylases, homologous to the bacterial Fpg (MutM)/Nei class of enzymes, capable of removing lesions that are substrates for both hOGG1 and hNTH1. One gene, designated HFPG1, showed ubiquitous expression in all tissues examined whereas the second gene, HFPG2, was only expressed at detectable levels in the thymus and testis. Transient transfections of HeLa cells with fusions of the cDNAs to EGFP revealed intracellular sorting to the nucleus with accumulation in the nucleoli for hFPG1, while hFPG2 co-localised with the 30 kDa subunit of RPA. hFPG1 was purified and shown to act on DNA substrates containing 8-oxoguanine, 5-hydroxycytosine and abasic sites. Removal of 8-oxoguanine, but not cleavage at abasic sites, was opposite base-dependent, with 8-oxoG:C being the preferred substrate and negligible activity towards 8-oxoG:A. It thus appears that hFPG1 has properties similar to mammalian OGG1 in preventing mutations arising from misincorporation of A across 8-oxoG and could function as a back-up repair activity for OGG1 in ogg1(-/-) mice.

  1. Nonenzymatic methylation of DNA by the intracellular methyl group donor S-adenosyl-L-methionine is a potentially mutagenic reaction.

    PubMed Central

    Rydberg, B; Lindahl, T

    1982-01-01

    Incubation of DNA with S-adenosyl-L-methionine (SAM) in neutral aqueous solution leads to base modification, with formation of small amounts of 7-methylguanine and 3-methyladenine. The products have been identified by high performance liquid chromatography of DNA hydrolysates and by the selective release of free 3-methyladenine from SAM-treated DNA by a specific DNA glycosylase. We conclude that SAM acts as a weak DNA-alkylating agent. Several control experiments including extensive purification of [3H-methyl]SAM preparations and elimination of the alkylating activity by pretreatment of SAM with a phage T3-induced SAM cleaving enzyme, have been performed to determine that the activity observed was due to SAM itself and not to a contaminating substance. We estimate that SAM, at an intracellular concentration of 4 X 10(-5) M, causes DNA alkylation at a level similar to that expected from continuous exposure of cells to 2 X 10(-8) M methyl methane-sulphonate. This ability of SAM to act as a methyl donor in a nonenzymatic reaction could result in a background of mutagenesis and carcinogenesis. The data provide an explanation for the apparently universal occurrence of multiple DNA repair enzymes specific for methylation damage. PMID:7188181

  2. Uracil-DNA glycosylase-treated reverse transcription loop-mediated isothermal amplification for rapid detection of avian influenza virus preventing carry-over contamination

    PubMed Central

    Kim, Eun-Mi; Jeon, Hyo-Sung; Kim, Ji-Jung; Shin, Yeun-Kyung; Lee, Youn-Jeong; Yeo, Sang-Geon

    2016-01-01

    Here, we describe a uracil-DNA glycosylase (UNG)-treated reverse transcription loop-mediated isothermal amplification (uRT-LAMP) for the visual detection of all subtypes of avian influenza A virus (AIV). The uRT-LAMP assay can prevent unwanted amplification by carryover contamination of the previously amplified DNA, although the detection limit of the uRT-LAMP assay is 10-fold lower than that of the RT-LAMP without a UNG treatment. To the best of our knowledge, this is the first successful application of deoxyuridine triphosphate/UNG strategy in RT-LAMP for AIV detection, and the assay can be applied for the rapid, and reliable diagnosis of AIVs, even in contaminated samples. PMID:26726027

  3. Uracil-DNA glycosylase-treated reverse transcription loop-mediated isothermal amplification for rapid detection of avian influenza virus preventing carry-over contamination.

    PubMed

    Kim, Eun-Mi; Jeon, Hyo-Sung; Kim, Ji-Jung; Shin, Yeun-Kyung; Lee, Youn-Jeong; Yeo, Sang-Geon; Park, Choi-Kyu

    2016-09-30

    Here, we describe a uracil-DNA glycosylase (UNG)-treated reverse transcription loop-mediated isothermal amplification (uRT-LAMP) for the visual detection of all subtypes of avian influenza A virus (AIV). The uRT-LAMP assay can prevent unwanted amplification by carryover contamination of the previously amplified DNA, although the detection limit of the uRT-LAMP assay is 10-fold lower than that of the RT-LAMP without a UNG treatment. To the best of our knowledge, this is the first successful application of deoxyuridine triphosphate/UNG strategy in RT-LAMP for AIV detection, and the assay can be applied for the rapid, and reliable diagnosis of AIVs, even in contaminated samples.

  4. Kinetic mechanism for the excision of hypoxanthine by Escherichia coli AlkA and evidence for binding to DNA ends.

    PubMed

    Zhao, Boyang; O'Brien, Patrick J

    2011-05-24

    The Escherichia coli 3-methyladenine DNA glycosylase II protein (AlkA) recognizes a broad range of oxidized and alkylated base lesions and catalyzes the hydrolysis of the N-glycosidic bond to initiate the base excision repair pathway. Although the enzyme was one of the first DNA repair glycosylases to be discovered more than 25 years ago and there are multiple crystal structures, the mechanism is poorly understood. Therefore, we have characterized the kinetic mechanism for the AlkA-catalyzed excision of the deaminated purine, hypoxanthine. The multiple-turnover glycosylase assays are consistent with Michaelis-Menten kinetics. However, under single-turnover conditions that are commonly employed for studying other DNA glycosylases, we observe an unusual biphasic protein saturation curve. Initially, the observed rate constant for excision increases with an increasing level of AlkA protein, but at higher protein concentrations, the rate constant decreases. This behavior can be most easily explained by tight binding to DNA ends and by crowding of multiple AlkA protamers on the DNA. Consistent with this model, crystal structures have shown the preferential binding of AlkA to DNA ends. By varying the position of the lesion, we identified an asymmetric substrate that does not show inhibition at higher concentrations of AlkA, and we performed pre-steady state and steady state kinetic analysis. Unlike the situation in other glycosylases, release of the abasic product is faster than N-glycosidic bond cleavage. Nevertheless, AlkA exhibits significant product inhibition under multiple-turnover conditions, and it binds approximately 10-fold more tightly to an abasic site than to a hypoxanthine lesion site. This tight binding could help protect abasic sites when the adaptive response to DNA alkylation is activated and very high levels of AlkA protein are present.

  5. Distinct functional consequences of MUTYH variants associated with colorectal cancer: Damaged DNA affinity, glycosylase activity and interaction with PCNA and Hus1.

    PubMed

    Brinkmeyer, Megan K; David, Sheila S

    2015-10-01

    MUTYH is a base excision repair (BER) enzyme that prevents mutations in DNA associated with 8-oxoguanine (OG) by catalyzing the removal of adenine from inappropriately formed OG:A base-pairs. Germline mutations in the MUTYH gene are linked to colorectal polyposis and a high risk of colorectal cancer, a syndrome referred to as MUTYH-associated polyposis (MAP). There are over 300 different MUTYH mutations associated with MAP and a large fraction of these gene changes code for missense MUTYH variants. Herein, the adenine glycosylase activity, mismatch recognition properties, and interaction with relevant protein partners of human MUTYH and five MAP variants (R295C, P281L, Q324H, P502L, and R520Q) were examined. P281L MUTYH was found to be severely compromised both in DNA binding and base excision activity, consistent with the location of this variation in the iron-sulfur cluster (FCL) DNA binding motif of MUTYH. Both R295C and R520Q MUTYH were found to have low fractions of active enzyme, compromised affinity for damaged DNA, and reduced rates for adenine excision. In contrast, both Q324H and P502L MUTYH function relatively similarly to WT MUTYH in both binding and glycosylase assays. However, P502L and R520Q exhibited reduced affinity for PCNA (proliferation cell nuclear antigen), consistent with their location in the PCNA-binding motif of MUTYH. Whereas, only Q324H, and not R295C, was found to have reduced affinity for Hus1 of the Rad9-Hus1-Rad1 complex, despite both being localized to the same region implicated for interaction with Hus1. These results underscore the diversity of functional consequences due to MUTYH variants that may impact the progression of MAP.

  6. Profiling base excision repair glycosylases with synthesized transition state analogs.

    PubMed

    Chu, Aurea M; Fettinger, James C; David, Sheila S

    2011-09-01

    Two base excision repair glycosylase (BER) transition state (TS) mimics, (3R,4R)-1-benzyl (hydroxymethyl) pyrrolidin-3-ol (1NBn) and (3R,4R)-(hydroxymethyl) pyrrolidin-3-ol (1N), were synthesized using an improved method. Several BER glycosylases that repair oxidized DNA bases, bacterial formamidopyrimdine glycosylase (Fpg), human OG glycosylase (hOGG1) and human Nei-like glycosylase 1 (hNEIL1) exhibit exceptionally high affinity (K(d)∼pM) with DNA duplexes containing the 1NBn and 1N nucleotide. Notably, comparison of the K(d) values of both TS mimics relative to an abasic analog (THF) in duplex contexts paired opposite C or A suggest that these DNA repair enzymes use distinctly different mechanisms for damaged base recognition and catalysis despite having overlapping substrate specificities.

  7. Aberrant repair initiated by mismatch-specific thymine-DNA glycosylases provides a mechanism for the mutational bias observed in CpG islands

    PubMed Central

    Talhaoui, Ibtissam; Couve, Sophie; Gros, Laurent; Ishchenko, Alexander A.; Matkarimov, Bakhyt; Saparbaev, Murat K.

    2014-01-01

    The human thymine-DNA glycosylase (TDG) initiates the base excision repair (BER) pathway to remove spontaneous and induced DNA base damage. It was first biochemically characterized for its ability to remove T mispaired with G in CpG context. TDG is involved in the epigenetic regulation of gene expressions by protecting CpG-rich promoters from de novo DNA methylation. Here we demonstrate that TDG initiates aberrant repair by excising T when it is paired with a damaged adenine residue in DNA duplex. TDG targets the non-damaged DNA strand and efficiently excises T opposite of hypoxanthine (Hx), 1,N6-ethenoadenine, 7,8-dihydro-8-oxoadenine and abasic site in TpG/CpX context, where X is a modified residue. In vitro reconstitution of BER with duplex DNA containing Hx•T pair and TDG results in incorporation of cytosine across Hx. Furthermore, analysis of the mutation spectra inferred from single nucleotide polymorphisms in human population revealed a highly biased mutation pattern within CpG islands (CGIs), with enhanced mutation rate at CpA and TpG sites. These findings demonstrate that under experimental conditions used TDG catalyzes sequence context-dependent aberrant removal of thymine, which results in TpG, CpA→CpG mutations, thus providing a plausible mechanism for the putative evolutionary origin of the CGIs in mammalian genomes. PMID:24692658

  8. The pH optimum of native uracil-DNA glycosylase of Archaeoglobus fulgidus compared to recombinant enzyme indicates adaption to cytosolic pH.

    PubMed

    Knævelsrud, Ingeborg; Kazazic, Sabina; Birkeland, Nils-Kåre; Bjelland, Svein

    2014-01-01

    Uracil-DNA glycosylase of Archaeoglobus fulgidus (Afung) in cell extracts exhibited maximal activity around pH 6.2 as compared to pH 4.8 for the purified recombinant enzyme expressed in Escherichia coli. Native Afung thus seems to be adapted to the intracellular pH of A. fulgidus, determined to be 7.0±0.1. Both recombinant and native Afung exhibited a broad temperature optimum for activity around 80°C, reflecting the A. fulgidus optimal growth temperature of 83°C. Adaption to the neutral conditions in the A. fulgidus cytoplasm might be due to covalent modifications or accessory factors, or due to a different folding when expressed in the native host.

  9. Structural and biophysical analysis of interactions between cod and human uracil-DNA N-glycosylase (UNG) and UNG inhibitor (Ugi)

    SciTech Connect

    Assefa, Netsanet Gizaw; Niiranen, Laila; Johnson, Kenneth A.; Leiros, Hanna-Kirsti Schrøder; Smalås, Arne Oskar; Willassen, Nils Peder; Moe, Elin

    2014-08-01

    A structural and biophysical study of the interactions between cod and human uracil-DNA N-glycosylase (UNG) and their inhibitor Ugi is presented. The stronger interaction between cod UNG and Ugi can be explained by a greater positive electrostatic surface potential. Uracil-DNA N-glycosylase from Atlantic cod (cUNG) shows cold-adapted features such as high catalytic efficiency, a low temperature optimum for activity and reduced thermal stability compared with its mesophilic homologue human UNG (hUNG). In order to understand the role of the enzyme–substrate interaction related to the cold-adapted properties, the structure of cUNG in complex with a bacteriophage encoded natural UNG inhibitor (Ugi) has been determined. The interaction has also been analyzed by isothermal titration calorimetry (ITC). The crystal structure of cUNG–Ugi was determined to a resolution of 1.9 Å with eight complexes in the asymmetric unit related through noncrystallographic symmetry. A comparison of the cUNG–Ugi complex with previously determined structures of UNG–Ugi shows that they are very similar, and confirmed the nucleotide-mimicking properties of Ugi. Biophysically, the interaction between cUNG and Ugi is very strong and shows a binding constant (K{sub b}) which is one order of magnitude larger than that for hUNG–Ugi. The binding of both cUNG and hUNG to Ugi was shown to be favoured by both enthalpic and entropic forces; however, the binding of cUNG to Ugi is mainly dominated by enthalpy, while the entropic term is dominant for hUNG. The observed differences in the binding properties may be explained by an overall greater positive electrostatic surface potential in the protein–Ugi interface of cUNG and the slightly more hydrophobic surface of hUNG.

  10. Entrapment and Structure of an Extrahelical Guanine Attempting to Enter the Active Site of a Bacterial DNA Glycosylase, MutM

    SciTech Connect

    Qi, Yan; Spong, Marie C.; Nam, Kwangho; Karplus, Martin; Verdine, Gregory L.

    2010-09-21

    MutM, a bacterial DNA glycosylase, protects genome integrity by catalyzing glycosidic bond cleavage of 8-oxoguanine (oxoG) lesions, thereby initiating base excision DNA repair. The process of searching for and locating oxoG lesions is especially challenging, because of the close structural resemblance of oxoG to its million-fold more abundant progenitor, G. Extrusion of the target nucleobase from the DNA double helix to an extrahelical position is an essential step in lesion recognition and catalysis by MutM. Although the interactions between the extruded oxoG and the active site of MutM have been well characterized, little is known in structural detail regarding the interrogation of extruded normal DNA bases by MutM. Here we report the capture and structural elucidation of a complex in which MutM is attempting to present an undamaged G to its active site. The structure of this MutM-extrahelical G complex provides insights into the mechanism MutM employs to discriminate against extrahelical normal DNA bases and into the base extrusion process in general.

  11. Oxidative DNA damage in the in utero initiation of postnatal neurodevelopmental deficits by normal fetal and ethanol-enhanced oxidative stress in oxoguanine glycosylase 1 knockout mice.

    PubMed

    Miller-Pinsler, Lutfiya; Pinto, Daniel J; Wells, Peter G

    2015-01-01

    Studies in mice with deficient antioxidative enzymes have shown that physiological levels of reactive oxygen species (ROS) can adversely affect the developing embryo and fetus. Herein, DNA repair-deficient progeny of oxoguanine glycosylase 1 (ogg1)-knockout mice lacking repair of the oxidative DNA lesion 8-oxo-2'-deoxyguanosine (8-oxodGuo) exhibited enhanced postnatal neurodevelopmental deficits, revealing the pathogenic potential of 8-oxodGuo initiated by physiological ROS production in fetal brain and providing the first evidence of a pathological phenotype for ogg1-knockout mice. Moreover, when exposed in utero to ethanol (EtOH), ogg1-knockout progeny exhibited higher levels of 8-oxodGuo in fetal brain and more severe postnatal neurodevelopmental deficits than wild-type littermates, both of which were blocked by pretreatment with the free radical trapping agent phenylbutylnitrone. These results suggest that ROS-initiated DNA oxidation, as distinct from altered signal transduction, contributes to neurodevelopmental deficits caused by in utero EtOH exposure, and fetal DNA repair is a determinant of risk.

  12. Characterizing Requirements for Small Ubiquitin-like Modifier (SUMO) Modification and Binding on Base Excision Repair Activity of Thymine-DNA Glycosylase in Vivo.

    PubMed

    McLaughlin, Dylan; Coey, Christopher T; Yang, Wei-Chih; Drohat, Alexander C; Matunis, Michael J

    2016-04-22

    Thymine-DNA glycosylase (TDG) plays critical roles in DNA base excision repair and DNA demethylation. It has been proposed, based on structural studies and in vitro biochemistry, that sumoylation is required for efficient TDG enzymatic turnover following base excision. However, whether sumoylation is required for TDG activity in vivo has not previously been tested. We have developed an in vivo assay for TDG activity that takes advantage of its recently discovered role in DNA demethylation and selective recognition and repair of 5-carboxylcytosine. Using this assay, we investigated the role of sumoylation in regulating TDG activity through the use of TDG mutants defective for sumoylation and Small Ubiquitin-like Modifier (SUMO) binding and by altering TDG sumoylation through SUMO and SUMO protease overexpression experiments. Our findings indicate that sumoylation and SUMO binding are not essential for TDG-mediated excision and repair of 5-carboxylcytosine bases. Moreover, in vitro assays revealed that apurinic/apyrimidinic nuclease 1 provides nearly maximum stimulation of TDG processing of G·caC substrates. Thus, under our assay conditions, apurinic/apyrimidinic nuclease 1-mediated stimulation or other mechanisms sufficiently alleviate TDG product inhibition and promote its enzymatic turnover in vivo.

  13. Hyperosmotic stress memory in Arabidopsis is mediated by distinct epigenetically labile sites in the genome and is restricted in the male germline by DNA glycosylase activity

    PubMed Central

    Wibowo, Anjar; Becker, Claude; Marconi, Gianpiero; Durr, Julius; Price, Jonathan; Hagmann, Jorg; Papareddy, Ranjith; Putra, Hadi; Kageyama, Jorge; Becker, Jorg; Weigel, Detlef; Gutierrez-Marcos, Jose

    2016-01-01

    Inducible epigenetic changes in eukaryotes are believed to enable rapid adaptation to environmental fluctuations. We have found distinct regions of the Arabidopsis genome that are susceptible to DNA (de)methylation in response to hyperosmotic stress. The stress-induced epigenetic changes are associated with conditionally heritable adaptive phenotypic stress responses. However, these stress responses are primarily transmitted to the next generation through the female lineage due to widespread DNA glycosylase activity in the male germline, and extensively reset in the absence of stress. Using the CNI1/ATL31 locus as an example, we demonstrate that epigenetically targeted sequences function as distantly-acting control elements of antisense long non-coding RNAs, which in turn regulate targeted gene expression in response to stress. Collectively, our findings reveal that plants use a highly dynamic maternal ‘short-term stress memory’ with which to respond to adverse external conditions. This transient memory relies on the DNA methylation machinery and associated transcriptional changes to extend the phenotypic plasticity accessible to the immediate offspring. DOI: http://dx.doi.org/10.7554/eLife.13546.001 PMID:27242129

  14. The formation of catalytically competent enzyme-substrate complex is not a bottleneck in lesion excision by human alkyladenine DNA glycosylase.

    PubMed

    Kuznetsov, N A; Kiryutin, A S; Kuznetsova, A A; Panov, M S; Barsukova, M O; Yurkovskaya, A V; Fedorova, O S

    2017-04-01

    Human alkyladenine DNA glycosylase (AAG) protects DNA from alkylated and deaminated purine lesions. AAG flips out the damaged nucleotide from the double helix of DNA and catalyzes the hydrolysis of the N-glycosidic bond to release the damaged base. To understand better, how the step of nucleotide eversion influences the overall catalytic process, we performed a pre-steady-state kinetic analysis of AAG interaction with specific DNA-substrates, 13-base pair duplexes containing in the 7th position 1-N6-ethenoadenine (εA), hypoxanthine (Hx), and the stable product analogue tetrahydrofuran (F). The combination of the fluorescence of tryptophan, 2-aminopurine, and 1-N6-ethenoadenine was used to record conformational changes of the enzyme and DNA during the processes of DNA lesion recognition, damaged base eversion, excision of the N-glycosidic bond, and product release. The thermal stability of the duplexes characterized by the temperature of melting, Tm, and the rates of spontaneous opening of individual nucleotide base pairs were determined by NMR spectroscopy. The data show that the relative thermal stability of duplexes containing a particular base pair in position 7, (Tm(F/T) < Tm(εA/T) < Tm(Hx/T) < Tm(A/T)) correlates with the rate of reversible spontaneous opening of the base pair. However, in contrast to that, the catalytic lesion excision rate is two orders of magnitude higher for Hx-containing substrates than for substrates containing εA, proving that catalytic activity is not correlated with the stability of the damaged base pair. Our study reveals that the formation of the catalytically competent enzyme-substrate complex is not the bottleneck controlling the catalytic activity of AAG.

  15. Replication protein A binds to regulatory elements in yeast DNA repair and DNA metabolism genes.

    PubMed Central

    Singh, K K; Samson, L

    1995-01-01

    Saccharomyces cerevisiae responds to DNA damage by arresting cell cycle progression (thereby preventing the replication and segregation of damaged chromosomes) and by inducing the expression of numerous genes, some of which are involved in DNA repair, DNA replication, and DNA metabolism. Induction of the S. cerevisiae 3-methyladenine DNA glycosylase repair gene (MAG) by DNA-damaging agents requires one upstream activating sequence (UAS) and two upstream repressing sequences (URS1 and URS2) in the MAG promoter. Sequences similar to the MAG URS elements are present in at least 11 other S. cerevisiae DNA repair and metabolism genes. Replication protein A (Rpa) is known as a single-stranded-DNA-binding protein that is involved in the initiation and elongation steps of DNA replication, nucleotide excision repair, and homologous recombination. We now show that the MAG URS1 and URS2 elements form similar double-stranded, sequence-specific, DNA-protein complexes and that both complexes contain Rpa. Moreover, Rpa appears to bind the MAG URS1-like elements found upstream of 11 other DNA repair and DNA metabolism genes. These results lead us to hypothesize that Rpa may be involved in the regulation of a number of DNA repair and DNA metabolism genes. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:7761422

  16. Interfacial structures of 1-methyladenine, 3-methyladenine, 7-methyladenine, and 9-methyladenine on gold nanoparticles by Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Nguyen, Dinh Bao; Joo, Sang-Woo; Choo, Jaebum

    2017-01-01

    Interfacial structures of 1-methyladenine (1 MA), 3-methyladenine (3 MA), 7-methyladenine (7 MA), and 9-methyladenine (9 MA) on gold nanoparticles (AuNPs) were investigated by means of surface-enhanced Raman scattering (SERS). Different positions of the methyl group in the purine ring of adenine were found to result in not only dissimilarity among Raman spectral features but also surface binding schemes. Density functional theory (DFT) calculations predicted that the amino-9H tautomeric form would be most stable among the conformers of 1 MA, 3 MA, 7 MA, and 9 MA including amino and imino tautomeric conformers. SERS spectral features were analyzed with appropriate vibrational assignments based on DFT calculations. After considering the enhancement factors, the Raman spectra of 1 MA, 3 MA, 7 MA, and 9 MA on AuNPs were dissimilar, suggesting the methyl group at the purine ring of methyladenine may be significantly affecting the binding on AuNPs. Our Raman study indicates the position of the methyl group in methyladenine may play a significant role in coordinating metal surfaces.

  17. CRL4Cdt2 E3 ubiquitin ligase and proliferating cell nuclear antigen (PCNA) cooperate to degrade thymine DNA glycosylase in S phase.

    PubMed

    Shibata, Etsuko; Dar, Ashraf; Dutta, Anindya

    2014-08-15

    Thymine DNA glycosylase (TDG) is an essential enzyme playing multiple roles in base excision repair, transcription regulation, and DNA demethylation. TDG mediates the cytotoxicity of the anti-cancer chemotherapeutic drug 5-fluorouracil (5-FU) by prolonging S phase, generating DNA strand breaks, and inducing DNA damage signaling. During S phase of the cell cycle, TDG is degraded via the proteasomal pathway. Here we show that CRL4(Cdt2) E3 ubiquitin ligase promotes ubiquitination and proteasomal degradation of TDG in S phase in a reaction that is dependent on the interaction of TDG with proliferating cell nuclear antigen (PCNA). siRNA-mediated depletion of PCNA or components of CRL4(Cdt2), specifically cullin4A/B or substrate adaptor Cdt2, stabilizes TDG in human cells. Mutations in the PCNA-interacting peptide (PIP) motif of TDG that disrupt the interaction of TDG with PCNA or change critical basic residues essential for the action of the PIP degron prevent the ubiquitination and degradation of TDG. Thus physical interaction of TDG with PCNA through the PIP degron is required for targeting TDG to the CRL4(Cdt2) E3 ubiquitin ligase complex. Compared with forced expression of wild type TDG, CRL4(Cdt2)- resistant TDG (ΔPIP) slows cell proliferation and slightly increases the toxicity of 5-FU. Thus, CRL4(Cdt2)-dependent degradation of TDG occurs in S phase because of the requirement for TDG to interact with chromatin-loaded PCNA, and this degradation is important for preventing toxicity from excess TDG.

  18. The Cys326 allele of the 8-oxoguanine DNA N-glycosylase 1 gene as a risk factor in smoking- and drinking-associated larynx cancer.

    PubMed

    Pawlowska, Elzbieta; Janik-Papis, Katarzyna; Rydzanicz, Malgorzata; Zuk, Karolina; Kaczmarczyk, Dariusz; Olszewski, Jurek; Szyfter, Krzysztof; Blasiak, Janusz; Morawiec-Sztandera, Alina

    2009-12-01

    Tobacco smoke-related products and ethanol would induce oxidative modifications to the DNA bases, thereby contributing to larynx cancer. Human 8-oxoguanine DNA N-glycosylase 1 (hOGG1) deals with oxidative DNA damage, and the base changes in the hOGG1 gene may alter the susceptibility of the human cells to tobacco smoke-related compounds and/or ethanol. In the present work, we investigated the association between smoking, drinking or the Ser326Cys polymorphism of the hOGG1 gene and the risk of larynx cancer in a Polish population. It has been reported that the Ser326 allele exhibits higher activity than the Cys326 variant. In this study, 253 age-matched controls and 253 patients with larynx cancer were enrolled. The polymorphism was determined with DNA from blood lymphocytes by polymerase chain reaction. The frequencies (%) of the genotypes were Ser/Ser 65.6, Ser/Cys 30.4, and Cys/Cys 4.0 in the controls and those in patients were 55.7, 36.0 and 8.3, respectively. Stratification of individuals according to their smoking and drinking habits indicated that these habits might be significant risk factors in larynx cancer. The Ser/Cys and Cys/Cys genotypes are significantly associated with the increased risk of larynx cancer. These genotypes increased the risk ratio of larynx cancer among heavy smokers, but did not change the risk in former smokers and moderate smokers. These genotypes also increased the risk of larynx cancer in moderate and heavy drinkers. Therefore, the Cys326 allele of the hOGG1 gene may increase the risk of larynx cancer associated with smoking or alcohol consumption.

  19. Role of autophagy in the progression of osteoarthritis: The autophagy inhibitor, 3-methyladenine, aggravates the severity of experimental osteoarthritis.

    PubMed

    Cheng, Ni-Tao; Meng, Hai; Ma, Li-Feng; Zhang, Liang; Yu, Hao-Miao; Wang, Zhen-Zhong; Guo, Ai

    2017-03-23

    Accumulating evidence suggests that autophagy is closely related to the pathogenesis of osteoarthritis (OA). The aim of this study was to determine the changes in autophagy during the progression of OA and to elucidate the specific role of autophagy in OA. For this purpose, a cellular model of OA was generated by stimulating SW1353 cells with interleukin (IL)-1β and a rabbit model of OA was also established by an intra-articular injection of collagenase, followed by treatment with the autophagy specific inhibitor, 3-methyladenine (3-MA). Cell viability was analyzed by MTS assay, and the mRNA expression levels of matrix metalloproteinases (MMP)-13 and tissue inhibitor of metalloproteinase (TIMP)-1 were determined by RT-qPCR. Cartilage degeneration was examined under a light microscope, and autophagosome and chondrocyte degeneration was observed by transmission electron microscopy. The protein expression of Beclin-1 and light chain 3 (LC3)B was evaluated by western blot analysis and immunofluorescence staining. We found that the autophagy was enhanced during the early stages and was weakened during the late stages of experimental OA. The inhibition of autophagy by 3-MA significantly aggravated the degeneration of chondrocytes and cartilage in experimental OA. Our results thus determine the changes in autophagy during different stages of OA, as well as the role of impaired autophagy in the development of OA. Our data suggest that the regulation of autophagy may be a potential therapeutic strategy with which to attenuate OA.

  20. Abnormal Expressions of DNA Glycosylase Genes NEIL1, NEIL2, and NEIL3 Are Associated with Somatic Mutation Loads in Human Cancer

    PubMed Central

    Shinmura, Kazuya; Kato, Hisami; Kawanishi, Yuichi; Igarashi, Hisaki; Goto, Masanori; Tao, Hong; Inoue, Yusuke; Nakamura, Satoki; Misawa, Kiyoshi; Mineta, Hiroyuki; Sugimura, Haruhiko

    2016-01-01

    The effects of abnormalities in the DNA glycosylases NEIL1, NEIL2, and NEIL3 on human cancer have not been fully elucidated. In this paper, we found that the median somatic total mutation loads and the median somatic single nucleotide mutation loads exhibited significant inverse correlations with the median NEIL1 and NEIL2 expression levels and a significant positive correlation with the median NEIL3 expression level using data for 13 cancer types from the Cancer Genome Atlas (TCGA) database. A subset of the cancer types exhibited reduced NEIL1 and NEIL2 expressions and elevated NEIL3 expression, and such abnormal expressions of NEIL1, NEIL2, and NEIL3 were also significantly associated with the mutation loads in cancer. As a mechanism underlying the reduced expression of NEIL1 in cancer, the epigenetic silencing of NEIL1 through promoter hypermethylation was found. Finally, we investigated the reason why an elevated NEIL3 expression level was associated with an increased number of somatic mutations in cancer and found that NEIL3 expression was positively correlated with the expression of APOBEC3B, a potent inducer of mutations, in diverse cancers. These results suggested that the abnormal expressions of NEIL1, NEIL2, and NEIL3 are involved in cancer through their association with the somatic mutation load. PMID:27042257

  1. Elevated levels of plasma homocysteine, deficiencies in dietary folic acid and uracil-DNA glycosylase impair learning in a mouse model of vascular cognitive impairment.

    PubMed

    Jadavji, Nafisa M; Farr, Tracy D; Lips, Janet; Khalil, Ahmed A; Boehm-Sturm, Philipp; Foddis, Marco; Harms, Christoph; Füchtemeier, Martina; Dirnagl, Ulrich

    2015-04-15

    Dietary deficiencies in folic acid result in elevated levels of plasma homocysteine, which has been associated with the development of dementia and other neurodegenerative disorders. Previously, we have shown that elevated levels of plasma homocysteine in mice deficient for a DNA repair enzyme, uracil-DNA glycosylase (UNG), result in neurodegeneration. The goal of this study was to evaluate how deficiencies in folic acid and UNG along with elevated levels of homocysteine affect vascular cognitive impairment, via chronic hypoperfursion in an animal model. Ung(+/+) and Ung(-/-) mice were placed on either control (CD) or folic acid deficient (FADD) diets. Six weeks later, the mice either underwent implantation of microcoils around both common carotid arteries. Post-operatively, behavioral tests began at 3-weeks, angiography was measured after 5-weeks using MRI to assess vasculature and at completion of study plasma and brain tissue was collected for analysis. Learning impairments in the Morris water maze (MWM) were observed only in hypoperfused Ung(-/-) FADD mice and these mice had significantly higher plasma homocysteine concentrations. Interestingly, Ung(+/+) FADD produced significant remodeling of the basilar artery and arterial vasculature. Increased expression of GFAP was observed in the dentate gyrus of Ung(-/-) hypoperfused and FADD sham mice. Chronic hypoperfusion resulted in increased cortical MMP-9 protein levels of FADD hypoperfused mice regardless of genotypes. These results suggest that elevated levels of homocysteine only, as a result of dietary folic acid deficiency, don't lead to memory impairments and neurobiochemical changes. Rather a combination of either chronic hypoperfusion or UNG deficiency is required.

  2. Polymorphisms of human 8-oxoguanine DNA glycosylase 1 and 8-hydroxydeoxyguanosine increase susceptibility to arsenic methylation capacity-related urothelial carcinoma.

    PubMed

    Huang, Chao-Yuan; Pu, Yeong-Shiau; Shiue, Horng-Sheng; Chen, Wei-Jen; Lin, Ying-Chin; Hsueh, Yu-Mei

    2016-08-01

    Arsenic causes oxidative stress in cultured animal and human cells, and it is a well-documented human carcinogen. We conducted a hospital-based case-control study including 167 cases of urothelial carcinoma (UC) and 334 age- and gender-matched healthy controls to evaluate the relationships between urinary arsenic profiles, urinary 8-hydroxydeoxyguanosine (8-OHdG) levels, and human 8-oxoguanine DNA glycosylase (hOGG1) genotypes and UC. The urinary arsenic species were analyzed by high-performance liquid chromatography and hydride generator-atomic absorption spectrometry. Genotyping for hOGG1 (Ser326Cys) and hOGG1 (-15C>G) was performed using the Sequenom MassARRAY platform with iPLEX Gold chemistry. Urinary 8-OHdG was measured with high-sensitivity enzyme-linked immunosorbent assay kits. The results indicated that the hOGG1 326 Cys/Cys genotype and the hOGG1 -15C>G G/G genotype were associated with an increased risk of UC (OR [95 % CI] 1.57 [1.04-2.35] and 1.57 [1.04-2.35], respectively). Participants with high urinary total arsenic, regardless of the haplotype of hOGG1 Ser326Cys and the -15C>G polymorphism, had significantly higher urinary 8-OHdG compared to participants with low urinary total arsenic. This is the first study to investigate the joint effects of high urinary total arsenic or inefficient arsenic methylation capacity indices, and the high-risk G-G haplotype of hOGG1 on the risk of UC. The findings are especially meaningful for participants with risk factors such as high urinary total arsenic, inefficient arsenic methylation indices, high urinary 8-OHdG, and the high-risk G-G haplotype of hOGG1 which are all associated with an increased UC risk.

  3. 8-Oxoguanine DNA glycosylase 1 (ogg1) maintains the function of cardiac progenitor cells during heart formation in zebrafish

    SciTech Connect

    Yan, Lifeng; Zhou, Yong; Yu, Shanhe; Ji, Guixiang; Liu, Wei; Gu, Aihua

    2013-11-15

    Genomic damage may devastate the potential of progenitor cells and consequently impair early organogenesis. We found that ogg1, a key enzyme initiating the base-excision repair, was enriched in the embryonic heart in zebrafish. So far, little is known about DNA repair in cardiogenesis. Here, we addressed the critical role of ogg1 in cardiogenesis for the first time. ogg1 mainly expressed in the anterior lateral plate mesoderm (ALPM), the primary heart tube, and subsequently the embryonic myocardium by in situ hybridisation. Loss of ogg1 resulted in severe cardiac morphogenesis and functional abnormalities, including the short heart length, arrhythmia, decreased cardiomyocytes and nkx2.5{sup +} cardiac progenitor cells. Moreover, the increased apoptosis and repressed proliferation of progenitor cells caused by ogg1 deficiency might contribute to the heart phenotype. The microarray analysis showed that the expression of genes involved in embryonic heart tube morphogenesis and heart structure were significantly changed due to the lack of ogg1. Among those, foxh1 is an important partner of ogg1 in the cardiac development in response to DNA damage. Our work demonstrates the requirement of ogg1 in cardiac progenitors and heart development in zebrafish. These findings may be helpful for understanding the aetiology of congenital cardiac deficits. - Highlights: • A key DNA repair enzyme ogg1 is expressed in the embryonic heart in zebrafish. • We found that ogg1 is essential for normal cardiac morphogenesis in zebrafish. • The production of embryonic cardiomyocytes requires appropriate ogg1 expression. • Ogg1 critically regulated proliferation of cardiac progenitor cells in zebrafish. • foxh1 is a partner of ogg1 in the cardiac development in response to DNA damage.

  4. The C-terminal Domain (CTD) of Human DNA Glycosylase NEIL1 Is Required for Forming BERosome Repair Complex with DNA Replication Proteins at the Replicating Genome: DOMINANT NEGATIVE FUNCTION OF THE CTD.

    PubMed

    Hegde, Pavana M; Dutta, Arijit; Sengupta, Shiladitya; Mitra, Joy; Adhikari, Sanjay; Tomkinson, Alan E; Li, Guo-Min; Boldogh, Istvan; Hazra, Tapas K; Mitra, Sankar; Hegde, Muralidhar L

    2015-08-21

    The human DNA glycosylase NEIL1 was recently demonstrated to initiate prereplicative base excision repair (BER) of oxidized bases in the replicating genome, thus preventing mutagenic replication. A significant fraction of NEIL1 in cells is present in large cellular complexes containing DNA replication and other repair proteins, as shown by gel filtration. However, how the interaction of NEIL1 affects its recruitment to the replication site for prereplicative repair was not investigated. Here, we show that NEIL1 binarily interacts with the proliferating cell nuclear antigen clamp loader replication factor C, DNA polymerase δ, and DNA ligase I in the absence of DNA via its non-conserved C-terminal domain (CTD); replication factor C interaction results in ∼8-fold stimulation of NEIL1 activity. Disruption of NEIL1 interactions within the BERosome complex, as observed for a NEIL1 deletion mutant (N311) lacking the CTD, not only inhibits complete BER in vitro but also prevents its chromatin association and reduced recruitment at replication foci in S phase cells. This suggests that the interaction of NEIL1 with replication and other BER proteins is required for efficient repair of the replicating genome. Consistently, the CTD polypeptide acts as a dominant negative inhibitor during in vitro repair, and its ectopic expression sensitizes human cells to reactive oxygen species. We conclude that multiple interactions among BER proteins lead to large complexes, which are critical for efficient BER in mammalian cells, and the CTD interaction could be targeted for enhancing drug/radiation sensitivity of tumor cells.

  5. Down-regulation of the DNA-repair endonuclease 8-oxo-guanine DNA glycosylase 1 (hOGG1) by sodium dichromate in cultured human A549 lung carcinoma cells.

    PubMed

    Hodges, N J; Chipman, J K

    2002-01-01

    Hexavalent chromium is a genotoxic human pulmonary carcinogen that elevates DNA oxidation, apparently through the generation of reactive DNA-damaging intermediates including Cr(V), Cr(IV) and reactive oxygen species. We tested the hypothesis that elevation of DNA oxidation may also be through inhibition of the expression of the repair glycosylase for 8-oxo deoxyguanine (hOGG1) in cultured A549 human lung epithelial cells. Treatment with sodium dichromate (0-100 microM, 16 h) resulted in a concentration-dependent decrease in the levels of OGG1 mRNA as measured by both RT-PCR and RNase protection assay. Sodium dichromate at 25 microM and above gave a marked reduction of OGG1 mRNA expression which was not seen at 1 microM and below. No effect on the expression of the apurinic endonuclease hAPE or the house-keeping gene GAPDH was observed at any of the concentrations of sodium dichromate investigated. Treatment of cells with the pro-oxidant H(2)O(2) (0-200 microM) for 16 h had no detectable effect on the levels of OGG1 mRNA or protein expression suggesting that the effect of sodium dichromate is not mediated by H(2)O(2). Western blotting demonstrated that sodium dichromate (100 microM; 16 h and >25 microM; 28 h) markedly reduced levels of OGG1 protein in nuclear cell extracts. Additionally, treatment of cells with sodium dichromate (>25 microM, 28 h) resulted in a concentration-dependent decrease in the ability of nuclear extracts to nick a synthetic oligonucleotide containing 8-oxo deoxyguanine (8-oxo dG). We conclude that the elevation of 8-oxo dG levels observed in A549 cells treated with sodium dichromate may be, at least in part, due to a reduced capacity to repair endogenous and hexavalent chromium-induced 8-oxo dG.

  6. Systemic application of 3-methyladenine markedly inhibited atherosclerotic lesion in ApoE−/− mice by modulating autophagy, foam cell formation and immune-negative molecules

    PubMed Central

    Dai, Shen; Wang, Bo; Li, Wen; Wang, Liyang; Song, Xingguo; Guo, Chun; Li, Yulan; Liu, Fengming; Zhu, Faliang; Wang, Qun; Wang, Xiaoyan; Shi, Yongyu; Wang, Jianing; Zhao, Wei; Zhang, Lining

    2016-01-01

    A growing body of evidence demonstrates that autophagy, an evolutionarily conserved intracellular degradation process, is involved in the pathogenesis of atherosclerosis and has become a potential therapeutic target. Here we tested the effect of two inhibitors of phosphatidylinositol 3-kinase, 3-methyladenine (3-MA) and 2-(4-morpholinyl)-8-phenyl-chromone (LY294002), commonly used as inhibitors of autophagy, in atherosclerosis in apolipoprotein E−/− mice. Systemic application of 3-MA but not LY294002 markedly reduced the size of atherosclerotic plaque and increased the stability of lesions in high-fat diet-fed mice as compared with controls. Furthermore, 3-MA had multiple atheroprotective effects, including modulating macrophage autophagy and foam cell formation and altering the immune microenvironment. Long-term treatment with 3-MA promoted oxidized low-density lipoprotein (oxLDL)-induced macrophage autophagy and suppressed foam cell formation and cell viability in vitro. Furthermore, systemic application of 3-MA promoted lipid droplet breakdown and decreased apoptosis, most likely associated with autophagy. 3-MA treatment strikingly enhanced the expression of immune-negative molecules such as interleukin 10 (IL-10), transforming growth factor β and IL-35, as well as forkhead box P3 (Foxp3), the specific transcriptional factor for regulatory T cells, but did not affect the level of proinflammatory cytokines in the arterial wall. We provide strong evidence for the potential therapeutic benefit of 3-MA in inhibiting atherosclerosis development and improving plaque stability. PMID:27906187

  7. Ada response - a strategy for repair of alkylated DNA in bacteria.

    PubMed

    Mielecki, Damian; Grzesiuk, Elżbieta

    2014-06-01

    Alkylating agents are widespread in the environment and also occur endogenously. They can be cytotoxic or mutagenic to the cells introducing alkylated bases to DNA or RNA. All organisms have evolved multiple DNA repair mechanisms to counteract the effects of DNA alkylation: the most cytotoxic lesion, N(3)-methyladenine (3meA), is excised by AlkA glycosylase initiating base excision repair (BER); toxic N(1)-methyladenine (1meA) and N(3)-methylcytosine (3meC), induced in DNA and RNA, are removed by AlkB dioxygenase; and mutagenic and cytotoxic O(6)-methylguanine (O(6) meG) is repaired by Ada methyltransferase. In Escherichia coli, Ada response involves the expression of four genes, ada, alkA, alkB, and aidB, encoding respective proteins Ada, AlkA, AlkB, and AidB. The Ada response is conserved among many bacterial species; however, it can be organized differently, with diverse substrate specificity of the particular proteins. Here, an overview of the organization of the Ada regulon and function of individual proteins is presented. We put special effort into the characterization of AlkB dioxygenases, their substrate specificity, and function in the repair of alkylation lesions in DNA/RNA.

  8. A common element involved in transcriptional regulation of two DNA alkylation repair genes (MAG and MGT1) of Saccharomyces cerevisiae.

    PubMed Central

    Xiao, W; Singh, K K; Chen, B; Samson, L

    1993-01-01

    The Saccharomyces cerevisiae MAG gene encodes a 3-methyladenine DNA glycosylase that protects cells from killing by alkylating agents. MAG mRNA levels are induced not only by alkylating agents but also by DNA-damaging agents that do not produce alkylated DNA. We constructed a MAG-lacZ gene fusion to help identify the cis-acting promoter elements involved in regulating MAG expression. Deletion analysis defined the presence of one upstream activating sequence and one upstream repressing sequence (URS) and suggested the presence of a second URS. One of the MAG URS elements matches a decamer consensus sequence present in the promoters of 11 other S. cerevisiae DNA repair and metabolism genes, including the MGT1 gene, which encodes an O6-methylguanine DNA repair methyltransferase. Two proteins of 26 and 39 kDa bind specifically to the MAG and MGT1 URS elements. We suggest that the URS-binding proteins may play an important role in the coordinate regulation of these S. cerevisiae DNA repair genes. Images PMID:8246943

  9. Escherichia coli MutY protein has a guanine-DNA glycosylase that acts on 7,8-dihydro-8-oxoguanine:guanine mispair to prevent spontaneous G:C-->C:G transversions.

    PubMed

    Zhang, Q M; Ishikawa, N; Nakahara, T; Yonei, S

    1998-10-15

    Low rates of spontaneous G:C-->C:G transversions would be achieved not only by the correction of base mismatches during DNA replication but also by the prevention and removal of oxidative base damage in DNA. Escherichia coli must have several pathways to repair such mismatches and DNA modifications. In this study, we attempted to identify mutator loci leading to G:C-->C:G transversions in E.coli. The strain CC103 carrying a specific mutation in lacZ was mutagenized by random miniTn 10 insertion mutagenesis. In this strain, only the G:C-->C:G change can revert the glutamic acid at codon 461, which is essential for sufficient beta-galactosidase activity to allow growth on lactose. Mutator strains were detected as colonies with significantly increased rates of papillae formation on glucose minimal plates containing P-Gal and X-Gal. We screened approximately 40 000 colonies and selected several mutator strains. The strain GC39 showed the highest mutation rate to Lac+. The gene responsible for the mutator phenotypes, mut39 , was mapped at around 67 min on the E.coli chromosome. The sequencing of the miniTn 10 -flanking DNA region revealed that the mut39 was identical to the mutY gene of E.coli. The plasmid carrying the mutY + gene reduced spontaneous G:C-->T:A and G:C-->C:G mutations in both mutY and mut39 strains. Purified MutY protein bound to the oligonucleotides containing 7,8-dihydro-8-oxo-guanine (8-oxoG):G and 8-oxoG:A. Furthermore, we found that the MutY protein had a DNA glycosylase activity which removes unmodified guanine from the 8-oxoG:G mispair. These results demonstrate that the MutY protein prevents the generation of G:C-->C:G transversions by removing guanine from the 8-oxoG:G mispair in E.coli.

  10. Increased 8-hydroxy-2'-deoxyguanosine in plasma and decreased mRNA expression of human 8-oxoguanine DNA glycosylase 1, anti-oxidant enzymes, mitochondrial biogenesis-related proteins and glycolytic enzymes in leucocytes in patients with systemic lupus erythematosus.

    PubMed

    Lee, H-T; Lin, C-S; Lee, C-S; Tsai, C-Y; Wei, Y-H

    2014-04-01

    We measured plasma levels of the oxidative DNA damage marker 8-hydroxy-2'-deoxyguanosine (8-OHdG) and leucocyte mRNA expression levels of the genes encoding the 8-OHdG repair enzyme human 8-oxoguanine DNA glycosylase 1 (hOGG1), the anti-oxidant enzymes copper/zinc superoxide dismutase (Cu/ZnSOD), manganese superoxide dismutase (MnSOD), catalase, glutathione peroxidase-1 (GPx-1), GPx-4, glutathione reductase (GR) and glutathione synthetase (GS), the mitochondrial biogenesis-related proteins mtDNA-encoded ND 1 polypeptide (ND1), ND6, ATPase 6, mitochondrial transcription factor A (Tfam), nuclear respiratory factor 1(NRF-1), pyruvate dehydrogenase E1 component alpha subunit (PDHA1), pyruvate dehydrogenase kinase isoenzyme 1 (PDK-1) and hypoxia inducible factor-1α (HIF-1α) and the glycolytic enzymes hexokinase-II (HK-II), glucose 6-phosphate isomerase (GPI), phosphofructokinase (PFK), glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and lactate dehydrogenase A (LDHa). We analysed their relevance to oxidative damage in 85 systemic lupus erythematosus (SLE) patients, four complicated SLE patients undergoing rituximab treatment and 45 healthy individuals. SLE patients had higher plasma 8-OHdG levels (P < 0·01) but lower leucocyte expression of the genes encoding hOGG1(P < 0·01), anti-oxidant enzymes (P < 0·05), mitochondrial biogenesis-related proteins (P < 0·05) and glycolytic enzymes (P < 0·05) than healthy individuals. The increase in plasma 8-OHdG was correlated positively with the elevation of leucocyte expression of the genes encoding hOGG1 (P < 0·05), anti-oxidant enzymes (P < 0·05), several mitochondrial biogenesis-related proteins (P < 0·05) and glycolytic enzymes (P < 0·05) in lupus patients. The patients, whose leucocyte mtDNA harboured D310 heteroplasmy, exhibited a positive correlation between the mtDNA copy number and expression of ND1, ND6 and ATPase 6 (P < 0·05) and a negative correlation between mtDNA

  11. Mechanisms of glycosylase induced genomic instability

    PubMed Central

    2017-01-01

    Human alkyladenine DNA glycosylase (AAG) initiates base excision repair (BER) to guard against mutations by excising alkylated and deaminated purines. Counterintuitively, increased expression of AAG has been implicated in increased rates of spontaneous mutation in microsatellite repeats. This microsatellite mutator phenotype is consistent with a model in which AAG excises bulged (unpaired) bases, altering repeat length. To directly test the role of base excision in AAG-induced mutagenesis, we conducted mutation accumulation experiments in yeast overexpressing different variants of AAG and detected mutations via high-depth genome resequencing. We also developed a new software tool, hp_caller, to perform accurate genotyping at homopolymeric repeat loci. Overexpression of wild-type AAG elevated indel mutations in homopolymeric sequences distributed throughout the genome. However, catalytically inactive variants (E125Q/E125A) caused equal or greater increases in frameshift mutations. These results disprove the hypothesis that base excision is the key step in mutagenesis by overexpressed wild-type AAG. Instead, our results provide additional support for the previously published model wherein overexpressed AAG interferes with the mismatch repair (MMR) pathway. In addition to the above results, we observed a dramatic mutator phenotype for N169S AAG, which has increased rates of excision of undamaged purines. This mutant caused a 10-fold increase in point mutations at G:C base pairs and a 50-fold increase in frameshifts in A:T homopolymers. These results demonstrate that it is necessary to consider the relative activities and abundance of many DNA replication and repair proteins when considering mutator phenotypes, as they are relevant to the development of cancer and its resistance to treatment. PMID:28333944

  12. Both base excision repair and O6-methylguanine-DNA methyltransferase protect against methylation-induced colon carcinogenesis

    PubMed Central

    Wirtz, Stefan; Nagel, Georg; Eshkind, Leonid; Neurath, Markus F.; Samson, Leona D.; Kaina, Bernd

    2010-01-01

    Methylating agents are widely distributed environmental carcinogens. Moreover, they are being used in cancer chemotherapy. The primary target of methylating agents is DNA, and therefore, DNA repair is the first-line barrier in defense against their toxic and carcinogenic effects. Methylating agents induce in the DNA O6-methylguanine (O6MeG) and methylations of the ring nitrogens of purines. The lesions are repaired by O6-methylguanine-DNA methyltransferase (Mgmt) and by enzymes of the base excision repair (BER) pathway, respectively. Whereas O6MeG is well established as a pre-carcinogenic lesion, little is known about the carcinogenic potency of base N-alkylation products such as N3-methyladenine and N3-methylguanine. To determine their role in cancer formation and the role of BER in cancer protection, we checked the response of mice with a targeted gene disruption of Mgmt or N-alkylpurine-DNA glycosylase (Aag) or both Mgmt and Aag, to azoxymethane (AOM)-induced colon carcinogenesis, using non-invasive mini-colonoscopy. We demonstrate that both Mgmt- and Aag-null mice show a higher colon cancer frequency than the wild-type. With a single low dose of AOM (3 mg/kg) Aag-null mice showed an even stronger tumor response than Mgmt-null mice. The data provide evidence that both BER initiated by Aag and O6MeG reversal by Mgmt are required for protection against alkylation-induced colon carcinogenesis. Further, the data indicate that non-repaired N-methylpurines are not only pre-toxic but also pre-carcinogenic DNA lesions. PMID:20732909

  13. Gas-Phase Studies of Formamidopyrimidine Glycosylase (Fpg) Substrates.

    PubMed

    Kiruba, G S M; Xu, Jiahui; Zelikson, Victoria; Lee, Jeehiun K

    2016-03-07

    Gas-phase thermochemical properties (tautomerism, acidity, and proton affinity) have been measured and calculated for a series of nucleobase derivatives that have not heretofore been examined under vacuum. The studied species are substrates for the enzyme formamidopyrimidine glycosylase (Fpg), which cleaves damaged nucleobases from DNA. The gas-phase results are compared and contrasted to solution-phase data, to afford insight into the Fpg mechanism. Calculations are also used to probe the energetics of various possible mechanisms and to predict isotope effects that could potentially allow for discrimination between different mechanisms. Specifically, (18) O substitution at the ribose O4' is predicted to result in a normal kinetic isotope effect (KIE) for a ring-opening "endocyclic" mechanism and an inverse KIE for a direct base excision "exocyclic" pathway.

  14. Expression of human oxoguanine glycosylase 1 or formamidopyrimidine glycosylase in human embryonic kidney 293 cells exacerbates methylmercury toxicity in vitro

    SciTech Connect

    Ondovcik, Stephanie L.; Preston, Thomas J.; McCallum, Gordon P.; Wells, Peter G.

    2013-08-15

    Exposure to methylmercury (MeHg) acutely at high levels, or via chronic low-level dietary exposure from daily fish consumption, can lead to adverse neurological effects in both the adult and developing conceptus. To determine the impact of variable DNA repair capacity, and the role of reactive oxygen species (ROS) and oxidatively damaged DNA in the mechanism of toxicity, transgenic human embryonic kidney (HEK) 293 cells that stably express either human oxoguanine glycosylase 1 (hOgg1) or its bacterial homolog, formamidopyrimidine glycosylase (Fpg), which primarily repair the oxidative lesion 8-oxo-2′-deoxyguanosine (8-oxodG), were used to assess the in vitro effects of MeHg. Western blotting confirmed the expression of hOgg1 or Fpg in both the nuclear and mitochondrial compartments of their respective cell lines. Following acute (1–2 h) incubations with 0–10 μM MeHg, concentration-dependent decreases in clonogenic survival and cell growth accompanied concentration-dependent increases in lactate dehydrogenase (LDH) release, ROS formation, 8-oxodG levels and apurinic/apyrimidinic (AP) sites, consistent with the onset of cytotoxicity. Paradoxically, hOgg1- and Fpg-expressing HEK 293 cells were more sensitive than wild-type cells stably transfected with the empty vector control to MeHg across all cellular and biochemical parameters, exhibiting reduced clonogenic survival and cell growth, and increased LDH release and DNA damage. Accordingly, upregulation of specific components of the base excision repair (BER) pathway may prove deleterious potentially due to the absence of compensatory enhancement of downstream processes to repair toxic intermediary abasic sites. Thus, interindividual variability in DNA repair activity may constitute an important risk factor for environmentally-initiated, oxidatively damaged DNA and its pathological consequences. - Highlights: • hOgg1 and Fpg repair oxidatively damaged DNA. • hOgg1- and Fpg-expressing cells are more

  15. Processing of MucA protein is required for spontaneous and benzo[a]pyrene-induced reversion of the Escherichia coli trpA23 missense mutation by G.C-T.A transversions: effect of a deficiency in the MutY DNA glycosylase.

    PubMed

    Urios, A; Herrera, G; Aleixandre, V; Blanco, M

    1994-12-01

    We have studied the influence of the processing of MucA protein on the occurrence of base substitution mutations. Escherichia coli strains carrying the trpA23 missense mutation and having a full deletion of the chromosomal umuD/C operon were transformed with plasmids encoding the MucB protein together with either wild-type MucA or the nonprocessable MucA202 protein. The efficient reversion of the trpA23 allele by G.C-T.A transversions in benzo[a]pyrene (B[a]P)-treated cells required the function of a matured MucA protein. This processed protein was also necessary for the occurrence of G.C-T.A transversions targeted at spontaneous DNA lesions and for the SOS mutator effect dependent on the constitutive coprotease activity of the RecA730 protein. In contrast, G.C-T.A transversions reverting trpA23 were spontaneously generated by an SOS-independent mechanism in cells deficient in the MutY DNA glycosylase.

  16. Imprinting of the MEA Polycomb gene is controlled by antagonism between MET1 methyltransferase and DME glycosylase.

    PubMed

    Xiao, Wenyan; Gehring, Mary; Choi, Yeonhee; Margossian, Linda; Pu, Hong; Harada, John J; Goldberg, Robert B; Pennell, Roger I; Fischer, Robert L

    2003-12-01

    The MEA Polycomb gene is imprinted in the Arabidopsis endosperm. DME DNA glycosylase activates maternal MEA allele expression in the central cell of the female gametophyte, the progenitor of the endosperm. Maternal mutant dme or mea alleles result in seed abortion. We identified mutations that suppress dme seed abortion and found that they reside in the MET1 methyltransferase gene, which maintains cytosine methylation. Seeds with maternal dme and met1 alleles survive, indicating that suppression occurs in the female gametophyte. Suppression requires a maternal wild-type MEA allele, suggesting that MET1 functions upstream of, or at, MEA. DME activates whereas MET1 suppresses maternal MEA::GFP allele expression in the central cell. MET1 is required for DNA methylation of three regions in the MEA promoter in seeds. Our data suggest that imprinting is controlled in the female gametophyte by antagonism between the two DNA-modifying enzymes, MET1 methyltransferase and DME DNA glycosylase.

  17. Effects of ethylene oxide and ethylene inhalation on DNA adducts, apurinic/apyrimidinic sites and expression of base excision DNA repair genes in rat brain, spleen, and liver.

    PubMed

    Rusyn, Ivan; Asakura, Shoji; Li, Yutai; Kosyk, Oksana; Koc, Hasan; Nakamura, Jun; Upton, Patricia B; Swenberg, James A

    2005-09-28

    Ethylene oxide (EO) is an important industrial chemical that is classified as a known human carcinogen (IARC, Group 1). It is also a metabolite of ethylene (ET), a compound that is ubiquitous in the environment and is the most used petrochemical. ET has not produced evidence of cancer in laboratory animals and is "not classifiable as to its carcinogenicity to humans" (IARC, Group 3). The mechanism of carcinogenicity of EO is not well characterized, but is thought to involve the formation of DNA adducts. EO is mutagenic in a variety of in vitro and in vivo systems, whereas ET is not. Apurinic/apyrimidinic sites (AP) that result from chemical or glycosylase-mediated depurination of EO-induced DNA adducts could be an additional mechanism leading to mutations and chromosomal aberrations. This study tested the hypothesis that EO exposure results in the accumulation of AP sites and induces changes in expression of genes for base excision DNA repair (BER). Male Fisher 344 rats were exposed to EO (100 ppm) or ET (40 or 3000 ppm) by inhalation for 1, 3 or 20 days (6h/day, 5 days a week). Animals were sacrificed 2h after exposure for 1, 3 or 20 days as well as 6, 24 and 72 h after a single-day exposure. Experiments were performed with tissues from brain and spleen, target sites for EO-induced carcinogenesis, and liver, a non-target organ. Exposure to EO resulted in time-dependent increases in N7-(2-hydroxyethyl)guanine (7-HEG) in brain, spleen, and liver and N7-(2-hydroxyethyl)valine (7-HEVal) in globin. Ethylene exposure also induced 7-HEG and 7-HEVal, but the numbers of adducts were much lower. No increase in the number of aldehydic DNA lesions, an indicator of AP sites, was detected in any of the tissues between controls and EO-, or ET-exposed animals, regardless of the duration or strength of exposure. EO exposure led to a 3-7-fold decrease in expression of 3-methyladenine-DNA glycosylase (Mpg) in brain and spleen in rats exposed to EO for 1 day. Expression of 8

  18. Dimerization and opposite base-dependent catalytic impairment of polymorphic S326C OGG1 glycosylase

    PubMed Central

    Hill, Jeff W.; Evans, Michele K.

    2006-01-01

    Human 8-oxoguanine-DNA glycosylase (OGG1) is the major enzyme for repairing 8-oxoguanine (8-oxoG), a mutagenic guanine base lesion produced by reactive oxygen species (ROS). A frequently occurring OGG1 polymorphism in human populations results in the substitution of serine 326 for cysteine (S326C). The 326 C/C genotype is linked to numerous cancers, although the mechanism of carcinogenesis associated with the variant is unclear. We performed detailed enzymatic studies of polymorphic OGG1 and found functional defects in the enzyme. S326C OGG1 excised 8-oxoG from duplex DNA and cleaved abasic sites at rates 2- to 6-fold lower than the wild-type enzyme, depending upon the base opposite the lesion. Binding experiments showed that the polymorphic OGG1 binds DNA damage with significantly less affinity than the wild-type enzyme. Remarkably, gel shift, chemical cross-linking and gel filtration experiments showed that S326C both exists in solution and binds damaged DNA as a dimer. S326C OGG1 enzyme expressed in human cells was also found to have reduced activity and a dimeric conformation. The glycosylase activity of S326C OGG1 was not significantly stimulated by the presence of AP-endonuclease. The altered substrate specificity, lack of stimulation by AP-endonuclease 1 (APE1) and anomalous DNA binding conformation of S326C OGG1 may contribute to its linkage to cancer incidence. PMID:16549874

  19. Surprising repair activities of nonpolar analogs of 8-oxoG expose features of recognition and catalysis by base excision repair glycosylases.

    PubMed

    McKibbin, Paige L; Kobori, Akio; Taniguchi, Yosuke; Kool, Eric T; David, Sheila S

    2012-01-25

    Repair glycosylases locate and excise damaged bases from DNA, playing central roles in preservation of the genome and prevention of disease. Two key glycosylases, Fpg and hOGG1, function to remove the mutagenic oxidized base 8-oxoG (OG) from DNA. To investigate the relative contributions of conformational preferences, leaving group ability, enzyme-base hydrogen bonding, and nucleobase shape on damage recognition by these glycosylases, a series of four substituted indole nucleosides, based on the parent OG nonpolar isostere 2Cl-4F-indole, were tested as possible direct substrates of these enzymes in the context of 30 base pair duplexes paired with C. Surprisingly, single-turnover experiments revealed that Fpg-catalyzed base removal activity of two of the nonpolar analogs was superior to the native OG substrate. The hOGG1 glycosylase was also found to catalyze removal of three of the nonpolar analogs, albeit considerably less efficiently than removal of OG. Of note, the analog that was completely resistant to hOGG1-catalyzed excision has a chloro-substituent at the position of NH7 of OG, implicating the importance of recognition of this position in catalysis. Both hOGG1 and Fpg retained high affinity for the duplexes containing the nonpolar isosteres. These studies show that hydrogen bonds between base and enzyme are not needed for efficient damage recognition and repair by Fpg and underscore the importance of facile extrusion from the helix in its damaged base selection. In contrast, damage removal by hOGG1 is sensitive to both hydrogen bonding groups and nucleobase shape. The relative rates of excision of the analogs with the two glycosylases highlight key differences in their mechanisms of damaged base recognition and removal.

  20. Dispensability of the [4Fe-4S] cluster in novel homologues of adenine glycosylase MutY.

    PubMed

    Trasviña-Arenas, Carlos H; Lopez-Castillo, Laura M; Sanchez-Sandoval, Eugenia; Brieba, Luis G

    2016-02-01

    7,8-Dihydro-8-deoxyguanine (8oG) is one of the most common oxidative lesions in DNA. DNA polymerases misincorporate an adenine across from this lesion. Thus, 8oG is a highly mutagenic lesion responsible for G:C→T:A transversions. MutY is an adenine glycosylase, part of the base excision repair pathway that removes adenines, when mispaired with 8oG or guanine. Its catalytic domain includes a [4Fe-4S] cluster motif coordinated by cysteinyl ligands. When this cluster is absent, MutY activity is depleted and several studies concluded that the [4Fe-4S] cluster motif is an indispensable component for DNA binding, substrate recognition and enzymatic activity. In the present study, we identified 46 MutY homologues that lack the canonical cysteinyl ligands, suggesting an absence of the [4Fe-4S] cluster. A phylogenetic analysis groups these novel MutYs into two different clades. One clade is exclusive of the order Lactobacillales and another clade has a mixed composition of anaerobic and microaerophilic bacteria and species from the protozoan genus Entamoeba. Structural modeling and sequence analysis suggests that the loss of the [4Fe-4S] cluster is compensated by a convergent solution in which bulky amino acids substitute the [4Fe-4S] cluster. We functionally characterized MutYs from Lactobacillus brevis and Entamoeba histolytica as representative members from each clade and found that both enzymes are active adenine glycosylases. Furthermore, chimeric glycosylases, in which the [4Fe-4S] cluster of Escherichia coli MutY is replaced by the corresponding amino acids of LbY and EhY, are also active. Our data indicates that the [4Fe-4S] cluster plays a structural role in MutYs and evidences the existence of alternative functional solutions in nature.

  1. Visualizing the search for radiation-damaged DNA bases in real time

    NASA Astrophysics Data System (ADS)

    Lee, Andrea J.; Wallace, Susan S.

    2016-11-01

    The Base Excision Repair (BER) pathway removes the vast majority of damages produced by ionizing radiation, including the plethora of radiation-damaged purines and pyrimidines. The first enzymes in the BER pathway are DNA glycosylases, which are responsible for finding and removing the damaged base. Although much is known about the biochemistry of DNA glycosylases, how these enzymes locate their specific damage substrates among an excess of undamaged bases has long remained a mystery. Here we describe the use of single molecule fluorescence to observe the bacterial DNA glycosylases, Nth, Fpg and Nei, scanning along undamaged and damaged DNA. We show that all three enzymes randomly diffuse on the DNA molecule and employ a wedge residue to search for and locate damage. The search behavior of the Escherichia coli DNA glycosylases likely provides a paradigm for their homologous mammalian counterparts.

  2. Structure and stereochemistry of the base excision repair glycosylase MutY reveal a mechanism similar to retaining glycosidases

    PubMed Central

    Woods, Ryan D.; O'Shea, Valerie L.; Chu, Aurea; Cao, Sheng; Richards, Jody L.; Horvath, Martin P.; David, Sheila S.

    2016-01-01

    MutY adenine glycosylases prevent DNA mutations by excising adenine from promutagenic 8-oxo-7,8-dihydroguanine (OG):A mismatches. Here, we describe structural features of the MutY active site bound to an azaribose transition state analog which indicate a catalytic role for Tyr126 and approach of the water nucleophile on the same side as the departing adenine base. The idea that Tyr126 participates in catalysis, recently predicted by modeling calculations, is strongly supported by mutagenesis and by seeing close contact between the hydroxyl group of this residue and the azaribose moiety of the transition state analog. NMR analysis of MutY methanolysis products corroborates a mechanism for adenine removal with retention of stereochemistry. Based on these results, we propose a revised mechanism for MutY that involves two nucleophilic displacement steps akin to the mechanisms accepted for ‘retaining’ O-glycosidases. This new-for-MutY yet familiar mechanism may also be operative in related base excision repair glycosylases and provides a critical framework for analysis of human MutY (MUTYH) variants associated with inherited colorectal cancer. PMID:26673696

  3. Structure and stereochemistry of the base excision repair glycosylase MutY reveal a mechanism similar to retaining glycosidases.

    PubMed

    Woods, Ryan D; O'Shea, Valerie L; Chu, Aurea; Cao, Sheng; Richards, Jody L; Horvath, Martin P; David, Sheila S

    2016-01-29

    MutY adenine glycosylases prevent DNA mutations by excising adenine from promutagenic 8-oxo-7,8-dihydroguanine (OG):A mismatches. Here, we describe structural features of the MutY active site bound to an azaribose transition state analog which indicate a catalytic role for Tyr126 and approach of the water nucleophile on the same side as the departing adenine base. The idea that Tyr126 participates in catalysis, recently predicted by modeling calculations, is strongly supported by mutagenesis and by seeing close contact between the hydroxyl group of this residue and the azaribose moiety of the transition state analog. NMR analysis of MutY methanolysis products corroborates a mechanism for adenine removal with retention of stereochemistry. Based on these results, we propose a revised mechanism for MutY that involves two nucleophilic displacement steps akin to the mechanisms accepted for 'retaining' O-glycosidases. This new-for-MutY yet familiar mechanism may also be operative in related base excision repair glycosylases and provides a critical framework for analysis of human MutY (MUTYH) variants associated with inherited colorectal cancer.

  4. Protection of pulmonary epithelial cells from oxidative stress by hMYH adenine glycosylase

    PubMed Central

    Kremer, Ted M; Rinne, Mikael L; Xu, Yi; Chen, Xian Ming; Kelley, Mark R

    2004-01-01

    Background Oxygen toxicity is a major cause of lung injury. The base excision repair pathway is one of the most important cellular protection mechanisms that responds to oxidative DNA damage. Lesion-specific DNA repair enzymes include hOgg1, hMYH, hNTH and hMTH. Methods The above lesion-specific DNA repair enzymes were expressed in human alveolar epithelial cells (A549) using the pSF91.1 retroviral vector. Cells were exposed to a 95% oxygen environment, ionizing radiation (IR), or H2O2. Cell growth analysis was performed under non-toxic conditions. Western blot analysis was performed to verify over-expression and assess endogenous expression under toxic and non-toxic conditions. Statistical analysis was performed using the paired Student's t test with significance being accepted for p < 0.05. Results Cell killing assays demonstrated cells over-expressing hMYH had improved survival to both increased oxygen and IR. Cell growth analysis of A549 cells under non-toxic conditions revealed cells over-expressing hMYH also grow at a slower rate. Western blot analysis demonstrated over-expression of each individual gene and did not result in altered endogenous expression of the others. However, it was observed that O2 toxicity did lead to a reduced endogenous expression of hNTH in A549 cells. Conclusion Increased expression of the DNA glycosylase repair enzyme hMYH in A549 cells exposed to O2 and IR leads to improvements in cell survival. DNA repair through the base excision repair pathway may provide an alternative way to offset the damaging effects of O2 and its metabolites. PMID:15450125

  5. Enforced Presentation of an Extrahelical Guanine to the Lesion Recognition Pocket of Human 8-Oxoguanine Glycosylase, hOGG1

    SciTech Connect

    Crenshaw, Charisse M.; Nam, Kwangho; Oo, Kimberly; Kutchukian, Peter S.; Bowman, Brian R.; Karplus, Martin; Verdine, Gregory L.

    2012-09-05

    A poorly understood aspect of DNA repair proteins is their ability to identify exceedingly rare sites of damage embedded in a large excess of nearly identical undamaged DNA, while catalyzing repair only at the damaged sites. Progress toward understanding this problem has been made by comparing the structures and biochemical behavior of these enzymes when they are presented with either a target lesion or a corresponding undamaged nucleobase. Trapping and analyzing such DNA-protein complexes is particularly difficult in the case of base extrusion DNA repair proteins because of the complexity of the repair reaction, which involves extrusion of the target base from DNA followed by its insertion into the active site where glycosidic bond cleavage is catalyzed. Here we report the structure of a human 8-oxoguanine (oxoG) DNA glycosylase, hOGG1, in which a normal guanine from DNA has been forcibly inserted into the enzyme active site. Although the interactions of the nucleobase with the active site are only subtly different for G versus oxoG, hOGG1 fails to catalyze excision of the normal nucleobase. This study demonstrates that even if hOGG1 mistakenly inserts a normal base into its active site, the enzyme can still reject it on the basis of catalytic incompatibility.

  6. Near ultraviolet radiation (UVA and UVB) causes a formamidopyrimidine glycosylase-dependent increase in G to T transversions.

    PubMed

    Palmer, C M; Serafini, D M; Schellhorn, H E

    1997-03-01

    In contrast to far-UV (< 290 nm) DNA damage, a large fraction of the DNA damage caused by near-UV is oxygen-dependent, suggesting the involvement of reactive oxygen species (ROS). The oxidized base 8-oxo-7,8-dihydroguanine (GO) is characteristic of ROS-induced DNA damage and is removed by Fapy (formamidopyrimidine) glycosylase. We have recently shown that Escherichia coli strains deficient in Fapy glycosylase (fpg) are hypersensitive to the lethal effects of UVA but not far-UV (UVC), suggesting lesions recognized by this enzyme may be important premutagenic or lethal lesions generated by near-UV radiation. In this study, we have found that while the far-UV-induced mutation rates of Fapy-deficient and wild-type strains were similar, near-UV (UVA and UVB) was hypermutagenic to a Fapy-deficient strain, causing a dose-dependent increase in induced mutation relative to wild type (up to five-fold at 200 kJ/m2). Using a plasmid back mutation assay, the predominant near-UV-induced mutations in both wild-type and Fapy-deficient strains were found to be C-->T transitions and G -->T transversions. The former is probably due to replicative bypass of pyrimidine dimers or (6-4) photoproducts that are known to be generated by near-UV, whereas the latter may be due to mispairing of GO lesions with adenine during replication. Consistent with this, the frequency of near-UV-induced G-->T transversions was 16-fold higher in a Fapy-deficient strain than a wild-type strain.

  7. Poxvirus DNA Replication

    PubMed Central

    Moss, Bernard

    2013-01-01

    Poxviruses are large, enveloped viruses that replicate in the cytoplasm and encode proteins for DNA replication and gene expression. Hairpin ends link the two strands of the linear, double-stranded DNA genome. Viral proteins involved in DNA synthesis include a 117-kDa polymerase, a helicase–primase, a uracil DNA glycosylase, a processivity factor, a single-stranded DNA-binding protein, a protein kinase, and a DNA ligase. A viral FEN1 family protein participates in double-strand break repair. The DNA is replicated as long concatemers that are resolved by a viral Holliday junction endonuclease. PMID:23838441

  8. Catalytic contributions of key residues in the adenine glycosylase MutY revealed by pH dependent kinetics and cellular repair assays

    PubMed Central

    Brinkmeyer, Megan K.; Pope, Mary Ann Miles; David, Sheila S.

    2012-01-01

    Summary MutY enzymes prevent mutations in DNA associated with 8-oxoguanine (OG) by catalyzing the removal of adenines opposite OG. pH dependence analyses of the adenine glycosylase activity establish that Asp 138 of MutY must be deprotonated for maximal catalytic activity consistent with the role of this residue in stabilizing the oxacarbenium ion transition state in an SN1 mechanism. Use of a cellular OG:A repair assay allowed further validation of the critical role of Asp 138. Conservative substitutions of the catalytic residues Asp 138 and Glu 37 resulted in enzymes with a range of activity that were used to correlate the efficiency of adenine excision with overall OG:A repair and suppression of DNA mutations in vivo. The results indicate that MutY variations that reduce glycosylase activity as a consequence of reduced mismatch affinity result in more dramatic reductions in cellular OG:A repair than those that only compromise adenine excision catalysis. PMID:22365610

  9. Mechanisms for enzymatic cleavage of the N-glycosidic bond in DNA

    PubMed Central

    Drohat, Alexander C.; Maiti, Atanu

    2014-01-01

    DNA glycosylases remove damaged or enzymatically modified nucleobases from DNA, thereby initiating the base excision repair (BER) pathway, which is found in all forms of life. These ubiquitous enzymes promote genomic integrity by initiating repair of mutagenic and/or cytotoxic lesions that arise continuously due to alkylation, deamination, or oxidation of the normal bases in DNA. Glycosylases also perform essential roles in epigenetic regulation of gene expression, by targeting enzymatically-modified forms of the canonical DNA bases. Monofunctional DNA glycosylases hydrolyze the N-glycosidic bond to liberate the target base, while bifunctional glycosylases mediate glycosyl transfer using an amine group of the enzyme, generating a Schiff base intermediate that facilitates their second activity, cleavage of the DNA backbone. Here we review recent advances in understanding the chemical mechanism of monofunctional DNA glycosylases, with an emphasis on how the reactions are influenced by properties of the nucleobase leaving-group, the moiety that varies across the vast range of substrates targeted by these enzymes. PMID:25181003

  10. Active DNA Demethylation in Plants and Animals

    PubMed Central

    Zhang, H.; Zhu, J.-K.

    2013-01-01

    Active DNA demethylation regulates many vital biological processes, including early development and locus-specific gene expression in plants and animals. In Arabidopsis, bifunctional DNA glycosylases directly excise the 5-methylcytosine base and then cleave the DNA backbone at the abasic site. Recent evidence suggests that mammals utilize DNA glycosylases after 5-methylcytosine is oxidized and/or deaminated. In both cases, the resultant single-nucleotide gap is subsequently filled with an unmodified cytosine through the DNA base excision repair pathway. The enzymatic removal of 5-methylcytosine is tightly integrated with histone modifications and possibly noncoding RNAs. Future research will increase our understanding of the mechanisms and critical roles of active DNA demethylation in various cellular processes as well as inspire novel genetic and chemical therapies for epigenetic disorders. PMID:23197304

  11. Initiation of the ATM-Chk2 DNA damage response through the base excision repair pathway.

    PubMed

    Chou, Wen-Cheng; Hu, Ling-Yueh; Hsiung, Chia-Ni; Shen, Chen-Yang

    2015-08-01

    The DNA damage response (DDR) is activated by various genotoxic stresses. Base lesions, which are structurally simple and predominantly fixed by base excision repair (BER), can trigger the ataxia telangiectasia mutated (ATM)-checkpoint kinase 2 (Chk2) pathway, a DDR component. How these lesions trigger DDR remains unclear. Here we show that, for alkylation damage, methylpurine-DNA glycosylase (MPG) and apurinic/apyrimidinic endonuclease 1, both of which function early in BER, are required for ATM-Chk2-dependent DDR. In addition, other DNA glycosylases, including uracil-DNA glycosylase and 8-oxoguanine glycosylase, which are involved in repairing deaminated bases and oxidative damage, also induced DDR. The early steps of BER therefore play a vital role in modulating the ATM-Chk2 DDR in response to base lesions, facilitating downstream BER processing for repair, in which the formation of a single-strand break was shown to play a critical role. Moreover, MPG knockdown rescued cell lethality, its overexpression led to cell death triggered by DNA damage and, more interestingly, higher MPG expression in breast and ovarian cancers corresponded with a greater probability of relapse-free survival after chemotherapy, underscoring the importance of glycosylase-dependent DDR. This study highlights the crosstalk between BER and DDR that contributes to maintaining genomic integrity and may have clinical applications in cancer therapy.

  12. Catalysts of DNA Strand Cleavage at Apurinic/Apyrimidinic Sites

    PubMed Central

    Minko, Irina G.; Jacobs, Aaron C.; de Leon, Arnie R.; Gruppi, Francesca; Donley, Nathan; Harris, Thomas M.; Rizzo, Carmelo J.; McCullough, Amanda K.; Lloyd, R. Stephen

    2016-01-01

    Apurinic/apyrimidinic (AP) sites are constantly formed in cellular DNA due to instability of the glycosidic bond, particularly at purines and various oxidized, alkylated, or otherwise damaged nucleobases. AP sites are also generated by DNA glycosylases that initiate DNA base excision repair. These lesions represent a significant block to DNA replication and are extremely mutagenic. Some DNA glycosylases possess AP lyase activities that nick the DNA strand at the deoxyribose moiety via a β- or β,δ-elimination reaction. Various amines can incise AP sites via a similar mechanism, but this non-enzymatic cleavage typically requires high reagent concentrations. Herein, we describe a new class of small molecules that function at low micromolar concentrations as both β- and β,δ-elimination catalysts at AP sites. Structure-activity relationships have established several characteristics that appear to be necessary for the formation of an iminium ion intermediate that self-catalyzes the elimination at the deoxyribose ring. PMID:27363485

  13. Listeria monocytogenes DNA glycosylase AdiP affects flagellar motility, biofilm formation, virulence, and stress responses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The temperature-dependent alteration of flagellar motility gene expression is critical for the foodborne pathogen Listeria monocytogenes to respond to a changing environment. In this study, a genetic determinant, L. monocytogenes f2365_0220 (lmof2365_0220), encoding a putative protein that is struct...

  14. Base excision DNA repair in the embryonic development of the sea urchin, Strongylocentrotus intermedius.

    PubMed

    Torgasheva, Natalya A; Menzorova, Natalya I; Sibirtsev, Yurii T; Rasskazov, Valery A; Zharkov, Dmitry O; Nevinsky, Georgy A

    2016-06-21

    In actively proliferating cells, such as the cells of the developing embryo, DNA repair is crucial for preventing the accumulation of mutations and synchronizing cell division. Sea urchin embryo growth was analyzed and extracts were prepared. The relative activity of DNA polymerase, apurinic/apyrimidinic (AP) endonuclease, uracil-DNA glycosylase, 8-oxoguanine-DNA glycosylase, and other glycosylases was analyzed using specific oligonucleotide substrates of these enzymes; the reaction products were resolved by denaturing 20% polyacrylamide gel electrophoresis. We have characterized the profile of several key base excision repair activities in the developing embryos (2 blastomers to mid-pluteus) of the grey sea urchin, Strongylocentrotus intermedius. The uracil-DNA glycosylase specific activity sharply increased after blastula hatching, whereas the specific activity of 8-oxoguanine-DNA glycosylase steadily decreased over the course of the development. The AP-endonuclease activity gradually increased but dropped at the last sampled stage (mid-pluteus 2). The DNA polymerase activity was high at the first cleavage division and then quickly decreased, showing a transient peak at blastula hatching. It seems that the developing sea urchin embryo encounters different DNA-damaging factors early in development within the protective envelope and later as a free-floating larva, with hatching necessitating adaptation to the shift in genotoxic stress conditions. No correlation was observed between the dynamics of the enzyme activities and published gene expression data from developing congeneric species, S. purpuratus. The results suggest that base excision repair enzymes may be regulated in the sea urchin embryos at the level of covalent modification or protein stability.

  15. 3CAPS – a structural AP–site analogue as a tool to investigate DNA base excision repair

    PubMed Central

    Schuermann, David; Scheidegger, Simon P.; Weber, Alain R.; Bjørås, Magnar; Leumann, Christian J.; Schär, Primo

    2016-01-01

    Abasic sites (AP-sites) are frequent DNA lesions, arising by spontaneous base hydrolysis or as intermediates of base excision repair (BER). The hemiacetal at the anomeric centre renders them chemically reactive, which presents a challenge to biochemical and structural investigation. Chemically more stable AP-site analogues have been used to avoid spontaneous decay, but these do not fully recapitulate the features of natural AP–sites. With its 3′–phosphate replaced by methylene, the abasic site analogue 3CAPS was suggested to circumvent some of these limitations. Here, we evaluated the properties of 3CAPS in biochemical BER assays with mammalian proteins. 3CAPS-containing DNA substrates were processed by APE1, albeit with comparably poor efficiency. APE1-cleaved 3CAPS can be extended by DNA polymerase β but repaired only by strand displacement as the 5′–deoxyribophosphate (dRP) cannot be removed. DNA glycosylases physically and functionally interact with 3CAPS substrates, underlining its structural integrity and biochemical reactivity. The AP lyase activity of bifunctional DNA glycosylases (NTH1, NEIL1, FPG), however, was fully inhibited. Notably, 3CAPS-containing DNA also effectively inhibited the activity of bifunctional glycosylases on authentic substrates. Hence, the chemically stable 3CAPS with its preserved hemiacetal functionality is a potent tool for BER research and a potential inhibitor of bifunctional DNA glycosylases. PMID:26733580

  16. 3CAPS - a structural AP-site analogue as a tool to investigate DNA base excision repair.

    PubMed

    Schuermann, David; Scheidegger, Simon P; Weber, Alain R; Bjørås, Magnar; Leumann, Christian J; Schär, Primo

    2016-03-18

    Abasic sites (AP-sites) are frequent DNA lesions, arising by spontaneous base hydrolysis or as intermediates of base excision repair (BER). The hemiacetal at the anomeric centre renders them chemically reactive, which presents a challenge to biochemical and structural investigation. Chemically more stable AP-site analogues have been used to avoid spontaneous decay, but these do not fully recapitulate the features of natural AP-sites. With its 3'-phosphate replaced by methylene, the abasic site analogue 3CAPS was suggested to circumvent some of these limitations. Here, we evaluated the properties of 3CAPS in biochemical BER assays with mammalian proteins. 3CAPS-containing DNA substrates were processed by APE1, albeit with comparably poor efficiency. APE1-cleaved 3CAPS can be extended by DNA polymerase β but repaired only by strand displacement as the 5'-deoxyribophosphate (dRP) cannot be removed. DNA glycosylases physically and functionally interact with 3CAPS substrates, underlining its structural integrity and biochemical reactivity. The AP lyase activity of bifunctional DNA glycosylases (NTH1, NEIL1, FPG), however, was fully inhibited. Notably, 3CAPS-containing DNA also effectively inhibited the activity of bifunctional glycosylases on authentic substrates. Hence, the chemically stable 3CAPS with its preserved hemiacetal functionality is a potent tool for BER research and a potential inhibitor of bifunctional DNA glycosylases.

  17. Conformational Dynamics of DNA Repair by Escherichia coli Endonuclease III*

    PubMed Central

    Kuznetsov, Nikita A.; Kladova, Olga A.; Kuznetsova, Alexandra A.; Ishchenko, Alexander A.; Saparbaev, Murat K.; Zharkov, Dmitry O.; Fedorova, Olga S.

    2015-01-01

    Escherichia coli endonuclease III (Endo III or Nth) is a DNA glycosylase with a broad substrate specificity for oxidized or reduced pyrimidine bases. Endo III possesses two types of activities: N-glycosylase (hydrolysis of the N-glycosidic bond) and AP lyase (elimination of the 3′-phosphate of the AP-site). We report a pre-steady-state kinetic analysis of structural rearrangements of the DNA substrates and uncleavable ligands during their interaction with Endo III. Oligonucleotide duplexes containing 5,6-dihydrouracil, a natural abasic site, its tetrahydrofuran analog, and undamaged duplexes carried fluorescent DNA base analogs 2-aminopurine and 1,3-diaza-2-oxophenoxazine as environment-sensitive reporter groups. The results suggest that Endo III induces several fast sequential conformational changes in DNA during binding, lesion recognition, and adjustment to a catalytically competent conformation. A comparison of two fluorophores allowed us to distinguish between the events occurring in the damaged and undamaged DNA strand. Combining our data with the available structures of Endo III, we conclude that this glycosylase uses a multistep mechanism of damage recognition, which likely involves Gln41 and Leu81 as DNA lesion sensors. PMID:25869130

  18. DNA.

    ERIC Educational Resources Information Center

    Felsenfeld, Gary

    1985-01-01

    Structural form, bonding scheme, and chromatin structure of and gene-modification experiments with deoxyribonucleic acid (DNA) are described. Indicates that DNA's double helix is variable and also flexible as it interacts with regulatory and other molecules to transfer hereditary messages. (DH)

  19. Hippocampal adult neurogenesis is maintained by Neil3-dependent repair of oxidative DNA lesions in neural progenitor cells.

    PubMed

    Regnell, Christine Elisabeth; Hildrestrand, Gunn Annette; Sejersted, Yngve; Medin, Tirill; Moldestad, Olve; Rolseth, Veslemøy; Krokeide, Silje Zandstra; Suganthan, Rajikala; Luna, Luisa; Bjørås, Magnar; Bergersen, Linda H

    2012-09-27

    Accumulation of oxidative DNA damage has been proposed as a potential cause of age-related cognitive decline. The major pathway for removal of oxidative DNA base lesions is base excision repair, which is initiated by DNA glycosylases. In mice, Neil3 is the main DNA glycosylase for repair of hydantoin lesions in single-stranded DNA of neural stem/progenitor cells, promoting neurogenesis. Adult neurogenesis is crucial for maintenance of hippocampus-dependent functions involved in behavior. Herein, behavioral studies reveal learning and memory deficits and reduced anxiety-like behavior in Neil3(-/-) mice. Neural stem/progenitor cells from aged Neil3(-/-) mice show impaired proliferative capacity and reduced DNA repair activity. Furthermore, hippocampal neurons in Neil3(-/-) mice display synaptic irregularities. It appears that Neil3-dependent repair of oxidative DNA damage in neural stem/progenitor cells is required for maintenance of adult neurogenesis to counteract the age-associated deterioration of cognitive performance.

  20. Probing the DNA Structural Requirements for Facilitated Diffusion

    PubMed Central

    2015-01-01

    DNA glycosylases perform a genome-wide search to locate damaged nucleotides among a great excess of undamaged nucleotides. Many glycosylases are capable of facilitated diffusion, whereby multiple sites along the DNA are sampled during a single binding encounter. Electrostatic interactions between positively charged amino acids and the negatively charged phosphate backbone are crucial for facilitated diffusion, but the extent to which diffusing proteins rely on the double-helical structure DNA is not known. Kinetic assays were used to probe the DNA searching mechanism of human alkyladenine DNA glycosylase (AAG) and to test the extent to which diffusion requires B-form duplex DNA. Although AAG excises εA lesions from single-stranded DNA, it is not processive on single-stranded DNA because dissociation is faster than N-glycosidic bond cleavage. However, the AAG complex with single-stranded DNA is sufficiently stable to allow for DNA annealing when a complementary strand is added. This observation provides evidence of nonspecific association of AAG with single-stranded DNA. Single-strand gaps, bubbles, and bent structures do not impede the search by AAG. Instead, these flexible or bent structures lead to the capture of a nearby site of damage that is more efficient than that of a continuous B-form duplex. The ability of AAG to negotiate these helix discontinuities is inconsistent with a sliding mode of diffusion but can be readily explained by a hopping mode that involves microscopic dissociation and reassociation. These experiments provide evidence of relatively long-range hops that allow a searching protein to navigate around DNA binding proteins that would serve as obstacles to a sliding protein. PMID:25495964

  1. Sensitivity to methylmercury toxicity is enhanced in oxoguanine glycosylase 1 knockout murine embryonic fibroblasts and is dependent on cellular proliferation capacity

    SciTech Connect

    Ondovcik, Stephanie L.; Tamblyn, Laura; McPherson, John Peter; Wells, Peter G.

    2013-07-01

    Methylmercury (MeHg) is a persistent environmental contaminant with potent neurotoxic action for which the underlying molecular mechanisms remain to be conclusively delineated. Our objectives herein were twofold: first, to corroborate our previous findings of an increased sensitivity of spontaneously-immortalized oxoguanine glycosylase 1-null (Ogg1{sup −/−}) murine embryonic fibroblasts (MEFs) to MeHg through generation of Simian virus 40 (SV40) large T antigen-immortalized wild-type and Ogg1{sup −/−} MEFs; and second, to determine whether MeHg toxicity is proliferation-dependent. As with the spontaneously-immortalized cells used previously, the SV40 large T antigen-immortalized cells exhibited similar tendencies to undergo MeHg-initiated cell cycle arrest, with increased sensitivity in the Ogg1{sup −/−} MEFs as measured by clonogenic survival and DNA damage. Compared to exponentially growing cells, those seeded at a higher density exhibited compromised proliferation, which proved protective against MeHg-mediated cell cycle arrest and induction of DNA double strand breaks (DSBs), measured by phosphorylation of the core histone H2A variant (H2AX) on serine 139 (γH2AX), and by its functional confirmation by micronucleus assessment. This enhanced sensitivity of Ogg1{sup −/−} MEFs to MeHg toxicity using discrete SV40 immortalization corroborates our previous studies, and suggests a novel role for OGG1 in minimizing MeHg-initiated DNA lesions that trigger replication-associated DSBs. Furthermore, proliferative capacity may determine MeHg toxicity in vivo and in utero. Accordingly, variations in cellular proliferative capacity and interindividual variability in repair activity may modulate the risk of toxicological consequences following MeHg exposure. - Highlights: • SV40 large T antigen-immortalized Ogg1{sup −/−} cells are more sensitive to MeHg. • Sensitivity to MeHg is dependent on cellular proliferation capacity. • OGG1 maintains genomic

  2. DNA

    ERIC Educational Resources Information Center

    Stent, Gunther S.

    1970-01-01

    This history for molecular genetics and its explanation of DNA begins with an analysis of the Golden Jubilee essay papers, 1955. The paper ends stating that the higher nervous system is the one major frontier of biological inquiry which still offers some romance of research. (Author/VW)

  3. Brain’s DNA Repair Response to Neurotoxicants

    DTIC Science & Technology

    2007-01-01

    developed as biological and chemical warfare agents [1]. Bombs and ballistic missiles laden with biological agents including aflatoxin were believed to be... aflatoxins , little is known about the acute and long-term effects of less potent mycotoxins, such as Rubratoxin B (RB), on adult nervous system... essentially different from mOGG1 required more careful characterization. Separation of DNA glycosylases with native PAGE followed by assays of incision

  4. A re-investigation of the ribonuclease sensitivity of a DNA demethylation reaction in chicken embryo and G8 mouse myoblasts.

    PubMed

    Jost, J P; Siegmann, M; Thiry, S; Jost, Y C; Benjamin, D; Schwarz, S

    1999-04-23

    Recently published results (Nucleic Acids Res. 26, 5573-5580, 1998) suggest that the ribonuclease sensitivity of the DNA demethylation reaction may be an experimental artifact due to the possible tight binding of the nucleases to the methylated DNA substrate. Using an improved protocol we show for two different systems that demethylation of hemimethylated DNA is indeed sensitive to micrococcal nuclease, requires RNA and is not an experimental artifact. The purified 5-MeC-DNA glycosylase from chicken embryos and G8 mouse myoblasts was first incubated for 5 min at 37 degrees C with micrococcal nuclease in the presence of Ca2+ in the absence of the DNA substrate. Upon blocking the nuclease activity by the addition of 25 mM EGTA, the DNA demethylation reaction was initiated by adding the labeled hemimethylated DNA substrate to the reaction mixture. Under these conditions the DNA demethylation reaction was abolished. In parallel controls, where the purified 5-MeC-DNA glycosylase was pre-incubated at 37 degrees C with the nuclease, Ca2+ and EGTA or with the nuclease and EGTA, RNA was not degraded and no inhibition of the demethylation reaction was obtained. As has already been shown for chicken embryos, the loss of 5-MeC-DNA glycosylase activity from G8 myoblasts following nuclease treatment can also be restored by the addition of synthetic RNA complementary to the methylated strand of the substrate DNA. No reactivation of 5-MeC-DNA glycosylase is obtained by complementation with a random RNA sequence, the RNA sequence complementary to the non-methylated strand or DNA, thus ruling out a non-specific competition of the RNA for the binding of the nuclease to the labeled DNA substrate.

  5. Human endonuclease VIII-like (NEIL) proteins in the giant DNA Mimivirus

    PubMed Central

    Bandaru, Viswanath; Zhao, Xiaobei; Newton, Michael R.; Burrows, Cynthia J.; Wallace, Susan S.

    2007-01-01

    Endonuclease VIII (Nei), which recognizes and repairs oxidized pyrimidines in the Base Excision Repair (BER) pathway, is sparsely distributed among both the prokaryotes and eukaryotes. Recently, we and others identified three homologs of E. coli endonuclease VIII-like (NEIL) proteins in humans. Here, we report identification of human NEIL homologs in Mimivirus, a giant DNA virus that infects Acanthamoeba. Characterization of the two mimiviral homologs, MvNei1 and MvNei2, showed that they share not only sequence homology but also substrate specificity to the human NEIL proteins, that is, they recognize oxidized pyrimidines in duplex DNA and in bubble substrates and as well show 5′2-deoxyribose-5-phosphate lyase (dRP lyase) activity. However, unlike MvNei1 and the human NEIL proteins, MvNei2 preferentially cleaves oxidized pyrimidines in single stranded DNA forming products with a different end chemistry. Interestingly, opposite base specificity of MvNei1 resembles human NEIL proteins for pyrimidine base damages whereas it resembles E. coli formamidopyrimidine DNA glycosylase (Fpg) for guanidinohydantoin (Gh), an oxidation product of 8-oxoguanine. Finally, a conserved arginine residue in the “zincless finger” motif, previously identified in human NEIL1, is required for the DNA glycosylase activity of MvNeil. Thus, Mimivirus represents the first example of a virus to carry oxidative DNA glycosylases with substrate specificities that resemble human NEIL proteins. Based on the sequence homology to the human NEIL homologs and novel bacterial NEIL homologs identified here, we predict that Mimivirus may have acquired the DNA glycosylases through the host-mediated lateral transfer from either a bacterium or from vertebrates. PMID:17627905

  6. Tautomerization-dependent recognition and excision of oxidation damage in base-excision DNA repair

    PubMed Central

    Zhu, Chenxu; Lu, Lining; Zhang, Jun; Yue, Zongwei; Song, Jinghui; Zong, Shuai; Liu, Menghao; Stovicek, Olivia; Gao, Yi Qin; Yi, Chengqi

    2016-01-01

    NEIL1 (Nei-like 1) is a DNA repair glycosylase guarding the mammalian genome against oxidized DNA bases. As the first enzymes in the base-excision repair pathway, glycosylases must recognize the cognate substrates and catalyze their excision. Here we present crystal structures of human NEIL1 bound to a range of duplex DNA. Together with computational and biochemical analyses, our results suggest that NEIL1 promotes tautomerization of thymine glycol (Tg)—a preferred substrate—for optimal binding in its active site. Moreover, this tautomerization event also facilitates NEIL1-catalyzed Tg excision. To our knowledge, the present example represents the first documented case of enzyme-promoted tautomerization for efficient substrate recognition and catalysis in an enzyme-catalyzed reaction. PMID:27354518

  7. PTEN Activation by DNA Damage Induces Protective Autophagy in Response to Cucurbitacin B in Hepatocellular Carcinoma Cells

    PubMed Central

    Niu, Yanan; Sun, Wen; Lu, Jin-Jian; Pei, Lixia

    2016-01-01

    Cucurbitacin B (Cuc B), a natural product, induced both protective autophagy and DNA damage mediated by ROS while the detailed mechanisms remain unclear. This study explored the mechanism of Cuc B-induced DNA damage and autophagy. Cuc B decreased cell viability in concentration- and time-dependent manners. Cuc B caused long comet tails and increased expression of γ-H2AX, phosphorylation of ATM/ATR, and Chk1/Chk2. Cuc B induced autophagy as evidenced by monodansylcadaverine (MDC) staining, increased expression of LC3II, phosphorylated ULK1, and decreased expression of phosphorylated AKT, mTOR. Cuc B induced apoptosis mediated by Bcl-2 family proteins and caspase activation. Furthermore, Cuc B induced ROS formation, which was inhibited by N-acetyl-L-cysteine (NAC). NAC pretreatment dramatically reversed Cuc B-induced DNA damage, autophagy, and apoptosis. Cuc B-induced apoptosis was reversed by NAC but enhanced by 3-methyladenine (3-MA), chloroquine (CQ), and silencing phosphatase and tensin homolog (PTEN). 3-MA and CQ showed no effect on Cuc B-induced DNA damage. In addition, Cuc B increased PTEN phosphorylation and silence PTEN restored Cuc B-induced autophagic protein expressions without affecting DNA damage. In summary, Cuc B induced DNA damage, apoptosis, and protective autophagy mediated by ROS. PTEN activation in response to DNA damage bridged DNA damage and prosurvival autophagy. PMID:28042385

  8. Helix–hairpin–helix protein MJ1434 from Methanocaldococcus jannaschii and EndoIV homologue TTC0482 from Thermus thermophilus HB27 do not process DNA uracil residues

    PubMed Central

    Schomacher, Lars; Smolorz, Sabine; Ciirdaeva, Elena; Ber, Svetlana; Kramer, Wilfried; Fritz, Hans-Joachim

    2010-01-01

    The mutagenic threat of hydrolytic DNA cytosine deamination is met mostly by uracil DNA glycosylases (UDG) initiating base excision repair. However, several sequenced genomes of archaeal organisms are devoid of genes coding for homologues of the otherwise ubiquitous UDG superfamily of proteins. Previously, two possible solutions to this problem were offered by (i) a report of a newly discovered family of uracil DNA glycosylases exemplified by MJ1434, a protein found in the hyperthermophilic archaeon Methanocaldococcus jannaschii, and (ii) the description of TTC0482, an EndoIV homologue from the hyperthermophilic bacterium Thermus thermophilus HB27, as being able to excise uracil from DNA. Sequence homologues of both proteins can be found throughout the archaeal domain of life. Three proteins orthologous to MJ1434 and the family founder itself were tested for but failed to exhibit DNA uracil glycosylase activity when produced in an Ung-deficient Escherichia coli host. Likewise, no DNA uracil processing activity could be detected to be associated with TTC0482, while the protein was fully active as an AP endonuclease. We propose that the uracil processing activities formerly found were due to contaminations with Ung enzyme. Use of Δung-strains as hosts for production of putatively DNA-U processing enzymes provides a simple safeguard. PMID:20410075

  9. Rational Inhibitors of DNA Base Excision Repair (BER) Enzymes: New Tools for Elucidating the Role of the BER in Cancer Chemotherapy

    DTIC Science & Technology

    2005-05-01

    right of the bars. (B) Incremental change in binding free energy as UDG (Figure 2) (5). The 2’ fluorinated deoxyuridine each hydrogen bond is removed from...1996) Naphthalene, phenanthrene, and pyrene as DNA h187q Escherichia coli uracil DNA glycosylase: Electrophilic base analogues: Synthesis, structure...solution, Biochemistry 32. Drohat, A. C., Jagadeesh, J., Ferguson, E., and Stivers, J. T. (1999) 26, 5646-5650. Role of electrophilic and general base

  10. Guanine- 5-carboxylcytosine base pairs mimic mismatches during DNA replication.

    PubMed

    Shibutani, Toshihiro; Ito, Shinsuke; Toda, Mariko; Kanao, Rie; Collins, Leonard B; Shibata, Marika; Urabe, Miho; Koseki, Haruhiko; Masuda, Yuji; Swenberg, James A; Masutani, Chikahide; Hanaoka, Fumio; Iwai, Shigenori; Kuraoka, Isao

    2014-06-09

    The genetic information encoded in genomes must be faithfully replicated and transmitted to daughter cells. The recent discovery of consecutive DNA conversions by TET family proteins of 5-methylcytosine into 5-hydroxymethylcytosine, 5-formylcytosine, and 5-carboxylcytosine (5caC) suggests these modified cytosines act as DNA lesions, which could threaten genome integrity. Here, we have shown that although 5caC pairs with guanine during DNA replication in vitro, G·5caC pairs stimulated DNA polymerase exonuclease activity and were recognized by the mismatch repair (MMR) proteins. Knockdown of thymine DNA glycosylase increased 5caC in genome, affected cell proliferation via MMR, indicating MMR is a novel reader for 5caC. These results suggest the epigenetic modification products of 5caC behave as DNA lesions.

  11. Endonucleases involved in repair and recombination of DNA

    SciTech Connect

    Linn, S.M.

    1988-01-01

    When our DOE support began as a contract in 1970, from the AEC, it was our intent to begin to understand how several enzymes which we had detected in E. coli might be involved in DNA recombination and repair. These studies led to our characterization of the recBC DNase (exonuclease 5) as well as endonucleases 3 and 5. As research supported by that contract progressed, we expanded our interests to include mammalian enzymes involved in base excision repair, most notably AP endonucleases, DNA glycosylases and DNA purine insertase. A logical next step involved the inclusion of DNA polymerases into our studies of repair. Current progress includes research on: isolation of xeroderma pigmentosum correction factors; isolation of ultraviolet (UV) endonucleases; mitochondrial repair enzymes; alkylation damage repair; comparisons of repair in normal diploid, transformed, and non-mitotic cells; and repair reactions by DNA polymerases.

  12. Methods for Efficient Elimination of Mitochondrial DNA from Cultured Cells

    PubMed Central

    Spadafora, Domenico; Kozhukhar, Nataliya; Chouljenko, Vladimir N.; Kousoulas, Konstantin G.; Alexeyev, Mikhail F.

    2016-01-01

    Here, we document that persistent mitochondria DNA (mtDNA) damage due to mitochondrial overexpression of the Y147A mutant uracil-N-glycosylase as well as mitochondrial overexpression of bacterial Exonuclease III or Herpes Simplex Virus protein UL12.5M185 can induce a complete loss of mtDNA (ρ0 phenotype) without compromising the viability of cells cultured in media supplemented with uridine and pyruvate. Furthermore, we use these observations to develop rapid, sequence-independent methods for the elimination of mtDNA, and demonstrate utility of these methods for generating ρ0 cells of human, mouse and rat origin. We also demonstrate that ρ0 cells generated by each of these three methods can serve as recipients of mtDNA in fusions with enucleated cells. PMID:27136098

  13. Regulation of DNA repair in serum-stimulated xeroderma pigmentosum cells

    SciTech Connect

    Gupta, P.K.; Sirover, M.A.

    1984-10-01

    The regulation of DNA repair during serum stimulation of quiescent cells was examined in normal human cells, in fibroblasts from three xeroderma pigmentosum complementation groups (A, C, and D), in xeroderma pigmentosum variant cells, and in ataxia telangiectasia cells. The regulation of nucleotide excision repair was examined by exposing cells to ultraviolet irradiation at discrete intervals after cell stimulation. Similarly, base excision repair was quantitated after exposure to methylmethane sulfonate. WI-38 normal human diploid fibroblasts, xeroderma pigmentosum variant cells, as well as ataxia telangiectasia cells enhanced their capacity for both nucleotide excision repair and for base excision repair prior to their enhancement of DNA synthesis. Further, in each cell strain, the base excision repair enzyme uracil DNA glycosylase was increased prior to the induction of DNA polymerase using the identical cells to quantitate each activity. In contrast, each of the three xeroderma complementation groups that were examined failed to increase their capacity for nucleotide excision repair above basal levels at any interval examined. This result was observed using either unscheduled DNA synthesis in the presence of 10 mM hydroxyurea or using repair replication in the absence of hydroxyurea to quantitate DNA repair. However, each of the three complementation groups normally regulated the enhancement of base excision repair after methylmethane sulfonate exposure and each induced the uracil DNA glycosylase prior to DNA synthesis. 62 references, 3 figures, 2 tables.

  14. DNA base excision repair of uracil residues in reconstituted nucleosome core particles

    PubMed Central

    Nilsen, Hilde; Lindahl, Tomas; Verreault, Alain

    2002-01-01

    The human base excision repair machinery must locate and repair DNA base damage present in chromatin, of which the nucleosome core particle is the basic repeating unit. Here, we have utilized fragments of the Lytechinus variegatus 5S rRNA gene containing site-specific U:A base pairs to investigate the base excision repair pathway in reconstituted nucleosome core particles in vitro. The human uracil-DNA glycosylases, UNG2 and SMUG1, were able to remove uracil from nucleosomes. Efficiency of uracil excision from nucleosomes was reduced 3- to 9-fold when compared with naked DNA, and was essentially uniform along the length of the DNA substrate irrespective of rotational position on the core particle. Furthermore, we demonstrate that the excision repair pathway of an abasic site can be reconstituted on core particles using the known repair enzymes, AP-endonuclease 1, DNA polymerase β and DNA ligase III. Thus, base excision repair can proceed in nucleosome core particles in vitro, but the repair efficiency is limited by the reduced activity of the uracil-DNA glycosylases and DNA polymerase β on nucleosome cores. PMID:12411511

  15. The Methanothermobacter thermautotrophicus ExoIII homologue Mth212 is a DNA uridine endonuclease

    PubMed Central

    Georg, Jens; Schomacher, Lars; Chong, James P. J.; Majerník, Alan I.; Raabe, Monika; Urlaub, Henning; Müller, Sabine; Ciirdaeva, Elena; Kramer, Wilfried; Fritz, Hans-Joachim

    2006-01-01

    The genome of Methanothermobacter thermautotrophicus, as a hitherto unique case, is apparently devoid of genes coding for general uracil DNA glycosylases, the universal mediators of base excision repair following hydrolytic deamination of DNA cytosine residues. We have now identified protein Mth212, a member of the ExoIII family of nucleases, as a possible initiator of DNA uracil repair in this organism. This enzyme, in addition to bearing all the enzymological hallmarks of an ExoIII homologue, is a DNA uridine endonuclease (U-endo) that nicks double-stranded DNA at the 5′-side of a 2′-d-uridine residue, irrespective of the nature of the opposing nucleotide. This type of activity has not been described before; it is absent from the ExoIII homologues of Escherichia coli, Homo sapiens and Methanosarcina mazei, all of which are equipped with uracil DNA repair glycosylases. The U-endo activity of Mth212 is served by the same catalytic center as its AP-endo activity. PMID:17012282

  16. Nucleosomes Suppress the Formation of Double-strand DNA Breaks during Attempted Base Excision Repair of Clustered Oxidative Damages*

    PubMed Central

    Cannan, Wendy J.; Tsang, Betty P.; Wallace, Susan S.; Pederson, David S.

    2014-01-01

    Exposure to ionizing radiation can produce multiple, clustered oxidative lesions in DNA. The near simultaneous excision of nearby lesions in opposing DNA strands by the base excision repair (BER) enzymes can produce double-strand DNA breaks (DSBs). This attempted BER accounts for many of the potentially lethal or mutagenic DSBs that occur in vivo. To assess the impact of nucleosomes on the frequency and pattern of BER-dependent DSB formation, we incubated nucleosomes containing oxidative damages in opposing DNA strands with selected DNA glycosylases and human apurinic/apyrimidinic endonuclease 1. Overall, nucleosomes substantially suppressed DSB formation. However, the degree of suppression varied as a function of (i) the lesion type and DNA glycosylase tested, (ii) local sequence context and the stagger between opposing strand lesions, (iii) the helical orientation of oxidative lesions relative to the underlying histone octamer, and (iv) the distance between the lesion cluster and the nucleosome edge. In some instances the binding of a BER factor to one nucleosomal lesion appeared to facilitate binding to the opposing strand lesion. DSB formation did not invariably lead to nucleosome dissolution, and in some cases, free DNA ends resulting from DSB formation remained associated with the histone octamer. These observations explain how specific structural and dynamic properties of nucleosomes contribute to the suppression of BER-generated DSBs. These studies also suggest that most BER-generated DSBs will occur in linker DNA and in genomic regions associated with elevated rates of nucleosome turnover or remodeling. PMID:24891506

  17. Infrared laser effects at fluences used for treatment of dentin hypersensitivity on DNA repair in Escherichia coli and plasmids

    NASA Astrophysics Data System (ADS)

    Rocha Teixeira, Gleica; da Silva Marciano, Roberta; da Silva Sergio, Luiz Philippe; Castanheira Polignano, Giovanni Augusto; Roberto Guimarães, Oscar; Geller, Mauro; de Paoli, Flavia; de Souza da Fonseca, Adenilson

    2014-12-01

    Low-intensity infrared lasers are proposed in clinical protocols based on biostimulative effects, yet dosimetry is inaccurate and their effects on DNA at therapeutic doses are controversial. The aim of this work was to evaluate the effects of low-intensity infrared laser on survival and induction of filamentation of Escherichia coli cells, and induction of DNA lesions in bacterial plasmids. E. coli cultures were exposed to laser (808 nm, 100 mW, 40 and 60 J/cm2) to study bacterial survival and filamentation. Also, bacterial plasmids were exposed to laser to study DNA lesions by electrophoretic profile and action of DNA repair enzymes. Data indicate low-intensity infrared laser has no effect on survival of E. coli wild type and exonuclease III, but decreases the survival of formamidopyrimidine DNA glycosylase/MutM protein and endonuclease III deficient cells in stationary growth phase, induces bacterial filamentation, does not alter the electrophoretic profile of plasmids in agarose gels and does not alter the electrophoretic profile of plasmids incubated with endonuclease III, formamidopyrimidine DNA glycosylase/MutM protein and exonuclease III. Our findings show that low-intensity laser exposure causes DNA lesions at sub-lethal level and induces cellular mechanisms involved in repair of oxidative lesions in DNA. Studies about laser dosimetry and safety strategies are necessary for professionals and patients exposed to low-intensity lasers at therapeutic doses.

  18. Repair of oxidative DNA base damage in the host genome influences the HIV integration site sequence preference.

    PubMed

    Bennett, Geoffrey R; Peters, Ryan; Wang, Xiao-hong; Hanne, Jeungphill; Sobol, Robert W; Bundschuh, Ralf; Fishel, Richard; Yoder, Kristine E

    2014-01-01

    Host base excision repair (BER) proteins that repair oxidative damage enhance HIV infection. These proteins include the oxidative DNA damage glycosylases 8-oxo-guanine DNA glycosylase (OGG1) and mutY homolog (MYH) as well as DNA polymerase beta (Polβ). While deletion of oxidative BER genes leads to decreased HIV infection and integration efficiency, the mechanism remains unknown. One hypothesis is that BER proteins repair the DNA gapped integration intermediate. An alternative hypothesis considers that the most common oxidative DNA base damages occur on guanines. The subtle consensus sequence preference at HIV integration sites includes multiple G:C base pairs surrounding the points of joining. These observations suggest a role for oxidative BER during integration targeting at the nucleotide level. We examined the hypothesis that BER repairs a gapped integration intermediate by measuring HIV infection efficiency in Polβ null cell lines complemented with active site point mutants of Polβ. A DNA synthesis defective mutant, but not a 5'dRP lyase mutant, rescued HIV infection efficiency to wild type levels; this suggested Polβ DNA synthesis activity is not necessary while 5'dRP lyase activity is required for efficient HIV infection. An alternate hypothesis that BER events in the host genome influence HIV integration site selection was examined by sequencing integration sites in OGG1 and MYH null cells. In the absence of these 8-oxo-guanine specific glycosylases the chromatin elements of HIV integration site selection remain the same as in wild type cells. However, the HIV integration site sequence preference at G:C base pairs is altered at several positions in OGG1 and MYH null cells. Inefficient HIV infection in the absence of oxidative BER proteins does not appear related to repair of the gapped integration intermediate; instead oxidative damage repair may participate in HIV integration site preference at the sequence level.

  19. Impact of ribonucleotide incorporation by DNA polymerases β and λ on oxidative base excision repair

    PubMed Central

    Crespan, Emmanuele; Furrer, Antonia; Rösinger, Marcel; Bertoletti, Federica; Mentegari, Elisa; Chiapparini, Giulia; Imhof, Ralph; Ziegler, Nathalie; Sturla, Shana J.; Hübscher, Ulrich; van Loon, Barbara; Maga, Giovanni

    2016-01-01

    Oxidative stress is a very frequent source of DNA damage. Many cellular DNA polymerases (Pols) can incorporate ribonucleotides (rNMPs) during DNA synthesis. However, whether oxidative stress-triggered DNA repair synthesis contributes to genomic rNMPs incorporation is so far not fully understood. Human specialized Pols β and λ are the important enzymes involved in the oxidative stress tolerance, acting both in base excision repair and in translesion synthesis past the very frequent oxidative lesion 7,8-dihydro-8-oxoguanine (8-oxo-G). We found that Pol β, to a greater extent than Pol λ can incorporate rNMPs opposite normal bases or 8-oxo-G, and with a different fidelity. Further, the incorporation of rNMPs opposite 8-oxo-G delays repair by DNA glycosylases. Studies in Pol β- and λ-deficient cell extracts suggest that Pol β levels can greatly affect rNMP incorporation opposite oxidative DNA lesions. PMID:26917111

  20. Using Arabidopsis cell extracts to monitor repair of DNA base damage in vitro.

    PubMed

    Córdoba-Cañero, Dolores; Roldán-Arjona, Teresa; Ariza, Rafael R

    2012-01-01

    Base excision repair (BER) is a major pathway for the removal of endogenous and exogenous DNA damage. This repair mechanism is initiated by DNA glycosylases that excise the altered base, and continues through alternative routes that culminate in DNA resynthesis and ligation. In contrast to the information available for microbes and animals, our knowledge about this important DNA repair pathway in plants is very limited, partially due to a lack of biochemical approaches. Here we describe an in vitro assay to monitor BER in cell-free extracts from the model plant Arabidopsis thaliana. The assay uses labeled DNA substrates containing a single damaged base within a restriction site, and allows detection of fully repaired molecules as well as DNA repair intermediates. The method is easily applied to measure the repair activity of purified proteins and can be successfully used in combination with the extensive array of biological resources available for Arabidopsis.

  1. Single-molecule visualization of ROS-induced DNA damage in large DNA molecules.

    PubMed

    Lee, Jinyong; Kim, Yongkyun; Lim, Sangyong; Jo, Kyubong

    2016-02-07

    We present a single molecule visualization approach for the quantitative analysis of reactive oxygen species (ROS) induced DNA damage, such as base oxidation and single stranded breaks in large DNA molecules. We utilized the Fenton reaction to generate DNA damage with subsequent enzymatic treatment using a mixture of three types of glycosylases to remove oxidized bases, and then fluorescent labeling on damaged lesions via nick translation. This single molecule analytical platform provided the capability to count one or two damaged sites per λ DNA molecule (48.5 kb), which were reliably dependent on the concentrations of hydrogen peroxide and ferrous ion at the micromolar level. More importantly, the labeled damaged sites that were visualized under a microscope provided positional information, which offered the capability of comparing DNA damaged sites with the in silico genomic map to reveal sequence specificity that GTGR is more sensitive to oxidative damage. Consequently, single DNA molecule analysis provides a sensitive analytical platform for ROS-induced DNA damage and suggests an interesting biochemical insight that the genome primarily active during the lysogenic cycle may have less probability for oxidative DNA damage.

  2. OGG1-DNA interactions facilitate NF-κB binding to DNA targets

    PubMed Central

    Pan, Lang; Hao, Wenjing; Zheng, Xu; Zeng, Xianlu; Ahmed Abbasi, Adeel; Boldogh, Istvan; Ba, Xueqing

    2017-01-01

    DNA repair protein counteracting oxidative promoter lesions may modulate gene expression. Oxidative DNA bases modified by reactive oxygen species (ROS), primarily as 7, 8-dihydro-8-oxo-2′-deoxyguanosine (8-oxoG), which is repaired by 8-oxoguanine DNA glycosylase1 (OGG1) during base excision repair (BER) pathway. Because cellular response to oxidative challenge is accompanied by DNA damage repair, we tested whether the repair by OGG1 is compatible with transcription factor binding and gene expression. We performed electrophoretic mobility shift assay (EMSA) using wild-type sequence deriving from Cxcl2 gene promoter and the same sequence bearing a single synthetic 8-oxoG at defined 5′ or 3′ guanine in runs of guanines to mimic oxidative effects. We showed that DNA occupancy of NF-κB present in nuclear extracts from tumour necrosis factor alpha (TNFα) exposed cells is OGG1 and 8-oxoG position dependent, importantly, OGG1 counteracting 8-oxoG outside consensus motif had a profound influence on purified NF-κB binding to DNA. Furthermore, OGG1 is essential for NF-κB dependent gene expression, prior to 8-oxoG excised from DNA. These observations imply that pre-excision step(s) during OGG1 initiated BER evoked by ROS facilitates NF-κB DNA occupancy and gene expression. PMID:28266569

  3. Human AP Endonuclease I Stimulates Multiple-Turnover Base Excision by Alkyladenine DNA Glycosylase†

    PubMed Central

    Baldwin, Michael R.; O’Brien, Patrick J.

    2009-01-01

    Human alkyladenine DNA glycosylase (AAG) locates and excises a wide variety of damaged purine bases from DNA, including hypoxanthine that is formed by the oxidative deamination of adenine. We used steady state, pre-steady state, and single-turnover kinetic assays to show that the multiple-turnover excision of hypoxanthine in vitro is limited by release of the abasic DNA product. This suggests the possibility that the product release step is regulated in vivo by interactions with other base excision repair (BER) proteins. Such coordination of BER activities would protect the abasic DNA repair intermediate and ensure its correct processing. AP endonuclease 1 (APE1) is the predominant enzyme for processing abasic DNA sites in human cells. Therefore, we have investigated the functional effects of added APE1 on the base excision activity of AAG. We find that APE1 stimulates the multiple-turnover excision of hypoxanthine by AAG, but has no effect on single-turnover excision. Since the amino terminus of AAG has been implicated in other protein-protein interactions we also characterize the deletion mutant lacking the first 79 amino acids. We find that APE1 fully stimulates the multiple-turnover glycosylase activity of this mutant, demonstrating that the amino terminus of AAG is not strictly required for this functional interaction. These results are consistent with a model whereby APE1 displaces AAG from the abasic site, thereby coordinating the first two steps of the base excision repair pathway. PMID:19449863

  4. [Ionizing radiation-induced DNA damage and its repair in human cells]. Progress report, [April 1, 1993--February 28, 1994

    SciTech Connect

    Not Available

    1994-07-01

    The excision of radiation-induced lesions in DNA by a DNA repair enzyme complex, namely the UvrABC nuclease complex, has been investigated. Irradiated DNA was treated with the enzyme complex. DNA fractions were analyzed by gas chromatography/isotope-dilution mass spectrometry. The results showed that a number pyrimidine- and purine-derived lesions in DNA were excised by the UvrABC nuclease complex and that the enzyme complex does not act on radiation-induced DNA lesions as a glycosylase. This means that it does not excise individual base products, but it excises oligomers containing these lesions. A number of pyrimidine-derived lesions that were no substrates for other DNA repair enzymes investigated in our laboratory were substrates for the UvrABC nuclease complex.

  5. The effect of Pot1 binding on the repair of thymine analogs in a telomeric DNA sequence.

    PubMed

    Theruvathu, Jacob A; Darwanto, Agus; Hsu, Chia Wei; Sowers, Lawrence C

    2014-08-01

    Telomeric DNA can form duplex regions or single-stranded loops that bind multiple proteins, preventing it from being processed as a DNA repair intermediate. The bases within these regions are susceptible to damage; however, mechanisms for the repair of telomere damage are as yet poorly understood. We have examined the effect of three thymine (T) analogs including uracil (U), 5-fluorouracil (5FU) and 5-hydroxymethyluracil (5hmU) on DNA-protein interactions and DNA repair within the GGTTAC telomeric sequence. The replacement of T with U or 5FU interferes with Pot1 (Pot1pN protein of Schizosaccharomyces pombe) binding. Surprisingly, 5hmU substitution only modestly diminishes Pot1 binding suggesting that hydrophobicity of the T-methyl group likely plays a minor role in protein binding. In the GGTTAC sequence, all three analogs can be cleaved by DNA glycosylases; however, glycosylase activity is blocked if Pot1 binds. An abasic site at the G or T positions is cleaved by the endonuclease APE1 when in a duplex but not when single-stranded. Abasic site formation thermally destabilizes the duplex that could push a damaged DNA segment into a single-stranded loop. The inability to enzymatically cleave abasic sites in single-stranded telomere regions would block completion of the base excision repair cycle potentially causing telomere attrition.

  6. Study of DNA damage via the comet assay and base excision repair activities in rat brain neurons and astrocytes during aging.

    PubMed

    Swain, Umakanta; Subba Rao, Kalluri

    2011-08-01

    Earlier we have used biochemical approach to assess the number of single (SSBs) and double (DSBs) strand breaks in brain cellular DNA. However, a quick method to obtain a reliable measure of DNA damage in cells was in need for population studies. Therefore, single cell gel electrophoresis technique (popularly known as "comet" assay) has been standardized using the Trevigen protocol. DNA damage was assessed in isolated neurons and astrocytes from the cortex of young (7 days), adult (6 months) and old (2 years). Marked increase is seen in DNA damage in terms SSBs and DSBs in both types of cells by 6 months of age, which increased further by 2 years of age. The number of 8-oxoguanine DNA glycosylase (OGG1) and uracil DNA glycosylase (UDG) sensitive sites also increased in DNA with age with the simultaneous decrease in OGG1, UDG and AP endonuclease (APE1) activities. Thus the comet assay adapted to our lab conditions has proven to be useful for a quick assessment of DNA damage in a large number of samples that constitute our future studies.

  7. Fluorogenic DNA ligase and base excision repair enzyme assays using substrates labeled with single fluorophores.

    PubMed

    Nikiforov, Theo T; Roman, Steven

    2015-05-15

    Continuing our work on fluorogenic substrates labeled with single fluorophores for nucleic acid modifying enzymes, here we describe the development of such substrates for DNA ligases and some base excision repair enzymes. These substrates are hairpin-type synthetic DNA molecules with a single fluorophore located on a base close to the 3' ends, an arrangement that results in strong fluorescence quenching. When such substrates are subjected to an enzymatic reaction, the position of the dyes relative to that end of the molecules is altered, resulting in significant fluorescence intensity changes. The ligase substrates described here were 5' phosphorylated and either blunt-ended or carrying short, self-complementary single-stranded 5' extensions. The ligation reactions resulted in the covalent joining of the ends of the molecules, decreasing the quenching effect of the terminal bases on the dyes. To generate fluorogenic substrates for the base excision repair enzymes formamido-pyrimidine-DNA glycosylase (FPG), human 8-oxo-G DNA glycosylase/AP lyase (hOGG1), endonuclease IV (EndoIV), and apurinic/apyrimidinic endonuclease (APE1), we introduced abasic sites or a modified nucleotide, 8-oxo-dG, at such positions that their enzymatic excision would result in the release of a short fluorescent fragment. This was also accompanied by strong fluorescence increases. Overall fluorescence changes ranged from approximately 4-fold (ligase reactions) to more than 20-fold (base excision repair reactions).

  8. Enzymatic DNA oxidation: mechanisms and biological significance.

    PubMed

    Xu, Guo-Liang; Walsh, Colum P

    2014-11-01

    DNA methylation at cytosines (5mC) is a major epigenetic modification involved in the regulation of multiple biological processes in mammals. How methylation is reversed was until recently poorly understood. The family of dioxygenases commonly known as Ten-eleven translocation (Tet) proteins are responsible for the oxidation of 5mC into three new forms, 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC). Current models link Tet-mediated 5mC oxidation with active DNA demethylation. The higher oxidation products (5fC and 5caC) are recognized and excised by the DNA glycosylase TDG via the base excision repair pathway. Like DNA methyltransferases, Tet enzymes are important for embryonic development. We will examine the mechanism and biological significance of Tet-mediated 5mC oxidation in the context of pronuclear DNA demethylation in mouse early embryos. In contrast to its role in active demethylation in the germ cells and early embryo, a number of lines of evidence suggest that the intragenic 5hmC present in brain may act as a stable mark instead. This short review explores mechanistic aspects of TET oxidation activity, the impact Tet enzymes have on epigenome organization and their contribution to the regulation of early embryonic and neuronal development.

  9. Inhibition of autophagy enhances DNA damage-induced apoptosis by disrupting CHK1-dependent S phase arrest

    SciTech Connect

    Liou, Jong-Shian; Wu, Yi-Chen; Yen, Wen-Yen; Tang, Yu-Shuan; Kakadiya, Rajesh B.; Su, Tsann-Long; Yih, Ling-Huei

    2014-08-01

    DNA damage has been shown to induce autophagy, but the role of autophagy in the DNA damage response and cell fate is not fully understood. BO-1012, a bifunctional alkylating derivative of 3a-aza-cyclopenta[a]indene, is a potent DNA interstrand cross-linking agent with anticancer activity. In this study, BO-1012 was found to reduce DNA synthesis, inhibit S phase progression, and induce phosphorylation of histone H2AX on serine 139 (γH2AX) exclusively in S phase cells. Both CHK1 and CHK2 were phosphorylated in response to BO-1012 treatment, but only depletion of CHK1, but not CHK2, impaired BO-1012-induced S phase arrest and facilitated the entry of γH2AX-positive cells into G2 phase. CHK1 depletion also significantly enhanced BO-1012-induced cell death and apoptosis. These results indicate that BO-1012-induced S phase arrest is a CHK1-dependent pro-survival response. BO-1012 also resulted in marked induction of acidic vesicular organelle (AVO) formation and microtubule-associated protein 1 light chain 3 (LC3) processing and redistribution, features characteristic of autophagy. Depletion of ATG7 or co-treatment of cells with BO-1012 and either 3-methyladenine or bafilomycin A1, two inhibitors of autophagy, not only reduced CHK1 phosphorylation and disrupted S phase arrest, but also increased cleavage of caspase-9 and PARP, and cell death. These results suggest that cells initiate S phase arrest and autophagy as pro-survival responses to BO-1012-induced DNA damage, and that suppression of autophagy enhances BO-1012-induced apoptosis via disruption of CHK1-dependent S phase arrest. - Highlights: • Autophagy inhibitors enhanced the cytotoxicity of a DNA alkylating agent, BO-1012. • BO-1012-induced S phase arrest was a CHK1-dependent pro-survival response. • Autophagy inhibition enhanced BO-1012 cytotoxicity via disrupting the S phase arrest.

  10. Guanine oxidation product 5-carboxamido-5-formamido-2-iminohydantoin induces mutations when bypassed by DNA polymerases and is a substrate for base excision repair.

    PubMed

    Alshykhly, Omar R; Fleming, Aaron M; Burrows, Cynthia J

    2015-09-21

    Guanine (G) is a target for oxidation by reactive oxygen species in DNA, RNA, and the nucleotide pool. Damage to DNA yields products with alternative properties toward DNA processing enzymes compared to those of the parent nucleotide. A new lesion, 5-carboxamido-5-formamido-2-iminohydantoin (2Ih), bearing a stereocenter in the base was recently identified from the oxidation of G. DNA polymerase and base excision repair processing of this new lesion has now been evaluated. Single nucleotide insertion opposite (S)-2Ih and (R)-2Ih in the template strand catalyzed by the DNA polymerases Klenow fragment exo(-), DPO4, and Hemo KlenTaq demonstrates these lesions to cause point mutations. Specifically, they promote 3-fold more G·C → C·G transversion mutations than G·C → T·A, and (S)-2Ih was 2-fold more blocking for polymerase bypass than (R)-2Ih. Both diastereomer lesions were found to be substrates for the DNA glycosylases NEIL1 and Fpg, and poorly excised by endonuclease III (Nth). The activity was independent of the base pair partner. Thermal melting, CD spectroscopy, and density functional theory geometric optimization calculations were conducted to provide insight into these polymerase and DNA glycosylase studies. These results identify that formation of the 2Ih lesions in a cell would be mutagenic in the event that they were not properly repaired.

  11. Natural history of eukaryotic DNA methylation systems.

    PubMed

    Iyer, Lakshminarayan M; Abhiman, Saraswathi; Aravind, L

    2011-01-01

    Methylation of cytosines and adenines in DNA is a widespread epigenetic mark in both prokaryotes and eukaryotes. In eukaryotes, it has a profound influence on chromatin structure and dynamics. Recent advances in genomics and biochemistry have considerably elucidated the functions and provenance of these DNA modifications. DNA methylases appear to have emerged first in bacterial restriction-modification (R-M) systems from ancient RNA-modifying enzymes, in transitions that involved acquisition of novel catalytic residues and DNA-recognition features. DNA adenine methylases appear to have been acquired by ciliates, heterolobosean amoeboflagellates, and certain chlorophyte algae. Six distinct clades of cytosine methylases, including the DNMT1, DNMT2, and DNMT3 clades, were acquired by eukaryotes through independent lateral transfer of their precursors from bacteria or bacteriophages. In addition to these, multiple adenine and cytosine methylases were acquired by several families of eukaryotic transposons. In eukaryotes, the DNA-methylase module was often combined with distinct modified and unmodified peptide recognition domains and other modules mediating specialized interactions, for example, the RFD module of DNMT1 which contains a permuted Sm domain linked to a helix-turn-helix domain. In eukaryotes, the evolution of DNA methylases appears to have proceeded in parallel to the elaboration of histone-modifying enzymes and the RNAi system, with functions related to counter-viral and counter-transposon defense, and regulation of DNA repair and differential gene expression being their primary ancestral functions. Diverse DNA demethylation systems that utilize base-excision repair via DNA glycosylases and cytosine deaminases appear to have emerged in multiple eukaryotic lineages. Comparative genomics suggests that the link between cytosine methylation and DNA glycosylases probably emerged first in a novel R-M system in bacteria. Recent studies suggest that the 5mC is not

  12. Regulation of DNA repair in serum-stimulated xeroderma pigmentosum cells

    PubMed Central

    1984-01-01

    The regulation of DNA repair during serum stimulation of quiescent cells was examined in normal human cells, in fibroblasts from three xeroderma pigmentosum complementation groups (A, C, and D), in xeroderma pigmentosum variant cells, and in ataxia telangiectasia cells. The regulation of nucleotide excision repair was examined by exposing cells to ultraviolet irradiation at discrete intervals after cell stimulation. Similarly, base excision repair was quantitated after exposure to methylmethane sulfonate. WI-38 normal human diploid fibroblasts, xeroderma pigmentosum variant cells, as well as ataxia telangiectasia cells enhanced their capacity for both nucleotide excision repair and for base excision repair prior to their enhancement of DNA synthesis. Further, in each cell strain, the base excision repair enzyme uracil DNA glycosylase was increased prior to the induction of DNA polymerase using the identical cells to quantitate each activity. In contrast, each of the three xeroderma complementation groups that were examined failed to increase their capacity for nucleotide excision repair above basal levels at any interval examined. This result was observed using either unscheduled DNA synthesis in the presence of 10 mM hydroxyurea or using repair replication in the absence of hydroxyurea to quantitate DNA repair. However, each of the three complementation groups normally regulated the enhancement of base excision repair after methylmethane sulfonate exposure and each induced the uracil DNA glycosylase prior to DNA synthesis. These results suggest that there may be a relationship between the sensitivity of xeroderma pigmentosum cells from each complementation group to specific DNA damaging agents and their inability to regulate nucleotide excision repair during cell stimulation. PMID:6480691

  13. Inhibition of autophagy enhances DNA damage-induced apoptosis by disrupting CHK1-dependent S phase arrest.

    PubMed

    Liou, Jong-Shian; Wu, Yi-Chen; Yen, Wen-Yen; Tang, Yu-Shuan; Kakadiya, Rajesh B; Su, Tsann-Long; Yih, Ling-Huei

    2014-08-01

    DNA damage has been shown to induce autophagy, but the role of autophagy in the DNA damage response and cell fate is not fully understood. BO-1012, a bifunctional alkylating derivative of 3a-aza-cyclopenta[a]indene, is a potent DNA interstrand cross-linking agent with anticancer activity. In this study, BO-1012 was found to reduce DNA synthesis, inhibit S phase progression, and induce phosphorylation of histone H2AX on serine 139 (γH2AX) exclusively in S phase cells. Both CHK1 and CHK2 were phosphorylated in response to BO-1012 treatment, but only depletion of CHK1, but not CHK2, impaired BO-1012-induced S phase arrest and facilitated the entry of γH2AX-positive cells into G2 phase. CHK1 depletion also significantly enhanced BO-1012-induced cell death and apoptosis. These results indicate that BO-1012-induced S phase arrest is a CHK1-dependent pro-survival response. BO-1012 also resulted in marked induction of acidic vesicular organelle (AVO) formation and microtubule-associated protein 1 light chain 3 (LC3) processing and redistribution, features characteristic of autophagy. Depletion of ATG7 or co-treatment of cells with BO-1012 and either 3-methyladenine or bafilomycin A1, two inhibitors of autophagy, not only reduced CHK1 phosphorylation and disrupted S phase arrest, but also increased cleavage of caspase-9 and PARP, and cell death. These results suggest that cells initiate S phase arrest and autophagy as pro-survival responses to BO-1012-induced DNA damage, and that suppression of autophagy enhances BO-1012-induced apoptosis via disruption of CHK1-dependent S phase arrest.

  14. Acrylonitrile-induced oxidative DNA damage in rat astrocytes.

    PubMed

    Pu, Xinzhu; Kamendulis, Lisa M; Klaunig, James E

    2006-10-01

    Chronic administration of acrylonitrile results in a dose-related increase in astrocytomas in rat brain, but the mechanism of acrylonitrile carcinogenicity is not fully understood. The potential of acrylonitrile or its metabolites to induce direct DNA damage as a mechanism for acrylonitrile carcinogenicity has been questioned, and recent studies indicate that the mechanism involves the induction of oxidative stress in rat brain. The present study examined the ability of acrylonitrile to induce DNA damage in the DI TNC1 rat astrocyte cell line using the alkaline Comet assay. Oxidized DNA damage also was evaluated using formamidopyrimidine DNA glycosylase treatment in the modified Comet assay. No increase in direct DNA damage was seen in astrocytes exposed to sublethal concentrations of acrylonitrile (0-1.0 mM) for 24 hr. However, acrylonitrile treatment resulted in a concentration-related increase in oxidative DNA damage after 24 hr. Antioxidant supplementation in the culture media (alpha-tocopherol, (-)-epigallocathechin-3 gallate, or trolox) reduced acrylonitrile-induced oxidative DNA damage. Depletion of glutathione using 0.1 mM DL-buthionine-[S,R]-sulfoximine increased acrylonitrile-induced oxidative DNA damage (22-46%), while cotreatment of acrylonitrile with 2.5 mM L-2-oxothiazolidine-4-carboxylic acid, a precursor for glutathione biosynthesis, significantly reduced acrylonitrile-induced oxidative DNA damage (7-47%). Cotreatment of acrylonitrile with 0.5 mM 1-aminobenzotriazole, a suicidal inhibitor of cytochrome P450, prevented the oxidative DNA damage produced by acrylonitrile. Cyanide (0.1-0.5 mM) increased oxidative DNA damage (44-160%) in astrocytes. These studies demonstrate that while acrylonitrile does not directly damage astrocyte DNA, it does increase oxidative DNA damage. The oxidative DNA damage following acrylonitrile exposure appears to arise mainly through the P450 metabolic pathway; moreover, glutathione depletion may contribute to the

  15. Beryllium chloride-induced oxidative DNA damage and alteration in the expression patterns of DNA repair-related genes.

    PubMed

    Attia, Sabry M; Harisa, Gamaleldin I; Hassan, Memy H; Bakheet, Saleh A

    2013-09-01

    Beryllium metal has physical properties that make its use essential for very specific applications, such as medical diagnostics, nuclear/fusion reactors and aerospace applications. Because of the widespread human exposure to beryllium metals and the discrepancy of the genotoxic results in the reported literature, detail assessments of the genetic damage of beryllium are warranted. Mice exposed to beryllium chloride at an oral dose of 23mg/kg for seven consecutive days exhibited a significant increase in the level of DNA-strand breaking and micronuclei formation as detected by a bone marrow standard comet assay and micronucleus test. Whereas slight beryllium chloride-induced oxidative DNA damage was detected following formamidopyrimidine DNA glycosylase digestion, digestion with endonuclease III resulted in considerable increases in oxidative DNA damage after the 11.5 and 23mg/kg/day treatment as detected by enzyme-modified comet assays. Increased 8-hydroxydeoxyguanosine was also directly correlated with increased bone marrow micronuclei formation and DNA strand breaks, which further confirm the involvement of oxidative stress in the induction of bone marrow genetic damage after exposure to beryllium chloride. Gene expression analysis on the bone marrow cells from beryllium chloride-exposed mice showed significant alterations in genes associated with DNA damage repair. Therefore, beryllium chloride may cause genetic damage to bone marrow cells due to the oxidative stress and the induced unrepaired DNA damage is probably due to the down-regulation in the expression of DNA repair genes, which may lead to genotoxicity and eventually cause carcinogenicity.

  16. Minimal role of base excision repair in TET-induced global DNA demethylation in HEK293T cells

    PubMed Central

    Jin, Chunlei; Qin, Taichun; Barton, Michelle Craig; Jelinek, Jaroslav; Issa, Jean-Pierre J

    2015-01-01

    Oxidation of 5-methylcytosine by TET family proteins can induce DNA replication-dependent (passive) DNA demethylation and base excision repair (BER)-based (active) DNA demethylation. The balance of active vs. passive TET-induced demethylation remains incompletely determined. In the context of large scale DNA demethylation, active demethylation may require massive induction of the DNA repair machinery and thus compromise genome stability. To study this issue, we constructed a tetracycline-controlled TET-induced global DNA demethylation system in HEK293T cells. Upon TET overexpression, we observed induction of DNA damage and activation of a DNA damage response; however, BER genes are not upregulated to promote DNA repair. Depletion of TDG (thymine DNA glycosylase) or APEX1 (apurinic/apyrimidinic endonuclease 1), two key BER enzymes, enhances rather than impairs global DNA demethylation, which can be explained by stimulated proliferation. By contrast, growth arrest dramatically blocks TET-induced global DNA demethylation. Thus, in the context of TET-induction in HEK293T cells, the DNA replication-dependent passive mechanism functions as the predominant pathway for global DNA demethylation. In the same context, BER-based active demethylation is markedly restricted by limited BER upregulation, thus potentially preventing a disastrous DNA damage response to extensive active DNA demethylation. PMID:26440216

  17. Characterization of DNA with an 8-oxoguanine modification.

    PubMed

    Singh, Sreelekha K; Szulik, Marta W; Ganguly, Manjori; Khutsishvili, Irine; Stone, Michael P; Marky, Luis A; Gold, Barry

    2011-08-01

    The oxidation of DNA resulting from reactive oxygen species generated during aerobic respiration is a major cause of genetic damage that, if not repaired, can lead to mutations and potentially an increase in the incidence of cancer and aging. A major oxidation product generated in cells is 8-oxoguanine (oxoG), which is removed from the nucleotide pool by the enzymatic hydrolysis of 8-oxo-2'-deoxyguanosine triphosphate and from genomic DNA by 8-oxoguanine-DNA glycosylase. Finding and repairing oxoG in the midst of a large excess of unmodified DNA requires a combination of rapid scanning of the DNA for the lesion followed by specific excision of the damaged base. The repair of oxoG involves flipping the lesion out of the DNA stack and into the active site of the 8-oxoguanine-DNA glycosylase. This would suggest that thermodynamic stability, in terms of the rate for local denaturation, could play a role in lesion recognition. While prior X-ray crystal and NMR structures show that DNA with oxoG lesions appears virtually identical to the corresponding unmodified duplex, thermodynamic studies indicate that oxoG has a destabilizing influence. Our studies show that oxoG destabilizes DNA (ΔΔG of 2-8 kcal mol(-1) over a 16-116 mM NaCl range) due to a significant reduction in the enthalpy term. The presence of oxoG has a profound effect on the level and nature of DNA hydration indicating that the environment around an oxoG•C is fundamentally different than that found at G•C. The temperature-dependent imino proton NMR spectrum of oxoG modified DNA confirms the destabilization of the oxoG•C pairing and those base pairs that are 5' of the lesion. The instability of the oxoG modification is attributed to changes in the hydrophilicity of the base and its impact on major groove cation binding.

  18. Oxidatively Generated Guanine(C8)-Thymine(N3) Intrastrand Cross-links in Double-stranded DNA Are Repaired by Base Excision Repair Pathways.

    PubMed

    Talhaoui, Ibtissam; Shafirovich, Vladimir; Liu, Zhi; Saint-Pierre, Christine; Akishev, Zhiger; Matkarimov, Bakhyt T; Gasparutto, Didier; Geacintov, Nicholas E; Saparbaev, Murat

    2015-06-05

    Oxidatively generated guanine radical cations in DNA can undergo various nucleophilic reactions including the formation of C8-guanine cross-links with adjacent or nearby N3-thymines in DNA in the presence of O2. The G*[C8-N3]T* lesions have been identified in the DNA of human cells exposed to oxidative stress, and are most likely genotoxic if not removed by cellular defense mechanisms. It has been shown that the G*[C8-N3]T* lesions are substrates of nucleotide excision repair in human cell extracts. Cleavage at the sites of the lesions was also observed but not further investigated (Ding et al. (2012) Nucleic Acids Res. 40, 2506-2517). Using a panel of eukaryotic and prokaryotic bifunctional DNA glycosylases/lyases (NEIL1, Nei, Fpg, Nth, and NTH1) and apurinic/apyrimidinic (AP) endonucleases (Apn1, APE1, and Nfo), the analysis of cleavage fragments by PAGE and MALDI-TOF/MS show that the G*[C8-N3]T* lesions in 17-mer duplexes are incised on either side of G*, that none of the recovered cleavage fragments contain G*, and that T* is converted to a normal T in the 3'-fragment cleavage products. The abilities of the DNA glycosylases to incise the DNA strand adjacent to G*, while this base is initially cross-linked with T*, is a surprising observation and an indication of the versatility of these base excision repair proteins.

  19. DNA uracil repair initiated by the archaeal ExoIII homologue Mth212 via direct strand incision

    PubMed Central

    Schomacher, Lars; Chong, James P. J.; McDermott, Paul; Kramer, Wilfried; Fritz, Hans-Joachim

    2009-01-01

    No genes for any of the known uracil DNA glycosylases of the UDG superfamily are present in the genome of Methanothermobacter thermautotrophicus ΔH, making it difficult to imagine how DNA-U repair might be initiated in this organism. Recently, Mth212, the ExoIII homologue of M. thermautotrophicus ΔH has been characterized as a DNA uridine endonuclease, which suggested the possibility of a novel endonucleolytic entry mechanism for DNA uracil repair. With no system of genetic experimentation available, the problem was approached biochemically. Assays of DNA uracil repair in vitro, promoted by crude cellular extracts, provide unequivocal confirmation that this mechanism does indeed operate in M. thermautotrophicus ΔH. PMID:19240141

  20. Oxidative damage to DNA during aging: 8-hydroxy-2'-deoxyguanosine in rat organ DNA and urine.

    PubMed Central

    Fraga, C G; Shigenaga, M K; Park, J W; Degan, P; Ames, B N

    1990-01-01

    Oxidative damage to DNA is shown to be extensive and could be a major cause of the physiological changes associated with aging and the degenerative diseases related to aging such as cancer. The oxidized nucleoside, 8-hydroxy-2'-deoxyguanosine (oh8dG), one of the approximately 20 known oxidative DNA damage products, has been measured in DNA isolated from various organs of Fischer 344 rats of different ages. oh8dG was present in the DNA isolated from all the organs studied: liver, brain, kidney, intestine, and testes. Steady-state levels of oh8dG ranged from 8 to 73 residues per 10(6) deoxyguanosine residues or 0.2-2.0 x 10(5) residues per cell. Levels of oh8dG in DNA increased with age in liver, kidney, and intestine but remained unchanged in brain and testes. The urinary excretion of oh8dG, which presumably reflects its repair from DNA by nuclease activity, decreased with age from 481 to 165 pmol per kg of body weight per day for urine obtained from 2-month- and 25-month-old rats, respectively. 8-Hydroxyguanine, the proposed repair product of a glycosylase activity, was also assayed in the urine. We estimate approximately 9 x 10(4) oxidative hits to DNA per cell per day in the rat. The results suggest that the age-dependent accumulation of oh8dG residues observed in DNA from liver, kidney, and intestine is principally due to the slow loss of DNA nuclease activity; however, an increase in the rate of oxidative DNA damage cannot be ruled out. PMID:2352934

  1. DNA damage in Fabry patients: An investigation of oxidative damage and repair.

    PubMed

    Biancini, Giovana Brondani; Moura, Dinara Jaqueline; Manini, Paula Regina; Faverzani, Jéssica Lamberty; Netto, Cristina Brinckmann Oliveira; Deon, Marion; Giugliani, Roberto; Saffi, Jenifer; Vargas, Carmen Regla

    2015-06-01

    Fabry disease (FD) is a lysosomal storage disorder associated with loss of activity of the enzyme α-galactosidase A. In addition to accumulation of α-galactosidase A substrates, other mechanisms may be involved in FD pathophysiology, such as inflammation and oxidative stress. Higher levels of oxidative damage to proteins and lipids in Fabry patients were previously reported. However, DNA damage by oxidative species in FD has not yet been studied. We investigated basal DNA damage, oxidative DNA damage, DNA repair capacity, and reactive species generation in Fabry patients and controls. To measure oxidative damage to purines and pyrimidines, the alkaline version of the comet assay was used with two endonucleases, formamidopyrimidine DNA-glycosylase (FPG) and endonuclease III (EndoIII). To evaluate DNA repair, a challenge assay with hydrogen peroxide was performed. Patients presented significantly higher levels of basal DNA damage and oxidative damage to purines. Oxidative DNA damage was induced in both DNA bases by H2O2 in patients. Fabry patients presented efficient DNA repair in both assays (with and without endonucleases) as well as significantly higher levels of oxidative species (measured by dichlorofluorescein content). Even if DNA repair be induced in Fabry patients (as a consequence of continuous exposure to oxidative species), the repair is not sufficient to reduce DNA damage to control levels.

  2. Methylation-independent DNA Binding Modulates Specificity of Repressor of Silencing 1 (ROS1) and Facilitates Demethylation in Long Substrates*

    PubMed Central

    Ponferrada-Marín, María Isabel; Martínez-Macías, María Isabel; Morales-Ruiz, Teresa; Roldán-Arjona, Teresa; Ariza, Rafael R.

    2010-01-01

    DNA cytosine methylation is an epigenetic mark that promotes gene silencing and performs critical roles during reproduction and development in both plants and animals. The genomic distribution of DNA methylation is the dynamic outcome of opposing methylation and demethylation processes. In plants, active demethylation occurs through a base excision repair pathway initiated by 5-methycytosine (5-meC) DNA glycosylases of the REPRESSOR OF SILENCING 1 (ROS1)/DEMETER (DME) family. To gain insight into the mechanism by which Arabidopsis ROS1 recognizes and excises 5-meC, we have identified those protein regions that are required for efficient DNA binding and catalysis. We have found that a short N-terminal lysine-rich domain conserved in members of the ROS1/DME family mediates strong methylation-independent binding of ROS1 to DNA and is required for efficient activity on 5-meC·G, but not for T·G processing. Removal of this domain does not significantly affect 5-meC excision from short molecules, but strongly decreases ROS1 activity on long DNA substrates. This region is not required for product binding and is not involved in the distributive behavior of the enzyme on substrates containing multiple 5-meC residues. Altogether, our results suggest that methylation-independent DNA binding allows ROS1 to perform a highly redundant search for efficient excision of a nondamaged, correctly paired base such as 5-meC in long stretches of DNA. These findings may have implications for understanding the evolution of structure and target specificity in DNA glycosylases. PMID:20489198

  3. Mechanism of maltal hydration catalyzed by. beta. -amylase: Role of protein structure in controlling the steric outcome of reactions catalyzed by a glycosylase

    SciTech Connect

    Kitahata, Sumio ); Chiba, S. ); Brewer, C.F.; Hehre, E.J. )

    1991-07-09

    Crystalline (monomeric) soybean and (tetrameric) sweet potato {beta}-amylase were shown to catalyze the cis hydration of maltal ({alpha}-D-glucopyranosyl-2-deoxy-D-arabino-hex-1-enitol) to form {beta}-2-deoxymaltose. As reported earlier with the sweet potato enzyme, maltal hydration in D{sub 2}O by soybean {beta}-amylase was found to exhibit an unusually large solvent deuterium kinetic isotope effect (V{sub H}/V{sub D}=6.5), a reaction rate linearly dependent on the mole fraction of deuterium, and 2-deoxy-(2(a)-{sup 2}H)maltose as product. These results indicate (for each {beta}-amylase) that protonation is the rate-limiting step in a reaction involving a nearly symmetric one-proton transition state and that maltal is specifically protonated from above the double bond. That maltal undergoes cis hydration provides evidence in support of a general-acid-catalyzed, carbonium ion mediated reaction. Of fundamental significance is that {beta}-amylase protonates maltal from a direction opposite that assumed for protonating strach, yet creates products of the same anomeric configuration from both. Such stereochemical dichotomy argues for the overriding role of protein structures is dictating the steric outcome of reactions catalyzed by a glycosylase, by limiting the approach and orientation of water or other acceptors to the reaction center.

  4. Oxidative DNA damage and repair in teratogenesis and neurodevelopmental deficits.

    PubMed

    Wells, Peter G; McCallum, Gordon P; Lam, Kyla C H; Henderson, Jeffrey T; Ondovcik, Stephanie L

    2010-06-01

    Several teratogenic agents, including ionizing radiation and xenobiotics such as phenytoin, benzo[a]pyrene, thalidomide, and methamphetamine, can initiate the formation of reactive oxygen species (ROS) that oxidatively damage cellular macromolecules including DNA. Oxidative DNA damage, and particularly the most prevalent 8-oxoguanine lesion, may adversely affect development, likely via alterations in gene transcription rather than via a mutational mechanism. Contributions from oxidative DNA damage do not exclude roles for alternative mechanisms of initiation like receptor-mediated processes or the formation of covalent xenobiotic-macromolecular adducts, damage to other macromolecular targets like proteins and lipids, and other effects of ROS like altered signal transduction. Even in the absence of teratogen exposure, endogenous developmental oxidative stress can have embryopathic consequences in the absence of key pathways for detoxifying ROS or repairing DNA damage. Critical proteins in pathways for DNA damage detection/repair signaling, like p53 and ataxia telangiectasia mutated, and DNA repair itself, like oxoguanine glycosylase 1 and Cockayne syndrome B, can often, but not always, protect the embryo from ROS-initiating teratogens. Protection may be variably dependent upon such factors as the nature of the teratogen and its concentration within the embryo, the stage of development, the species, strain, gender, target tissue and cell type, among other factors.

  5. Measurement of oxidatively generated base damage in cellular DNA.

    PubMed

    Cadet, Jean; Douki, Thierry; Ravanat, Jean-Luc

    2011-06-03

    This survey focuses on the critical evaluation of the main methods that are currently available for monitoring single and complex oxidatively generated damage to cellular DNA. Among chromatographic methods, HPLC-ESI-MS/MS and to a lesser extent HPLC-ECD which is restricted to a few electroactive nucleobases and nucleosides are appropriate for measuring the formation of single and clustered DNA lesions. Such methods that require optimized protocols for DNA extraction and digestion are sensitive enough for measuring base lesions formed under conditions of severe oxidative stress including exposure to ionizing radiation, UVA light and high intensity UVC laser pulses. In contrast application of GC-MS and HPLC-MS methods that are subject to major drawbacks have been shown to lead to overestimated values of DNA damage. Enzymatic methods that are based on the use of DNA repair glycosylases in order to convert oxidized bases into strand breaks are suitable, even if they are far less specific than HPLC methods, to deal with low levels of single modifications. Several other methods including immunoassays and (32)P-postlabeling methods that are still used suffer from drawbacks and therefore are not recommended. Another difficult topic is the measurement of oxidatively generated clustered DNA lesions that is currently achieved using enzymatic approaches and that would necessitate further investigations.

  6. Modular Nuclease-Responsive DNA Three-Way Junction-Based Dynamic Assembly of a DNA Device and Its Sensing Application.

    PubMed

    Zhu, Jing; Wang, Lei; Xu, Xiaowen; Wei, Haiping; Jiang, Wei

    2016-04-05

    Here, we explored a modular strategy for rational design of nuclease-responsive three-way junctions (TWJs) and fabricated a dynamic DNA device in a "plug-and-play" fashion. First, inactivated TWJs were designed, which contained three functional domains: the inaccessible toehold and branch migration domains, the specific sites of nucleases, and the auxiliary complementary sequence. The actions of different nucleases on their specific sites in TWJs caused the close proximity of the same toehold and branch migration domains, resulting in the activation of the TWJs and the formation of a universal trigger for the subsequent dynamic assembly. Second, two hairpins (H1 and H2) were introduced, which could coexist in a metastable state, initially to act as the components for the dynamic assembly. Once the trigger initiated the opening of H1 via TWJs-driven strand displacement, the cascade hybridization of hairpins immediately switched on, resulting in the formation of the concatemers of H1/H2 complex appending numerous integrated G-quadruplexes, which were used to obtain label-free signal readout. The inherent modularity of this design allowed us to fabricate a flexible DNA dynamic device and detect multiple nucleases through altering the recognition pattern slightly. Taking uracil-DNA glycosylase and CpG methyltransferase M.SssI as models, we successfully realized the butt joint between the uracil-DNA glycosylase and M.SssI recognition events and the dynamic assembly process. Furthermore, we achieved ultrasensitive assay of nuclease activity and the inhibitor screening. The DNA device proposed here will offer an adaptive and flexible tool for clinical diagnosis and anticancer drug discovery.

  7. Base flip in DNA studied by molecular dynamics simulationsof differently-oxidized forms of methyl-Cytosine.

    PubMed

    Helabad, Mahdi Bagherpoor; Kanaan, Natalia; Imhof, Petra

    2014-07-03

    Distortions in the DNA sequence, such as damage or mispairs, are specifically recognized and processed by DNA repair enzymes. Many repair proteins and, in particular, glycosylases flip the target base out of the DNA helix into the enzyme's active site. Our molecular dynamics simulations of DNA with intact and damaged (oxidized) methyl-cytosine show that the probability of being flipped is similar for damaged and intact methyl-cytosine. However, the accessibility of the different 5-methyl groups allows direct discrimination of the oxidized forms. Hydrogen-bonded patterns that vary between methyl-cytosine forms carrying a carbonyl oxygen atom are likely to be detected by the repair enzymes and may thus help target site recognition.

  8. On-bead fluorescent DNA nanoprobes to analyze base excision repair activities.

    PubMed

    Gines, Guillaume; Saint-Pierre, Christine; Gasparutto, Didier

    2014-02-17

    DNA integrity is constantly threatened by endogenous and exogenous agents that can modify its physical and chemical structure. Changes in DNA sequence can cause mutations sparked by some genetic diseases or cancers. Organisms have developed efficient defense mechanisms able to specifically repair each kind of lesion (alkylation, oxidation, single or double strand break, mismatch, etc). Here we report the adjustment of an original assay to detect enzymes' activity of base excision repair (BER), that supports a set of lesions including abasic sites, alkylation, oxidation or deamination products of bases. The biosensor is characterized by a set of fluorescent hairpin-shaped nucleic acid probes supported on magnetic beads, each containing a selective lesion targeting a specific BER enzyme. We have studied the DNA glycosylase alkyl-adenine glycosylase (AAG) and the human AP-endonuclease (APE1) by incorporating within the DNA probe a hypoxanthine lesion or an abasic site analog (tetrahydrofuran), respectively. Enzymatic repair activity induces the formation of a nick in the damaged strand, leading to probe's break, that is detected in the supernatant by fluorescence. The functional assay allows the measurement of DNA repair activities from purified enzymes or in cell-free extracts in a fast, specific, quantitative and sensitive way, using only 1 pmol of probe for a test. We recorded a detection limit of 1 μg mL(-1) and 50 μg mL(-1) of HeLa nuclear extracts for APE1 and AAG enzymes, respectively. Finally, the on-bead assay should be useful to screen inhibitors of DNA repair activities.

  9. Formamidopyrimidines in DNA: mechanisms of formation, repair, and biological effects.

    PubMed

    Dizdaroglu, Miral; Kirkali, Güldal; Jaruga, Pawel

    2008-12-15

    Oxidatively induced damage to DNA results in a plethora of lesions comprising modified bases and sugars, DNA-protein cross-links, tandem lesions, strand breaks, and clustered lesions. Formamidopyrimidines, 4,6-diamino-5-formamidopyrimidine (FapyAde) and 2,6-diamino-4-hydroxy-5-formamidopyrimidine (FapyGua), are among the major lesions generated in DNA by hydroxyl radical attack, UV radiation, or photosensitization under numerous in vitro and in vivo conditions. They are formed by one-electron reduction of C8-OH-adduct radicals of purines and thus have a common precursor with 8-hydroxypurines generated upon one-electron oxidation. Methodologies using mass spectrometry exist to accurately measure FapyAde and FapyGua in vitro and in vivo. Formamidopyrimidines are repaired by base excision repair. Numerous prokaryotic and eukaryotic DNA glycosylases are highly specific for removal of these lesions from DNA in the first step of this repair pathway, indicating their biological importance. FapyAde and FapyGua are bypassed by DNA polymerases with the insertion of the wrong intact base opposite them, leading to mutagenesis. In mammalian cells, the mutagenicity of FapyGua exceeds that of 8-hydroxyguanine, which is thought to be the most mutagenic of the oxidatively induced lesions in DNA. The background and formation levels of the former in vitro and in vivo equal or exceed those of the latter under various conditions. FapyAde and FapyGua exist in living cells at significant background levels and are abundantly generated upon exposure to oxidative stress. Mice lacking the genes that encode specific DNA glycosylases accumulate these lesions in different organs and, in some cases, exhibit a series of pathological conditions including metabolic syndrome and cancer. Animals exposed to environmental toxins accumulate formamidopyrimidines in their organs. Here, we extensively review the mechanisms of formation, measurement, repair, and biological effects of formamidopyrimidines

  10. Structural basis of the versatile DNA recognition ability of the methyl-CpG binding domain of methyl-CpG binding domain protein 4.

    PubMed

    Otani, Junji; Arita, Kyohei; Kato, Tsuyoshi; Kinoshita, Mariko; Kimura, Hironobu; Suetake, Isao; Tajima, Shoji; Ariyoshi, Mariko; Shirakawa, Masahiro

    2013-03-01

    The methyl-CpG binding domain (MBD) protein MBD4 participates in DNA repair as a glycosylase that excises mismatched thymine bases in CpG sites and also functions in transcriptional repression. Unlike other MBD proteins, MBD4 recognizes not only methylated CpG dinucleotides ((5m)CG/(5m)CG) but also T/G mismatched sites generated by spontaneous deamination of 5-methylcytosine ((5m)CG/TG). The glycosylase activity of MBD4 is also implicated in active DNA demethylation initiated by the deaminase-catalyzed conversion of 5-methylcytosine to thymine. Here, we report the crystal structures of the MBD of MBD4 (MBDMBD4) complexed with (5m)CG/(5m)CG and (5m)CG/TG. The crystal structures show that the DNA interface of MBD4 has flexible structural features and harbors an extensive water network that supports its dual base specificities. Combined with the results of biochemical analyses, the crystal structure of MBD4 bound to 5-hydroxymethylcytosine further demonstrates that MBDMBD4 is able to recognize a wide range of 5-methylcytosine modifications through the unique water network. The versatile base recognition ability of MBDMBD4 implies multifunctional roles for MBD4 in the regulation of dynamic DNA methylation patterns coupled with deamination and/or oxidation of 5-methylcytosine.

  11. Antagonistic role of tea against sodium arsenite-induced oxidative DNA damage and inhibition of DNA repair in Swiss albino mice.

    PubMed

    Sinha, Dona; Roy, Madhumita

    2011-01-01

    Arsenic (As) contamination in groundwater is of increasing health concern in West Bengal, India. Arsenic has been associated with various human cancers, but the precise mechanism of its co-carcinogenic action is not clearly elucidated. Oxidative stress and defective repair mechanisms may promote accumulation of mutations and may be a stepping stone for carcinogenesis. Prevention of arsenic-induced oxidative stress and repair inhibition may reduce the chances of initiation of cancer. Tea polyphenols are reported to have excellent chemopreventive properties against cancer. This study aimed to elucidate the role of tea against arsenic-induced formation of 8-hydroxy-2'-deoxyguanosine (8OHdG) and arsenic-suppressed DNA repair in Swiss albino mice. Both green and black tea gave fruitful results in the reduction of 8OHdG and 8-oxoguanine DNA glycosylase (OGG1) in Swiss albino mice administered sodium arsenite (As III). DNA repair enzymes--such as PARP1, DNA β-polymerase, XRCC1, DNA ligase III, DNA protein kinase (catalytic subunit), XRCC 4, DNA ligase IV, and DNA topoisomerase IIβ--were induced by the phytochemicals at both the protein and genetic levels. Thus, tea polyphenols may prove effective in treating arsenic-induced carcinogenesis.

  12. MPG — EDRN Public Portal

    Cancer.gov

    MPG is a DNA repair enzyme that repairs hypoxanthine, which is formed by spontaneous or oxidative deamination of adenine. MPG also repairs secondary oxidative lesions such as 1,N6-ethenoadenine alkylated bases, and 3-methyladenine and 7-methylguanine.

  13. Global deformation facilitates flipping of damaged 8-oxo-guanine and guanine in DNA

    PubMed Central

    La Rosa, Giuseppe; Zacharias, Martin

    2016-01-01

    Oxidation of guanine (Gua) to form 7,8-dihydro-8-oxoguanine (8oxoG) is a frequent mutagenic DNA lesion. DNA repair glycosylases such as the bacterial MutM can effciently recognize and eliminate the 8oxoG damage by base excision. The base excision requires a 8oxoG looping out (flipping) from an intrahelical base paired to an extrahelical state where the damaged base is in the enzyme active site. It is still unclear how the damage is identified and flipped from an energetically stable stacked and paired state without any external energy source. Free energy simulations have been employed to study the flipping process for globally deformed DNA conformational states. DNA deformations were generated by systematically untwisting the DNA to mimic its conformation in repair enzyme encounter complex. The simulations indicate that global DNA untwisting deformation toward the enzyme bound form alone (without protein) significantly reduces the penalty for damage flipping to about half of the penalty observed in regular DNA. The finding offers a mechanistic explanation how binding free energy that is transformed to binding induced DNA deformation facilitates flipping and helps to rapidly detect a damaged base. It is likely of general relevance since repair enzyme binding frequently results in significant deformation of the target DNA. PMID:27651459

  14. Impaired dynamics and function of mitochondria caused by mtDNA toxicity leads to heart failure.

    PubMed

    Lauritzen, Knut H; Kleppa, Liv; Aronsen, Jan Magnus; Eide, Lars; Carlsen, Harald; Haugen, Øyvind P; Sjaastad, Ivar; Klungland, Arne; Rasmussen, Lene Juel; Attramadal, Håvard; Storm-Mathisen, Jon; Bergersen, Linda H

    2015-08-01

    Cardiac mitochondrial dysfunction has been implicated in heart failure of diverse etiologies. Generalized mitochondrial disease also leads to cardiomyopathy with various clinical manifestations. Impaired mitochondrial homeostasis may over time, such as in the aging heart, lead to cardiac dysfunction. Mitochondrial DNA (mtDNA), close to the electron transport chain and unprotected by histones, may be a primary pathogenetic site, but this is not known. Here, we test the hypothesis that cumulative damage of cardiomyocyte mtDNA leads to cardiomyopathy and heart failure. Transgenic mice with Tet-on inducible, cardiomyocyte-specific expression of a mutant uracil-DNA glycosylase 1 (mutUNG1) were generated. The mutUNG1 is known to remove thymine in addition to uracil from the mitochondrial genome, generating apyrimidinic sites, which obstruct mtDNA function. Following induction of mutUNG1 in cardiac myocytes by administering doxycycline, the mice developed hypertrophic cardiomyopathy, leading to congestive heart failure and premature death after ∼2 mo. The heart showed reduced mtDNA replication, severely diminished mtDNA transcription, and suppressed mitochondrial respiration with increased Pgc-1α, mitochondrial mass, and antioxidative defense enzymes, and finally failing mitochondrial fission/fusion dynamics and deteriorating myocardial contractility as the mechanism of heart failure. The approach provides a model with induced cardiac-restricted mtDNA damage for investigation of mtDNA-based heart disease.

  15. Methotrexate-induced misincorporation of uracil into DNA

    PubMed Central

    Goulian, M.; Bleile, B.; Tseng, B. Y.

    1980-01-01

    A line of human lymphoid cells was tested for the presence of dUMP in DNA with or without treatment with the dihydrofolate reductase inhibitor, methotrexate. Cells treated with methotrexate and labeled with [3H]dUrd contained dUMP in DNA in readily detectable amounts (≈0.8 pmol of dUMP per μmol of total DNA nucleotide), and this was increased ≈3-fold if the cells were also treated with Ura at the same time. No dUMP (<1 fmol/μmol of DNA) could be detected by these methods in DNA from cells not treated with methotrexate, regardless of whether Ura was present or absent. The presence of dUMP in DNA from cells treated with methotrexate is a result of the great increase in intracellular concentration of dUTP and the fall in dTTP that accompany inhibition of thymidylate synthetase (5,10-methylenetetrahydrofolate:dUMP C-methyltransferase; EC 2.1.1.45) by the drug. These changes are apparently sufficient to overcome the normal mechanisms that exclude dUMP from DNA, and the enhancement by Ura reflects suppression of one of the mechanisms, Ura removal from DNA by the enzyme Ura-DNA glycosylase. The results suggest an active lesion of DNA in cells in which thymidylate synthetase is inhibited. Under these conditions there appears to be a cyclic incorporation and removal of dUMP resulting from reinsertion of dUMP during gap repair at sites of Ura removal. This consequence of the normal excision-repair process, which occurs when intracellular levels of dUTP approach those of dTTP, may have effects related to the cytotoxicity of drug inhibitors of thymidylate synthetase, clinical deficiencies of folate and vitamin B-12, and thymineless death, in general. Images PMID:6929529

  16. Use of the comet assay to measure DNA damage in cells exposed to photosensitizers and gamma radiation

    NASA Astrophysics Data System (ADS)

    Pouget, J.-P.; Ravanat, J.-L.; Douki, T.; Richard, M.-J.; Cadet, J.

    1999-01-01

    We used the comet assay associated with DNA-glycosylases to estimate DNA damage in cells exposed to gamma irradiation or photosensitized either with methylene blue or orange acridine. A calibration performed using irradiation allowed the measurement of the steady-state level and the yield of 8-oxodGuo as well as strand breaks and alkali-labile sites. Nous avons utilisé la méthode des comètes associée à des ADN-glycosylases, pour estimer les dommages de l'ADN dans des cellules après l'exposition à un rayonnement gamma ou après photosensibilisation par le bleu de méthylène ou l'acridine orange. Une calibration de la méthode des comètes a permis de mesurer le niveau basal et les taux de formation de 8-oxodGuo ainsi que le nombre de cassures de brins et de sites alcali labiles.

  17. Base excision repair in Archaea: back to the future in DNA repair.

    PubMed

    Grasso, Stefano; Tell, Gianluca

    2014-09-01

    Together with Bacteria and Eukarya, Archaea represents one of the three domain of life. In contrast with the morphological difference existing between Archaea and Eukarya, these two domains are closely related. Phylogenetic analyses confirm this evolutionary relationship showing that most of the proteins involved in DNA transcription and replication are highly conserved. On the contrary, information is scanty about DNA repair pathways and their mechanisms. In the present review the most important proteins involved in base excision repair, namely glycosylases, AP lyases, AP endonucleases, polymerases, sliding clamps, flap endonucleases, and ligases, will be discussed and compared with bacterial and eukaryotic ones. Finally, possible applications and future perspectives derived from studies on Archaea and their repair pathways, will be taken into account.

  18. Role of inducible nitrogen oxide synthase in benzene-induced oxidative DNA damage in the bone marrow of mice.

    PubMed

    Vestergaard, Sys; Loft, Steffen; Møller, Peter

    2002-03-01

    We investigated the interaction of BZ and lipolysaccharide (LPS), a well-known inflammation-promoting agent, in wild-type and inducible nitrogen oxide synthase (iNOS) knockout mice. BZ generated DNA strand breaks (SB) in the liver of both wild-type and iNOS-deficient mice. In the bone marrow (BM) BZ and LPS generated SB only in wild-type mice. The effects were additive, suggesting that both a redox cycling and an iNOS-dependent pathway may be involved. Formamidopyrimidine DNA glycosylase sensitive sites were elevated by BZ in the BM in both types of mice, whereas endonuclease III sensitive sites were not affected by any treatment. Since BZ is associated with leukemia in humans, it suggests that oxidative DNA base damage rather than SB may be important in the development of leukemia.

  19. The Role of Mitochondrial DNA in Mediating Alveolar Epithelial Cell Apoptosis and Pulmonary Fibrosis

    PubMed Central

    Kim, Seok-Jo; Cheresh, Paul; Jablonski, Renea P.; Williams, David B.; Kamp, David W.

    2015-01-01

    Convincing evidence has emerged demonstrating that impairment of mitochondrial function is critically important in regulating alveolar epithelial cell (AEC) programmed cell death (apoptosis) that may contribute to aging-related lung diseases, such as idiopathic pulmonary fibrosis (IPF) and asbestosis (pulmonary fibrosis following asbestos exposure). The mammalian mitochondrial DNA (mtDNA) encodes for 13 proteins, including several essential for oxidative phosphorylation. We review the evidence implicating that oxidative stress-induced mtDNA damage promotes AEC apoptosis and pulmonary fibrosis. We focus on the emerging role for AEC mtDNA damage repair by 8-oxoguanine DNA glycosylase (OGG1) and mitochondrial aconitase (ACO-2) in maintaining mtDNA integrity which is important in preventing AEC apoptosis and asbestos-induced pulmonary fibrosis in a murine model. We then review recent studies linking the sirtuin (SIRT) family members, especially SIRT3, to mitochondrial integrity and mtDNA damage repair and aging. We present a conceptual model of how SIRTs modulate reactive oxygen species (ROS)-driven mitochondrial metabolism that may be important for their tumor suppressor function. The emerging insights into the pathobiology underlying AEC mtDNA damage and apoptosis is suggesting novel therapeutic targets that may prove useful for the management of age-related diseases, including pulmonary fibrosis and lung cancer. PMID:26370974

  20. A differential autophagy dependent response to DNA-double strand breaks in bone marrow mesenchymal stem cells from sporadic ALS patients.

    PubMed

    Wald-Altman, Shane; Pichinuk, Edward; Kakhlon, Or; Weil, Miguel

    2017-02-16

    Amyotrophic Lateral Sclerosis (ALS) is an incurable motor neurodegenerative disease caused by a diversity of genetic and environmental factors leading to neuromuscular degeneration and pathophysiological implications in non-neural systems. Our previous work showed abnormal transcriptional expression levels of biomarker genes in non-neuronal cell samples from ALS patients. The same genes proved to be differentially expressed in brain, spinal cord and muscle of the SOD1(G93A) ALS mouse model. These observations support the pathophysiological relevance of the ALS biomarkers discovered in human mesenchymal stem cells (hMSC) isolated from bone marrow samples of ALS patients (ALS-hMSC). Here we demonstrate that ALS-hMSC are also a useful patient based model to study intrinsic cell molecular mechanisms of the disease. We investigated the ALS-hMSC response to oxidative DNA damage exerted by neocarzinostatin (NCS)-mediated DNA double-strand breaks (DSB). We found that the ALS-hMSC responded to this stress differently than cells from healthy controls (HC-hMSC). Interestingly, we found that ALS-hMSC cell death, in response to DSB, was dependent on autophagy, initialized by an increase of p-AMPK and blocked by the class III PI3K and autophagy inhibitor 3-methyladenine (3MeA). ALS-hMSC cell death in response to DSB was not apoptotic as it was caspase independent. This unique ALS-hMSC specific response to DNA damage emphasizes the possibility that an intrinsic abnormal regulatory mechanism controlling autophagy initiation exists in ALS-patient derived hMSC. This mechanism may also be relevant to the most affected tissues in ALS. Hence, our approach might be opening avenues for new therapies at the personalized level for ALS.

  1. Mitochondrial DNA damage and a hypoxic response are induced by CoCl2 in rat neuronal PC12 cells

    PubMed Central

    Wang, Guichun; Hazra, Tapas K.; Mitra, Sankar; Lee, Heung-Man; Englander, Ella W.

    2000-01-01

    Generation of reactive oxygen species (ROS) and activation of a transcriptional program that mimics the hypoxic response have been documented in cultured cells in the presence of cobalt chloride. We found that in the presence of hypoxia-mimicking concentrations of CoCl2, mitochondrial but not nuclear DNA damage is induced in rat neuronal, PC12 cells. To our knowledge, this is the first documentation of induction of mitochondrial DNA (mtDNA) damage under these conditions. Likewise, we provide the first evidence for elevation of MYH, the mammalian homolog of the Escherichia coli MutY DNA glycosylase, in mammalian cells. Recently, the human MYH was implicated in repair of oxidative DNA damage and shown to carry a mitochondrial localization sequence. Here, an induction of mtDNA damage and a time-dependent increase in the MYH level were detected with exposure of cells to 100 µM CoCl2. In addition, the levels of proteins involved in cellular responses to hypoxia, ROS and nuclear DNA damage; hypoxia-inducible factor 1α (HIF-1α), p53, p21 and PCNA were also modulated temporally. Earlier studies suggested that the mtDNA is a primary target for oxidative damage. Our findings extend these observations and suggest that activation of DNA repair processes is associated with the presence of mtDNA damage. PMID:10773083

  2. Mitochondrial DNA damage and a hypoxic response are induced by CoCl(2) in rat neuronal PC12 cells.

    PubMed

    Wang, G; Hazra, T K; Mitra, S; Lee, H M; Englander, E W

    2000-05-15

    Generation of reactive oxygen species (ROS) and activation of a transcriptional program that mimics the hypoxic response have been documented in cultured cells in the presence of cobalt chloride. We found that in the presence of hypoxia-mimicking concentrations of CoCl(2), mitochondrial but not nuclear DNA damage is induced in rat neuronal, PC12 cells. To our knowledge, this is the first documentation of induction of mitochondrial DNA (mtDNA) damage under these conditions. Likewise, we provide the first evidence for elevation of MYH, the mammalian homolog of the Escherichia coli MutY DNA glycosylase, in mammalian cells. Recently, the human MYH was implicated in repair of oxidative DNA damage and shown to carry a mitochondrial localization sequence. Here, an induction of mtDNA damage and a time-dependent increase in the MYH level were detected with exposure of cells to 100 microM CoCl(2). In addition, the levels of proteins involved in cellular responses to hypoxia, ROS and nuclear DNA damage; hypoxia-inducible factor 1alpha(HIF-1alpha), p53, p21 and PCNA were also modulated temporally. Earlier studies suggested that the mtDNA is a primary target for oxidative damage. Our findings extend these observations and suggest that activation of DNA repair processes is associated with the presence of mtDNA damage.

  3. Artifacts associated with the measurement of oxidized DNA bases.

    PubMed Central

    Cadet, J; Douki, T; Ravanat, J L

    1997-01-01

    In this paper we review recent aspects of the measurement of oxidized DNA bases, currently a matter of debate. There has long been an interest in the determination of the level of oxidized bases in cellular DNA under both normal and oxidative stress conditions. In this respect, the situation is confusing because variations that may be as large as two orders of magnitude have been reported for the yield of the formation of 8-oxo-7,8-dihydroguanine (8-oxoGua) in similar DNA samples. However, recent findings clearly show that application of several assays like gas chromatography-mass spectrometry (GC-MS) and -32P--postlabeling may lead to a significant overestimation of the level of oxidized bases in cellular DNA. In particular, the silylation step, which is required to make the samples volatile for the GC-MS analysis, has been shown to induce oxidation of normal bases at the level of about one oxidized base per 10(4) normal bases. This has been found to be a general process that applies in particular to 8-oxoGua, 8-oxo-7, 8-dihydroadenine,5-hydroxycytosine, 5-(hydroxymethyl)uracil, and 5-formyluracil. Interestingly, prepurification of the oxidized bases from DNA hydrolysate prior to the derivatization reaction prevents artefactual oxidation. Under these conditions, the level of oxidized bases measured by GC-MS is similar to that obtained by HPLC associated with electrochemical detection (HPLC-EC). It should be added that the level of 8-oxo-7,8-dihydro-2;-deoxyguanosine in control cellular DNA has been found to be about fivefold lower than in earlier HPLC-EC measurements by using appropriate conditions of extraction and enzymatic digestion of DNA. Similar conclusions were reached by measuring formamidopyrimidine-DNA glycosylase sensitive sites as revealed by the single cell gel electrophoresis (comet) assay. Images Figure 1. PMID:9349826

  4. Artifacts associated with the measurement of oxidized DNA bases.

    PubMed

    Cadet, J; Douki, T; Ravanat, J L

    1997-10-01

    In this paper we review recent aspects of the measurement of oxidized DNA bases, currently a matter of debate. There has long been an interest in the determination of the level of oxidized bases in cellular DNA under both normal and oxidative stress conditions. In this respect, the situation is confusing because variations that may be as large as two orders of magnitude have been reported for the yield of the formation of 8-oxo-7,8-dihydroguanine (8-oxoGua) in similar DNA samples. However, recent findings clearly show that application of several assays like gas chromatography-mass spectrometry (GC-MS) and -32P--postlabeling may lead to a significant overestimation of the level of oxidized bases in cellular DNA. In particular, the silylation step, which is required to make the samples volatile for the GC-MS analysis, has been shown to induce oxidation of normal bases at the level of about one oxidized base per 10(4) normal bases. This has been found to be a general process that applies in particular to 8-oxoGua, 8-oxo-7, 8-dihydroadenine,5-hydroxycytosine, 5-(hydroxymethyl)uracil, and 5-formyluracil. Interestingly, prepurification of the oxidized bases from DNA hydrolysate prior to the derivatization reaction prevents artefactual oxidation. Under these conditions, the level of oxidized bases measured by GC-MS is similar to that obtained by HPLC associated with electrochemical detection (HPLC-EC). It should be added that the level of 8-oxo-7,8-dihydro-2;-deoxyguanosine in control cellular DNA has been found to be about fivefold lower than in earlier HPLC-EC measurements by using appropriate conditions of extraction and enzymatic digestion of DNA. Similar conclusions were reached by measuring formamidopyrimidine-DNA glycosylase sensitive sites as revealed by the single cell gel electrophoresis (comet) assay.

  5. Role of DNA repair enzymes in the cellular resistance to oxidative stress.

    PubMed

    Laval, J

    1996-01-01

    ) excise many oxidized pyrimidines, whereas the FPG protein (formamidopyrimidine-DNA-glycosylase) eliminates 8-oxoG and Fapy lesions. Besides its DNA glycosylase activity, the protein FPG has a beta-lyase activity incising DNA at abasic site by a beta-delta elimination mechanism, and a dRPase activity. The FPG protein has a zinc finger motive which is mandatory for the recognition of its substrate. Mammalian cells have similar DNA repair proteins and it should be emphazized that there is conservation of the different functions and in most cases a remarquable homology of the amino acids sequences from E. coli to man.

  6. DNA Damage Responses Are Induced by tRNA Anticodon Nucleases and Hygromycin B.

    PubMed

    Wemhoff, Sabrina; Klassen, Roland; Beetz, Anja; Meinhardt, Friedhelm

    2016-01-01

    Previous studies revealed DNA damage to occur during the toxic action of PaT, a fungal anticodon ribonuclease (ACNase) targeting the translation machinery via tRNA cleavage. Here, we demonstrate that other translational stressors induce DNA damage-like responses in yeast as well: not only zymocin, another ACNase from the dairy yeast Kluyveromyces lactis, but also translational antibiotics, most pronouncedly hygromycin B (HygB). Specifically, DNA repair mechanisms BER (base excision repair), HR (homologous recombination) and PRR (post replication repair) provided protection, whereas NHEJ (non-homologous end-joining) aggravated toxicity of all translational inhibitors. Analysis of specific BER mutants disclosed a strong HygB, zymocin and PaT protective effect of the endonucleases acting on apurinic sites. In cells defective in AP endonucleases, inactivation of the DNA glycosylase Ung1 increased tolerance to ACNases and HygB. In addition, Mag1 specifically contributes to the repair of DNA lesions caused by HygB. Consistent with DNA damage provoked by translation inhibitors, mutation frequencies were elevated upon exposure to both fungal ACNases and HygB. Since polymerase ζ contributed to toxicity in all instances, error-prone lesion-bypass probably accounts for the mutagenic effects. The finding that differently acting inhibitors of protein biosynthesis induce alike cellular responses in DNA repair mutants is novel and suggests the dependency of genome stability on translational fidelity.

  7. Dichromatic laser radiation effects on DNA of Escherichia coli and plasmids

    NASA Astrophysics Data System (ADS)

    Martins, W. A.; Polignano, G. A. C.; Guimarães, O. R.; Geller, M.; Paoli, F.; Fonseca, A. S.

    2015-04-01

    Dichromatic and consecutive laser radiations have attracted increased attention for clinical applications as offering new tools for the treatment of dysfunctional tissues in situations where monochromatic radiation is not effective. This work evaluated the survival, filamentation and morphology of Escherichia coli cells, and the induction of DNA lesions, in plasmid DNA exposed to low-intensity consecutive dichromatic laser radiation. Exponential and stationary wild type and formamidopyrimidine DNA glycosylase/MutM protein deficient E. coli cultures were exposed to consecutive low-intensity dichromatic laser radiation (infrared laser immediately after red laser) to study the survival, filamentation and morphology of bacterial cells. Plasmid DNA samples were exposed to dichromatic radiation to study DNA lesions by electrophoretic profile. Dichromatic laser radiation affects the survival, filamentation and morphology of E. coli cultures depending on the growth phase and the functional repair mechanism of oxidizing lesions in DNA, but does not induce single/double strands breaks or alkali-labile DNA lesions. Results show that low-intensity consecutive dichromatic laser radiation induces biological effects that differ from those induced by monochromatic laser radiation, suggesting that other therapeutic effects could be obtained using dichromatic radiation.

  8. High-resolution Digital Mapping of N-Methylpurines in Human Cells Reveals Modulation of Their Induction and Repair by Nearest-neighbor Nucleotides.

    PubMed

    Li, Mingyang; Ko, Tengyu; Li, Shisheng

    2015-09-18

    N-Methylpurines (NMPs), including N(7)-methylguanine (7MeG) and N(3)-methyladenine (3MeA), can be induced by environmental methylating agents, chemotherapeutics, and natural cellular methyl donors. In human cells, NMPs are repaired by the multi-step base excision repair pathway initiated by human alkyladenine glycosylase. Repair of NMPs has been shown to be affected by DNA sequence contexts. However, the nature of the sequence contexts has been poorly understood. We developed a sensitive method, LAF-Seq (Lesion-Adjoining Fragment Sequencing), which allows nucleotide-resolution digital mapping of DNA damage and repair in multiple genomic fragments of interest in human cells. We also developed a strategy that allows accurate measurement of the excision kinetics of NMP bases in vitro. We demonstrate that 3MeAs are induced to a much lower level by the SN2 methylating agent dimethyl sulfate and repaired much faster than 7MeGs in human fibroblasts. Induction of 7MeGs by dimethyl sulfate is affected by nearest-neighbor nucleotides, being enhanced at sites neighbored by a G or T on the 3' side, but impaired at sites neighbored by a G on the 5' side. Repair of 7MeGs is also affected by nearest-neighbor nucleotides, being slow if the lesions are between purines, especially Gs, and fast if the lesions are between pyrimidines, especially Ts. Excision of 7MeG bases from the DNA backbone by human alkyladenine glycosylase in vitro is similarly affected by nearest-neighbor nucleotides, suggesting that the effect of nearest-neighbor nucleotides on repair of 7MeGs in the cells is primarily achieved by modulating the initial step of the base excision repair process.

  9. A Conserved Tripeptide Sequence at the C Terminus of the Poxvirus DNA Processivity Factor D4 Is Essential for Protein Integrity and Function.

    PubMed

    Nuth, Manunya; Guan, Hancheng; Ricciardi, Robert P

    2016-12-30

    Vaccinia virus (VACV) is a poxvirus, and the VACV D4 protein serves both as a uracil-DNA glycosylase and as an essential component required for processive DNA synthesis. The VACV A20 protein has no known catalytic function itself but associates with D4 to form the D4-A20 heterodimer that functions as the poxvirus DNA processivity factor. The heterodimer enables the DNA polymerase to efficiently synthesize extended strands of DNA. Upon characterizing the interaction between D4 and A20, we observed that the C terminus of D4 is susceptible to perturbation. Further analysis demonstrated that a conserved hexapeptide stretch at the extreme C terminus of D4 is essential for maintaining protein integrity, as assessed by its requirement for the production of soluble recombinant protein that is functional in processive DNA synthesis. From the known crystal structures of D4, the C-terminal hexapeptide is shown to make intramolecular contact with residues spanning the inner core of the protein. Our mutational analysis revealed that a tripeptide motif ((215)GFI(217)) within the hexapeptide comprises apparent residues necessary for the contact. Prediction of protein disorder identified the hexapeptide and several regions upstream of Gly(215) that comprise residues of the interface surfaces of the D4-A20 heterodimer. Our study suggests that (215)GFI(217) anchors these potentially dynamic upstream regions of the protein to maintain protein integrity. Unlike uracil-DNA glycosylases from diverse sources, where the C termini are disordered and do not form comparable intramolecular contacts, this feature may be unique to orthopoxviruses.

  10. Ionizing radiation-induced DNA damage and its repair in human cells. Final performance report, July 1992--June 1995

    SciTech Connect

    Dizdaroglu, M.

    1995-12-31

    The studies of DNA damage in living cells in vitro and in vivo were continued. A variety of systems including cultured mammalian cells, animals, and human tissues were used to conduct these studies. In addition, enzymatic repair of DNA base damage was studied using several DNA glycosylases. To this end, substrate specificities of these enzymes were examined in terms of a large number of base lesions in DNA. In the first phase of the studies, the author sought to introduce improvements to his methodologies for measurement of DNA damage using the technique of gas chromatography/mass spectrometry (GC/MS). In particular, the quantitative measurement of DNA base damage and DNA-protein crosslinks was improved by incorporation of isotope-dilution mass spectrometry into the methodologies. This is one of the most accurate techniques for quantification of organic compounds. Having improved the measurement technique, studies of DNA damage in living cells and DNA repair by repair enzymes were pursued. This report provides a summary of these studies with references to the original work.

  11. Electrochemistry of the [4Fe4S] Cluster in Base Excision Repair Proteins: Tuning the Redox Potential with DNA.

    PubMed

    Bartels, Phillip L; Zhou, Andy; Arnold, Anna R; Nuñez, Nicole N; Crespilho, Frank N; David, Sheila S; Barton, Jacqueline K

    2017-03-02

    Escherichia coli endonuclease III (EndoIII) and MutY are DNA glycosylases that contain [4Fe4S] clusters and that serve to maintain the integrity of the genome after oxidative stress. Electrochemical studies on highly oriented pyrolytic graphite (HOPG) revealed that DNA binding by EndoIII leads to a large negative shift in the midpoint potential of the cluster, consistent with stabilization of the oxidized [4Fe4S](3+) form. However, the smooth, hydrophobic HOPG surface is nonideal for working with proteins in the absence of DNA. In this work, we use thin film voltammetry on a pyrolytic graphite edge electrode to overcome these limitations. Improved adsorption leads to substantial signals for both EndoIII and MutY in the absence of DNA, and a large negative potential shift is retained with DNA present. In contrast, the EndoIII mutants E200K, Y205H, and K208E, which provide electrostatic perturbations in the vicinity of the cluster, all show DNA-free potentials within error of wild type; similarly, the presence of negatively charged poly-l-glutamate does not lead to a significant potential shift. Overall, binding to the DNA polyanion is the dominant effect in tuning the redox potential of the [4Fe4S] cluster, helping to explain why all DNA-binding proteins with [4Fe4S] clusters studied to date have similar DNA-bound potentials.

  12. Oxidative DNA damage and its repair in rat spleen following subchronic exposure to aniline

    SciTech Connect

    Ma Huaxian; Wang Jianling; Abdel-Rahman, Sherif Z.; Boor, Paul J.; Khan, M. Firoze

    2008-12-01

    The mechanisms by which aniline exposure elicits splenotoxic response, especially the tumorigenic response, are not well-understood. Splenotoxicity of aniline is associated with iron overload and generation of reactive oxygen species (ROS) which can cause oxidative damage to DNA, proteins and lipids (oxidative stress). 8-Hydroxy-2'-deoxyguanosine (8-OHdG) is one of the most abundant oxidative DNA lesions resulting from ROS, and 8-oxoguanine glycosylase 1 (OGG1), a specific DNA glycosylase/lyase enzyme, plays a key role in the removal of 8-OHdG adducts. This study focused on examining DNA damage (8-OHdG) and repair (OGG1) in the spleen in an experimental condition preceding a tumorigenic response. To achieve that, male Sprague-Dawley rats were subchronically exposed to aniline (0.5 mmol/kg/day via drinking water for 30 days), while controls received drinking water only. Aniline treatment led to a significant increase in splenic oxidative DNA damage, manifested as a 2.8-fold increase in 8-OHdG levels. DNA repair activity, measured as OGG1 base excision repair (BER) activity, increased by {approx} 1.3 fold in the nuclear protein extracts (NE) and {approx} 1.2 fold in the mitochondrial protein extracts (ME) of spleens from aniline-treated rats as compared to the controls. Real-time PCR analysis for OGG1 mRNA expression in the spleen revealed a 2-fold increase in expression in aniline-treated rats than the controls. Likewise, OGG1 protein expression in the NEs of spleens from aniline-treated rats was {approx} 1.5 fold higher, whereas in the MEs it was {approx} 1.3 fold higher than the controls. Aniline treatment also led to stronger immunostaining for both 8-OHdG and OGG1 in the spleens, confined to the red pulp areas. It is thus evident from our studies that aniline-induced oxidative stress is associated with increased oxidative DNA damage. The BER pathway was also activated, but not enough to prevent the accumulation of oxidative DNA damage (8-OHdG). Accumulation of

  13. The cytosolic Fe-S cluster assembly component MET18 is required for the full enzymatic activity of ROS1 in active DNA demethylation

    PubMed Central

    Wang, Xiaokang; Li, Qi; Yuan, Wei; Cao, Zhendong; Qi, Bei; Kumar, Suresh; Li, Yan; Qian, Weiqiang

    2016-01-01

    DNA methylation patterns in plants are dynamically regulated by DNA methylation and active DNA demethylation in response to both environmental changes and development of plant. Beginning with the removal of methylated cytosine by ROS1/DME family of 5-methylcytosine DNA glycosylases, active DNA demethylation in plants occurs through base excision repair. So far, many components involved in active DNA demethylation remain undiscovered. Through a forward genetic screening of Arabidopsis mutants showing DNA hypermethylation at the EPF2 promoter region, we identified the conserved iron-sulfur cluster assembly protein MET18. MET18 dysfunction caused DNA hypermethylation at more than 1000 loci as well as the silencing of reporter genes and some endogenous genes. MET18 can directly interact with ROS1 in vitro and in vivo. ROS1 activity was reduced in the met18 mutant plants and point mutation in the conserved Fe-S cluster binding motif of ROS1 disrupted its biological function. Interestingly, a large number of DNA hypomethylated loci, especially in the CHH context, were identified from the met18 mutants and most of the hypo-DMRs were from TE regions. Our results suggest that MET18 can regulate both active DNA demethylation and DNA methylation pathways in Arabidopsis. PMID:27193999

  14. DNA damage induced by chronic inflammation contributes to colon carcinogenesis in mice

    PubMed Central

    Meira, Lisiane B.; Bugni, James M.; Green, Stephanie L.; Lee, Chung-Wei; Pang, Bo; Borenshtein, Diana; Rickman, Barry H.; Rogers, Arlin B.; Moroski-Erkul, Catherine A.; McFaline, Jose L.; Schauer, David B.; Dedon, Peter C.; Fox, James G.; Samson, Leona D.

    2008-01-01

    Chronic inflammation increases cancer risk. While it is clear that cell signaling elicited by inflammatory cytokines promotes tumor development, the impact of DNA damage production resulting from inflammation-associated reactive oxygen and nitrogen species (RONS) on tumor development has not been directly tested. RONS induce DNA damage that can be recognized by alkyladenine DNA glycosylase (Aag) to initiate base excision repair. Using a mouse model of episodic inflammatory bowel disease by repeated administration of dextran sulfate sodium in the drinking water, we show that Aag-mediated DNA repair prevents colonic epithelial damage and reduces the severity of dextran sulfate sodium–induced colon tumorigenesis. Importantly, DNA base lesions expected to be induced by RONS and recognized by Aag accumulated to higher levels in Aag-deficient animals following stimulation of colonic inflammation. Finally, as a test of the generality of this effect we show that Aag-deficient animals display more severe gastric lesions that are precursors of gastric cancer after chronic infection with Helicobacter pylori. These data demonstrate that the repair of DNA lesions formed by RONS during chronic inflammation is important for protection against colon carcinogenesis. PMID:18521188

  15. Surveying the repair of ancient DNA from bones via high-throughput sequencing.

    PubMed

    Mouttham, Nathalie; Klunk, Jennifer; Kuch, Melanie; Fourney, Ron; Poinar, Hendrik

    2015-07-01

    DNA damage in the form of abasic sites, chemically altered nucleotides, and strand fragmentation is the foremost limitation in obtaining genetic information from many ancient samples. Upon cell death, DNA continues to endure various chemical attacks such as hydrolysis and oxidation, but repair pathways found in vivo no longer operate. By incubating degraded DNA with specific enzyme combinations adopted from these pathways, it is possible to reverse some of the post-mortem nucleic acid damage prior to downstream analyses such as library preparation, targeted enrichment, and high-throughput sequencing. Here, we evaluate the performance of two available repair protocols on previously characterized DNA extracts from four mammoths. Both methods use endonucleases and glycosylases along with a DNA polymerase-ligase combination. PreCR Repair Mix increases the number of molecules converted to sequencing libraries, leading to an increase in endogenous content and a decrease in cytosine-to-thymine transitions due to cytosine deamination. However, the effects of Nelson Repair Mix on repair of DNA damage remain inconclusive.

  16. The nexus of vitamin homeostasis and DNA synthesis and modification in mammalian brain.

    PubMed

    Spector, Reynold; Johanson, Conrad E

    2014-01-10

    The purpose of this review is to discuss the implications of the 2009 discovery of the sixth deoxyribonucleoside (dN) [5-hydroxymethyldeoxycytidine (hmdC)] in DNA which is the most abundant in neurons. The concurrent discovery of the three ten-eleven translocation enzymes (TET) which not only synthesize but also oxidize hmdC in DNA, prior to glycosylase removal and base excision repair, helps explain many heretofore unexplained phenomena in brain including: 1) the high concentration of ascorbic acid (AA) in neurons since AA is a cofactor for the TET enzymes, 2) the requirement for reduced folates and the dN synthetic enzymes in brain, 3) continued DNA synthesis in non-dividing neurons to repair the dynamic formation/removal of hmdC, and 4) the heretofore unexplained mechanism to remove 5-methyldeoxycytidine, the fifth nucleoside, from DNA. In these processes, we also describe the important role of choroid plexus and CSF in supporting vitamin homeostasis in brain: especially for AA and folates, for hmdC synthesis and removal, and methylated deoxycytidine (mdC) removal from DNA in brain. The nexus linking AA and folates to methylation, hydroxymethylation, and demethylation of DNA is pivotal to understanding not only brain development but also the subsequent function.

  17. The nexus of vitamin homeostasis and DNA synthesis and modification in mammalian brain

    PubMed Central

    2014-01-01

    The purpose of this review is to discuss the implications of the 2009 discovery of the sixth deoxyribonucleoside (dN) [5-hydroxymethyldeoxycytidine (hmdC)] in DNA which is the most abundant in neurons. The concurrent discovery of the three ten-eleven translocation enzymes (TET) which not only synthesize but also oxidize hmdC in DNA, prior to glycosylase removal and base excision repair, helps explain many heretofore unexplained phenomena in brain including: 1) the high concentration of ascorbic acid (AA) in neurons since AA is a cofactor for the TET enzymes, 2) the requirement for reduced folates and the dN synthetic enzymes in brain, 3) continued DNA synthesis in non-dividing neurons to repair the dynamic formation/removal of hmdC, and 4) the heretofore unexplained mechanism to remove 5-methyldeoxycytidine, the fifth nucleoside, from DNA. In these processes, we also describe the important role of choroid plexus and CSF in supporting vitamin homeostasis in brain: especially for AA and folates, for hmdC synthesis and removal, and methylated deoxycytidine (mdC) removal from DNA in brain. The nexus linking AA and folates to methylation, hydroxymethylation, and demethylation of DNA is pivotal to understanding not only brain development but also the subsequent function. PMID:24410751

  18. Structural comparison of AP endonucleases from the exonuclease III family reveals new amino acid residues in human AP endonuclease 1 that are involved in incision of damaged DNA.

    PubMed

    Redrejo-Rodríguez, Modesto; Vigouroux, Armelle; Mursalimov, Aibek; Grin, Inga; Alili, Doria; Koshenov, Zhanat; Akishev, Zhiger; Maksimenko, Andrei; Bissenbaev, Amangeldy K; Matkarimov, Bakhyt T; Saparbaev, Murat; Ishchenko, Alexander A; Moréra, Solange

    2016-01-01

    Oxidatively damaged DNA bases are substrates for two overlapping repair pathways: DNA glycosylase-initiated base excision repair (BER) and apurinic/apyrimidinic (AP) endonuclease-initiated nucleotide incision repair (NIR). In the BER pathway, an AP endonuclease cleaves DNA at AP sites and 3'-blocking moieties generated by DNA glycosylases, whereas in the NIR pathway, the same AP endonuclease incises DNA 5' to an oxidized base. The majority of characterized AP endonucleases possess classic BER activities, and approximately a half of them can also have a NIR activity. At present, the molecular mechanism underlying DNA substrate specificity of AP endonucleases remains unclear mainly due to the absence of a published structure of the enzyme in complex with a damaged base. To identify critical residues involved in the NIR function, we performed biochemical and structural characterization of Bacillus subtilis AP endonuclease ExoA and compared its crystal structure with the structures of other AP endonucleases: Escherichia coli exonuclease III (Xth), human APE1, and archaeal Mth212. We found conserved amino acid residues in the NIR-specific enzymes APE1, Mth212, and ExoA. Four of these positions were studied by means of point mutations in APE1: we applied substitution with the corresponding residue found in NIR-deficient E. coli Xth (Y128H, N174Q, G231S, and T268D). The APE1-T268D mutant showed a drastically decreased NIR activity and an inverted Mg(2+) dependence of the AP site cleavage activity, which is in line with the presence of an aspartic residue at the equivalent position among other known NIR-deficient AP endonucleases. Taken together, these data show that NIR is an evolutionarily conserved function in the Xth family of AP endonucleases.

  19. Replication protein A and proliferating cell nuclear antigen coordinate DNA polymerase selection in 8-oxo-guanine repair.

    PubMed

    Maga, Giovanni; Crespan, Emmanuele; Wimmer, Ursula; van Loon, Barbara; Amoroso, Alessandra; Mondello, Chiara; Belgiovine, Cristina; Ferrari, Elena; Locatelli, Giada; Villani, Giuseppe; Hübscher, Ulrich

    2008-12-30

    The adenine misincorporated by replicative DNA polymerases (pols) opposite 7,8-dihydro-8-oxoguanine (8-oxo-G) is removed by a specific glycosylase, leaving the lesion on the DNA. Subsequent incorporation of C opposite 8-oxo-G on the resulting 1-nt gapped DNA is essential for the removal of the 8-oxo-G to prevent G-C to T-A transversion mutations. By using model DNA templates, purified DNA pols beta and lambda and knockout cell extracts, we show here that the auxiliary proteins replication protein A and proliferating cell nuclear antigen act as molecular switches to activate the DNA pol lambda- dependent highly efficient and faithful repair of A:8-oxo-G mismatches in human cells and to repress DNA pol beta activity. By using an immortalized human fibroblast cell line that has the potential to induce cancer in mice, we show that the development of a tumoral phenotype in these cells correlated with a differential expression of DNA pols lambda and beta.

  20. Removal of hydantoin products of 8-oxoguanine oxidation by the Escherichia coli DNA repair enzyme, FPG.

    PubMed

    Leipold, M D; Muller, J G; Burrows, C J; David, S S

    2000-12-05

    An intriguing feature of 7,8-dihydro-8-oxo-2'-deoxyguanosine (OG) is that it is highly reactive toward further oxidation. Indeed, OG has been shown to be a "hot spot" for oxidative damage and susceptible to oxidation by a variety of cellular oxidants. Recent work has identified two new DNA lesions, guanidinohydantoin (Gh) and spiroiminodihydantoin (Sp), resulting from one-electron oxidation of OG. The presence of Gh and Sp lesions in DNA templates has been shown to result in misinsertion of G and A by DNA polymerases, and therefore, both are potentially mutagenic DNA lesions. The base excision repair (BER) glycosylases Fpg and MutY serve to prevent mutations associated with OG in Escherichia coli, and therefore, we have investigated the ability of these two enzymes to process DNA duplex substrates containing the further oxidized OG lesions, Gh and Sp. The Fpg protein, which removes OG and a variety of other oxidized purine base lesions, was found to remove Gh and Sp efficiently opposite all four of the natural DNA bases. The intrinsic rate of damaged base excision by Fpg was measured under single-turnover conditions and was found to be highly dependent upon the identity of the base opposite the OG, Gh, or Sp lesion; as expected, OG is removed more readily from an OG:C- than an OG:A-containing substrate. However, when adenine is paired with Gh or Sp, the rate of removal of these damaged lesions by Fpg was significantly increased relative to the rate of removal of OG from an OG:A mismatch. The adenine glycosylase MutY, which removes misincorporated A residues from OG:A mismatches, is unable to remove A paired with Gh or Sp. Thus, the activity of Fpg on Gh and Sp lesions may dramatically influence their mutagenic potential. This work suggests that, in addition to OG, oxidative products resulting from further oxidation of OG should be considered when evaluating oxidative DNA damage and its associated effects on DNA mutagenesis.

  1. DNA Polymerases ImuC and DinB Are Involved in DNA Alkylation Damage Tolerance in Pseudomonas aeruginosa and Pseudomonas putida

    PubMed Central

    Jatsenko, Tatjana; Sidorenko, Julia; Saumaa, Signe; Kivisaar, Maia

    2017-01-01

    Translesion DNA synthesis (TLS), facilitated by low-fidelity polymerases, is an important DNA damage tolerance mechanism. Here, we investigated the role and biological function of TLS polymerase ImuC (former DnaE2), generally present in bacteria lacking DNA polymerase V, and TLS polymerase DinB in response to DNA alkylation damage in Pseudomonas aeruginosa and P. putida. We found that TLS DNA polymerases ImuC and DinB ensured a protective role against N- and O-methylation induced by N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) in both P. aeruginosa and P. putida. DinB also appeared to be important for the survival of P. aeruginosa and rapidly growing P. putida cells in the presence of methyl methanesulfonate (MMS). The role of ImuC in protection against MMS-induced damage was uncovered under DinB-deficient conditions. Apart from this, both ImuC and DinB were critical for the survival of bacteria with impaired base excision repair (BER) functions upon alkylation damage, lacking DNA glycosylases AlkA and/or Tag. Here, the increased sensitivity of imuCdinB double deficient strains in comparison to single mutants suggested that the specificity of alkylated DNA lesion bypass of DinB and ImuC might also be different. Moreover, our results demonstrated that mutagenesis induced by MMS in pseudomonads was largely ImuC-dependent. Unexpectedly, we discovered that the growth temperature of bacteria affected the efficiency of DinB and ImuC in ensuring cell survival upon alkylation damage. Taken together, the results of our study disclosed the involvement of ImuC in DNA alkylation damage tolerance, especially at low temperatures, and its possible contribution to the adaptation of pseudomonads upon DNA alkylation damage via increased mutagenesis. PMID:28118378

  2. Targeted rapid amplification of cDNA ends (T-RACE)--an improved RACE reaction through degradation of non-target sequences.

    PubMed

    Bower, Neil I; Johnston, Ian A

    2010-11-01

    Amplification of the 5' ends of cDNA, although simple in theory, can often be difficult to achieve. We describe a novel method for the specific amplification of cDNA ends. An oligo-dT adapter incorporating a dUTP-containing PCR primer primes first-strand cDNA synthesis incorporating dUTP. Using the Cap finder approach, another distinct dUTP containing adapter is added to the 3' end of the newly synthesized cDNA. Second-strand synthesis incorporating dUTP is achieved by PCR, using dUTP-containing primers complimentary to the adapter sequences incorporated in the cDNA ends. The double-stranded cDNA-containing dUTP serves as a universal template for the specific amplification of the 3' or 5' end of any gene. To amplify the ends of cDNA, asymmetric PCR is performed using a single gene-specific primer and standard dNTPs. The asymmetric PCR product is purified and non-target transcripts containing dUTP degraded by Uracil DNA glycosylase, leaving only those transcripts produced during the asymmetric PCR. Subsequent PCR using a nested gene-specific primer and the 3' or 5' T-RACE primer results in specific amplification of cDNA ends. This method can be used to specifically amplify the 3' and 5' ends of numerous cDNAs from a single cDNA synthesis reaction.

  3. Exposure to 1800 MHz radiofrequency electromagnetic radiation induces oxidative DNA base damage in a mouse spermatocyte-derived cell line.

    PubMed

    Liu, Chuan; Duan, Weixia; Xu, Shangcheng; Chen, Chunhai; He, Mindi; Zhang, Lei; Yu, Zhengping; Zhou, Zhou

    2013-03-27

    Whether exposure to radiofrequency electromagnetic radiation (RF-EMR) emitted from mobile phones can induce DNA damage in male germ cells remains unclear. In this study, we conducted a 24h intermittent exposure (5 min on and 10 min off) of a mouse spermatocyte-derived GC-2 cell line to 1800 MHz Global System for Mobile Communication (GSM) signals in GSM-Talk mode at specific absorption rates (SAR) of 1 W/kg, 2 W/kg or 4 W/kg. Subsequently, through the use of formamidopyrimidine DNA glycosylase (FPG) in a modified comet assay, we determined that the extent of DNA migration was significantly increased at a SAR of 4 W/kg. Flow cytometry analysis demonstrated that levels of the DNA adduct 8-oxoguanine (8-oxoG) were also increased at a SAR of 4 W/kg. These increases were concomitant with similar increases in the generation of reactive oxygen species (ROS); these phenomena were mitigated by co-treatment with the antioxidant α-tocopherol. However, no detectable DNA strand breakage was observed by the alkaline comet assay. Taking together, these findings may imply the novel possibility that RF-EMR with insufficient energy for the direct induction of DNA strand breaks may produce genotoxicity through oxidative DNA base damage in male germ cells.

  4. Control of DEMETER DNA demethylase gene transcription in male and female gamete companion cells in Arabidopsis thaliana

    PubMed Central

    Park, Jin-Sup; Frost, Jennifer M.; Park, Kyunghyuk; Ohr, Hyonhwa; Park, Guen Tae; Kim, Seohyun; Eom, Hyunjoo; Lee, Ilha; Brooks, Janie S.; Fischer, Robert L.; Choi, Yeonhee

    2017-01-01

    The DEMETER (DME) DNA glycosylase initiates active DNA demethylation via the base-excision repair pathway and is vital for reproduction in Arabidopsis thaliana. DME-mediated DNA demethylation is preferentially targeted to small, AT-rich, and nucleosome-depleted euchromatic transposable elements, influencing expression of adjacent genes and leading to imprinting in the endosperm. In the female gametophyte, DME expression and subsequent genome-wide DNA demethylation are confined to the companion cell of the egg, the central cell. Here, we show that, in the male gametophyte, DME expression is limited to the companion cell of sperm, the vegetative cell, and to a narrow window of time: immediately after separation of the companion cell lineage from the germline. We define transcriptional regulatory elements of DME using reporter genes, showing that a small region, which surprisingly lies within the DME gene, controls its expression in male and female companion cells. DME expression from this minimal promoter is sufficient to rescue seed abortion and the aberrant DNA methylome associated with the null dme-2 mutation. Within this minimal promoter, we found short, conserved enhancer sequences necessary for the transcriptional activities of DME and combined predicted binding motifs with published transcription factor binding coordinates to produce a list of candidate upstream pathway members in the genetic circuitry controlling DNA demethylation in gamete companion cells. These data show how DNA demethylation is regulated to facilitate endosperm gene imprinting and potential transgenerational epigenetic regulation, without subjecting the germline to potentially deleterious transposable element demethylation. PMID:28130550

  5. Control of DEMETER DNA demethylase gene transcription in male and female gamete companion cells in Arabidopsis thaliana.

    PubMed

    Park, Jin-Sup; Frost, Jennifer M; Park, Kyunghyuk; Ohr, Hyonhwa; Park, Guen Tae; Kim, Seohyun; Eom, Hyunjoo; Lee, Ilha; Brooks, Janie S; Fischer, Robert L; Choi, Yeonhee

    2017-02-21

    The DEMETER (DME) DNA glycosylase initiates active DNA demethylation via the base-excision repair pathway and is vital for reproduction in Arabidopsis thaliana DME-mediated DNA demethylation is preferentially targeted to small, AT-rich, and nucleosome-depleted euchromatic transposable elements, influencing expression of adjacent genes and leading to imprinting in the endosperm. In the female gametophyte, DME expression and subsequent genome-wide DNA demethylation are confined to the companion cell of the egg, the central cell. Here, we show that, in the male gametophyte, DME expression is limited to the companion cell of sperm, the vegetative cell, and to a narrow window of time: immediately after separation of the companion cell lineage from the germline. We define transcriptional regulatory elements of DME using reporter genes, showing that a small region, which surprisingly lies within the DME gene, controls its expression in male and female companion cells. DME expression from this minimal promoter is sufficient to rescue seed abortion and the aberrant DNA methylome associated with the null dme-2 mutation. Within this minimal promoter, we found short, conserved enhancer sequences necessary for the transcriptional activities of DME and combined predicted binding motifs with published transcription factor binding coordinates to produce a list of candidate upstream pathway members in the genetic circuitry controlling DNA demethylation in gamete companion cells. These data show how DNA demethylation is regulated to facilitate endosperm gene imprinting and potential transgenerational epigenetic regulation, without subjecting the germline to potentially deleterious transposable element demethylation.

  6. HIV-1 Vpr degrades the HLTF DNA translocase in T cells and macrophages

    PubMed Central

    Lahouassa, Hichem; Blondot, Marie-Lise; Chauveau, Lise; Chougui, Ghina; Morel, Marina; Leduc, Marjorie; Guillonneau, François; Ramirez, Bertha Cecilia; Schwartz, Olivier; Margottin-Goguet, Florence

    2016-01-01

    Viruses often interfere with the DNA damage response to better replicate in their hosts. The human immunodeficiency virus 1 (HIV-1) viral protein R (Vpr) protein has been reported to modulate the activity of the DNA repair structure-specific endonuclease subunit (SLX4) complex and to promote cell cycle arrest. Vpr also interferes with the base-excision repair pathway by antagonizing the uracil DNA glycosylase (Ung2) enzyme. Using an unbiased quantitative proteomic screen, we report that Vpr down-regulates helicase-like transcription factor (HLTF), a DNA translocase involved in the repair of damaged replication forks. Vpr subverts the DDB1–cullin4-associated-factor 1 (DCAF1) adaptor of the Cul4A ubiquitin ligase to trigger proteasomal degradation of HLTF. This event takes place rapidly after Vpr delivery to cells, before and independently of Vpr-mediated G2 arrest. HLTF is degraded in lymphocytic cells and macrophages infected with Vpr-expressing HIV-1. Our results reveal a previously unidentified strategy for HIV-1 to antagonize DNA repair in host cells. PMID:27114546

  7. Aptamer-mediated universal enzyme assay based on target-triggered DNA polymerase activity.

    PubMed

    Park, Ki Soo; Lee, Chang Yeol; Kang, Kyoung Suk; Park, Hyun Gyu

    2017-02-15

    We herein describe an innovative method for a universal fluorescence turn-on enzyme assay, which relies on the target enzyme-triggered DNA polymerase activity. In the first target recognition step, the target enzyme is designed to destabilize detection probe derived from an aptamer specific to DNA polymerase containing the overhang sequence and the complementary blocker DNA, which consequently leads to the recovery of DNA polymerase activity inhibited by the detection probe. This target-triggered polymerase activity is monitored in the second signal transduction step based on primer extension reaction coupled with TaqMan probe. Utilizing this design principle, we have successfully detected the activities of two model enzymes, exonuclease I and uracil DNA glycosylase with high sensitivity and selectivity. Since this strategy is composed of separated target recognition and signal transduction modules, it could be universally employed for the sensitive determination of numerous different target enzymes by simply redesigning the overhang sequence of detection probe, while keeping TaqMan probe-based signal transduction module as a universal signaling tool.

  8. Histone deacetylase inhibitors mediate DNA damage repair in ameliorating hemorrhagic cystitis

    PubMed Central

    Haldar, Subhash; Dru, Christopher; Mishra, Rajeev; Tripathi, Manisha; Duong, Frank; Angara, Bryan; Fernandez, Ana; Arditi, Moshe; Bhowmick, Neil A.

    2016-01-01

    Hemorrhagic cystitis is an inflammatory and ulcerative bladder condition associated with systemic chemotherapeutics, like cyclophosphomide. Earlier, we reported reactive oxygen species resulting from cyclophosphamide metabolite, acrolein, causes global methylation followed by silencing of DNA damage repair genes. Ogg1 (8-oxoguanine DNA glycosylase) is one such silenced base excision repair enzyme that can restore DNA integrity. The accumulation of DNA damage results in subsequent inflammation associated with pyroptotic death of bladder smooth muscle cells. We hypothesized that reversing inflammasome-induced imprinting in the bladder smooth muscle could prevent the inflammatory phenotype. Elevated recruitment of Dnmt1 and Dnmt3b to the Ogg1 promoter in acrolein treated bladder muscle cells was validated by the pattern of CpG methylation revealed by bisulfite sequencing. Knockout of Ogg1 in detrusor cells resulted in accumulation of reactive oxygen mediated 8-Oxo-dG and spontaneous pyroptotic signaling. Histone deacetylase (HDAC) inhibitor, suberoylanilide hydroxamic acid (SAHA), restored Ogg1 expression in cells treated with acrolein and mice treated with cyclophosphamide superior to the standard of care, mesna or nicotinamide-induced DNA demethylation. SAHA restored cyclophosphamide-induced bladder pathology to that of untreated control mice. The observed epigenetic imprinting induced by inflammation suggests a new therapeutic target for the treatment of hemorrhagic cystitis. PMID:27995963

  9. Detection of uracil within DNA using a sensitive labeling method for in vitro and cellular applications

    PubMed Central

    Róna, Gergely; Scheer, Ildikó; Nagy, Kinga; Pálinkás, Hajnalka L.; Tihanyi, Gergely; Borsos, Máté; Békési, Angéla; Vértessy, Beáta G.

    2016-01-01

    The role of uracil in genomic DNA has been recently re-evaluated. It is now widely accepted to be a physiologically important DNA element in diverse systems from specific phages to antibody maturation and Drosophila development. Further relevant investigations would largely benefit from a novel reliable and fast method to gain quantitative and qualitative information on uracil levels in DNA both in vitro and in situ, especially since current techniques does not allow in situ cellular detection. Here, starting from a catalytically inactive uracil-DNA glycosylase protein, we have designed several uracil sensor fusion proteins. The designed constructs can be applied as molecular recognition tools that can be detected with conventional antibodies in dot-blot applications and may also serve as in situ uracil-DNA sensors in cellular techniques. Our method is verified on numerous prokaryotic and eukaryotic cellular systems. The method is easy to use and can be applied in a high-throughput manner. It does not require expensive equipment or complex know-how, facilitating its easy implementation in any basic molecular biology laboratory. Elevated genomic uracil levels from cells of diverse genetic backgrounds and/or treated with different drugs can be demonstrated also in situ, within the cell. PMID:26429970

  10. New approaches to DNA damage and repair: the ultraviolet light example

    SciTech Connect

    Haseltine, W.A.; Gordon, L.K.; Lindan, C.; Lippke, J.; Brash, D.; Lo, K.M.; Royer-Pokora, B.

    1982-01-01

    DNA fragments of defined sequence are used as probes to study DNA damage and repair. The case of ultraviolet light is presented and includes the following: (a) Description of the distribution of cyclobutane pyrimidine dimers within defined DNA sequences. Considerations of the effect of neighboring base composition, dose rate, and double- or single-stranded property of the DNA are discussed. (b) Dissection of the anatomy of the incision event and subsequent repair steps. A three-step incision model for repair of cyclobutane dimers by the Micrococcus luteus repair enzymes will be presented. The steps are (1) recognition of the lesion and N-glycosylase scission, (2) cleavage of the phosphodiester bond 3' to the newly created apyrimidinic site, and (3) scission of the apyrimidinic sugar on the 5' side. (c) Use of human alphoid sequences as indicators of DNA damage in intact human cells. (d) Biological significance of a novel ultraviolet light-induced photoproduct. This photoproduct occurs at pyrimidine-cytosine sequences and may have a significant biological role.

  11. Enzymology of repair of DNA adducts produced by N-nitroso compounds

    SciTech Connect

    Setlow, R.B.; Cao, E.H.; Delihas, N.C.

    1983-01-01

    The biological effects of DNA adducts depend on their nature, and on their half-lives relative to the rates of DNA replication and transcription. Their half-lives are determined by the rates of spontaneous decay, such as depurination, and the rates of enzymatic repair of the adducts or their decay products. The principle modes of repair of methylating and ethylating agents are by glycosylase catalyzed depurination of 7-alkylguanine and 3-alkyladenine and by the dealkalation of O/sup 6/-alkylguanine. Repair by dealkylation cannot be detected by the standard methods used to measure DNA repair, but it is easy to estimate the acceptor activity in cell extracts by measuring the transfer of radioactive O/sup 6/-alkyl groups in an exogenous DNA to protein. In extracts of cells treated with alkylating agents the activity is depressed because the endogenous DNA is rapidly dealkylated, using up the acceptor activity. In many cell types the decrease in activity is followed by an increase to the normal constitutive level. In other cells there is no such adaptive response. Differences in constitutive levels of methyl accepting activity in extracts of human lymphocytes and on the acceptor activity in lung macrophages from smokers (low activity) and non-smokers (high activity) have been observed. 46 references.

  12. Histone deacetylase inhibitors mediate DNA damage repair in ameliorating hemorrhagic cystitis.

    PubMed

    Haldar, Subhash; Dru, Christopher; Mishra, Rajeev; Tripathi, Manisha; Duong, Frank; Angara, Bryan; Fernandez, Ana; Arditi, Moshe; Bhowmick, Neil A

    2016-12-20

    Hemorrhagic cystitis is an inflammatory and ulcerative bladder condition associated with systemic chemotherapeutics, like cyclophosphomide. Earlier, we reported reactive oxygen species resulting from cyclophosphamide metabolite, acrolein, causes global methylation followed by silencing of DNA damage repair genes. Ogg1 (8-oxoguanine DNA glycosylase) is one such silenced base excision repair enzyme that can restore DNA integrity. The accumulation of DNA damage results in subsequent inflammation associated with pyroptotic death of bladder smooth muscle cells. We hypothesized that reversing inflammasome-induced imprinting in the bladder smooth muscle could prevent the inflammatory phenotype. Elevated recruitment of Dnmt1 and Dnmt3b to the Ogg1 promoter in acrolein treated bladder muscle cells was validated by the pattern of CpG methylation revealed by bisulfite sequencing. Knockout of Ogg1 in detrusor cells resulted in accumulation of reactive oxygen mediated 8-Oxo-dG and spontaneous pyroptotic signaling. Histone deacetylase (HDAC) inhibitor, suberoylanilide hydroxamic acid (SAHA), restored Ogg1 expression in cells treated with acrolein and mice treated with cyclophosphamide superior to the standard of care, mesna or nicotinamide-induced DNA demethylation. SAHA restored cyclophosphamide-induced bladder pathology to that of untreated control mice. The observed epigenetic imprinting induced by inflammation suggests a new therapeutic target for the treatment of hemorrhagic cystitis.

  13. Pathophysiology of Bronchoconstriction: Role of Oxidatively Damaged DNA Repair

    PubMed Central

    Bacsi, Attila; Pan, Lang; Ba, Xueqing; Boldogh, Istvan

    2016-01-01

    Purpose of review To provide an overview on the present understanding of roles of oxidative DNA damage repair in cell signaling underlying bronchoconstriction common to, but not restricted to various forms of asthma and chronic obstructive pulmonary disease Recent findings Bronchoconstriction is a tightening of smooth muscle surrounding the bronchi and bronchioles with consequent wheezing and shortness of breath. Key stimuli include air pollutants, viral infections, allergens, thermal and osmotic changes, and shear stress of mucosal epithelium, triggering a wide range of cellular, vascular and neural events. Although activation of nerve fibers, the role of G-proteins, protein kinases and Ca++, and molecular interaction within contracting filaments of muscle are well defined, the overarching mechanisms by which a wide range of stimuli initiate these events are not fully understood. Many, if not all, stimuli increase levels of reactive oxygen species (ROS), which are signaling and oxidatively modifying macromolecules, including DNA. The primary ROS target in DNA is guanine, and 8-oxoguanine is one of the most abundant base lesions. It is repaired by 8-oxoguanine DNA glycosylase1 (OGG1) during base excision repair processes. The product, free 8-oxoG base, is bound by OGG1 with high affinity, and the complex then functions as an activator of small GTPases, triggering pathways for inducing gene expression and contraction of intracellular filaments in mast and smooth muscle cells. Summary Oxidative DNA damage repair-mediated cell activation signaling result in gene expression that “primes” the mucosal epithelium and submucosal tissues to generate mediators of airway smooth muscle contractions. PMID:26694039

  14. HIV-1 and HIV-2 exhibit divergent interactions with HLTF and UNG2 DNA repair proteins

    PubMed Central

    Hrecka, Kasia; Hao, Caili; Shun, Ming-Chieh; Kaur, Sarabpreet; Swanson, Selene K.; Florens, Laurence; Washburn, Michael P.; Skowronski, Jacek

    2016-01-01

    HIV replication in nondividing host cells occurs in the presence of high concentrations of noncanonical dUTP, apolipoprotein B mRNA-editing, enzyme-catalytic, polypeptide-like 3 (APOBEC3) cytidine deaminases, and SAMHD1 (a cell cycle-regulated dNTP triphosphohydrolase) dNTPase, which maintains low concentrations of canonical dNTPs in these cells. These conditions favor the introduction of marks of DNA damage into viral cDNA, and thereby prime it for processing by DNA repair enzymes. Accessory protein Vpr, found in all primate lentiviruses, and its HIV-2/simian immunodeficiency virus (SIV) SIVsm paralogue Vpx, hijack the CRL4DCAF1 E3 ubiquitin ligase to alleviate some of these conditions, but the extent of their interactions with DNA repair proteins has not been thoroughly characterized. Here, we identify HLTF, a postreplication DNA repair helicase, as a common target of HIV-1/SIVcpz Vpr proteins. We show that HIV-1 Vpr reprograms CRL4DCAF1 E3 to direct HLTF for proteasome-dependent degradation independent from previously reported Vpr interactions with base excision repair enzyme uracil DNA glycosylase (UNG2) and crossover junction endonuclease MUS81, which Vpr also directs for degradation via CRL4DCAF1 E3. Thus, separate functions of HIV-1 Vpr usurp CRL4DCAF1 E3 to remove key enzymes in three DNA repair pathways. In contrast, we find that HIV-2 Vpr is unable to efficiently program HLTF or UNG2 for degradation. Our findings reveal complex interactions between HIV-1 and the DNA repair machinery, suggesting that DNA repair plays important roles in the HIV-1 life cycle. The divergent interactions of HIV-1 and HIV-2 with DNA repair enzymes and SAMHD1 imply that these viruses use different strategies to guard their genomes and facilitate their replication in the host. PMID:27335459

  15. Acrylonitrile-Induced Oxidative Stress and Oxidative DNA Damage in Male Sprague-Dawley Rats

    PubMed Central

    Kamendulis, Lisa M.; Klaunig, James E.

    2009-01-01

    Studies have demonstrated that the induction of oxidative stress may be involved in brain tumor induction in rats by acrylonitrile. The present study examined whether acrylonitrile induces oxidative stress and DNA damage in rats and whether blood can serve as a valid surrogate for the biomonitoring of oxidative stress induced by acrylonitrile in the exposed population. Male Sprague-Dawley rats were treated with 0, 3, 30, 100, and 200 ppm acrylonitrile in drinking water for 28 days. One group of rats were also coadministered N-acetyl cysteine (NAC) (0.3% in diet) with acrylonitrile (200 ppm in drinking water) to examine whether antioxidant supplementation was protective against acrylonitrile-induced oxidative stress. Direct DNA strand breakage in white blood cells (WBC) and brain was measured using the alkaline comet assay. Oxidative DNA damage in WBC and brain was evaluated using formamidopyrimidine DNA glycosylase (fpg)-modified comet assay and with high-performance liquid chromatography-electrochemical detection. No significant increase in direct DNA strand breaks was observed in brain and WBC from acrylonitrile-treated rats. However, oxidative DNA damage (fpg comet and 8′hydroxyl-2-deoxyguanosine) in brain and WBC was increased in a dose-dependent manner. In addition, plasma levels of reactive oxygen species (ROS) increased in rats administered acrylonitrile. Dietary supplementation with NAC prevented acrylonitrile-induced oxidative DNA damage in brain and WBC. A slight, but significant, decrease in the GSH:GSSG ratio was seen in brain at acrylonitrile doses > 30 ppm. These results provide additional support that the mode of action for acrylonitrile-induced astrocytomas involves the induction of oxidative stress and damage. Significant associations were seen between oxidative DNA damage in WBC and brain, ROS formation in plasma, and the reported tumor incidences. Since oxidative DNA damage in brain correlated with oxidative damage in WBC, these results suggest

  16. Direct analysis of tobacco-specific nitrosamine NNK and its metabolite NNAL in human urine by LC-MS/MS: evidence of linkage to methylated DNA lesions.

    PubMed

    Hu, Chiung-Wen; Hsu, Yu-Wen; Chen, Jian-Lian; Tam, Lai-Man; Chao, Mu-Rong

    2014-02-01

    4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) and its urinary metabolite, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL), are the most investigated carcinogenic biomarkers of tobacco-specific nitrosamines. Here, we report the development of a sensitive and selective assay based on liquid chromatography-tandem mass spectrometry (LC-MS/MS) to simultaneously measure urinary NNK and NNAL. With the use of isotope internal standards and online solid-phase extraction, urine samples were directly analyzed without prior sample purification. The detection limits of this method were 0.13 and 0.19 pg on column for NNK and NNAL, respectively. Inter- and intra-day imprecision was <10 %. Mean recovery of NNK and NNAL in urine was 99-100 %. This method was applied to measure urinary NNK and NNAL in 101 smokers and 40 nonsmokers to assess tobacco exposure. Urinary nicotine, cotinine, N3-methyladenine (N3-MeA), and N7-methylguanine (N7-MeG) were also measured by isotope-dilution LC-MS/MS methods. The results showed that urinary NNK was not observed in all smokers. Urinary free NNAL (0.10 ± 0.09 ng/mg creatinine) and total NNAL (0.17 ± 0.14 ng/mg creatinine) were detected in all smokers. Urinary concentrations of NNAL were significantly correlated with nicotine, cotinine, N3-MeA, and N7-MeG in smokers (P < 0.001). This method enables the direct and simultaneous measurement of NNK and NNAL in urine using only 50 μL of urine. This study first demonstrated in human that urinary tobacco-specific nitrosamines metabolite (NNAL) are highly correlated with their resulting methylated DNA lesions in urine, which may help to substantiate an increased cancer risk associated with tobacco smoke exposure.

  17. Partial loss of the DNA repair scaffolding protein, Xrcc1, results in increased brain damage and reduced recovery from ischemic stroke in mice.

    PubMed

    Ghosh, Somnath; Canugovi, Chandrika; Yoon, Jeong Seon; Wilson, David M; Croteau, Deborah L; Mattson, Mark P; Bohr, Vilhelm A

    2015-07-01

    Oxidative DNA damage is mainly repaired by base excision repair (BER). Previously, our laboratory showed that mice lacking the BER glycosylases 8-oxoguanine glycosylase 1 (Ogg1) or nei endonuclease VIII-like 1 (Neil1) recover more poorly from focal ischemic stroke than wild-type mice. Here, a mouse model was used to investigate whether loss of 1 of the 2 alleles of X-ray repair cross-complementing protein 1 (Xrcc1), which encodes a nonenzymatic scaffold protein required for BER, alters recovery from stroke. Ischemia and reperfusion caused higher brain damage and lower functional recovery in Xrcc1(+/-) mice than in wild-type mice. Additionally, a greater percentage of Xrcc1(+/-) mice died as a result of the stroke. Brain samples from human individuals who died of stroke and individuals who died of non-neurological causes were assayed for various steps of BER. Significant losses of thymine glycol incision, abasic endonuclease incision, and single nucleotide incorporation activities were identified, as well as lower expression of XRCC1 and NEIL1 proteins in stroke brains compared with controls. Together, these results suggest that impaired BER is a risk factor in ischemic brain injury and contributes to its recovery.

  18. DNA damage and estrogenic activity induced by the environmental pollutant 2-nitrotoluene and its metabolite

    PubMed Central

    Watanabe, Chigusa; Egami, Takashi; Midorikawa, Kaoru; Hiraku, Yusuke; Oikawa, Shinji; Kawanishi, Shosuke

    2010-01-01

    Objectives The environmental pollutant 2-nitrotoluene (2-NO2-T) is carcinogenic and reproductively toxic in animals. In this study, we elucidated the mechanisms of its carcinogenicity and reproductive toxicity. Methods We examined DNA damage induced by 2-NO2-T and its metabolite, 2-nitrosotoluene (2-NO-T), using 32P-5′-end-labeled DNA. We measured 8-oxo-7, 8-dihydro-2′-deoxyguanosine (8-oxodG), an indicator of oxidative DNA damage, in calf thymus DNA and cellular DNA in cultured human leukemia (HL-60) cells treated with 2-NO2-T and 2-NO-T. 8-Oxoguanine DNA glycosylase (OGG1) gene expression in HL-60 cells was measured by real-time polymerase chain reaction (PCR). We examined estrogenic activity using an E-screen assay and a surface plasmon resonance (SPR) sensor. Results In experiments with isolated DNA fragments, 2-NO-T induced oxidative DNA damage in the presence of Cu (II) and β-nicotinamide adenine dinucleotide disodium salt (reduced form) (NADH), while 2-NO2-T did not. 2-NO-T significantly increased levels of 8-oxodG in HL-60 cells. Real-time polymerase chain reaction (PCR) analysis revealed upregulation of OGG1 gene expression induced by 2-NO-T. An E-screen assay using the human breast cancer cell line MCF-7 revealed that 2-NO2-T induced estrogen-dependent cell proliferation. In contrast, 2-NO-T decreased the cell number and suppressed 17β-estradiol-induced cell proliferation. The data obtained with the SPR sensor using estrogen receptor α and the estrogen response element supported the results of the E-screen assay. Conclusions Oxidative DNA damage caused by 2-NO-T and estrogen-disrupting effects caused by 2-NO2-T and 2-NO-T may play a role in the reproductive toxicity and carcinogenicity of these entities. PMID:21432561

  19. Microcystin-LR induced DNA damage in human peripheral blood lymphocytes.

    PubMed

    Zegura, B; Gajski, G; Straser, A; Garaj-Vrhovac, V; Filipič, M

    2011-12-24

    Human exposure to microcystins, which are produced by freshwater cyanobacterial species, is of growing concern due to increasing appearance of cyanobacterial blooms as a consequence of global warming and increasing water eutrophication. Although microcystins are considered to be liver-specific, there is evidence that they may also affect other tissues. These substances have been shown to induce DNA damage in vitro and in vivo, but the mechanisms of their genotoxic activity remain unclear. In human peripheral blood lymphocytes (HPBLs) exposure to non-cytotoxic concentrations (0, 0.1, 1 and 10μg/ml) of microcystin-LR (MCLR) induced a dose- and time-dependent increase in DNA damage, as measured with the comet assay. Digestion of DNA from MCLR-treated HPBLs with purified formamidopyrimidine-DNA glycosylase (Fpg) displayed a greater number of DNA strand-breaks than non-digested DNA, confirming the evidence that MCLR induces oxidative DNA damage. With the cytokinesis-block micronucleus assay no statistically significant induction of micronuclei, nucleoplasmic bridges and nuclear buds was observed after a 24-h exposure to MCLR. At the molecular level, no changes in the expression of selected genes involved in the cellular response to DNA damage and oxidative stress were observed after a 4-h exposure to MCLR (1μg/ml). After 24h, DNA damage-responsive genes (p53, mdm2, gadd45a, cdkn1a), a gene involved in apoptosis (bax) and oxidative stress-responsive genes (cat, gpx1, sod1, gsr, gclc) were up-regulated. These results provide strong support that MCLR is an indirectly genotoxic agent, acting via induction of oxidative stress, and that lymphocytes are also the target of microcystin-induced toxicity.

  20. The effects on DNA migration of altering parameters in the comet assay protocol such as agarose density, electrophoresis conditions and durations of the enzyme or the alkaline treatments.

    PubMed

    Ersson, Clara; Möller, Lennart

    2011-11-01

    The single cell gel electrophoresis (comet assay) is a popular method for measuring DNA migration as an estimate of DNA damage. No standardised comet assay protocol exists, which make comparisons between studies complicated. In a previous inter-laboratory validation study of the comet assay, we identified important parameters in the protocol that might affect DNA migration. The aim of this study was to assess how different comet assay protocols affect DNA migration. The results in this study suggest that (i) there is a significant linear dose-response relationship between the agarose gel's density and DNA migration and that damaged cells are more sensitive to the agarose gel's density; (ii) incubation with formamidopyrimidine DNA glycosylase for 10 min is inadequate, whereas 30 min is sufficient; (iii) the typically used 20 min of alkaline treatment might be to short when analysing samples that contain particular alkali-labile sites (ALS) and (iv) the duration of electrophoresis as well as the strength of the electric field applied affects the DNA migration. By using protocol-specific calibration curves, it is possible to reduce the variation in DNA migration caused by differences in comet assay protocols. This does, however, not completely remove the impact of the durations of alkaline treatment and electrophoresis when analysing cells containing ALS that are relatively resistant to high alkaline treatment.

  1. Oxidative DNA damage is instrumental in hyperreplication stress-induced inviability of Escherichia coli

    PubMed Central

    Charbon, Godefroid; Bjørn, Louise; Mendoza-Chamizo, Belén; Frimodt-Møller, Jakob; Løbner-Olesen, Anders

    2014-01-01

    In Escherichia coli, an increase in the ATP bound form of the DnaA initiator protein results in hyperinitiation and inviability. Here, we show that such replication stress is tolerated during anaerobic growth. In hyperinitiating cells, a shift from anaerobic to aerobic growth resulted in appearance of fragmented chromosomes and a decrease in terminus concentration, leading to a dramatic increase in ori/ter ratio and cessation of cell growth. Aerobic viability was restored by reducing the level of reactive oxygen species (ROS) or by deleting mutM (Fpg glycosylase). The double-strand breaks observed in hyperinitiating cells therefore results from replication forks encountering single-stranded DNA lesions generated while removing oxidized bases, primarily 8-oxoG, from the DNA. We conclude that there is a delicate balance between chromosome replication and ROS inflicted DNA damage so the number of replication forks can only increase when ROS formation is reduced or when the pertinent repair is compromised. PMID:25389264

  2. DNA Nanotechnology

    NASA Astrophysics Data System (ADS)

    Taniguchi, Masateru; Kawai, Tomoji

    2002-11-01

    DNA is one candidate of promising molecules for molecular electronic devices, since it has the double helix structure with pi-electron bases for electron transport, the address at 0.4 nm intervals, and the self-assembly. Electrical conductivity and nanostructure of DNA and modified DNA molecules are investigated in order to research the application of DNA in nanoelectronic devices. It has been revealed that DNA is a wide-gap semiconductor in the absence of doping. The conductivity of DNA has been controlled by chemical doping, electric field doping, and photo-doping. It has found that Poly(dG)[middle dot]Poly(dC) has the best conductivity and can function as a conducting nanowire. The pattern of DNA network is controlled by changing the concentration of the DNA solution.

  3. Mitochondrial DNA.

    ERIC Educational Resources Information Center

    Wright, Russell G.; Bottino, Paul J.

    1986-01-01

    Provides background information for teachers on mitochondrial DNA, pointing out that it may have once been a free-living organism. Includes a ready-to-duplicate exercise titled "Using Microchondrial DNA to Measure Evolutionary Distance." (JN)

  4. The aminoglycoside antibiotic kanamycin damages DNA bases in Escherichia coli: caffeine potentiates the DNA-damaging effects of kanamycin while suppressing cell killing by ciprofloxacin in Escherichia coli and Bacillus anthracis.

    PubMed

    Kang, Tina Manzhu; Yuan, Jessica; Nguyen, Angelyn; Becket, Elinne; Yang, Hanjing; Miller, Jeffrey H

    2012-06-01

    The distribution of mutants in the Keio collection of Escherichia coli gene knockout mutants that display increased sensitivity to the aminoglycosides kanamycin and neomycin indicates that damaged bases resulting from antibiotic action can lead to cell death. Strains lacking one of a number of glycosylases (e.g., AlkA, YzaB, Ogt, KsgA) or other specific repair proteins (AlkB, PhrB, SmbC) are more sensitive to these antibiotics. Mutants lacking AlkB display the strongest sensitivity among the glycosylase- or direct lesion removal-deficient strains. This perhaps suggests the involvement of ethenoadenine adducts, resulting from reactive oxygen species and lipid peroxidation, since AlkB removes this lesion. Other sensitivities displayed by mutants lacking UvrA, polymerase V (Pol V), or components of double-strand break repair indicate that kanamycin results in damaged base pairs that need to be removed or replicated past in order to avoid double-strand breaks that saturate the cellular repair capacity. Caffeine enhances the sensitivities of these repair-deficient strains to kanamycin and neomycin. The gene knockout mutants that display increased sensitivity to caffeine (dnaQ, holC, holD, and priA knockout mutants) indicate that caffeine blocks DNA replication, ultimately leading to double-strand breaks that require recombinational repair by functions encoded by recA, recB, and recC, among others. Additionally, caffeine partially protects cells of both Escherichia coli and Bacillus anthracis from killing by the widely used fluoroquinolone antibiotic ciprofloxacin.

  5. Dna Sequencing

    DOEpatents

    Tabor, Stanley; Richardson, Charles C.

    1995-04-25

    A method for sequencing a strand of DNA, including the steps off: providing the strand of DNA; annealing the strand with a primer able to hybridize to the strand to give an annealed mixture; incubating the mixture with four deoxyribonucleoside triphosphates, a DNA polymerase, and at least three deoxyribonucleoside triphosphates in different amounts, under conditions in favoring primer extension to form nucleic acid fragments complementory to the DNA to be sequenced; labelling the nucleic and fragments; separating them and determining the position of the deoxyribonucleoside triphosphates by differences in the intensity of the labels, thereby to determine the DNA sequence.

  6. Dynamic changes in DNA modification states during late gestation male germ line development in the rat

    PubMed Central

    2014-01-01

    Background Epigenetic reprogramming of fetal germ cells involves the genome-wide erasure and subsequent re-establishment of DNA methylation. Mouse studies indicate that DNA demethylation may be initiated at embryonic day (e) 8 and completed between e11.5 and e12.5. In the male germline, DNA remethylation begins around e15 and continues for the remainder of gestation whilst this process occurs postnatally in female germ cells. Although 5-methylcytosine (5mC) dynamics have been extensively characterised, a role for the more recently described DNA modifications (5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC)) remains unclear. Moreover, the extent to which the developmental dynamics of 5mC reprogramming is conserved across species remains largely undetermined. Here, we sought to describe this process during late gestation in the male rat. Results Using immunofluorescence, we demonstrate that 5mC is re-established between e18.5 and e21.5 in the rat, subsequent to loss of 5hmC, 5fC and 5caC, which are present in germ cells between e14.5 and e16.5. All of the evaluated DNA methyl forms were expressed in testicular somatic cells throughout late gestation. 5fC and 5caC can potentially be excised through Thymine DNA Glycosylase (TDG) and repaired by the base excision repair (BER) pathway, implicating 5mC oxidation in active DNA demethylation. In support of this potential mechanism, we show that TDG expression is coincident with the presence of 5hmC, 5fC and 5caC in male germ cell development. Conclusion The developmental dependent changes in germ cell DNA methylation patterns suggest that they are linked with key stages of male rat germline progression. PMID:25225576

  7. Lack of mitochondrial DNA impairs chemical hypoxia-induced autophagy in liver tumor cells through ROS-AMPK-ULK1 signaling dysregulation independently of HIF-1α.

    PubMed

    Marin, Jose J G; Lozano, Elisa; Perez, Maria J

    2016-12-01

    Alterations in mitochondrial DNA (mtDNA) and autophagy activation are common events in tumors. Here we have investigated the effect of mitochondrial genome depletion on chemical hypoxia-induced autophagy in liver tumor cells. Human SK-Hep-1 wild-type and mtDNA-depleted (Rho) cells were exposed to the hypoxia mimetic agents CoCl2 and deferoxamine (DFO). Up-regulation of HIF-1α, but not HIF-2α was observed. The expression of several HIF-1α target genes was also found. In human SK-Hep-1 and mouse Hepa 1-6 liver tumor cells, but not in the counterpart Rho derived lines, chemical hypoxia increased the abundance of autophagosomes and autolysosomes. In wild-type and Rho cells, chemical hypoxia induced down-regulation of HIF-1α-dependent autophagy inhibitors Bcl-2 and mTOR, whereas activation of AMPK/ULK1-mediated pro-autophagy pathway occurred only in wild-type cells. Chemical (compound C) and genetic (shRNA) inhibition of AMPK activation resulted in reduced autophagy. ATP levels were similar in both cell types, whereas constitutive and chemical hypoxia-induced reactive oxygen species (ROS) generation was lower in Rho cells. In wild-type cells, the antioxidant N-acetylcysteine blocked CoCl2- and DFO-induced AMPK and autophagy activation, but not endoplasmic reticulum stress induced by CoCl2. Enhanced Bax-α/Bcl-2 ratio and cell death was induced by hypoxia mimetic agents more markedly in wild-type than in Rho cells. Upon blocking autophagy activation with 3-methyladenine, DFO-induced cell death was partially prevented whereas that induced by CoCl2 was increased, but only in wild-type cells. These results suggest that mitochondrial dysfunction associated with the lack of mtDNA impairs the signaling pathways mediated by ROS, controlling autophagy activation in liver tumor cells, which may contributes to cancer development.

  8. Analysis of the machinery and intermediates of the 5hmC-mediated DNA demethylation pathway in aging on samples from the MARK-AGE Study

    PubMed Central

    Valentini, Elisabetta; Zampieri, Michele; Malavolta, Marco; Bacalini, Maria Giulia; Calabrese, Roberta; Guastafierro, Tiziana; Reale, Anna; Franceschi, Claudio; Hervonen, Antti; Koller, Bernhard; Bernhardt, Jürgen; Slagboom, P. Eline; Toussaint, Olivier; Sikora, Ewa; Gonos, Efstathios S.; Breusing, Nicolle; Grune, Tilman; Jansen, Eugène; Dollé, Martijn E.T.; Moreno-Villanueva, María; Sindlinger, Thilo; Bürkle, Alexander; Ciccarone, Fabio; Caiafa, Paola

    2016-01-01

    Gradual changes in the DNA methylation landscape occur throughout aging virtually in all human tissues. A widespread reduction of 5-methylcytosine (5mC), associated with highly reproducible site-specific hypermethylation, characterizes the genome in aging. Therefore, an equilibrium seems to exist between general and directional deregulating events concerning DNA methylation controllers, which may underpin the age-related epigenetic changes. In this context, 5mC-hydroxylases (TET enzymes) are new potential players. In fact, TETs catalyze the stepwise oxidation of 5mC to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC), driving the DNA demethylation process based on thymine DNA glycosylase (TDG)-mediated DNA repair pathway. The present paper reports the expression of DNA hydroxymethylation components, the levels of 5hmC and of its derivatives in peripheral blood mononuclear cells of age-stratified donors recruited in several European countries in the context of the EU Project ‘MARK-AGE’. The results provide evidence for an age-related decline of TET1, TET3 and TDG gene expression along with a decrease of 5hmC and an accumulation of 5caC. These associations were independent of confounding variables, including recruitment center, gender and leukocyte composition. The observed impairment of 5hmC-mediated DNA demethylation pathway in blood cells may lead to aberrant transcriptional programs in the elderly. PMID:27587280

  9. Analysis of the machinery and intermediates of the 5hmC-mediated DNA demethylation pathway in aging on samples from the MARK-AGE Study.

    PubMed

    Valentini, Elisabetta; Zampieri, Michele; Malavolta, Marco; Bacalini, Maria Giulia; Calabrese, Roberta; Guastafierro, Tiziana; Reale, Anna; Franceschi, Claudio; Hervonen, Antti; Koller, Bernhard; Bernhardt, Jürgen; Slagboom, P Eline; Toussaint, Olivier; Sikora, Ewa; Gonos, Efstathios S; Breusing, Nicolle; Grune, Tilman; Jansen, Eugène; Dollé, Martijn E T; Moreno-Villanueva, María; Sindlinger, Thilo; Bürkle, Alexander; Ciccarone, Fabio; Caiafa, Paola

    2016-08-29

    Gradual changes in the DNA methylation landscape occur throughout aging virtually in all human tissues. A widespread reduction of 5-methylcytosine (5mC), associated with highly reproducible site-specific hypermethylation, characterizes the genome in aging. Therefore, an equilibrium seems to exist between general and directional deregulating events concerning DNA methylation controllers, which may underpin the age-related epigenetic changes. In this context, 5mC-hydroxylases (TET enzymes) are new potential players. In fact, TETs catalyze the stepwise oxidation of 5mC to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC), driving the DNA demethylation process based on thymine DNA glycosylase (TDG)-mediated DNA repair pathway. The present paper reports the expression of DNA hydroxymethylation components, the levels of 5hmC and of its derivatives in peripheral blood mononuclear cells of age-stratified donors recruited in several European countries in the context of the EU Project 'MARK-AGE'. The results provide evidence for an age-related decline of TET1, TET3 and TDG gene expression along with a decrease of 5hmC and an accumulation of 5caC. These associations were independent of confounding variables, including recruitment center, gender and leukocyte composition. The observed impairment of 5hmC-mediated DNA demethylation pathway in blood cells may lead to aberrant transcriptional programs in the elderly.

  10. Molecular Analysis of Base Damage Clustering Associated with a Site-Specific Radiation-Induced DNA Double-Strand Break

    PubMed Central

    Datta, Kamal; Jaruga, Pawel; Dizdaroglu, Miral; Neumann, Ronald D.; Winters, Thomas A.

    2010-01-01

    Base damage flanking a radiation-induced DNA double-strand break (DSB) may contribute to DSB complexity and affect break repair. However, to date, an isolated radiation-induced DSB has not been assessed for such structures at the molecular level. In this study, an authentic site-specific radiation-induced DSB was produced in plasmid DNA by triplex forming oligonucleotide-targeted 125I decay. A restriction fragment terminated by the DSB was isolated and probed for base damage with the E. coli DNA repair enzymes, endonuclease III and formamidopyrimidine-DNA glycosylase. Our results demonstrate base damage clustering within 8 bases of the 125I-targeted base in the DNA duplex. An increased yield of base damage (purine>pyrimidine) was observed for DSBs formed by irradiation in the absence of DMSO. An internal control fragment 1354 bp upstream from the targeted base was insensitive to enzymatic probing, indicating the damage detected proximal to the DSB was produced by the 125I decay that formed the DSB. Gas chromatography-mass spectrometry identified three types of damaged bases in the ~32 bp region proximal to the DSB. These base lesions were 8-hydroxyguanine, 8-hydroxyadenine, and 5-hydroxycytosine. Finally, evidence is presented for base damage >24 bp upstream from the 125I-decay site that may form via a charge migration mechanism. PMID:17067210

  11. Modulating effects of pycnogenol® on oxidative stress and DNA damage induced by sepsis in rats.

    PubMed

    Taner, Gökçe; Aydın, Sevtap; Bacanlı, Merve; Sarıgöl, Zehra; Sahin, Tolga; Başaran, A Ahmet; Başaran, Nurşen

    2014-11-01

    The aim of this study was to evaluate the protective effects of Pycnogenol® (Pyc), a complex plant extract from the bark of French maritime pine, on oxidative stress parameters (superoxide dismutase (SOD), and glutathione peroxidase (GPx) activities and total glutathione (GSH) and malondialdehyde (MDA) levels), an inflammatory cytokine (tumor necrosis factor alpha (TNF-α) level) and also DNA damage in Wistar albino rats. Rats were treated with 100 mg/kg intraperitonally Pyc following the induction of sepsis by cecal ligation and puncture. The decreases in MDA levels and increases in GSH levels, and SOD and GPx activities were observed in the livers and kidneys of Pyc-treated septic rats. Plasma TNF-α level was found to be decreased in the Pyc-treated septic rats. In the lymphocytes, kidney, and liver tissue cells of the sepsis-induced rats, Pyc treatment significantly decreased the DNA damage and oxidative base damage using standard alkaline assay and formamidopyrimidine DNA glycosylase-modified comet assay, respectively. In conclusion, Pyc treatment might have a role in the prevention of sepsis-induced oxidative damage not only by decreasing DNA damage but also increasing the antioxidant status and DNA repair capacity in rats.

  12. Simultaneous Detection of 3-Nitrotyrosine and 3-Nitro-4-hydroxyphenylacetic Acid in Human Urine by Online SPE LC-MS/MS and Their Association with Oxidative and Methylated DNA Lesions.

    PubMed

    Chao, Mu-Rong; Hsu, Yu-Wen; Liu, Hung-Hsin; Lin, Jia-Hong; Hu, Chiung-Wen

    2015-05-18

    Reactive nitrogen species (RNS) can modify proteins at tyrosine and tryptophan residues, and they are involved in the pathogenesis of various human diseases. In this study, we present the first liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based method that enables the simultaneous measurement of urinary 3-nitrotyrosine (3-NTYR) and its metabolite 3-nitro-4-hydroxyphenylacetic acid (NHPA). After the addition of stable isotope-labeled internal standards, urine samples were purified and enriched using manual solid-phase extraction (SPE) and HPLC fractionation followed by online SPE LC-MS/MS analysis. The limits of quantification in urine were 3.1 and 2.5 pg/mL for 3-NTYR and NHPA, respectively. Inter- and intraday imprecision was <15%. The mean relative recoveries of 3-NTYR and NHPA in urine were 89-98% and 90-98%, respectively. We further applied this method to 65 urinary samples from healthy subjects. Urinary samples were also analyzed for N-nitrosodimethylamine (NDMA) as well as oxidative and methylated DNA lesions, namely, 8-oxo-7,8-dihydroguanine (8-oxoGua), 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodGuo), N7-methylguanine (N7-MeG), and N3-methyladenine (N3-MeA), using reported LC-MS/MS methods. Urinary 3-NTYR and NHPA levels were measured at concentrations of 63.2 ± 51.5 and 77.4 ± 60.8 pg/mL, respectively. Urinary 3-NTYR and NHPA levels were highly correlated with each other and with 8-oxoGua and 8-oxodGuo. Our findings demonstrated that a relationship exists between oxidative and nitrative stress. However, 3-NTYR and NHPA were correlated with N7-MeG and N3-MeA but not with NDMA, suggesting that NDMA may not be a representative biomarker of N-nitroso compounds that are induced by RNS.

  13. Vitamins at physiological levels cause oxidation to the DNA nucleoside deoxyguanosine and to DNA--alone or in synergism with metals.

    PubMed

    Bergström, Therese; Ersson, Clara; Bergman, Jan; Möller, Lennart

    2012-07-01

    Vitamins with antioxidant properties have the ability to act as pro-oxidants, inducing oxidative damage and oxidative stress as opposed to preventing it. While vitamin supplements are commonly consumed, the scientific evidence for their health beneficial effects is inconclusive. In fact, even harmful effects have been reported. The present study aimed to investigate and compare pro-oxidant properties of different antioxidants and vitamins commonly found in dietary supplements, at concentrations of physiological relevance, alone or in combination with metals also found in supplements. Focus was on damages related to DNA. The vitamins' chemical oxidation potencies were studied by measuring the amount of the oxidation product 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) formed from the DNA nucleoside deoxyguanosine (dG) after vitamin exposure, using a high-performance liquid chromatography system with electrochemical and ultraviolet detection. To study the vitamins' ability to cause DNA damage to cultured cells, promyelocytic leukemia cells (HL-60) were exposed to vitamins, and strand breaks, alkali-labile sites and oxidative DNA lesions, i.e. formamido pyrimidine DNA glycosylase-sensitive sites, were detected using the comet assay. Vitamins A and C chemically induced oxidation of dG, alone and in synergism with iron or copper, whereas only vitamin C and copper induced DNA damage in cultured cells. Contrary, vitamins B1, B2, B3, B6 and B12, β-carotene, folic acid, α-tocopherol, δ-tocopherol or γ-tocopherol did not induce oxidative damage to dG, while lycopene induced a weak dose-response increase. Taken together, vitamin C and copper stood out with the strongest oxidative potency, which is of potential concern since both substances are commonly found in multivitamins.

  14. The mechanism of guanine specific photooxidation in the presence of berberine and palmatine: activation of photosensitized singlet oxygen generation through DNA-binding interaction.

    PubMed

    Hirakawa, Kazutaka; Kawanishi, Shosuke; Hirano, Toru

    2005-10-01

    The mechanism of DNA damage by photoexcited alkaloids, berberine and palmatine, was examined using 32P-labeled DNA fragments obtained from human genes. Berberine and palmatine easily bind to DNA, leading to the formation of strong fluorescent complexes. The binding constants of berberine and palmatine to DNA, estimated from an analysis of their fluorescence enhancements, indicate the formation of stable complexes. Photoexcited berberine and palmatine caused DNA cleavage, specifically at almost all guanine residues, under the aerobic condition after Escherichia coli formamidopyrimidine-DNA glycosylase or piperidine treatment, suggesting the formation of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodGuo), an oxidized product of 2'-deoxyguanosine, and further oxidized products. The formation of 8-oxodGuo was confirmed by HPLC measurement. The quantum yield of 8-oxodGuo formation by berberine was almost the same as that induced by palmatine. Berberine and palmatine did not cause DNA photodamage under anaerobic conditions. Scavengers of singlet oxygen (1O2), such as sodium azide and methional, inhibited DNA damage. These findings suggest that photoexcited berberine and palmatine give rise to 8-oxodGuo through 1O2 generation. The photosensitized 1O2 generation from these alkaloids was examined using near-infrared luminescence measurements. Emission at ca. 1270 nm was observed during photoexcitation of the DNA-alkaloid complexes. This emission was quenched by sodium azide, a scavenger of 1O2. In the absence of DNA, berberine and palmatine could not show the emission. This spectroscopic study has shown that photoexcited alkaloids can generate 1O2 only when the DNA-alkaloid complexes are formed. In conclusion, berberine and palmatine easily bind to DNA and induce guanine specific photooxidation via 1O2 formation. The present study suggests that berberine and palmatine can act as functional photosensitizers enabling a switch in phototoxicity via 1O2 formation by the interaction

  15. DNA Immunization

    PubMed Central

    Wang, Shixia; Lu, Shan

    2013-01-01

    DNA immunization was discovered in early 1990s and its use has been expanded from vaccine studies to a broader range of biomedical research, such as the generation of high quality polyclonal and monoclonal antibodies as research reagents. In this unit, three common DNA immunization methods are described: needle injection, electroporation and gene gun. In addition, several common considerations related to DNA immunization are discussed. PMID:24510291

  16. Aneuploidogenic effects and DNA oxidation induced in vitro by differently sized gold nanoparticles

    PubMed Central

    Di Bucchianico, Sebastiano; Fabbrizi, Maria Rita; Cirillo, Silvia; Uboldi, Chiara; Gilliland, Douglas; Valsami-Jones, Eugenia; Migliore, Lucia

    2014-01-01

    Gold nanoparticles (Au NPs) are used in many fields, including biomedical applications; however, no conclusive information on their potential cytotoxicity and genotoxicity mechanisms is available. For this reason, experiments in human primary lymphocytes and murine macrophages (Raw264.7) were performed exposing cells to spherical citrate-capped Au NPs with two different nominal diameters (5 nm and 15 nm). The proliferative activity, mitotic, apoptotic, and necrotic markers, as well as chromosomal damage were assessed by the cytokinesis-block micronucleus cytome assay. Fluorescence in situ hybridization with human and murine pancentromeric probes was applied to distinguish between clastogenic and aneuploidogenic effects. Our results indicate that 5 nm and 15 nm Au NPs are able to inhibit cell proliferation by apoptosis and to induce chromosomal damage, in particular chromosome mis-segregation. DNA strand breaks were detected by comet assay, and the modified protocol using endonuclease-III and formamidopyrimidine-DNA glycosylase restriction enzymes showed that pyrimidines and purines were oxidatively damaged by Au NPs. Moreover, we show a size-independent correlation between the cytotoxicity of Au NPs and their tested mass concentration or absolute number, and genotoxic effects which were more severe for Au NP 15 nm compared to Au NP 5 nm. Results indicate that apoptosis, aneuploidy, and DNA oxidation play a pivotal role in the cytotoxicity and genotoxicity exerted by Au NPs in our cell models. PMID:24855356

  17. Sensitive and selective real-time electrochemical monitoring of DNA repair (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Slinker, Jason D.; McWilliams, Marc; Anka, Fadwa; Balkus, Kenneth

    2015-10-01

    Unrepaired DNA damage can lead to mutation, cancer, and death of cells or organisms. However, due to the subtlety of DNA damage, it is difficult to sense the repair of damage products with high selectivity and sensitivity. Here, we show sensitive and selective electrochemical sensing of the repair activity of 8-oxoguanine and uracil glycosylases within DNA monolayers on gold by multiplexed analysis with silicon chips and low-cost electrospun nanofibers. Our approach involves comparing the electrochemical signal of redox probe modified monolayers containing the defect versus the rational control of defect-free monolayers. We find sequence-specific sensitivity thresholds on the order of femtomoles of proteins and dynamic ranges of over two orders of magnitude for each target. For 8-oxoguanine repair, temperature-dependent kinetics are extracted, showing exponential signal loss with time constants of seconds. Electrospun fibers are shown to behave similarly to conventional gold-on-silicon devices, showing the potential of these low-cost devices for sensing applications.

  18. Oxidative DNA damage is epigenetic by regulating gene transcription via base excision repair

    PubMed Central

    Fleming, Aaron M.; Ding, Yun; Burrows, Cynthia J.

    2017-01-01

    Reactive oxygen species (ROS) have emerged as important cellular-signaling agents for cellular survival. Herein, we demonstrate that ROS-mediated oxidation of DNA to yield 8-oxo-7,8-dihydroguanine (OG) in gene promoters is a signaling agent for gene activation. Enhanced gene expression occurs when OG is formed in guanine-rich, potential G-quadruplex–forming sequences (PQS) in promoter-coding strands, initiating base excision repair (BER) by 8-oxoguanine DNA glycosylase (OGG1), yielding an abasic site (AP). The AP enables melting of the duplex to unmask the PQS, adopting a G-quadruplex fold in which apurinic/apyrimidinic endonuclease 1 (APE1) binds, but inefficiently cleaves, the AP for activation of vascular endothelial growth factor (VEGF) or endonuclease III-like protein 1 (NTHL1) genes. These details were mapped via synthesis of OG and AP analogs at single-nucleotide precision within the promoter of a luciferase reporter system. The reporters were analyzed in human and mouse cells while selectively knocking out or down critical BER proteins to identify the impact on luciferase expression. Identification of the oxidatively modified DNA base OG to guide BER activity in a gene promoter and impact cellular phenotype ascribes an epigenetic role to OG. PMID:28143930

  19. DNA repair by MGMT, but not AAG, causes a threshold in alkylation-induced colorectal carcinogenesis.

    PubMed

    Fahrer, Jörg; Frisch, Janina; Nagel, Georg; Kraus, Alexander; Dörsam, Bastian; Thomas, Adam D; Reißig, Sonja; Waisman, Ari; Kaina, Bernd

    2015-10-01

    Epidemiological studies indicate that N-nitroso compounds (NOC) are causally linked to colorectal cancer (CRC). NOC induce DNA alkylations, including O (6)-methylguanine (O (6)-MeG) and N-methylated purines, which are repaired by O (6)-MeG-DNA methyltransferase (MGMT) and N-alkyladenine-DNA glycosylase (AAG)-initiated base excision repair, respectively. In view of recent evidence of nonlinear mutagenicity for NOC-like compounds, the question arises as to the existence of threshold doses in CRC formation. Here, we set out to determine the impact of DNA repair on the dose-response of alkylation-induced CRC. DNA repair proficient (WT) and deficient (Mgmt (-/-), Aag (-/-) and Mgmt (-/-)/Aag (-/-)) mice were treated with azoxymethane (AOM) and dextran sodium sulfate to trigger CRC. Tumors were quantified by non-invasive mini-endoscopy. A non-linear increase in CRC formation was observed in WT and Aag (-/-) mice. In contrast, a linear dose-dependent increase in tumor frequency was found in Mgmt (-/-) and Mgmt (-/-)/Aag (-/-) mice. The data were corroborated by hockey stick modeling, yielding similar carcinogenic thresholds for WT and Aag (-/-) and no threshold for MGMT lacking mice. O (6)-MeG levels and depletion of MGMT correlated well with the observed dose-response in CRC formation. AOM induced dose-dependently DNA double-strand breaks in colon crypts including Lgr5-positive colon stem cells, which coincided with ATR-Chk1-p53 signaling. Intriguingly, Mgmt (-/-) mice displayed significantly enhanced levels of γ-H2AX, suggesting the usefulness of γ-H2AX as an early genotoxicity marker in the colorectum. This study demonstrates for the first time a non-linear dose-response for alkylation-induced colorectal carcinogenesis and reveals DNA repair by MGMT, but not AAG, as a key node in determining a carcinogenic threshold.

  20. NEIL1 responds and binds to psoralen-induced DNA interstrand crosslinks.

    PubMed

    McNeill, Daniel R; Paramasivam, Manikandan; Baldwin, Jakita; Huang, Jing; Vyjayanti, Vaddadi N; Seidman, Michael M; Wilson, David M

    2013-05-03

    Recent evidence suggests a role for base excision repair (BER) proteins in the response to DNA interstrand crosslinks, which block replication and transcription, and lead to cell death and genetic instability. Employing fluorescently tagged fusion proteins and laser microirradiation coupled with confocal microscopy, we observed that the endonuclease VIII-like DNA glycosylase, NEIL1, accumulates at sites of oxidative DNA damage, as well as trioxsalen (psoralen)-induced DNA interstrand crosslinks, but not to angelicin monoadducts. While recruitment to the oxidative DNA lesions was abrogated by the anti-oxidant N-acetylcysteine, this treatment did not alter the accumulation of NEIL1 at sites of interstrand crosslinks, suggesting distinct recognition mechanisms. Consistent with this conclusion, recruitment of the NEIL1 population variants, G83D, C136R, and E181K, to oxidative DNA damage and psoralen-induced interstrand crosslinks was differentially affected by the mutation. NEIL1 recruitment to psoralen crosslinks was independent of the nucleotide excision repair recognition factor, XPC. Knockdown of NEIL1 in LN428 glioblastoma cells resulted in enhanced recruitment of XPC, a more rapid removal of digoxigenin-tagged psoralen adducts, and decreased cellular sensitivity to trioxsalen plus UVA, implying that NEIL1 and BER may interfere with normal cellular processing of interstrand crosslinks. While exhibiting no enzymatic activity, purified NEIL1 protein bound stably to psoralen interstrand crosslink-containing synthetic oligonucleotide substrates in vitro. Our results indicate that NEIL1 recognizes specifically and distinctly interstrand crosslinks in DNA, and can obstruct the efficient removal of lethal crosslink adducts.

  1. A modified alkaline Comet assay for in vivo detection of oxidative DNA damage in Drosophila melanogaster.

    PubMed

    Shukla, A K; Pragya, P; Chowdhuri, D Kar

    2011-12-24

    Modifications to the alkaline Comet assay by using lesion-specific endonucleases, such as formamidopyrimidine-DNA glycosylase (FPG) and endonuclease III (ENDOIII, also known as Nth), can detect DNA bases with oxidative damage. This modified assay can be used to assess the genotoxic/carcinogenic potential of environmental chemicals. The goal of this study was to validate the ability of this modified assay to detect oxidative stress-induced genotoxicity in Drosophila melanogaster (Oregon R(+)). In this study, we used three well known chemical oxidative stress inducers: hydrogen peroxide (H(2)O(2)), cadmium chloride (CdCl(2)) and copper sulfate (CuSO(4)). Third instar larvae of D. melanogaster were fed various concentrations of the test chemicals (50-200μM) mixed with a standard Drosophila food for 24h. Alkaline Comet assays with and without the FPG and ENDOIII enzymes were performed with midgut cells that were isolated from the control and treated larvae. Our results show a concentration-dependent increase (p<0.05-0.001) in the migration of DNA from the treated larvae. ENDOIII treatment detected more oxidative DNA damage (specifically pyrimidine damage) in the H(2)O(2) exposed larvae compared to FPG or no enzyme treatment (buffer only). In contrast, FPG treatment detected more oxidative DNA damage (specifically purine damage) in CuSO(4) exposed larvae compared to ENDOIII. Although previously reported to be a potent genotoxic agent, CdCl(2) did not induce more oxidative DNA damage than the other test chemicals. Our results show that the modified alkaline Comet assay can be used to detect oxidative stress-induced DNA damage in D. melanogaster and thus may be applicable for in vivo genotoxic assessments of environmental chemicals.

  2. NEIL1 Responds and Binds to Psoralen-induced DNA Interstrand Crosslinks*

    PubMed Central

    McNeill, Daniel R.; Paramasivam, Manikandan; Baldwin, Jakita; Huang, Jing; Vyjayanti, Vaddadi N.; Seidman, Michael M.; Wilson, David M.

    2013-01-01

    Recent evidence suggests a role for base excision repair (BER) proteins in the response to DNA interstrand crosslinks, which block replication and transcription, and lead to cell death and genetic instability. Employing fluorescently tagged fusion proteins and laser microirradiation coupled with confocal microscopy, we observed that the endonuclease VIII-like DNA glycosylase, NEIL1, accumulates at sites of oxidative DNA damage, as well as trioxsalen (psoralen)-induced DNA interstrand crosslinks, but not to angelicin monoadducts. While recruitment to the oxidative DNA lesions was abrogated by the anti-oxidant N-acetylcysteine, this treatment did not alter the accumulation of NEIL1 at sites of interstrand crosslinks, suggesting distinct recognition mechanisms. Consistent with this conclusion, recruitment of the NEIL1 population variants, G83D, C136R, and E181K, to oxidative DNA damage and psoralen-induced interstrand crosslinks was differentially affected by the mutation. NEIL1 recruitment to psoralen crosslinks was independent of the nucleotide excision repair recognition factor, XPC. Knockdown of NEIL1 in LN428 glioblastoma cells resulted in enhanced recruitment of XPC, a more rapid removal of digoxigenin-tagged psoralen adducts, and decreased cellular sensitivity to trioxsalen plus UVA, implying that NEIL1 and BER may interfere with normal cellular processing of interstrand crosslinks. While exhibiting no enzymatic activity, purified NEIL1 protein bound stably to psoralen interstrand crosslink-containing synthetic oligonucleotide substrates in vitro. Our results indicate that NEIL1 recognizes specifically and distinctly interstrand crosslinks in DNA, and can obstruct the efficient removal of lethal crosslink adducts. PMID:23508956

  3. Genotoxicity of the herbicide imazethapyr in mammalian cells by oxidative DNA damage evaluation using the Endo III and FPG alkaline comet assays.

    PubMed

    Soloneski, Sonia; Ruiz de Arcaute, Celeste; Nikoloff, Noelia; Larramendy, Marcelo L

    2017-03-07

    We evaluated the role of oxidative stress in the genotoxic damage induced by imazethapyr (IMZT) and its formulation Pivot® in mammalian CHO-K1 cell line. Using the alkaline comet assay, we observed that a concentration of 0.1 μg/mL of IMZT or Pivot® was able to induce DNA damage by increasing the frequency of damaged nucleoids. To test whether the DNA lesions were caused by oxidative stress, the DNA repair enzymes endonuclease III (Endo III) and formamidopyrimidine-DNA glycosylase (Fpg), which convert base damage to strand breaks, were used. Our results demonstrate that after treatment of CHO-K1 cells with the pure active ingredient as well as the commercial formulation Pivot®, an increase in DNA strand breaks was observed after incubation of both Endo III and Fpg enzymes, indicating that both compounds induce DNA damage involving both pyrimidine and purine-based oxidations, at least in CHO-K1 cells. Our findings confirm the genotoxic potential of IMZT and suggest that this herbicide formulation must be employed with great caution, especially not only for exposed occupational workers but also for other living species.

  4. Studies on the repair of damaged DNA in bacteriophage, bacterial and mammalian systems. Comprehensive report, 1 February 1981-15 September 1983

    SciTech Connect

    Friedberg, E.C.

    1983-01-01

    We have explored the molecular mechanism of the repair of DNA at a number of different levels of biological organization, by investigating bacteriophage, bacterial, yeast and mammalian (including human) cells. We have demonstrated that uv endonuclease of phage T4 not only possesses pyrimidine dimer (PD)-DNA glycosylase activity but also apyrimidinic (AP) endonuclease activity. The demonstration of both activities provided an explanation for the specific endonucleosytic cleavage of DNA at sites of pyrimidine dimers catalyzed by this small protein. A new apurinic/apyrimidinic (AP) endonuclease, specific for sites of of base loss in single stranded DNA has been isolated from E. celi and presumably recognizes these lesions in single stranded regions of duplex DNA. We have partially purified this enzyme and have carried out a preliminary characterization of the activity. We treated xeroderma pigmentosum and normal cells with sodium butyrate in the hope of restoring normal levels of excision repair to the former. Although this result was not obtained, we established that all cells treated with sodium butyrate show enhanced levels of repair synthesis, thus providing a means for increasing the sensitivity of this commonly used technique for measuring DNA repair in mammalian cells in culture.

  5. Compartmentalized self-replication (CSR) selection of Thermococcus litoralis Sh1B DNA polymerase for diminished uracil binding.

    PubMed

    Tubeleviciute, Agne; Skirgaila, Remigijus

    2010-08-01

    The thermostable archaeal DNA polymerase Sh1B from Thermococcus litoralis has a typical uracil-binding pocket, which in nature plays an essential role in preventing the accumulation of mutations caused by cytosine deamination to uracil and subsequent G-C base pair transition to A-T during the genomic DNA replication. The uracil-binding pocket recognizes and binds uracil base in a template strand trapping the polymerase. Since DNA replication stops, the repair systems have a chance to correct the promutagenic event. Archaeal family B DNA polymerases are employed in various PCR applications. Contrary to nature, in PCR the uracil-binding property of archaeal polymerases is disadvantageous and results in decreased DNA amplification yields and lowered sensitivity. Furthermore, in diagnostics qPCR, RT-qPCR and end-point PCR are performed using dNTP mixtures, where dTTP is partially or fully replaced by dUTP. Uracil-DNA glycosylase treatment and subsequent heating of the samples is used to degrade the DNA containing uracil and prevent carryover contamination, which is the main concern in diagnostic laboratories. A thermostable archaeal DNA polymerase with the abolished uracil binding would be a highly desirable and commercially interesting product. An attempt to disable uracil binding in DNA polymerase Sh1B from T. litoralis by generating site-specific mutants did not yield satisfactory results. However, a combination of random mutagenesis of the whole polymerase gene and compartmentalized self-replication was successfully used to select variants of thermostable Sh1B polymerase capable of performing PCR with dUTP instead of dTTP.

  6. Induction and repair of DNA damage measured by the comet assay in human T lymphocytes separated by immunomagnetic cell sorting.

    PubMed

    Bausinger, Julia; Speit, Günter

    2014-11-01

    The comet assay is widely used in human biomonitoring to measure DNA damage in whole blood or isolated peripheral blood mononuclear cells (PBMC) as a marker of exposure to genotoxic agents. Cytogenetic assays with phytohemagglutinin (PHA)-stimulated cultured T lymphocytes are also frequently performed in human biomonitoring. Cytogenetic effects (micronuclei, chromosome aberrations, sister chromatid exchanges) may be induced in vivo but also occur ex vivo during the cultivation of lymphocytes as a consequence of DNA damage present in lymphocytes at the time of sampling. To better understand whether DNA damage measured by the comet assay in PBMC is representative for DNA damage in T cells, we comparatively investigated DNA damage and its repair in PBMC and T cells obtained by immunomagnetic cell sorting. PBMC cultures and T cell cultures were exposed to mutagens with different modes of genotoxic action and DNA damage was measured by the comet assay after the end of a 2h exposure and after 18h post-incubation. The mutagens tested were methyl methanesulfonate (MMS), (±)-anti-B[a]P-7,8-dihydrodiol-9,10-epoxide (BPDE), 4-nitroquinoline-1-oxide (4NQO), styrene oxide and potassium bromate. MMS and potassium bromate were also tested by the modified comet assay with formamido pyrimidine glycosylase (FPG) protein. The results indicate that the mutagens tested induce DNA damage in PBMC and T cells in the same range of concentrations and removal of induced DNA lesions occurs to a comparable extent. Based on these results, we conclude that the comet assay with PBMC is suited to predict DNA damage and its removal in T cells.

  7. DNA ligases.

    PubMed

    Tabor, S

    2001-05-01

    DNA ligases catalyze the formation of phosphodiester bonds between juxtaposed 5' phosphate and a 3'-hydroxyl terminus in duplex DNA. This activity can repair single-stranded nicks in duplex DNA and join duplex DNA restriction fragments having either blunt ends or homologous cohesive ends. Two ligases are used for nucleic acid research and their reaction conditions and applications are described in this unit: E. coli ligase and T4 ligase. These enzymes differ in two important properties. One is the source of energy: T4 ligase uses ATP, while E. coli ligase uses NAD. Another important difference is their ability to ligate blunt ends; under normal reaction conditions, only T4 DNA ligase will ligate blunt ends.

  8. DNA cleavage at the AP site via β-elimination mediated by the AP site-binding ligands.

    PubMed

    Abe, Yukiko S; Sasaki, Shigeki

    2016-02-15

    DNA is continuously damaged by endogenous and exogenous factors such as oxidation and alkylation. In the base excision repair pathway, the damaged nucleobases are removed by DNA N-glycosylase to form the abasic sites (AP sites). The alkylating antitumor agent exhibits cytotoxicity through the formation of the AP site. Therefore blockage or modulation of the AP site repair pathway may enhance the antitumor efficacy of DNA alkylating agents. In this study, we have examined the effects of the nucleobase-polyamine conjugated ligands (G-, A-, C- and T-ligands) on the cleavage of the AP site. The G- and A-ligands cleaved DNA at the AP site by promoting β-elimination in a non-selective manner by the G-ligand, and in a selective manner for the opposing dT by the A-ligand. These results suggest that the nucleobase-polyamine conjugate ligands may have the potential for enhancement of the cytotoxicities of the AP site.

  9. Incorporation of deoxyuridine monophosphate into DNA increases the sister-chromatid exchange yield

    SciTech Connect

    Pardo, E.G.; Hernandez, P.; Gutierrez, C.

    1987-02-01

    The effect of a treatment with 5-fluoro-2'-deoxyuridine (FdUrd) in combination with 2'-deoxyuridine (dUrd) on cell proliferation, incorporation of DNA precursors into DNA and sister-chromatid exchanges (SCEs) has been analyzed in Allium cepa meristem cells. FdUrd in the range 10/sup -9/-5 x 10/sup -7/ M produced a dose- and time-dependent decrease in the amount of cells in mitosis. This inhibitory effect could be reversed by 70-80% in short-term (6 h) experiments, by exogenously supplied dUrd at a concentration of 10/sup -1/ M. However, at the highest FdUrd dose tested (10/sup -7/ M), 10/sup -4/ M dUrd could not reverse the FdUrd effect in long-term experiments as shown by analyzing the kinetics of synchronous cell populations. DNA extracted from cells pulsed with (6-/sup 3/H)dUrd in the presence of FdUrd and 6-amino-uracil (6-AU), an inhibitor of uracil-DNA glycosylase, contained a small amount of label in the form of (6-/sup 3/H)dUMP. Thus the authors conclude that under the experimental conditions, exogenously supplied dUrd may be metabolized intracellularly to 2'-deoxyuridine triphosphate (dUTP) and that this deoxynucleotide may eventually be mis-incorporated into DNA. By analyzing SCE levels in third division chromosomes of cells treated with FdUrd and dUrd during their second cycle, they has scored a 6-fold increase in the reciprocal SCE level which demonstrates that the replication of a dUMP-containing DNA template leads to a higher SCE yield.

  10. Inter-laboratory variation in DNA damage using a standard comet assay protocol.

    PubMed

    Forchhammer, Lykke; Ersson, Clara; Loft, Steffen; Möller, Lennart; Godschalk, Roger W L; van Schooten, Frederik J; Jones, George D D; Higgins, Jennifer A; Cooke, Marcus; Mistry, Vilas; Karbaschi, Mahsa; Collins, Andrew R; Azqueta, Amaya; Phillips, David H; Sozeri, Osman; Routledge, Michael N; Nelson-Smith, Kirsty; Riso, Patrizia; Porrini, Marisa; Matullo, Giuseppe; Allione, Alessandra; Stępnik, Maciej; Steepnik, Maciej; Komorowska, Magdalena; Teixeira, João Paulo; Costa, Solange; Corcuera, Laura-Ana; López de Cerain, Adela; Laffon, Blanca; Valdiglesias, Vanessa; Møller, Peter

    2012-11-01

    There are substantial inter-laboratory variations in the levels of DNA damage measured by the comet assay. The aim of this study was to investigate whether adherence to a standard comet assay protocol would reduce inter-laboratory variation in reported values of DNA damage. Fourteen laboratories determined the baseline level of DNA strand breaks (SBs)/alkaline labile sites and formamidopyrimidine DNA glycosylase (FPG)-sensitive sites in coded samples of mononuclear blood cells (MNBCs) from healthy volunteers. There were technical problems in seven laboratories in adopting the standard protocol, which were not related to the level of experience. Therefore, the inter-laboratory variation in DNA damage was only analysed using the results from laboratories that had obtained complete data with the standard comet assay protocol. This analysis showed that the differences between reported levels of DNA SBs/alkaline labile sites in MNBCs were not reduced by applying the standard assay protocol as compared with the laboratory's own protocol. There was large inter-laboratory variation in FPG-sensitive sites by the laboratory-specific protocol and the variation was reduced when the samples were analysed by the standard protocol. The SBs and FPG-sensitive sites were measured in the same experiment, indicating that the large spread in the latter lesions was the main reason for the reduced inter-laboratory variation. However, it remains worrying that half of the participating laboratories obtained poor results using the standard procedure. This study indicates that future comet assay validation trials should take steps to evaluate the implementation of standard procedures in participating laboratories.

  11. Potent protection of gallic acid against DNA oxidation: results of human and animal experiments.

    PubMed

    Ferk, Franziska; Chakraborty, Asima; Jäger, Walter; Kundi, Michael; Bichler, Julia; Mišík, Miroslav; Wagner, Karl-Heinz; Grasl-Kraupp, Bettina; Sagmeister, Sandra; Haidinger, Gerald; Hoelzl, Christine; Nersesyan, Armen; Dušinská, Maria; Simić, Tatjana; Knasmüller, Siegfried

    2011-10-01

    Gallic acid (3,4,5-trihydroxybenzoic acid, GA) is a constituent of plant derived foods, beverages and herbal remedies. We investigated its DNA protective properties in a placebo controlled human intervention trial in single cell gel electrophoresis experiments. Supplementation of drinking water with GA (12.8 mg/person/d) for three days led to a significant reduction of DNA migration attributable to oxidised pyrimidines (endonuclease III sensitive sites) and oxidised purines (formamidopyrimidine glycosylase sensitive sites) in lymphocytes of healthy individuals by 75% and 64% respectively. Also DNA damage caused by treatment of the cells with reactive oxygen species (ROS) was reduced after GA consumption (by 41%). These effects were paralleled by an increase of the activities of antioxidant enzymes (superoxide dismutase, glutathione peroxidase and glutathion-S-transferase-π) and a decrease of intracellular ROS concentrations in lymphocytes, while no alterations of the total antioxidant capacity (TAC), of malondialdehyde levels in serum and of the urinary excretion of isoprostanes were found. Experiments with rats showed that GA reduces oxidatively damaged DNA in lymphocytes, liver, colon and lungs and protects these organs against γ-irradiation-induced strand breaks and formation of oxidatively damaged DNA-bases. Furthermore, the number of radiation-induced preneoplastic hepatic foci was decreased by 43% after oral administration of the phenolic. Since we did not find alterations of the TAC in plasma and lipid peroxidation of cell membranes but intracellular effects it is likely that the antioxidant properties of GA seen in vivo are not due to direct scavenging of radicals but rather to indirect mechanisms (e.g. protection against ROS via activation of transcription factors). As the amount of GA used in the intervention trial is similar to the daily intake in Middle Europe (18 mg/person/day), our findings indicate that it may contribute to prevention of formation

  12. APE2 Zf-GRF facilitates 3'-5' resection of DNA damage following oxidative stress

    SciTech Connect

    Wallace, Bret D.; Berman, Zachary; Mueller, Geoffrey A.; Lin, Yunfeng; Chang, Timothy; Andres, Sara N.; Wojtaszek, Jessica L.; DeRose, Eugene F.; Appel, C. Denise; London, Robert E.; Yan, Shan; Williams, R. Scott

    2016-12-27

    The Xenopus laevis APE2 (apurinic/apyrimidinic endonuclease 2) nuclease participates in 3'-5' nucleolytic resection of oxidative DNA damage and activation of the ATR-Chk1 DNA damage response (DDR) pathway via ill-defined mechanisms. Here we report that APE2 resection activity is regulated by DNA interactions in its Zf-GRF domain, a region sharing high homology with DDR proteins Topoisomerase 3α (TOP3α) and NEIL3 (Nei-like DNA glycosylase 3), as well as transcription and RNA regulatory proteins, such as TTF2 (transcription termination factor 2), TFIIS, and RPB9. Biochemical and NMR results establish the nucleic acid-binding activity of the Zf-GRF domain. Moreover, an APE2 Zf-GRF X-ray structure and small-angle X-ray scattering analyses show that the Zf-GRF fold is typified by a crescent-shaped ssDNA binding claw that is flexibly appended to an APE2 endonuclease/exonuclease/phosphatase (EEP) catalytic core. Structure-guided Zf-GRF mutations impact APE2 DNA binding and 3'-5' exonuclease processing, and also prevent efficient APE2-dependent RPA recruitment to damaged chromatin and activation of the ATR-Chk1 DDR pathway in response to oxidative stress in Xenopus egg extracts. Collectively, our data unveil the APE2 Zf-GRF domain as a nucleic acid interaction module in the regulation of a key single-strand break resection function of APE2, and also reveal topologic similarity of the Zf-GRF to the zinc ribbon domains of TFIIS and RPB9.

  13. Patenting DNA.

    PubMed

    Bobrow, Martin; Thomas, Sandy

    2002-12-01

    The protection of inventions based on human DNA sequences has been achieved mainly through application of the patent system. Over the past decade, there has been continuing debate about whether this use of intellectual property rights is acceptable. Companies and universities have been active during this period in filing thousands of patent applications. Although many have argued that to claim a DNA sequence in a patent is to claim a discovery, patent law allows discoveries that are useful to be claimed as part of an invention. As the technology to isolate DNA sequences has advanced, the criterion for inventiveness, necessary for any invention to be eligible for filing, has become more difficult to justify in the case of claims to DNA sequences. Moreover, the discovery that a gene is associated with a particular disease is, it is argued, to discover a fact about the world and undeserving of the status of an invention. Careful examination of the grounds for allowing the patenting of DNA sequences as research tools suggests such rewards will rarely be justified. The patenting of DNA sequences as chemical intermediates necessary for the manufacture of therapeutic proteins is, however, reasonable given that the information within the sequence is applied to produce a tangible substance which has application as a medicine. Despite the legal, technical and political complexities of applying the flexibilities with the current law, it is argued that much could be achieved in the area of patenting DNA by raising the thresholds for patentability.

  14. Induction of DNA strand breaks, base lesions and clustered damage sites in hydrated plasmid DNA films by ultrasoft X rays around the phosphorus K edge.

    PubMed

    Yokoya, Akinari; Cunniffe, Siobhan M T; Watanabe, Ritsuko; Kobayashi, Katsumi; O'Neill, Peter

    2009-09-01

    To characterize the DNA damage induced by K-shell ionization of phosphorus atom in DNA backbone on the level of hydration, the yields of DNA strand breaks and base lesions arising from the interaction of ultrasoft X rays with energies around the phosphorus K edge were determined using dry and fully hydrated pUC18 plasmid DNA samples. Base lesions and bistranded clustered DNA damage sites were revealed by postirradiation treatment with the base excision repair proteins endonuclease III (Nth) and formamidopyrimidine-DNA glycosylase (Fpg). The yield of prompt single-strand breaks (SSBs) with dry DNA irradiated at the phosphorus K resonance energy (2153 eV) is about one-third that below the phosphorus K edge (2147 eV). The yields of prompt double-strand breaks (DSBs) were found to be less dependent on the X-ray energy, with the yields being about two times lower when irradiated at 2153 eV. Heat-labile sites were not produced in detectable amounts. The yields of base lesions were dependent on the energy of the X rays, especially when the DNA was fully hydrated. Bistranded clustered DNA damage sites, revealed enzymatically as additional DSBs, were produced in dry as well as in hydrated DNA with all three energies of X rays. The yields of these enzyme-sensitive sites were also lower when irradiated at the phosphorus K resonance energy. On the other hand, the yields of prompt SSBs and enzyme-sensitive sites for the two off-resonance energies were, larger than those determined previously for gamma radiation. The results indicate that the photoelectric effect caused by X rays and dense ionization and excitation events along the tracks of low-energy secondary electrons are more effective at inducing SSBs and enzyme-sensitive sites. The complex types of damage, prompt and enzymatically induced DSBs, are preferentially induced by phosphorus K resonance at 2153 eV rather than simple SSBs and isolated base lesions, particularly in hydrated conditions. It is concluded that not

  15. Induction of the SOS response by hydrogen peroxide in various Escherichia coli mutants with altered protection against oxidative DNA damage.

    PubMed Central

    Goerlich, O; Quillardet, P; Hofnung, M

    1989-01-01

    The induction of the SOS response by H2O2 was measured in Escherichia coli by means of a sfiA::lacZ operon fusion. The effects of mutations in genes involved in DNA repair or DNA metabolism on the SOS response were investigated. We found that in an uvrA mutant, H2O2 induced the SOS response at lower concentrations than in the uvr+ parent strain, indicating that some lesions induced by H2O2 may be repaired by the uvrABC-dependent excision repair system. A nth mutation, yielding deficiency in thymine glycol DNA glycosylase, had no detectable effect on SOS induction, indicating that thymine glycol, a DNA lesion expected to be induced by H2O2, does not participate detectably in the induction of the SOS response by this chemical under our conditions. H2O2 still induced the SOS response in a dnaC(Ts) uvrA double mutant under conditions in which no DNA replication proceeds, suggesting that this chemical induces DNA strand breaks. Induction of the SOS response by H2O2 was also assayed in various mutants affected in genes suspected to be important for protection against oxidative stress. Mutations in the catalase genes, katE and katG, had only minor effects. However, in an oxyR deletion mutant, in which the adaptative response to H2O2 does not occur, SOS induction occurred at much lower H2O2 concentrations than in the oxyR+ parent strain. These results indicate that some enzymes regulated by the oxyR gene are, under our conditions, more important than catalase for protection against the H2O2-induced DNA damages which trigger the SOS response. PMID:2681154

  16. Dancing DNA.

    ERIC Educational Resources Information Center

    Pennisi, Elizabeth

    1991-01-01

    An imaging technique that uses fluorescent dyes and allows scientists to track DNA as it moves through gels or in solution is described. The importance, opportunities, and implications of this technique are discussed. (KR)

  17. DNA sequence context as a determinant of the quantity and chemistry of guanine oxidation produced by hydroxyl radicals and one-electron oxidants.

    PubMed

    Margolin, Yelena; Shafirovich, Vladimir; Geacintov, Nicholas E; DeMott, Michael S; Dedon, Peter C

    2008-12-19

    products. Furthermore, both gamma-radiation and Fe2+-EDTA/H2O2 showed relatively modest effects of sequence context on the proportions of different damage products sensitive to E. coli formamidopyrimidine DNA glycosylase and hot piperidine, although GT-containing sequence contexts displayed subtle biases in damage chemistry (formamidopyrimidine DNA glycosylase/piperidine ratio). Overall, the results are consistent with the known chemistry of guanine oxidation by hydroxyl radical and demonstrate that charge migration plays a relatively minor role in determining the location and chemistry of hydroxyl radical-mediated oxidative damage to guanine in DNA.

  18. DNA adductomics.

    PubMed

    Balbo, Silvia; Turesky, Robert J; Villalta, Peter W

    2014-03-17

    Systems toxicology is a broad-based approach to describe many of the toxicological features that occur within a living system under stress or subjected to exogenous or endogenous exposures. The ultimate goal is to capture an overview of all exposures and the ensuing biological responses of the body. The term exposome has been employed to refer to the totality of all exposures, and systems toxicology investigates how the exposome influences health effects and consequences of exposures over a lifetime. The tools to advance systems toxicology include high-throughput transcriptomics, proteomics, metabolomics, and adductomics, which is still in its infancy. A well-established methodology for the comprehensive measurement of DNA damage resulting from every day exposures is not fully developed. During the past several decades, the (32)P-postlabeling technique has been employed to screen the damage to DNA induced by multiple classes of genotoxicants; however, more robust, specific, and quantitative methods have been sought to identify and quantify DNA adducts. Although triple quadrupole and ion trap mass spectrometry, particularly when using multistage scanning (LC-MS(n)), have shown promise in the field of DNA adductomics, it is anticipated that high-resolution and accurate-mass LC-MS(n) instrumentation will play a major role in assessing global DNA damage. Targeted adductomics should also benefit greatly from improved triple quadrupole technology. Once the analytical MS methods are fully mature, DNA adductomics along with other -omics tools will contribute greatly to the field of systems toxicology.

  19. The ada operon of Mycobacterium tuberculosis encodes two DNA methyltransferases for inducible repair of DNA alkylation damage.

    PubMed

    Yang, Mingyi; Aamodt, Randi M; Dalhus, Bjørn; Balasingham, Seetha; Helle, Ina; Andersen, Pernille; Tønjum, Tone; Alseth, Ingrun; Rognes, Torbjørn; Bjørås, Magnar

    2011-06-10

    The ada operon of Mycobacterium tuberculosis, which encodes a composite protein of AdaA and AlkA and a separate AdaB/Ogt protein, was characterized. M. tuberculosis treated with N-methyl-N'-nitro-N-nitrosoguanidine induced transcription of the adaA-alkA and adaB genes, suggesting that M. tuberculosis mount an inducible response to methylating agents. Survival assays of the methyltransferase defective Escherichia coli mutant KT233 (ada ogt), showed that expression of the adaB gene rescued the alkylation sensitivity. Further, adaB but not adaA-alkA complemented the hypermutator phenotype of KT233. Purified AdaA-AlkA and AdaB possessed methyltransferase activity. These data suggested that AdaB counteract the cytotoxic and mutagenic effect of O(6)-methylguanine, while AdaA-AlkA most likely transfers methyl groups from innocuous methylphosphotriesters. AdaA-AlkA did not possess alkylbase DNA glycosylase activity nor rescue the alkylation sensitivity of the E. coli mutant BK2118 (tag alkA). We propose that AdaA-AlkA is a positive regulator of the adaptive response in M. tuberculosis. It thus appears that the ada operon of M. tuberculosis suppresses the mutagenic effect of alkylation but not the cytotoxic effect of lesions such as 3-methylpurines. Collectively, these data indicate that M. tuberculosis hypermutator strains with defective adaptive response genes might sustain robustness to cytotoxic alkylation DNA damage and confer a selective advantage contributing to host adaptation.

  20. Base damage within single-strand DNA underlies in vivo hypermutability induced by a ubiquitous environmental agent.

    PubMed

    Chan, Kin; Sterling, Joan F; Roberts, Steven A; Bhagwat, Ashok S; Resnick, Michael A; Gordenin, Dmitry A

    2012-01-01

    Chromosomal DNA must be in single-strand form for important transactions such as replication, transcription, and recombination to occur. The single-strand DNA (ssDNA) is more prone to damage than double-strand DNA (dsDNA), due to greater exposure of chemically reactive moieties in the nitrogenous bases. Thus, there can be agents that damage regions of ssDNA in vivo while being inert toward dsDNA. To assess the potential hazard posed by such agents, we devised an ssDNA-specific mutagenesis reporter system in budding yeast. The reporter strains bear the cdc13-1 temperature-sensitive mutation, such that shifting to 37°C results in telomere uncapping and ensuing 5' to 3' enzymatic resection. This exposes the reporter region, containing three closely-spaced reporter genes, as a long 3' ssDNA overhang. We validated the ability of the system to detect mutagenic damage within ssDNA by expressing a modified human single-strand specific cytosine deaminase, APOBEC3G. APOBEC3G induced a high density of substitutions at cytosines in the ssDNA overhang strand, resulting in frequent, simultaneous inactivation of two reporter genes. We then examined the mutagenicity of sulfites, a class of reactive sulfur oxides to which humans are exposed frequently via respiration and food intake. Sulfites, at a concentration similar to that found in some foods, induced a high density of mutations, almost always as substitutions at cytosines in the ssDNA overhang strand, resulting in simultaneous inactivation of at least two reporter genes. Furthermore, sulfites formed a long-lived adducted 2'-deoxyuracil intermediate in DNA that was resistant to excision by uracil-DNA N-glycosylase. This intermediate was bypassed by error-prone translesion DNA synthesis, frequently involving Pol ζ, during repair synthesis. Our results suggest that sulfite-induced lesions in DNA can be particularly deleterious, since cells might not possess the means to repair or bypass such lesions accurately.

  1. A multiplex assay based on encoded microbeads conjugated to DNA NanoBeacons to monitor base excision repair activities by flow cytometry.

    PubMed

    Gines, Guillaume; Saint-Pierre, Christine; Gasparutto, Didier

    2014-08-15

    We reported here a new assay to detect base excision repair activities from purified enzymes, as well as in cell-free extracts. The multiplex format rests upon the encoding of magnetic beads with the fluorophore Alexa 488, thanks to a fast and original procedure. Fluorescently encoded microbeads are subsequently functionalized by lesion-containing DNA NanoBeacons labeled with the fluorophore/quencher pair Cyanine 5/BHQ2. Probes cleavage, induced by targeted enzymes leads to Cyanine 5 signal enhancement, which is finally quantified by flow cytometry. The multiplex assay was applied to the detection of restriction enzymes activities as well as base excision repair processes. Each test requires only 500fmol of DNA substrate, which constitutes great sensitivity compared to other BER functional assays. The present biosensor is able to detect both uracil DNA N-glycosylase (UNG) and AP-endonuclease 1 (APE1) within few nanograms of nuclear extract. Additionally, we demonstrated that the corresponding assay has potential application in DNA repair inhibitor search. Finally, the current multiplexed tool shows several advantages in comparison to other functional BER assays with no need of electrophoretic separation, straightforward, easy and reproducible functionalization of encoded microbeads and a high stability of DNA probes in cell-free extracts.

  2. Evaluation of DNA damage induced by 2 polybrominated diphenyl ether flame retardants (BDE-47 and BDE-209) in SK-N-MC cells.

    PubMed

    Pellacani, Claudia; Buschini, Annamaria; Galati, Serena; Mussi, Francesca; Franzoni, Susanna; Costa, Lucio G

    2012-01-01

    Polybrominated diphenyl ethers (PBDEs) are a class of flame retardants whose levels have increased in the environment and in human tissues in the past decades. Exposure to PBDEs has been associated with developmental neurotoxicity, endocrine dysfunction, and reproductive disorders. In spite of their widespread distribution and potential adverse health effects, only few studies have addressed the potential neurotoxicity of PBDEs. In the present study, we evaluated the cyto- and genotoxicity of 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) and decabrominated diphenyl ether (BDE-209) in human neuroblastoma cells (SK-N-MC). The DNA damage was measured using the alkaline version of the Comet assay, while specific oxidative-generated DNA damage was evaluated by a modified version of the Comet assay with the repair enzyme formamidopyrimidine glycosylase (FPG). The results show that BDE-47 and BDE-209 (5-20 μmol/L) are able to induce DNA damage in human SK-N-MC cells. Pretreatment with the antioxidant melatonin significantly reduced the DNA damage induced by both congeners. The Comet assay carried out in the presence of FPG suggests that both congeners increase purine oxidation. In all cases, BDE-47 was more potent than BDE-209. The results indicate that 2 environmentally relevant PBDEs cause DNA damage which is primarily mediated by the induction of oxidative stress and may contribute to adverse health effects.

  3. A quantitative model of human DNA base excision repair. I. Mechanistic insights.

    PubMed

    Sokhansanj, Bahrad A; Rodrigue, Garry R; Fitch, J Patrick; Wilson, David M

    2002-04-15

    Base excision repair (BER) is a multistep process involving the sequential activity of several proteins that cope with spontaneous and environmentally induced mutagenic and cytotoxic DNA damage. Quantitative kinetic data on single proteins of BER have been used here to develop a mathematical model of the BER pathway. This model was then employed to evaluate mechanistic issues and to determine the sensitivity of pathway throughput to altered enzyme kinetics. Notably, the model predicts considerably less pathway throughput than observed in experimental in vitro assays. This finding, in combination with the effects of pathway cooperativity on model throughput, supports the hypothesis of cooperation during abasic site repair and between the apurinic/apyrimidinic (AP) endonuclease, Ape1, and the 8-oxoguanine DNA glycosylase, Ogg1. The quantitative model also predicts that for 8-oxoguanine and hydrolytic AP site damage, short-patch Polbeta-mediated BER dominates, with minimal switching to the long-patch subpathway. Sensitivity analysis of the model indicates that the Polbeta-catalyzed reactions have the most control over pathway throughput, although other BER reactions contribute to pathway efficiency as well. The studies within represent a first step in a developing effort to create a predictive model for BER cellular capacity.

  4. A quantitative model of human DNA base excision repair. I. mechanistic insights

    PubMed Central

    Sokhansanj, Bahrad A.; Rodrigue, Garry R.; Fitch, J. Patrick; Wilson, David M.

    2002-01-01

    Base excision repair (BER) is a multistep process involving the sequential activity of several proteins that cope with spontaneous and environmentally induced mutagenic and cytotoxic DNA damage. Quantitative kinetic data on single proteins of BER have been used here to develop a mathematical model of the BER pathway. This model was then employed to evaluate mechanistic issues and to determine the sensitivity of pathway throughput to altered enzyme kinetics. Notably, the model predicts considerably less pathway throughput than observed in experimental in vitro assays. This finding, in combination with the effects of pathway cooperativity on model throughput, supports the hypothesis of cooperation during abasic site repair and between the apurinic/apyrimidinic (AP) endonuclease, Ape1, and the 8-oxoguanine DNA glycosylase, Ogg1. The quantitative model also predicts that for 8-oxoguanine and hydrolytic AP site damage, short-patch Polβ-mediated BER dominates, with minimal switching to the long-patch subpathway. Sensitivity analysis of the model indicates that the Polβ-catalyzed reactions have the most control over pathway throughput, although other BER reactions contribute to pathway efficiency as well. The studies within represent a first step in a developing effort to create a predictive model for BER cellular capacity. PMID:11937636

  5. What Is Mitochondrial DNA?

    MedlinePlus

    ... DNA What is mitochondrial DNA? What is mitochondrial DNA? Although most DNA is packaged in chromosomes within ... proteins. For more information about mitochondria and mitochondrial DNA: Molecular Expressions, a web site from the Florida ...

  6. Modulation of the DNA scanning activity of the Micrococcus luteus UV endonuclease

    SciTech Connect

    Hamilton, R.W.; Lloyd, R.S. )

    1989-10-15

    Micrococcus luteus UV endonuclease incises DNA at the sites of ultraviolet (UV) light-induced pyrimidine dimers. The mechanism of incision has been previously shown to be a glycosylic bond cleavage at the 5'-pyrimidine of the dimer followed by an apyrimidine endonuclease activity which cleaves the phosphodiester backbone between the pyrimidines. The process by which M. luteus UV endonuclease locates pyrimidine dimers within a population of UV-irradiated plasmids was shown to occur, in vitro, by a processive or sliding mechanism on non-target DNA as opposed to a distributive or random hit mechanism. Form I plasmid DNA containing 25 dimers per molecule was incubated with M. luteus UV endonuclease in time course reactions. The three topological forms of plasmid DNA generated were analyzed by agarose gel electrophoresis. When the enzyme encounters a pyrimidine dimer, it is significantly more likely to make only the glycosylase cleavage as opposed to making both the glycosylic and phosphodiester bond cleavages. Thus, plasmids are accumulated with many alkaline-labile sites relative to single-stranded breaks. In addition, reactions were performed at both pH 8.0 and pH 6.0, in the absence of NaCl, as well as 25,100, and 250 mM NaCl. The efficiency of the DNA scanning reaction was shown to be dependent on both the ionic strength and pH of the reaction. At low ionic strengths, the reaction was shown to proceed by a processive mechanism and shifted to a distributive mechanism as the ionic strength of the reaction increased. Processivity at pH 8.0 is shown to be more sensitive to increases in ionic strength than reactions performed at pH 6.0.

  7. Whole transcriptome analysis reveals a role for OGG1-initiated DNA repair signaling in airway remodeling

    PubMed Central

    Aguilera-Aguirre, Leopoldo; Hosoki, Koa; Bacsi, Attila; Radák, Zsolt; Sur, Sanjiv; Hegde, Muralidhar L.; Tian, Bing; Saavedra-Molina, Alfredo; Brasier, Allan R.; Ba, Xueqing; Boldogh, Istvan

    2016-01-01

    Reactive oxygen species (ROS) generated by environmental exposures, and endogenously as by-products of respiration, oxidatively modify biomolecules including DNA. Accumulation of ROS-induced DNA damage has been implicated in various diseases that involve inflammatory processes, and efficient DNA repair is considered critical in preventing such diseases. One of the most abundant DNA base lesions is 7,8-dihydro-8-oxoguanine (8-oxoG), which is repaired by the 8-oxoguanine DNA glycosylase 1 (OGG1)-initiated base-excision repair (OGG1-BER) pathway. Recent studies have shown that the OGG1-BER byproduct 8-oxoG base forms a complex with cytosolic OGG1, activating small GTPases and downstream cell signaling in cultured cells and lungs. This implies that persistent OGG1-BER could result in signaling leading to histological changes in airways. To test this, we mimicked OGG1-BER by repeatedly challenging airways with its repair product 8-oxoG base. Gene expression was analyzed by RNA sequencing (RNA-Seq) and qRT-PCR, and datasets were evaluated by gene ontology and statistical tools. RNA-Seq analysis identified 3252 differentially expressed transcripts (2435 up- and 817 downregulated, Z3-fold change). Among the upregulated transcripts, 2080 mRNAs were identified whose encoded protein products were involved in modulation of the actin family cytoskeleton, extracellular matrix, cell adhesion, cadherin, and cell junctions, affecting biological processes such as tissue development, cell-to-cell adhesion, cell communication, and the immune system. These data are supported by histological observations showing epithelial alterations, subepithelial fibrosis, and collagen deposits in the lungs. These data imply that continuous challenge by the environment and consequent OGG1-BER-driven signaling trigger gene expression consistent with airway remodeling. PMID:26187872

  8. Cerebellar oxidative DNA damage and altered DNA methylation in the BTBR T+tf/J mouse model of autism and similarities with human post mortem cerebellum.

    PubMed

    Shpyleva, Svitlana; Ivanovsky, Samuil; de Conti, Aline; Melnyk, Stepan; Tryndyak, Volodymyr; Beland, Frederick A; James, S Jill; Pogribny, Igor P

    2014-01-01

    The molecular pathogenesis of autism is complex and involves numerous genomic, epigenomic, proteomic, metabolic, and physiological alterations. Elucidating and understanding the molecular processes underlying the pathogenesis of autism is critical for effective clinical management and prevention of this disorder. The goal of this study is to investigate key molecular alterations postulated to play a role in autism and their role in the pathophysiology of autism. In this study we demonstrate that DNA isolated from the cerebellum of BTBR T+tf/J mice, a relevant mouse model of autism, and from human post-mortem cerebellum of individuals with autism, are both characterized by an increased levels of 8-oxo-7-hydrodeoxyguanosine (8-oxodG), 5-methylcytosine (5mC), and 5-hydroxymethylcytosine (5hmC). The increase in 8-oxodG and 5mC content was associated with a markedly reduced expression of the 8-oxoguanine DNA-glycosylase 1 (Ogg1) and increased expression of de novo DNA methyltransferases 3a and 3b (Dnmt3a and Dnmt3b). Interestingly, a rise in the level of 5hmC occurred without changes in the expression of ten-eleven translocation expression 1 (Tet1) and Tet2 genes, but significantly correlated with the presence of 8-oxodG in DNA. This finding and similar elevation in 8-oxodG in cerebellum of individuals with autism and in the BTBR T+tf/J mouse model warrant future large-scale studies to specifically address the role of OGG1 alterations in pathogenesis of autism.

  9. Cerebellar Oxidative DNA Damage and Altered DNA Methylation in the BTBR T+tf/J Mouse Model of Autism and Similarities with Human Post Mortem Cerebellum

    PubMed Central

    Shpyleva, Svitlana; Ivanovsky, Samuil; de Conti, Aline; Melnyk, Stepan; Tryndyak, Volodymyr; Beland, Frederick A.; James, S. Jill; Pogribny, Igor P.

    2014-01-01

    The molecular pathogenesis of autism is complex and involves numerous genomic, epigenomic, proteomic, metabolic, and physiological alterations. Elucidating and understanding the molecular processes underlying the pathogenesis of autism is critical for effective clinical management and prevention of this disorder. The goal of this study is to investigate key molecular alterations postulated to play a role in autism and their role in the pathophysiology of autism. In this study we demonstrate that DNA isolated from the cerebellum of BTBR T+tf/J mice, a relevant mouse model of autism, and from human post-mortem cerebellum of individuals with autism, are both characterized by an increased levels of 8-oxo-7-hydrodeoxyguanosine (8-oxodG), 5-methylcytosine (5mC), and 5-hydroxymethylcytosine (5hmC). The increase in 8-oxodG and 5mC content was associated with a markedly reduced expression of the 8-oxoguanine DNA-glycosylase 1 (Ogg1) and increased expression of de novo DNA methyltransferases 3a and 3b (Dnmt3a and Dnmt3b). Interestingly, a rise in the level of 5hmC occurred without changes in the expression of ten-eleven translocation expression 1 (Tet1) and Tet2 genes, but significantly correlated with the presence of 8-oxodG in DNA. This finding and similar elevation in 8-oxodG in cerebellum of individuals with autism and in the BTBR T+tf/J mouse model warrant future large-scale studies to specifically address the role of OGG1 alterations in pathogenesis of autism. PMID:25423485

  10. DNA vaccines

    NASA Astrophysics Data System (ADS)

    Gregersen, Jens-Peter

    2001-12-01

    Immunization by genes encoding immunogens, rather than with the immunogen itself, has opened up new possibilities for vaccine research and development and offers chances for new applications and indications for future vaccines. The underlying mechanisms of antigen processing, immune presentation and regulation of immune responses raise high expectations for new and more effective prophylactic or therapeutic vaccines, particularly for vaccines against chronic or persistent infectious diseases and tumors. Our current knowledge and experience of DNA vaccination is summarized and critically reviewed with particular attention to basic immunological mechanisms, the construction of plasmids, screening for protective immunogens to be encoded by these plasmids, modes of application, pharmacokinetics, safety and immunotoxicological aspects. DNA vaccines have the potential to accelerate the research phase of new vaccines and to improve the chances of success, since finding new immunogens with the desired properties is at least technically less demanding than for conventional vaccines. However, on the way to innovative vaccine products, several hurdles have to be overcome. The efficacy of DNA vaccines in humans appears to be much less than indicated by early studies in mice. Open questions remain concerning the persistence and distribution of inoculated plasmid DNA in vivo, its potential to express antigens inappropriately, or the potentially deleterious ability to insert genes into the host cell's genome. Furthermore, the possibility of inducing immunotolerance or autoimmune diseases also needs to be investigated more thoroughly, in order to arrive at a well-founded consensus, which justifies the widespread application of DNA vaccines in a healthy population.

  11. Ancient DNA

    PubMed Central

    Willerslev, Eske; Cooper, Alan

    2004-01-01

    In the past two decades, ancient DNA research has progressed from the retrieval of small fragments of mitochondrial DNA from a few late Holocene specimens, to large-scale studies of ancient populations, phenotypically important nuclear loci, and even whole mitochondrial genome sequences of extinct species. However, the field is still regularly marred by erroneous reports, which underestimate the extent of contamination within laboratories and samples themselves. An improved understanding of these processes and the effects of damage on ancient DNA templates has started to provide a more robust basis for research. Recent methodological advances have included the characterization of Pleistocene mammal populations and discoveries of DNA preserved in ancient sediments. Increasingly, ancient genetic information is providing a unique means to test assumptions used in evolutionary and population genetics studies to reconstruct the past. Initial results have revealed surprisingly complex population histories, and indicate that modern phylogeographic studies may give misleading impressions about even the recent evolutionary past. With the advent and uptake of appropriate methodologies, ancient DNA is now positioned to become a powerful tool in biological research and is also evolving new and unexpected uses, such as in the search for extinct or extant life in the deep biosphere and on other planets. PMID:15875564

  12. First-In-Class Small Molecule Inhibitors of the Single-Strand DNA Cytosine Deaminase APOBEC3G

    PubMed Central

    Li, Ming; Shandilya, Shivender M.D.; Carpenter, Michael A.; Rathore, Anurag; Brown, William L.; Perkins, Angela L.; Harki, Daniel A.; Solberg, Jonathan; Hook, Derek J.; Pandey, Krishan K.; Parniak, Michael A.; Johnson, Jeffrey R.; Krogan, Nevan J.; Somasundaran, Mohan; Ali, Akbar; Schiffer, Celia A.; Harris, Reuben S.

    2012-01-01

    APOBEC3G is a single-stranded DNA cytosine deaminase that comprises part of the innate immune response to viruses and transposons. Although APOBEC3G is the prototype for understanding the larger mammalian polynucleotide deaminase family, no specific chemical inhibitors exist to modulate its activity. High-throughput screening identified 34 compounds that inhibit APOBEC3G catalytic activity. 20/34 small molecules contained catechol moieties, which are known to be sulfhydryl reactive following oxidation to the orthoquinone. Located proximal to the active site, C321 was identified as the binding site for the inhibitors by a combination of mutational screening, structural analysis, and mass spectrometry. Bulkier substitutions C321-to-L, F, Y, or W mimicked chemical inhibition. A strong specificity for APOBEC3G was evident, as most compounds failed to inhibit the related APOBEC3A enzyme or the unrelated enzymes E. coli uracil DNA glycosylase, HIV-1 RNase H, or HIV-1 integrase. Partial, but not complete, sensitivity could be conferred to APOBEC3A by introducing the entire C321 loop from APOBEC3G. Thus, a structural model is presented in which the mechanism of inhibition is both specific and competitive, by binding a pocket adjacent to the APOBEC3G active site, reacting with C321, and blocking access substrate DNA cytosines. PMID:22181350

  13. Ubiquitylation-dependent regulation of NEIL1 by Mule and TRIM26 is required for the cellular DNA damage response

    PubMed Central

    Edmonds, Matthew J.; Carter, Rachel J.; Nickson, Catherine M.; Williams, Sarah C.; Parsons, Jason L.

    2017-01-01

    Endonuclease VIII-like protein 1 (NEIL1) is a DNA glycosylase involved in initiating the base excision repair pathway, the major cellular mechanism for repairing DNA base damage. Here, we have purified the major E3 ubiquitin ligases from human cells responsible for regulation of NEIL1 by ubiquitylation. Interestingly, we have identified two enzymes that catalyse NEIL1 polyubiquitylation, Mcl-1 ubiquitin ligase E3 (Mule) and tripartite motif 26 (TRIM26). We demonstrate that these enzymes are capable of polyubiquitylating NEIL1 in vitro, and that both catalyse ubiquitylation of NEIL1 within the same C-terminal lysine residues. An siRNA-mediated knockdown of Mule or TRIM26 leads to stabilisation of NEIL1, demonstrating that these enzymes are important in regulating cellular NEIL1 steady state protein levels. Similarly, a mutant NEIL1 protein lacking residues for ubiquitylation is more stable than the wild type protein in vivo. We also demonstrate that cellular NEIL1 protein is induced in response to ionising radiation (IR), although this occurs specifically in a Mule-dependent manner. Finally we show that stabilisation of NEIL1, particularly following TRIM26 siRNA, contributes to cellular resistance to IR. This highlights the importance of Mule and TRIM26 in maintaining steady state levels of NEIL1, but also those required for the cellular DNA damage response. PMID:27924031

  14. First-in-class small molecule inhibitors of the single-strand DNA cytosine deaminase APOBEC3G.

    PubMed

    Li, Ming; Shandilya, Shivender M D; Carpenter, Michael A; Rathore, Anurag; Brown, William L; Perkins, Angela L; Harki, Daniel A; Solberg, Jonathan; Hook, Derek J; Pandey, Krishan K; Parniak, Michael A; Johnson, Jeffrey R; Krogan, Nevan J; Somasundaran, Mohan; Ali, Akbar; Schiffer, Celia A; Harris, Reuben S

    2012-03-16

    APOBEC3G is a single-stranded DNA cytosine deaminase that comprises part of the innate immune response to viruses and transposons. Although APOBEC3G is the prototype for understanding the larger mammalian polynucleotide deaminase family, no specific chemical inhibitors exist to modulate its activity. High-throughput screening identified 34 compounds that inhibit APOBEC3G catalytic activity. Twenty of 34 small molecules contained catechol moieties, which are known to be sulfhydryl reactive following oxidation to the orthoquinone. Located proximal to the active site, C321 was identified as the binding site for the inhibitors by a combination of mutational screening, structural analysis, and mass spectrometry. Bulkier substitutions C321-to-L, F, Y, or W mimicked chemical inhibition. A strong specificity for APOBEC3G was evident, as most compounds failed to inhibit the related APOBEC3A enzyme or the unrelated enzymes E. coli uracil DNA glycosylase, HIV-1 RNase H, or HIV-1 integrase. Partial, but not complete, sensitivity could be conferred to APOBEC3A by introducing the entire C321 loop from APOBEC3G. Thus, a structural model is presented in which the mechanism of inhibition is both specific and competitive, by binding a pocket adjacent to the APOBEC3G active site, reacting with C321, and blocking access to substrate DNA cytosines.

  15. First-In-Class Small Molecule Inhibitors of the Single-Strand DNA Cytosine Deaminase APOBEC3G

    SciTech Connect

    Li, Ming; Shandilya, Shivender M.D.; Carpenter, Michael A.; Rathore, Anurag; Brown, William L.; Perkins, Angela L.; Harki, Daniel A.; Solberg, Jonathan; Hook, Derek J.; Pandey, Krishan K.; Parniak, Michael A.; Johnson, Jeffrey R.; Krogan, Nevan J.; Somasundaran, Mohan; Ali, Akbar; Schiffer, Celia A.; Harris, Reuben S.

    2012-04-04

    APOBEC3G is a single-stranded DNA cytosine deaminase that comprises part of the innate immune response to viruses and transposons. Although APOBEC3G is the prototype for understanding the larger mammalian polynucleotide deaminase family, no specific chemical inhibitors exist to modulate its activity. High-throughput screening identified 34 compounds that inhibit APOBEC3G catalytic activity. Twenty of 34 small molecules contained catechol moieties, which are known to be sulfhydryl reactive following oxidation to the orthoquinone. Located proximal to the active site, C321 was identified as the binding site for the inhibitors by a combination of mutational screening, structural analysis, and mass spectrometry. Bulkier substitutions C321-to-L, F, Y, or W mimicked chemical inhibition. A strong specificity for APOBEC3G was evident, as most compounds failed to inhibit the related APOBEC3A enzyme or the unrelated enzymes E. coli uracil DNA glycosylase, HIV-1 RNase H, or HIV-1 integrase. Partial, but not complete, sensitivity could be conferred to APOBEC3A by introducing the entire C321 loop from APOBEC3G. Thus, a structural model is presented in which the mechanism of inhibition is both specific and competitive, by binding a pocket adjacent to the APOBEC3G active site, reacting with C321, and blocking access to substrate DNA cytosines.

  16. Differential repair of etheno-DNA adducts by bacterial and human AlkB proteins

    PubMed Central

    Zdżalik, Daria; Domańska, Anna; Prorok, Paulina; Kosicki, Konrad; van den Born, Erwin; Falnes, Pål Ø.; Rizzo, Carmelo J.; Guengerich, F. Peter; Tudek, Barbara

    2015-01-01

    AlkB proteins are evolutionary conserved Fe(II)/2-oxoglutarate-dependent dioxygenases, which remove alkyl and highly promutagenic etheno (ε)-DNA adducts, but their substrate specificity has not been fully determined. We developed a novel assay for the repair of ε-adducts by AlkB enzymes using oligodeoxynucleotides with a single lesion and specific DNA glycosylases and AP-endonuclease for identification of the repair products. We compared the repair of three ε-adducts, 1,N6-ethenoadenine (εA), 3,N4-ethenocytosine (εC) and 1,N2-ethenoguanine (1,N2-εG) by nine bacterial and two human AlkBs, representing four different structural groups defined on the basis of conserved amino acids in the nucleotide recognition lid, engaged in the enzyme binding to the substrate. Two bacterial AlkB proteins, MT-2B (from Mycobacterium tuberculosis) and SC-2B (Streptomyces coelicolor) did not repair these lesions in either double-stranded (ds) or single-stranded (ss) DNA. Three proteins, RE-2A (Rhizobium etli), SA-2B (Streptomyces avermitilis), and XC-2B (Xanthomonas campestris) efficiently removed all three lesions from the DNA substrates. Interestingly, XC-2B and RE-2A are the first AlkB proteins shown to be specialized for ε-adducts, since they do not repair methylated bases. Three other proteins, EcAlkB (Escherichia coli), SA-1A, and XC-1B removed εA and εC from ds and ssDNA but were inactive toward 1,N2-εG. SC-1A repaired only εA with the preference for dsDNA. The human enzyme ALKBH2 repaired all three ε-adducts in dsDNA, while only εA and εC in ssDNA and repair was less efficient in ssDNA. ALKBH3 repaired only εC in ssDNA Altogether, we have shown for the first time that some AlkB proteins, namely ALKBH2, RE-2A, SA-2B and XC-2B can repair 1,N2-εG and that ALKBH3 removes only εC from ssDNA. Our results also suggest that the nucleotide recognition lid is not the sole determinant of the substrate specificity of AlkB proteins. PMID:25797601

  17. Mitochondria-targeted Ogg1 and aconitase-2 prevent oxidant-induced mitochondrial DNA damage in alveolar epithelial cells.

    PubMed

    Kim, Seok-Jo; Cheresh, Paul; Williams, David; Cheng, Yuan; Ridge, Karen; Schumacker, Paul T; Weitzman, Sigmund; Bohr, Vilhelm A; Kamp, David W

    2014-02-28

    Mitochondria-targeted human 8-oxoguanine DNA glycosylase (mt-hOgg1) and aconitase-2 (Aco-2) each reduce oxidant-induced alveolar epithelial cell (AEC) apoptosis, but it is unclear whether protection occurs by preventing AEC mitochondrial DNA (mtDNA) damage. Using quantitative PCR-based measurements of mitochondrial and nuclear DNA damage, mtDNA damage was preferentially noted in AEC after exposure to oxidative stress (e.g. amosite asbestos (5-25 μg/cm(2)) or H2O2 (100-250 μM)) for 24 h. Overexpression of wild-type mt-hOgg1 or mt-long α/β 317-323 hOgg1 mutant incapable of DNA repair (mt-hOgg1-Mut) each blocked A549 cell oxidant-induced mtDNA damage, mitochondrial p53 translocation, and intrinsic apoptosis as assessed by DNA fragmentation and cleaved caspase-9. In contrast, compared with controls, knockdown of Ogg1 (using Ogg1 shRNA in A549 cells or primary alveolar type 2 cells from ogg1(-/-) mice) augmented mtDNA lesions and intrinsic apoptosis at base line, and these effects were increased further after exposure to oxidative stress. Notably, overexpression of Aco-2 reduced oxidant-induced mtDNA lesions, mitochondrial p53 translocation, and apoptosis, whereas siRNA for Aco-2 (siAco-2) enhanced mtDNA damage, mitochondrial p53 translocation, and apoptosis. Finally, siAco-2 attenuated the protective effects of mt-hOgg1-Mut but not wild-type mt-hOgg1 against oxidant-induced mtDNA damage and apoptosis. Collectively, these data demonstrate a novel role for mt-hOgg1 and Aco-2 in preserving AEC mtDNA integrity, thereby preventing oxidant-induced mitochondrial dysfunction, p53 mitochondrial translocation, and intrinsic apoptosis. Furthermore, mt-hOgg1 chaperoning of Aco-2 in preventing oxidant-mediated mtDNA damage and apoptosis may afford an innovative target for the molecular events underlying oxidant-induced toxicity.

  18. Increased uracil insertion in DNA is cytotoxic and increases the frequency of mutation, double strand break formation and VSG switching in Trypanosoma brucei.

    PubMed

    Castillo-Acosta, Víctor M; Aguilar-Pereyra, Fernando; Bart, Jean-Mathieu; Navarro, Miguel; Ruiz-Pérez, Luis M; Vidal, Antonio E; González-Pacanowska, Dolores

    2012-12-01

    Deoxyuridine 5'-triphosphate pyrophosphatase (dUTPase) and uracil-DNA glycosylase (UNG) are key enzymes involved in the control of the presence of uracil in DNA. While dUTPase prevents uracil misincorporation by removing dUTP from the deoxynucleotide pool, UNG excises uracil from DNA as a first step of the base excision repair pathway (BER). Here, we report that strong down-regulation of dUTPase in UNG-deficient Trypanosoma brucei cells greatly impairs cell viability in both bloodstream and procyclic forms, underscoring the extreme sensitivity of trypanosomes to uracil in DNA. Depletion of dUTPase activity in the absence of UNG provoked cell cycle alterations, massive dUTP misincorporation into DNA and chromosomal fragmentation. Overall, trypanosomatid cells that lack dUTPase and UNG activities exhibited greater proliferation defects and DNA damage than cells deficient in only one of these activities. To determine the mutagenic consequences of uracil in DNA, mutation rates and spectra were analyzed in dUTPase-depleted cells in the presence of UNG activity. These cells displayed a spontaneous mutation rate 9-fold higher than the parental cell line. Base substitutions at A:T base pairs and deletion frequencies were both significantly enhanced which is consistent with the generation of mutagenic AP sites and DNA strand breaks. The increase in strand breaks conveyed a concomitant increase in VSG switching in vitro. The low tolerance of T. brucei to uracil in DNA emphasizes the importance of uracil removal and regulation of intracellular dUTP pool levels in cell viability and genetic stability and suggests potential strategies to compromise parasite survival.

  19. DNA Music.

    ERIC Educational Resources Information Center

    Miner, Carol; della Villa, Paula

    1997-01-01

    Describes an activity in which students reverse-translate proteins from their amino acid sequences back to their DNA sequences then assign musical notes to represent the adenine, guanine, cytosine, and thymine bases. Data is obtained from the National Institutes of Health (NIH) on the Internet. (DDR)

  20. DNA Investigations.

    ERIC Educational Resources Information Center

    Mayo, Ellen S.; Bertino, Anthony J.

    1991-01-01

    Presents a simulation activity that allow students to work through the exercise of DNA profiling and to grapple with some analytical and ethical questions involving a couple arranging with a surrogate mother to have a baby. Can be used to teach the principles of restriction enzyme digestion, gel electrophoresis, and probe hybridization. (MDH)

  1. Synthetic DNA

    PubMed Central

    O’ Driscoll, Aisling; Sleator, Roy D.

    2013-01-01

    With world wide data predicted to exceed 40 trillion gigabytes by 2020, big data storage is a very real and escalating problem. Herein, we discuss the utility of synthetic DNA as a robust and eco-friendly archival data storage solution of the future. PMID:23514938

  2. Evaluation of the probe dihydrocalcein acetoxymethylester as an indicator of reactive oxygen species formation and comparison with oxidative DNA base modification determined by modified alkaline elution technique.

    PubMed

    Rohnstock, A; Lehmann, L

    2007-12-01

    Reactive oxygen species (ROS) play a predominant role in various diseases and the development of fast and easy methods for the quantification of intracellular ROS represents an important goal. Therefore, the aim of the present study was the evaluation of the fluorogenic probe dihydrocalcein acetoxymethylester (AM) for the detection of intracellular ROS. A flow cytometric method was developed using MCF-7 cells and the kinetics of ester hydrolysis and the cellular distribution and stability of calcein were characterized using calcein AM. Then, MCF-7 cells were challenged with model agents for the generation of singlet oxygen (illumination with visible light), peroxyl and hydroxyl radicals (tert-butylhydroperoxide, tBHP), superoxide anion radicals (potassium dioxide), and the intracellular formation of superoxide anion radicals by redox cycling (menadione) and the formation of calcein was compared with the induction of oxidative DNA base modifications assessed by modified alkaline elution technique. Every model agent significantly induced formamidopyrimidine-DNA glycosylase-sensitive sites (i.e. oxidative DNA base modifications) and most also induced DNA strand breaks. In contrast, exclusively tBHP and illumination with visible light induced the intracellular formation of calcein. In conclusion, though intracellular oxidation of dihydrocalcein represents a fast screening method, it detects a limited spectrum of ROS.

  3. Elevated level of acetylation of APE1 in tumor cells modulates DNA damage repair

    PubMed Central

    Sengupta, Shiladitya; Mantha, Anil K.; Song, Heyu; Roychoudhury, Shrabasti; Nath, Somsubhra; Ray, Sutapa; Bhakat, Kishor K.

    2016-01-01

    Apurinic/apyrimidinic (AP) sites are frequently generated in the genome by spontaneous depurination/depyrimidination or after removal of oxidized/modified bases by DNA glycosylases during the base excision repair (BER) pathway. Unrepaired AP sites are mutagenic and block DNA replication and transcription. The primary enzyme to repair AP sites in mammalian cells is AP endonuclease (APE1), which plays a key role in this repair pathway. Although overexpression of APE1 in diverse cancer types and its association with chemotherapeutic resistance are well documented, alteration of posttranslational modification of APE1 and modulation of its functions during tumorigenesis are largely unknown. Here, we show that both classical histone deacetylase HDAC1 and NAD+-dependent deacetylase SIRT1 regulate acetylation level of APE1 and acetylation of APE1 enhances its AP-endonuclease activity both in vitro and in cells. Modulation of APE1 acetylation level in cells alters AP site repair capacity of the cell extracts in vitro. Primary tumor tissues of diverse cancer types have higher level of acetylated APE1 (AcAPE1) compared to adjacent non-tumor tissue and exhibit enhanced AP site repair capacity. Importantly, in the absence of APE1 acetylation, cells accumulate AP sites in the genome and show increased sensitivity to DNA damaging agents. Together, our study demonstrates that elevation of acetylation level of APE1 in tumor could be a novel mechanism by which cells handle the elevated levels of DNA damages in response to genotoxic stress and maintain sustained proliferation. PMID:27655688

  4. Effects of melatonin on DNA damage induced by cyclophosphamide in rats

    PubMed Central

    Ferreira, S.G.; Peliciari-Garcia, R.A.; Takahashi-Hyodo, S.A.; Rodrigues, A.C.; Amaral, F.G.; Berra, C.M.; Bordin, S.; Curi, R.; Cipolla-Neto, J.

    2013-01-01

    The antioxidant and free radical scavenger properties of melatonin have been well described in the literature. In this study, our objective was to determine the protective effect of the pineal gland hormone against the DNA damage induced by cyclophosphamide (CP), an anti-tumor agent that is widely applied in clinical practice. DNA damage was induced in rats by a single intraperitoneal injection of CP (20 or 50 mg/kg). Animals received melatonin during the dark period for 15 days (1 mg/kg in the drinking water). Rat bone marrow cells were used for the determination of chromosomal aberrations and of formamidopyrimidine DNA glycosylase enzyme (Fpg)-sensitive sites by the comet technique and of Xpf mRNA expression by qRT-PCR. The number (mean ± SE) of chromosomal aberrations in pinealectomized (PINX) animals treated with melatonin and CP (2.50 ± 0.50/100 cells) was lower than that obtained for PINX animals injected with CP (12 ± 1.8/100 cells), thus showing a reduction of 85.8% in the number of chromosomal aberrations. This melatonin-mediated protection was also observed when oxidative lesions were analyzed by the Fpg-sensitive assay, both 24 and 48 h after CP administration. The expression of Xpf mRNA, which is involved in the DNA nucleotide excision repair machinery, was up-regulated by melatonin. The results indicate that melatonin is able to protect bone marrow cells by completely blocking CP-induced chromosome aberrations. Therefore, melatonin administration could be an alternative and effective treatment during chemotherapy. PMID:23471360

  5. Effects of melatonin on DNA damage induced by cyclophosphamide in rats.

    PubMed

    Ferreira, S G; Peliciari-Garcia, R A; Takahashi-Hyodo, S A; Rodrigues, A C; Amaral, F G; Berra, C M; Bordin, S; Curi, R; Cipolla-Neto, J

    2013-03-01

    The antioxidant and free radical scavenger properties of melatonin have been well described in the literature. In this study, our objective was to determine the protective effect of the pineal gland hormone against the DNA damage induced by cyclophosphamide (CP), an anti-tumor agent that is widely applied in clinical practice. DNA damage was induced in rats by a single intraperitoneal injection of CP (20 or 50 mg/kg). Animals received melatonin during the dark period for 15 days (1 mg/kg in the drinking water). Rat bone marrow cells were used for the determination of chromosomal aberrations and of formamidopyrimidine DNA glycosylase enzyme (Fpg)-sensitive sites by the comet technique and of Xpf mRNA expression by qRT-PCR. The number (mean ± SE) of chromosomal aberrations in pinealectomized (PINX) animals treated with melatonin and CP (2.50 ± 0.50/100 cells) was lower than that obtained for PINX animals injected with CP (12 ± 1.8/100 cells), thus showing a reduction of 85.8% in the number of chromosomal aberrations. This melatonin-mediated protection was also observed when oxidative lesions were analyzed by the Fpg-sensitive assay, both 24 and 48 h after CP administration. The expression of Xpf mRNA, which is involved in the DNA nucleotide excision repair machinery, was up-regulated by melatonin. The results indicate that melatonin is able to protect bone marrow cells by completely blocking CP-induced chromosome aberrations. Therefore, melatonin administration could be an alternative and effective treatment during chemotherapy.

  6. DNA nanostructure immobilization to lithographic DNA arrays

    NASA Astrophysics Data System (ADS)

    Negrete, Omar D.

    Although DNA is well known for its genetic role in biology, DNA has also been sought-after as a material for the self-assembly of biological and electronic devices. Examples of DNA nanostructure construction include DNA tiled self-assembly and DNA Origami, where by controlling the sequence and concentration of DNA molecules, the rational design of geometric DNA nanostructures is possible. The assembly of DNA nanostructures takes place in solution and thus they are in disorder and require further organization to construct circuitry or devices. Hence, it is essential for future applications of this technology to develop methods to direct the placement of DNA nanostructures on a surface. To address this challenge my research examines the use of DNA microarrays to capture DNA nanostructures via DNA hybridization. Modern DNA arrays offer a high-density of sequence-specific molecular recognition sites where the addressable placement of DNA nanostructures can be achieved. Using Maskless Array Synthesizer (MAS) technology, I have characterized photolithographic DNA arrays for the hybridization of DNA complexes like large DNA molecules (> 1 kb), DNA-gold nanoparticle conjugates, and DNA Origami. Although modern photolithographic DNA arrays can possess a high-density of sequence (106/cm2), the printed DNA areas are on the order of tens of microns. Thus, I have also developed a method to reduce the DNA array spot size to nanoscale dimensions through the combined use of electron beam lithography with photolithographic DNA synthesis. This work addresses the key elements towards developing a surface patterning technology that takes advantage of DNA base-pairing for both molecular sub-assembly and surface patterning.

  7. Determining the Location of DNA Modification and Mutation Caused by UVB Light in Skin Cancer

    DTIC Science & Technology

    2013-09-01

    will be used in this research. We have purified or obtained the enzymes needed for aim 1 of this research. Using these enzymes we have shown that...commercial glycosylase went off the market so the first step in this task was to generate these enzymes within the lab. UVDE is S. pombe glycosylase that...commercial UVDE enzyme from Trevigen Inc. It was determined that the homemade enzyme worked equivalently to the commercial one when used as the same

  8. Effects of physical exercise training in DNA damage and repair activity in humans with different genetic polymorphisms of hOGG1 (Ser326Cys).

    PubMed

    Soares, Jorge Pinto; Silva, Ana Inês; Silva, Amélia M; Almeida, Vanessa; Teixeira, João Paulo; Matos, Manuela; Gaivão, Isabel; Mota, Maria Paula

    2015-12-01

    The main purpose of this pilot study was to investigate the possible influence of genetic polymorphisms of the hOGG1 (Ser326Cys) gene in DNA damage and repair activity by 8-oxoguanine DNA glycosylase 1 (OGG1 enzyme) in response to 16 weeks of combined physical exercise training. Thirty-two healthy Caucasian men (40-74 years old) were enrolled in this study. All the subjects were submitted to a training of 16 weeks of combined physical exercise. The subjects with Ser/Ser genotype were considered as wild-type group (WTG), and Ser/Cys and Cys/Cys genotype were analysed together as mutant group (MG). We used comet assay in conjunction with formamidopyrimidine DNA glycoslyase (FPG) to analyse both strand breaks and FPG-sensitive sites. DNA repair activity were also analysed with the comet assay technique. Our results showed no differences between DNA damage (both strand breaks and FPG-sensitive sites) and repair activity (OGG1) between genotype groups (in the pre-training condition). Regarding the possible influence of genotype in the response to 16 weeks of physical exercise training, the results revealed a decrease in DNA strand breaks in both groups, a decrease in FPG-sensitive sites and an increase in total antioxidant capacity in the WTG, but no changes were found in MG. No significant changes in DNA repair activity was observed in both genotype groups with physical exercise training. This preliminary study suggests the possibility of different responses in DNA damage to the physical exercise training, considering the hOGG1 Ser326Cys polymorphism.

  9. Prokaryotic DNA ligases unwind superhelical DNA.

    PubMed

    Ivanchenko, M; van Holde, K; Zlatanova, J

    1996-09-13

    We have studied the effect on DNA topology of binding of prokaryotic DNA ligases (T4 and E. coli) to superhelical or nicked circular DNA. Performing topoisomerase I-mediated relaxation in the presence of increasing amounts of T4 ligase led to a shift in the topoisomer distribution to increasingly more negative values. This result suggested that T4 ligase unwound the DNA and was further substantiated by ligation of nicked circular molecules by E. coli DNA ligase in the presence of increasing amounts of T4 ligase. Such an experiment was possible since the two DNA ligases require different cofactors for enzymatic activity. Performing a similar experiment with reverse partners, using E. coli DNA ligase as ligand, and T4 ligase as sealing agent, we observed that the E. coli enzyme also unwound the DNA. Thus, prokaryotic DNA ligases can be added to an ever-growing list of DNA-binding proteins that unwind the DNA upon binding.

  10. Lower oxidative DNA damage despite greater ROS production in muscles from rats selectively bred for high running capacity.

    PubMed

    Tweedie, Constance; Romestaing, Caroline; Burelle, Yan; Safdar, Adeel; Tarnopolsky, Mark A; Seadon, Scott; Britton, Steven L; Koch, Lauren G; Hepple, Russell T

    2011-03-01

    Artificial selection in rat has yielded high-capacity runners (HCR) and low-capacity runners (LCR) that differ in intrinsic (untrained) aerobic exercise ability and metabolic disease risk. To gain insight into how oxygen metabolism may have been affected by selection, we compared mitochondrial function, oxidative DNA damage (8-dihydroxy-guanosine; 8dOHG), and antioxidant enzyme activities in soleus muscle (Sol) and gastrocnemius muscle (Gas) of adult and aged LCR vs. HCR rats. In Sol of adult HCR rats, maximal ADP-stimulated respiration was 37% greater, whereas in Gas of adult HCR rats, there was a 23% greater complex IV-driven respiratory capacity and 54% greater leak as a fraction of electron transport capacity (suggesting looser mitochondrial coupling) vs. LCR rats. H(2)O(2) emission per gram of muscle was 24-26% greater for both muscles in adult HCR rats vs. LCR, although H(2)O(2) emission in Gas was 17% lower in HCR, after normalizing for citrate synthase activity (marker of mitochondrial content). Despite greater H(2)O(2) emission, 8dOHG levels were 62-78% lower in HCR rats due to 62-96% higher superoxide dismutase activity in both muscles and 47% higher catalase activity in Sol muscle in adult HCR rats, with no evidence for higher 8 oxoguanine glycosylase (OGG1; DNA repair enzyme) protein expression. We conclude that genetic segregation for high running capacity has generated a molecular network of cellular adaptations, facilitating a superior response to oxidative stress.

  11. Ebselen attenuates oxidative DNA damage and enhances its repair activity in the thalamus after focal cortical infarction in hypertensive rats.

    PubMed

    He, Meixia; Xing, Shihui; Yang, Bo; Zhao, Liqun; Hua, Haiying; Liang, Zhijian; Zhou, Wenliang; Zeng, Jinsheng; Pei, Zhong

    2007-11-21

    Oxidative DNA damage has been proposed to be a major contributor to focal cerebral ischemic injury. However, little is known about the role of oxidative DNA damage in remote damage secondary to the primary infarction. In the present study, we investigated oxidative damage within the ventroposterior nucleus (VPN) after distal middle cerebral artery occlusion (MCAO) in hypertensive rats. We also examined the possible protective effect of ebselen, one glutathione peroxidase mimic, on delayed degeneration in the VPN after distal MCAO. Neuronal damage in the ipsilateral VPN was examined by Nissl staining. Oxidative DNA damage and base repair enzyme activity were assessed by analyzing immunoreactivity of 8-hydroxy-2'-deoxyguanosine (8-ohdG) and 8-oxoguanine DNA glycosylase (OGG1), respectively. The number of intact neurons in the ipsilateral VPN decreased by 52% compared to the contralateral side in ischemia group 2 weeks after distal cerebral cortical infarction. The immunoreactivity of 8-ohdG significantly increased while OGG1 immunoreactivity significantly decreased in the ipsilateral VPN 2 weeks after distal cortical infarction (all p<0.01). Compared with vehicle treatment, ebselen significantly attenuated the neuron loss, ameliorated ischemia-induced increase in 8-ohdG level as well as decrease in OGG1 level within the ipsilateral VPN (all p<0.01). OGG1 was further demonstrated to mainly express in neurons. These findings strongly suggest that oxidative DNA damage may be involved in the delayed neuronal death in the VPN region following distal MCAO. Furthermore, ebselen protects against the delayed damage in the VPN when given at 24 h following distal MCAO.

  12. Oxidatively Damaged DNA in Rats Exposed by Oral Gavage to C60 Fullerenes and Single-Walled Carbon Nanotubes

    PubMed Central

    Folkmann, Janne K.; Risom, Lotte; Jacobsen, Nicklas R.; Wallin, Håkan; Loft, Steffen; Møller, Peter

    2009-01-01

    Background C60 fullerenes and single-walled carbon nanotubes (SWCNT) are projected to be used in medicine and consumer products with potential human exposure. The hazardous effects of these particles are expected to involve oxidative stress with generation of oxidatively damaged DNA that might be the initiating event in the development of cancer. Objective In this study we investigated the effect of a single oral administration of C60 fullerenes and SWCNT. Methods We measured the level of oxidative damage to DNA as the premutagenic 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxodG) in the colon mucosa, liver, and lung of rats after intragastric administration of pristine C60 fullerenes or SWCNT (0.064 or 0.64 mg/kg body weight) suspended in saline solution or corn oil. We investigated the regulation of DNA repair systems toward 8-oxodG in liver and lung tissue. Results Both doses of SWCNT increased the levels of 8-oxodG in liver and lung. Administration of C60 fullerenes increased the hepatic level of 8-oxodG, whereas only the high dose generated 8-oxodG in the lung. We detected no effects on 8-oxodG in colon mucosa. Suspension of particles in saline solution or corn oil yielded a similar extent of genotoxicity, whereas corn oil per se generated more genotoxicity than the particles. Although there was increased mRNA expression of 8-oxoguanine DNA glycosylase in the liver of C60 fullerene-treated rats, we found no significant increase in repair activity. Conclusions Oral exposure to low doses of C60 fullerenes and SWCNT is associated with elevated levels of 8-oxodG in the liver and lung, which is likely to be caused by a direct genotoxic ability rather than an inhibition of the DNA repair system. PMID:19479010

  13. [The formation of 8-oxoguanine and its oxidative products in DNA in vitro at 37 degrees C].

    PubMed

    Smirnova, V S; Gudkov, S V; Chernikov, A V; Bruskov, V I

    2005-01-01

    The content of 8-oxoguanine, a biomarker of DNA damage by the action of reactive oxygen species, in native and denatured DNA upon heating at 37 degrees C was studied by the enzyme-linked immunosorbent assay using monoclonal antibodies against 8-oxoguanine. It was found that the content of 8-oxoguanine changes with time in a complicated multiphase manner, the maximum changes being as great as twofold. The production of hydrogen peroxide in water and 1 mM PBS, pH 6.8, at 37 degrees C over a period of 50 h was determined by the method of enhanced chemiluminescence in a peroxide-luminol-p-iodophenol system. The generation of hydrogen peroxide also changed in a complicated multiphase manner. After heating the DNA at 80 degrees C for 24 h, guanine oxidation products were excised by 8-oxoguanine-DNA-glycosylase. The products were separated and analyzed by liquid column chromatography on Sephadex LH-20 and Toyopearl HW-40 gel. The products were identified from UV adsorption spectra. The results indicated the generation of reactive oxygen species at 37 degrees C, which leads both to the generation of 8-oxoguanine in DNA and its elimination as a result of its further oxidation. The oxidation of 8-oxoguanine was accompanied by the formation of a number of unstable products of further oxidation of 8-oxoguanine. Among these products, aminoimidazolone, spiroiminodigidantoin, and diiminoimidazole were identified from UV spectra. The appearance of the products of further oxidation of 8-oxoguanine explains the origin of G : C --> C : G transversions by the action of reactive oxygen species.

  14. Methanol exposure does not produce oxidatively damaged DNA in lung, liver or kidney of adult mice, rabbits or primates

    SciTech Connect

    McCallum, Gordon P.; Siu, Michelle; Sweeting, J. Nicole; Wells, Peter G.

    2011-01-15

    In vitro and in vivo genotoxicity tests indicate methanol (MeOH) is not mutagenic, but carcinogenic potential has been claimed in one controversial long-term rodent cancer bioassay that has not been replicated. To determine whether MeOH could indirectly damage DNA via reactive oxygen species (ROS)-mediated mechanisms, we treated male CD-1 mice, New Zealand white rabbits and cynomolgus monkeys with MeOH (2.0 g/kg ip) and 6 h later assessed oxidative damage to DNA, measured as 8-oxo-2'-deoxyguanosine (8-oxodG) by HPLC with electrochemical detection. We found no MeOH-dependent increases in 8-oxodG in lung, liver or kidney of any species. Chronic treatment of CD-1 mice with MeOH (2.0 g/kg ip) daily for 15 days also did not increase 8-oxodG levels in these organs. These results were corroborated in DNA repair-deficient oxoguanine glycosylase 1 (Ogg1) knockout (KO) mice, which accumulated 8-oxodG in lung, kidney and liver with age, but exhibited no increase following MeOH, despite a 2-fold increase in renal 8-oxodG in Ogg1 KO mice following treatment with a ROS-initiating positive control, the renal carcinogen potassium bromate (KBrO{sub 3}; 100 mg/kg ip). These observations suggest that MeOH exposure does not promote the accumulation of oxidatively damaged DNA in lung, kidney or liver, and that environmental exposure to MeOH is unlikely to initiate carcinogenesis in these organs by DNA oxidation.

  15. Benzene-derived N2-(4-hydroxyphenyl)-deoxyguanosine adduct: UvrABC incision and its conformation in DNA

    SciTech Connect

    Hang, Bo; Rodriguez, Ben; Yang, Yanu; Guliaev, Anton B.; Chenna, Ahmed

    2010-06-14

    Benzene, a ubiquitous human carcinogen, forms DNA adducts through its metabolites such as p-benzoquinone (p-BQ) and hydroquinone (HQ). N(2)-(4-Hydroxyphenyl)-2'-deoxyguanosine (N(2)-4-HOPh-dG) is the principal adduct identified in vivo by (32)P-postlabeling in cells or animals treated with p-BQ or HQ. To study its effect on repair specificity and replication fidelity, we recently synthesized defined oligonucleotides containing a site-specific adduct using phosphoramidite chemistry. We here report the repair of this adduct by Escherichia coli UvrABC complex, which performs the initial damage recognition and incision steps in the nucleotide excision repair (NER) pathway. We first showed that the p-BQ-treated plasmid was efficiently cleaved by the complex, indicating the formation of DNA lesions that are substrates for NER. Using a 40-mer substrate, we found that UvrABC incises the DNA strand containing N(2)-4-HOPh-dG in a dose- and time-dependent manner. The specificity of such repair was also compared with that of DNA glycosylases and damage-specific endonucleases of E. coli, both of which were found to have no detectable activity toward N(2)-4-HOPh-dG. To understand why this adduct is specifically recognized and processed by UvrABC, molecular modeling studies were performed. Analysis of molecular dynamics trajectories showed that stable G:C-like hydrogen bonding patterns of all three Watson-Crick hydrogen bonds are present within the N(2)-4-HOPh-G:C base pair, with the hydroxyphenyl ring at an almost planar position. In addition, N(2)-4-HOPh-dG has a tendency to form more stable stacking interactions than a normal G in B-type DNA. These conformational properties may be critical in differential recognition of this adduct by specific repair enzymes.

  16. Aberrant repair of etheno-DNA adducts in leukocytes and colon tissue of colon cancer patients.

    PubMed

    Obtułowicz, Tomasz; Winczura, Alicja; Speina, Elzbieta; Swoboda, Maja; Janik, Justyna; Janowska, Beata; Cieśla, Jarosław M; Kowalczyk, Paweł; Jawien, Arkadiusz; Gackowski, Daniel; Banaszkiewicz, Zbigniew; Krasnodebski, Ireneusz; Chaber, Andrzej; Olinski, Ryszard; Nair, Jagadesaan; Bartsch, Helmut; Douki, Thierry; Cadet, Jean; Tudek, Barbara

    2010-09-15

    To assess the role of lipid peroxidation-induced DNA damage and repair in colon carcinogenesis, the excision rates and levels of 1,N(6)-etheno-2'-deoxyadenosine (epsilondA), 3,N(4)-etheno-2'-deoxycytidine (epsilondC), and 1,N(2)-etheno-2'-deoxyguanosine (1,N(2)-epsilondG) were analyzed in polymorphic blood leukocytes (PBL) and resected colon tissues of 54 colorectal carcinoma (CRC) patients and PBL of 56 healthy individuals. In PBL the excision rates of 1,N(6)-ethenoadenine (epsilonAde) and 3,N(4)-ethenocytosine (epsilonCyt), measured by the nicking of oligodeoxynucleotide duplexes with single lesions, and unexpectedly also the levels of epsilondA and 1,N(2)-epsilondG, measured by LC/MS/MS, were lower in CRC patients than in controls. In contrast the mRNA levels of repair enzymes, alkylpurine- and thymine-DNA glycosylases and abasic site endonuclease (APE1), were higher in PBL of CRC patients than in those of controls, as measured by QPCR. In the target colon tissues epsilonAde and epsilonCyt excision rates were higher, whereas the epsilondA and epsilondC levels in DNA, measured by (32)P-postlabeling, were lower in tumor than in adjacent colon tissue, although a higher mRNA level was observed only for APE1. This suggests that during the onset of carcinogenesis, etheno adduct repair in the colon seems to be under a complex transcriptional and posttranscriptional control, whereby deregulation may act as a driving force for malignancy.

  17. Dioxin induces Ahr-dependent robust DNA demethylation of the Cyp1a1 promoter via Tdg in the mouse liver

    NASA Astrophysics Data System (ADS)

    Amenya, Hesbon Z.; Tohyama, Chiharu; Ohsako, Seiichiroh

    2016-10-01

    The aryl hydrocarbon receptor (Ahr) is a highly conserved nuclear receptor that plays an important role in the manifestation of toxicity induced by polycyclic aromatic hydrocarbons. As a xenobiotic sensor, Ahr is involved in chemical biotransformation through activation of drug metabolizing enzymes. The activated Ahr cooperates with coactivator complexes to induce epigenetic modifications at target genes. Thus, it is conceivable that 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a potent Ahr ligand, may elicit robust epigenetic changes in vivo at the Ahr target gene cytochrome P450 1a1 (Cyp1a1). A single dose of TCDD administered to adult mice induced Ahr-dependent CpG hypomethylation, changes in histone modifications, and thymine DNA glycosylase (Tdg) recruitment at the Cyp1a1 promoter in the liver within 24 hrs. These epigenetic changes persisted until 40 days post-TCDD treatment and there was Cyp1a1 mRNA hyperinduction upon repeat administration of TCDD at this time-point. Our demethylation assay using siRNA knockdown and an in vitro methylated plasmid showed that Ahr, Tdg, and the ten-eleven translocation methyldioxygenases Tet2 and Tet3 are required for the TCDD-induced DNA demethylation. These results provide novel evidence of Ahr-driven active DNA demethylation and epigenetic memory. The epigenetic alterations influence response to subsequent chemical exposure and imply an adaptive mechanism to xenobiotic stress.

  18. Evidences of DNA and chromosomal damage induced by the mancozeb-based fungicide Mancozan(®) in fish (Anguilla anguilla L.).

    PubMed

    Marques, Ana; Rego, Andreia; Guilherme, Sofia; Gaivão, Isabel; Santos, Maria Ana; Pacheco, Mário

    2016-10-01

    The formulation Mancozan(®), containing mancozeb as active ingredient, is among the most widely used fungicides. Although mancozeb has been detected in surface waters, studies addressing the genotoxic risk to fish arising from the use of this formulation, testing environmentally realistic concentrations, are absent from the literature. Hence, this work aimed to investigate the DNA and chromosome damaging potential of Mancozan(®) (0.29 and 2.9μgL(-1)) in the European eel (Anguilla anguilla L.), after a short-term exposure (3days), through the adoption of the comet and the erythrocytic nuclear abnormality (ENA) assays. In addition, it was intended to elucidate the subjacent damage mechanisms, improving the comet assay with the adoption of the endonucleases formamidopyrimidine DNA glycosylase (FPG) and endonuclease III (EndoIII), which detect oxidized bases. The highest Mancozan(®) concentration was able to affect the DNA integrity (comet assay), while the adoption of endonucleases pointed out an oxidative cause to the damage. Regarding the chromosomal damage (ENA assay), both concentrations displayed significant effects, revealing the clastogenic and/or aneugenic properties of Mancozan(®). Furthermore, the two genotoxic endpoints were significantly correlated. Overall, the results revealed a genetic hazard to fish inhabiting aquatic systems contaminated by Mancozan(®) and strongly recommend the development of biomonitoring and regulatory policies regarding the utilization of this agrochemical.

  19. Dietary folate suppresses DMH-induced colon carcinogenesis in a rat model and affects DMH-induced expression of four DNA repair enzymes.

    PubMed

    Sadik, Nermin A H; Shaker, Olfat G

    2012-01-01

    This study investigated the potential role of folate in the dimethylhydrazine (DMH) colon cancer model in male Wistar rats. For induction of colon cancer, group 1 rats were injected subcutaneously with 30 mg DMH/kg body weight weekly for 30 wk. Group 2 received DMH vehicle. Group 3 rats received DMH as in Group 1 but their diet was supplemented with 8 mg folate/kg diet. Group 4 was fed diet supplemented with 8 mg folate/kg diet. Upregulation of DNA damage repair genes Apurinic/apyrimidinic endonuclease 1, X-ray repair complementing defective repair in Chinese hamster cells 5, 8-oxoguanine-DNA glycosylase, and proliferating cell nuclear antigen, associated with a reduction of folic acid level was observed in colons of DMH group. Reductions of these gene upregulations and a significant increase of colonic folic acid level occurred in the DMH group supplemented with folic acid and this group also had significant inhibition of tumor incidence, normal survival rate and histologically nearly normal colonic architecture. It can be concluded that folate supplementation exerts a potent protective effect on rat colon carcinogenesis via significant modulation of DNA repair, providing a mechanism by which it plays a role in the etiology of human cancer.

  20. Low-level laser irradiation alters mRNA expression from genes involved in DNA repair and genomic stabilization in myoblasts

    NASA Astrophysics Data System (ADS)

    Trajano, L. A. S. N.; Sergio, L. P. S.; Silva, C. L.; Carvalho, L.; Mencalha, A. L.; Stumbo, A. C.; Fonseca, A. S.

    2016-07-01

    Low-level lasers are used for the treatment of diseases in soft and bone tissues, but few data are available regarding their effects on genomic stability. In this study, we investigated mRNA expression from genes involved in DNA repair and genomic stabilization in myoblasts exposed to low-level infrared laser. C2C12 myoblast cultures in different fetal bovine serum concentrations were exposed to low-level infrared laser (10, 35 and 70 J cm-2), and collected for the evaluation of DNA repair gene expression. Laser exposure increased gene expression related to base excision repair (8-oxoguanine DNA glycosylase and apurinic/apyrimidinic endonuclease 1), nucleotide excision repair (excision repair cross-complementation group 1 and xeroderma pigmentosum C protein) and genomic stabilization (ATM serine/threonine kinase and tumor protein p53) in normal and low fetal bovine serum concentrations. Results suggest that genomic stability could be part of a biostimulation effect of low-level laser therapy in injured muscles.

  1. Dioxin induces Ahr-dependent robust DNA demethylation of the Cyp1a1 promoter via Tdg in the mouse liver

    PubMed Central

    Amenya, Hesbon Z.; Tohyama, Chiharu; Ohsako, Seiichiroh

    2016-01-01

    The aryl hydrocarbon receptor (Ahr) is a highly conserved nuclear receptor that plays an important role in the manifestation of toxicity induced by polycyclic aromatic hydrocarbons. As a xenobiotic sensor, Ahr is involved in chemical biotransformation through activation of drug metabolizing enzymes. The activated Ahr cooperates with coactivator complexes to induce epigenetic modifications at target genes. Thus, it is conceivable that 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a potent Ahr ligand, may elicit robust epigenetic changes in vivo at the Ahr target gene cytochrome P450 1a1 (Cyp1a1). A single dose of TCDD administered to adult mice induced Ahr-dependent CpG hypomethylation, changes in histone modifications, and thymine DNA glycosylase (Tdg) recruitment at the Cyp1a1 promoter in the liver within 24 hrs. These epigenetic changes persisted until 40 days post-TCDD treatment and there was Cyp1a1 mRNA hyperinduction upon repeat administration of TCDD at this time-point. Our demethylation assay using siRNA knockdown and an in vitro methylated plasmid showed that Ahr, Tdg, and the ten-eleven translocation methyldioxygenases Tet2 and Tet3 are required for the TCDD-induced DNA demethylation. These results provide novel evidence of Ahr-driven active DNA demethylation and epigenetic memory. The epigenetic alterations influence response to subsequent chemical exposure and imply an adaptive mechanism to xenobiotic stress. PMID:27713569

  2. Oxidative DNA damage and augmentation of poly(ADP-ribose) polymerase/nuclear factor-kappa B signaling in patients with type 2 diabetes and microangiopathy.

    PubMed

    Adaikalakoteswari, Antonysunil; Rema, Mohan; Mohan, Viswanathan; Balasubramanyam, Muthuswamy

    2007-01-01

    Although oxidative stress and the subsequent DNA damage is one of the obligatory signals for poly(ADP-ribose) polymerase (PARP) activation and nuclear factor-kappa B (NFkappaB) alterations, these molecular aspects have not been collectively examined in epidemiological and clinical settings. Therefore, this study attempts to assess the oxidative DNA damage and its downstream effector signals in peripheral blood lymphocytes from Type 2 diabetes subjects without and with microangiopathy along with age-matched non-diabetic subjects. The basal DNA damage, lipid peroxidation and protein carbonyl content were significantly (p<0.05) higher in patients with and without microangiopathy compared to control subjects. Formamido Pyrimidine Glycosylase (FPG)-sensitive DNA strand breaks which represents reliable indicator of oxidative DNA damage were also significantly (p<0.001) higher in diabetic patients with (19.41+/-2.5) and without microangiopathy (16.53+/-2.0) compared to control subjects (1.38+/-0.85). Oxidative DNA damage was significantly correlated to poor glycemic control. PARP mRNA expression and PARP activity were significantly (p<0.05) increased in cells from diabetic patients with (0.31+/-0.03 densitometry units; 0.22+/-0.02PARPunits/mgprotein, respectively) and without (0.35+/-0.02; 0.42+/-0.05) microangiopathy compared to control (0.19+/-0.02; 0.11+/-0.02) subjects. Diabetic subjects with and without microangiopathy exhibited a significantly (p<0.05) higher (80%) NFkappaB binding activity compared to control subjects. In diabetic patients, FPG-sensitive DNA strand breaks correlated positively with PARP gene expression, PARP activity and NFkappaB binding activity. This study provides a comprehensive molecular evidence for increased oxidative stress and genomic instability in Type 2 diabetic subjects even prior to vascular pathology and hence reveals a window of opportunity for early therapeutic intervention.

  3. Chemical repair of base lesions, AP-sites, and strand breaks on plasmid DNA in dilute aqueous solution by ascorbic acid

    SciTech Connect

    Hata, Kuniki; Urushibara, Ayumi; Yamashita, Shinichi; Shikazono, Naoya; Yokoya, Akinari; Katsumura, Yosuke

    2013-05-03

    Highlights: •We report a novel mechanism of radiation protection of DNA by chemical activity of ascorbic acid. •The “chemical repair” of DNA damage was revealed using biochemical assay and chemical kinetics analysis. •We found that ascorbic acid significantly repairs precursors of nucleobase lesions and abasic sites. •However, ascorbic acid seldom repairs precursors of DNA-strand breaks. -- Abstract: We quantified the damage yields produced in plasmid DNA by γ-irradiation in the presence of low concentrations (10–100 μM) of ascorbic acid, which is a major antioxidant in living systems, to clarify whether it chemically repairs radiation damage in DNA. The yield of DNA single strand breaks induced by irradiation was analyzed with agarose gel electrophoresis as conformational changes in closed circular plasmids. Base lesions and abasic sites were also observed as additional conformational changes by treating irradiated samples with glycosylase proteins. By comparing the suppression efficiencies to the induction of each DNA lesion, in addition to scavenging of the OH radicals derived from water radiolysis, it was found that ascorbic acid promotes the chemical repair of precursors of AP-sites and base lesions more effectively than those of single strand breaks. We estimated the efficiency of the chemical repair of each lesion using a kinetic model. Approximately 50–60% of base lesions and AP-sites were repaired by 10 μM ascorbic acid, although strand breaks were largely unrepaired by ascorbic acid at low concentrations. The methods in this study will provide a route to understanding the mechanistic aspects of antioxidant activity in living systems.

  4. DNA nanostructure meets nanofabrication.

    PubMed

    Zhang, Guomei; Surwade, Sumedh P; Zhou, Feng; Liu, Haitao

    2013-04-07

    Recent advances in DNA nanotechnology have made it possible to construct DNA nanostructures of almost arbitrary shapes with 2-3 nm of precision in their dimensions. These DNA nanostructures are ideal templates for bottom-up nanofabrication. This review highlights the challenges and recent advances in three areas that are directly related to DNA-based nanofabrication: (1) fabrication of large scale DNA nanostructures; (2) pattern transfer from DNA nanostructure to an inorganic substrate; and (3) directed assembly of DNA nanostructures.

  5. DNA damage in wounded, hypoxic and acidotic human skin fibroblast cell cultures after low laser irradiation

    NASA Astrophysics Data System (ADS)

    Hawkins Evans, D.; Mbene, A.; Zungu, I.; Houreld, N.; Abrahamse, H.

    2009-02-01

    Phototherapy has become more popular and widely used in the treatment of a variety of medical conditions. To ensure sound results as evidence of its effectiveness, well designed experiments must be conducted when determining the effect of phototherapy. Cell culture models such as hypoxic, acidotic and wounded cell cultures simulating different disease conditions including ischemic heart disease, diabetes and wound healing were used to determine the effect of laser irradiation on the genetic integrity of the cell. Even though phototherapy has been found to be beneficial in a wide spectrum of conditions, it has been shown to induce DNA damage. However, this damage appears to be repairable. The risk lies in the fact that phototherapy may help the medical condition initially but damage DNA at the same time leaving undetected damage that may result in late onset, more severe, induced medical conditions including cancer. Human skin fibroblasts were cultured and used to induce a wound (by the central scratch model), hypoxic (by incubation in an anaerobic jar, 95% N2 and 5% O2) and acidotic (reducing the pH of the media to 6.7) conditions. Different models were irradiated using a Helium-Neon (632.8 nm) laser with a power density of 2.07 mW/cm2 and a fluence of 5 J/cm2 or 16 J/cm2. The effect of the irradiation was determined using the Comet assay 1 and 24 h after irradiation. In addition, the Comet assay was performed with the addition of formamidopyrimidine glycosylase (FPG) obviating strand brakes in oxidized bases at a high fluence of 16 J/cm2. A significant increase in DNA damage was seen in all three injured models at both 1 and 24 h post-irradiation when compared to the normal un-injured cells. However, when compared to non-irradiated controls the acidotic model showed a significant decrease in DNA damage 24 h after irradiation indicating the possible induction of cellular DNA repair mechanisms. When wounded cells were irradiated with higher fluences of 16 J/cm2

  6. Endonuclease G plays a role in immunoglobulin class switch DNA recombination by introducing double-strand breaks in switch regions.

    PubMed

    Zan, Hong; Zhang, Jinsong; Al-Qahtani, Ahmed; Pone, Egest J; White, Clayton A; Lee, Derrik; Yel, Leman; Mai, Thach; Casali, Paolo

    2011-01-01

    Immunoglobulin (Ig) class switch DNA recombination (CSR) is the crucial mechanism diversifying the biological effector functions of antibodies. Generation of double-strand DNA breaks (DSBs), particularly staggered DSBs, in switch (S) regions of the upstream and downstream CH genes involved in the specific recombination process is an absolute requirement for CSR. Staggered DSBs would be generated through deamination of dCs on opposite DNA strands by activation-induced cytidine deaminase (AID), subsequent dU deglycosylation by uracil DNA glycosylase (Ung) and abasic site nicking by apurinic/apyrimidic endonuclease. However, consistent with the findings that significant amounts of DSBs can be detected in the IgH locus in the absence of AID or Ung, we have shown in human and mouse B cells that AID generates staggered DSBs not only by cleaving intact double-strand DNA, but also by processing blunt DSB ends generated in an AID-independent fashion. How these AID-independent DSBs are generated is still unclear. It is possible that S region DNA may undergo AID-independent cleavage by structure-specific nucleases, such as endonuclease G (EndoG). EndoG is an abundant nuclease in eukaryotic cells. It cleaves single and double-strand DNA, primarily at dG/dC residues, the preferential sites of DSBs in S region DNA. We show here that EndoG can localize to the nucleus of B cells undergoing CSR and binds to S region DNA, as shown by specific chromatin immunoprecipitation assays. Using knockout EndoG(-/-) mice and EndoG(-/-) B cells, we found that EndoG deficiency resulted in a two-fold reduction in CSR in vivo and in vitro, as demonstrated by reduced cell surface IgG1, IgG2a, IgG3 and IgA, reduced secreted IgG1, reduced circle Iγ1-Cμ, Iγ3-Cμ, Iɛ-Cμ, Iα-Cμ transcripts, post-recombination Iμ-Cγ1, Iμ-Cγ3, Iμ-Cɛ and Iμ-Cα transcripts. In addition to reduced CSR, EndoG(-/-) mice showed a significantly altered spectrum of mutations in IgH J(H)-iEμ DNA. Impaired CSR in

  7. DNA ligase I, the replicative DNA ligase.

    PubMed

    Howes, Timothy R L; Tomkinson, Alan E

    2012-01-01

    Multiple DNA ligation events are required to join the Okazaki fragments generated during lagging strand DNA synthesis. In eukaryotes, this is primarily carried out by members of the DNA ligase I family. The C-terminal catalytic region of these enzymes is composed of three domains: a DNA binding domain, an adenylation domain and an OB-fold domain. In the absence of DNA, these domains adopt an extended structure but transition into a compact ring structure when they engage a DNA nick, with each of the domains contacting the DNA. The non-catalytic N-terminal region of eukaryotic DNA ligase I is responsible for the specific participation of these enzymes in DNA replication. This proline-rich unstructured region contains the nuclear localization signal and a PCNA interaction motif that is critical for localization to replication foci and efficient joining of Okazaki fragments. DNA ligase I initially engages the PCNA trimer via this interaction motif which is located at the extreme N-terminus of this flexible region. It is likely that this facilitates an additional interaction between the DNA binding domain and the PCNA ring. The similar size and shape of the rings formed by the PCNA trimer and the DNA ligase I catalytic region when it engages a DNA nick suggest that these proteins interact to form a double-ring structure during the joining of Okazaki fragments. DNA ligase I also interacts with replication factor C, the factor that loads the PCNA trimeric ring onto DNA. This interaction, which is regulated by phosphorylation of the non-catalytic N-terminus of DNA ligase I, also appears to be critical for DNA replication.

  8. DNA modifications: Another stable base in DNA

    NASA Astrophysics Data System (ADS)

    Brazauskas, Pijus; Kriaucionis, Skirmantas

    2014-12-01

    Oxidation of 5-methylcytosine has been proposed to mediate active and passive DNA demethylation. Tracking the history of DNA modifications has now provided the first solid evidence that 5-hydroxymethylcytosine is a stable epigenetic modification.

  9. No oxidative stress or DNA damage in peripheral blood mononuclear cells after exposure to particles from urban street air in overweight elderly

    PubMed Central

    Hemmingsen, Jette Gjerke; Jantzen, Kim; Møller, Peter; Loft, Steffen

    2015-01-01

    Exposure to traffic-related particulate matter (PM) has been associated with increased risk of lung disease, cancer and cardiovascular disease especially in elderly and overweight subjects. The proposed mechanisms involve intracellular production of reactive oxygen species (ROS), inflammation and oxidation-induced DNA damage studied mainly in young normal-weight subjects. We performed a controlled cross-over, randomised, single-blinded, repeated-measure study where 60 healthy subjects (25 males and 35 females) with age 55–83 years and body mass index above 25kg/m2 were exposed for 5h to either particle-filtered or sham-filtered air from a busy street with number of concentrations and PM2.5 levels of 1800/cm3 versus 23 000/cm3 and 3 µg/m3 versus 24 µg/m3, respectively. Peripheral blood mononuclear cells (PBMCs) were collected and assayed for production of ROS with and without ex vivo exposure to nanosized carbon black as well as expression of genes related to inflammation (chemokine (C-C motif) ligand 2, interleukin-8 and tumour necrosis factor), oxidative stress response (heme oxygenase (decycling)-1) and DNA repair (oxoguanine DNA glycosylase). DNA strand breaks and oxidised purines were assayed by the alkaline comet assay. No statistically significant differences were found for any biomarker immediately after exposure to PM from urban street air although strand breaks and oxidised purines combined were significantly associated with the particle number concentration during exposure. In conclusion, 5h of controlled exposure to PM from urban traffic did not change the gene expression related to inflammation, oxidative stress or DNA repair, ROS production or oxidatively damaged DNA in PBMCs from elderly overweight human subjects. PMID:25904586

  10. Comparison of the effects of UV irradiation on 5-methyl-substituted and unsubstituted pyrimidines in alternating pyrimidine-purine sequences in DNA.

    PubMed

    Zuo, S; Boorstein, R J; Cunningham, R P; Teebor, G W

    1995-09-12

    We previously demonstrated the UV-induced formation of cytosine hydrate in DNA and its deamination product, uracil hydrate, via their release from the DNA backbone by the DNA glycosylase activity of Escherichia coli endonuclease III. Subsequently, endonuclease III-mediated release of thymine hydrate from UV-irradiated poly(dA-dT) was reported. Therefore, we asked whether 5-methylcytosine residues in DNA underwent photohydration and deamination to thymine hydrate in analogy to UV-induced deamination of cytosine. An alternating DNA copolymer containing 5-methylcytosine was irradiated with UVC and incubated with endonuclease III. No 5-methylcytosine hydrate was released. Instead, UV-induced nonenzymatic release of 5-methylcytosine occurred. Similarly, incubation of UV-irradiated poly(dA-dT) with endonuclease III did not release thymine hydrate; nonenzymatic release of thymine occurred. Nonenzymatic release of 5-methylpyrimidines was oxygen dependent, enhanced by ferric ion and inhibited by free radical scavengers. In contrast, photohydration of cytosine was oxygen independent, and only small amounts of cytosine were nonenzymatically released. Thus, 5-methylpyrimidine residues within alternating Pu-Py sequences in DNA do not undergo photohydration, but instead undergo cleavage of their N-glycosyl bonds yielding abasic (AP) sites. The inability to repair such AP sites may explain the UV sensitivity of E. coli xthnfo mutants, which lack AP endonuclease activity. We suggest that N-glycosyl bond cleavage is mediated by radical species formed via transfer of an electron from UV-excited triplet 5-methylpyrimidines to ground state oxygen and/or ferric ions.

  11. Sperm DNA oxidative damage and DNA adducts

    PubMed Central

    Jeng, Hueiwang Anna; Pan, Chih-Hong; Chao, Mu-Rong; Lin, Wen-Yi

    2015-01-01

    The objective of this study was to investigate DNA damage and adducts in sperm from coke oven workers who have been exposed to polycyclic aromatic hydrocarbons. A longitudinal study was conducted with repeated measurements during spermatogenesis. Coke-oven workers (n=112) from a coke-oven plant served the PAH-exposed group, while administrators and security personnel (n=67) served the control. Routine semen parameters (concentration, motility, vitality, and morphology) were analyzed simultaneously; the assessment of sperm DNA integrity endpoints included DNA fragmentation, bulky DNA adducts, and 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxo-dGuo). The degree of sperm DNA fragmentation was measured using the terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) assay and sperm chromatin structure assay (SCSA). The PAH-exposed group had a significant increase in bulky DNA adducts and 8-oxo-dGuo compared to the control subjects (Ps = 0.002 and 0.045, respectively). Coke oven workers' percentages of DNA fragmentation and denaturation from the PAH-exposed group were not significantly different from those of the control subjects (Ps = 0.232 and 0.245, respectively). Routine semen parameters and DNA integrity endpoints were not correlated. Concentrations of 8-oxo-dGuo were positively correlated with percentages of DNA fragmentation measured by both TUNEL and SCSA (Ps = 0.045 and 0.034, respectively). However, the concentrations of 8-oxo-dGuo and percentages of DNA fragmentation did not correlate with concentrations of bulky DNA adducts. In summary, coke oven workers with chronic exposure to PAHs experienced decreased sperm DNA integrity. Oxidative stress could contribute to the degree of DNA fragmentation. Bulky DNA adducts may be independent of the formation of DNA fragmentation and oxidative adducts in sperm. Monitoring sperm DNA integrity is recommended as a part of the process of assessing the impact of occupational and environmental toxins on

  12. Synthesis of DNA

    DOEpatents

    Mariella, Jr., Raymond P.

    2008-11-18

    A method of synthesizing a desired double-stranded DNA of a predetermined length and of a predetermined sequence. Preselected sequence segments that will complete the desired double-stranded DNA are determined. Preselected segment sequences of DNA that will be used to complete the desired double-stranded DNA are provided. The preselected segment sequences of DNA are assembled to produce the desired double-stranded DNA.

  13. DNA encoding a DNA repair protein

    DOEpatents

    Petrini, John H.; Morgan, William Francis; Maser, Richard Scott; Carney, James Patrick

    2006-08-15

    An isolated and purified DNA molecule encoding a DNA repair protein, p95, is provided, as is isolated and purified p95. Also provided are methods of detecting p95 and DNA encoding p95. The invention further provides p95 knock-out mice.

  14. DNA systematics. Volume II

    SciTech Connect

    Dutta, S.K.

    1986-01-01

    This book discusses the following topics: PLANTS: PLANT DNA: Contents and Systematics. Repeated DNA Sequences and Polyploidy in Cereal Crops. Homology of Nonrepeated DNA Sequences in Phylogeny of Fungal Species. Chloropast DNA and Phylogenetic Relationships. rDNA: Evolution Over a Billion Years. 23S rRNA-derived Small Ribosomal RNAs: Their Structure and Evolution with Reference to Plant Phylogeny. Molecular Analysis of Plant DNA Genomes: Conserved and Diverged DNA Sequences. A Critical Review of Some Terminologies Used for Additional DNA in Plant Chromosomes and Index.

  15. Activity-based assay for ricin-like toxins

    DOEpatents

    Keener, William K.; Ward, Thomas E.

    2007-02-06

    A method of detecting N-glycosylase activity in a sample involves incubating an oligodeoxyribonucleotide substrate containing a deoxyadenosine or deoxyuridine residue with the sample to be tested such that the N-glycosylase, if present, hydrolyzes the deoxyadenosine or deoxyuridine residue to result in an N-glycosylase product having an abasic site. A primer is annealed to the N-glycosylase product, and the primer is extended with a DNA polymerase, such as Taq DNA polymerase, that pauses at abasic sites. The resulting extension products are melted from the N-glycosylase product, allowed to form hairpins due to self-complementarity, and further extended in the presence of labeled precursors to result in labeled products. Extension products synthesized from undigested substrate as template do not result in labeled products. Thus, detection of labeled products results in detection of N-glycosylase activity. Oligodeoxyribonucleotide substrates, primer, and positive controls and a kit for N-glycosylase assay are also disclosed.

  16. The role of polycyclic aromatic hydrocarbon-DNA adducts in inducing mutations in mouse skin

    PubMed Central

    Chakravarti, Dhrubajyoti; Venugopal, Divya; Mailander, Paula C.; Meza, Jane L.; Higginbotham, Sheila; Cavalieri, Ercole L.; Rogan, Eleanor G.

    2008-01-01

    Polycyclic aromatic hydrocarbons (PAH) form stable and depurinating DNA adducts in mouse skin to induce preneoplastic mutations. Some mutations transform cells, which then clonally expand to establish tumors. Strong clues about the mutagenic mechanism can be obtained if the PAH-DNA adducts can be correlated with both preneoplastic and tumor mutations. To this end, we studied mutagenesis in PAH-treated early preneoplastic skin (1 day after exposure) and in the induced papillomas in SENCAR mice. Papillomas were studied by PCR amplification of the H-ras gene and sequencing. For benzo[a]pyrene (BP), BP-7,8-dihydrodiol (BPDHD), 7,12-dimethylbenz[a]anthracene (DMBA) and dibenzo[a,l]pyrene (DB[a,l]P), the codon 13 (GGC to GTC) and codon 61 (CAA to CTA) mutations in papillomas corresponded to the relative levels of Gua and Ade-depurinating adducts, despite BP and BPDHD forming significant amounts of stable DNA adducts. Such a relationship was expected for DMBA and DB[a,l]P, as they formed primarily depurinating adducts. These results suggest that depurinating adducts play a major role in forming the tumorigenic mutations. To validate this correlation, preneoplastic skin mutations were studied by cloning H-ras PCR products and sequencing individual clones. DMBA- and DB[a,l]P-treated skin showed primarily A.T to G.C mutations, which correlated with the high ratio of the Ade/Gua-depurinating adducts. Incubation of skin DNA with T.G-DNA glycosylase eliminated most of these A.T to G.C mutations, indicating that they existed as G.T heteroduplexes, as would be expected if they were formed by errors in the repair of abasic sites generated by the depurinating adducts. BP and its metabolites induced mainly G.C to T.A mutations in preneoplastic skin. However, PCR over unrepaired anti-BPDE-N2dG adducts can generate similar mutations as artifacts of the study protocol, making it difficult to establish an adduct-mutation correlation for determining which BP-DNA adducts induce the early

  17. Pretreatment of primary rat cutaneous epidermal keratinocyte culture with a low concentration of MNNG: Effect on DNA cross-linking measured in situ after challenge with bis-2-chloroethyl sulfide

    SciTech Connect

    Sorsher, D.H.; Conolly, R.B. )

    1989-01-01

    Bis-2-chloroethyl sulfide- (BCES-) induced DNA cross-links in confluent, primary cultures of newborn rat cutaneous epidermal keratinocytes were detected using an assay that includes in situ unwinding of the DNA followed by separation of single-stranded DNA and double-stranded DNA (DSDNA) with hydroxylapatite. DNA cross-links in BCES-challenged cultures were inferred form increases in the percentage of DNA the remained double-stranded, compared with control cultures, after a 60-min alkaline unwinding incubation. The amount of DNA cross-linking after 5 or 10 {mu}M BCES was increased when keratinocytes were first pretreated with 0.05 {mu}M MNNG for 1 h at 8 a.m., 2 p.m., and 8 p.m. for two consecutive days and challenged with BCES the following morning. This increase was statistically significant. For example, after 5{mu}M BCES challenge, cultures not pretreated with MNNG had 114.14% control DSDNA, whereas MNNG pretreated cultures had 122.78% control DSDNA. The level of BCES-induced cross-linking was maximal immediately after 30-min challenge and decreased during postchallenge incubation. At 24 and 48 h post 5, 10, or 20 {mu}M BCES challenge, the level of DSDNA was actually depressed below unchallenged levels. This postchallenge decreased in the level of DSDNA, indicative of SSB in DNA, suggests repair activity by glycosylases and endonucleases. However completion of repair (i.e., a return to control levels of DSDNA) was not seen in these experiments. The activity that resulted in decreases in the level of DSDNA during postchallenge incubation response was unaffected by MNNG pretreatment.

  18. Molecular DNA switches and DNA chips

    NASA Astrophysics Data System (ADS)

    Sabanayagam, Chandran R.; Berkey, Cristin; Lavi, Uri; Cantor, Charles R.; Smith, Cassandra L.

    1999-06-01

    We present an assay to detect single-nucleotide polymorphisms on a chip using molecular DNA switches and isothermal rolling- circle amplification. The basic principle behind the switch is an allele-specific oligonucleotide circularization, mediated by DNA ligase. A DNA switch is closed when perfect hybridization between the probe oligonucleotide and target DNA allows ligase to covalently circularize the probe. Mismatches around the ligation site prevent probe circularization, resulting in an open switch. DNA polymerase is then used to preferentially amplify the closed switches, via rolling-circle amplification. The stringency of the molecular switches yields 102 - 103 fold discrimination between matched and mismatched sequences.

  19. DNA Nanotechnology-- Architectures Designed with DNA

    NASA Astrophysics Data System (ADS)

    Han, Dongran

    As the genetic information storage vehicle, deoxyribonucleic acid (DNA) molecules are essential to all known living organisms and many viruses. It is amazing that such a large amount of information about how life develops can be stored in these tiny molecules. Countless scientists, especially some biologists, are trying to decipher the genetic information stored in these captivating molecules. Meanwhile, another group of researchers, nanotechnologists in particular, have discovered that the unique and concise structural features of DNA together with its information coding ability can be utilized for nano-construction efforts. This idea culminated in the birth of the field of DNA nanotechnology which is the main topic of this dissertation. The ability of rationally designed DNA strands to self-assemble into arbitrary nanostructures without external direction is the basis of this field. A series of novel design principles for DNA nanotechnology are presented here, from topological DNA nanostructures to complex and curved DNA nanostructures, from pure DNA nanostructures to hybrid RNA/DNA nanostructures. As one of the most important and pioneering fields in controlling the assembly of materials (both DNA and other materials) at the nanoscale, DNA nanotechnology is developing at a dramatic speed and as more and more construction approaches are invented, exciting advances will emerge in ways that we may or may not predict.

  20. DNA vaccines: a simple DNA sensing matter?

    PubMed

    Coban, Cevayir; Kobiyama, Kouji; Jounai, Nao; Tozuka, Miyuki; Ishii, Ken J

    2013-10-01

    Since the introduction of DNA vaccines two decades ago, this attractive strategy has been hampered by its low immunogenicity in humans. Studies conducted to improve the immunogenicity of DNA vaccines have shown that understanding the mechanism of action of DNA vaccines might be the key to successfully improving their immunogenicity. Our current understanding is that DNA vaccines induce innate and adaptive immune responses in two ways: (1) encoded protein (or polypeptide) antigen(s) by the DNA plasmid can be expressed in stromal cells (i.e., muscle cells) as well as DCs, where these antigens are processed and presented to naïve CD4 or CD8 T cells either by direct or cross presentation, respectively; and (2) the transfected DNA plasmid itself may bind to an un-identified cytosolic DNA sensor and activate the TBK1-STING pathway and the production of type I interferons (IFNs) which function as an adjuvant. Recent studies investigating double-stranded cytosolic DNA sensor(s) have highlighted new mechanisms in which cytosolic DNA may release secondary metabolites, which are in turn recognized by a novel DNA sensing machinery. Here, we discuss these new metabolites and the possibilities of translating this knowledge into improved immunogenicity for DNA vaccines.

  1. DNA Repair by Reversal of DNA Damage

    PubMed Central

    Yi, Chengqi; He, Chuan

    2013-01-01

    Endogenous and exogenous factors constantly challenge cellular DNA, generating cytotoxic and/or mutagenic DNA adducts. As a result, organisms have evolved different mechanisms to defend against the deleterious effects of DNA damage. Among these diverse repair pathways, direct DNA-repair systems provide cells with simple yet efficient solutions to reverse covalent DNA adducts. In this review, we focus on recent advances in the field of direct DNA repair, namely, photolyase-, alkyltransferase-, and dioxygenase-mediated repair processes. We present specific examples to describe new findings of known enzymes and appealing discoveries of new proteins. At the end of this article, we also briefly discuss the influence of direct DNA repair on other fields of biology and its implication on the discovery of new biology. PMID:23284047

  2. Identification of Escherichia coli ygaQ and rpmG as novel mitomycin C resistance factors implicated in DNA repair.

    PubMed

    Bolt, Edward L; Jenkins, Tabitha; Russo, Valeria Moreira; Ahmed, Sharlene; Cavey, James; Cass, Simon D

    2015-12-24

    Using the ASKA (A Complete Set of Escherichia coli K-12 ORF Archive) library for genome-wide screening of E. coli proteins we identified that expression of ygaQ and rpmG promotes mitomycin C resistance (MMC(R)). YgaQ mediated MMC(R) was independent of homologous recombination involving RecA or RuvABC, but required UvrD. YgaQ is an uncharacterized protein homologous with α-amylases that we identified to have nuclease activity directed to ssDNA of 5' flaps. Nuclease activity was inactivated by mutation of two amino acid motifs, which also abolished MMC(R). RpmG is frequently annotated as a bacterial ribosomal protein, although forms an operon with MutM glycosylase and a putative deubiquitinating (DUB) enzyme, YicR. RpmG associated MMC(R) was dependent on MutM. MMC(R) from RpmG resembles DNA repair phenotypes reported for 'idiosyncratic ribosomal proteins' in eukaryotes.

  3. Identification of Escherichia coli ygaQ and rpmG as novel mitomycin C resistance factors implicated in DNA repair

    PubMed Central

    Bolt, Edward L.; Jenkins, Tabitha; Russo, Valeria Moreira; Ahmed, Sharlene; Cavey, James; Cass, Simon D.

    2015-01-01

    Using the ASKA (A Complete Set of Escherichia coli K-12 ORF Archive) library for genome-wide screening of E. coli proteins we identified that expression of ygaQ and rpmG promotes mitomycin C resistance (MMCR). YgaQ mediated MMCR was independent of homologous recombination involving RecA or RuvABC, but required UvrD. YgaQ is an uncharacterized protein homologous with α-amylases that we identified to have nuclease activity directed to ssDNA of 5′ flaps. Nuclease activity was inactivated by mutation of two amino acid motifs, which also abolished MMCR. RpmG is frequently annotated as a bacterial ribosomal protein, although forms an operon with MutM glycosylase and a putative deubiquitinating (DUB) enzyme, YicR. RpmG associated MMCR was dependent on MutM. MMCR from RpmG resembles DNA repair phenotypes reported for ‘idiosyncratic ribosomal proteins’ in eukaryotes. PMID:26704888

  4. Non-canonical uracil processing in DNA gives rise to double-strand breaks and deletions: relevance to class switch recombination

    PubMed Central

    Bregenhorn, Stephanie; Kallenberger, Lia; Artola-Borán, Mariela; Peña-Diaz, Javier; Jiricny, Josef

    2016-01-01

    During class switch recombination (CSR), antigen-stimulated B-cells rearrange their immunoglobulin constant heavy chain (CH) loci to generate antibodies with different effector functions. CSR is initiated by activation-induced deaminase (AID), which converts cytosines in switch (S) regions, repetitive sequences flanking the CH loci, to uracils. Although U/G mispairs arising in this way are generally efficiently repaired to C/Gs by uracil DNA glycosylase (UNG)-initiated base excision repair (BER), uracil processing in S-regions of activated B-cells occasionally gives rise to double strand breaks (DSBs), which trigger CSR. Surprisingly, genetic experiments revealed that CSR is dependent not only on AID and UNG, but also on mismatch repair (MMR). To elucidate the role of MMR in CSR, we studied the processing of uracil-containing DNA substrates in extracts of MMR-proficient and –deficient human cells, as well as in a system reconstituted from recombinant BER and MMR proteins. Here, we show that the interplay of these repair systems gives rise to DSBs in vitro and to genomic deletions and mutations in vivo, particularly in an S-region sequence. Our findings further suggest that MMR affects pathway choice in DSB repair. Given its amenability to manipulation, our system represents a powerful tool for the molecular dissection of CSR. PMID:26743004

  5. Quantitative DNA fiber mapping

    DOEpatents

    Gray, Joe W.; Weier, Heinz-Ulrich G.

    1998-01-01

    The present invention relates generally to the DNA mapping and sequencing technologies. In particular, the present invention provides enhanced methods and compositions for the physical mapping and positional cloning of genomic DNA. The present invention also provides a useful analytical technique to directly map cloned DNA sequences onto individual stretched DNA molecules.

  6. On the chemical yield of base lesions, strand breaks, and clustered damage generated in plasmid DNA by the direct effect of X rays.

    PubMed

    Purkayastha, Shubhadeep; Milligan, Jamie R; Bernhard, William A

    2007-09-01

    The purpose of this study was to determine the yield of DNA base damages, deoxyribose damage, and clustered lesions due to the direct effects of ionizing radiation and to compare these with the yield of DNA trapped radicals measured previously in the same pUC18 plasmid. The plasmids were prepared as films hydrated in the range 2.5 < Gamma < 22.5 mol water/mol nucleotide. Single-strand breaks (SSBs) and double-strand breaks (DSBs) were detected by agarose gel electrophoresis. Specific types of base lesions were converted into SSBs and DSBs using the base-excision repair enzymes endonuclease III (Nth) and formamidopyrimidine-DNA glycosylase (Fpg). The yield of base damage detected by this method displayed a strikingly different dependence on the level of hydration (Gamma) compared with that for the yield of DNA trapped radicals; the former decreased by 3.2 times as Gamma was varied from 2.5 to 22.5 and the later increased by 2.4 times over the same range. To explain this divergence, we propose that SSB yields produced in plasmid DNA by the direct effect cannot be analyzed properly with a Poisson process that assumes an average of one strand break per plasmid and neglects the possibility of a single track producing multiple SSBs within a plasmid. The yields of DSBs, on the other hand, are consistent with changes in free radical trapping as a function of hydration. Consequently, the composition of these clusters could be quantified. Deoxyribose damage on each of the two opposing strands occurs with a yield of 3.5 +/- 0.5 nmol/J for fully hydrated pUC18, comparable to the yield of 4.1 +/- 0.9 nmol/J for DSBs derived from opposed damages in which at least one of the sites is a damaged base.

  7. Effects of single dose and regular intake of green tea (Camellia sinensis) on DNA damage, DNA repair, and heme oxygenase-1 expression in a randomized controlled human supplementation study.

    PubMed

    Ho, Cyrus K; Choi, Siu-wai; Siu, Parco M; Benzie, Iris F F

    2014-06-01

    Regular intake of green tea (Camellia sinensis) lowers DNA damage in humans, but molecular mechanisms of genoprotection are not clear. Protection could be via direct antioxidant effects of tea catechins, but, paradoxically, catechins have pro-oxidant activity in vitro, and it is hypothesized that mechanisms relate to redox-sensitive cytoprotective adaptations. We investigated this hypothesis, focusing particularly on effects on the DNA repair enzyme human oxoguanine glycosylase 1 (hOGG1), and heme oxygenase-1, a protein that has antioxidant and anti-inflammatory effects. A randomized, placebo-controlled, human supplementation study of crossover design was performed. Subjects (n = 16) took a single dose (200 mL of 1.5%, w/v) and 7-days of (2 × 200 mL 1%, w/v per day) green tea (with water as control treatment). Lymphocytic DNA damage was ∼30% (p < 0.001) lower at 60 and 120 min after the single dose and in fasting samples collected after 7-day tea supplementation. Lymphocytic hOGG1 activity was higher (p < 0.0001) at 60 and 120 min after tea ingestion. Significant increases (p < 0.0005) were seen in hOGG1 activity and heme oxygenase-1 after 7 days. Results indicate that molecular triggering of redox-sensitive cytoprotective adaptations and posttranslational changes affecting hOGG1 occur in vivo in response to both a single dose and regular intake of green tea, and contribute to the observed genoprotective effects of green tea.

  8. Dynamics of 5-carboxylcytosine during hepatic differentiation: potential general role for active demethylation by DNA repair in lineage specification.

    PubMed

    Lewis, Lara C; Lo, Peggy Cho Kiu; Foster, Jeremy M; Dai, Nan; Corrêa, Ivan R; Durczak, Paulina M; Duncan, Gary; Ramsawhook, Ashley; Aithal, Guruprasad Padur; Denning, Chris; Hannan, Nicholas R F; Ruzov, Alexey

    2017-03-07

    Patterns of DNA methylation (5-methylcytosine, 5mC) are rearranged during differentiation contributing to the regulation of cell type-specific gene expression. TET proteins oxidize 5mC to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine (5caC). Both 5fC and 5caC can be recognized and excised from DNA by thymine-DNA glycosylase (TDG) followed by the subsequent incorporation of unmodified cytosine into the abasic site via the base excision repair (BER) pathway. We previously demonstrated that 5caC accumulates during lineage specification of neural stem cells (NSCs) suggesting that such active demethylation pathway is operative in this system; however, it is still unknown if TDG/BER-dependent demethylation is utilized during other types of cellular differentiation. Here we analyze dynamics of the global levels of 5hmC and 5caC during differentiation of human pluripotent stem cells towards hepatic endoderm. We show that, similar to differentiating NSCs, 5caC transiently accumulates during hepatic differentiation. The levels of 5caC increase during specification of foregut, peak at the stage of hepatic endoderm commitment, and drop in differentiating cells concurrently with the onset of expression of alpha fetoprotein, a marker of committed hepatic progenitors. Moreover, we show that 5caC accumulates at promoter regions of several genes expressed during hepatic specification at differentiation stages corresponding to the beginning of their expression. Our data indicate that transient 5caC accumulation is a common feature of two different types (neural/glial and endoderm/hepatic) of cellular differentiation. This suggests that oxidation of 5mC may represent a general mechanism of rearrangement of 5mC profiles during lineage specification of somatic cells in mammals.

  9. Scaffold functions of 14-3-3 adaptors in B cell immunoglobulin class switch DNA recombination.

    PubMed

    Lam, Tonika; Thomas, Lisa M; White, Clayton A; Li, Guideng; Pone, Egest J; Xu, Zhenming; Casali, Paolo

    2013-01-01

    Class switch DNA recombination (CSR) of the immunoglobulin heavy chain (IgH) locus crucially diversifies antibody biological effector functions. CSR involves the induction of activation-induced cytidine deaminase (AID) expression and AID targeting to switch (S) regions by 14-3-3 adaptors. 14-3-3 adaptors specifically bind to 5'-AGCT-3' repeats, which make up for the core of all IgH locus S regions. They selectively target the upstream and downstream S regions that are set to undergo S-S DNA recombination. We hypothesized that 14-3-3 adaptors function as scaffolds to stabilize CSR enzymatic elements on S regions. Here we demonstrate that all seven 14-3-3β, 14-3-3ε, 14-3-3γ, 14-3-3η, 14-3-3σ, 14-3-3τ and 14-3-3ζ adaptors directly interacted with AID, PKA-Cα (catalytic subunit) and PKA-RIα (regulatory inhibitory subunit) and uracil DNA glycosylase (Ung). 14-3-3 adaptors, however, did not interact with AID C-terminal truncation mutant AIDΔ(180-198) or AIDF193A and AIDL196A point-mutants (which have been shown not to bind to S region DNA and fail to mediate CSR). 14-3-3 adaptors colocalized with AID and replication protein A (RPA) in B cells undergoing CSR. 14-3-3 and AID binding to S region DNA was disrupted by viral protein R (Vpr), an accessory protein of human immunodeficiency virus type-1 (HIV-1), which inhibited CSR without altering AID expression or germline IH-CH transcription. Accordingly, we demonstrated that 14-3-3 directly interact with Vpr, which in turn, also interact with AID, PKA-Cα and Ung. Altogether, our findings suggest that 14-3-3 adaptors play important scaffold functions and nucleate the assembly of multiple CSR factors on S regions. They also show that such assembly can be disrupted by a viral protein, thereby allowing us to hypothesize that small molecule compounds that specifically block 14-3-3 interactions with AID, PKA and/or Ung can be used to inhibit unwanted CSR.

  10. Resveratrol Protects Sepsis-Induced Oxidative DNA Damage in Liver and Kidney of Rats

    PubMed Central

    Aydın, Sevtap; Şahin, Tevfik Tolga; Bacanlı, Merve; Taner, Gökçe; Başaran, Arif Ahmet; Aydın, Mehtap; Başaran, Nurşen

    2016-01-01

    Background The increases of free radicals have been proposed to be involved in the pathogenesis of sepsis, which leads to multiple-organ dysfunction syndromes. The uses of antioxidants as a complementary tool in the medical care of oxidative stress-related diseases have attracted attention of researchers. Resveratrol (RV) has suggested being antioxidant, anti-proliferative, and anti-inflammatory effects in various experimental models and clinical settings. Aims This study was undertaken to evaluate the protective effects of RV on oxidative DNA damage induced by sepsis in the liver and kidney tissues of Wistar albino rats. Study Design Animal experimentation. Methods Four experimental groups consisting of eight animals for each was created using a total of thirty-two male Wistar albino rats. Sham group was given 0.5 mL of saline intra-peritoneal (ip) only following laparatomy. Sepsis group was given 0.5 mL saline ip only following the induction of sepsis. RV-treated group was given a dose of 100 mg/kg ip RV in 0.5 mL saline following laparatomy. RV-treated sepsis group was given 100 mg/kg ip RV in 0.5 mL saline following the induction of sepsis. A model of sepsis was created by cecal ligation and puncture technique. In the liver and kidney tissues, oxidative stress parameters (malondialdehyde (MDA), reduced glutathione (GSH), superoxide dismutase (SOD), glutathione peroxidase (GPX)) and a proinflammatory cytokine (tumor necrosis factor alpha (TNF-alpha)), were evaluated spectrophotometrically and DNA damage was determined by the alkaline single cell gel electrophoresis (comet assay) technique using formamidopyrimidine DNA glycosylase protein. Results In the RV-treated sepsis group, the levels of MDA and TNF-alpha were lower and GSH levels, SOD and GPX activities were higher than in the septic rats (p<0.05). RV treatment significantly reduced the sepsis-induced oxidative DNA damage in the liver and kidney cells (p<0.05). Conclusion It is suggested that RV treatment

  11. DNA Damage, DNA Repair, Aging, and Neurodegeneration.

    PubMed

    Maynard, Scott; Fang, Evandro Fei; Scheibye-Knudsen, Morten; Croteau, Deborah L; Bohr, Vilhelm A

    2015-09-18

    Aging in mammals is accompanied by a progressive atrophy of tissues and organs, and stochastic damage accumulation to the macromolecules DNA, RNA, proteins, and lipids. The sequence of the human genome represents our genetic blueprint, and accumulating evidence suggests that loss of genomic maintenance may causally contribute to aging. Distinct evidence for a role of imperfect DNA repair in aging is that several premature aging syndromes have underlying genetic DNA repair defects. Accumulation of DNA damage may be particularly prevalent in the central nervous system owing to the low DNA repair capacity in postmitotic brain tissue. It is generally believed that the cumulative effects of the deleterious changes that occur in aging, mostly after the reproductive phase, contribute to species-specific rates of aging. In addition to nuclear DNA damage contributions to aging, there is also abundant evidence for a causative link between mitochondrial DNA damage and the major phenotypes associated with aging. Understanding the mechanistic basis for the association of DNA damage and DNA repair with aging and age-related diseases, such as neurodegeneration, would give insight into contravening age-related diseases and promoting a healthy life span.

  12. Mammalian DNA helicase.

    PubMed Central

    Hübscher, U; Stalder, H P

    1985-01-01

    A forked DNA was constructed to serve as a substrate for DNA helicases. It contains features closely resembling a natural replication fork. The DNA was prepared in large amounts and was used to assay displacement activity during isolation from calf thymus DNA polymerases alpha holoenzyme. One form of DNA polymerase alpha holoenzyme is possibly involved leading strand replication at the replication fork and possesses DNA dependent ATPase activity (Ottiger, H.-P. and Hübscher, U. (1984) Proc. Natl. Acad. Sci. USA 81, 3993-3997). The enzyme can be separated from DNA polymerase alpha by velocity sedimentation in conditions of very low ionic strength and then be purified by chromatography on Sephacryl S-200 and ATP-agarose. At all stages of purification, DNA dependent ATPase and displacement activity profiles were virtually superimposable. The DNA dependent ATPase can displace a hybridized DNA fragment with a short single-stranded tail at its 3'hydroxyl end only in the presence of ATP, and this displacement relies on ATP hydrolysis. Furthermore, homogeneous single-stranded binding proteins from calf thymus as well as from other tissues cannot perform this displacement reaction. By all this token the DNA dependent ATPase appears to be a DNA helicase. It is suggested that this DNA helicase might act in concert with DNA polymerase alpha at the leading strand, possibly pushing the replication fork ahead of the polymerase. Images PMID:3162158

  13. DNA microarray technology. Introduction.

    PubMed

    Pollack, Jonathan R

    2009-01-01

    DNA microarray technology has revolutionized biological research by enabling genome-scale explorations. This chapter provides an overview of DNA microarray technology and its application to characterizing the physical genome, with a focus on cancer genomes. Specific areas discussed include investigations of DNA copy number alteration (and loss of heterozygosity), DNA methylation, DNA-protein (i.e., chromatin and transcription factor) interactions, DNA replication, and the integration of diverse genome-scale data types. Also provided is a perspective on recent advances and future directions in characterizing the physical genome.

  14. 1α,25 dihydroxyvitamin D3 enhances cellular defences against UV-induced oxidative and other forms of DNA damage in skin.

    PubMed

    Gordon-Thomson, Clare; Gupta, Ritu; Tongkao-on, Wannit; Ryan, Anthony; Halliday, Gary M; Mason, Rebecca S

    2012-12-01

    DNA damage induced by ultraviolet radiation is the key initiator for skin carcinogenesis since mutations may arise from the photoproducts and it also contributes to photoimmune suppression. The active vitamin D hormone, 1α,25 dihydroxyvitamin D(3) (1,25(OH)(2)D(3)) reduces thymine dimers, the major photoproduct found in human skin after UV exposure, and suppresses the accumulation of nitric oxide derivatives that lead to more toxic reactive nitrogen species (RNS). We examined whether other forms of DNA damage are reduced by 1,25(OH)(2)D(3), and hypothesized that photoprotection by 1,25(OH)(2)D(3) is, in part, due to the suppression of various forms of promutagenic DNA damage, including thymine dimers, through a reduction of genotoxic RNS. Different forms of UV-induced DNA damage were investigated in irradiated skin cells treated with or without 1,25(OH)(2)D(3), or inhibitors of metabolism and inducible nitric oxide synthase. Keratinocytes were also treated with nitric oxide donors in the absence of UV light. DNA damage was assessed by comet assay incorporating site specific DNA repair endonucleases, and by immunohistochemistry using antibodies to thymine dimers or 8-oxo-7,8-dihydro-2'-deoxyguanosine, and quantified by image analysis. Strand breaks in T4 endonuclease V, endonuclease IV and human 8-oxoguanine DNA glycosylase digests increased more than 2-fold in UV irradiated human keratinocytes, and were reduced by 1,25(OH)(2)D(3) treatment after UV exposure, and also by low temperature, sodium azide and an inhibitor of inducible nitric oxide synthase. Conversely, nitric oxide donors induced all three types of DNA damage in the absence of UV. We present data to show that 1,25(OH)(2)D(3) protects skin cells from at least three forms of UV-induced DNA damage, and provide further evidence to support the proposal that a reduction in RNS by 1,25(OH)(2)D(3) is a likely mechanism for its photoprotective effect against oxidative and nitrative DNA damage, as well as

  15. Structural Organization of DNA.

    ERIC Educational Resources Information Center

    Banfalvi, Gaspar

    1986-01-01

    Explains the structural organization of DNA by providing information on the primary, secondary, tertiary, and higher organization levels of the molecule. Also includes illustrations and descriptions of sign-inversion and rotating models for supercoiling of DNA. (ML)

  16. Unusual DNA structures

    SciTech Connect

    Wells, R.D.; Harvey, S.C.

    1988-01-01

    The contents of this book are: Unusual DNS Structures and the Probes Used for Their Detection; The Specificity of Single Strand Specific Endonucleases; Chromatin STructure and DNA Structure at the hsp 26 Locus of Drosophilia; Cruciform Extrusion in Supercoiled DNA-Mechanisms and Contextual Influence; Torsional Stress, Unusual DNA Structures, and Eukaryotic Gene Expression; DNA Sequence and Structure: Bending to Biology. Cruciform Transitions Assayed Using a Psoralen Cross-linking Method: Applications to Measurements of DNA Torisonal Tension; NMR-Distance Geometry Studies of Helical Errors and Sequence Dependent Conformations of DNA in Solution; Hyperreactivity of the B-Z Junctions Probed by Two Aromatic Chemical Carcinogens; Inherently Curved DNA and Its Structural Elements; and DNA Flexibility Under Control: The Juma Algorithm and its Application to BZ Junctions.

  17. DNA tagged microparticles

    DOEpatents

    Farquar, George Roy; Leif, Roald N; Wheeler, Elizabeth

    2015-05-05

    A simulant that includes a carrier and DNA encapsulated in the carrier. Also a method of making a simulant including the steps of providing a carrier and encapsulating DNA in the carrier to produce the simulant.

  18. Modeling DNA Replication.

    ERIC Educational Resources Information Center

    Bennett, Joan

    1998-01-01

    Recommends the use of a model of DNA made out of Velcro to help students visualize the steps of DNA replication. Includes a materials list, construction directions, and details of the demonstration using the model parts. (DDR)

  19. Oxidative damage to DNA and repair induced by Norwegian wood smoke particles in human A549 and THP-1 cell lines.

    PubMed

    Danielsen, Pernille Høgh; Loft, Steffen; Kocbach, Anette; Schwarze, Per E; Møller, Peter

    2009-03-31

    Genotoxic effects of traffic-generated particulate matter (PM) are well described, whereas little data are available on PM from combustion of biomass and wood, which contributes substantially to air pollution world wide. The aim of this study was to compare the genotoxicity of wood smoke particulate matter (WSPM), authentic traffic-generated particles, mineral PM and standard reference material (SRM2975) of diesel exhaust particles in human A549 lung epithelial and THP-1 monocytic cell lines. DNA damage was measured as strand breaks (SB) and formamidopyrimidine DNA glycosylase (FPG) sites by the comet assay, whereas cell cytotoxicity was determined as lactate dehydrogenase release. The exposure to WSPM generated SB and FPG sites in both cell lines at concentrations from 2.5 or 25 microg/ml, which were not cytotoxic. Compared to all other studied particles, WSPM generated greater responses in terms of both SB and FPG sites. Organic extracts of WSPM and SRM2975 elicited higher levels of SB than native and washed PM at 25 and 100 microg/ml, whereas assay saturation precluded reliable assessment of FPG sites. During a 6h post-exposure period, in which the medium with PM had been replaced by fresh medium, 60% of the DNA lesions generated by WSPM were removed. In conclusion, WSPM generated more DNA damage than traffic-generated PM per unit mass in human cell lines, possibly due to the high level of polycyclic aromatic hydrocarbons in WSPM. This suggests that exposure to WSPM might be more hazardous than PM collected from vehicle exhaust with respect to development of lung cancer.

  20. Combustion products of 1,3-butadiene inhibit catalase activity and induce expression of oxidative DNA damage repair enzymes in human bronchial epithelial cells.

    PubMed

    Kennedy, Christopher H; Catallo, W James; Wilson, Vincent L; Mitchell, James B

    2009-10-01

    1,3-Butadiene, an important petrochemical, is commonly burned off when excess amounts need to be destroyed. This combustion process produces butadiene soot (BDS), which is composed of a complex mixture of polycyclic aromatic hydrocarbons in particulates ranging in size from <1 microm to 1 mm. An organic extract of BDS is both cytotoxic and genotoxic to normal human bronchial epithelial (NHBE) cells. Based on the oxidizing potential of BDS, we hypothesized that an organic extract of this particulate matter would (1) cause enzyme inactivation due to protein amino acid oxidation and (2) induce oxidative DNA damage in NHBE cells. Thus, our aims were to determine the effect of butadiene soot ethanol extract (BSEE) on both enzyme activity and the expression of proteins involved in the repair of oxidative DNA damage. Catalase was found to be sensitive to BDS as catalase activity was potently diminished in the presence of BSEE. Using Western analysis, both the alpha isoform of human 8-oxoguanine DNA glycosylase (alpha-hOGG1) and human apurinic/apyrimidinic endonuclease (APE-1) were shown to be significantly overexpressed as compared to untreated controls after exposure of NHBE cells to BSEE. Our results indicate that BSEE is capable of effectively inactivating the antioxidant enzyme catalase, presumably via oxidation of protein amino acids. The presence of oxidized biomolecules may partially explain the extranuclear fluorescence that is detected when NHBE cells are treated with an organic extract of BDS. Overexpression of both alpha-hOGG1 and APE-1 proteins following treatment of NHBE cells with BSEE suggests that this mixture causes oxidative DNA damage.

  1. Exposure to runoff from coal-tar-sealed pavement induces genotoxicity and impairment of DNA repair capacity in the RTL-W1 fish liver cell line

    USGS Publications Warehouse

    Kienzler, Aude; Mahler, Barbara J.; Van Metre, Peter C.; Schweigert, Nathalie; Devaux, Alain; Bony, Sylvie

    2015-01-01

    Coal-tar-based (CTB) sealcoat, frequently applied to parking lots and driveways in North America, contains elevated concentrations of polycyclic aromatic hydrocarbons (PAHs) and related compounds. The RTL-W1 fish liver cell line was used to investigate two endpoints (genotoxicity and DNA-repair-capacity impairment) associated with exposure to runoff from asphalt pavement with CTB sealcoat or with an asphalt-based sealcoat hypothesized to contain about 7% CTB sealcoat (AS-blend). Genotoxic potential was assessed by the Formamido pyrimidine glycosylase (Fpg)-modified comet assay for 1:10 and 1:100 dilutions of runoff samples collected from 5 h to 36 d following sealcoat application. DNA-repair capacity was assessed by the base excision repair comet assay for 1:10 dilution of samples collected 26 h and 36 d following application. Both assays were run with and without co-exposure to ultraviolet-A radiation (UVA). With co-exposure to UVA, genotoxic effects were significant for both dilutions of CTB runoff for three of four sample times, and for some samples of AS-blend runoff. Base excision repair was significantly impaired for CTB runoff both with and without UVA exposure, and for AS-blend runoff only in the absence of UVA. This study is the first to investigate the effects of exposure to the complex mixture of chemicals in coal tar on DNA repair capacity. The results indicate that co-exposure to runoff from CT-sealcoated pavement and UVA as much as a month after sealcoat application has the potential to cause genotoxicity and impair DNA repair capacity.

  2. PCNA monoubiquitylation and DNA polymerase η ubiquitin-binding domain are required to prevent 8-oxoguanine-induced mutagenesis in Saccharomyces cerevisiae

    PubMed Central

    van der Kemp, Patricia Auffret; de Padula, Marcelo; Burguiere-Slezak, Guenaelle; Ulrich, Helle D.; Boiteux, Serge

    2009-01-01

    7,8-Dihydro-8-oxoguanine (8-oxoG) is an abundant and mutagenic DNA lesion. In Saccharomyces cerevisiae, the 8-oxoG DNA N-glycosylase (Ogg1) acts as the primary defense against 8-oxoG. Here, we present evidence for cooperation between Rad18–Rad6-dependent monoubiquitylation of PCNA at K164, the damage-tolerant DNA polymerase η and the mismatch repair system (MMR) to prevent 8-oxoG-induced mutagenesis. Preventing PCNA modification at lysine 164 (pol30-K164R) results in a dramatic increase in GC to TA mutations due to endogenous 8-oxoG in Ogg1-deficient cells. In contrast, deletion of RAD5 or SIZ1 has little effect implying that the modification of PCNA relevant for preventing 8-oxoG-induced mutagenesis is monoubiquitin as opposed to polyubiquitin or SUMO. We also report that the ubiquitin-binding domain (UBZ) of Pol η is essential to prevent 8-oxoG-induced mutagenesis but only in conjunction with a functional PCNA-binding domain (PIP). We propose that PCNA is ubiquitylated during the repair synthesis reaction after the MMR-dependent excision of adenine incorporated opposite to 8-oxoG. Monoubiquitylation of PCNA would favor the recruitment of Pol η thereby allowing error-free incorporation of dCMP opposite to 8-oxoG. This study suggests that Pol η and the post-replication repair (PRR) machinery can also prevent mutagenesis at DNA lesions that do not stall replication forks. PMID:19264809

  3. Nanopores: Flossing with DNA

    NASA Astrophysics Data System (ADS)

    Kasianowicz, John J.

    2004-06-01

    Passing a DNA strand many times back-and-forth through a protein nanopore would enable the interaction between them to be studied more closely. This may now be possible, using a dumbbell-shaped DNA-polymer complex, which may lead to a more reliable analysis of DNA sequences using nanopores.

  4. Three-Dimensional DNA Nanostructures Assembled from DNA Star Motifs.

    PubMed

    Tian, Cheng; Zhang, Chuan

    2017-01-01

    Tile-based DNA self-assembly is a promising method in DNA nanotechnology and has produced a wide range of nanostructures by using a small set of unique DNA strands. DNA star motif, as one of DNA tiles, has been employed to assemble varieties of symmetric one-, two-, three-dimensional (1, 2, 3D) DNA nanostructures. Herein, we describe the design principles, assembly methods, and characterization methods of 3D DNA nanostructures assembled from the DNA star motifs.

  5. The Many Sides of DNA.

    ERIC Educational Resources Information Center

    Flannery, Maura C.

    1997-01-01

    Explores the meaning of DNA. Discusses histories of DNA, literature on DNA, the contributions of Max Delbruck and Barbara McClintock, life, views of control, current research, and the language of DNA. Contains 24 references. (JRH)

  6. DNA-Mediated Electrochemistry

    PubMed Central

    Gorodetsky, Alon A.; Buzzeo, Marisa C.

    2009-01-01

    The base pair stack of DNA has been demonstrated as a medium for long range charge transport chemistry both in solution and at DNA-modified surfaces. This chemistry is exquisitely sensitive to structural perturbations in the base pair stack as occur with lesions, single base mismatches, and protein binding. We have exploited this sensitivity for the development of reliable electrochemical assays based on DNA charge transport at self-assembled DNA monolayers. Here we discuss the characteristic features, applications, and advantages of DNA-mediated electrochemistry. PMID:18980370

  7. DNA Sequencing apparatus

    DOEpatents

    Tabor, Stanley; Richardson, Charles C.

    1992-01-01

    An automated DNA sequencing apparatus having a reactor for providing at least two series of DNA products formed from a single primer and a DNA strand, each DNA product of a series differing in molecular weight and having a chain terminating agent at one end; separating means for separating the DNA products to form a series bands, the intensity of substantially all nearby bands in a different series being different, band reading means for determining the position an This invention was made with government support including a grant from the U.S. Public Health Service, contract number AI-06045. The U.S. government has certain rights in the invention.

  8. Archaeal DNA replication.

    PubMed

    Kelman, Lori M; Kelman, Zvi

    2014-01-01

    DNA replication is essential for all life forms. Although the process is fundamentally conserved in the three domains of life, bioinformatic, biochemical, structural, and genetic studies have demonstrated that the process and the proteins involved in archaeal DNA replication are more similar to those in eukaryal DNA replication than in bacterial DNA replication, but have some archaeal-specific features. The archaeal replication system, however, is not monolithic, and there are some differences in the replication process between different species. In this review, the current knowledge of the mechanisms governing DNA replication in Archaea is summarized. The general features of the replication process as well as some of the differences are discussed.

  9. DNA Functionalization of Nanoparticles.

    PubMed

    Lu, Fang; Gang, Oleg

    2017-01-01

    DNA-nanoparticle conjugates are hybrid nanoscale objects that integrate different types of DNA molecules and inorganic nanoparticles with a typical architecture of a DNA shell around an inorganic core. Such incorporation provides particles with unique properties of DNA, addressability and recognition, but, at the same time, allows exploiting the properties of the particle's inorganic core. Thus, these hybrid nano-objects are advantageous for rational fabrication of functional materials and for biomedical applications. Here, we describe several established DNA functionalization procedures for different types of surface ligands and nanoparticle core materials.

  10. DNA structure and function.

    PubMed

    Travers, Andrew; Muskhelishvili, Georgi

    2015-06-01

    The proposal of a double-helical structure for DNA over 60 years ago provided an eminently satisfying explanation for the heritability of genetic information. But why is DNA, and not RNA, now the dominant biological information store? We argue that, in addition to its coding function, the ability of DNA, unlike RNA, to adopt a B-DNA structure confers advantages both for information accessibility and for packaging. The information encoded by DNA is both digital - the precise base specifying, for example, amino acid sequences - and analogue. The latter determines the sequence-dependent physicochemical properties of DNA, for example, its stiffness and susceptibility to strand separation. Most importantly, DNA chirality enables the formation of supercoiling under torsional stress. We review recent evidence suggesting that DNA supercoiling, particularly that generated by DNA translocases, is a major driver of gene regulation and patterns of chromosomal gene organization, and in its guise as a promoter of DNA packaging enables DNA to act as an energy store to facilitate the passage of translocating enzymes such as RNA polymerase.

  11. Supramolecular DNA assembly.

    PubMed

    McLaughlin, Christopher K; Hamblin, Graham D; Sleiman, Hanadi F

    2011-12-01

    The powerful self-assembly features of DNA make it a unique template to finely organize and control matter on the nanometre scale. While DNA alone offers a high degree of fidelity in its self-assembly, a new area of research termed 'supramolecular DNA assembly' has recently emerged. This field combines DNA building blocks with synthetic organic, inorganic and polymeric structures. It thus brings together the toolbox of supramolecular chemistry with the predictable and programmable nature of DNA. The result of this molecular partnership is a variety of hybrid architectures, that expand DNA assembly beyond the boundaries of Watson-Crick base pairing into new structural and functional properties. In this tutorial review we outline this emerging field of study, and describe recent research aiming to synergistically combine the properties inherent to DNA with those of a number of supramolecular scaffolds. This ultimately creates structures with numerous potential applications in materials science, catalysis and medicine.

  12. [DNA methylation and epigenetics].

    PubMed

    Vaniushin, B F

    2006-09-01

    In eukaryotic cells, nuclear DNA is subject to enzymatic methylation with the formation of 5-methylcytosine residues, mostly within the CG and CNG sequences. In plants and animals this DNA methylation is species-, tissue-, and organelle-specific. It changes (decreases) with age and is regulated by hormones. On the other hand, genome methylation can control hormonal signal. Replicative and post-replicative DNA methylation types are distinguished. They are mediated by multiple DNA methyltransferases with different site-specificity. Replication is accompanied by the appearance of hemimethylated DNA sites. Pronounced asymmetry of the DNA strand methylation disappears to the end of the cell cycle. A model of methylation-regulated DNA replication is proposed. DNA methylation controls all genetic processes in the cell (replication, transcription, DNA repair, recombination, and gene transposition). It is the mechanism of cell differentiation, gene discrimination and silencing. In animals, suppression of DNA methylation stops development (embryogenesis), switches on apoptosis, and is usually lethal. Disruption of DNA methylation pattern results in the malignant cell transformation and serves as one of the early diagnostic features of carcinogenesis. In malignant cell the pattern of DNA methylation, as well as the set of DNA methyltransferase activities, differs from that in normal cell. In plants inhibition of DNA methylation is accompanied by the induction of seed storage and florescence genes. In eukaryotes one and the same gene can be simultaneously methylated both at cytosine and adenine residues. It can be thus suggested, that the plant cell contains at least two different, and probably, interdependent systems of DNA methylation. The first eukaryotic adenine DNA methyltransferase was isolated from plants. This enzyme methylates DNA with the formation of N6-methyladenine residues in the sequence TGATCA (TGATCA-->TGm6ATCA). Plants possess AdoMet-dependent endonucleases

  13. Forensic DNA analysis.

    PubMed

    McDonald, Jessica; Lehman, Donald C

    2012-01-01

    Before the routine use of DNA profiling, blood typing was an important forensic tool. However, blood typing was not very discriminating. For example, roughly 30% of the United States population has type A-positive blood. Therefore, if A-positive blood were found at a crime scene, it could have come from 30% of the population. DNA profiling has a much better ability for discrimination. Forensic laboratories no longer routinely determine blood type. If blood is found at a crime scene, DNA profiling is performed. From Jeffrey's discovery of DNA fingerprinting to the development of PCR of STRs to the formation of DNA databases, our knowledge of DNA and DNA profiling have expanded greatly. Also, the applications for which we use DNA profiling have increased. DNA profiling is not just used for criminal case work, but it has expanded to encompass paternity testing, disaster victim identification, monitoring bone marrow transplants, detecting fetal cells in a mother's blood, tracing human history, and a multitude of other areas. The future of DNA profiling looks expansive with the development of newer instrumentation and techniques.

  14. Enzymatic initiation of DNA synthesis by yeast DNA polymerases.

    PubMed Central

    Plevani, P; Chang, L M

    1977-01-01

    Partially purified yeast RNA polymerases (RNA nucleotidyltransferases) initiate DNA synthesis by yeast DNA polymerase (DNA nucleotidyltransferase) I and to a lesser extent yeast DNA polymerase II in the replication of single-stranded DNA. The enzymatic initiation of DNA synthesis on phage fd DNA template occurs with dNTPs alone and is further stimulated by the presence of rNTPs in DNA polymerase I reactions. The presence of rNTPs has no effect on the RNA polymerase initiation of the DNA polymerase II reaction. RNA polymerases I and III are more efficient in initiation of DNA synthesis than RNA polymerase II. Analyses of the products of fd DNA replication show noncovalent linkage between the newly synthesized DNA and the template DNA, and covalent linkage between the newly synthesized RNA and DNA. PMID:325562

  15. Functional DNA Nanomaterials

    NASA Astrophysics Data System (ADS)

    Zhao, Zhao

    The discovery of DNA helical structure opened the door of modern molecular biology. Ned Seeman utilized DNA as building block to construct different nanoscale materials, and introduced a new field, know as DNA nanotechnology. After several decades of development, different DNA structures had been created, with different dimension, different morphology and even with complex curvatures. In addition, after construction of enough amounts DNA structure candidates, DNA structure template, with excellent spatial addressability, had been used to direct the assembly of different nanomaterials, including nanoparticles and proteins, to produce different functional nanomaterials. However there are still many challenges to fabricate functional DNA nanostructures. The first difficulty is that the present finite sized template dimension is still very small, usually smaller than 100nm, which will limit the application for large amount of nanomaterials assembly or large sized nanomaterials assembly. Here we tried to solve this problem through developing a new method, superorigami, to construct finite sized DNA structure with much larger dimension, which can be as large as 500nm. The second problem will be explored the ability of DNA structure to assemble inorganic nanomaterials for novel photonic or electronic properties. Here we tried to utilize DNA Origami method to assemble AuNPs with controlled 3D spacial position for possible chiral photonic complex. We also tried to assemble SWNT with discrete length for possible field effect transistor device. In addition, we tried to mimic in vivo compartment with DNA structure to study internalized enzyme behavior. From our results, constructed DNA cage origami can protect encapsulated enzyme from degradation, and internalized enzyme activity can be boosted for up to 10 folds. In summary, DNA structure can serve as an ideal template for construction of functional nanomaterials with lots of possibilities to be explored.

  16. An experimental double-blind irradiation study of a novel topical product (TPF 50) compared to other topical products with DNA repair enzymes, antioxidants, and growth factors with sunscreens: implications for preventing skin aging and cancer.

    PubMed

    Emanuele, Enzo; Spencer, James M; Braun, Martin

    2014-03-01

    The exposure to ultraviolet radiation (UVR) is a major risk factor for skin aging and the development of non-melanoma skin cancer (NMSC). Although traditional sunscreens remain the mainstay for the prevention of UVR-induced skin damage, they cannot ensure a complete protection against the whole spectrum of molecular lesions associated with UVR exposure. The formation of helix-distorting photoproducts such as cyclobutane pyrimidine dimers (CPD), as well as oxidative damage to DNA bases, including the formation of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8OHdG) are among the key DNA lesions associated with photoaging and tumorigenesis. Besides DNA lesions, UVR-induced formation of free radicals can result in protein carbonylation (PC), a major form of irreversible protein damage that inactivates their biological function. This study compares a complex novel topical product (TPF50) consisting of three actives, ie, 1) traditional physical sunscreens (SPF 50), 2) a liposome-encapsulated DNA repair enzymes complex (photolyase, endonuclease, and 8-oxoguanine glycosylase [OGG1]), and 3) a potent antioxidant complex (carnosine, arazine, ergothionine) to existing products. Specifically, we assessed the ability of TFP50 vs those of DNA repair and antioxidant and growth factor topical products used with SPF 50 sunscreens in preventing CPD, 8OHdG, and PC formation in human skin biopsies after experimental irradiations. In head-to-head comparison studies, TPF50 showed the best efficacy in reducing all of the three molecular markers. The results indicated that the three TPF50 components had a synergistic effect in reducing CPD and PC, but not 8OHdG. Taken together, our results indicate that TPF50 improves the genomic and proteomic integrity of skin cells after repeated exposure to UVR, ultimately reducing the risk of skin aging and NMSC.

  17. The DNA-polymerase-X family: controllers of DNA quality?

    PubMed

    Ramadan, Kristijan; Shevelev, Igor; Hübscher, Ulrich

    2004-12-01

    Synthesis of the genetic material of the cell is achieved by a large number of DNA polymerases. Besides replicating the genome, they are involved in DNA-repair processes. Recent studies have indicated that certain DNA-polymerase-X-family members can synthesize unusual DNA structures, and we propose that these DNA structures might serve as 'flag wavers' for the induction of DNA-repair and/or DNA-damage-checkpoint pathways.

  18. DNA supercoiling during transcription