Science.gov

Sample records for 3-methylcholanthrene increases ifn

  1. Effect of 3-methylcholanthrene-induced increases in ascorbic acid levels on tissue. beta. -glucuronidase activity in rats

    SciTech Connect

    Calabrese, E.J.; Barrett, T.J.; Leonard, D.A.; Horton, H.M.; Kenyon, E.M.

    1988-01-01

    The interrelationship between tissue ascorbic acid levels and tissue ..beta..-glucuronidase activity was examined in rats injected with 3-methylcholanthrene, an agent which induces ascorbic acid synthesis in rats. Six Fisher 344 rats were dosed intraperitoneally (IP) with 30 mg/kg of 3-methylcholanthrene. Ascorbic acid levels and ..beta..-glucuronidase (..beta..-G) activity were determined for lung, liver and kidney tissues. In a follow-up study, rats were dosed for three consecutive days with 3-methylcholanthrene. Controls in both groups were dosed IP with Emulphor (EL-620). Animals were sacrificed one week after the final dosage and lung, liver and kidney tissues were examined.

  2. Activation of liver X receptor inhibits the development of pulmonary carcinomas induced by 3-methylcholanthrene and butylated hydroxytoluene in BALB/c mice.

    PubMed

    Wang, Qixue; Sun, Lei; Yang, Xiaoxiao; Ma, Xingzhe; Li, Qi; Chen, Yuanli; Liu, Ying; Zhang, Di; Li, Xiaoju; Xiang, Rong; Wei, Yuquan; Han, Jihong; Duan, Yajun

    2016-01-01

    We previously reported that LXR ligand, T0901317, inhibited the growth of inoculated Lewis lung carcinoma in C57BL/6 mice by activating IFN-γ production. However, the effects of T0901317 on carcinogen-induced pulmonary carcinomas remain unknown. In this study, we initially conducted a statistical analysis on the data of human lung cancer samples extracted from the TCGA database, and determined that survival rate/time of lung cancer patients and grade of lung adenocarcinoma were positively and negatively related to lung IFN-γ levels, respectively. We then determined the inhibitory effects of T0901317 on mouse pulmonary carcinomas induced by 3-methylcholanthrene (MCA) and butylated hydroxytoluene (BHT) or urethane. We found that T0901317 reduced morbidity and mortality in MCA/BHT-injected BALB/c mice by inhibiting lung adenocarcinoma. T0901317 also protected C57BL/6 mice, but not IFN-γ deficient (IFN-γ(-/-), C57BL/6 background) mice, against MCA/BHT-induced lung hyperplasia/inflammation. In addition, we determined that T0901317 inhibited urethane-induced lung tumors in BABL/c mice. Furthermore, we determined that T0901317 prevented metastasis of 4T1 breast cancer cells in BALB/c mice. Administration of T0901317 substantially increased serum IFN-γ levels and lung IFN-γ expression in BABL/c and C57BL/6 mice. Taken together, our study demonstrates that LXR inhibits MCA/BHT-induced pulmonary carcinomas in BABL/c mice and the inhibition is associated with induction of IFN-γ production. PMID:27250582

  3. Activation of liver X receptor inhibits the development of pulmonary carcinomas induced by 3-methylcholanthrene and butylated hydroxytoluene in BALB/c mice

    PubMed Central

    Wang, Qixue; Sun, Lei; Yang, Xiaoxiao; Ma, Xingzhe; Li, Qi; Chen, Yuanli; Liu, Ying; Zhang, Di; Li, Xiaoju; Xiang, Rong; Wei, Yuquan; Han, Jihong; Duan, Yajun

    2016-01-01

    We previously reported that LXR ligand, T0901317, inhibited the growth of inoculated Lewis lung carcinoma in C57BL/6 mice by activating IFN-γ production. However, the effects of T0901317 on carcinogen-induced pulmonary carcinomas remain unknown. In this study, we initially conducted a statistical analysis on the data of human lung cancer samples extracted from the TCGA database, and determined that survival rate/time of lung cancer patients and grade of lung adenocarcinoma were positively and negatively related to lung IFN-γ levels, respectively. We then determined the inhibitory effects of T0901317 on mouse pulmonary carcinomas induced by 3-methylcholanthrene (MCA) and butylated hydroxytoluene (BHT) or urethane. We found that T0901317 reduced morbidity and mortality in MCA/BHT-injected BALB/c mice by inhibiting lung adenocarcinoma. T0901317 also protected C57BL/6 mice, but not IFN-γ deficient (IFN-γ−/−, C57BL/6 background) mice, against MCA/BHT-induced lung hyperplasia/inflammation. In addition, we determined that T0901317 inhibited urethane-induced lung tumors in BABL/c mice. Furthermore, we determined that T0901317 prevented metastasis of 4T1 breast cancer cells in BALB/c mice. Administration of T0901317 substantially increased serum IFN-γ levels and lung IFN-γ expression in BABL/c and C57BL/6 mice. Taken together, our study demonstrates that LXR inhibits MCA/BHT-induced pulmonary carcinomas in BABL/c mice and the inhibition is associated with induction of IFN-γ production. PMID:27250582

  4. Activation of liver X receptor inhibits the development of pulmonary carcinomas induced by 3-methylcholanthrene and butylated hydroxytoluene in BALB/c mice.

    PubMed

    Wang, Qixue; Sun, Lei; Yang, Xiaoxiao; Ma, Xingzhe; Li, Qi; Chen, Yuanli; Liu, Ying; Zhang, Di; Li, Xiaoju; Xiang, Rong; Wei, Yuquan; Han, Jihong; Duan, Yajun

    2016-06-02

    We previously reported that LXR ligand, T0901317, inhibited the growth of inoculated Lewis lung carcinoma in C57BL/6 mice by activating IFN-γ production. However, the effects of T0901317 on carcinogen-induced pulmonary carcinomas remain unknown. In this study, we initially conducted a statistical analysis on the data of human lung cancer samples extracted from the TCGA database, and determined that survival rate/time of lung cancer patients and grade of lung adenocarcinoma were positively and negatively related to lung IFN-γ levels, respectively. We then determined the inhibitory effects of T0901317 on mouse pulmonary carcinomas induced by 3-methylcholanthrene (MCA) and butylated hydroxytoluene (BHT) or urethane. We found that T0901317 reduced morbidity and mortality in MCA/BHT-injected BALB/c mice by inhibiting lung adenocarcinoma. T0901317 also protected C57BL/6 mice, but not IFN-γ deficient (IFN-γ(-/-), C57BL/6 background) mice, against MCA/BHT-induced lung hyperplasia/inflammation. In addition, we determined that T0901317 inhibited urethane-induced lung tumors in BABL/c mice. Furthermore, we determined that T0901317 prevented metastasis of 4T1 breast cancer cells in BALB/c mice. Administration of T0901317 substantially increased serum IFN-γ levels and lung IFN-γ expression in BABL/c and C57BL/6 mice. Taken together, our study demonstrates that LXR inhibits MCA/BHT-induced pulmonary carcinomas in BABL/c mice and the inhibition is associated with induction of IFN-γ production.

  5. Aflatoxin B1 metabolism by 3-methylcholanthrene-induced hamster hepatic cytochrome P-450s.

    PubMed

    Lai, T S; Chiang, J Y

    1990-01-01

    We have studied the activation of aflatoxin B1 by hamster liver microsomes and purified hamster cytochrome P-450 isozymes using a umu mutagen test. The hamster liver microsomes or S-9 fractions were much more active than rat liver microsomes or S-9 fractions in the activation of umu gene expression by aflatoxin B1 metabolites. 3-Methyl-cholanthrene treatment increased aflatoxin B1 activation by hamster liver microsomes. Two major 3-methylcholanthrene-inducible cytochrome P-450 isozymes, P-450 MC1 (IIA) and P-450 MC4 (IA2), were purified from 3-methylcholanthrene-treated hamster liver microsomes, and the metabolism of aflatoxin B1 by these two cytochromes was studied. In the reconstituted enzyme system, both P-450 MC1 and P-450 MC4 were highly active in the activation of aflatoxin B1, and antibodies against these P-450s specifically inhibited these activities. Antibody against P-450 MC1 inhibited the activation of aflatoxin B1 by 20% in the presence of 3-methyl-cholanthrene-treated hamster liver microsomes. In contrast, antibody against P-450 MC4 stimulated the activity by 175%. These results indicated that hamster P-450 MC1 might convert aflatoxin B1 to more toxic metabolite(s), whereas P-450 MC4 might convert aflatoxin B1 to less toxic metabolite(s), than aflatoxin B1 in liver microsomes. The metabolite(s) produced by both hamster cytochrome P-450 MC1 and MC4 were genotoxic in the umu mutagen test. PMID:2126562

  6. Regulation of nonmuscle myosin II during 3-methylcholanthrene induced dedifferentiation of C2C12 myotubes

    SciTech Connect

    Dey, Sumit K.; Saha, Shekhar; Das, Provas; Das, Mahua R.; Jana, Siddhartha S.

    2014-08-01

    3-Methylcholanthrene (3MC) induces tumor formation at the site of injection in the hind leg of mice within 110 days. Recent reports reveal that the transformation of normal muscle cells to atypical cells is one of the causes for tumor formation, however the molecular mechanism behind this process is not well understood. Here, we show in an in vitro study that 3MC induces fragmentation of multinucleate myotubes into viable mononucleates. These mononucleates form colonies when they are seeded into soft agar, indicative of cellular transformation. Immunoblot analysis reveals that phosphorylation of myosin regulatory light chain (RLC{sub 20}) is 5.6±0.5 fold reduced in 3MC treated myotubes in comparison to vehicle treated myotubes during the fragmentation of myotubes. In contrast, levels of myogenic factors such as MyoD, Myogenin and cell cycle regulators such as Cyclin D, Cyclin E1 remain unchanged as assessed by real-time PCR array and reverse transcriptase PCR analysis, respectively. Interestingly, addition of the myosin light chain kinase inhibitor, ML-7, enhances the fragmentation, whereas phosphatase inhibitor perturbs the 3MC induced fragmentation of myotubes. These results suggest that decrease in RLC{sub 20} phosphorylation may be associated with the fragmentation step of dedifferentiation. - Highlights: • 3-Methylcholanthrene induces fragmentation of C2C12-myotubes. • Dedifferentiation can be divided into two steps – fragmentation and proliferation. • Fragmentation is associated with rearrangement of nonmuscle myosin II. • Genes associated with differentiation and proliferation are not altered during fragmentation. • Phosphorylation of myosin regulatory light chain is reduced during fragmentation.

  7. STRAIN-SPECIFIC SENSITIVITY TO INDUCTION OF MURINE LUNG TUMORS FOLLOWING IN UTERO EXPOSURE TO 3-METHYLCHOLANTHRENE

    EPA Science Inventory

    We previously demonstrated that different strains of fetal mice were more sensitive to lung tumor induction by 3-methylcholanthrene (MC) than were adults. Offspring from either a D2 x B6D2F1 backcross or from parental Balb/c mice exhibited a similar high incidence of lung tumors ...

  8. Consequences of 3-methylcholanthrene-type induction for the metabolism of 4-aminobiphenyl in isolated rat hepatocytes.

    PubMed

    Orzechowski, A; Schrenk, D; Schut, H A; Bock, K W

    1994-03-01

    Carcinogenic aromatic amines such as 4-aminobiphenyl (4-ABP) are extensively metabolized by both oxidative and conjugation reactions. Thus the burden of genotoxic metabolites of 4-ABP in a target organ is probably influenced by the balance of N-hydroxylation and alternative metabolic pathways in the hepatocyte. In freshly isolated rat hepatocytes, 4-ABP (at a substrate concentration of 10 microM) was mainly N-acetylated (54% of total metabolites), while 2% N-hydroxy-4-ABP-N-glucuronide and 21% of unconjugated N-hydroxylated metabolites were detectable. Ring-hydroxylated metabolites and the primary N-glucuronide of 4-ABP accounted for 8% and 4%, respectively. Pretreatment of rats with 3-methylcholanthrene (MC), a dioxin-type inducer of CYP1A isozymes and phenol UDP-glucuronosyltransferase (UGT1A1), led to a dramatic decrease of N-acetylated (2% of total metabolites) and an increase of N-hydroxylated (54% as free and glucuronidated compound) and ring-hydroxylated (35%) metabolites. Essentially similar effects were seen at a substrate concentration of 50 microM. Consistently, MC-type induction with beta-naphthoflavone resulted in a significant increase in the formation of DNA adducts of 4-ABP, detected by 32P-postlabeling of hepatocellular DNA. The results suggest that, similar to a previous study with 2-naphthylamine (2-NA), MC treatment leads to a marked shift from conjugation to N-oxidation. However, N-hydroxy-4-ABP (in contrast to N-hydroxy-2-NA) is mostly released from hepatocytes in the unconjugated form. PMID:8118934

  9. Downregulation of Mouse Hepatic CYP3A Protein by 3-Methylcholanthrene Does Not Require Cytochrome P450-Dependent Metabolism

    PubMed Central

    Lee, Chunja; Ding, Xinxin

    2013-01-01

    The aryl hydrocarbon receptor (AHR)–dependent induction of cytochromes P450 (P450) such as CYP1A1 by 3-methylcholanthrene (MC) and related polycyclic aromatic hydrocarbons is well characterized. We reported previously that MC treatment triggers a pronounced downregulation, particularly at the protein level, of mouse hepatic Cyp3a11, a counterpart of the key human drug-metabolizing enzyme CYP3A4. To determine whether this effect of MC requires hepatic microsomal P450 activity, we studied liver Cpr-null (LCN) mice with hepatocyte-specific conditional deletion of the NADPH-cytochrome P450 oxidoreductase gene. In vehicle-treated animals, basal levels of CYP3A11 mRNA and CYP3A protein immunoreactivity were elevated by approximately 9-fold in LCN mice compared with wild-type (WT) mice, whereas CYP3A catalytic activity was profoundly compromised in LCN mice. MC treatment caused suppression of CYP3A11 mRNA, CYP3A protein immunoreactivity, and CYP3A catalytic activity in WT mice, and the MC effects at the mRNA and protein levels were maintained in LCN mice. Flavin-containing monooxygenase-3 (Fmo3) induction by MC was suggested previously to occur via an AHR-dependent mechanism requiring conversion of the parent compound to DNA-damaging reactive metabolites; however, hepatic FMO3 mRNA levels were dramatically increased by MC in both WT and LCN mice. MC did not function as a mechanism-based inactivator of CYP3A enzymes in hepatic microsomes prepared from untreated WT mice, under conditions in which 1-aminobenzotriazole caused marked NADPH-dependent loss of total P450 content and CYP3A catalytic activity. These results indicate that MC downregulates mouse hepatic CYP3A protein via a pretranslational mechanism that does not require hepatic microsomal P450-dependent activity. PMID:23846873

  10. Modulation of 3-methylcholanthrene toxicity in cultured neoplastic keratinocytes by glucocorticoids and retinoids is not accounted for by macromolecular adduct formation

    SciTech Connect

    Rubin, A.L.; Rice, R.H. )

    1989-04-01

    3-Methylcholanthrene (3-MC) greatly inhibits the growth of two lines of human squamous carcinoma cells, SCC-9 and SCC-12B{sub 2}. The degree of 3-MC-mediated inhibition, however, was markedly alleviated by inclusion of retinoic acid and hydrocortisone or dexamethasone in the culture medium. These physiological effectors, which are known to have opposing actions on keratinocyte character in SCC cells, did not significantly alter either aryl hydrocarbon hydroxylase activity or macromolecular adduct formation. Further analysis of the cellular responses indicated that hydrocortisone and, in some experiments, retinoids increased the growth rate in 3-MC-exposed cultures, while 3-MC increased the saturation density in retinoic acid-exposed cultures, an example of interference with a physiological response of the cells. These results indicate that alteration of the differentiated state, regardless of the direction of the change, can alter the sensitivity of these cells to toxic stimuli. Further investigation of the bases of such toxic responses and their modulation by the microenvironment may enhance our understanding of the target cell specificity of polycyclic aromatic hydrocarbons.

  11. Effects of chronic dietary exposure to a low-dose of Malathion, Aroclor-1254 and 3-methylcholanthrene on three biomarkers in male mice.

    PubMed

    Hackenberger, B K; Jarić, Davorka; Hackenberger, Dubravka; Stepić, Sandra

    2010-12-01

    The aim of this research was to examine the applicability of some chronic toxicological tests in the determination of exposure to xenobiotics present in concentrations below No Observed Adverse Effect Level (NOAEL) and below the detection limit of analytical instruments. In the present experiment tested chemicals (Malathion, Aroclor-1254 and 3-methylcholanthrene (3-MC)) were mixed with wheat grains and given to male mice as feed over a period of 12 months. 7-ethoxyresorufin-O-deethylase (EROD) activity with the 3-MC and Aroclor-1254 treatments reached the peak at 9th month of exposure (26.7 and 42.4 pmol⁻¹ mg(prot)-⁻¹, respectively), while malathion did not have significant influence. Glutathione (GSH) level depletion was highest after three months of exposure. Unexpectedly, acetylcholinesterase (AChE) activity increased after treatment with malathion, an organophosphorous insecticide. In conclusion, low-level concentrations chronically administered exert certain effects on the levels of selected enzymes, e.g. biomarkers.

  12. Increased per cell IFN-γ productivity indicates recent in vivo activation of T cells

    PubMed Central

    Schlingmann, Tobias R.; Shive, Carey L.; Targoni, Oleg S.; Tary-Lehmann, Magdalena; Lehmann, Paul V.

    2009-01-01

    Immunization with vaccinia virus causes long-term immunity. Efforts have been made to characterize the T cells responsible for this protection. Recently, T cell subsets were described that not only co-express multiple cytokines, but also show increased per cell cytokine productivity. These highly productive cells are often considered to be the most protective. We used ELISPOT assays to measure per cell IFN-γ productivity of vaccinia specific T cells in childhood immunized adults immediately before and at different time points after vaccinia re-vaccination. Apart from an increase in frequency, we found a marked increase of IFN-γ productivity following vaccinia re-vaccination. However, these changes were short-lived as both parameters quickly returned to baseline values within 22 days after re-vaccination. Therefore, increased per cell IFN-γ productivity seems to be a sign of recent in vivo T cell activation rather than a stable marker of a distinct T cell subset responsible for long-term immune protection. PMID:19427634

  13. Transcriptional regulation by triiodothyronine of the UDP-glucuronosyltransferase family 1 gene complex in rat liver. Comparison with induction by 3-methylcholanthrene.

    PubMed

    Masmoudi, T; Hihi, A K; Vázquez, M; Artur, Y; Desvergne, B; Wahli, W; Goudonnet, H

    1997-07-01

    This study demonstrates that the expression of the phenol UDP-glucuronosyltransferase 1 gene (UGT1A1) is regulated at the transcriptional level by thyroid hormone in rat liver. Following 3,5, 3'-triiodo-L-thyronine (T3) stimulation in vivo, there is a gradual increase in the amount of UGT1A1 mRNA with maximum levels reached 24 h after treatment. In comparison, induction with the specific inducer, 3-methylcholanthrene (3-MC), results in maximal levels of UGT1A1 mRNA after 8 h of treatment. In primary hepatocyte cultures, the stimulatory effect of both T3 and 3-MC is also observed. This induction is suppressed by the RNA synthesis inhibitor actinomycin D, indicating that neither inducer acts at the level of mRNA stabilization. Indeed, nuclear run-on assays show a 3-fold increase in UGT1A1 transcription after T3 treatment and a 6-fold increase after 3-MC stimulation. This transcriptional induction by T3 is prevented by cycloheximide in primary hepatocyte cultures, while 3-MC stimulation is only partially affected after prolonged treatment with the protein synthesis inhibitor. Together, these data provide evidence for a transcriptional control of UGT1A1 synthesis and indicate that T3 and 3-MC use different activation mechanisms. Stimulation of the UGT1A1 gene by T3 requires de novo protein synthesis, while 3-MC-dependent activation is the result of a direct action of the compound, most likely via the aromatic hydrocarbon receptor complex. PMID:9202038

  14. Augmentation of 3-methylcholanthrene-induced bioactivation in the human hepatoma cell line HepG2 by the calcium channel blocker nicardipine.

    PubMed

    Hosaka, Takuomi; Sekimoto, Masashi; Nemoto, Kiyomitsu; Degawa, Masakuni

    2010-03-01

    The abilities of the dihydropyridine calcium channel blocker nicardipine (Nic) to induce cytochrome P450 1 family enzymes (CYP1s) and to enhance the 3-methylcholanthrene (MC)-mediated induction of CYP1s and formation of MC-DNA adduct were examined in the human hepatoma cell line HepG2. The results from real time RT-PCR analysis demonstrated that Nic could induce CYP1 mRNAs and enhance the MC-mediated induction of the CYP1 mRNAs. The luciferase-reporter gene assay using the HepG2-A10 cell line, which has been previously established for the screening of aryl hydrocarbon receptor (AhR) activators, also indicated the augmentation of MC-mediated activation of AhR (induction of luciferase) by Nic, although Nic showed limited capacity for the activation of AhR. Furthermore, the results from the Western blot analysis of CYP1s, the enzyme activity assay, and the assay for MC-DNA adduct formation indicated that Nic could enhance the MC-mediated induction of CYP1s, especially CYP1A1. Furthermore, the intracellular accumulation level of [(3)H]MC after treatment of HepG2 cells with [(3)H]MC significantly increased in the presence of Nic. The present findings demonstrate that Nic can enhance the MC-mediated induction of CYP1s, especially CYP1A1, and the formation of MC-DNA adduct in HepG2 cells. Furthermore, the augmentation of the MC-mediated bioactivation by Nic is demonstrated to occur mainly through an increase in intracellular accumulation of MC. PMID:20067464

  15. Effects of combined butylated hydroxyanisole and 3-methylcholanthrene treatments on the expression of p-nitro-phenol UDP-glucuronyltransferase

    SciTech Connect

    Ananaba, G.A.; Stewart, J.

    1987-01-01

    UDP-glucuronyltransferase (UDP-GT) is a very important microsomal xenobiotic detoxicating enzyme. This enzyme has been shown to be induced by a variety of xenobiotics including the carcinogen, 3-methylcholanthrene (3-MC) and the phenolic antioxidant (BHA) which is a widely used food additive. Recently, our laboratory demonstrated that simultaneous administration of 3-MC and BHA to rats results to a synergistic induction of the biotransformation enzymes including UDP-GT. We have determined the elution profile of this enzyme and its multiple forms on ion-exchange and affinity chromatography columns. To further understand the expression of this particular enzyme, we have isolated poly (A/sup +/) RNA from BHA + 3-MC induced rat livers, and in vitro translated them to demonstrate the presence of a protein similar to the authentic UDP-GT in activity and molecular weight, as well as generated cDNA library from them. We hope to immunoprecipitate specific p-nitrophenol UDP-GT from the in vitro translated poly (A/sup +/) RNA and isolate specific mRNA by polysome immunoadsorption in order to generate cDNA to further characterize this unique and important enzyme.

  16. Aqueous Tear Deficiency Increases Conjunctival Interferon-γ (IFN-γ) Expression and Goblet Cell Loss

    PubMed Central

    Pflugfelder, Stephen C.; De Paiva, Cintia S.; Moore, Quianta L.; Volpe, Eugene A.; Li, De-Quan; Gumus, Koray; Zaheer, Mahira L.; Corrales, Rosa M.

    2015-01-01

    Purpose To investigate the hypothesis that increased interferon-γ (IFN-γ) expression is associated with conjunctival goblet cell loss in subjects with tear dysfunction. Methods Goblet cell density (GCD) was measured in impression cytology from the temporal bulbar conjunctiva, and gene expression was measured in cytology samples from the nasal bulbar conjunctiva obtained from 68 subjects, including normal control, meibomian gland disease (MGD), non-Sjögren syndrome (non-SSATD)-, and Sjögren syndrome (SSATD)-associated aqueous tear deficiency. Gene expression was evaluated by real-time PCR. Tear meniscus height (TMH) was measured by optical coherence tomography. Fluorescein and lissamine green dye staining evaluated corneal and conjunctival disease, respectively. Between-group mean differences and correlation coefficients were calculated. Results Compared to control, IFN-γ expression was significantly higher in both ATD groups, and its receptor was higher in SSATD. Expression of IL-13 and its receptor was similar in all groups. Goblet cell density was lower in the SSATD group; expression of MUC5AC mucin was lower and cornified envelope precursor small proline-rich region (SPRR)-2G higher in both ATD groups. Interferon-γ transcript number was inversely correlated with GCD (r = −0.37, P < 0.04) and TMH (r = −0.37, P = 0.02), and directly correlated with lissamine green staining (r = 0.51, P < 0.001) and SPRR-2G expression (r = 0.32, P < 0.05). Conclusions Interferon-γ expression in the conjunctiva was higher in aqueous deficiency and correlated with goblet cell loss and severity of conjunctival disease. These results support findings of animal and culture studies showing that IFN-γ reduces conjunctival goblet cell number and mucin production. PMID:26618646

  17. Induction of UDP-glycosyltransferase family 1 genes in rat liver: different patterns of mRNA expression with two inducers, 3-methylcholanthrene and beta-naphthoflavone.

    PubMed

    Saarikoski, S T; Ikonen, T S; Oinonen, T; Lindros, K O; Ulmanen, I; Husgafvel-Pursiainen, K

    1998-09-01

    Uridine diphosphate (UDP)-glucuronosyltransferases (UGTs), presently called UDP-glycosyltransferases, catalyse the detoxification of many toxic and carcinogenic compounds. Glucuronidation is also a major metabolic pathway for numerous drugs. The UGT1A6 gene (formerly known as UGT1*06 and UGT1A1) has been suggested to belong to the aryl hydrocarbon (Ah) gene battery, which consists of several genes encoding for drug-metabolising enzymes regulated by dioxin and other ligands of the Ah receptor. In this study, we analysed the localisation of UGT1A6 expression in rat liver by in situ hybridisation to mRNA. Two different RNA probes were used, one which was specific to UGT1A6 and the other against the C terminal sequence shared by all UGT1 genes. In this study, no UGT1A6 mRNA was detected in the control animals. However, other gene(s) of the UGT1 family were expressed in the perivenous region surrounding the central veins as detected by hybridisation with the probe against the common region of the UGT1 genes. Treatment with the lower dose (5 mg/kg) of 3-methylcholanthrene (3MC) induced expression of UGT1A6 perivenously. Treatment with the higher dose (25 mg/kg) of 3-Methylcholanthrene resulted in a more panacinar expression pattern. In contrast to the perivenous induction observed with 3-methylcholanthrene, treatment with 15 mg/kg of beta-naphthoflavone (BNF) resulted in strong induction in the periportal region. The results reveal an inducer-specific pattern of UGT1A6 expression similar to that demonstrated earlier for other Ah battery genes, namely CYP1A1, CYP1A2, GSTYalpha and ALDH3. The finding further supports the notion that common factors regulate the regional hepatic expression of Ah battery genes. PMID:9783725

  18. Despite Increased Type 1 IFN, Autoimmune Nonobese Diabetic Mice Display Impaired Dendritic Cell Response to CpG and Decreased Nuclear Localization of IFN-Activated STAT1.

    PubMed

    Rahman, M Jubayer; Rahir, Gwendoline; Dong, Matthew B; Zhao, Yongge; Rodrigues, Kameron B; Hotta-Iwamura, Chie; Chen, Ye; Guerrero, Alan; Tarbell, Kristin V

    2016-03-01

    Innate immune signals help break self-tolerance to initiate autoimmune diseases such as type 1 diabetes, but innate contributions to subsequent regulation of disease progression are less clear. Most studies have measured in vitro innate responses of GM-CSF dendritic cells (DCs) that are functionally distinct from conventional DCs (cDCs) and do not reflect in vivo DC subsets. To determine whether autoimmune NOD mice have alterations in type 1 IFN innate responsiveness, we compared cDCs from prediabetic NOD and control C57BL/6 (B6) mice stimulated in vivo with the TLR9 ligand CpG, a strong type 1 IFN inducer. In response to CpG, NOD mice produce more type 1 IFN and express higher levels of CD40, and NOD monocyte DCs make more TNF. However, the overall CpG-induced transcriptional response is muted in NOD cDCs. Of relevance the costimulatory proteins CD80/CD86, signals needed for regulatory T cell homeostasis, are upregulated less on NOD cDCs. Interestingly, NOD Rag1(-/-) mice also display a defect in CpG-induced CD86 upregulation compared with B6 Rag1(-/-), indicating this particular innate alteration precedes adaptive autoimmunity. The impaired response in NOD DCs is likely downstream of the IFN-α/β receptor because DCs from NOD and B6 mice show similar CpG-induced CD86 levels when anti-IFN-α/β receptor Ab is added. IFN-α-induced nuclear localization of activated STAT1 is markedly reduced in NOD CD11c(+) cells, consistent with lower type 1 IFN responsiveness. In conclusion, NOD DCs display altered innate responses characterized by enhanced type 1 IFN and activation of monocyte-derived DCs but diminished cDC type 1 IFN response. PMID:26826238

  19. Glucuronidation and sulfonation, in vitro, of the major endocrine-active metabolites of methoxychlor in the channel catfish, Ictalurus punctatus, and induction following treatment with 3-methylcholanthrene

    PubMed Central

    James, Margaret O.; Stuchal, Leah D.; Nyagode, Beatrice A.

    2008-01-01

    The organochlorine pesticide, methoxychlor (MXC), is metabolized in animals to phenolic mono- and bis-demethylated metabolites (OH-MXC and HPTE respectively) that interact with estrogen receptors and may be endocrine disruptors. The phase II detoxication of these compounds will influence the duration of action of the estrogenic metabolites, but has not been investigated extensively. In this study, the glucuronidation and sulfonation of OH-MXC and HPTE were investigated in subcellular fractions of liver and intestine from untreated, MXC-treated and 3-methylcholanthrene (3-MC)-treated channel catfish, Ictalurus punctatus. MXC-treated fish were given i.p. injections of 2 mg MXC/kg daily for 6 days and sacrificed 24 hr after the last dose. The 3-MC treatment was a single 10 mg/kg i.p. dose 5 days prior to sacrifice. In hepatic microsomes from control fish, the Vmax value (mean ± S.D., n=4) for glucuronidation of OH-MXC was 270 ± 50 pmol/min/mg protein, higher than found for HPTE (110 ± 20 pmol/min/mg protein). For each substrate, the Vmax values observed in intestinal microsomes were approximately twice those found in the liver. The Km values for OH-MXC and HPTE glucuronidation in control liver were not significantly different and were 0.32 ± 0.04 mM for OH-MXC and 0.26 ± 0.06 mM for HPTE. The Km for the co-substrate, UDPGA, was higher in liver (0.28 ± 0.09 mM) than intestine (0.04 ± 0.02 mM). Treatment with 3-MC but not MXC increased the Vmax for glucuronidation in liver and intestine. Glucuronidation was a more efficient pathway than sulfonation for both substrates, in both tissues. The Vmax values for sulfonation of OH-MXC and HPTE respectively in liver cytosol were 7 ± 3 and 17 ± 4 pmol/min/mg protein and in intestinal cytosol were 13 ± 3 and 30 ± 5 pmol/min/mg protein. Treatment with 3-MC but not MXC increased rates of sulfonation of OH-MXC and HPTE and the model substrate, 3-hydroxy-benzo(a)pyrene in both intestine and liver. Comparison of the kinetics

  20. An increase in galectin-3 causes cellular unresponsiveness to IFN-γ-induced signal transduction and growth inhibition in gastric cancer cells

    PubMed Central

    Tseng, Po-Chun; Chen, Chia-Ling; Shan, Yan-Shen; Lin, Chiou-Feng

    2016-01-01

    Glycogen synthase kinase (GSK)-3β facilitates interferon (IFN)-γ signaling by inhibiting Src homology-2 domain-containing phosphatase (SHP) 2. Mutated phosphoinositide 3-kinase (PI3K) and phosphatase and tensin homolog (PTEN) cause AKT activation and GSK-3β inactivation to induce SHP2-activated cellular unresponsiveness to IFN-γ in human gastric cancer AGS cells. This study investigated the potential role of galectin-3, which acts upstream of AKT/GSK-3β/SHP2, in gastric cancer cells. Increasing or decreasing galectin-3 altered IFN-γ signaling. Following cisplatin-induced galectin-3 upregulation, surviving cells showed cellular unresponsiveness to IFN-γ. Galectin-3 induced IFN-γ resistance independent of its extracellular β-galactoside-binding activity. Galectin-3 expression was not regulated by PI3K activation or by a decrease in PTEN. Increased galectin-3 may cause GSK-3β inactivation and SHP2 activation by promoting PDK1-induced AKT phosphorylation at a threonine residue. Overexpression of AKT, inactive GSK-3βR96A, SHP2, or active SHP2D61A caused cellular unresponsiveness to IFN-γ in IFN-γ-sensitive MKN45 cells. IFN-γ-induced growth inhibition and apoptosis in AGS cells were observed until galectin-3 expression was downregulated. These results demonstrate that an increase in galectin-3 facilitates AKT/GSK-3β/SHP2 signaling, causing cellular unresponsiveness to IFN-γ. PMID:26934444

  1. Strain-dependent lung tumor formation in mice transplacentally exposed to 3-methylcholanthrene and post-natally exposed to butylated hydroxytoluene.

    PubMed

    Gressani, K M; Leone-Kabler, S; O'Sullivan, M G; Case, L D; Malkinson, A M; Miller, M S

    1999-11-01

    The carcinogenic effects of in utero exposure to 3-methylcholanthrene (MC) have been demonstrated in the tumor-resistant C57BL/6 (B6) and DBA (D2) strains of mice. In this study, we determined the effects of in utero exposure to MC in BALB/c mice, a strain which demonstrates greater susceptibility to lung tumor induction, and compared our findings with those previously found in [D2xB6D2F(1)]F(2) mice. In addition, we assessed the molecular pathogenesis of the chemically induced tumors and examined the effects of the putative lung tumor promoter butylated hydroxytoluene (BHT) in BALB/c mice. BALB/c mice were treated on day 17 of gestation with 5, 15 or 45 mg/kg MC and 6 weeks after birth with BHT for 6 consecutive weeks. Mice were killed at 6 months of age. Ki-ras, p16Ink4a and p19ARF gene loci were amplified from paraffin-embedded lung tumor tissue and screened for the presence of point mutations via allele-specific oligonucleotide hybridization and single strand conformation polymorphism (SSCP) analyses. Ki-ras point mutations were found in 56% (20/36) of BALB/c lung tumors, with 33% (2/6) of the hyperplasias, 58% (10/19) of the adenomas and 73% (8/11) of the carcinomas exhibiting point mutations at this gene locus. Similar incidences of Ki-ras mutations were previously found following transplacental exposure of [D2xB6D2F(1)]F(2) mice to MC and treatment of adult A/J mice with urethane. Interestingly, a strain-dependent difference was observed in the mutational spectrum. Sixty-two and 38% of the lung lesions in BALB/c mice exhibited G-->C and G-->T transversions, respectively, in contrast to the 13 and 84% incidences previously observed in [D2xB6D2F(1)]F(2) mice. SSCP analysis of the tumor suppressor gene p16Ink4a showed a 6% incidence of point mutations, consistent with that found in [D2xB6D2F(1)]F(2) mice. No mutations were found in exon 1beta of the p19ARF gene of either strain. BHT, a lung tumor promoter in adult mice, had no statistically significant effects

  2. Hypervirulent M. tuberculosis W/Beijing strains upregulate type I IFNs and increase expression of negative regulators of the Jak-Stat pathway.

    PubMed

    Manca, Claudia; Tsenova, Liana; Freeman, Sherry; Barczak, Amy K; Tovey, Michael; Murray, Peter J; Barry, Clifton; Kaplan, Gilla

    2005-11-01

    The role of type I interferons (IFNs) in the host response to bacterial infections is controversial. Here, we examined the role of IFN-alpha/beta in the murine response to infection with Mycobacterium tuberculosis, using wildtype mice, mice with impaired signaling through the type I IFN receptor (IFNAR), and mice treated to reduce levels of type I IFNs. In this study, we used virulent clinical isolates of M. tuberculosis, including HN878, W4, and CDC1551. Our results indicate that higher levels of type I IFNs are induced by the HN878 and W4 strains. Induction of type I IFNs was associated with lower levels of tumor necrosis factor-alpha (TNF-alpha) and interleukin- 12 (IL-12) and reduced T cell activation, and associated with decreased survival of the mice infected with HN878 or W4 relative to infection with CDC1551. Infection of mice with HN878 and W4 was also associated with relatively higher levels of mRNA for a number of negative regulators of the Jak-Stat signaling pathway, such as suppressors of cytokine signaling (SOCS) 1, 4, and 5, CD45, protein inhibitor of activated Stat1 (PIAS1), protein tyrosine phosphatase nonreceptor type 1 (Ptpn1), and protein tyrosine phosphatase nonreceptor type substrate 1 (Ptpns1). Taken together, these results suggest that increased type I IFNs may be deleterious for survival of M. tuberculosis-infected mice in association with reduced Th1 immunity.

  3. Demethylation of the pesticide methoxychlor in liver and intestine from untreated, methoxychlor-treated, and 3-methylcholanthrene-treated channel catfish (Ictalurus punctatus): evidence for roles of CYP1 and CYP3A family isozymes.

    PubMed

    Stuchal, Leah D; Kleinow, Kevin M; Stegeman, John J; James, Margaret O

    2006-06-01

    Exposure to the organochlorine pesticide methoxychlor (MXC) is associated with endocrine disruption in several species through biotransformation to mono-desmethyl-MXC (OH-MXC) and bis-desmethyl-MXC (HPTE), which interact with estrogen receptors. The biotransformation of [14C]methoxychlor was examined in channel catfish (Ictalurus punctatus), a freshwater species found in the southern United States. Hepatic microsomes formed OH-MXC and HPTE, assessed by comigration with authentic standards. The Km for OH-MXC formation by control liver microsomes was 3.8 +/- 1.3 microM (mean +/- S.D., n = 4), and Vmax was 131 +/- 53 pmol/min/mg protein. These values were similar to those of catfish pretreated with 2 mg/kg methoxychlor i.p. for 6 days (Km 3.3 +/- 0.8 microM and Vmax 99 +/- 17 pmol/min/mg) but less (p < 0.05) than the kinetic parameters for catfish treated with 3-methylcholanthrene (3-MC), which had Km of 6.0 +/- 1.1 microM and Vmax of 246 +/- 6 pmol/min/mg protein. Liver microsomes from 3-MC-treated fish produced significantly more of the secondary metabolite and more potent estrogen, HPTE. Intestinal microsomes formed OH-MXC at lower rates than liver. Methoxychlor pretreatment significantly reduced intestinal metabolite formation from 32 +/- 4 to 15 +/- 6 pmol/min/mg (mean +/- S.D., n = 4), whereas 3-MC treatment significantly increased OH-MXC production to 72 +/- 22 pmol/min/mg. Ketoconazole, clotrimazole, and alpha-naphthoflavone all decreased the production of OH-MXC in liver microsomes, whereas alpha-naphthoflavone stimulated HPTE formation, suggesting that CYP1 and CYP3 family isozymes demethylated methoxychlor. The results suggest that the formation of estrogenic metabolites from methoxychlor would be more rapid in catfish coexposed to CYP1 inducers.

  4. 3-Methylcholanthrene elicits DNA adduct formation in the CYP1A1 promoter region and attenuates reporter gene expression in rat H4IIE cells

    SciTech Connect

    Moorthy, Bhagavatula . E-mail: bmoorthy@bcm.tmc.edu; Muthiah, Kathirvel; Fazili, Inayat S.; Kondraganti, Sudha R.; Wang Lihua; Couroucli, Xanthi I.; Jiang Weiwu

    2007-03-23

    Cytochrome CYP1A (CYP1A) enzymes catalyze bioactivation of 3-methylcholanthrene (MC) to genotoxic metabolites. Here, we tested the hypothesis that CYP1A2 catalyzes formation of MC-DNA adducts that are preferentially formed in the promoter region of CYP1A1, resulting in modulation of CYP1A1 gene expression. MC bound covalently to plasmid DNA (50 {mu}g) containing human CYP1A1 promoter (pGL3-1A1), when incubated with wild-type (WT) liver microsomes (2 mg) and NAPPH 37 {sup o}C for 2 h, giving rise to 9 adducts, as determined by {sup 32}P-postlabeling. Eighty percent of adducts was located in the promoter region. Transient transfection of the adducted plasmids into rat hepatoma (H4IIE) cells for 16 h, followed by MC (1 {mu}M) treatment for 24 h inhibited reporter (luciferase) gene expression by 75%, compared to unadducted controls. Our results suggest that CYP1A2 plays a key role in sequence-specific MC-DNA adduct formation in the CYP1A1 promoter region, leading to attenuation of CYP1A1 gene expression.

  5. Reduced antigen concentration and costimulatory blockade increase IFN-gamma secretion in naive CD8+ T cells.

    PubMed

    Hall, Håkan T L; Petrovic, Jelena; Höglund, Petter

    2004-11-01

    CD8+ T cells are killer cells but also major producers of IFN-gamma. We have investigated the effects of peptide antigen titration and costimulatory blockade on IFN-gamma production and proliferation by naive CD8+ T cells. Mature dendritic cells (DC) pulsed with high amounts of agonist peptide triggered proliferation but little IFN-gamma secretion in individual T cells. In contrast, immature DC pulsed with similar amounts of peptide induced IFN-gamma secretion in a larger fraction of T cells but triggered less proliferation. Blocking B7.2 or lowering the amount of peptide on mature DC led to a response similar to that induced by immature DC, suggesting that differences in stimulatory strength were responsible for the different responses. Using splenic antigen-presenting cells (APC) we demonstrate that reducing the amount of peptide in combination with B7 blockage enhanced IFN-gamma secretion and decreased proliferation in naive CD8+ T cells in an additive way. Our data suggest that IFN-gamma secretion and proliferation are independently and inversely controlled by stimulatory strength in naive CD8+ T cells. This may enable CD8+ T cells to respond with IFN-gamma secretion to immature APC with few peptide ligands consistent with an early immunoregulatory role of CD8+ T cells.

  6. Basal and 3-methylcholanthrene-induced expression of cytochrome P450 1A, 1B and 1C genes in the Brazilian guppy, Poecilia vivipara.

    PubMed

    Dorrington, Tarquin; Zanette, Juliano; Zacchi, Flávia L; Stegeman, John J; Bainy, Afonso C D

    2012-11-15

    In fish there are four cytochrome P450 (CYP1) subfamilies: CYP1A, CYP1B, CYP1C, and CYP1D. Here we cloned Poecilia vivipara CYP1A, with an inferred amino acid sequence 91% identical to CYP1A from the killifish Fundulus heteroclitus, another member of the Cypriniformes, and an important model in ecotoxicology. In addition, we examined the expression of CYP1A, CYP1B1, and CYP1C1 by qPCR in liver, gill, and intestine of adult P. vivipara injected with 3-methylcholanthrene (3-MC) or held in clean water (control group) for 24h. All three tissues examined showed basal expression of the three CYP1 genes. CYP1A was most strongly expressed in the liver, while CYP1B1, and CYP1C1 were most strongly expressed in the gill and intestine respectively. 3-MC induced CYP1A, CYP1B1, and CYP1C1 significantly (20-120-fold) in the three organs, consistent with the regulation of CYP1A, CYP1B1 and CYP1C1 via the aryl hydrocarbon receptor. Validation of CYP1 gene biomarkers in fish collected from a contaminated urban mangrove environment was confirmed with significant induction of CYP1A and CYP1C1 in gills (10-15-fold) and CYP1B1 in liver (23-fold), relative to fish from a control site. The responsiveness of these CYP1 genes indicates P. vivipara is suitable as a model for environmental toxicology studies and environmental assessment in Brazil.

  7. Flavin-containing monooxygenase-3: Induction by 3-methylcholanthrene and complex regulation by xenobiotic chemicals in hepatoma cells and mouse liver

    SciTech Connect

    Celius, Trine; Pansoy, Andrea; Matthews, Jason; Okey, Allan B.; Henderson, Marilyn C.; Krueger, Sharon K.; Williams, David E.

    2010-08-15

    Flavin-containing monooxygenases often are thought not to be inducible but we recently demonstrated aryl hydrocarbon receptor (AHR)-dependent induction of FMO mRNAs in mouse liver by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) (Celius et al., Drug Metab Dispos 36:2499, 2008). We now evaluated FMO induction by other AHR ligands and xenobiotic chemicals in vivo and in mouse Hepa1c1c7 hepatoma cells (Hepa-1). In mouse liver, 3-methylcholanthrene (3MC) induced FMO3 mRNA 8-fold. In Hepa-1 cells, 3MC and benzo[a]pyrene (BaP) induced FMO3 mRNA > 30-fold. Induction by 3MC and BaP was AHR dependent but, surprisingly, the potent AHR agonist, TCDD, did not induce FMO3 mRNA in Hepa-1 cells nor did chromatin immunoprecipitation assays detect recruitment of AHR or ARNT to Fmo3 regulatory elements after exposure to 3MC in liver or in Hepa-1 cells. However, in Hepa-1, 3MC and BaP (but not TCDD) caused recruitment of p53 protein to a p53 response element in the 5'-flanking region of the Fmo3 gene. We tested the possibility that FMO3 induction in Hepa-1 cells might be mediated by Nrf2/anti-oxidant response pathways, but agents known to activate Nrf2 or to induce oxidative stress did not affect FMO3 mRNA levels. The protein synthesis inhibitor, cycloheximide (which causes 'superinduction' of CYP1A1 mRNA in TCDD-treated cells), by itself caused dramatic upregulation (> 300-fold) of FMO3 mRNA in Hepa-1 suggesting that cycloheximide prevents synthesis of a labile protein that suppresses FMO3 expression. Although FMO3 mRNA is highly induced by 3MC or TCDD in mouse liver and in Hepa-1 cells, FMO protein levels and FMO catalytic function showed only modest elevation.

  8. Increased in vitro and in vivo tumoricidal activity of a macrophage cell line genetically engineered to express IFN-gamma, IL-4, IL-6, or TNF-alpha.

    PubMed

    Nishihara, K; Barth, R F; Wilkie, N; Lang, J C; Oda, Y; Kikuchi, H; Everson, M P; Lotze, M T

    1995-06-01

    Genetically engineered monocytes and macrophages may have potential as effector cells for the adoptive immunotherapy of cancer. As a first step, we have transfected the genes encoding either mouse interferon (IFN)-gamma, human interleukin (IL)-6, mouse IL-4, or mouse tumor necrosis factor (TNF)-alpha into the mouse macrophage cell line, J774A.1 cells using retroviral vectors. In vitro activation of J774A.1 cells by gene modification was assessed by morphological changes, proliferative activity was determined by [3H]-TdR uptake, and cytolytic activity was assessed using an 18-hour chromium-51 (51Cr) release assay. In vivo tumoricidal activity was studied by means of local adoptive immunotherapy using intratumoral injection of transfected effector cells. IFN-gamma gene-transfected J774A.1 [J7(IFN-gamma)] cells developed filamentous processes, increased doubling times, and enhanced tumoricidal activity against three tumor cell lines: the TNF-sensitive fibrosarcoma line WEHI 164 and the TNF-alpha-resistant cell lines B16 melanoma and C1300 neuroblastoma. IL-6-, TNF-alpha-, and IL-4-gene-transfected J774A.1 cells also had augmented tumoricidal activity but did not display any changes in morphology or growth. Cytolytic activity was markedly reduced after the addition of anti-TNF-alpha antibodies. Cytolytic J7(IFN-gamma) cells showed upregulated expression of TNF-alpha messenger RNA. After intratumoral injection of J7(IL-4) and J7(IFN-gamma) cell mixtures, 50% of established B16 melanomas were rejected by C57BL/6 mice, thereby demonstrating synergistic killing. Further studies on gene-transfected macrophages should better define their potential usefulness in tumor immunotherapy.

  9. Kinetic isotope effects on cytochrome P-450-catalyzed oxidation reactions: full expression of the intrinsic isotope effect during the O-deethylation of 7-ethoxycoumarin by liver microsomes from 3-methylcholanthrene-induced hamsters

    SciTech Connect

    Miwa, G.T.; Harada, N.; Lu, A.Y.

    1985-05-15

    The intrinsic primary deuterium isotope effect for the O-deethylation of 7-ethoxycoumarin has been estimated by the Northrop method for the microsomal cytochrome P-448 system from 3-methylcholanthrene-induced hamster livers. The intrinsic isotope effect (Dk = 5.5) was found to be equivalent to the observed deuterium isotope effect, demonstrating that the isotope effect for this reaction was fully expressed by this cytochrome P-448 system. These data unequivocally demonstrate that C-H bond cleavage is the rate-limiting step in the overall reaction catalyzed by this system. The decrease in the rate of product formation, occurring as a consequence of deuterium substitution, resulted in a reduction in the quantity of substrate metabolized but was not accompanied by the change in regiospecificity observed in previous studies with a hepatic cytochrome P-448 isozyme purified from 3-methylcholanthrene-induced rats. These data demonstrate that the catalytic site of the hamster isozyme(s) offers more constraints to 7-ethoxycoumarin reorientation than does the catalytic site of the rat liver isozyme.

  10. A novel gain-of-function STAT1 mutation resulting in basal phosphorylation of STAT1 and increased distal IFN-γ-mediated responses in chronic mucocutaneous candidiasis.

    PubMed

    Martinez-Martinez, Laura; Martinez-Saavedra, Maria Teresa; Fuentes-Prior, Pablo; Barnadas, Maria; Rubiales, Maria Victoria; Noda, Judith; Badell, Isabel; Rodríguez-Gallego, Carlos; de la Calle-Martin, Oscar

    2015-12-01

    Gain-of-function STAT1 mutations have recently been associated with autosomal dominant chronic mucocutaneous candidiasis (CMC). The purpose of this study was to characterize the three members of a non-consanguineous family, the father and his two sons, who presented with recurrent oral thrush and ocular candidiasis since early childhood. The three patients had reduced levels of IL-17-producing T cells. This reduction affected specifically IL-17(+)IFN-γ(-) T cells, because the levels of IL-17(+)IFN-γ(+) T cells were similar to controls. We found that PBMC (peripheral blood mononuclear cells) from the patients did not respond to Candida albicans ex vivo. Moreover, after polyclonal activation, patients' PBMC produced lower levels of IL-17 and IL-6 and higher levels of IL-4 than healthy controls. Genetic analyses showed that the three patients were heterozygous for a new mutation in STAT1 (c.894A>C, p.K298N) that affects a highly conserved residue of the coiled-coil domain of STAT1. STAT1 phosphorylation levels were significantly higher in patients' cells than in healthy controls, both in basal conditions and after IFN-γ stimulation, suggesting a permanent activation of STAT1. Cells from the patients also presented increased IFN-γ-mediated responses measured as MIG and IP-10 production. In conclusion, we report a novel gain-of-function mutation in the coiled-coil domain of STAT1, which increases STAT1 phosphorylation and impairs IL-17-mediated immunity. The mutation is responsible for CMC in this family with autosomal dominant inheritance of the disease.

  11. Induction of Cyp1a1 and Cyp1b1 and formation of DNA adducts in C57BL/6, Balb/c, and F1 mice following in utero exposure to 3-methylcholanthrene

    SciTech Connect

    Xu Mian; Nelson, Garret B.; Moore, Joseph E.; McCoy, Thomas P.; Dai, Jian; Manderville, Richard A.; Ross, Jeffrey A.; Miller, Mark Steven . E-mail: msmiller@wfubmc.edu

    2005-11-15

    Fetal mice are more sensitive to chemical carcinogens than are adults. Previous studies from our laboratory demonstrated differences in the mutational spectrum induced in the Ki-ras gene from lung tumors isolated from [D2 x B6D2F1]F2 mice and Balb/c mice treated in utero with 3-methylcholanthrene (MC). We thus determined if differences in metabolism, adduct formation, or adduct repair influence strain-specific responses to transplacental MC exposure in C57BL/6 (B6), Balb/c (BC), and reciprocal F1 crosses between these two strains of mice. The induction of Cyp1a1 and Cyp1b1 in fetal lung and liver tissue was determined by quantitative fluorescent real-time PCR. MC treatment caused maximal induction of Cyp1a1 and Cyp1b1 RNA 2-8 h after injection in both organs. RNA levels for both genes then declined in both fetal organs, but a small biphasic, secondary increase in Cyp1a1 was observed specifically in the fetal lung 24-48 h after MC exposure in all four strains. Cyp1a1 induction by MC at 4 h was 2-5 times greater in fetal liver (7000- to 16,000-fold) than fetal lung (2000- to 6000-fold). Cyp1b1 induction in both fetal lung and liver was similar and much lower than that observed for Cyp1a1, with induction ratios of 8- to 18-fold in fetal lung and 10- to 20-fold in fetal liver. The overall kinetics and patterns of induction were thus very similar across the four strains of mice. The only significant strain-specific effect appeared to be the relatively poor induction of Cyp1b1 in the parental strain of B6 mice, especially in fetal lung tissue. We also measured the levels of MC adducts and their disappearance from lung tissue by the P{sup 32} post-labeling assay on gestation days 18 and 19 and postnatal days 1, 4, 11, and 18. Few differences were seen between the different strains of mice; the parental strain of B6 mice had nominally higher levels of DNA adducts 2 (gestation day 19) and 4 (postnatal day 1) days after injection, although this was not statistically

  12. Diminished CD4+/CD25+ T cell and increased IFN-gamma levels occur in dogs vaccinated with Leishmune in an endemic area for visceral leishmaniasis.

    PubMed

    de Lima, Valéria Marçal Felix; Ikeda, Fabiana Augusta; Rossi, Cláudio N; Feitosa, Mary Marcondes; Vasconcelos, Rosemeride Oliveira; Nunes, Caris Maroni; Goto, Hiro

    2010-06-15

    The Leishmune vaccine has been used in endemic areas to prevent canine visceral leishmaniasis in Brazil, but cytokine production induced by vaccination has rarely been investigated in dogs. This study aimed to evaluate the immune response of dogs vaccinated with Leishmune FML vaccine (Fort Dodge) against total antigen of Leishmania (Leishmania) chagasi (TAg) and FML. Twenty healthy dogs from Araçatuba, São Paulo, Brazil, an endemic leishmaniasis area, received three consecutive subcutaneous injection of Leishmune vaccine at 21-day intervals. PBMC were isolated before and 10 days after completing vaccination and lymphoproliferative response and antibody production against FML or total promastigote antigen were tested. Cytokines IFN-gamma, IL-4 and TNF-alpha were measured in culture supernatant and CD4+/CD25+ and CD8+/CD25+ T cell presence was determined. Analysis of the data indicated that the vaccine conferred humoral responses (100%) against both antigens and cellular immunity to FML (85%) and total antigen (80%), the supernatant of cultured cells stimulated with TAg and FML showed an increase in IFN-gamma (P<0.05), and the vaccine reduced CD4+/CD25+ T cell presence compared to that observed before vaccination. These responses may constitute part of the immune mechanism induced by Leishmune.

  13. Increased TNF-α/IFN-γ/IL-2 and Decreased TNF-α/IFN-γ Production by Central Memory T Cells Are Associated with Protective Responses against Bovine Tuberculosis Following BCG Vaccination

    PubMed Central

    Maggioli, Mayara F.; Palmer, Mitchell V.; Thacker, Tyler C.; Vordermeier, Hans Martin; McGill, Jodi L.; Whelan, Adam O.; Larsen, Michelle H.; Jacobs, William R.; Waters, W. Ray

    2016-01-01

    Central memory T cell (Tcm) and polyfunctional CD4 T cell responses contribute to vaccine-elicited protection with both human and bovine tuberculosis (TB); however, their combined role in protective immunity to TB is unclear. To address this question, we evaluated polyfunctional cytokine responses by CD4 T cell effector/memory populations from bacille Calmette–Guerin (BCG) vaccinated and non-vaccinated calves by flow cytometry prior to and after aerosol challenge with virulent Mycobacterium bovis. Polyfunctional cytokine expression patterns in the response by Tcm, effector memory, and effector T cell subsets were similar between BCG-vaccinated and M. bovis-infected calves, only differing in magnitude (i.e., infected > vaccinated). BCG vaccination, however, did alter the kinetics of the ensuing response to virulent M. bovis infection. Early after challenge (3 weeks post-infection), non-vaccinates had greater antigen-specific interferon-γ (IFN-γ)/tumor necrosis factor-α (TNF-α) and lesser IFN-γ/TNF-α/IL-2 responses by Tcm cells than did vaccinated animals. Importantly, these differences were also associated with mycobacterial burden upon necropsy. Polyfunctional responses to ESAT-6:CFP10 (antigens not synthesized by BCG strains) were detected in memory subsets, as well as in effector cells, as early as 3 weeks after challenge. These findings suggest that cell fate divergence may occur early after antigen priming in the response to bovine TB and that memory and effector T cells may expand concurrently during the initial phase of the immune response. In summary, robust IFN-γ/TNF-α response by Tcm cells is associated with greater mycobacterial burden, while IFN-γ/TNF-α/IL-2 response by Tcm cells are indicative of a protective response to bovine TB. PMID:27799930

  14. Protection against Mycobacterium tuberculosis Infection Offered by a New Multistage Subunit Vaccine Correlates with Increased Number of IFN-γ+IL-2+ CD4+ and IFN-γ+ CD8+ T Cells

    PubMed Central

    Wang, Xiaochun; Zhang, Jingyan; Liang, Jinping; Zhang, Ying; Teng, Xindong; Yuan, Xuefeng; Fan, Xionglin

    2015-01-01

    Protein subunit vaccines present a compelling new area of research for control of tuberculosis (TB). Based on the interaction between Mycobacterium tuberculosis and its host, five stage-specific antigens of M. tuberculosis that participate in TB pathogenesis—Rv1813, Rv2660c, Ag85B, Rv2623, and HspX—were selected. These antigens were verified to be recognized by T cells from a total of 42 whole blood samples obtained from active TB patients, patients with latent TB infections (LTBIs), and healthy control donors. The multistage polyprotein A1D4 was developed using the selected five antigens as a potentially more effective novel subunit vaccine. The immunogenicity and protective efficacy of A1D4 emulsified in the adjuvant MTO [monophosphoryl lipid A (MPL), trehalose-6,6′-dibehenate (TDB), components of MF59] was compared with Bacillus Calmette-Guerin (BCG) in C57BL/6 mice. Our results demonstrated that A1D4/MTO could provide more significant protection against M. tuberculosis infection than the PBS control or MTO adjuvant alone judging from the A1D4-specific Th1-type immune response; however, its efficacy was inferior to BCG as demonstrated by the bacterial load in the lung and spleen, and by the pathological changes in the lung. Antigen-specific single IL-2-secreting cells and different combinations with IL-2-secreting CD4+ T cells were beneficial and correlated with BCG vaccine-induced protection against TB. Antigen-specific IFN-γ+IL-2+ CD4+ T cells were the only effective biomarker significantly induced by A1D4/MTO. Among all groups, A1D4/MTO immunization also conferred the highest number of antigen-specific single IFN-γ+ and IFN-γ+TNF-α+ CD4+ T cells, which might be related to the antigen load in vivo, and single IFN-γ+ CD8+ T cells by mimicking the immune patterns of LTBIs or curable TB patients. Our strategy seems promising for the development of a TB vaccine based on multistage antigens, and subunit antigen A1D4 suspended in MTO adjuvant warrants

  15. Protective effect of Ocimum sanctum on 3-methylcholanthrene, 7,12-dimethylbenz(a)anthracene and aflatoxin B1 induced skin tumorigenesis in mice

    SciTech Connect

    Rastogi, Shipra; Shukla, Yogeshwer; Paul, Bhola N.; Chowdhuri, D. Kar; Khanna, Subhash K.; Das, Mukul

    2007-11-01

    A study on the protective effect of alcoholic extract of the leaves of Ocimum sanctum on 3-mthylcholanthrene (MCA), 7,12-dimethylbenzanthracene (DMBA) and aflatoxin B{sub 1} (AFB{sub 1}) induced skin tumorigenesis in a mouse model has been investigated. The study involved pretreatment of mice with the leaf extract prior to either MCA application or tetradecanoyl phorbol acetate (TPA) treatment in a two-stage tumor protocol viz a viz, DMBA/TPA and AFB1/TPA. The results of the present study indicate that the pretreatment with alcoholic extract of the leaves of O. sanctum decreased the number of tumors in MCA, DMBA/TPA and AFB1/TPA treated mice. The skin tumor induced animals pretreated with alcoholic extract led to a decrease in the expression of cutaneous {gamma}-glutamyl transpeptidase (GGT) and glutathione-S-transferase-P (GST-P) protein. The histopathological examination of skin tumors treated with leaf extract showed increased infiltration of polymorphonuclear, mononuclear and lymphocytic cells, decreased ornithine decarboxylase activity with concomitant enhancement of interleukin-1{beta} (IL-1{beta}) and tumor necrosis factor-{alpha} (TNF-{alpha}) in the serum, implying the in vivo antiproliferative and immunomodulatory activity of leaf extract. The decrease in cutaneous phase I enzymes and elevation of phase II enzymes in response to topical application of leaf extract prior to MCA, AFB1, DMBA/TPA and AFB1/TPA treatment indicate the possibility of impairment in reactive metabolite(s) formation and thereby reducing skin carcinogenicity. Furthermore, pretreatment of leaf extract in the carcinogen induced animals resulted in elevation of glutathione levels and decrease in lipid peroxidation along with heat shock protein expression, indicating a scavenging or antioxidant potential of the extract during chemical carcinogenesis. Thus it can be concluded that leaf extract of O. sanctum provides protection against chemical carcinogenesis in one or more of the

  16. Toxoplasma gondii-skeletal muscle cells interaction increases lipid droplet biogenesis and positively modulates the production of IL-12, IFN-g and PGE2

    PubMed Central

    2014-01-01

    Background The interest in the mechanisms involved in Toxoplasma gondii lipid acquisition has steadily increased during the past few decades, but it remains not completely understood. Here, we investigated the biogenesis and the fate of lipid droplets (LD) of skeletal muscle cells (SkMC) during their interaction with T. gondii by confocal and electron microscopy. We also evaluated whether infected SkMC modulates the production of prostaglandin E2 (PGE2), cytokines interleukin-12 (IL-12) and interferon-gamma (INF-g), and also the cyclooxygenase-2 (COX-2) gene induction. Methods Primary culture of skeletal muscle cells were infected with tachyzoites of T. gondii and analysed by confocal microscopy for observation of LD. Ultrastructural cytochemistry was also used for lipid and sarcoplasmatic reticulum (SR) detection. Dosage of cytokines (IL-12 and INF-g) by ELISA technique and enzyme-linked immunoassay (EIA) for PGE2 measurement were employed. The COX-2 gene expression analysis was performed by real time reverse transcriptase polymerase chain reaction (qRT-PCR). Results We demonstrated that T. gondii infection of SkMC leads to increase in LD number and area in a time course dependent manner. Moreover, the ultrastructural analysis demonstrated that SR and LD are in direct contact with parasitophorous vacuole membrane (PVM), within the vacuolar matrix, around it and interacting directly with the membrane of parasite, indicating that LD are recruited and deliver their content inside the parasitophorous vacuole (PV) in T. gondii-infected SkMC. We also observed a positive modulation of the production of IL-12 and IFN-g, increase of COX-2 mRNA levels in the first hour of T. gondii-SkMC interaction and an increase of prostaglandin E2 (PGE2) synthesis from 6 h up to 48 h of infection. Conclusions Taken together, the close association between SR and LD with PV could represent a source of lipids as well as other nutrients for the parasite survival, and together with the

  17. Small Ubiquitin-like Modifier Alters IFN Response.

    PubMed

    Maarifi, Ghizlane; Maroui, Mohamed Ali; Dutrieux, Jacques; Dianoux, Laurent; Nisole, Sébastien; Chelbi-Alix, Mounira K

    2015-09-01

    IFNs orchestrate immune defense through induction of hundreds of genes. Small ubiquitin-like modifier (SUMO) is involved in various cellular functions, but little is known about its role in IFN responses. Prior work identified STAT1 SUMOylation as an important mode of regulation of IFN-γ signaling. In this study, we investigated the roles of SUMO in IFN signaling, gene expression, protein stability, and IFN-induced biological responses. We first show that SUMO overexpression leads to STAT1 SUMOylation and to a decrease in IFN-induced STAT1 phosphorylation. Interestingly, IFNs exert a negative retrocontrol on their own signaling by enhancing STAT1 SUMOylation. Furthermore, we show that expression of each SUMO paralog inhibits IFN-γ-induced transcription without affecting that of IFN-α. Further, we focused on IFN-induced gene products associated to promyelocytic leukemia (PML) nuclear bodies, and we show that neither IFN-α nor IFN-γ could increase PML and Sp100 protein expression because they enhanced their SUMO3 conjugation and subsequent proteasomal degradation. Because it is known that SUMO3 is important for the recruitment of RING finger protein 4, a poly-SUMO-dependent E3 ubiquitin ligase, and that PML acts as a positive regulator of IFN-induced STAT1 phosphorylation, we went on to show that RING finger protein 4 depletion stabilizes PML and is correlated with a positive regulation of IFN signaling. Importantly, inhibition of IFN signaling by SUMO is associated with a reduction of IFN-induced apoptosis, cell growth inhibition, antiviral defense, and chemotaxis. Conversely, inhibition of SUMOylation results in higher IFN-γ-induced STAT1 phosphorylation and biological responses. Altogether, our results uncover a new role for SUMO in the modulation of IFN response. PMID:26223657

  18. Severe South American ocular toxoplasmosis is associated with decreased Ifn-γ/Il-17a and increased Il-6/Il-13 intraocular levels.

    PubMed

    de-la-Torre, Alejandra; Sauer, Arnaud; Pfaff, Alexander W; Bourcier, Tristan; Brunet, Julie; Speeg-Schatz, Claude; Ballonzoli, Laurent; Villard, Odile; Ajzenberg, Daniel; Sundar, Natarajan; Grigg, Michael E; Gomez-Marin, Jorge E; Candolfi, Ermanno

    2013-11-01

    In a cross sectional study, 19 French and 23 Colombian cases of confirmed active ocular toxoplasmosis (OT) were evaluated. The objective was to compare clinical, parasitological and immunological responses and relate them to the infecting strains. A complete ocular examination was performed in each patient. The infecting strain was characterized by genotyping when intraocular Toxoplasma DNA was detectable, as well as by peptide-specific serotyping for each patient. To characterize the immune response, we assessed Toxoplasma protein recognition patterns by intraocular antibodies and the intraocular profile of cytokines, chemokines and growth factors. Significant differences were found for size of active lesions, unilateral macular involvement, unilateral visual impairment, vitreous inflammation, synechiae, and vasculitis, with higher values observed throughout for Colombian patients. Multilocus PCR-DNA sequence genotyping was only successful in three Colombian patients revealing one type I and two atypical strains. The Colombian OT patients possessed heterogeneous atypical serotypes whereas the French were uniformly reactive to type II strain peptides. The protein patterns recognized by intraocular antibodies and the cytokine patterns were strikingly different between the two populations. Intraocular IFN-γ and IL-17 expression was lower, while higher levels of IL-13 and IL-6 were detected in aqueous humor of Colombian patients. Our results are consistent with the hypothesis that South American strains may cause more severe OT due to an inhibition of the protective effect of IFN-γ. PMID:24278490

  19. Increasing the CD4+ T Cell Precursor Frequency Leads to Competition for IFN-γ Thereby Degrading Memory Cell Quantity and Quality1

    PubMed Central

    Whitmire, Jason K.; Benning, Nicola; Eam, Boreth; Whitton, J. Lindsay

    2009-01-01

    The precursor frequency of naive CD4+ T cells shows an inverse relationship with the number of memory cells generated after exposure to cognate Ag. Using the lymphocytic choriomeningitis virus (LCMV) model, we show here that only when the initial number of naive virus-specific CD4+ T cell precursors is low (≤104 per spleen) do they give rise to abundant and homogeneous memory cells that are CD62Llow, IL-7Rhigh, and imbued with an enhanced capacity to produce cytokine, proliferate, and survive over time. Furthermore, memory cells derived from a high naive precursor number show functional deficits upon secondary exposure to virus. The negative effect of higher naive precursor frequency was not attributable to competition for limiting amounts of Ag, because LCMV-naive CD4+ TCR-transgenic CD4 T cells were recruited into the LCMV-induced response even when their initial number was high. Instead, the T cells appear to compete for direct IFN-γ signals as they differentiate into memory cells. These results are consistent with a model of T cell development in which the most fit effector T cells that receive sufficient direct IFN-γ signals are selected to differentiate further into memory cells. PMID:18453598

  20. Modifications in rat testicular morphology and increases in IFN-gamma serum levels by the oral administration of subtoxic doses of mercuric chloride.

    PubMed

    Penna, Salvador; Pocino, Marisol; Marval, Maria Josefina; Lloreta, José; Gallardo, Luis; Vila, Joan

    2009-01-01

    Mercury induces structural and functional damage in several organs, however the effects of subtoxic doses of the metal on the male reproductive system are not well defined. In order to analyze testicular and epididymal morphological alterations and changes in IL-4 or IFN-gamma serum levels, adult male Sprague-Dawley rats received 0.01, 0.05 or 0.1 microg/ml of mercuric chloride (HgCl(2)) in deionized water for 1 to 7 months by oral route. Controls received deionized water alone. Twenty rats, separated in four groups of five animals each, were used per time of exposure. Progressive degenerative lesions consisting of lack of germ cell cohesion and desquamation, arrest at spermatocyte stage and hypospermatogenesis were observed in seminiferous epithelium by light and electron microscopy. Leydig cells showed cytoplasmic vacuolation and nuclear signs of cell death. Loss of peritubular cell aggregation was evidenced in the epididymis. Mercury accumulation was detected in both organs by mass spectroscopy. Rats showed enhanced IFN-gamma serum levels as compared to controls but only reached significance after 7 months of mercury administration. Subtoxic doses of inorganic mercury could lead to reproductive and immunological alterations. The results demonstrate that sublethal concentrations of mercuric chloride are enough to induce morphological and ultrastructural modifications in male reproductive organs. These contribute to functional alterations of spermatogenesis with arrest at spermatocyte stage, hypospermatogenesis and possibly impaired steroidogenesis which together could affect male fertility. PMID:19462287

  1. Extracellular UDP and P2Y6 function as a danger signal to protect mice from vesicular stomatitis virus infection through an increase in IFN-β production.

    PubMed

    Li, Ruimei; Tan, Binghe; Yan, Yan; Ma, Xiaobin; Zhang, Na; Zhang, Zhi; Liu, Mingyao; Qian, Min; Du, Bing

    2014-11-01

    Extracellular nucleotides that constitute a "danger signal" play an important role in the regulation of immune responses. However, the function and mechanism of extracellular UDP and P2Y6 in antiviral immunity remain unknown. In this study, we demonstrated the in vitro and in vivo protection of UDP/P2Y6 signaling in vesicular stomatitis virus (VSV) infection. First, we demonstrated that VSV-infected cells secrete UDP from the cytoplasm as a danger signal to arouse surrounding cells. Meanwhile, expression of the UDP-specific receptor P2Y6 also was enhanced by VSV. Consequently, UDP protects RAW 264.7 cells, murine embryonic fibroblasts, bone marrow-derived macrophages, and L929 cells from VSV and GFP lentivirus infection. This protection can be blocked by the P2Y6 selective antagonist MRS2578 or IFN-α/β receptor-blocking Ab. VSV-induced cell death and virus replication were both enhanced significantly by knocking down and knocking out P2Y6 in different cells. Mechanistically, UDP facilitates IFN-β secretion through the p38/JNK- and ATF-2/c-Jun-signaling pathways, which are crucial in promoting antiviral immunity. Interestingly, UDP was released through a caspase-cleaved pannexin-1 channel in VSV-induced apoptotic cells and protected cells from infection through P2Y6 receptor in an autocrine or paracrine manner. Furthermore, UDP also protected mice from VSV infection through P2Y6 receptors in an acute neurotropic infection mouse model. Taken together, these results demonstrate the important role of extracellular UDP and P2Y6 as a danger signal in antiviral immune responses and suggest a potential therapeutic role for UDP/P2Y6 in preventing and controlling viral diseases.

  2. STAT1 regulates IFN-alpha beta- and IFN-gamma-dependent control of infection with Chlamydia pneumoniae by nonhemopoietic cells.

    PubMed

    Rothfuchs, Antonio Gigliotti; Trumstedt, Christian; Mattei, Fabrizio; Schiavoni, Giovanna; Hidmark, Asa; Wigzell, Hans; Rottenberg, Martín E

    2006-06-01

    STAT1 mediates signaling in response to IFN-alpha, -beta, and -gamma, cytokines required for protective immunity against several viral, bacterial, and eukaryotic pathogens. The protective role of STAT1 in the control of intranasal infection with the obligate intracellular bacterium Chlamydia pneumoniae was analyzed. IFN-gamma-/- or IFN-gamma receptor (R)-/- mice were highly susceptible to infection with C. pneumoniae. We found that STAT1-/- mice were even more susceptible to C. pneumoniae than IFN-gamma-/- or IFN-gammaR-/- mice. Phosphorylation of STAT1 was detected in the lungs of C. pneumoniae-infected wild-type, IFN-gammaR-/-, and IFN-alphabetaR-/- mice, but not in mice lacking both IFN-alphabetaR and IFN-gammaR. In line with this, IFN-alphabetaR-/-/IFN-gammaR-/- mice showed increased susceptibility to infection compared with IFN-gammaR-/- mice. However, C. pneumoniae-infected IFN-alphabetaR-/- or IFN regulatory factor 3-/- mice showed no increased susceptibility and similar IFN-gamma expression compared with wild-type mice. CD4+ or CD8+ cells released IFN-gamma in vivo and conferred protection against C. pneumoniae in a STAT1-independent manner. In contrast, STAT1 mediated a nonredundant protective role of nonhemopoietic cells but not of hemopoietic cells. Nonhemopoietic cells accounted for the expression of STAT1-mediated indoleamine 2, 3-dioxygenase and the p47 GTPase LRG-47, but not inducible NO synthase mRNA. In summary, we demonstrate that STAT1 mediates a cooperative effect of IFN-alphabeta and IFN-gamma on nonhemopoietic cells, resulting in protection against C. pneumoniae. PMID:16709859

  3. Effects of interferon-alpha (IFN-alpha) administration on leucocytes in healthy humans.

    PubMed

    Corssmit, E P; Heijligenberg, R; Hack, C E; Endert, E; Sauerwein, H P; Romijn, J A

    1997-02-01

    Plasma concentrations of IFN-alpha are increased in several inflammatory conditions. Several lines of evidence indicate that IFN-alpha has anti-inflammatory properties. To study the effects of IFN-alpha on leucocyte subsets and activation and on cytokines, we administered IFN-alpha (rhIFN-alpha2b; 5 x 10(6) U/m2) to eight healthy human subjects in a randomized controlled cross-over study and analysed changes in circulating leucocytes and parameters for neutrophil and monocyte activation. After administration of IFN-alpha, neutrophil counts increased, monocyte counts decreased transiently, whereas the number of lymphocytes, basophils and eosinophils showed a sustained decrease. IFN-alpha administration was also associated with neutrophil activation, reflected in an increase in the plasma concentrations of elastase-alpha1-antitrypsin complexes and lactoferrin. Serum neopterin, a marker for monocyte activation, was significantly increased 10 h after administration of IFN-alpha. IFN-alpha significantly increased plasma concentrations of IL-6, IL-8 and IL-10. Although IL-1 and tumour necrosis factor (TNF) remained undetectable, plasma concentrations of soluble TNF receptors p55 and p75 increased after IFN-alpha administration. We conclude that IFN-alpha induces multiple alterations in the distribution and functional properties of leucocytes. IFN-alpha exerts pro- as well as anti-inflammatory effects within the cytokine network.

  4. Endogenous intrahepatic IFNs and association with IFN-free HCV treatment outcome

    PubMed Central

    Meissner, Eric G.; Wu, David; Osinusi, Anu; Bon, Dimitra; Virtaneva, Kimmo; Sturdevant, Dan; Porcella, Steve; Wang, Honghui; Herrmann, Eva; McHutchison, John; Suffredini, Anthony F.; Polis, Michael; Hewitt, Stephen; Prokunina-Olsson, Ludmila; Masur, Henry; Fauci, Anthony S.; Kottilil, Shyamasundaran

    2014-01-01

    BACKGROUND. Hepatitis C virus (HCV) infects approximately 170 million people worldwide and may lead to cirrhosis and hepatocellular carcinoma in chronically infected individuals. Treatment is rapidly evolving from IFN-α–based therapies to IFN-α–free regimens that consist of directly acting antiviral agents (DAAs), which demonstrate improved efficacy and tolerability in clinical trials. Virologic relapse after DAA therapy is a common cause of treatment failure; however, it is not clear why relapse occurs or whether certain individuals are more prone to recurrent viremia. METHODS. We conducted a clinical trial using the DAA sofosbuvir plus ribavirin (SOF/RBV) and performed detailed mRNA expression analysis in liver and peripheral blood from patients who achieved either a sustained virologic response (SVR) or relapsed. RESULTS. On-treatment viral clearance was accompanied by rapid downregulation of IFN-stimulated genes (ISGs) in liver and blood, regardless of treatment outcome. Analysis of paired pretreatment and end of treatment (EOT) liver biopsies from SVR patients showed that viral clearance was accompanied by decreased expression of type II and III IFNs, but unexpectedly increased expression of the type I IFN IFNA2. mRNA expression of ISGs was higher in EOT liver biopsies of patients who achieved SVR than in patients who later relapsed. CONCLUSION. These results suggest that restoration of type I intrahepatic IFN signaling by EOT may facilitate HCV eradication and prevention of relapse upon withdrawal of SOF/RBV. TRIAL REGISTRATION. ClinicalTrials.gov NCT01441180. FUNDING. Intramural Programs of the National Institute of Allergy and Infectious Diseases, National Institutes of Health Clinical Center, and National Cancer Institute; German Research Foundation. PMID:24983321

  5. Type I IFN regulate DC turnover in vivo.

    PubMed

    Mattei, Fabrizio; Bracci, Laura; Tough, David F; Belardelli, Filippo; Schiavoni, Giovanna

    2009-07-01

    DC are the most potent antigen-presenting cells that recognise signs of infection and serve as the main activators of naïve T cells. We have previously shown that type I IFN (IFN-I) are produced by DC and can act in an autocrine manner to activate DC. In the present study, we have investigated the role of IFN-I in regulating the turnover and lifespan of DC. We found that DC, especially the CD8alpha(+) subset, from type I IFN receptor knock out (IFNAR KO) mice, display a reduced turnover rate when compared with DC from WT mice, as revealed by BrdU labelling kinetics. In vitro, IFNAR KO BM precursor cells cultured in the presence of GM-CSF generated CD11c(+) DC less efficiently than WT BM, and the IFNAR KO DC that arose displayed reduced migratory ability. Interestingly, splenic DC from IFNAR KO mice exhibited a higher survival rate in short-term culture compared with control DC. Exposure to IFN-I in vivo markedly increased the turnover rate of splenic DC, particularly CD8alpha(+) DC, which was preceded by a transient induction of apoptosis. In accordance with this, IFN-I stimulated the apoptosis of splenic DC in vitro. Overall, our data indicate that IFN-I are important regulators of DC turnover in vivo and suggest that these cytokines may exert this function through the modulation of multiple processes involving DC apoptosis, proliferation and migration. PMID:19544312

  6. TBX21-1993T/C (rs4794067) polymorphism is associated with increased risk of chronic periodontitis and increased T-bet expression in periodontal lesions, but does not significantly impact the IFN-g transcriptional level or the pattern of periodontophatic bacterial infection

    PubMed Central

    Cavalla, Franco; Biguetti, Claudia Cristina; Colavite, Priscila Maria; Silveira, Elcia Varise; Martins, Walter; Letra, Ariadne; Trombone, Ana Paula Favaro; Silva, Renato Menezes; Garlet, Gustavo Pompermaier

    2015-01-01

    Th1-polarized host response, mediated by IFN-γ, has been associated with increased severity of periodontal disease as well as control of periodontal infection. The functional polymorphism TBX21-1993T/C (rs4794067) increases the transcriptional activity of the TBX21 gene (essential for Th1 polarization) resulting in a predisposition to a Th-1 biased immune response. Thus, we conducted a case-control study, including a population of healthy controls (H, n = 218), chronic periodontitis (CP, n = 197), and chronic gingivitis patients (CG, n = 193), to investigate if genetic variations in TBX21 could impact the development of Th1 responses, and consequently influence the pattern of bacterial infection and periodontitis outcome. We observed that the polymorphic allele T was significantly enriched in the CP patients compared to CG subjects, while the H controls demonstrated and intermediate genotype. Also, investigating the putative functionality TBX21-1993T/C in the modulation of local response, we observed that the transcripts levels of T-bet, but not of IFN-γ, were upregulated in homozygote and heterozygote polymorphic subjects. In addition, TBX21-1993T/C did not influence the pattern of bacterial infection or the clinical parameters of disease severity, being the presence/absence of red complex bacteria the main factor associated with the disease status and the subrogate variable probing depth (PD) in the logistic regression analysis. PMID:25832120

  7. IFN-γ ameliorates autoimmune encephalomyelitis by limiting myelin lipid peroxidation.

    PubMed

    Sosa, Rebecca A; Murphey, Cathi; Robinson, Rachel R; Forsthuber, Thomas G

    2015-09-01

    Evidence has suggested both a pathogenic and a protective role for the proinflammatory cytokine IFN-γ in experimental autoimmune encephalomyelitis (EAE). However, the mechanisms underlying the protective role of IFN-γ in EAE have not been fully resolved, particularly in the context of CNS antigen-presenting cells (APCs). In this study we examined the role of IFN-γ in myelin antigen uptake by CNS APCs during EAE. We found that myelin antigen colocalization with APCs was decreased substantially and that EAE was significantly more severe and showed a chronic-progressive course in IFN-γ knockout (IFN-γ-/-) or IFN-γ receptor knockout (IFN-γR-/-) mice as compared with WT animals. IFN-γ was a critical regulator of phagocytic/activating receptors on CNS APCs. Importantly, "free" myelin debris and lipid peroxidation activity at CNS lesions was increased in mice lacking IFN-γ signaling. Treatment with N-acetyl-l-cysteine, a potent antioxidant, abolished lipid peroxidation activity and ameliorated EAE in IFN-γ-signaling-deficient mice. Taken together the data suggest a protective role for IFN-γ in EAE by regulating the removal of myelin debris by CNS APCs and thereby limiting the substrate available for the generation of neurotoxic lipid peroxidation products.

  8. Tryptophan depletion and the kinase GCN2 mediate IFN-γ-induced autophagy.

    PubMed

    Fougeray, Sophie; Mami, Iadh; Bertho, Gildas; Beaune, Philippe; Thervet, Eric; Pallet, Nicolas

    2012-09-15

    IFN-γ is a master regulator of the immune responses that occur in the transplanted kidney, acting both on the immune system and on the graft itself. The cellular responses to IFN-γ are complex, and emerging evidence suggests that IFN-γ may regulate autophagic functions. Conversely, autophagy modulates innate and adaptive immune functions in various contexts. In this study, we identify a novel mechanism by which IFN-γ activates autophagy in human kidney epithelial cells and provide new insights into how autophagy regulates immune functions in response to IFN-γ. Our results indicate that IFN-γ promotes tryptophan depletion, activates the eIF2α kinase general control nonderepressible-2 (GCN2), and leads to an increase in the autophagic flux. Further, tryptophan supplementation and RNA interference directed against GCN2 inhibited IFN-γ-induced autophagy. This process is of functional relevance because autophagy regulates the secretion of inflammatory cytokines and growth factors by human kidney epithelial cells in response to IFN-γ. These findings assign to IFN-γ a novel function in the regulation of autophagy, which, in turn, modulates IFN-γ-induced secretion of inflammatory cytokines. PMID:22896630

  9. Influenza A/Hong Kong/156/1997(H5N1) virus NS1 gene mutations F103L and M106I both increase IFN antagonism, virulence and cytoplasmic localization but differ in binding to RIG-I and CPSF30

    PubMed Central

    2013-01-01

    Background The genetic basis for avian to mammalian host switching in influenza A virus is largely unknown. The human A/HK/156/1997 (H5N1) virus that transmitted from poultry possesses NS1 gene mutations F103L + M106I that are virulence determinants in the mouse model of pneumonia; however their individual roles have not been determined. The emergent A/Shanghai/patient1/2013(H7N9)-like viruses also possess these mutations which may contribute to their virulence and ability to switch species. Methods NS1 mutant viruses were constructed by reverse genetics and site directed mutagenesis on human and mouse-adapted backbones. Mouse infections assessed virulence, virus yield, tissue infection, and IFN induction. NS1 protein properties were assessed for subcellular distribution, IFN antagonism (mouse and human), CPSF30 and RIG-I domain binding, host transcription (microarray); and the natural prevalence of 103L and 106I mutants was assessed. Results Each of the F103L and M106I mutations contributes additively to virulence to reduce the lethal dose by >800 and >3,200 fold respectively by mediating alveolar tissue infection with >100 fold increased infectious yields. The 106I NS1 mutant lost CPSF binding but the 103L mutant maintained binding that correlated with an increased general decrease in host gene expression in human but not mouse cells. Each mutation positively modulated the inhibition of IFN induction in mouse cells and activation of the IFN-β promoter in human cells but not in combination in human cells indicating negative epistasis. Each of the F103L and M106I mutations restored a defect in cytoplasmic localization of H5N1 NS1 in mouse cells. Human H1N1 and H3N2 NS1 proteins bound to the CARD, helicase and RD RIG-I domains, whereas the H5N1 NS1 with the same consensus 103F and 106M mutations did not bind these domains, which was totally or partially restored by the M106I or F103L mutations respectively. Conclusions The F103L and M106I mutations in the H5N1 NS1

  10. HSV-2 immediate-early protein US1 inhibits IFN-β production by suppressing association of IRF-3 with IFN-β promoter.

    PubMed

    Zhang, Mudan; Liu, Yalan; Wang, Ping; Guan, Xinmeng; He, Siyi; Luo, Sukun; Li, Chang; Hu, Kai; Jin, Wei; Du, Tao; Yan, Yan; Zhang, Zhenfeng; Zheng, Zhenhua; Wang, Hanzhong; Hu, Qinxue

    2015-04-01

    HSV-2 is the major cause of genital herpes, and its infection increases the risk of HIV-1 acquisition and transmission. After initial infection, HSV-2 can establish latency within the nervous system and thus maintains lifelong infection in humans. It has been suggested that HSV-2 can inhibit type I IFN signaling, but the underlying mechanism has yet to be determined. In this study, we demonstrate that productive HSV-2 infection suppresses Sendai virus (SeV) or polyinosinic-polycytidylic acid-induced IFN-β production. We further reveal that US1, an immediate-early protein of HSV-2, contributes to such suppression, showing that US1 inhibits IFN-β promoter activity and IFN-β production at both mRNA and protein levels, whereas US1 knockout significantly impairs such capability in the context of HSV-2 infection. US1 directly interacts with DNA binding domain of IRF-3, and such interaction suppresses the association of nuclear IRF-3 with the IRF-3 responsive domain of IFN-β promoter, resulting in the suppression of IFN-β promoter activation. Additional studies demonstrate that the 217-414 aa domain of US1 is critical for the suppression of IFN-β production. Our results indicate that HSV-2 US1 downmodulates IFN-β production by suppressing the association of IRF-3 with the IRF-3 responsive domain of IFN-β promoter. Our findings highlight the significance of HSV-2 US1 in inhibiting IFN-β production and provide insights into the molecular mechanism by which HSV-2 evades the host innate immunity, representing an unconventional strategy exploited by a dsDNA virus to interrupt type I IFN signaling pathway. PMID:25712217

  11. Limiting Cholesterol Biosynthetic Flux Spontaneously Engages Type I IFN Signaling.

    PubMed

    York, Autumn G; Williams, Kevin J; Argus, Joseph P; Zhou, Quan D; Brar, Gurpreet; Vergnes, Laurent; Gray, Elizabeth E; Zhen, Anjie; Wu, Nicholas C; Yamada, Douglas H; Cunningham, Cameron R; Tarling, Elizabeth J; Wilks, Moses Q; Casero, David; Gray, David H; Yu, Amy K; Wang, Eric S; Brooks, David G; Sun, Ren; Kitchen, Scott G; Wu, Ting-Ting; Reue, Karen; Stetson, Daniel B; Bensinger, Steven J

    2015-12-17

    Cellular lipid requirements are achieved through a combination of biosynthesis and import programs. Using isotope tracer analysis, we show that type I interferon (IFN) signaling shifts the balance of these programs by decreasing synthesis and increasing import of cholesterol and long chain fatty acids. Genetically enforcing this metabolic shift in macrophages is sufficient to render mice resistant to viral challenge, demonstrating the importance of reprogramming the balance of these two metabolic pathways in vivo. Unexpectedly, mechanistic studies reveal that limiting flux through the cholesterol biosynthetic pathway spontaneously engages a type I IFN response in a STING-dependent manner. The upregulation of type I IFNs was traced to a decrease in the pool size of synthesized cholesterol and could be inhibited by replenishing cells with free cholesterol. Taken together, these studies delineate a metabolic-inflammatory circuit that links perturbations in cholesterol biosynthesis with activation of innate immunity. PMID:26686653

  12. Interfering with immunity: detrimental role of type I IFNs during infection.

    PubMed

    Stifter, Sebastian A; Feng, Carl G

    2015-03-15

    Type I IFNs are known to inhibit viral replication and mediate protection against viral infection. However, recent studies revealed that these cytokines play a broader and more fundamental role in host responses to infections beyond their well-established antiviral function. Type I IFN induction, often associated with microbial evasion mechanisms unique to virulent microorganisms, is now shown to increase host susceptibility to a diverse range of pathogens, including some viruses. This article presents an overview of the role of type I IFNs in infections with bacterial, fungal, parasitic, and viral pathogens and discusses the key mechanisms mediating the regulatory function of type I IFNs in pathogen clearance and tissue inflammation.

  13. IFN-γ Mediates the Antitumor Effects of Radiation Therapy in a Murine Colon Tumor

    PubMed Central

    Gerber, Scott A.; Sedlacek, Abigail L.; Cron, Kyle R.; Murphy, Shawn P.; Frelinger, John G.; Lord, Edith M.

    2014-01-01

    Cancer treatments using ionizing radiation (IR) therapy are thought to act primarily through the induction of tumor cell damage at a molecular level. However, a new concept has recently emerged, suggesting that the immune system is required for effective IR therapy. Our work here has identified interferon gamma (IFN-γ) as an essential cytokine for the efficacy of IR therapy. Local IR (15 Gy) to mice bearing Colon38, a colon adenocarcinoma, decreases tumor burden in wild-type animals. Interestingly, IR therapy had no effect on tumor burden in IFNγKO mice. We further determined that intratumoral levels of IFNincreased 2 days following IR, which directly correlated with a decrease in tumor burden that was not a result of direct cytotoxic effects of IFN-γ on tumor cells. T cells from IR-treated tumors exhibited a far greater capacity to lyse tumor cells in a 51Cr release assay, a process that was dependent on IFN-γ. CD8+ T cells were the predominant producers of IFN-γ, as demonstrated by IFN-γ intracellular staining and studies in IFN-γ reporter mice. Elimination of CD8+ T cells by antibody treatment reduced the intratumoral levels of IFN-γ by over 90%. More importantly, elimination of CD8+ T cells completely abrogated the effects of radiation therapy. Our data suggest that IFN-γ plays a pivotal role in mediating the antitumor effects of IR therapy. PMID:23583648

  14. DCIR maintains bone homeostasis by regulating IFN-γ production in T cells.

    PubMed

    Maruhashi, Takumi; Kaifu, Tomonori; Yabe, Rikio; Seno, Akimasa; Chung, Soo-Hyun; Fujikado, Noriyuki; Iwakura, Yoichiro

    2015-06-15

    Dendritic cell immunoreceptor (DCIR) is a C-type lectin receptor mainly expressed in DCs. Dcir (-/-) mice spontaneously develop autoimmune enthesitis and ankylosis accompanied by fibrocartilage proliferation and ectopic ossification. However, the mechanisms of new bone/cartilage formation in Dcir (-/-) mice remain to be elucidated. In this study, we show that DCIR maintains bone homeostasis by regulating IFN-γ production under pathophysiological conditions. DCIR deficiency increased bone volume in femurs and caused aberrant ossification in joints, whereas these symptoms were abolished in Rag2(-/-)Dcir(-/-) mice. IFN-γ-producing T cells accumulated in lymph nodes and joints of Dcir(-/-) mice, and purified Dcir(-/-) DCs enhanced IFN-γ(+) T cell differentiation. The ankylotic changes and bone volume increase were suppressed in the absence of IFN-γ. Thus, IFN-γ is a positive chondrogenic and osteoblastogenic factor, and DCIR is a crucial regulator of bone metabolism; consequently, both factors are potential targets for therapies directed against bone metabolic diseases.

  15. Tick salivary cystatin sialostatin L2 suppresses IFN responses in mouse dendritic cells.

    PubMed

    Lieskovská, J; Páleníková, J; Širmarová, J; Elsterová, J; Kotsyfakis, M; Campos Chagas, A; Calvo, E; Růžek, D; Kopecký, J

    2015-02-01

    Type I interferon (IFN), mainly produced by dendritic cells (DCs), is critical in the host defence against tick-transmitted pathogens. Here, we report that salivary cysteine protease inhibitor from the hard tick Ixodes scapularis, sialostatin L2, affects IFN-β mediated immune reactions in mouse dendritic cells. Following IFN receptor ligation, the Janus activated kinases/signal transducer and activator of transcription (JAK/STAT) pathway is activated. We show that sialostatin L2 attenuates phosphorylation of STATs in spleen dendritic cells upon addition of recombinant IFN-β. LPS-stimulated dendritic cells release IFN-β which in turn leads to the induction of IFN-stimulated genes (ISG) through JAK/STAT pathway activation. The induction of two ISG, interferon regulatory factor 7 (IRF-7) and IP-10, was suppressed by sialostatin L2 in LPS-stimulated dendritic cells. Finally, the interference of sialostatin L2 with IFN action led to the enhanced replication of tick-borne encephalitis virus in DC. In summary, we present here that tick salivary cystatin negatively affects IFN-β responses which may consequently increase the pathogen load after transmission via tick saliva.

  16. IFN-γ Receptor Deficient Donor T cells Mediate Protection from Graft-versus-Host Disease and Preserve Graft-versus-Tumor Responses After Allogeneic Bone Marrow Transplantation

    PubMed Central

    Sun, Kai; Hsiao, Hui-Hua; Li, Minghui; Ames, Erik; Bouchlaka, Myriam; Welniak, Lisbeth A.; Hagino, Takeshi; Jagdeo, Jared; Pai, Chien-Chun; Chen, Mingyi; Blazar, Bruce R.; Abedi, Mehrdad; Murphy, William J.

    2012-01-01

    Graft-versus-host disease (GVHD) is a major complication of allogeneic bone marrow transplantation (BMT). It has been previously reported that lung GVHD severity directly correlates with the expansion of donor Th17 cells in the absence of IFN-γ. However, the consequence of Th17-associated lung GVHD in the presence of IFN-γ has not been well-characterized. In the current study, T cells from IFN-γ receptor knockout (IFN-γR-/-) mice, capable of producing IFN-γ but unable to signal in response to IFN-γ, have been used to further elucidate the role of IFN-γ in GVHD. We found the transfer of donor T cells from either IFN-γR-/- or IFN-γ knockout (IFN-γ-/-) mice resulted in significant increases in donor Th17 cells in the lung. Marked increases in IL4-producing Th2 cells infiltrating the lungs were also observed in the mice of donor IFN-γR-/- T cells. Interestingly, despite the presence of these cells, these mice did not show the severe immune mediated histopathological lung injury observed in mice receiving donor IFN-γ-/- T cells. Increases in lung GVHD did occur in mice with donor IFN-γR-/- T cells when treated in vivo with anti-IFN-γ demonstrating that the cytokine has a protective role on host tissues in GVHD. A survival benefit from acute GVHD was also observed using donor cells from IFN-γR-/-T cells compared with control donors. Importantly, tumor-bearing mice receiving IFN-γR-/- T cells, versus wild-type donor T cells, displayed similar graft-versus tumor (GVT) effects. These results demonstrate the critical role of the IFN-γ on host tissues and cell effector functions in GVHD/GVT. PMID:22778394

  17. Protective efficacy of IFN-ω AND IFN-λs against influenza viruses in induced A549 cells.

    PubMed

    Škorvanová, L; Švančarová, P; Svetlíková, D; Betáková, T

    2015-12-01

    The interferon system represents one of the components of the first line defence against influenza virus infection. Interferon omega (IFN-ω) is antigenetically different from IFN-α and IFN-β and can affect patients who are resistant to these IFNs. To improve the biological characterization of IFN-ω, we compared its activity with those of type I and type III IFNs in induced A549 cells. The antiviral effect on IFN-stimulated A549 cells was most apparent after infection with avian influenza virus. IFN-ω had statistically significant antiviral activity although less than IFN-β1a, IFN-λ1, or IFN-λ2. On the other hand, IFN-ω appeared more efficient than IFN-α2. Our results also indicate that IFN-λs were more suitable against human highly pathogenic virus. In this case, IFN-λ1 and IFN-λ2 were more potent than type I IFNs. PMID:26666190

  18. Murine gammaherpesvirus targets type I IFN receptor but not type III IFN receptor early in infection.

    PubMed

    Lopušná, Katarína; Benkóczka, Tímea; Lupták, Jakub; Matúšková, Radka; Lukáčiková, Ľubomíra; Ovečková, Ingrid; Režuchová, Ingeborg

    2016-07-01

    The innate immune response represents a primary line of defense against invading viral pathogens. Since epithelial cells are the primary site of gammaherpesvirus replication during infection in vivo and there are no information on activity of IFN-III signaling against gammaherpesviruses in this cell type, in present study, we evaluated the expression profile and virus-host interactions in mouse mammary epithelial cell (NMuMG) infected with three strains of murine gammaherpesvirus, MHV-68, MHV-72 and MHV-4556. Studying three strains of murine gammaherpesvirus, which differ in nucleotide sequence of some structural and non-structural genes, allowed us to compare the strain-dependent interactions with host organism. Our results clearly demonstrate that: (i) MHV-68, MHV-72 and MHV-4556 differentially interact with intracellular signaling and dysregulate IFN signal transduction; (ii) MHV-68, MHV-72 and MHV-4556 degrade type I IFN receptor in very early stages of infection (2-4hpi), but not type III IFN receptor; (iii) type III IFN signaling might play a key role in antiviral defense of epithelial cells in early stages of murine gammaherpesvirus replication; (iv) NMuMG cells are an appropriate model for study of not only type I IFN signaling, but also type III IFN signaling pathway. These findings are important for better understanding of individual virus-host interactions in lytic as well as in persistent gammaherpesvirus replication and help us to elucidate IFN-III function in early events of virus infection. PMID:27152708

  19. HIF-1α Is an Essential Mediator of IFN-γ-Dependent Immunity to Mycobacterium tuberculosis.

    PubMed

    Braverman, Jonathan; Sogi, Kimberly M; Benjamin, Daniel; Nomura, Daniel K; Stanley, Sarah A

    2016-08-15

    The cytokine IFN-γ coordinates macrophage activation and is essential for control of pathogens, including Mycobacterium tuberculosis However, the mechanisms by which IFN-γ controls M. tuberculosis infection are only partially understood. In this study, we show that the transcription factor hypoxia-inducible factor-1α (HIF-1α) is an essential mediator of IFN-γ-dependent control of M. tuberculosis infection both in vitro and in vivo. M. tuberculosis infection of IFN-γ-activated macrophages results in a synergistic increase in HIF-1α protein levels. This increase in HIF-1α levels is functionally important, as macrophages lacking HIF-1α are defective for IFN-γ-dependent control of infection. RNA-sequencing demonstrates that HIF-1α regulates nearly one-half of all IFN-γ-inducible genes during infection of macrophages. In particular, HIF-1α regulates production of important immune effectors, including inflammatory cytokines and chemokines, eicosanoids, and NO. In addition, we find that during infection HIF-1α coordinates a metabolic shift to aerobic glycolysis in IFN-γ-activated macrophages. We find that this enhanced glycolytic flux is crucial for IFN-γ-dependent control of infection in macrophages. Furthermore, we identify a positive feedback loop between HIF-1α and aerobic glycolysis that amplifies macrophage activation. Finally, we demonstrate that HIF-1α is crucial for control of infection in vivo as mice lacking HIF-1α in the myeloid lineage are strikingly susceptible to infection and exhibit defective production of inflammatory cytokines and microbicidal effectors. In conclusion, we have identified HIF-1α as a novel regulator of IFN-γ-dependent immunity that coordinates an immunometabolic program essential for control of M. tuberculosis infection in vitro and in vivo. PMID:27430718

  20. Type I IFN signaling triggers immunopathology in tuberculosis-susceptible mice by modulating lung phagocyte dynamics

    PubMed Central

    Dorhoi, Anca; Yeremeev, Vladimir; Nouailles, Geraldine; Weiner, January; Jörg, Sabine; Heinemann, Ellen; Oberbeck-Müller, Dagmar; Knaul, Julia K; Vogelzang, Alexis; Reece, Stephen T; Hahnke, Karin; Mollenkopf, Hans-Joachim; Brinkmann, Volker; Kaufmann, Stefan H E

    2014-01-01

    General interest in the biological functions of IFN type I in Mycobacterium tuberculosis (Mtb) infection increased after the recent identification of a distinct IFN gene expression signature in tuberculosis (TB) patients. Here, we demonstrate that TB-susceptible mice lacking the receptor for IFN I (IFNAR1) were protected from death upon aerogenic infection with Mtb. Using this experimental model to mimic primary progressive pulmonary TB, we dissected the immune processes affected by IFN I. IFNAR1 signaling did not affect T-cell responses, but markedly altered migration of inflammatory monocytes and neutrophils to the lung. This process was orchestrated by IFNAR1 expressed on both immune and tissue-resident radioresistant cells. IFNAR1-driven TB susceptibility was initiated by augmented Mtb replication and in situ death events, along with CXCL5/CXCL1-driven accumulation of neutrophils in alveoli, followed by the discrete compartmentalization of Mtb in lung phagocytes. Early depletion of neutrophils rescued TB-susceptible mice to levels observed in mice lacking IFNAR1. We conclude that IFN I alters early innate events at the site of Mtb invasion leading to fatal immunopathology. These data furnish a mechanistic explanation for the detrimental role of IFN I in pulmonary TB and form a basis for understanding the complex roles of IFN I in chronic inflammation. PMID:24782112

  1. Screening and characterization of molecules that modulate the biological activity of IFNs-I.

    PubMed

    Bürgi, Milagros; Zapol'skii, Viktor A; Hinkelmann, Bettina; Köster, Mario; Kaufmann, Dieter E; Sasse, Florenz; Hauser, Hansjörg; Etcheverrigaray, Marina; Kratje, Ricardo; Bollati-Fogolín, Mariela; Oggero, Marcos

    2016-09-10

    Type I Interferons (IFNs-I) are species-specific glycoproteins which play an important role as primary defence against viral infections and that can also modulate the adaptive immune system. In some autoimmune diseases, interferons (IFNs) are over-produced. IFNs are widely used as biopharmaceuticals for a variety of cancer indications, chronic viral diseases, and for their immuno-modulatory action in patients with multiple sclerosis; therefore, increasing their therapeutic efficiency and decreasing their side effects is of high clinical value. In this sense, it is interesting to find molecules that can modulate the activity of IFNs. In order to achieve that, it was necessary to establish a simple, fast and robust assay to analyze numerous compounds simultaneously. We developed four reporter gene assays (RGAs) to identify IFN activity modulator compounds by using WISH-Mx2/EGFP, HeLa-Mx2/EGFP, A549-Mx2/EGFP, and HEp2-Mx2/EGFP reporter cell lines (RCLs). All of them present a Z' factor higher than 0.7. By using these RGAs, natural and synthetic compounds were analyzed simultaneously. A total of 442 compounds were studied by the Low Throughput Screening (LTS) assay using the four RCLs to discriminate between their inhibitory or enhancing effects on IFN activity. Some of them were characterized and 15 leads were identified. Finally, one promising candidate with enhancing effect on IFN-α/-β activity and five compounds with inhibitory effect were described.

  2. Virus-induced type I IFN stimulates generation of immunoproteasomes at the site of infection

    PubMed Central

    Shin, Eui-Cheol; Seifert, Ulrike; Kato, Takanobu; Rice, Charles M.; Feinstone, Stephen M.; Kloetzel, Peter-M.; Rehermann, Barbara

    2006-01-01

    IFN-γ is known as the initial and primary inducer of immunoproteasomes during viral infections. We now report that type I IFN induced the transcription and translation of immunoproteasome subunits, their incorporation into the proteasome complex, and the generation of an immunoproteasome-dependent CD8 T cell epitope in vitro and provide in vivo evidence that this mechanism occurs prior to IFN-γ responses at the site of viral infection. Type I IFN–mediated generation of immunoproteasomes was initiated by either poly(I:C) or HCV RNA in human hepatoma cells and was inhibited by neutralization of type I IFN. In serial liver biopsies of chimpanzees with acute HCV infection, increases in immunoproteasome subunit mRNA preceded intrahepatic IFN-γ responses by several weeks, instead coinciding with intrahepatic type I IFN responses. Thus, viral RNA–induced innate immune responses regulate the antigen-processing machinery, which occurs prior to the detection of IFN-γ at the site of infection. This mechanism may contribute to the high effectiveness (95%) of type I IFN–based therapies if administered early during HCV infection. PMID:17039255

  3. Novel role for molecular transporter importin 9 in posttranscriptional regulation of IFN-ε expression.

    PubMed

    Matsumiya, Tomoh; Xing, Fei; Ebina, Masayuki; Hayakari, Ryo; Imaizumi, Tadaatsu; Yoshida, Hidemi; Kikuchi, Hideaki; Topham, Matthew K; Satoh, Kei; Stafforini, Diana M

    2013-08-15

    IFN-ε is a unique type I IFN whose constitutive expression in lung, brain, small intestine, and reproductive tissues is only partially understood. Our previous observation that posttranscriptional events participate in the regulation of IFN-ε mRNA expression led us to investigate whether the 5' and/or 3' untranslated regions (UTR) have regulatory functions. Surprisingly, we found that full-length IFN-ε 5'UTR markedly suppressed mRNA expression under basal conditions. Analysis of the secondary structure of this region predicted formation of two stable stem-loop structures, loops 1 and 2. Studies using luciferase constructs harboring various stretches of IFN-ε 5'UTR and mutant constructs in which the conformation of loop structures was disrupted showed that loop 1 is essential for regulation of mRNA expression. Incubation of HeLa cell extracts with agarose-bound RNAs harboring IFN-ε loop structures identified importin 9 (IPO9), a molecular transporter and chaperone, as a candidate that associates with these regions of the 5'UTR. IPO9 overexpression decreased, and IPO9 silencing increased basal IFN-ε expression. Our studies uncover a previously undescribed function for IPO9 as a specific, and negative, posttranscriptional regulator of IFN-ε expression, and they identify key roles for IFN-ε stem-loop structure 1 in this process. IPO9-mediated effects on 5'UTRs appear to extend to additional mRNAs, including hypoxia-inducible factor-1α, that can form specific loop structures. PMID:23851686

  4. IFN-gamma-release assays to diagnose TB infection in the immunocompromised individual.

    PubMed

    Domínguez, Jose; Latorre, Irene; Altet, Neus; Mateo, Lourdes; De Souza-Galvão, Malú; Ruiz-Manzano, Juan; Ausina, Vicente

    2009-06-01

    The tuberculin skin test (TST) is used for diagnosing latent TB infection (LTBI). The main limitation of TST is its low sensitivity in populations with the highest risk of progression to active TB: immunosuppressed patients and young children. New IFN-gamma-based tests appear as an alternative to the TST. IFN-gamma-based tests seem more specific than the TST, being closely associated with LTBI factors, and not being affected by bacillus Calmette-Guérin vaccination. Indeterminate results are mainly related to immunosuppression. Looking at the available data, it seems prudent to recommend the utilization of IFN-gamma-based tests after a negative TST result, in order to increase the sensitivity of detecting LTBI cases in severely immunosuppressed patients. In summary, IFN-gamma-based tests appear to be a valuable tool, in combination with the TST, for diagnosing TB infection in immunosuppressed patients.

  5. Induction of ceruloplasmin synthesis by IFN-gamma in human monocytic cells

    NASA Technical Reports Server (NTRS)

    Mazumder, B.; Mukhopadhyay, C. K.; Prok, A.; Cathcart, M. K.; Fox, P. L.

    1997-01-01

    Ceruloplasmin is a 132-kDa glycoprotein abundant in human plasma. It has multiple in vitro activities, including copper transport, lipid pro- and antioxidant activity, and oxidation of ferrous ion and aromatic amines; however, its physiologic role is uncertain. Although ceruloplasmin is synthesized primarily by the liver in adult humans, production by cells of monocytic origin has been reported. We here show that IFN-gamma is a potent inducer of ceruloplasmin synthesis by monocytic cells. Activation of human monoblastic leukemia U937 cells with IFN-gamma increased the production of ceruloplasmin by at least 20-fold. The identity of the protein was confirmed by plasmin fingerprinting. IFN-gamma also increased ceruloplasmin mRNA. Induction followed a 2- to 4-h lag and was partially blocked by cycloheximide, indicating a requirement for newly synthesized factors. Ceruloplasmin induction in monocytic cells was agonist specific, as IL-1, IL-4, IL-6, IFN-alpha, IFN-beta, TNF-alpha, and LPS were completely ineffective. The induction was also cell type specific, as IFN-gamma did not induce ceruloplasmin synthesis in endothelial or smooth muscle cells. In contrast, IFN-gamma was stimulatory in other monocytic cells, including THP-1 cells and human peripheral blood monocytes, and also in HepG2 cells. Ceruloplasmin secreted by IFN-gamma-stimulated U937 cells had ferroxidase activity and was, in fact, the only secreted protein with this activity. Monocytic cell-derived ceruloplasmin may contribute to defense responses via its ferroxidase activity, which may drive iron homeostasis in a direction unfavorable to invasive organisms.

  6. Regression of infancy hemangiomas with recombinant IFN-alpha 2b.

    PubMed

    Garmendía, G; Miranda, N; Borroso, S; Longchong, M; Martínez, E; Ferrero, J; Porrero, P; López-Saura, P

    2001-01-01

    Interferon-alpha (IFN-alpha) has antitumor and antiangiogenic effects. The purpose of this work was to evaluate its efficacy and safety in the treatment of infancy hemangioma and to monitor the appearance of anti-IFN antibodies in these patients. Thirty-nine children (29 girls) aged 1.5-158 months, with 19 younger than 1 year and 9 older than 5, were treated with 3 x 10(6) IU/m(2) IFN-alpha 2b, subcutaneously (s.c.) daily. Inclusion criteria were life-threatening or life-limiting hemangioma and parents' informed consent. Regression was considered if tumor size diminished by 50% or more. Of the 38 patients who completed 6 months of treatment, 27 (71.1%) had regression and 11 (28.9%) had stable disease. No patient experienced progression. Regression was more frequent (100%) among patients between 1 and 5 years old, but it was particularly important (68%) among those under 1 year old, when spontaneous regression is rare. The main side effects were the IFN-related flulike syndrome (79%), increase in serum alanine aminotransferase (ALT) (28%), anorexia (19%), and mild inflammation at the injection site (19%). There was no effect on psychomotor or physical development. On the contrary, 1 patient with neurologic symptoms improved remarkably, including seizure disappearance. Eight patients developed anti-IFN-alpha 2 neutralizing antibodies, and 7 of them responded to IFN treatment. IFN-alpha 2b is a safe and efficacious treatment of infancy hemangioma. Further work should look for other treatment schedules and ways of administration and carefully monitor anti-IFN neutralizing antibodies, which does not seem to interfere with response.

  7. Association of IFN-γ : IL-10 Cytokine Ratio with Nonsegmental Vitiligo Pathogenesis.

    PubMed

    Ala, Yaswanth; Pasha, Mohammed Khalid; Rao, Raja Narasimha; Komaravalli, Prasanna Latha; Jahan, Parveen

    2015-01-01

    Background and Objectives. Cytokines regulate immune response and inflammation and play a crucial role in depigmentation process of vitiligo. The present study aimed to estimate the serum levels of pro- and anti-inflammatory cytokines, IFN-γ and IL-10, and their ratios in nonsegmental vitiligo patients and healthy individuals from India. Methods. Blood samples were collected from 280 subjects and serum IFN-γ and IL-10 levels were measured using standard ELISA. Results. Nonsegmental vitiligo patients showed increased levels of IFN-γ (12.4 ± 3.2 versus 9.9 ± 4.4 pg/mL) and decreased levels of IL-10 (9.3 ± 1.7 versus 11.5 ± 5 pg/mL) compared to controls. Ratio of IFN-γ : IL-10 differed significantly from patients to controls (p < 0.05). IFN-γ concentrations and IFN-γ : IL-10 ratio varied significantly with respect to clinical variants, disease stability, and social habits (smoking and alcohol consumption) and showed a positive correlation with disease duration. Family history of vitiligo was significantly associated with IFN-γ : IL-10 ratio but not with their individual levels. Conclusion. The ratio of IFN-γ : IL-10 serum levels may be considered as one of the promising immunological markers in nonsegmental vitiligo. This is the first study considering multiple aspects in relation to ratio of cytokine levels. Similar studies with large samples are warranted to confirm our observations. PMID:26442157

  8. Cloning and characterization of a novel feline IFN-omega.

    PubMed

    Yang, Li-Min; Xue, Qing-Hua; Sun, Lei; Zhu, Yi-Ping; Liu, Wen-Jun

    2007-02-01

    The interferons (IFNs) are a large family of multifunctional secreted protein involved in antiviral defense, cell growth regulation, and immune activation. The human IFNs are used worldwide as antiviral drugs. Here, we present cDNAs encoding 13 novel feline IFN-omega (FeIFN-omega) subtypes that share 95%-99% amino acid sequence identity. FeIFN-omega2 and FeIFN-omega4 have seven additional amino acids at position 109 that are not present in other subtypes. Sequence identity of the present FeIFN proteins encoded by the 13 subtypes is approximately 57% compared with human IFN-omega (HuIFN-omega). All 13 FeIFN-omega subtypes were expressed in Escherichia coli using a periplasmic expression system. The antiviral activity of each product was evaluated in vitro. In addition, subtype FeIFN-omega2 was cytoplasm expressed in E. coli and secretion expressed in Pichia pastoris. The purified mature recombinant protein demonstrated significant antiviral activity on both homologous and heterologous animal cells in vitro. PMID:17316139

  9. B cell IFN-γ receptor signaling promotes autoimmune germinal centers via cell-intrinsic induction of BCL-6

    PubMed Central

    Jackson, Shaun W.; Jacobs, Holly M.; Arkatkar, Tanvi; Dam, Elizabeth M.; Scharping, Nicole E.; Kolhatkar, Nikita S.; Hou, Baidong; Buckner, Jane H.

    2016-01-01

    Dysregulated germinal center (GC) responses are implicated in the pathogenesis of human autoimmune diseases, including systemic lupus erythematosus (SLE). Although both type 1 and type 2 interferons (IFNs) are involved in lupus pathogenesis, their respective impacts on the establishment of autoimmune GCs has not been addressed. In this study, using a chimeric model of B cell-driven autoimmunity, we demonstrate that B cell type 1 IFN receptor signals accelerate, but are not required for, lupus development. In contrast, B cells functioning as antigen-presenting cells initiate CD4+ T cell activation and IFN-γ production, and strikingly, B cell–intrinsic deletion of the IFN-γ receptor (IFN-γR) abrogates autoimmune GCs, class-switched autoantibodies (auto-Abs), and systemic autoimmunity. Mechanistically, although IFN-γR signals increase B cell T-bet expression, B cell–intrinsic deletion of T-bet exerts an isolated impact on class-switch recombination to pathogenic auto-Ab subclasses without impacting GC development. Rather, in both mouse and human B cells, IFN-γ synergized with B cell receptor, toll-like receptor, and/or CD40 activation signals to promote cell-intrinsic expression of the GC master transcription factor, B cell lymphoma 6 protein. Our combined findings identify a novel B cell–intrinsic mechanism whereby IFN signals promote lupus pathogenesis, implicating this pathway as a potential therapeutic target in SLE. PMID:27069113

  10. Genkwadaphnin Induces IFN-γ via PKD1/NF-κB/STAT1 Dependent Pathway in NK-92 Cells

    PubMed Central

    Kang, Ho-Bum; Ahn, Kyung-Seop; Oh, Sei-Ryang; Kim, Jae Wha

    2014-01-01

    The flower buds of Daphne genkwa Sieb. et Zucc. have been used as a traditional Chinese medicine although their functional mechanisms have not been discovered yet. We have studied the potential effects of the plant extracts on natural killer (NK) cell activation, and isolated an active fraction. Genkwadaphnin (GD-1) displayed a potent efficacy to induce IFN-γ transcription in NK cells with concentration- and time-dependent manners. GD-1 treatment triggered the phosphorylation of PKD1, a member of PKC family, MEK and ERK, resulting in IKK activation to induce IκB degradation, and the nuclear localization of p65, an NF-κB subunit, which regulates IFN-γ transcription. GD-1 effect on IFN-γ production was blocked by the addition of Rottlerin, a PKC inhibitor, CID 755673, a PKD inhibitor, or Bay11-7082, an IKKα inhibitor. The nuclear localization of p65 was also inhibited by the kinase inhibitors. Secreted IFN-γ activates STAT1 phosphorylation as autocrine-loops to sustain its secretion. GD-1 induced the phosphorylation of STAT1 probably through the increase of IFN-γ. STAT1 inhibitor also abrogated the sustained IFN-γ secretion. These results suggest that GD-1 is involved in the activation of PKD1 and/or ERK pathway, which activate NK-κB triggering IFN-γ production. As positive feedback loops, secreted IFN-γ activates STAT1 and elongates its production in NK-92 cells. PMID:25517939

  11. Surfactant Protein A Prevents IFN-γ/IFN-γ Receptor Interaction and Attenuates Classical Activation of Human Alveolar Macrophages.

    PubMed

    Minutti, Carlos M; García-Fojeda, Belén; Sáenz, Alejandra; de Las Casas-Engel, Mateo; Guillamat-Prats, Raquel; de Lorenzo, Alba; Serrano-Mollar, Anna; Corbí, Ángel L; Casals, Cristina

    2016-07-15

    Lung surfactant protein A (SP-A) plays an important function in modulating inflammation in the lung. However, the exact role of SP-A and the mechanism by which SP-A affects IFN-γ-induced activation of alveolar macrophages (aMϕs) remains unknown. To address these questions, we studied the effect of human SP-A on rat and human aMϕs stimulated with IFN-γ, LPS, and combinations thereof and measured the induction of proinflammatory mediators as well as SP-A's ability to bind to IFN-γ or IFN-γR1. We found that SP-A inhibited (IFN-γ + LPS)-induced TNF-α, iNOS, and CXCL10 production by rat aMϕs. When rat macrophages were stimulated with LPS and IFN-γ separately, SP-A inhibited both LPS-induced signaling and IFN-γ-elicited STAT1 phosphorylation. SP-A also decreased TNF-α and CXCL10 secretion by ex vivo-cultured human aMϕs and M-CSF-derived macrophages stimulated by either LPS or IFN-γ or both. Hence, SP-A inhibited upregulation of IFN-γ-inducible genes (CXCL10, RARRES3, and ETV7) as well as STAT1 phosphorylation in human M-CSF-derived macrophages. In addition, we found that SP-A bound to human IFN-γ (KD = 11 ± 0.5 nM) in a Ca(2+)-dependent manner and prevented IFN-γ interaction with IFN-γR1 on human aMϕs. We conclude that SP-A inhibition of (IFN-γ + LPS) stimulation is due to SP-A attenuation of both inflammatory agents and that the binding of SP-A to IFN-γ abrogates IFN-γ effects on human macrophages, suppressing their classical activation and subsequent inflammatory response.

  12. Helicobacter pylori infection activates Src homology-2 domain-containing phosphatase 2 to suppress IFN-γ signaling.

    PubMed

    Wang, Yu-Chih; Chen, Chia-Ling; Sheu, Bor-Shyang; Yang, Yao-Jong; Tseng, Po-Chun; Hsieh, Chia-Yuan; Lin, Chiou-Feng

    2014-10-15

    Helicobacter pylori infection not only induces gastric inflammation but also increases the risk of gastric tumorigenesis. IFN-γ has antimicrobial effects; however, H. pylori infection elevates IFN-γ-mediated gastric inflammation and may suppress IFN-γ signaling as a strategy to avoid immune destruction through an as-yet-unknown mechanism. This study was aimed at investigating the mechanism of H. pylori-induced IFN-γ resistance. Postinfection of viable H. pylori decreased IFN-γ-activated signal transducers and activators of transcription 1 and IFN regulatory factor 1 not only in human gastric epithelial MKN45 and AZ-521 but also in human monocytic U937 cells. H. pylori caused an increase in the C-terminal tyrosine phosphorylation of Src homology-2 domain-containing phosphatase (SHP) 2. Pharmacologically and genetically inhibiting SHP2 reversed H. pylori-induced IFN-γ resistance. In contrast to a clinically isolated H. pylori strain HP238, the cytotoxin-associated gene A (CagA) isogenic mutant strain HP238(CagAm) failed to induce IFN-γ resistance, indicating that CagA regulates this effect. Notably, HP238 and HP238(CagAm) differently caused SHP2 phosphorylation; however, imaging and biochemical analyses demonstrated CagA-mediated membrane-associated binding with phosphorylated SHP2. CagA-independent generation of reactive oxygen species (ROS) contributed to H. pylori-induced SHP2 phosphorylation; however, ROS/SHP2 mediated IFN-γ resistance in a CagA-regulated manner. This finding not only provides an alternative mechanism for how CagA and ROS coregulate SHP2 activation but may also explain their roles in H. pylori-induced IFN-γ resistance. PMID:25225672

  13. Prevention of SHIV transmission by topical IFN-β treatment

    PubMed Central

    Veazey, Ronald S.; Pilch Cooper, Heather A.; Hope, Thomas J.; Alter, Galit; Carias, Ann M.; Sips, Magdalena; Wang, Xiaolei; Rodriguez, Benigno; Sieg, Scott F.; Reich, Adrian; Wilkinson, Peter; Cameron, Mark J.; Lederman, Michael M.

    2015-01-01

    Understanding vaginal and rectal HIV transmission and protective cellular and molecular mechanisms is critical for designing new prevention strategies, including those required for an effective vaccine. The determinants of protection against HIV infection are, however, poorly understood. Increasing evidence suggest that innate immune defenses may help protect mucosal surfaces from HIV transmission in highly exposed, uninfected subjects 1. More recent studies suggest that systemically administered type 1 interferon protects against simian immunodeficiency virus infection of macaques 2. Here we hypothesized that topically applied type 1 interferons might stimulate vaginal innate responses that could protect against HIV transmission. We therefore applied a recombinant human type 1 interferon (IFN-β) to the vagina of rhesus macaques and vaginally challenged them with pathogenic simian/human immunodeficiency virus (SHIV). Vaginal administration of IFN-β resulted in marked local changes in immune cell phenotype, increasing immune activation and HIV coreceptor expression, yet provided significant protection from SHIV acquisition as interferon response genes (IRGs) were also upregulated. These data suggest that protection from vaginal HIV acquisition may be achieved by activating innate mucosal defenses. PMID:26838048

  14. The role of IFN-γ in regulation of IFN-γ-inducible protein 10 (IP-10) expression in lung epithelial cell and peripheral blood mononuclear cell co-cultures

    PubMed Central

    Torvinen, Maria; Campwala, Hinnah; Kilty, Iain

    2007-01-01

    Background Interferons play a critical role in regulating both the innate and adaptive immune responses. Previous reports have shown increased levels of IFN-γ, IFN-γ-inducing IL-12 and IFN-γ-inducible chemokine IP-10 in patients with chronic obstructive pulmonary disease (COPD). Methods The present study focuses on the regulation of the IP-10 secretion in co-cultures of lung epithelial cells and peripheral blood mononuclear cells (PBMCs). Results No IP-10 secretion was detected in cells cultured alone, whereas a significant increase in IP-10 levels was observed in epithelial cell/PBMC co-cultures. Furthermore, the results show that interactions between lung epithelial cells, lymphocytes and monocytes are needed for basal IP-10 secretion. Interestingly, we have also shown that incubation with IL-12 can induce an IFN-γ independent increase in IP-10 levels in co-cultures. Furthermore, inhibition studies supported the suggestion that different intracellular pathways are responsible of IFN-γ and IL-12 mediated IP-10 secretion. Conclusion These studies demonstrate a novel diversity in IFN-γ/IL-12 pathways, showing that the IP-10 expression in co-cultures is regulated by multiple factors, such as intercellular interactions in addition to IFN-γ and IL-12 levels. These results may be valuable in designing novel strategies to antagonize IP-10 mediated immunological reactions and chemotactic effects on T cells. PMID:17996064

  15. Comparative transcriptome analyses indicate enhanced cellular protection against FMDV in PK15 cells pretreated with IFN-γ.

    PubMed

    Fu, Yin; Zhu, Zesen; Chang, Huiyun; Liu, Zaixin; Liu, Jing; Chen, Huiyong

    2016-07-25

    Interferon gamma (IFN-γ) can induce a host antiviral response to foot and mouth disease virus (FMDV) in vivo and in vitro. To elucidate the mechanism of IFN-γ anti FMDV infection in host cells, high-throughput RNA sequencing was analyzed for systemic changes in gene expression profiles in PK15 cells infected by FMDV with or without IFN-γ pretreatment. More than 25 million reads, covering 1.2-1.5 Gb, were analyzed from each experiment panel. FMDV challenge altered the transcription of genes involved in positively and negatively regulating cell death or apoptosis; however, the expected immune suppression response was not obvious. IFN-γ pretreatment combined with FMDV infection normalized the increase in apoptosis. Furthermore, the transcription factors required for IFN-γ functioning, STAT1 and IRF1 were up-regulated by IFN-γ pretreatment and stimulated downstream IFN-stimulated genes (ISGs). These induced ISGs are mainly responsible for antigen processing, antigen presentation or antiviral defense. Interestingly, a synergistic effect on some ISGs, including OAS1, OAS2, MX1, MX2, RIG-I and IFIT1, was observed in the combined treatment compared to the IFN-γ treatment alone. The suggested effects identified by RNA sequencing were consistent with cellular morphology changes and confirmed by related protein markers. This is the first report exploring transcriptome alterations introduced by FMDV infection with or without IFN-γ pretreatment. The identified key host genes that control cell survival in vitro broaden our comprehensive understanding of how IFN-γ inhibits FMDV infection and may shed light on developing improved FMD control approaches. PMID:27018244

  16. CXCR2 Signaling Protects Oligodendrocyte Progenitor Cells from IFN-γ/CXCL10-Mediated Apoptosis

    PubMed Central

    TIROTTA, EMANUELE; RANSOHOFF, RICHARD M.; LANE, THOMAS E.

    2016-01-01

    Infiltration of activated lymphocytes into the central nervous system (CNS) is potentially harmful by damaging resident cells through release of cytokines. Among these is IFN-γ that is secreted by activated natural killer (NK) cells and T lymphocytes and can exert a cytotoxic effect on resident glial populations including oligodendrocytes. Here we show that treatment of mouse oligodendrocyte progenitor cell (OPC)-enriched cultures with IFN-γ resulted in a dose-dependent increase in apoptosis. IFN-γ-induced apoptosis is mediated, in part, through induction of the CXC chemokine ligand 10 (CXCL10; IP-10) from cultured OPCs. Treatment of OPCs with CXCL10 resulted in cell death in a concentration-dependent manner and IFN-γ-treatment of CXCL10−/− OPCs resulted in >50% reduction in cell death. Further, treatment of CXCR3−/− OPC cultures with either IFN-γ or CXCL10 resulted in reduced cell death supporting an important role for CXCL10 signaling in IFN-γ-mediated OPC apoptosis. Data is also provided demonstrating that signaling through CXCR2 protects either IFN-γ or CXCL10-treated OPC cultures from apoptosis and this effect is abolished in CXCR2−/− OPCs. CXCR2-mediated protection from apoptosis is associated with impaired cleavage of caspase 3 and elevated expression of the anti-apoptotic protein Bcl-2. These findings demonstrate a previously unappreciated role for CXCL10 in contributing to neuropathology by promoting oligodendrocyte apoptosis and emphasize the potential relevance in targeting CXCL10 in treating human demyelinating diseases including multiple sclerosis (MS). PMID:21656856

  17. Ablation of Type-1 IFN Signaling in Hematopoietic Cells Confers Protection Following Traumatic Brain Injury123

    PubMed Central

    Karve, Ila P.; Zhang, Moses; Habgood, Mark; Frugier, Tony; Brody, Kate M.; Sashindranath, Maithili; Ek, C. Joakim; Kile, Ben T.; Wright, David; Wang, Hong; Johnston, Leigh; Daglas, Maria; Ates, Robert C.; Medcalf, Robert L.; Taylor, Juliet M.

    2016-01-01

    Abstract Type-1 interferons (IFNs) are pleiotropic cytokines that signal through the type-1 IFN receptor (IFNAR1). Recent literature has implicated the type-1 IFNs in disorders of the CNS. In this study, we have investigated the role of type-1 IFNs in neuroinflammation following traumatic brain injury (TBI). Using a controlled cortical impact model, TBI was induced in 8- to 10-week-old male C57BL/6J WT and IFNAR1−/− mice and brains were excised to study infarct volume, inflammatory mediator release via quantitative PCR analysis and immune cell profile via immunohistochemistry. IFNAR1−/− mice displayed smaller infarcts compared with WT mice after TBI. IFNAR1−/− mice exhibited an altered anti-inflammatory environment compared with WT mice, with significantly reduced levels of the proinflammatory mediators TNFα, IL-1β and IL-6, an up-regulation of the anti-inflammatory mediator IL-10 and an increased activation of resident and peripheral immune cells after TBI. WT mice injected intravenously with an anti-IFNAR1 blocking monoclonal antibody (MAR1) 1 h before, 30 min after or 30 min and 2 d after TBI displayed significantly improved histological and behavioral outcome. Bone marrow chimeras demonstrated that the hematopoietic cells are a peripheral source of type-1 IFNs that drives neuroinflammation and a worsened TBI outcome. Type-1 IFN mRNA levels were confirmed to be significantly altered in human postmortem TBI brains. Together, these data demonstrate that type-1 IFN signaling is a critical pathway in the progression of neuroinflammation and presents a viable therapeutic target for the treatment of TBI. PMID:27022620

  18. Contraction of the type I IFN locus and unusual constitutive expression of IFN-α in bats.

    PubMed

    Zhou, Peng; Tachedjian, Mary; Wynne, James W; Boyd, Victoria; Cui, Jie; Smith, Ina; Cowled, Christopher; Ng, Justin H J; Mok, Lawrence; Michalski, Wojtek P; Mendenhall, Ian H; Tachedjian, Gilda; Wang, Lin-Fa; Baker, Michelle L

    2016-03-01

    Bats harbor many emerging and reemerging viruses, several of which are highly pathogenic in other mammals but cause no clinical signs of disease in bats. To determine the role of interferons (IFNs) in the ability of bats to coexist with viruses, we sequenced the type I IFN locus of the Australian black flying fox, Pteropus alecto, providing what is, to our knowledge, the first gene map of the IFN region of any bat species. Our results reveal a highly contracted type I IFN family consisting of only 10 IFNs, including three functional IFN-α loci. Furthermore, the three IFN-α genes are constitutively expressed in unstimulated bat tissues and cells and their expression is unaffected by viral infection. Constitutively expressed IFN-α results in the induction of a subset of IFN-stimulated genes associated with antiviral activity and resistance to DNA damage, providing evidence for a unique IFN system that may be linked to the ability of bats to coexist with viruses.

  19. Contraction of the type I IFN locus and unusual constitutive expression of IFN-α in bats.

    PubMed

    Zhou, Peng; Tachedjian, Mary; Wynne, James W; Boyd, Victoria; Cui, Jie; Smith, Ina; Cowled, Christopher; Ng, Justin H J; Mok, Lawrence; Michalski, Wojtek P; Mendenhall, Ian H; Tachedjian, Gilda; Wang, Lin-Fa; Baker, Michelle L

    2016-03-01

    Bats harbor many emerging and reemerging viruses, several of which are highly pathogenic in other mammals but cause no clinical signs of disease in bats. To determine the role of interferons (IFNs) in the ability of bats to coexist with viruses, we sequenced the type I IFN locus of the Australian black flying fox, Pteropus alecto, providing what is, to our knowledge, the first gene map of the IFN region of any bat species. Our results reveal a highly contracted type I IFN family consisting of only 10 IFNs, including three functional IFN-α loci. Furthermore, the three IFN-α genes are constitutively expressed in unstimulated bat tissues and cells and their expression is unaffected by viral infection. Constitutively expressed IFN-α results in the induction of a subset of IFN-stimulated genes associated with antiviral activity and resistance to DNA damage, providing evidence for a unique IFN system that may be linked to the ability of bats to coexist with viruses. PMID:26903655

  20. Contraction of the type I IFN locus and unusual constitutive expression of IFN-α in bats

    PubMed Central

    Zhou, Peng; Tachedjian, Mary; Wynne, James W.; Boyd, Victoria; Smith, Ina; Cowled, Christopher; Ng, Justin H. J.; Mok, Lawrence; Michalski, Wojtek P.; Mendenhall, Ian H.; Tachedjian, Gilda; Baker, Michelle L.

    2016-01-01

    Bats harbor many emerging and reemerging viruses, several of which are highly pathogenic in other mammals but cause no clinical signs of disease in bats. To determine the role of interferons (IFNs) in the ability of bats to coexist with viruses, we sequenced the type I IFN locus of the Australian black flying fox, Pteropus alecto, providing what is, to our knowledge, the first gene map of the IFN region of any bat species. Our results reveal a highly contracted type I IFN family consisting of only 10 IFNs, including three functional IFN-α loci. Furthermore, the three IFN-α genes are constitutively expressed in unstimulated bat tissues and cells and their expression is unaffected by viral infection. Constitutively expressed IFN-α results in the induction of a subset of IFN-stimulated genes associated with antiviral activity and resistance to DNA damage, providing evidence for a unique IFN system that may be linked to the ability of bats to coexist with viruses. PMID:26903655

  1. Endogenously produced TNF-α contributes to the expression of CXCL10/IP-10 in IFN-λ3-activated plasmacytoid dendritic cells.

    PubMed

    Finotti, Giulia; Tamassia, Nicola; Calzetti, Federica; Fattovich, Giovanna; Cassatella, Marco A

    2016-01-01

    The interplay between IFN-λs and dendritic cells is becoming increasingly relevant, particularly in light of their key role in inducing the antiviral state, including in hepatitis C virus infection. In this work, we have analyzed extensively how human plasmacytoid dendritic cells respond to IFN-λ3. We report that plasmacytoid dendritic cells incubated with IFN-λ3 prolong their survival; alter their expression pattern of surface HLA-DRα, CD123, CD86, and CD303; and time dependently produce IFN-α, CXCL10/IFN-γ-induced protein 10, and even modest quantities of TNF-α. Nevertheless, endogenously produced TNF-α, but not IFN-α, was found to be essential for driving the expression of CXCL10/IFN-γ-induced protein 10 in IFN-λ3-treated plasmacytoid dendritic cells, as revealed by neutralizing experiments by use of adalimumab, etanercept, and infliximab. We also observed that based on the kinetics and levels of IFN-α and CXCL10/IFN-γ-induced protein 10 produced by their IFN-λ3-treated plasmacytoid dendritic cells, healthy donors could be categorized into 2 and 3 groups, respectively. In particular, we identified a group of donors whose plasmacytoid dendritic cells produced modest quantities of CXCL10/IFN-γ-induced protein 10; another one whose plasmacytoid dendritic cells produced elevated CXCL10/IFN-γ-induced protein 10 levels, already after 18 h, declining thereafter; and a 3rd group characterized by plasmacytoid dendritic cells releasing very high CXCL10/IFN-γ-induced protein 10 levels after 42 h only. Finally, we report that in plasmacytoid dendritic cells, equivalent concentrations of IFN-λ3 and IFN-λ1 promote survival, antigen modulation, and cytokine production in a comparable manner and without acting additively/synergistically. Altogether, data not only extend the knowledge on the biologic effects that IFN-λs exert on plasmacytoid dendritic cells but also add novel light to the networking between IFN-λs and plasmacytoid dendritic cells in fighting

  2. Sex Differences in Plasmacytoid Dendritic Cell Levels of IRF5 Drive Higher IFN-α Production in Women

    PubMed Central

    Griesbeck, Morgane; Ziegler, Susanne; Laffont, Sophie; Smith, Nikaïa; Chauveau, Lise; Tomezsko, Phillip; Sharei, Armon; Kourjian, Georgio; Porichis, Filippos; Hart, Meghan; Palmer, Christine D.; Sirignano, Michael; Beisel, Claudia; Hildebrandt, Heike; Cénac, Claire; Villani, Alexandra-Chloé; Diefenbach, Thomas J.; Le Gall, Sylvie; Schwartz, Olivier; Herbeuval, Jean-Philippe; Autran, Brigitte; Guéry, Jean-Charles; Chang, J. Judy

    2015-01-01

    Increased IFN-α production contributes to the pathogenesis of infectious and autoimmune diseases. Plasmacytoid dendritic cells (pDCs) from females produce more IFN-α upon TLR7 stimulation than pDCs from males, yet the mechanisms underlying this difference remain unclear. In this article, we show that basal levels of IFN regulatory factor (IRF) 5 in pDCs were significantly higher in females compared with males and positively correlated with the percentage of IFN-α–secreting pDCs. Delivery of recombinant IRF5 protein into human primary pDCs increased TLR7-mediated IFN-α secretion. In mice, genetic ablation of the estrogen receptor 1 (Esr1) gene in the hematopoietic compartment or DC lineage reduced Irf5 mRNA expression in pDCs and IFN-α production. IRF5 mRNA levels furthermore correlated with ESR1 mRNA levels in human pDCs, consistent with IRF5 regulation at the transcriptional level by ESR1. Taken together, these data demonstrate a critical mechanism by which sex differences in basal pDC IRF5 expression lead to higher IFN-α production upon TLR7 stimulation in females and provide novel targets for the modulation of immune responses and inflammation. PMID:26519527

  3. Preparation and characterization of latex films photo-immobilized with IFN-α.

    PubMed

    Wu, Lifang; Hu, Kaikai; Zhang, Li; Chen, Wuya; Chen, Xiaohui; You, Rong; Yin, Liang; Guan, Yan-Qing

    2016-09-01

    We developed a biomaterial by photo-immobilizing interferon-α (IFN-α) on the surface of latex condom films for the prevention and treatment of cervicitis, cervical cancers and diseases caused by cervical virus. The IFN-α modification by photoactive N-(4-azidobenzoyloxy) succinimide was characterized on a nano-scale by spectroscopy analysis and micro morphology. The anti-bacterial, anti-cancer, and anti-viral effects of the modified bioactive latex films were evaluated by antibacterial susceptibility testing, Gram staining, flow cytometry, immunofluorescence, and Western blotting. Our results showed that the photo-immobilized IFN-α latex films effectively inhibited the growth of both Neisseria gonorrhoeae and human cervical cancer HeLa cells. Moreover, the expression of anti-viral proteins, including P56, MxA, and 2', 5'-OAS, in the human cervical epithelial cell line NC104 was significantly increased by photo-immobilized IFN-α latex films. Taken together, these results suggest that photo-immobilized IFN-α latex films may have therapeutic effects against cervicitis, cervical cancers, and cervical virus.

  4. Preparation and characterization of latex films photo-immobilized with IFN-α.

    PubMed

    Wu, Lifang; Hu, Kaikai; Zhang, Li; Chen, Wuya; Chen, Xiaohui; You, Rong; Yin, Liang; Guan, Yan-Qing

    2016-09-01

    We developed a biomaterial by photo-immobilizing interferon-α (IFN-α) on the surface of latex condom films for the prevention and treatment of cervicitis, cervical cancers and diseases caused by cervical virus. The IFN-α modification by photoactive N-(4-azidobenzoyloxy) succinimide was characterized on a nano-scale by spectroscopy analysis and micro morphology. The anti-bacterial, anti-cancer, and anti-viral effects of the modified bioactive latex films were evaluated by antibacterial susceptibility testing, Gram staining, flow cytometry, immunofluorescence, and Western blotting. Our results showed that the photo-immobilized IFN-α latex films effectively inhibited the growth of both Neisseria gonorrhoeae and human cervical cancer HeLa cells. Moreover, the expression of anti-viral proteins, including P56, MxA, and 2', 5'-OAS, in the human cervical epithelial cell line NC104 was significantly increased by photo-immobilized IFN-α latex films. Taken together, these results suggest that photo-immobilized IFN-α latex films may have therapeutic effects against cervicitis, cervical cancers, and cervical virus. PMID:27137809

  5. Netting neutrophils are major inducers of type I IFN production in pediatric systemic lupus erythematosus.

    PubMed

    Garcia-Romo, Gina S; Caielli, Simone; Vega, Barbara; Connolly, John; Allantaz, Florence; Xu, Zhaohui; Punaro, Marilynn; Baisch, Jeanine; Guiducci, Cristiana; Coffman, Robert L; Barrat, Franck J; Banchereau, Jacques; Pascual, Virginia

    2011-03-01

    Systemic lupus erythematosus (SLE) is a systemic autoimmune disease characterized by a breakdown of tolerance to nuclear antigens and the development of immune complexes. Genomic approaches have shown that human SLE leukocytes homogeneously express type I interferon (IFN)-induced and neutrophil-related transcripts. Increased production and/or bioavailability of IFN-α and associated alterations in dendritic cell (DC) homeostasis have been linked to lupus pathogenesis. Although neutrophils have long been shown to be associated with lupus, their potential role in disease pathogenesis remains elusive. Here, we show that mature SLE neutrophils are primed in vivo by type I IFN and die upon exposure to SLE-derived anti-ribonucleoprotein antibodies, releasing neutrophil extracellular traps (NETs). SLE NETs contain DNA as well as large amounts of LL37 and HMGB1, neutrophil proteins that facilitate the uptake and recognition of mammalian DNA by plasmacytoid DCs (pDCs). Indeed, SLE NETs activate pDCs to produce high levels of IFN-α in a DNA- and TLR9 (Toll-like receptor 9)-dependent manner. Our results reveal an unsuspected role for neutrophils in SLE pathogenesis and identify a novel link between nucleic acid-recognizing antibodies and type I IFN production in this disease.

  6. Type I IFN family members: similarity, differences and interaction.

    PubMed

    Capobianchi, Maria Rosaria; Uleri, Elena; Caglioti, Claudia; Dolei, Antonina

    2015-04-01

    Interferons (IFN) are key cytokines with multifaceted antiviral and cell-modulatory properties. Three distinct types of IFN are recognized (I-III) based on structural features, receptor usage, cellular source and biological activities. The action of IFNs is mediated by a complex, partially overlapping, transcriptional program initiated by the interaction with specific receptors. Genetic diversity, with polymorphisms and mutations, can modulate the extent of IFN responses and the susceptibility to infections. Almost all viruses developed mechanisms to subvert the IFN response, involving both IFN induction and effector mechanisms. Interactions between IFN types may occur, for both antiviral and cell-modulatory effects, in a complex interplay, involving both synergistic and antagonistic effects. Interferon-associated diseases, not related to virus infections may occur, some of them frequently observed in IFN-treated patients. On the whole, IFNs are pleiotropic biologic response modifiers, that, upon activation of thousands genes, induce a broad spectrum of activities, regulating cell cycle, differentiation, plasma membrane molecules, release of mediators, etc., that can be relevant for cell proliferation, innate and adaptive immunity, hematopoiesis, angiogenesis and other body functions. PMID:25466633

  7. Role of Baicalin in Anti-Influenza Virus A as a Potent Inducer of IFN-Gamma.

    PubMed

    Chu, Ming; Xu, Lan; Zhang, Ming-Bo; Chu, Zheng-Yun; Wang, Yue-Dan

    2015-01-01

    Baicalin (BA) is a flavonoid compound purified from Scutellaria baicalensis Georgi and has been shown to possess a potent inhibitory activity against viruses. However, the role of BA in anti-influenza virus has not been extensively studied, and the immunological mechanism of BA in antiviral activity remains unknown. Here, we observed that BA could protect mice from infection by influenza virus A/PR/8/34 (H1N1), associated with increasing IFN-γ production, but presented no effects in IFN-γ or IFN-γ receptor deficient mice. Further study indicated that BA could inhibit A/PR/8/34 replication through IFN-γ in human PBMC. Moreover, BA can directly induce IFN-γ production in human CD4(+) and CD8(+) T cells and NK cells, and activate JAK/STAT-1 signaling pathway. Collectively, BA exhibited anti-influenza virus A (H1N1) activity in vitro and in vivo as a potent inducer of IFN-γ in major IFN-γ producing cells. PMID:26783516

  8. Activation of the IFN-inducible enzyme RNase L causes apoptosis of animal cells.

    PubMed

    Díaz-Guerra, M; Rivas, C; Esteban, M

    1997-09-29

    The interferon (IFN)-induced enzyme RNase L produced by a recombinant vaccinia virus (VV) causes death of mammalian cells with morphological and biochemical characteristics of apoptosis. Coexpression of 2-5A-synthetase enhances apoptosis induced by RNase L Activation of endogenous RNase L by infection with a VV ts mutant (ts22) or with wild-type virus in the presence of the antipoxvirus drug isatin-beta-thiosemicarbazone, a treatment known to significantly increase the amount of double-stranded RNA late during infection, also causes pronounced apoptosis of infected cells. The effects observed with recombinant virus-derived RNase L or with the endogenous enzyme are specific, since apoptosis also occurs in cells derived from mice lacking the IFN-induced protein kinase (PKR). The apoptosis antagonist Bcl-2 prevents induction of cell death by RNase L activation. Apoptosis of mammalian cells by RNase L activation could be a mechanism mediating anticellular actions of IFN.

  9. Conditional expression of IFN-alpha and IFN-gamma activated by HBV as genetic therapy for hepatitis B.

    PubMed

    Matskevich, Alexey A; Cordelier, Pierre; Strayer, David S

    2003-12-01

    Chronic infection with hepatitis B virus (HBV) has potentially devastating consequences and is very difficult to treat. Therapy with recombinant interferons (IFN), especially IFN-alpha, may be effective. The blood IFN-alpha levels that are needed to maintain therapeutic IFN-alpha levels in the liver, however, often cause severe side effects. Gene delivery to the liver may provide a solution. Using a long-term expression construct could provide the desired levels of IFN locally without the need to maintain potentially problematic blood levels. Recombinant, Tag-deleted SV40-derived vectors transduce hepatocytes efficiently and provide permanent transgene expression. We designed an expression construct that was effective against HBV and whose activity was limited to HBV-infected cells. To do this, we exploited the ability of HBV X protein to activate NF-kappaB and, via NF-kappaB, to activate promoter activity of HIV long terminal repeat (LTR) in hepatocytes. Using HIVLTR as a conditional promoter upstream of human and murine IFN-alpha and IFN-gamma cDNAs, rSV40 vectors were used to test the responsiveness of IFN to HBV and the ability of these IFNs to inhibit HBV transcripts and protein production and to activate IFN signaling in neighboring untransduced cells. We found that in hepatocyte cell lines and in primary hepatocytes, HBV activated the promoter activity of the HIVLTR via NF-kappaB. When whole HBV genome was delivered to cells by transfection to simulate HBV infection, IFN expression was activated, IFNs were produced and secreted, and they protected cells from HBV. Levels of IFN proteins that were secreted in this context were comparable to targeted blood levels needed to control chronic hepatitis viral infection. Further, IFNs that were elicited and secreted in this manner were able to activate IFN-induced signaling pathways in neighboring, untransduced cells and so were likely to provide protection even to cells that the rSV40 vector did not transduce. Gene

  10. Enhanced lymphocyte interferon (IFN)-γ responses in a PTEN mutation-negative Cowden disease kindred

    PubMed Central

    Stevenson, R; Fatehullah, A; Jagan, I; Deevi, R K; Bingham, V; Irvine, A E; Armstrong, M; Morrison, P J; Dimmick, I; Stewart, R; Campbell, F C

    2011-01-01

    Identification of immune modifiers of inherited cancer syndromes may provide a rationale for preventive therapy. Cowden disease (CD) is a genetically heterogeneous inherited cancer syndrome that arises predominantly from germline phosphatase and tensin homologue deleted on chromosome 10 (PTEN) mutation and increased phosphoinositide 3-kinase/mammalian target of rapamycin (PI3K/mTOR) signalling. However, many patients with classic CD diagnostic features are mutation-negative for PTEN (PTEN M-Neg). Interferon (IFN)-γ can modulate the PI3K/mTOR pathway, but its association with PTEN M-Neg CD remains unclear. This study assessed IFN-γ secretion by multi-colour flow cytometry in a CD kindred that was mutation-negative for PTEN and other known susceptibility genes. Because IFN-γ responses may be regulated by killer cell immunoglobulin-like receptors (KIR) and respective human leucocyte antigen (HLA) ligands, KIR/HLA genotypes were also assessed. Activating treatments induced greater IFN-γ secretion in PTEN M-Neg CD peripheral blood lymphocytes versus healthy controls. Increased frequency of activating KIR genes, potentially activating KIR/HLA compound genotypes and reduced frequency of inhibitory genotypes, were found in the PTEN M-Neg CD kindred. Differences of IFN-γ secretion were observed among PTEN M-Neg CD patients with distinct KIR/HLA compound genotypes. Taken together, these findings show enhanced lymphocyte secretion of IFN-γ that may influence the PI3K/mTOR CD causal molecular pathway in a PTEN mutation-negative CD kindred. PMID:21361912

  11. Enrichment of IFN-γ producing cells in different murine adipose tissue depots upon infection with an apicomplexan parasite

    PubMed Central

    Teixeira, Luzia; Marques, Raquel M.; Ferreirinha, Pedro; Bezerra, Filipa; Melo, Joana; Moreira, João; Pinto, Ana; Correia, Alexandra; Ferreira, Paula G.; Vilanova, Manuel

    2016-01-01

    Here we report that lean mice infected with the intracellular parasite Neospora caninum show a fast but sustained increase in the frequency of IFN-γ-producing cells noticeable in distinct adipose tissue depots. Moreover, IFN-γ-mediated immune memory could be evoked in vitro in parasite antigen-stimulated adipose tissue stromal vascular fraction cells collected from mice infected one year before. Innate or innate-like cells such as NK, NK T and TCRγδ+ cells, but also CD4+ and CD8+ TCRβ+ lymphocytes contributed to the IFN-γ production observed since day one of infection. This early cytokine production was largely abrogated in IL-12/IL23 p40-deficient mice. Moreover, production of IFN-γ by stromal vascular fraction cells isolated from these mice was markedly lower than that of wild-type counterparts upon stimulation with parasite antigen. In wild-type mice the increased IFN-γ production was concomitant with up-regulated expression of genes encoding interferon-inducible GTPases and nitric oxide synthase, which are important effector molecules in controlling intracellular parasite growth. This increased gene expression was markedly impaired in the p40-deficient mice. Overall, these results show that NK cells but also diverse T cell populations mediate a prompt and widespread production of IFN-γ in the adipose tissue of N. caninum infected mice. PMID:27001522

  12. Neutralizing Antibodies against IFN-[Beta] in Multiple Sclerosis: Antagonization of IFN-[Beta] Mediated Suppression of MMPs

    ERIC Educational Resources Information Center

    Gilli, Francesca; Bertolotto, Antonio; Sala, Arianna; Hoffmann, Francine; Capobianco, Marco; Malucchi, Simona; Glass, Tracy; Kappos, Ludwig; Lindberg, Raija L. P.; Leppert, David

    2004-01-01

    Neutralizing antibodies (NAb) against interferon-[Beta] (IFN-Beta) develop in about a third of treated multiple sclerosis patients and are believed to reduce therapeutic efficacy of IFN-[Beta] on clinical and MRI measures. The expression of the interferon acute-response protein, myxovirus resistance protein A (MxA) is a sensitive measure of the…

  13. HIV infection of dendritic cells subverts the IFN induction pathway via IRF-1 and inhibits type 1 IFN production

    PubMed Central

    Harman, Andrew N.; Lai, Joey; Turville, Stuart; Samarajiwa, Shamith; Gray, Lachlan; Marsden, Valerie; Mercier, Sarah; Jones, Kate; Nasr, Najla; Rustagi, Arjun; Cumming, Helen; Donaghy, Heather; Mak, Johnson; Gale, Michael; Churchill, Melissa; Hertzog, Paul

    2011-01-01

    Many viruses have developed mechanisms to evade the IFN response. Here, HIV-1 was shown to induce a distinct subset of IFN-stimulated genes (ISGs) in monocyte-derived dendritic cells (DCs), without detectable type I or II IFN. These ISGs all contained an IFN regulatory factor 1 (IRF-1) binding site in their promoters, and their expression was shown to be driven by IRF-1, indicating this subset was induced directly by viral infection by IRF-1. IRF-1 and -7 protein expression was enriched in HIV p24 antigen-positive DCs. A HIV deletion mutant with the IRF-1 binding site deleted from the long terminal repeat showed reduced growth kinetics. Early and persistent induction of IRF-1 was coupled with sequential transient up-regulation of its 2 inhibitors, IRF-8, followed by IRF-2, suggesting a mechanism for IFN inhibition. HIV-1 mutants with Vpr deleted induced IFN, showing that Vpr is inhibitory. However, HIV IFN inhibition was mediated by failure of IRF-3 activation rather than by its degradation, as in T cells. In contrast, herpes simplex virus type 2 markedly induced IFNβ and a broader range of ISGs to higher levels, supporting the hypothesis that HIV-1 specifically manipulates the induction of IFN and ISGs to enhance its noncytopathic replication in DCs. PMID:21411754

  14. Zebrafish Plzf transcription factors enhance early type I IFN response induced by two non-enveloped RNA viruses.

    PubMed

    Aleksejeva, E; Houel, A; Briolat, V; Levraud, J-P; Langevin, C; Boudinot, P

    2016-04-01

    The BTB-POZ transcription factor Promyelocytic Leukemia Zinc Finger (PLZF, or ZBTB16) has been recently identified as a major factor regulating the induction of a subset of Interferon stimulated genes in human and mouse. We show that the two co-orthologues of PLZF found in zebrafish show distinct expression patterns, especially in larvae. Although zbtb16a/plzfa and zbtb16b/plzfb are not modulated by IFN produced during viral infection, their over-expression increases the level of the early type I IFN response, at a critical phase in the race between the virus and the host response. The effect of Plzfb on IFN induction was also detectable after cell infection by different non-enveloped RNA viruses, but not after infection by the rhabdovirus SVCV. Our findings indicate that plzf implication in the regulation of type I IFN responses is conserved across vertebrates, but at multiple levels of the pathway and through different mechanisms.

  15. Effects of IRF1 and IFN-β interaction on the M1 polarization of macrophages and its antitumor function

    PubMed Central

    XIE, CHANGLI; LIU, CUIYING; WU, BITAO; LIN, YAN; MA, TINGTING; XIONG, HAIYU; WANG, QIN; LI, ZIWEI; MA, CHENYU; TU, ZHIGUANG

    2016-01-01

    Macrophages that differentiate from precursor monocytes can be polarized into a classically activated (M1) or alternatively activated (M2) status depending on different stimuli. Generally, interferon (IFN)-γ and lipopolysaccharide (LPS) are considered the classical stimuli with which to establish M1 polarization. IFN regulatory factor (IRF)1 and IFN-β are two crucial molecules involved in IFN-γ- and LPS-initialed signaling. However, the association between IRF1 and IFN-β in the context of the M1 polarization of macrophages is not yet fully understood. In this study, we demonstrate that U937-derived macrophages, in response to IFN-γ and LPS stimulation, readily acquire an M1 status, indicated by the increased expression of interleukin (IL)-12, IL-6, IL-23, tumor necrosis factor (TNF)-α and the M1-specific cell surface antigen, CD86, and the decreased expression of the M2-specific mannose receptor, CD206. However, the knockdown of IRF1 in U937-derived macrophages led to an impaired M1 status, as indicated by the decreased expression of the above-mentioned M1 markers, and the increased expression of the M2 markers, CD206 and IL-10. A similar phenomenon was observed in the M1 macrophages in which IFN-β was inhibited. Furthermore, we demonstrated that IRF1 and IFN-β may interact with each other in the IFN-γ- and LPS-initiated signaling pathway, and contribute to the IRF5 regulation of M1 macrophages. In addition, the conditioned medium collected from the M1 macrophages in which IRF1 or IFN-β were inhibited, exerted pro-tumor effects on the HepG2 and SMMC-7721 cells, as indicated by an increase in proliferation, the inhibition of apoptosis and an enhanced invasion capability. The findings of our study suggest that the interactions of IRF1, IFN-β and IRF5 are involved in the M1 polarization of macro phages and have antitumor functions. These data may provide a novel antitumor strategy for targeted cancer therapy. PMID:27176664

  16. Positive feedback regulation of type I IFN production by the IFN-inducible DNA sensor cGAS

    PubMed Central

    Ma, Feng; Li, Bing; Liu, Su-yang; Iyer, Shankar S; Yu, Yongxin; Wu, Aiping; Cheng, Genhong

    2014-01-01

    Rapid and robust induction of type I interferon (IFN-I) is a critical event in host antiviral innate immune response. It has been well demonstrated that cyclic GMP-AMP (cGAMP) synthase (cGAS) plays an important role in sensing cytosolic DNA and triggering stimulator of interferon genes (STING)-dependent signaling to induce IFN-I. However, it is largely unknown how cGAS itself is regulated during pathogen infection and IFN-I production. Here, we show that pattern-recognition receptor (PRR) ligands including lipidA, LPS, polyI:C, polydA:dT, and cGAMP induce cGAS expression in a IFN-I-dependent manner in both mouse and human macrophages. Further experiments indicate that cGAS is an IFN-stimulated gene (ISG), and two adjacent IFN-sensitive response elements (ISREs) in the promoter region of cGAS mediate the induction of cGAS by IFN-I. In addition, we show that optimal production of IFNβ triggered by polydA:dT or HSV-1 requires IFNAR signaling. Knockdown of the constitutively expressed DNA sensor DDX41 attenuates polydA:dT-triggered IFNβ production and cGAS induction. By analyzing the dynamic expression of polydA:dT-induced IFNβ and cGAS transcripts, we have found that induction of IFNβ is earlier than cGAS. Furthermore, we have provided evidence that induction of cGAS by IFN-I meditates the subsequent positive feedback regulation of DNA-triggered IFN-I production. Thus, our study not only provides a novel mechanism of modulating cGAS expression, but also adds another layer of regulation in DNA-triggered IFN-I production by induction of cGAS. PMID:25609843

  17. Role of IFN-γ and LPS on neuron/glial co-cultures infected by Neospora caninum

    PubMed Central

    De Jesus, Erica Etelvina Viana; Santos, Alex Barbosa Dos; Ribeiro, Catia Suse Oliveira; Pinheiro, Alexandre Moraes; Freire, Songeli Menezes; El-Bachá, Ramon Santos; Costa, Silvia Lima; de Fatima Dias Costa, Maria

    2014-01-01

    Neospora caninum causes cattle abortion and neurological symptoms in dogs. Although infection is usually asymptomatic, classical neurological symptoms of neosporosis may be associated with encephalitis. This parasite can grow in brain endothelial cells without markedly damages, but it can modulate the cellular environment to promote its survival in the brain. In previous studies, we described that IFN-γ decreased the parasite proliferation and down regulated nitric oxide (NO) production in astrocyte/microglia cultures. However, it remains unclear how glial cells respond to N. caninum in the presence of neurons. Therefore, we evaluated the effect of 300 IU/mL IFN-γ or 1.0 mg/mL of LPS on infected rat neuron/glial co-cultures. After 72 h of infection, LPS did not affect the mitochondrial dehydrogenase activity. However, IFN-γ decreased this parameter by 15.5 and 12.0% in uninfected and infected cells, respectively. The number of tachyzoites decreased 54.1 and 44.3% in cells stimulated with IFN-γ and LPS, respectively. Infection or LPS treatment did not change NO production. On the other hand, IFN-γ induced increased nitrite release in 55.7%, but the infection reverted this induction. IL-10 levels increased only in infected cultures (treated or not), meanwhile PGE2 release was improved in IFN-γ/infected or LPS/infected cells. Although IFN-γ significantly reduced the neurite length in uninfected cultures (42.64%; p < 0.001), this inflammatory cytokine reverted the impairment of neurite outgrowth induced by the infection (81.39%). The results suggest a neuroprotective potential response of glia to N. caninum infection under IFN-γ stimulus. This observation contributes to understand the immune mediated mechanisms of neosporosis in central nervous system (CNS). PMID:25386119

  18. Mycobacterium avium-induced SOCS contributes to resistance to IFN-gamma-mediated mycobactericidal activity in human macrophages.

    PubMed

    Vázquez, Nancy; Greenwell-Wild, Teresa; Rekka, Sofia; Orenstein, Jan M; Wahl, Sharon M

    2006-11-01

    Mycobacterium avium is an opportunistic pathogen that commonly infects individuals colonized with HIV-1, although it is less frequent in the post-HAART era. These microorganisms invade macrophages after interacting with TLR2 and/or CD14 co-receptors, but signaling pathways promoting survival in macrophages are not well defined. Although IFN-gamma plays an important role in protective immunity against bacterial infections, IFN-gamma responses are compromised in AIDS patients and evidence suggests that exogenous IFN-gamma is inadequate to clear the mycobacteria. To determine the mechanism by which M. avium survives intracellularly, even in the presence of IFN-gamma, we studied the effect of mycobacteria infection in macrophages during early IFN-gamma signaling events. M. avium infected cells exhibited a reduced response to IFN-gamma, with suppressed phosphorylation of STAT-1 compared with uninfected cells. Interaction of M. avium with macrophage receptors increased gene expression of the suppressors of cytokine signaling (SOCS) to diminish IFN responsiveness. Specifically, we observed an increase in mRNA for both SOCS-3 and SOCS-1, which correlates with elevated levels of SOCS protein and positive immunostaining in M. avium/HIV-1 co-infected tissues. We also linked the p38 MAPK signaling pathway to mycobacterial-induced SOCS gene transcription. The induction of SOCS may be part of the strategy that allows the invader to render the macrophages unresponsive to IFN-gamma, which otherwise promotes clearance of the infection. Our data provide new insights into the manipulation of the host response by this opportunistic pathogen and the potential for modulating SOCS to influence the outcome of M. avium infection in immunocompromised hosts.

  19. Type I IFN induces protein ISGylation to enhance cytokine expression and augments colonic inflammation.

    PubMed

    Fan, Jun-Bao; Miyauchi-Ishida, Sayuri; Arimoto, Kei-ichiro; Liu, Dan; Yan, Ming; Liu, Chang-Wei; Győrffy, Balázs; Zhang, Dong-Er

    2015-11-17

    Type I IFNs have broad activity in tissue inflammation and malignant progression that depends on the expression of IFN-stimulated genes (ISGs). ISG15, one such ISG, can form covalent conjugates to many cellular proteins, a process termed "protein ISGylation." Although type I IFNs are involved in multiple inflammatory disorders, the role of protein ISGylation during inflammation has not been evaluated. Here we report that protein ISGylation exacerbates intestinal inflammation and colitis-associated colon cancer in mice. Mechanistically, we demonstrate that protein ISGylation negatively regulates the ubiquitin-proteasome system, leading to increased production of IFN-induced reactive oxygen species (ROS). The increased cellular ROS then enhances LPS-induced activation of p38 MAP kinase and the expression of inflammation-related cytokines in macrophages. Thus our studies reveal a regulatory role for protein ISGylation in colonic inflammation and its related malignant progression, indicating that targeting ubiquitin-activating enzyme E1 homolog has therapeutic potential in treating inflammatory diseases. PMID:26515094

  20. Type I IFN induces protein ISGylation to enhance cytokine expression and augments colonic inflammation

    PubMed Central

    Fan, Jun-Bao; Miyauchi-Ishida, Sayuri; Arimoto, Kei-ichiro; Liu, Dan; Yan, Ming; Liu, Chang-Wei; Győrffy, Balázs; Zhang, Dong-Er

    2015-01-01

    Type I IFNs have broad activity in tissue inflammation and malignant progression that depends on the expression of IFN-stimulated genes (ISGs). ISG15, one such ISG, can form covalent conjugates to many cellular proteins, a process termed “protein ISGylation.” Although type I IFNs are involved in multiple inflammatory disorders, the role of protein ISGylation during inflammation has not been evaluated. Here we report that protein ISGylation exacerbates intestinal inflammation and colitis-associated colon cancer in mice. Mechanistically, we demonstrate that protein ISGylation negatively regulates the ubiquitin–proteasome system, leading to increased production of IFN-induced reactive oxygen species (ROS). The increased cellular ROS then enhances LPS-induced activation of p38 MAP kinase and the expression of inflammation-related cytokines in macrophages. Thus our studies reveal a regulatory role for protein ISGylation in colonic inflammation and its related malignant progression, indicating that targeting ubiquitin-activating enzyme E1 homolog has therapeutic potential in treating inflammatory diseases. PMID:26515094

  1. Early IFN type I response: Learning from microbial evasion strategies.

    PubMed

    Coccia, Eliana M; Battistini, Angela

    2015-03-01

    Type I interferon (IFN) comprises a class of cytokines first discovered more than 50 years ago and initially characterized for their ability to interfere with viral replication and restrict locally viral propagation. As such, their induction downstream of germ-line encoded pattern recognition receptors (PRRs) upon recognition of pathogen-associated molecular patterns (PAMPs) is a hallmark of the host antiviral response. The acknowledgment that several PAMPs, not just of viral origin, may induce IFN, pinpoints at these molecules as a first line of host defense against a number of invading pathogens. Acting in both autocrine and paracrine manner, IFN interferes with viral replication by inducing hundreds of different IFN-stimulated genes with both direct anti-pathogenic as well as immunomodulatory activities, therefore functioning as a bridge between innate and adaptive immunity. On the other hand an inverse interference to escape the IFN system is largely exploited by pathogens through a number of tactics and tricks aimed at evading, inhibiting or manipulating the IFN pathway, that result in progression of infection or establishment of chronic disease. In this review we discuss the interplay between the IFN system and some selected clinically important and challenging viruses and bacteria, highlighting the wide array of pathogen-triggered molecular mechanisms involved in evasion strategies. PMID:25869307

  2. Early IFN type I response: Learning from microbial evasion strategies.

    PubMed

    Coccia, Eliana M; Battistini, Angela

    2015-03-01

    Type I interferon (IFN) comprises a class of cytokines first discovered more than 50 years ago and initially characterized for their ability to interfere with viral replication and restrict locally viral propagation. As such, their induction downstream of germ-line encoded pattern recognition receptors (PRRs) upon recognition of pathogen-associated molecular patterns (PAMPs) is a hallmark of the host antiviral response. The acknowledgment that several PAMPs, not just of viral origin, may induce IFN, pinpoints at these molecules as a first line of host defense against a number of invading pathogens. Acting in both autocrine and paracrine manner, IFN interferes with viral replication by inducing hundreds of different IFN-stimulated genes with both direct anti-pathogenic as well as immunomodulatory activities, therefore functioning as a bridge between innate and adaptive immunity. On the other hand an inverse interference to escape the IFN system is largely exploited by pathogens through a number of tactics and tricks aimed at evading, inhibiting or manipulating the IFN pathway, that result in progression of infection or establishment of chronic disease. In this review we discuss the interplay between the IFN system and some selected clinically important and challenging viruses and bacteria, highlighting the wide array of pathogen-triggered molecular mechanisms involved in evasion strategies.

  3. Impaired Antiviral Stress Granule and IFN-β Enhanceosome Formation Enhances Susceptibility to Influenza Infection in Chronic Obstructive Pulmonary Disease Epithelium.

    PubMed

    Hsu, Alan C-Y; Parsons, Kristy; Moheimani, Fatemeh; Knight, Darryl A; Hansbro, Philip M; Fujita, Takashi; Wark, Peter A

    2016-07-01

    Chronic obstructive pulmonary disease (COPD) is a serious lung disease that progressively worsens lung function. Those affected are highly susceptible to influenza virus infections that result in exacerbations with exaggerated symptoms with increased mortality. The mechanisms underpinning this increased susceptibility to infection in COPD are unclear. In this study, we show that primary bronchial epithelial cells (pBECs) from subjects with COPD have impaired induction of type I IFN (IFN-β) and lead to heightened viral replication after influenza viral infection. COPD pBECs have reduced protein levels of protein kinase (PK) R and decreased formation of PKR-mediated antiviral stress granules, which are critical in initiating type I IFN inductions. In addition, reduced protein expression of p300 resulted in decreased activation of IFN regulatory factor 3 and subsequent formation of IFN-β enhanceosome in COPD pBECs. The decreased p300 induction was the result of enhanced levels of microRNA (miR)-132. Ectopic expression of PKR or miR-132 antagomiR alone failed to restore IFN-β induction, whereas cotreatment increased antiviral stress granule formation, induction of p300, and IFN-β in COPD pBECs. This study reveals that decreased induction of both PKR and p300 proteins contribute to impaired induction of IFN-β in COPD pBECs upon influenza infection.

  4. Influenza A virus protein PB1-F2 exacerbates IFN-beta expression of human respiratory epithelial cells.

    PubMed

    Le Goffic, Ronan; Bouguyon, Edwige; Chevalier, Christophe; Vidic, Jasmina; Da Costa, Bruno; Leymarie, Olivier; Bourdieu, Christiane; Decamps, Laure; Dhorne-Pollet, Sophie; Delmas, Bernard

    2010-10-15

    The PB1-F2 protein of the influenza A virus (IAV) contributes to viral pathogenesis by a mechanism that is not well understood. PB1-F2 was shown to modulate apoptosis and to be targeted by the CD8(+) T cell response. In this study, we examined the downstream effects of PB1-F2 protein during IAV infection by measuring expression of the cellular genes in response to infection with wild-type WSN/33 and PB1-F2 knockout viruses in human lung epithelial cells. Wild-type virus infection resulted in a significant induction of genes involved in innate immunity. Knocking out the PB1-F2 gene strongly decreased the magnitude of expression of cellular genes implicated in antiviral response and MHC class I Ag presentation, suggesting that PB1-F2 exacerbates innate immune response. Biological network analysis revealed the IFN pathway as a link between PB1-F2 and deregulated genes. Using quantitative RT-PCR and IFN-β gene reporter assay, we determined that PB1-F2 mediates an upregulation of IFN-β expression that is dependent on NF-κB but not on AP-1 and IFN regulatory factor-3 transcription factors. Recombinant viruses knocked out for the PB1-F2 and/or the nonstructural viral protein 1 (the viral antagonist of the IFN response) genes provide further evidence that PB1-F2 increases IFN-β expression and that nonstructural viral protein 1 strongly antagonizes the effect of PB1-F2 on the innate response. Finally, we compared the effect of PB1-F2 variants taken from several IAV strains on IFN-β expression and found that PB1-F2-mediated IFN-β induction is significantly influenced by its amino acid sequence, demonstrating its importance in the host cell response triggered by IAV infection.

  5. Oxidative Stress Facilitates IFN-γ-Induced Mimic Extracellular Trap Cell Death in A549 Lung Epithelial Cancer Cells.

    PubMed

    Lin, Chiou-Feng; Chen, Chia-Ling; Chien, Shun-Yi; Tseng, Po-Chun; Wang, Yu-Chih; Tsai, Tsung-Ting

    2016-01-01

    We previously demonstrated that IFN-γ induces an autophagy-regulated mimic extracellular trap cell death (ETosis) in A549 human lung cancer cells. Regarding reactive oxygen species (ROS) are involved in ETosis, this study investigated the role of oxidative stress. After IFN-γ stimulation, a necrosis-like cell death mimic ETosis occurred accompanied by the inhibition of cell growth, aberrant nuclear staining, and nucleosome release. ROS were generated in a time-dependent manner with an increase in NADPH oxidase component protein expression. STAT1-mediated IFN regulatory factor-1 activation was essential for upregulating ROS production. By genetically silencing p47phox, IFN-γ-induced ROS and mimic ETosis were significantly attenuated. This mechanistic study indicated that ROS may mediate DNA damage followed by histone H3 citrullination. Furthermore, ROS promoted IFN-γ-induced mimic ETosis in cooperation with autophagy. These findings further demonstrate that ROS regulates IFN-γ-induced mimic ETosis in lung epithelial malignancy. PMID:27575372

  6. Exercise effects on IFN-beta expression and viral replication in lung macrophages after HSV-1 infection.

    PubMed

    Kohut, M L; Davis, J M; Jackson, D A; Jani, P; Ghaffar, A; Mayer, E P; Essig, D A

    1998-12-01

    Mice exercised to fatigue and exposed to herpes simplex virus type 1 (HSV-1) exhibit greater mortality than control mice. In this study, we examined lung macrophage resistance to HSV-1 after exercise in terms of both viral replication and interferon (IFN)-beta production. We utilized the reverse transcriptase-rapid polymerase chain reaction to measure the IFN-beta mRNA content in alveolar macrophages. IFN release was measured with a bioassay, and viral replication within the macrophage was assessed by plaque titration. Exercised (Ex) mice ran on a treadmill until fatigue while control (Con) mice remained in lanes above the treadmill. After exercise, alveolar macrophages were removed and incubated with HSV-1. Alveolar macrophage IFN-beta mRNA was greater in Ex than in Con mice. Culture supernatant from infected macrophages showed a higher degree of IFN release and a higher number of infectious viral particles in Ex vs. Con mice. It is likely that the increase in IFN-beta mRNA occurs in response to a higher degree of viral replication. These results suggest that macrophages from Ex mice are less resistant to infection with HSV-1.

  7. Oxidative Stress Facilitates IFN-γ-Induced Mimic Extracellular Trap Cell Death in A549 Lung Epithelial Cancer Cells

    PubMed Central

    Lin, Chiou-Feng; Chen, Chia-Ling; Chien, Shun-Yi; Tseng, Po-Chun; Wang, Yu-Chih; Tsai, Tsung-Ting

    2016-01-01

    We previously demonstrated that IFN-γ induces an autophagy-regulated mimic extracellular trap cell death (ETosis) in A549 human lung cancer cells. Regarding reactive oxygen species (ROS) are involved in ETosis, this study investigated the role of oxidative stress. After IFN-γ stimulation, a necrosis-like cell death mimic ETosis occurred accompanied by the inhibition of cell growth, aberrant nuclear staining, and nucleosome release. ROS were generated in a time-dependent manner with an increase in NADPH oxidase component protein expression. STAT1-mediated IFN regulatory factor-1 activation was essential for upregulating ROS production. By genetically silencing p47phox, IFN-γ-induced ROS and mimic ETosis were significantly attenuated. This mechanistic study indicated that ROS may mediate DNA damage followed by histone H3 citrullination. Furthermore, ROS promoted IFN-γ-induced mimic ETosis in cooperation with autophagy. These findings further demonstrate that ROS regulates IFN-γ-induced mimic ETosis in lung epithelial malignancy. PMID:27575372

  8. Pegylated IFN-α sensitizes melanoma cells to chemotherapy and causes premature senescence in endothelial cells by IRF-1 mediated signaling.

    PubMed

    Upreti, M; Koonce, N A; Hennings, L; Chambers, T C; Griffin, R J

    2010-01-01

    Pegylated Interferon-α2b (pIFN-α) is an integral part of the drug regimen currently employed against melanoma. Interferon Regulatory Factor-1 (IRF-1) plays an important role in the transcriptional regulation of the IFN response, cell cycle and apoptosis. We have studied pIFN-α induced responses when combined with the chemotherapy agent, vinblastine in tumor and endothelial cell lines and the connection to IRF-1 signaling. Levels of IRF-1/IRF-2 protein expression were found to be decreased in tumor versus normal tissues. pIFN-α induced IRF-1 signaling in human melanoma (M14) and endothelial (EA.hy926) cells and enhanced cell death when combined with vinblastine. Upon combined IFN-α and vinblastine treatment, p21 expression, PARP cleavage and activated Bak levels were increased in M14 cells. An increase in p21 and cyclin D1 expression occurred in EA.hy926 cells after 6 h of treatment with pIFN-α which dissipated by 24 h. This biphasic response, characteristic of cellular senescence, was more pronounced upon combined treatment. Exposure of the EA.hy926 cells to pIFN-α was associated with an enlarged, multinucleated, β-galactosidase-positive senescent phenotype. The overall therapeutic mechanism of IFN-α combined with chemotherapy may be due to both direct tumor cell death via IRF-1 signaling and by premature senescence of endothelial cells and subsequent effects on angiogenesis in the tumor microenvironment.

  9. Hemagglutinin of Influenza A Virus Antagonizes Type I Interferon (IFN) Responses by Inducing Degradation of Type I IFN Receptor 1

    PubMed Central

    Xia, Chuan; Vijayan, Madhuvanthi; Pritzl, Curtis J.; Fuchs, Serge Y.; McDermott, Adrian B.

    2015-01-01

    ABSTRACT Influenza A virus (IAV) employs diverse strategies to circumvent type I interferon (IFN) responses, particularly by inhibiting the synthesis of type I IFNs. However, it is poorly understood if and how IAV regulates the type I IFN receptor (IFNAR)-mediated signaling mode. In this study, we demonstrate that IAV induces the degradation of IFNAR subunit 1 (IFNAR1) to attenuate the type I IFN-induced antiviral signaling pathway. Following infection, the level of IFNAR1 protein, but not mRNA, decreased. Indeed, IFNAR1 was phosphorylated and ubiquitinated by IAV infection, which resulted in IFNAR1 elimination. The transiently overexpressed IFNAR1 displayed antiviral activity by inhibiting virus replication. Importantly, the hemagglutinin (HA) protein of IAV was proved to trigger the ubiquitination of IFNAR1, diminishing the levels of IFNAR1. Further, influenza A viral HA1 subunit, but not HA2 subunit, downregulated IFNAR1. However, viral HA-mediated degradation of IFNAR1 was not caused by the endoplasmic reticulum (ER) stress response. IAV HA robustly reduced cellular sensitivity to type I IFNs, suppressing the activation of STAT1/STAT2 and induction of IFN-stimulated antiviral proteins. Taken together, our findings suggest that IAV HA causes IFNAR1 degradation, which in turn helps the virus escape the powerful innate immune system. Thus, the research elucidated an influenza viral mechanism for eluding the IFNAR signaling pathway, which could provide new insights into the interplay between influenza virus and host innate immunity. IMPORTANCE Influenza A virus (IAV) infection causes significant morbidity and mortality worldwide and remains a major health concern. When triggered by influenza viral infection, host cells produce type I interferon (IFN) to block viral replication. Although IAV was shown to have diverse strategies to evade this powerful, IFN-mediated antiviral response, it is not well-defined if IAV manipulates the IFN receptor-mediated signaling

  10. Cloning and expression of pigeon IFN-γ gene.

    PubMed

    Fringuelli, Elena; Urbanelli, Lorena; Tharuni, Omar; Proietti, Patrizia Casagrande; Bietta, Annalisa; Davidson, Irit; Franciosini, Maria Pia

    2010-12-01

    This is the first paper describing the cloning of pigeon IFN-γ gene (PiIFN-γ) and the analysis of the in vitro expressed recombinant protein. The PiIFN-γ gene was identified by RT-PCR as a 498bp, fragment coding for a precursor protein of 165 amino acids instead of 164 amino acids, as observed in the other avian species. The recombinant protein was expressed in vitro by an eukaryotic system and the biological properties of the cytokine were tested using a chicken macrophage cell line. The high degree of amino acid and nucleotide identity, shared with the ChIFN-γ, and the fact that the pigeon protein was functional on chicken cells, indicates a cross-reactivity between pigeon and chicken IFN-γ. The detection of the PiIFN-γ could represent an useful instrument in understanding the role played by this cytokine in immune response related to vaccinations and infectious diseases in the pigeon.

  11. IDO1 and TGF-β Mediate Protective Effects of IFN-α in Antigen-Induced Arthritis

    PubMed Central

    Pallotta, Maria Teresa; Narendra, Sudeep Chenna; Carlsson, Björn; Iacono, Alberta; Namale, Joanitah; Boon, Louis; Grohmann, Ursula; Magnusson, Mattias

    2016-01-01

    IFN-α prevents Ag-induced arthritis (AIA), and in this study we investigated the role of IDO1 and TGF-β signaling for this anti-inflammatory property of IFN-α. Arthritis was induced by methylated BSA (mBSA) in mBSA-sensitized wild-type (WT), Ido1−/−, or Ifnar−/− mice, treated or not with IFN-α or the IDO1 product kynurenine (Kyn). Enzymatic IDO1 activity, TGF-β, and plasmacytoid dendritic cells (pDC) were neutralized by 1-methyltryptophan and Abs against TGF-β and pDC, respectively. IDO1 expression was determined by RT-PCR, Western blot, and FACS, and enzymatic activity by HPLC. Proliferation was measured by 3H-thymidine incorporation and TGF-β by RT-PCR and ELISA. WT but not Ido1−/− mice were protected from AIA by IFN-α, and Kyn, the main IDO1 product, also prevented AIA, both in WT and Ifnar−/− mice. Protective treatment with IFNincreased the expression of IDO1 in pDC during AIA, and Ab-mediated depletion of pDC, either during mBSA sensitization or after triggering of arthritis, completely abrogated the protective effect of IFN-α. IFN-α treatment also increased the enzymatic IDO1 activity (Kyn/tryptophan ratio), which in turn activated production of TGF-β. Neutralization of enzymatic IDO1 activity or TGF-β signaling blocked the protective effect of IFN-α against AIA, but only during sensitization and not after triggering of arthritis. Likewise, inhibition of the IDO1 enzymatic activity in the sensitization phase, but not after triggering of arthritis, subdued the IFN-α–induced inhibition of mBSA-induced proliferation. In conclusion, presence of IFN-α at Ag sensitization activates an IDO1/TGF-β–dependent anti-inflammatory program that upon antigenic rechallenge prevents inflammation via pDC. PMID:27647832

  12. IFN-γ differentially modulates memory-related processes under basal and chronic stressor conditions

    PubMed Central

    Litteljohn, Darcy; Nelson, Eric; Hayley, Shawn

    2014-01-01

    Cytokines are inflammatory messengers that orchestrate the brain’s response to immunological challenges, as well as possibly even toxic and psychological insults. We previously reported that genetic ablation of the pro-inflammatory cytokine, interferon-gamma (IFN-γ), attenuated some of the corticosteroid, cytokine, and limbic dopaminergic variations induced by 6 weeks of exposure to an unpredictable psychologically relevant stressor. Presently, we sought to determine whether a lack of IFN-γ would likewise modify the impact of chronic stress on hippocampus-dependent memory function and related neurotransmitter and neurotrophin signaling systems. As predicted, chronic stress impaired spatial recognition memory (Y-maze task) in the wild-type animals. In contrast, though the IFN-γ knockouts (KOs) showed memory disturbances in the basal state, under conditions of chronic stress these mice actually exhibited facilitated memory performance. Paralleling these findings, while overall the KOs displayed altered noradrenergic and/or serotonergic activity in the hippocampus and locus coeruleus, norepinephrine utilization in both of these memory-related brain regions was selectively increased among the chronically stressed KOs. However, contrary to our expectations, neither IFN-γ deletion nor chronic stressor exposure significantly affected nucleus accumbens dopaminergic neurotransmission or hippocampal brain-derived neurotrophic factor protein expression. These findings add to a growing body of evidence implicating cytokines in the often differential regulation of neurobehavioral processes in health and disease. Whereas in the basal state IFN-γ appears to be involved in sustaining memory function and the activity of related brain monoamine systems, in the face of ongoing psychologically relevant stress the cytokine may, in fact, act to restrict potentially adaptive central noradrenergic and spatial memory responses. PMID:25477784

  13. Characterization of beta-R1, a gene that is selectively induced by interferon beta (IFN-beta) compared with IFN-alpha.

    PubMed

    Rani, M R; Foster, G R; Leung, S; Leaman, D; Stark, G R; Ransohoff, R M

    1996-09-13

    We report preliminary characterization of a gene designated beta-R1, which is selectively expressed in response to interferon beta (IFN-beta) compared with IFN-alpha. In human astrocytoma cells, beta-R1 was induced to an equivalent extent by 10 IU/mL IFN-beta or 2500 IU/mL IFN-alpha2. To address the mechanism of this differential response, we analyzed induction of the beta-R1 gene in fibrosarcoma cells and derivative mutant cells lacking components required for signaling by type I IFNs. beta-R1 was readily induced by IFN-beta in the parental 2fTGH cell line, but not by recombinant IFN-alpha2, IFN-alpha Con1, or a mixture of IFN-alpha subtypes. IFN-alpha8 induced beta-R1 weakly. beta-R1 was not induced by IFN-beta in mutant cell lines U2A, U3A, U4A, and U6A, which lack, respectively, p48, STAT1, JAK1, and STAT2. U5A cells, which lack the Ifnar 2.2 component of the IFN-alpha and -beta receptor, also failed to express beta-R1. U1A cells are partially responsive to IFN-beta and IFN-alpha8 but lacked beta-R1 expression, indicating that TYK2 protein is essential for induction of this gene. Taken together, these results suggest that the expression of beta-R1 in response to type I IFN requires IFN-stimulated gene factor 3 plus an additional component, which is more efficiently formed on induction by IFN-beta compared with IFN-alpha.

  14. Neutrophils are required for 3-methylcholanthrene-initiated, butylated hydroxytoluene-promoted lung carcinogenesis.

    PubMed

    Vikis, Haris G; Gelman, Andrew E; Franklin, Andrew; Stein, Lauren; Rymaszewski, Amy; Zhu, Jihong; Liu, Pengyuan; Tichelaar, Jay W; Krupnick, Alexander S; You, Ming

    2012-12-01

    Multiple studies have shown a link between chronic inflammation and lung tumorigenesis. Inbred mouse strains vary in their susceptibility to methylcholanthrene (MCA)-initiated butylated hydroxytoluene (BHT)-promoted lung carcinogenesis. In the present study we investigated whether neutrophils play a role in strain dependent differences in susceptibility to lung tumor promotion. We observed a significant elevation in homeostatic levels of neutrophils in the lungs of tumor-susceptible BALB/cByJ (BALB) mice compared to tumor-resistant C57BL/6J (B6) mice. Additionally, BHT treatment further elevated neutrophil numbers as well as neutrophil chemoattractant keratinocyte-derived cytokine (KC)/chemokine (C-X-C motif) ligand 1 (Cxcl1) levels in BALB lung airways. Lung CD11c+ cells were a major source of KC expression and depletion of neutrophils in BALB mice resulted in a 71% decrease in tumor multiplicity. However, tumor multiplicity did not depend on the presence of T cells, despite the accumulation of T cells following BHT treatment. These data demonstrate that neutrophils are essential to promote tumor growth in the MCA/BHT two-step lung carcinogenesis model.

  15. FACTORS INFLUENCING AGE AND STRAIN-RELATED SUSCEPTIBILITY TO 3-METHYLCHOLANTHRENE CARCINOGENICITY

    EPA Science Inventory

    Fetal mice are more sensitive to chemical carcinogens than are adults. Further, some strains of mice are more susceptible to chemical carcinogens than others. We have been conducting studies to understand the interactions between age and genetic background underlying these suscep...

  16. Type I IFN Signaling Is Dispensable during Secondary Viral Infection.

    PubMed

    Hosking, Martin P; Flynn, Claudia T; Whitton, J Lindsay

    2016-08-01

    Innate immune responses in general, and type I interferons (T1IFNs) in particular, play an important and often essential role during primary viral infections, by directly combatting the virus and by maximizing the primary adaptive immune response. Several studies have suggested that T1IFNs also contribute very substantially to the secondary (recall) response; they are thought (i) to be required to drive the early attrition of memory T cells, (ii) to support the subsequent expansion of surviving virus-specific memory cells, and (iii) to assist in the suppression and clearance of the infectious agent. However, many of these observations were predicated upon models in which T1IFN signaling was interrupted prior to a primary immune response, raising the possibility that the resulting memory cells might be intrinsically abnormal. We have directly addressed this by using an inducible-Cre model system in which the host remains genetically-intact during the primary response to infection, and in which T1IFN signaling can be effectively ablated prior to secondary viral challenge. We report that, in stark contrast to primary infection, T1IFN signaling is not required during the recall response. IFNαβR-deficient memory CD8+ and CD4+ memory T cells undergo attrition and expansion with kinetics that are indistinguishable from those of receptor-sufficient cells. Moreover, even in the absence of functional T1IFN signaling, the host's immune capacity to rapidly suppress, and then to eradicate, a secondary infection remains intact. Thus, this study shows that T1IFN signaling is dispensable during the recall response to a virus infection. Moreover, two broader implications may be drawn. First, a T cell's requirement for a cytokine is highly dependent on the cell's maturation / differentiation status. Consequently, second, these data underscore the importance of evaluating a gene's impact by modulating its expression or function in a temporally-controllable manner. PMID:27580079

  17. Type I IFN Signaling Is Dispensable during Secondary Viral Infection

    PubMed Central

    Hosking, Martin P.; Flynn, Claudia T.; Whitton, J. Lindsay

    2016-01-01

    Innate immune responses in general, and type I interferons (T1IFNs) in particular, play an important and often essential role during primary viral infections, by directly combatting the virus and by maximizing the primary adaptive immune response. Several studies have suggested that T1IFNs also contribute very substantially to the secondary (recall) response; they are thought (i) to be required to drive the early attrition of memory T cells, (ii) to support the subsequent expansion of surviving virus-specific memory cells, and (iii) to assist in the suppression and clearance of the infectious agent. However, many of these observations were predicated upon models in which T1IFN signaling was interrupted prior to a primary immune response, raising the possibility that the resulting memory cells might be intrinsically abnormal. We have directly addressed this by using an inducible-Cre model system in which the host remains genetically-intact during the primary response to infection, and in which T1IFN signaling can be effectively ablated prior to secondary viral challenge. We report that, in stark contrast to primary infection, T1IFN signaling is not required during the recall response. IFNαβR-deficient memory CD8+ and CD4+ memory T cells undergo attrition and expansion with kinetics that are indistinguishable from those of receptor-sufficient cells. Moreover, even in the absence of functional T1IFN signaling, the host’s immune capacity to rapidly suppress, and then to eradicate, a secondary infection remains intact. Thus, this study shows that T1IFN signaling is dispensable during the recall response to a virus infection. Moreover, two broader implications may be drawn. First, a T cell’s requirement for a cytokine is highly dependent on the cell’s maturation / differentiation status. Consequently, second, these data underscore the importance of evaluating a gene’s impact by modulating its expression or function in a temporally-controllable manner. PMID

  18. Interaction Between Polymorphisms of IFN-γ and MICA Correlated with Hepatocellular Carcinoma.

    PubMed

    Li, Hongguang; Liu, Fangfeng; Zhu, Huaqiang; Zhou, Xu; Lu, Jun; Chang, Hong; Hu, Jinhua

    2016-02-19

    BACKGROUND We explored the relationship of interferon-γ (IFN-γ) and MHC class-I chain related gene A (MICA) genes polymorphisms with hepatocellular carcinoma (HCC) risk, and tried to determine whether the interaction existed between these two genes polymorphisms on the basis of HCC. MATERIAL AND METHODS Polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method was used to detect the genotypes of the 3 single-nucleotide polymorphisms (SNPs) and to analyze the correlation of each SNP with HCC susceptibility in 120 HCC patients and 124 healthy people. The association strength between the 3 SNPs and HCC is represented with odds ratio (OR) and 95% confidence interval (95% CI). Hardy-Weinberg equilibrium (HWE) was tested by χ2 test in the control group. RESULTS GG genotype of IFN-γ rs2069727 polymorphism had apparently different distributions in case and control groups (P<0.05), and might confer increased risk of HCC (OR=3.40, 95%CI=1.23-9.38). Analysis of MICA rs2596542 polymorphism also yielded the same result (OR=2.90, 95%CI=1.10-7.67), as did their risk alleles. Specifically, the interaction between rs2596542 and rs2069705 polymorphisms increased the HCC risk by 1.41 times and between rs2596542 and rs2069727 polymorphisms the increased risk of HCC by 5.56 times. CONCLUSIONS IFN-γ rs2069727 and MICA rs2596542 polymorphisms may be related to the incidence of HCC. Interaction exists between the polymorphisms of IFN-γ and MICA, which may increase risk of HCC.

  19. Interaction Between Polymorphisms of IFN-γ and MICA Correlated with Hepatocellular Carcinoma

    PubMed Central

    Li, Hongguang; Liu, Fangfeng; Zhu, Huaqiang; Zhou, Xu; Lu, Jun; Chang, Hong; Hu, Jinhua

    2016-01-01

    Background We explored the relationship of interferon--γ (IFN-γ) and MHC class-I chain related gene A (MICA) genes polymorphisms with hepatocellular carcinoma (HCC) risk, and tried to determine whether the interaction existed between these two genes polymorphisms on the basis of HCC. Material/Methods Polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method was used to detect the genotypes of the 3 single-nucleotide polymorphisms (SNPs) and to analyze the correlation of each SNP with HCC susceptibility in 120 HCC patients and 124 healthy people. The association strength between the 3 SNPs and HCC is represented with odds ratio (OR) and 95% confidence interval (95% CI). Hardy-Weinberg equilibrium (HWE) was tested by χ2 test in the control group. Results GG genotype of IFN-γ rs2069727 polymorphism had apparently different distributions in case and control groups (P<0.05), and might confer increased risk of HCC (OR=3.40, 95%CI=1.23–9.38). Analysis of MICA rs2596542 polymorphism also yielded the same result (OR=2.90, 95%CI=1.10–7.67), as did their risk alleles. Specifically, the interaction between rs2596542 and rs2069705 polymorphisms increased the HCC risk by 1.41 times and between rs2596542 and rs2069727 polymorphisms the increased risk of HCC by 5.56 times. Conclusions IFN-γ rs2069727 and MICA rs2596542 polymorphisms may be related to the incidence of HCC. Interaction exists between the polymorphisms of IFN-γ and MICA, which may increase risk of HCC. PMID:26893439

  20. Thrombin inhibits IFN-gamma production in human peripheral blood mononuclear cells by promoting a Th2 profile.

    PubMed

    Naldini, Antonella; Morena, Emilia; Filippi, Irene; Pucci, Annalisa; Bucci, Mariarosaria; Cirino, Giuseppe; Carraro, Fabio

    2006-11-01

    Thrombin, the key enzyme of the coagulation cascade, is involved in inflammation. It was proposed recently that thrombin activity may play an important role in allergic inflammation. Interferon-gamma (IFN-gamma) is a potent Th1-related cytokine secreted by activated T cells and is usually downregulated in allergic inflammation. We recently demonstrated that thrombin enhances interleukin-10 (IL-10) in peripheral blood mononuclear cells (PBMC). Thus, we hypothesized that thrombin may promote a Th2 profile. We here report that human alpha- thrombin downregulates IFN-gamma expression at both protein and mRNA levels in activated PBMCs. The use of proteolytically inactive thrombin and of the specific thrombin receptor agonist peptide, SFLLRN, shows that this downregulation is thrombin specific and requires thrombin proteolytic activity. The addition of an anti- IL-10 monoclonal antibody (mAb) to thrombin-treated PBMCs abolishes IFN-gamma downregulation, suggesting that thrombin exerts its effect through IL-10, a Th2-related cytokine. Furthermore, IFN-gamma reduction was accompanied by increased IL-4 release, as well as by an increase in the proinflammatory cytokine IL-1. In conclusion, the observation that thrombin affects the production of IFN-gamma (Th1 profile) and IL-4 (Th2 profile) provides further evidence for the role played by thrombin in modulating Th1/Th2 cytokine balance, which could be particularly relevant in allergic inflammation. PMID:17115897

  1. Treatment of SIV-infected sooty mangabeys with a type-I IFN agonist results in decreased virus replication without inducing hyperimmune activation.

    PubMed

    Vanderford, Thomas H; Slichter, Chloe; Rogers, Kenneth A; Lawson, Benton O; Obaede, Rend; Else, James; Villinger, Francois; Bosinger, Steven E; Silvestri, Guido

    2012-06-14

    A key feature differentiating nonpathogenic SIV infection of sooty mangabeys (SMs) from pathogenic HIV/SIV infections is the rapid resolution of type I IFN (IFN-I) responses and IFN-stimulated gene expression during the acute-to-chronic phase transition and the establishment of an immune quiescent state that persists throughout the chronic infection. We hypothesized that low levels of IFN-I signaling may help to prevent chronic immune activation and disease progression in SIV-infected SMs. To assess the effects of IFN-I signaling in this setting, in the present study, we administered recombinant rhesus macaque IFNα2-IgFc (rmIFNα2) to 8 naturally SIV-infected SMs weekly for 16 weeks. Gene-expression profiling revealed a strong up-regulation of IFN-stimulated genes in the blood of treated animals, confirming the reagent's bioactivity. Interestingly, we observed an approximately 1-log decrease in viral load that persisted through day 35 of treatment. Flow cytometric analysis of lymphocytes in the blood, lymph nodes, and rectal biopsies did not reveal a significant decline of CD4(+) T cells, a robust increase in lymphocyte activation, or change in the level of SIV-specific CD8(+) T cells. The results of the present study indicate that administration of type I IFNs in SIV-infected SMs induces a significant anti-viral effect that is not associated with a detectable increase in chronic immune activation.

  2. Critical involvement of IL-12 in IFN-gamma induction by calcineurin antagonists in activated human lymphocytes.

    PubMed

    Wittmann, Miriam; Killig, Claudia; Bruder, Manuela; Gutzmer, Ralf; Werfel, Thomas

    2006-07-01

    Calcineurin antagonists are known as potent immunosuppressants working particularly on T cells by virtue of their capacity to block nuclear factor of activated T cell (NFAT) activation and translocation to the nucleus. In addition to interleukin (IL)-2 suppression, T helper cell type 1 (Th1) as well as Th2 cytokine transcription is blocked by calcineurin antagonists. Here, we show that calcineurin antagonists such as cyclosporin A (CsA) or tacrolimus can markedly enhance the production of interferon-gamma (IFN-gamma) by human T cells. This increased IFN-gamma production is dependent on T cell receptor (TCR) and CD28 signaling as well as on the presence of IL-12. IL-27, which could mimic the effect of IL-12, was however less potent in inducing IFN-gamma production in the presence of CsA and TCR stimulation. Other cytokines such as IL-23, IL-18, IL-2, or the Th2-related cytokine IL-4 are not able to support a calcineurin antagonist-dependent up-regulation of IFN-gamma. CsA-dependent IFN-gamma production is observable in therapeutic concentrations. The effect is independent of IL-10 or IL-4, as addition of these cytokines could not inhibit the CsA-induced IFN-gamma production. The effect of calcineurin antagonists is associated with an increased c-fos expression and DNA-binding activity of the transcription factor activated protein-1 but not with increased DNA-binding activity of T-bet. Our study further supports the relevance of known calcineurin activities other than NFAT activation. The presented data may help to explain why concomitant infections (resulting in increased IL-12 expression) under therapy with calcineurin antagonists often have a negative impact on the activity of the underlying disease (e.g., autoimmune disease).

  3. LIGHT/IFN-γ triggers β cells apoptosis via NF-κB/Bcl2-dependent mitochondrial pathway.

    PubMed

    Zheng, Quan-You; Cao, Zhao-Hui; Hu, Xiao-Bo; Li, Gui-Qing; Dong, Shi-Fang; Xu, Gui-Lian; Zhang, Ke-Qin

    2016-10-01

    LIGHT recruits and activates naive T cells in the islets at the onset of diabetes. IFN-γ secreted by activated T lymphocytes is involved in beta cell apoptosis. However, whether LIGHT sensitizes IFNγ-induced beta cells destruction remains unclear. In this study, we used the murine beta cell line MIN6 and primary islet cells as models for investigating the underlying cellular mechanisms involved in LIGHT/IFNγ - induced pancreatic beta cell destruction. LIGHT and IFN-γ synergistically reduced MIN6 and primary islet cells viability; decreased cell viability was due to apoptosis, as demonstrated by a significant increase in Annexin V(+) cell percentage, detected by flow cytometry. In addition to marked increases in cytochrome c release and NF-κB activation, the combination of LIGHT and IFN-γ caused an obvious decrease in expression of the anti-apoptotic proteins Bcl-2 and Bcl-xL, but an increase in expression of the pro-apoptotic proteins Bak and Bax in MIN6 cells. Accordingly, LIGHT deficiency led to a decrease in NF-κB activation and Bak expression, and peri-insulitis in non-obese diabetes mice. Inhibition of NF-κB activation with the specific NF-κB inhibitor, PDTC (pyrrolidine dithiocarbamate), reversed Bcl-xL down-regulation and Bax up-regulation, and led to a significant increase in LIGHT- and IFN-γ-treated cell viability. Moreover, cleaved caspase-9, -3, and PARP (poly (ADP-ribose) polymerase) were observed after LIGHT and IFN-γ treatment. Pretreatment with caspase inhibitors remarkably attenuated LIGHT- and IFNγ-induced cell apoptosis. Taken together, our results indicate that LIGHT signalling pathway combined with IFN-γ induces beta cells apoptosis via an NF-κB/Bcl2-dependent mitochondrial pathway.

  4. Cutting edge: pulmonary Legionella pneumophila is controlled by plasmacytoid dendritic cells but not type I IFN.

    PubMed

    Ang, Desmond K Y; Oates, Clare V L; Schuelein, Ralf; Kelly, Michelle; Sansom, Fiona M; Bourges, Dorothée; Boon, Louis; Hertzog, Paul J; Hartland, Elizabeth L; van Driel, Ian R

    2010-05-15

    Plasmacytoid dendritic cells (pDCs) are well known as the major cell type that secretes type I IFN in response to viral infections. Their role in combating other classes of infectious organisms, including bacteria, and their mechanisms of action are poorly understood. We have found that pDCs play a significant role in the acute response to the intracellular bacterial pathogen Legionella pneumophila. pDCs were rapidly recruited to the lungs of L. pneumophila-infected mice, and depletion of pDCs resulted in increased bacterial load. The ability of pDCs to combat infection did not require type I IFN. This study points to an unappreciated role for pDCs in combating bacterial infections and indicates a novel mechanism of action for this cell type.

  5. Clinical ineffectiveness of IL-2 and/or IFN alpha administration after autologous PBSC transplantation in pediatric oncological patients.

    PubMed

    Vlk, V; Eckschlager, T; Kavan, P; Kabícková, E; Koutecký, J; Sobota, V; Bubenik, J; Pospísilová, D

    2000-01-01

    Clinical impact of s.c. administration of IL-2 and/or IFN alpha was studied in 23 pediatric patients with Hodgkin lymphoma (IFN alpha group) and sarcoma, non-Hodgkin lymphoma, peripheral neuroepitelioma, neuroblastoma, and embryonic carcinoma (IL-2 + IFN alpha group) after autologous PBSC transplantation. Expression of CD3, CD4, CD8, CD25, CD38, CD56, CD71, CD122, and HLA-DR antigens, serum level of the soluble IL-2R alpha, and NK activity against K562 cell line were evaluated in 11 patients representative for both types of immunotherapy. T and, more markedly, NK cell proliferation, induction of activation markers on the surface of T and NK subsets, and elevation of sIL-2R alpha concentrations were seen in the IL-2 + IFN alpha subgroup. In the IFN alpha subgroup, the total number of lymphocytes and expression of activation markers remained unchanged, but the number of CD8+ T cells increased at the expense of CD4+ T and NK cells during the therapy. Cytotoxic activity against K562 cells was not influenced by the immunotherapy in either subgroup. No significant clinical benefit of the immunotherapy was seen in these patients compared to 27 control patients with relevant diagnoses who did not receive immunotherapy.

  6. Impact of Usp18 and IFN signaling in Salmonella-induced typhlitis.

    PubMed

    Richer, E; Yuki, K E; Dauphinee, S M; Larivière, L; Paquet, M; Malo, D

    2011-10-01

    In humans, Salmonella infection causes two major clinical diseases, typhoid fever and a self-limiting gastro-enteritidis. Salmonella transmission occurs by the fecal-oral route and the interactions between the bacteria and the digestive tract epithelium are central to the outcome of the infection. Using a mouse model of typhoid fever, we previously identified a mutation in USP18 affecting type I interferon (IFN) signaling resulting in increased susceptibility to systemic Salmonella infection. In this study, we demonstrate the effects of this mutation during the early response to Salmonella using a model of typhlitis. Mutant Usp18 mice showed a minimal inflammatory response early after Salmonella Typhimurium infection that was associated with low pathologic scores and low IFN-γ production. This resulted in an increased interaction of Salmonella with the cecal epithelium and earlier systemic dissemination of the bacteria. The global transcriptional signature in the cecum of mouse during Salmonella infection showed normal expression of tissue specific genes and upregulation of type I IFN pathway in mutant mice. In control mice, there was a significant over-representation of genes involved in cellular recruitment and antibacterial activity paralleling the histopathological features. These results show the impact of USP18 in the development of Salmonella-induced typhlitis. PMID:21614019

  7. NK Cell Activation in the Antitumor Response Induced by IFN-α Dendritic Cells Loaded with Apoptotic Cells from Follicular Lymphoma Patients.

    PubMed

    Lapenta, Caterina; Donati, Simona; Spadaro, Francesca; Castaldo, Paolo; Belardelli, Filippo; Cox, Maria C; Santini, Stefano M

    2016-08-01

    Follicular lymphoma (FL) is the most common form of indolent non-Hodgkin lymphoma. This malignancy is considered virtually incurable, with high response rates to therapy but frequent relapses. We investigated the ability of monocyte-derived dendritic cells generated in the presence of IFN-α and GM-CSF (IFN-DC) and loaded with apoptotic lymphoma cells to activate immune responses against FL cells, with the ultimate goal of designing novel patient-specific vaccination strategies for the treatment of FL. In this article, we show that apoptotic tumor cell-loaded IFN-DC from FL patients, which were cultured for 2 wk with autologous lymphocytes, led to Th1 response skewing, based on significantly higher levels of IFN-γ production and a remarkable increase in CD8(+) and NK cell frequency, consistent with the detection of enhanced cytotoxic effector function toward autologous FL cells. IFN-DC were found to promote efficient NK cell activation, increased expression of cytotoxicity receptors, and extensive IFN-γ production in the virtual absence of IL-10. Moreover, direct recognition and killing of primary autologous lymphoma cells by activated NK cells from FL patients was also demonstrated. A critical role was demonstrated for MHC class I-related chain A and B and membrane-bound IL-15 in IFN-DC-mediated NK cell activation and early IFN-γ production. The overall results indicate that IFN-DC loaded with autologous apoptotic FL cells represent a valuable tool for improving the potency of therapeutic cancer vaccines through the efficient induction of NK cell activation and promotion of CD8(+) T cell antitumor immunity. PMID:27357153

  8. Synergistic effect of IFN-γ gene on LIGHT-induced apoptosis in HepG2 cells via down regulation of Bcl-2.

    PubMed

    Han, Bing; Wu, Li-Qun; Ma, Xiang; Wang, Zheng-Hua; Li, Jin-Peng; Bi, Chong-Yao; Yong, Sun

    2011-08-01

    To detect the expression of anti-apoptotic factor Bcl-2 and Survivin in transferred HepG2 cells and evaluate the synergistic effect of IFN-γ gene on LIGHT-induced apoptosis signal transduction pathways, the full-length ORF of LIGHT and IFN-γ gene were cloned into pcDNA4 and verified by DNA sequencing. After being optimized by EGFP, recombinant LIGHT and IFN-γ were transferred into the HepG2 cells mediated by a cationic liposome in vitro. The expression of LIGHT and IFN-γ was identified in the supernatants by ELISA. The HepG2 cells were divided into three groups: the control, LIGHT gene transfection alone, and simultaneous transfection of LIGHT and IFN-γ genes. The cell apoptosis and expression of Bcl-2 and Survivin in cell lysate were detected through FCM. After transfection, the apoptosis rate of HepG2 cells was increased with the prolonged time, and the apoptosis rate of LIGHT group was higher than the control group, while the LIGHT/IFN-γ group was higher than the LIGHT group P < 0.01). The expression of Bcl-2 and Survivin in LIGHT group and LIGHT/IFN-γ group decreased dramatically compared with the control group. LIGHT gene alone can result in significant inhibition of HepG2 cells proliferation. INF-γ can synergistically precede LIGHT-induced apoptotic processes through down-regulation of Bcl-2 expression, but not survivin expression.

  9. ORF7-encoded accessory protein 7a of feline infectious peritonitis virus as a counteragent against IFN-α-induced antiviral response.

    PubMed

    Dedeurwaerder, Annelike; Olyslaegers, Dominique A J; Desmarets, Lowiese M B; Roukaerts, Inge D M; Theuns, Sebastiaan; Nauwynck, Hans J

    2014-02-01

    The type I IFN-mediated immune response is the first line of antiviral defence. Coronaviruses, like many other viruses, have evolved mechanisms to evade this innate response, ensuring their survival. Several coronavirus accessory genes play a central role in these pathways, but for feline coronaviruses this has never to our knowledge been studied. As it has been demonstrated previously that ORF7 is essential for efficient replication in vitro and virulence in vivo of feline infectious peritonitis virus (FIPV), the role of this ORF in the evasion of the IFN-α antiviral response was investigated. Deletion of ORF7 from FIPV strain 79-1146 (FIPV-Δ7) rendered the virus more susceptible to IFN-α treatment. Given that ORF7 encodes two proteins, 7a and 7b, it was further explored which of these proteins is active in this mechanism. Providing 7a protein in trans rescued the mutant FIPV-Δ7 from IFN sensitivity, which was not achieved by addition of 7b protein. Nevertheless, addition of protein 7a to FIPV-Δ3Δ7, a FIPV mutant deleted in both ORF3 and ORF7, could no longer increase the replication capacity of this mutant in the presence of IFN. These results indicate that FIPV 7a protein is a type I IFN antagonist and protects the virus from the antiviral state induced by IFN, but it needs the presence of ORF3-encoded proteins to exert its antagonistic function.

  10. The Natural Product Phyllanthusmin C Enhances IFN-γ Production by Human Natural Killer Cells through Upregulation of TLR-Mediated NF-κB Signaling

    PubMed Central

    Deng, Youcai; Chu, Jianhong; Ren, Yulin; Fan, Zhijin; Ji, Xiaotian; Mundy, Bethany; Yuan, Shunzong; Hughes, Tiffany; Zhang, Jianying; Cheema, Baljash; Camardo, Andrew T.; Xia, Yong; Wu, Lai-Chu; Wang, Li-Shu; He, Xiaoming; Kinghorn, A. Douglas; Li, Xiaohui; Caligiuri, Michael A; Yu, Jianhua

    2014-01-01

    Natural products are a major source for cancer drug development. NK cells are a critical component of innate immunity with the capacity to destroy cancer cells, cancer initiating cells, and clear viral infections. However, few reports describe a natural product that selectively stimulates NK cell IFN-γ production and unravel a mechanism of action. In this study, through screening, we found that a natural product, phyllanthusmin C (PL-C), alone enhanced IFN-γ production by human NK cells. PL-C also synergized with IL-12, even at the low cytokine concentration of 0.1 mg/ml, and stimulated IFN-γ production in both human CD56bright and CD56dim NK cell subsets. Mechanistically, TLR1 and/or TLR6 mediated PL-C’s activation of the NF-κB p65 subunit that in turn bound to the proximal promoter of IFNG and subsequently resulted in increased IFN-γ production in NK cells. However, IL-12/IL-15 receptors and their related STAT signaling pathways were not significantly modulated by PL-C. PL-C induced little or no T cell IFN-γ production or NK cell cytotoxicity. Collectively, we identify a natural product with the capacity to selectively activate human NK cell IFN-γ. Given the role of IFN-γ in immune surveillance, additional studies to understand the role of this natural product in prevention of cancer or infection in select populations are warranted. PMID:25122922

  11. CD4 T Cell-Derived IFN-γ Plays a Minimal Role in Control of Pulmonary Mycobacterium tuberculosis Infection and Must Be Actively Repressed by PD-1 to Prevent Lethal Disease

    PubMed Central

    Sakai, Shunsuke; Kauffman, Keith D.; Sallin, Michelle A.; Sharpe, Arlene H.; Young, Howard A.; Ganusov, Vitaly V.; Barber, Daniel L.

    2016-01-01

    IFN-γ–producing CD4 T cells are required for protection against Mycobacterium tuberculosis (Mtb) infection, but the extent to which IFN-γ contributes to overall CD4 T cell-mediated protection remains unclear. Furthermore, it is not known if increasing IFN-γ production by CD4 T cells is desirable in Mtb infection. Here we show that IFN-γ accounts for only ~30% of CD4 T cell-dependent cumulative bacterial control in the lungs over the first six weeks of infection, but >80% of control in the spleen. Moreover, increasing the IFN-γ–producing capacity of CD4 T cells by ~2 fold exacerbates lung infection and leads to the early death of the host, despite enhancing control in the spleen. In addition, we show that the inhibitory receptor PD-1 facilitates host resistance to Mtb by preventing the detrimental over-production of IFN-γ by CD4 T cells. Specifically, PD-1 suppressed the parenchymal accumulation of and pathogenic IFN-γ production by the CXCR3+KLRG1-CX3CR1- subset of lung-homing CD4 T cells that otherwise mediates control of Mtb infection. Therefore, the primary role for T cell-derived IFN-γ in Mtb infection is at extra-pulmonary sites, and the host-protective subset of CD4 T cells requires negative regulation of IFN-γ production by PD-1 to prevent lethal immune-mediated pathology. PMID:27244558

  12. IFN-γ Production Depends on IL-12 and IL-18 Combined Action and Mediates Host Resistance to Dengue Virus Infection in a Nitric Oxide-Dependent Manner

    PubMed Central

    Cisalpino, Daniel; Amaral, Flávio A.; Souza, Patrícia R. S.; Souza, Rafael S.; Ryffel, Bernhard; Vieira, Leda Q.; Silva, Tarcília A.; Atrasheuskaya, Alena; Ignatyev, George; Sousa, Lirlândia P.; Souza, Danielle G.; Teixeira, Mauro M.

    2011-01-01

    Dengue is a mosquito-borne disease caused by one of four serotypes of Dengue virus (DENV-1–4). Severe dengue infection in humans is characterized by thrombocytopenia, increased vascular permeability, hemorrhage and shock. However, there is little information about host response to DENV infection. Here, mechanisms accounting for IFN-γ production and effector function during dengue disease were investigated in a murine model of DENV-2 infection. IFN-γ expression was greatly increased after infection of mice and its production was preceded by increase in IL-12 and IL-18 levels. In IFN-γ−/− mice, DENV-2-associated lethality, viral loads, thrombocytopenia, hemoconcentration, and liver injury were enhanced, when compared with wild type-infected mice. IL-12p40−/− and IL-18−/− infected-mice showed decreased IFN-γ production, which was accompanied by increased disease severity, higher viral loads and enhanced lethality. Blockade of IL-18 in infected IL-12p40−/− mice resulted in complete inhibition of IFN-γ production, greater DENV-2 replication, and enhanced disease manifestation, resembling the response seen in DENV-2-infected IFN-γ−/− mice. Reduced IFN-γ production was associated with diminished Nitric Oxide-synthase 2 (NOS2) expression and NOS2−/− mice had elevated lethality, more severe disease evolution and increased viral load after DENV-2 infection. Therefore, IL-12/IL-18-induced IFN-γ production and consequent NOS2 induction are of major importance to host resistance against DENV infection. PMID:22206036

  13. IFN-γ mediates graft-versus-breast cancer effects via enhancing cytotoxic T lymphocyte activity.

    PubMed

    Zhao, Qianjie; Tong, Lingling; He, Ningning; Feng, Guowei; Leng, Liang; Sun, Weijun; Xu, Yang; Wang, Yuebing; Xiang, Rong; Li, Zongjin

    2014-08-01

    Previous studies have demonstrated the beneficial effect of graft-versus-tumor (GVT) following hematopoietic stem cell transplantation (HSCT) on the incidence of leukemia relapse and the overall survival rate of patients with leukemia; however, detailed mechanisms underlying the effects GVT exhibits on solid tumors following allogeneic HSCT are yet to be elucidated. The aim of the present study was to investigate the immune mechanism underlying the effect of interferon (IFN)-γ on GVT following allogeneic HSCT in breast cancer therapy. An in situ breast cancer mouse model was established by injecting 5×10(4) 4T1 cells into the mammary fat pads of BALB/c mice. The 4T1 cells were transfected with the firefly luciferase reporter gene in order to monitor the tumor progression in real time. An allogeneic HSCT model was then established by transplanting bone marrow mononuclear cells from C57BL/6 mice to the BALB/c mice. To investigate the influence of T lymphocyte proliferation following allogeneic bone marrow transplantation, the levels of CD3(+)CD8(+) cytotoxic T lymphocytes (CTLs) and CD4(+)CD25(+) regulatory T cells were determined. In addition, IFN-γ and granzyme B expression levels in splenic lymphocytes were analyzed using flow cytometry. Allogeneic HSCT was found to significantly promote the proliferation and cytotoxicity of CTLs and suppress the growth of breast cancer. Furthermore, the secretory levels of IFN-γ and granzyme B by T cells were elevated following allogeneic HSCT. These results indicated that alloreactive T cells increased the secretion of IFN-γ, which promoted the alloresponse of donor CTLs. In addition, the CTLs produced granzyme B, which exerted a tumor suppressive effect. PMID:25009582

  14. A Novel Model for IFN-γ–Mediated Autoinflammatory Syndromes

    PubMed Central

    Reinhardt, R. Lee; Liang, Hong-Erh; Bao, Katherine; Price, April E.; Mohrs, Markus; Kelly, Ben L.

    2015-01-01

    Autoinflammatory disease and hyperinflammatory syndromes represent a growing number of diseases associated with inappropriately controlled inflammation in multiple organs. Systemic inflammation commonly results from dysregulated activation of innate immune cells, and therapeutic targeting of the IL-1β pathway has been used to ameliorate some of these diseases. Some hyperinflammatory syndromes, however, such as hemophagocytic lymphohistiocytosis and the newly classified proteasome disability syndromes, are refractory to such treatments, suggesting that other factors or environmental stressors may be contributing. In comparing two cytokine reporter mouse strains, we identify IFN-γ as a mediator of systemic autoinflammatory disease. Chronically elevated levels of IFN-γ resulted in progressive multiorgan inflammation and two copies of the mutant allele resulted in increased mortality accompanied by myeloproliferative disease. Disease was alleviated by genetic deletion of T-bet. These studies raise the possibility that therapeutics targeting the IFN-γ pathway might be effective in hyperinflammatory conditions refractory to IL-1β–targeted therapies. PMID:25637019

  15. Soluble IL-6 Receptor and IL-27 Subunit p28 Protein Complex Mediate the Antiviral Response through the Type III IFN Pathway.

    PubMed

    Yang, Xiaodan; Hao, Hua; Xia, Zhangchuan; Xu, Gang; Cao, Zhongying; Chen, Xueyuan; Liu, Shi; Zhu, Ying

    2016-09-15

    Previously, we demonstrated that the soluble IL-6R (sIL-6R) plays an important role in the host antiviral response through induction of type I IFN and sIL-6R-mediated antiviral action via the IL-27 subunit p28; however, the mechanism that underlies sIL-6R and p28 antiviral action and whether type III IFN is involved remain unknown. In this study, we constructed a sIL-6R and p28 fusion protein (sIL-6R/p28 FP) and demonstrated that the fusion protein has stronger antiviral activity than sIL-6R alone. Consequently, knockout of sIL-6R inhibited virus-triggered IFN-λ1 expression. In addition, sIL-6R/p28 FP associated with mitochondrial antiviral signaling protein and TNFR-associated factor 6, the retinoic acid-inducible gene I adapter complex, and the antiviral activity mediated by sIL-6R/p28 FP was dependent on mitochondrial antiviral signaling protein. Furthermore, significantly reduced binding of p50/p65 and IFN regulatory factor 3 to the IFN-λ1 promoter was observed in sIL-6R knockout cells compared with the control cells. Interestingly, a novel heterodimer of c-Fos and activating transcription factor 1 was identified as a crucial transcriptional activator of IFN-λ1 The sIL-6R/p28 FP upregulated IFN-λ1 expression by increasing the binding abilities of c-Fos and activating transcription factor 1 to the IFN-λ1 promoter via the p38 MAPK signaling pathway. In conclusion, these results demonstrate the important role of sIL-6R/p28 FP in mediating virus-induced type III IFN production. PMID:27527594

  16. Recombinant hIFN-α2b-BCG inhibits tumor growth in a mouse model of bladder cancer.

    PubMed

    Sun, Erlin; Fan, Xiaodong; Wang, Lining; Lei, Mingde; Zhou, Xiaodong; Liu, Chunyu; Lu, Bingxin; Nian, Xuewu; Sun, Yan; Han, Ruifa

    2015-07-01

    Bacillus Calmette-Guérin (BCG) reduces the recurrence and progression of non-muscle invasive bladder cancer. The present study aimed to investigate the impact of a recombinant hIFN-α2b-secreting BCG (rBCG) on the mouse bladder MB49 cell line and an orthotopic mouse model of bladder cancer. MB49 cells were cultivated in the presence or absence of rBCG, BCG or BCG+hIFN-α2b. Cellular morphology and viability were assessed by microscopy and CCK-8 assay, respectively. Apoptosis was assessed by acridine orange, Hoechst 33258 staining and flow cytometry. MHC-I expression was assessed by flow cytometry. MB49 cells were transplanted into the bladders of C57BL/6 mice administered BCG, rBCG or BCG+hIFN-α2b. Local tissue Fas expression and T cell subsets were assessed by immunohistochemistry. Peripheral blood TNF-α and IL-12 levels were measured by ELISA, and circulating T lymphocyte subsets by flow cytometry. BCG, rBCG and BCG+hIFN-α2b increased the distortion and death of MB49 cells, yet rBCG reduced the proliferation and enhanced apoptosis most substantially. Apoptosis was increased after a 24-h co-culture with rBCG or BCG+hIFN-α2b. Mice administered rBCG survived longer than mice administered BCG (p<0.001), yet this result was not significantly different from mice administered BCG+hIFN-α2b. The average bladder weight was reduced by administration of rBCG (p<0.001). Fas expression and peripheral blood mTNF-α and mIL-12, cell counts of polymorphonuclear leukocytes, monocytes, T lymphocytes and CD4+/CD8+ ratios were significantly increased by all BCG treatments (p≤0.05), yet monocyte and T lymphocyte counts were higher in mice administered rBCG than in mice treated with BCG or BCG+hIFN-α2b (p=0.000). These results indicate that in an orthotopic murine bladder cancer model rBCG possesses superior antitumor activity to BCG+hIFN-α2b.

  17. Anti-tumor immunity elicited by direct intratumoral administration of a recombinant adenovirus expressing either IL-28A/IFN-λ2 or IL-29/IFN-λ1.

    PubMed

    Hasegawa, K; Tagawa, M; Takagi, K; Tsukamoto, H; Tomioka, Y; Suzuki, T; Nishioka, Y; Ohrui, T; Numasaki, M

    2016-08-01

    Interleukin (IL)-28A/interferon (IFN)-λ2 and IL-29/IFN-λ1 have been demonstrated to elicit direct and indirect anti-tumor actions. In this study, we constructed an adenovirus vector expressing either IL-28A/IFN-λ2 (AdIL-28A) or IL-29/IFN-λ1 (AdIL-29) to evaluate the therapeutic properties of intratumoral injection of recombinant adenovirus to apply for the clinical implementation of cancer gene therapy. Despite the lack of an anti-proliferative effect on MCA205 and B16-F10 cells, a retarded growth of established subcutaneous tumors was observed following multiple injections of either AdIL-28A or AdIL-29 when compared with AdNull. In vivo cell depletion experiments displayed that both NK cells and CD8(+) T cells have a major role in AdIL-28A-mediated tumor growth suppression. A significant increase in the number of infiltrating CD8(+) T cells into the tumors treated with either AdIL-28A or AdIL-29 was observed. Moreover, specific anti-tumor cytotoxic T lymphocyte reactivity was detected in spleen cells from animals treated with either AdIL-28A or AdIL-29. In IFN-γ-deficient mice, anti-tumor activities of AdIL-28A were completely impaired, indicating that IFN-γ is critically involved in the tumor growth inhibition triggered by AdIL-28A. IL-12 provided a synergistic anti-tumor effect when combined with AdIL-28A. These results indicate that AdIL-28A and AdIL-29 could be successfully utilized as an alternative cancer immunogene therapy. PMID:27561689

  18. IFN-α confers resistance of systemic lupus erythematosus nephritis to therapy in NZB/W F1 mice.

    PubMed

    Liu, Zheng; Bethunaickan, Ramalingam; Huang, Weiqing; Ramanujam, Meera; Madaio, Michael P; Davidson, Anne

    2011-08-01

    The critical role of IFN-α in the pathogenesis of human systemic lupus erythematosus has been highlighted in recent years. Exposure of young lupus-prone NZB/W F1 mice to IFN-α in vivo leads to an accelerated lupus phenotype that is dependent on T cells and is associated with elevated serum levels of BAFF, IL-6, and TNF-α, increased splenic expression of IL-6 and IL-21, formation of large germinal centers, and the generation of large numbers of short-lived plasma cells that produce IgG2a and IgG3 autoantibodies. In this study, we show that both IgG2a and IgG3 autoantibodies are pathogenic in IFN-α-accelerated lupus, and their production can be dissociated by using low-dose CTLA4-Ig. Only high-dose CTLA4-Ig attenuates both IgG2a and IgG3 autoantibody production and significantly delays death from lupus nephritis. In contrast, BAFF/APRIL blockade has no effect on germinal centers or the production of IgG anti-dsDNA Abs but, if given at the time of IFN-α challenge, delays the progression of lupus by attenuating systemic and renal inflammation. Temporary remission of nephritis induced by combination therapy with cyclophosphamide, anti-CD40L Ab, and CTLA4-Ig is associated with the abrogation of germinal centers and depletion of short-lived plasma cells, but relapse occurs more rapidly than in conventional NZB/W F1 mice. This study demonstrates that IFN-α renders NZB/W F1 relatively resistant to therapeutic intervention and suggests that the IFN signature should be considered when randomizing patients into groups and analyzing the results of human clinical trials in systemic lupus erythematosus.

  19. A novel glycolipid antigen for NKT cells that preferentially induces IFN-γ production

    PubMed Central

    Birkholz, Alysia M.; Girardi, Enrico; Wingender, Gerhard; Khurana, Archana; Wang, Jing; Zhao, Meng; Zahner, Sonja; Illarionov, Petr A.; Wen, Xiangshu; Li, Michelle; Yuan, Weiming; Porcelli, Steven A.; Besra, Gurdyal S.; Zajonc, Dirk M.; Kronenberg, Mitchell

    2015-01-01

    Here we characterize a novel Ag for invariant natural killer T-cells (iNKT cells) capable of producing an especially robust Th1 response. This glycosphingolipid (GSL), DB06-1, is similar in chemical structure to the well-studied α-galactosylceramide (αGalCer), the only change being in a single atom, the substitution of a carbonyl oxygen with a sulfur atom. Although DB06-1 is not a more effective Ag in vitro, the small chemical change has a marked impact on the ability of this lipid Ag to stimulate iNKT cells in vivo, with increased IFN-γ production at 24 h compared to αGalCer, increased IL-12, and increased activation of NK cells to produce IFN-γ. These changes are correlated with an enhanced ability of DB06-1 to load in the CD1d molecules expressed by DCs in vivo. Moreover, structural studies suggest a tighter fit into the CD1d binding groove by DB061 compared to αGalCer. Surprisingly, when iNKT cells previously exposed to DB06-1 are restimulated weeks later, they have greatly increased IL-10 production. Our data are therefore consistent with a model whereby augmented and or prolonged presentation of a glycolipid Ag leads to increased activation of NK cells and a Th1-skewed immune response, which may result in part from enhanced loading into CD1d. Furthermore, our data suggest that strong antigenic stimulation in vivo may lead to the expansion of IL-10 producing iNKT cells, which could counteract the benefits of increased, early IFN-γ production. PMID:26078271

  20. Dendritic cells and NK cells stimulate bystander T cell activation in response to TLR agonists through secretion of IFN-alpha beta and IFN-gamma.

    PubMed

    Kamath, Arun T; Sheasby, Christopher E; Tough, David F

    2005-01-15

    Recognition of conserved features of infectious agents by innate pathogen receptors plays an important role in initiating the adaptive immune response. We have investigated early changes occurring among T cells after injection of TLR agonists into mice. Widespread, transient phenotypic activation of both naive and memory T cells was observed rapidly after injection of molecules acting through TLR3, -4, -7, and -9, but not TLR2. T cell activation was shown to be mediated by a combination of IFN-alphabeta, secreted by dendritic cells (DCs), and IFN-gamma, secreted by NK cells; notably, IFN-gamma-secreting NK cells expressed CD11c and copurified with DCs. Production of IFN-gamma by NK cells could be stimulated by DCs from TLR agonist-injected mice, and although soluble factors secreted by LPS-stimulated DCs were sufficient to induce IFN-gamma, maximal IFN-gamma production required both direct contact of NK cells with DCs and DC-secreted cytokines. In vitro, IFN-alphabeta, IL-18, and IL-12 all contributed to DC stimulation of NK cell IFN-gamma, whereas IFN-alphabeta was shown to be important for induction of T cell bystander activation and NK cell IFN-gamma production in vivo. The results delineate a pathway involving innate immune mediators through which TLR agonists trigger bystander activation of T cells. PMID:15634897

  1. Inhibition of IFN-stimulated gene expression and IFN induction of cytolytic resistance to natural killer cell lysis correlate with E1A-p300 binding.

    PubMed

    Routes, J M; Li, H; Bayley, S T; Ryan, S; Klemm, D J

    1996-02-01

    Treatment of target cells with IFN induces resistance to NK cell lysis. This process is blocked by expression of E1A gene products in adenovirus (Ad)-infected and Ad-transformed cells. We compared the ability of adenovirus serotype 5 (Ad5) E1A exon 1 mutants to inhibit the induction of cytolytic resistance by IFN and block IFN-stimulated gene expression with their capacity to bind the cellular proteins p105 (retinoblastoma gene product), p107, and p300. E1A mutants that did not express conserved region 3 (CR3; residues 138-184) or contained deletions in the nonconserved regions between residues 26-35 or 86-120, bound p105, p107, and p300 and were not impaired in their capacity to block IFN-stimulated gene expression or IFN's induction of cytolytic resistance. E1A mutants with deletions in CR2 (residues 121-138) could not bind p105 or p107, but blocked IFN-stimulated gene expression and IFN's induction of cytolytic resistance. In contrast, mutants in CR1 or the N-terminal nonconserved region (residues 2, 4-25, and 48-60), which define E1A's binding site for p300, were unable to block either IFN-stimulated gene expression or IFN's induction of cytolytic resistance. We conclude that E1A's capacity to block both IFN-stimulated gene expression and IFN's induction of cytolytic resistance appears to be transduced through a pathway that involves E1A-p300 binding. The capacity of E1A to block IFN's induction of cytolytic resistance is probably secondary to E1A's more general ability to inhibit IFN-stimulated gene expression. PMID:8557979

  2. Evasion of IFN-γ Signaling by Francisella novicida Is Dependent upon Francisella Outer Membrane Protein C

    PubMed Central

    Nallaparaju, Kalyan C.; Yu, Jieh-Juen; Rodriguez, Stephen A.; Zogaj, Xhavit; Manam, Srikanth; Guentzel, M. Neal; Seshu, Janakiram; Murthy, Ashlesh K.; Chambers, James P.; Klose, Karl E.; Arulanandam, Bernard P.

    2011-01-01

    Background Francisella tularensis is a Gram-negative facultative intracellular bacterium and the causative agent of the lethal disease tularemia. An outer membrane protein (FTT0918) of F. tularensis subsp. tularensis has been identified as a virulence factor. We generated a F. novicida (F. tularensis subsp. novicida) FTN_0444 (homolog of FTT0918) fopC mutant to study the virulence-associated mechanism(s) of FTT0918. Methods and Findings The ΔfopC strain phenotype was characterized using immunological and biochemical assays. Attenuated virulence via the pulmonary route in wildtype C57BL/6 and BALB/c mice, as well as in knockout (KO) mice, including MHC I, MHC II, and µmT (B cell deficient), but not in IFN-γ or IFN-γR KO mice was observed. Primary bone marrow derived macrophages (BMDM) prepared from C57BL/6 mice treated with rIFN-γ exhibited greater inhibition of intracellular ΔfopC than wildtype U112 strain replication; whereas, IFN-γR KO macrophages showed no IFN-γ-dependent inhibition of ΔfopC replication. Moreover, phosphorylation of STAT1 was downregulated by the wildtype strain, but not the fopC mutant, in rIFN-γ treated macrophages. Addition of NG-monomethyl-L-arginine, an NOS inhibitor, led to an increase of ΔfopC replication to that seen in the BMDM unstimulated with rIFN-γ. Enzymatic screening of ΔfopC revealed aberrant acid phosphatase activity and localization. Furthermore, a greater abundance of different proteins in the culture supernatants of ΔfopC than that in the wildtype U112 strain was observed. Conclusions F. novicida FopC protein facilitates evasion of IFN-γ-mediated immune defense(s) by down-regulation of STAT1 phosphorylation and nitric oxide production, thereby promoting virulence. Additionally, the FopC protein also may play a role in maintaining outer membrane stability (integrity) facilitating the activity and localization of acid phosphatases and other F. novicida cell components. PMID:21483828

  3. IL-15 is expressed by dendritic cells in response to type I IFN, double-stranded RNA, or lipopolysaccharide and promotes dendritic cell activation.

    PubMed

    Mattei, F; Schiavoni, G; Belardelli, F; Tough, D F

    2001-08-01

    Cytokines that are induced by infection may contribute to the initiation of immune responses through their ability to stimulate dendritic cells (DCs). In this paper, we have addressed the role of IL-15 in DC activation, investigating its expression by DCs in response to three different signals of infection and examining its ability to stimulate DCs. We report that the expression of both IL-15 and the IL-15 receptor alpha-chain are increased in splenic DCs from mice inoculated with dsRNA (poly(I:C)), LPS, or IFN-alphabeta, and in purified murine splenic DCs treated with IFN-alphabeta in vitro. Furthermore, IL-15 itself was able to activate DCs, as in vivo or in vitro exposure of splenic DCs to IL-15 resulted in an up-regulation of costimulatory molecules, markedly increased production of IFN-gamma by DC and an enhanced ability of DCs to stimulate Ag-specific CD8(+) T cell proliferation. The magnitude of all of the IL-15-induced changes in DCs was reduced in mice deficient for the IFN-alphabeta receptor, suggesting a role for IFN-alphabeta in the stimulation of DCs by IL-15. These results identify IL-15 as a stimulatory cytokine for DCs with the potential for autocrine activity and link its effects to expression of IFN-alphabeta. PMID:11466332

  4. Neuronal IFN signaling is dispensable for the establishment of HSV-1 latency.

    PubMed

    Rosato, Pamela C; Katzenell, Sarah; Pesola, Jean M; North, Brian; Coen, Donald M; Leib, David A

    2016-10-01

    IFN responses control acute HSV infection, but their role in regulating HSV latency is poorly understood. To address this we used mice lacking IFN signaling specifically in neural tissues. These mice supported a higher acute viral load in nervous tissue and delayed establishment of latency. While latent HSV-1 genome copies were equivalent, ganglia from neuronal IFN signaling-deficient mice unexpectedly supported reduced reactivation. IFNβ promoted survival of primary sensory neurons after infection with HSV-1, indicating a role for IFN signaling in sustaining neurons. We observed higher levels of latency associated transcripts (LATs) per HSV genome in mice lacking neuronal IFN signaling, consistent with a role for IFN in regulating LAT expression. These data show that neuronal IFN signaling modulates the expression of LAT and may conserve the pool of neurons available to harbor latent HSV-1 genome. The data also show that neuronal IFN signaling is dispensable for the establishment of latency. PMID:27518540

  5. Neuronal IFN signaling is dispensable for the establishment of HSV-1 latency.

    PubMed

    Rosato, Pamela C; Katzenell, Sarah; Pesola, Jean M; North, Brian; Coen, Donald M; Leib, David A

    2016-10-01

    IFN responses control acute HSV infection, but their role in regulating HSV latency is poorly understood. To address this we used mice lacking IFN signaling specifically in neural tissues. These mice supported a higher acute viral load in nervous tissue and delayed establishment of latency. While latent HSV-1 genome copies were equivalent, ganglia from neuronal IFN signaling-deficient mice unexpectedly supported reduced reactivation. IFNβ promoted survival of primary sensory neurons after infection with HSV-1, indicating a role for IFN signaling in sustaining neurons. We observed higher levels of latency associated transcripts (LATs) per HSV genome in mice lacking neuronal IFN signaling, consistent with a role for IFN in regulating LAT expression. These data show that neuronal IFN signaling modulates the expression of LAT and may conserve the pool of neurons available to harbor latent HSV-1 genome. The data also show that neuronal IFN signaling is dispensable for the establishment of latency.

  6. T-cell receptor activation of human CD4(+) T cells shifts the innate TLR response from CXCL8(hi) IFN-γ(null) to CXCL8(lo) IFN-γ(hi).

    PubMed

    Akhade, Ajay S; Qadri, Ayub

    2015-09-01

    Toll-like receptors (TLRs) play a major part in providing innate immunity against pathogenic microorganisms. Recent studies show that these receptors are also expressed on T cells, which are the sentinels of adaptive immunity. Here, we have investigated the regulatory role of the T-cell receptor in the functioning of these innate receptors in T cells. We show that freshly isolated human CD4(+) T cells readily secrete the neutrophil chemoattractant CXCL8 upon activation with the TLR ligands Pam3CSK and flagellin. In contrast, TCR-activated cells secrete considerably less CXCL8 but start producing IFN-γ upon stimulation with TLR agonists in the absence of concomitant TCR engagement. These T cells show increased activation of p38 and JNK MAP-kinases in response to TLR stimulation, and inhibition of p38 abrogates TLR-induced IFN-γ secretion. The shifting of the T-cell innate immune response from CXCL8(hi) IFN-γ(null) in freshly isolated to CXCL8(lo) IFN-γ(hi) in activated T cells is also observed in response to endogenous innate stimulus, IL-1. These results suggest that the innate immune response of human CD4(+) T cells switches from a proinflammatory to an effector type following activation of these cells through the antigen receptor.

  7. hIFN-α gene modification augments human natural killer cell line anti-human hepatocellular carcinoma function.

    PubMed

    Jiang, W; Zhang, C; Tian, Z; Zhang, J

    2013-11-01

    Natural killer (NK) cells are characterized by an efficient antitumor activity, and this activity has been exploited as the basis of cancer immunotherapy strategies. Interferon-α (IFN-α) is an important cytokine required for induction of the durable antitumor immune response and is an important stimulator of NK cells. In this study, to augment the efficiency of NK cell cytotoxicity to tumor cells, human IFN-α gene-modified natural killer cell line (NKL) (NKL-IFNα) cells, which could stably secrete IFN-α, were established. We investigated the natural cytotoxicity of NKL-IFNα cells against human hepatocarcinoma cells (HCCs) in vitro and in vivo. NKL-IFNα cells displayed a significantly stronger cytolytic activity against both human HCC cell lines and primary human hepatoma cancer cells compared with parental NKL cells. The increased cytolytic activity of NKL-IFNα cells was associated with the upregulation of cytotoxicity-related genes, such as perforin, granzyme B and Fas ligand, in the NK cells. Moreover, cytokines secreted by NKL-IFNα cells, such as tumor necrosis factor-α and IFN-γ, induced increased expression of Fas on the target HCC cells, and resulted in increased susceptibility of the HCC cells to NK-mediated cytolysis. Encouragingly, NKL-IFNα cells could significantly inhibit HCC tumor growth in a xenograft model and prolonged the survival of tumor-bearing nude mice. These results suggest that IFN-α gene-modified NKL cells could be suitable for the future development of cell-based immunotherapeutic strategies for hepatocellular carcinoma.

  8. Production and secretion of interferon-gamma (IFN-gamma) in children with atopic dermatitis.

    PubMed Central

    Tang, M; Kemp, A

    1994-01-01

    IFN-gamma is known to be a major inhibitor of IgE synthesis in vitro. Recent studies demonstrating reduced production of IFN-gamma in children and adults with atopic dermatitis and elevated serum IgE suggest a similar role for this cytokine in vivo. The reasons for this reduced IFN-gamma production are not known. One possibility is that atopic individuals have a reduced population of cells producing IFN-gamma in vivo. Using a fluorescence-labelled antibody to detect intracellular IFN-gamma, the percentage of IFN-gamma-producing cells was determined in children with atopic dermatitis and in non-atopic controls. Children with atopic dermatitis had a greater percentage of IFN-gamma-producing cells in unstimulated cultures compared with controls, indicating in vivo activation of lymphocytes in the atopic group. This could reflect the significant degree of inflammation present in these children, or the presence of bacterial infection or colonization. Although secretion of IFN-gamma after stimulation with phorbol myristate acetate (PMA)/Ca was significantly lower in children with atopic dermatitis compared with controls, the percentage of IFN-gamma-producing cells in the stimulated cultures from this group was equivalent to controls. This demonstrates that the reduced ability of atopic children to secrete IFN-gamma in vitro does not relate to a lack of IFN-gamma-producing cells, but to a difference in the regulation of IFN-gamma production beyond the stage of signal transduction. PMID:8287610

  9. The HPV-16 E7 oncogene sensitizes malignant cells to IFN-alpha-induced apoptosis

    SciTech Connect

    Wang, Yisong

    2005-10-01

    Interferons (IFNs) exert antitumor effects in several human malignancies, but their mechanism of action is unclear. There is a great variability in sensitivity to IFN treatment depending on both tumor type and the individual patient. The reason for this variable sensitivity is not known. The fact that several IFN-induced anticellular effects are exerted through modulation of proto-oncogenes and tumor suppressor genes may indicate that the malignant genotype may be decisive in the cell's sensitivity to IFN. To determine if a deregulated oncogene could alter the cellular response to IFN, a mouse lymphoma cell line (J3D) was stably transfected with the viral human papillomavirus-16 (HPV-16) E7 oncogene. The E7-transfected cells and their respective mock-transfected sister clones were treated with IFN-{alpha} and examined for possible IFN-induced anticellular effects. We found that the E7-transfected clones were greatly sensitized to IFN-{alpha}-induced apoptosis compared with their mock-transfected counterparts. Induction of apoptosis in the transfected cells correlated with the ability of IFN to activate parts of the proapoptotic machinery specifically in these cells, including activation of caspases and the proapoptotic protein Bak. In summary, our data suggest that transfection of malignant cells with the E7 oncogene can sensitize them to IFN-{alpha}-induced apoptosis. This demonstrates that an oncogenic event may alter the cellular sensitivity to IFN and might also have implications for treatment of HPV related diseases with IFN.

  10. Improvement of in vitro stability and pharmacokinetics of hIFN-α by fusing the carboxyl-terminal peptide of hCG β-subunit.

    PubMed

    Ceaglio, Natalia; Gugliotta, Agustina; Tardivo, María Belén; Cravero, Dianela; Etcheverrigaray, Marina; Kratje, Ricardo; Oggero, Marcos

    2016-03-10

    Improving in vivo half-life and in vitro stability of protein-based therapeutics is a current challenge for the biopharmaceutical industry. In particular, recombinant human interferon alpha-2b (rhIFN-α2b), which belongs to a group of cytokines extensively used for the treatment of viral diseases and cancers, shows a poor stability in solution and an extremely short plasma half-life which determines a strict therapeutic regimen comprising high and repeated doses. In this work, we have used a strategy based on the fusion of the carboxyl-terminal peptide (CTP) of human chorionic gonadotropin (hCG) β-subunit, bearing four O-linked oligosaccharide recognition sites, to each or both N- and C-terminal ends of rhIFN-α2b. Molecules containing from 5 (CTP-IFN and IFN-CTP) to 9 (CTP-IFN-CTP) O-glycosylation sites were efficiently expressed and secreted to CHO cells supernatants, and exhibited antiviral and antiproliferative bioactivities in vitro. Significant improvements in pharmacokinetics in rats were achieved through this approach, since the doubly CTP-modified IFN variant showed a 10-fold longer elimination half-life and a 19-fold decreased plasma apparent clearance compared to the wild-type cytokine. Moreover, CTP-IFN-CTP demonstrated a significant increase in in vitro thermal resistance and a higher stability against plasma protease inactivation, both features attributed to the stabilizing effects of the O-glycans provided by the CTP moiety. These results constitute the first report that postulates CTP as a tag for improving both the in vitro and in vivo stability of rhIFN-α2b which, in turn, would positively influence its in vivo bioactivity.

  11. Toxoplasma Effector Recruits the Mi-2/NuRD Complex to Repress STAT1 Transcription and Block IFN-γ-Dependent Gene Expression.

    PubMed

    Olias, Philipp; Etheridge, Ronald D; Zhang, Yong; Holtzman, Michael J; Sibley, L David

    2016-07-13

    Interferon gamma (IFN-γ) is an essential mediator of host defense against intracellular pathogens, including the protozoan parasite Toxoplasma gondii. However, prior T. gondii infection blocks IFN-γ-dependent gene transcription, despite the downstream transcriptional activator STAT1 being activated and bound to cognate nuclear promoters. We identify the parasite effector that blocks STAT1-dependent transcription and show it is associated with recruitment of the Mi-2 nucleosome remodeling and deacetylase (NuRD) complex, a chromatin-modifying repressor. This secreted effector, toxoplasma inhibitor of STAT1-dependent transcription (TgIST), translocates to the host cell nucleus, where it recruits Mi-2/NuRD to STAT1-dependent promoters, resulting in altered chromatin and blocked transcription. TgIST is conserved across strains, underlying their shared ability to block IFN-γ-dependent transcription. TgIST deletion results in increased parasite clearance in IFN-γ-activated cells and reduced mouse virulence, which is restored in IFN-γ-receptor-deficient mice. These findings demonstrate the importance of both IFN-γ responses and the ability of pathogens to counteract these defenses. PMID:27414498

  12. Agonists of proteinase-activated receptor-2 enhance IFN-gamma-inducible effects on human monocytes: role in influenza A infection.

    PubMed

    Feld, Micha; Shpacovitch, Victoria M; Ehrhardt, Christina; Kerkhoff, Claus; Hollenberg, Morley D; Vergnolle, Nathalie; Ludwig, Stephan; Steinhoff, Martin

    2008-05-15

    Proteinase-activated receptor-2 (PAR(2)) is expressed by different types of human leukocytes and involved in the development of inflammatory and infectious diseases. However, its precise role in the regulation of human monocyte and macrophage function during viral infection remains unclear. Also, the ability of PAR(2) agonists to enhance the effects induced by immune mediators during infection or inflammation is still poorly investigated. Therefore, we investigated the ability of a PAR(2) agonist to enhance IFN-gamma-induced suppression of influenza A virus replication in human monocytes. We found that this effect correlates with an increased abundance of IkappaBalpha after costimulation of cells with PAR(2) agonist and IFN-gamma. Remarkably, coapplication of PAR(2) agonist and IFN-gamma also enhances the effects of IFN-gamma on IFN-gamma-inducible protein 10 kDa release, and CD64 and alphaVbeta3 surface expression by human monocytes. Together, these findings indicate a potentially protective role of PAR(2) activation during the progression of influenza A virus infection. This effect could be associated with the ability of PAR(2) agonists to enhance IFN-gamma-induced protective effects on human monocytes.

  13. IFN-γ in turtle: conservation in sequence and signalling and role in inhibiting iridovirus replication in Chinese soft-shelled turtle Pelodiscus sinensis.

    PubMed

    Fu, Jian Ping; Chen, Shan Nan; Zou, Peng Fei; Huang, Bei; Guo, Zheng; Zeng, Ling Bing; Qin, Qi Wei; Nie, Pin

    2014-03-01

    The IFN-γ gene was identified in a turtle, the Chinese soft-shelled turtle, Pelodiscus sinensis, with its genome consisting of 4 exons and 3 introns. The deduced amino acid sequence of this gene contains a signal peptide, an IFN-γ family signature motif (130)IQRKAVNELFPT, an NLS motif (155)KRKR and three potential N-glycosylation sites. As revealed by real-time quantitative PCR, the gene was constitutively expressed in all tested organs/tissues, with higher level observed in blood, intestine and thymus. An induced expression of IFN-γ at mRNA level was observed in peripheral blood leucocytes (PBLs) in response to in vitro stimulation of LPS and PolyI:C. The overexpression of IFN-γ in the Chinese soft-shelled turtle artery (STA) cell line resulted in the increase in the expression of transcriptional regulators, such as IRF1, IRF7 and STAT1, and antiviral genes, such as Mx, PKR, implying possibly the existence of a conserved signalling network and role for IFN-γ in the turtle. Furthermore, the infection of soft-shelled turtle iridovirus (STIV) in the cell line transfected with IFN-γ may cause the cell death as demonstrated with the elevated lactate dehydrogenase (LDH) level and cell mortality. However, the mechanism involved in the antiviral activity may require further investigation.

  14. The V proteins of paramyxoviruses bind the IFN-inducible RNA helicase, mda-5, and inhibit its activation of the IFN-β promoter

    PubMed Central

    Andrejeva, J.; Childs, K. S.; Young, D. F.; Carlos, T. S.; Stock, N.; Goodbourn, S.; Randall, R. E.

    2004-01-01

    Most paramyxoviruses circumvent the IFN response by blocking IFN signaling and limiting the production of IFN by virus-infected cells. Here we report that the highly conserved cysteine-rich C-terminal domain of the V proteins of a wide variety of paramyxoviruses binds melanoma differentiation-associated gene 5 (mda-5) product. mda-5 is an IFN-inducible host cell DExD/H box helicase that contains a caspase recruitment domain at its N terminus. Overexpression of mda-5 stimulated the basal activity of the IFN-β promoter in reporter gene assays and significantly enhanced the activation of the IFN-β promoter by intracellular dsRNA. Both these activities were repressed by coexpression of the V proteins of simian virus 5, human parainfluenza virus 2, mumps virus, Sendai virus, and Hendra virus. Similar results to the reporter assays were obtained by measuring IFN production. Inhibition of mda-5 by RNA interference or by dominant interfering forms of mda-5 significantly inhibited the activation of the IFN-β promoter by dsRNA. It thus appears that mda-5 plays a central role in an intracellular signal transduction pathway that can lead to the activation of the IFN-β promoter, and that the V proteins of paramyxoviruses interact with mda-5 to block its activity. PMID:15563593

  15. A RIG-I 2CARD-MAVS200 Chimeric Protein Reconstitutes IFN-β Induction and Antiviral Response in Models Deficient in Type I IFN Response.

    PubMed

    Nistal-Villán, Estanislao; Rodríguez-García, Estefanía; Di Scala, Marianna; Ferrero-Laborda, Roberto; Olagüe, Cristina; Vales, África; Carte-Abad, Beatriz; Crespo, Irene; García-Sastre, Adolfo; Prieto, Jesús; Larrea, Esther; González-Aseguinolaza, Gloria

    2015-01-01

    RIG-I-like receptors (RLRs) are cellular sensor proteins that detect certain RNA species produced during viral infections. RLRs activate a signaling cascade that results in the production of IFN-β as well as several other cytokines with antiviral and proinflammatory activities. We explored the potential of different constructs based on RLRs to induce the IFN-β pathway and create an antiviral state in type I IFN-unresponsive models. A chimeric construct composed of RIG-I 2CARD and the first 200 amino acids of MAVS (2CARD-MAVS200) showed an enhanced ability to induce IFN-β when compared to other stimulatory constructs. Furthermore, this human chimeric construct showed a superior ability to activate IFN-β expression in cells from various species. This construct was found to overcome the restrictions of blocking IFN-β induction or signaling by a number of viral IFN-antagonist proteins. Additionally, the antiviral activity of this chimera was demonstrated in influenza virus and HBV infection mouse models using adeno-associated virus (AAV) vectors as a delivery vehicle. We propose that AAV vectors expressing 2CARD-MAVS200 chimeric protein can reconstitute IFN-β induction and recover a partial antiviral state in different models that do not respond to recombinant IFN-β treatment. PMID:25966783

  16. FoxO3a Nuclear Localization and Its Association with β-Catenin and Smads in IFN-α-Treated Hepatocellular Carcinoma Cell Lines

    PubMed Central

    Ceballos, María Paula; Parody, Juan Pablo; Quiroga, Ariel Darío; Casella, María Laura; Francés, Daniel Eleazar; Larocca, María Cecilia; Carnovale, Cristina Ester; Alvarez, María de Luján

    2014-01-01

    Interferon-α2b (IFN-α2b) reduces proliferation and increases apoptosis in hepatocellular carcinoma cells by decreasing β-catenin/TCF4/Smads interaction. Forkhead box O-class 3a (FoxO3a) participates in proliferation and apoptosis and interacts with β-catenin and Smads. FoxO3a is inhibited by Akt, IκB kinase β (IKKβ), and extracellular-signal-regulated kinase (Erk), which promote FoxO3a sequestration in the cytosol, and accumulates in the nucleus upon phosphorylation by c-Jun N-terminal kinase (JNK) and p38 mitogen-activated kinase (p38 MAPK). We analyzed FoxO3a subcellular localization, the participating kinases, FoxO3a/β-catenin/Smads association, and FoxO3a target gene expression in IFN-α2b-stimulated HepG2/C3A and Huh7 cells. Total FoxO3a and Akt-phosphorylated FoxO3a levels decreased in the cytosol, whereas total FoxO3a levels increased in the nucleus upon IFN-α2b stimulus. IFN-α2b reduced Akt, IKKβ, and Erk activation, and increased JNK and p38 MAPK activation. p38 MAPK inhibition blocked IFN-α2b-induced FoxO3a nuclear localization. IFN-α2b enhanced FoxO3a association with β-catenin and Smad2/3/7. Two-step coimmunoprecipitation experiments suggest that these proteins coexist in the same complex. The expression of several FoxO3a target genes increased with IFN-α2b. FoxO3a knockdown prevented the induction of these genes, suggesting that FoxO3a acts as mediator of IFN-α2b action. Results suggest a β-catenin/Smads switch from TCF4 to FoxO3a. Such events would contribute to the IFN-α2b-mediated effects on cellular proliferation and apoptosis. These results demonstrate new mechanisms for IFN-α action, showing the importance of its application in antitumorigenic therapies. PMID:24950290

  17. Transcriptional Dysregulation of Upstream Signaling of IFN Pathway in Chronic HCV Type 4 Induced Liver Fibrosis

    PubMed Central

    Ibrahim, Marwa K.; Salum, Ghada Maher; Bader El Din, Noha G.; Dawood, Reham M.; Barakat, Ahmed; Khairy, Ahmed; El Awady, Mostafa K.

    2016-01-01

    IFN orchestrates the expression of various genes to halt hepatitis C virus (HCV) replication with the possibility of either reduced or increased liver fibrosis; due to controlled viral replication or overproduction of inflammatory mediators, repectively. In this study, we examined the transcriptional profiling of type I IFN related genes in HCV-chronically infected patients with varying degrees of liver fibrosis. PCR array was used to examine the expression of 84 type I IFN related genes in peripheral blood mononuclear cells (PBMCs) RNA from 12 treatment-naïve chronic HCV patients (5 F0-F1 and 7 F2-F4) and 5 healthy subjects. We further validated our results by quantitative real time PCR (qRT-PCR) in 103 treatment-naïve chronic HCV patients (43 F0-F1 and 60 F2-F4) and 15 controls. PCR array data revealed dysregulation in TLR7 pathway. The expression of TLR7 was decreased by 4 folds and MyD88 was increased by 3 folds in PBMCs of F2-F4 patients when compared to the healthy volunteers (p = 0.03 and 0.002, respectively). In addition, IRF7 and TLR7 showed dramatic downregulation (6 and 8 folds, respectively) in F2-F4 patients when compared to F0-F1 ones. qRT-PCR confirmed the altered expression patterns of TLR7 and MyD88 in F2-F4 patients when compared to either controls or F0-F1 patients. However, by qRT-PCR, IRF7 and NF-κB1 (TLR7 pathway transcription factors) exhibited similar mRNA abundance among F2-F4 and F0-F1 patients. These results suggest that TLR7 and MyD88 are possible candidates as biomarkers for the progression of HCV-induced liver fibrosis and/ or targets for therapeutic intervention. PMID:27135246

  18. Correlations of IFN-γ genetic polymorphisms with susceptibility to breast cancer: a meta-analysis.

    PubMed

    Li, Chun-Jiang; Dai, Yue; Fu, Yan-Jun; Tian, Jia-Ming; Li, Jin-Lun; Lu, Hong-Jun; Duan, Feng; Li, Qing-Wang

    2014-07-01

    The meta-analysis was conducted to evaluate the correlations between common genetic polymorphisms in the IFN-γ gene and susceptibility to breast cancer. The following electronic databases were searched without language restrictions: MEDLINE (1966 ~ 2013), the Cochrane Library Database (issue 12, 2013), EMBASE (1980 ~ 2013), CINAHL (1982 ~ 2013), Web of Science (1945 ~ 2013), and the Chinese Biomedical Database (CBM) (1982 ~ 2013). Meta-analysis was performed with the use of the STATA statistical software. Odds ratios (OR) with their 95 % confidence intervals (95 % CIs) were calculated. Nine clinical case-control studies met all the inclusion criteria and were included in this meta-analysis. A total of 1,182 breast cancer patients and 1,525 healthy controls were involved in this meta-analysis. Three functional polymorphisms were assessed, including rs2069705 C>T, rs2430561 T>A, and CA repeats 2/X. Our meta-analysis results indicated that IFN-γ genetic polymorphisms might be significantly associated with an increased risk of breast cancer (allele model: OR = 1.37, 95 % CI = 1.03 ~ 1.83, P = 0.031; dominant model: OR = 1.55, 95 % CI = 1.01 ~ 2.37, P = 0.046; homozygous model: OR = 2.23, 95 % CI = 1.30 ~ 3.82, P = 0.004; respectively), especially the rs2430561 T>A polymorphism. Subgroup analysis based on ethnicity suggested that genetic polymorphisms in the IFN-γ gene were closely correlated with increased breast cancer risk among Asians (allele model: OR = 1.21, 95 % CI = 1.02 ~ 1.58, P = 0.017; dominant model: OR = 3.44, 95 % CI = 2.07 ~ 5.71, P < 0.001; recessive model: OR = 1.58, 95 % CI = 1.06 ~ 2.37, P = 0.025; homozygous model: OR = 1.83, 95 % CI = 1.19 ~ 2.80, P = 0.006; respectively), but not among Caucasians (all P > 0.05). Our meta-analysis supported the hypothesis that IFN-γ genetic polymorphisms may contribute to an increased risk of breast cancer, especially the rs2430561 T>A polymorphism among Asians.

  19. The gene expression level of IFN-γR1 and IFN-γR2 in a murine model treated with Toxoplasma gondii and its products

    PubMed Central

    Kalani, Hamed; Khanahmad Shahreza, Hosein; Daryani, Ahmad; Yousefi, Hosein Ali; Pestechian, Nader; Mansouri, Vahid

    2016-01-01

    Aim: To evaluate the effect of active T. gondii tachyzoites and its products on the gene expression level of IFN-γR1 and IFN-γR2 in a murine model. Background: Many studies have shown that the parasite Toxoplasma gondii utilizes different mechanisms to inhibit the function of IFN-γ, but the parasite effect on the function of IFN-γR1 and IFN-γR2 is still unclear. Patients and methods: Toxoplasma lysate product (TLP), excretory/secretory products (ESPs) obtained from cell free and cell culture media as well as active tachyzoites were injected separately to their respective group each consisted of 10 BALB/c mice. One control group of 10 mice received phosphate buffered saline (PBS). All of the mice were euthanized three days after the last injection and then their peritoneal leukocytes were harvested separately. The total RNA was extracted from the samples, converted to cDNA, and the gene expression level of IFN-γR1 and IFN-γR2 was assessed in all of the treated groups relative to the control one. Results: There was no significant difference between each of the treated groups relative to the control group concerning the gene expression level of IFN-γR2 (P> 0.05). Furthermore, the gene expression level of IFN-γR1 in two groups of TLP (P= 0.04) and ESP obtained from cell free medium (P= 0.008) showed a significant difference relative to the control group. Conclusion: Findings of this study revealed a new aspect of host-T. gondii interaction in that this parasite is able to downregulate IFN-γR1 to reduce the IFN-γ effects on the infected cell. PMID:27099672

  20. Gamma interferon (IFN-γ) receptor restricts systemic dengue virus replication and prevents paralysis in IFN-α/β receptor-deficient mice.

    PubMed

    Prestwood, Tyler R; Morar, Malika M; Zellweger, Raphaël M; Miller, Robyn; May, Monica M; Yauch, Lauren E; Lada, Steven M; Shresta, Sujan

    2012-12-01

    We previously reported that mice lacking alpha/beta and gamma interferon receptors (IFN-α/βR and -γR) uniformly exhibit paralysis following infection with the dengue virus (DENV) clinical isolate PL046, while only a subset of mice lacking the IFN-γR alone and virtually no mice lacking the IFN-α/βR alone develop paralysis. Here, using a mouse-passaged variant of PL046, strain S221, we show that in the absence of the IFN-α/βR, signaling through the IFN-γR confers approximately 140-fold greater resistance against systemic vascular leakage-associated dengue disease and virtually complete protection from dengue-induced paralysis. Viral replication in the spleen was assessed by immunohistochemistry and flow cytometry, which revealed a reduction in the number of infected cells due to IFN-γR signaling by 2 days after infection, coincident with elevated levels of IFN-γ in the spleen and serum. By 4 days after infection, IFN-γR signaling was found to restrict DENV replication systemically. Clearance of DENV, on the other hand, occurred in the absence of IFN-γR, except in the central nervous system (CNS) (brain and spinal cord), where clearance relied on IFN-γ from CD8(+) T cells. These results demonstrate the roles of IFN-γR signaling in protection from initial systemic and subsequent CNS disease following DENV infection and demonstrate the importance of CD8(+) T cells in preventing DENV-induced CNS disease. PMID:22973027

  1. Cutting Edge: Developmental Regulation of IFN-γ Production by Mouse Neutrophil Precursor Cells.

    PubMed

    Sturge, Carolyn R; Burger, Elise; Raetz, Megan; Hooper, Lora V; Yarovinsky, Felix

    2015-07-01

    Neutrophils are an emerging cellular source of IFN-γ, a key cytokine that mediates host defense to intracellular pathogens. Production of IFN-γ by neutrophils, in contrast to lymphoid cells, is TLR- and IL-12-independent and the events associated with IFN-γ production by neutrophils are not understood. In this study, we show that mouse neutrophils express IFN-γ during their lineage development in the bone marrow niche at the promyelocyte stage independently of microbes. IFN-γ accumulates in primary neutrophilic granules and is released upon induction of degranulation. The developmental mechanism of IFN-γ production in neutrophils arms the innate immune cells prior to infection and assures the potential for rapid release of IFN-γ upon neutrophil activation, the first step during responses to many microbial infections. PMID:26026057

  2. [Action of type III IFNs and their roles in immune responses].

    PubMed

    Domagalski, Krzysztof; Tretyn, Andrzej; Pawłowska, Małgorzata; Szczepanek, Joanna; Halota, Waldemar

    2010-10-25

    Type III interferons, also known as IFN-lambda or IL-28/29, are a recently discovered family of IFNs related to both the type I IFNs and interleukin-10 family members. Interferon-lambda is functionally an interferon but structurally it is related to the interleukin-10 family. These novel cytokines are directly induced during viral infection like type-I interferons and signal through a similar JAK-STAT signaling pathway as type I IFN to activate the transcription of a similar set of IFN-stimulated genes (ISG) but use a separate receptor complex. ISG product induced by the type III family of IFNs are associated with immunomodulatory ability, antiviral activity and other effects. The antiviral and immunomodulatory effects of type III interferons make them interesting therapeutics for clinical use. In this review, we summarize the current state of knowledge about the biology of IFN-lambdas and their roles in immune responses via immunomodulatory and antiviral activity.

  3. IFN-{gamma} gene expression in pancreatic islet-infiltrating mononuclear cells correlates with autoimmune diabetes in nonobese diabetic mice

    SciTech Connect

    Rabinovitch, A.; Suarez-Pinzon, W.L.; Sorensen, O.

    1995-05-01

    Insulin-dependent diabetes mellitus in nonobese diabetic (NOD) mice results from selective destruction of pancreatic islet {beta}-cells following islet filtration by mononuclear leukocytes. Cytokines produced by islet-infiltrating mononuclear cells may be involved in {beta}-cell destruction. Therefore, we analyzed cytokine mRNA expression, by reverse-transcriptase PCR (RT-PCR) assay, in mononuclear leukocytes isolated from pancreatic islets of four groups of mice: diabetes-prone female NOD mice; female NOD mice protected from diabetes by injection of CFA at an early age; male NOD mice with a low diabetes incidence; and female BALB/c mice that do not develop diabetes. We found that mRNA levels of IL-1{beta}, IL-2, IL-4, IL-10, and IFN-{gamma} in mononuclear cells from islets of diabetes-prone female NOD mice increased progressively as these cells infiltrated the islets from age 5 wk to diabetes onset (>13 wk). However, only IFN-{gamma} mRNA levels were significantly higher in islet mononuclear cells from 12-wk-old diabetes-prone female NOD mice than from less diabetes-prone NOD mice (CFA-treated females, and males) and normal mice (BALB/c). In contrast, IL-4 mRNA levels were lower in islet mononuclear cells from diabetes-prone female NOD mice than from NOD mice with low diabetes incidence (CFA-treated females and males). Splenic cell mRNA levels of IFN-{gamma} and IL-4 were not different in the four groups of mice. These results suggest that islet {beta}-cell destruction and diabetes in female NOD mice are dependent upon intra-islet IFN-{gamma} production by mononuclear cells, and that CFA-treated female NOD mice and male NOD mice may be protected from diabetes development by down-regulation of IFN-{gamma} production in the islets. 56 refs., 4 figs., 3 tabs.

  4. New World Hantaviruses Activate IFNλ Production in Type I IFN-Deficient Vero E6 Cells

    PubMed Central

    Prescott, Joseph; Hall, Pamela; Acuna-Retamar, Mariana; Ye, Chunyan; Wathelet, Marc G.; Ebihara, Hideki; Feldmann, Heinz; Hjelle, Brian

    2010-01-01

    Background Hantaviruses indigenous to the New World are the etiologic agents of hantavirus cardiopulmonary syndrome (HCPS). These viruses induce a strong interferon-stimulated gene (ISG) response in human endothelial cells. African green monkey-derived Vero E6 cells are used to propagate hantaviruses as well as many other viruses. The utility of the Vero E6 cell line for virus production is thought to owe to their lack of genes encoding type I interferons (IFN), rendering them unable to mount an efficient innate immune response to virus infection. Interferon λ, a more recently characterized type III IFN, is transcriptionally controlled much like the type I IFNs, and activates the innate immune system in a similar manner. Methodology/Principal Findings We show that Vero E6 cells respond to hantavirus infection by secreting abundant IFNλ. Three New World hantaviruses were similarly able to induce IFNλ expression in this cell line. The IFNλ contained within virus preparations generated with Vero E6 cells independently activates ISGs when used to infect several non-endothelial cell lines, whereas innate immune responses by endothelial cells are specifically due to viral infection. We show further that Sin Nombre virus replicates to high titer in human hepatoma cells (Huh7) without inducing ISGs. Conclusions/Significance Herein we report that Vero E6 cells respond to viral infection with a highly active antiviral response, including secretion of abundant IFNλ. This cytokine is biologically active, and when contained within viral preparations and presented to human epithelioid cell lines, results in the robust activation of innate immune responses. We also show that both Huh7 and A549 cell lines do not respond to hantavirus infection, confirming that the cytoplasmic RNA helicase pathways possessed by these cells are not involved in hantavirus recognition. We demonstrate that Vero E6 actively respond to virus infection and inhibiting IFNλ production in these cells

  5. Evaluation of gamma interferon (IFN-gamma)-induced protein 10 (IP-10) responses for detection of cattle infected with Mycobacterium bovis: comparisons to IFN-gamma responses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Gamma interferon (IFN-gamma)-induced protein 10 (IP-10) has recently shown promise as a diagnostic biomarker of Mycobacterium tuberculosis infection of humans. The aim of the current study was to compare IP-10 and IFN-gamma responses upon Mycobacterium bovis infection in cattle using archived sample...

  6. A RIG-I 2CARD-MAVS200 CHIMERIC PROTEIN RECONSTITUTES IFN-B INDUCTION AND ANTIVIRAL RESPONSE IN MODELS DEFICIENT IN TYPE I IFN RESPONSE

    PubMed Central

    Nistal-Villán, Estanislao; Rodríguez-García, Estefanía; Di Scala, Marianna; Ferrero-Laborda, Roberto; Olagüe, Cristina; Vales, África; Carte-Abad, Beatriz; Crespo, Irene; García-Sastre, Adolfo; Prieto, Jesús; Larrea, Esther; González-Aseguinolaza, Gloria

    2015-01-01

    RIG-I like receptors (RLRs) are cellular sensor proteins that detect certain RNA species produced during viral infections. RLRs activate a signaling cascade that results in the production of interferon-beta (IFN-β) as well as several other cytokines with antiviral and proinflammatory activities. We explored the potential of different constructs based on RLRs to induce the IFN-β pathway and create an antiviral state in type I IFN-unresponsive models. A chimeric construct composed of RIG-I 2CARD and the first 200 amino acids of MAVS (2CARD-MAVS200) showed an enhanced ability to induce IFN-β as compared to other stimulatory constructs. Furthermore, this human chimeric construct showed a superior ability to activate IFN-β expression in cells from various species. This construct was found to overcome the restrictions of blocking IFN-β induction or signaling by a number of viral antagonist proteins. Additionally, the antiviral activity of this chimera was demonstrated in influenza virus and HBV infection mouse models using adeno-associated viral (AAV) vectors as a delivery vehicle. We propose that AAV vectors expressing 2CARD-MAVS200 chimeric protein can reconstitute IFN-β induction and recover a partial antiviral state in different models that do not respond to recombinant IFN-β treatment. PMID:25966783

  7. The effect of IFN-gamma and TNF-alpha on the eosinophilic differentiation and NADPH oxidase activation of human HL-60 clone 15 cells.

    PubMed

    Lopez, Juan A; Newburger, Peter E; Condino-Neto, Antonio

    2003-12-01

    The aim of this study was to investigate the effect of interferon-gamma (IFN-gamma) and tumor necrosis factor-alpha (TNF-alpha) on NADPH oxidase activity and gp91-phox gene expression in HL-60 clone 15 cells as they differentiate along the eosinophilic lineage. The results were compared to the eosoniphilic inducers interleukin-5 (IL-5) and butyric acid. IFN-gamma (100 U/ml) and TNF-alpha (1000 U/ml) or IL-5 (200 pM) caused a significant increase in the expression of the eosinophil peroxidase (EPO) and the major basic protein (MBP) genes. Similar results were observed when the cells were cultured with 0.5 mM butyric acid for 5 days. IFN-gamma (100 U/ml) and TNF-alpha (1000 U/ml) also caused a significant increase in superoxide release by HL-60 clone 15 cells after 2 days compared with control or with butyric acid-induced cells. After 5 days, these cytokines and butyric acid induced an even stronger release of superoxide. HL-60 clone 15 cells cultured with IFN-gamma and TNF-alpha for 2 days showed a significant increase in gp91-phox gene expression. We conclude that IFN-gamma and TNF-alpha are sufficient to induce the differentiation of HL-60 clone 15 cells to the eosinophilic lineage and to upregulate gp91-phox gene expression and activity of the NADPH oxidase system.

  8. Long Non-Coding RNA BST2/BISPR is Induced by IFN and Regulates the Expression of the Antiviral Factor Tetherin

    PubMed Central

    Barriocanal, Marina; Carnero, Elena; Segura, Victor; Fortes, Puri

    2015-01-01

    Many long non-coding RNAs (lncRNAs) are expressed in cells but only a few have been well characterized. In these cases, lncRNAs have been shown to be key regulators of several cellular processes. Therefore, there is a great need to understand the function of more lncRNAs and their regulation in response to stimuli. Interferon (IFN) is a key molecule in the cellular antiviral response. IFN binding to its receptor activates transcription of several IFN-stimulated genes (ISGs) that function as potent antivirals. In addition, several ISGs are positive or negative regulators of the IFN pathway. This is essential to ensure a strong antiviral response and a later return of the cell to homeostasis. As the ISGs described to date are coding genes, we sought to determine whether IFN also regulates the expression of long non-coding ISGs. To this aim, we used RNA sequencing to analyze the transcriptome of control and HuH7 cells treated with IFNα2. The results show that IFN-treatment regulates the expression of several unknown non-coding transcripts. We have validated two lncRNAs upregulated after treatment with different doses of type I IFNα2 in different cells or with type III IFNλ. These lncRNAs were also induced by influenza and vesicular stomatitis virus mutants unable to block the IFN response, but not by several wild-type lytic viruses tested. These lncRNA genes were named lncISG15 and lncBST2 as they are located close to ISGs ISG15 and BST2, respectively. Interestingly, inhibition experiments showed that lncBST2 is a positive regulator of BST2. Therefore lncBST2 has been renamed BISPR, from BST2 IFN-stimulated positive regulator. Our results may have therapeutic implications as lncBST2/BISPR, but also lncISG15 and their coding neighbors, are increased in cells infected with hepatitis C virus and in the liver of infected patients. These results allow us to hypothesize that several lncRNAs could be activated by IFN to control the potency of the antiviral IFN response

  9. Interferon (IFN) production by peripheral blood mononuclear (PBM) cells of an elderly population

    SciTech Connect

    Nelson, B.J.; Murasko, D.M.

    1986-03-05

    Previous investigations in the laboratory have reported decreased mitogen responses of PBM's from elderly individuals compared to responses of young adults to PHA and ConA. Current studies have investigated the role of IFN in this decreased T cell responsiveness of the elderly. Supernatants of PBM's from 80 elderly (mean age 85) and 50 young individuals (mean age 28) were assayed for antiviral activity, after incubation with optimum and supraoptimum concentrations of mitogen for 24-120 hrs. IFN levels were maximum for both elderly and young populations at 72 hrs coinciding with time of maximum proliferation as determined by uptake of /sup 3/H thymidine. IFN levels declined with longer incubation periods. All IFN produced was IFN-gamma as determined by sensitivity to pH 2 and by neutralizations with monoclonal antibody specific for human IFN-gamma and polyclonal antiserum specific for IFN-alpha. The elderly population's mean IFN titers for both PHA and ConA were about 39% of the mean titers of the young (p less than or equal to 0.02). Both elderly and young groups displayed significant positive correlation between the amount of IFN produced and the level of proliferation in response to the mitogens (p less than or equal to 0.036). Therefore, the above data suggests the decreased levels of IFN produced by elderly PBM's may be one of the factors responsible for the observed decreased proliferative response to mitogens.

  10. Effects of parturition and dexamethasone on DNA methylation patterns of IFN-γ and IL-4 promoters in CD4+ T-lymphocytes of Holstein dairy cows.

    PubMed

    Paibomesai, Marlene; Hussey, Brendan; Nino-Soto, Maria; Mallard, Bonnie A

    2013-01-01

    This study investigated epigenetic mechanisms by which DNA methylation affects the function of bovine adaptive immune system cells, particularly during the peripartum period, when shifts in type 1 and type 2 immune response (IR) biases are thought to occur. Stimulation of CD4+ T-lymphocytes isolated from 5 Holstein dairy cows before and after parturition with concanavalin A (ConA) and stimulation of CD4+ T-lymphocytes isolated from 3 Holstein dairy cows in mid-lactation with ConA alone or ConA plus dexamethasone (Dex) had significant effects on production of the cytokines interferon gamma (IFN-γ, type 1) and interleukin 4 (IL-4, type 2) that were consistent with DNA methylation profiles of the IFN-γ gene promoter region but not consistent for the IL-4 promoter region. ConA stimulation increased the production of both cytokines before and after parturition. It decreased DNA methylation in the IFN-γ promoter region but increased for IL-4 promoter region. Parturition was associated with an increase in IFN-γ production in ConA-stimulated cells that approached significance. Overall, DNA methylation in both promoter regions increased between the prepartum and postpartum periods, although this did not correlate with secreted cytokine concentrations. Dexamethasone treated cells acted in a manner consistent with the glucocorticoid's immunosuppressive activity, which mimicked the change at the IFN-γ promoter region observed during parturition. These results support pregnancy as type 2 IR biased, with increases of IFN-γ occurring after parturition and an increase in IL-4 production before calving. It is likely that these changes may be epigenetically controlled.

  11. Effects of parturition and dexamethasone on DNA methylation patterns of IFN-γ and IL-4 promoters in CD4+ T-lymphocytes of Holstein dairy cows

    PubMed Central

    Paibomesai, Marlene; Hussey, Brendan; Nino-Soto, Maria; Mallard, Bonnie A.

    2013-01-01

    This study investigated epigenetic mechanisms by which DNA methylation affects the function of bovine adaptive immune system cells, particularly during the peripartum period, when shifts in type 1 and type 2 immune response (IR) biases are thought to occur. Stimulation of CD4+ T-lymphocytes isolated from 5 Holstein dairy cows before and after parturition with concanavalin A (ConA) and stimulation of CD4+ T-lymphocytes isolated from 3 Holstein dairy cows in mid-lactation with ConA alone or ConA plus dexamethasone (Dex) had significant effects on production of the cytokines interferon gamma (IFN-γ, type 1) and interleukin 4 (IL-4, type 2) that were consistent with DNA methylation profiles of the IFN-γ gene promoter region but not consistent for the IL-4 promoter region. ConA stimulation increased the production of both cytokines before and after parturition. It decreased DNA methylation in the IFN-γ promoter region but increased for IL-4 promoter region. Parturition was associated with an increase in IFN-γ production in ConA-stimulated cells that approached significance. Overall, DNA methylation in both promoter regions increased between the prepartum and postpartum periods, although this did not correlate with secreted cytokine concentrations. Dexamethasone treated cells acted in a manner consistent with the glucocorticoid’s immunosuppressive activity, which mimicked the change at the IFN-γ promoter region observed during parturition. These results support pregnancy as type 2 IR biased, with increases of IFN-γ occurring after parturition and an increase in IL-4 production before calving. It is likely that these changes may be epigenetically controlled. PMID:23814356

  12. Evaluation of VZV-specific cell-mediated immunity in adults infected with HIV-1 by using a simple IFN-γ release assay.

    PubMed

    Watanabe, Dai; Otani, Naruhito; Suzuki, Sachiko; Dohi, Hiromi; Hirota, Kazuyuki; Yonemoto, Hitoshi; Koizumi, Yusuke; Otera, Hiroshi; Yajima, Keishiro; Nishida, Yasuharu; Uehira, Tomoko; Shima, Masayuki; Shirasaka, Takuma; Okuno, Toshiomi

    2013-08-01

    The development of herpes zoster is associated with reduced varicella zoster virus (VZV)-specific cell-mediated immune (CMI) reactions. In this study, VZV-specific CMI reactions in 42 anti-VZV-IgG antibody-positive adults infected with HIV-1 were evaluated by measuring the IFN-γ production levels in whole blood in response to stimulation with ultraviolet light-inactivated live attenuated VZV vaccine. The median VZV-specific IFN-γ production level in all patients was 63 pg/ml. Antiretroviral therapy (ART)-naïve patients with an AIDS-defining illness (HIV classification category C) had significantly lower IFN-γ production than ART-naïve patients in categories A and B and patients receiving ART (P=0.0194 and P=0.0046, respectively). IFN-γ production increased significantly in patients within 1 month of the onset of recurrent VZV disease and at more than 1 year from onset, compared with patients who had never had recurrent VZV disease (P=0.0396 and P=0.0484, respectively). In multivariate analyses, category C and history of recurrent VZV disease were significant factors affecting IFN-γ production. Levels of IFN-γ were measured before and after ART in seven ART-naïve patients with no history of recurrent VZV disease, and no significant changes were observed. The results indicate that VZV-specific CMI reactions were reduced in patients with an AIDS-defining illness and enhanced in patients with a history of recurrent VZV disease, but not enhanced by ART alone. Vaccination may be necessary to inhibit the development of herpes zoster in patients receiving ART; this IFN-γ releasing assay is one useful method for evaluating VZV-specific CMI reactions in clinical settings.

  13. Impairment of Type I but Not Type III IFN Signaling by Hepatitis C Virus Infection Influences Antiviral Responses in Primary Human Hepatocytes

    PubMed Central

    Friborg, Jacques; Ross-Macdonald, Petra; Cao, Jian; Willard, Ryan; Lin, Baiqing; Eggers, Betsy; McPhee, Fiona

    2015-01-01

    Peginterferon lambda-1a (Lambda), a type III interferon (IFN), acts through a unique receptor complex with limited cellular expression outside the liver which may result in a differentiated tolerability profile compared to peginterferon alfa (alfa). In Phase 2b clinical studies, Lambda administered in combination with ribavirin (RBV) was efficacious in patients with hepatitis C virus (HCV) infection representing genotypes 1 through 4, and was associated with more rapid declines in HCV RNA compared to alfa plus RBV. To gain insights into potential mechanisms for this finding, we investigated the effects of HCV replication on IFN signaling in primary human hepatocytes (PHH) and in induced hepatocyte-like cells (iHLCs). HCV infection resulted in rapid down-regulation of the type I IFN-α receptor subunit 1 (IFNAR1) transcript in hepatocytes while the transcriptional level of the unique IFN-λ receptor subunit IL28RA was transiently increased. In line with this observation, IFN signaling was selectively impaired in infected cells upon stimulation with alfa but not in response to Lambda. Importantly, in contrast to alfa, Lambda was able to induce IFN-stimulated gene (ISG) expression in HCV-infected hepatocytes, reflecting the onset of innate responses. Moreover, global transcriptome analysis in hepatocytes indicated that Lambda stimulation prolonged the expression of various ISGs that are potentially beneficial to antiviral defense mechanisms. Collectively, these observed effects of HCV infection on IFN receptor expression and signaling within infected hepatocytes provide a possible explanation for the more pronounced early virologic responses observed in patients treated with Lambda compared to alfa. PMID:25826356

  14. Interleukin-7 treatment counteracts IFN-α therapy-induced lymphopenia and stimulates SIV-specific cytotoxic T lymphocyte responses in SIV-infected rhesus macaques.

    PubMed

    Parker, Raphaëlle; Dutrieux, Jacques; Beq, Stéphanie; Lemercier, Brigitte; Rozlan, Sandra; Fabre-Mersseman, Véronique; Rancez, Magali; Gommet, Céline; Assouline, Brigitte; Rancé, Iann; Lim, Annick; Morre, Michel; Cheynier, Rémi

    2010-12-16

    Interferon-α (IFN-α)-based therapy is presently the standard treatment for hepatitis C virus (HCV)-infected patients. Despite good effectiveness, this cytokine is associated with major side effects, including significant lymphopenia, that limits its use for HIV/HCV-coinfected patients. Interleukin-7 (IL-7) has recently shown therapeutic potential and safety in several clinical trials designed to demonstrate T-cell restoration in immunodeficient patients. The purpose of this study was to evaluate, in simian immunodeficiency virus-infected rhesus macaques, the relevance of IL-7 therapy as a means to overcoming IFN-α-induced lymphopenia. We showed that low-dose IFN-α treatment induced strong lymphopenia in chronically infected monkeys. In contrast, high-dose IFN-α treatment stimulated IL-7 production, leading to increased circulating T-cell counts. Moreover, IL-7 therapy more than abrogated the lymphopenic effect of low-dose IFN-α. Indeed, the association of both cytokines resulted in increased circulating T-cell counts, in particular in the naive compartments, as a consequence of central and peripheral homeostatic functions of the IL-7. Finally, reduced PD-1 expression by memory CD8(+) T cells and transient T-cell repertoire diversification were observed under IL-7 therapy. Our data strongly suggest that IL-7 immunotherapy will be of substantial benefit in the treatment of HIV/HCV coinfection and should enhance the likelihood of HCV eradication in poorly responding patients.

  15. FAT10 Is Critical in Influenza A Virus Replication by Inhibiting Type I IFN.

    PubMed

    Zhang, Yanli; Tang, Jun; Yang, Ning; Liu, Qiang; Zhang, Qingchao; Zhang, Yanxu; Li, Ning; Zhao, Yan; Li, Shunwang; Liu, Song; Zhou, Huandi; Li, Xiao; Tian, Mingyao; Deng, Jiejie; Xie, Peng; Sun, Yang; Lu, Huijun; Zhang, Michael Q; Jin, Ningyi; Jiang, Chengyu

    2016-08-01

    The H5N1 avian influenza virus causes severe disease and high mortality, making it a major public health concern worldwide. The virus uses the host cellular machinery for several steps of its life cycle. In this report, we observed overexpression of the ubiquitin-like protein FAT10 following live H5N1 virus infection in BALB/c mice and in the human respiratory epithelial cell lines A549 and BEAS-2B. Further experiments demonstrated that FAT10 increased H5N1 virus replication and decreased the viability of infected cells. Total RNA extracted from H5N1 virus-infected cells, but not other H5N1 viral components, upregulated FAT10, and this process was mediated by the retinoic acid-induced protein I-NF-κB signaling pathway. FAT10 knockdown in A549 cells upregulated type I IFN mRNA expression and enhanced STAT1 phosphorylation during live H5N1 virus infection. Taken together, our data suggest that FAT10 was upregulated via retinoic acid-induced protein I and NF-κB during H5N1 avian influenza virus infection. And the upregulated FAT10 promoted H5N1 viral replication by inhibiting type I IFN. PMID:27354218

  16. Regulation of the germinal center gene program by interferon (IFN) regulatory factor 8/IFN consensus sequence-binding protein

    PubMed Central

    Lee, Chang Hoon; Melchers, Mark; Wang, Hongsheng; Torrey, Ted A.; Slota, Rebecca; Qi, Chen-Feng; Kim, Ji Young; Lugar, Patricia; Kong, Hee Jeong; Farrington, Lila; van der Zouwen, Boris; Zhou, Jeff X.; Lougaris, Vassilios; Lipsky, Peter E.; Grammer, Amrie C.; Morse, Herbert C.

    2006-01-01

    Interferon (IFN) consensus sequence-binding protein/IFN regulatory factor 8 (IRF8) is a transcription factor that regulates the differentiation and function of macrophages, granulocytes, and dendritic cells through activation or repression of target genes. Although IRF8 is also expressed in lymphocytes, its roles in B cell and T cell maturation or function are ill defined, and few transcriptional targets are known. Gene expression profiling of human tonsillar B cells and mouse B cell lymphomas showed that IRF8 transcripts were expressed at highest levels in centroblasts, either from secondary lymphoid tissue or transformed cells. In addition, staining for IRF8 was most intense in tonsillar germinal center (GC) dark-zone centroblasts. To discover B cell genes regulated by IRF8, we transfected purified primary tonsillar B cells with enhanced green fluorescent protein–tagged IRF8, generated small interfering RNA knockdowns of IRF8 expression in a mouse B cell lymphoma cell line, and examined the effects of a null mutation of IRF8 on B cells. Each approach identified activation-induced cytidine deaminase (AICDA) and BCL6 as targets of transcriptional activation. Chromatin immunoprecipitation studies demonstrated in vivo occupancy of 5′ sequences of both genes by IRF8 protein. These results suggest previously unappreciated roles for IRF8 in the transcriptional regulation of B cell GC reactions that include direct regulation of AICDA and BCL6. PMID:16380510

  17. Regulation of the germinal center gene program by interferon (IFN) regulatory factor 8/IFN consensus sequence-binding protein.

    PubMed

    Lee, Chang Hoon; Melchers, Mark; Wang, Hongsheng; Torrey, Ted A; Slota, Rebecca; Qi, Chen-Feng; Kim, Ji Young; Lugar, Patricia; Kong, Hee Jeong; Farrington, Lila; van der Zouwen, Boris; Zhou, Jeff X; Lougaris, Vassilios; Lipsky, Peter E; Grammer, Amrie C; Morse, Herbert C

    2006-01-23

    Interferon (IFN) consensus sequence-binding protein/IFN regulatory factor 8 (IRF8) is a transcription factor that regulates the differentiation and function of macrophages, granulocytes, and dendritic cells through activation or repression of target genes. Although IRF8 is also expressed in lymphocytes, its roles in B cell and T cell maturation or function are ill defined, and few transcriptional targets are known. Gene expression profiling of human tonsillar B cells and mouse B cell lymphomas showed that IRF8 transcripts were expressed at highest levels in centroblasts, either from secondary lymphoid tissue or transformed cells. In addition, staining for IRF8 was most intense in tonsillar germinal center (GC) dark-zone centroblasts. To discover B cell genes regulated by IRF8, we transfected purified primary tonsillar B cells with enhanced green fluorescent protein-tagged IRF8, generated small interfering RNA knockdowns of IRF8 expression in a mouse B cell lymphoma cell line, and examined the effects of a null mutation of IRF8 on B cells. Each approach identified activation-induced cytidine deaminase (AICDA) and BCL6 as targets of transcriptional activation. Chromatin immunoprecipitation studies demonstrated in vivo occupancy of 5' sequences of both genes by IRF8 protein. These results suggest previously unappreciated roles for IRF8 in the transcriptional regulation of B cell GC reactions that include direct regulation of AICDA and BCL6.

  18. Yeast extract promotes decolorization of azo dyes by stimulating azoreductase activity in Shewanella sp. strain IFN4.

    PubMed

    Imran, Muhammad; Arshad, Muhammad; Negm, Fayek; Khalid, Azeem; Shaharoona, Baby; Hussain, Sabir; Mahmood Nadeem, Sajid; Crowley, David E

    2016-02-01

    Biological treatment of azo dyes commonly requires a combined anaerobic-aerobic process in which initial decolorization is achieved by reductive cleavage of azo bonds on the parent molecule. The present study was conducted to examine the relative importance of co-substrates for driving reductive decolorization of azo dyes by Shewanella sp. strain IFN4 using whole cells and enzyme assays. Results showed that the dye decolorization by strain IFN4 was faster in medium containing 1gL(-1) yeast extract (YE) as compared to nine other co-substrates. Moreover, only YE stimulated azoreductase activity (increased from 1.32 to 4.19U/mg protein). Increasing the level of YE up to 8gL(-)(1) resulted into 81% decolorization of the dye in 1h along with an increase in azoreductase activity up to 6.16U/mg protein. Among the components of YE, only riboflavin stimulated the decolorization process as well as enzyme activity. Moreover, strain IFN4 demonstrated flavin reductase activity, and a significant correlation (r(2)=0.98) between flavin reduction and dye reduction by this strain emphasized the involvement of flavin compounds in the decolorization process. The results of this study show that YE serves both as a source of reducing equivalents and an electron shuttle for catalyzing dye reduction.

  19. Identification of Two Subgroups of Type I IFNs in Perciforme Fish Large Yellow Croaker Larimichthys crocea Provides Novel Insights into Function and Regulation of Fish Type I IFNs

    PubMed Central

    Ding, Yang; Ao, Jingqun; Huang, Xiaohong; Chen, Xinhua

    2016-01-01

    Like mammals, fish possess an interferon regulatory factor (IRF) 3/IRF7-dependent type I IFN responses, but the exact mechanism by which IRF3/IRF7 regulate the type I IFNs remains largely unknown. In this study, we identified two type I IFNs in the Perciforme fish large yellow croaker Larimichthys crocea, one of which belongs to the fish IFNd subgroup and the other is assigned to a novel subgroup of group I IFNs in fish, tentatively termed IFNh. The two IFN genes are constitutively expressed in all examined tissues, but with varied expression levels. Both IFN genes can be rapidly induced in head kidney and spleen tissues by polyinosinic–polycytidylic acid. The recombinant IFNh was shown to be more potent to trigger a rapid induction of the antiviral genes MxA and protein kinase R than the IFNd, suggesting that they may play distinct roles in regulating early antiviral immunity. Strikingly, IFNd, but not IFNh, could induce the gene expression of itself and IFNh through a positive feedback loop mediated by the IFNd-dependent activation of IRF3 and IRF7. Furthermore, our data demonstrate that the induction of IFNd can be enhanced by the dimeric formation of IRF3 and IRF7, while the IFNh expression mainly involves IRF3. Taken together, our findings demonstrate that the IFN responses are diverse in fish and are likely to be regulated by distinct mechanisms.

  20. Identification of Two Subgroups of Type I IFNs in Perciforme Fish Large Yellow Croaker Larimichthys crocea Provides Novel Insights into Function and Regulation of Fish Type I IFNs

    PubMed Central

    Ding, Yang; Ao, Jingqun; Huang, Xiaohong; Chen, Xinhua

    2016-01-01

    Like mammals, fish possess an interferon regulatory factor (IRF) 3/IRF7-dependent type I IFN responses, but the exact mechanism by which IRF3/IRF7 regulate the type I IFNs remains largely unknown. In this study, we identified two type I IFNs in the Perciforme fish large yellow croaker Larimichthys crocea, one of which belongs to the fish IFNd subgroup and the other is assigned to a novel subgroup of group I IFNs in fish, tentatively termed IFNh. The two IFN genes are constitutively expressed in all examined tissues, but with varied expression levels. Both IFN genes can be rapidly induced in head kidney and spleen tissues by polyinosinic–polycytidylic acid. The recombinant IFNh was shown to be more potent to trigger a rapid induction of the antiviral genes MxA and protein kinase R than the IFNd, suggesting that they may play distinct roles in regulating early antiviral immunity. Strikingly, IFNd, but not IFNh, could induce the gene expression of itself and IFNh through a positive feedback loop mediated by the IFNd-dependent activation of IRF3 and IRF7. Furthermore, our data demonstrate that the induction of IFNd can be enhanced by the dimeric formation of IRF3 and IRF7, while the IFNh expression mainly involves IRF3. Taken together, our findings demonstrate that the IFN responses are diverse in fish and are likely to be regulated by distinct mechanisms. PMID:27656183

  1. Identification of Two Subgroups of Type I IFNs in Perciforme Fish Large Yellow Croaker Larimichthys crocea Provides Novel Insights into Function and Regulation of Fish Type I IFNs.

    PubMed

    Ding, Yang; Ao, Jingqun; Huang, Xiaohong; Chen, Xinhua

    2016-01-01

    Like mammals, fish possess an interferon regulatory factor (IRF) 3/IRF7-dependent type I IFN responses, but the exact mechanism by which IRF3/IRF7 regulate the type I IFNs remains largely unknown. In this study, we identified two type I IFNs in the Perciforme fish large yellow croaker Larimichthys crocea, one of which belongs to the fish IFNd subgroup and the other is assigned to a novel subgroup of group I IFNs in fish, tentatively termed IFNh. The two IFN genes are constitutively expressed in all examined tissues, but with varied expression levels. Both IFN genes can be rapidly induced in head kidney and spleen tissues by polyinosinic-polycytidylic acid. The recombinant IFNh was shown to be more potent to trigger a rapid induction of the antiviral genes MxA and protein kinase R than the IFNd, suggesting that they may play distinct roles in regulating early antiviral immunity. Strikingly, IFNd, but not IFNh, could induce the gene expression of itself and IFNh through a positive feedback loop mediated by the IFNd-dependent activation of IRF3 and IRF7. Furthermore, our data demonstrate that the induction of IFNd can be enhanced by the dimeric formation of IRF3 and IRF7, while the IFNh expression mainly involves IRF3. Taken together, our findings demonstrate that the IFN responses are diverse in fish and are likely to be regulated by distinct mechanisms. PMID:27656183

  2. Identification of Two Subgroups of Type I IFNs in Perciforme Fish Large Yellow Croaker Larimichthys crocea Provides Novel Insights into Function and Regulation of Fish Type I IFNs.

    PubMed

    Ding, Yang; Ao, Jingqun; Huang, Xiaohong; Chen, Xinhua

    2016-01-01

    Like mammals, fish possess an interferon regulatory factor (IRF) 3/IRF7-dependent type I IFN responses, but the exact mechanism by which IRF3/IRF7 regulate the type I IFNs remains largely unknown. In this study, we identified two type I IFNs in the Perciforme fish large yellow croaker Larimichthys crocea, one of which belongs to the fish IFNd subgroup and the other is assigned to a novel subgroup of group I IFNs in fish, tentatively termed IFNh. The two IFN genes are constitutively expressed in all examined tissues, but with varied expression levels. Both IFN genes can be rapidly induced in head kidney and spleen tissues by polyinosinic-polycytidylic acid. The recombinant IFNh was shown to be more potent to trigger a rapid induction of the antiviral genes MxA and protein kinase R than the IFNd, suggesting that they may play distinct roles in regulating early antiviral immunity. Strikingly, IFNd, but not IFNh, could induce the gene expression of itself and IFNh through a positive feedback loop mediated by the IFNd-dependent activation of IRF3 and IRF7. Furthermore, our data demonstrate that the induction of IFNd can be enhanced by the dimeric formation of IRF3 and IRF7, while the IFNh expression mainly involves IRF3. Taken together, our findings demonstrate that the IFN responses are diverse in fish and are likely to be regulated by distinct mechanisms.

  3. Growing tumors induce a local STING dependent Type I IFN response in dendritic cells.

    PubMed

    Andzinski, Lisa; Spanier, Julia; Kasnitz, Nadine; Kröger, Andrea; Jin, Lei; Brinkmann, Melanie M; Kalinke, Ulrich; Weiss, Siegfried; Jablonska, Jadwiga; Lienenklaus, Stefan

    2016-09-15

    The importance of endogenous Type I IFNs in cancer immune surveillance is well established by now. Their role in polarization of tumor-associated neutrophilic granulocytes into anti-tumor effector cells has been recently demonstrated. Yet, the cellular source of Type I IFNs as well as the mode of induction is not clearly defined. Here, we demonstrate that IFN-β is induced by growing murine tumors. Induction is mainly mediated via STING-dependent signaling pathways, suggesting tumor derived DNA as trigger. Transcription factors IRF3 and IRF5 were activated under these conditions which is consistent with tumor infiltrating dendritic cells (DCs) being the major cellular source of IFN-β at the tumor site. Besides DCs, tumor cells themselves are induced to contribute to the production of IFN-β. Taken together, our data provide further information on immune surveillance by Type I IFNs and suggest novel potent cellular targets for future cancer therapy. PMID:27116225

  4. Blood-Borne RNA Correlates with Disease Activity and IFN-Stimulated Gene Expression in Systemic Lupus Erythematosus.

    PubMed

    Doedens, John R; Jones, Wendell D; Hill, Kay; Mason, Michael J; Gersuk, Vivian H; Mease, Philip J; Dall'Era, Maria; Aranow, Cynthia; Martin, Richard W; Cohen, Stanley B; Fleischmann, Roy M; Kivitz, Alan J; Burge, Daniel J; Chaussabel, Damien; Elkon, Keith B; Posada, James A

    2016-10-01

    The loss of tolerance and the presence of circulating autoantibodies directed against nuclear Ags is the hallmark of systemic lupus erythematosus (SLE). Many of these Ags are complexed with short, noncoding RNAs, such as U1 and Y1. The amount of U1 and Y1 RNA complexed with SLE patient Abs and immune complexes was measured in a cross-section of 228 SLE patients to evaluate the role of these RNA molecules within the known biochemical framework of SLE. The study revealed that SLE patients had significantly elevated levels of circulating U1 and/or Y1 RNA compared with healthy volunteers. In addition, the blood-borne RNA molecules were correlated with SLE disease activity and increased expression of IFN-inducible genes. To our knowledge, this study provides the first systematic examination of the role of circulating RNA in a large group of SLE patients and provides an important link with IFN dysregulation.

  5. Blood-Borne RNA Correlates with Disease Activity and IFN-Stimulated Gene Expression in Systemic Lupus Erythematosus.

    PubMed

    Doedens, John R; Jones, Wendell D; Hill, Kay; Mason, Michael J; Gersuk, Vivian H; Mease, Philip J; Dall'Era, Maria; Aranow, Cynthia; Martin, Richard W; Cohen, Stanley B; Fleischmann, Roy M; Kivitz, Alan J; Burge, Daniel J; Chaussabel, Damien; Elkon, Keith B; Posada, James A

    2016-10-01

    The loss of tolerance and the presence of circulating autoantibodies directed against nuclear Ags is the hallmark of systemic lupus erythematosus (SLE). Many of these Ags are complexed with short, noncoding RNAs, such as U1 and Y1. The amount of U1 and Y1 RNA complexed with SLE patient Abs and immune complexes was measured in a cross-section of 228 SLE patients to evaluate the role of these RNA molecules within the known biochemical framework of SLE. The study revealed that SLE patients had significantly elevated levels of circulating U1 and/or Y1 RNA compared with healthy volunteers. In addition, the blood-borne RNA molecules were correlated with SLE disease activity and increased expression of IFN-inducible genes. To our knowledge, this study provides the first systematic examination of the role of circulating RNA in a large group of SLE patients and provides an important link with IFN dysregulation. PMID:27534558

  6. HCV-specific immune responses induced by CIGB-230 in combination with IFN-α plus ribavirin

    PubMed Central

    Amador-Cañizares, Yalena; Martínez-Donato, Gillian; Álvarez-Lajonchere, Liz; Vasallo, Claudia; Dausá, Mariacarla; Aguilar-Noriega, Daylen; Valenzuela, Carmen; Raíces, Ivette; Dubuisson, Jean; Wychowski, Czeslaw; Cinza-Estévez, Zurina; Castellanos, Marlén; Núñez, Magdalys; Armas, Anny; González, Yaimé; Revé, Ismariley; Guerra, Ivis; Pérez Aguiar, Ángel; Dueñas-Carrera, Santiago

    2014-01-01

    AIM: To analyze hepatitis C virus (HCV)-specific immune responses in chronically infected patients under triple therapy with interferon-α (IFN-α) plus ribavirin and CIGB-230. METHODS: CIGB-230 was administered in different schedules with respect to IFN-α plus ribavirin therapy. Paired serum and peripheral blood mononuclear cells (PBMC) samples from baseline and end of treatment were analyzed. The HCV-specific humoral response was tested by enzyme-linked immunosorbent assay, neutralizing antibodies were evaluated by cell culture HCV neutralization assays, PBMC proliferation was assayed by carboxyfluorescein succinimidyl ester staining and IFN-γ secretion was assessed by enzyme-linked immunospot. Data on virological and histological response and their association with immune variables are also provided. RESULTS: From week 12 to week 48, all groups of patients showed a significant reduction in mean leukocyte counts. Statistically significant reductions in antibody titers were frequent, but only individuals immunized with CIGB-230 as early add-on treatment sustained the core-IgG response, and the neutralizing antibody response was enhanced only in patients receiving CIGB-230. Cell-mediated immune responses also tended to decline, but significant reductions in IFN-γ secretion and total absence of core-specific lymphoproliferation were exclusive of the control group. Only CIGB-230-immunized individuals showed de novo induced lymphoproliferative responses against the structural antigens. Importantly, it was demonstrated that the quality of the CIGB-230-induced immune response depended on the number of doses and timing of administration in relation to the antiviral therapy. Specifically, the administration of 6 doses of CIGB-230 as late add-on to therapy increased the neutralizing antibody activity and the de novo core-specific IFN-γ secretion, both of which were associated with the sustained virological response. CONCLUSION: CIGB-230, combined with IFN

  7. Btk inhibition treats TLR7/IFN driven murine lupus.

    PubMed

    Bender, Andrew T; Pereira, Albertina; Fu, Kai; Samy, Eileen; Wu, Yin; Liu-Bujalski, Lesley; Caldwell, Richard; Chen, Yi-Ying; Tian, Hui; Morandi, Federica; Head, Jared; Koehler, Ursula; Genest, Melinda; Okitsu, Shinji L; Xu, Daigen; Grenningloh, Roland

    2016-03-01

    Bruton's tyrosine kinase (Btk) is expressed in a variety of immune cells and previous work has demonstrated that blocking Btk is a promising strategy for treating autoimmune diseases. Herein, we utilized a tool Btk inhibitor, M7583, to determine the therapeutic efficacy of Btk inhibition in two mouse lupus models driven by TLR7 activation and type I interferon. In BXSB-Yaa lupus mice, Btk inhibition reduced autoantibodies, nephritis, and mortality. In the pristane-induced DBA/1 lupus model, Btk inhibition suppressed arthritis, but autoantibodies and the IFN gene signature were not significantly affected; suggesting efficacy was mediated through inhibition of Fc receptors. In vitro studies using primary human macrophages revealed that Btk inhibition can block activation by immune complexes and TLR7 which contributes to tissue damage in SLE. Overall, our results provide translational insight into how Btk inhibition may provide benefit to a variety of SLE patients by affecting both BCR and FcR signaling.

  8. Shp-2 contributes to anti-RSV activity in human pulmonary alveolar epithelial cells by interfering with the IFN-α-induced Jak/Stat1 pathway

    PubMed Central

    Wang, Saisai; Zheng, Gang; Zhao, Lifang; Xu, Feng; Qian, Jing

    2015-01-01

    Src homology phosphotyrosyl phosphatase 2 (Shp-2) is a ubiquitously expressed protein that is involved in a variety of cellular processes, including antiviral interferon signalling pathways. In this study, we investigated the role of Shp-2 in the host cell interactions of human respiratory syncytial virus (RSV). We report significant changes in the expression of Shp-2 in human pulmonary alveolar epithelial cells (A549) upon RSV infection. We also report that blocking Shp-2 does not affect viral replication or virus-induced interferon-alpha (IFN-α) production. Interestingly, whereas A549 cells were activated by IFN-α, the blocking of Shp-2 resulted in increased viral replication that was associated with the reduced expression of the IFN-stimulated genes of 2′,5′-oligoadenylate synthetases and Mx1, and the concomitant inhibition of Stat1 tyrosine phosphorylation. Our findings suggest that Shp-2 contributes to the control of RSV replication and progeny production in pulmonary alveolar epithelial cells by interfering with IFN-α-induced Jak/Stat1 pathway activation rather than by affecting the production of IFN-α itself. PMID:26119280

  9. Frequency of TGF-β and IFN-γ Genotype as Risk Factors for Acute Kidney Injury and Death in Intensive Care Unit Patients

    PubMed Central

    Grabulosa, Caren Cristina; Batista, Marcelo Costa; Cendoroglo, Miguel; Quinto, Beata Marie Redublo; Monte, Julio Cesar; Durão, Marcelino; Rizzo, Luiz Vicente; Santos, Oscar Fernando Pavão; Dalboni, Maria Aparecida

    2014-01-01

    Genetic variations in TGF-β and IFN-γ may interfere with proinflammatory cytokine production and, consequently, may be involved with inflammatory diseases, as acute kidney injury (AKI). We considered that genetic polymorphisms of these cytokines may have a crucial role in the outcome of critically ill patients. To investigate whether the genetic polymorphisms of rs1800470 (codon 10 T/C), rs1800471 (codon 25 C/G) from the TGF-β, and rs2430561 (+874 T/A) from IFN-γ may be a risk factor for ICU patients to the development of AKI and/or death. In a prospective nested case-control study, were included 139 ICU patients who developed AKI, 164 ICU patients without AKI, and 244 healthy individuals. We observed a higher frequency to T/A genotype for IFN-γ (intermediate producer phenotype) and higher frequency of TT GG and TC GG genotype (high producer) for TGF-β polymorphism in overall population. However, these polymorphisms have not been shown as a predictor of risk for AKI and death. We found an increased prevalence of high and intermediate producer phenotypes from TGF-β and IFN-γ, respectively, in patients in ICU setting. However, the studied genetic polymorphism of the TGF-β and IFN-γ was not associated as a risk factor for AKI or death in our population. PMID:25147823

  10. Interdependent IL-7 and IFN-γ signalling in T-cell controls tumour eradication by combined α-CTLA-4+α-PD-1 therapy

    PubMed Central

    Shi, Lewis Zhichang; Fu, Tihui; Guan, Baoxiang; Chen, Jianfeng; Blando, Jorge M.; Allison, James P.; Xiong, Liangwen; Subudhi, Sumit K.; Gao, Jianjun; Sharma, Padmanee

    2016-01-01

    Combination therapy with α-CTLA-4 and α-PD-1 has shown significant clinical responses in different types of cancer. However, the underlying mechanisms remain elusive. Here, combining detailed analysis of human tumour samples with preclinical tumour models, we report that concomitant blockade of CTLA-4 and PD-1 improves anti-tumour immune responses and synergistically eradicates tumour. Mechanistically, combination therapy relies on the interdependence between IL-7 and IFN-γ signalling in T cells, as lack of either pathway abrogates the immune-boosting and therapeutic effects of combination therapy. Combination treatment increases IL-7Rα expression on tumour-infiltrating T cells in an IFN-γ/IFN-γR signalling-dependent manner, which may serve as a potential biomarker for clinical trials with immune checkpoint blockade. Our data suggest that combining immune checkpoint blockade with IL-7 signalling could be an effective modality to improve immunotherapeutic efficacy. Taken together, we conclude that combination therapy potently reverses immunosuppression and eradicates tumours via an intricate interplay between IFN-γ/IFN-γR and IL-7/IL-7R pathways. PMID:27498556

  11. Interdependent IL-7 and IFN-γ signalling in T-cell controls tumour eradication by combined α-CTLA-4+α-PD-1 therapy.

    PubMed

    Shi, Lewis Zhichang; Fu, Tihui; Guan, Baoxiang; Chen, Jianfeng; Blando, Jorge M; Allison, James P; Xiong, Liangwen; Subudhi, Sumit K; Gao, Jianjun; Sharma, Padmanee

    2016-01-01

    Combination therapy with α-CTLA-4 and α-PD-1 has shown significant clinical responses in different types of cancer. However, the underlying mechanisms remain elusive. Here, combining detailed analysis of human tumour samples with preclinical tumour models, we report that concomitant blockade of CTLA-4 and PD-1 improves anti-tumour immune responses and synergistically eradicates tumour. Mechanistically, combination therapy relies on the interdependence between IL-7 and IFN-γ signalling in T cells, as lack of either pathway abrogates the immune-boosting and therapeutic effects of combination therapy. Combination treatment increases IL-7Rα expression on tumour-infiltrating T cells in an IFN-γ/IFN-γR signalling-dependent manner, which may serve as a potential biomarker for clinical trials with immune checkpoint blockade. Our data suggest that combining immune checkpoint blockade with IL-7 signalling could be an effective modality to improve immunotherapeutic efficacy. Taken together, we conclude that combination therapy potently reverses immunosuppression and eradicates tumours via an intricate interplay between IFN-γ/IFN-γR and IL-7/IL-7R pathways. PMID:27498556

  12. Unique CD14+ intestinal macrophages contribute to the pathogenesis of Crohn disease via IL-23/IFN-γ axis

    PubMed Central

    Kamada, Nobuhiko; Hisamatsu, Tadakazu; Okamoto, Susumu; Chinen, Hiroshi; Kobayashi, Taku; Sato, Toshiro; Sakuraba, Atsushi; Kitazume, Mina T.; Sugita, Akira; Koganei, Kazutaka; Akagawa, Kiyoko S.; Hibi, Toshifumi

    2008-01-01

    Intestinal macrophages play a central role in regulation of immune responses against commensal bacteria. In general, intestinal macrophages lack the expression of innate-immune receptor CD14 and do not produce proinflammatory cytokines against commensal bacteria. In this study, we identified what we believe to be a unique macrophage subset in human intestine. This subset expressed both macrophage (CD14, CD33, CD68) and DC markers (CD205, CD209) and produced larger amounts of proinflammatory cytokines, such as IL-23, TNF-α, and IL-6, than typical intestinal resident macrophages (CD14–CD33+ macrophages). In patients with Crohn disease (CD), the number of these CD14+ macrophages were significantly increased compared with normal control subjects. In addition to increased numbers of cells, these cells also produced larger amounts of IL-23 and TNF-α compared with those in normal controls or patients with ulcerative colitis. In addition, the CD14+ macrophages contributed to IFN-γ production rather than IL-17 production by lamina propria mononuclear cells (LPMCs) dependent on IL-23 and TNF-α. Furthermore, the IFN-γ produced by LPMCs triggered further abnormal macrophage differentiation with an IL-23–hyperproducing phenotype. Collectively, these data suggest that this IL-23/IFN-γ–positive feedback loop induced by abnormal intestinal macrophages contributes to the pathogenesis of chronic intestinal inflammation in patients with CD. PMID:18497880

  13. Mycophenolate antagonizes IFN-γ-induced catagen-like changes via β-catenin activation in human dermal papilla cells and hair follicles.

    PubMed

    Ryu, Sunhyo; Lee, Yonghee; Hyun, Moo Yeol; Choi, Sun Young; Jeong, Kwan Ho; Park, Young Min; Kang, Hoon; Park, Kui Young; Armstrong, Cheryl A; Johnson, Andrew; Song, Peter I; Kim, Beom Joon

    2014-01-01

    Recently, various immunosuppressant drugs have been shown to induce hair growth in normal hair as well as in alopecia areata and androgenic alopecia; however, the responsible mechanism has not yet been fully elucidated. In this study, we investigate the influence of mycophenolate (MPA), an immunosuppressant, on the proliferation of human dermal papilla cells (hDPCs) and on the growth of human hair follicles following catagen induction with interferon (IFN)-γ. IFN-γ was found to reduce β-catenin, an activator of hair follicle growth, and activate glycogen synthase kinase (GSK)-3β, and enhance expression of the Wnt inhibitor DKK-1 and catagen inducer transforming growth factor (TGF)-β2. IFN-γ inhibited expression of ALP and other dermal papillar cells (DPCs) markers such as Axin2, IGF-1, and FGF 7 and 10. MPA increased β-catenin in IFN-γ-treated hDPCs leading to its nuclear accumulation via inhibition of GSK3β and reduction of DKK-1. Furthermore, MPA significantly increased expression of ALP and other DPC marker genes but inhibited expression of TGF-β2. Therefore, we demonstrate for the first time that IFN-γ induces catagen-like changes in hDPCs and in hair follicles via inhibition of Wnt/β-catenin signaling, and that MPA stabilizes β-catenin by inhibiting GSK3β leading to increased β-catenin target gene and DP signature gene expression, which may, in part, counteract IFN-γ-induced catagen in hDPCs.

  14. Mycophenolate Antagonizes IFN-γ-Induced Catagen-Like Changes via β-Catenin Activation in Human Dermal Papilla Cells and Hair Follicles

    PubMed Central

    Ryu, Sunhyo; Lee, Yonghee; Hyun, Moo Yeol; Choi, Sun Young; Jeong, Kwan Ho; Park, Young Min; Kang, Hoon; Park, Kui Young; Armstrong, Cheryl A.; Johnson, Andrew; Song, Peter I.; Kim, Beom Joon

    2014-01-01

    Recently, various immunosuppressant drugs have been shown to induce hair growth in normal hair as well as in alopecia areata and androgenic alopecia; however, the responsible mechanism has not yet been fully elucidated. In this study, we investigate the influence of mycophenolate (MPA), an immunosuppressant, on the proliferation of human dermal papilla cells (hDPCs) and on the growth of human hair follicles following catagen induction with interferon (IFN)-γ. IFN-γ was found to reduce β-catenin, an activator of hair follicle growth, and activate glycogen synthase kinase (GSK)-3β, and enhance expression of the Wnt inhibitor DKK-1 and catagen inducer transforming growth factor (TGF)-β2. IFN-γ inhibited expression of ALP and other dermal papillar cells (DPCs) markers such as Axin2, IGF-1, and FGF 7 and 10. MPA increased β-catenin in IFN-γ-treated hDPCs leading to its nuclear accumulation via inhibition of GSK3β and reduction of DKK-1. Furthermore, MPA significantly increased expression of ALP and other DPC marker genes but inhibited expression of TGF-β2. Therefore, we demonstrate for the first time that IFN-γ induces catagen-like changes in hDPCs and in hair follicles via inhibition of Wnt/β-catenin signaling, and that MPA stabilizes β-catenin by inhibiting GSK3β leading to increased β-catenin target gene and DP signature gene expression, which may, in part, counteract IFN-γ-induced catagen in hDPCs. PMID:25247578

  15. Antibody-dependent enhancement of dengue virus infection inhibits RLR-mediated Type-I IFN-independent signalling through upregulation of cellular autophagy.

    PubMed

    Huang, Xinwei; Yue, Yaofei; Li, Duo; Zhao, Yujiao; Qiu, Lijuan; Chen, Junying; Pan, Yue; Xi, Juemin; Wang, Xiaodan; Sun, Qiangming; Li, Qihan

    2016-01-01

    Antibody dependent enhancement (ADE) of dengue virus (DENV) infection is identified as the main risk factor of severe Dengue diseases. Through opsonization by subneutralizing or non-neutralizing antibodies, DENV infection suppresses innate cell immunity to facilitate viral replication. However, it is largely unknown whether suppression of type-I IFN is necessary for a successful ADE infection. Here, we report that both DENV and DENV-ADE infection induce an early ISG (NOS2) expression through RLR-MAVS signalling axis independent of the IFNs signaling. Besides, DENV-ADE suppress this early antiviral response through increased autophagy formation rather than induction of IL-10 secretion. The early induced autophagic proteins ATG5-ATG12 participate in suppression of MAVS mediated ISGs induction. Our findings suggest a mechanism for DENV to evade the early antiviral response before IFN signalling activation. Altogether, these results add knowledge about the complexity of ADE infection and contribute further to research on therapeutic strategies. PMID:26923481

  16. Antibody-dependent enhancement of dengue virus infection inhibits RLR-mediated Type-I IFN-independent signalling through upregulation of cellular autophagy

    PubMed Central

    Huang, Xinwei; Yue, Yaofei; Li, Duo; Zhao, Yujiao; Qiu, Lijuan; Chen, Junying; Pan, Yue; Xi, Juemin; Wang, Xiaodan; Sun, Qiangming; Li, Qihan

    2016-01-01

    Antibody dependent enhancement (ADE) of dengue virus (DENV) infection is identified as the main risk factor of severe Dengue diseases. Through opsonization by subneutralizing or non-neutralizing antibodies, DENV infection suppresses innate cell immunity to facilitate viral replication. However, it is largely unknown whether suppression of type-I IFN is necessary for a successful ADE infection. Here, we report that both DENV and DENV-ADE infection induce an early ISG (NOS2) expression through RLR-MAVS signalling axis independent of the IFNs signaling. Besides, DENV-ADE suppress this early antiviral response through increased autophagy formation rather than induction of IL-10 secretion. The early induced autophagic proteins ATG5-ATG12 participate in suppression of MAVS mediated ISGs induction. Our findings suggest a mechanism for DENV to evade the early antiviral response before IFN signalling activation. Altogether, these results add knowledge about the complexity of ADE infection and contribute further to research on therapeutic strategies. PMID:26923481

  17. Immunologic and MRI markers of the therapeutic effect of IFN-β-1a in relapsing-remitting MS

    PubMed Central

    Tao, Yazhong; Zhang, Xin; Dwyer, Michael G.; Kennedy, Cheryl; Bergsland, Niels; Ramasamy, Deepa; Durfee, Jacqueline; Hojnacki, David; Hayward, Brooke; Dangond, Fernando; Weinstock-Guttman, Bianca

    2015-01-01

    Objectives: To assess potential roles of effector cells and immunologic markers in demyelinating CNS lesion formation, and their modulation by interferon β-1a (IFN-β-1a). Methods: Twenty-three patients with relapsing-remitting multiple sclerosis (RRMS) received IFN-β-1a for 6 months. Immunologic marker results were correlated with brain MRI lesion volumes, and volumes of normal-appearing brain tissue (NABT) with decreasing or increasing voxel-wise magnetization transfer ratio (VW-MTR), suggestive of demyelination and remyelination, respectively. Results: Baseline expression of Th22 cell transcription factor aryl hydrocarbon receptor (AHR) and interleukin (IL)-17F, and percentages of IL-22–expressing CD4+ and CD8+ cells, were significantly higher in patients vs 15 healthy controls; IL-4 in CD4+ cells was lower. Baseline percentage of IL-22–producing CD8+ cells positively correlated with T2 lesion volumes, while percentage of IL-17A–producing CD8+ cells positively correlated with T2 and T1 lesion volumes. IFN-β-1a induced reductions in transcription factor AHR, T-bet, and retinoic acid–related orphan nuclear hormone receptor C (RORc) gene expression, while it increased GATA3's expression in CD4+ cells. Percentages of IL-22-, IL-17A-, and IL-17F-expressing T cells significantly decreased following treatment. Increased percentages of IL-10–expressing CD4+ and CD8+ cells correlated with greater NABT volume with increasing VW-MTR, while decreased percentage of IL-17F–expressing CD4+ cells positively correlated with decreased NABT volume with decreasing VW-MTR. Conclusions: Findings indicate that IFN-β-1a suppresses Th22 and Th17 cell responses, which were associated with decreased MRI-detectable demyelination. Classification of evidence: This pilot study provides Class III evidence that reduced Th22 and Th17 responses are associated with decreased demyelination following IFN-β-1a treatment in patients with RRMS. PMID:26601116

  18. Genomic scale analysis of racial impact on response to IFN-alpha.

    PubMed

    Pos, Zoltan; Selleri, Silvia; Spivey, Tara L; Wang, Jeanne K; Liu, Hui; Worschech, Andrea; Sabatino, Marianna; Monaco, Alessandro; Leitman, Susan F; Falus, Andras; Wang, Ena; Alter, Harvey J; Marincola, Francesco M

    2010-01-12

    Limited responsiveness to IFN-alpha in hepatitis C virus (HCV)-infected African-Americans compared to European Americans (AAs vs. EAs) hinders the management of HCV. Here, we studied healthy non-HCV-infected AA and EA subjects to test whether immune cell response to IFN-alpha is determined directly by race. We compared baseline and IFN-alpha-induced signal transducer and activator of transcription (STAT)-1, STAT-2, STAT-3, STAT-4, and STAT-5 protein and phosphorylation levels in purified T cells, global transcription, and a genomewide single-nucleotide polymorphism (SNP) profile of healthy AA and EA blood donors. In contrast to HCV-infected individuals, healthy AAs displayed no evidence of reduced STAT activation or IFN-alpha-stimulated gene expression compared to EAs. Although >200 genes reacted to IFN-alpha treatment, race had no impact on any of them. The only gene differentially expressed by the two races (NUDT3, P < 10(-7)) was not affected by IFN-alpha and bears no known relationship to IFN-alpha signaling or HCV pathogenesis. Genomewide analysis confirmed the self-proclaimed racial attribution of most donors, and numerous race-associated SNPs were identified within loci involved in IFN-alpha signaling, although they clearly did not affect responsiveness in the absence of HCV. We conclude that racial differences observed in HCV-infected patients in the responsiveness to IFN-alpha are unrelated to inherent racial differences in IFN-alpha signaling and more likely due to polymorphisms affecting the hosts' response to HCV, which in turn may lead to a distinct disease pathophysiology responsible for altered IFN signaling and treatment response.

  19. Apoptosis Induced by Mammalian Reovirus Is Beta Interferon (IFN) Independent and Enhanced by IFN Regulatory Factor 3- and NF-κB-Dependent Expression of Noxa

    PubMed Central

    Knowlton, Jonathan J.; Dermody, Terence S.

    2012-01-01

    A variety of signal transduction pathways are activated in response to viral infection, which dampen viral replication and transmission. These mechanisms involve both the induction of type I interferons (IFNs), which evoke an antiviral state, and the triggering of apoptosis. Mammalian orthoreoviruses are double-stranded RNA viruses that elicit apoptosis in vitro and in vivo. The transcription factors interferon regulatory factor 3 (IRF-3) and nuclear factor kappa light-chain enhancer of activated B cells (NF-κB) are required for the expression of IFN-β and the efficient induction of apoptosis in reovirus-infected cells. However, it is not known whether IFN-β induction is required for apoptosis, nor have the genes induced by IRF-3 and NF-κB that are responsible for apoptosis been identified. To determine whether IFN-β is required for reovirus-induced apoptosis, we used type I IFN receptor-deficient cells, IFN-specific antibodies, and recombinant IFN-β. We found that IFN synthesis and signaling are dispensable for the apoptosis of reovirus-infected cells. These results indicate that the apoptotic response following reovirus infection is mediated directly by genes responsive to IRF-3 and NF-κB. Noxa is a proapoptotic BH3-domain-only protein of the Bcl-2 family that requires IRF-3 and NF-κB for efficient expression. We found that Noxa is strongly induced at late times (36 to 48 h) following reovirus infection in a manner dependent on IRF-3 and NF-κB. The level of apoptosis induced by reovirus is significantly diminished in cells lacking Noxa, indicating a key prodeath function for this molecule during reovirus infection. These results suggest that prolonged innate immune response signaling induces apoptosis by eliciting Noxa expression in reovirus-infected cells. PMID:22090144

  20. Rb selectively inhibits innate IFN-β production by enhancing deacetylation of IFN-β promoter through HDAC1 and HDAC8.

    PubMed

    Meng, Jun; Liu, Xingguang; Zhang, Peng; Li, Dong; Xu, Sheng; Zhou, Qingqing; Guo, Meng; Huai, Wanwan; Chen, Xiang; Wang, Quanxing; Li, Nan; Cao, Xuetao

    2016-09-01

    Type I IFN production is tightly controlled by host to generate efficient viral clearance without harmful immunopathology or induction of autoimmune disorders. Epigenetic regulation of type I IFN production in innate immunity and inflammatory disorders remains to be fully understood. Several tumor suppressors have been shown to regulate immune response and inflammation. However, the non-classical functions of tumor suppressors in innate immunity and inflammatory diseases need further identification. Here we report retinoblastoma protein (Rb) deficiency selectively enhanced TLR- and virus-triggered production of IFN-β which thus induced more IFN-α generation in the later phase of innate stimuli, but had no effect on the production of TNF, IL-6 and early phase IFN-α in macrophages. Rb1(fl/fl)Lyz2cre(+) Rb-deficient mice exhibited more resistant to lethal virus infection and more effective clearance of influenza virus. Rb selectively bound Ifnb1 enhancer region, but not the promoter of Ifna4, Tnf and Il6, by interacting with c-Jun, the component of IFN-β enhanceosome. Then Rb recruited HDAC1 and HDAC8 to attenuate acetylation of Histone H3/H4 in Ifnb1 promoter, resulting in suppression of Ifnb1 transcription. Therefore, Rb selectively inhibits innate IFN-β production by enhancing deacetylation of Ifnb1 promoter, exhibiting a previous unknown non-classical role in innate immunity, which also suggests a role of Rb in the regulation of type I IFN production in inflammatory or autoimmune diseases. PMID:27267461

  1. TBK1-like transcript negatively regulates the production of IFN and IFN-stimulated genes through RLRs-MAVS-TBK1 pathway.

    PubMed

    Zhang, Lin; Chen, Wen Qin; Hu, Yi Wei; Wu, Xiao Man; Nie, P; Chang, Ming Xian

    2016-07-01

    TANK-binding kinase 1 (TBK1) is an essential serine/threonine-protein kinase required for Toll-like receptor (TLR)- and retinoic acid-inducible gene I (RIG-I) -mediated induction of type I IFN and host antiviral defense. In the present study, TBK1-like transcript, namely TBK1L, was cloned from zebrafish. Compared with TBK1, TBK1L contains an incomplete S_TKc domain, and lacks UBL_TBK1_like domain. Realtime PCR showed that TBK1L was constitutively produced in embryos, early larvae and ZF4 cells, and unchanged in ZF4 cells following SVCV infection. Overexpression of TBK1 but not TBK1L resulted in significant activation of zebrafish IFN1 and IFN3 promoters. Similarly, TBK1L had little impact on the antiviral state of the cells. However, the overexpression of TBK1L negatively regulated the induction of zebrafish IFN1 and/or IFN3 promoters mediated by the retinoic acid-inducible gene I-like receptors (RLRs), MAVS and TBK1. In addition, the overexpression of TBK1L in zebrafish embryos led to the decreased production of many IFN-stimulated genes induced by TBK1. Collectively, these data support that zebrafish TBK1L negatively regulates RLRs-MAVS-TBK1 pathway. PMID:27060200

  2. TRIM68 Negatively Regulates IFN-β Production by Degrading TRK Fused Gene, a Novel Driver of IFN-β Downstream of Anti-Viral Detection Systems

    PubMed Central

    Wynne, Claire; Lazzari, Elisa; Smith, Siobhán; McCarthy, Eoghan M.; Ní Gabhann, Joan; Kallal, Lara E.; Higgs, Rowan; Cryan, Sally Ann; Biron, Christine A.; Jefferies, Caroline A.

    2014-01-01

    In recent years members of the tripartite motif-containing (TRIM) family of E3 ubiquitin ligases have been shown to both positively and negatively regulate viral defence and as such are emerging as compelling targets for modulating the anti-viral immune response. In this study we identify TRIM68, a close homologue of TRIM21, as a novel regulator of Toll-like receptor (TLR)- and RIG-I-like receptor (RLR)-driven type I IFN production. Proteomic analysis of TRIM68-containing complexes identified TRK-fused gene (TFG) as a potential TRIM68 target. Overexpression of TRIM68 and TFG confirmed their ability to associate, with TLR3 stimulation appearing to enhance the interaction. TFG is a known activator of NF-κB via its ability to interact with inhibitor of NF-κB kinase subunit gamma (IKK-γ) and TRAF family member-associated NF-κB activator (TANK). Our data identifies a novel role for TFG as a positive regulator of type I IFN production and suggests that TRIM68 targets TFG for lysosomal degradation, thus turning off TFG-mediated IFN-β production. Knockdown of TRIM68 in primary human monocytes resulted in enhanced levels of type I IFN and TFG following poly(I:C) treatment. Thus TRIM68 targets TFG, a novel regulator of IFN production, and in doing so turns off and limits type I IFN production in response to anti-viral detection systems. PMID:24999993

  3. Preemptive donor apoptotic cell infusions induce IFN-γ-producing myeloid derived suppressor cells for cardiac allograft protection1

    PubMed Central

    Bryant, Jane; Lerret, Nadine M.; Wang, Jiao-jing; Kang, Hee-Kap; Tasch, James; Zhang, Zheng; Luo, Xunrong

    2014-01-01

    We have previously shown that preemptive infusion of apoptotic donor splenocytes treated with the chemical cross-linker ethylcarbodiimide (ECDI-SPs) induces long-term allograft survival in full MHC-mismatched models of allogeneic islet and cardiac transplantation. The role of myeloid derived suppressor cells (MDSCs) in the graft protection provided by ECDI-SPs is unclear. In this study, we demonstrate that infusions of ECDI-SPs increase two populations of CD11b+ cells in the spleen that phenotypically resemble monocytic-like (CD11b+Ly6CHI) and granulocytic-like (CD11b+Gr1HI) MDSCs. Both populations suppress T cell proliferation in vitro, and traffic to the cardiac allografts in vivo to mediate their protection via inhibition of local CD8 T cell accumulation and potentially also via induction and homing of regulatory T cells. Importantly, repeated treatments with ECDI-SPs induce the CD11b+Gr1HI cells to produce a high level of IFN-γ and to exhibit an enhanced responsiveness to IFN-γ by expressing higher levels of downstream effector molecules ido and nos2. Consequently, neutralization of IFN-γ completely abolishes the suppressive capacity of this population. We conclude that donor ECDI-SPs induce the expansion of two populations of MDSCs important for allograft protection mediated in part by intrinsic IFN-γ dependent mechanisms. This form of preemptive donor apoptotic cell infusions has significant potential for the therapeutic manipulation of MDSCs for transplant tolerance induction. PMID:24808363

  4. p21 mediates macrophage reprogramming through regulation of p50-p50 NF-κB and IFN

    PubMed Central

    Hernández-Jiménez, Enrique; Shokri, Rahman; Carmona-Rodríguez, Lorena; Mañes, Santos; Álvarez-Mon, Melchor; López-Collazo, Eduardo; Martínez-A, Carlos

    2016-01-01

    M1 and M2 macrophage phenotypes, which mediate proinflammatory and antiinflammatory functions, respectively, represent the extremes of immunoregulatory plasticity in the macrophage population. This plasticity can also result in intermediate macrophage states that support a balance between these opposing functions. In sepsis, M1 macrophages can compensate for hyperinflammation by acquiring an M2-like immunosuppressed status that increases the risk of secondary infection and death. The M1 to M2 macrophage reprogramming that develops during LPS tolerance resembles the pathological antiinflammatory response to sepsis. Here, we determined that p21 regulates macrophage reprogramming by shifting the balance between active p65-p50 and inhibitory p50-p50 NF-κB pathways. p21 deficiency reduced the DNA-binding affinity of the p50-p50 homodimer in LPS-primed and -rechallenged macrophages, impairing their ability to attenuate IFN-β production and acquire an M2-like hyporesponsive status. High p21 levels in sepsis patients correlated with low IFN-β expression, and p21 knockdown in human monocytes corroborated its role in IFN-β regulation. The data demonstrate that p21 adjusts the equilibrium between p65-p50 and p50-p50 NF-κB pathways to mediate macrophage plasticity in LPS tolerance. Identifying p21-related pathways involved in monocyte reprogramming may lead to potential targets for sepsis treatment. PMID:27427981

  5. The Type I IFN-Induced miRNA, miR-21

    PubMed Central

    Yang, Chuan He; Li, Kui; Pfeffer, Susan R.; Pfeffer, Lawrence M.

    2015-01-01

    The interferon (IFN) family of cytokines not only has antiviral properties at various steps in the viral replication cycle, but also anticancer activity through multiple pathways that include inhibiting cell proliferation, regulating cellular responses to inducers of apoptosis and modulating angiogenesis and the immune system. IFNs are known to induce their biological activity through the induction of protein encoding IFN-stimulated genes. However, recent studies have established that IFNs also induce the expression of microRNAs (miRNAs), which are small endogenous non-coding RNAs that suppress gene expression at the post-transcriptional level. MiRNAs play critical roles in tumorigenesis and have been implicated to act as either oncogenes or tumor suppressors in various human cancers. Therefore, IFN-induced miRNAs play an important role, not only in the host response to innate immune response to cancer, but also in the tumorigenic process itself. Furthermore, IFN-induced miRNAs may participate in and/or orchestrate antiviral defense in certain viral infections. In this review, we describe our recent studies on the induction of miR-21 by type I IFN, the role of the STAT3 and NFκB signaling pathways in IFN-induced miR-21 expression, the role of miR-21 in different cancers and the role of miR-21 in regulating the antiviral response. PMID:26610525

  6. Tetanus neurotoxin HCC protein commits T cells to IFN-γ producing cells.

    PubMed

    Torabi Goudarzi, S; Hajivalili, M; Hosseini, M; Ghafari Khamene, M; Yazdani, Y; Sadreddini, S; Miahipour, A; Younesi, V; Yousefi, M

    2016-01-01

    A protective response against tetanus toxin and toxoid demands efficient specific T cell and B cell responses. Tetanus neurotoxin (TeNT), a 150 kDa polypeptide, is the main cause of tetanus disease. TeNT consists of two structurally distinct chains, a 50 kDa N-terminal light (L) and a 100 kDa C-terminal heavy (H) chain. C-terminal heavy (H) chain (fragment C) has two sub-domains named as proximal HCN and carboxy sub-domain or HCC. Beside neural binding property, HCC has been recently found as an immunodominant module of TeNT. In the present study, we investigated the effects of recombinant HCC (rHCC) on the expression of lineage specific transcription factors and secretion of a panel of functional cytokines including IFN-γ, IL-4, and IL-17 from purified human T cells. Our results revealed that T-bet transcript level, as TH1 specific transcription factor, was significantly increased in the cells treated with 10 and 20 µg/ml of rHCC following 48 h treatment(p<0.05). Treated purified human T cells with rHCC showed significant increase in IFN-γ mRNA level and cytokine secretion, but not IL-4 and IL-17, following 48 h treatment. In conclusion, our results showed that treatment of T cells with r HCC resulted in development of Th1 lineage phenotype, which might lead to a specific and protective antibody mediated response against tetanus toxin. PMID:27064869

  7. Design, characterization, and structure of a biologically active single-chain mutant of human IFN-gamma.

    PubMed

    Landar, A; Curry, B; Parker, M H; DiGiacomo, R; Indelicato, S R; Nagabhushan, T L; Rizzi, G; Walter, M R

    2000-05-26

    A mutant form of human interferon-gamma (IFN-gamma SC1) that binds one IFN-gamma receptor alpha chain (IFN-gamma R alpha) has been designed and characterized. IFN-gamma SC1 was derived by linking the two peptide chains of the IFN-gamma dimer by a seven-residue linker and changing His111 in the first chain to an aspartic acid residue. Isothermal titration calorimetry shows that IFN-gamma SC1 forms a 1:1 complex with its high-affinity receptor (IFN-gamma R alpha) with an affinity of 27(+/- 9) nM. The crystal structure of IFN-gamma SC1 has been determined at 2.9 A resolution from crystals grown in 1.4 M citrate solutions at pH 7.6. Comparison of the wild-type receptor-binding domain and the Asp111-containing domain of IFN-gamma SC1 show that they are structurally equivalent but have very different electrostatic surface potentials. As a result, surface charge rather than structural changes is likely responsible for the inability of the His111-->Asp domain of to bind IFN-gamma R alpha. The AB loops of IFN-gamma SC1 adopt conformations similar to the ordered loops of IFN-gamma observed in the crystal structure of the IFN-gamma/IFN-gamma R alpha complex. Thus, IFN-gamma R alpha binding does not result in a large conformational change in the AB loop as previously suggested. The structure also reveals the final six C-terminal amino acid residues of IFN-gamma SC1 (residues 253-258) that have not been observed in any other reported IFN-gamma structures. Despite binding to only one IFN-gamma R alpha, IFN-gamma SC1 is biologically active in cell proliferation, MHC class I induction, and anti-viral assays. This suggests that one domain of IFN-gamma is sufficient to recruit IFN-gamma R alpha and IFN-gamma R beta into a complex competent for eliciting biological activity. The current data are consistent with the main role of the IFN-gamma dimer being to decrease the dissociation constant of IFN-gamma for its cellular receptors.

  8. IFN-τ acts in a dose-dependent manner on prostaglandin production by buffalo endometrial stromal cells cultured in vitro.

    PubMed

    Chethan, S G; Singh, S K; Nongsiej, J; Rakesh, H B; Singh, R P; Kumar, N; Agarwal, S K

    2014-06-01

    Interferon-τ (IFN-τ) has been recognized as the primary embryonic signal responsible for maternal recognition of pregnancy. Uterine endometrium produces both prostaglandin F2α (PGF2α ) and prostaglandin E2 (PGE2 ). PGF2α is responsible for the luteolysis; however, PGE2 favours establishment of pregnancy by its luteoprotective action. In this study, the dose-response effect of recombinant bovine IFN-τ (rbIFN-τ) on prostaglandin (PG) production by buffalo endometrial stromal cells cultured in vitro was studied. Buffalo endometrial stromal cells were isolated by double enzymatic digestion, initially with trypsin III followed by a cocktail of trypsin III, collagenase type II and DNase I and subsequently cultured till confluence. Further, cells were treated with different doses of rbIFN-τ (0.001, 0.01, 0.1, 1.0 and 10 μg/ml) and keeping a separate set of control. Culture supernatant was collected after 6, 12 and 24 h of treatment. PG levels in the culture supernatant were measured by enzyme immune assay (EIA) and total cellular protein estimated by Bradford method. Results indicated that buffalo endometrial stromal cells following rbIFN-τ treatment enhanced the secretion of both PGE2 and PGF2α , and also its ratio in a strict dose-dependent manner with a significant increase (p < 0.01) in PGE2 production at 1 μg/ml dose of rbIFN-τ and maximal stimulation for both PG was observed at 10 μg/ml. Further, both PG production and its ratio were increased significantly (p < 0.01) in a time-dependent fashion in all the groups at 6, 12 and 24 h post-treatment with highest level achieved at 24 h as compared with control. Absolute levels of PGE2 remained higher than PGF2α indicating PGE2 as the major PG produced by endometrial stromal cells. The dose-dependent response of rbIFN-τ signifies the importance of optimum concentration of IFN-τ for the embryonic development especially during the critical period to establish successful pregnancy.

  9. Investigating the Role of TNF-α and IFN-γ Activation on the Dynamics of iNOS Gene Expression in LPS Stimulated Macrophages

    PubMed Central

    Salim, Taha; Sershen, Cheryl L.; May, Elebeoba E.

    2016-01-01

    Macrophage produced inducible nitric oxide synthase (iNOS) is known to play a critical role in the proinflammatory response against intracellular pathogens by promoting the generation of bactericidal reactive nitrogen species. Robust and timely production of nitric oxide (NO) by iNOS and analogous production of reactive oxygen species are critical components of an effective immune response. In addition to pathogen associated lipopolysaccharides (LPS), iNOS gene expression is dependent on numerous proinflammatory cytokines in the cellular microenvironment of the macrophage, two of which include interferon gamma (IFN-γ) and tumor necrosis factor alpha (TNF-α). To understand the synergistic effect of IFN-γ and TNF-α activation, and LPS stimulation on iNOS expression dynamics and NO production, we developed a systems biology based mathematical model. Using our model, we investigated the impact of pre-infection cytokine exposure, or priming, on the system. We explored the essentiality of IFN-γ priming to the robustness of initial proinflammatory response with respect to the ability of macrophages to produce reactive species needed for pathogen clearance. Results from our theoretical studies indicated that IFN-γ and subsequent activation of IRF1 are essential in consequential production of iNOS upon LPS stimulation. We showed that IFN-γ priming at low concentrations greatly increases the effector response of macrophages against intracellular pathogens. Ultimately the model demonstrated that although TNF-α contributed towards a more rapid response time, measured as time to reach maximum iNOS production, IFN-γ stimulation was significantly more significant in terms of the maximum expression of iNOS and the concentration of NO produced. PMID:27276061

  10. Murine J774 Macrophages Recognize LPS/IFN-g, Non-CpG DNA or Two-CpG DNA-containing Sequences as Immunologically Distinct

    PubMed Central

    Crosby, Lynn; Casey, Warren; Morgan, Kevin; Ni, Hong; Yoon, Lawrence; Easton, Marilyn; Misukonis, Mary; Burleson, Gary; Ghosh, Dipak K.

    2010-01-01

    Specific bacterial lipopolysaccharides (LPS), IFN-γ, and unmethylated cytosine or guanosine-phosphorothioate containing DNAs (CpG) activate host immunity, influencing infectious responses. Macrophages detect, inactivate and destroy infectious particles, and synthetic CpG sequences invoke similar responses of the innate immune system. Previously, murine macrophage J774 cells treated with CpG induced the expression of nitric oxide synthase 2 (NOS2) and cyclo-oxygenase 2 (COX2) mRNA and protein. In this study murine J774 macrophages were exposed to vehicle, interferon γ + lipopolysaccharide (IFN-g/LPS), non-CpG (SAK1), or two-CpG sequence-containing DNA (SAK2) for 0–18 hr and gene expression changes measured. A large number of immunostimulatory and inflammatory changes were observed. SAK2 was a stronger activator of TNFα- and chemokine expression-related changes than LPS/IFN-g. Up regulation included tumor necrosis factor receptor superfamily genes (TNFRSF’s), IL-1 receptor signaling via stress-activated protein kinase (SAPK), NF-κB activation, hemopoietic maturation factors and sonic hedgehog/wingless integration site (SHH/Wnt) pathway genes. Genes of the TGF-β pathway were down regulated. In contrast, LPS/IFN-g -treated cells showed increased levels for TGF-β signaling genes, which may be linked to the observed up regulation of numerous collagens and down regulation of Wnt pathway genes. SAK1 produced distinct changes from LPS/IFN-g or SAK2. Therefore, J774 macrophages recognize LPS/IFN-g, non-CpG DNA or two-CpG DNA-containing sequences as immunologically distinct. PMID:20097302

  11. Assessment of the IFN-β response to four feline caliciviruses: Infection in CRFK cells.

    PubMed

    Tian, Jin; Zhang, Xiaozhan; Wu, Hongxia; Liu, Chunguo; Liu, Jiasen; Hu, Xiaoliang; Qu, Liandong

    2015-08-01

    Feline calicivirus (FCV) is a highly contagious pathogen with a widespread distribution. Although the cat genome has been sequenced, little is known about innate immunity in cats, which limits the understanding of FCV pathogenesis. To investigate the IFN-β response during FCV infection in CRFK cells, we first cloned and identified the feline IFN-β promoter sequence and the positive regulatory domain (PRD) motifs, which shared a high similarity with human and porcine IFN-β promoters. Next, we found that infections with FCV strains F9, Bolin and HRB-SS at the 100 or 1000 TCID50 doses could not activate the IFN-β promoter at 12 and 24h post-infection. Only strain 2280 infection at a 1000 TCID50 dose could induce the IFN-β promoter mainly through IRF3 and partially through NF-κB, at 24h post-infection. However, the IFN response occurred much later and was smaller in magnitude compared with that following Sendai virus (SeV) infection. Further, we found that induction of the IFN-β promoter by FCV 2280 infection depended on dsRNA and not on viral proteins. Finally, we examined whether the IFN-β response had an antiviral effect against FCV replication. The over-expression of IFN-β before exposure to the virus reduced viral yields by a range of 2.2-3.2 log10TCID50, but its over-expression at 12h post-infection did not inhibit FCV replication. Our results indicate that some FCV strains cannot induce IFN-β expression in vitro, which may be a potential factor for FCV survival in cats. Whether this is important in evading the host interferon response in vivo must be investigated. PMID:26051884

  12. Control of IgE responses. III. IL-6 and IFN-alpha are isotype-specific regulators of peak BPO-specific IgE antibody-forming cell responses in mice.

    PubMed

    Auci, D L; Kleiner, G I; Chice, S M; Dukor, P; Durkin, H G

    1993-03-01

    The ability of cytokines (IL-4, IL-5, IL-6, IFN-alpha, IFN-gamma, TNF-alpha, GmCSF) to regulate peak benzylpenicilloyl (BPO)-specific IgE antibody-forming cell (AFC) responses was investigated. These responses were induced in BALB/c mice by ip injection of BPO-keyhole limpet hemocyanin (BPO-KLH; 10 micrograms) in aluminum hydroxide gel on Days 0, 21, and 42. On Day 44, or on Days 43, 44, and 45, mice were injected sc with varying doses of cytokine or anti-cytokine antibody. On Day 46, the numbers of BPO-specific AFC (IgM, IgG1, IgE and IgA) in spleen were determined ex vivo in enzyme-linked immunosorbent spot assay. Among the cytokines tested, only IL-6 suppressed BPO-specific IgE AFC responses in an isotype-specific fashion (60-90%). However, treatment of mice with anti-IL-6 also suppressed these responses, suggesting that IL-6 can either suppress or increase peak antigen specific IgE responses, depending upon its concentration. Among the cytokines tested, only IFN-alpha increased BPO-specific IgE AFC responses in an isotype-specific fashion. Since treatment with anti-IFN-alpha suppressed these responses, it appears that IFN-alpha is required to maintain peak antigen-specific IgE AFC responses. IL-4 or IFN-gamma nonspecifically suppressed responses of all isotypes. Treatment with anti-IL-4 also suppressed IgE responses, suggesting that this cytokine is required to maintain peak antigen specific IgE responses. Treatment with anti-IFN-gamma increased IgE responses, indicating that IFN-gamma suppresses peak antigen-specific IgE responses.

  13. Double-stranded RNA induces biphasic STAT1 phosphorylation by both type I interferon (IFN)-dependent and type I IFN-independent pathways.

    PubMed

    Dempoya, Junichi; Matsumiya, Tomoh; Imaizumi, Tadaatsu; Hayakari, Ryo; Xing, Fei; Yoshida, Hidemi; Okumura, Ken; Satoh, Kei

    2012-12-01

    Upon viral infection, pattern recognition receptors sense viral nucleic acids, leading to the production of type I interferons (IFNs), which initiate antiviral activities. Type I IFNs bind to their cognate receptor, IFNAR, resulting in the activation of signal-transducing activators of transcription 1 (STAT1). Thus, it has long been thought that double-stranded RNA (dsRNA)-induced STAT1 phosphorylation is mediated by the transactivation of type I IFN signaling. Foreign RNA, such as viral RNA, in cells is sensed by the cytoplasmic sensors retinoic acid-inducible gene I (RIG-I) and melanoma differentiation-associated gene 5 (MDA-5). In this study, we explored the molecular mechanism responsible for STAT1 phosphorylation in response to the sensing of dsRNA by cytosolic RNA sensors. Polyinosinic-poly(C) [poly(I:C)], a synthetic dsRNA that is sensed by both RIG-I and MDA-5, induces STAT1 phosphorylation. We found that the poly(I:C)-induced initial phosphorylation of STAT1 is dependent on the RIG-I pathway and that MDA-5 is not involved in STAT1 phosphorylation. Furthermore, pretreatment of the cells with neutralizing antibody targeting the IFN receptor suppressed the initial STAT1 phosphorylation in response to poly(I:C), suggesting that this initial phosphorylation event is predominantly type I IFN dependent. In contrast, neither the known RIG-I pathway nor type I IFN is involved in the late phosphorylation of STAT1. In addition, poly(I:C) stimulated STAT1 phosphorylation in type I IFN receptor-deficient U5A cells with delayed kinetics. Collectively, our study provides evidence of a comprehensive regulatory mechanism in which dsRNA induces STAT1 phosphorylation, indicating the importance of STAT1 in maintaining very tight regulation of the innate immune system.

  14. A Model of DENV-3 Infection That Recapitulates Severe Disease and Highlights the Importance of IFN-γ in Host Resistance to Infection

    PubMed Central

    Valadão, Deborah F.; Cisalpino, Daniel; Dias, Ana Carolina F.; Silveira, Kátia D.; Kangussu, Lucas M.; Ávila, Thiago V.; Bonfim, Maria Rosa Q.; Bonaventura, Daniela; Silva, Tarcília A.; Sousa, Lirlândia P.; Rachid, Milene A.; Vieira, Leda Q.; Menezes, Gustavo B.; de Paula, Ana Maria; Atrasheuskaya, Alena; Ignatyev, George; Teixeira, Mauro M.; Souza, Danielle G.

    2012-01-01

    There are few animal models of dengue infection, especially in immunocompetent mice. Here, we describe alterations found in adult immunocompetent mice inoculated with an adapted Dengue virus (DENV-3) strain. Infection of mice with the adapted DENV-3 caused inoculum-dependent lethality that was preceded by several hematological and biochemical changes and increased virus dissemination, features consistent with severe disease manifestation in humans. IFN-γ expression increased after DENV-3 infection of WT mice and this was preceded by increase in expression of IL-12 and IL-18. In DENV-3-inoculated IFN-γ−/− mice, there was enhanced lethality, which was preceded by severe disease manifestation and virus replication. Lack of IFN-γ production was associated with diminished NO-synthase 2 (NOS2) expression and higher susceptibility of NOS2−/− mice to DENV-3 infection. Therefore, mechanisms of protection to DENV-3 infection rely on IFN-γ-NOS2-NO-dependent control of viral replication and of disease severity, a pathway showed to be relevant for resistance to DENV infection in other experimental and clinical settings. Thus, the model of DENV-3 infection in immunocompetent mice described here represents a significant advance in animal models of severe dengue disease and may provide an important tool to the elucidation of immunopathogenesis of disease and of protective mechanisms associated with infection. PMID:22666512

  15. IL-15 Superagonist–Mediated Immunotoxicity: Role of NK Cells and IFN

    PubMed Central

    Guo, Yin; Luan, Liming; Rabacal, Whitney; Bohannon, Julia K.; Fensterheim, Benjamin A.; Hernandez, Antonio

    2015-01-01

    IL-15 is currently undergoing clinical trials to assess its efficacy for treatment of advanced cancers. The combination of IL-15 with soluble IL-15Rα generates a complex termed IL-15 superagonist (IL-15 SA) that possesses greater biological activity than IL-15 alone. IL-15 SA is considered an attractive antitumor and antiviral agent because of its ability to selectively expand NK and memory CD8+ T (mCD8+ T) lymphocytes. However, the adverse consequences of IL-15 SA treatment have not been defined. In this study, the effect of IL-15 SA on physiologic and immunologic functions of mice was evaluated. IL-15 SA caused dose- and time-dependent hypothermia, weight loss, liver injury, and mortality. NK (especially the proinflammatory NK subset), NKT, and mCD8+ T cells were preferentially expanded in spleen and liver upon IL-15 SA treatment. IL-15 SA caused NK cell activation as indicated by increased CD69 expression and IFN-γ, perforin, and granzyme B production, whereas NKT and mCD8+ T cells showed minimal, if any, activation. Cell depletion and adoptive transfer studies showed that the systemic toxicity of IL-15 SA was mediated by hyperproliferation of activated NK cells. Production of the proinflammatory cytokine IFN-γ, but not TNF-α or perforin, was essential to IL-15 SA–induced immunotoxicity. The toxicity and immunological alterations shown in this study are comparable to those reported in recent clinical trials of IL-15 in patients with refractory cancers and advance current knowledge by providing mechanistic insights into IL-15 SA–mediated immunotoxicity. PMID:26216888

  16. Sources of interferon-gamma (IFN-gamma) in early immune response to Listeria monocytogenes.

    PubMed

    Thäle, Carsten; Kiderlen, Albrecht F

    2005-01-01

    Early, innate production of interferon-gamma (IFN-gamma) is a critical step in immunological defense against certain pathogens such as intracellular bacteria (e.g. Listeria monocytogenes), viruses and fungi. While activated T cells and activated natural killer (NK) cells were initially thought to be the only relevant source of IFN-gamma, macrophages (Mphi) and dendritic cells can also be stimulated to produce IFN-gamma in vitro under certain conditions. However, a convincing analysis at single cell level of the source(s) of IFN-gamma in the early immune response to an acute bacterial infection is still missing. In the light of controversial literature, the work presented here aimed to clarify the role of NK cells and other components of the innate cellular immune system in the early IFN-gamma production, thereby avoiding in vitro artifacts whenever possible. Immunocompetent C57BL/6 (wild type (WT)) and T and B cell-deficient C57BL/6 rag-1(-/-) (RAG) mice were infected intravenously with a pathogenic strain of L. monocytogenes. Leukocyte populations of spleen and liver were discriminated by characteristic surface markers and analyzed for intracellular interleukin (IL)-12 and IFN-gamma using flow cytometry. These cells have not been restimulated in vitro nor sorted before analysis. In RAG mice, at least, a large NK1.1+ cell population produced IFN-gamma 19 h p.i. No MHC class II+ population co-expressed intracellular IFN-gamma at this time point. For comparison with the immunocompetent situation, syngeneic WT mice were also infected and sacrificed 9, 19, and 29 h later. At 9 h p.i., the situation resembled that of uninfected mice. At 19 and 29 h p.i. it was again the NK1.1+ population that contained most of the IFN-gamma-positive events. MHC II + CD 19- Mphi/dendritic cells and MHC II+ CD19+ B cells did not co-express intracellular IFN-gamma at these time points. CD3+ T cells were also found to contain intracellular IFN-gamma; most were also CD8+ and some CD4+. These

  17. A role for the transcription factor RelB in IFN-alpha production and in IFN-alpha-stimulated cross-priming.

    PubMed

    Le Bon, Agne; Montoya, Maria; Edwards, Matthew J; Thompson, Clare; Burke, Shannon A; Ashton, Miranda; Lo, David; Tough, David F; Borrow, Persephone

    2006-08-01

    Chimeric mice generated with bone marrow from RelB-deficient (-/-), RelB-heterozygous (+/-) and wild-type (+/+) mice were used to determine how total or partial absence of the transcription factor RelB in haematopoietic cells affects the immune response generated after lymphocytic choriomeningitis virus (LCMV) infection. In RelB(-/-) chimeras, early virus replication was enhanced and LCMV clearance was impaired. Although plasmacytoid dendritic cell numbers were similar, serum interferon (IFN)-alpha levels in RelB(-/-) and RelB(+/-) chimeras were markedly lower than in RelB(+/+) chimeras during early LCMV infection. Further, both RelB(-/-) and RelB(+/-) chimeras mounted a lower-magnitude LCMV-specific CD8(+) T cell response than their RelB(+/+) counterparts, although the LCMV-specific CD8(+) T cells present were differentiated into functional cytotoxic cells. In LCMV-infected RelB(-/-) mice, induction of cross-priming to an independently injected soluble protein, which depends on the IFN-alpha/beta made during the viral infection, was also impaired. Notably, provision of exogenous IFN-alpha did not restore the ability of RelB(-/-) mice to cross-prime. In summary, these results show that the RelB/NF-kappaB pathway is required for optimal IFN-alpha production after LCMV infection and suggest a crucial role for RelB in IFN-alpha-stimulated cross-priming of CD8(+) T cell responses. PMID:16810633

  18. THYROXINE (T4) CATABOLISM IN HUMAN AND RAT HEPATOCYTES INCREASES FOLLOWING EXPOSURE TO HEPATIC ENZYME INDUCERS

    EPA Science Inventory

    Nuclear receptor agonists phenobarbital (PB), 3-methylcholanthrene (3MC), pregnenolone-16a-carbonitrile (PCN), 2,2',4,4',5,5'-hexachlorobiphenyl (PCB 153), and 2,2' ,4,4'-tetrabromodiphenyl ether (BDE 47) decrease serum thyroxine (T4) in rats. This decrease is thought to occur th...

  19. IL-27 Induced by Select Candida spp. via TLR7/NOD2 Signaling and IFN-β Production Inhibits Fungal Clearance

    PubMed Central

    Patin, Emmanuel C.; Jones, Adam V.; Thompson, Aiysha; Clement, Mathew; Liao, Chia-Te; Griffiths, James S.; Wallace, Leah E.; Bryant, Clare E.; Lang, Roland; Rosenstiel, Philip; Humphreys, Ian R.; Taylor, Philip R.

    2016-01-01

    Candida spp. elicit cytokine production downstream of various pathogen recognition receptors, including C-type lectin-like receptors, TLRs, and nucleotide oligomerization domain (NOD)–like receptors. IL-12 family members IL-12p70 and IL-23 are important for host immunity against Candida spp. In this article, we show that IL-27, another IL-12 family member, is produced by myeloid cells in response to selected Candida spp. We demonstrate a novel mechanism for Candida parapsilosis–mediated induction of IL-27 in a TLR7-, MyD88-, and NOD2-dependent manner. Our data revealed that IFN-β is induced by C. parapsilosis, which in turn signals through the IFN-α/β receptor and STAT1/2 to induce IL-27. Moreover, IL-27R (WSX-1)–deficient mice systemically infected with C. parapsilosis displayed enhanced pathogen clearance compared with wild-type mice. This was associated with increased levels of proinflammatory cytokines in the serum and increased IFN-γ and IL-17 responses in the spleens of IL-27R–deficient mice. Thus, our data define a novel link between C. parapsilosis, TLR7, NOD2, IFN-β, and IL-27, and we have identified an important role for IL-27 in the immune response against C. parapsilosis. Overall, these findings demonstrate an important mechanism for the suppression of protective immune responses during infection with C. parapsilosis, which has potential relevance for infections with other fungal pathogens. PMID:27259855

  20. IL-27 Induced by Select Candida spp. via TLR7/NOD2 Signaling and IFN-β Production Inhibits Fungal Clearance.

    PubMed

    Patin, Emmanuel C; Jones, Adam V; Thompson, Aiysha; Clement, Mathew; Liao, Chia-Te; Griffiths, James S; Wallace, Leah E; Bryant, Clare E; Lang, Roland; Rosenstiel, Philip; Humphreys, Ian R; Taylor, Philip R; Jones, Gareth W; Orr, Selinda J

    2016-07-01

    Candida spp. elicit cytokine production downstream of various pathogen recognition receptors, including C-type lectin-like receptors, TLRs, and nucleotide oligomerization domain (NOD)-like receptors. IL-12 family members IL-12p70 and IL-23 are important for host immunity against Candida spp. In this article, we show that IL-27, another IL-12 family member, is produced by myeloid cells in response to selected Candida spp. We demonstrate a novel mechanism for Candida parapsilosis-mediated induction of IL-27 in a TLR7-, MyD88-, and NOD2-dependent manner. Our data revealed that IFN-β is induced by C. parapsilosis, which in turn signals through the IFN-α/β receptor and STAT1/2 to induce IL-27. Moreover, IL-27R (WSX-1)-deficient mice systemically infected with C. parapsilosis displayed enhanced pathogen clearance compared with wild-type mice. This was associated with increased levels of proinflammatory cytokines in the serum and increased IFN-γ and IL-17 responses in the spleens of IL-27R-deficient mice. Thus, our data define a novel link between C. parapsilosis, TLR7, NOD2, IFN-β, and IL-27, and we have identified an important role for IL-27 in the immune response against C. parapsilosis Overall, these findings demonstrate an important mechanism for the suppression of protective immune responses during infection with C. parapsilosis, which has potential relevance for infections with other fungal pathogens. PMID:27259855

  1. Down modulation of IFN-{gamma} signaling in alveolar macrophages isolated from smokers

    SciTech Connect

    Dhillon, Navneet K.; Murphy, William J.; Filla, Michael B.; Crespo, Ana J.; Latham, Heath A.; O'Brien-Ladner, Amy

    2009-05-15

    The master cytokine, IFN-{gamma} possesses a wide spectrum of biological effects and is crucial for development of the highly activated macrophage phenotype characteristically found during inflammation. However, no data exists regarding the potential influence of cigarette smoke on the status of the expression of the cell surface receptor for IFN-{gamma} (IFN-{gamma}R) on alveolar macrophages (AM) of smokers. Here in, we report reduction in the expression of the IFN-{gamma}R {alpha}-chain on AM of cigarette smokers, when compared with non-smokers. Ensuing from the loss of receptor expression on the AM of smokers there was a decrease in IFN-{gamma}-mediated cell signaling. This included a decrease in the phosphorylation of signal transducer and activator of transcription (STAT)-1 and induction of interferon regulatory factor (IRF)-1. Further, diminished activation/induction of transcription factors did not appear to result from induction of known members of the 'suppressors of cytokine signaling (SOCS)' family. Decreased IFN-{gamma} signal transduction in AM from smokers may have an important implication regarding the use of therapeutic IFN-{gamma} in the lungs of patients that develop respiratory disorders as a result of tobacco use.

  2. Systemic inflammation and insulin sensitivity in obese IFN-γ knockout mice

    PubMed Central

    O’Rourke, Robert W.; White, Ashley E.; Metcalf, Monja D.; Winters, Brian R.; Diggs, Brian S.; Zhu, Xinxia; Marks, Daniel L.

    2012-01-01

    Adipose tissue macrophages are important mediators of inflammation and insulin resistance in obesity. IFN-γ is a central regulator of macrophage function. The role of IFN-γ in regulating systemic inflammation and insulin resistance in obesity is unknown. We studied obese IFN-γ knockout mice to identify the role of IFN-γ in regulating inflammation and insulin sensitivity in obesity. IFN-γ-knockout C57Bl/6 mice and wild-type control litter mates were maintained on normal chow or a high fat diet for 13 weeks and then underwent insulin sensitivity testing then sacrifice and tissue collection. Flow cytometry, intracellular cytokine staining, and QRTPCR were used to define tissue lymphocyte phenotype and cytokine expression profiles. Adipocyte size was determined from whole adipose tissue explants examined under immunofluorescence microscopy. Diet-induced obesity induced systemic inflammation and insulin resistance, along with a pan-leukocyte adipose tissue infiltrate that includes macrophages, T-cells, and NK cells. Obese IFN-γ-knockout animals, compared with obese wild-type control animals, demonstrate modest improvements in insulin sensitivity, decreased adipocyte size, and an M2-shift in ATM phenotype and cytokine expression. These data suggest a role for IFN-γ in the regulation of inflammation and glucose homeostasis in obesity though multiple potential mechanisms, including effects on adipogenesis, cytokine expression, and macrophage phenotype. PMID:22386937

  3. OK-432 synergizes with IFN-γ to confer dendritic cells with enhanced antitumor immunity.

    PubMed

    Pan, Ke; Lv, Lin; Zheng, Hai-xia; Zhao, Jing-jing; Pan, Qiu-zhong; Li, Jian-jun; Weng, De-sheng; Wang, Dan-dan; Jiang, Shan-shan; Chang, Alfred E; Li, Qiao; Xia, Jian-chuan

    2014-03-01

    Generation of functional dendritic cells (DCs) with boosted immunity after the withdrawal of initial activation/maturation conditions remains a significant challenge. In this study, we investigated the impact of a newly developed maturation cocktail consisting of OK-432 and interferon-gamma (IFN-γ) on the function of human monocyte-derived DCs (MoDCs). We found that OK-432 plus IFN-γ stimulation could induce significantly stronger expression of surface molecules, production of cytokines, as well as migration of DCs compared with OK-432 stimulation alone. Most importantly, DCs matured with OK-432 plus IFN-γ-induced maintained secretion of interleukin-12 (IL-12)p70 in secondary culture after stimulus withdrawal. Functionally, OK-432 plus IFN-γ-conditioned DCs induce remarkable Th1 and Tc1 responses more effectively than OK-432 alone, even more than the use of α-type-1 cytokine cocktail. As a result, DCs matured with OK-432 plus IFN-γ can prime stronger cytotoxic lymphocyte (CTL) and natural killer (NK) cell response against tumor cells in vitro. Peripheral blood mononuclear cells activated by DCs matured with OK-432 plus IFN-γ also showed greater tumor growth inhibition in vivo in null mice. Molecular mechanistic analysis showed that DC maturation using IFN-γ in concert with OK-432 involves the activation of p38 and nuclear factor-kappa B (NF-κB) pathways. This study provided a novel strategy to generate more potent immune segments in DC vaccine.

  4. Post-transcriptional regulation of macrophage ABCA1, an early response gene to IFN-{gamma}

    SciTech Connect

    Alfaro Leon, Martha Leticia; Evans, Glenn F.; Farmen, Mark W.; Zuckerman, Steven H. . E-mail: Zuckerman_Steven@Lilly.com

    2005-07-29

    Interferon-{gamma} (IFN-{gamma}) down-regulates receptors associated with reverse cholesterol transport including ABCA1. In the present study, the kinetics and mechanism of ABCA1 down-regulation were determined in mouse peritoneal macrophages. IFN-{gamma} decreased ABCA1 mRNA 1 h following IFN-{gamma} addition and was maximally reduced by 3 h. Down-regulation was protein synthesis dependent and involved post-transcriptional processes. ABCA1 message had a T {sub 1/2} of 115 min in actinomycin treated cells that was reduced to a T {sub 1/2} of 37 min by IFN-{gamma}. The decrease in message stability was also associated with a rapid loss of ABCA1 protein, significant 3 h following IFN-{gamma} addition. The kinetics of ABCA1 message and protein decrease was consistent with the early IFN-{gamma}-induced changes in Stat1 phosphorylation and nuclear translocation observed in these cells. Therefore, ABCA1 can be considered as an early response gene to macrophage activation by IFN-{gamma} with down-regulation occurring by message destabilization.

  5. Lineage-specific expansion of IFIT gene family: an insight into coevolution with IFN gene family.

    PubMed

    Liu, Ying; Zhang, Yi-Bing; Liu, Ting-Kai; Gui, Jian-Fang

    2013-01-01

    In mammals, IFIT (Interferon [IFN]-induced proteins with Tetratricopeptide Repeat [TPR] motifs) family genes are involved in many cellular and viral processes, which are tightly related to mammalian IFN response. However, little is known about non-mammalian IFIT genes. In the present study, IFIT genes are identified in the genome databases from the jawed vertebrates including the cartilaginous elephant shark but not from non-vertebrates such as lancelet, sea squirt and acorn worm, suggesting that IFIT gene family originates from a vertebrate ancestor about 450 million years ago. IFIT family genes show conserved gene structure and gene arrangements. Phylogenetic analyses reveal that this gene family has expanded through lineage-specific and species-specific gene duplication. Interestingly, IFN gene family seem to share a common ancestor and a similar evolutionary mechanism; the function link of IFIT genes to IFN response is present early since the origin of both gene families, as evidenced by the finding that zebrafish IFIT genes are upregulated by fish IFNs, poly(I:C) and two transcription factors IRF3/IRF7, likely via the IFN-stimulated response elements (ISRE) within the promoters of vertebrate IFIT family genes. These coevolution features creates functional association of both family genes to fulfill a common biological process, which is likely selected by viral infection during evolution of vertebrates. Our results are helpful for understanding of evolution of vertebrate IFN system. PMID:23818968

  6. Respiratory Syncytial Virus Persistence in Murine Macrophages Impairs IFN-β Response but Not Synthesis

    PubMed Central

    Rivera-Toledo, Evelyn; Torres-González, Laura; Gómez, Beatriz

    2015-01-01

    Type-I interferon (IFN-I) production is an early response to viral infection and pathogenic viruses have evolved multiple strategies to evade this cellular defense. Some viruses can establish and maintain persistent infections by altering the IFN-I signaling pathway. Here, we studied IFN-I synthesis and response in an in vitro model of persistent infection by respiratory syncytial virus (RSV) in a murine macrophage-like cell line. In this model, interferon regulatory factor 3 was constitutively active and located at nuclei of persistently infected cells, inducing expression of IFN-beta mRNA and protein. However, persistently infected macrophages did not respond in an autocrine manner to the secreted-IFN-beta or to recombinant-IFN-beta, since phosphorylated-STAT1 was not detected by western blot and transcription of the interferon-stimulated genes (ISGs) Mx1 and ISG56 was not induced. Treatment of non-infected macrophages with supernatants from persistently infected cells induced STAT1 phosphorylation and ISGs expression, mediated by the IFN-I present in the supernatants, because blocking the IFN-I receptor inhibited STAT1 phosphorylation. Results suggest that the lack of autocrine response to IFN-I by the host cell may be one mechanism for maintenance of RSV persistence. Furthermore, STAT1 phosphorylation and ISGs expression induced in non-infected cells by supernatants from persistently infected macrophages suggest that RSV persistence may trigger a proinflammatory phenotype in non-infected cells as part of the pathogenesis of RSV infection. PMID:26501312

  7. Glycogen synthase kinase-3 facilitates con a-induced IFN-γ-- mediated immune hepatic injury.

    PubMed

    Tsai, Cheng-Chieh; Huang, Wei-Ching; Chen, Chia-Ling; Hsieh, Chia-Yuan; Lin, Yee-Shin; Chen, Shun-Hua; Yang, Kao-Chi; Lin, Chiou-Feng

    2011-10-01

    Immune hepatic injury induced by Con A results primarily from IFN-γ-mediated inflammation, followed by hepatic cell death. Glycogen synthase kinase (GSK)-3, which acts proapoptotically and is proinflammatory, is also important for facilitating IFN-γ signaling. We hypothesized a pathogenic role for GSK-3 in Con A hepatic injury. Con A stimulation caused GSK-3 activation in the livers of C57BL/6 mice. Inhibiting GSK-3 reduced Con A hepatic injury, including hepatic necrosis and apoptosis, inflammation, infiltration of T cells and granulocytes, and deregulated expression of adhesion molecule CD54. Con A induced hepatic injury in an IFN-γ receptor 1-dependent manner. Con A/IFN-γ induced activation and expression of STAT1 in a GSK-3-dependent manner. GSK-3 facilitated IFN-γ-induced inducible NO synthase, but had limited effects on CD95 upregulation and CD95-mediated hepatocyte apoptosis in vitro. Notably, inhibiting GSK-3 decreased Con A-induced IFN-γ production in both wild-type and IFN-γ receptor 1-deficient C57BL/6 mice. In Con A-activated NKT cells, GSK-3 was also activated and was required for nuclear translocation of T-box transcription factor Tbx21, a transcription factor of IFN-γ, but it was not required for CD95 ligand expression or activation-induced cell death. These results demonstrate the dual and indispensable role of GSK-3 in Con A hepatic injury by facilitating IFN-γ-induced hepatopathy.

  8. Viral Inhibition of the IFN-Induced JAK/STAT Signalling Pathway: Development of Live Attenuated Vaccines by Mutation of Viral-Encoded IFN-Antagonists.

    PubMed

    Fleming, Stephen B

    2016-01-01

    The interferon (IFN) induced anti-viral response is amongst the earliest and most potent of the innate responses to fight viral infection. The induction of the Janus kinase/signal transducer and activation of transcription (JAK/STAT) signalling pathway by IFNs leads to the upregulation of hundreds of interferon stimulated genes (ISGs) for which, many have the ability to rapidly kill viruses within infected cells. During the long course of evolution, viruses have evolved an extraordinary range of strategies to counteract the host immune responses in particular by targeting the JAK/STAT signalling pathway. Understanding how the IFN system is inhibited has provided critical insights into viral virulence and pathogenesis. Moreover, identification of factors encoded by viruses that modulate the JAK/STAT pathway has opened up opportunities to create new anti-viral drugs and rationally attenuated new generation vaccines, particularly for RNA viruses, by reverse genetics. PMID:27367734

  9. Viral Inhibition of the IFN-Induced JAK/STAT Signalling Pathway: Development of Live Attenuated Vaccines by Mutation of Viral-Encoded IFN-Antagonists

    PubMed Central

    Fleming, Stephen B.

    2016-01-01

    The interferon (IFN) induced anti-viral response is amongst the earliest and most potent of the innate responses to fight viral infection. The induction of the Janus kinase/signal transducer and activation of transcription (JAK/STAT) signalling pathway by IFNs leads to the upregulation of hundreds of interferon stimulated genes (ISGs) for which, many have the ability to rapidly kill viruses within infected cells. During the long course of evolution, viruses have evolved an extraordinary range of strategies to counteract the host immune responses in particular by targeting the JAK/STAT signalling pathway. Understanding how the IFN system is inhibited has provided critical insights into viral virulence and pathogenesis. Moreover, identification of factors encoded by viruses that modulate the JAK/STAT pathway has opened up opportunities to create new anti-viral drugs and rationally attenuated new generation vaccines, particularly for RNA viruses, by reverse genetics. PMID:27367734

  10. Multiplex cytokine profile from dengue patients: MIP-1beta and IFN-gamma as predictive factors for severity

    PubMed Central

    Bozza, Fernando A; Cruz, Oswaldo G; Zagne, Sonia MO; Azeredo, Elzinandes L; Nogueira, Rita MR; Assis, Edson F; Bozza, Patricia T; Kubelka, Claire F

    2008-01-01

    Background Dengue virus pathogenesis is not yet fully understood and the identification of patients at high risk for developing severe disease forms is still a great challenge in dengue patient care. During the present study, we evaluated prospectively the potential of cytokines present in plasma from patients with dengue in stratifying disease severity. Methods Seventeen-cytokine multiplex fluorescent microbead immunoassay was used for the simultaneous detection in 59 dengue patients. GLM models using bimodal or Gaussian family were determined in order to associate cytokines with clinical manifestations and laboratory diagnosis. Results IL-1β, IFN-γ, IL-4, IL-6, IL-13, IL-7 and GM-CSF were significantly increased in patients with severe clinical manifestations (severe dengue) when compared to mild disease forms (mild dengue). In contrast, increased MIP-1β levels were observed in patients with mild dengue. MIP-1β was also associated with CD56+NK cell circulating rates. IL-1β, IL-8, TNF-α and MCP-1 were associated with marked thrombocytopenia. Increased MCP-1 and GM-CSF levels correlated with hypotension. Moreover, MIP-1β and IFN-γ were independently associated with both dengue severity and disease outcome. Conclusion Our data demonstrated that the use of a multiple cytokine assay platform was suitable for identifying distinct cytokine profiles associated with the dengue clinical manifestations and severity. MIP-β is indicated for the first time as a good prognostic marker in contrast to IFN-γ that was associated with disease severity. PMID:18578883

  11. IFN-γ and IL-21 Double Producing T Cells Are Bcl6-Independent and Survive into the Memory Phase in Plasmodium chabaudi Infection.

    PubMed

    Carpio, Victor H; Opata, Michael M; Montañez, Marelle E; Banerjee, Pinaki P; Dent, Alexander L; Stephens, Robin

    2015-01-01

    CD4 T cells are required to fight malaria infection by promoting both phagocytic activity and B cell responses for parasite clearance. In Plasmodium chabaudi infection, one specific CD4 T cell subset generates anti-parasitic IFN-γ and the antibody-promoting cytokine, IL-21. To determine the lineage of these multifunctional T cells, we followed IFN-γ+ effector T cells (Teff) into the memory phase using Ifng-reporter mice. While Ifng+ Teff expanded, the level of the Th1 lineage-determining transcription factor T-bet only peaked briefly. Ifng+ Teff also co-express ICOS, the B cell area homing molecule CXCR5, and other Tfh lineage-associated molecules including Bcl6, the transcription factor required for germinal center (GC) T follicular helper cells (Tfh) differentiation. Because Bcl6 and T-bet co-localize to the nucleus of Ifng+ Teff, we hypothesized that Bcl6 controls the Tfh-like phenotype of Ifng+ Teff cells in P. chabaudi infection. We first transferred Bcl6-deficient T cells into wildtype hosts. Bcl6-deficient T cells did not develop into GC Tfh, but they still generated CXCR5+ IFN-γ+ IL-21+ IL-10+ Teff, suggesting that this predominant population is not of the Tfh-lineage. IL-10 deficient mice, which have increased IFN-γ and T-bet expression, demonstrated expansion of both IFN-γ+ IL-21+ CXCR5+ cells and IFN-γ+ GC Tfh cells, suggesting a Th1 lineage for the former. In the memory phase, all Ifng+ T cells produced IL-21, but only a small percentage of highly proliferative Ifng+ T cells maintained a T-bethi phenotype. In chronic malaria infection, serum IFN-γ correlates with increased protection, and our observation suggests Ifng+ T cells are maintained by cellular division. In summary, we found that Ifng+ T cells are not strictly Tfh derived during malaria infection. T cells provide the host with a survival advantage when facing this well-equipped pathogen, therefore, understanding the lineage of pivotal T cell players will aid in the rational design of an

  12. IFN-γ and TNF-α are involved during Alzheimer disease progression and correlate with nitric oxide production: a study in Algerian patients.

    PubMed

    Belkhelfa, Mourad; Rafa, Hayet; Medjeber, Oussama; Arroul-Lammali, Amina; Behairi, Nassima; Abada-Bendib, Myriam; Makrelouf, Mohamed; Belarbi, Soreya; Masmoudi, Ahmed Nacer; Tazir, Meriem; Touil-Boukoffa, Chafia

    2014-11-01

    Alzheimer's disease (AD) is a neurodegenerative disease leading to a progressive and irreversible loss of mental functions. It is characterized by 3 stages according to the evolution and the severity of the symptoms. This disease is associated with an immune disorder, which appears with significant rise in the inflammatory cytokines and increased production of free radicals such as nitric oxide (NO). Our study aims to investigate interferon (IFN)-γ and tumor necrosis factor-α (TNF-α) involvement in NO production, in vivo and ex vivo, in peripheral blood mononuclear cells from Algerian patients (n=25), according to the different stages of the disease (mild Alzheimer's, moderate Alzheimer's, and severe Alzheimer's) in comparison to mild cognitive impairment (MCI) patients. Interestingly, we observed that in vivo IFN-γ and TNF-α levels assessed in patients with AD in mild and severe stages, respectively, are higher than those observed in patients with moderate stage and MCI. Our in vivo and ex vivo results show that NO production is related to the increased levels of IFN-γ and TNF-α, in mild and severe stages of AD. Remarkably, significant IFN-γ level is only detected in mild stage of AD. Our study suggests that NO production is IFN-γ dependent both in MCI and mild Alzheimer's patients. Further, high levels of NO are associated with an elevation of TNF-α levels in severe stage of AD. Collectively, our data indicate that the proinflammatory cytokine production seems, in part, to be involved in neurological deleterious effects observed during the development of AD through NO pathway.

  13. The correlation of Tim-3 and IFN-γ expressions in mice infected with Toxoplasma gondii during gestation.

    PubMed

    Fu, Xiaoyin; Wu, Bin; Huang, Bo; Zheng, Huanqin; Huang, Shiguang; Gan, Yan; Shen, Jilong; Lun, Zhao-Rong; Lu, Fangli

    2015-01-01

    The immunoinhibitory receptor T cell immunoglobulin domain and mucin domain-1 (Tim-1) and Tim-3 participate in the regulation of Th immune response as well as innate immunity. However, there is no report about the expression of Tim genes in Toxoplasma gondii-infected experimental models during pregnancy. In this study, Kunming outbred pregnant mice were infected with RH strain of T. gondii through vagina at days 10 to 16 of gestation, and the mRNA expressions of Tim-1, Tim-3, interleukin (IL)-4, and interferon (IFN)-γ in the placentas, uteri, and draining lumber aortic lymph nodes (LALNs) at day 18 of gestation were analyzed using quantitative real-time PCR (qRT-PCR). Compared with uninfected pregnant controls, significantly increased levels of IFN-γ and Tim-3 were detected in the placentas (P < 0.001), uteri (P = 0.003 and P = 0.017, respectively), and LALNs (P = 0.003 and P = 0.025, respectively) of T. gondii-infected mice; there were positive and significant correlations between Tim-3 and IFN-γ mRNA expression levels in the placentas (R(2) = 0.6331, P = 0.0011), uteri (R(2) = 0.5658, P = 0.003), and LALNs (R(2) = 0.5583, P = 0.0033) of infected mice. Tim-1 (P = 0.002) and IL-4 (P = 0.003) expressions were significantly increased in the placentas, but Tim-1 were significantly decreased in the uteri (P = 0.013) and LALNs (P < 0.001) of infected pregnant mice in comparison of uninfected pregnant controls. Our data suggested that Tim-3 may play a regulatory role in T. gondii-infected pregnant mouse model.

  14. Quantifying the Antiviral Effect of IFN on HIV-1 Replication in Cell Culture

    PubMed Central

    Ikeda, Hiroki; Godinho-Santos, Ana; Rato, Sylvie; Vanwalscappel, Bénédicte; Clavel, François; Aihara, Kazuyuki; Iwami, Shingo; Mammano, Fabrizio

    2015-01-01

    Type-I interferons (IFNs) induce the expression of hundreds of cellular genes, some of which have direct antiviral activities. Although IFNs restrict different steps of HIV replication cycle, their dominant antiviral effect remains unclear. We first quantified the inhibition of HIV replication by IFN in tissue culture, using viruses with different tropism and growth kinetics. By combining experimental and mathematical analyses, we determined quantitative estimates for key parameters of HIV replication and inhibition, and demonstrate that IFN mainly inhibits de novo infection (33% and 47% for a X4- and a R5-strain, respectively), rather than virus production (15% and 6% for the X4 and R5 strains, respectively). This finding is in agreement with patient-derived data analyses. PMID:26119462

  15. Quantifying the Antiviral Effect of IFN on HIV-1 Replication in Cell Culture

    NASA Astrophysics Data System (ADS)

    Ikeda, Hiroki; Godinho-Santos, Ana; Rato, Sylvie; Vanwalscappel, Bénédicte; Clavel, François; Aihara, Kazuyuki; Iwami, Shingo; Mammano, Fabrizio

    2015-06-01

    Type-I interferons (IFNs) induce the expression of hundreds of cellular genes, some of which have direct antiviral activities. Although IFNs restrict different steps of HIV replication cycle, their dominant antiviral effect remains unclear. We first quantified the inhibition of HIV replication by IFN in tissue culture, using viruses with different tropism and growth kinetics. By combining experimental and mathematical analyses, we determined quantitative estimates for key parameters of HIV replication and inhibition, and demonstrate that IFN mainly inhibits de novo infection (33% and 47% for a X4- and a R5-strain, respectively), rather than virus production (15% and 6% for the X4 and R5 strains, respectively). This finding is in agreement with patient-derived data analyses.

  16. Potential therapeutic use of antibodies directed towards HuIFN-gamma.

    PubMed

    Froyen, G; Billiau, A

    1997-01-01

    IFN-gamma is an important regulator of immune responses and inflammation. Studies in animal models of inflammation, autoimmunity, cancer, transplant rejection and delayed-type hypersensitivity have indicated that administration of antibodies against IFN-gamma can prevent the occurrence of diseases or alleviate disease manifestations. Therefore, it is speculated that such antibodies may have therapeutical efficacy in human diseases. Since animal-derived antibodies are immunogenic in patients several strategies are being developed in order to reduce or abolish this human anti-mouse antibody (HAMA) response. In our laboratory, we have constructed a single-chain variable fragment (scFv) derived from a mouse antibody with neutralizing potential for human IFN-gamma. A scFv consists of only variable domains tethered together by a flexible linker. The scFv was demonstrated to neutralize the antiviral activity of HuIFN-gamma in vitro and therefore might be considered as a candidate for human therapy.

  17. PKR Transduces MDA5-Dependent Signals for Type I IFN Induction

    PubMed Central

    Lahiri, Tanaya; Friedman, Eugene; Marié, Isabelle J.; Levy, David E.

    2016-01-01

    Sensing invading pathogens early in infection is critical for establishing host defense. Two cytosolic RIG-like RNA helicases, RIG-I and MDA5, are key to type I interferon (IFN) induction in response to viral infection. Mounting evidence suggests that another viral RNA sensor, protein kinase R (PKR), may also be critical for IFN induction during infection, although its exact contribution and mechanism of action are not completely understood. Using PKR-deficient cells, we found that PKR was required for type I IFN induction in response to infection by vaccinia virus lacking the PKR antagonist E3L (VVΔE3L), but not by Sendai virus or influenza A virus lacking the IFN-antagonist NS1 (FluΔNS1). IFN induction required the catalytic activity of PKR, but not the phosphorylation of its principal substrate, eIF2α, or the resulting inhibition of host translation. In the absence of PKR, IRF3 nuclear translocation was impaired in response to MDA5 activators, VVΔE3L and encephalomyocarditis virus, but not during infection with a RIG-I-activating virus. Interestingly, PKR interacted with both RIG-I and MDA5; however, PKR was only required for MDA5-mediated, but not RIG-I-mediated, IFN production. Using an artificially activated form of PKR, we showed that PKR activity alone was sufficient for IFN induction. This effect required MAVS and correlated with IRF3 activation, but no longer required MDA5. Nonetheless, PKR activation during viral infection was enhanced by MDA5, as virus-stimulated catalytic activity was impaired in MDA5-null cells. Taken together, our data describe a critical and non-redundant role for PKR following MDA5, but not RIG-I, activation to mediate MAVS-dependent induction of type I IFN through a kinase-dependent mechanism. PMID:26939124

  18. Identification of the IFN-β response in H3N2 canine influenza virus infection.

    PubMed

    Su, Shuo; Huang, San; Fu, Cheng; Wang, Lifang; Zheng, Yun; Zhou, Pei; Li, Shoujun

    2016-01-01

    Canine influenza viruses (CIVs) circulate continuously in the dog population, providing opportunities for exposure to humans and other species. Although the dog genome has been sequenced, innate immunity in dogs is not well characterized, which limits the understanding of H3N2 canine influenza virus pathogenesis. Equally, how this virus evades the canine host innate immune response to successfully establish infection remains unclear. To analyse the IFN-β response to CIV infection in Madin-Darby canine kidney cells, the canine IFN-β promoter sequence and its positive regulatory domain motifs were first cloned and identified using a luciferase reporter system. Next, we found that infection with the CIV strain GD/12 blocked the IFN-β response primarily by inhibiting the NF-κB and IFN regulatory factor 3 (IRF3) signalling pathways. Expression of GD/12 non-structural protein 1 alone was sufficient to inhibit Sendai virus-induced NF-κB and IRF3 activation by suppressing p65 and IRF3 phosphorylation, suggesting the important role of this protein in the CIV-mediated inhibition of the IFN-β response. These results suggest that inhibition of the IFN-β signalling pathway may have played a role in CIV establishment and spread in dog populations. PMID:26490006

  19. I IFN receptor controls activated TYK2 in the nucleus: Implications for EAE therapy

    PubMed Central

    Ahmed, Chulbul M.; Noon-Song, Ezra N.; Kemppainen, Kaisa; Pascalli, Massimo P.; Johnson, Howard M.

    2012-01-01

    Recent studies have suggested that activated wild-type and mutant Janus kinase JAK2 play a role in the epigenetics of histone modification, where it phosphorylates histone H3 on tyrosine 41(H3pY41). We showed that type I IFN signaling involves activated TYK2 in the nucleus. ChIP-PCR demonstrated the presence of receptor subunits IFNAR1 and IFNAR2 along with TYK2, STAT1, and H3pY41 specifically at the promoter of the OAS1 gene in IFN treated cells. A complex of IFNAR1, TYK2, and STAT1α was also shown in the nucleus by immunoprecipitation. IFN treatment was required for TYK2 activation in the nucleus. The presence of IFNAR1, IFNAR2, and activated STAT1 and STAT2, as well as the type I IFN in the nucleus of treated cells was confirmed by the combination of Western blotting and confocal microscopy. Trimethylated histone H3 lysine 9 underwent demethylation and subsequent acetylation specifically in the region of the OAS1 promoter. Resultant N-terminal truncated IFN mimetics functioned intracellularly as antivirals as well as therapeutics against experimental allergic encephalomyelitis without the undesirable side effects that limit the therapeutic efficacy of IFNβ in treatment of multiple sclerosis. The findings indicate that IFN signaling is complex like that of steroid signaling. PMID:23110939

  20. IFN-α Is Constitutively Expressed in the Human Thymus, but Not in Peripheral Lymphoid Organs

    PubMed Central

    Colantonio, Arnaud D.; Epeldegui, Marta; Jesiak, Maria; Jachimowski, Loes; Blom, Bianca; Uittenbogaart, Christel H.

    2011-01-01

    Type I interferons have been typically studied for their effects in the context of bacterial or viral infections. However in this report, we provide evidence that Interferon-alpha (IFN-α) expressing cells are present in the thymus in the absence of infection. We show that pDC express the highest level of IFN-α and that MxA, which is exclusively expressed after engagement of the type I IFN receptor by IFN-α/β, is expressed in normal fetal and post-natal thymus, but not in the periphery. The highest level of MxA is expressed in mature thymocytes and pDC located in the medulla and at the cortico-medullary junction. The anti-microbial peptide LL-37, which is expressed in the thymus, when complexed with eukaryotic nucleic acids, induces the secretion of IFN-α by thymic pDC. This results in the upregulation of MxA expression in responsive thymocytes. We propose that the secretion of IFN-α in the thymus may function to regulate the rate of T cell development and modulate the requirements for the selection of developing T cells. PMID:21904619

  1. Identification of the IFN-β response in H3N2 canine influenza virus infection.

    PubMed

    Su, Shuo; Huang, San; Fu, Cheng; Wang, Lifang; Zheng, Yun; Zhou, Pei; Li, Shoujun

    2016-01-01

    Canine influenza viruses (CIVs) circulate continuously in the dog population, providing opportunities for exposure to humans and other species. Although the dog genome has been sequenced, innate immunity in dogs is not well characterized, which limits the understanding of H3N2 canine influenza virus pathogenesis. Equally, how this virus evades the canine host innate immune response to successfully establish infection remains unclear. To analyse the IFN-β response to CIV infection in Madin-Darby canine kidney cells, the canine IFN-β promoter sequence and its positive regulatory domain motifs were first cloned and identified using a luciferase reporter system. Next, we found that infection with the CIV strain GD/12 blocked the IFN-β response primarily by inhibiting the NF-κB and IFN regulatory factor 3 (IRF3) signalling pathways. Expression of GD/12 non-structural protein 1 alone was sufficient to inhibit Sendai virus-induced NF-κB and IRF3 activation by suppressing p65 and IRF3 phosphorylation, suggesting the important role of this protein in the CIV-mediated inhibition of the IFN-β response. These results suggest that inhibition of the IFN-β signalling pathway may have played a role in CIV establishment and spread in dog populations.

  2. Novel CD8+ Treg suppress EAE by TGF-β- and IFN-γ-dependent mechanisms

    PubMed Central

    Chen, Mei-Ling; Yan, Bo-Shiun; Kozoriz, Deneen; Weiner, Howard L.

    2010-01-01

    Although CD8+ Treg-mediated suppression has been described, CD8+ Treg remain poorly characterized. Here we identify a novel subset of CD8+ Treg that express latency-associated peptide (LAP) on their cell surface (CD8+LAP+ cells) and exhibit regulatory activity in vitro and in vivo. Only a small fraction of CD8+LAP+ cells express Foxp3 or CD25, although the expression levels of Foxp3 for these cells are higher than their LAP− counterparts. In addition to TGF-β, CD8+LAP+ cells produce IFN-γ, and these cells suppress EAE that is dependent on both TGF-β and IFN-γ. In an adoptive co-transfer model, CD8+LAP+ cells suppress myelin oligodendrocyte glycoprotein (MOG)-specific immune responses by inducing or expanding Foxp3+ cells and by inhibiting proliferation and IFN-γ production in vivo. Furthermore, in vivo neutralization of IFN-γ and studies with IFN-γ-deficient mice demonstrate an important role for IFN-γ production in the function of CD8+LAP+ cells. Our findings identify the underlying mechanisms that account for the immunoregulatory activity of CD8+ T cells and suggest that induction or amplification of CD8+LAP+ cells may be a therapeutic strategy to help control autoimmune processes. PMID:19768696

  3. Cutting edge: enhancement of antibody responses through direct stimulation of B and T cells by type I IFN.

    PubMed

    Le Bon, Agnes; Thompson, Clare; Kamphuis, Elisabeth; Durand, Vanessa; Rossmann, Cornelia; Kalinke, Ulrich; Tough, David F

    2006-02-15

    Type I IFN (IFN-alphabeta) is induced rapidly by infection and plays a key role in innate antiviral defense. IFN-alphabeta also exerts stimulatory effects on the adaptive immune system and has been shown to enhance Ab and T cell responses. We have investigated the importance of B and T cells as direct targets of IFN-alphabeta during IFN-alpha-mediated augmentation of the Ab response against a soluble protein Ag. Strikingly, the ability of IFN-alpha to stimulate the Ab response and induce isotype switching was markedly reduced in mice in which B cells were selectively deficient for the IFN-alphabetaR. Moreover, IFN-alpha-mediated enhancement of the Ab response was also greatly impaired in mice in which T cells were selectively IFN-alphabetaR-deficient. These results indicate that IFN-alphabetaR signaling in both B and T cells plays an important role in the stimulation of Ab responses by IFN-alphabeta. PMID:16455962

  4. Two-Year Follow-up Study of Mycobacterium tuberculosis Antigen-Driven IFN-γ Responses and Macrophage sCD14 Levels After Tuberculosis Contact.

    PubMed

    Druszczynska, Magdalena; Wlodarczyk, Marcin; Kielnierowski, Grzegorz; Kawka, Malwina; Rudnicka, Wieslawa

    2016-06-01

    Clinical data regarding the prediction of active tuberculosis (TB) development in close TB contacts are scarce. To address this problem, we performed a 2-year follow-up study of Mycobacterium tuberculosis (M.tb) antigen-driven IFN-gamma responses and serum levels of soluble macrophage CD14 receptor in individuals with recent or prolonged M.tb exposure. Between June 2011 and June 2013, we studied 60 healthy Polish adults with recent household or long-term work TB contact and individuals without known M.tb exposure. All of them underwent baseline and repeated testing with IGRA (IFN-gamma release assay) and serum sCD14 ELISA quantification. Frequencies of IGRA results differed at the baseline and follow-up testing. IGRA reversions were noticed in almost one-third of Work TB Contacts and no participants from the Household TB Contact group. IGRA conversions were found in 40 % of Household TB Contacts. No correlation between the IGRA result and the sCD14 level was observed. IFN-γ variability has important implications for clinical practice and requires caution in interpreting the results to distinguish new infections from nonspecific inter-individual variations in cytokine responses. The impairment of IFN-γ response in some individuals with prolonged M.tb exposure representing a resistant immune status does not allow considering IGRA results as reliable and credible. Monitoring the serum sCD14 level can reduce the likelihood of a false prediction of active TB development in close TB contacts showing an M.tb-specific increase in the IFN-gamma production in repeated IGRA testing. PMID:27570313

  5. Dengue Virus Activates Membrane TRAIL Relocalization and IFN-α Production by Human Plasmacytoid Dendritic Cells In Vitro and In Vivo

    PubMed Central

    Gandini, Mariana; Gras, Christophe; Azeredo, Elzinandes Leal; Pinto, Luzia Maria de Oliveira; Smith, Nikaïa; Despres, Philippe; da Cunha, Rivaldo Venâncio; de Souza, Luiz José

    2013-01-01

    Background Dengue displays a broad spectrum of clinical manifestations that may vary from asymptomatic to severe and even fatal features. Plasma leakage/hemorrhages can be caused by a cytokine storm induced by monocytes and dendritic cells during dengue virus (DENV) replication. Plasmacytoid dendritic cells (pDCs) are innate immune cells and in response to virus exposure secrete IFN-α and express membrane TRAIL (mTRAIL). We aimed to characterize pDC activation in dengue patients and their function under DENV-2 stimulation in vitro. Methods & Findings Flow cytometry analysis (FCA) revealed that pDCs of mild dengue patients exhibit significantly higher frequencies of mTRAIL compared to severe cases or healthy controls. Plasma levels of IFN-α and soluble TRAIL are increased in mild compared to severe dengue patients, positively correlating with pDC activation. FCA experiments showed that in vitro exposure to DENV-2 induced mTRAIL expression on pDC. Furthermore, three dimension microscopy highlighted that TRAIL was relocalized from intracellular compartment to plasma membrane. Chloroquine treatment inhibited DENV-2-induced mTRAIL relocalization and IFN-α production by pDC. Endosomal viral degradation blockade by chloroquine allowed viral antigens detection inside pDCs. All those data are in favor of endocytosis pathway activation by DENV-2 in pDC. Coculture of pDC/DENV-2-infected monocytes revealed a dramatic decrease of antigen detection by FCA. This viral antigens reduction in monocytes was also observed after exogenous IFN-α treatment. Thus, pDC effect on viral load reduction was mainly dependent on IFN-α production Conclusions This investigation characterizes, during DENV-2 infection, activation of pDCs in vivo and their antiviral role in vitro. Thus, we propose TRAIL-expressing pDCs may have an important role in the outcome of disease. PMID:23755314

  6. Additive loss-of-function proteasome subunit mutations in CANDLE/PRAAS patients promote type I IFN production.

    PubMed

    Brehm, Anja; Liu, Yin; Sheikh, Afzal; Marrero, Bernadette; Omoyinmi, Ebun; Zhou, Qing; Montealegre, Gina; Biancotto, Angelique; Reinhardt, Adam; Almeida de Jesus, Adriana; Pelletier, Martin; Tsai, Wanxia L; Remmers, Elaine F; Kardava, Lela; Hill, Suvimol; Kim, Hanna; Lachmann, Helen J; Megarbane, Andre; Chae, Jae Jin; Brady, Jilian; Castillo, Rhina D; Brown, Diane; Casano, Angel Vera; Gao, Ling; Chapelle, Dawn; Huang, Yan; Stone, Deborah; Chen, Yongqing; Sotzny, Franziska; Lee, Chyi-Chia Richard; Kastner, Daniel L; Torrelo, Antonio; Zlotogorski, Abraham; Moir, Susan; Gadina, Massimo; McCoy, Phil; Wesley, Robert; Rother, Kristina I; Rother, Kristina; Hildebrand, Peter W; Brogan, Paul; Krüger, Elke; Aksentijevich, Ivona; Goldbach-Mansky, Raphaela

    2015-11-01

    Autosomal recessive mutations in proteasome subunit β 8 (PSMB8), which encodes the inducible proteasome subunit β5i, cause the immune-dysregulatory disease chronic atypical neutrophilic dermatosis with lipodystrophy and elevated temperature (CANDLE), which is classified as a proteasome-associated autoinflammatory syndrome (PRAAS). Here, we identified 8 mutations in 4 proteasome genes, PSMA3 (encodes α7), PSMB4 (encodes β7), PSMB9 (encodes β1i), and proteasome maturation protein (POMP), that have not been previously associated with disease and 1 mutation in PSMB8 that has not been previously reported. One patient was compound heterozygous for PSMB4 mutations, 6 patients from 4 families were heterozygous for a missense mutation in 1 inducible proteasome subunit and a mutation in a constitutive proteasome subunit, and 1 patient was heterozygous for a POMP mutation, thus establishing a digenic and autosomal dominant inheritance pattern of PRAAS. Function evaluation revealed that these mutations variably affect transcription, protein expression, protein folding, proteasome assembly, and, ultimately, proteasome activity. Moreover, defects in proteasome formation and function were recapitulated by siRNA-mediated knockdown of the respective subunits in primary fibroblasts from healthy individuals. Patient-isolated hematopoietic and nonhematopoietic cells exhibited a strong IFN gene-expression signature, irrespective of genotype. Additionally, chemical proteasome inhibition or progressive depletion of proteasome subunit gene transcription with siRNA induced transcription of type I IFN genes in healthy control cells. Our results provide further insight into CANDLE genetics and link global proteasome dysfunction to increased type I IFN production. PMID:26524591

  7. Additive loss-of-function proteasome subunit mutations in CANDLE/PRAAS patients promote type I IFN production

    PubMed Central

    Brehm, Anja; Liu, Yin; Sheikh, Afzal; Marrero, Bernadette; Omoyinmi, Ebun; Zhou, Qing; Montealegre, Gina; Biancotto, Angelique; Reinhardt, Adam; Almeida de Jesus, Adriana; Pelletier, Martin; Tsai, Wanxia L.; Remmers, Elaine F.; Kardava, Lela; Hill, Suvimol; Kim, Hanna; Lachmann, Helen J.; Megarbane, Andre; Chae, Jae Jin; Brady, Jilian; Castillo, Rhina D.; Brown, Diane; Casano, Angel Vera; Gao, Ling; Chapelle, Dawn; Huang, Yan; Stone, Deborah; Chen, Yongqing; Sotzny, Franziska; Lee, Chyi-Chia Richard; Kastner, Daniel L.; Torrelo, Antonio; Zlotogorski, Abraham; Moir, Susan; Gadina, Massimo; McCoy, Phil; Wesley, Robert; Rother, Kristina; Hildebrand, Peter W.; Brogan, Paul; Krüger, Elke; Aksentijevich, Ivona; Goldbach-Mansky, Raphaela

    2015-01-01

    Autosomal recessive mutations in proteasome subunit β 8 (PSMB8), which encodes the inducible proteasome subunit β5i, cause the immune-dysregulatory disease chronic atypical neutrophilic dermatosis with lipodystrophy and elevated temperature (CANDLE), which is classified as a proteasome-associated autoinflammatory syndrome (PRAAS). Here, we identified 8 mutations in 4 proteasome genes, PSMA3 (encodes α7), PSMB4 (encodes β7), PSMB9 (encodes β1i), and proteasome maturation protein (POMP), that have not been previously associated with disease and 1 mutation in PSMB8 that has not been previously reported. One patient was compound heterozygous for PSMB4 mutations, 6 patients from 4 families were heterozygous for a missense mutation in 1 inducible proteasome subunit and a mutation in a constitutive proteasome subunit, and 1 patient was heterozygous for a POMP mutation, thus establishing a digenic and autosomal dominant inheritance pattern of PRAAS. Function evaluation revealed that these mutations variably affect transcription, protein expression, protein folding, proteasome assembly, and, ultimately, proteasome activity. Moreover, defects in proteasome formation and function were recapitulated by siRNA-mediated knockdown of the respective subunits in primary fibroblasts from healthy individuals. Patient-isolated hematopoietic and nonhematopoietic cells exhibited a strong IFN gene-expression signature, irrespective of genotype. Additionally, chemical proteasome inhibition or progressive depletion of proteasome subunit gene transcription with siRNA induced transcription of type I IFN genes in healthy control cells. Our results provide further insight into CANDLE genetics and link global proteasome dysfunction to increased type I IFN production. PMID:26524591

  8. NK-derived IFN-γ/IL-4 triggers the sexually disparate polarization of macrophages in CVB3-induced myocarditis.

    PubMed

    Liu, Li; Yue, Yan; Xiong, Sidong

    2014-11-01

    Coxsackievirus B3 (CVB3) is a common etiology of myocarditis with an increased morbidity and mortality in males. We previously reported that differential polarization of macrophages contributed to sexually dimorphic susceptibility of mice to CVB3-induced myocarditis. However, the underlying kinetics, impetus as well as the molecular mechanism remain unclear. Here, we demonstrated that myocardial macrophages started to polarize at as early as day 5 post CVB3 infection in both genders of BALB/c mice, with M1 phenotype detected in males and M2a phenotype in females, and this trend was further amplified at day 7 when myocarditis reached peak. In addition, we identified that prevailed IFN-γ in males and dominant IL-4 in females were critical myocardial cytokines for the disparate macrophage polarization, which respectively activated JAK1-STAT1 and JAK3-STAT6 pathways. Strikingly, we found that the main source of IFN-γ and IL-4 cytokines in both genders were myocardial infiltrating NK cells, which differentially secreted cytokines in various microenvironments manifested synergistically by sex hormones and CVB3 infection. Consistently, depletion of NK cells significantly impeded the myocardial macrophage polarization in both genders of CVB3-infected mice. Collectively, these data indicated that myocardial NK-derived IFN-γ/IL-4 was critical for the differential polarization of macrophages in CVB3-induced myocarditis via activating JAK1-STAT1 and JAK3-STAT6 pathways respectively. Our study may help understand the mechanism of sexually differential polarization of macrophages and provide clues for the gender bias in CVB3-induced myocarditis.

  9. Identification of CpG oligodeoxynucleotide sequences that induce IFN-gamma production in canine peripheral blood mononuclear cells.

    PubMed

    Kurata, Keigo; Iwata, Akira; Masuda, Kenichi; Sakaguchi, Masahiro; Ohno, Koichi; Tsujimoto, Hajime

    2004-12-28

    Oligodeoxynucleotides containing the cytosine-phosphate-guanine (CpG) motif (CpG-ODNs) have been shown to induce T(H)1 immune responses in animals. Since the sequences of CpG-ODNs that induce T(H)1 responses are considered to vary among animal species, it is necessary to identify effective CpG-ODNs in each animal. In order to identify the sequences of CpG-ODNs that induce T(H)1 responses in dogs, mRNA expression and protein production of IFN-gamma were examined in peripheral blood mononuclear cells (PBMCs) from healthy dogs treated with 11 kinds of synthetic CpG-ODNs. One of the 11 CpG-ODNs (No. 2 CpG-ODN, 5'-GGTGCATCGATGCAGGGGGG-3') was shown to significantly increase mRNA expression and protein production of IFN-gamma in canine PBMCs in a manner dependent on the sequence of the CpG motif. This CpG-ODN also enhanced the expression of IL-12 p40 mRNA in canine PBMCs, whereas expression of IL-12 p35, IL-18, and IL-4 mRNAs was not induced by this CpG-ODN. These results indicate that this CpG-ODN was able to produce IFN-gamma by induction of T(H)1-skewed immune response in dogs. CpG-ODNs may be useful for inducing prophylactic and therapeutic immunity against allergic diseases, viral infection, and tumors in dogs. PMID:15541797

  10. [Antitumor effect of mIFN-λ3 in C57BL/6 mice model for papilloma tumors].

    PubMed

    Choobin, H; Bamdad, T; Soleimanjahi, H; Razavinikoo, H

    2015-01-01

    Although several years have passed since the determination of the human papilloma virus (HPV) as the causative agent for cervical cancer, a definitive treatment has not yet been found. Interferon-alpha (IFN-α) immunotherapy is one of the promising methods for tumor treatment, although numerous side effects were observed in clinical trials. Recently, a new type of interferon, lambda-interferon (IFN-λ), has been discovered with fewer side effects than IFN-α since its receptor repertoire is limited. IFN-λ has a series of activities including antiviral, anti-proliferative and anti-tumor actions. In the present study, the effects of IFN-α and IFN-λ on the TC1 papilloma tumor model in C57BL/6 mice were evaluated. TC1 cells were injected into the mice subcutaneously. Upon tumor formation, murine IFN, mIFN-α and mIFN-λ, expression plasmids were injected intratumorally in combination or alone. The survival time and tumor size as well as apoptosis in tumors and NK cytoxicity were measured after three injections. As compared with the control group, the remarkable results especially in the group which received mIFN-α and mIFN-λ together were obtained for all of the measured parameters. Although IFN-λ is a new member of the interferon family and its properties should be studied in detail, the data obtained suggests that the use of IFN-λ especially in combination with IFN-α could be considered as an effective strategy for papilloma cervical cancer immunotherapy. PMID:26510595

  11. Expression of interferon (IFN)-stimulated genes in extrauterine tissues during early pregnancy in sheep is the consequence of endocrine IFN-tau release from the uterine vein.

    PubMed

    Oliveira, João F; Henkes, Luiz E; Ashley, Ryan L; Purcell, Scott H; Smirnova, Natalia P; Veeramachaneni, D N Rao; Anthony, Russell V; Hansen, Thomas R

    2008-03-01

    The ruminant conceptus synthesizes and secretes interferon (IFN)-tau, which presumably acts via an intrauterine paracrine mechanism to signal maternal recognition of pregnancy. The aims of this study were to determine whether IFN-stimulated genes (ISG) such as ISG15 and OAS-1 are differentially expressed in blood cells circulating in the uterus of ewes; whether extrauterine components of the reproductive tract such as the corpus luteum (CL) also express mRNA for these ISG, and whether antiviral activity is greater in uterine vein than in uterine artery during early pregnancy. The concentrations of mRNA for both ISG were significantly greater (P < 0.0001) in endometrium and jugular blood of 15-d pregnant ewes than in nonpregnant ewes. ISG15 and OAS-1 mRNA concentrations were also greater (P < 0.05) in CL from 15-d pregnant ewes than in nonpregnant ewes. Immunohistochemistry revealed intense staining for ISG15 in large luteal cells on d 15 of pregnancy. Blood cells from uterine artery and vein of 15-d pregnant ewes had similar ISG15 and OAS-1 mRNA concentrations, suggesting that these cells were not conditioned by IFN-tau within the uterus. By using an antiviral assay, uterine venous blood was found to contain 500- to 1000-fold higher concentrations of bioactive IFN-tau than in uterine arterial blood on d 15 of pregnancy. It is concluded that uterine vein releases IFN-tau, which induces ISG in extrauterine tissues such as the CL during the time of maternal recognition of pregnancy.

  12. Controlling nuclear JAKs and STATs for specific gene activation by IFN{gamma}

    SciTech Connect

    Noon-Song, Ezra N.; Ahmed, Chulbul M.; Dabelic, Rea; Canton, Johnathan; Johnson, Howard M.

    2011-07-08

    Highlights: {yields} Gamma interferon (IFN{gamma}) and its receptor subunit, IFNGR1, interact with the promoter region of IFN{gamma}-associated genes along with transcription factor STAT1{alpha}. {yields} We show that activated Janus kinases pJAK2 and pJAK1 also associate with IFNGR1 in the nucleus. {yields} The activated Janus kinases are responsible for phosphorylation of tyrosine 41 on histone H3, an important epigenetic event for specific gene activation. -- Abstract: We previously showed that gamma interferon (IFN{gamma}) and its receptor subunit, IFNGR1, interacted with the promoter region of IFN{gamma}-activated genes along with transcription factor STAT1{alpha}. Recent studies have suggested that activated Janus kinases pJAK2 and pJAK1 also played a role in gene activation by phosphorylation of histone H3 on tyrosine 41. This study addresses the question of the role of activated JAKs in specific gene activation by IFN{gamma}. We carried out chromatin immunoprecipitation (ChIP) followed by PCR in IFN{gamma} treated WISH cells and showed association of pJAK1, pJAK2, IFNGR1, and STAT1 on the same DNA sequence of the IRF-1 gene promoter. The {beta}-actin gene, which is not activated by IFN{gamma}, did not show this association. The movement of activated JAK to the nucleus and the IRF-1 promoter was confirmed by the combination of nuclear fractionation, confocal microscopy and DNA precipitation analysis using the biotinylated GAS promoter. Activated JAKs in the nucleus was associated with phosphorylated tyrosine 41 on histone H3 in the region of the GAS promoter. Unphosphorylated JAK2 was found to be constitutively present in the nucleus and was capable of undergoing activation in IFN{gamma} treated cells, most likely via nuclear IFNGR1. Association of pJAK2 and IFNGR1 with histone H3 in IFN{gamma} treated cells was demonstrated by histone H3 immunoprecipitation. Unphosphorylated STAT1 protein was associated with histone H3 of untreated cells. IFN

  13. IFN-γ response on T-cell based assays in HIV-infected patients for detection of tuberculosis infection

    PubMed Central

    2010-01-01

    Background Individuals infected with human immunodeficiency virus (HIV) have an increased risk of progression to active tuberculosis following Mycobacterium tuberculosis infection. The objective of the study was to determine IFN-γ responses for the detection of latent tuberculosis infection (LTBI) with QuantiFERON-TB GOLD In Tube (QFT-G-IT) and T-SPOT.TB in HIV patients, and evaluate the influence of CD4 cell count on tests performance. Methods We studied 75 HIV patients enrolled for ongoing studies of LTBI with T-SPOT.TB, QFN-G-IT and TST. Mean CD4 cell counts ± standard deviation was 461.29 ± 307.49 cells/μl. Eight patients had a BCG scar. Results T-SPOT.TB, QFN-G-IT and TST were positive in 7 (9.3%), 5 (6.7%) and 9 (12%) cases, respectively. Global agreement between QFN-G-IT and T-SPOT.TB was 89% (κ = 0.275). The overall agreement of T-SPOT.TB and QFN-G-IT with TST was 80.8% (κ = 0.019) and 89% (κ = 0.373), respectively. We have found negative IFN-γ assays results among 2 BCG-vaccinated HIV-infected individuals with a positive TST. In non BCG-vaccinated patients, QFN-G-IT and TST were positive in 5 cases (7.5%) and T-SPOT.TB in 7 (10.4%). In contrast, in BCG-vaccinated patients, only TST was positive in 4/8 (50%) of the cases. The differences obtained in the number of positive results between TST and both IFN-γ assays in BCG vaccinated patients were significant (95% CI 3-97%, p = 0.046), however, the confidence interval is very wide given the small number of patients. In patients with CD4< 200, we obtained only one (5%) positive result with T-SPOT.TB; however, QFN-G-IT and TST were negative in all cases. On the contrary, percentages of positive results in patients with CD4> 200 were 10.9% (6/55), 9.1% (5/55) and 16.4% (9/55) with T-SPOT.TB, QFN-G-IT and TST, respectively. Conclusions IFN-γ tests have the benefit over TST that are less influenced by BCG vaccination, consequently they are more specific than TST. Although our number of patients with

  14. IL-4 and IFN-γ induced by human immunodeficiency virus vaccine in a schistosome infection model

    PubMed Central

    Yin, Jiangmei; Dai, Anlan; Arango, Tatiana; Kasinathan, Ravi S.; Greenberg, Robert M.; Boyer, Jean D.

    2012-01-01

    The co-infection of HIV and helminth parasites, such as Schistosoma spp, has increased in sub-Saharan Africa. Many HIV vaccine candidate studies have been completed or are in ongoing clinical trials, but it is not clear how HIV vaccines might affect the course of schistosome infections. In this study, we immunized S. mansoni-infected mice with an efficient DNA vaccine that included HIV gag. Using this model, we found that Th2 cytokines, such as IL-4 and IL-13, were highly induced after schistosome infection. Treatment of infected mice with the HIV DNA vaccine resulted in a significant attenuation of this rise in IL-13 expression and an increase in expression of the Th1 cytokine, TNF-α. However, vaccine administration did not significantly influence the expression of IL-4, or IFN-γ, and did not affect T cell proliferative capacity. Interestingly, the IL-4+IFN-γ+ phenotype appears in schistosome-infected mice that received HIV vaccination, and is associated with the expression of transcription factors GATA3+T-bet+ in these mice. These studies indicate that DNA vaccination can have an impact on ongoing chronic infection. PMID:23151453

  15. PDGF-BB Promotes Type I IFN-Dependent Vascular Alterations and Monocyte Recruitment in a Model of Dermal Fibrosis.

    PubMed

    Cho, John S; Fang, Terry C; Reynolds, Taylor L; Sofia, Daniel J; Hamann, Stefan; Burkly, Linda C

    2016-01-01

    Systemic sclerosis (SSc) is a chronic autoimmune disorder that can result in extensive tissue damage in the skin and, in advanced cases, internal organs. Vasculopathy, aberrant immune activation, and tissue fibrosis are three hallmarks of the disease that have been identified, with vasculopathy and aberrant immunity being amongst the earliest events. However, a mechanistic link between these processes has not been established. Here, we have identified a novel role of platelet derived growth factor-BB (PDGF-BB)/PDGFRβ activation in combination with dermal injury induced by bleomycin as a driver of early, aberrant expression of interferon stimulatory genes (ISGs) and inflammatory monocyte infiltration. Activation of PDGFRβ in combination with bleomycin-induced dermal injury resulted in increased dermal thickness, vascular density, monocyte/macrophage infiltration, and exacerbation of tissue injury. Many of these features were dependent on IFNAR-signaling, and an increase in the number of interferon-beta (IFN-β) producing monocytes cells was found in the skin lesions. Taken together, these results identify a novel link between PDGFRβ activation, and Type I IFN-driven vascular maintenance and monocyte/macrophage cell recruitment, and provide a potential explanation linking key features of SSc that were previously thought to be unrelated. PMID:27618690

  16. PDGF-BB Promotes Type I IFN-Dependent Vascular Alterations and Monocyte Recruitment in a Model of Dermal Fibrosis

    PubMed Central

    Cho, John S.; Fang, Terry C.; Reynolds, Taylor L.; Sofia, Daniel J.; Hamann, Stefan; Burkly, Linda C.

    2016-01-01

    Systemic sclerosis (SSc) is a chronic autoimmune disorder that can result in extensive tissue damage in the skin and, in advanced cases, internal organs. Vasculopathy, aberrant immune activation, and tissue fibrosis are three hallmarks of the disease that have been identified, with vasculopathy and aberrant immunity being amongst the earliest events. However, a mechanistic link between these processes has not been established. Here, we have identified a novel role of platelet derived growth factor-BB (PDGF-BB)/PDGFRβ activation in combination with dermal injury induced by bleomycin as a driver of early, aberrant expression of interferon stimulatory genes (ISGs) and inflammatory monocyte infiltration. Activation of PDGFRβ in combination with bleomycin-induced dermal injury resulted in increased dermal thickness, vascular density, monocyte/macrophage infiltration, and exacerbation of tissue injury. Many of these features were dependent on IFNAR-signaling, and an increase in the number of interferon-beta (IFN-β) producing monocytes cells was found in the skin lesions. Taken together, these results identify a novel link between PDGFRβ activation, and Type I IFN-driven vascular maintenance and monocyte/macrophage cell recruitment, and provide a potential explanation linking key features of SSc that were previously thought to be unrelated. PMID:27618690

  17. Effectiveness of electrochemotherapy after IFN-α adjuvant therapy of melanoma patients

    PubMed Central

    Hribernik, Andrejc; Cemazar, Maja; Sersa, Gregor; Bosnjak, Maša

    2016-01-01

    Background The combination of electrochemotherapy with immuno-modulatory treatments has already been explored and proven effective. However, the role of interferon alpha (IFN-α) adjuvant therapy of melanoma patients and implication on electrochemotherapy effectiveness has not been explored yet. Therefore, the aim of the study was to retrospectively evaluate the effectiveness and safety of electrochemotherapy after the previous adjuvant treatment with IFN-α in melanoma patients. Patients and methods The study was a retrospective single-center observational analysis of the patients with advanced melanoma, treated with electrochemotherapy after previous IFN-α adjuvant therapy. Five patients, treated between January 2008 and December 2014, were included into the study, regardless of the time point of IFN-α adjuvant therapy. Results Electrochemotherapy of recurrent melanoma after the IFN-α adjuvant therapy proved to be a safe and effective treatment. Patients with one or two metastases responded completely. Among patients with multiple metastases, there was a variable response rate. In one patient all 23 metastases responded completely, in second patient more than 85% of all together 80 metastases responded completely and in third patient all 5 metastases had partial response. Taking into account all metastases from all patients together there was an 85% complete response rate. Conclusions The study showed that electrochemotherapy of recurrent melanoma after the IFN-α adjuvant therapy is a safe and effective treatment modality, which results in a high complete response rate, not only in single metastasis, but also in multiple metastases. The high complete response rate might be due to an IFN-α immune-editing effect, however, further studies with a larger number of patients are needed to support this presumption. PMID:27069446

  18. Cell-Specific Type I IFN Signatures in Autoimmunity and Viral Infection: What Makes the Difference?

    PubMed Central

    Kyogoku, Chieko; Smiljanovic, Biljana; Grün, Joachim R.; Biesen, Robert; Schulte-Wrede, Ursula; Häupl, Thomas; Hiepe, Falk; Alexander, Tobias; Radbruch, Andreas; Grützkau, Andreas

    2013-01-01

    Gene expression profiling of peripheral blood mononuclear cells (PBMCs) has revealed a crucial role for type I interferon (IFN) in the pathogenesis of systemic lupus erythematosus (SLE). However, it is unclear how particular leucocyte subsets contribute to the overall type I IFN signature of PBMCs and whole blood samples.Furthermore, a detailed analysis describing the differences in the IFN signature in autoimmune diseases from that observed after viral infection has not been performed to date. Therefore, in this study, the transcriptional responses in peripheral T helper cells (CD4+) and monocyte subsets (CD16− inflammatory and CD16+ resident monocytes) isolated from patients with SLE, healthy donors (ND) immunised with the yellow fever vaccine YFV-17Dand untreated controls were compared by global gene expression profiling.It was striking that all of the transcripts that were regulated in response to viral exposure were also found to be differentially regulated in SLE, albeit with markedly lower fold-change values. In addition to this common IFN signature, a pathogenic IFN-associated gene signature was detected in the CD4+ T cells and monocytes from the lupus patients. IL-10, IL-9 and IL-15-mediated JAK/STAT signalling was shown to be involved in the pathological amplification of IFN responses observed in SLE. Type I IFN signatures identified were successfully applied for the monitoring of interferon responses in PBMCs of an independent cohort of SLE patients and virus-infected individuals. Moreover, these cell-type specific gene signatures allowed a correct classification of PBMCs independent from their heterogenic cellular composition. In conclusion, our data show for the first time that monocytes and CD4 cells are sensitive biosensors to monitor type I interferon response signatures in autoimmunity and viral infection and how these transriptional responses are modulated in a cell- and disease-specific manner. PMID:24391825

  19. Adaptation of IFN-gamma ELISA and ELISPOT tests for feline tuberculosis.

    PubMed

    Rhodes, Shelley G; Gruffydd-Jones, Tim; Gunn-Moore, Danièlle; Jahans, Keith

    2008-08-15

    There are currently no reliable immunodiagnostic tests for feline tuberculosis. Infection of domestic cats in the UK is thought to occur via their contact with the relevant reservoir of infection, e.g. cattle and badgers for Mycobacterium bovis, and rodents for M. microti. In the African National Parks, where M. bovis infection of Bovidae is an increasing problem, transmission to big cats is occurring via their ingestion of infected carcasses. We have adapted feline ELISA and ELISPOT assays to potentially provide the first cell-based diagnostic test for the detection of tuberculosis in cats. We tested peripheral blood mononuclear cell antigen-specific IFN-gamma responses of 18 cats suspected of mycobacterial infection for which biopsy material was co-submitted to the Veterinary Laboratories Agency for mycobacterial culture and identification. Seventeen cats were tested by ELISA while seven cats were tested by ELISPOT (six cats were tested by both ELISA and ELISPOT). Six healthy control cats provided baseline data for these tests. Responses to bovine and avian tuberculins (PPDB and PPDA) and a protein cocktail of ESAT6 and CFP10 were measured, together with positive mitogen (PMA and calcium ionophore) and negative (medium) controls. Overall, both ELISPOT and ELISA tests were found to be suitable for generating rapid results (2 and 4 days, respectively), which provided good predictive information for M. bovis and M. microti infections, but were unable to reliably discern M. avium infection.

  20. Tissue specific effects of the beta 2-adrenergic agonist salbutamol on LPS-induced IFN-gamma, IL-10 and TGF-beta responses in vivo.

    PubMed

    Eijkelkamp, Niels; Cobelens, Pieter M; Sanders, Virginia M; Heijnen, Cobi J; Kavelaars, Annemieke

    2004-05-01

    Beta2-adrenergic agonists have immunomodulatory effects both in vitro and in vivo. We describe that oral salbutamol (beta-adrenergic agonist) administration has tissue-specific effects on cytokine production induced by intraperitoneal (i.p.) lipopolysaccharide (LPS) administration. Salbutamol reduced LPS-induced IFN-gamma levels at both mucosal and non-mucosal sites. However, salbutamol increased IL-10 levels in the peritoneal cavity, but decreased levels in terminal ileum and lung. Salbutamol did not alter LPS-induced TGF-beta levels in the terminal ileum, but increased levels in liver and peritoneal cavity. Thus, orally administered salbutamol decreases LPS-induced IFN-gamma levels in all tissues tested, but has tissue specific effects on IL-10 and TGF-beta levels.

  1. Identification of type I IFN in Chinese giant salamander (Andrias davidianus) and the response to an iridovirus infection.

    PubMed

    Chen, Qian; Ma, Jie; Fan, Yuding; Meng, Yan; Xu, Jin; Zhou, Yong; Liu, Wenzhi; Zeng, Xianhui; Zeng, Lingbing

    2015-06-01

    The type I IFNs play a major role in the first line of defense against virus infections. In this study, the type I IFN gene designated gsIFN was identified and characterized in the Chinese giant salamander (Andrias davidianus). The genomic DNA of gsIFN contains 5 exons and 4 introns and has a total length of 5622 bp. The full-length cDNA sequence of gsIFN is 1113 bp and encodes a putative protein of 186 amino acids that has a 43% identity to type I IFN of Xenopus tropicalis. The deduced amino acid sequence has the C-terminal CAWE motif, that is mostly conserved in the higher vertebrate type I IFNs. Real-time fluorescence quantitative RT-PCR analysis revealed broad expression of gsIFN in vivo and the highest level expression in blood, kidney and spleen. Additionally, the expression of gsIFN at the mRNA level was significantly induced in peripheral blood leucocytes after stimulation with poly I:C and after infection with the Chinese giant salamander iridovirus (GSIV). A plasmid expressing gsIFN was constructed and transfected into the Chinese giant salamander muscle cell line. Expression of the IFN-inducible gene Mx was up-regulated in the gsIFN-overexpressing cells after GSIV infection. The virus load and titer were significantly reduced compared with that in control cells. Additionally, a lower level of virus major capsid protein synthesis was confirmed by immunofluorescence assay compared to the control cells. These results suggest that the gsIFN gene plays an important role in the antiviral innate immune response.

  2. The impact of IFN-γ receptor on SLPI expression in active tuberculosis: association with disease severity.

    PubMed

    Tateosian, Nancy L; Pasquinelli, Virginia; Hernández Del Pino, Rodrigo E; Ambrosi, Nella; Guerrieri, Diego; Pedraza-Sánchez, Sigifredo; Santucci, Natalia; D'Attilio, Luciano; Pellegrini, Joaquín; Araujo-Solis, María A; Musella, Rosa M; Palmero, Domingo J; Hernandez-Pando, Rogelio; Garcia, Verónica E; Chuluyan, H Eduardo

    2014-05-01

    Interferon (IFN)-γ displays a critical role in tuberculosis (TB), modulating the innate and adaptive immune responses. Previously, we reported that secretory leukocyte protease inhibitor (SLPI) is a pattern recognition receptor with anti-mycobacterial activity against Mycobacterium tuberculosis (Mtb). Herein, we determined whether IFN-γ modulated the levels of SLPI in TB patients. Plasma levels of SLPI and IFN-γ were studied in healthy donors (HDs) and TB patients. Peripheral blood mononuclear cells from HDs and patients with TB or defective IFN-γ receptor 1* were stimulated with Mtb antigen and SLPI, and IFN-γR expression levels were measured. Both SLPI and IFN-γ were significantly enhanced in plasma from those with TB compared with HDs. A direct association between SLPI levels and the severity of TB was detected. In addition, Mtb antigen stimulation decreased the SLPI produced by peripheral blood mononuclear cells from HDs, but not from TB or IFN-γR patients. Neutralization of IFN-γ reversed the inhibition of SLPI induced by Mtb antigen in HDs, but not in TB patients. Furthermore, recombinant IFN-γ was unable to modify the expression of SLPI in TB patients. Finally, IFN-γR expression was lower in TB compared with HD peripheral blood mononuclear cells. These results show that Mtb-induced IFN-γ down-modulated SLPI levels by signaling through the IFN-γR in HDs. This inhibitory mechanism was not observed in TB, probably because of the low expression of IFN-γR detected in these individuals.

  3. Collaborative study for the validation of an improved HPLC assay for recombinant IFN-alfa-2.

    PubMed

    Jönsson, K H; Daas, A; Buchheit, K H; Terao, E

    2016-01-01

    The current European Pharmacopoeia (Ph. Eur.) texts for Interferon (IFN)-alfa-2 include a nonspecific photometric protein assay using albumin as calibrator and a highly variable cell-based assay for the potency determination of the protective effects. A request was expressed by the Official Medicines Control Laboratories (OMCLs) for improved methods for the batch control of recombinant interferon alfa-2 bulk and market surveillance testing of finished products, including those formulated with Human Serum Albumin (HSA). A HPLC method was developed at the Medical Products Agency (MPA, Sweden) for the testing of IFN-alfa-2 products. An initial collaborative study run under the Biological Standardisation Programme (BSP; study code BSP039) revealed the need for minor changes to improve linearity of the calibration curves, assay reproducibility and robustness. The goal of the collaborative study, coded BSP071, was to transfer and further validate this improved HPLC method. Ten laboratories participated in the study. Four marketed IFN-alfa-2 preparations (one containing HSA) together with the Ph. Eur. Chemical Reference Substance (CRS) for IFN-alfa-2a and IFN-alfa-2b, and in-house reference standards from two manufacturers were used for the quantitative assay. The modified method was successfully transferred to all laboratories despite local variation in equipment. The resolution between the main and the oxidised forms of IFN-alfa-2 was improved compared to the results from the BSP039 study. The improved method even allowed partial resolution of an extra peak after the principal peak. Symmetry of the main IFN peak was acceptable for all samples in all laboratories. Calibration curves established with the Ph. Eur. IFN-alfa-2a and IFN-alfa-2b CRSs showed excellent linearity with intercepts close to the origin and coefficients of determination greater than 0.9995. Assay repeatability, intermediate precision and reproducibility varied with the tested sample within acceptable

  4. Heparins modulate the IFN-γ-induced production of chemokines in human breast cancer cells.

    PubMed

    Fluhr, Herbert; Seitz, Tina; Zygmunt, Marek

    2013-01-01

    Heparins seem to improve survival in patients with advanced malignancies independently of their anticoagulatory function. As the treatment options in advanced and metastatic breast cancer are still very limited, heparins might be an interesting addition to the existing systemic therapies. The interferon (IFN)-γ-inducible chemokines CXCL9 and CXCL10 play an essential role in the regulation of the immune milieu in malignant tumours, thereby being interesting targets for an immunological intervention. We therefore wanted to test whether heparins have an impact on the chemokines CXCL9 and CXCL10 as well as the IFN-γ signalling in human breast cancer cells in vitro. The well-established cell lines BT-474, MCF-7, SK-BR-3 and MDA-MB-231 were incubated with IFN-γ, unfractionated heparin (UFH), different low molecular weight heparins (LMWHs) and the heparin-related polyanions danaparoid and dextran sulphate. The production of CXCL9 and CXCL10 was measured by ELISA and real-time RT-PCR, the phosphorylation of signal transducer and activator of transcription (STAT) 1 was detected by an in-cell western assay and the amount of cellular bound IFN-γ was analysed by a high sensitivity ELISA. We observed that IFN-γ induced CXCL9 and CXCL10 production in MCF-7, SK-BR-3 and MDA-MB-231 cells but not in BT-474. UFH dose dependently inhibited the effect of IFN-γ on the secretion and expression of CXCL9 and CXCL10. LMWHs and heparin-related compounds differentially modulated IFN-γ-effects-the results depended on their molecular size and charge, but were independent of their anticoagulatory properties. As a reason for these heparin effects, we could show that the IFN-γ-induced phosphorylation of STAT1 was modulated by heparins, caused by an interaction with the cellular binding of IFN-γ. In conclusion, these results support the significance of the immunomodulatory properties of heparins independently of their classical anticoagulatory function. Heparin-derived sulphated

  5. Collaborative study for the validation of an improved HPLC assay for recombinant IFN-alfa-2.

    PubMed

    Jönsson, K H; Daas, A; Buchheit, K H; Terao, E

    2016-01-01

    The current European Pharmacopoeia (Ph. Eur.) texts for Interferon (IFN)-alfa-2 include a nonspecific photometric protein assay using albumin as calibrator and a highly variable cell-based assay for the potency determination of the protective effects. A request was expressed by the Official Medicines Control Laboratories (OMCLs) for improved methods for the batch control of recombinant interferon alfa-2 bulk and market surveillance testing of finished products, including those formulated with Human Serum Albumin (HSA). A HPLC method was developed at the Medical Products Agency (MPA, Sweden) for the testing of IFN-alfa-2 products. An initial collaborative study run under the Biological Standardisation Programme (BSP; study code BSP039) revealed the need for minor changes to improve linearity of the calibration curves, assay reproducibility and robustness. The goal of the collaborative study, coded BSP071, was to transfer and further validate this improved HPLC method. Ten laboratories participated in the study. Four marketed IFN-alfa-2 preparations (one containing HSA) together with the Ph. Eur. Chemical Reference Substance (CRS) for IFN-alfa-2a and IFN-alfa-2b, and in-house reference standards from two manufacturers were used for the quantitative assay. The modified method was successfully transferred to all laboratories despite local variation in equipment. The resolution between the main and the oxidised forms of IFN-alfa-2 was improved compared to the results from the BSP039 study. The improved method even allowed partial resolution of an extra peak after the principal peak. Symmetry of the main IFN peak was acceptable for all samples in all laboratories. Calibration curves established with the Ph. Eur. IFN-alfa-2a and IFN-alfa-2b CRSs showed excellent linearity with intercepts close to the origin and coefficients of determination greater than 0.9995. Assay repeatability, intermediate precision and reproducibility varied with the tested sample within acceptable

  6. The synergistic interaction between the calcineurin B subunit and IFN-γ enhances macrophage antitumor activity

    PubMed Central

    Su, Z; Yang, R; Zhang, W; Xu, L; Zhong, Y; Yin, Y; Cen, J; DeWitt, J P; Wei, Q

    2015-01-01

    Macrophages are involved in tumor growth and progression. They infiltrate into tumors and cause inflammation, which creates a microenvironment favoring tumor growth and metastasis. However, certain stimuli may induce macrophages to act as tumor terminators. Here we report that the calcineurin B subunit (CnB) synergizes with IFN-γ to make macrophages highly cytotoxic to cancer cells. Furthermore, CnB and IFN-γ act synergistically to polarize mouse tumor-associated macrophages, as well as human monocyte-derived macrophages to an M1-like phenotype. This synergy is mediated by the crosstalk between CnB-engaged integrin αM-p38 MAPK signaling and IFN-γ-initiated p38/PKC-δ/Jak2 signaling. Interestingly, the signal transducer and activator of transcription 1 (STAT1) is a key factor that orchestrates the synergy of CnB and IFN-γ, and the phosphorylation status at Ser727 and Tyr701 of STAT1 is directly regulated by CnB and IFN-γ. PMID:25950470

  7. VISA is an adapter protein required for virus-triggered IFN-beta signaling.

    PubMed

    Xu, Liang-Guo; Wang, Yan-Yi; Han, Ke-Jun; Li, Lian-Yun; Zhai, Zhonghe; Shu, Hong-Bing

    2005-09-16

    Viral infection or stimulation of TLR3 triggers signaling cascades, leading to activation of the transcription factors IRF-3 and NF-kappaB, which collaborate to induce transcription of type I interferon (IFN) genes. In this study, we identified a protein termed VISA (for virus-induced signaling adaptor) as a critical component in the IFN-beta signaling pathways. VISA recruits IRF-3 to the cytoplasmic viral dsRNA sensor RIG-I. Depletion of VISA inhibits virus-triggered and RIG-I-mediated activation of IRF-3, NF-kappaB, and the IFN-beta promoter, suggesting that VISA plays a central role in virus-triggered TLR3-independent IFN-beta signaling. Our data also indicate that VISA interacts with TRIF and TRAF6 and mediates bifurcation of the TLR3-triggered NF-kappaB and IRF-3 activation pathways. These findings suggest that VISA is critically involved in both virus-triggered TLR3-independent and TLR3-mediated antiviral IFN signaling.

  8. Newcastle Disease Virus V Protein Targets Phosphorylated STAT1 to Block IFN-I Signaling

    PubMed Central

    Qiu, Xusheng; Fu, Qiang; Meng, Chunchun; Yu, Shengqing; Zhan, Yuan; Dong, Luna; Song, Cuiping; Sun, Yingjie; Tan, Lei; Hu, Shunlin; Wang, Xiaoquan; Liu, Xiaowen; Peng, Daxin; Liu, Xiufan; Ding, Chan

    2016-01-01

    Newcastle disease virus (NDV) V protein is considered as an effector for IFN antagonism, however, the mechanism remains unknown. In this study, the expression of STAT1 and phospho-STAT1 in cells infected with NDV or transfected with V protein-expressing plasmids were analyzed. Our results showed that NDV V protein targets phospho-STAT1 reduction in the cells depends on the stimulation of IFN-α. In addition, a V-deficient genotype VII recombinant NDV strain rZJ1-VS was constructed using reverse genetic technique to confirm the results. The rZJ1-VS lost the ability to reduce phospho-STAT1 and induced higher expression of IFN-responsive genes in infected cells. Furthermore, treatment with an ubiquitin E1 inhibitor PYR-41 demonstrated that phospho-STAT1 reduction was caused by degradation, but not de-phosphorylation. We conclude that NDV V protein targets phospho-STAT1 degradation to block IFN-α signaling, which adds novel knowledge to the strategies used by paramyxoviruses to evade IFN. PMID:26859759

  9. Deficient IFN Signaling by Myeloid Cells Leads to MAVS-Dependent Virus-Induced Sepsis

    PubMed Central

    Pinto, Amelia K.; Ramos, Hilario J.; Wu, Xiaobo; Shrestha, Bimmi; Gorman, Matthew; Kim, Kristin Y.; Suthar, Mehul S.; Atkinson, John P.; Gale Jr, Michael; Diamond, Michael S.

    2014-01-01

    The type I interferon (IFN) signaling response limits infection of many RNA and DNA viruses. To define key cell types that require type I IFN signaling to orchestrate immunity against West Nile virus (WNV), we infected mice with conditional deletions of the type I IFN receptor (IFNAR) gene. Deletion of the Ifnar gene in subsets of myeloid cells resulted in uncontrolled WNV replication, vasoactive cytokine production, sepsis, organ damage, and death that were remarkably similar to infection of Ifnar−/− mice completely lacking type I IFN signaling. In Mavs−/−×Ifnar−/− myeloid cells and mice lacking both Ifnar and the RIG-I-like receptor adaptor gene Mavs, cytokine production was muted despite high levels of WNV infection. Thus, in myeloid cells, viral infection triggers signaling through MAVS to induce proinflammatory cytokines that can result in sepsis and organ damage. Viral pathogenesis was caused in part by massive complement activation, as liver damage was minimized in animals lacking complement components C3 or factor B or treated with neutralizing anti-C5 antibodies. Disease in Ifnar−/− and CD11c Cre+Ifnarf/f mice also was facilitated by the proinflammatory cytokine TNF-α, as blocking antibodies diminished complement activation and prolonged survival without altering viral burden. Collectively, our findings establish the dominant role of type I IFN signaling in myeloid cells in restricting virus infection and controlling pathological inflammation and tissue injury. PMID:24743949

  10. The interaction between human enteroviruses and type I IFN signaling pathway.

    PubMed

    Lu, Jing; Yi, Lina; Ke, Changwen; Zhang, Yonghui; Liu, Ren; Chen, Jinfei; Kung, Hsiang-Fu; He, Ming-Liang

    2015-06-01

    Human enteroviruses (HEV), very common and important human pathogens, cause infections in diverse ways. Recently, the large epidemic of HFMD caused by HEV infection became a growing threat to public health in China. As the first line of immune response, the type I interferon (IFN-α/β) pathway plays an essential role in antiviral infection, particularly in limiting both the early and late stages of infection. Because of co-evolution with the host, the viruses have evolved multiple strategies to evade or subvert the host immunity to ensure their survival. In this paper, we systematically reviewed and summarized the interaction between HEV infections and host type I IFN responses. We firstly described the recent findings of HEV recognition and IFN induction, specifically on host pattern-recognition receptors (PRRs) in HEV infection. Then we discussed the antiviral effect of IFN in HEV infection. Finally, we timely summarized the mechanisms of HEV to circumvent the IFN responses. Clarification of the complexity in this battle may provide us new strategies for prevention and antiviral treatment.

  11. Relationship between vitamin D, IFN-γ, and E2 levels in systemic lupus erythematosus.

    PubMed

    Kokic, V; Martinovic Kaliterna, D; Radic, M; Perkovic, D; Cvek, M; Capkun, V

    2016-03-01

    In this study, we investigated the relationship between vitamin D, interferon-gamma (IFN-γ), and estradiol (E2) in females of childbearing age with inactive systemic lupus erythematosus (SLE). The study included 22 SLE patients, and 21 age- and gender-matched healthy individuals. Serum concentrations of 25-hydroxyvitamin D3 (25(OH)D3), E2, and IFN-γ were measured by radioimmunoassay using the gamma-counter and ELISA. Patients and control subjects were divided into two groups based on their vitamin D levels (25(OH)D3 ≤ 20 ng/mL; 25(OH)D3 > 20 ng/mL). The median values of IFN-γ and E2 were higher in SLE patients compared to the controls, irrespective of vitamin D level (p = 0.001, p = 0.009, p = 0.003, and p = 0.003, respectively). In SLE patients, there was a negative correlation between IFN-γ and 25(OH)D3 (rs = -0.330; p = 0.03) and a positive correlation between IFN-γ and E2 (rs = 0.404; p = 0.007). This study demonstrates an interesting interplay between vitamin D, INF-γ, and E2 in SLE patients with inactive disease.

  12. Lack of Neuronal IFN-β-IFNAR Causes Lewy Body- and Parkinson's Disease-like Dementia.

    PubMed

    Ejlerskov, Patrick; Hultberg, Jeanette Göransdotter; Wang, JunYang; Carlsson, Robert; Ambjørn, Malene; Kuss, Martin; Liu, Yawei; Porcu, Giovanna; Kolkova, Kateryna; Friis Rundsten, Carsten; Ruscher, Karsten; Pakkenberg, Bente; Goldmann, Tobias; Loreth, Desiree; Prinz, Marco; Rubinsztein, David C; Issazadeh-Navikas, Shohreh

    2015-10-01

    Neurodegenerative diseases have been linked to inflammation, but whether altered immunomodulation plays a causative role in neurodegeneration is not clear. We show that lack of cytokine interferon-β (IFN-β) signaling causes spontaneous neurodegeneration in the absence of neurodegenerative disease-causing mutant proteins. Mice lacking Ifnb function exhibited motor and cognitive learning impairments with accompanying α-synuclein-containing Lewy bodies in the brain, as well as a reduction in dopaminergic neurons and defective dopamine signaling in the nigrostriatal region. Lack of IFN-β signaling caused defects in neuronal autophagy prior to α-synucleinopathy, which was associated with accumulation of senescent mitochondria. Recombinant IFN-β promoted neurite growth and branching, autophagy flux, and α-synuclein degradation in neurons. In addition, lentiviral IFN-β overexpression prevented dopaminergic neuron loss in a familial Parkinson's disease model. These results indicate a protective role for IFN-β in neuronal homeostasis and validate Ifnb mutant mice as a model for sporadic Lewy body and Parkinson's disease dementia.

  13. Dengue Virus Control of Type I IFN Responses: A History of Manipulation and Control

    PubMed Central

    Castillo Ramirez, Jorge Andrés

    2015-01-01

    The arthropod-borne diseases caused by dengue virus (DENV) are a major and emerging problem of public health worldwide. Infection with DENV causes a series of clinical manifestations ranging from mild flu syndrome to severe diseases that include hemorrhage and shock. It has been demonstrated that the innate immune response plays a key role in DENV pathogenesis. However, in recent years, it was shown that DENV evades the innate immune response by blocking type I interferon (IFN-I). It has been demonstrated that DENV can inhibit both the production and the signaling of IFN-I. The viral proteins, NS2A and NS3, inhibit IFN-I production by degrading cellular signaling molecules. In addition, the viral proteins, NS2A, NS4A, NS4B, and NS5, can inhibit IFN-I signaling by blocking the phosphorylation of the STAT1 and STAT2 molecules. Finally, NS5 mediates the degradation of STAT2 using the proteasome machinery. In this study, we briefly review the most recent insights regarding the IFN-I response to DENV infection and its implication for pathogenesis. PMID:25629430

  14. IFN-λ: A New Class of Interferon with Distinct Functions-Implications for Hepatitis C Virus Research

    PubMed Central

    Liu, Bing; McGilvray, Ian; Chen, Limin

    2015-01-01

    Pegylated interferon-α and ribavirin (PEG-IFN/RBV) is widely used to treat chronic hepatitis C virus infection with notorious adverse reactions since the broad expression of IFN-α receptors on all nucleated cells. Accordingly, a Type III IFN with restricted receptors distribution is much safer as an alternative for HCV therapy. In addition, single nucleotide polymorphisms (SNPs) near the human IFN-λ3 gene, IL-28B, correlate strongly with the ability to achieve a sustained virological response (SVR) to therapy with pegylated IFN-α plus ribavirin in patients infected with chronic hepatitis C. Furthermore, we also discuss the most recent findings: IFN-λ4 predicts treatment outcomes of HCV infection. In consideration of the apparent limitations of current HCV therapy, especially high failure rate and universal side effects, prediction of treatment outcomes prior to the initiation of treatment and developing new alternative drugs are two important goals in HCV research. PMID:26078754

  15. Intracellular delivery of a cell-penetrating SOCS1 that targets IFN-gamma signaling.

    PubMed

    DiGiandomenico, Antonio; Wylezinski, Lukasz S; Hawiger, Jacek

    2009-07-21

    Suppressor of cytokine signaling-1 (SOCS1) is an intracellular inhibitor of the Janus kinase-signal transducer and activator of transcription (JAK-STAT) pathway that couples interferon-gamma (IFN-gamma) signaling to the nucleus. Because several inflammatory diseases are associated with uncontrolled IFN-gamma signaling, we engineered a recombinant cell-penetrating SOCS1 (CP-SOCS1) to target this pathway. Here, we show that CP-SOCS1, analogous to endogenous SOCS1, interacted with components of the IFN-gamma signaling complex and functionally attenuated the phosphorylation of STAT1, which resulted in the subsequent inhibition of the production of proinflammatory chemokines and cytokines. Thus, controlled, intracellular delivery of recombinant CP-SOCS1 boosted the anti-inflammatory potential of the cell by restoring the homeostatic balance between pro- and anti-inflammatory signaling. This approach to controlling signal transduction has potential use for therapeutic targeting of signaling pathways associated with inflammatory diseases.

  16. Mycobacterial disease and impaired IFN-γ immunity in humans with inherited ISG15 deficiency.

    PubMed

    Bogunovic, Dusan; Byun, Minji; Durfee, Larissa A; Abhyankar, Avinash; Sanal, Ozden; Mansouri, Davood; Salem, Sandra; Radovanovic, Irena; Grant, Audrey V; Adimi, Parisa; Mansouri, Nahal; Okada, Satoshi; Bryant, Vanessa L; Kong, Xiao-Fei; Kreins, Alexandra; Velez, Marcela Moncada; Boisson, Bertrand; Khalilzadeh, Soheila; Ozcelik, Ugur; Darazam, Ilad Alavi; Schoggins, John W; Rice, Charles M; Al-Muhsen, Saleh; Behr, Marcel; Vogt, Guillaume; Puel, Anne; Bustamante, Jacinta; Gros, Philippe; Huibregtse, Jon M; Abel, Laurent; Boisson-Dupuis, Stéphanie; Casanova, Jean-Laurent

    2012-09-28

    ISG15 is an interferon (IFN)-α/β-inducible, ubiquitin-like intracellular protein. Its conjugation to various proteins (ISGylation) contributes to antiviral immunity in mice. Here, we describe human patients with inherited ISG15 deficiency and mycobacterial, but not viral, diseases. The lack of intracellular ISG15 production and protein ISGylation was not associated with cellular susceptibility to any viruses that we tested, consistent with the lack of viral diseases in these patients. By contrast, the lack of mycobacterium-induced ISG15 secretion by leukocytes-granulocyte, in particular-reduced the production of IFN-γ by lymphocytes, including natural killer cells, probably accounting for the enhanced susceptibility to mycobacterial disease. This experiment of nature shows that human ISGylation is largely redundant for antiviral immunity, but that ISG15 plays an essential role as an IFN-γ-inducing secreted molecule for optimal antimycobacterial immunity. PMID:22859821

  17. Mycobacterial disease and impaired IFN-γ immunity in humans with inherited ISG15 deficiency

    PubMed Central

    Bogunovic, Dusan; Byun, Minji; Durfee, Larissa A.; Abhyankar, Avinash; Sanal, Ozden; Mansouri, Davood; Salem, Sandra; Radovanovic, Irena; Grant, Audrey V.; Adimi, Parisa; Mansouri, Nahal; Okada, Satoshi; Bryant, Vanessa L.; Kong, Xiao-Fei; Kreins, Alexandra; Velez, Marcela Moncada; Boisson, Bertrand; Khalilzadeh, Soheila; Ozcelik, Ugur; Darazam, Ilad Alavi; Schoggins, John W.; Rice, Charles M.; Al-Muhsen, Saleh; Behr, Marcel; Vogt, Guillaume; Puel, Anne; Bustamante, Jacinta; Gros, Philippe; Huibregtse, Jon M.; Abel, Laurent; Boisson-Dupuis, Stéphanie; Casanova, Jean-Laurent

    2012-01-01

    ISG15 is an interferon (IFN)-α/β-inducible, ubiquitin-like intracellular protein. Its conjugation to various proteins (ISGylation) contributes to antiviral immunity in mice. We describe human patients with inherited ISG15 deficiency and mycobacterial, but not viral diseases. The lack of intracellular ISG15 production and protein ISGylation was not associated with cellular susceptibility to any viruses tested, consistent with the lack of viral diseases in these patients. By contrast, the lack of mycobacterium-induced ISG15 secretion by leukocytes — granulocytes in particular — reduced the production of IFN-γ by lymphocytes, including natural killer cells, probably accounting for the enhanced susceptibility to mycobacterial disease. This experiment of Nature shows that human ISGylation is largely redundant for antiviral immunity, but that ISG15 plays an essential role as an IFN-γ-inducing secreted molecule for optimal antimycobacterial immunity. PMID:22859821

  18. IFN-induced Guanylate Binding Proteins in Inflammasome Activation and Host Defense

    PubMed Central

    Kim, Bae-Hoon; Chee, Jonathan D.; Bradfield, Clinton J.; Park, Eui-Soon; Kumar, Pradeep; MacMicking, John D.

    2016-01-01

    Traditional views of the inflammasome highlight pre-existing core components being assembled under basal conditions shortly after infection or tissue damage. Recent work, however, suggests the inflammasome machinery is also subject to tunable or inducible signals that may accelerate its autocatalytic properties and dictate where inflammasome assembly takes place in the cell. Many of these immune signals operate downstream of interferon (IFN) receptors to elicit inflammasome regulators, including a new family of IFN-induced GTPases termed guanylate binding proteins (GBPs). Here, we examine the critical roles for IFN-induced GBPs in directing inflammasome subtype-specific responses and their consequences for cell-autonomous immunity against a wide variety of microbial pathogens. We discuss emerging mechanisms of action and the potential impact of these GBPs on predisposition to sepsis and other infectious or inflammatory diseases. PMID:27092805

  19. The antiviral innate immune response in fish: evolution and conservation of the IFN system.

    PubMed

    Langevin, Christelle; Aleksejeva, Elina; Passoni, Gabriella; Palha, Nuno; Levraud, Jean-Pierre; Boudinot, Pierre

    2013-12-13

    Innate immunity constitutes the first line of the host defense after pathogen invasion. Viruses trigger the expression of interferons (IFNs). These master antiviral cytokines induce in turn a large number of interferon-stimulated genes, which possess diverse effector and regulatory functions. The IFN system is conserved in all tetrapods as well as in fishes, but not in tunicates or in the lancelet, suggesting that it originated in early vertebrates. Viral diseases are an important concern of fish aquaculture, which is why fish viruses and antiviral responses have been studied mostly in species of commercial value, such as salmonids. More recently, there has been an interest in the use of more tractable model fish species, notably the zebrafish. Progress in genomics now makes it possible to get a relatively complete image of the genes involved in innate antiviral responses in fish. In this review, by comparing the IFN system between teleosts and mammals, we will focus on its evolution in vertebrates. PMID:24075867

  20. Evolution of IFN-λ in tetrapod vertebrates and its functional characterization in green anole lizard (Anolis carolinensis).

    PubMed

    Chen, Shan Nan; Zhang, Xiao Wen; Li, Li; Ruan, Bai Ye; Huang, Bei; Huang, Wen Shu; Zou, Peng Fei; Fu, Jian Ping; Zhao, Li Juan; Li, Nan; Nie, Pin

    2016-08-01

    IFN-λ (IFNL), i.e. type III IFN genes were found in a conserved gene locus in tetrapod vertebrates. But, a unique locus containing IFNL was found in avian. In turtle and crocodile, IFNL genes were distributed in these two separate loci. As revealed in phylogenetic trees, IFN-λs in these two different loci and other amniotes were grouped into two different clades. The conservation in gene presence and gene locus was also observed for the receptors of IFN-λ, IFN-λR1 and IL-10RB in tetrapods. It is further revealed that in North American green anole lizard Anolis carolinensis, a single IFNL gene was situated collinearly in the conserved locus as in other tetrapods, together with its receptors IFN-λR1 and IL-10RB also identified in this study. The IFN-λ and its receptors were expressed in all examined organs/tissues, and their expression was stimulated following the injection of polyI:polyC. The ISREs in promoter of IFN-λ in lizard were responsible to IRF3 as demonstrated using luciferase report system, and IFN-λ in lizard functioned through the receptors, IFN-λR1 and IL-10RB, as the up-regulation of ISGs was observed in ligand-receptor transfected, and also in recombinant IFN-λ stimulated, cell lines. Taken together, it is concluded that the mechanisms involved in type III IFN ligand-receptor system, and in its signalling pathway and its down-stream genes may be conserved in green anole lizard, and may even be so in tetrapods from xenopus to human. PMID:27062970

  1. Direct stimulation of T cells by type I IFN enhances the CD8+ T cell response during cross-priming.

    PubMed

    Le Bon, Agnes; Durand, Vanessa; Kamphuis, Elisabeth; Thompson, Clare; Bulfone-Paus, Silvia; Rossmann, Cornelia; Kalinke, Ulrich; Tough, David F

    2006-04-15

    Type I IFN (IFN-alphabeta), which is produced rapidly in response to infection, plays a key role in innate immunity and also acts as a stimulus for the adaptive immune response. We have investigated how IFN-alphabeta induces cross-priming, comparing CD8+ T cell responses generated against soluble protein Ags in the presence or absence of IFN-alphabeta. Injection of IFN-alpha was found to prolong the proliferation and expansion of Ag-specific CD8+ T cells, which was associated with marked up-regulation of IL-2 and IL-15 receptors on Ag-specific cells and expression of IL-15 in the draining lymph node. Surprisingly, neither IL-2 nor IL-15 was required for IFN-alpha-induced cross-priming. Conversely, expression of the IFN-alphabetaR by T cells was shown to be necessary for effective stimulation of the response by IFN-alpha. The finding that T cells represent direct targets of IFN-alphabeta-mediated stimulation reveals an additional mechanism by which the innate response to infection promotes adaptive immunity. PMID:16585561

  2. Lion (Panthera leo) and cheetah (Acinonyx jubatus) IFN-gamma sequences.

    PubMed

    Maas, Miriam; Van Rhijn, Ildiko; Allsopp, Maria T E P; Rutten, Victor P M G

    2010-04-15

    Cloning and sequencing of the full length lion and cheetah interferon-gamma (IFN-gamma) transcript will enable the expression of the recombinant cytokine, to be used for production of monoclonal antibodies and to set up lion and cheetah-specific IFN-gamma ELISAs. These are relevant in blood-based diagnosis of bovine tuberculosis, an important threat to lions in the Kruger National Park. Alignment of nucleotide and amino acid sequences of lion and cheetah and that of domestic cats showed homologies of 97-100%.

  3. The absence of IDO upregulates type I IFN production, resulting in suppression of viral replication in the retrovirus-infected mouse.

    PubMed

    Hoshi, Masato; Saito, Kuniaki; Hara, Akira; Taguchi, Ayako; Ohtaki, Hirofumi; Tanaka, Ryo; Fujigaki, Hidetsugu; Osawa, Yosuke; Takemura, Masao; Matsunami, Hidetoshi; Ito, Hiroyasu; Seishima, Mitsuru

    2010-09-15

    Indoleamine 2,3-dioxygenase, the L-tryptophan-degrading enzyme, plays a key role in the powerful immunomodulatory effects on several different types of cells. Because modulation of IDO activities after viral infection may have great impact on disease progression, we investigated the role of IDO following infection with LP-BM5 murine leukemia virus. We found suppressed BM5 provirus copies and increased type I IFNs in the spleen from IDO knockout (IDO(-/-)) and 1-methyl-D-L-tryptophan-treated mice compared with those from wild-type (WT) mice. Additionally, the number of plasmacytoid dendritic cells in IDO(-/-) mice was higher in the former than in the WT mice. In addition, neutralization of type I IFNs in IDO(-/-) mice resulted in an increase in LP-BM5 viral replication. Moreover, the survival rate of IDO(-/-) mice or 1-methyl-D-L-tryptophan-treated mice infected with LP-BM5 alone or with both Toxoplasma gondii and LP-BM5 was clearly greater than the survival rate of WT mice. To our knowledge, the present study is the first report to observe suppressed virus replication with upregulated type I IFN in IDO(-/-) mice, suggesting that modulation of the IDO pathway may be an effective strategy for treatment of virus infection.

  4. Rapid activation of spleen dendritic cell subsets following lymphocytic choriomeningitis virus infection of mice: analysis of the involvement of type 1 IFN.

    PubMed

    Montoya, Maria; Edwards, Matthew J; Reid, Delyth M; Borrow, Persephone

    2005-02-15

    In this study, we report the dynamic changes in activation and functions that occur in spleen dendritic cell (sDC) subsets following infection of mice with a natural murine pathogen, lymphocytic choriomeningitis virus (LCMV). Within 24 h postinfection (pi), sDCs acquired the ability to stimulate naive LCMV-specific CD8+ T cells ex vivo. Conventional (CD11chigh CD8+ and CD4+) sDC subsets rapidly up-regulated expression of costimulatory molecules and began to produce proinflammatory cytokines. Their tendency to undergo apoptosis ex vivo simultaneously increased, and in vivo the number of conventional DCs in the spleen decreased markedly, dropping approximately 2-fold by day 3 pi. Conversely, the number of plasmacytoid (CD11clowB220+) DCs in the spleen increased, so that they constituted almost 40% of sDCs by day 3 pi. Type 1 IFN production was up-regulated in plasmacytoid DCs by 24 h pi. Analysis of DC activation and maturation in mice unable to respond to type 1 IFNs implicated these cytokines in driving infection-associated phenotypic activation of conventional DCs and their enhanced tendency to undergo apoptosis, but also indicated the existence of type 1 IFN-independent pathways for the functional maturation of DCs during LCMV infection. PMID:15699111

  5. IFN-γ secretion in gut of Ob/Ob mice after vertical sleeve gastrectomy and its function in weight loss mechanism.

    PubMed

    Du, Jin-Peng; Wang, Geng; Hu, Chao-Jie; Wang, Qing-Bo; Li, Hui-Qing; Xia, Wen-Fang; Shuai, Xiao-Ming; Tao, Kai-Xiong; Wang, Guo-Bin; Xia, Ze-Feng

    2016-06-01

    Vertical sleeve gastrectomy (VSG) is becoming more and more popular among the world. Despite its dramatic efficacy, however, the mechanism of VSG remains largely undetermined. This study aimed to test interferon (IFN)-γ secretion n of mesenteric lymph nodes in obese mice (ob/ob mice), a model of VSG, and its relationship with farnesoid X receptor (FXR) expression in the liver and small intestine, and to investigate the weight loss mechanism of VSG. The wild type (WT) mice and ob/ob mice were divided into four groups: A (WT+Sham), B (WT+VSG), C (ob/ob+Sham), and D (ob/ob+VSG). Body weight values were monitored. The IFN-γ expression in mesenteric lymph nodes of ob/ob mice pre- and post-operation was detected by flow cytometry (FCM). The FXR expression in the liver and small intestine was detected by Western blotting. The mouse AML-12 liver cells were stimulated with IFN-γ at different concentrations in vitro. The changes of FXR expression were also examined. The results showed that the body weight of ob/ob mice was significantly declined from (40.6±2.7) g to (27.5±3.8) g on the 30th day after VSG (P<0.05). At the same time, VSG induced a higher level secretion of IFN-γ in mesenteric lymph nodes of ob/ob mice than that pre-operation (P<0.05). The FXR expression levels in the liver and small intestine after VSG were respectively 0.97±0.07 and 0.84±0.07 fold of GAPDH, which were significantly higher than pre-operative levels of 0.50±0.06 and 0.48±0.06 respectively (P<0.05). After the stimulation of AML-12 liver cells in vitro by different concentrations of IFN-γ (0, 10, 25, 50, 100, and 200 ng/mL), the relative FXR expression levels were 0.22±0.04, 0.31±0.04, 0.39±0.05, 0.38±0.05, 0.56±0.06, and 0.35±0.05, respectively, suggesting IFN-γ could distinctly promote the FXR expression in a dose-dependent manner in comparison to those cells without IFN-γ stimulation (P<0.05). It was concluded that VSG induces a weight loss in ob/ob mice by increasing IFN

  6. cGAS and Ifi204 Cooperate To Produce Type I IFNs in Response to Francisella Infection

    PubMed Central

    Storek, Kelly M.; Gertsvolf, Nina A.; Ohlson, Maikke B.

    2015-01-01

    Type I IFN production is an important host immune response against viral and bacterial infections. However, little is known about the ligands and corresponding host receptors that trigger type I IFN production during bacterial infections. We used a model intracellular pathogen, Francisella novicida, to begin characterizing the type I IFN response to bacterial pathogens. F. novicida replicates in the cytosol of host cells and elicits a robust type I IFN response that is largely TLR independent, but is dependent on the adapter molecule STING, suggesting that the type I IFN stimulus during F. novicida infection is cytosolic. In this study, we report that the cytosolic DNA sensors, cyclic GMP-AMP synthase (cGAS) and Ifi204, are both required for the STING-dependent type I IFN response to F. novicida infection in both primary and immortalized murine macrophages. We created cGAS, Ifi204, and Sting functional knockouts in RAW264.7 macrophages and demonstrated that cGAS and Ifi204 cooperate to sense dsDNA and activate the STING-dependent type I IFN pathway. In addition, we show that dsDNA from F. novicida is an important type I IFN stimulating ligand. One outcome of cGAS–STING signaling is the activation of the absent in melanoma 2 inflammasome in response to F. novicida infection. Whereas the absent in melanoma 2 inflammasome is beneficial to the host during F. novicida infection, type I IFN signaling by STING and IFN regulatory factor 3 is detrimental to the host during F. novicida infection. Collectively, our studies indicate that cGAS and Ifi204 cooperate to sense cytosolic dsDNA and F. novicida infection to produce a strong type I IFN response. PMID:25710914

  7. Pulmonary Fibrosis Treated with Inhaled Interferon-gamma (IFN-γ).

    PubMed

    Fusiak, Timothy; Smaldone, Gerald C; Condos, Rany

    2015-10-01

    Parenteral IFN-γ was unsuccessful as a treatment for pulmonary fibrosis. Inhaled IFN-γ targeted to the lungs may be more effective. Our patient, a 56-year-old male with biopsy proven usual interstitial pneumonia (UIP) and declining pulmonary function tests (PFTs) was initially diagnosed with idiopathic pulmonary fibrosis (IPF). He enrolled in a 2-year research protocol and was treated with inhaled IFN-γ (100 μg, Actimmune, Horizon Pharma, Deerfield, IL) 3 times per week. After completion of the protocol, he was able to secure the drug and continued therapy for a total of 7 years. He felt better, returning to work. His only complaint was transient cough during inhalation. PFTs improved (e.g., DLCO, 58% at baseline, 81% at 2 years, 69% currently). Clinical monitoring showed preserved exercise tolerance and stable CT scans. He was ultimately diagnosed (year 5) with scleroderma-like connective tissue disease after he developed sclerodactyly and a positive antinuclear antibody. Inhaled IFN-γ was well tolerated for 7 years and may stabilize fibrotic lung disease.

  8. Deregulated c-myc expression overrides IFN gamma-induced macrophage growth arrest.

    PubMed

    Vairo, G; Vadiveloo, P K; Royston, A K; Rockman, S P; Rock, C O; Jackowski, S; Hamilton, J A

    1995-05-18

    Induction of c-myc gene expression is an essential response to growth promoting agents, including colony-stimulating factor 1 (CSF-1). Down regulation of c-myc expression occurs in response to a variety of negative growth regulators in many cell types. However, for many of these systems the causal link between c-myc down regulation and growth arrest remains to be established. Here we show for CSF-1-dependent BAC1.2F5 mouse macrophages that interferon-gamma (IFN gamma) results in a midlate G1 phase decrease of CSF-1-dependent c-myc mRNA and subsequent cell cycle arrest. Introduction of a deregulated c-myc gene into these cells, which prevents the IFN gamma-mediated decrease in c-myc expression, overrides the cell cycle arrest and restores CSF-1-dependent growth in the presence of the cytokine. This result contrasts with the macrophage growth arrest induced by cAMP elevation, which also suppresses c-myc expression, but is not overcome by a deregulated c-myc gene. These results show that inhibition of c-myc expression is an essential component in IFN gamma-mediated cell cycle arrest and demonstrates that distinct mechanisms contribute to IFN gamma- and cAMP-mediated growth arrest in macrophages.

  9. Antigen-Specific Mammary Inflammation Depends on the Production of IL-17A and IFN-γ by Bovine CD4+ T Lymphocytes

    PubMed Central

    Rainard, Pascal; Cunha, Patricia; Ledresseur, Marion; Staub, Christophe; Touzé, Jean-Luc; Kempf, Florent; Gilbert, Florence B.; Foucras, Gilles

    2015-01-01

    Intramammary infusion of the antigen used to sensitize cows by the systemic route induces a local inflammation associated with neutrophil recruitment. We hypothesize that this form of delayed type hypersensitivity, which may occur naturally during infections or could be induced intentionally by vaccination, can impact the outcome of mammary gland infections. We immunized cows with ovalbumin to identify immunological correlates of antigen-specific mammary inflammation. Intraluminal injection of ovalbumin induced a mastitis characterized by a prompt tissue reaction (increase in teat wall thickness) and an intense influx of leukocytes into milk of 10 responder cows out of 14 immunized animals. The magnitude of the local inflammatory reaction, assessed through milk leukocytosis, correlated with antibody titers, skin thickness test, and production of IL-17A and IFN-γ in a whole-blood antigen stimulation assay (WBA). The production of these two cytokines significantly correlated with the magnitude of the milk leukocytosis following the ovalbumin intramammary challenge. The IL-17A and IFN-γ production in the WBA was dependent on the presence of CD4+ cells in blood samples. In vitro stimulation of peripheral blood lymphocytes with ovalbumin followed by stimulation with PMA/ionomycin allowed the identification by flow cytometry of CD4+ T cells producing either IL-17A, IFN-γ, or both cytokines. The results indicate that the antigen-specific WBA, and specifically IL-17A and IFN-γ production by circulating CD4+ cells, can be used as a predictor of mammary hypersensitivity to protein antigens. This prompts further studies aiming at determining how Th17 and/or Th1 lymphocytes modulate the immune response of the mammary gland to infection. PMID:26375594

  10. Differential Production of Type I IFN Determines the Reciprocal Levels of IL-10 and Proinflammatory Cytokines Produced by C57BL/6 and BALB/c Macrophages

    PubMed Central

    Howes, Ashleigh; Taubert, Christina; Blankley, Simon; Spink, Natasha; Wu, Xuemei; Graham, Christine M.; Zhao, Jiawen; Saraiva, Margarida; Ricciardi-Castagnoli, Paola; Bancroft, Gregory J.

    2016-01-01

    Pattern recognition receptors detect microbial products and induce cytokines, which shape the immunological response. IL-12, TNF-α, and IL-1β are proinflammatory cytokines, which are essential for resistance against infection, but when produced at high levels they may contribute to immunopathology. In contrast, IL-10 is an immunosuppressive cytokine, which dampens proinflammatory responses, but it can also lead to defective pathogen clearance. The regulation of these cytokines is therefore central to the generation of an effective but balanced immune response. In this study, we show that macrophages derived from C57BL/6 mice produce low levels of IL-12, TNF-α, and IL-1β, but high levels of IL-10, in response to TLR4 and TLR2 ligands LPS and Pam3CSK4, as well as Burkholderia pseudomallei, a Gram-negative bacterium that activates TLR2/4. In contrast, macrophages derived from BALB/c mice show a reciprocal pattern of cytokine production. Differential production of IL-10 in B. pseudomallei and LPS-stimulated C57BL/6 and BALB/c macrophages was due to a type I IFN and ERK1/2-dependent, but IL-27–independent, mechanism. Enhanced type I IFN expression in LPS-stimulated C57BL/6 macrophages was accompanied by increased STAT1 and IFN regulatory factor 3 activation. Furthermore, type I IFN contributed to differential IL-1β and IL-12 production in B. pseudomallei and LPS-stimulated C57BL/6 and BALB/c macrophages via both IL-10–dependent and –independent mechanisms. These findings highlight key pathways responsible for the regulation of pro- and anti-inflammatory cytokines in macrophages and reveal how they may differ according to the genetic background of the host. PMID:27549173

  11. Activated human mesenchymal stem/stromal cells suppress metastatic features of MDA-MB-231 cells by secreting IFN-β.

    PubMed

    Yoon, N; Park, M S; Shigemoto, T; Peltier, G; Lee, R H

    2016-01-01

    Our recent study showed that human mesenchymal stem/stromal cells (hMSCs) are activated to express tumor necrosis factor (TNF)-α-related apoptosis-inducing ligand (TRAIL) by exposure to TNF-α and these activated hMSCs effectively induce apoptosis in triple-negative breast cancer MDA-MB-231 (MDA) cells in vitro and in vivo. Here, we further demonstrated that activated hMSCs not only induced apoptosis of MDA cells but also reduced metastatic features in MDA cells. These activated hMSC-exposed MDA cells showed reduced tumorigenicity and suppressed formation of lung metastasis when implanted in the mammary fat pad. Surprisingly, the activated hMSC-exposed MDA cells increased TRAIL expression, resulting in apoptosis in MDA cells. Interestingly, upregulation of TRAIL in MDA cells was mediated by interferon-beta (IFN-β) secreted from activated hMSCs. Furthermore, IFN-β in activated hMSCs was induced by RNA and DNA released from apoptotic MDA cells in absent in melanoma 2 (AIM2) and IFN induced with helicase C domain 1 (IFIH1)-dependent manners. These observations were only seen in the TRAIL-sensitive breast cancer cell lines but not in the TRAIL-resistant breast cancer cell lines. Consistent with these results, Kaplan-Meier survival analysis also showed that lack of innate sensors detecting DNA or RNA is strongly associated with poor survival in estrogen receptor-negative breast cancer patients. In addition, cancer-associated fibroblasts (CAF) isolated from a breast cancer patient were also able to express TRAIL and IFN-β upon DNA and RNA stimulation. Therefore, our results suggest that the crosstalk between TRAIL-sensitive cancer cells and stromal cells creates a tumor-suppressive microenvironment and further provide a novel therapeutic approach to target stromal cells within cancer microenvironment for TRAIL sensitive cancer treatment. PMID:27077807

  12. Cloning and expression analyses of interferon regulatory factor (IRF) 3 and 7 genes in European eel, Anguilla anguilla with the identification of genes involved in IFN production.

    PubMed

    Huang, Bei; Huang, Wen Shu; Nie, P

    2014-04-01

    Interferon regulatory factor (IRF) 3 and IRF7 have been identified as regulators of type I interferon (IFN) gene expression in mammals. In the present study, the two genes were cloned and characterized in the European eel, Anguilla anguilla. The full-length cDNA sequence of IRF3 and IRF7 in the European eel, named as AaIRF3 and AaIRF7 consists of 2879 and 2419 bp respectively. Multiple alignments showed that the two IRFs have a highly conserved DNA binding domain (DBD) in the N terminus, with the characteristic motif containing five tryptophan residues, which is a feature present in their mammalian homologues. But, IRF7 has only four of the five residues in other species of fish. The expression of AaIRF3 and AaIRF7 both displayed an obvious dose-dependent manner following polyinosinic:polycytidylic acid (PolyI:C) challenge. In vivo expression analysis showed that the mRNA level of AaIRF3 and AaIRF7 was significantly up-regulated in response to PolyI:C stimulation in all examined tissues/organs except in muscle, with a lower level of increase observed in response to lipopolysaccharide (LPS) challenge and Edwardsiella tarda infection, indicating that AaIRF3 and AaIRF7 may be more likely involved in antiviral immune response. In addition, some pattern recognition receptors genes related with the production of type I IFNs and those genes in response to type I IFNs were identified in the European eel genome database, indicating a relatively conserved system in the production of type I IFN and its signalling in the European eel.

  13. Activated human mesenchymal stem/stromal cells suppress metastatic features of MDA-MB-231 cells by secreting IFN

    PubMed Central

    Yoon, N; Park, M S; Shigemoto, T; Peltier, G; Lee, R H

    2016-01-01

    Our recent study showed that human mesenchymal stem/stromal cells (hMSCs) are activated to express tumor necrosis factor (TNF)-α-related apoptosis-inducing ligand (TRAIL) by exposure to TNF-α and these activated hMSCs effectively induce apoptosis in triple-negative breast cancer MDA-MB-231 (MDA) cells in vitro and in vivo. Here, we further demonstrated that activated hMSCs not only induced apoptosis of MDA cells but also reduced metastatic features in MDA cells. These activated hMSC-exposed MDA cells showed reduced tumorigenicity and suppressed formation of lung metastasis when implanted in the mammary fat pad. Surprisingly, the activated hMSC-exposed MDA cells increased TRAIL expression, resulting in apoptosis in MDA cells. Interestingly, upregulation of TRAIL in MDA cells was mediated by interferon-beta (IFN-β) secreted from activated hMSCs. Furthermore, IFN-β in activated hMSCs was induced by RNA and DNA released from apoptotic MDA cells in absent in melanoma 2 (AIM2) and IFN induced with helicase C domain 1 (IFIH1)-dependent manners. These observations were only seen in the TRAIL-sensitive breast cancer cell lines but not in the TRAIL-resistant breast cancer cell lines. Consistent with these results, Kaplan–Meier survival analysis also showed that lack of innate sensors detecting DNA or RNA is strongly associated with poor survival in estrogen receptor-negative breast cancer patients. In addition, cancer-associated fibroblasts (CAF) isolated from a breast cancer patient were also able to express TRAIL and IFN-β upon DNA and RNA stimulation. Therefore, our results suggest that the crosstalk between TRAIL-sensitive cancer cells and stromal cells creates a tumor-suppressive microenvironment and further provide a novel therapeutic approach to target stromal cells within cancer microenvironment for TRAIL sensitive cancer treatment. PMID:27077807

  14. Hepatitis C Virus-Induced Myeloid-Derived Suppressor Cells Suppress NK Cell IFN-γ Production by Altering Cellular Metabolism via Arginase-1.

    PubMed

    Goh, Celeste C; Roggerson, Krystal M; Lee, Hai-Chon; Golden-Mason, Lucy; Rosen, Hugo R; Hahn, Young S

    2016-03-01

    The hepatitis C virus (HCV) infects ∼ 200 million people worldwide. The majority of infected individuals develop persistent infection, resulting in chronic inflammation and liver disease, including cirrhosis and hepatocellular carcinoma. The ability of HCV to establish persistent infection is partly due to its ability to evade the immune response through multiple mechanisms, including suppression of NK cells. NK cells control HCV replication during the early phase of infection and regulate the progression to chronic disease. In particular, IFN-γ produced by NK cells limits viral replication in hepatocytes and is important for the initiation of adaptive immune responses. However, NK cell function is significantly impaired in chronic HCV patients. The cellular and molecular mechanisms responsible for impaired NK cell function in HCV infection are not well defined. In this study, we analyzed the interaction of human NK cells with CD33(+) PBMCs that were exposed to HCV. We found that NK cells cocultured with HCV-conditioned CD33(+) PBMCs produced lower amounts of IFN-γ, with no effect on granzyme B production or cell viability. Importantly, this suppression of NK cell-derived IFN-γ production was mediated by CD33(+)CD11b(lo)HLA-DR(lo) myeloid-derived suppressor cells (MDSCs) via an arginase-1-dependent inhibition of mammalian target of rapamycin activation. Suppression of IFN-γ production was reversed by l-arginine supplementation, consistent with increased MDSC arginase-1 activity. These novel results identify the induction of MDSCs in HCV infection as a potent immune evasion strategy that suppresses antiviral NK cell responses, further indicating that blockade of MDSCs may be a potential therapeutic approach to ameliorate chronic viral infections in the liver. PMID:26826241

  15. CD57+ T cells augment IFN-γ production in a one-way mixed lymphocyte reaction and their expansion after stem cell transplantation in paediatric patients

    PubMed Central

    KOIKE, Y; SEKI, S; OHKAWA, T; KANEKO, T; KOGAWA, K; FUJITSUKA, S; HIRAIDE, H; SEKINE, I

    2002-01-01

    To clarify the immune response of CD57+ T cells (most of them are CD8+) in peripheral blood (PB) against alloantigens in order to elucidate the T helper 1 (Th 1) immune response, we assessed the role of CD57+ T cells in IFN-γ (one of the representative Th 1 cytokines) production in a one-way mixed lymphocyte reaction (MLR). In this study, we showed that CD57+ T cells in responder cells were essential for effective IFN-γ production in allogeneic MLR due partly to the augmentation of the alloresponse of regular T cells. Furthermore, IFN-γ production in MLR correlated with the proportions of CD57+ T cells in PB regardless of the responders’ age. We also showed that the extent of the expansion of CD57+ T cells in paediatric patients after haematopoietic stem cell transplantation (HSCT) was markedly lower than that in adult patients. In addition, CD57+ T cells purified and activated with a combination of cytokines showed a greater cytotoxicity than regular T cells against human umbilical vein endothelial cells. Because IFN-γ production in one-way MLR is a useful predictor of graft-versus-host disease (GVHD), especially in the acute phase that occurs after allogeneic HSCT, our findings suggested that CD57+ T cells play a role in the development of GVHD and thus may explain the reason as to why a higher donor age is associated with an increased risk of developing GVHD while, in addition, the incidence of severe GVHD in paediatric patients is lower than that in adult patients. PMID:12296868

  16. Junín virus infection of human hematopoietic progenitors impairs in vitro proplatelet formation and platelet release via a bystander effect involving type I IFN signaling.

    PubMed

    Pozner, Roberto G; Ure, Agustín E; Jaquenod de Giusti, Carolina; D'Atri, Lina P; Italiano, Joseph E; Torres, Oscar; Romanowski, Victor; Schattner, Mirta; Gómez, Ricardo M

    2010-04-15

    phenotype. Our study introduces a potential mechanism for thrombocytopenia in VHF and other diseases associated with increased bone marrow type I IFN levels.

  17. Cloning and expression analyses of interferon regulatory factor (IRF) 3 and 7 genes in European eel, Anguilla anguilla with the identification of genes involved in IFN production.

    PubMed

    Huang, Bei; Huang, Wen Shu; Nie, P

    2014-04-01

    Interferon regulatory factor (IRF) 3 and IRF7 have been identified as regulators of type I interferon (IFN) gene expression in mammals. In the present study, the two genes were cloned and characterized in the European eel, Anguilla anguilla. The full-length cDNA sequence of IRF3 and IRF7 in the European eel, named as AaIRF3 and AaIRF7 consists of 2879 and 2419 bp respectively. Multiple alignments showed that the two IRFs have a highly conserved DNA binding domain (DBD) in the N terminus, with the characteristic motif containing five tryptophan residues, which is a feature present in their mammalian homologues. But, IRF7 has only four of the five residues in other species of fish. The expression of AaIRF3 and AaIRF7 both displayed an obvious dose-dependent manner following polyinosinic:polycytidylic acid (PolyI:C) challenge. In vivo expression analysis showed that the mRNA level of AaIRF3 and AaIRF7 was significantly up-regulated in response to PolyI:C stimulation in all examined tissues/organs except in muscle, with a lower level of increase observed in response to lipopolysaccharide (LPS) challenge and Edwardsiella tarda infection, indicating that AaIRF3 and AaIRF7 may be more likely involved in antiviral immune response. In addition, some pattern recognition receptors genes related with the production of type I IFNs and those genes in response to type I IFNs were identified in the European eel genome database, indicating a relatively conserved system in the production of type I IFN and its signalling in the European eel. PMID:24565894

  18. Blockade of IL-33 ameliorates Con A-induced hepatic injury by reducing NKT cell activation and IFN-γ production in mice.

    PubMed

    Chen, Jie; Duan, Lihua; Xiong, Ali; Zhang, Hongwei; Zheng, Fang; Tan, Zheng; Gong, Feili; Fang, Min

    2012-12-01

    IL-33, a recently described member of the IL-1 family, has been identified as a cytokine endowed with pro-Th2 type functions. To date, there are only limited data on its role in physiological and pathological hepatic immune responses. In this study, we examined the role of IL-33 in immune-mediated liver injury by exploring the model of concanavalin A (Con A)-induced hepatitis. We observed that the level of IL-33 expression in the liver was dramatically increased at 12 h after Con A injection. Meanwhile, ST2L, the receptor of IL-33, was significantly up-regulated in lymphocytes including T and natural killer T (NKT) cells, especially in NKT cells. Moreover, administration of recombinant IL-33 exacerbated Con A-induced hepatitis, while pretreatment of IL-33-blocking antibody or psST2-Fc plasmids showed a protective effect probably by inhibiting the activation of late stage of T cells and NKT cells and also decreasing the production of the cytokine IFN-γ. Furthermore, depletion of NKT cells abolished the protective effect of IL-33-blocking antibody, and IL-33 failed to exacerbate Con A-induced hepatitis in IFN-γ(-/-) mice. These data suggested the critical roles of NKT cells and IFN-γ in the involvement of IL-33 in Con A-induced hepatitis. Blockade of IL-33 may represent a novel therapeutic strategy through IL-33/ST2L signal to prevent immune-mediated liver injury.

  19. MicroRNAs in virus-induced tumorigenesis and IFN system.

    PubMed

    Fiorucci, Gianna; Chiantore, Maria Vincenza; Mangino, Giorgio; Romeo, Giovanna

    2015-04-01

    Numerous microRNAs (miRNAs), small non-coding RNAs encoded in the human genome, have been shown to be involved in cancer pathogenesis and progression. There is evidence that some of these miRNAs possess proapoptotic or proliferation promoting roles in the cell by negatively regulating target mRNAs. Oncogenic viruses are able to produce persistent infection, favoring tumor development by deregulating cell proliferation and inhibiting apoptosis. It has been recently suggested that cellular miRNAs may participate in host-virus interactions, influencing viral replication. Many mammalian viruses counteract this cellular antiviral defense by using viral proteins but also by encoding viral miRNAs involved in virus-induced tumorigenesis. Interferons (IFNs) modulate a number of non-coding RNA genes, especially miRNAs, that may be used by mammalian organisms as a mechanism of IFN system to combat viral infection and related diseases. In particular, IFNs might induce specific cellular miRNAs that target viral transcripts thereby using this strategy as part of their effectiveness against invading viruses. Therefore IFNs, interferon stimulated genes and miRNAs could act synergistically as innate response to virus infection to induce a potent non-permissive cellular environment for virus replication and virus-induced cancer. The relevance of this reviewed research topic is clearly related to the observation that although virus infections are responsible of specific tumors, other unidentified genetic alterations are likely involved in the induction of malignant transformation. The identification of such genetic alterations, i.e. miRNA expression in transformed cells, would be of considerable importance for the analysis of the pathogenesis and for the treatment of cancer induced by specific viruses as well as for the advancement of the current knowledge on the molecular mechanisms underlying virus-host interaction. In this respect, we will review also the important, still little

  20. Exogenous Interferon-α and Interferon-γ Increase Lethality of Murine Inhalational Anthrax

    PubMed Central

    Gold, Jeffrey A.; Hoshino, Yoshihiko; Jones, Marcus B.; Hoshino, Satomi; Nolan, Anna; Weiden, Michael D.

    2007-01-01

    Background Bacillus anthracis, the etiologic agent of inhalational anthrax, is a facultative intracellular pathogen. Despite appropriate antimicrobial therapy, the mortality from inhalational anthrax approaches 45%, underscoring the need for better adjuvant therapies. The variable latency between exposure and development of disease suggests an important role for the host's innate immune response. Type I and Type II Interferons (IFN) are prominent members of the host innate immune response and are required for control of intracellular pathogens. We have previously described a protective role for exogenous Type I and Type II IFNs in attenuating intracellular B.anthracis germination and macrophage cell death in vitro. Methodology and Principal Findings We sought to extend these findings in an in vivo model of inhalational anthrax, utilizing the Sterne strain (34F2) of B.anthracis. Mice devoid of STAT1, a component of IFN-α and IFN-γ signaling, had a trend towards increased mortality, bacterial germination and extrapulmonary spread of B.anthracis at 24 hrs. This was associated with impaired IL-6, IL-10 and IL-12 production. However, administration of exogenous IFN-γ, and to a lesser extent IFN-α, at the time of infection, markedly increased lethality. While IFNs were able to reduce the fraction of germinated spores within the lung, they increased both the local and systemic inflammatory response manifest by increases in IL-12 and reductions in IL-10. This was associated with an increase in extrapulmonary dissemination. The mechanism of IFN mediated inflammation appears to be in part due to STAT1 independent signaling. Conclusions In conclusion, while endogenous IFNs are essential for control of B.anthracis germination and lethality, administration of exogenous IFNs appear to increase the local inflammatory response, thereby increasing mortality. PMID:17710136

  1. IFN-α suppresses GATA3 transcription from a distal exon and promotes H3K27 tri-methylation of the CNS-1 enhancer in human Th2 cells1

    PubMed Central

    Huber, Jonathan P.; Gonzales-van Horn, Sarah R.; Roybal, Kole T.; Gill, Michelle A.; Farrar, J. David

    2014-01-01

    CD4+ T helper type 2 (Th2) development is regulated by the zinc finger transcription factor GATA3. Once induced by acute priming signals, such as IL-4, GATA3 poises the Th2 cytokine locus for rapid activation and establishes a positive feedback loop that maintains elevated GATA3 expression. Type I interferon (IFN-α/β) inhibits Th2 cells by blocking the expression of GATA3 during Th2 development and in fully committed Th2 cells. In this study, we have uncovered a unique mechanism by which IFN-α/β signaling represses the GATA3 gene in human Th2 cells. IFN-α/β suppressed expression of GATA3 mRNA that was transcribed from an alternative distal upstream exon (1A). This suppression was not mediated through DNA methylation, but rather by histone modifications localized to a conserved non-coding sequence (CNS-1) upstream of exon 1A. IFN-α/β treatment lead to a closed conformation of CNS-1 as assessed by DNase I hypersensitivity along with enhanced accumulation of H3K27me3 mark at this CNS region, which correlated with increased density of total nucleosomes at this putative enhancer. Consequently, accessibility of CNS-1 to GATA3 DNA binding activity was reduced in response to IFN-α/β signaling, even in the presence of IL-4. Thus, IFN-α/β disrupts the GATA3 autoactivation loop and promotes epigenetic silencing of a Th2-specific regulatory region within the GATA3 gene. PMID:24813204

  2. High Pulmonary Levels of IL-6 and IL-1β in Children with Chronic Suppurative Lung Disease Are Associated with Low Systemic IFN-γ Production in Response to Non-Typeable Haemophilus influenzae

    PubMed Central

    Pizzutto, Susan J.; Upham, John W.; Yerkovich, Stephanie T.; Chang, Anne B.

    2015-01-01

    Non-typeable Haemophilus influenzae (NTHi) is commonly associated with chronic suppurative lung disease in children. We have previously shown that children with chronic suppurative lung disease have a reduced capacity to produce IFN-γ in response to NTHi compared with healthy control children. The aim of this study was to determine if deficient NTHi-specific IFN-γ production is associated with heightened systemic or airway inflammation. We measured a panel of cytokines (IFN-γ, IL-1β, IL-6, IL-8, IL-12 p70), antimicrobial proteins (LL-37, IP-10) as well as cellular and clinical factors associated with airway and systemic inflammation in 70 children with chronic suppurative lung disease. IFN-γ was measured in peripheral blood mononuclear cells challenged in vitro with live NTHi. Regression analysis was used to assess the association between the systemic and airway inflammation and the capacity to produce IFN-γ. On multivariate regression, NTHi-specific IFN-γ production was significantly negatively associated with the BAL concentrations of the inflammatory cytokines IL-6 (β=-0.316; 95%CI -0.49, -0.14; p=0.001) and IL-1β (β=-0.023; 95%CI -0.04, -0.01; p=0.001). This association was independent of bacterial or viral infection, BAL cellularity and the severity of bronchiectasis (using modified Bhalla score on chest CT scans). We found limited evidence of systemic inflammation in children with chronic suppurative lung disease. In summary, increased local airway inflammation is associated with a poorer systemic cell-mediated immune response to NTHi in children with chronic suppurative lung disease. These data support the emerging body of evidence that impaired cell-mediated immune responses and dysregulated airway inflammation may be linked and contribute to the pathobiology of chronic suppurative lung disease. PMID:26066058

  3. IL-2, IL-4, IFN-γ or TNF-α enhances BAFF-stimulated cell viability and survival by activating Erk1/2 and S6K1 pathways in neoplastic B-lymphoid cells.

    PubMed

    Gui, Lin; Zeng, Qingyu; Xu, Zhigang; Zhang, Hai; Qin, Shanshan; Liu, Chunxiao; Xu, Chong; Qian, Zhou; Zhang, Shuangquan; Huang, Shile; Chen, Long

    2016-08-01

    B-cell activating factor of the TNF family (BAFF) has been documented to act as a critical factor in the development of aggressive B lymphocytes and autoimmune diseases. However, the effect of various cytokines on BAFF-elicited neoplastic B-lymphoid cells is not known. In this study, we exhibited that administration of human soluble BAFF (hsBAFF), IL-2, IL-4, IFN-γ, or TNF-α alone increased cell viability and survival in Raji cells concentration-dependently, yet a more robust viability/survival was seen in the cells co-treatment of IL-2, IL-4, IFN-γ, or TNF-α with hsBAFF, respectively. Further research revealed that both Erk1/2 and S6K1 signaling pathways were essential for IL-2, IL-4, IFN-γ, or TNF-α enhancement of the viability/survival in the hsBAFF-stimulated cells, as inhibition of Erk1/2 with U0126 or down-regulation of Erk1/2, or blockage of S6K1 with rapamycin or silencing S6K1, or silencing S6K1/Erk1/2, respectively, reduced the cell viability/survival in the cells treated with/without hsBAFF±IL-2, IL-4, IFN-γ, or TNF-α. These findings indicate that IL-2, IL-4, IFN-γ or TNF-α enhances BAFF-stimulated cell viability/survival by activating Erk1/2 and S6K1 signaling in neoplastic B-lymphoid cells. Our data suggest that modulation of IL-2, IL-4, IFN-γ and/or TNF-α levels, or inhibitors of Erk1/2 or S6K1 may be a new approach to prevent BAFF-induced aggressive B-cell malignancies.

  4. High Pulmonary Levels of IL-6 and IL-1β in Children with Chronic Suppurative Lung Disease Are Associated with Low Systemic IFN-γ Production in Response to Non-Typeable Haemophilus influenzae.

    PubMed

    Pizzutto, Susan J; Upham, John W; Yerkovich, Stephanie T; Chang, Anne B

    2015-01-01

    Non-typeable Haemophilus influenzae (NTHi) is commonly associated with chronic suppurative lung disease in children. We have previously shown that children with chronic suppurative lung disease have a reduced capacity to produce IFN-γ in response to NTHi compared with healthy control children. The aim of this study was to determine if deficient NTHi-specific IFN-γ production is associated with heightened systemic or airway inflammation. We measured a panel of cytokines (IFN-γ, IL-1β, IL-6, IL-8, IL-12 p70), antimicrobial proteins (LL-37, IP-10) as well as cellular and clinical factors associated with airway and systemic inflammation in 70 children with chronic suppurative lung disease. IFN-γ was measured in peripheral blood mononuclear cells challenged in vitro with live NTHi. Regression analysis was used to assess the association between the systemic and airway inflammation and the capacity to produce IFN-γ. On multivariate regression, NTHi-specific IFN-γ production was significantly negatively associated with the BAL concentrations of the inflammatory cytokines IL-6 (β=-0.316; 95%CI -0.49, -0.14; p=0.001) and IL-1β (β=-0.023; 95%CI -0.04, -0.01; p=0.001). This association was independent of bacterial or viral infection, BAL cellularity and the severity of bronchiectasis (using modified Bhalla score on chest CT scans). We found limited evidence of systemic inflammation in children with chronic suppurative lung disease. In summary, increased local airway inflammation is associated with a poorer systemic cell-mediated immune response to NTHi in children with chronic suppurative lung disease. These data support the emerging body of evidence that impaired cell-mediated immune responses and dysregulated airway inflammation may be linked and contribute to the pathobiology of chronic suppurative lung disease.

  5. Age-associated differential production of IFN-γ, IL-10 and GM-CSF by porcine alveolar macrophages in response to lipopolysaccharide.

    PubMed

    Islam, Mohammad Ariful; Uddin, Muhammad Jasim; Tholen, Ernst; Tesfaye, Dawit; Looft, Christian; Schellander, Karl; Cinar, Mehmet Ulas

    2013-10-01

    The aim of the present study was to investigate the age-related production variation of T helper (Th)-type cytokines (IL-2, IL-4, IFN-γ and IL-10), granulocyte macrophage-colony stimulating factor (GM-CSF) and nitric oxide (NO) by lipopolysaccharide (LPS)-stimulated porcine alveolar macrophages (AMs) in a time-dependent manner. For this purpose, AMs were isolated from 5-days (newborn), 40-days (post-weaned) and 120-days (young) old pigs. Cells were incubated for 24h in the absence or presence of increasing concentrations of LPS (0.0, 0.01, 1.0, 5.0 and 10.0 μg/mL). IL-10, IFN-γ and GM-CSF mRNA expression was upregulated in a dose-dependent manner for all age groups (P<0.05). Age-related differences included a significantly increased IL-10 mRNA and protein production in newborn piglets compared to post-weaned and young pigs. IL-10 production pattern was similar with a higher peak between 12 and 36 h post-induction in all age groups. In contrast, IFN-γ mRNA and protein level was significantly elevated in young pigs 12h and 24h post-induction, respectively, while the time course production of IFN-γ was mostly consistent in newborn and post-weaned piglets. GM-CSF mRNA expression was significantly lower in newborn piglets than in post-weaned and young pigs. The kinetic of GM-CSF expression peaked at 12h in young and post-weaned pigs and at 24h in newborn piglets. IL-4 mRNA levels were very low and no apparent change of IL-2 expression was observed following LPS stimulation in all age groups. Only very low levels of NO were detected in the cell supernatants of young pigs. Collectively, these studies suggest age-related differences in time-dependent production of IL-10, IFN-γ and GM-CSF by porcine AMs with potential immunoregulatory consequences to be explored further.

  6. Enhancing Specific-Antibody Production to the ragB Vaccine with GITRL That Expand Tfh, IFN-γ+ T Cells and Attenuates Porphyromonas gingivalis Infection in Mice

    PubMed Central

    Su, Zhaoliang; Kong, Fanzhi; Shi, Xiaoju; Tong, Jia; Shen, Pei; Peng, Tianqing; Wang, Shengjun; Xu, Huaxi

    2013-01-01

    The outer membrane protein RagB is one of the major virulence factors of the periodontal pathogen Porphyromonas gingivalis (P. gingivalis). In order to induce protective immune response against P. gingivalis infection, an mGITRL gene-linked ragB DNA vaccine (pIRES-ragB-mGITRL ) was constructed. Six-week-old female BALB/c mice were immunized with pIRES-ragB-mGITRL through intramuscular injection and then challenged by subcutaneous injection in the abdomen with P. gingivalis. RagB-specific antibody-forming cells were evaluated by an Enzyme-linked immunosorbent spot, and specific antibody was determined by enzyme-linked immunosorbent assay. In addition, the frequencies of Tfh and IFN-γ+ T cells in spleen were measured using flow cytometer, and the levels of IL-21 and IFN-γ mRNA or proteins were detected by real time RT-PCR or ELISA. The data showed that the mGITRL-linked ragB DNA vaccine induced higher levels of RagB-specific IgG in serum and RagB-specific antibody-forming cells in spleen. The frequencies of Tfh and IFN-γ+ T cells were obviously expanded in mice immunized by pIRES-ragB-mGITRL compared with other groups (pIRES or pIRES-ragB ). The levels of Tfh and IFN-γ+ T cells associated cytokines were also significantly increased in pIRES-ragB-mGITRL group. Therefore, the mice immunized with ragB plus mGITRL showed the stronger resistant to P. gingivalis infection and a significant reduction of the lesion size caused by P. gingivalis infection comparing with other groups. Taken together, our findings demonstrated that intramuscular injection of DNA vaccine ragB together with mGITRL induced protective immune response dramatically by increasing Tfh and IFN-γ+ T cells and antibody production to P. gingivalis. PMID:23560053

  7. Monoclonal antibody against IFN-gamma inhibits Moloney murine sarcoma virus-specific cytotoxic T lymphocyte differentiation

    SciTech Connect

    Zanovello, P.; Vallerani, E.; Biasi, G.; Landolfo, S.; Collavo, D.

    1988-02-15

    The role of autochthonous IFN- production was evaluated in immune reactions to Moloney murine sarcoma virus (M-MSV)-induced tumors which are characterized by spontaneous regression mainly caused by virus-specific CTL activity. A functional IFN- depletion, induced by repeated administration of mAb anti-IFN- at the site of virus inoculation, prevented tumor regression in M-MSV-injected mice. Moreover, this antibody inhibited in vitro both proliferation and differentiation of M-MSV-specific T lymphocytes obtained in bulk cultures, but not growth and lytic activity of the already differentiated virus-specific CTL clone CHM-14 stimulated with rIL-2 and relevant tumor Ag. In addition, in mice receiving mAb treatment the frequency of M-MSV-specific CTL precursors, evaluated by means of limiting dilution analysis, was strongly reduced in comparison with that of control mice injected only with virus. Because CTL secrete IFN- following antigenic stimulation, the possibility that non-T effector cells recruited by this lymphokine might mediate tumor regression was also considered. Adoptive immunotherapy experiments, performed in T cell-deficient (Tx + BM) and in sublethally irradiated mice, demonstrated that transfer of CHM-14 CTL clone, which secretes IFN-, was able to counteract M-MSV tumor growth despite the local mAb anti-IFN- treatment which may have prevented host cell recruitment. Moreover, repeated local rIFN- inoculations in Tx + BM mice did not counteract M-MSV tumor progression, thus confirming that other IFN- properties such as non-T cell recruitment, antiviral or anti-proliferative IFN- activities have little or no relevance when M-MSV-specific CTL are lacking. On the whole, these results indicate that in M-MSV-injected mice, tumor enhancement after mAb anti-IFN- treatment is principally caused by impaired differentiation of virus-specific CTL precursors.

  8. OAS/PKR Pathways and α/β TCR+ T Cells are Required for Ad: IFN-γ Inhibition of HSV-1 in Cornea1

    PubMed Central

    Austin, Bobbie Ann; Halford, William P.; Williams, Bryan R. G.; Carr, Daniel J. J.

    2007-01-01

    An adenoviral vector containing the muIFN-γ transgene (Ad:IFN-γ) was evaluated for its capacity to inhibit HSV-1. To measure effectiveness, viral titers were analyzed in cornea and trigeminal ganglia (TG) during acute ocular HSV-1 infection. Ad: IFN-γ potently suppressed HSV-1 replication in a dose-dependent fashion, requiring IFN-γ R. Moreover, Ad:IFN-γ was effective when delivered -72 and -24 h prior to infection as well as 24 h post infection. Associated with anti-viral opposition, TG from Ad: IFN-γ transduced mice harbored fewer T cells. Also related to T cell involvement, Ad:IFN-γ was effective but attenuated in TG from α/β TCR deficient mice. In corneas, α/β TCR+ T cells were obligatory for protection against viral multiplication. Type I IFN involvement amid anti-viral efficacy of Ad: IFN-γ was further investigated because type I and II IFN pathways have synergistic anti-HSV-1 activity. Ad:IFN-γ inhibited viral reproduction in corneas and TG from IFN-α/β R deficient (CD118 −/−) mice, although viral titers were 2–3 fold higher in cornea and TG, compared to wild type. The absence of IFN-stimulated anti-viral proteins, 2’-5’ oligoadenylate synthetase/RNase L and ds RNA dependent protein kinase R, completely eliminated the anti-viral effectiveness of Ad:IFN-γ. Collectively, the results demonstrate: (1) nonexistence of type I IFN R does not abolish defense of Ad:IFN-γ against HSV-1; (2) anti-viral pathways, OAS/RNase L and PKR are mandatory; and (3) α/β TCR+ T cells are compulsory for Ad: IFN-γ effectiveness against HSV-1 in cornea but not in TG. PMID:17404299

  9. Blocking the PI3K/AKT pathway enhances mammalian reovirus replication by repressing IFN-stimulated genes

    PubMed Central

    Tian, Jin; Zhang, Xiaozhan; Wu, Hongxia; Liu, Chunguo; Li, Zhijie; Hu, Xiaoliang; Su, Shuo; Wang, Lin-Fa; Qu, Liandong

    2015-01-01

    Many host cellular signaling pathways were activated and exploited by virus infection for more efficient replication. The PI3K/Akt pathway has recently attracted considerable interest due to its role in regulating virus replication. This study demonstrated for the first time that the mammalian reovirus strains Masked Palm Civet/China/2004 (MPC/04) and Bat/China/2003 (B/03) can induce transient activation of the PI3K/Akt pathway early in infection in vitro. When UV-treated, both viruses activated PI3K/Akt signaling, indicating that the virus/receptor interaction was sufficient to activate PI3K/Akt. Reovirus virions can use both clathrin- and caveolae-mediated endocytosis, but only chlorpromazine, a specific inhibitor of clathrin-mediated endocytosis, or siRNA targeting clathrin suppressed Akt phosphorylation. We also identified the upstream molecules of the PI3K pathway. Virus infection induced phosphorylation of focal adhesion kinase (FAK) but not Gab1, and blockage of FAK phosphorylation suppressed Akt phosphorylation. Blockage of PI3K/Akt activation increased virus RNA synthesis and viral yield. We also found that reovirus infection activated the IFN-stimulated response element (ISRE) in an interferon-independent manner and up-regulated IFN-stimulated genes (ISGs) via the PI3K/Akt/EMSY pathway. Suppression of PI3K/Akt activation impaired the induction of ISRE and down-regulated the expression of ISGs. Overexpression of ISG15 and Viperin inhibited virus replication, and knockdown of either enhanced virus replication. Collectively, these results demonstrate that PI3K/Akt activated by mammalian reovirus serves as a pathway for sensing and then inhibiting virus replication/infection. PMID:26388843

  10. IL-12, IL-6 and IFN-gamma production by lymphocytes of pregnant women with rheumatoid arthritis remission during pregnancy.

    PubMed Central

    Tchórzewski, H; Krasomski, G; Biesiada, L; Głowacka, E; Banasik, M; Lewkowicz, P

    2000-01-01

    BACKGROUND: Rheumatoid arthritis (RA) is an autoimmune disease with progressive activity. The RA remission was observed in women during pregnancy, but the mechanism responsible for remission is hypothetical only and concerns mechanisms of immune regulation such as lymphocyte subpopulations and interleukin production. AIMS: The lymphocyte subpopulations and interleukin production in vitro in a group of healthy non-pregnant women, healthy pregnant women and pregnant women suffering from RA may help towards a better understanding of regulation of the immune processes. METHODS: The investigations were performed in trimester III--2 days after delivery and 6 weeks after delivery. Peripheral blood lymphocytes were isolated on Gradisol gradient and analysed immediately or after having been cultured for 72 hours in RPMI medium supplemented with 10% FCS. The cultures were terminated after 72 h, supernatants stored at -72 degrees C for interleukin evaluation. The concentrations of IFN-gamma, IL-2, IL-6, IL-12, TNF-alpha and its soluble receptors R-I, R-II were estimated in non-stimulated and PHA (Sigma, 5 microg/ml) stimulated culture supernatants using ELISA Endogen kits according to the manufacturer's instructions. RESULTS: The general pattern of T cell subpopulation distribution was similar in all analysed groups. Decreased IFN-gamma, IL-12 and increased IL-6 production by lymphocytes after PHA stimulation was found in trimester III in pregnant women with RA as compared to healthy pregnant woman. CONCLUSION: The obtained results suggest that in pregnant women with RA the TH1 cell response predominates, contrary to healthy pregnant women with TH2 type functional response. These phenomena were not observed after delivery. PMID:11213913

  11. Comparative pharmacogenetics of multiple sclerosis: IFN-β versus glatiramer acetate.

    PubMed

    Kulakova, Olga G; Tsareva, Ekaterina Yu; Lvovs, Dmitrijs; Favorov, Alexander V; Boyko, Alexey N; Favorova, Olga O

    2014-04-01

    Various diseases require the selection of preferable treatment out of available alternatives. Multiple sclerosis (MS), an autoimmune inflammatory/neurodegenerative disease of the CNS, requires long-term medication with either specific disease-modifying therapy (DMT) - IFN-β or glatiramer acetate (GA) - which remain the only first-line DMTs in all countries. A significant share of MS patients are resistant to treatment with one or the other DMT; therefore, the earliest choice of preferable DMT is of particular importance. A number of conventional pharmacogenetic studies performed up to the present day have identified the treatment-sensitive genetic biomarkers that might be specific for the particular drug; however, the suitable biomarkers for selection of one or another first-line DMT are remained to be found. Comparative pharmacogenetic analysis may allow the identification of the discriminative genetic biomarkers, which may be more informative for an a priori DMT choice than those found in conventional pharmacogenetic studies. The search for discriminative markers of preferable first-line DMT, which differ in carriage between IFN-β responders and GA responders as well as between IFN-β nonresponders and GA nonresponders, has been performed in 253 IFN-β-treated MS patients and 285 GA-treated MS patients. A bioinformatics algorithm for identification of composite biomarkers (allelic sets) was applied on a unified set of immune-response genes, which are relevant for IFN-β and/or GA modes of action, and identical clinical criteria of treatment response. We found the range of discriminative markers, which include polymorphic variants of CCR5, IFNAR1, TGFB1, DRB1 or CTLA4 genes, in different combinations. Every allelic set includes the CCR5 genetic variant, which probably suggests its crucial role in the modulation of the DMT response. Special attention should be given to the (CCR5*d+ IFNAR1*G) discriminative combination, which clearly points towards IFN

  12. TNF-alpha, but not IFN-gamma, regulates CCN2 (CTGF), collagen type I, and proliferation in mesangial cells: possible roles in the progression of renal fibrosis.

    PubMed

    Cooker, Laurinda A; Peterson, Darryl; Rambow, Joann; Riser, Melisa L; Riser, Rebecca E; Najmabadi, Feridoon; Brigstock, David; Riser, Bruce L

    2007-07-01

    Connective tissue growth factor (CCN2) is a profibrotic factor acting downstream and independently of TGF-beta to mediate renal fibrosis. Although inflammation is often involved in the initiation and/or progression of fibrosis, the role of inflammatory cytokines in regulation of glomerular CCN2 expression, cellular proliferation, and extracellular matrix accumulation is unknown. We studied two such cytokines, TNF-alpha and IFN-gamma, for their effects on cultured mesangial cells in the presence or absence of TGF-beta, as a model for progressive renal fibrosis. Short-term treatment with TNF-alpha, like TGF-beta, significantly increased secreted CCN2 per cell, but unlike TGF-beta inhibited cellular replication. TNF-alpha combined with TGF-beta further increased CCN2 secretion and mRNA levels and reduced proliferation. Surprisingly, however, TNF-alpha treatment decreased baseline collagen type I protein and mRNA levels and largely blocked their stimulation by TGF-beta. Long-term treatment with TGF-beta or TNF-alpha alone no longer increased CCN2 protein levels. However, the combination synergistically increased CCN2. IFN-gamma had no effect on either CCN2 or collagen activity and produced a mild inhibition of TGF-beta-induced collagen only at a high concentration (500 U/ml). In summary, we report a strong positive regulatory role for TNF-alpha, but not IFN-gamma, in CCN2 production and secretion, including that driven by TGF-beta. The stimulation of CCN2 release by TNF-alpha, unlike TGF-beta, is independent of cellular proliferation and not linked to increased collagen type I accumulation. This suggests that the paradigm of TGF-beta-driven CCN2 with subsequent collagen production may be overridden by an as yet undefined inhibitory mechanism acting either directly or indirectly on matrix metabolism. PMID:17376761

  13. IFN-γ Directly Controls IL-33 Protein Level through a STAT1- and LMP2-dependent Mechanism*

    PubMed Central

    Kopach, Pavel; Lockatell, Virginia; Pickering, Edward M.; Haskell, Ronald E.; Anderson, Richard D.; Hasday, Jeffrey D.; Todd, Nevins W.; Luzina, Irina G.; Atamas, Sergei P.

    2014-01-01

    IL-33 contributes to disease processes in association with Th1 and Th2 phenotypes. IL-33 mRNA is rapidly regulated, but the fate of synthesized IL-33 protein is unknown. To understand the interplay among IL-33, IFN-γ, and IL-4 proteins, recombinant replication-deficient adenoviruses were produced and used for dual expression of IL-33 and IFN-γ or IL-33 and IL-4. The effects of such dual gene delivery were compared with the effects of similar expression of each of these cytokines alone. In lung fibroblast culture, co-expression of IL-33 and IFN-γ resulted in suppression of the levels of both proteins, whereas co-expression of IL-33 and IL-4 led to mutual elevation. In vivo, co-expression of IL-33 and IFN-γ in the lungs led to attenuation of IL-33 protein levels. Purified IFN-γ also attenuated IL-33 protein in fibroblast culture, suggesting that IFN-γ controls IL-33 protein degradation. Specific inhibition of caspase-1, -3, and -8 had minimal effect on IFN-γ-driven IL-33 protein down-regulation. Pharmacological inhibition, siRNA-mediated silencing, or gene deficiency of STAT1 potently up-regulated IL-33 protein expression levels and attenuated the down-regulating effect of IFN-γ on IL-33. Stimulation with IFN-γ strongly elevated the levels of the LMP2 proteasome subunit, known for its role in IFN-γ-regulated antigen processing. siRNA-mediated silencing of LMP2 expression abrogated the effect of IFN-γ on IL-33. Thus, IFN-γ, IL-4, and IL-33 are engaged in a complex interplay. The down-regulation of IL-33 protein levels by IFN-γ in pulmonary fibroblasts and in the lungs in vivo occurs through STAT1 and non-canonical use of the LMP2 proteasome subunit in a caspase-independent fashion. PMID:24619410

  14. A fully human monoclonal antibody with novel binding epitope and excellent neutralizing activity to multiple human IFN-α subtypes: A candidate therapy for systemic lupus erythematosus.

    PubMed

    Du, Peng; Xu, Lei; Qiu, Weiyi; Zeng, Dadi; Yue, Junjie; Wang, Shuang; Huang, Peitang; Sun, Zhiwei

    2015-01-01

    Systemic lupus erythematosus (SLE) is a chronic, heterogeneous autoimmune disease short of effective therapeutic agents. A multitude of studies of SLE in the last decade have accentuated a central role of the interferon alpha (IFN-α) pathway in SLE pathogenesis. We report here a candidate therapeutic neutralizing antibody, AIA22, with a different binding epitope and discrepant neutralizing profile from the anti-multiple IFN-α subtype antibodies currently in clinical trials. AIA22 specifically interacts with multiple IFN-α subtypes, binds to the type I IFN receptor 2 (IFNAR2) recognition region of IFN-α (considered a novel antigen epitope), and effectively neutralizes the activity of almost all of the IFN-α subtypes (with the exception of IFN-α7) both in vitro and in vivo. Concurrently, structural modeling and computational design yielded a mutational antibody of AIA22, AIAmut, which exhibited substantially improved neutralizing activity to multiple IFN-α subtypes.

  15. Glycosylation-Dependent IFN-γR Partitioning in Lipid and Actin Nanodomains Is Critical for JAK Activation.

    PubMed

    Blouin, Cédric M; Hamon, Yannick; Gonnord, Pauline; Boularan, Cédric; Kagan, Jérémy; Viaris de Lesegno, Christine; Ruez, Richard; Mailfert, Sébastien; Bertaux, Nicolas; Loew, Damarys; Wunder, Christian; Johannes, Ludger; Vogt, Guillaume; Contreras, Francesc-Xabier; Marguet, Didier; Casanova, Jean-Laurent; Galès, Céline; He, Hai-Tao; Lamaze, Christophe

    2016-08-11

    Understanding how membrane nanoscale organization controls transmembrane receptors signaling activity remains a challenge. We studied interferon-γ receptor (IFN-γR) signaling in fibroblasts from homozygous patients with a T168N mutation in IFNGR2. By adding a neo-N-glycan on IFN-γR2 subunit, this mutation blocks IFN-γ activity by unknown mechanisms. We show that the lateral diffusion of IFN-γR2 is confined by sphingolipid/cholesterol nanodomains. In contrast, the IFN-γR2 T168N mutant diffusion is confined by distinct actin nanodomains where conformational changes required for Janus-activated tyrosine kinase/signal transducer and activator of transcription (JAK/STAT) activation by IFN-γ could not occur. Removing IFN-γR2 T168N-bound galectins restored lateral diffusion in lipid nanodomains and JAK/STAT signaling in patient cells, whereas adding galectins impaired these processes in control cells. These experiments prove the critical role of dynamic receptor interactions with actin and lipid nanodomains and reveal a new function for receptor glycosylation and galectins. Our study establishes the physiological relevance of membrane nanodomains in the control of transmembrane receptor signaling in vivo. VIDEO ABSTRACT. PMID:27499022

  16. NK-DC crosstalk controls the autopathogenic Th17 response through an innate IFN-γ–IL-27 axis

    PubMed Central

    van Panhuys, Nicholas; Chen, Jun; Silver, Phyllis B.; Jittayasothorn, Yingyos; Mattapallil, Mary J.; Germain, Ronald N.

    2015-01-01

    IFN-γ is a pathogenic cytokine involved in inflammation. Paradoxically, its deficiency exacerbates experimental autoimmune encephalomyelitis, uveitis, and arthritis. Here, we demonstrate using IFN-γ−/− mice repleted with IFN-γ+/+ NK cells that innate production of IFN-γ from NK cells is necessary and sufficient to trigger an endogenous regulatory circuit that limits autoimmunity. After immunization, DCs recruited IFN-γ-producing NK cells to the draining lymph node and interacted with them in a CXCR3-dependent fashion. The interaction caused DCs to produce IL-27, which in turn enhanced IFN-γ production by NK cells, forming a self-amplifying positive feedback loop. IL-10, produced by the interacting cells themselves, was able to limit this process. The NK-DC–dependent IL-27 inhibited development of the adaptive pathogenic IL-17 response and induced IL-10–producing Tr1-like cells, which ameliorated disease in an IL-10-dependent manner. Our data reveal that an early NK-DC interaction controls the adaptive Th17 response and limits tissue-specific autoimmunity through an innate IFN-γ–IL-27 axis. PMID:26347474

  17. STS-1 promotes IFN-α induced autophagy by activating the JAK1-STAT1 signaling pathway in B cells.

    PubMed

    Dong, Guanjun; You, Ming; Fan, Hongye; Ding, Liang; Sun, Lingyun; Hou, Yayi

    2015-08-01

    Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by the overexpression of IFN-α. IFN-α induces autophagy via the JAK1-STAT1 signaling pathway, contributing to the pathogenesis of SLE. Recent studies reported that B cells from patients with SLE and NZB/W F1 mice had enhanced autophagy activity; however, the mechanism still remains unknown. Here, we show that the protein tyrosine phosphatase STS-1 (suppressor of T-cell receptor signaling 1) was significantly overexpressed in B cells from patients with SLE and MRL/lpr mice. Notably, STS-1 promoted IFN-α-induced autophagy in B cells by enhancing the JAK1-STAT1 signaling activation. STS-1 inhibited the phosphorylation of the E3 ubiquitin protein ligase c-cbl, and subsequently promoted IFN-α-induced phosphorylation of tyrosine kinase 2, leading to JAK1-STAT1 signaling activation. Furthermore, STAT1 and JAK1 inhibitors blocked the IFN-α-induced autophagy promoted by STS-1, indicating that STS-1 promotes IFN-α-induced autophagy via the JAK1-STAT1 signaling. Our results demonstrate the importance of STS-1 in regulating IFN-α-induced autophagy in B cells, and this could be used as a therapeutic approach to treat SLE.

  18. IL-6 mediated isotype specific suppression of hapten specific IgE in serum of BPO-KLH sensitized mice: role of IFN alpha in maintainance of hapten specific IgE responses.

    PubMed

    Auci, D L; Miller, H; Chice, S M; Durkin, H G

    1994-04-01

    The ability of IL-6 or IFN alpha or antibodies to these cytokines to regulate serum levels of hapten specific immunoglobulins (IgM, IgG1, IgE, IgA) was studied in BPO-KLH (benzylpenicilloyl-keyhole limpet hemocyanin) sensitized BALB/c mice at the peak of a hapten specific IgE antibody forming cell (AFC) response. To induce peak IgE responses, mice were injected intraperitonealy (i.p.) with BPO-KLH (10 micrograms) in aluminum hydroxide gel (alum) on days 0, 21, and 42. On day 44, mice were injected s.c. with IL-6 (100-1000 U), IFN alpha (1000-10,000 U), anti-IL-6 (100-1000 neutralizing units [NU]), or anti-IFN alpha (1000-10,000 NU). On day 46, levels of BPO specific IgM, IgG1, IgE and IgA in serum were determined (ELISA). Data are expressed as micrograms/ml. IL-6 suppressed BPO specific IgE in serum in isotype specific fashion (to > 90%), increasing IgA (approximately 3 fold), and leaving IgM and IgG1 unchanged. Since removal of endogenous IL-6 with anti-IL-6 increased serum IgE, and suppressed IgG1 (approximately 50%), with IgM and IgA unchanged, this suggests that IL-6 is an isotype specific suppressor of peak IgE responses and as such may be useful in the therapeutic management of atopic disease. IFN alpha treatment increased serum IgE levels (60%), and potentiated IgA responses (> 30 fold), with IgM and IgG1 unchanged. Since removal of endogenous IFN alpha with anti-IFN alpha decreased IgE levels (approximately 50%), increasing IgA, with IgM and IgG1 unchanged, this suggests a role for IFN alpha as an isotype specific helper of peak IgE responses and in maintenance of IgA responses.

  19. Role of the IFN I system against the VHSV infection in juvenile Senegalese sole (Solea senegalensis).

    PubMed

    Alvarez-Torres, Daniel; Podadera, Ana M; Bejar, Julia; Bandin, Isabel; Alonso, M Carmen; Garcia-Rosado, Esther

    2016-01-01

    Senegalese sole is susceptible to marine VHSV isolates but is not affected by freshwater isolates, which may indicate differences regarding virus-host immune system interaction. IFN I induces an antiviral state in fish, stimulating the expression of genes encoding antiviral proteins (ISG). In this study, the stimulation of the Senegalese sole IFN I by VHSV infections has been evaluated by the relative quantification of the transcription of several ISG (Mx, Isg15 and Pkr) after inoculation with marine (pathogenic) and freshwater (non-pathogenic) VHSV isolates. Compared to marine VHSV, lower levels of RNA of the freshwater VHSV induced transcription of ISG to similar levels, with the Isg15 showing the highest fold induction. The protective role of the IFN I system was evaluated in poly I:C-inoculated animals subsequently challenged with VHSV isolates. The cumulative mortality caused by the marine isolate in the control group was 68%, whereas in the poly I:C-stimulated group was 5%. The freshwater VHSV isolate did not cause any mortality. Furthermore, viral RNA fold change and viral titers were lower in animals from the poly I:C + VHSV groups than in the controls. The implication of the IFN I system in the protection observed was confirmed by the transcription of the ISG in animals from the poly I:C + VHSV groups. However, the marine VHSV isolate exerts a negative effect on the ISG transcription at 3 and 6 h post-inoculation (hpi), which is not observed for the freshwater isolate. This difference might be partly responsible for the virulence shown by the marine isolate. PMID:26743229

  20. Metabolic Reprogramming Supports IFN-γ Production by CD56bright NK Cells.

    PubMed

    Keating, Sinéad E; Zaiatz-Bittencourt, Vanessa; Loftus, Roisín M; Keane, Ciara; Brennan, Kiva; Finlay, David K; Gardiner, Clair M

    2016-03-15

    Human NK cells can be classified into phenotypically and functionally distinct subsets based on levels of CD56 receptor. CD56(dim) cells are generally considered more cytotoxic, whereas the CD56(bright) cells are potent producers of IFN-γ. In this study, we define the metabolic changes that occur in peripheral blood NK cells in response to cytokine. Metabolic analysis showed that NK cells upregulate glycolysis and oxidative phosphorylation in response to either IL-2 or IL-12/15 cytokine combinations. Despite the fact that both these cytokine combinations robustly upregulated mammalian Target of Rapamycin Complex 1 in human NK cells, only the IL-2-induced metabolic changes were sensitive to mammalian Target of Rapamycin Complex 1 inhibition by rapamycin. Interestingly, we found that CD56(bright) cells were more metabolically active compared with CD56(dim) cells. They preferentially upregulated nutrient receptors and also differed substantially in terms of their glucose metabolism. CD56(bright) cells expressed high levels of the glucose uptake receptor, Glut1 (in the absence of any cytokine), and had higher rates of glucose uptake compared with CD56(dim) cells. Elevated levels of oxidative phosphorylation were required to support both cytotoxicity and IFN-γ production in all NK cells. Finally, although elevated glycolysis was not required directly for NK cell degranulation, limiting the rate of glycolysis significantly impaired IFN-γ production by the CD56(bright) subset of cells. Overall, we have defined CD56(bright) NK cells to be more metabolically active than CD56(dim) cells, which supports their production of large amounts of IFN-γ during an immune response. PMID:26873994

  1. A novel mutation in IFN-gamma receptor 2 with dominant negative activity: biological consequences of homozygous and heterozygous states.

    PubMed

    Rosenzweig, Sergio D; Dorman, Susan E; Uzel, Gulbu; Shaw, Stephen; Scurlock, Amy; Brown, Margaret R; Buckley, Rebecca H; Holland, Steven M

    2004-09-15

    We identified two siblings homozygous for a single base pair deletion in the IFN-gammaR2 transmembrane domain (791delG) who presented with multifocal Mycobacterium abscessus osteomyelitis (patient 1) and disseminated CMV and Mycobacterium avium complex infection (patient 2), respectively. Although the patients showed no IFN-gammaR activity, their healthy heterozygous parents showed only partial IFN-gammaR activity. An HLA-identical bone marrow transplant from the mother led patient 1 to complete hemopoietic reconstitution, but only partial IFN-gammaR function. We cloned and expressed fluorescent fusion proteins of the wild-type IFN-gammaR2, an IFN-gammaR2 mutant previously described to produce a complete autosomal recessive deficiency (278del2), and of 791delG to determine whether the intermediate phenotype in the 791delG heterozygous state was caused by haploinsufficiency or a dominant negative effect. When cotransfected together with the wild-type vector into IFN-gammaR2-deficient fibroblasts, the fusion protein with 791delG inhibited IFN-gammaR function by 48.7 +/- 5%, whereas fusion proteins with 278del2 had no inhibitory effect. Confocal microscopy of 791delG fusion proteins showed aberrant diffuse intracellular accumulation without plasma membrane localization. The fusion protein created by 791delG did not complete Golgi processing, and was neither expressed on the plasma membrane, nor shed extracellularly. The mutant construct 791delG exerts dominant negative effects on IFN-gamma signaling without cell surface display, suggesting that it is acting on pathways other than those involved in cell surface recognition of ligand.

  2. Natural Killer Cells-Produced IFN-γ Improves Bone Marrow-Derived Hepatocytes Regeneration in Murine Liver Failure Model

    PubMed Central

    Li, Lu; Zeng, Zhutian; Qi, Ziping; Wang, Xin; Gao, Xiang; Wei, Haiming; Sun, Rui; Tian, Zhigang

    2015-01-01

    Bone-marrow transplantation (BMT) can repopulate the liver through BM-derived hepatocyte (BMDH) generation, although the underlying mechanism remains unclear. Using fumarylacetoacetate hydrolase–deficient (Fah−/−) mice as a liver-failure model, we confirmed that BMDHs were generated by fusion of BM-derived CD11b+F4/80+myelomonocytes with resident Fah−/− hepatocytes. Hepatic NK cells became activated during BMDH generation and were the major IFN-γ producers. Indeed, both NK cells and IFN-γ were required for BMDH generation since WT, but not NK-, IFN-γ–, or IFN-γR1–deficient BM transplantation successfully generated BMDHs and rescued survival in Fah−/− hosts. BM-derived myelomonocytes were determined to be the IFN-γ–responding cells. The IFN-γ–IFN-γR interaction contributed to the myelomonocyte–hepatocyte fusion process, as most of the CD11b+ BMDHs in mixed BM chimeric Fah−/− hosts transplanted with a 1:1 ratio of CD45.1+ WT and CD45.2+ Ifngr1−/− BM cells were of CD45.1+ WT origin. Confirming these findings in vitro, IFN-γ dose-dependently promoted the fusion of GFP+ myelomonocytes with Fah−/− hepatocytes due to a direct effect on myelomonocytes; similar results were observed using activated NK cells. In conclusion, BMDH generation requires NK cells to facilitate myelomonocyte–hepatocyte fusion in an IFN-γ–dependent manner, providing new insights for treating severe liver failure. PMID:26345133

  3. Genetic polymorphisms, their allele combinations and IFN-β treatment response in Irish multiple sclerosis patients

    PubMed Central

    O’Doherty, Catherine; Favorov, Alexander; Heggarty, Shirley; Graham, Colin; Favorova, Olga; Ochs, Michael; Hawkins, Stanley; Hutchinson, Michael; O’Rourke, Killian; Vandenbroeck, Koen

    2009-01-01

    Introduction IFN-β is widely used as first-line immunomodulatory treatment for multiple sclerosis. Response to treatment is variable (30–50% of patients are nonresponders) and requires a long treatment duration for accurate assessment to be possible. Information about genetic variations that predict responsiveness would allow appropriate treatment selection early after diagnosis, improve patient care, with time saving consequences and more efficient use of resources. Materials & methods We analyzed 61 SNPs in 34 candidate genes as possible determinants of IFN-β response in Irish multiple sclerosis patients. Particular emphasis was placed on the exploration of combinations of allelic variants associated with response to therapy by means of a Markov chain Monte Carlo-based approach (APSampler). Results The most significant allelic combinations, which differed in frequency between responders and nonresponders, included JAK2–IL10RB–GBP1–PIAS1 (permutation p-value was pperm = 0.0008), followed by JAK2–IL10–CASP3 (pperm = 0.001). Discussion The genetic mechanism of response to IFN-β is complex and as yet poorly understood. Data mining algorithms may help in uncovering hidden allele combinations involved in drug response versus nonresponse. PMID:19604093

  4. Molecular characterization of RIG-I, STAT-1 and IFN-beta in the horseshoe bat.

    PubMed

    Li, Jinju; Zhang, Guangxu; Cheng, Dalong; Ren, Hua; Qian, Min; Du, Bing

    2015-04-25

    Wild Chinese horseshoe bats have been proven to be natural reservoirs of SARS-like coronaviruses. However, the molecular characterization of key proteins in bats still needs to be explored further. In this study, we used cloning and bioinformatics to analyze the sequence of RIG-I, STAT-1 and IFN-β in the immortalized cell lines from Rhinolophus affinis and Rhinolophus sinicus. Then, we treated different bat cells, mouse embryonic fibroblasts (MEF) and splenocytes with polyinosinic-polycytidylic acid (polyI:C) and vesicular stomatitis virus (VSV) to assess and compare antiviral immune responses between bats and mice. Our results demonstrated that bat RIG-I, STAT-1 and IFN-β showed close homology with human, mouse, pig and rhesus monkey. RIG-I and STAT-1 were both highly expressed in bat spleen. Furthermore, IFN-β was induced by polyI:C and VSV in both bat and mouse cells. These findings have provided new insight into the potential characteristics of the bat innate immune system against viral infection. PMID:25680291

  5. IFN-γ Plays a Unique Role in Protection against Low Virulent Trypanosoma cruzi Strain

    PubMed Central

    Rodrigues, Adele A.; Saosa, Jasson S. S.; da Silva, Grace K.; Martins, Flávia A.; da Silva, Aline A.; Souza Neto, Cecílio P. da Silva; Horta, Catarina V.; Zamboni, Dario S.; da Silva, João S.; Ferro, Eloisa A. V.; da Silva, Claudio V.

    2012-01-01

    Background T. cruzi strains have been divided into six discrete typing units (DTUs) according to their genetic background. These groups are designated T. cruzi I to VI. In this context, amastigotes from G strain (T. cruzi I) are highly infective in vitro and show no parasitemia in vivo. Here we aimed to understand why amastigotes from G strain are highly infective in vitro and do not contribute for a patent in vivo infection. Methodology/Principal Findings Our in vitro studies demonstrated the first evidence that IFN-γ would be associated to the low virulence of G strain in vivo. After intraperitoneal amastigotes inoculation in wild-type and knockout mice for TNF-α, Nod2, Myd88, iNOS, IL-12p40, IL-18, CD4, CD8 and IFN-γ we found that the latter is crucial for controlling infection by G strain amastigotes. Conclusions/Significance Our results showed that amastigotes from G strain are highly infective in vitro but did not contribute for a patent infection in vivo due to its susceptibility to IFN-γ production by host immune cells. These data are useful to understand the mechanisms underlying the contrasting behavior of different T. cruzi groups for in vitro and in vivo infection. PMID:22509418

  6. Characterization of CD4 and CD8 T cells producing IFN-γ in human latent and active tuberculosis.

    PubMed

    Rueda, Cesar M; Marín, Nancy D; García, Luis F; Rojas, Mauricio

    2010-11-01

    Patients with pulmonary tuberculosis (PTB) frequently have reduced IFN-γ production in response to mycobacterial antigens, compared to individuals with latent Mycobacterium tuberculosis infection (LTBi). However, it is not clear whether this reduced responsiveness is restricted to a particular T cell subset. Herein, PBMCs from 26 PTB patients, 30 household contacts (HHCs) of PTB, and 30 tuberculin positive (TST+) healthy subjects not recently exposed to PTB, were stained with CFSE and stimulated non-specific (PPD) for 120 h, and specific (CFP-10/ESAT-6) and latency (HSpX) mycobacterial antigens for 144 h and the percentage of CD4(+) and CD8(+)IFN-γ(+) T cells responding determined by flow cytometry, in addition to their memory phenotype by the CD45RO and CD27 expression. PTB had decreased frequency of both CD4(+) and CD8(+) precursor cells, as well as decreased number of CD4(+)IFN-γ(+) cells in response to all antigens, whereas CD8(+)IFN-γ(+) cells were decreased in response to PPD and ESAT-6, but not to CFP-10 and HSpX. HHCs exhibited the highest precursor frequencies and IFN-γ responses, irrespective of the antigen employed. The CD4(+)/CD8(+) cell ratios showed that in response to PPD CD4(+) precursor and IFN-γ-producer cells are more frequent than their CD8(+) counterparts, and that PTB have a decreased CD4(+)IFN-γ(+)/CD8(+)IFN-γ(+) ratio in response to PPD, CFP-10, and ESAT-6. CD4(+)IFN-γ(+) and CD8(+)IFN-γ(+) cells exhibited a central memory phenotype (CD45RO(+)CD27(+)), irrespective of the group of subjects and the antigen used for stimulation. In conclusion, PTB patients had a decreased percentage of CD4(+) and CD8(+) precursor cells and CD4(+)IFN-γ(+). HHCs exhibited the highest frequency of CD4(+) and CD8(+) precursors and CD4(+)IFN-γ(+)-producing cells.

  7. IFN production ability and healthy ageing: mixed model analysis of a 24 year longitudinal study in Japan

    PubMed Central

    Uno, Kazuko; Yagi, Katsumi; Yoshimori, Masayo; Tanigawa, Mari; Yoshikawa, Toshikazu; Fujita, Setsuya

    2013-01-01

    Objective To track changes in interferon (IFN) production in healthy individuals to shed light on the effect these changes have on the course of healthy ageing. Design Study is based on data that were collected over 24 years from a cohort of individuals whose IFN-α production was quantified as a part of their annual routine health check-up. Setting All individuals in this study underwent regular health check-ups at Louis Pasteur Center for Medical Research. Participants 295 healthy individuals (159 males and 136 females) without a history of cancer, autoimmune diseases and hepatitis C virus (HCV) whose IFN-α production was quantified more than five times within 24 years were selected. Finally, 29 males and 4 females whose IFN-α production was quantified more than 25 times were selected and their data were analysed using a mixed model. Main outcome measures HVJ stimulated IFN-α  production was quantified. Healthy individual's periodical log transformed IFN-α values (y) were plotted versus age (x) and fitted to linear (y=mx+n) and quadratic formula (y=ax2+bx+c) expressions to reveal changes in the IFN-α  production in these healthy individuals. Results The linear expression showed that log (IFN-α) had a slight tendency to decline (3% over 10 years). However, the quadratic formula analysis showed the quadratic expression to be more positive than negative (a concave U-shaped pattern) which means that individuals’ once declining IFN production recovered as they aged. Conclusions Although we observed a marginal decline in IFN-α  production, we also observed that IFN production recovered even in individuals in their mid50s to early 60s. These results combined with our previous cross-sectional studies of patients with various diseases suggest that in healthy individuals, the impairment of IFN production is triggered more by the onset of disease (notwithstanding the cause) rather than by ageing. PMID:23315513

  8. Rapid and transient activation of γδ T cells to IFN-γ production, NK cell-like killing, and antigen processing during acute virus infection.

    PubMed

    Toka, Felix N; Kenney, Mary A; Golde, William T

    2011-04-15

    γδ T cells are the majority peripheral blood T cells in young cattle. The role of γδ T cells in innate responses against infection with foot-and-mouth disease virus was analyzed on consecutive 5 d following infection. Before infection, bovine WC1(+) γδ T cells expressed a nonactivated phenotype relative to CD62L, CD45RO, and CD25 expression and did not produce IFN-γ ex vivo. Additionally, CD335 expression was lacking and no spontaneous target cell lysis could be detected in vitro, although perforin was detectable at a very low level. MHC class II and CD13 expression were also lacking. Following infection with foot-and-mouth disease virus, expression of CD62L and CD45RO was greatly reduced on WC1(+) γδ T cells, and unexpectedly, CD45RO expression did not recover. A transient increase in expression of CD25 correlated with production of IFN-γ. Expression of CD335 and production of perforin were detected on a subset of γδ T cells, and this correlated with an increased spontaneous killing of xenogeneic target cells. Furthermore, increased MHC class II expression was detected on WC1(+) γδ T cells, and these cells processed protein Ags. These activities are rapidly induced, within 3 d, and wane by 5 d following infection. All of these functions, NK-like killing, Ag processing, and IFN-γ production, have been demonstrated for these cells in various species. However, these results are unique in that all these functions are detected in the same samples of WC1(+) γδ T cells, suggesting a pivotal role of these cells in controlling virus infection.

  9. Study of immunological aspects of aspergillosis in mice and effect of polyene macrolide antibiotic (SJA-95) and IFN-γ: a possible role of IFN-γ as an adjunct in antifungal therapy.

    PubMed

    Naik, Suresh R; Thakare, Vishnu N; Desai, Sandhya K; Rahalkar, Prabhakar R

    2011-12-30

    New polyene macrolide antibiotic SJA-95 in free as well as liposomal (lip.) forms, with and without interferon-γ (IFN-γ) was studied in mice model of aspergillosis using biological and biochemical parameters viz. colony forming units (CFU) in liver, spleen, kidney, lung and brain, and serum IgG, and interleukin-4 (IL-4). Treatment with free and lip SJA-95 along with IFN-γ prolonged the survival time, reduced CFU in vital organs, decreased serum IgG and IL-4 levels. SJA-95 lip form showed greater antifungal activity as compared to free form. The combined treatment of lip SJA-95 with IFN-γ showed further enhancement in antifungal activity of SJA-95 (lip). The present experimental findings demonstrated IFN-γ might act as a potent modulator in immune reaction during fungal infection and can be a useful adjunctive in antifungal therapy in the management of deep seated systemic mycoses.

  10. Cerebral and ocular toxoplasmosis related with IFN-γ, TNF-α, and IL-10 levels

    PubMed Central

    Meira, Cristina S.; Pereira-Chioccola, Vera L.; Vidal, José E.; de Mattos, Cinara C. Brandão; Motoie, Gabriela; Costa-Silva, Thais A.; Gava, Ricardo; Frederico, Fábio B.; de Mattos, Luiz C.

    2014-01-01

    This study analyzed the synthesis of Interferon gamma (IFN-γ), Tumor Necrosis Factor alpha (TNF-α), and Interleukin 10 (IL-10) in chronically infected patients which developed the symptomatic disease as cerebral or ocular toxoplasmosis. Blood from 61 individuals were divided into four groups: Cerebral toxoplasmosis/AIDS patients (CT/AIDS group) (n = 15), ocular toxoplasmosis patients (OT group) (n = 23), chronic toxoplasmosis individuals (CHR group) (n = 13) and healthy individuals (HI group) (n = 10). OT, CHR, and HI groups were human immunodeficiency virus (HIV) seronegative. The diagnosis was made by laboratorial (PCR and ELISA) and clinical subjects. For cytokine determination, peripheral blood mononuclear cells (PBMC) of each patient were isolated and stimulated in vitro with T. gondii antigen. IFN-γ, TNF-α, and IL-10 activities were determined by ELISA. Patients from CT/AIDS and OT groups had low levels of IFN-γ when were compared with those from CHR group. These data suggest the low resistance to develop ocular lesions by the low ability to produce IFN-γ against the parasite. The same patients, which developed ocular or cerebral toxoplasmosis had higher TNF-α levels than CHR individuals. High TNF-α synthesis contribute to the inflammatory response and damage of the choroid and retina in OT patients and in AIDS patients caused a high inflammatory response as the TNF-α synthesis is not affected since monocytes are the major source this cytokine in response to soluble T. gondii antigens. IL-10 levels were almost similar in CT/AIDS and OT patients but low when compared with CHR individuals. The deviation to Th2 immune response including the production of anti-inflammatory cytokines, such as IL-10 may promote the parasite's survival causing the tissue immune destruction. IL-10 production in T. gondii-infected brains may support the persistence of parasites as down-regulating the intracerebral immune response. All these indicate that OT and CT

  11. Interferon-γ is increased in the gut of patients with irritable bowel syndrome and modulates serotonin metabolism.

    PubMed

    Barbaro, Maria Raffaella; Di Sabatino, Antonio; Cremon, Cesare; Giuffrida, Paolo; Fiorentino, Michelangelo; Altimari, Annalisa; Bellacosa, Lara; Stanghellini, Vincenzo; Barbara, Giovanni

    2016-03-15

    Mucosal immune activation and altered serotonin metabolism participate in the pathophysiology of irritable bowel syndrome (IBS). However, the reciprocal interplay between these two systems remains unknown. We evaluated the expression and release of interferon (IFN)-γ from the colonic mucosa of patients with IBS and its impact on serotonin reuptake transporter (SERT) gene expression in Caco-2 cells. qPCR was used to evaluate IFN-γ gene expression in colonic mucosal biopsies, whereas IFN-γ protein amount was assessed by ELISA. Colonic T box expressed in T cells (T-bet) and phosphorylated signal transducer and activator of transcription 4 protein amount were evaluated by Western blot. The impact of colonic mucosal mediators on SERT gene expression was evaluated in Caco-2 cells using qPCR. IFN-γ receptor was silenced in Caco-2 cells to determine the effect of IFN-γ released by mucosal biopsies. Compared with asymptomatic controls (ACs), the expression of IFN-γ gene and its transcription factor T-bet were markedly increased in the colonic mucosa of patients with IBS. Compared with ACs, IFN-γ protein tissue levels and its release by mucosal biopsies were significantly increased in IBS. The exposure of Caco-2 cells to IBS supernatants induced a significant decrease in SERT gene expression, independently of IBS subtypes, compared with AC mucosal supernatants. In Caco-2 cells, IFN-γ receptor silencing reversed the reduction of SERT expression evoked by IBS supernatants vs. nonsilenced cell lines. IFN-γ gene, its transcription factor T-bet, IFN-γ protein expression, and its release are increased in the colonic mucosa of patients with IBS and downregulate SERT gene expression in vitro. These results suggest that IFN-γ downregulates SERT expression, hence likely playing a role in altered serotonin metabolism of patients with IBS.

  12. Characterization of lethal dengue virus type 4 (DENV-4) TVP-376 infection in mice lacking both IFN-α/β and IFN-γ receptors (AG129) and comparison with the DENV-2 AG129 mouse model.

    PubMed

    Sarathy, Vanessa V; Infante, Ernesto; Li, Li; Campbell, Gerald A; Wang, Tian; Paessler, Slobodan; Robert Beatty, P; Harris, Eva; Milligan, Gregg N; Bourne, Nigel; Barrett, Alan D T

    2015-10-01

    Dengue is a mosquito-borne disease caused by four related but distinct dengue viruses, DENV-1 to DENV-4. Dengue is endemic in most tropical countries, and over a third of the world's population is at risk of being infected. Although the global burden is high, no vaccine or antiviral is licensed to combat this disease. An obstacle complicating dengue research is the lack of animal challenge models that mimic human disease. Advances in immunocompromised murine infection models resulted in development of lethal DENV-2, DENV-3 and DENV-4 models in AG129 mice, which are deficient in both the IFN-α/β receptor (IFN-α/βR) and the IFN-γ receptor (IFN-γR). These models mimic features of dengue disease in humans. Here, we characterized lethal infection of AG129 mice by DENV-4 strain TVP-376 and found that AG129 mice developed clinical signs of illness and high viral loads in multiple tissues and succumbed 5 days after infection. Moreover, the splenic and hepatic histopathology of TVP-376-infected mice demonstrated the presence of cell activation and destruction of tissue architecture. Furthermore, infected mice had heightened levels of circulating cytokines. Comparison of the virulence phenotypes of DENV-4 strain TVP-376 and DENV-2 strain D2S10 revealed that TVP-376-induced mortality occurred in the absence of both IFN-α/βR and IFN-γR signalling, but not with intact signalling from the IFN-γR, whereas D2S10 required the absence of IFN-α/βR signalling only, indicating that it is more virulent than TVP-376. In conclusion, TVP-376 is lethal in AG129 mice, and this model provides a useful platform to investigate vaccine candidates and antivirals against DENV-4.

  13. Dysregulated expression of IFN-γ and IL-10 and impaired IFN-γ-mediated responses at different disease stages in patients with genital herpes simplex virus-2 infection

    PubMed Central

    SINGH, R; KUMAR, A; CREERY, W D; RUBEN, M; GIULIVI, A; DIAZ-MITOMA, F

    2003-01-01

    Cell-mediated T-helper type-1 (Th1) responses play a vital role in the immunopathogenesis of genital infections caused by herpes simplex virus 2 (HSV-2). We investigated the role of Th responses in HSV-2 infection at different disease stages by analysing the production of Th cytokines in HSV-stimulated peripheral blood mononuclear cells (PBMCs). IFN-γ production decreased over time following a recurrence, whereas levels of IL-10, and to a lesser extent IL-2, remained elevated during this period. In addition, PBMCs from asymptomatic seropositive individuals produced high levels of IFN-γ and low levels of IL-10, in contrast to individuals with a history of genital ulcers. Following a recurrence, virus copy number in the genital lesions decreased progressively over time, in a manner similar to IFN-γ production by HSV-2-stimulated PBMCs. Enhanced production of IFN-γ may modulate HSV replication and B7 expression on monocytic cells of HSV-infected individuals. In contrast to seronegative controls, IFN-γ failed to enhance B7 expression on monocytic cells of HSV-infected individuals. In addition, monocytic cells from HSV-2-infected individuals with recurrent disease supported greater HSV replication than did those of HSV-infected asymptomatic individuals or seronegative controls. Furthermore, addition of IFN-γ resulted in enhanced HSV replication in monocytic cells of HSV-infected individuals with recurrent disease, in contrast to the inhibition observed in HSV-seropositive asymptomatic individuals and seronegative controls. Taken together, our results suggest that dysregulated production of IFN-γ at different disease stages and the impaired ability of monocytic cells to respond to IFN-γ may play a role in the pathogenesis of recurrent genital herpes disease. PMID:12823283

  14. Characterization of lethal dengue virus type 4 (DENV-4) TVP-376 infection in mice lacking both IFN-α/β and IFN-γ receptors (AG129) and comparison with the DENV-2 AG129 mouse model.

    PubMed

    Sarathy, Vanessa V; Infante, Ernesto; Li, Li; Campbell, Gerald A; Wang, Tian; Paessler, Slobodan; Robert Beatty, P; Harris, Eva; Milligan, Gregg N; Bourne, Nigel; Barrett, Alan D T

    2015-10-01

    Dengue is a mosquito-borne disease caused by four related but distinct dengue viruses, DENV-1 to DENV-4. Dengue is endemic in most tropical countries, and over a third of the world's population is at risk of being infected. Although the global burden is high, no vaccine or antiviral is licensed to combat this disease. An obstacle complicating dengue research is the lack of animal challenge models that mimic human disease. Advances in immunocompromised murine infection models resulted in development of lethal DENV-2, DENV-3 and DENV-4 models in AG129 mice, which are deficient in both the IFN-α/β receptor (IFN-α/βR) and the IFN-γ receptor (IFN-γR). These models mimic features of dengue disease in humans. Here, we characterized lethal infection of AG129 mice by DENV-4 strain TVP-376 and found that AG129 mice developed clinical signs of illness and high viral loads in multiple tissues and succumbed 5 days after infection. Moreover, the splenic and hepatic histopathology of TVP-376-infected mice demonstrated the presence of cell activation and destruction of tissue architecture. Furthermore, infected mice had heightened levels of circulating cytokines. Comparison of the virulence phenotypes of DENV-4 strain TVP-376 and DENV-2 strain D2S10 revealed that TVP-376-induced mortality occurred in the absence of both IFN-α/βR and IFN-γR signalling, but not with intact signalling from the IFN-γR, whereas D2S10 required the absence of IFN-α/βR signalling only, indicating that it is more virulent than TVP-376. In conclusion, TVP-376 is lethal in AG129 mice, and this model provides a useful platform to investigate vaccine candidates and antivirals against DENV-4. PMID:26296350

  15. Revisiting the Heterogeneous IFN-γ Response of Bacille of Calmette-Guérin (BCG)-Revaccinated Healthy Volunteers in a Randomized Controlled Trial: Effect of the Body Mass Index and of the IFNG+874 A/T Polymorphism

    PubMed Central

    Conceição, Elisabete L.; Nascimento-Sampaio, Francisco S.; Schwingel, Paulo A.; Oliveira, Evelin S.; Rocha, Michael S.; Vieira, Igor; Mendes, Carlos M. C.; Souza-Machado, Adelmir; Oliveira, Martha M.; Barral-Netto, Manoel; Marinho, Jamocyr M.

    2016-01-01

    In trials evaluating the immune responses to Bacille of Calmette-Guérin (BCG), the genetic background and the nutritional status are host-related factors that could affect the heterogeneity in these parameters. The IFNG+874 A/T (rs 62559044) polymorphism has been reported to influence the IFN-γ production by BCG-vaccinated individuals challenged in vitro with mycobacterial antigens. The body mass index (BMI) is a proxy for the nutritional status and has been associated both with the susceptibility to tuberculosis and with the IFN-γ response. We show that although the IFNG+874 A/T polymorphism was not associated with the heterogeneity of IFN-γ production in a randomized controlled trial that evaluated long-term immune responses to BCG revaccination previously conducted in Salvador, Bahia, Brazil, the effect of this polymorphism on the observed increase in IFN-γ production among revaccinated subjects was adjusted in individuals with a low BMI. PMID:27472280

  16. IL-2 and IFN-gamma, but not IL-4 secretion by peripheral blood mononuclear cells (PBMC) are related to CD4+ T cells and clinical status in Brazilian HIV-1-infected subjects.

    PubMed

    Hong, M A; Wakim, V L; Salomão, S J; Camargo, L S; Casseb, J; Duarte, A J

    1998-01-01

    It has been reported that production of IL-2 and IFN-gamma, known as T-helper type 1 cytokines, by peripheral mononuclear cells (PBMC) decreases with progression of HIV infection. In contrast, IL-4 and IL-10 production, Th2 cytokine profile, increases with HIV disease progression. PBMC were evaluated from 55 HIV-infected subjects from Divisão de Imunologia, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, to "in vitro" cytokines production after 24 hours of stimulation with PHA. Low levels of IL-4 production in both HIV-infected patients and normal subjects, were detected. The patients with CD4+ T cell counts < 200 showed a significant decrease of IL-2 and IFN-gamma production compared to controls. Patients with higher counts of CD4+ T cells (either between 200-500 or > 500 cells/mm3) also showed decreased production of IL-2 that was not statistically significant. There was a correlation between IL-2 and IFN-gamma release with CD4+ T cells counts. HIV-1-infected individuals with CD4+ T cells > 500 cells/mm3 showed increased levels of IL-2 and IFN-gamma, than individuals with CD4+ T cells < 500 cells/mm3. In conclusion, we observed a decline of IL-2 and IFN-gamma production at advanced HIV disease. IL-4 production was not affected during HIV infection. Taken together, these findings suggest that the cytokine profile might be influenced by the HIV infection rather than the cause of disease progression.

  17. Alantolactone from Saussurea lappa Exerts Antiinflammatory Effects by Inhibiting Chemokine Production and STAT1 Phosphorylation in TNF-α and IFN-γ-induced in HaCaT cells.

    PubMed

    Lim, Hye-Sun; Jin, Sung-Eun; Kim, Ohn-Soon; Shin, Hyeun-Kyoo; Jeong, Soo-Jin

    2015-07-01

    Skin inflammation is the most common condition seen in dermatology practice and can be caused by various allergic reactions and certain toxins or chemicals. In the present study, we investigated the antiinflammatory effects of Saussurea lappa, a medicinal herb, and its marker compounds alantolactone, caryophyllene, costic acid, costunolide, and dehydrocostuslactone in the HaCaT human keratinocyte cell line. HaCaT cells were stimulated with tumor necrosis factor-alpha (TNF-α) and interferon-gamma (IFN-γ), and treated with S. lappa or each of five marker compounds. Chemokine production and expression were analyzed by enzyme-linked immunosorbent assay and reverse transcription-polymerase chain reaction, respectively. Phosphorylation of signal transducer and activator of transcription (STAT) 1 was determined by immunoblotting. Stimulation with TNF-α and IFN-γ significantly increased the production of the following chemokines: thymus-regulated and activation-regulated chemokine (TARC): regulated on activation, normal T-cell expressed and secreted (RANTES): macrophage-derived chemokine (MDC): and interleukin-8 (IL-8). By contrast, S. lappa and the five marker compounds significantly reduced the production of these chemokines by TNF-α and IFN-γ-treated cells. S. lappa and alantolactone suppressed the TNF-α and IFN-γ-stimulated increase in the phosphorylation of STAT1. Our results demonstrate that alantolactone from S. lappa suppresses TNF-α and IFN-γ-induced production of RANTES and IL-8 by blocking STAT1 phosphorylation in HaCaT cells. PMID:25881570

  18. Space and time: New considerations about the relationship between Toll-like receptors (TLRs) and type I interferons (IFNs).

    PubMed

    Perkins, Darren J; Vogel, Stefanie N

    2015-08-01

    The Toll like receptors (TLRs) and the type I interferons have critical roles to play in innate immunity. In this review we will discuss new developments relating to the important area of TLR/IFN cross regulation.

  19. Space and Time: New Considerations About the Relationship Between Toll-like Receptors (TLRs) and Type I Interferons (IFNs)

    PubMed Central

    Perkins, Darren J.; Vogel, Stefanie N.

    2015-01-01

    The Toll Like Receptors (TLRs) and the type I Interferons have critical roles to play in innate immunity. In this review we will discuss new developments relating to the important area of TLR/IFN cross regulation PMID:25819430

  20. IFN-γ and TNF-α synergize to inhibit CTGF expression in human lung endothelial cells.

    PubMed

    Laug, Roderich; Fehrholz, Markus; Schütze, Norbert; Kramer, Boris W; Krump-Konvalinkova, Vera; Speer, Christian P; Kunzmann, Steffen

    2012-01-01

    Connective tissue growth factor (CTGF/CCN2) is an angiogenetic and profibrotic factor, acting downstream of TGF-β, involved in both airway- and vascular remodeling. While the T-helper 1 (Th1) cytokine interferon-gamma (IFN-γ) is well characterized as immune-modulatory and anti-fibrotic cytokine, the role of IFN-γ in lung endothelial cells (LEC) is less defined. Tumour necrosis factor alpha (TNF-α) is another mediator that drives vascular remodeling in inflammation by influencing CTGF expression. In the present study we investigated the influence of IFN-γ and TNF-α on CTGF expression in human LEC (HPMEC-ST1.6R) and the effect of CTGF knock down on human LEC. IFN-γ and TNF-α down-regulated CTGF in human LEC at the promoter-, transcriptional- and translational-level in a dose- and time-dependent manner. The inhibitory effect of IFN-γ on CTGF-expression could be almost completely compensated by the Jak inhibitor AG-490, showing the involvement of the Jak-Stat signaling pathway. Besides the inhibitory effect of IFN-γ and TNF-α alone on CTGF expression and LEC proliferation, these cytokines had an additive inhibitory effect on proliferation as well as on CTGF expression when administered together. To study the functional role of CTGF in LEC, endogenous CTGF expression was down-regulated by a lentiviral system. CTGF silencing in LEC by transduction of CTGF shRNA reduced cell proliferation, but did not influence the anti-proliferative effect of IFN-γ and TNF-α. In conclusion, our data demonstrated that CTGF was negatively regulated by IFN-γ in LEC in a Jak/Stat signaling pathway-dependent manner. In addition, an additive effect of IFN-γ and TNF-α on inhibition of CTGF expression and cell proliferation could be found. The inverse correlation between IFN-γ and CTGF expression in LEC could mean that screwing the Th2 response to a Th1 response with an additional IFN-γ production might be beneficial to avoid airway remodeling in asthma. PMID:23029004

  1. TLR-Mediated Innate Production of IFN-γ by CD8+ T Cells Is Independent of Glycolysis.

    PubMed

    Salerno, Fiamma; Guislain, Aurelie; Cansever, Dilay; Wolkers, Monika C

    2016-05-01

    CD8(+) T cells can respond to unrelated infections in an Ag-independent manner. This rapid innate-like immune response allows Ag-experienced T cells to alert other immune cell types to pathogenic intruders. In this study, we show that murine CD8(+) T cells can sense TLR2 and TLR7 ligands, resulting in rapid production of IFN-γ but not of TNF-α and IL-2. Importantly, Ag-experienced T cells activated by TLR ligands produce sufficient IFN-γ to augment the activation of macrophages. In contrast to Ag-specific reactivation, TLR-dependent production of IFN-γ by CD8(+) T cells relies exclusively on newly synthesized transcripts without inducing mRNA stability. Furthermore, transcription of IFN-γ upon TLR triggering depends on the activation of PI3K and serine-threonine kinase Akt, and protein synthesis relies on the activation of the mechanistic target of rapamycin. We next investigated which energy source drives the TLR-induced production of IFN-γ. Although Ag-specific cytokine production requires a glycolytic switch for optimal cytokine release, glucose availability does not alter the rate of IFN-γ production upon TLR-mediated activation. Rather, mitochondrial respiration provides sufficient energy for TLR-induced IFN-γ production. To our knowledge, this is the first report describing that TLR-mediated bystander activation elicits a helper phenotype of CD8(+) T cells. It induces a short boost of IFN-γ production that leads to a significant but limited activation of Ag-experienced CD8(+) T cells. This activation suffices to prime macrophages but keeps T cell responses limited to unrelated infections. PMID:27016606

  2. Defining the Roles of IFN-γ and IL-17A in Inflammation and Protection against Helicobacter pylori Infection

    PubMed Central

    Sjökvist Ottsjö, Louise; Flach, Carl-Fredrik; Nilsson, Staffan; de Waal Malefyt, Rene; Walduck, Anna K.; Raghavan, Sukanya

    2015-01-01

    CD4+ T cells have been shown to be essential for vaccine-induced protection against Helicobacter pylori infection. However, the effector mechanisms leading to reductions in the gastric bacterial loads of vaccinated mice remain unclear. We have investigated the function of IFN-γ and IL-17A for vaccine-induced protection and inflammation (gastritis) using IFN-γ-gene-knockout (IFN-γ-/-) mice, after sublingual or intragastric immunization with H. pylori lysate antigens and cholera toxin. Bacteria were enumerated in the stomachs of mice and related to the gastritis score and cellular immune responses. We report that sublingually and intragastrically immunized IFN-γ-/- mice had significantly reduced bacterial loads similar to immunized wild-type mice compared to respective unimmunized infection controls. The reduction in bacterial loads in sublingually and intragastrically immunized IFN-γ-/- mice was associated with significantly higher levels of IL-17A in stomach extracts and lower gastritis scores compared with immunized wild-type mice. To study the role of IL-17A for vaccine-induced protection in sublingually immunized IFN-γ-/- mice, IL-17A was neutralized in vivo at the time of infection. Remarkably, the neutralization of IL-17A in sublingually immunized IFN-γ-/- mice completely abolished protection against H. pylori infection and the mild gastritis. In summary, our results suggest that IFN-γ responses in the stomach of sublingually immunized mice promote vaccine-induced gastritis, after infection with H. pylori but that IL-17A primarily functions to reduce the bacterial load. PMID:26168305

  3. S1PR4 Signaling Attenuates ILT 7 Internalization To Limit IFN-α Production by Human Plasmacytoid Dendritic Cells.

    PubMed

    Dillmann, Christina; Ringel, Christian; Ringleb, Julia; Mora, Javier; Olesch, Catherine; Fink, Annika F; Roberts, Edward; Brüne, Bernhard; Weigert, Andreas

    2016-02-15

    Plasmacytoid dendritic cells (pDCs) produce large amounts of type I IFN in response to TLR7/9 ligands. This conveys antiviral effects, activates other immune cells (NK cells, conventional DCs, B, and T cells), and causes the induction and expansion of a strong inflammatory response. pDCs are key players in various type I IFN-driven autoimmune diseases such as systemic lupus erythematosus or psoriasis, but pDCs are also involved in (anti-)tumor immunity. The sphingolipid sphingosine-1-phosphate (S1P) signals through five G-protein-coupled receptors (S1PR1-5) to regulate, among other activities, immune cell migration and activation. The present study shows that S1P stimulation of human, primary pDCs substantially decreases IFN-α production after TLR7/9 activation with different types of CpG oligodeoxynucleotides or tick-borne encephalitis vaccine, which occurred in an S1PR4-dependent manner. Mechanistically, S1PR4 activation preserves the surface expression of the human pDC-specific inhibitory receptor Ig-like transcript 7. We provide novel information that Ig-like transcript 7 is rapidly internalized upon receptor-mediated endocytosis of TLR7/9 ligands to allow high IFN-α production. This is antagonized by S1PR4 signaling, thus decreasing TLR-induced IFN-α secretion. At a functional level, attenuated IFN-α production failed to alter Ag-driven T cell proliferation in pDC-dependent T cell activation assays, but shifted cytokine production of T cells from a Th1 (IFN-γ) to a regulatory (IL-10) profile. In conclusion, S1PR4 agonists block human pDC activation and may therefore be a promising tool to restrict pathogenic IFN-α production. PMID:26783340

  4. Set7 facilitates hepatitis C virus replication via enzymatic activity-dependent attenuation of the IFN-related pathway.

    PubMed

    Han, Tao; Wan, Yushun; Wang, Jun; Zhao, Peng; Yuan, Yue; Wang, Li; She, Yinglong; Broering, Ruth; Lu, Mengji; Ye, Linbai; Zhu, Ying

    2015-03-15

    Hepatitis C virus (HCV) infection is a major cause of chronic liver disease, usually resulting in persistent infection involving hepatic steatosis, cirrhosis, and hepatocellular carcinoma via escape of the host's immune response. Set7 is a lysine-specific methyltransferase that is involved in gene regulation and virus replication. However, the mechanism underlying the immune evasion between HCV and Set7 is not well understood. In this study, we observed that the expression of Set7 in Huh7.5.1 cells was upregulated by HCV infection, and high levels of Set7 expression were also found in the sera, PBMCs, and liver tissue of HCV patients relative to healthy individuals. Further investigation showed that Set7 enhanced HCV replication in an enzymatic activity-dependent manner. Moreover, our data showed that Set7 decreased the expression of virus-induced IFN and IFN-related effectors, such as dsRNA-activated protein kinase and 2',5'-oligoadenylate synthetase. Further investigation suggested that Set7 suppressed the endogenous IFN expression by reducing the nuclear translocation of IFN regulatory factor 3/7 and the p65 subunit of NF-κB and reduced IFN-induced dsRNA-activated protein kinase and 2',5'-oligoadenylate synthetase via attenuation of the phosphorylation of STAT1 and STAT2. Additionally, IFN receptors, including IFNAR1 and IFNAR2, which are located upstream of the JAK/STAT pathway, were reduced by Set7. Taken together, our results reveal that Set7 facilitates HCV replication through the attenuation of IFN signaling pathways and IFN-related effectors.

  5. Development of a subunit vaccine containing recombinant chicken anemia virus VP1 and pigeon IFN-γ.

    PubMed

    Shen, Sin Ying; Chang, Wei Chun; Yi, Hsiang Heng; Tsai, Shinn-Shong; Liu, Hung Jen; Liao, Pei-Chun; Chuang, Kuo Pin

    2015-10-15

    Chicken anemia virus (CAV) is a severe threat to the chicken industry and causes heavy economic losses worldwide. In this study, we evaluated the immune response and protective efficacy provided by a subunit vaccine containing recombinant VP1 (rVP1) and pigeon interferon-γ (rPiIFN-γ). Results indicated that rPiIFN-γ enhanced humoral immunity elicited by rVP1 as early as 10 day after primary immunization and reach the high titer after secondary immunization. When compared to chickens immunized with rVP1, inactivated vaccine, chickens immunized with rVP1+rPiIFN-γ showed faster and higher levels (p<0.05) of antibody titer. The CAV challenge result showed that the rVP1+rPiIFN-γ vaccine prevent the reducing of hematocrit values in comparison with the rVP1 or inactivated groups. The relative fold inductions of mRNA expression of Th1-type (IFN-γ), but not Th2-type (IL-4) cytokines in splenocytes isolated from chickens immunized with rVP1+rPiIFN-γ were significantly higher than those of the rVP1 or inactivated vaccine groups. In conclusion, our study found that rPiIFN-γ can enhance both humoral and cellular immunity elicited by an rVP1 vaccine. The rVP1+rPiIFN-γ vaccine may provide a new strategy vaccine against CAV in chicken.

  6. Adenovirus-specific T-cell Subsets in Human Peripheral Blood and After IFN-γ Immunomagnetic Selection.

    PubMed

    Qian, Chongsheng; Wang, Yingying; Cai, Huili; Laroye, Caroline; De Carvalho Bittencourt, Marcelo; Clement, Laurence; Stoltz, Jean-François; Decot, Véronique; Reppel, Loïc; Bensoussan, Danièle

    2016-01-01

    Adoptive antiviral cellular immunotherapy by infusion of virus-specific T cells (VSTs) is becoming an alternative treatment for viral infection after hematopoietic stem cell transplantation. The T memory stem cell (TSCM) subset was recently described as exhibiting self-renewal and multipotency properties which are required for sustained efficacy in vivo. We wondered if such a crucial subset for immunotherapy was present in VSTs. We identified, by flow cytometry, TSCM in adenovirus (ADV)-specific interferon (IFN)-γ+ T cells before and after IFN-γ-based immunomagnetic selection, and analyzed the distribution of the main T-cell subsets in VSTs: naive T cells (TN), TSCM, T central memory cells (TCM), T effector memory cell (TEM), and effector T cells (TEFF). In this study all of the different T-cell subsets were observed in the blood sample from healthy donor ADV-VSTs, both before and after IFN-γ-based immunomagnetic selection. As the IFN-γ-based immunomagnetic selection system sorts mainly the most differentiated T-cell subsets, we observed that TEM was always the major T-cell subset of ADV-specific T cells after immunomagnetic isolation and especially after expansion in vitro. Comparing T-cell subpopulation profiles before and after in vitro expansion, we observed that in vitro cell culture with interleukin-2 resulted in a significant expansion of TN-like, TCM, TEM, and TEFF subsets in CD4IFN-γ T cells and of TCM and TEM subsets only in CD8IFN-γ T cells. We demonstrated the presence of all T-cell subsets in IFN-γ VSTs including the TSCM subpopulation, although this was weakly selected by the IFN-γ-based immunomagnetic selection system. PMID:26641259

  7. Expression of Interferon Lambda 4 Is Associated with Reduced Proliferation and Increased Cell Death in Human Hepatic Cells

    PubMed Central

    Onabajo, Olusegun O.; Porter-Gill, Patricia; Paquin, Ashley; Rao, Nina; Liu, Luyang; Tang, Wei; Brand, Nathan

    2015-01-01

    Interferon lambda 4 (IFN-λ4) is a novel type-III interferon that can be generated only in individuals carrying a ΔG frame-shift allele of an exonic genetic variant (rs368234815-ΔG/TT). The rs368234815-ΔG allele is strongly associated with decreased clearance of hepatitis C virus (HCV) infection. Here, we further explored the biological function of IFN-λ4 expressed in human hepatic cells—a hepatoma cell line HepG2 and fresh primary human hepatocytes (PHHs). We performed live confocal imaging, cell death and proliferation assays, mRNA expression profiling, protein detection, and antibody blocking assays using transient and inducible stable in vitro systems. Not only did we observe significant intracellular retention of IFN-λ4 but also detected secreted IFN-λ4 in the culture media of expressing cells. Secreted IFN-λ4 induced strong activation of the interferon-stimulated genes (ISGs) in IFN-λ4-expressing and surrounding cells in transwell assays. Specifically, in PHHs, secreted IFN-λ4 induced expression of the CXCL10 transcript and a corresponding pro-inflammatory chemokine, IP-10. In IFN-λ4-expressing HepG2 cells, we also observed decreased proliferation and increased cell death. All IFN-λ4-induced phenotypes—activation of ISGs, decreased proliferation, and increased cell death—could be inhibited by an anti-IFN-λ4-specific antibody. Our study offers new insights into biology of IFN-λ4 and its possible role in HCV clearance. PMID:26134097

  8. Ras transformation results in cleavage of reticulon protein Nogo-B that is associated with impairment of IFN response

    PubMed Central

    Ahn, Dae-Gyun; Sharif, Tanveer; Chisholm, Kenneth; Pinto, Devanand M; Gujar, Shashi A; Lee, Patrick WK

    2015-01-01

    Dysregulation of Ras signaling is the major cause of various cancers. Aberrant Ras signaling, however, provides a favorable environment for many viruses, making them suitable candidates as cancer-killing therapeutic agents. Susceptibility of cancer cells to such viruses is mainly due to impaired type I interferon (IFN) response, often as a result of activated Ras/ERK signaling in these cells. In this study, we searched for cellular factors modulated by Ras signaling and their potential involvement in promoting viral oncolysis. We found that upon Ras transformation of NIH-3T3 cells, the N-terminus of Nogo-B (reticulon 4) was proteolytically cleaved. Interestingly, Nogo knockdown (KD) in non-transformed and Ras-transformed cells both enhanced virus-induced IFN response, suggesting that both cleaved and uncleaved Nogo can suppress IFN response. However, pharmacological blockade of Nogo cleavage in Ras-transformed cells significantly enhanced virus-induced IFN response, suggesting that cleaved Nogo contributes to enhanced IFN suppression in these cells. We further showed that IFN suppression associated with Ras-induced Nogo-B cleavage was distinct from but synergistic with that associated with an activated Ras/ERK pathway. Our study therefore reveals an important and novel role of Nogo-B and its cleavage in the suppression of anti-viral immune responses by oncogenic Ras transformation. PMID:25946643

  9. Mycobacterium simiae infection in two unrelated patients with different forms of inherited IFN-γR2 deficiency

    PubMed Central

    Martínez-Barricarte, Rubén; Megged, Orli; Stepensky, Polina; Casimir, Pierre; Moncada-Velez, Marcela; Averbuch, Diana; Assous, Marc Victor; Abuzaitoun, Omar; Kong, Xiao-Fei; Pedergnana, Vincent; Deswarte, Caroline; Migaud, Mélanie; Rose-John, Stefan; Itan, Yuval; Boisson, Bertrand; Belkadi, Aziz; Conti, Francesca; Abel, Laurent; Vogt, Guillaume; Boisson-Dupuis, Stephanie; Casanova, Jean-Laurent; Bustamante, Jacinta

    2014-01-01

    Interferon-γ receptor 2 (IFN-γR2) deficiency is a rare primary immunodeficiency characterized by predisposition to infections with weakly virulent mycobacteria, such as environmental mycobacteria and BCG vaccines. We describe here two children with IFN-γR2 deficiency, from unrelated, consanguineous kindreds of Arab and Israeli descent. The first patient was a boy who died at the age of 4.5 years, from recurrent, disseminated disease caused by Mycobacterium simiae. His IFN-γR2 defect was autosomal recessive and complete. The second patient was a girl with multiple disseminated mycobacterial infections, including infection with M. simiae. She died at the age of five years, a short time after the transplantation of umbilical cord blood cells from an unrelated donor. Her IFN-γR2 defect was autosomal recessive and partial. Autosomal recessive IFN-γR2 deficiency is life-threatening, even in its partial form, and genetic diagnosis and familial counseling are therefore particularly important for this condition. These two cases are the first of IFN-γR2 deficiency associated with M simiae infection to be described. PMID:25135595

  10. Mycobacterium simiae infection in two unrelated patients with different forms of inherited IFN-γR2 deficiency.

    PubMed

    Martínez-Barricarte, Rubén; Megged, Orli; Stepensky, Polina; Casimir, Pierre; Moncada-Velez, Marcela; Averbuch, Diana; Assous, Marc Victor; Abuzaitoun, Omar; Kong, Xiao-Fei; Pedergnana, Vincent; Deswarte, Caroline; Migaud, Mélanie; Rose-John, Stefan; Itan, Yuval; Boisson, Bertrand; Belkadi, Aziz; Conti, Francesca; Abel, Laurent; Vogt, Guillaume; Boisson-Dupuis, Stephanie; Casanova, Jean-Laurent; Bustamante, Jacinta

    2014-11-01

    Interferon-γ receptor 2 (IFN-γR2) deficiency is a rare primary immunodeficiency characterized by predisposition to infections with weakly virulent mycobacteria, such as environmental mycobacteria and BCG vaccines. We describe here two children with IFN-γR2 deficiency, from unrelated, consanguineous kindreds of Arab and Israeli descent. The first patient was a boy who died at the age of 4.5 years, from recurrent, disseminated disease caused by Mycobacterium simiae. His IFN-γR2 defect was autosomal recessive and complete. The second patient was a girl with multiple disseminated mycobacterial infections, including infection with M. simiae. She died at the age of 5 years, a short time after the transplantation of umbilical cord blood cells from an unrelated donor. Her IFN-γR2 defect was autosomal recessive and partial. Autosomal recessive IFN-γR2 deficiency is life-threatening, even in its partial form, and genetic diagnosis and familial counseling are therefore particularly important for this condition. These two cases are the first of IFN-γR2 deficiency associated with M. simiae infection to be described. PMID:25135595

  11. IFN-γ Prevents Adenosine Receptor (A2bR) Upregulation To Sustain the Macrophage Activation Response.

    PubMed

    Cohen, Heather B; Ward, Amanda; Hamidzadeh, Kajal; Ravid, Katya; Mosser, David M

    2015-10-15

    The priming of macrophages with IFN-γ prior to TLR stimulation results in enhanced and prolonged inflammatory cytokine production. In this study, we demonstrate that, following TLR stimulation, macrophages upregulate the adenosine 2b receptor (A2bR) to enhance their sensitivity to immunosuppressive extracellular adenosine. This upregulation of A2bR leads to the induction of macrophages with an immunoregulatory phenotype and the downregulation of inflammation. IFN-γ priming of macrophages selectively prevents the induction of the A2bR in macrophages to mitigate sensitivity to adenosine and to prevent this regulatory transition. IFN-γ-mediated A2bR blockade leads to a prolonged production of TNF-α and IL-12 in response to TLR ligation. The pharmacologic inhibition or the genetic deletion of the A2bR results in a hyperinflammatory response to TLR ligation, similar to IFN-γ treatment of macrophages. Conversely, the overexpression of A2bR on macrophages blunts the IFN-γ effects and promotes the development of immunoregulatory macrophages. Thus, we propose a novel mechanism whereby IFN-γ contributes to host defense by desensitizing macrophages to the immunoregulatory effects of adenosine. This mechanism overcomes the transient nature of TLR activation, and prolongs the antimicrobial state of the classically activated macrophage. This study may offer promising new targets to improve the clinical outcome of inflammatory diseases in which macrophage activation is dysregulated. PMID:26355158

  12. Successful Treatment of Human Visceral Leishmaniasis Restores Antigen-Specific IFN-γ, but not IL-10 Production

    PubMed Central

    Adem, Emebet; Tajebe, Fitsumbirhan; Getahun, Mulusew; Kiflie, Amare; Diro, Ermias; Hailu, Asrat; Shkedy, Ziv; Mengesha, Bewketu; Mulaw, Tadele; Atnafu, Saba; Deressa, Tekalign; Mathewos, Biniam; Abate, Ebba; Modolell, Manuel; Munder, Markus; Müller, Ingrid; Takele, Yegnasew; Kropf, Pascale

    2016-01-01

    One of the key immunological characteristics of active visceral leishmaniasis (VL) is a profound immunosuppression and impaired production of Interferon-γ (IFN-γ). However, recent studies from Bihar in India showed using a whole blood assay, that whole blood cells have maintained the capacity to produce IFN-γ. Here we tested the hypothesis that a population of low-density granulocytes (LDG) might contribute to T cell responses hyporesponsiveness via the release of arginase. Our results show that this population is affected by the anticoagulant used to collect blood: the frequency of LDGs is significantly lower when the blood is collected with heparin as compared to EDTA; however, the anticoagulant does not impact on the levels of arginase released. Next, we assessed the capacity of whole blood cells from patients with active VL to produce IFN-γ and IL-10 in response to antigen-specific and polyclonal activation. Our results show that whole blood cells produce low or levels below detection limit of IFN-γ and IL-10, however, after successful treatment of VL patients, these cells gradually regain their capacity to produce IFN-γ, but not IL-10, in response to activation. These results suggest that in contrast to VL patients from Bihar, India, whole blood cells from VL patients from Gondar, Ethiopia, have lost their ability to produce IFN-γ during active VL and that active disease is not associated with sustained levels of IL-10 production following stimulation. PMID:26962865

  13. Respiratory Syncytial Virus Nonstructural Proteins Upregulate SOCS1 and SOCS3 in the Different Manner from Endogenous IFN Signaling

    PubMed Central

    Zheng, Junwen; Yang, Pu; Tang, Yan; Pan, Zishu; Zhao, Dongchi

    2015-01-01

    Respiratory syncytial virus (RSV) infection upregulates genes of the suppressor of cytokine signaling (SOCS) family, which utilize a feedback loop to inhibit type I interferon dependent antiviral signaling pathway. Here, we reconstituted RSV nonstructural (NS) protein expression plasmids (pNS1, pNS2, and pNS1/2) and tested whether NS1 or NS2 would trigger SOCS1 and SOCS3 protein expression. These NS proteins inhibited interferon- (IFN-) α signaling through a mechanism involving the induction of SOCS1 and SOCS3, which appeared to be different from autocrine IFN dependent. NS1 induced both SOCS1 and SOCS3 upregulation, while NS2 only induced SOCS1 expression. The induced expression of SOCS1 and SOCS3 preceded endogenous IFN-signaling activation and inhibited the IFN-inducible antiviral response as well as chemokine induction. Treatments with INF-α and NS proteins both induced SOCS1 expression; however, they had opposing effects on IFN-α-dependent antiviral gene expression. Our results indicate that NS1 and NS2, which induce the expression of SOCS1 or SOCS3, might represent an independent pathway of stimulating endogenous IFN signaling. PMID:26557722

  14. T-2 toxin impairment of enteric reovirus clearance in the mouse associated with suppressed immunoglobulin and IFN-{gamma} responses

    SciTech Connect

    Li Maoxiang; Cuff, Christopher F.; Pestka, James J. . E-mail: pestka@msu.edu

    2006-08-01

    Trichothecenes are exquisitely toxic to the gastrointestinal (GI) tract and leukocytes and thus are likely to impair gut immunity. The purpose of this research was to test the hypothesis that the Type A trichothecene T-2 toxin interferes with the gut mucosal immune response to enteric reovirus infection. Mice were exposed i.p. first to 1.75 mg/kg bw T-2 and then 2 h later with 3 x 10{sup 7} plaque-forming units of reovirus serotype 1, strain Lang (T1/L). As compared to vehicle-treated control, T-2-treated mice had dramatically elevated intestinal plaque-forming viral titers after 5 days and failed to completely clear the virus from intestine by 10 days. Levels of reovirus {lambda}2 core spike (L2 gene) RNA in feces in T-2-treated mice were significantly higher at 1, 3, 5, and 7 days than controls. T-2 potentiated L2 mRNA expression in a dose-dependent manner with as little as 50 {mu}g/kg of the toxin having a potentiative effect. T-2 exposure transiently suppressed induction of reovirus-specific IgA in feces (6 and 8 days) as well as specific IgA and IgG{sub 2a} in serum (5 days). This suppression corresponded to decreased secretion of reovirus-specific IgA and IgG{sub 2a} in Peyer's patch (PP) and lamina propria fragment cultures prepared 5 days after infection. T-2 suppressed IFN-{gamma} responses in PP to reovirus at 3 and 7 days as compared to infected controls whereas IL-2 mRNA concentrations were unaffected. PP IL-6 mRNA levels were increased 2-fold 2 h after T-2 treatment, but no differences between infected T-2-exposed and infected vehicle-treated mice were detectable over the next 7 days. Overall, the results suggest that T-2 toxin increased both the extent of GI tract reovirus infection and fecal shedding which corresponded to both suppressed immunoglobulin and IFN-{gamma} responses.

  15. [A novel experimental approach to immunotherapy against malignant brain tumor with the mouse IFN-gamma gene transfer].

    PubMed

    Nishihara, K

    1989-01-01

    To investigate the effect of interferon-gamma (IFN-gamma) on the immunotherapy, we used the autocrinically stimulated system in which a mouse IFN-gamma cDNA was transferred by infection with a chimeric retrovirus containing the IFN-gamma gene. First, we established a tumor specific CTL clone (E-4) against 203-glioma cells (a 20-methylcholanthrene induced mouse ependymoblastoma line of C57BL/6 mouse origin), and then transferred murine IFN-gamma cDNA into E-4 by using retroviral vector (pSVX(Mu gamma delta A]. Out of five gene-transferred subclones, E gamma-4, E gamma-5, E gamma-6, E gamma-7 and E gamma-9, two subclones (E gamma-6 and E gamma-9) constitutively produced 8- to 10-fold amounts of IFN-gamma as compared with the parental E-4. Moreover, these two subclones exhibited two to three times higher killing activity against 203-glioma than the parental cells. The enhancement of the killing activities was abrogated by an adequate addition of anti-IFN-gamma antibody. No alteration was seen after the gene transfer in cell surface phenotypes, Thy-1+, Lyt-1-, Lyt-2+3+ and asialo-GM1-. Fluorescence-activated cell sorter (FACS) analysis showed that the surface expression of major histocompatibility complex (MHC) Class I antigen, H-2Kb, of parental E-4 was augmented remarkably, and it was not altered by the IFN-gamma gene transfer, but the Class II antigen, I-Ab, was slightly enhanced on the two IFN-gamma-producing sublines. Since it is considered that in the vicinity of the constitutively IFN-gamma-producing CTL cells, tumor cells are exposed to a high concentration of IFN-gamma and may be stimulated to induce or enhance the expression of surface antigens including MHC antigens as well as tumor associated antigens in relation to immune recognition. The 203-glioma cells pretreated with IFN-gamma were more efficiently killed by both the parental E-4 and the gene-transferred sublines. It was thus suggested that the specific tumor killing activity of the gene

  16. Mycobacterium tuberculosis promotes Th17 expansion via regulation of human dendritic cells toward a high CD14 and low IL-12p70 phenotype that reprograms upon exogenous IFN-γ.

    PubMed

    Søndergaard, Jonas Nørskov; Laursen, Janne Marie; Rosholm, Lisbeth Buus; Brix, Susanne

    2014-12-01

    The capacity to develop protective immunity against mycobacteria is heterogeneously distributed among human beings, and it is currently unknown why the initial immune response induced against Mycobacterium tuberculosis (Mtb) does not provide proper clearance of this pathogen. Dendritic cells (DCs) are some of the first cells to interact with Mtb and they play an essential role in development of protective immunity against Mtb. Given that Mtb-infected macrophages have difficulties in degrading Mtb, they need help from IFN-γ-producing CD4+ T cells propagated via IL-12p70-producing DCs. Here we report that Mtb modifies human DC plasticity by expanding a CD14+ DC subset with weak IL-12p70-producing capacity. The CD14+ Mtb-promoted subset was furthermore poor inducers of IFN-γ by naive CD4+ T cells, but instead prompted IL-17A-producing RORγT+ CD4+ T cells. Mtb-derived peptidoglycan and mannosylated lipoarabinomannan partly recapitulated the subset partition induced by Mtb. Addition of IFN-γ, but neither IL-17A nor IL-22, which are potentially produced by Mtb-exposed γ/δ-T cells in mucosal linings, inhibited the differentiation toward CD14+ DCs and promoted high-level IL-12p70 in Mtb-challenged DCs. We conclude that Mtb exploits DC plasticity to reduce production of IL-12p70, and that this process is entirely divertible by exogenous IFN-γ. These data suggest that strategies to increase local IFN-γ production in the lungs of tuberculosis patients may boost host immunity toward Mtb.

  17. Inhibition of p38 MAP kinase during cellular activation results in IFN-γ-dependent augmentation of IL-12 production by human monocytes/macrophages

    PubMed Central

    Marriott, J B; Clarke, I A; Dalgleish, A G

    2001-01-01

    Interleukin-12 (IL-12) is a key immunomodulatory cytokine produced by antigen-presenting cells that promotes cellular immunity and enables the generation of protective immunity against intracellular pathogens and tumours. Therefore, modulation of IL-12 activity is a primary immunotherapeutic goal. However, little is known about its regulation. Signalling via p38 MAPK has been implicated in the control of inflammatory responses and is therefore a potential therapeutic target. We have used the highly selective p38 MAPK inhibitor (SB203580) to examine the effect of this pathway on the production of IL-12. Surprisingly, we found that SB203580 strongly up-regulated LPS induced IL-12p40 at the protein (intracellular and secreted) and mRNA levels in PBMC cultures. The effect on IL-12 was apparent using both T cell-independent and T cell-dependent stimuli but not in unstimulated cultures, indicating that activation signals are required. Furthermore, the production of IFN-γ by T cells is crucial as production was not increased in LPS-stimulated, purified adherent monocytes/macrophages without the addition of exogenous IFN-γ. These results provide evidence that p38 MAPK has an unexpected suppressive effect on IL-12p40 gene transcription, and suggests interplay between p38 MAPK- and IFN-γ -mediated signals in the regulation of IL-12 production by monocytes/macrophages. Furthermore, the importance of IL-12 as a key immunoregulatory cytokine suggests that the clinical application of pyrinidyl imidazole inhibitors, such as SB203580, may need to be reassessed. PMID:11472427

  18. Suppression of acute graft-versus-host response by TCDD is independent of the CTLA-4-IFN-γ-IDO pathway.

    PubMed

    Rohlman, Diana; Punj, Sumit; Pennington, Jamie; Bradford, Sam; Kerkvliet, Nancy I

    2013-09-01

    Activation of the aryl hydrocarbon receptor (AhR) by its prototypic ligand, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), induces potent suppression of an acute graft-versus-host (GVH) response and prevents GVH disease (GVHD). Suppression is associated with development of a regulatory population of donor CD4(+) CD25(+)T-cells that express high levels of cytotoxic T-lymphocyte antigen 4 (CTLA-4). However, a direct link between these AhR-induced Tregs (AhR-Tregs) and suppression of GVHD remains to be shown. CTLA-4 is a negative regulator of T-cell responses and is associated with the induction of tolerogenic dendritic cells (DCs) that produce indoleamine 2,3-dioxygenase (IDO). We hypothesized that AhR-Tregs mediate suppression via their enhanced expression of CTLA-4, which, in turn, induces IFN-γ and IDO in host DCs. Subsequent depletion of tryptophan by IDO leads to termination of the donor T-cell response prior to development of effector CTL. Here, we show that despite increased expression of Ifng, Irf3, Irf7, Ido1, and Ido2 in the lymph nodes of TCDD-treated host mice, inhibition of IDO enzyme activity by 1-methyl-tryptophan was unable to relieve TCDD-mediated suppression of the GVH response. Furthermore, treatment with an anti-CTLA-4 antibody that blocks CTLA-4 signaling was also unable to alleviate TCDD-mediated suppression. Alternatively, we investigated the possibility that donor-derived AhR-Tregs produce IFN-γ to suppress effector CTL development. However, suppression of GVHD by TCDD was not affected by the use of Ifng-deficient donor cells. Together, these results indicate that neither overexpression of CTLA-4 nor production of IFN-γ by AhR-Tregs plays a major role in the manifestation of their immunosuppressive function in vivo.

  19. Effect of a four-week exercise program on the secretion of IFN-γ, TNF-α, IL-2 and IL-6 cytokines in elite Taekwondo athletes

    PubMed Central

    Kaya, Oktay

    2016-01-01

    The aim of the present study was to examine how a 4-week exercise program affects the serum levels of certain cytokines in Taekwondo athletes. The study involved 10 elite male Taekwondo athletes (mean age, 20.67±0.24 years; mean weight, 65.45±1.69 kg) who were studying at the Physical Education and Sports High School of Selçuk University (Konya, Turkey) in June 2014. The subjects were involved in a Taekwondo exercise program on every weekday for 4 weeks. The subjects were also engaged in an exercise to exhaustion session twice; once before starting the 4-week exercise program and once upon completion of the program. Blood samples were collected from the subjects in four rounds: During rest, upon fatigue, and before and after the 4-week exercise program. These samples were analyzed to establish the serum levels of interferon-γ (IFN-γ), tumor necrosis factor-α (TNF-α), interleukin (IL)-2 and IL-6 using enzyme-linked immunosorbent assay test kits. Pre- and post-exercise program, the IFN-γ and TNF-α levels did not show any significant difference. When compared with the pre-exercise levels, serum IL-2 levels of the subjects were found to be elevated after the 4-week exercise program. The highest serum IL-6 values were established after the subjects were exercised to fatigue before the exercise program was initiated (P<0.05). The 4-week exercise program resulted in a decrease in IL-6 levels (P<0.05). The findings of the study indicate that a 4-week exercise program did not result in significant changes in IFN-γ and TNF-α levels, but led to an increase in IL-2 levels. The notable finding of the present study is that a 4-week exercise program reduces cellular immune functions and, thus, the levels of IL-6, which negatively influences performance. PMID:27588179

  20. IL-2, IL-5, TNF-α and IFN-γ mRNA expression in epidermal keratinocytes of systemic lupus erythematosus skin lesions

    PubMed Central

    Carneiro, José Ronaldo M; Fuzii, Hellen T; Kayser, Cristiane; Alberto, Fernando L; Soares, Fernando A; Sato, Emília I; Andrade, Luís Eduardo C

    2011-01-01

    OBJECTIVE: To analyze cytokine gene expression in keratinocytes from patients with systemic lupus erythematosus (SLE). INTRODUCTION: Keratinocytes represent 95% of epidermal cells and can secrete several cytokines. METHODS: Keratinocytes were obtained by laser microdissection from 21 patients with SLE (10 discoid and 11 acute lesions) at involved and uninvolved sites. All patients were receiving a low/moderate prednisone dose and 18 were receiving chloroquine diphosphate. IL-2, IL-5, TNF-α and IFN-γ gene expression was evaluated by real-time PCR and expressed as the ratio (R) to a pool of skin samples from 12 healthy volunteers. RESULTS: Heterogeneity in cytokine gene expression was found among patients with SLE. Eighteen of 38 valid SLE samples (47%) presented overexpression (R>1) of at least one cytokine. Lesional skin samples tended to show higher cytokine expression than samples from uninvolved skin (p = 0.06). IL-5 and IFN-γ were the most commonly overexpressed cytokines. Samples with cytokine overexpression corresponded to more extensive and severe lesions. Prednisone dose did not differ between samples without cytokine overexpression (15.71±3.45 mg/day) and those with overexpressed cytokines (12.68±5.41 mg/day) (p = 0.216). Samples from all patients not receiving diphosphate chloroquine had at least one overexpressed cytokine. CONCLUSIONS: The heterogeneous keratinocyte cytokine gene expression reflects the complex immunological and inflammatory background in SLE. Patients with severe/extensive skin lesions showed a higher frequency of cytokine gene overexpression. Increased IFN-γ and IL-5 expression suggests that Th1 and Th2 cells are involved in SLE skin inflammation. The possibility that prednisone and antimalarial drugs may have contributed to low cytokine gene expression in some samples cannot be ruled out. PMID:21437440

  1. Plasma Levels of IFN-γ, IL-4, IL-6 and IL-17 in HIV-Positive Patients With Oral Candidiasis

    PubMed Central

    Ayatollahi Mousavi, Seyyed Amin; Asadikaram, Gholamreza; Nakhaee, Nouzar; Izadi, Alireza

    2016-01-01

    Background: Cell-mediated immunity (CMI) by CD4 + Th (T helper)-type cells is the predominant host defense mechanism against Oral Candidiasis (OC) in HIV-infected individuals. Weakened CMI and depletion of CD4 + T cells are the main factor contributing to the output of OC in HIV-positive individuals. The cytokines produced by Th1, Th2 and Th17 cells play a role in mediating an increased susceptibility to OC during HIV infection. Objectives: The present study investigated plasma concentration of IFN-γ, IL-4, IL-6 and IL-17 in HIV-1 patients suffering from OC. Patients and Methods: In total, 98 samples in four groups (HIV-positive and HIV-negative persons with and without OC) were obtained from the oral cavities and cultured on Sabouraud’s dextrose agar and CHROMagar. Also blood samples were obtained to assess plasma level of IFN-γ, IL-4, IL-6 and IL-17 using ELISA technique. Results: There was a statistically significant difference in the plasma concentration of IFN-γ, IL-6 and IL-17 but not about IL-4. Our findings suggest a significant interaction between fungal infection and HIV on expression of assessed cytokines. Conclusions: Fungal infection and HIV alone and together could seriously alter immune system function as assessed by measuring the levels of the plasma cytokines. Therefore, these results provide important new information relative to the putative immune-based factors associated with resistance and/or susceptibility to OC in HIV-positive persons. PMID:27127595

  2. Characterization of Amphioxus IFN Regulatory Factor Family Reveals an Archaic Signaling Framework for Innate Immune Response.

    PubMed

    Yuan, Shaochun; Zheng, Tingting; Li, Peiyi; Yang, Rirong; Ruan, Jie; Huang, Shengfeng; Wu, Zhenxin; Xu, Anlong

    2015-12-15

    The IFN regulatory factor (IRF) family encodes transcription factors that play important roles in immune defense, stress response, reproduction, development, and carcinogenesis. Although the origin of the IRF family has been dated back to multicellular organisms, invertebrate IRFs differ from vertebrate IRFs in genomic structure and gene synteny, and little is known about their functions. Through comparison of multiple amphioxus genomes, in this study we suggested that amphioxus contains nine IRF members, whose orthologs are supposed to be shared among three amphioxus species. As the orthologs to the vertebrate IRF1 and IRF4 subgroups, Branchiostoma belcheri tsingtauense (bbt)IRF1 and bbtIRF8 bind the IFN-stimulated response element (ISRE) and were upregulated when amphioxus intestinal cells were stimulated with poly(I:C). As amphioxus-specific IRFs, both bbtIRF3 and bbtIRF7 bind ISRE. When activated, they can be phosphorylated by bbtTBK1 and then translocate into nucleus for target gene transcription. As transcriptional repressors, bbtIRF2 and bbtIRF4 can inhibit the transcriptional activities of bbtIRF1, 3, 7, and 8 by competing for the binding of ISRE. Interestingly, amphioxus IRF2, IRF8, and Rel were identified as target genes of bbtIRF1, bbtIRF7, and bbtIRF3, respectively, suggesting a dynamic feedback regulation among amphioxus IRF and NF-κB. Collectively, to our knowledge we present for the first time an archaic IRF signaling framework in a basal chordate, shedding new insights into the origin and evolution of vertebrate IFN-based antiviral networks.

  3. Characterization of Amphioxus IFN Regulatory Factor Family Reveals an Archaic Signaling Framework for Innate Immune Response.

    PubMed

    Yuan, Shaochun; Zheng, Tingting; Li, Peiyi; Yang, Rirong; Ruan, Jie; Huang, Shengfeng; Wu, Zhenxin; Xu, Anlong

    2015-12-15

    The IFN regulatory factor (IRF) family encodes transcription factors that play important roles in immune defense, stress response, reproduction, development, and carcinogenesis. Although the origin of the IRF family has been dated back to multicellular organisms, invertebrate IRFs differ from vertebrate IRFs in genomic structure and gene synteny, and little is known about their functions. Through comparison of multiple amphioxus genomes, in this study we suggested that amphioxus contains nine IRF members, whose orthologs are supposed to be shared among three amphioxus species. As the orthologs to the vertebrate IRF1 and IRF4 subgroups, Branchiostoma belcheri tsingtauense (bbt)IRF1 and bbtIRF8 bind the IFN-stimulated response element (ISRE) and were upregulated when amphioxus intestinal cells were stimulated with poly(I:C). As amphioxus-specific IRFs, both bbtIRF3 and bbtIRF7 bind ISRE. When activated, they can be phosphorylated by bbtTBK1 and then translocate into nucleus for target gene transcription. As transcriptional repressors, bbtIRF2 and bbtIRF4 can inhibit the transcriptional activities of bbtIRF1, 3, 7, and 8 by competing for the binding of ISRE. Interestingly, amphioxus IRF2, IRF8, and Rel were identified as target genes of bbtIRF1, bbtIRF7, and bbtIRF3, respectively, suggesting a dynamic feedback regulation among amphioxus IRF and NF-κB. Collectively, to our knowledge we present for the first time an archaic IRF signaling framework in a basal chordate, shedding new insights into the origin and evolution of vertebrate IFN-based antiviral networks. PMID:26573836

  4. Detection of HCV-Specific IFN-γ Responses in HCV Antibody and HCV RNA Negative Injecting Drug Users

    PubMed Central

    Flynn, Jacqueline K; Sacks-Davis, Rachel; Higgs, Peter; Aitken, Campbell; Moneer, Sarah; Suppiah, Vijay; Tracy, Lilly; Ffrench, Rosemary; Bowden, Scott; Drummer, Heidi; George, Jacob; Bharadwaj, Mandvi; Hellard, Margaret

    2014-01-01

    Background: Detectable HCV-specific cellular immune responses in HCV antibody and RNA negative people who inject drugs (PWID) raise the question of whether some are resistant to HCV infection. Immune responses from people who have been exposed to hepatitis C virus (HCV) and remain anti-HCV negative are of interest for HCV vaccine development; however, limited research addresses this area. Objectives: In a cohort of HCV antibody and RNA negative PWID, we assessed whether the presence of HCV-specific IFN-γ responses or genetic associations provide any evidence of protection from HCV infection. Patients and Methods: One hundred and ninety-eight participants were examined longitudinally for clinical, behavioral, social, environmental and genetic characteristics (IFNL3 genotype [formally IL-28B] and HLA type). Sixty-one of the 198 participants were HCV antibody and RNA negative, with 53 able to be examined longitudinally for HCV-specific IFN-γ ELISpot T cell responses. Results: Ten of the 53 HCV antibody and RNA negative participants had detectable HCV-specific IFN-γ responses at baseline (18%). The magnitude of IFN-γ responses averaged 131 +/- 96 SFC/106 PBMC and the breadth was mean 1 +/- 1 pool positive. The specificity of responses were mainly directed to E2, NS4b and NS5b. Participants with (10) and without (43) HCV-specific IFN-γ responses did not differ in behavioral, clinical or genetic characteristics (P > 0.05). There was a larger proportion sharing needles (with 70%, without 49%, P = 0.320) and a higher incidence of HCV (with 35.1 per 100 py, 95% CI 14.6, 84.4, without 16.0 per 100 py, 95% CI 7.2, 35.6, P = 0.212) in those with IFN-γ responses, although not statistically significant. Half the participants with baseline IFN-γ responses became HCV RNA positive (5/10), with one of these participants spontaneously clearing HCV. The spontaneous clearer had high magnitude and broad Th1 responses, favorable IFNL3 genotype and favorable HLA types. Conclusions

  5. IFN-α-Induced Downregulation of miR-221 in Dendritic Cells: Implications for HCV Pathogenesis and Treatment

    PubMed Central

    Sehgal, Mohit; Zeremski, Marija; Talal, Andrew H.; Ginwala, Rashida; Elrod, Elizabeth; Grakoui, Arash; Li, Qi-Ging; Philip, Ramila; Khan, Zafar K.

    2015-01-01

    Although interferon (IFN)-α is known to exert immunomodulatory and antiproliferative effects on dendritic cells (DCs) through induction of protein-coding IFN-stimulated genes (ISGs), little is known about IFN-α-regulated miRNAs in DCs. Since several miRNAs are involved in regulating DC functions, it is important to investigate whether IFN-α's effects on DCs are mediated through miRNAs as well. In this study, we examined miRNA expression patterns in myeloid DCs (mDCs) and plasmacytoid DCs after exposing them to IFN-α. We report that IFN-α downregulates miR-221 in both DC subsets via inhibition of STAT3. We validated proapoptotic proteins BCL2L11 and CDKN1C as miR-221 targets suggesting that IFN-α can induce DC apoptosis via miR-221 downregulation. In addition, we validated another miR-221 target, SOCS1, which is known to be a negative regulator of JAK/STAT signaling. Consistent with this, miR-221 overexpression in mDCs enhanced the secretion of proinflammatory cytokines IL-6 and TNF-α. In peripheral blood mononuclear cells (PBMCs) of HIV-1/HCV co-infected individuals undergoing IFN-α-based treatment the baseline miR-221 expression was lower in non-responders compared with responders; and miR-221 expression directly correlated with DC frequency and IL-6/TNF-α secretion. In addition to PBMCs, we isolated total liver cells and kupffer cells from HCV-infected individuals and individuals with alcoholic cirrhosis. We found that both total liver cells and kupffer cells from HCV-infected individuals had significantly higher miR-221 levels compared with individuals with cirrhosis. Overall, we demonstrate that IFN-α exerts both antiproliferative and immunomodulatory effects on mDCs via miR-221 downregulation; and IFN-miR-221 axis can play important role in HCV pathogenesis and treatment. PMID:26090579

  6. IL-1β, IL-6, IL-8, IL-10, IFN-γ, TNF-α and its relationship with lipid parameters in patients with major depression.

    PubMed

    Hocaoglu, Cicek; Kural, Birgul; Aliyazıcıoglu, Rezzan; Deger, Orhan; Cengiz, Sevil

    2012-12-01

    There is some evidence that an immune response with an increased production of proinflammatory cytokines frequently accompanies major depression. The aim of this study was to determine the serum levels of interleukines (IL-1β, IL-6, IL-8, IL-10), tumor necrosis factor-alpha (TNF-α), interferon-gamma (IFN-γ) and immonuglobulines (IgG, IgA and IgM) levels and to examine the relationships between all above parameters and lipid parameters. The study group included 30 patients and 30 healthy volunteers. Although total cholesterol, HDL-cholesterol, and IgM levels were increased significantly (p < 0.05) in patients and compared to those of the controls, no statistically significant differences (p > 0.05) were observed with other parameters. IFN-γ were positively correlated with total cholesterol (r = 0.425; P = 0.019) and LDL-cholesterol (r = 0.391; P = 0.032) levels in patients. Other cytokines and immunoglobulins did not show any correlation with lipid parameters. It was concluded that although no differences was observed in cytokines and immunoglobulin levels in the present study, the dysregulation of the lipids and immune system including the cytokine network is associated with the etiology and pathophysiology of major depressive disorders.

  7. TLR4 regulates IFN-γ and IL-17 production by both thymic and induced Foxp3+ Tregs during intestinal inflammation.

    PubMed

    Cao, Anthony T; Yao, Suxia; Stefka, Andrew T; Liu, Zhanju; Qin, Hongwei; Liu, Houpu; Evans-Marin, Heather L; Elson, Charles O; Nagler, Cathryn R; Cong, Yingzi

    2014-11-01

    Tregs play a crucial role in the maintenance of intestinal immune homeostasis. However, significant numbers of Foxp3(+) Tregs accumulate in the inflamed lesions in experimental colitis and in IBD patients. Treg production of the proinflammatory cytokines IFN-γ and/or IL-17 may arguably explain their ineffectiveness in suppressing intestinal inflammation. However, it remains unknown whether iTreg and tTreg produce proinflammatory cytokines and how TLR signaling regulates this process. Here, we found that Foxp3(+)Tregs were increased in the intestines of B6.TLR4(-/-) and B6.IL-10(-/-) mice when compared with WT B6 mice. TLR4(-/-) and IL-10(-/-) resulted in more Tregs within inflamed intestines. The majority of Foxp3(+) Tregs in the spleen was Helios(+)Nrp1(+), whereas most Foxp3(+) Tregs in the intestinal LP were Helios(-)Nrp1(-). More Helios(+)Nrp1(+) Tregs expressed IFN-γ and/or IL-17 than did Helios(-)Nrp1(-) Tregs in the spleen and intestine, which was increased with TLR4(-/-). TLR4 signaling in T cells and APCs inhibited Foxp3(+) induction via MyD88-dependent, TRIF-independent pathways, which was negatively regulated by SOCS3. Collectively, these data demonstrate Helios(+)Nrp1(+) tTregs and Helios(-)Nrp1(-) iTregs produce proinflammatory cytokines in the intestines during inflammation, which was regulated by TLR4 signaling.

  8. Combination of TLR1/2 and TLR3 ligands enhances CD4(+) T cell longevity and antibody responses by modulating type I IFN production.

    PubMed

    Lee, Bo Ryeong; Jeong, Soo Kyung; Ahn, Byung Cheol; Lee, Byeong-Jae; Shin, Sung Jae; Yum, Jung Sun; Ha, Sang-Jun

    2016-01-01

    Despite the possibility of combining Toll-like receptor (TLR) ligands as adjuvants to improve vaccine efficacy, it remains unclear which combinations of TLR ligands are effective or what their underlying mechanisms may be. Here, we investigated the mechanism of action of L-pampo, a proprietary adjuvant composed of TLR1/2 and TLR3 ligands. L-pampo dramatically increased humoral immune responses against the tested target antigens, which was correlated with an increase in follicular helper T cells and the maintenance of antigen-specific CD4(+) T cells. During the initial priming phase, in contrast to the induction of type I interferon (IFN) and pro-inflammatory cytokines stimulated by polyI:C, L-pampo showed a greatly diminished induction of type I IFN, but not of other cytokines, and remarkably attenuated IRF3 signaling, which appeared to be critical to L-pampo-mediated adjuvanticity. Collectively, our results demonstrate that the adjuvant L-pampo contributes to the promotion of antigen-specific antibodies and CD4(+) T cell responses via a fine regulation of the TLR1/2 and TLR3 signaling pathways, which may be helpful in the design of improved vaccines. PMID:27580796

  9. Phenotypic variation in Aicardi-Goutières syndrome explained by cell-specific IFN-stimulated gene response and cytokine release.

    PubMed

    Cuadrado, Eloy; Michailidou, Iliana; van Bodegraven, Emma J; Jansen, Machiel H; Sluijs, Jacqueline A; Geerts, Dirk; Couraud, Pierre-Olivier; De Filippis, Lidia; Vescovi, Angelo L; Kuijpers, Taco W; Hol, Elly M

    2015-04-15

    Aicardi-Goutières syndrome (AGS) is a monogenic inflammatory encephalopathy caused by mutations in TREX1, RNASEH2A, RNASEH2B, RNASEH2C, SAMHD1, ADAR1, or MDA5. Mutations in those genes affect normal RNA/DNA intracellular metabolism and detection, triggering an autoimmune response with an increase in cerebral IFN-α production by astrocytes. Microangiopathy and vascular disease also contribute to the neuropathology in AGS. In this study, we report that AGS gene silencing of TREX1, SAMHD1, RNASEH2A, and ADAR1 by short hairpin RNAs in human neural stem cell-derived astrocytes, human primary astrocytes, and brain-derived endothelial cells leads to an antiviral status of these cells compared with nontarget short hairpin RNA-treated cells. We observed a distinct activation of the IFN-stimulated gene signature with a substantial increase in the release of proinflammatory cytokines (IL-6) and chemokines (CXCL10 and CCL5). A differential impact of AGS gene silencing was noted; silencing TREX1 gave rise to the most dramatic in both cell types. Our findings fit well with the observation that patients carrying mutations in TREX1 experience an earlier onset and fatal outcome. We provide in the present study, to our knowledge for the first time, insight into how astrocytic and endothelial activation of antiviral status may differentially lead to cerebral pathology, suggesting a rational link between proinflammatory mediators and disease severity in AGS.

  10. Combination of TLR1/2 and TLR3 ligands enhances CD4+ T cell longevity and antibody responses by modulating type I IFN production

    PubMed Central

    Lee, Bo Ryeong; Jeong, Soo Kyung; Ahn, Byung Cheol; Lee, Byeong-Jae; Shin, Sung Jae; Yum, Jung Sun; Ha, Sang-Jun

    2016-01-01

    Despite the possibility of combining Toll-like receptor (TLR) ligands as adjuvants to improve vaccine efficacy, it remains unclear which combinations of TLR ligands are effective or what their underlying mechanisms may be. Here, we investigated the mechanism of action of L-pampo, a proprietary adjuvant composed of TLR1/2 and TLR3 ligands. L-pampo dramatically increased humoral immune responses against the tested target antigens, which was correlated with an increase in follicular helper T cells and the maintenance of antigen-specific CD4+ T cells. During the initial priming phase, in contrast to the induction of type I interferon (IFN) and pro-inflammatory cytokines stimulated by polyI:C, L-pampo showed a greatly diminished induction of type I IFN, but not of other cytokines, and remarkably attenuated IRF3 signaling, which appeared to be critical to L-pampo-mediated adjuvanticity. Collectively, our results demonstrate that the adjuvant L-pampo contributes to the promotion of antigen-specific antibodies and CD4+ T cell responses via a fine regulation of the TLR1/2 and TLR3 signaling pathways, which may be helpful in the design of improved vaccines. PMID:27580796

  11. Increased Serum Type I Interferon Activity in Organ-Specific Autoimmune Disorders: Clinical, Imaging, and Serological Associations

    PubMed Central

    Mavragani, Clio P.; Niewold, Timothy B.; Chatzigeorgiou, Antonis; Danielides, Stamatina; Thomas, Dimitrios; Kirou, Kyriakos A.; Kamper, Elli; Kaltsas, Grigorios; Crow, Mary K.

    2013-01-01

    Background: Activation of the type I interferon (IFN) pathway has been implicated in the pathogenesis of systemic autoimmune disorders but its role in the pathogenesis of organ-specific autoimmunity is limited. We tested the hypothesis that endogenous expression of type I IFN functional activity contributes to the pathogenesis of autoimmune thyroid disease (ATD) and type I diabetes (T1DM). Methods: We studied 39 patients with ATD and 39 age and sex matched controls along with 88 T1DM patients and 46 healthy matched controls respectively. Available clinical and serological parameters were recorded by chart review, and thyroid ultrasound was performed in 17 ATD patients. Type I IFN serum activity was determined in all subjects using a reporter cell assay. The rs1990760 SNP of the interferon-induced helicase 1 gene was genotyped in ATD patients. Results: Serum type I IFN activity was increased in patients with ATD and T1DM compared to controls (p-values: 0.002 and 0.04, respectively). ATD patients with high type I IFN serum activity had increased prevalence of antibodies against thyroglobulin (anti-Tg) and cardiopulmonary manifestations compared to those with low IFN activity. Additionally, the presence of micronodules on thyroid ultrasound was associated with higher type I IFN levels. In patients with T1DM, high IFN levels were associated with increased apolipoprotein-B levels. Conclusion: Serum type I IFN activity is increased in ATD and T1DM and is associated with specific clinical, serological, and imaging features. These findings may implicate type I IFN pathway in the pathogenesis of specific features of organ-specific autoimmunity. PMID:23966997

  12. The cooperative effects of TNF-alpha and IFN-gamma are determining factors in the ability of IL-10 to protect mice from lethal endotoxemia.

    PubMed

    Smith, S R; Terminelli, C; Kenworthy-Bott, L; Calzetta, A; Donkin, J

    1994-06-01

    Recent studies have demonstrated that interleukin-10 (IL-10) has the capacity to protect mice from the lethal effects of endotoxin. In this investigation, we have examined the ability of IL-10 to protect both normal mice and Corynebacterium parvum-primed mice against endotoxin lethality. In the overwhelming majority of experiments, recombinant murine IL-10 (rMuIL-10) and recombinant human IL-10 (rHuIL-10) did not protect normal BALB/cJ mice from lipopolysaccharide (LPS)-induced lethality at doses up to 10 micrograms/mouse. Despite their inability to protect, both IL-10 preparations were highly effective in preventing the increase in serum tumor necrosis factor alpha (TNF-alpha) that occurred in response to the lethal dose of LPS. Moreover, a neutralizing antibody against TNF-alpha gave only partial protection when administered alone to BALB/cJ mice. Treatment with a combination of neutralizing antibodies against TNF-alpha and interferon-gamma (IFN-gamma) resulted in complete protection. In contrast to BALB/cJ mice, normal BDF1 mice were protected from lethal endotoxemia by treatment with both rMuIL-10 and rHuIL-10. However, IL-10 did not protect C. parvum-primed BDF1 against LPS lethality even though it caused a reduction in the LPS-induced serum TNF-alpha response in C. parvum-primed mice as well as in normal BDF1 mice. Neutralizing antibodies against TNF-alpha and IFN-gamma were protective when administered alone to normal BDF1 mice, as previously demonstrated in C. parvum-primed mice. These findings suggest that lethal endotoxemia is a result of the cooperative activities of TNF-alpha and IFN-gamma in normal mice of the BALB/cJ and BDF1 strains as well as in C. parvum-primed BDF1 mice. IL-10 appears to be less effective in protecting mice from lethal endotoxemia when cooperation between IFN-gamma and TNF-alpha is facilitated by high-level production of the cytokines as in C. parvum-primed mice or when there is evidence of strong synergy between them as in normal

  13. Maturation inside and outside bone marrow dendritic cells (BMDCs) modulated by interferon-α (IFN-α).

    PubMed

    Song, Qingbin; Meng, Yiming; Wang, Yumin; Li, Min; Zhang, Jian; Xin, Shijie; Wang, Li; Shan, Fengping

    2013-11-01

    Interferons are made by cells in response to appropriate stimuli such as viruses, bacteria, parasites or tumor cells and are released into the surrounding medium. They then bind to receptors on target cells to allow for communication between cells to trigger the protective defenses of the immune system that eradicate pathogens or tumors. IFN-α is produced by leukocytes and is mainly involved in innate immune response against viral or bacterial infections and for tumor control. The aim of this work is to explore the detailed modulation of IFN-α on phenotypic and functional maturation inside and outside murine bone marrow derived dendritic cells (BMDCs). The maturity of BMDCs post treatment with IFN-α was evaluated with conventional light microscope and transmission electron microscopy (TEM) for morphology changes; flow cytometry (FCM) for changes of surface molecules on BMDCs; cytochemistry, acid phosphatase activity (ACP) test, and FITC-dextran bio-assay for biochemistry analysis and enzyme-linked immunosorbent assay (ELISA) for cytokine production by BMDCs. We have shown that IFN-α 1) up-regulates the expression of MHC II, CD40, CD83, CD80 and CD86 molecules on BMDCs; 2) down-regulates the rates of pinocytosis and phagocytosis by BMDCs as evidenced by the results of decreased ACP, and FITC-dextran bio-assay; 3) enhances the ability of BMDCs to drive T cell function; and 4) induces higher levels of IL-12 and TNF-α secreted by BMDCs. Therefore, we conclude that IFN-α can efficiently promote the maturation of BMDCs through detailed modulation inside and outside BMDCs. Our study has provided more detailed data on changes of BMDCs modulated by IFN-α, and rationale on future application of IFN-α for enhancing host immunity and potent adjuvant administration in the design of DC-based vaccines.

  14. Probing the Attenuation and Protective Efficacy of a Candidate Chikungunya Virus Vaccine in Mice with Compromised Interferon (IFN) Signaling

    PubMed Central

    Partidos, Charalambos D.; Weger, James; Brewoo, Joseph; Seymour, Robert; Borland, Erin M.; Ledermann, Jeremy P.; Powers, Ann M.; Weaver, Scott C.; Stinchcomb, Dan T.; Osorio, Jorge E.

    2011-01-01

    Chikungunya virus (CHIKV) is a mosquito-borne alphavirus that causes explosive outbreaks of febrile illness associated with rash, and painful arthralgia. The CHIK vaccine strain 181/clone25 (181/25) developed by the United States Army Medical Research Institute of Infectious Diseases (USAMRIID) was shown to be well-tolerated and highly immunogenic in phase I and II clinical trials although it induced transient arthralgia in some healthy adult volunteers. In an attempt to better understand the host factors that are involved in the attenuating phenotype of CHIK 181/25 vaccine virus we conducted studies in interferon (IFN)-compromised mice and also evaluated its immunogenic potential and protective capacity. Infection of AG129 mice (defective in IFN-α/β and IFN-γ receptor signaling) with CHIK 181/25 resulted in rapid mortality within 3-4 days. In contrast, all infected A129 mice (defective in IFN-α/β receptor signaling) survived with temporary morbidity characterized by ruffled appearance and body weight loss. A129 heterozygote mice that retain partial IFN-α/β receptor signaling activity remained healthy. Infection of A129 mice with CHIK 181/25 induced significant levels of IFN-γ and IL-12 while the inflammatory cytokines, TNFα and IL-6 remained low. A single administration of the CHIK 181/25 vaccine provided both short-term and long-term protection (38 days and 247 days post-prime, respectively) against challenge with wt CHIKV-La Reunion (CHIKV-LR). This protection was at least partially mediated by antibodies since passively transferred immune serum protected both A129 and AG129 mice from wt CHIKV-LR and 181/25 virus challenge. Overall, these data highlight the importance of IFNs in controlling CHIK 181/25 vaccine and demonstrate the ability of this vaccine to elicit neutralizing antibody responses that confer short-and long-term protection against wt CHIKV-LR challenge. PMID:21300099

  15. T cells detect intracellular DNA but fail to induce type I IFN responses: implications for restriction of HIV replication.

    PubMed

    Berg, Randi K; Rahbek, Stine H; Kofod-Olsen, Emil; Holm, Christian K; Melchjorsen, Jesper; Jensen, David G; Hansen, Anne Louise; Jørgensen, Louise B; Ostergaard, Lars; Tolstrup, Martin; Larsen, Carsten S; Paludan, Søren R; Jakobsen, Martin R; Mogensen, Trine H

    2014-01-01

    HIV infects key cell types of the immune system, most notably macrophages and CD4+ T cells. Whereas macrophages represent an important viral reservoir, activated CD4+ T cells are the most permissive cell types supporting high levels of viral replication. In recent years, it has been appreciated that the innate immune system plays an important role in controlling HIV replication, e.g. via interferon (IFN)-inducible restriction factors. Moreover, innate immune responses are involved in driving chronic immune activation and the pathogenesis of progressive immunodeficiency. Several pattern recognition receptors detecting HIV have been reported, including Toll-like receptor 7 and Retinoic-inducible gene-I, which detects viral RNA. Here we report that human primary T cells fail to induce strong IFN responses, despite the fact that this cell type does express key molecules involved in DNA signaling pathways. We demonstrate that the DNA sensor IFI16 migrates to sites of foreign DNA localization in the cytoplasm and recruits the signaling molecules stimulator of IFN genes and Tank-binding kinase, but this does not result in expression of IFN and IFN-stimulated genes. Importantly, we show that cytosolic DNA fails to affect HIV replication. However, exogenous treatment of activated T cells with type I IFN has the capacity to induce expression of IFN-stimulated genes and suppress HIV replication. Our data suggest the existence of an impaired DNA signaling machinery in T cells, which may prevent this cell type from activating cell-autonomous anti-HIV responses. This phenomenon could contribute to the high permissiveness of CD4+ T cells for HIV-1.

  16. Conventional but Not Plasmacytoid Dendritic Cells Foster the Systemic Virus–Induced Type I IFN Response Needed for Efficient CD8 T Cell Priming

    PubMed Central

    Riezu-Boj, Jose-Ignacio; Mancheño, Uxua; Rueda, Paloma; Lopez, Lissette; Alignani, Diego; Rodríguez-García, Estefanía; Thieblemont, Nathalie

    2014-01-01

    Plasmacytoid dendritic cells (pDCs) are considered to be the principal type-I IFN (IFN-I) source in response to viruses, whereas the contribution of conventional DCs (cDCs) has been underestimated because, on a per-cell basis, they are not considered professional IFN-I–producing cells. We have investigated their respective roles in the IFN-I response required for CTL activation. Using a nonreplicative virus, baculovirus, we show that despite the high IFN-I–producing abilities of pDCs, in vivo cDCs but not pDCs are the pivotal IFN-I producers upon viral injection, as demonstrated by selective pDC or cDC depletion. The pathway involved in the virus-triggered IFN-I response is dependent on TLR9/MyD88 in pDCs and on stimulator of IFN genes (STING) in cDCs. Importantly, STING is the key molecule for the systemic baculovirus-induced IFN-I response required for CTL priming. The supremacy of cDCs over pDCs in fostering the IFN-I response required for CTL activation was also verified in the lymphocytic choriomeningitis virus model, in which IFN-β promoter stimulator 1 plays the role of STING. However, when the TLR-independent virus-triggered IFN-I production is impaired, the pDC-induced IFNs-I have a primary impact on CTL activation, as shown by the detrimental effect of pDC depletion and IFN-I signaling blockade on the residual lymphocytic choriomeningitis virus–triggered CTL response detected in IFN-β promoter stimulator 1−/− mice. Our findings reveal that cDCs play a major role in the TLR-independent virus-triggered IFN-I production required for CTL priming, whereas pDC-induced IFNs-I are dispensable but become relevant when the TLR-independent IFN-I response is impaired. PMID:24973449

  17. Pathogenic functions of B cells in autoimmune diseases: IFN-γ production joins the criminal gang.

    PubMed

    Fillatreau, Simon

    2015-04-01

    B-cell depletion therapy has emerged as a powerful strategy to intercept the progression of T-cell-mediated autoimmune diseases such as rheumatoid arthritis, type 1 diabetes, or relapsing remitting multiple sclerosis. However, its mode of action remains incompletely defined, reflecting our incomplete understanding of the pathogenic functions of B cells in such pathologies. B cells can contribute to immune responses through the production of antibodies, presentation of antigen to T cells, and production of cytokines. In this issue of the European Journal of Immunology [Eur. J. Immunol. 2015. 45: 988-998], Olalekan et al. demonstrate that IFN-γ production by B cells is essential for the development of arthritis in mice. Lack of IFN-γ expression in B cells results in reduced autoimmune T-cell responses and autoantibody levels, impacting the arthritogenic reaction akin to that in B-cell depletion therapy. Together with other reports, the article by Olalekan et al. emphasizes the importance of cytokine-producing B cells in the pathogenesis of autoimmune diseases. In this commentary, I discuss how these findings shed new light on the roles of B cells as drivers of autoimmune pathogenesis, and how they more generally contribute to our understanding of the role of B cells in immunity.

  18. In utero sensitization modulates IgG isotype, IFN-γ and IL-10 responses of neonates in bancroftian filariasis.

    PubMed

    Achary, K G; Mandal, N N; Mishra, S; Mishra, R; Sarangi, S S; Satapathy, A K; Kar, S K; Bal, M S

    2014-10-01

    In utero exposure has been considered as a risk factor for filarial infection. To evaluate the influence of maternal infection on filarial-specific IgG subclass response in neonates and their correlation with plasma levels IL-10 and interferon-γ, 145 pairs of mothers and their respective cord bloods were examined. Transplacental transfer of circulating filarial antigen (CFA) was observed in 34·8% cord bloods from CFA positive mothers. Filarial-specific IgG1, IgG2 and IgG4 responses of cord bloods were found to be positively correlated with CFA of mothers. In contrast, IgG3 responses negatively correlated with CFA of mothers. The % of similarity of recognition pattern in the cord blood with maternal blood was high for IgG3 response than IgG4 in all three groups. An increased levels of IL-10 and decreased levels of interferon gamma (IFN-γ) were observed in cord blood of infected mothers. Interferon gamma was positively correlated with IgG3 and negatively correlated with IgG4 level. On the other hand, IL-10 was positively correlated with IgG4 and CFA, indicating that cytokines may play a role in modulating the immune responses in cord bloods of sensitized foetus. The findings of the study reveal that in utero tolerance or sensitization may influence the filarial-specific immunity to infection in neonates.

  19. Suppressor of cytokine signaling 1 inhibits IFN-gamma inflammatory signaling in human keratinocytes by sustaining ERK1/2 activation.

    PubMed

    Madonna, Stefania; Scarponi, Claudia; De Pità, Ornella; Albanesi, Cristina

    2008-09-01

    IFN-gamma is a pleiotropic cytokine importantly involved in the development of skin inflammatory responses. Epidermal keratinocytes are extremely susceptible to IFN-gamma action, but, once transduced with the suppressors of cytokine signaling (SOCS)1 molecule, they can no longer express a number of IFN-gamma-inducible signal transducer and activator of transcription (STAT)1-dependent genes. Extracellular-signal-regulated kinase (ERK)1/2 pathway is also involved in the protection of keratinocytes from the proinflammatory effect of IFN-gamma. Here we show that, after IFN-gamma stimulation, SOCS1 inhibited IFN-gamma receptor and STAT1 phosphorylation but maintained ERK1/2 activation. SOCS1 was also necessary for the IFN-gamma-induced RAS and Raf-1 activities in keratinocytes. The enhanced ERK1/2 pathway in SOCS1-overexpressing keratinocytes was in part responsible for their inability to respond to IFN-gamma, in terms of CXCL10 and CCL2 production, and for the high production of CXCL8. Moreover, SOCS1 interacted with the RAS inhibitor p120 RasGAP and promoted its degradation after IFN-gamma stimulation. We hypothesize that SOCS1 functions as suppressor of IFN-gamma signaling, not only by inhibiting STAT1 activation but also by sustaining ERK1/2-dependent antiinflammatory pathways.

  20. Interferon-Gamma Increases Endothelial Permeability by Causing Activation of p38 MAP Kinase and Actin Cytoskeleton Alteration.

    PubMed

    Ng, Chin Theng; Fong, Lai Yen; Sulaiman, Mohd Roslan; Moklas, Mohamad Aris Mohd; Yong, Yoke Keong; Hakim, Muhammad Nazrul; Ahmad, Zuraini

    2015-07-01

    Interferon-gamma (IFN-γ) is known to potentiate the progression of inflammatory diseases, such as inflammatory bowel disease and atherosclerosis. IFN-γ has been found to disrupt the barrier integrity of epithelial and endothelial cell both in vivo and in vitro. However, the mechanisms of IFN-γ underlying increased endothelial cell permeability have not been extensively elucidated. We reported that IFN-γ exhibits a biphasic nature in increasing endothelial permeability. The changes observed in the first phase (4-8 h) involve cell retraction and rounding in addition to condensed peripheral F-actin without a significant change in the F-/G-actin ratio. However, cell elongation, stress fiber formation, and an increased F-/G-actin ratio were noticed in the second phase (16-24 h). Consistent with our finding from the permeability assay, IFN-γ induced the formation of intercellular gaps in both phases. A delayed phase of increased permeability was observed at 12 h, which paralleled the onset of cell elongation, stress fiber formation, and increased F-/G-actin ratio. In addition, IFN-γ stimulated p38 mitogen-activated protein (MAP) kinase phosphorylation over a 24 h period. Inhibition of p38 MAP kinase by SB203580 prevented increases in paracellular permeability, actin rearrangement, and increases in the F-/G-actin ratio caused by IFN-γ. Our results suggest that p38 MAP kinase is activated in response to IFN-γ and causes actin rearrangement and altered cell morphology, which in turn mediates endothelial cell hyperpermeability. The F-/G-actin ratio might be involved in the regulation of actin distribution and cell morphology rather than the increased permeability induced by IFN-γ.

  1. IFNs Modify the Proteome of Legionella-Containing Vacuoles and Restrict Infection Via IRG1-Derived Itaconic Acid.

    PubMed

    Naujoks, Jan; Tabeling, Christoph; Dill, Brian D; Hoffmann, Christine; Brown, Andrew S; Kunze, Mareike; Kempa, Stefan; Peter, Andrea; Mollenkopf, Hans-Joachim; Dorhoi, Anca; Kershaw, Olivia; Gruber, Achim D; Sander, Leif E; Witzenrath, Martin; Herold, Susanne; Nerlich, Andreas; Hocke, Andreas C; van Driel, Ian; Suttorp, Norbert; Bedoui, Sammy; Hilbi, Hubert; Trost, Matthias; Opitz, Bastian

    2016-02-01

    Macrophages can be niches for bacterial pathogens or antibacterial effector cells depending on the pathogen and signals from the immune system. Here we show that type I and II IFNs are master regulators of gene expression during Legionella pneumophila infection, and activators of an alveolar macrophage-intrinsic immune response that restricts bacterial growth during pneumonia. Quantitative mass spectrometry revealed that both IFNs substantially modify Legionella-containing vacuoles, and comparative analyses reveal distinct subsets of transcriptionally and spatially IFN-regulated proteins. Immune-responsive gene (IRG)1 is induced by IFNs in mitochondria that closely associate with Legionella-containing vacuoles, and mediates production of itaconic acid. This metabolite is bactericidal against intravacuolar L. pneumophila as well as extracellular multidrug-resistant Gram-positive and -negative bacteria. Our study explores the overall role IFNs play in inducing substantial remodeling of bacterial vacuoles and in stimulating production of IRG1-derived itaconic acid which targets intravacuolar pathogens. IRG1 or its product itaconic acid might be therapeutically targetable to fight intracellular and drug-resistant bacteria. PMID:26829557

  2. IFN-{gamma}+ CD8+ T Lymphocytes: Possible Link Between Immune and Radiation Responses in Tumor-Relevant Hypoxia

    SciTech Connect

    De Ridder, Mark Jiang Heng; Esch, Gretel van; Law, Kalun; Monsaert, Christinne; Berge, Dirk L. van den; Verellen, Dirk; Verovski, Valeri N.; Storme, Guy A.

    2008-07-01

    Activated T lymphocytes are known to kill tumor cells by triggering cytolytic mechanisms; however, their ability to enhance radiation responses remains unclear. This study examined the radiosensitizing potential of mouse CD8+ T cells, obtained by T-cell-tailored expansion and immunomagnetic purification. Activated CD8+ T cells displayed an interferon (IFN)-{gamma}+ phenotype and enhanced by 1.8-fold the radiosensitivity of EMT-6 tumor cells in 1% oxygen, which modeled tumor-relevant hypoxia. Radiosensitization was counteracted by neutralizing IFN-{gamma} or by blocking the inducible isoform of nitric oxide synthase, thus delineating the immune-tumor cell interaction through the IFN-{gamma} secretion pathway. Reverse transcriptase-polymerase chain reaction, enzyme-linked immunosorbent assay, and fluorescence-activated cell sorter data in agreement detected downregulation of the IFN-{gamma} gene by hypoxia, which caused IFN-{gamma} deficiency next to radioresistance. Therefore, immune and radiation responses are likely to be allied in the hypoxic tumor microenvironment, and CD8+ T cells may bridge immunostimulatory and radiosensitizing strategies.

  3. HIV-1 and HIV-2 differentially mature plasmacytoid dendritic cells into IFN-producing cells or APCs.

    PubMed

    Royle, Caroline M; Graham, David R; Sharma, Simone; Fuchs, Dietmar; Boasso, Adriano

    2014-10-01

    HIV-1 causes a progressive impairment of immune function. HIV-2 is a naturally attenuated form of HIV, and HIV-2 patients display a slow-progressing disease. The leading hypothesis for the difference in disease phenotype between HIV-1 and HIV-2 is that more efficient T cell-mediated immunity allows for immune-mediated control of HIV-2 infection, similar to that observed in the minority of HIV-1-infected long-term nonprogressors. Understanding how HIV-1 and HIV-2 differentially influence the immune function may highlight critical mechanisms determining disease outcome. We investigated the effects of exposing primary human peripheral blood cells to HIV-1 or HIV-2 in vitro. HIV-2 induced a gene expression profile distinct from HIV-1, characterized by reduced type I IFN, despite similar upregulation of IFN-stimulated genes and viral restriction factors. HIV-2 favored plasmacytoid dendritic cell (pDC) differentiation into cells with an APC phenotype rather than IFN-α-producing cells. HIV-2, but not HIV-1, inhibited IFN-α production in response to CpG-A. The balance between pDC maturation into IFN-α-producing cells or development of an APC phenotype differentiates the early response against HIV-1 and HIV-2. We propose that divergent paths of pDC differentiation driven by HIV-1 and HIV-2 cause the observed differences in pathogenicity between the two viruses.

  4. Interferon (IFN) and Cellular Immune Response Evoked in RNA-Pattern Sensing During Infection with Hepatitis C Virus (HCV).

    PubMed

    Nakai, Masato; Oshiumi, Hiroyuki; Funami, Kenji; Okamoto, Masaaki; Matsumoto, Misako; Seya, Tsukasa; Sakamoto, Naoya

    2015-01-01

    Hepatitis C virus (HCV) infects hepatocytes but not dendritic cells (DCs), but DCs effectively mature in response to HCV-infected hepatocytes. Using gene-disrupted mice and hydrodynamic injection strategy, we found the MAVS pathway to be crucial for induction of type III interferons (IFNs) in response to HCV in mouse. Human hepatocytes barely express TLR3 under non-infectious states, but frequently express it in HCV infection. Type I and III IFNs are induced upon stimulation with polyI:C, an analog of double-stranded (ds)RNA. Activation of TLR3 and the TICAM-1 pathway, followed by DC-mediated activation of cellular immunity, is augmented during exposure to viral RNA. Although type III IFNs are released from replication-competent human hepatocytes, DC-mediated CTL proliferation and NK cell activation hardly occur in response to the released type III IFNs. Yet, type I IFNs and HCV-infected hepatocytes can induce maturation of DCs in either human or mouse origin. In addition, mouse CD8+ DCs mature in response to HCV-infected hepatocytes unless the TLR3/TICAM-1 pathway is blocked. We found the exosomes containing HCV RNA in the supernatant of the HCV-infected hepatocytes act as a source of TLR3-mediated DC maturation. Here we summarize our view on the mechanism by which DCs mature to induce NK and CTL in a status of HCV infection.

  5. A Critical Role of Bacterioferritin in Salmonella pullorum-Induced IFN-β Expression in DF-1 Cells

    PubMed Central

    Xu, Zhichao; Qin, Yao; Wang, Yongqiang; Li, Xiaoqi; Cao, Hong; Zheng, Shijun J.

    2016-01-01

    Salmonella enterica serovar Pullorum (S. pullorum) causes pullorum disease in poultry and results in great economic losses to the poultry industry. Although an eradication program has been successfully performed in some countries, it remains a major threat to countries with poor poultry disease surveillance. Currently there are no effective control measures for pullorum disease except eradication. In particular, the pathogenesis of S. pullorum infection is still largely unknown. Here we identified bacterioferritin (Bfr) as a major antigen of S. pullorum to elicit a humoral immune response. Furthermore, we demonstrate that Bfr induces activation of IFN-β promoter and mRNA expression in DF-1 cells, and that the amino acids 1–50 form a critical domain involved in IFN-β expression. Moreover, we found that the p38 MAPK signaling pathway was essential for Bfr-induced IFN-β expression. Importantly, S. pullorum-induced IFN-β expression was totally abolished by deficiency of Bfr in the bacteria, indicating that Bfr plays a critical role in S. pullorum induced IFN-β expression in DF-1 cells. Our findings provide new insights into the molecular mechanisms of the host response to S. pullorum infection. PMID:26870001

  6. IFNs Modify the Proteome of Legionella-Containing Vacuoles and Restrict Infection Via IRG1-Derived Itaconic Acid

    PubMed Central

    Naujoks, Jan; Kunze, Mareike; Kempa, Stefan; Peter, Andrea; Mollenkopf, Hans-Joachim; Dorhoi, Anca; Kershaw, Olivia; Gruber, Achim D.; Sander, Leif E.; Witzenrath, Martin; Herold, Susanne; Nerlich, Andreas; Hocke, Andreas C.; van Driel, Ian; Suttorp, Norbert; Bedoui, Sammy; Hilbi, Hubert; Trost, Matthias; Opitz, Bastian

    2016-01-01

    Macrophages can be niches for bacterial pathogens or antibacterial effector cells depending on the pathogen and signals from the immune system. Here we show that type I and II IFNs are master regulators of gene expression during Legionella pneumophila infection, and activators of an alveolar macrophage-intrinsic immune response that restricts bacterial growth during pneumonia. Quantitative mass spectrometry revealed that both IFNs substantially modify Legionella-containing vacuoles, and comparative analyses reveal distinct subsets of transcriptionally and spatially IFN-regulated proteins. Immune-responsive gene (IRG)1 is induced by IFNs in mitochondria that closely associate with Legionella-containing vacuoles, and mediates production of itaconic acid. This metabolite is bactericidal against intravacuolar L. pneumophila as well as extracellular multidrug-resistant Gram-positive and -negative bacteria. Our study explores the overall role IFNs play in inducing substantial remodeling of bacterial vacuoles and in stimulating production of IRG1-derived itaconic acid which targets intravacuolar pathogens. IRG1 or its product itaconic acid might be therapeutically targetable to fight intracellular and drug-resistant bacteria. PMID:26829557

  7. Interferon (IFN) and Cellular Immune Response Evoked in RNA-Pattern Sensing During Infection with Hepatitis C Virus (HCV)

    PubMed Central

    Nakai, Masato; Oshiumi, Hiroyuki; Funami, Kenji; Okamoto, Masaaki; Matsumoto, Misako; Seya, Tsukasa; Sakamoto, Naoya

    2015-01-01

    Hepatitis C virus (HCV) infects hepatocytes but not dendritic cells (DCs), but DCs effectively mature in response to HCV-infected hepatocytes. Using gene-disrupted mice and hydrodynamic injection strategy, we found the MAVS pathway to be crucial for induction of type III interferons (IFNs) in response to HCV in mouse. Human hepatocytes barely express TLR3 under non-infectious states, but frequently express it in HCV infection. Type I and III IFNs are induced upon stimulation with polyI:C, an analog of double-stranded (ds)RNA. Activation of TLR3 and the TICAM-1 pathway, followed by DC-mediated activation of cellular immunity, is augmented during exposure to viral RNA. Although type III IFNs are released from replication-competent human hepatocytes, DC-mediated CTL proliferation and NK cell activation hardly occur in response to the released type III IFNs. Yet, type I IFNs and HCV-infected hepatocytes can induce maturation of DCs in either human or mouse origin. In addition, mouse CD8+ DCs mature in response to HCV-infected hepatocytes unless the TLR3/TICAM-1 pathway is blocked. We found the exosomes containing HCV RNA in the supernatant of the HCV-infected hepatocytes act as a source of TLR3-mediated DC maturation. Here we summarize our view on the mechanism by which DCs mature to induce NK and CTL in a status of HCV infection. PMID:26512676

  8. Pott’s disease in Moroccan children: Clinical features and investigation of the IL-12/IFN-γ pathway

    PubMed Central

    el Azbaoui, Safa; Mrani, Nidal Alaoui; Sabri, Ayoub; Jouhadi, Zineb; Ailal, Fatima; Bousfiha, Ahmed Aziz; Najib, Jilali; Hafidi, Naima El; Deswarte, Caroline; Schurr, Erwin; Bustamante, Jacinta; Boisson-Dupuis, Stéphanie; Casanova, Jean-Laurent; Abel, Laurent; Baghdadi, Jamila EL

    2016-01-01

    Setting Tuberculosis spondylodiscitis (TS) or Pott’s disease is an extra-pulmonary form of TB that is rare and difficult to diagnose in children. Some cases of severe TB in children were recently explained by inborn errors of immunity affecting the IL-12/IFN-γ axis. Objective To analyze the clinical data for Moroccan children with TS, and to perform immunological and genetic explorations of the IL-12/IFN-γ axis. Design We studied nine children with TS diagnosed between 2012 and 2014. We investigated the IL-12/IFN-γ circuit by both whole-blood assays and sequencing of the coding regions of 14 core genes of this pathway. Results TS diagnosis was based on a combination of clinical, biological, histological, and radiological data. QuantiFERON TB Gold in Tube results were positive in 75% of patients. Whole-blood assays showed normal IL-12 and IFN-γ production in all but one patient, who displayed impaired decreased response to IL-12. No candidate disease-causing mutations were detected in the exonic regions of the 14 genes. Conclusions The diagnosis of TS in children remains challenging, and is based largely on imaging. Further investigations of TS in children are required to determine the role of genetic defects in pathways that may or may not be related to the IL-12/IFN-γ axis. PMID:26614186

  9. Antigen presentation by small intestinal epithelial cells uniquely enhances IFN-γ secretion from CD4{sup +} intestinal intraepithelial lymphocytes

    SciTech Connect

    Hatano, Ryo; Yamada, Kiyoshi; Iwamoto, Taku; Maeda, Nana; Emoto, Tetsuro; Shimizu, Makoto; Totsuka, Mamoru

    2013-06-14

    Highlights: •Small intestinal epithelial cells (sIECs). •sIECs are able to induce antigen specific proliferation of CD4{sup +} IELs. •sIECs induce markedly enhanced IFN-γ secretion by CD4{sup +} IELs. •Induction of enhanced IFN-γ secretion by sIECs is uniquely observed in CD4{sup +} IELs. -- Abstract: Small intestinal epithelial cells (sIECs) express major histocompatibility complex class II molecules even in a normal condition, and are known to function as antigen presenting cells (APCs) at least in vitro. These findings raised the possibility that sIECs play an important role in inducing immune responses against luminal antigens, especially those of intestinal intraepithelial lymphocytes (IELs) and lamina propria lymphocytes (LPLs). We herein showed that antigenic stimulation with sIECs induced markedly greater secretion of interferon-gamma (IFN-γ) by CD4{sup +} IELs, but not interleukin (IL)-4, IL-10 and IL-17 although the proliferative response was prominently lower than that with T cell-depleted splenic APCs. In contrast, no enhanced IFN-γ secretion by CD4{sup +} LPLs and primed splenic CD4{sup +} T cells was observed when stimulated with sIECs. Taken together, these results suggest that sIECs uniquely activate CD4{sup +} IELs and induce remarkable IFN-γ secretion upon antigenic stimulation in vivo.

  10. Detection of IFN-γ for latent tuberculosis diagnosis using an anodized aluminum oxide-based capacitive sensor.

    PubMed

    Kim, Joo Hyoung; Chang, Young Wook; Bok, Eun; Kim, Hyun-Jeong; Lee, Hyejon; Cho, Sang-Nae; Shin, Jeon-Soo; Yoo, Kyung-Hwa

    2014-01-15

    We describe a rapid, sensitive, and label-free method to detect interferon-gamma (IFN-γ), a biomarker of latent tuberculosis infection (LTBI). IFN-γ is detected by measuring the capacitance change caused by its binding to an anti-IFN-γ antibody. The antibody is immobilized on the surface of an anodized aluminum oxide (AAO)-based capacitive sensor. With this technique, IFN-γ can be detected in the range of ~0.1 pg/ml to ~10 ng/ml, with a detection limit of 0.2 pg/ml. We have also measured the concentration of IFN-γ in clinical samples using the AAO-based capacitive sensor and compared this concentration with the results of the commercial QuantiFERON-TB Gold (QFT-G) ELISA kit to determine whether the two sets of data are consistent. Comparable results were obtained with the two measurement strategies, demonstrating the applicability of the AAO-based capacitive sensor to the diagnosis of LTBI.

  11. A rational approach to select immunogenic peptides that induce IFN-γ response against Toxoplasma gondii in human leukocytes.

    PubMed

    Cardona, Néstor I; Moncada, Diego M; Gómez-Marin, Jorge E

    2015-12-01

    The ideal vaccine to prevent toxoplasmosis in humans would comprise antigens that elicit a protective T cell type 1 response with high IFN-γ production. Here, we report the use of a bioinformatics pipeline to discover peptides based on biochemical characteristics that predict strong IFN-γ response by human leukocytes. We selected peptide sequences that previously were reported to induce IFN-γ to identify the biophysical characteristics that will predict HLA-A*02 high-affinity epitopes. We found that the protein motif pattern FL...L..[VL] was common in previously reported highly immunogenic sequences. We have selected new peptides with a length of 9 residues with affinities from 2 to 21 nM with peptide signal and transmembrane domains and predicted to be cleaved at the proteasome to perform ELISPOT assays with human leukocytes. Within 9 peptides with the highest scores for IFN-γ production, four peptides elicited IFN-γ levels in a range from 252 to 1763 SFC/1e6. Our pipeline uncovered Toxoplasma proteins with peptides that are processed by MHC class 1 in humans. Our results suggest that our rational strategy for the selection of immunogenic epitopes could be used to select peptides as candidates for inclusion in epitope-based vaccines. PMID:26210043

  12. Selective modulation of MHC class II chaperons by a novel IFN-γ-inducible class II transactivator variant in lung adenocarcinoma A549 cells.

    PubMed

    Chiu, Bau-Lin; Li, Chia-Hsuan; Chang, Chien-Chung

    2013-10-11

    Class II transactivator (CIITA) plays a critical role in controlling major histocompatibility complex (MHC) class II gene expression. In this study, two novel alternatively spliced variants of human interferon (IFN)-γ-inducible CIITA, one missing exon 7 (CIITAΔE7), the other with TAG inserted at exon 4/5 junction (CIITA-TAG), were identified and characterized. Both variants are naturally occurring since they are present in primary cells. Unlike CIITA-TAG, CIITAΔE7 is expressed more abundantly in lung adenocarcinoma A549 cells than in the non-transformed counterpart BEAS-2B cells following IFN-γ stimulation. Transfection experiments showed that CIITAΔE7 induced a markedly lower level of surface HLA-DR, -DP, -DQ expression than CIITA-TAG in A549 cells but not in BEAS-2B cells, although both variants elicited similar amounts of total DR, DP, and DQ proteins. This differential effect was correlated with, in A549 cells, decreased expression of Ii and HLA-DM genes, along with increased expression of HLA-DO genes. Ii and HLA-DM are chaperons assisting in HLA class II assembly, while HLA-DO functions to inhibit endosomal peptide loading and HLA class II membrane transport. These findings raise the possibility that CIITAΔE7 interacts with unknown cancer-associated factors to selectively modulate genes involved in the assembly and transport of HLA class II molecules.

  13. Functional dichotomy of Vδ2 γδ T cells in chronic hepatitis C virus infections: role in cytotoxicity but not for IFN-γ production.

    PubMed

    Yin, Wenwei; Tong, Shiwen; Zhang, Qiongfang; Shao, Jianying; Liu, Qian; Peng, Hong; Hu, Huaidong; Peng, Mingli; Hu, Peng; Ren, Hong; Tian, Zhigang; Zhang, Dazhi

    2016-01-01

    Vδ2 γδ (Vδ2) T cells, a major human γδ T cell subset, exhibit broad anti-tumor and anti-infective activity; however, their precise role in chronic hepatitis C virus (HCV) infections remains unclear. In this study, we analyzed the phenotype and function of Vδ2 T cells in 43 HCV-infected patients compared to 39 healthy controls (HCs). Vδ2 T cells from HCV-infected patients were activated and differentiated into effector cells. Vδ2 T cells in patients expressed significantly higher levels of natural killer (NK) cell markers CD56 and CD16 than in HCs, acquiring cytotoxic NK-like phenotype. The Vδ2 T cell phenotype was associated with increased cytolytic effector molecules expression in HCV-infected patients with elevated serum ALT levels. Surprisingly, Vδ2 T cells in patients had a markedly impaired capacity to produce IFN-γ. Further in vitro and in vivo analysis showed that interferon-α, which was induced during HCV infection, caused Vδ2 T cell function bias toward cytotoxicity. These results suggest a functional dichotomy for Vδ2 T cells in chronic HCV infections: a role in cytotoxicity but not for IFN-γ production, which may contribute to both the liver inflammation and HCV persistence. PMID:27192960

  14. Combined exercise training reduces IFN-γ and IL-17 levels in the plasma and the supernatant of peripheral blood mononuclear cells in women with multiple sclerosis.

    PubMed

    Golzari, Zahra; Shabkhiz, Fatemeh; Soudi, Sara; Kordi, Mohammad Reza; Hashemi, Seyed Mahmoud

    2010-11-01

    Multiple sclerosis (MS) is a chronic inflammatory demyelinating disorder in which lymphocytic infiltration mediated mainly by pro-inflammatory cytokines. In this study, we examined the effect of combined exercise training on the levels of IFN-γ, IL-4 and IL-17 in the plasma and the supernatant of peripheral blood lymphocytes in women with multiple sclerosis. Expanded Disability Status Scale (EDSS), VO(2)max, muscle strength, and balance tests were obtained at baseline and post-treatment follow-up. Combined exercises training was designed for 24 sessions during 8 weeks. Each session was started with 5 min warm-up and was followed by 10 min stretch training, 20 min aerobic exercises and 20 min resistance-endurance training. The disability score was significantly decreased in test MS subjects after 8 weeks combined exercise training. Muscle strength and balance were increased significantly after the training program in test group. In this study, plasma, and peripheral blood mononuclear cell (PBMC) IL-17 and IFN-γ production was significantly decreased after 8 weeks combined training. Our findings suggest that combined training has useful anti-inflammatory effects by decrease in PBMC and plasma IL-17 production. PMID:20797460

  15. Modulation effect of Semen Ziziphi Spinosae extracts on IL-1β, IL-4, IL-6, IL-10, TNF-α and IFN-γ in mouse serum.

    PubMed

    Xie, Junbo; Guo, Li; Pang, Guangchang; Wu, Xin; Zhang, Mingchun

    2011-02-01

    This study aims to explore and evaluate the effects of Semen Ziziphi Spinosae extracts on the serum levels of interleukin (IL)-6, IFN-γ, IL-1β, TNF-α, IL-10 and IL-4 in mice, and the regulative effect of Semen Ziziphi Spinosae on the cytokine system. Using an ELISA assay, the serum levels of IL-6, IFN-γ, IL-1β, TNF-α, IL-10 and IL-4 were examined in mice after intraperitoneal injection (i.p.) with Semen Ziziphi Spinosae extracts. The results showed that the levels of IL-6 and IL-1β were significantly increased compared with the control groups (p<0.01), while the level of tumour necrosis factor-α (TNF-α) was significantly decreased (p<0.01). Semen Ziziphi Spinosae possesses certain modulation effects on cytokines, and the immuno-regulating function and hypnosis effects of Semen Ziziphi Spinosae may be relevant to these modulation effects on cytokines. PMID:21328141

  16. Functional dichotomy of Vδ2 γδ T cells in chronic hepatitis C virus infections: role in cytotoxicity but not for IFN-γ production.

    PubMed

    Yin, Wenwei; Tong, Shiwen; Zhang, Qiongfang; Shao, Jianying; Liu, Qian; Peng, Hong; Hu, Huaidong; Peng, Mingli; Hu, Peng; Ren, Hong; Tian, Zhigang; Zhang, Dazhi

    2016-01-01

    Vδ2 γδ (Vδ2) T cells, a major human γδ T cell subset, exhibit broad anti-tumor and anti-infective activity; however, their precise role in chronic hepatitis C virus (HCV) infections remains unclear. In this study, we analyzed the phenotype and function of Vδ2 T cells in 43 HCV-infected patients compared to 39 healthy controls (HCs). Vδ2 T cells from HCV-infected patients were activated and differentiated into effector cells. Vδ2 T cells in patients expressed significantly higher levels of natural killer (NK) cell markers CD56 and CD16 than in HCs, acquiring cytotoxic NK-like phenotype. The Vδ2 T cell phenotype was associated with increased cytolytic effector molecules expression in HCV-infected patients with elevated serum ALT levels. Surprisingly, Vδ2 T cells in patients had a markedly impaired capacity to produce IFN-γ. Further in vitro and in vivo analysis showed that interferon-α, which was induced during HCV infection, caused Vδ2 T cell function bias toward cytotoxicity. These results suggest a functional dichotomy for Vδ2 T cells in chronic HCV infections: a role in cytotoxicity but not for IFN-γ production, which may contribute to both the liver inflammation and HCV persistence.

  17. Suppression of human anti-inflammatory plasma cytokines IL-10 and IL-1RA with elevation of proinflammatory cytokine IFN-gamma during the isolation of the Antarctic winter

    NASA Technical Reports Server (NTRS)

    Shearer, William T.; Lee, Bang-Ning; Cron, Stanley G.; Rosenblatt, Howard M.; Smith, E. O'Brian; Lugg, Desmond J.; Nickolls, Peter M.; Sharp, Robert M.; Rollings, Karl; Reuben, James M.

    2002-01-01

    Cellular immune function has been shown to be decreased and latent virus shedding to be increased in human beings isolated during the Antarctic winter, a model used for assessing some effects of space flight. However, the balance of proinflammatory (IFN-gamma) and anti-inflammatory (IL-10 and IL-1RA) cytokines has not previously been evaluated. We therefore sought to determine whether isolation during the Antarctic winter would alter the proinflammatory and anti-inflammatory cytokine balance. Cytokine levels were measured with ELISA in monthly plasma samples from January through September 1999 in 21 study subjects in the Antarctic and 7 control subjects on Macquarie Island. There was a significant time-dependent increase in plasma IFN-gamma (P =.039) as well as decreases in IL-10 (P =.042) and IL-1RA (P =.053) in the study subjects compared with the control subjects. The study subjects also had significantly increased plasma IFN-gamma levels (P < or =.045) but decreased IL-10 and IL-1RA levels (P < or =.036) at individual time points of isolation. Isolation of human beings in the Antarctic appears to shift the plasma cytokine balance toward a proinflammatory profile. These observations are consistent with T-cell activation that might be due to activation of latent viruses, and they could hold importance for determining the risks of space flight.

  18. IFN-α-2a (Interferon) and ribavirin induced suicidal attempt in a patient of chronic HCV: A rare case report.

    PubMed

    Inder, Deep; Rehan, H S; Yadav, Madhur; Manak, Seema; Kumar, Pawan

    2011-04-01

    Interferons (IFNs) are proteins produced by cells, fibroblasts and macrophages, in response to viral invasion, and mediates immune response. IFN-α and ribavirin are the approved treatment for HCV infection, but also carries a risk of neuropsychiatric adverse effects, viz. insomnia, irritability, mood changes, and depression.We present a case report of depression induced by IFN-α and ribavirin, leading to attempted suicide. Following the episode, antidepressant paroxetine (20 mg o.d.) and zolpidem (10 mg h.s) were added with psychotherapy. No significant improvement was observed. Patient was given a drug dechallenge (IFN-α and ribavirin). Dramatic improvement was seen over 1 month. Following rechallenge with combination, patient again experienced depressive symptoms with suicidal ideation. IFN-α and ribavirin were promptly stopped. Naranjo causality assessment scale revealed probable association with IFN-α and ribavirin. The report intends to improve awareness among clinicians to facilitate early diagnosis and intervention of similar cases. PMID:21572662

  19. Cutting Edge: Novel Tmem173 Allele Reveals Importance of STING N Terminus in Trafficking and Type I IFN Production.

    PubMed

    Surpris, Guy; Chan, Jennie; Thompson, Mikayla; Ilyukha, Vladimir; Liu, Beiyun C; Atianand, Maninjay; Sharma, Shruti; Volkova, Tatyana; Smirnova, Irina; Fitzgerald, Katherine A; Poltorak, Alexander

    2016-01-15

    With the stimulator of IFN genes (STING) C terminus being extensively studied, the role of the N-terminal domain (NTD) of STING remains an important subject of investigation. In this article, we identify novel mutations in NTD of Sting of the MOLF strain in response to HSV and Listeria monocytogenes both in vitro and in vivo. These mutations are responsible for low levels of IFN-β caused by failure of MOLF STING to translocate from the endoplasmic reticulum. These data provide evidence that the NTD of STING affects DNA responses via control of trafficking. They also show that the genetic diversity of wild-derived mice resembles the diversity observed in humans. Several human alleles of STING confer attenuated IFN-I production similar to what we observe with the MOLF Sting allele, a crucial functional difference not apparent in classical inbred mice. Thus, understanding the functional significance of polymorphisms in MOLF STING can provide basic mechanistic insights relevant to humans.

  20. Interferon-gamma (IFN-gamma) production by human T lymphocytes upon Legionella pneumophila stimulation in vitro.

    PubMed Central

    Kitsukawa, K; Nakamoto, A; Koito, H; Matsuda, Y; Saito, A; Yamamoto, H

    1995-01-01

    In vitro immune responses to Legionella pneumophila were investigated. When human peripheral blood lymphocytes (PBL) from healthy volunteers were stimulated with formalin-killed L. pneumophila for 7 days in vitro, strong proliferative responses were observed. The responding cells were shown to be a CD4 T cell subset. It was also found that the CD4 T cells secreted significant amounts of IFN-gamma into the PBL culture supernatant. The production of IFN-gamma and IL-4 by PBL was measured semiquantitatively by reverse transcriptase-assisted polymerase chain reaction (RT-PCR) methods. Formalin-killed or live L. pneumophila-stimulated PBL expressed the mRNA for IFN-gamma but not the mRNA for IL-4. The results suggest that the whole bacterium, as opposed to the supernatant, predominantly stimulates Th1 type helper T cells. The cloned T cells specific for L. pneumophila expressed the mRNA for IFN-gamma but not for IL-4. In contrast to formalin-killed or live L. pneumophila stimulation, when PBL were stimulated with the bacterial culture supernatant, the proliferating T cells produced the mRNA for IL-4 as well as for IFN-gamma. A significant correlation between the proliferative response to formalin-killed L. pneumophila and IFN-gamma release in culture was observed (r = 0.6932, P < 0.001) in PBL from 30 healthy volunteers. From these in vitro studies, it is suggested that the whole L. pneumophila bacterium and their soluble antigens stimulate T cells in a manner which results in a different pattern of cytokine production. PMID:7813113

  1. IFN-alpha/beta-dependent cross-priming induced by specific toll-like receptor agonists.

    PubMed

    Durand, Vanessa; Wong, Simon Y C; Tough, David F; Le Bon, Agnes

    2006-04-12

    Toll-like receptors (TLR) are pattern recognition receptors that have been identified as crucial in the initiation of innate immune responses against pathogens. They are thought to be involved in shaping appropriate adaptive immune responses, although their precise contribution has not yet been fully characterised. Our aim was to investigate in vivo the effect of different TLR stimuli on cellular immune responses. We examined the ability of a range of TLR stimuli to induce CD8+ T cell responses against a model soluble protein antigen, ovalbumin (OVA). We found that TLR 3, TLR 4, and TLR 9 agonists induced functional cross-priming, and that this process was dependent on IFN-alpha/beta signalling pathway. PMID:16823911

  2. Expressions of Bovine IFN-gamma and foot-and-mouth disease VP1 antigen in P. pastoris and their effects on mouse immune response to FMD antigens.

    PubMed

    Shi, Xi-Ju; Wang, Bin; Zhang, Can; Wang, Ming

    2006-01-01

    As a highly contagious disease in cloven-hoofed animals, foot-and-mouth disease virus (FMDV) may cause a considerable social-economic loss in those countries affected. IFN-gamma has a wide range of antiviral and immune modulating functions. Thus, to study the immune enhancing effects of recombinant Bovine IFN-gamma (rBoIFN-gamma) on a recombinant FMDV vaccine, BoIFN-gamma, FMDV VP1 and BoIFN-gamma/VP fusion genes were cloned, expressed, co-expressed in pichia pastoris (P. pastoris) respectively, and subsequent immune effects have been evaluated in this study. The results showed that the genes encoding for BoIFN-gamma, VP1 and BoIFN-gamma/VP1 are successfully expressed in P. pastoris and their products are directly secreted into the cultural supernatant at a high level of 1.0 g/L analyzed by thin-layer scanning. In addition, rVP1 alone could induce both humoral and marginal cell-mediated immune responses in mice, while the group with co-inoculations of rBoIFN-gamma could markedly enhance both humoral and cell-mediated immune responses; even more dramatic immune responses were observed with the group inoculated with the fusion product, rBoIFN-gamma/VP1. The fusion product could be further investigated for its utility of FMDV vaccine development.

  3. Modification of TLR-induced activation of human dendritic cells by type I IFN: synergistic interaction with TLR4 but not TLR3 agonists.

    PubMed

    Walker, Josef; Tough, David F

    2006-07-01

    Upon detection of direct and indirect signs of infection, dendritic cells (DC) undergo functional changes that modify their ability to elicit immune responses. Type I interferon (IFN-alpha/beta), which includes a large family of closely related infection-inducible cytokines, represents one indirect signal that can act as a DC stimulus. We have investigated the ability of IFN-alpha/beta subtypes to affect DC function and to influence DC responses to Toll-like receptor (TLR) agonists (i.e., direct infection-associated signals). Subtle differences were observed among 15 subtypes of IFN-alpha/beta in the ability to stimulate expression of maturation markers and chemokines by human monocyte-derived DC, with IFN-omega being the most unique in its effects. Pre-treatment with IFN-alpha/beta did not alter the ability of DC to mature in response to subsequent contact with TLR agonists, but did modulate their secretion of chemokines. Conversely, IFN-alpha/beta was shown to act synergistically with TLR4 but not TLR3 agonists for the induction of maturation and chemokine production when DC were exposed to IFN-alpha/beta and TLR ligands simultaneously. Taken together, these results indicate a complex role for IFN-alpha/beta in regulating DC function during the course an infection, which varies according to IFN-alpha/beta subtype and the timing of exposure to other stimuli. PMID:16783851

  4. Caerulomycin A Enhances Transforming Growth Factor-β (TGF-β)-Smad3 Protein Signaling by Suppressing Interferon-γ (IFN-γ)-Signal Transducer and Activator of Transcription 1 (STAT1) Protein Signaling to Expand Regulatory T Cells (Tregs)*

    PubMed Central

    Gurram, Rama Krishna; Kujur, Weshely; Maurya, Sudeep K.; Agrewala, Javed N.

    2014-01-01

    Cytokines play a very important role in the regulation of immune homeostasis. Regulatory T cells (Tregs) responsible for the generation of peripheral tolerance are under the tight regulation of the cytokine milieu. In this study, we report a novel role of a bipyridyl compound, Caerulomycin A (CaeA), in inducing the generation of Tregs. It was observed that CaeA substantially up-regulated the pool of Tregs, as evidenced by an increased frequency of CD4+ Foxp3+ cells. In addition, CaeA significantly suppressed the number of Th1 and Th17 cells, as supported by a decreased percentage of CD4+/IFN-γ+ and CD4+/IL-17+ cells, respectively. Furthermore, we established the mechanism and observed that CaeA interfered with IFN-γ-induced STAT1 signaling by augmenting SOCS1 expression. An increase in the TGF-β-mediated Smad3 activity was also noted. Furthermore, CaeA rescued Tregs from IFN-γ-induced inhibition. These results were corroborated by blocking Smad3 activity, which abolished the CaeA-facilitated generation of Tregs. In essence, our results indicate a novel role of CaeA in inducing the generation of Tregs. This finding suggests that CaeA has enough potential to be considered as a potent future drug for the treatment of autoimmunity. PMID:24811173

  5. Elevated IFN-alpha/beta levels in a streptozotocin-induced type I diabetic mouse model promote oxidative stress and mediate depletion of spleen-homing CD8+ T cells by apoptosis through impaired CCL21/CCR7 axis and IL-7/CD127 signaling.

    PubMed

    Mahmoud, Mohamed H; Badr, Gamal; Badr, Badr Mohamed; Kassem, Ahmad Usama; Mohamed, Mahmoud Shaaban

    2015-10-01

    Type 1 diabetes mellitus (T1D) is associated with increased type 1 interferon (IFN) levels and subsequent severe defects in lymphocyte function, which increase susceptibility to infections. The blockade of type 1 IFN receptor 1 (IFNAR1) in non-obese diabetic mice has been shown to delay T1D onset and decrease T1D incidence by enhancing spleen CD4+ T cells and restoring B cell function. However, the effect of type 1 IFN blockade during T1D on splenic CD8+ T cells has not previously been studied. Therefore, we investigated, for the first time, the effect of IFNAR1 blockade on the survival and architecture of spleen-homing CD8+ T cells in a streptozotocin-induced T1D mouse model. Three groups of mice were examined: a non-diabetic control group; a diabetic group; and a diabetic group treated with an anti-IFNAR1 blocking antibody. We observed that T1D induction was accompanied by a marked destruction of β cells followed by a marked reduction in insulin levels and increased IFN-α and IFN-β levels in the diabetic group. The diabetic mice also exhibited many abnormal changes including an elevation in blood and spleen free radical (reactive oxygen species and nitric oxide) and pro-inflammatory cytokine (IL-6 and TNF-α) levels, a significant decrease in IL-7 levels, and subsequently, a significant decrease in the numbers of spleen-homing CD8+ T cells. This decrease in spleen-homing CD8+ T cells resulted from a marked reduction in the CCL21-mediated entry of CD8+ T cells into the spleen and from increased apoptosis due to a marked reduction in IL-7-mediated STAT5 and AKT phosphorylation. Interestingly, type 1 IFN signaling blockade in diabetic mice significantly restored the numbers of splenic CD8+ T cells by restoring free radical, pro-inflammatory cytokine and IL-7 levels. These effects subsequently rescued splenic CD8+ T cells from apoptosis through a mechanism that was dependent upon CCL21- and IL-7-mediated signaling. Our data suggest that type 1 IFN is an essential

  6. Intracellular IL-4, IL-5, and IFN-γ as the main characteristic of CD4+CD30+ T cells after allergen stimulation in patients with vernal keratoconjunctivitis

    PubMed Central

    Magaña, Diana; Aguilar, Gustavo; Linares, Marisela; Ayala-Balboa, Julio; Santacruz, Concepción; Chávez, Raúl; Estrada-Parra, Sergio; Garfias, Yonathan; Lascurain, Ricardo; Jiménez-Martínez, Maria C.

    2015-01-01

    Background Vernal keratoconjunctivitis (VKC) is a severe form of allergic conjunctivitis, in which inflammatory infiltrates of the conjunctiva are characterized by CD3+ and CD30+ cells. Until today, the functional involvement of CD30+ T cells in VKC was unclear. Our aim was to evaluate the functional characteristics of CD30+ T cells after allergen stimulation in peripheral blood mononuclear cells obtained from patients with VKC. Methods Seventeen consecutive patients at the Institute of Ophthalmology with active forms of VKC were included. Results After allergen stimulation, we observed the frequency of CD30+ T cells increased compared with non-stimulated cells (p<0.0001). The CD30+ T cells responded to the specific allergen-inducing expression of intracellular interleukin-4 (IL-4), IL-5, and interferon-gamma (IFN-γ) compared with the CD30- T cells (p<0.0001). Increased early secretion of soluble CD30 was observed in the supernatant of the cultured cells from patients with keratoconjunctivitis, compared with healthy controls (p=0.03). Blockage with IL-4 significantly diminished CD30 frequency in the allergen-stimulated cells. Conclusions Our results suggest that after allergenic stimulation, CD4+CD30+ cells are the most important source of IL-4, IL-5, and IFN-γ. IL-4 acts as an activation loop that increases CD30 expression on T cells after specific stimulation. These findings suggest that CD4+CD30+ T cells are effector cells and play a significant role in the immune pathogenic response in patients with vernal keratoconjunctivitis. PMID:25999672

  7. Association of CD14 and TLR4 with LPS-stimulated human normal skin fibroblasts in immunophenotype changes and secretion of TGF-β1 and IFN

    PubMed Central

    Yang, Hongming; Li, Juncong; Wang, Yihe; Hu, Quan

    2015-01-01

    Objectives: We attempted to explore the association of CD14 and TLR4 with LPS-stimulated human normal skin fibroblasts in immunophenotype changes and secretion of TGF-β1 and IFN-γ, and to expand the current knowledge of the mechanisms that underlie LPS-induced scar formation. Methods: We randomized the human normal skin fibroblasts cultured in vitro into four groups. The expression profile of immune phenotypes was determined by immunohistochemical staining. Ultrastructure of cells was observed by use of transmission electron microscopy. Secretion status of TGF-β1 and IFN-γ was inspected using ELISA assay. Results: Compared with group A, the expressions of α-SMA and α1 (I) procollagen in groups B, C, D were lower, and it in group D were the lowest in all groups. The cells in group A were diversification under the electron microscope, and the ratio of the nuclear to plasma of the fibroblasts was large, with unregular nuclear membrane, more Golgi apparatus, rough endoplasmic reticulum, and microfilament and canaliculus appeared. The ultrastructure of the fibroblasts in group B, C, D was spindle and the nuclear was large, with regular nuclear membrane, more Golgi apparatus, rough endoplasmic reticulum. ELISA assay indicated that the secretion of TGF-β1 markedly lowered in groups B, C, D in comparison to group A, with the most marked decline observed in group D. Interestingly, we found significantly increased IFN-γ secretion in groups B, C, D (P < 0.05), with the latter group showing the most notable increase (P < 0.01). Conclusion: These data suggest that both combined and isolated use of CD14 and TLR4 significantly reduce α-SMA expression levels, the number of α1 (I) pro-collagen positive cells, and TGF-β secretion, while substantially increased IFN-γ secretion. The reduction and increase are especially notable when pretreating with CD14 and TLR4 combined. Here we thus draw a conclusion that both CD14 and TLR4 are associated with the immunophenotype

  8. IFN-gamma and prostaglandin E2 inhibit IL-4-induced expression of Fc epsilon R2/CD23 on B lymphocytes through different mechanisms without altering binding of IL-4 to its receptor

    SciTech Connect

    Galizzi, J.P.; Cabrillat, H.; Rousset, F.; Menetrier, C.; de Vries, J.E.; Banchereau, J.

    1988-09-15

    Human rIL-4 specifically induces the expression of the low affinity receptor for IgE (Fc epsilon R2/CD23) on normal B cells and on the Burkitt lymphoma cell line Jijoye. IL-4 does not induce the generation of the second messenger cAMP in Jijoye cells. PGE2 (at 10(-7) M) was found to inhibit by 50% the IL-4 mediated Fc epsilon R2/CD23 induction on Jijoye cells. The PGE2 half maximum inhibitory concentration (1 nM) was comparable to that inducing a half maximal increase of intracellular cAMP (4nM PGE2). 8-bromo-cAMP (10(-3) M), forskolin (10(-5) M), and cholera toxin (100 ng/ml), which increase intracellular cAMP levels, also inhibited by 40 to 80% the IL-4 induced Fc epsilon R2/CD23 expression on Jijoye cells. PGE2 8-bromo-cAMP, forskolin, and cholera toxin also inhibited the IL-4-induced Fc epsilon R2/CD23 expression on normal B lymphocytes. Taken together these data suggest that PGE2 inhibits the IL-4 induced Fc epsilon R2/CD23 through an increase of intracellular cAMP. In contrast, IFN-gamma, which strongly inhibits IL-4-mediated Fc epsilon R2/CD23 expression on Jijoye cells, did not increase intracellular cAMP levels and thus probably acts through another mechanism. IFN-gamma and PGE2 did not inhibit binding of IL-4 to its receptor. It could be excluded that IFN-gamma and PGE2 were acting via an alteration/desensitization of the IL-4R inasmuch as 24 h pre-incubation of Jijoye cells with these agents affected neither the affinity of 125I-IL-4 for its receptor (Kd = 0.8 to 1.5 x 10(-10) M) nor the maximal number of binding sites per Jijoye cells (Bmax = 390 to 550). Furthermore, IFN-gamma and PGE2 did not affect the internalization and degradation of 125I-IL-4. These data demonstrate that PGE2 and IFN-gamma inhibit the IL-4-mediated induction of Fc epsilon R2/CD23 on B lymphocytes via different mechanisms that do not alter the interaction of IL-4 with its receptor.

  9. Requirement of catalytically active Tyk2 and accessory signals for the induction of TRAIL mRNA by IFN-beta.

    PubMed

    Rani, M R Sandhya; Pandalai, Sudha; Shrock, Jennifer; Almasan, Alex; Ransohoff, Richard M

    2007-09-01

    Tumor necrosis factor (TNF)-related apoptosis-inducing ligand/Apo2 ligand (TRAIL/Apo2L) mRNA was induced preferentially by interferon (IFN)-beta but not IFN-alpha in human fibrosarcoma and primary fibroblast cells. To characterize the signaling components mediating the IFN subtype-specific induction of this gene, we used mutant cell lines lacking individual components involved in signaling by type I IFNs. TRAIL was not induced by IFN-beta in mutant cell lines U2A, U3A, U4A, U5A, and U6A, which lack, respectively, IFN regulatory factor-9 (IRF-9), Stat1, Jak1, IFNAR-2.2, and Stat2, indicating transcription factor IFN-stimulated gene factor 3 (ISGF3) was essential for the induction of this gene. TRAIL was not induced by IFN-beta in U1A (Tyk2 null) or U1A.R930 cells (that express a kinase-deficient point mutant of Tyk2) but was induced in U1A.wt-5 cells (U1A cells expressing wild-type Tyk2), indicating that Tyk2 protein and kinase activity were both required for induction of the gene. Biochemical and genetic analyses revealed the requirement of transcription factor NF-kappa B and phosphoinositide 3-kinase (PI3K) but not extracellular signal-regulated kinase (ERK) for the induction of TRAIL by IFN-beta. Furthermore, the antiproliferative but not antiviral effects of IFN-beta required catalytically active Tyk2, suggesting that expression of genes, such as TRAIL, may play an important role in mediating the biologic effects of IFNs.

  10. Herpesvirus Genome Recognition Induced Acetylation of Nuclear IFI16 Is Essential for Its Cytoplasmic Translocation, Inflammasome and IFN-β Responses

    PubMed Central

    Ansari, Mairaj Ahmed; Dutta, Sujoy; Veettil, Mohanan Valiya; Dutta, Dipanjan; Iqbal, Jawed; Kumar, Binod; Roy, Arunava; Chikoti, Leela; Singh, Vivek Vikram; Chandran, Bala

    2015-01-01

    The IL-1β and type I interferon-β (IFN-β) molecules are important inflammatory cytokines elicited by the eukaryotic host as innate immune responses against invading pathogens and danger signals. Recently, a predominantly nuclear gamma-interferon-inducible protein 16 (IFI16) involved in transcriptional regulation has emerged as an innate DNA sensor which induced IL-1β and IFN-β production through inflammasome and STING activation, respectively. Herpesvirus (KSHV, EBV, and HSV-1) episomal dsDNA genome recognition by IFI16 leads to IFI16-ASC-procaspase-1 inflammasome association, cytoplasmic translocation and IL-1β production. Independent of ASC, HSV-1 genome recognition results in IFI16 interaction with STING in the cytoplasm to induce interferon-β production. However, the mechanisms of IFI16-inflammasome formation, cytoplasmic redistribution and STING activation are not known. Our studies here demonstrate that recognition of herpesvirus genomes in the nucleus by IFI16 leads into its interaction with histone acetyltransferase p300 and IFI16 acetylation resulting in IFI16-ASC interaction, inflammasome assembly, increased interaction with Ran-GTPase, cytoplasmic redistribution, caspase-1 activation, IL-1β production, and interaction with STING which results in IRF-3 phosphorylation, nuclear pIRF-3 localization and interferon-β production. ASC and STING knockdowns did not affect IFI16 acetylation indicating that this modification is upstream of inflammasome-assembly and STING-activation. Vaccinia virus replicating in the cytoplasm did not induce nuclear IFI16 acetylation and cytoplasmic translocation. IFI16 physically associates with KSHV and HSV-1 genomes as revealed by proximity ligation microscopy and chromatin-immunoprecipitation studies which is not hampered by the inhibition of acetylation, thus suggesting that acetylation of IFI16 is not required for its innate sensing of nuclear viral genomes. Collectively, these studies identify the increased nuclear

  11. Measles virus V protein blocks Jak1-mediated phosphorylation of STAT1 to escape IFN-{alpha}/{beta} signaling

    SciTech Connect

    Caignard, Gregory; Guerbois, Mathilde; Labernardiere, Jean-Louis; Jacob, Yves; Jones, Louis M.; Wild, Fabian; Tangy, Frederic Vidalain, Pierre-Olivier

    2007-11-25

    Viruses have evolved various strategies to escape the antiviral activity of type I interferons (IFN-{alpha}/{beta}). For measles virus, this function is carried by the polycistronic gene P that encodes, by an unusual editing strategy, for the phosphoprotein P and the virulence factor V (MV-V). MV-V prevents STAT1 nuclear translocation by either sequestration or phosphorylation inhibition, thereby blocking IFN-{alpha}/{beta} pathway. We show that both the N- and C-terminal domains of MV-V (PNT and VCT) contribute to the inhibition of IFN-{alpha}/{beta} signaling. Using the two-hybrid system and co-affinity purification experiments, we identified STAT1 and Jak1 as interactors of MV-V and demonstrate that MV-V can block the direct phosphorylation of STAT1 by Jak1. A deleterious mutation within the PNT domain of MV-V (Y110H) impaired its ability to interact and block STAT1 phosphorylation. Thus, MV-V interacts with at least two components of IFN-{alpha}/{beta} receptor complex to block downstream signaling.

  12. The VP3 structural protein of foot-and-mouth disease virus inhibits the IFN-β signaling pathway.

    PubMed

    Li, Dan; Yang, Wenping; Yang, Fan; Liu, Huanan; Zhu, Zixiang; Lian, Kaiqi; Lei, Caoqi; Li, Shu; Liu, Xiangtao; Zheng, Haixue; Shu, Hongbing

    2016-05-01

    Foot-and-mouth disease is a frequently occurring disease of cloven-hoofed animals that is caused by infection with the foot-and-mouth virus (FMDV). FMDV circumvents the type-I IFN response by expressing proteins that antagonize cellular innate immunity, such as leader protease and 3C protease. We identified the FMDV structural protein VP3 as a negative regulator of the virus-triggered IFN-β signaling pathway. Expression of FMDV VP3 inhibited the Sendai virus-triggered activation of IFN regulatory factor-3 and the expression of retinoic acid-inducible gene-I/melanoma differentiation-associated protein-5. Transient transfection and coimmunoprecipitation confirmed that the structural protein VP3 interacts with virus-induced signaling adapter (VISA), which is dependent on the C-terminal aa 111-220 of VP3. In addition, we found that FMDV VP3 inhibits the expression of VISA by disrupting its mRNA. Taken together, our findings reveal a novel strategy used by the structural VP3 protein of FMDV to evade host innate immunity.-Li, D., Yang, W., Yang, F., Liu, H., Zhu, Z., Lian, K., Lei, C., Li, S., Liu, X., Zheng, H., Shu, H. The VP3 structural protein of foot-and-mouth disease virus inhibits the IFN-β signaling pathway. PMID:26813975

  13. Endotoxin triggers tumor necrosis factor (TNF)-dependent cytotoxicity from interferon-. gamma. (IFN-. gamma. ) primed and unprimed human monocytes

    SciTech Connect

    Kornbluth, R.S.; Edgington, T.S.

    1986-03-05

    Under endotoxin-free conditions, the authors have found that human peripheral blood mononuclear cells (PBM) lack spontaneous monocyte-mediated cytotoxicity against actinomycin D-treated WEHI 164 target cells in a 6 hr /sup 51/Cr release assay. However, small amounts of endotoxin (e.g., LPS) rapidly induce monocyte-mediated cytotoxicity. IFN-..gamma.. alone is incapable of inducing monocyte cytotoxicity. Instead, pretreatment of PBM with IFN-..gamma.. for 36 hr or more primes them for triggering by amounts of endotoxin that are almost 100-fold less than that required for unprimed cells. These conditions are analogous to the two step activation sequence described for mice where IFN-..gamma.. primes and LPS triggers macrophage cytotoxic capacity. Additionally, the authors have observed that neutralizing anti-TNF monoclonal antibody abolishes the cytotoxicity measured here; and rTNF is directly cytotoxic to the target cells used in this assay. Thus, TNF is both necessary and sufficient for the monocyte mediated cytotoxicity. Since IFN-..gamma.. is thought to be produced during a variety of immunological reactions, these findings may help to explain the augmented capacity of immunologically stimulated animals for LPS-triggered TNF production and their enhanced sensitivity to the lethal effects of endotoxin.

  14. Selective contribution of IFN-/ signaling to the maturation of dendritic cells induced by double-stranded RNA or viral infection

    NASA Astrophysics Data System (ADS)

    Honda, Kenya; Sakaguchi, Shinya; Nakajima, Chigusa; Watanabe, Ai; Yanai, Hideyuki; Matsumoto, Misako; Ohteki, Toshiaki; Kaisho, Tsuneyasu; Takaoka, Akinori; Akira, Shizuo; Seya, Tsukasa; Taniguchi, Tadatsugu

    2003-09-01

    A complex mechanism may be operational for dendritic cell (DC) maturation, wherein Toll-like receptor and other signaling pathways may be coordinated differently depending on the nature of the pathogens, in order for DC maturation to be most effective to a given threat. Here, we show that IFN-/ signaling is selectively required for the maturation of DCs induced by double-stranded RNA or viral infection in vitro. Interestingly, the maturation is still observed in the absence of either of the two target genes of IFN-/, TLR3 and PKR (double-stranded-RNA-dependent protein kinase R), indicating the complexity of the IFN-/-induced transcriptional program in DCs. We also show that the DCs stimulated in vivo by these agents can migrate into the T cell zone of the spleen but fail to mature without the IFN signal. The immune system may have acquired the selective utilization of this cytokine system, which is essential for innate antiviral immunity, to effectively couple with the induction of adaptive immunity.

  15. MicroRNA-30e* Suppresses Dengue Virus Replication by Promoting NF-κB–Dependent IFN Production

    PubMed Central

    Wen, Weitao; Lin, Cuiji; Yu, Jianchen; Pan, Jing; Li, Ran; Deng, Haijing; Liao, Shaowei; Yuan, Jie; Wu, Jueheng; Li, Jun; Li, Mengfeng

    2014-01-01

    MicroRNAs have been shown to contribute to a repertoire of host-pathogen interactions during viral infection. Our previous study demonstrated that microRNA-30e* (miR-30e*) directly targeted the IκBα 3′-UTR and disrupted the NF-κB/IκBα negative feedback loop, leading to hyperactivation of NF-κB. This current study investigated the possible role of miR-30e* in the regulation of innate immunity associated with dengue virus (DENV) infection. We found that DENV infection could induce miR-30e* expression in DENV-permissive cells, and such an overexpression of miR-30e* upregulated IFN-β and the downstream IFN-stimulated genes (ISGs) such as OAS1, MxA and IFITM1, and suppressed DENV replication. Furthermore, suppression of IκBα mediates the enhancing effect of miR-30e* on IFN-β-induced antiviral response. Collectively, our findings suggest a modulatory role of miR-30e* in DENV induced IFN-β signaling via the NF-κB-dependent pathway. Further investigation is needed to evaluate whether miR-30e* has an anti-DENV effect in vivo. PMID:25122182

  16. Paneth cell extrusion and release of antimicrobial products is directly controlled by immune cell-derived IFN-γ.

    PubMed

    Farin, Henner F; Karthaus, Wouter R; Kujala, Pekka; Rakhshandehroo, Maryam; Schwank, Gerald; Vries, Robert G J; Kalkhoven, Eric; Nieuwenhuis, Edward E S; Clevers, Hans

    2014-06-30

    Paneth cells (PCs) are terminally differentiated, highly specialized secretory cells located at the base of the crypts of Lieberkühn in the small intestine. Besides their antimicrobial function, PCs serve as a component of the intestinal stem cell niche. By secreting granules containing bactericidal proteins like defensins/cryptdins and lysozyme, PCs regulate the microbiome of the gut. Here we study the control of PC degranulation in primary epithelial organoids in culture. We show that PC degranulation does not directly occur upon stimulation with microbial antigens or bacteria. In contrast, the pro-inflammatory cytokine Interferon gamma (IFN-γ) induces rapid and complete loss of granules. Using live cell imaging, we show that degranulation is coupled to luminal extrusion and death of PCs. Transfer of supernatants from in vitro stimulated iNKT cells recapitulates degranulation in an IFN-γ-dependent manner. Furthermore, endogenous IFN-γ secretion induced by anti-CD3 antibody injection causes Paneth loss and release of goblet cell mucus. The identification of IFN-γ as a trigger for degranulation and extrusion of PCs establishes a novel effector mechanism by which immune responses may regulate epithelial status and the gut microbiome.

  17. Modification of BECN1 by ISG15 plays a crucial role in autophagy regulation by type I IFN/interferon.

    PubMed

    Xu, Daichao; Zhang, Tao; Xiao, Juan; Zhu, Kezhou; Wei, Ran; Wu, Zheming; Meng, Huyan; Li, Ying; Yuan, Junying

    2015-04-01

    ISG15 (ISG15 ubiquitin-like modifier), a ubiquitin-like protein, is one of the major type I IFN (interferon) effector systems. ISG15 can be conjugated to target proteins (ISGylation) via the stepwise action of E1, E2, and E3 enzymes. Conjugated ISG15 can be removed (deISGylated) from target proteins by USP18 (ubiquitin-specific peptidase 18). Here we investigated the role of deISGylation by USP18 in regulating autophagy and EGFR degradation in cells treated with type I IFNs. We show that type I IFN induced expression of ISG15 leads to ISGylation of BECN1 at Lys117, as well as Lys263, Lys265, and Lys266 which competes with Lys63 ubiquitination of BECN1. We demonstrate that ISGylation of BECN1 at Lys117, as well as Lys263, Lys265, and Lys266 serve an important role in negative regulation of intracellular processes including autophagy and EGFR degradation that are critically dependent upon the activity of class III PtdIns 3-kinase. Our studies provide fundamental new mechanistic insights into the innate immunity response implemented by type I IFNs.

  18. Towards molecular modeling of the impact of heparin-derived oligosaccharides on hIFN-γ binding

    NASA Astrophysics Data System (ADS)

    Lilkova, E.; Petkov, P.; Ilieva, N.; Litov, L.

    2015-10-01

    Human interferon gamma (hIFN-γ) is an important signalling molecule, which plays a key role in the formation and modulation of immune response. The role of the cytokine C-termini in the formation of a complex with the extracellular receptor is still controversial due to the lack of structural information about this domain. Moreover, the C-termini are also responsible for the high affinity interaction of hIFN-γ with the glycosaminoglicans heparan sulfate and heparin. This interaction can drastically change the properties and behaviour of the protein. We performed molecular dynamics simulations in order to model the structure of the hIFN-γ C-terminal part and the interaction of the cytokine with heparin-derived oligosaccharides. For this purpose we reconstructed the missing C-terminal amino acid residues and performed folding simulations to determine their conformation. In order to simulate the interaction with heparin-like fragments, we developed CHARMM 36 compatible force field for the sulfamate anion group that is present in the glucosamine sugar to complete the heparin and heparan sulfate force field. The new topology and parameters reproduce the available experimental structural properties of heparin-like fragments. The simulations show that the oligosaccharides quickly bind the IFN-γ C-termini and reduce their solvent accessible surface area.

  19. Paneth cell extrusion and release of antimicrobial products is directly controlled by immune cell–derived IFN

    PubMed Central

    Farin, Henner F.; Karthaus, Wouter R.; Kujala, Pekka; Rakhshandehroo, Maryam; Schwank, Gerald; Vries, Robert G.J.; Kalkhoven, Eric; Nieuwenhuis, Edward E.S.

    2014-01-01

    Paneth cells (PCs) are terminally differentiated, highly specialized secretory cells located at the base of the crypts of Lieberkühn in the small intestine. Besides their antimicrobial function, PCs serve as a component of the intestinal stem cell niche. By secreting granules containing bactericidal proteins like defensins/cryptdins and lysozyme, PCs regulate the microbiome of the gut. Here we study the control of PC degranulation in primary epithelial organoids in culture. We show that PC degranulation does not directly occur upon stimulation with microbial antigens or bacteria. In contrast, the pro-inflammatory cytokine Interferon gamma (IFN-γ) induces rapid and complete loss of granules. Using live cell imaging, we show that degranulation is coupled to luminal extrusion and death of PCs. Transfer of supernatants from in vitro stimulated iNKT cells recapitulates degranulation in an IFN-γ-dependent manner. Furthermore, endogenous IFN-γ secretion induced by anti-CD3 antibody injection causes Paneth loss and release of goblet cell mucus. The identification of IFN-γ as a trigger for degranulation and extrusion of PCs establishes a novel effector mechanism by which immune responses may regulate epithelial status and the gut microbiome. PMID:24980747

  20. IFN-gamma induces endothelial cells to proliferate and to invade the extracellular matrix in response to the HIV-1 Tat protein: implications for AIDS-Kaposi's sarcoma pathogenesis.

    PubMed

    Fiorelli, V; Barillari, G; Toschi, E; Sgadari, C; Monini, P; Stürzl, M; Ensoli, B

    1999-01-15

    Previous studies indicated that the Tat protein of HIV functions as a progression factor in Kaposi's sarcoma (KS), an angioproliferative disease common and aggressive in HIV-1-infected individuals (AIDS-KS). In particular, Tat that is released by infected cells stimulates the growth and invasion of spindle cells of endothelial origin derived from KS lesions (KS cells). Other work suggested that inflammatory cytokines may act as initiating factors in KS since they induce normal endothelial cells to acquire the same phenotype and functional features of KS cells, including the responsiveness to Tat. In this study, we show that among the inflammatory cytokines increased in AIDS-KS lesions, IFN-gamma alone is sufficient to induce endothelial cells to proliferate and to invade the extracellular matrix in response to Tat. This is because IFN-gamma up-regulates the expression and activity of the receptors for Tat identified as the integrins alpha5beta1 and alpha(v)beta3. These results suggest that, by triggering Tat effects, IFN-gamma plays a major role in AIDS-KS pathogenesis.

  1. Molecular Evaluation of the IFN γ +874, TNF α -308, and IL-1Ra VNTR Sequences in Silicosis

    PubMed Central

    RAD, Isa Abdi; MOHEBBI, Iraj; BAGHERI, Morteza

    2012-01-01

    ABSTRACT Introduction: to assess whether single nucleotide variation within regulatory sequences of cytokine or chemokine genes is associated with silicosis, this study was conducted for molecular evaluation of the IFN γ +874, TNF α -308, and IL-1Ra VNTR sequences in the patients with the silicosis. Materials and methods: ASO-PCR technique was carried out for genotyping of IFN γ +874 and TNF α -308, and in the case of IL-1Ra VNTR, a PCR reaction was performed. Results: our findings implied that: 1) IFN γ +874 T allele frequency was 0.44 in the cases and 0.48 in the controls; 2) IFN γ +874 A allele frequency was 0.56 in the cases and 0.52 in the controls; 3) TNF α -308 A allele frequency was 0.34 in the cases and 0.29 in the controls; 4) TNF α -308 G allele frequency was 0.66 in the cases and 0.71 in the controls; 5) the observed frequencies (%) of allele 1, allele 2, allele 3 and allele 4 were 65(72.2), 18(20), 2(2.22), 5(5.56) in the cases respectively, and 6) 68(75.6), 17(18.9), 2(2.22), 3(3.33) in the controls respectively. Genotypic and allelic frequencies were not significantly different between cases and controls (p value > 0.05). Conclusions: it can be concluded that IFN γ +874, TNF α -308 and IL-1Ra VNTR are not associated with silicosis. PMID:23118815

  2. TNF-α and IFN-γ gene variation and genetic susceptibility to type 1 diabetes and its microangiopathic complications

    PubMed Central

    2014-01-01

    Background TNF-α has accelerating role in development of type 1 diabetes. Although an immunosupressor function and leading protecting role in T1DM also has been claimed for this pro-inflammatory cytokine. Over-expression of pro-inflammatory and type 1 cytokines (Th1, like IFN-γ) drive insulitis toward the destructive form that leads to type 1 diabetes (T1DM). Among type 1 cytokines only IFN-γ has been detectable in the islet β cells. In deletion studies IFN-γ was also the only Th1 cytokine for which its ablation or blockade caused delayed or decreased incidence of T1DM. Methods Functional polymorphisms of TNF-α at position -308*G/A and at position +874*T/A of IFN-γ gene were employed as markers and the comparative distribution of derived genotypes/alleles were assessed in 248 British Caucasian T1DM patients and 118 healthy controls. Results There was no significant association between IFN-γ gene polymorphism and T1DM or the diabetic complication triad. There was a marginal association between TNF-α –308*G/A polymorphism in nephropaths (vs healthy controls) (p = 0.06), which its insignificancy may be due to survivor factor. No significant association was evident between the genotype/allele of the applied marker and T1DM or diabetic complication triad. Conclusion Our results are in contrast with previous reports suggesting that these polymorphisms are not related to T1DM. This study also underlines the importance of replication of association studies to confirm the previous interpretation. PMID:24693923

  3. Pegylated IFN-α 2b added to ongoing lamivudine therapy in patients with lamivudine-resistant chronic hepatitis B

    PubMed Central

    Vassiliadis, Themistoklis; Patsiaoura, Kalliopi; Tziomalos, Konstantinos; Gkiourtzis, Theodoros; Giouleme, Olga; Grammatikos, Nikolaos; Rizopoulou, Despoina; Nikolaidis, Nikolaos; Katsinelos, Panagiotis; Orfanou-Koumerkeridou, Eleni; Eugenidis, Nikolaos

    2006-01-01

    AIM: To investigate the role of pegylated-interferon (IFN) α-2b in the management of patients with lamivudine-resistant chronic hepatitis B. METHODS: Twenty consecutive anti-HBe positive patients were treated with pegylated IFN α-2b (100 μg sc once weekly) for 12 mo. There was no interruption in lamivudine therapy. Hematology, liver biochemistry, serum HBV DNA levels were detected by PCR, and vital signs were also assessed. Liver histology was assessed in some patients at entry and at wk 52 for comparison. RESULTS: Nine patients (45%) had a partial virological end-treatment response; seven patients (35%) showed complete virological end-treatment response. Eight patients (40%) showed biochemical end-treatment response. There was a trend for higher virological response rates in patients who had previously responded to IFN and relapsed compared to IFN non-responders (four out of seven patients vs none out of six patients, respectively; P = 0.1). Patients without virological end-treatment response showed significant worsening of fibrosis [median score 2 (range, 1 to 3) vs median score 3 (range, 1 to 4)], in the first and second biopsy respectively (P = 0.014), whereas necroinflammatory activity was not significantly affected. Patients with complete or partial virological end-treatment response did not show any significant changes in histological findings, possibly due to the small number of patients with paired biopsies (n = 5). Nevertheless, after 12 mo of follow-up, only one patient (5%) showed sustained virological response and only 2 patients (10%) showed sustained biochemical response. Two patients (10%) discontinued pegylated IFN both after 6 mo of treatment due to flu-like symptoms. CONCLUSION: Pegylated IFNα-2b, when added to ongoing lamivudine therapy in patients with lamivudine-resistant chronic hepatitis B, induces sustained responses only in a small minority of cases. PMID:16688836

  4. The kinetics and protection of the antiviral state induced by recombinant iIFN1a in rainbow trout against infectious hematopoietic necrosis virus.

    PubMed

    Cao, Yongsheng; Xu, Liming; LaPatra, Scott E; Zhao, Jingzhuang; Liu, Miao; Liu, Hongbai; Lu, Tongyan; Zhang, Qiya

    2016-08-01

    The iIFN1a (intracellular IFN-a1), that is one of the IFN-a1 variants, was shown to be functional intracellularly and act as a novel defense against an infectious hematopoietic necrosis virus (IHNV). To determine its antiviral properties, a recombinant iIFN1a was generated in Escherichia coli. Its antiviral activity against IHNV was 1.69×10(7)U/mg in CHSE-214 cells. Additionally, iIFN1a was capable of inducing comparable levels of IRF-1, IRF-2, IFN-I, IFN-γ and Mx transcription in head kidney, spleen and liver tissues at an early time point (6h), that was followed by a rapid decline 24h after induction. The recombinant protein also elicited protection against IHNV in vivo. At 6 and 24h after induction there was 100% protection against the virus, however, at 48 and 72h the protection decreased to 57 and 40%, respectively. The in vivo protection kinetics correlated with the kinetics of gene expression. The results of this study provide details of the antiviral state that was induced by iIFN1a in vivo for the first time. Additionally, this information will facilitate the development of this recombinant protein as a potential anti-viral treatment and/or adjuvant.

  5. Triggering of Toll-like receptors modulates IFN-gamma signaling: involvement of serine 727 STAT1 phosphorylation and suppressors of cytokine signaling.

    PubMed

    Dalpke, Alexander H; Eckerle, Susan; Frey, Markus; Heeg, Klaus

    2003-07-01

    Microbial stimuli activate cells of the innate immune system by triggering Toll-like receptors (TLR). Activation of macrophages and dendritic cells is further enhanced by secondary signals like IFN-gamma. Here we analyzed the interplay of IFN-gamma and TLR signaling in cells of the innate immune system. Using a STAT1-dependent reporter construct we show that IFN-gamma signaling can be enhanced as well as inhibited by simultaneous stimulation with either defined TLR agonists or whole-bacterial lysates. Short costimulation resulted in the amplification of IFN-gamma signaling and was attributable to the p38 mitogen-activated protein kinase (MAPK)-dependent phosphorylation of signal transducer and activator of transcription (STAT)1 on serine 727. In contrast, prolonged co-incubation as well as pre-incubation with TLR agonists led to an inhibition of IFN-gamma signaling. TLR triggering induced expression of suppressor of cytokine signaling (SOCS)-1, SOCS-3 and cytokine-inducible SH2 domain-containing protein (CIS). Overexpression of SOCS-1 and, to a lesser extend, of SOCS-3 and CIS inhibited IFN-gamma signaling as measured by activation of STAT1. Moreover, pre-incubation with TLR-dependent stimuli impaired IFN-gamma-induced MHC class II regulation but enhanced CD40 and CD86 expression. Taken together, the results indicate a tight interplay between TLR and IFN-gamma signaling pathways which involve induction of SOCS proteins and serine phosphorylation of STAT1.

  6. The kinetics and protection of the antiviral state induced by recombinant iIFN1a in rainbow trout against infectious hematopoietic necrosis virus.

    PubMed

    Cao, Yongsheng; Xu, Liming; LaPatra, Scott E; Zhao, Jingzhuang; Liu, Miao; Liu, Hongbai; Lu, Tongyan; Zhang, Qiya

    2016-08-01

    The iIFN1a (intracellular IFN-a1), that is one of the IFN-a1 variants, was shown to be functional intracellularly and act as a novel defense against an infectious hematopoietic necrosis virus (IHNV). To determine its antiviral properties, a recombinant iIFN1a was generated in Escherichia coli. Its antiviral activity against IHNV was 1.69×10(7)U/mg in CHSE-214 cells. Additionally, iIFN1a was capable of inducing comparable levels of IRF-1, IRF-2, IFN-I, IFN-γ and Mx transcription in head kidney, spleen and liver tissues at an early time point (6h), that was followed by a rapid decline 24h after induction. The recombinant protein also elicited protection against IHNV in vivo. At 6 and 24h after induction there was 100% protection against the virus, however, at 48 and 72h the protection decreased to 57 and 40%, respectively. The in vivo protection kinetics correlated with the kinetics of gene expression. The results of this study provide details of the antiviral state that was induced by iIFN1a in vivo for the first time. Additionally, this information will facilitate the development of this recombinant protein as a potential anti-viral treatment and/or adjuvant. PMID:27348633

  7. Role of IFN-gamma and alpha in IL 1 synthesis and secretion of in vitro differentiated human macrophages: a comparative study.

    PubMed

    Haq, A U; Maca, R D

    1986-07-01

    Human blood monocytes (Mo) cultured in vitro differentiate to macrophages (Mx) and lose the capacity to secrete interleukin 1 (IL 1) in response to endotoxin (LPS). Incubation of Mo with interferon gamma or alpha (IFN-gamma or IFN-alpha) prevented this loss of IL 1 secretory potential during the first 24 h of culture. However, there were marked differences between the two interferons if culture period was extended beyond 24 h. Incubation of Mo with IFN-gamma for 48 or 72 h induced IL 1 release in response to LPS in all the donors without exception. In contrast, 48-h incubation of Mo with IFN-alpha alpha caused IL 1 secretion (in response to LPS) in only a minority of donors, while 72-h incubation resulted in very little or no IL 1 release in all the individuals tested. Moreover, only IFN-gamma had the capacity to reinduce IL 1 secretory potential in Mx which had lost the capacity to secrete IL 1 during previous culture. These and other results suggest that IFN-alpha differs from IFN-gamma in being: a less potent IL 1 inducer, ineffective in maintaining IL 1 secretory capacity of fresh Mo for more than 48-72 h, completely unable to reinduce IL 1 secretory potential in culture-derived Mx. Thus, the two species of IFN appear to have a markedly different role in IL 1 synthesis and secretion. PMID:3091488

  8. Activation of Toll-like receptor 7 regulates the expression of IFN-λ1, p53, PTEN, VEGF, TIMP-1 and MMP-9 in pancreatic cancer cells.

    PubMed

    Wang, Fang; Jin, Rui; Zou, Bing-Bing; Li, Lei; Cheng, Feng-Wei; Luo, Xin; Geng, Xiaoping; Zhang, Sheng-Quan

    2016-02-01

    Toll-like receptors (TLRs) are critical in the induction of the immune response in tumor development. TLR7 has previously been demonstrated to be associated with the development of pancreatic cancer, and the release of cytokines and chemokines from other types of cancer cell; however, the specific expression induced by TLR7 agonists in pancreatic cancer cells remains to be elucidated. The present study aimed to investigate the effects of the TLR7 agonist, gardiquimod, on ERK1/2 signaling pathway, and on the expression of genes involved in the pathogenesis of cancer, including phosphatase and tensin homolog deleted on chromosome 10 (PTEN), p53, type Ⅲ interferon (IFN-λ1), vascular endothelial growth factor (VEGF), matrix metalloproteinase 9 (MMP-9) and tissue inhibitor of metalloproteinase 1 (TIMP-1). The results demonstrated that activation of TLR7 upregulated the expression levels of certain genes to varying degrees; the expression levels of IFN-λ1 and MMP-9 were increased by ~3 fold, whereas other genes (p53, PTEN, TIMP-1) were upregulated by ~2 fold, and VEGF was marginally upregulated after 10 min. Furthermore, gardiquimod increased the expression levels of phosphorylated-extracellular signal-regulated kinase (ERK)1/2. In addition, PD98059, a specific inhibitor of ERK phosphorylation, inhibited the ability of gardiquimod to activate ERK1/2; consequently weakening the effect of gardiquimod on gene regulation. These findings indicated that the effect of TLR7 agonists, including gardiquimod, on gene expression in BxPC-3 pancreatic cancer cells was partly associated with the mitogen-activated protein kinase-ERK1/2 signaling pathway.

  9. TLR4 regulates IFN-γ and IL-17 production by both thymic and induced Foxp3+ Tregs during intestinal inflammation

    PubMed Central

    Cao, Anthony T.; Yao, Suxia; Stefka, Andrew T.; Liu, Zhanju; Qin, Hongwei; Liu, Houpu; Evans-Marin, Heather L.; Elson, Charles O.; Nagler, Cathryn R.; Cong, Yingzi

    2014-01-01

    Tregs play a crucial role in the maintenance of intestinal immune homeostasis. However, significant numbers of Foxp3+ Tregs accumulate in the inflamed lesions in experimental colitis and in IBD patients. Treg production of the proinflammatory cytokines IFN-γ and/or IL-17 may arguably explain their ineffectiveness in suppressing intestinal inflammation. However, it remains unknown whether iTreg and tTreg produce proinflammatory cytokines and how TLR signaling regulates this process. Here, we found that Foxp3+Tregs were increased in the intestines of B6.TLR4−/− and B6.IL-10−/− mice when compared with WT B6 mice. TLR4−/− and IL-10−/− resulted in more Tregs within inflamed intestines. The majority of Foxp3+ Tregs in the spleen was Helios+Nrp1+, whereas most Foxp3+ Tregs in the intestinal LP were Helios−Nrp1−. More Helios+Nrp1+ Tregs expressed IFN-γ and/or IL-17 than did Helios−Nrp1− Tregs in the spleen and intestine, which was increased with TLR4−/−. TLR4 signaling in T cells and APCs inhibited Foxp3+ induction via MyD88-dependent, TRIF-independent pathways, which was negatively regulated by SOCS3. Collectively, these data demonstrate Helios+Nrp1+ tTregs and Helios−Nrp1− iTregs produce proinflammatory cytokines in the intestines during inflammation, which was regulated by TLR4 signaling. PMID:25015957

  10. IL-12 Converts Foxp3+ Regulatory T Cells to Foxp3+IFN-γ+ T Cells with Inhibitory Functions During Induction of Colitis

    PubMed Central

    Feng, Ting; Cao, Anthony T.; Weaver, Casey T.; Elson, Charles O.; Cong, Yingzi

    2011-01-01

    Regulatory T (Treg) cells are plastic, but the in vivo mechanisms by which they are converted into Foxp3+interferon (IFN)-γ+ T cells, and whether these converted cells retain the ability to inhibit colitis, are not clear. Methods Foxp3+ Treg cells were generated by culture of naïve CD4+ T cells from Foxp3GFP CBir1 T-cell receptor (TCR) transgenic (CBir1-Tg) mice, which are specific for CBir1 flagellin (an immunodominant microbiota antigen), with transforming growth factor (TGF)-β. Foxp3GFP+ CBir1-Tg Treg cells were isolated by fluorescence-activated cell sorting and transferred into TCRβxδ−/− mice. Colitis was induced by transfer of naïve CBir1-Tg CD4+ T cells into immunodeficient mice. Results Microbiota antigen-specific Foxp3+ Treg cells were converted, in the intestine, to IFN-γ+ T-helper (Th)1 cells, interleukin (IL)-17+ Th17 cells, and Foxp3+ T cells that coexpress IFN-γ and/or IL-17. Conversion of Treg cells into IFN-γ-producing Th1 cells and Foxp3+IFN-γ+ T cells required innate cell production of IL-12 in the intestine; blocking IL-12 with an antibody inhibited their conversion to Th1 and Foxp3+IFN-γ+ T cells in the intestines of mice that were recipients of Treg cells. Addition of IL-12, but not IL-23, promoted conversion of Treg cells into Th1 and Foxp3+IFN-γ+ T cells, in vitro. Foxp3+IFN-γ+ T cells had regulatory activity, because they suppressed proliferation of naïve T cells, in vitro, and inhibited induction of colitis by microbiota antigen-specific T cells. IFN-γ+ Th1 cells were not converted into Treg cells; Foxp3+IFN-γ+ T cells differentiated into IFN-γ+ but not Foxp3+ T cells. Conclusions IL-12 promotes conversion of Treg cells into IFN-γ-expressing cells; Foxp3+IFN-γ+ T cells retain their regulatory functions and develop during the transition of Foxp3+ Treg cells into IFN-γ+ Th1 cells. PMID:21419767

  11. CD4+ T cells eliminate MHC class II-negative cancer cells in vivo by indirect effects of IFN

    PubMed Central

    Mumberg, Dominik; Monach, Paul A.; Wanderling, Sherry; Philip, Mary; Toledano, Alicia Y.; Schreiber, Robert D.; Schreiber, Hans

    1999-01-01

    CD4+ T cells can eliminate tumor cells in vivo in the absence of CD8+ T cells. We have CD4+ T cells specific for a MHC class II-restricted, tumor-specific peptide derived from a mutant ribosomal protein expressed by the UV light-induced tumor 6132A-PRO. By using neutralizing mAb specific for murine IFN-γ and adoptive transfer of CD4+ T cells into severe combined immunodeficient mice, we show that anti-IFN-γ treatment abolishes the CD4+ T cell-mediated rejection of the tumor cells in vivo. The tumor cells were MHC class II negative, and IFN-γ did not induce MHC class II expression in vitro. Therefore, the tumor-specific antigenic peptide must be presented by host cells and not the tumor cells. Tumor cells transduced to secrete IFN-γ had a markedly reduced growth rate in severe combined immunodeficient mice, but IFN-γ did not inhibit the growth of the tumor cells in vitro. Furthermore, tumor cells stably expressing a dominant-negative truncated form of the murine IFN-γ receptor α chain, and therefore insensitive to IFN-γ, nevertheless were rejected by the adoptively transferred CD4+ T cells. Thus, host cells, and not tumor cells, seem to be the target of IFN-γ. Together, these results show that CD4+ T cells can eliminate IFN-γ-insensitive, MHC class II-negative cancer cells by an indirect mechanism that depends on IFN-γ. PMID:10411927

  12. TGF-beta and IL-10 regulation of IFN-gamma produced in Th2-type schistosome granulomas requires IL-12.

    PubMed

    Qadir, K; Metwali, A; Blum, A M; Li, J; Elliott, D E; Weinstock, J V

    2001-10-01

    Interleukin-10 (IL-10) and transforming growth factor-beta (TGF-beta) regulate CD4+ T cell interferon-gamma (IFN-gamma) secretion in schistosome granulomas. The role of IL-12 was determined using C57BL/6 and CBA mice. C57BL/6 IL-4-/- granuloma cells were stimulated to produce IFN-gamma when cultured with IL-10 or TGF-beta neutralizing monoclonal antibody. In comparison, C57BL/6 wild-type (WT) control granuloma cells produced less IFN-gamma. IL-12, IL-18, and soluble egg antigen stimulated IFN-gamma release from C57BL/6 IL-4-/- and WT mice. IFN-gamma production in C57 IL-4-/- and WT granulomas was IL-12 dependent, because IL-12 blockade partly abrogated IFN-gamma secretion after stimulation. All granuloma cells released IL-12 (p70 and p40), and IL-12 production remained constant after anti-TGF-beta, anti-IL-10, recombinant IL-18, or antigen stimulation. C57 WT and IL-4-/- mouse granuloma cells expressed IL-12 receptor (IL-12R) beta1-subunit mRNA but little beta2 mRNA. TGF-beta or IL-10 blockade did not influence beta1 or beta2 mRNA expression. CBA mouse dispersed granuloma cells released no measurable IFN-gamma, produced IL-12 p70 and little p40, and expressed IL-12R beta2 and little beta1 mRNA. In T helper 2 (Th2) granulomas of C57BL/6 WT and IL-4-/- mice, cells produce IL-12 (for IFN-gamma production) and IL-10 and TGF-beta modulate IFN-gamma secretion via mechanisms independent of IL-12 and IL-12R mRNA regulation. We found substantial differences in control of granuloma IFN-gamma production and IL-12 circuitry in C57BL/6 and CBA mice.

  13. IFN-gamma role in granuloma formation in experimental subcutaneous cysticercosis.

    PubMed

    Freitas, Aline A; Moura, Vânia B L; Irusta, Vicente R C; Vinaud, Marina C; Oliveira, Milton A P; Lino-Júnior, Ruy S

    2016-09-01

    Cysticercosis is an infection caused by the metacestode larval stage of Taenia parasites in tissues and elicits a host-parasite reaction in which the immune response may be decisive in the disease development. The aim of this study was to evaluate the role of IFNγ (IFN-gamma) in the experimental model of subcutaneous infection with Taenia crassiceps (T. crassiceps) cysticerci using IFNγ knockout mice. Male C57BL/6 and C57BL/6 KO IFNγ mice 8-12 weeks of age were inoculated with T. crassiceps cysticerci into the subcutaneous tissue of the dorsum. At 7 and 30 (acute phase), 60 and 90 (chronic phase) days post infection, animals from each group had their blood and the subcutaneous tissues collected for serologic and pathological studies. IFNγ and IL-4 were dosed and the histopathological analysis was performed. In the presence of IFNγ there was the establishment of a mixed Th1/Th2 systemic immune profile. This profile also locally induced the granuloma formation which was constituted by cells that played important roles in the parasitary destruction and that were likely associated to the Th1 axis of mixed immune response. On the other hand, the absence of IFNγ appears to favor the parasitary growth which may be related to the development of a systemic Th2 immune response. This profile influenced the gra