Science.gov

Sample records for 3-phosphoinositide-dependent protein kinase-1

  1. 3-Phosphoinositide-Dependent protein Kinase-1 (PDK1) inhibitors: A review from patent literature

    PubMed Central

    Barile, Elisa; De, Surya K.; Pellecchia, Maurizio

    2016-01-01

    PDK1 (3-Phosphoinositide-dependent kinase 1) is a key member of the AGC protein kinase family. It plays an important role in a variety of cellular functions, leading to the activation of the PI3K signaling pathway, an event often associated with the onset and progression of several human cancers. Numerous recent observations suggest that PDK1 inhibitors may provide novel opportunities for the development of effective classes of therapeutics. On these premises, recent years have witnessed an increased effort by medicinal chemists to develop novel scaffolds to derive potent and selective PDK1 inhibitors. The intent of this review is to update the reader on the recent patent literature covering applications published between June 2008 and September 2011 that report on PDK1 inhibitors. PMID:24236780

  2. PPARδ Activation Acts Cooperatively with 3-Phosphoinositide-Dependent Protein Kinase-1 to Enhance Mammary Tumorigenesis

    PubMed Central

    Pollock, Claire B.; Yin, Yuzhi; Yuan, Hongyan; Zeng, Xiao; King, Sruthi; Li, Xin; Kopelovich, Levy; Albanese, Chris; Glazer, Robert I.

    2011-01-01

    Peroxisome proliferator-activated receptorδ (PPARδ) is a transcription factor that is associated with metabolic gene regulation and inflammation. It has been implicated in tumor promotion and in the regulation of 3-phosphoinositide-dependent kinase-1 (PDK1). PDK1 is a key regulator of the AGC protein kinase family, which includes the proto-oncogene AKT/PKB implicated in several malignancies, including breast cancer. To assess the role of PDK1 in mammary tumorigenesis and its interaction with PPARδ, transgenic mice were generated in which PDK1 was expressed in mammary epithelium under the control of the MMTV enhancer/promoter region. Transgene expression increased pT308AKT and pS9GSK3β, but did not alter phosphorylation of mTOR, 4EBP1, ribosomal protein S6 and PKCα. The transgenic mammary gland also expressed higher levels of PPARδ and a gene expression profile resembling wild-type mice maintained on a diet containing the PPARδ agonist, GW501516. Both wild-type and transgenic mice treated with GW501516 exhibited accelerated rates of tumor formation that were more pronounced in transgenic animals. GW501516 treatment was accompanied by a distinct metabolic gene expression and metabolomic signature that was not present in untreated animals. GW501516-treated transgenic mice expressed higher levels of fatty acid and phospholipid metabolites than treated wild-type mice, suggesting the involvement of PDK1 in enhancing PPARδ-driven energy metabolism. These results reveal that PPARδ activation elicits a distinct metabolic and metabolomic profile in tumors that is in part related to PDK1 and AKT signaling. PMID:21297860

  3. Structural basis for UCN-01 (7-hydroxystaurosporine) specificity and PDK1 (3-phosphoinositide-dependent protein kinase-1) inhibition.

    PubMed Central

    Komander, David; Kular, Gursant S; Bain, Jennifer; Elliott, Matthew; Alessi, Dario R; Van Aalten, Daan M F

    2003-01-01

    PDK1 (3-phosphoinositide-dependent protein kinase-1) is a member of the AGC (cAMP-dependent, cGMP-dependent, protein kinase C) family of protein kinases, and has a key role in insulin and growth-factor signalling through phosphorylation and subsequent activation of a number of other AGC kinase family members, such as protein kinase B. The staurosporine derivative UCN-01 (7-hydroxystaurosporine) has been reported to be a potent inhibitor for PDK1, and is currently undergoing clinical trials for the treatment of cancer. Here, we report the crystal structures of staurosporine and UCN-01 in complex with the kinase domain of PDK1. We show that, although staurosporine and UCN-01 interact with the PDK1 active site in an overall similar manner, the UCN-01 7-hydroxy group, which is not present in staurosporine, generates direct and water-mediated hydrogen bonds with active-site residues. Inhibition data from UCN-01 tested against a panel of 29 different kinases show a different pattern of inhibition compared with staurosporine. We discuss how these differences in inhibition could be attributed to specific interactions with the additional 7-hydroxy group, as well as the size of the 7-hydroxy-group-binding pocket. This information could lead to opportunities for structure-based optimization of PDK1 inhibitors. PMID:12892559

  4. Structure-Based Design of Potent and Selective 3-Phosphoinositide-Dependent Kinase-1 (PDK1) Inhibitors

    SciTech Connect

    Medina, Jesus R.; Becker, Christopher J.; Blackledge, Charles W.; Duquenne, Celine; Feng, Yanhong; Grant, Seth W.; Heerding, Dirk; Li, William H.; Miller, William H.; Romeril, Stuart P.; Scherzer, Daryl; Shu, Arthur; Bobko, Mark A.; Chadderton, Antony R.; Dumble, Melissa; Gardiner, Christine M.; Gilbert, Seth; Liu, Qi; Rabindran, Sridhar K.; Sudakin, Valery; Xiang, Hong; Brady, Pat G.; Campobasso, Nino; Ward, Paris; Axten, Jeffrey M.

    2014-10-02

    Phosphoinositide-dependent protein kinase-1(PDK1) is a master regulator of the AGC family of kinases and an integral component of the PI3K/AKT/mTOR pathway. As this pathway is among the most commonly deregulated across all cancers, a selective inhibitor of PDK1 might have utility as an anticancer agent. Herein we describe our lead optimization of compound 1 toward highly potent and selective PDK1 inhibitors via a structure-based design strategy. The most potent and selective inhibitors demonstrated submicromolar activity as measured by inhibition of phosphorylation of PDK1 substrates as well as antiproliferative activity against a subset of AML cell lines. In addition, reduction of phosphorylation of PDK1 substrates was demonstrated in vivo in mice bearing OCl-AML2 xenografts. These observations demonstrate the utility of these molecules as tools to further delineate the biology of PDK1 and the potential pharmacological uses of a PDK1 inhibitor.

  5. Activation of 3-Phosphoinositide-dependent Kinase 1 (PDK1) and Serum- and Glucocorticoid-induced Protein Kinase 1 (SGK1) by Short-chain Sphingolipid C4-ceramide Rescues the Trafficking Defect of ΔF508-Cystic Fibrosis Transmembrane Conductance Regulator (ΔF508-CFTR)*

    PubMed Central

    Caohuy, Hung; Yang, Qingfeng; Eudy, Yvonne; Ha, Thien-An; Xu, Andrew E.; Glover, Matthew; Frizzell, Raymond A.; Jozwik, Catherine; Pollard, Harvey B.

    2014-01-01

    Cystic fibrosis (CF) is due to a folding defect in the CF transmembrane conductance regulator (CFTR) protein. The most common mutation, ΔF508, prevents CFTR from trafficking to the apical plasma membrane. Here we show that activation of the PDK1/SGK1 signaling pathway with C4-ceramide (C4-CER), a non-toxic small molecule, functionally corrects the trafficking defect in both cultured CF cells and primary epithelial cell explants from CF patients. The mechanism of C4-CER action involves a series of mutual autophosphorylation and phosphorylation events between PDK1 and SGK1. Detailed mechanistic studies indicate that C4-CER initially induces autophosphorylation of SGK1 at Ser422. SGK1[Ser(P)422] and C4-CER coincidently bind PDK1 and permit PDK1 to autophosphorylate at Ser241. Then PDK1[Ser(P)241] phosphorylates SGK1[Ser(P)422] at Thr256 to generate fully activated SGK1[Ser422, Thr(P)256]. SGK1[Ser(P)422,Thr(P)256] phosphorylates and inactivates the E3 ubiquitin ligase Nedd4-2. ΔF508-CFTR is thus free to traffic to the plasma membrane. Importantly, C4-CER-mediated activation of both PDK1 and SGK1 is independent of the PI3K/Akt/mammalian target of rapamycin signaling pathway. Physiologically, C4-CER significantly increases maturation and stability of ΔF508-CFTR (t½ ∼10 h), enhances cAMP-activated chloride secretion, and suppresses hypersecretion of interleukin-8 (IL-8). We suggest that candidate drugs for CF directed against the PDK1/SGK1 signaling pathway, such as C4-CER, provide a novel therapeutic strategy for a life-limiting disorder that affects one child, on average, each day. PMID:25384981

  6. Ribosomal protein S6 kinase 1 signaling regulates mammalian lifespan

    PubMed Central

    Selman, Colin; Tullet, Jennifer M.A.; Wieser, Daniela; Irvine, Elaine; Lingard, Steven J.; Choudhury, Agharul I.; Claret, Marc; Al-Qassab, Hind; Carmignac, Danielle; Ramadani, Faruk; Woods, Angela; Robinson, Iain C.A.; Schuster, Eugene; Batterham, Rachel L.; Kozma, Sara C.; Thomas, George; Carling, David; Okkenhaug, Klaus; Thornton, Janet M.; Partridge, Linda; Gems, David; Withers, Dominic J.

    2016-01-01

    Caloric restriction (CR) protects against aging and disease but the mechanisms by which this affects mammalian lifespan are unclear. We show in mice that deletion of the nutrient-responsive mTOR (mammalian target of rapamycin) signaling pathway component ribosomal S6 protein kinase 1 (S6K1) led to increased lifespan and resistance to age-related pathologies such as bone, immune and motor dysfunction and loss of insulin sensitivity. Deletion of S6K1 induced gene expression patterns similar to those seen in CR or with pharmacological activation of adenosine monophosphate (AMP)-activated protein kinase (AMPK), a conserved regulator of the metabolic response to CR. Our results demonstrate that S6K1 influences healthy mammalian lifespan, and suggest therapeutic manipulation of S6K1 and AMPK might mimic CR and provide broad protection against diseases of aging. PMID:19797661

  7. Death Associated Protein Kinase 1 (DAPK1): A Regulator of Apoptosis and Autophagy.

    PubMed

    Singh, Pratibha; Ravanan, Palaniyandi; Talwar, Priti

    2016-01-01

    Death-Associated Protein Kinase 1 (DAPK1) belongs to a family of five serine/threonine (Ser/Thr) kinases that possess tumor suppressive function and also mediate a wide range of cellular processes, including apoptosis and autophagy. The loss and gain-of-function of DAPK1 is associated with various cancer and neurodegenerative diseases respectively. In recent years, mechanistic studies have broadened our knowledge of the molecular mechanisms involved in DAPK1-mediated autophagy/apoptosis. In the present review, we have discussed the structural information and various cellular functions of DAPK1 in a comprehensive manner. PMID:27445685

  8. Death Associated Protein Kinase 1 (DAPK1): A Regulator of Apoptosis and Autophagy

    PubMed Central

    Singh, Pratibha; Ravanan, Palaniyandi; Talwar, Priti

    2016-01-01

    Death-Associated Protein Kinase 1 (DAPK1) belongs to a family of five serine/threonine (Ser/Thr) kinases that possess tumor suppressive function and also mediate a wide range of cellular processes, including apoptosis and autophagy. The loss and gain-of–function of DAPK1 is associated with various cancer and neurodegenerative diseases respectively. In recent years, mechanistic studies have broadened our knowledge of the molecular mechanisms involved in DAPK1-mediated autophagy/apoptosis. In the present review, we have discussed the structural information and various cellular functions of DAPK1 in a comprehensive manner. PMID:27445685

  9. Downregulation of death-associated protein kinase 1 (DAPK1) in chronic lymphocytic leukemia.

    PubMed

    Raval, Aparna; Tanner, Stephan M; Byrd, John C; Angerman, Elizabeth B; Perko, James D; Chen, Shih-Shih; Hackanson, Björn; Grever, Michael R; Lucas, David M; Matkovic, Jennifer J; Lin, Thomas S; Kipps, Thomas J; Murray, Fiona; Weisenburger, Dennis; Sanger, Warren; Lynch, Jane; Watson, Patrice; Jansen, Mary; Yoshinaga, Yuko; Rosenquist, Richard; de Jong, Pieter J; Coggill, Penny; Beck, Stephan; Lynch, Henry; de la Chapelle, Albert; Plass, Christoph

    2007-06-01

    The heritability of B cell chronic lymphocytic leukemia (CLL) is relatively high; however, no predisposing mutation has been convincingly identified. We show that loss or reduced expression of death-associated protein kinase 1 (DAPK1) underlies cases of heritable predisposition to CLL and the majority of sporadic CLL. Epigenetic silencing of DAPK1 by promoter methylation occurs in almost all sporadic CLL cases. Furthermore, we defined a disease haplotype, which segregates with the CLL phenotype in a large family. DAPK1 expression of the CLL allele is downregulated by 75% in germline cells due to increased HOXB7 binding. In the blood cells from affected family members, promoter methylation results in additional loss of DAPK1 expression. Thus, reduced expression of DAPK1 can result from germline predisposition, as well as epigenetic or somatic events causing or contributing to the CLL phenotype. PMID:17540169

  10. Multiple faces of protein interacting with C kinase 1 (PICK1): Structure, function, and diseases.

    PubMed

    Li, Yun-Hong; Zhang, Nan; Wang, Ya-Nan; Shen, Ying; Wang, Yin

    2016-09-01

    Protein interacting with C-kinase 1 (PICK1) has received considerable attention because it is the only protein that contains both PSD-95/DlgA/ZO-1 (PDZ) domain and Bin-Amphiphysin-Rvs (BAR) domain. Through PDZ and BAR domains, PICK1 binds to a large number of membrane proteins and lipid molecules, and is thereby of multiple functions. PICK1 is widely expressed in various tissues, particularly abundant in the brain and testis. In the central nervous system (CNS), PICK1 interacts with numerous neurotransmitters receptors, transporters, ion channels, and enzymes, and controls their trafficking. The best characterized function of PICK1 is that it regulates trafficking of α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor (AMPAR) subunit GluA2 during long-term depression and long-term potentiation. Recent evidence shows that PICK1 participates in various diseases including neurobiological disorders, such as chronic pain, epilepsy, oxidative stress, stroke, Parkinson's disease, amyotrophic lateral sclerosis, schizophrenia, and non-neurological disorders, such as globozoospermia, breast cancer, and heart failure. In this review, we will summarize recent advances focusing on the structure and regulation of PICK1 and its functions in protein trafficking, neurological and non-neurological diseases. PMID:26970394

  11. Regulation of the death-associated protein kinase 1 expression and autophagy via ATF6 requires apoptosis signal-regulating kinase 1.

    PubMed

    Gade, Padmaja; Manjegowda, Srikanta B; Nallar, Shreeram C; Maachani, Uday B; Cross, Alan S; Kalvakolanu, Dhananjaya V

    2014-11-01

    The death-associated protein kinase 1 (DAPK1) is an important regulator of cell death and autophagy. Recently, we have identified that ATF6, an endoplasmic reticulum-resident transcription factor, in association with the transcription factor CEBP-β, regulates the gamma interferon (IFN-γ)-induced expression of Dapk1 (P. Gade et al., Proc. Natl. Acad. Sci. U. S. A. 109:10316-10321, 2012, doi.org/10.1073/pnas.1119273109). IFN-γ-induced proteolytic processing of ATF6 and phosphorylation of C/EBP-β were essential for the formation of a novel transcriptional complex that regulates DAPK1. Here, we report that IFN-γ activates the ASK1-MKK3/MKK6-p38 mitogen-activated protein kinase (MAPK) pathway for controlling the activity of ATF6. The terminal enzyme in this pathway, p38 MAPK, phosphorylates a critical threonine residue in ATF6 upstream of its DNA binding domain. ATF6 mutants defective for p38 MAPK phosphorylation fail to undergo proteolytic processing in the Golgi apparatus and drive IFN-γ-induced gene expression and autophagy. We also show that mice lacking Ask1 are highly susceptible to lethal bacterial infection owing to defective autophagy. Together, these results identify a novel host defense pathway controlled by IFN-γ signaling. PMID:25135476

  12. Zebrafish WNK Lysine Deficient Protein Kinase 1 (wnk1) Affects Angiogenesis Associated with VEGF Signaling

    PubMed Central

    Chen, Wen-Chuan; Kou, Fong-Ji; Lu, Jeng-Wei; Wang, Horng-Dar; Huang, Chou-Long; Yuh, Chiou-Hwa

    2014-01-01

    The WNK1 (WNK lysine deficient protein kinase 1) protein is a serine/threonine protein kinase with emerging roles in cancer. WNK1 causes hypertension and hyperkalemia when overexpressed and cardiovascular defects when ablated in mice. In this study, the role of Wnk1 in angiogenesis was explored using the zebrafish model. There are two zebrafish wnk1 isoforms, wnk1a and wnk1b, and both contain all the functional domains found in the human WNK1 protein. Both isoforms are expressed in the embryo at the initiation of angiogenesis and in the posterior cardinal vein (PCV), similar to fms-related tyrosine kinase 4 (flt4). Using morpholino antisense oligonucleotides against wnk1a and wnk1b, we observed that wnk1 morphants have defects in angiogenesis in the head and trunk, similar to flk1/vegfr2 morphants. Furthermore, both wnk1a and wnk1b mRNA can partially rescue the defects in vascular formation caused by flk1/vegfr2 knockdown. Mutation of the kinase domain or the Akt/PI3K phosphorylation site within wnk1 destroys this rescue capability. The rescue experiments provide evidence that wnk1 is a downstream target for Vegfr2 (vascular endothelial growth factor receptor-2) and Akt/PI3K signaling and thereby affects angiogenesis in zebrafish embryos. Furthermore, we found that knockdown of vascular endothelial growth factor receptor-2 (flk1/vegfr2) or vascular endothelial growth factor receptor-3 (flt4/vegfr3) results in a decrease in wnk1a expression, as assessed by in situ hybridization and q-RT-PCR analysis. Thus, the Vegf/Vegfr signaling pathway controls angiogenesis in zebrafish via Akt kinase-mediated phosphorylation and activation of Wnk1 as well as transcriptional regulation of wnk1 expression. PMID:25171174

  13. Structural and energetic basis of protein kinetic destabilization in human phosphoglycerate kinase 1 deficiency.

    PubMed

    Pey, Angel L; Mesa-Torres, Noel; Chiarelli, Laurent R; Valentini, Giovanna

    2013-02-19

    Protein kinetic destabilization is a common feature of many human genetic diseases. Human phosphoglycerate kinase 1 (PGK1) deficiency is a rare genetic disease caused by mutations in the PGK1 protein, which often shows reduced kinetic stability. In this work, we have performed an in-depth characterization of the thermal stability of the wild type and four disease-causing mutants (I47N, L89P, E252A, and T378P) of human PGK1. PGK1 thermal denaturation is a process under kinetic control, and it is described well by a two-state irreversible denaturation model. Kinetic analysis of differential scanning calorimetry profiles shows that the disease-causing mutations decrease PGK1 kinetic stability from ~5-fold (E252A) to ~100000-fold (L89P) compared to that of wild-type PGK1, and in some cases, mutant enzymes are denatured on a time scale of a few minutes at physiological temperature. We show that changes in protein kinetic stability are associated with large differences in enthalpic and entropic contributions to denaturation free energy barriers. It is also shown that the denaturation transition state becomes more nativelike in terms of solvent exposure as the protein is destabilized by mutations (Hammond effect). Unfolding experiments with urea further suggest a scenario in which the thermodynamic stability of PGK1 at least partly determines its kinetic stability. ATP and ADP kinetically stabilize PGK1 enzymes, and kinetic stabilization is nucleotide- and mutant-selective. Overall, our data provide insight into the structural and energetic basis underlying the low kinetic stability displayed by some mutants causing human PGK1 deficiency, which may have important implications for the development of native state kinetic stabilizers for the treatment of this disease. PMID:23336698

  14. Death-associated protein kinase 1 promotes growth of p53-mutant cancers.

    PubMed

    Zhao, Jing; Zhao, Dekuang; Poage, Graham M; Mazumdar, Abhijit; Zhang, Yun; Hill, Jamal L; Hartman, Zachary C; Savage, Michelle I; Mills, Gordon B; Brown, Powel H

    2015-07-01

    Estrogen receptor-negative (ER-negative) breast cancers are extremely aggressive and associated with poor prognosis. In particular, effective treatment strategies are limited for patients diagnosed with triple receptor-negative breast cancer (TNBC), which also carries the worst prognosis of all forms of breast cancer; therefore, extensive studies have focused on the identification of molecularly targeted therapies for this tumor subtype. Here, we sought to identify molecular targets that are capable of suppressing tumorigenesis in TNBCs. Specifically, we found that death-associated protein kinase 1 (DAPK1) is essential for growth of p53-mutant cancers, which account for over 80% of TNBCs. Depletion or inhibition of DAPK1 suppressed growth of p53-mutant but not p53-WT breast cancer cells. Moreover, DAPK1 inhibition limited growth of other p53-mutant cancers, including pancreatic and ovarian cancers. DAPK1 mediated the disruption of the TSC1/TSC2 complex, resulting in activation of the mTOR pathway. Our studies demonstrated that high DAPK1 expression causes increased cancer cell growth and enhanced signaling through the mTOR/S6K pathway; evaluation of multiple breast cancer patient data sets revealed that high DAPK1 expression associates with worse outcomes in individuals with p53-mutant cancers. Together, our data support targeting DAPK1 as a potential therapeutic strategy for p53-mutant cancers. PMID:26075823

  15. Death-associated protein kinase 1 promotes growth of p53-mutant cancers

    PubMed Central

    Zhao, Jing; Zhao, Dekuang; Poage, Graham M.; Mazumdar, Abhijit; Zhang, Yun; Hill, Jamal L.; Hartman, Zachary C.; Savage, Michelle I.; Mills, Gordon B.; Brown, Powel H.

    2015-01-01

    Estrogen receptor–negative (ER-negative) breast cancers are extremely aggressive and associated with poor prognosis. In particular, effective treatment strategies are limited for patients diagnosed with triple receptor–negative breast cancer (TNBC), which also carries the worst prognosis of all forms of breast cancer; therefore, extensive studies have focused on the identification of molecularly targeted therapies for this tumor subtype. Here, we sought to identify molecular targets that are capable of suppressing tumorigenesis in TNBCs. Specifically, we found that death-associated protein kinase 1 (DAPK1) is essential for growth of p53-mutant cancers, which account for over 80% of TNBCs. Depletion or inhibition of DAPK1 suppressed growth of p53-mutant but not p53-WT breast cancer cells. Moreover, DAPK1 inhibition limited growth of other p53-mutant cancers, including pancreatic and ovarian cancers. DAPK1 mediated the disruption of the TSC1/TSC2 complex, resulting in activation of the mTOR pathway. Our studies demonstrated that high DAPK1 expression causes increased cancer cell growth and enhanced signaling through the mTOR/S6K pathway; evaluation of multiple breast cancer patient data sets revealed that high DAPK1 expression associates with worse outcomes in individuals with p53-mutant cancers. Together, our data support targeting DAPK1 as a potential therapeutic strategy for p53-mutant cancers. PMID:26075823

  16. Protein kinase Cδ regulates vaccinia-related kinase 1 in DNA damage–induced apoptosis

    PubMed Central

    Park, Choon-Ho; Choi, Bo-Hwa; Jeong, Min-Woo; Kim, Sangjune; Kim, Wanil; Song, Yun Seon; Kim, Kyong-Tai

    2011-01-01

    Vaccinia-related kinase 1 (VRK1) is a novel serine/threonine kinase that plays an important role in cell proliferation. However, little is known about the upstream regulators of VRK1 activity. Here we provide evidence for a role of protein kinase Cδ (PKCδ) in the regulation of murine VRK1. We show that PKCδ interacts with VRK1, phosphorylates the Ser-355 residue in the putative regulatory region, and negatively regulates its kinase activity in vitro. Intriguingly, PKCδ-induced cell death was facilitated by phosphorylation of VRK1 when cells were exposed to a DNA-damaging agent. In addition, p53 played a critical role in the regulation of DNA damage–induced cell death accompanied by PKCδ-mediated modulation of VRK1. In p53-deficient cells, PKCδ-mediated phosphorylation of VRK1 had no effect on cell viability. However, cells overexpressing p53 exhibited significant reduction of cell viability when cotransfected with both VRK1 and PKCδ. Taken together, these results indicate that PKCδ regulates phosphorylation and down-regulation of VRK1, thereby contributing to cell cycle arrest and apoptotic cell death in a p53-dependent manner. PMID:21346188

  17. Ribosomal protein S6 kinase 1 signaling in prefrontal cortex controls depressive behavior

    PubMed Central

    Dwyer, Jason M.; Maldonado-Avilés, Jaime G.; Lepack, Ashley E.; DiLeone, Ralph J.; Duman, Ronald S.

    2015-01-01

    Current treatments for major depressive disorder (MDD) have a time lag and are ineffective for a large number of patients. Development of novel pharmacological therapies requires a comprehensive understanding of the molecular events that contribute to MDD pathophysiology. Recent evidence points toward aberrant activity of synaptic proteins as a critical contributing factor. In the present studies, we used viral-mediated gene transfer to target a key mediator of activity-dependent synaptic protein synthesis downstream of mechanistic target of rapamycin complex 1 (mTORC1) known as p70 S6 kinase 1 (S6K1). Targeted delivery of two mutants of S6K1, constitutively active or dominant-negative, to the medial prefrontal cortex (mPFC) of rats allowed control of the mTORC1/S6K1 translational pathway. Our results demonstrate that increased expression of S6K1 in the mPFC produces antidepressant effects in the forced swim test without altering locomotor activity. Moreover, expression of active S6K1 in the mPFC blocked the anhedonia caused by chronic stress, resulting in a state of stress resilience. This antidepressant response was associated with increased neuronal complexity caused by enhanced S6K1 activity. Conversely, expression of dominant-negative S6K1 in the mPFC resulted in prodepressive behavior in the forced swim test and was sufficient to cause anhedonia in the absence of chronic stress exposure. Together, these data demonstrate a critical role for S6K1 activity in depressive behaviors, and suggest that pathways downstream of mTORC1 may underlie the pathophysiology and treatment of MDD. PMID:25918363

  18. Benzoylbenzimidazole-based selective inhibitors targeting Cryptosporidium parvum and Toxoplasma gondii calcium-dependent protein kinase-1

    PubMed Central

    Zhang, Zhongsheng; Ojo, Kayode K.; Johnson, Steven M.; Larson, Eric T.; He, Penqing; Geiger, Jennifer A.; Castellanos-Gonzalez, Alejandro; White, A. Clinton; Parsons, Marilyn; Merritt, Ethan A.; Maly, Dustin J.; Verlinde, Christophe L. M. J.; Van Voorhis, Wesley C.; Fan, Erkang

    2012-01-01

    Calcium-dependent protein kinase-1 (CDPK1) from Cryptosporidium parvum (CpCDPK1) and Toxoplasma gondii (TgCDPK1) have become attractive targets for discovering selective inhibitors to combat infections caused by these protozoa. We used structure-based design to improve a series of benzoylbenzimidazole-based compounds in terms of solubility, selectivity, and potency against CpCDPK1 and TgCDPK1. The best inhibitors show inhibitory potencies below 50 nM and selectivity well above 200-fold over two human kinases with small gatekeeper residues. PMID:22795629

  19. Microtubule-binding protein doublecortin-like kinase 1 (DCLK1) guides kinesin-3-mediated cargo transport to dendrites.

    PubMed

    Lipka, Joanna; Kapitein, Lukas C; Jaworski, Jacek; Hoogenraad, Casper C

    2016-02-01

    In neurons, the polarized distribution of vesicles and other cellular materials is established through molecular motors that steer selective transport between axons and dendrites. It is currently unclear whether interactions between kinesin motors and microtubule-binding proteins can steer polarized transport. By screening all 45 kinesin family members, we systematically addressed which kinesin motors can translocate cargo in living cells and drive polarized transport in hippocampal neurons. While the majority of kinesin motors transport cargo selectively into axons, we identified five members of the kinesin-3 (KIF1) and kinesin-4 (KIF21) subfamily that can also target dendrites. We found that microtubule-binding protein doublecortin-like kinase 1 (DCLK1) labels a subset of dendritic microtubules and is required for KIF1-dependent dense-core vesicles (DCVs) trafficking into dendrites and dendrite development. Our study demonstrates that microtubule-binding proteins can provide local signals for specific kinesin motors to drive polarized cargo transport. PMID:26758546

  20. The Catalytic Subunit of DNA-Dependent Protein Kinase Coordinates with Polo-Like Kinase 1 to Facilitate Mitotic Entry.

    PubMed

    Lee, Kyung-Jong; Shang, Zeng-Fu; Lin, Yu-Fen; Sun, Jingxin; Morotomi-Yano, Keiko; Saha, Debabrata; Chen, Benjamin P C

    2015-04-01

    DNA-dependent protein kinase catalytic subunit (DNA-PKcs) is the key regulator of the non-homologous end joining pathway of DNA double-strand break repair. We have previously reported that DNA-PKcs is required for maintaining chromosomal stability and mitosis progression. Our further investigations reveal that deficiency in DNA-PKcs activity caused a delay in mitotic entry due to dysregulation of cyclin-dependent kinase 1 (Cdk1), the key driving force for cell cycle progression through G2/M transition. Timely activation of Cdk1 requires polo-like kinase 1 (Plk1), which affects modulators of Cdk1. We found that DNA-PKcs physically interacts with Plk1 and could facilitate Plk1 activation both in vitro and in vivo. Further, DNA-PKcs-deficient cells are highly sensitive to Plk1 inhibitor BI2536, suggesting that the coordination between DNA-PKcs and Plk1 is not only crucial to ensure normal cell cycle progression through G2/M phases but also required for cellular resistance to mitotic stress. On the basis of the current study, it is predictable that combined inhibition of DNA-PKcs and Plk1 can be employed in cancer therapy strategy for synthetic lethality. PMID:25925375

  1. Biochemical and Genetic Conservation of Fission Yeast Dsk1 and Human SR Protein-Specific Kinase 1

    PubMed Central

    Tang, Zhaohua; Kuo, Tiffany; Shen, Jenny; Lin, Ren-Jang

    2000-01-01

    Arginine/serine-rich (RS) domain-containing proteins and their phosphorylation by specific protein kinases constitute control circuits to regulate pre-mRNA splicing and coordinate splicing with transcription in mammalian cells. We present here the finding that similar SR networks exist in Schizosaccharomyces pombe. We previously showed that Dsk1 protein, originally described as a mitotic regulator, displays high activity in phosphorylating S. pombe Prp2 protein (spU2AF59), a homologue of human U2AF65. We now demonstrate that Dsk1 also phosphorylates two recently identified fission yeast proteins with RS repeats, Srp1 and Srp2, in vitro. The phosphorylated proteins bear the same phosphoepitope found in mammalian SR proteins. Consistent with its substrate specificity, Dsk1 forms kinase-competent complexes with those proteins. Furthermore, dsk1+ gene determines the phenotype of prp2+ overexpression, providing in vivo evidence that Prp2 is a target for Dsk1. The dsk1-null mutant strain became severely sick with the additional deletion of a related kinase gene. Significantly, human SR protein-specific kinase 1 (SRPK1) complements the growth defect of the double-deletion mutant. In conjunction with the resemblance of dsk1+ and SRPK1 in sequence homology, biochemical properties, and overexpression phenotypes, the complementation result indicates that SRPK1 is a functional homologue of Dsk1. Collectively, our studies illustrate the conserved SR networks in S. pombe consisting of RS domain-containing proteins and SR protein-specific kinases and thus establish the importance of the networks in eucaryotic organisms. PMID:10629038

  2. G Protein-coupled Receptor Kinase 5 Phosphorylates Nucleophosmin and Regulates Cell Sensitivity to Polo-like Kinase 1 Inhibition*

    PubMed Central

    So, Christopher H.; Michal, Allison M.; Mashayekhi, Rouzbeh; Benovic, Jeffrey L.

    2012-01-01

    G protein-coupled receptor kinases (GRKs) phosphorylate activated G protein-coupled receptors, leading to their desensitization and endocytosis. GRKs have also been implicated in phosphorylating other classes of proteins and can localize in a variety of cellular compartments, including the nucleus. Here, we attempted to identify potential nuclear substrates for GRK5. Our studies reveal that GRK5 is able to interact with and phosphorylate nucleophosmin (NPM1) both in vitro and in intact cells. NPM1 is a nuclear protein that regulates a variety of cell functions including centrosomal duplication, cell cycle control, and apoptosis. GRK5 interaction with NPM1 is mediated by the N-terminal domain of each protein, and GRK5 primarily phosphorylates NPM1 at Ser-4, a site shared with polo-like kinase 1 (PLK1). NPM1 phosphorylation by GRK5 and PLK1 correlates with the sensitivity of cells to undergo apoptosis with cells having higher GRK5 levels being less sensitive and cells with lower GRK5 being more sensitive to PLK1 inhibitor-induced apoptosis. Taken together, our results demonstrate that GRK5 phosphorylates Ser-4 in nucleophosmin and regulates the sensitivity of cells to PLK1 inhibition. PMID:22467873

  3. C-terminus of heat shock protein 70– interacting protein facilitates degradation of apoptosis signal-regulating kinase 1 and inhibits apoptosis signal-regulating kinase 1– dependent apoptosis

    PubMed Central

    Hwang, Jae Ryoung; Zhang, Chunlian; Patterson, Cam

    2005-01-01

    Apoptosis signal-regulating kinase 1 (ASK1) is a mitogen-activated protein kinase kinase kinase (MAPKKK) that is regulated under conditions of cellular stress. ASK1 phosphorylates c-Jun N-terminal kinase (JNK) and elicits an apoptotic response. ASK1 activity is regulated at multiple levels, 1 of which is through inhibition by cytosolic chaperones of the heat shock protein (Hsp) 70 family. Among the proteins that determine Hsp70 function, CHIP (C-terminus of Hsp70-interacting protein) is a cochaperone and ubiquitin ligase that interacts with Hsp70 through an amino-terminal tetratricopeptide repeat (TPR) domain. Prominent among the cellular functions mediated by CHIP is protection against physiologic stress. Because ASK1 is known to contain a TPR-acceptor site, we examined the role of CHIP in regulating ASK1 function. CHIP interacted with ASK1 in a TPR-dependent fashion and induced ubiquitylation and proteasome-dependent degradation of ASK1. Targeting of ASK1 by CHIP inhibited JNK activation in response to oxidative challenge and reduced ASK1-dependent apoptosis, whereas short interfering RNA (siRNA)-dependent depletion of CHIP enhanced JNK activation. Consistent with its ability to reduce cytoplasmic ASK1 levels, CHIP triggered the translocation of ASK1 partner protein death-associated protein (Daxx) into the nucleus, where it is known to activate an antiapoptotic response. These results indicate that CHIP regulates ASK1 activity by inducing its ubiquitylation and degradation, which, together with its effects on Daxx localization, provides a mechanism for the antiapoptotic effects of CHIP observed in the face of cellular and physiologic stress. PMID:16038411

  4. Resting extracellular signal-regulated protein kinase 1/2 expression following a continuum of chronic resistance exercise training paradigms.

    PubMed

    Galpin, Andrew J; Fry, Andrew C; Nicoll, Justin X; Moore, Christopher A; Schilling, Brian K; Thomason, Donald B

    2016-01-01

    Extracellular signal-regulated protein kinase 1/2 (ERK1/2) moderates skeletal muscle growth; however, chronic responses of this protein to unique resistance exercise (RE) paradigms are yet to be explored. The purpose of this investigation was to describe the long-term response of ERK1/2 following circuit weight training (CWT), recreationally weight training (WT), powerlifting (PL) and weightlifting (WL). Independent t-tests were used to determine differences in trained groups compared to sedentary controls. Total ERK1/2 content was lower in PL and WL compared to their controls (p ≤ 0.05). Specific trained groups displayed large (WL: pERK/total-ERK; d = 1.25) and moderate (CWT: total ERK1/2; d = 0.54) effect sizes for altered kinase expression compared to controls. The results indicate ERK1/2 expression is down-regulated after chronic RE in well-trained weightlifters and powerlifters. Lower expression of this protein may be a method in which anabolism is tightly regulated after many years of high-intensity RE. PMID:27396416

  5. Isolation and characterization of Dictyostelium thymidine kinase 1 as a calmodulin-binding protein.

    PubMed

    O'Day, Danton H; Chatterjee-Chakraborty, Munmun; Wagler, Stephanie; Myre, Michael A

    2005-06-17

    Probing of a cDNA expression library from multicellular development of Dictyostelium discoideum using a recombinant radiolabelled calmodulin probe (35S-VU1-CaM) led to the isolation of a cDNA encoding a putative CaM-binding protein (CaMBP). The cDNA contained an open reading frame of 951 bp encoding a 227aa polypeptide (25.5 kDa). Sequence comparisons led to highly significant matches with cytosolic thymidine kinases (TK1; EC 2.7.1.21) from a diverse number of species including humans (7e-56; 59% Identities; 75% Positives) indicating that the encoded protein is D. discoideum TK1 (DdTK1; ThyB). DdTK1 has not been previously characterized in this organism. In keeping with its sequence similarity with DdTK1, antibodies against humanTK1 recognize DdTK1, which is expressed during growth but decreases in amount after starvation. A CaM-binding domain (CaMBD; 20GKTTELIRRIKRFNFANKKC30) was identified and wild type DdTK1 plus two constructs (DdTK deltaC36, DdTK deltaC75) possessing the domain were shown to bind CaM in vitro but only in the presence of calcium while a construct (DdTK deltaN72) lacking the region failed to bind to CaM. Thus, DdTK1 is a Ca2+-dependent CaMBP. Sequence alignments against TK1 from vertebrates to viruses show that CaM-binding region is highly conserved. The identified CaMBD overlaps the ATP-binding (P-loop) domain suggesting CaM might affect the activity of this kinase. Recombinant DdTK is enzymatically active and showed stimulation by CaM (113+/-0.5%) an in vitro enhancement that was prevented by co-addition of the CaM antagonists W7 (91.2+/-0.8%) and W13 (96.6+/-0.6%). The discovery that TK1 from D. discoideum, and possibly other species including humans and a large number of human viruses, is a Ca2+-dependent CaMBP opens up new avenues for research on this medically relevant protein. PMID:15883042

  6. Tomato Protein Kinase 1b Mediates Signaling of Plant Responses to Necrotrophic Fungi and Insect Herbivory[W

    PubMed Central

    AbuQamar, Synan; Chai, Mao-Feng; Luo, Hongli; Song, Fengming; Mengiste, Tesfaye

    2008-01-01

    The tomato protein kinase 1 (TPK1b) gene encodes a receptor-like cytoplasmic kinase localized to the plasma membrane. Pathogen infection, mechanical wounding, and oxidative stress induce expression of TPK1b, and reducing TPK1b gene expression through RNA interference (RNAi) increases tomato susceptibility to the necrotrophic fungus Botrytis cinerea and to feeding by larvae of tobacco hornworm (Manduca sexta) but not to the bacterial pathogen Pseudomonas syringae. TPK1b RNAi seedlings are also impaired in ethylene (ET) responses. Notably, susceptibility to Botrytis and insect feeding is correlated with reduced expression of the proteinase inhibitor II gene in response to Botrytis and 1-aminocyclopropane-1-carboxylic acid, the natural precursor of ET, but wild-type expression in response to mechanical wounding and methyl-jasmonate. TPK1b functions independent of JA biosynthesis and response genes required for resistance to Botrytis. TPK1b is a functional kinase with autophosphorylation and Myelin Basis Protein phosphorylation activities. Three residues in the activation segment play a critical role in the kinase activity and in vivo signaling function of TPK1b. In sum, our findings establish a signaling role for TPK1b in an ET-mediated shared defense mechanism for resistance to necrotrophic fungi and herbivorous insects. PMID:18599583

  7. Myotubularin-related Proteins 3 and 4 Interact with Polo-like Kinase 1 and Centrosomal Protein of 55 kDa to Ensure Proper Abscission*

    PubMed Central

    St-Denis, Nicole; Gupta, Gagan D.; Lin, Zhen Yuan; Gonzalez-Badillo, Beatriz; Pelletier, Laurence; Gingras, Anne-Claude

    2015-01-01

    The myotubularins are a family of phosphatases that dephosphorylate the phosphatidylinositols phosphatidylinositol-3-phosphate and phosphatidylinositol-3,5-phosphate. Several family members are mutated in disease, yet the biological functions of the majority of myotubularins remain unknown. To gain insight into the roles of the individual enzymes, we have used affinity purification coupled to mass spectrometry to identify protein–protein interactions for the myotubularins. The myotubularin interactome comprises 66 high confidence (false discovery rate ≤1%) interactions, including 18 pairwise interactions between individual myotubularins. The results reveal a number of potential signaling contexts for this family of enzymes, including an intriguing, novel role for myotubularin-related protein 3 and myotubularin-related protein 4 in the regulation of abscission, the final step of mitosis in which the membrane bridge remaining between two daughter cells is cleaved. Both depletion and overexpression of either myotubularin-related protein 3 or myotubularin-related protein 4 result in abnormal midbody morphology and cytokinesis failure. Interestingly, myotubularin-related protein 3 and myotubularin-related protein 4 do not exert their effects through lipid regulation at the midbody, but regulate abscission during early mitosis, by interacting with the mitotic kinase polo-like kinase 1, and with centrosomal protein of 55 kDa (CEP55), an important regulator of abscission. Structure-function analysis reveals that, consistent with known intramyotubularin interactions, myotubularin-related protein 3 and myotubularin-related protein 4 interact through their respective coiled coil domains. The interaction between myotubularin-related protein 3 and polo-like kinase 1 relies on the divergent, nonlipid binding Fab1, YOTB, Vac1, and EEA1 domain of myotubularin-related protein 3, and myotubularin-related protein 4 interacts with CEP55 through a short GPPXXXY motif, analogous to

  8. Suppression of Chemically Induced and Spontaneous Mouse Oocyte Activation by AMP-Activated Protein Kinase1

    PubMed Central

    Ya, Ru; Downs, Stephen M.

    2013-01-01

    ABSTRACT Oocyte activation is an important process triggered by fertilization that initiates embryonic development. However, parthenogenetic activation can occur either spontaneously or with chemical treatments. The LT/Sv mouse strain is genetically predisposed to spontaneous activation. LT oocytes have a cell cycle defect and are ovulated at the metaphase I stage instead of metaphase II. A thorough understanding of the female meiosis defects in this strain remains elusive. We have reported that AMP-activated protein kinase (PRKA) has an important role in stimulating meiotic resumption and promoting completion of meiosis I while suppressing premature parthenogenetic activation. Here we show that early activation of PRKA during the oocyte maturation period blocked chemically induced activation in B6SJL oocytes and spontaneous activation in LT/SvEiJ oocytes. This inhibitory effect was associated with high levels of MAPK1/3 activity. Furthermore, stimulation of PRKA partially rescued the meiotic defects of LT/Sv mouse oocytes in concert with correction of abnormal spindle pole localization of PRKA and loss of prolonged spindle assembly checkpoint activity. Altogether, these results confirm a role for PRKA in helping sustain the MII arrest in mature oocytes and suggest that dysfunctional PRKA contributes to meiotic defects in LT/SvEiJ oocytes. PMID:23390161

  9. Molecular Characterization and Comparative Sequence Analysis of Defense-Related Gene, Oryza rufipogon Receptor-Like Protein Kinase 1

    PubMed Central

    Law, Yee-Song; Gudimella, Ranganath; Song, Beng-Kah; Ratnam, Wickneswari; Harikrishna, Jennifer Ann

    2012-01-01

    Many of the plant leucine rich repeat receptor-like kinases (LRR-RLKs) have been found to regulate signaling during plant defense processes. In this study, we selected and sequenced an LRR-RLK gene, designated as Oryza rufipogon receptor-like protein kinase 1 (OrufRPK1), located within yield QTL yld1.1 from the wild rice Oryza rufipogon (accession IRGC105491). A 2055 bp coding region and two exons were identified. Southern blotting determined OrufRPK1 to be a single copy gene. Sequence comparison with cultivated rice orthologs (OsI219RPK1, OsI9311RPK1 and OsJNipponRPK1, respectively derived from O. sativa ssp. indica cv. MR219, O. sativa ssp. indica cv. 9311 and O. sativa ssp. japonica cv. Nipponbare) revealed the presence of 12 single nucleotide polymorphisms (SNPs) with five non-synonymous substitutions, and 23 insertion/deletion sites. The biological role of the OrufRPK1 as a defense related LRR-RLK is proposed on the basis of cDNA sequence characterization, domain subfamily classification, structural prediction of extra cellular domains, cluster analysis and comparative gene expression. PMID:22942769

  10. CASEIN KINASE1-LIKE PROTEIN2 Regulates Actin Filament Stability and Stomatal Closure via Phosphorylation of Actin Depolymerizing Factor.

    PubMed

    Zhao, Shuangshuang; Jiang, Yuxiang; Zhao, Yang; Huang, Shanjin; Yuan, Ming; Zhao, Yanxiu; Guo, Yan

    2016-06-01

    The opening and closing of stomata are crucial for plant photosynthesis and transpiration. Actin filaments undergo dynamic reorganization during stomatal closure, but the underlying mechanism for this cytoskeletal reorganization remains largely unclear. In this study, we identified and characterized Arabidopsis thaliana casein kinase 1-like protein 2 (CKL2), which responds to abscisic acid (ABA) treatment and participates in ABA- and drought-induced stomatal closure. Although CKL2 does not bind to actin filaments directly and has no effect on actin assembly in vitro, it colocalizes with and stabilizes actin filaments in guard cells. Further investigation revealed that CKL2 physically interacts with and phosphorylates actin depolymerizing factor 4 (ADF4) and inhibits its activity in actin filament disassembly. During ABA-induced stomatal closure, deletion of CKL2 in Arabidopsis alters actin reorganization in stomata and renders stomatal closure less sensitive to ABA, whereas deletion of ADF4 impairs the disassembly of actin filaments and causes stomatal closure to be more sensitive to ABA Deletion of ADF4 in the ckl2 mutant partially recues its ABA-insensitive stomatal closure phenotype. Moreover, Arabidopsis ADFs from subclass I are targets of CKL2 in vitro. Thus, our results suggest that CKL2 regulates actin filament reorganization and stomatal closure mainly through phosphorylation of ADF. PMID:27268429

  11. Phosphorylation and activation of calcineurin by glycogen synthase (casein) kinase-1 and cyclic AMP-dependent protein kinase

    SciTech Connect

    Singh, T.J.; Wang, J.H.

    1986-05-01

    Calcineurin is a phosphoprotein phosphatase that is activated by divalent cations and further stimulated by calmodulin. In this study calcineurin is shown to be a substrate for both glycogen synthase (casein) kinase-1 (CK-1) and cyclic AMP-dependent protein kinase (A-kinase). Either kinase can catalyze the incorporation of 1.0-1.4 mol /sup 32/P/mol calcineurin. Analysis by SDS-PAGE revealed that only the ..cap alpha.. subunit is phosphorylated. Phosphorylation of calcineurin by either kinase leads to its activation. Using p-nitrophenyl phosphate as a substrate the authors observed a 2-3 fold activation of calcineurin by either Mn/sup 2 +/ or Ni/sup 2 +/ (in the presence or absence of calmodulin) after phosphorylation of calcineurin by either CK-1 or A-kinase. In the absence of Mn/sup 2 +/ or Ni/sup 2 +/ phosphorylated calcineurin, like the nonphosphorylated enzyme, showed very little activity. Ni/sup 2 +/ was a more potent activator of phosphorylated calcineurin compared to Mn/sup 2 +/. Higher levels of activation (5-8 fold) of calcineurin by calmodulin was observed when phosphorylated calcineurin was pretreated with Ni/sup 2 +/ before measurement of phosphatase activity. These results indicate that phosphorylation may be an important mechanism by which calcineurin activity is regulated by Ca/sup 2 +/.

  12. Optimizing small molecule inhibitors of calcium-dependent protein kinase 1 to prevent infection by Toxoplasma gondii

    PubMed Central

    Lourido, Sebastian; Zhang, Chao; Lopez, Michael; Tang, Keliang; Barks, Jennifer; Wang, Qiuling; Wildman, Scott A.; Shokat, Kevan M.; Sibley, L. David

    2013-01-01

    Toxoplasma gondii is sensitive to bulky pyrazolo [3,4-d] pyrimidine (PP) inhibitors due to the presence of a Gly gatekeeper in the essential calcium dependent protein kinase 1 (CDPK1). Here we synthesized a number of new derivatives of 3-methyl-benzyl-PP (3-MB-PP, or 1). The potency of PP analogs in inhibiting CDPK1 enzyme activity in vitro (low nM IC50 values) and blocking parasite growth in host cell monolayers in vitro (low μM EC50 values) were highly correlated and occurred in a CDPK1-specific manner. Chemical modification of the PP scaffold to increase half-life in the presence of microsomes in vitro led to identification of compounds with enhanced stability while retaining activity. Several of these more potent compounds were able to prevent lethal infection with T. gondii in the mouse model. Collectively the strategies outlined here provide a route for development of more effective compounds for treatment of toxoplasmosis, and perhaps related parasitic diseases. PMID:23470217

  13. Gene-Environment Interactions Target Mitogen-activated Protein 3 Kinase 1 (MAP3K1) Signaling in Eyelid Morphogenesis*

    PubMed Central

    Mongan, Maureen; Meng, Qinghang; Wang, Jingjing; Kao, Winston W.-Y.; Puga, Alvaro; Xia, Ying

    2015-01-01

    Gene-environment interactions determine the biological outcomes through mechanisms that are poorly understood. Mouse embryonic eyelid closure is a well defined model to study the genetic control of developmental programs. Using this model, we investigated how exposure to dioxin-like environmental pollutants modifies the genetic risk of developmental abnormalities. Our studies reveal that mitogen-activated protein 3 kinase 1 (MAP3K1) signaling is a focal point of gene-environment cross-talk. Dioxin exposure, acting through the aryl hydrocarbon receptor (AHR), blocked eyelid closure in genetic mutants in which MAP3K1 signaling was attenuated but did not disturb this developmental program in either wild type or mutant mice with attenuated epidermal growth factor receptor or WNT signaling. Exposure also markedly inhibited c-Jun phosphorylation in Map3k1+/− embryonic eyelid epithelium, suggesting that dioxin-induced AHR pathways can synergize with gene mutations to inhibit MAP3K1 signaling. Our studies uncover a novel mechanism through which the dioxin-AHR axis interacts with the MAP3K1 signaling pathways during fetal development and provide strong empirical evidence that specific gene alterations can increase the risk of developmental abnormalities driven by environmental pollutant exposure. PMID:26109068

  14. Optimization of an Imidazopyridazine Series of Inhibitors of Plasmodium falciparum Calcium-Dependent Protein Kinase 1 (PfCDPK1)

    PubMed Central

    2014-01-01

    A structure-guided design approach using a homology model of Plasmodium falciparum calcium-dependent protein kinase 1 (PfCDPK1) was used to improve the potency of a series of imidazopyridazine inhibitors as potential antimalarial agents. This resulted in high affinity compounds with PfCDPK1 enzyme IC50 values less than 10 nM and in vitroP. falciparum antiparasite EC50 values down to 12 nM, although these compounds did not have suitable ADME properties to show in vivo efficacy in a mouse model. Structural modifications designed to address the ADME issues, in particular permeability, were initially accompanied by losses in antiparasite potency, but further optimization allowed a good balance in the compound profile to be achieved. Upon testing in vivo in a murine model of efficacy against malaria, high levels of compound exposure relative to their in vitro activities were achieved, and the modest efficacy that resulted raises questions about the level of effect that is achievable through the targeting of PfCDPK1. PMID:24689770

  15. Gene-Environment Interactions Target Mitogen-activated Protein 3 Kinase 1 (MAP3K1) Signaling in Eyelid Morphogenesis.

    PubMed

    Mongan, Maureen; Meng, Qinghang; Wang, Jingjing; Kao, Winston W-Y; Puga, Alvaro; Xia, Ying

    2015-08-01

    Gene-environment interactions determine the biological outcomes through mechanisms that are poorly understood. Mouse embryonic eyelid closure is a well defined model to study the genetic control of developmental programs. Using this model, we investigated how exposure to dioxin-like environmental pollutants modifies the genetic risk of developmental abnormalities. Our studies reveal that mitogen-activated protein 3 kinase 1 (MAP3K1) signaling is a focal point of gene-environment cross-talk. Dioxin exposure, acting through the aryl hydrocarbon receptor (AHR), blocked eyelid closure in genetic mutants in which MAP3K1 signaling was attenuated but did not disturb this developmental program in either wild type or mutant mice with attenuated epidermal growth factor receptor or WNT signaling. Exposure also markedly inhibited c-Jun phosphorylation in Map3k1(+/-) embryonic eyelid epithelium, suggesting that dioxin-induced AHR pathways can synergize with gene mutations to inhibit MAP3K1 signaling. Our studies uncover a novel mechanism through which the dioxin-AHR axis interacts with the MAP3K1 signaling pathways during fetal development and provide strong empirical evidence that specific gene alterations can increase the risk of developmental abnormalities driven by environmental pollutant exposure. PMID:26109068

  16. The Arabidopsis SR45 Splicing Factor, a Negative Regulator of Sugar Signaling, Modulates SNF1-Related Protein Kinase 1 Stability.

    PubMed

    Carvalho, Raquel F; Szakonyi, Dóra; Simpson, Craig G; Barbosa, Inês C R; Brown, John W S; Baena-González, Elena; Duque, Paula

    2016-08-01

    The ability to sense and respond to sugar signals allows plants to cope with environmental and metabolic changes by adjusting growth and development accordingly. We previously reported that the SR45 splicing factor negatively regulates glucose signaling during early seedling development in Arabidopsis thaliana Here, we show that under glucose-fed conditions, the Arabidopsis sr45-1 loss-of-function mutant contains higher amounts of the energy-sensing SNF1-Related Protein Kinase 1 (SnRK1) despite unaffected SnRK1 transcript levels. In agreement, marker genes for SnRK1 activity are upregulated in sr45-1 plants, and the glucose hypersensitivity of sr45-1 is attenuated by disruption of the SnRK1 gene. Using a high-resolution RT-PCR panel, we found that the sr45-1 mutation broadly targets alternative splicing in vivo, including that of the SR45 pre-mRNA itself. Importantly, the enhanced SnRK1 levels in sr45-1 are suppressed by a proteasome inhibitor, indicating that SR45 promotes targeting of the SnRK1 protein for proteasomal destruction. Finally, we demonstrate that SR45 regulates alternative splicing of the Arabidopsis 5PTase13 gene, which encodes an inositol polyphosphate 5-phosphatase previously shown to interact with and regulate the stability of SnRK1 in vitro, thus providing a mechanistic link between SR45 function and the modulation of degradation of the SnRK1 energy sensor in response to sugars. PMID:27436712

  17. Parsing molecular and behavioral effects of cocaine in mitogen- and stress-activated protein kinase-1-deficient mice.

    PubMed

    Brami-Cherrier, Karen; Valjent, Emmanuel; Hervé, Denis; Darragh, Joanne; Corvol, Jean-Christophe; Pages, Christiane; Arthur, Simon J; Simon, Arthur J; Girault, Jean-Antoine; Caboche, Jocelyne

    2005-12-01

    Although the induction of persistent behavioral alterations by drugs of abuse requires the regulation of gene transcription, the precise intracellular signaling pathways that are involved remain mainly unknown. Extracellular signal-regulated kinase (ERK) is critical for the expression of immediate-early genes in the striatum in response to cocaine and Delta9-tetrahydrocannabinol and for the rewarding properties of these drugs. Here we show that in mice a single injection of cocaine (10 mg/kg) activates mitogen- and stress-activated protein kinase 1 (MSK1) in dorsal striatum and nucleus accumbens. Cocaine-induced phosphorylation of MSK1 threonine 581 and cAMP response element-binding protein (CREB) serine 133 (Ser133) were blocked by SL327, a drug that prevents ERK activation. Cocaine increased the acetylation of histone H4 lysine 5 and phosphorylation of histone H3 Ser10, demonstrating the existence of drug-induced chromatin remodeling in vivo. In MSK1 knock-out (KO) mice CREB and H3 phosphorylation in response to cocaine (10 mg/kg) were blocked, and induction of c-Fos and dynorphin was prevented, whereas the induction of Egr-1 (early growth response-1)/zif268/Krox24 was unaltered. MSK1-KO mice had no obvious neurological defect but displayed a contrasted behavioral phenotype in response to cocaine. Acute effects of cocaine and dopamine D1 or D2 agonists were unaltered. Sensitivity to low doses, but not high doses, of cocaine was increased in the conditioned place preference paradigm, whereas locomotor sensitization to repeated injections of cocaine was decreased markedly. Our results show that MSK1 is a major striatal kinase, downstream from ERK, responsible for the phosphorylation of CREB and H3 and is required specifically for the induction of c-Fos and dynorphin as well as for locomotor sensitization. PMID:16339038

  18. Mitogen-activated protein kinase kinase kinase 1 (MAP3K1) integrates developmental signals for eyelid closure

    PubMed Central

    Geh, Esmond; Meng, Qinghang; Mongan, Maureen; Wang, Jingcai; Takatori, Atsushi; Zheng, Yi; Puga, Alvaro; Lang, Richard A.; Xia, Ying

    2011-01-01

    Developmental eyelid closure is an evolutionarily conserved morphogenetic event requiring proliferation, differentiation, cytoskeleton reorganization, and migration of epithelial cells at the tip of the developing eyelid. Many signaling events take place during eyelid closure, but how the signals converge to regulate the morphogenetic process remains an open and intriguing question. Here we show that mitogen-activated protein kinase kinase kinase 1 (MAP3K1) highly expressed in the developing eyelid epithelium, forms with c-Jun, a regulatory axis that orchestrates morphogenesis by integrating two different networks of eyelid closure signals. A TGF-α/EGFR-RhoA module initiates one of these networks by inducing c-Jun expression which, in a phosphorylation-independent manner, binds to the Map3k1 promoter and causes an increase in MAP3K1 expression. RhoA knockout in the ocular surface epithelium disturbs this network by decreasing MAP3K1 expression, and causes delayed eyelid closure in Map3k1 hemizygotes. The second network is initiated by the enzymatic activity of MAP3K1, which phosphorylates and activates a JNK-c-Jun module, leading to AP-1 transactivation and induction of its downstream genes, such as Pai-1. MAP3K1 inactivation reduces AP-1 activity and PAI-1 expression both in cells and developing eyelids. MAP3K1 is therefore the nexus of an intracrine regulatory loop connecting the TGF-α/EGFR/RhoA-c-Jun and JNK-c-Jun-AP-1 pathways in developmental eyelid closure. PMID:21969564

  19. Mitogen and stress-activated protein kinase 1 (MSK1) modulates photic entrainment of the suprachiasmatic circadian clock

    PubMed Central

    Cao, Ruifeng; Butcher, Greg Q.; Karelina, Kate; Arthur, J. Simon C.; Obrietan, Karl

    2013-01-01

    The master circadian clock in mammals, the suprachiasmatic nucleus (SCN), is under the entraining influence of the external light cycle. At a mechanistic level, intracellular signaling via the p42/44 mitogen-activated protein kinase (MAPK) pathway appears to play a central role in light-evoked clock entrainment; however, the precise downstream mechanisms by which this pathway influences clock timing are not known. Within this context, we have previously reported that light stimulates activation of the MAPK effector mitogen stress activated kinase 1 (MSK1) in the SCN. In this study we utilized MSK1-/- mice to further investigate the potential role of MSK1 in circadian clock timing and entrainment. Locomotor activity analysis revealed that MSK1 null mice entrained to a 12h light/dark cycle and exhibited circadian free-running rhythms in constant darkness. Interestingly, the free running period in MSK1 null mice was significantly longer than WT control animals, and MSK1 null mice exhibited a significantly greater variance in activity onset. Further, MSK1 null mice exhibited a significant reduction in the phase delaying response to an early night light pulse (100 lux, 15 min), and, using an 8-hr phase-advancing “jet-lag” experimental paradigm MSK1 knockout animals exhibited a significantly delayed rate of re-entrainment. At the molecular level, early night light-evoked CREB phosphorylation, histone phosphorylation and Period1 gene expression were markedly attenuated in MSK1-/- animals relative to WT mice. Together, these data provide key new insights into the molecular mechanisms by which MSK1 affects the SCN clock. PMID:23127194

  20. Serine-arginine protein kinase 1 (SRPK1) inhibition as a potential novel targeted therapeutic strategy in prostate cancer.

    PubMed

    Mavrou, A; Brakspear, K; Hamdollah-Zadeh, M; Damodaran, G; Babaei-Jadidi, R; Oxley, J; Gillatt, D A; Ladomery, M R; Harper, S J; Bates, D O; Oltean, S

    2015-08-13

    Angiogenesis is required for tumour growth and is induced principally by vascular endothelial growth factor A (VEGF-A). VEGF-A pre-mRNA is alternatively spliced at the terminal exon to produce two families of isoforms, pro- and anti-angiogenic, only the former of which is upregulated in prostate cancer (PCa). In renal epithelial cells and colon cancer cells, the choice of VEGF splice isoforms is controlled by the splicing factor SRSF1, phosphorylated by serine-arginine protein kinase 1 (SRPK1). Immunohistochemistry staining of human samples revealed a significant increase in SRPK1 expression both in prostate intra-epithelial neoplasia lesions as well as malignant adenocarcinoma compared with benign prostate tissue. We therefore tested the hypothesis that the selective upregulation of pro-angiogenic VEGF in PCa may be under the control of SRPK1 activity. A switch in the expression of VEGF165 towards the anti-angiogenic splice isoform, VEGF165b, was seen in PC-3 cells with SRPK1 knockdown (KD). PC-3 SRPK1-KD cells resulted in tumours that grew more slowly in xenografts, with decreased microvessel density. No effect was seen as a result of SRPK1-KD on growth, proliferation, migration and invasion capabilities of PC-3 cells in vitro. Small-molecule inhibitors of SRPK1 switched splicing towards the anti-angiogenic isoform VEGF165b in PC-3 cells and decreased tumour growth when administered intraperitoneally in an orthotopic mouse model of PCa. Our study suggests that modulation of SRPK1 and subsequent inhibition of tumour angiogenesis by regulation of VEGF splicing can alter prostate tumour growth and supports further studies for the use of SRPK1 inhibition as a potential anti-angiogenic therapy in PCa. PMID:25381816

  1. Sphingosine kinase 1 dependent protein kinase C-δ activation plays an important role in acute liver failure in mice

    PubMed Central

    Lei, Yan-Chang; Yang, Ling-Ling; Li, Wen; Luo, Pan

    2015-01-01

    AIM: To investigate the role of protein kinase C (PKC)-δ activation in the pathogenesis of acute liver failure (ALF) in a well-characterized mouse model of D-galactosamine (D-GalN)/lipopolysaccharide (LPS)-induced ALF. METHODS: BALB/c mice were randomly assigned to five groups, and ALF was induced in mice by intraperitoneal injection of D-GaIN (600 mg/kg) and LPS (10 μg/kg). Kaplan-Meier method was used for survival analysis. Serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels at different time points within one week were determined using a multiparameteric analyzer. Serum levels of high-mobility group box 1 (HMGB1), tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, and IL-10 as well as nuclear factor (NF)-κB activity were determined by enzyme-linked immunosorbent assay. Hepatic morphological changes at 36 h after ALF induction were assessed by hematoxylin and eosin staining. Expression of PKC-δ in liver tissue and peripheral blood mononuclear cells (PBMCs) was analyzed by Western blot. RESULTS: The expression and activation of PKC-δ were up-regulated in liver tissue and PBMCs of mice with D-GalN/LPS-induced ALF. Inhibition of PKC-δ activation with rottlerin significantly increased the survival rates and decreased serum ALT/AST levels at 6, 12 and 24 h compared with the control group (P < 0.001). Rottlerin treatment also significantly decreased serum levels of HMGB1 at 6, 12, and 24 h, TNF-α, IL-6 and IL-1 β at 12 h compared with the control group (P < 0.01). The inflammatory cell infiltration and necrosis in liver tissue were also decreased in the rottlerin treatment group. Furthermore, sphingosine kinase 1 (SphK1) dependent PKC-δ activation played an important role in promoting NF-κB activation and inflammatory cytokine production in ALF. CONCLUSION: SphK1 dependent PKC-δ activation plays an important role in promoting NF-κB activation and inflammatory response in ALF, and inhibition of PKC-δ activation might be

  2. Regulation of Protein Phosphatase 1I by Cdc25C-associated Kinase 1 (C-TAK1) and PFTAIRE Protein Kinase*

    PubMed Central

    Platholi, Jimcy; Federman, Anna; Detert, Julia A.; Heerdt, Paul; Hemmings, Hugh C.

    2014-01-01

    Protein phosphatase 1I (PP-1I) is a major endogenous form of protein phosphatase 1 (PP-1) that consists of the core catalytic subunit PP-1c and the regulatory subunit inhibitor 2 (I-2). Phosphorylation of the Thr-72 residue of I-2 is required for activation of PP-1I. We studied the effects of two protein kinases identified previously in purified brain PP-1I by mass spectrometry, Cdc25C-associated kinase 1 (C-TAK1) and PFTAIRE (PFTK1) kinase, for their ability to regulate PP-1I. Purified C-TAK1 phosphorylated I-2 in reconstituted PP-1I (PP-1c·I-2) on Ser-71, which resulted in partial inhibition of its ATP-dependent phosphatase activity and inhibited subsequent phosphorylation of Thr-72 by the exogenous activating kinase GSK-3. In contrast, purified PFTK1 phosphorylated I-2 at Ser-86, a site known to potentiate Thr-72 phosphorylation and activation of PP-1I phosphatase activity by GSK-3. These findings indicate that brain PP-1I associates with and is regulated by the associated protein kinases C-TAK1 and PFTK1. Multisite phosphorylation of the I-2 regulatory subunit of PP-1I leads to activation or inactivation of PP-1I through bidirectional modulation of Thr-72 phosphorylation, the critical activating residue of I-2. PMID:25028520

  3. Serum- and Glucocorticoid-induced Protein Kinase 1 (SGK1) Increases the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) in Airway Epithelial Cells by Phosphorylating Shank2E Protein*

    PubMed Central

    Koeppen, Katja; Coutermarsh, Bonita A.; Madden, Dean R.; Stanton, Bruce A.

    2014-01-01

    The glucocorticoid dexamethasone increases cystic fibrosis transmembrane conductance regulator (CFTR) abundance in human airway epithelial cells by a mechanism that requires serum- and glucocorticoid-induced protein kinase 1 (SGK1) activity. The goal of this study was to determine whether SGK1 increases CFTR abundance by phosphorylating Shank2E, a PDZ domain protein that contains two SGK1 phosphorylation consensus sites. We found that SGK1 phosphorylates Shank2E as well as a peptide containing the first SGK1 consensus motif of Shank2E. The dexamethasone-induced increase in CFTR abundance was diminished by overexpression of a dominant-negative Shank2E in which the SGK1 phosphorylation sites had been mutated. siRNA-mediated reduction of Shank2E also reduced the dexamethasone-induced increase in CFTR abundance. Taken together, these data demonstrate that the glucocorticoid-induced increase in CFTR abundance requires phosphorylation of Shank2E at an SGK1 consensus site. PMID:24811177

  4. Mitotic regulation of SEPT9 protein by cyclin-dependent kinase 1 (Cdk1) and Pin1 protein is important for the completion of cytokinesis.

    PubMed

    Estey, Mathew P; Di Ciano-Oliveira, Caterina; Froese, Carol D; Fung, Karen Y Y; Steels, Jonathan D; Litchfield, David W; Trimble, William S

    2013-10-18

    Precise cell division is essential for multicellular development, and defects in this process have been linked to cancer. Septins are a family of proteins that are required for mammalian cell division, but their function and mode of regulation during this process are poorly understood. Here, we demonstrate that cyclin-dependent kinase 1 (Cdk1) phosphorylates septin 9 (SEPT9) upon mitotic entry, and this phosphorylation controls association with the proline isomerase, Pin1. Both SEPT9 and Pin1 are critical for mediating the final separation of daughter cells. Expression of mutant SEPT9 that is defective in Pin1 binding was unable to rescue cytokinesis defects caused by SEPT9 depletion but rather induced dominant-negative defects in cytokinesis. However, unlike SEPT9 depletion, Pin1 was not required for the accumulation of the exocyst complex at the midbody. These results suggest that SEPT9 plays multiple roles in abscission, one of which is regulated by the action of Cdk1 and Pin1. PMID:23990466

  5. Phosphorylation by casein kinase 1 regulates tonicity-induced osmotic response element-binding protein/tonicity enhancer-binding protein nucleocytoplasmic trafficking.

    PubMed

    Xu, SongXiao; Wong, Catherine C L; Tong, Edith H Y; Chung, Stephen S M; Yates, John R; Yin, YiBing; Ko, Ben C B

    2008-06-20

    The osmotic response element-binding protein (OREBP), also known as tonicity enhancer-binding protein (TonEBP) or NFAT5, is the only known osmo-sensitive transcription factor that mediates cellular adaptations to extracellular hypertonic stress. Although it is well documented that the subcellular localization and transactivation activity of OREBP/TonEBP are tightly regulated by extracellular tonicity, the molecular mechanisms involved remain elusive. Here we show that nucleocytoplasmic trafficking of OREBP/TonEBP is regulated by the dual phosphorylation of Ser-155 and Ser-158. Alanine scanning mutagenesis revealed that Ser-155 is an essential residue that regulates OREBP/TonEBP nucleocytoplasmic trafficking. Tandem mass spectrometry revealed that Ser-155 and Ser-158 of OREBP/TonEBP are both phosphorylated in living cells under hypotonic conditions. In vitro phosphorylation assays further suggest that phosphorylation of the two serine residues proceeds in a hierarchical manner with phosphorylation of Ser-155 priming the phosphorylation of Ser-158 and that these phosphorylations are essential for nucleocytoplasmic trafficking of the transcription factor. Finally, we have shown that the pharmacological inhibition of casein kinase 1 (CK1) abolishes the phosphorylation of Ser-158 and impedes OREBP/TonEBP nuclear export and that recombinant CK1 phosphorylates Ser-158. Knockdown of CK1alpha1L, a novel isoform of CK1, inhibits hypotonicity-induced OREBP/TonEBP nuclear export. Together these data highlight the importance of Ser-155 and Ser-158 in the nucleocytoplasmic trafficking of OREBP/TonEBP and indicate that CK1 plays a major role in regulating this process. PMID:18411282

  6. Phosphorylation by Casein Kinase 1 Regulates Tonicity-induced Osmotic Response Element-binding Protein/Tonicity Enhancer-binding Protein Nucleocytoplasmic Trafficking*

    PubMed Central

    Xu, SongXiao; Wong, Catherine C. L.; Tong, Edith H. Y.; Chung, Stephen S. M.; Yates, John R.; Yin, YiBing; Ko, Ben C. B.

    2008-01-01

    The osmotic response element-binding protein (OREBP), also known as tonicity enhancer-binding protein (TonEBP) or NFAT5, is the only known osmo-sensitive transcription factor that mediates cellular adaptations to extracellular hypertonic stress. Although it is well documented that the subcellular localization and transactivation activity of OREBP/TonEBP are tightly regulated by extracellular tonicity, the molecular mechanisms involved remain elusive. Here we show that nucleocytoplasmic trafficking of OREBP/TonEBP is regulated by the dual phosphorylation of Ser-155 and Ser-158. Alanine scanning mutagenesis revealed that Ser-155 is an essential residue that regulates OREBP/TonEBP nucleocytoplasmic trafficking. Tandem mass spectrometry revealed that Ser-155 and Ser-158 of OREBP/TonEBP are both phosphorylated in living cells under hypotonic conditions. In vitro phosphorylation assays further suggest that phosphorylation of the two serine residues proceeds in a hierarchical manner with phosphorylation of Ser-155 priming the phosphorylation of Ser-158 and that these phosphorylations are essential for nucleocytoplasmic trafficking of the transcription factor. Finally, we have shown that the pharmacological inhibition of casein kinase 1 (CK1) abolishes the phosphorylation of Ser-158 and impedes OREBP/TonEBP nuclear export and that recombinant CK1 phosphorylates Ser-158. Knockdown of CK1α1L, a novel isoform of CK1, inhibits hypotonicity-induced OREBP/TonEBP nuclear export. Together these data highlight the importance of Ser-155 and Ser-158 in the nucleocytoplasmic trafficking of OREBP/TonEBP and indicate that CK1 plays a major role in regulating this process. PMID:18411282

  7. Extracellular signal-regulated protein kinases 1 and 2 activation by addictive drugs: a signal toward pathological adaptation.

    PubMed

    Pascoli, Vincent; Cahill, Emma; Bellivier, Frank; Caboche, Jocelyne; Vanhoutte, Peter

    2014-12-15

    Addiction is a chronic and relapsing psychiatric disorder that is thought to occur in vulnerable individuals. Synaptic plasticity evoked by drugs of abuse in the so-called neuronal circuits of reward has been proposed to underlie behavioral adaptations that characterize addiction. By increasing dopamine in the striatum, addictive drugs alter the balance of dopamine and glutamate signals converging onto striatal medium-sized spiny neurons (MSNs) and activate intracellular events involved in long-term behavioral alterations. Our laboratory contributed to the identification of salient molecular changes induced by administration of addictive drugs to rodents. We pioneered the observation that a common feature of addictive drugs is to activate, by a double tyrosine/threonine phosphorylation, the extracellular signal-regulated kinases 1 and 2 (ERK1/2) in the striatum, which control a plethora of substrates, some of them being critically involved in cocaine-mediated molecular and behavioral adaptations. Herein, we review how the interplay between dopamine and glutamate signaling controls cocaine-induced ERK1/2 activation in MSNs. We emphasize the key role of N-methyl-D-aspartate receptor potentiation by D1 receptor to trigger ERK1/2 activation and its subsequent nuclear translocation where it modulates both epigenetic and genetic processes engaged by cocaine. We discuss how cocaine-induced long-term synaptic and structural plasticity of MSNs, as well as behavioral adaptations, are influenced by ERK1/2-controlled targets. We conclude that a better knowledge of molecular mechanisms underlying ERK1/2 activation by drugs of abuse and/or its role in long-term neuronal plasticity in the striatum may provide a new route for therapeutic treatment in addiction. PMID:24844603

  8. Effect of training on activation of extracellular signal-regulated kinase 1/2 and p38 mitogen-activated protein kinase pathways in rat soleus muscle.

    PubMed

    Lee, Jong Sam; Bruce, Clinton R; Spurrell, Brian E; Hawley, John A

    2002-08-01

    1. The effect of a chronic programme of either low- or moderate-to-high-intensity treadmill running on the activation of the extracellular-signal regulated protein kinase (ERK1/2) and the p38 mitogen-activated protein kinase (MAPK) pathways was determined in rat muscle. 2. Sprague-Dawley rats were assigned to one of three groups: (i) sedentary (NT; n = 8); (ii) low-intensity training (8 m/min; LIT; n = 16); and (iii) moderate-to-high-intensity training (28 m/min; HIT; n = 16). The training regimens were planned so that animals covered the same distance and had similar glycogen utilization for both LIT and HIT exercise sessions. 3. A single bout of LIT or HIT following 8 weeks of training led to a twofold increase in the phosphorylation of ERK1/2 (P = 0.048) and a two- to threefold increase in p38 MAPK (P = 0.005). Extracellular signal-regulated kinase 1/2 phosphorylation in muscle sampled 48 h after the last exercise bout was similar to sedentary values, while p38 MAPK phosphorylation was 70-80% lower than sedentary. One bout of LIT or HIT increased total ERK1/2 and p38 MAPK expression, with the magnitude of this increase being independent of prior exercise intensity or duration. Extracellular signal- regulated kinase 1/2 expression was increased three- to fourfold in muscle sampled 48 h after the last exercise bout irrespective of the prior training programme (P = 0.027), but p38 MAPK expression was approximately 90% lower than sedentary values. 4. In conclusion, exercise-training of different intensities/ durations results in selective postexercise activation of intracellular signalling pathways, which may be one mechanism regulating specific adaptations induced by diverse training programmes. PMID:12099995

  9. A comprehensive protein–protein interactome for yeast PAS kinase 1 reveals direct inhibition of respiration through the phosphorylation of Cbf1

    PubMed Central

    DeMille, Desiree; Bikman, Benjamin T.; Mathis, Andrew D.; Prince, John T.; Mackay, Jordan T.; Sowa, Steven W.; Hall, Tacie D.; Grose, Julianne H.

    2014-01-01

    Per-Arnt-Sim (PAS) kinase is a sensory protein kinase required for glucose homeostasis in yeast, mice, and humans, yet little is known about the molecular mechanisms of its function. Using both yeast two-hybrid and copurification approaches, we identified the protein–protein interactome for yeast PAS kinase 1 (Psk1), revealing 93 novel putative protein binding partners. Several of the Psk1 binding partners expand the role of PAS kinase in glucose homeostasis, including new pathways involved in mitochondrial metabolism. In addition, the interactome suggests novel roles for PAS kinase in cell growth (gene/protein expression, replication/cell division, and protein modification and degradation), vacuole function, and stress tolerance. In vitro kinase studies using a subset of 25 of these binding partners identified Mot3, Zds1, Utr1, and Cbf1 as substrates. Further evidence is provided for the in vivo phosphorylation of Cbf1 at T211/T212 and for the subsequent inhibition of respiration. This respiratory role of PAS kinase is consistent with the reported hypermetabolism of PAS kinase–deficient mice, identifying a possible molecular mechanism and solidifying the evolutionary importance of PAS kinase in the regulation of glucose homeostasis. PMID:24850888

  10. Reducing Ribosomal Protein S6 Kinase 1 Expression Improves Spatial Memory and Synaptic Plasticity in a Mouse Model of Alzheimer's Disease

    PubMed Central

    Caccamo, Antonella; Branca, Caterina; Talboom, Joshua S.; Shaw, Darren M.; Turner, Dharshaun; Ma, Luyao; Messina, Angela; Huang, Zebing; Wu, Jie

    2015-01-01

    Aging is the most important risk factor associated with Alzheimer's disease (AD); however, the molecular mechanisms linking aging to AD remain unclear. Suppression of the ribosomal protein S6 kinase 1 (S6K1) increases healthspan and lifespan in several organisms, from nematodes to mammals. Here we show that S6K1 expression is upregulated in the brains of AD patients. Using a mouse model of AD, we found that genetic reduction of S6K1 improved synaptic plasticity and spatial memory deficits, and reduced the accumulation of amyloid-β and tau, the two neuropathological hallmarks of AD. Mechanistically, these changes were linked to reduced translation of tau and the β-site amyloid precursor protein cleaving enzyme 1, a key enzyme in the generation of amyloid-β. Our results implicate S6K1 dysregulation as a previously unidentified molecular mechanism underlying synaptic and memory deficits in AD. These findings further suggest that therapeutic manipulation of S6K1 could be a valid approach to mitigate AD pathology. SIGNIFICANCE STATEMENT Aging is the most important risk factor for Alzheimer's disease (AD). However, little is known about how it contributes to AD pathogenesis. S6 kinase 1 (S6K1) is a protein kinase involved in regulation of protein translation. Reducing S6K1 activity increases lifespan and healthspan. We report the novel finding that reducing S6K1 activity in 3xTg-AD mice ameliorates synaptic and cognitive deficits. These improvement were associated with a reduction in amyloid-β and tau pathology. Mechanistically, lowering S6K1 levels reduced translation of β-site amyloid precursor protein cleaving enzyme 1 and tau, two key proteins involved in AD pathogenesis. These data suggest that S6K1 may represent a molecular link between aging and AD. Given that aging is the most important risk factor for most neurodegenerative diseases, our results may have far-reaching implications into other diseases. PMID:26468204

  11. Nutritional stimulation of milk protein yield of cows is associated with changes in phosphorylation of mammary eukaryotic initiation factor 2 and ribosomal s6 kinase 1.

    PubMed

    Toerien, Chanelle A; Trout, Donald R; Cant, John P

    2010-02-01

    Production of protein by the lactating mammary gland is stimulated by intake of dietary energy and protein. Mass-action effects of essential amino acids (EAA) cannot explain all of the nutritional response. Protein synthesis in tissues of growing animals is regulated by nutrients through the mammalian target of rapamycin (mTOR) and integrated stress response (ISR) networks. To explore if nutrients signal through the mTOR and ISR networks in the mammary gland in vivo, lactating cows were feed-deprived for 22 h and then infused i.v. for 9 h with EAA+ glucose (Glc), Glc only, l-Met+l-Lys, l-His, or l-Leu. Milk protein yield was increased 33 and 27% by EAA+Glc and Glc infusions, respectively. Infusions of Met+Lys and His generated 35 and 41%, respectively, of the EAA+Glc response. Infusion of EAA+Glc reduced phosphorylation of the ISR target, eukaryotic initiation factor(eIF) 2, in mammary tissue and increased phosphorylation of the mTOR targets, ribosomal S6 kinase 1 (S6K1) and S6. Both responses are stimulatory to protein synthesis. Glucose did not significantly increase mammary S6K1 phosphorylation but reduced eIF2 phosphorylation by 62%, which implicates the ISR network in the stimulation of milk protein yield. In contrast, the EAA infusions increased (P < 0.05) or tended to increase (P < 0.1) mammary mTOR activity and only His, like Glc, decreased eIF2 phosphorylation by 62%. Despite activation of these protein synthesis signals to between 83 and 127% of the EAA+Glc response, EAA infusions produced less than one-half of the milk protein yield response generated by EAA+Glc, indicating that ISR and mTOR networks exert only a portion of the control over protein yield. PMID:20032484

  12. Tobacco Translationally Controlled Tumor Protein Interacts with Ethylene Receptor Tobacco Histidine Kinase1 and Enhances Plant Growth through Promotion of Cell Proliferation1[OPEN

    PubMed Central

    Tao, Jian-Jun; Cao, Yang-Rong; Chen, Hao-Wei; Wei, Wei; Li, Qing-Tian; Ma, Biao; Zhang, Wan-Ke; Chen, Shou-Yi; Zhang, Jin-Song

    2015-01-01

    Ethylene is an important phytohormone in the regulation of plant growth, development, and stress response throughout the lifecycle. Previously, we discovered that a subfamily II ethylene receptor tobacco (Nicotiana tabacum) Histidine Kinase1 (NTHK1) promotes seedling growth. Here, we identified an NTHK1-interacting protein translationally controlled tumor protein (NtTCTP) by the yeast (Saccharomyces cerevisiae) two-hybrid assay and further characterized its roles in plant growth. The interaction was further confirmed by in vitro glutathione S-transferase pull down and in vivo coimmunoprecipitation and bimolecular fluorescence complementation assays, and the kinase domain of NTHK1 mediates the interaction with NtTCTP. The NtTCTP protein is induced by ethylene treatment and colocalizes with NTHK1 at the endoplasmic reticulum. Overexpression of NtTCTP or NTHK1 reduces plant response to ethylene and promotes seedling growth, mainly through acceleration of cell proliferation. Genetic analysis suggests that NtTCTP is required for the function of NTHK1. Furthermore, association of NtTCTP prevents NTHK1 from proteasome-mediated protein degradation. Our data suggest that plant growth inhibition triggered by ethylene is regulated by a unique feedback mechanism, in which ethylene-induced NtTCTP associates with and stabilizes ethylene receptor NTHK1 to reduce plant response to ethylene and promote plant growth through acceleration of cell proliferation. PMID:25941315

  13. SPLICE VARIANT SPECIFIC UPREGULATIONOF CA+2/CALMODULIN DEPENDENT PROTEIN KINASE 1G BY PYRETHROID INSECTICIDES IN VIVO.

    EPA Science Inventory

    Pyrethroid insecticides induce neurotoxicity in mammals by interfering with ion channel function in excitable neuronal membranes. Previous work demonstrated dose-dependent increases in expression of Ca+2/calmodulin dependent protein kinase (Camk1g) mRNA following acute deltameth...

  14. Glutathione S-transferase class mu regulation of apoptosis signal-related kinase 1 protein during VCD-induced ovotoxicity in neonatal rat ovaries

    PubMed Central

    Bhattacharya, Poulomi; Madden, Jill A.; Sen, Nivedita; Hoyer, Patricia B.; Keating, Aileen F.

    2013-01-01

    4-vinylcyclohexene diepoxide (VCD) destroys ovarian primordial and small primary follicles via apoptosis. In mice, VCD exposure induces ovarian mRNA expression of glutathione S-transferase (GST) family members, including isoform mu (Gstm). Extra-ovarian GSTM negatively regulates pro-apoptotic apoptosis signal-related kinase 1 (ASK1) through protein complex formation, which dissociates during stress, thereby initiating ASK1-induced apoptosis. The present study investigated the ovarian response of Gstm mRNA and protein to VCD. Induction of Ask1 mRNA at VCD-induced follicle loss onset was determined. Ovarian GSTM:ASK1 protein complex formation was investigated and VCD exposure effects thereon evaluated. Phosphatidylinositol-3 kinase (PI3K) regulation of GSTM protein was also studied. Postnatal day (PND) 4 rat ovaries were cultured in control media ±: 1) VCD (30 μM) for 2–8d; 2) VCD (30 μM) for 2d, followed by incubation in control media for 4d (acute VCD exposure); or 3) LY294002 (20 μM) for 6d. VCD exposure did not alter Gstm mRNA expression, however, GSTM protein increased (P < 0.05) after 6d of both the acute and chronic treatments. Ask1 mRNA increased (0.33-fold; P < 0.05) relative to control after 6d of VCD exposure. Ovarian GSTM:ASK1 protein complex formation was confirmed and, relative to control, the amount of GSTM bound to ASK1 increased 33% (P < 0.05) by chronic but with no effect of acute VCD exposure. PI3K inhibition increased (P < 0.05) GSTM protein by 40% and 71% on d4 and d6, respectively. These findings support involvement of GSTM in the ovarian response to VCD exposure, through regulation of pro-apoptotic ASK1. PMID:23274565

  15. Glutathione S-transferase class μ regulation of apoptosis signal-regulating kinase 1 protein during VCD-induced ovotoxicity in neonatal rat ovaries.

    PubMed

    Bhattacharya, Poulomi; Madden, Jill A; Sen, Nivedita; Hoyer, Patricia B; Keating, Aileen F

    2013-02-15

    4-Vinylcyclohexene diepoxide (VCD) destroys ovarian primordial and small primary follicles via apoptosis. In mice, VCD exposure induces ovarian mRNA expression of glutathione S-transferase (GST) family members, including isoform mu (Gstm). Extra-ovarian GSTM negatively regulates pro-apoptotic apoptosis signal-regulating kinase 1 (ASK1) through protein complex formation, which dissociates during stress, thereby initiating ASK1-induced apoptosis. The present study investigated the ovarian response of Gstm mRNA and protein to VCD. Induction of Ask1 mRNA at VCD-induced follicle loss onset was determined. Ovarian GSTM:ASK1 protein complex formation was investigated and VCD exposure effects thereon evaluated. Phosphatidylinositol-3 kinase (PI3K) regulation of GSTM protein was also studied. Postnatal day (PND) 4 rat ovaries were cultured in control media ± 1) VCD (30 μM) for 2-8 days; 2) VCD (30 μM) for 2 days, followed by incubation in control media for 4 days (acute VCD exposure); or 3) LY294002 (20 μM) for 6 days. VCD exposure did not alter Gstm mRNA expression, however, GSTM protein increased (P<0.05) after 6 days of both the acute and chronic treatments. Ask1 mRNA increased (0.33-fold; P<0.05) relative to control after 6 days of VCD exposure. Ovarian GSTM:ASK1 protein complex formation was confirmed and, relative to control, the amount of GSTM bound to ASK1 increased 33% (P<0.05) by chronic but with no effect of acute VCD exposure. PI3K inhibition increased (P<0.05) GSTM protein by 40% and 71% on d4 and d6, respectively. These findings support involvement of GSTM in the ovarian response to VCD exposure, through regulation of pro-apoptotic ASK1. PMID:23274565

  16. The tight junction protein ZO-2 and Janus kinase 1 mediate intercellular communications in vascular smooth muscle cells

    SciTech Connect

    Tkachuk, Natalia; Tkachuk, Sergey; Patecki, Margret; Kusch, Angelika; Korenbaum, Elena; Haller, Hermann; Dumler, Inna

    2011-07-08

    Highlights: {yields} The tight junction protein ZO-2 associates with Jak1 in vascular smooth muscle cells via ZO-2 N-terminal fragment. {yields} Jak1 mediates ZO-2 tyrosine phosphorylation and ZO-2 localization to the sites of homotypic intercellular contacts. {yields} The urokinase receptor uPAR regulates ZO-2/Jak1 functional association. {yields} The ZO-2/Jak1/uPAR signaling complex is required for vascular smooth muscle cells functional network formation. -- Abstract: Recent evidence points to a multifunctional role of ZO-2, the tight junction protein of the MAGUK (membrane-associated guanylate kinase-like) family. Though ZO-2 has been found in cell types lacking tight junction structures, such as vascular smooth muscle cells (VSMC), little is known about ZO-2 function in these cells. We provide evidence that ZO-2 mediates specific homotypic cell-to-cell contacts between VSMC. Using mass spectrometry we found that ZO-2 is associated with the non-receptor tyrosine kinase Jak1. By generating specific ZO-2 constructs we further found that the N-terminal fragment of ZO-2 molecule is responsible for this interaction. Adenovirus-based expression of Jak1 inactive mutant demonstrated that Jak1 mediates ZO-2 tyrosine phosphorylation. By means of RNA silencing, expression of Jak1 mutant form and fluorescently labeled ZO-2 fusion protein we further specified that active Jak1, but not Jak1 inactive mutant, mediates ZO-2 localization to the sites of intercellular contacts. We identified the urokinase receptor uPAR as a pre-requisite for these cellular events. Functional requirement of the revealed signaling complex for VSMC network formation was confirmed in experiments using Matrigel and in contraction assay. Our findings imply involvement of the ZO-2 tight junction independent signaling complex containing Jak1 and uPAR in VSMC intercellular communications. This mechanism may contribute to vascular remodeling in occlusive cardiovascular diseases and in arteriogenesis.

  17. Cyclin-dependent Kinase 1-dependent Phosphorylation of cAMP Response Element-binding Protein Decreases Chromatin Occupancy*

    PubMed Central

    Trinh, Anthony T.; Kim, Sang Hwa; Chang, Hae-yoon; Mastrocola, Adam S.; Tibbetts, Randal S.

    2013-01-01

    The cyclic AMP response element-binding protein (CREB) initiates transcriptional responses to a wide variety of stimuli. CREB activation involves its phosphorylation on Ser-133, which promotes interaction between the CREB kinase-inducible domain (KID) and the KID-interacting domain of the transcriptional coactivator, CREB-binding protein (CBP). The KID also contains a highly conserved phosphorylation cluster, termed the ATM/CK cluster, which is processively phosphorylated in response to DNA damage by the coordinated actions of ataxia-telangiectasia-mutated (ATM) and casein kinases (CKs) 1 and 2. The ATM/CK cluster phosphorylation attenuates CBP binding and CREB transcriptional activity. Paradoxically, it was recently reported that DNA damage activates CREB through homeodomain-interacting protein kinase 2-dependent phosphorylation of Ser-271 near the CREB bZIP DNA binding domain. In this study we sought to further clarify DNA damage-dependent CREB phosphorylation as well as to explore the possibility that the ATM/CK cluster and Ser-271 synergistically or antagonistically modulate CREB activity. We show that, rather than being induced by DNA damage, Ser-270 and Ser-271 of CREB cophosphorylated in a CDK1-dependent manner during G2/M phase. Functionally, we show that phosphorylation of CREB on Ser-270/Ser-271 during mitosis correlated with reduced CREB chromatin occupancy. Furthermore, CDK1-dependent phosphorylation of CREB in vitro inhibited its DNA binding activity. The combined results suggest that CDK1-dependent phosphorylation of CREB on Ser-270/Ser-271 facilitates its dissociation from chromatin during mitosis by reducing its intrinsic DNA binding potential. PMID:23814058

  18. Rho-associated protein kinase 1 (ROCK1) is increased in Alzheimer's disease and ROCK1 depletion reduces amyloid-β levels in brain.

    PubMed

    Henderson, Benjamin W; Gentry, Erik G; Rush, Travis; Troncoso, Juan C; Thambisetty, Madhav; Montine, Thomas J; Herskowitz, Jeremy H

    2016-08-01

    Alzheimer's disease (AD) is the leading cause of dementia and mitigating amyloid-β (Aβ) levels may serve as a rational therapeutic avenue to slow AD progression. Pharmacologic inhibition of the Rho-associated protein kinases (ROCK1 and ROCK2) is proposed to curb Aβ levels, and mechanisms that underlie ROCK2's effects on Aβ production are defined. How ROCK1 affects Aβ generation remains a critical barrier. Here, we report that ROCK1 protein levels were elevated in mild cognitive impairment due to AD (MCI) and AD brains compared to controls. Aβ42 oligomers marginally increased ROCK1 and ROCK2 protein levels in neurons but strongly induced phosphorylation of Lim kinase 1 (LIMK1), suggesting that Aβ42 activates ROCKs. RNAi depletion of ROCK1 or ROCK2 suppressed endogenous Aβ40 production in neurons, and Aβ40 levels were reduced in brains of ROCK1 heterozygous knock-out mice compared to wild-type littermate controls. ROCK1 knockdown decreased amyloid precursor protein (APP), and treatment with bafilomycin accumulated APP levels in neurons depleted of ROCK1. These observations suggest that reduction of ROCK1 diminishes Aβ levels by enhancing APP protein degradation. Collectively, these findings support the hypothesis that both ROCK1 and ROCK2 are therapeutic targets to combat Aβ production in AD. Mitigating amyloid-β (Aβ) levels is a rational strategy for Alzheimer's disease (AD) treatment, however, therapeutic targets with clinically available drugs are lacking. We hypothesize that Aβ accumulation in mild cognitive impairment because of AD (MCI) and AD activates the RhoA/ROCK pathway which in turn fuels production of Aβ. Escalation of this cycle over the course of many years may contribute to the buildup of amyloid pathology in MCI and/or AD. PMID:27246255

  19. Upstream signaling of protein kinase C-epsilon in xenon-induced pharmacological preconditioning. Implication of mitochondrial adenosine triphosphate dependent potassium channels and phosphatidylinositol-dependent kinase-1.

    PubMed

    Weber, Nina C; Toma, Octavian; Damla, Halil; Wolter, Jessica I; Schlack, Wolfgang; Preckel, Benedikt

    2006-06-01

    Xenon elicits preconditioning of the myocardium via protein kinase C-epsilon. We determined the implication of (1) the mitochondrial adenosinetriphosphate dependent potassium (K(ATP)) channels and (2) the 3'phosphatidylinositol-dependent kinase-1 (PDK-1) in activating protein kinase C-epsilon. For infarct size measurements, anaesthetized rats were subjected to 25 min of coronary artery occlusion followed by 120 min of reperfusion. Rats received xenon 70% during three 5-min periods before ischaemia with or without the K(ATP) channel blocker 5-hydroxydecanoate or Wortmannin as PI3K/PDK-1 inhibitor. For Western blot, hearts were excised at five time points after xenon preconditioning (Control, 15, 25, 35, 45 min). Infarct size was reduced from 42+/-6% (mean+/-S.D.) to 27+/-8% after xenon preconditioning (P<0.05). Western blot revealed an increased activation of PKC-epsilon after 45 min and of PDK-1 after 25 min during xenon preconditioning. 5-hydroxydecanoate and Wortmannin blocked both effects. PKC-epsilon is activated downstream of mitochondrial K(ATP) channels and PDK-1. Both pathways are functionally involved in xenon preconditioning. PMID:16716295

  20. Targeting of TGF-β-activated protein kinase 1 inhibits chemokine (C-C motif) receptor 7 expression, tumor growth and metastasis in breast cancer

    PubMed Central

    Hung, Wen-Chun; Hou, Ming-Feng

    2015-01-01

    TGF-β-activated protein kinase 1 (TAK1) is a critical mediator in inflammation, immune response and cancer development. Our previous study demonstrated that activation of TAK1 increases the expression of chemokine (C-C motif) receptor 7 (CCR7) and promotes lymphatic invasion ability of breast cancer cells. However, the expression and association of activated TAK1 and CCR7 in breast tumor tissues is unknown and the therapeutic effect by targeting TAK1 is also unclear. We showed that activated TAK1 (as indicated by phospho-TAK1) and its binding protein TAB1 are strongly expressed in breast tumor tissues (77% and 74% respectively). In addition, increase of phospho-TAK1 or TAB1 is strongly associated with over-expression of CCR7. TAK1 inhibitor 5Z-7-Oxozeaenol (5Z-O) inhibited TAK1 activity, suppressed downstream signaling pathways including p38, IκB kinase (IKK) and c-Jun N-terminal kinase (JNK) and reduced CCR7 expression in metastatic MDA-MB-231 cells. In addition, 5Z-O repressed NF-κB- and c-JUN-mediated transcription of CCR7 gene. Knockdown of TAB1 attenuated CCR7 expression and tumor growth in an orthotopic animal study. More importantly, lymphatic invasion and lung metastasis were suppressed. Collectively, our results demonstrate that constitutive activation of TAK1 is frequently found in human breast cancer and this kinase is a potential therapeutic target for this cancer. PMID:25557171

  1. ABI1 and PP2CA Phosphatases Are Negative Regulators of Snf1-Related Protein Kinase1 Signaling in Arabidopsis[C][W

    PubMed Central

    Rodrigues, Américo; Adamo, Mattia; Crozet, Pierre; Margalha, Leonor; Confraria, Ana; Martinho, Cláudia; Elias, Alexandre; Rabissi, Agnese; Lumbreras, Victoria; González-Guzmán, Miguel; Antoni, Regina; Rodriguez, Pedro L.; Baena-González, Elena

    2013-01-01

    Plant survival under environmental stress requires the integration of multiple signaling pathways into a coordinated response, but the molecular mechanisms underlying this integration are poorly understood. Stress-derived energy deprivation activates the Snf1-related protein kinases1 (SnRK1s), triggering a vast transcriptional and metabolic reprogramming that restores homeostasis and promotes tolerance to adverse conditions. Here, we show that two clade A type 2C protein phosphatases (PP2Cs), established repressors of the abscisic acid (ABA) hormonal pathway, interact with the SnRK1 catalytic subunit causing its dephosphorylation and inactivation. Accordingly, SnRK1 repression is abrogated in double and quadruple pp2c knockout mutants, provoking, similarly to SnRK1 overexpression, sugar hypersensitivity during early seedling development. Reporter gene assays and SnRK1 target gene expression analyses further demonstrate that PP2C inhibition by ABA results in SnRK1 activation, promoting SnRK1 signaling during stress and once the energy deficit subsides. Consistent with this, SnRK1 and ABA induce largely overlapping transcriptional responses. Hence, the PP2C hub allows the coordinated activation of ABA and energy signaling, strengthening the stress response through the cooperation of two key and complementary pathways. PMID:24179127

  2. Phosphorylation of FE65 Ser610 by serum- and glucocorticoid-induced kinase 1 modulates Alzheimer's disease amyloid precursor protein processing

    PubMed Central

    Chow, Wan Ning Vanessa; Ngo, Jacky Chi Ki; Li, Wen; Chen, Yu Wai; Tam, Ka Ming Vincent; Chan, Ho Yin Edwin; Miller, Christopher C.J.; Lau, Kwok-Fai

    2015-01-01

    Alzheimer's disease (AD) is a fatal neurodegenerative disease affecting 36 million people worldwide. Genetic and biochemical research indicate that the excessive generation of amyloid-β peptide (Aβ) from amyloid precursor protein (APP), is a major part of AD pathogenesis. FE65 is a brain-enriched adaptor protein that binds to APP. However, the role of FE65 in APP processing and the mechanisms that regulate binding of FE65 to APP are not fully understood. In the present study, we show that serum- and glucocorticoid-induced kinase 1 (SGK1) phosphorylates FE65 on Ser610 and that this phosphorylation attenuates FE65 binding to APP. We also show that FE65 promotes amyloidogenic processing of APP and that FE65 Ser610 phosphorylation inhibits this effect. Furthermore, we found that the effect of FE65 Ser610 phosphorylation on APP processing is linked to a role of FE65 in metabolic turnover of APP via the proteasome. Thus FE65 influences APP degradation via the proteasome and phosphorylation of FE65 Ser610 by SGK1 regulates binding of FE65 to APP, APP turnover and processing. PMID:26188042

  3. Ribosomal protein S6 kinase1 coordinates with TOR-Raptor2 to regulate thylakoid membrane biosynthesis in rice.

    PubMed

    Sun, Linxiao; Yu, Yonghua; Hu, Weiqin; Min, Qiming; Kang, Huiling; Li, Yilu; Hong, Yue; Wang, Xuemin; Hong, Yueyun

    2016-07-01

    Ribosomal protein S6 kinase (S6K) functions as a key component in the target of rapamycin (TOR) pathway involved in multiple processes in eukaryotes. The role and regulation of TOR-S6K in lipid metabolism remained unknown in plants. Here we provide genetic and pharmacological evidence that TOR-Raptor2-S6K1 is important for thylakoid galactolipid biosynthesis and thylakoid grana modeling in rice (Oryza sativa L.). Genetic suppression of S6K1 caused pale yellow-green leaves, defective thylakoid grana architecture. S6K1 directly interacts with Raptor2, a core component in TOR signaling, and S6K1 activity is regulated by Raptor2 and TOR. Plants with suppressed Raptor2 expression or reduced TOR activity by inhibitors mimicked the S6K1-deficient phenotype. A significant reduction in galactolipid content was found in the s6k1, raptor2 mutant or TOR-inhibited plants, which was accompanied by decreased transcript levels of the set of genes such as lipid phosphate phosphatase α5 (LPPα5), MGDG synthase 1 (MGD1), and DGDG synthase 1 (DGD1) involved in galactolipid synthesis, compared to the control plants. Moreover, loss of LPPα5 exhibited a similar phenotype with pale yellow-green leaves. These results suggest that TOR-Raptor2-S6K1 is important for modulating thylakoid membrane lipid biosynthesis, homeostasis, thus enhancing thylakoid grana architecture and normal photosynthesis ability in rice. PMID:27102613

  4. Glutathione S-transferase class mu regulation of apoptosis signal-regulating kinase 1 protein during VCD-induced ovotoxicity in neonatal rat ovaries

    SciTech Connect

    Bhattacharya, Poulomi; Madden, Jill A.; Sen, Nivedita; Hoyer, Patricia B.; Keating, Aileen F.

    2013-02-15

    4-Vinylcyclohexene diepoxide (VCD) destroys ovarian primordial and small primary follicles via apoptosis. In mice, VCD exposure induces ovarian mRNA expression of glutathione S-transferase (GST) family members, including isoform mu (Gstm). Extra-ovarian GSTM negatively regulates pro-apoptotic apoptosis signal-regulating kinase 1 (ASK1) through protein complex formation, which dissociates during stress, thereby initiating ASK1-induced apoptosis. The present study investigated the ovarian response of Gstm mRNA and protein to VCD. Induction of Ask1 mRNA at VCD-induced follicle loss onset was determined. Ovarian GSTM:ASK1 protein complex formation was investigated and VCD exposure effects thereon evaluated. Phosphatidylinositol-3 kinase (PI3K) regulation of GSTM protein was also studied. Postnatal day (PND) 4 rat ovaries were cultured in control media ± 1) VCD (30 μM) for 2–8 days; 2) VCD (30 μM) for 2 days, followed by incubation in control media for 4 days (acute VCD exposure); or 3) LY294002 (20 μM) for 6 days. VCD exposure did not alter Gstm mRNA expression, however, GSTM protein increased (P < 0.05) after 6 days of both the acute and chronic treatments. Ask1 mRNA increased (0.33-fold; P < 0.05) relative to control after 6 days of VCD exposure. Ovarian GSTM:ASK1 protein complex formation was confirmed and, relative to control, the amount of GSTM bound to ASK1 increased 33% (P < 0.05) by chronic but with no effect of acute VCD exposure. PI3K inhibition increased (P < 0.05) GSTM protein by 40% and 71% on d4 and d6, respectively. These findings support involvement of GSTM in the ovarian response to VCD exposure, through regulation of pro-apoptotic ASK1. - Highlights: ► GSTM protein increases in response to ovarian VCD exposure. ► VCD increases Ask1 mRNA at the onset of follicle loss. ► Ovarian GSTM binds more ASK1 protein during VCD-induced ovotoxicity. ► PI3K regulates ovarian GSTM protein.

  5. The Vaccinia Virus O1 Protein Is Required for Sustained Activation of Extracellular Signal-Regulated Kinase 1/2 and Promotes Viral Virulence

    PubMed Central

    Lukassen, Susanne; Späth, Michaela; Wolferstätter, Michael; Babel, Eveline; Brinkmann, Kay; Wielert, Ursula; Chaplin, Paul; Suter, Mark

    2012-01-01

    Sustained activation of the Raf/MEK/extracellular signal-regulated kinase (ERK) pathway in infected cells has been shown to be crucial for full replication efficiency of orthopoxviruses in cell culture. In infected cells, this pathway is mainly activated by the vaccinia virus growth factor (VGF), an epidermal growth factor (EGF)-like protein. We show here that chorioallantois vaccinia virus Ankara (CVA), but not modified vaccinia virus Ankara (MVA), induced sustained activation of extracellular signal-regulated kinase 1/2 (ERK1/2) in infected human 293 cells, although both viruses direct secretion of functional VGF. A CVA mutant lacking the O1L gene (CVA-ΔO1L) demonstrated that the O1 protein was required for sustained upregulation of the ERK1/2 pathway in 293 cells as well as in other mammalian cell lines. The highly conserved orthopoxvirus O1L gene encodes a predicted 78-kDa protein with a hitherto-unknown function. CVA-ΔO1L showed reduced plaque size and an attenuated cytopathic effect (CPE) in infected cell cultures and reduced virulence and spread from lungs to ovaries in intranasally infected BALB/c mice. Reinsertion of an intact O1L gene into MVA, which in its original form harbors a fragmented O1L open reading frame (ORF), restored ERK1/2 activation in 293 cells but did not increase replication and spread of MVA in human or other mammalian cell lines. Thus, the O1 protein was crucial for sustained ERK1/2 activation in CVA- and MVA-infected human cells, complementing the autocrine function of VGF, and enhanced virulence in vivo. PMID:22171261

  6. Mitogen-activated protein kinase kinase 1/2 inhibition and angiotensin II converting inhibition in mice with cardiomyopathy caused by lamin A/C gene mutation

    SciTech Connect

    Muchir, Antoine; Wu, Wei; Sera, Fusako; Homma, Shunichi; Worman, Howard J.

    2014-10-03

    Highlights: • Both ACE and MEK1/2 inhibition are beneficial on cardiac function in Lmna cardiomyopathy. • MEK1/2 inhibitor has beneficial effects beyond ACE inhibition for Lmna cardiomyopathy. • These results provide further preclinical rationale for a clinical trial of a MEK1/2 inhibitor. - Abstract: Background: Mutations in the LMNA gene encoding A-type nuclear lamins can cause dilated cardiomyopathy with or without skeletal muscular dystrophy. Previous studies have shown abnormally increased extracellular signal-regulated kinase 1/2 activity in hearts of Lmna{sup H222P/H222P} mice, a small animal model. Inhibition of this abnormal signaling activity with a mitogen-activated protein kinase kinase 1/2 (MEK1/2) inhibitor has beneficial effects on heart function and survival in these mice. However, such treatment has not been examined relative to any standard of care intervention for dilated cardiomyopathy or heart failure. We therefore examined the effects of an angiotensin II converting enzyme (ACE) inhibitor on left ventricular function in Lmna{sup H222P/H222P} mice and assessed if adding a MEK1/2 inhibitor would provide added benefit. Methods: Male Lmna{sup H222P/H222P} mice were treated with the ACE inhibitor benazepril, the MEK1/2 inhibitor selumetinib or both. Transthoracic echocardiography was used to measure left ventricular diameters and fractional shortening was calculated. Results: Treatment of Lmna{sup H222P/H222P} mice with either benazepril or selumetinib started at 8 weeks of age, before the onset of detectable left ventricular dysfunction, lead to statistically significantly increased fractional shortening compared to placebo at 16 weeks of age. There was a trend towards a great value for fractional shortening in the selumetinib-treated mice. When treatment was started at 16 weeks of age, after the onset of left ventricular dysfunction, the addition of selumetinib treatment to benazepril lead to a statistically significant increase in left

  7. Kindlin-3 Mediates Integrin αLβ2 Outside-in Signaling, and It Interacts with Scaffold Protein Receptor for Activated-C Kinase 1 (RACK1)*

    PubMed Central

    Feng, Chen; Li, Yan-Feng; Yau, Yin-Hoe; Lee, Hui-Shan; Tang, Xiao-Yan; Xue, Zhi-Hong; Zhou, Yi-Chao; Lim, Wei-Min; Cornvik, Tobias C.; Ruedl, Christiane; Shochat, Susana G.; Tan, Suet-Mien

    2012-01-01

    Integrins are heterodimeric type I membrane cell adhesion molecules that are involved in many biological processes. Integrins are bidirectional signal transducers because their cytoplasmic tails are docking sites for cytoskeletal and signaling molecules. Kindlins are cytoplasmic molecules that mediate inside-out signaling and activation of the integrins. The three kindlin paralogs in humans are kindlin-1, -2, and -3. Each of these contains a 4.1-ezrin-radixin-moesin (FERM) domain and a pleckstrin homology domain. Kindlin-3 is expressed in platelets, hematopoietic cells, and endothelial cells. Here we show that kindlin-3 is involved in integrin αLβ2 outside-in signaling. It also promotes micro-clustering of integrin αLβ2. We provide evidence that kindlin-3 interacts with the receptor for activated-C kinase 1 (RACK1), a scaffold protein that folds into a seven-blade propeller. This interaction involves the pleckstrin homology domain of kindlin-3 and blades 5–7 of RACK1. Using the SKW3 human T lymphoma cells, we show that integrin αLβ2 engagement by its ligand ICAM-1 promotes the association of kindlin-3 with RACK1. We also show that kindlin-3 co-localizes with RACK1 in polarized SKW3 cells and human T lymphoblasts. Our findings suggest that kindlin-3 plays an important role in integrin αLβ2 outside-in signaling. PMID:22334666

  8. Serine-arginine protein kinase 1 (SRPK1), a determinant of angiogenesis, is upregulated in prostate cancer and correlates with disease stage and invasion

    PubMed Central

    Bullock, Nicholas; Potts, Jonathan; Simpkin, Andrew J; Koupparis, Anthony; Harper, Steve J; Oxley, Jon; Oltean, Sebastian

    2016-01-01

    Vascular endothelial growth factor (VEGF) undergoes alternative splicing to produce both proangiogenic and antiangiogenic isoforms. Preferential splicing of proangiogenic VEGF is determined by serine-arginine protein kinase 1 (SRPK1), which is upregulated in a number of cancers. In the present study, we aimed to investigate SRPK1 expression in prostate cancer (PCa) and its association with cancer progression. SRPK1 expression was assessed using immunohistochemistry of PCa tissue extracted from radical prostatectomy specimens of 110 patients. SRPK1 expression was significantly higher in tumour compared with benign tissue (p<0.00001) and correlated with higher pT stage (p=0.004), extracapsular extension (p=0.003) and extracapsular perineural invasion (p=0.008). Interestingly, the expression did not correlate with Gleason grade (p=0.21), suggesting that SRPK1 facilitates the development of a tumour microenvironment that favours growth and invasion (possibly through stimulating angiogenesis) while having little bearing on the morphology or function of the tumour cells themselves. PMID:26500332

  9. Anthrax lethal toxin impairs CD1d-mediated antigen presentation by targeting the extracellular signal-related kinase 1/2 mitogen-activated protein kinase pathway.

    PubMed

    Khan, Masood A; Gallo, Richard M; Brutkiewicz, Randy R

    2010-05-01

    Lethal toxin (LT) is a critical virulence factor of Bacillus anthracis and an important means by which this bacterium evades the host's immune system. In this study, we demonstrate that CD1d-expressing cells treated with LT have reduced CD1d-mediated antigen presentation. We earlier showed an important role for the mitogen-activated protein kinase extracellular signal-regulated kinase 1/2 (ERK1/2) in the regulation of CD1d-mediated antigen presentation, and we report here that LT impairs antigen presentation by CD1d in an ERK1/2-dependent manner. Similarly, LT and the ERK1/2 pathway-specific inhibitor U0126 caused a decrease in major histocompatibility complex (MHC) class II-mediated antigen presentation. Confocal microscopy analyses revealed altered intracellular distribution of CD1d and LAMP-1 in LT-treated cells, similar to the case for ERK1/2-inhibited cells. These results suggest that Bacillus anthracis has the ability to evade the host's innate immune system by reducing CD1d-mediated antigen presentation through targeting the ERK1/2 pathway. PMID:20194602

  10. Mechanistic Target of Rapamycin Complex 1/S6 Kinase 1 Signals Influence T Cell Activation Independently of Ribosomal Protein S6 Phosphorylation

    PubMed Central

    Salmond, Robert J.; Brownlie, Rebecca J.; Meyuhas, Oded

    2015-01-01

    Ag-dependent activation of naive T cells induces dramatic changes in cellular metabolism that are essential for cell growth, division, and differentiation. In recent years, the serine/threonine kinase mechanistic target of rapamycin (mTOR) has emerged as a key integrator of signaling pathways that regulate these metabolic processes. However, the role of specific downstream effectors of mTOR function in T cells is poorly understood. Ribosomal protein S6 (rpS6) is an essential component of the ribosome and is inducibly phosphorylated following mTOR activation in eukaryotic cells. In the current work, we addressed the role of phosphorylation of rpS6 as an effector of mTOR function in T cell development, growth, proliferation, and differentiation using knockin and TCR transgenic mice. Surprisingly, we demonstrate that rpS6 phosphorylation is not required for any of these processes either in vitro or in vivo. Indeed, rpS6 knockin mice are completely sensitive to the inhibitory effects of rapamycin and an S6 kinase 1 (S6K1)–specific inhibitor on T cell activation and proliferation. These results place the mTOR complex 1-S6K1 axis as a crucial determinant of T cell activation independently of its ability to regulate rpS6 phosphorylation. PMID:26453749

  11. Protein Interacting C-Kinase 1 Modulates Surface Expression of P2Y6 Purinoreceptor, Actin Polymerization and Phagocytosis in Microglia.

    PubMed

    Zhu, Jia; Wang, Zhen; Zhang, Nan; Ma, Jiao; Xu, Shui-Lin; Wang, Yin; Shen, Ying; Li, Yun-Hong

    2016-04-01

    Microglia clean up dead cells and debris through phagocytosis in the central nervous system. UDP-activated P2Y6 receptors (P2Y6Rs) induce the formation of phagocytic cup-like structure and P2Y6R expression is increased during the phagocytosis. However, it remains unclear how surface expression of P2Y6R is increased. PICK1 (protein interacting with C-kinase-1) interacts with various neurotransmitter receptors, transporters, and enzymes. We here report that PICK1 might interact with P2Y6R. Surface P2Y6R was reduced in microglia from PICK1-knockout mice and PICK1-knockdown BV2 cells, which was also confirmed by electrophysiological recordings, showing that P2Y6R-mediated current was increased by PICK1 overexpression but was reduced by PICK1-knockdown in BV2 microglia. Finally, PICK1 was sufficient to affect cytoskeletal aggregation and phagocytosis both in primary microglia and BV2 cells. These results indicate that PICK1 is an important regulator of P2Y6R expression and microglial phagocytosis. PMID:26566795

  12. Inhibition of Calcium-Dependent Protein Kinase 1 (CDPK1) In Vitro by Pyrazolopyrimidine Derivatives Does Not Correlate with Sensitivity of Cryptosporidium parvum Growth in Cell Culture

    PubMed Central

    Kuhlenschmidt, Theresa B.; Rutaganira, Florentine U.; Long, Shaojun; Tang, Keliang; Shokat, Kevan M.; Kuhlenschmidt, Mark S.

    2015-01-01

    Cryptosporidiosis is a serious diarrheal disease in immunocompromised patients and malnourished children, and treatment is complicated by a lack of adequate drugs. Recent studies suggest that the natural occurrence of a small gatekeeper residue in serine threonine calcium-dependent protein kinase 1 (CDPK1) of Cryptosporidium parvum might be exploited to target this enzyme and block parasite growth. Here were explored the potency with which a series of pyrazolopyrimidine analogs, which are selective for small gatekeeper kinases, inhibit C. parvum CDPK1 and block C. parvum growth in tissue culture in vitro. Although these compounds potently inhibited kinase activity in vitro, most had no effect on parasite growth. Moreover, among those that were active against parasite growth, there was a very poor correlation with their 50% inhibitory concentrations against the enzyme. Active compounds also had no effect on cell invasion, unlike the situation in Toxoplasma gondii, where these compounds block CDPK1, prevent microneme secretion, and disrupt cell invasion. These findings suggest that CPDK1 is not essential for C. parvum host cell invasion or growth and therefore that it is not the optimal target for therapeutic intervention. Nonetheless, several inhibitors with low micromolar 50% effective concentrations were identified, and these may affect other essential targets in C. parvum that are worthy of further exploration. PMID:26552986

  13. Intra-domain Cross-talk Regulates Serine-arginine Protein Kinase 1-dependent Phosphorylation and Splicing Function of Transformer 2β1.

    PubMed

    Jamros, Michael A; Aubol, Brandon E; Keshwani, Malik M; Zhang, Zhaiyi; Stamm, Stefan; Adams, Joseph A

    2015-07-10

    Transformer 2β1 (Tra2β1) is a splicing effector protein composed of a core RNA recognition motif flanked by two arginine-serine-rich (RS) domains, RS1 and RS2. Although Tra2β1-dependent splicing is regulated by phosphorylation, very little is known about how protein kinases phosphorylate these two RS domains. We now show that the serine-arginine protein kinase-1 (SRPK1) is a regulator of Tra2β1 and promotes exon inclusion in the survival motor neuron gene 2 (SMN2). To understand how SRPK1 phosphorylates this splicing factor, we performed mass spectrometric and kinetic experiments. We found that SRPK1 specifically phosphorylates 21 serines in RS1, a process facilitated by a docking groove in the kinase domain. Although SRPK1 readily phosphorylates RS2 in a splice variant lacking the N-terminal RS domain (Tra2β3), RS1 blocks phosphorylation of these serines in the full-length Tra2β1. Thus, RS2 serves two new functions. First, RS2 positively regulates binding of the central RNA recognition motif to an exonic splicing enhancer sequence, a phenomenon reversed by SRPK1 phosphorylation on RS1. Second, RS2 enhances ligand exchange in the SRPK1 active site allowing highly efficient Tra2β1 phosphorylation. These studies demonstrate that SRPK1 is a regulator of Tra2β1 splicing function and that the individual RS domains engage in considerable cross-talk, assuming novel functions with regard to RNA binding, splicing, and SRPK1 catalysis. PMID:26013829

  14. Repression of phosphoinositide-dependent protein kinase 1 expression by ciglitazone via Egr-1 represents a new approach for inhibition of lung cancer cell growth

    PubMed Central

    2014-01-01

    Background Peroxisome proliferator-activated receptors gamma (PPARγ) ligands have been shown to inhibit the growth of non-small cell lung cancer (NSCLC) cells. However, the mechanisms underlying this effect remain incompletely elucidated. Methods Cell proliferation and apoptosis were measured by cell viability, MTT and caspase3/7 activity assays. Phosphorylation/protein expression and gene silence/overexpression of AMPKα, phosphoinositide-dependent protein kinase 1 (PDK1), Egr-1 and PPARγ were performed by Western blot and siRNA/transfection assays. Dual-Luciferase Reporter Kit was used to measure the PPAR response elements (PPRE) reporter and PDK1 promoter activities, and ChIP assay was used to detect the Egr-1 protein binding to the DNA site in the PDK1 gene promoter. Results We found that ciglitazone, one synthetic PPARγ ligand, inhibited growth and induced apoptosis of NSCLC cells through decreased expression of PDK1, which was not blocked by GW9662 (a specific PPARγ antagonist). Overexpression of PDK1 overcame the effect of ciglitazone on cell growth and caspase 3/7 activity. Ciglitazone increased the phosphorylation of AMPKα and c-Jun N-terminal kinase (JNK), and the inhibitor of AMPK (compound C), but not JNK (SP600125), reversed the effect of ciglitazone on PDK1 protein expression. Ciglitazone reduced PDK1 gene promoter activity, which was not observed in cells exposed to compound C, but not silenced of PPARγ siRNA. Combination of ciglitazone and metformin further reduced PDK1 expression and promoter activity. Furthermore, we showed that ciglitazone induced the protein expression of Egr-1, which was not observed in cells silencing of AMPKα. Moreover, silencing of Egr-1 abrogated the effect of ciglitazone on PDK1 promoter activity and cell growth. On the contrary, overexpression of Egr-1 enhanced the effect of ciglitazone on PDK1 gene promoter activity. ChIP assays demonstrated that ciglitazone induced Egr-1 protein bind to the specific DNA site

  15. Malaria Parasite-Infected Erythrocytes Secrete PfCK1, the Plasmodium Homologue of the Pleiotropic Protein Kinase Casein Kinase 1.

    PubMed

    Dorin-Semblat, Dominique; Demarta-Gatsi, Claudia; Hamelin, Romain; Armand, Florence; Carvalho, Teresa Gil; Moniatte, Marc; Doerig, Christian

    2015-01-01

    Casein kinase 1 (CK1) is a pleiotropic protein kinase implicated in several fundamental processes of eukaryotic cell biology. Plasmodium falciparum encodes a single CK1 isoform, PfCK1, that is expressed at all stages of the parasite's life cycle. We have previously shown that the pfck1 gene cannot be disrupted, but that the locus can be modified if no loss-of-function is incurred, suggesting an important role for this kinase in intra-erythrocytic asexual proliferation. Here, we report on the use of parasite lines expressing GFP- or His-tagged PfCK1 from the endogenous locus to investigate (i) the dynamics of PfCK1 localisation during the asexual cycle in red blood cells, and (ii) potential interactors of PfCK1, so as to gain insight into the involvement of the enzyme in specific cellular processes. Immunofluorescence analysis reveals a dynamic localisation of PfCK1, with evidence for a pool of the enzyme being directed to the membrane of the host erythrocyte in the early stages of infection, followed by a predominantly intra-parasite localisation in trophozoites and schizonts and association with micronemes in merozoites. Furthermore, we present strong evidence that a pool of enzymatically active PfCK1 is secreted into the culture supernatant, demonstrating that PfCK1 is an ectokinase. Our interactome experiments and ensuing kinase assays using recombinant PfCK1 to phosphorylate putative interactors in vitro suggest an involvement of PfCK1 in many cellular processes such as mRNA splicing, protein trafficking, ribosomal, and host cell invasion. PMID:26629826

  16. Malaria Parasite-Infected Erythrocytes Secrete PfCK1, the Plasmodium Homologue of the Pleiotropic Protein Kinase Casein Kinase 1

    PubMed Central

    Dorin-Semblat, Dominique; Demarta-Gatsi, Claudia; Hamelin, Romain; Armand, Florence; Carvalho, Teresa Gil; Moniatte, Marc; Doerig, Christian

    2015-01-01

    Casein kinase 1 (CK1) is a pleiotropic protein kinase implicated in several fundamental processes of eukaryotic cell biology. Plasmodium falciparum encodes a single CK1 isoform, PfCK1, that is expressed at all stages of the parasite’s life cycle. We have previously shown that the pfck1 gene cannot be disrupted, but that the locus can be modified if no loss-of-function is incurred, suggesting an important role for this kinase in intra-erythrocytic asexual proliferation. Here, we report on the use of parasite lines expressing GFP- or His-tagged PfCK1 from the endogenous locus to investigate (i) the dynamics of PfCK1 localisation during the asexual cycle in red blood cells, and (ii) potential interactors of PfCK1, so as to gain insight into the involvement of the enzyme in specific cellular processes. Immunofluorescence analysis reveals a dynamic localisation of PfCK1, with evidence for a pool of the enzyme being directed to the membrane of the host erythrocyte in the early stages of infection, followed by a predominantly intra-parasite localisation in trophozoites and schizonts and association with micronemes in merozoites. Furthermore, we present strong evidence that a pool of enzymatically active PfCK1 is secreted into the culture supernatant, demonstrating that PfCK1 is an ectokinase. Our interactome experiments and ensuing kinase assays using recombinant PfCK1 to phosphorylate putative interactors in vitro suggest an involvement of PfCK1 in many cellular processes such as mRNA splicing, protein trafficking, ribosomal, and host cell invasion. PMID:26629826

  17. Characterization of a conserved C-terminal motif (RSPRR) in ribosomal protein S6 kinase 1 required for its mammalian target of rapamycin-dependent regulation.

    PubMed

    Schalm, Stefanie S; Tee, Andrew R; Blenis, John

    2005-03-25

    The mammalian target of rapamycin, mTOR, is a Ser/Thr kinase that promotes cell growth and proliferation by activating ribosomal protein S6 kinase 1 (S6K1). We previously identified a conserved TOR signaling (TOS) motif in the N terminus of S6K1 that is required for its mTOR-dependent activation. Furthermore, our data suggested that the TOS motif suppresses an inhibitory function associated with the C terminus of S6K1. Here, we have characterized the mTOR-regulated inhibitory region within the C terminus. We have identified a conserved C-terminal "RSPRR" sequence that is responsible for an mTOR-dependent suppression of S6K1 activation. Deletion or mutations within this RSPRR motif partially rescue the kinase activity of the S6K1 TOS motif mutant (S6K1-F5A), and this rescued activity is rapamycin resistant. Furthermore, we have shown that the RSPRR motif significantly suppresses S6K1 phosphorylation at two phosphorylation sites (Thr-389 and Thr-229) that are crucial for S6K1 activation. Importantly, introducing both the Thr-389 phosphomimetic and RSPRR motif mutations into the catalytically inactive S6K1 mutant S6K1-F5A completely rescues its activity and renders it fully rapamycin resistant. These data show that the N-terminal TOS motif suppresses an inhibitory function mediated by the C-terminal RSPRR motif. We propose that the RSPRR motif interacts with a negative regulator of S6K1 that is normally suppressed by mTOR. PMID:15659381

  18. A New Sandwich ELISA for Quantification of Thymidine Kinase 1 Protein Levels in Sera from Dogs with Different Malignancies Can Aid in Disease Management

    PubMed Central

    Jagarlamudi, Kiran Kumar; Moreau, Laura; Westberg, Sara; Rönnberg, Henrik; Eriksson, Staffan

    2015-01-01

    Thymidine kinase 1 (TK1) is a DNA precursor enzyme whose expression is closely correlated with cell proliferation and cell turnover. Sensitive serum TK1 activity assays have been used for monitoring and prognosis of hematological malignancies in both humans and dogs. Here we describe the development of a specific sandwich TK1-ELISA for the quantification of TK1 protein levels in sera from dogs with different malignancies. A combination of rabbit polyclonal anti-dog TK1 antibody and a mouse monoclonal anti-human TK1 antibody was used. Different concentrations of recombinant canine TK1 was used as standard. Clinical evaluation of the ELISA was done by using sera from 42 healthy dogs, 43 dogs with hematological tumors and 55 with solid tumors. An established [3H]-dThd phosphorylation assay was used to determine the TK1 activity levels in the same sera. The mean TK1 activities in dogs with hematological tumors were significantly higher than those found in healthy dogs. In agreement with earlier studies, no significant difference was observed in serum TK1 activities between healthy dogs and dogs with solid tumors. However, the mean TK1 protein levels determined by new TK1-ELISA were significantly higher not only in hematological tumors but also in solid tumors compared to healthy dogs (mean ± SD = 1.30 ± 1.16, 0.67 ± 0.55 and 0.27± 0.10 ng/mL, respectively). Moreover, TK1-ELISA had significantly higher ability to distinguish lymphoma cases from healthy based on receiver operating characteristic analyses (area under the curve, AUC, of 0.96) to that of the activity assay (AUC, 0.84). Furthermore, fluctuations in TK1 protein levels during the course of chemotherapy in dogs with lymphoma closely associated with clinical outcome. Overall, the TK1-ELISA showed significant linear correlation with the TK1 activity assay (rs = 0.6, p<0.0001). Thus, the new TK1-ELISA has sufficient sensitivity and specificity for routine clinical use in veterinary oncology. PMID:26366881

  19. Roles of PTEN-induced putative kinase 1 and dynamin-related protein 1 in transient global ischemia-induced hippocampal neuronal injury

    SciTech Connect

    Chen, Shang-Der; Lin, Tsu-Kung; Yang, Ding-I.; Lee, Su-Ying; Shaw, Fu-Zen; Liou, Chia-Wei; Chuang, Yao-Chung

    2015-05-01

    Recent studies showed that increased mitochondrial fission is an early event of cell death during cerebral ischemia and dynamin-related protein 1 (Drp1) plays an important role in mitochondrial fission, which may be regulated by PTEN-induced putative kinase 1 (PINK1), a mitochondrial serine/threonine-protein kinase thought to protect cells from stress-induced mitochondrial dysfunction and regulate mitochondrial fission. However, the roles of PINK1 and Drp1 in hippocampal injury caused by transient global ischemia (TGI) remain unknown. We therefore tested the hypothesis that TGI may induce PINK1 causing downregulation of Drp1 phosphorylation to enhance hippocampal neuronal survival, thus functioning as an endogenous neuroprotective mechanism. We found progressively increased PINK1 expression in the hippocampal CA1 subfield1-48 h following TGI, reaching the maximal level at 4 h. Despite lack of changes in the expression level of total Drp1 and phosphor-Drp1 at Ser637, TGI induced a time-dependent increase of Drp1 phosphorlation at Ser616 that peaked after 24 h. Notably, PINK1-siRNA increased p-Drp1(Ser616) protein level in hippocampal CA1 subfield 24 h after TGI. The PINK1 siRNA also aggravated the TGI-induced oxidative DNA damage with an increased 8-hydroxy-deoxyguanosine (8-OHdG) content in hippocampal CA1 subfield. Furthermore, PINK1 siRNA also augmented TGI-induced apoptosis as evidenced by the increased numbers of TUNEL-positive staining and enhanced DNA fragmentation. These findings indicated that PINK1 is an endogenous protective mediator vital for neuronal survival under ischemic insult through regulating Drp1 phosphorylation at Ser616. - Highlights: • Transient global ischemia increases expression of PINK1 and p-Drp1 at Ser616 in hippocampal CA1 subfield. • PINK1-siRNA decreases PINK1 expression but increases p-Drp1 at Ser616 in hippocampal CA1 subfield. • PINK1-siRNA augments oxidative stress and neuronal damage in hippocampal CA1 subfield.

  20. Dopamine D1 Receptors Regulate Protein Synthesis-Dependent Long-Term Recognition Memory via Extracellular Signal-Regulated Kinase 1/2 in the Prefrontal Cortex

    ERIC Educational Resources Information Center

    Nagai, Taku; Takuma, Kazuhiro; Kamei, Hiroyuki; Ito, Yukio; Nakamichi, Noritaka; Ibi, Daisuke; Nakanishi, Yutaka; Murai, Masaaki; Mizoguchi, Hiroyuki; Nabeshima, Toshitaka; Yamada, Kiyofumi

    2007-01-01

    Several lines of evidence suggest that extracellular signal-regulated kinase1/2 (ERK1/2) and dopaminergic system is involved in learning and memory. However, it remains to be determined if the dopaminergic system and ERK1/2 pathway contribute to cognitive function in the prefrontal cortex (PFC). The amount of phosphorylated ERK1/2 was increased in…

  1. MiR-29a Reduces TIMP-1 Production by Dermal Fibroblasts via Targeting TGF-β Activated Kinase 1 Binding Protein 1, Implications for Systemic Sclerosis

    PubMed Central

    Ciechomska, Marzena; O’Reilly, Steven; Suwara, Monika; Bogunia-Kubik, Katarzyna; van Laar, Jacob M.

    2014-01-01

    Background Systemic sclerosis (SSc) is an autoimmune connective tissue disease characterised by skin and internal organs fibrosis due to accumulation of extra cellular matrix (ECM) proteins. Tissue inhibitor of metalloproteinases 1 (TIMP-1) plays a key role in ECM deposition. Aim To investigate the role of miR-29a in regulation of TAB1-mediated TIMP-1 production in dermal fibroblasts in systemic sclerosis. Methods Healthy control (HC) and SSc fibroblasts were cultured from skin biopsies. The expression of TIMP-1, MMP-1 and TGF-β activated kinase 1 binding protein 1 (TAB1) was measured following miR-29a transfection using ELISA, qRT-PCR, and Western Blotting. The functional effect of miR-29a on dermal fibroblasts was assessed in collagen gel assay. In addition, HeLa cells were transfected with 3′UTR of TAB1 plasmid cloned downstream of firefly luciferase gene to assess TAB1 activity. HC fibroblasts and HeLa cells were also transfected with Target protectors in order to block the endogenous miR-29a activity. Results We found that TAB1 is a novel target gene of miR-29a, also regulating downstream TIMP-1 production. TAB1 is involved in TGF-β signal transduction, a key cytokine triggering TIMP-1 production. To confirm that TAB1 is a bona fide target gene of miR-29a, we used a TAB1 3′UTR luciferase assay and Target protector system. We showed that miR-29a not only reduced TIMP-1 secretion via TAB1 repression, but also increased functional MMP-1 production resulting in collagen degradation. Blocking TAB1 activity by pharmacological inhibition or TAB1 knockdown resulted in TIMP-1 reduction, confirming TAB1-dependent TIMP-1 regulation. Enhanced expression of miR-29a was able to reverse the profibrotic phenotype of SSc fibroblasts via downregulation of collagen and TIMP-1. Conclusions miR-29a repressed TAB1-mediated TIMP-1 production in dermal fibroblasts, demonstrating that miR-29a may be a therapeutic target in SSc. PMID:25549087

  2. Phosphorylation of Ribosomal Protein S6 Kinase 1 at Thr421/Ser424 and Dephosphorylation at Thr389 Regulates SP600125-Induced Polyploidization of Megakaryocytic Cell Lines

    PubMed Central

    Lin, Di; Zhao, Yong-Shan; Liu, Shuo; Xing, Si-Ning; Zhao, Song; Chen, Cong-Qin; Jiang, Zhi-Ming; Pu, Fei-Fei; Cao, Jian-Ping; Ma, Dong-Chu

    2014-01-01

    Megakaryocytes (MKs) are one of the few cell types that become polyploid; however, the mechanisms by which these cells are designated to become polyploid are not fully understood. In this investigation, we successfully established two relatively synchronous polyploid cell models by inducing Dami and CMK cells with SP600125. We found that SP600125 induced the polyploidization of Dami and CMK cells, concomitant with the phosphorylation of ribosomal protein S6 kinase 1 (S6K1) at Thr421/Ser424 and dephosphorylation at Thr389. The polyploidization was partially blocked by H-89, a cAMP-dependent protein kinase (PKA) inhibitor, through direct binding to S6K1, leading to dephosphorylation at Thr421/Ser424 and phosphorylation at Thr389, independent of PKA. Overexpression of a rapamycin-resistant mutant of S6K1 further enhanced the inhibitory effect of LY294002 on the SP600125-induced polyploidization of Dami and CMK cells. SP600125 also induced the polyploidization of Meg-01 cells, which are derived from a patient with chronic myelogenous leukemia, without causing a significant change in S6K1 phosphorylation. Additionally, SP600125 induced the polyploidization of HEL cells, which are derived from a patient with erythroleukemia, and phosphorylation at Thr389 of S6K1 was detected. However, the polyploidization of both Meg-01 cells and HEL cells as a result of SP600125 treatment was lower than that of SP600125-induced Dami and CMK cells, and it was not blocked by H-89 despite the increased phosphorylation of S6K1 at Thr389 in both cell lines in response to H-89. Given that the Dami and CMK cell lines were derived from patients with acute megakaryocytic leukemia (AMKL) and expressed high levels of platelet-specific antigens, our data suggested that SP600125-induced polyploidization is cell-type specific, that these cell lines were more differentiated, and that phosphorylation at Thr421/Ser424 and dephosphorylation at Thr389 of S6K1 may play an important role in the SP600125

  3. AP-2-Associated Protein Kinase 1 and Cyclin G-Associated Kinase Regulate Hepatitis C Virus Entry and Are Potential Drug Targets

    PubMed Central

    Neveu, Gregory; Ziv-Av, Amotz; Barouch-Bentov, Rina; Berkerman, Elena; Mulholland, Jon

    2015-01-01

    ABSTRACT Hepatitis C virus (HCV) enters its target cell via clathrin-mediated endocytosis. AP-2-associated protein kinase 1 (AAK1) and cyclin G-associated kinase (GAK) are host kinases that regulate clathrin adaptor protein (AP)-mediated trafficking in the endocytic and secretory pathways. We previously reported that AAK1 and GAK regulate HCV assembly by stimulating binding of the μ subunit of AP-2, AP2M1, to HCV core protein. We also discovered that AAK1 and GAK inhibitors, including the approved anticancer drugs sunitinib and erlotinib, could block HCV assembly. Here, we hypothesized that AAK1 and GAK regulate HCV entry independently of their effect on HCV assembly. Indeed, silencing AAK1 and GAK expression inhibited entry of pseudoparticles and cell culture grown-HCV and internalization of Dil-labeled HCV particles with no effect on HCV attachment or RNA replication. AAK1 or GAK depletion impaired epidermal growth factor (EGF)-mediated enhanced HCV entry and endocytosis of EGF receptor (EGFR), an HCV entry cofactor and erlotinib's cancer target. Moreover, either RNA interference-mediated depletion of AP2M1 or NUMB, each a substrate of AAK1 and/or GAK, or overexpression of either an AP2M1 or NUMB phosphorylation site mutant inhibited HCV entry. Last, in addition to affecting assembly, sunitinib and erlotinib inhibited HCV entry at a postbinding step, their combination was synergistic, and their antiviral effect was reversed by either AAK1 or GAK overexpression. Together, these results validate AAK1 and GAK as critical regulators of HCV entry that function in part by activating EGFR, AP2M1, and NUMB and as the molecular targets underlying the antiviral effect of sunitinib and erlotinib (in addition to EGFR), respectively. IMPORTANCE Understanding the host pathways hijacked by HCV is critical for developing host-centered anti-HCV approaches. Entry represents a potential target for antiviral strategies; however, no FDA-approved HCV entry inhibitors are currently

  4. JNK-associated Leucine Zipper Protein Functions as a Docking Platform for Polo-like Kinase 1 and Regulation of the Associating Transcription Factor Forkhead Box Protein K1.

    PubMed

    Ramkumar, Poornima; Lee, Clement M; Moradian, Annie; Sweredoski, Michael J; Hess, Sonja; Sharrocks, Andrew D; Haines, Dale S; Reddy, E Premkumar

    2015-12-01

    JLP (JNK-associated leucine zipper protein) is a scaffolding protein that interacts with various signaling proteins associated with coordinated regulation of cellular process such as endocytosis, motility, neurite outgrowth, cell proliferation, and apoptosis. Here we identified PLK1 (Polo-like kinase 1) as a novel interaction partner of JLP through mass spectrometric approaches. Our results indicate that JLP is phospho-primed by PLK1 on Thr-351, which is recognized by the Polo box domain of PLK1 leading to phosphorylation of JLP at additional sites. Stable isotope labeling by amino acids in cell culture and quantitative LC-MS/MS analysis was performed to identify PLK1-dependent JLP-interacting proteins. Treatment of cells with the PLK1 kinase inhibitor BI2536 suppressed binding of the Forkhead box protein K1 (FOXK1) transcriptional repressor to JLP. JLP was found to interact with PLK1 and FOXK1 during mitosis. Moreover, knockdown of PLK1 affected the interaction between JLP and FOXK1. FOXK1 is a known transcriptional repressor of the CDK inhibitor p21/WAF1, and knockdown of JLP resulted in increased FOXK1 protein levels and a reduction of p21 transcript levels. Our results suggest a novel mechanism by which FOXK1 protein levels and activity are regulated by associating with JLP and PLK1. PMID:26468278

  5. Imidazopyridazine Inhibitors of Plasmodium falciparum Calcium-Dependent Protein Kinase 1 Also Target Cyclic GMP-Dependent Protein Kinase and Heat Shock Protein 90 To Kill the Parasite at Different Stages of Intracellular Development

    PubMed Central

    Moon, Robert W.; Whalley, David; Bowyer, Paul W.; Wallace, Claire; Rochani, Ankit; Nageshan, Rishi K.; Howell, Steven A.; Grainger, Munira; Jones, Hayley M.; Ansell, Keith H.; Chapman, Timothy M.; Taylor, Debra L.; Osborne, Simon A.; Baker, David A.; Tatu, Utpal

    2015-01-01

    Imidazopyridazine compounds are potent, ATP-competitive inhibitors of calcium-dependent protein kinase 1 (CDPK1) and of Plasmodium falciparum parasite growth in vitro. Here, we show that these compounds can be divided into two classes depending on the nature of the aromatic linker between the core and the R2 substituent group. Class 1 compounds have a pyrimidine linker and inhibit parasite growth at late schizogony, whereas class 2 compounds have a nonpyrimidine linker and inhibit growth in the trophozoite stage, indicating different modes of action for the two classes. The compounds also inhibited cyclic GMP (cGMP)-dependent protein kinase (PKG), and their potency against this enzyme was greatly reduced by substitution of the enzyme's gatekeeper residue at the ATP binding site. The effectiveness of the class 1 compounds against a parasite line expressing the modified PKG was also substantially reduced, suggesting that these compounds kill the parasite primarily through inhibition of PKG rather than CDPK1. HSP90 was identified as a binding partner of class 2 compounds, and a representative compound bound to the ATP binding site in the N-terminal domain of HSP90. Reducing the size of the gatekeeper residue of CDPK1 enabled inhibition of the enzyme by bumped kinase inhibitors; however, a parasite line expressing the modified enzyme showed no change in sensitivity to these compounds. Taken together, these findings suggest that CDPK1 may not be a suitable target for further inhibitor development and that the primary mechanism through which the imidazopyridazines kill parasites is by inhibition of PKG or HSP90. PMID:26711771

  6. Imidazopyridazine Inhibitors of Plasmodium falciparum Calcium-Dependent Protein Kinase 1 Also Target Cyclic GMP-Dependent Protein Kinase and Heat Shock Protein 90 To Kill the Parasite at Different Stages of Intracellular Development.

    PubMed

    Green, Judith L; Moon, Robert W; Whalley, David; Bowyer, Paul W; Wallace, Claire; Rochani, Ankit; Nageshan, Rishi K; Howell, Steven A; Grainger, Munira; Jones, Hayley M; Ansell, Keith H; Chapman, Timothy M; Taylor, Debra L; Osborne, Simon A; Baker, David A; Tatu, Utpal; Holder, Anthony A

    2016-03-01

    Imidazopyridazine compounds are potent, ATP-competitive inhibitors of calcium-dependent protein kinase 1 (CDPK1) and of Plasmodium falciparum parasite growth in vitro. Here, we show that these compounds can be divided into two classes depending on the nature of the aromatic linker between the core and the R2 substituent group. Class 1 compounds have a pyrimidine linker and inhibit parasite growth at late schizogony, whereas class 2 compounds have a nonpyrimidine linker and inhibit growth in the trophozoite stage, indicating different modes of action for the two classes. The compounds also inhibited cyclic GMP (cGMP)-dependent protein kinase (PKG), and their potency against this enzyme was greatly reduced by substitution of the enzyme's gatekeeper residue at the ATP binding site. The effectiveness of the class 1 compounds against a parasite line expressing the modified PKG was also substantially reduced, suggesting that these compounds kill the parasite primarily through inhibition of PKG rather than CDPK1. HSP90 was identified as a binding partner of class 2 compounds, and a representative compound bound to the ATP binding site in the N-terminal domain of HSP90. Reducing the size of the gatekeeper residue of CDPK1 enabled inhibition of the enzyme by bumped kinase inhibitors; however, a parasite line expressing the modified enzyme showed no change in sensitivity to these compounds. Taken together, these findings suggest that CDPK1 may not be a suitable target for further inhibitor development and that the primary mechanism through which the imidazopyridazines kill parasites is by inhibition of PKG or HSP90. PMID:26711771

  7. Activated α2-Macroglobulin Regulates Transcriptional Activation of c-MYC Target Genes through Cell Surface GRP78 Protein.

    PubMed

    Gopal, Udhayakumar; Gonzalez-Gronow, Mario; Pizzo, Salvatore Vincent

    2016-05-13

    Activated α2-macroglobulin (α2M*) signals predominantly through cell surface GRP78 (CS-GRP78) to promote proliferation and survival of cancer cells; however, the molecular mechanism remains obscure. c-MYC is an essential transcriptional regulator that controls cell proliferation. We hypothesize that α2M*/CS-GRP78-evoked key signaling events are required for transcriptional activation of c-MYC target genes. Activation of CS-GRP78 by α2M* requires ligation of the GRP78 primary amino acid sequence (Leu(98)-Leu(115)). After stimulation with α2M*, CS-GRP78 signaling activates 3-phosphoinositide-dependent protein kinase-1 (PDK1) to induce phosphorylation of PLK1, which in turn induces c-MYC transcription. We demonstrate that PLK1 binds directly to c-MYC and promotes its transcriptional activity by phosphorylating Ser(62) Moreover, activated c-MYC is recruited to the E-boxes of target genes FOSL1 and ID2 by phosphorylating histone H3 at Ser(10) In addition, targeting the carboxyl-terminal domain of CS-GRP78 with a mAb suppresses transcriptional activation of c-MYC target genes and impairs cell proliferation. This work demonstrates that α2M*/CS-GRP78 acts as an upstream regulator of the PDK1/PLK1 signaling axis to modulate c-MYC transcription and its target genes, suggesting a therapeutic strategy for targeting c-MYC-associated malignant progression. PMID:27002159

  8. AMP-activated Protein Kinase Up-regulates Mitogen-activated Protein (MAP) Kinase-interacting Serine/Threonine Kinase 1a-dependent Phosphorylation of Eukaryotic Translation Initiation Factor 4E.

    PubMed

    Zhu, Xiaoqing; Dahlmans, Vivian; Thali, Ramon; Preisinger, Christian; Viollet, Benoit; Voncken, J Willem; Neumann, Dietbert

    2016-08-12

    AMP-activated protein kinase (AMPK) is a molecular energy sensor that acts to sustain cellular energy balance. Although AMPK is implicated in the regulation of a multitude of ATP-dependent cellular processes, exactly how these processes are controlled by AMPK as well as the identity of AMPK targets and pathways continues to evolve. Here we identify MAP kinase-interacting serine/threonine protein kinase 1a (MNK1a) as a novel AMPK target. Specifically, we show AMPK-dependent Ser(353) phosphorylation of the human MNK1a isoform in cell-free and cellular systems. We show that AMPK and MNK1a physically interact and that in vivo MNK1a-Ser(353) phosphorylation requires T-loop phosphorylation, in good agreement with a recently proposed structural regulatory model of MNK1a. Our data suggest a physiological role for MNK1a-Ser(353) phosphorylation in regulation of the MNK1a kinase, which correlates with increased eIF4E phosphorylation in vitro and in vivo. PMID:27413184

  9. Molecular cloning of the duck mitogen-activated protein kinase 1 (MAPK1) gene and the development of a quantitative real-time PCR assay to detect its expression.

    PubMed

    Cao, Shoulin; Han, Xiangan; Ding, Chan; Wang, Shaohui; Tian, Mingxing; Wang, Xiaolan; Hou, Wanwan; Yue, Jiaping; Wang, Guijun; Yu, Shengqing

    2014-09-01

    Mitogen-activated protein kinase 1 (MAPK1) acts as an integration point for multiple biochemical signals, and is involved in a wide variety of biological processes such as cell proliferation and differentiation, transcription regulation, and development. Mitogen-activated protein kinase 1 plays an important role in inducing cell death in bacterial infections. In this study, the duck MAPK1 gene was cloned for the first time from the Cherry Valley duck. Sequence analysis showed that duck MAPK1 cDNA is 1,557 bp long, with an open reading frame of 1,107 bp. It encodes 368 amino acids, with 85.4, 84.5, and 97.3% homology with the human, mouse, and chicken MAPK1 gene, respectively. Furthermore, a SYBR Green quantitative real-time PCR assay was developed to detect duck MAPK1 expression. Following Riemerella anatipestifer infection by virulent strain Yb2, MAPK1 mRNA level increased more than 200-fold in the duck spleens, suggesting that increased duck MAPK1 expression can be used as an indicator of bacterial infection. Our results provide ground work to warrant further studies of the duck MAPK1 gene in bacterial pathogenesis. PMID:24974389

  10. Inhibitory effects of omega-3 fatty acids on early brain injury after subarachnoid hemorrhage in rats: Possible involvement of G protein-coupled receptor 120/β-arrestin2/TGF-β activated kinase-1 binding protein-1 signaling pathway.

    PubMed

    Yin, Jia; Li, Haiying; Meng, Chengjie; Chen, Dongdong; Chen, Zhouqing; Wang, Yibin; Wang, Zhong; Chen, Gang

    2016-06-01

    Omega-3 fatty acids have been reported to improve neuron functions during aging and in patients affected by mild cognitive impairment, and mediate potent anti-inflammatory via G protein-coupled receptor 120 (GPR120) signal pathway. Neuron dysfunction and inflammatory response also contributed to the progression of subarachnoid hemorrhage (SAH)-induced early brain injury (EBI). This study was to examine the effects of omega-3 fatty acids on SAH-induced EBI. Two weeks before SAH, 30% Omega-3 fatty acids was administered by oral gavage at 1g/kg body weight once every 24h. Specific siRNA for GPR120 was exploited. Terminal deoxynucleotidyl transferase dUTP nick end labeling, fluoro-Jade B staining, and neurobehavioral scores and brain water content test showed that omega-3 fatty acids effectively suppressed SAH-induced brain cell apoptosis and neuronal degradation, behavioral impairment, and brain edema. Western blot, immunoprecipitation, and electrophoretic mobility shift assays results showed that omega-3 fatty acids effectively suppressed SAH-induced elevation of inflammatory factors, including cyclooxygenase-2, monocyte chemoattractant protein-1, and inducible nitric oxide synthase. In addition, omega-3 fatty acids could inhibit phosphorylation of transforming growth factor β activated kinase-1 (TAK1), MEK4, c-Jun N-terminal kinase, and IkappaB kinase as well as activation of nuclear factor kappa B through regulating GPR120/β-arrestin2/TAK1 binding protein-1 pathway. Furthermore, siRNA-induced GPR120 silencing blocked the protective effects of omega-3 fatty acids. Here, we show that stimulation of GPR120 with omega-3 fatty acids pretreatment causes anti-apoptosis and anti-inflammatory effects via β-arrestin2/TAK1 binding protein-1/TAK1 pathway in the brains of SAH rats. Fish omega-3 fatty acids as part of a daily diet may reduce EBI in an experimental rat model of SAH. PMID:27000704

  11. Phosphorylation of TAR DNA-binding Protein of 43 kDa (TDP-43) by Truncated Casein Kinase 1δ Triggers Mislocalization and Accumulation of TDP-43.

    PubMed

    Nonaka, Takashi; Suzuki, Genjiro; Tanaka, Yoshinori; Kametani, Fuyuki; Hirai, Shinobu; Okado, Haruo; Miyashita, Tomoyuki; Saitoe, Minoru; Akiyama, Haruhiko; Masai, Hisao; Hasegawa, Masato

    2016-03-11

    Intracellular aggregates of phosphorylated TDP-43 are a major component of ubiquitin-positive inclusions in the brains of patients with frontotemporal lobar degeneration and ALS and are considered a pathological hallmark. Here, to gain insight into the mechanism of intracellular TDP-43 accumulation, we examined the relationship between phosphorylation and aggregation of TDP-43. We found that expression of a hyperactive form of casein kinase 1 δ (CK1δ1-317, a C-terminally truncated form) promotes mislocalization and cytoplasmic accumulation of phosphorylated TDP-43 (ubiquitin- and p62-positive) in cultured neuroblastoma SH-SY5Y cells. Insoluble phosphorylated TDP-43 prepared from cells co-expressing TDP-43 and CK1δ1-317 functioned as seeds for TDP-43 aggregation in cultured cells, indicating that CK1δ1-317-induced aggregated TDP-43 has prion-like properties. A striking toxicity and alterations of TDP-43 were also observed in yeast expressing TDP-43 and CK1δ1-317. Therefore, abnormal activation of CK1δ causes phosphorylation of TDP-43, leading to the formation of cytoplasmic TDP-43 aggregates, which, in turn, may trigger neurodegeneration. PMID:26769969

  12. Integration of Apoptosis Signal-Regulating Kinase 1-Mediated Stress Signaling with the Akt/Protein Kinase B-IκB Kinase Cascade

    PubMed Central

    Puckett, Mary C.; Goldman, Erinn H.; Cockrell, Lisa M.; Huang, Bei; Kasinski, Andrea L.; Du, Yuhong; Wang, Cun-Yu; Lin, Anning; Ichijo, Hidenori; Khuri, Fadlo

    2013-01-01

    Cellular processes are tightly controlled through well-coordinated signaling networks that respond to conflicting cues, such as reactive oxygen species (ROS), endoplasmic reticulum (ER) stress signals, and survival factors to ensure proper cell function. We report here a direct interaction between inhibitor of κB kinase (IKK) and apoptosis signal-regulating kinase 1 (ASK1), unveiling a critical node at the junction of survival, inflammation, and stress signaling networks. IKK can be activated by growth factor stimulation or tumor necrosis factor alpha engagement. IKK forms a complex with and phosphorylates ASK1 at a sensor site, Ser967, leading to the recruitment of 14-3-3, counteracts stress signal-triggered ASK1 activation, and suppresses ASK1-mediated functions. An inhibitory role of IKK in JNK signaling has been previously reported to depend on NF-κB-mediated gene expression. Our data suggest that IKK has a dual role: a transcription-dependent and a transcription-independent action in controlling the ASK1-JNK axis, coupling IKK to ROS and ER stress response. Direct phosphorylation of ASK1 by IKK also defines a novel IKK phosphorylation motif. Because of the intimate involvement of ASK1 in diverse diseases, the IKK/ASK1 interface offers a promising target for therapeutic development. PMID:23530055

  13. Signalling specificity of Ser/Thr protein kinases through docking-site-mediated interactions.

    PubMed Central

    Biondi, Ricardo M; Nebreda, Angel R

    2003-01-01

    Signal transduction pathways use protein kinases for the modification of protein function by phosphorylation. A major question in the field is how protein kinases achieve the specificity required to regulate multiple cellular functions. Here we review recent studies that illuminate the mechanisms used by three families of Ser/Thr protein kinases to achieve substrate specificity. These kinases rely on direct docking interactions with substrates, using sites distinct from the phospho-acceptor sequences. Docking interactions also contribute to the specificity and regulation of protein kinase activities. Mitogen-activated protein kinase (MAPK) family members can associate with and phosphorylate specific substrates by virtue of minor variations in their docking sequences. Interestingly, the same MAPK docking pocket that binds substrates also binds docking sequences of positive and negative MAPK regulators. In the case of glycogen synthase kinase 3 (GSK3), the presence of a phosphate-binding site allows docking of previously phosphorylated (primed) substrates; this docking site is also required for the mechanism of GSK3 inhibition by phosphorylation. In contrast, non-primed substrates interact with a different region of GSK3. Phosphoinositide-dependent protein kinase-1 (PDK1) contains a hydrophobic pocket that interacts with a hydrophobic motif present in all known substrates, enabling their efficient phosphorylation. Binding of the substrate hydrophobic motifs to the pocket in the kinase domain activates PDK1 and other members of the AGC family of protein kinases. Finally, the analysis of protein kinase structures indicates that the sites used for docking substrates can also bind N- and C-terminal extensions to the kinase catalytic core and participate in the regulation of its activity. PMID:12600273

  14. Synergistic activation of stress-activated protein kinase 1/c-Jun N-terminal kinase (SAPK1/JNK) isoforms by mitogen-activated protein kinase kinase 4 (MKK4) and MKK7.

    PubMed Central

    Fleming, Y; Armstrong, C G; Morrice, N; Paterson, A; Goedert, M; Cohen, P

    2000-01-01

    Stress-activated protein kinase 1 (SAPK1), also called c-Jun N-terminal kinase (JNK), becomes activated in vivo in response to pro-inflammatory cytokines or cellular stresses. Its full activation requires the phosphorylation of a threonine and a tyrosine residue in a Thr-Pro-Tyr motif, which can be catalysed by the protein kinases mitogen-activated protein kinase kinase (MKK)4 and MKK7. Here we report that MKK4 shows a striking preference for the tyrosine residue (Tyr-185), and MKK7 a striking preference for the threonine residue (Thr-183) in three SAPK1/JNK1 isoforms tested (JNK1 alpha 1, JNK2 alpha 2 and JNK3 alpha 1). For this reason, MKK4 and MKK7 together produce a synergistic increase in the activity of each SAPK1/JNK isoform in vitro. The MKK7 beta variant, which is several hundred-fold more efficient in activating all three SAPK1/JNK isoforms than is MKK7 alpha', is equally specific for Thr-183. MKK7 also phosphorylates JNK2 alpha 2 at Thr-404 and Ser-407 in vitro, Ser-407 being phosphorylated much more rapidly than Thr-183 in vitro. Thr-404/Ser-407 are phosphorylated in unstimulated human KB cells and HEK-293 cells, and phosphorylation is increased in response to an osmotic stress (0.5 M sorbitol). However, in contrast with Thr-183 and Tyr-185, the phosphorylation of Thr-404 and Ser-407 is not increased in response to other agonists that activate MKK7 and SAPK1/JNK, suggesting that phosphorylation of these residues is catalysed by another protein kinase, such as CK2, which also phosphorylates Thr-404 and Ser-407 in vitro. MKK3, MKK4 and MKK6 all show a strong preference for phosphorylation of the tyrosine residue of the Thr-Gly-Tyr motifs in their known substrates SAPK2a/p38, SAPK3/p38 gamma and SAPK4/p38 delta. MKK7 also phosphorylates SAPK2a/p38 at a low rate (but not SAPK3/p38 gamma or SAPK4/p38 delta), and phosphorylation occurs exclusively at the tyrosine residue, demonstrating that MKK7 is intrinsically a 'dual-specific' protein kinase. PMID:11062067

  15. Endogenous 5-HT2C Receptors Phosphorylate the cAMP Response Element Binding Protein via Protein Kinase C-Promoted Activation of Extracellular-Regulated Kinases-1/2 in Hypothalamic mHypoA-2/10 Cells.

    PubMed

    Lauffer, Lisa; Glas, Evi; Gudermann, Thomas; Breit, Andreas

    2016-07-01

    Serotonin 5-HT2C receptors (5-HT2CR) activate Gq proteins and are expressed in the central nervous system (CNS). 5-HT2CR regulate emotion, feeding, reward, or cognition and may serve as promising drug targets to treat psychiatric disorders or obesity. Owing to technical difficulties in isolating cells from the CNS and the lack of suitable cell lines endogenously expressing 5-HT2CR, our knowledge about this receptor subtype in native environments is rather limited. The hypothalamic mHypoA-2/10 cell line was recently established and resembles appetite-regulating hypothalamic neurons of the paraventricular nucleus (PVN), where 5-HT2CR have been detected in vivo. Therefore, we tested mHypoA-2/10 cells for endogenous 5-HT2CR expression. Serotonin or the 5-HT2CR preferential agonist WAY-161,503 initiated cAMP response element (CRE)-dependent gene transcription with EC50 values of 15.5 ± 9.8 and 1.1 ± 0.9 nM, respectively. Both responses were blocked by two unrelated 5-HT2CR-selective antagonists (SB-242,084, RS-102,221) but not by a 5-HT2AR (EMD-281,014) or 5-HT2BR (RS-127,455) antagonists. By single-cell calcium imaging, we found that serotonin and WAY-161,503 induced robust calcium transients, which were also blunted by both 5-HT2CR antagonists. Additionally we revealed, first, that 5-HT2CR induced CRE activation via protein kinase C (PKC)-mediated engagement of extracellular-regulated kinases-1/2 and, second, that intrinsic activity of WAY-161,503 was in the range of 0.3-0.5 compared with serotonin, defining the frequently used 5-HT2CR agonist as a partial agonist of endogenous 5-HT2CR. In conclusion, we have shown that hypothalamic mHypoA-2/10 cells endogenously express 5-HT2CR and thus are the first cell line in which to analyze 5-HT2CR pharmacology, signaling, and regulation in its natural environment. PMID:27189964

  16. Role of AMP-activated protein kinase α1 in angiotensin-II-induced renal Tgfß-activated kinase 1 activation.

    PubMed

    Mia, Sobuj; Castor, Tatsiana; Musculus, Katharina; Voelkl, Jakob; Alesutan, Ioana; Lang, Florian

    2016-08-01

    Angiotensin-II is a key factor in renal fibrosis. Obstructive nephropathy induces an isoform shift from catalytic Ampkα2 towards Ampkα1 which contributes to signaling involved in renal tissue injury. The present study explored whether the Ampkα1 isoform contributes to the renal effects of angiotensin-II. To this end, angiotensin-II was infused by subcutaneous implantation of osmotic minipumps in gene-targeted mice lacking functional Ampkα1 (Ampkα1(-/-)) and corresponding wild-type mice (Ampkα1(+/+)). Western blotting and qRT-PCR were employed to determine protein abundance and mRNA levels, respectively, in renal tissue. In Ampkα1(+/+) mice, angiotensin-II increased renal Ampkα1 protein expression without significantly modifying renal Ampkα2 protein expression. The renal phosphorylated Ampkα (Thr(172)) protein abundance was not affected by angiotensin-II in neither genotypes, but was significantly lower in Ampkα1(-/-) mice than Ampkα1(+/+) mice. Angiotensin-II increased the phosphorylation of Tak1 (Ser(412)) in renal tissue of Ampkα1(+/+) mice, an effect virtually absent in the Ampkα1(-/-) mice. Furthermore, angiotensin-II treatment significantly increased renal protein and mRNA expression of α-smooth muscle actin (αSma) as well as Tak1-target gene expression: Cox2, Il6 and Pai1 in Ampkα1(+/+) mice, all effects significantly less pronounced in Ampkα1(-/-) mice. In conclusion, angiotensin-II up-regulates the Ampkα1 isoform in renal tissue. Ampkα1 participates in renal Tak1 activation and Tak1-dependent signaling induced by angiotensin-II. PMID:27230958

  17. The effects of knockdown of rho-associated kinase 1 and zipper-interacting protein kinase on gene expression and function in cultured human arterial smooth muscle cells.

    PubMed

    Deng, Jing-Ti; Wang, Xiu-Ling; Chen, Yong-Xiang; O'Brien, Edward R; Gui, Yu; Walsh, Michael P

    2015-01-01

    Rho-associated kinase (ROCK) and zipper-interacting protein kinase (ZIPK) have been implicated in diverse physiological functions. ROCK1 phosphorylates and activates ZIPK suggesting that at least some of these physiological functions may require both enzymes. To test the hypothesis that sequential activation of ROCK1 and ZIPK is commonly involved in regulatory pathways, we utilized siRNA to knock down ROCK1 and ZIPK in cultured human arterial smooth muscle cells (SMC). Microarray analysis using a whole-transcript expression chip identified changes in gene expression induced by ROCK1 and ZIPK knockdown. ROCK1 knockdown affected the expression of 553 genes, while ZIPK knockdown affected the expression of 390 genes. A high incidence of regulation of transcription regulator genes was observed in both knockdowns. Other affected groups included transporters, kinases, peptidases, transmembrane and G protein-coupled receptors, growth factors, phosphatases and ion channels. Only 76 differentially expressed genes were common to ROCK1 and ZIPK knockdown. Ingenuity Pathway Analysis identified five pathways shared between the two knockdowns. We focused on cytokine signaling pathways since ROCK1 knockdown up-regulated 5 and down-regulated 4 cytokine genes, in contrast to ZIPK knockdown, which affected the expression of only two cytokine genes (both down-regulated). IL-6 gene expression and secretion of IL-6 protein were up-regulated by ROCK1 knockdown, whereas ZIPK knockdown reduced IL-6 mRNA expression and IL-6 protein secretion and increased ROCK1 protein expression, suggesting that ROCK1 may inhibit IL-6 secretion. IL-1β mRNA and protein levels were increased in response to ROCK1 knockdown. Differences in the effects of ROCK1 and ZIPK knockdown on cell cycle regulatory genes suggested that ROCK1 and ZIPK regulate the cell cycle by different mechanisms. ROCK1, but not ZIPK knockdown reduced the viability and inhibited proliferation of vascular SMC. We conclude that ROCK1 and

  18. The Effects of Knockdown of Rho-Associated Kinase 1 and Zipper-Interacting Protein Kinase on Gene Expression and Function in Cultured Human Arterial Smooth Muscle Cells

    PubMed Central

    Deng, Jing-Ti; Wang, Xiu-Ling; Chen, Yong-Xiang; O’Brien, Edward R.; Gui, Yu; Walsh, Michael P.

    2015-01-01

    Rho-associated kinase (ROCK) and zipper-interacting protein kinase (ZIPK) have been implicated in diverse physiological functions. ROCK1 phosphorylates and activates ZIPK suggesting that at least some of these physiological functions may require both enzymes. To test the hypothesis that sequential activation of ROCK1 and ZIPK is commonly involved in regulatory pathways, we utilized siRNA to knock down ROCK1 and ZIPK in cultured human arterial smooth muscle cells (SMC). Microarray analysis using a whole-transcript expression chip identified changes in gene expression induced by ROCK1 and ZIPK knockdown. ROCK1 knockdown affected the expression of 553 genes, while ZIPK knockdown affected the expression of 390 genes. A high incidence of regulation of transcription regulator genes was observed in both knockdowns. Other affected groups included transporters, kinases, peptidases, transmembrane and G protein-coupled receptors, growth factors, phosphatases and ion channels. Only 76 differentially expressed genes were common to ROCK1 and ZIPK knockdown. Ingenuity Pathway Analysis identified five pathways shared between the two knockdowns. We focused on cytokine signaling pathways since ROCK1 knockdown up-regulated 5 and down-regulated 4 cytokine genes, in contrast to ZIPK knockdown, which affected the expression of only two cytokine genes (both down-regulated). IL-6 gene expression and secretion of IL-6 protein were up-regulated by ROCK1 knockdown, whereas ZIPK knockdown reduced IL-6 mRNA expression and IL-6 protein secretion and increased ROCK1 protein expression, suggesting that ROCK1 may inhibit IL-6 secretion. IL-1β mRNA and protein levels were increased in response to ROCK1 knockdown. Differences in the effects of ROCK1 and ZIPK knockdown on cell cycle regulatory genes suggested that ROCK1 and ZIPK regulate the cell cycle by different mechanisms. ROCK1, but not ZIPK knockdown reduced the viability and inhibited proliferation of vascular SMC. We conclude that ROCK1 and

  19. Activation of G Protein-Coupled Receptor Kinase 1 Involves Interactions between Its N-Terminal Region and Its Kinase Domain

    SciTech Connect

    Huang, Chih-chin; Orban, Tivadar; Jastrzebska, Beata; Palczewski, Krzysztof; Tesmer, John J.G.

    2012-03-16

    G protein-coupled receptor kinases (GRKs) phosphorylate activated G protein-coupled receptors (GPCRs) to initiate receptor desensitization. In addition to the canonical phosphoacceptor site of the kinase domain, activated receptors bind to a distinct docking site that confers higher affinity and activates GRKs allosterically. Recent mutagenesis and structural studies support a model in which receptor docking activates a GRK by stabilizing the interaction of its 20-amino acid N-terminal region with the kinase domain. This interaction in turn stabilizes a closed, more active conformation of the enzyme. To investigate the importance of this interaction for the process of GRK activation, we first validated the functionality of the N-terminal region in rhodopsin kinase (GRK1) by site-directed mutagenesis and then introduced a disulfide bond to cross-link the N-terminal region of GRK1 with its specific binding site on the kinase domain. Characterization of the kinetic and biophysical properties of the cross-linked protein showed that disulfide bond formation greatly enhances the catalytic efficiency of the peptide phosphorylation, but receptor-dependent phosphorylation, Meta II stabilization, and inhibition of transducin activation were unaffected. These data indicate that the interaction of the N-terminal region with the kinase domain is important for GRK activation but does not dictate the affinity of GRKs for activated receptors.

  20. Phosphorylation of Mitogen- and Stress-Activated Protein Kinase-1 in Astrocytic Inflammation: A Possible Role in Inhibiting Production of Inflammatory Cytokines

    PubMed Central

    Shi, Jinlong; Ni, Lanchun; Huang, Qingfeng; Xia, Liang; Nie, Dekang; Lu, Xiaojian; Chen, Jian; Shi, Wei

    2013-01-01

    Purpose It is generally accepted that inflammation has a role in the progression of many central nervous system (CNS) diseases, although the mechanisms through which this occurs remain unclear. Among mitogen-activated protein kinase (MAPK) targets, mitogen- and stress-activated protein kinase (MSK1) has been thought to be involved in the pathology of inflammatory gene expression. In this study, the roles of MSK1 activation in neuroinflammation were investigated. Methods The bacterial lipopolysaccharide (LPS)-induced brain injury model was performed on Sprague-Dawley rats. The dynamic expression changes and the cellular location of p-MSK1 in the brain cortex were detected by Western blot and immunofluorescence staining. The synthesis of inflammatory cytokines in astrocytes was detected by enzyme-linked immunosorbent assay (ELISA). Results Phosphorylated MSK1 (p-MSK1 Thr-581) was induced significantly after intracerebral injection of LPS into the lateral ventricles of the rat brain. Specific upregulation of p-MSK1 in astrocytes was also observed in inflamed cerebral cortex. At 1 day after LPS stimulation, iNOS, TNFα expression, and the astrocyte marker glial fibrillary acidic protein (GFAP) were increased significantly. Also, in vitro studies indicated that the upregulation of p-MSK1 (Thr-581) may be involved in the subsequent astrocyte inflammatory process, following LPS challenge. Using an enzyme-linked immunosorbent assay (ELISA), it was confirmed that treatment with LPS in primary astrocytes stimulated the synthesis of inflammatory cytokines, through MAPKs signaling pathways. In cultured primary astrocytes, both knock-down of total MSK1 by small interfering RNAs (siRNA) or specific mutation of Thr-581 resulted in higher production of certain cytokines, such as TNFα and IL-6. Conclusions Collectively, these results suggest that MSK1 phosphorylation is associated with the regulation of LPS-induced brain injury and possibly acts as a negative regulator of

  1. Neuronal Calcium Sensor-1 Binds the D2 Dopamine Receptor and G-protein-coupled Receptor Kinase 1 (GRK1) Peptides Using Different Modes of Interactions*

    PubMed Central

    Pandalaneni, Sravan; Karuppiah, Vijaykumar; Saleem, Muhammad; Haynes, Lee P.; Burgoyne, Robert D.; Mayans, Olga; Derrick, Jeremy P.; Lian, Lu-Yun

    2015-01-01

    Neuronal calcium sensor-1 (NCS-1) is the primordial member of the neuronal calcium sensor family of EF-hand Ca2+-binding proteins. It interacts with both the G-protein-coupled receptor (GPCR) dopamine D2 receptor (D2R), regulating its internalization and surface expression, and the cognate kinases GRK1 and GRK2. Determination of the crystal structures of Ca2+/NCS-1 alone and in complex with peptides derived from D2R and GRK1 reveals that the differential recognition is facilitated by the conformational flexibility of the C-lobe-binding site. We find that two copies of the D2R peptide bind within the hydrophobic crevice on Ca2+/NCS-1, but only one copy of the GRK1 peptide binds. The different binding modes are made possible by the C-lobe-binding site of NCS-1, which adopts alternative conformations in each complex. C-terminal residues Ser-178–Val-190 act in concert with the flexible EF3/EF4 loop region to effectively form different peptide-binding sites. In the Ca2+/NCS-1·D2R peptide complex, the C-terminal region adopts a 310 helix-turn-310 helix, whereas in the GRK1 peptide complex it forms an α-helix. Removal of Ser-178–Val-190 generated a C-terminal truncation mutant that formed a dimer, indicating that the NCS-1 C-terminal region prevents NCS-1 oligomerization. We propose that the flexible nature of the C-terminal region is essential to allow it to modulate its protein-binding sites and adapt its conformation to accommodate both ligands. This appears to be driven by the variability of the conformation of the C-lobe-binding site, which has ramifications for the target specificity and diversity of NCS-1. PMID:25979333

  2. Inverse modulation of the energy sensor Snf1-related protein kinase 1 on hypoxia adaptation and salt stress tolerance in Arabidopsis thaliana.

    PubMed

    Im, Jong Hee; Cho, Young-Hee; Kim, Geun-Don; Kang, Geun-Ho; Hong, Jung-Woo; Yoo, Sang-Dong

    2014-10-01

    Terrestrial plants are exposed to complex stresses of high salt-induced abscisic acid (ABA) and submergence-induced hypoxia when seawater floods fields. Many studies have investigated plant responses to individual stress conditions, but not so much for coupled or sequentially imposed stresses. We examined molecular regulatory mechanisms of gene expression underlying the cellular responses involved in crosstalk between salt and hypoxia stresses. Salt/ABA- and AtMYC2-dependent induction of a synthetic ABA-responsive element and the native RD22 promoters were utilized in our cell-based functional assays. Such promoter-based reporter induction was largely inhibited by hypoxia and hypoxia-inducible AKIN10 activity. Biochemical analyses showed that AKIN10 negatively modulates AtMYC2 protein accumulation via proteasome activity upon AKIN10 kinase activity-dependent protein modification. Further genetic analysis using transgenic plants expressing AKIN10 provided evidence that AKIN10 activity undermined AtMYC2-dependent salt tolerance. Our findings unravel a novel molecular interaction between the key signalling constituents leading crosstalk between salt and hypoxia stresses in Arabidopsis thaliana under the detrimental condition of submergence in saltwater. PMID:24890857

  3. Angiotensin II regulates ACE and ACE2 in neurons through p38 mitogen-activated protein kinase and extracellular signal-regulated kinase 1/2 signaling

    PubMed Central

    Xiao, Liang; Haack, Karla K. V.

    2013-01-01

    Brain ANG II plays an important role in modulating sympathetic function and homeostasis. The generation and degradation of ANG II are carried out, to a large extent, through the angiotensin-converting enzyme (ACE) and ACE2, respectively. In disease states, such as hypertension and chronic heart failure, central expression of ACE is upregulated and ACE2 is decreased in central sympathoregulatory neurons. In this study, we determined the expression of ACE and ACE2 in response to ANG II in a neuronal cell culture and the subsequent signaling mechanism(s) involved. A mouse catecholaminergic neuronal cell line (CATH.a) was treated with ANG II (30, 100, and 300 nM) for 24 h, and protein expression was determined by Western blot analysis. ANG II induced a significant dose-dependent increase in ACE and decrease in ACE2 mRNA and protein expression in CATH.a neurons. This effect was abolished by pretreatment of the cells with the p38 MAPK inhibitor SB-203580 (10 μM) 30 min before administration of ANG II or the ERK1/2 inhibitor U-0126 (10 μM). These data suggest that ANG II increases ACE and attenuates ACE2 expression in neurons via the ANG II type 1 receptor, p38 MAPK, and ERK1/2 signaling pathways. PMID:23535237

  4. Naringin Mitigates Cardiac Hypertrophy by Reducing Oxidative Stress and Inactivating c-Jun Nuclear Kinase-1 Protein in Type I Diabetes.

    PubMed

    Adebiyi, A Olubunmi; Adebiyi, Oluwafeysetan O; Owira, Peter M O

    2016-02-01

    Cardiac hypertrophy (CH) in type 1 diabetes mellitus is attributed to increased oxidative stress-associated activation of c-Jun Nuclear Kinase (JNK). We investigated the effects of naringin on hyperglycemia-associated oxidative stress, activation of JNK-1, and CH. Male Sprague-Dawley rats (225-250 g) (n = 7) were divided into 6 groups. Groups I and II were orally treated with distilled water [3.0 mL/kg body weight/day (BW)] and naringin (50 mg/kg BW), respectively. Groups III-VI were rendered diabetic by a single intraperitoneal injection of 65 mg/kg BW of streptozotocin. Groups III, IV, and V were further treated with insulin (4.0 I.U, s.c, twice daily), naringin (50 mg/kg BW), and ramipril (3.0 mg/kg BW), respectively. After 56 days, the animals were sacrificed and then plasma and cardiac tissues obtained for further analysis. Naringin treatment of diabetic rats significantly reversed oxidative stress, lipid peroxidation, proteins oxidation, CH indices, and JNK protein activation compared with untreated diabetic animals. Our results do suggest that naringin mitigates CH by inhibiting oxidative stress leading to inactivation of JNK-1. Naringin supplements could therefore ameliorate CH in diabetic patients. PMID:26421421

  5. Osthole-mediated cell differentiation through bone morphogenetic protein-2/p38 and extracellular signal-regulated kinase 1/2 pathway in human osteoblast cells.

    PubMed

    Kuo, Po-Lin; Hsu, Ya-Ling; Chang, Cheng-Hsiung; Chang, Jiunn-Kae

    2005-09-01

    The survival of osteoblast cells is one of the determinants of the development of osteoporosis in patients. Osthole (7-methoxy-8-isopentenoxycoumarin) is a coumarin derivative present in many medicinal plants. By means of alkaline phosphatase (ALP) activity, osteocalcin, osteopontin, and type I collagen, enzyme-linked immunosorbent assay, we have shown that osthole exhibits a significant induction of differentiation in two human osteoblast-like cell lines, MG-63 and hFOB. Induction of differentiation by osthole was associated with increased bone morphogenetic protein (BMP)-2 production and the activations of SMAD1/5/8 and p38 and extracellular signal-regulated kinase (ERK) 1/2 kinases. Addition of purified BMP-2 protein did not increase the up-regulation of ALP activity and osteocalcin by osthole, whereas the BMP-2 antagonist noggin blocked both osthole and BMP-2-mediated ALP activity enhancement, indicating that BMP-2 production is required in osthole-mediated osteoblast maturation. Pretreatment of osteoblast cells with noggin abrogated p38 activation but only partially decreased ERK1/2 activation, suggesting that BMP-2 signaling is required in p38 activation and is partially involved in ERK1/2 activation in osthole-treated osteoblast cells. Cotreatment of p38 inhibitor SB203580 [4-(4-fluorophenyl)-2-(4-methylsulfinylphenyl)-5-(4-pyridyl)-1H-imidazole] or p38 small interfering RNA (siRNA) expression inhibited osthole-mediated activation of ALP but only slightly affected osteocalcin production. In contrast, the production of osteocalcin induced by osthole was inhibited by the mitogen-activated protein kinase kinase inhibitor PD98059 (2'-amino-3'-methoxyflavone) or by expression of an ERK2 siRNA. These data suggest that BMP-2/p38 pathway links to the early phase, whereas ERK1/2 pathway is associated with the later phase in osthole-mediated differentiation of osteoblast cells. In this study, we demonstrate that osthole is a promising agent for treating osteoporosis

  6. Nicotine Shifts the Temporal Activation of Hippocampal Protein Kinase A and Extracellular Signal-Regulated Kinase 1/2 to Enhance Long-Term, but not Short-term, Hippocampus-Dependent Memory

    PubMed Central

    Gould, Thomas J.; Wilkinson, Derek S.; Yildirim, Emre; Poole, Rachel L. F.; Leach, Prescott T.; Simmons, Steven J.

    2014-01-01

    Acute nicotine enhances hippocampus-dependent learning through nicotine binding to β2-containing nicotinic acetylcholine receptors (nAChRs), but it is unclear if nicotine is targeting processes involved in short-term memory (STM) leading to a strong long-term memory (LTM) or directly targeting LTM. In addition, the molecular mechanisms involved in the effects of nicotine on learning are unknown. Previous research indicates that protein kinase A (PKA), extracellular regulated signaling kinase 1/2 (ERK1/2), and protein synthesis are crucial for LTM. Therefore, the present study examined the effects of nicotine on STM and LTM and the involvement of PKA, ERK1/2, and protein synthesis in the nicotine-induced enhancement of hippocampus-dependent contextual learning in C57BL/6J mice. The protein synthesis inhibitor anisomycin impaired contextual conditioning assessed at 4 hours but not 2 hours post-training, delineating time points for STM (2 hours) and LTM (4 hours and beyond). Nicotine enhanced contextual conditioning at 4, 8, and 24 hours but not 2 hours post-training, indicating nicotine specifically enhances LTM but not STM. Furthermore, nicotine did not rescue deficits in contextual conditioning produced by anisomycin, suggesting that the nicotine enhancement of contextual conditioning occurs through a protein synthesis-dependent mechanism. In addition, inhibition of dorsal hippocampal PKA activity blocked the effect of acute nicotine on learning and nicotine shifted the timing of learning-related PKA and ERK1/2 activity in the dorsal and ventral hippocampus. Thus, the present results suggest that nicotine specifically enhances LTM through altering the timing of PKA and ERK1/2 signaling in the hippocampus, and suggests that the timing of PKA and ERK1/2 activity could contribute to the strength of memories. PMID:24457151

  7. The Novel Anticancer Drug Hydroxytriolein Inhibits Lung Cancer Cell Proliferation via a Protein Kinase Cα- and Extracellular Signal-Regulated Kinase 1/2-Dependent Mechanism.

    PubMed

    Guardiola-Serrano, Francisca; Beteta-Göbel, Roberto; Rodríguez-Lorca, Raquel; Ibarguren, Maitane; López, David J; Terés, Silvia; Alvarez, Rafael; Alonso-Sande, María; Busquets, Xavier; Escribá, Pablo V

    2015-08-01

    Membrane lipid therapy is a novel approach to rationally design or discover therapeutic molecules that target membrane lipids. This strategy has been used to design synthetic fatty acid analogs that are currently under study in clinical trials for the treatment of cancer. In this context, and with the aim of controlling tumor cell growth, we have designed and synthesized a hydroxylated analog of triolein, hydroxytriolein (HTO). Both triolein and HTO regulate the biophysical properties of model membranes, and they inhibit the growth of non-small-cell lung cancer (NSCLC) cell lines in vitro. The molecular mechanism underlying the antiproliferative effect of HTO involves regulation of the lipid membrane structure, protein kinase C-α and extracellular signal-regulated kinase activation, the production of reactive oxygen species, and autophagy. In vivo studies on a mouse model of NSCLC showed that HTO, but not triolein, impairs tumor growth, which could be associated with the relative resistance of HTO to enzymatic degradation. The data presented explain in part why olive oil (whose main component is the triacylglycerol triolein) is preventive but not therapeutic, and they demonstrate a potent effect of HTO against cancer. HTO shows a good safety profile, it can be administered orally, and it does not induce nontumor cell (fibroblast) death in vitro or side effects in mice, reflecting its specificity for cancer cells. For these reasons, HTO is a good candidate as a drug to combat cancer that acts by regulating lipid structure and function in the cancer cell membrane. PMID:26065701

  8. Protein kinase C-related kinase 1 and 2 play an essential role in thromboxane-mediated neoplastic responses in prostate cancer

    PubMed Central

    Hyland, Paula B.; Kinsella, B. Therese

    2015-01-01

    The prostanoid thromboxane (TX) A2 is increasingly implicated in neoplastic progression, including prostate cancer (PCa). Mechanistically, we recently identified protein kinase C-related kinase (PRK) 1 as a functional interactant of both the TPα and TPβ isoforms of the human T prostanoid receptor (TP). The interaction with PRK1 was not only essential for TPα/TPβ-induced PCa cell migration but also enabled the TXA2-TP axis to induce phosphorylation of histone H3 at Thr11 (H3Thr11), an epigenetic marker both essential for and previously exclusively associated with androgen-induced chromatin remodelling and transcriptional activation. PRK1 is a member of a subfamily of three structurally related kinases comprising PRK1/PKNα, PRK2/PKNγ and PRK3/PKNβ that are widely yet differentially implicated in various cancers. Hence, focusing on the setting of prostate cancer, this study investigated whether TPα and/or TPβ might also complex with PRK2 and PRK3 to regulate their activity and neoplastic responses. While TPα and TPβ were found in immune complexes with PRK1, PRK2 and PRK3 to regulate their activation and signalling, they do so differentially and in a TP agonist-regulated manner dependent on the T-loop activation status of the PRKs but independent of their kinase activity. Furthermore, TXA2-mediated neoplastic responses in prostate adenocarcinoma PC-3 cells, including histone H3Thr11 phosphorylation, was found to occur through a PRK1- and PRK2-, but not PRK3-, dependent mechanism. Collectively, these data suggest that TXA2 acts as both a neoplastic and epigenetic regulator and provides a mechanistic explanation, at least in part, for the prophylactic benefits of Aspirin in reducing the risk of certain cancers. PMID:26296974

  9. Post-exercise impact of ingested whey protein hydrolysate on gene expression profiles in rat skeletal muscle: activation of extracellular signal-regulated kinase 1/2 and hypoxia-inducible factor-1α.

    PubMed

    Kanda, Atsushi; Ishijima, Tomoko; Shinozaki, Fumika; Nakayama, Kyosuke; Fukasawa, Tomoyuki; Nakai, Yuji; Abe, Keiko; Kawahata, Keiko; Ikegami, Shuji

    2014-06-28

    We have previously shown that whey protein hydrolysate (WPH) causes a greater increase in muscle protein synthesis than does a mixture of amino acids that is identical in amino acid composition. The present study was conducted to investigate the effect of WPH on gene expression. Male Sprague-Dawley rats subjected to a 2 h swimming exercise were administered either a carbohydrate-amino acid diet or a carbohydrate-WPH diet immediately after exercise. At 1 h after exercise, epitrochlearis muscle mRNA was sampled and subjected to DNA microarray analysis. We found that ingestion of WPH altered 189 genes after considering the false discovery rate. Among the up-regulated genes, eight Gene Ontology (GO) terms were enriched, which included key elements such as Cd24, Ccl2, Ccl7 and Cxcl1 involved in muscle repair after exercise. In contrast, nine GO terms were enriched in gene sets that were down-regulated by the ingestion of WPH, and these GO terms fell into two clusters, 'regulation of ATPase activity' and 'immune response'. Furthermore, we found that WPH activated two upstream proteins, extracellular signal-regulated kinase 1/2 (ERK1/2) and hypoxia-inducible factor-1α (HIF-1α), which might act as key factors for regulating gene expression. These results suggest that ingestion of WPH, compared with ingestion of a mixture of amino acids with an identical amino acid composition, induces greater changes in the post-exercise gene expression profile via activation of the proteins ERK1/2 and HIF-1α. PMID:24598469

  10. Mitogen-activated protein kinase kinase 1/extracellular signal-regulated kinase (MEK-1/ERK) inhibitors sensitize reduced glucocorticoid response mediated by TNF{alpha} in human epidermal keratinocytes (HaCaT)

    SciTech Connect

    Onda, Kenji . E-mail: knjond@ps.toyaku.ac.jp; Nagashima, Masahiro; Kawakubo, Yo; Inoue, Shota; Hirano, Toshihiko; Oka, Kitaro

    2006-12-08

    Glucocorticoids (GCs) are essential drugs administered topically or systematically for the treatment of autoimmune skin diseases such as pemphigus. However, a certain proportion of patients does not respond well to GCs. Although studies on the relationship between cytokines and GC insensitivity in local tissues have attracted attention recently, little is known about the underlying mechanism(s) for GC insensitivity in epidermal keratinocytes. Here, we report that tumor necrosis factor (TNF) {alpha} reduces GC-induced transactivation of endogenous genes as well as a reporter plasmid which contains GC responsive element (GRE) in human epidermal keratinocyte cells (HaCaT). The GC insensitivity by TNF{alpha} was not accompanied by changes in mRNA expressions of GR isoforms ({alpha} or {beta}). However, we observed that mitogen-activated protein kinase kinase-1/extracellular signal-regulated kinase (MEK-1/ERK) inhibitors (PD98059 and U0126) significantly sensitized the GC-induced transactivation of anti-inflammatory genes (glucocorticoid-induced leucine zipper (GILZ) and mitogen-activated protein kinase phosphatase (MKP)-1) and FK506 binding protein (FKBP) 51 gene in the presence of TNF{alpha}. Additionally, we observed that TNF{alpha} reduced prednisolone (PSL)-dependent nuclear translocation of GR, which was restored by pre-treatment of MEK-1 inhibitors. This is the first study demonstrating a role of the MEK-1/ERK cascade in TNF{alpha}-mediated GC insensitivity. Our data suggest that overexpression of TNF{alpha} leads to topical GC insensitivity by reducing GR nuclear translocation in keratinocytes, and our findings also suggest that inhibiting the MEK-1/ERK cascade may offer a therapeutic potential for increasing GC efficacy in epidermis where sufficient inflammatory suppression is required.

  11. Inhibiting Polo-like kinase 1 causes growth reduction and apoptosis in pediatric acute lymphoblastic leukemia cells

    PubMed Central

    Hartsink-Segers, Stefanie A.; Exalto, Carla; Allen, Matthew; Williamson, Daniel; Clifford, Steven C.; Horstmann, Martin; Caron, Huib N.; Pieters, Rob; Den Boer, Monique L.

    2013-01-01

    This study investigated Polo-like kinase 1, a mitotic regulator often over-expressed in solid tumors and adult hematopoietic malignancies, as a potential new target in the treatment of pediatric acute lymphoblastic leukemia. Polo-like kinase 1 protein and Thr210 phosphorylation levels were higher in pediatric acute lymphoblastic leukemia (n=172) than in normal bone marrow mononuclear cells (n=10) (P<0.0001). High Polo-like kinase 1 protein phosphorylation, but not expression, was associated with a lower probability of event-free survival (P=0.042) and was a borderline significant prognostic factor (P=0.065) in a multivariate analysis including age and initial white blood cell count. Polo-like kinase 1 was necessary for leukemic cell survival, since short hairpin-mediated Polo-like kinase 1 knockdown in acute lymphoblastic leukemia cell lines inhibited cell proliferation by G2/M cell cycle arrest and induced apoptosis through caspase-3 and poly (ADP-ribose) polymerase cleavage. Primary patient cells with a high Polo-like kinase 1 protein expression were sensitive to the Polo-like kinase 1-specific inhibitor NMS-P937 in vitro, whereas cells with a low expression and normal bone marrow cells were resistant. This sensitivity was likely not caused by Polo-like kinase 1 mutations, since only one new mutation (Ser335Arg) was found by 454-sequencing of 38 pediatric acute lymphoblastic leukemia cases. This mutation did not affect Polo-like kinase 1 expression or NMS-P937 sensitivity. Together, these results indicate a pivotal role for Polo-like kinase 1 in pediatric acute lymphoblastic leukemia and show potential for Polo-like kinase 1-inhibiting drugs as an addition to current treatment strategies for cases expressing high Polo-like kinase 1 levels. PMID:23753023

  12. The Craterostigma plantagineum glycine-rich protein CpGRP1 interacts with a cell wall-associated protein kinase 1 (CpWAK1) and accumulates in leaf cell walls during dehydration.

    PubMed

    Giarola, Valentino; Krey, Stephanie; von den Driesch, Barbara; Bartels, Dorothea

    2016-04-01

    Craterostigma plantagineum tolerates extreme desiccation. Leaves of this plant shrink and extensively fold during dehydration and expand again during rehydration, preserving their structural integrity. Genes were analysed that may participate in the reversible folding mechanism. Analysis of transcripts abundantly expressed in desiccated leaves identified a gene putatively coding for an apoplastic glycine-rich protein (CpGRP1). We studied the expression, regulation and subcellular localization of CpGRP1 and its ability to interact with a cell wall-associated protein kinase (CpWAK1) to understand the role of CpGRP1 in the cell wall during dehydration. The CpGRP1 protein accumulates in the apoplast of desiccated leaves. Analysis of the promoter revealed that the gene expression is mainly regulated at the transcriptional level, is independent of abscisic acid (ABA) and involves a drought-responsive cis-element (DRE). CpGRP1 interacts with CpWAK1 which is down-regulated in response to dehydration. Our data suggest a role of the CpGRP1-CpWAK1 complex in dehydration-induced morphological changes in the cell wall during dehydration in C. plantagineum. Cell wall pectins and dehydration-induced pectin modifications are predicted to be involved in the activity of the CpGRP1-CpWAK1 complex. PMID:26607676

  13. Analysis of mitogen-activated protein kinase pathways used by interleukin 1 in tissues in vivo: activation of hepatic c-Jun N-terminal kinases 1 and 2, and mitogen-activated protein kinase kinases 4 and 7.

    PubMed Central

    Finch, A; Davis, W; Carter, W G; Saklatvala, J

    2001-01-01

    The effects of interleukin 1 (IL-1) are mediated by the activation of protein kinase signalling pathways, which have been well characterized in cultured cells. We have investigated the activation of these pathways in rabbit liver and other tissues after the systemic administration of IL-1alpha. In liver there was 30-40-fold activation of c-Jun N-terminal kinase (JNK) and 5-fold activation of both JNK kinases, mitogen-activated protein kinase (MAPK) kinase (MKK)4 and MKK7. IL-1alpha also caused 2-3-fold activation of p38 MAPK and degradation of the inhibitor of nuclear factor kappaB ('IkappaB'), although no activation of extracellular signal-regulated protein kinase (ERK) (p42/44 MAPK) was observed. The use of antibodies against specific JNK isoforms showed that, in liver, short (p46) JNK1 and long (p54) JNK2 are the predominant forms activated, with smaller amounts of long JNK1 and short JNK2. No active JNK3 was detected. A similar pattern of JNK activation was seen in lung, spleen, skeletal muscle and kidney. Significant JNK3 activity was detectable only in the brain, although little activation of the JNK pathway in response to IL-1alpha was observed in this tissue. This distribution of active JNK isoforms probably results from a different expression of JNKs within the tissues, rather than from a selective activation of isoforms. We conclude that IL-1alpha might activate a more restricted set of signalling pathways in tissues in vivo than it does in cultured cells, where ERK and JNK3 activation are often observed. Cultured cells might represent a 'repair' phenotype that undergoes a broader set of responses to the cytokine. PMID:11139391

  14. Interaction of the synaptic protein PICK1 (protein interacting with C kinase 1) with the non-voltage gated sodium channels BNC1 (brain Na+ channel 1) and ASIC (acid-sensing ion channel).

    PubMed Central

    Hruska-Hageman, Alesia M; Wemmie, John A; Price, Margaret P; Welsh, Michael J

    2002-01-01

    Neuronal members of the degenerin/epithelial Na(+) channel (DEG/ENaC) family of cation channels include the mammalian brain Na(+) channel 1 (BNC1), acid-sensing ion channel (ASIC) and dorsal-root acid-sensing ion channel (DRASIC). Their response to acidic pH, their sequence similarity to nematode proteins involved in mechanotransduction and their modulation by neuropeptides suggest that they may function as receptors for a number of different stimuli. Using the yeast two-hybrid assay, we found that the PDZ domain-containing protein PICK1 (protein interacting with C kinase) interacts specifically with the C-termini of BNC1 and ASIC, but not DRASIC or the related alphaENaC or betaENaC. In both the yeast two-hybrid system and mammalian cells, deletion of the BNC1 and ASIC C-termini abolished the interaction with PICK1. Likewise, mutating the PDZ domain in PICK1 abolished its interaction with BNC1 and ASIC. In addition, in a heterologous expression system PICK1 altered the distribution of BNC1 channels; this effect was dependent on the PDZ domain of PICK1 and the C-terminus of BNC1. We found crude synaptosomal fractions of brain to be enriched in ASIC, suggesting a possible synaptic localization. Moreover, in transfected hippocampal neurons ASIC co-localized with PICK1 in a punctate pattern at synapses. These data suggest that PICK1 binds ASIC and BNC1 via its PDZ domain. This interaction may be important for the localization and/or function of these channels in both the central and peripheral nervous systems. PMID:11802773

  15. Inhibition of endogenous heat shock protein 70 attenuates inducible nitric oxide synthase induction via disruption of heat shock protein 70/Na(+) /H(+) exchanger 1-Ca(2+) -calcium-calmodulin-dependent protein kinase II/transforming growth factor β-activated kinase 1-nuclear factor-κB signals in BV-2 microglia.

    PubMed

    Huang, Chao; Lu, Xu; Wang, Jia; Tong, Lijuan; Jiang, Bo; Zhang, Wei

    2015-08-01

    Inducible nitric oxide synthase (iNOS) critically contributes to inflammation and host defense. The inhibition of heat shock protein 70 (Hsp70) prevents iNOS induction in lipopolysaccharide (LPS)-stimulated macrophages. However, the role and mechanism of endogenous Hsp70 in iNOS induction in microglia remains unclear. This study addresses this issue in BV-2 microglia, showing that Hsp70 inhibition or knockdown prevents LPS-induced iNOS protein expression and nitric oxide production. Real-time PCR experiments showed that LPS-induced iNOS mRNA transcription was blocked by Hsp70 inhibition. Further studies revealed that the inhibition of Hsp70 attenuated LPS-stimulated nuclear translocation and phosphorylation of nuclear factor (NF)-κB as well as the degradation of inhibitor of κB (IκB)-α and phosphorylation of IκB kinase β (IKKβ). This prevention effect of Hsp70 inhibition on IKKβ-NF-κB activation was found to be dependent on the Ca(2+) /calcium-calmodulin-dependent protein kinase II (CaMKII)/transforming growth factor β-activated kinase 1 (TAK1) signals based on the following observations: 1) chelation of intracellular Ca(2+) or inhibition of CaMKII reduced LPS-induced increases in TAK1 phosphorylation and 2) Hsp70 inhibition reduced LPS-induced increases in CaMKII/TAK1 phosphorylation, intracellular pH value, [Ca(2+) ]i , and CaMKII/TAK1 association. Mechanistic studies showed that Hsp70 inhibition disrupted the association between Hsp70 and Na(+) /H(+) exchanger 1 (NHE1), which is an important exchanger responsible for Ca(2+) influx in LPS-stimulated cells. These studies demonstrate that the inhibition of endogenous Hsp70 attenuates the induction of iNOS, which likely occurs through the disruption of NHE1/Hsp70-Ca(2+) -CaMKII/TAK1-NF-κB signals in BV-2 microglia, providing further insight into the functions of Hsp70 in the CNS. PMID:25691123

  16. Casein Kinase 1 Promotes Initiation of Clathrin-Mediated Endocytosis

    PubMed Central

    Peng, Yutian; Grassart, Alexandre; Lu, Rebecca; Wong, Catherine C. L.; Yates, John; Barnes, Georjana; Drubin, David G.

    2014-01-01

    Summary In budding yeast, over 60 proteins functioning in at least 5 modules are recruited to endocytic sites with predictable order and timing. However, how sites of clathrin-mediated endocytosis are initiated and stabilized is not well understood. Here, the casein kinase 1 (CK1) Hrr25 is shown to be an endocytic protein and to be among the earliest proteins to appear at endocytic sites. Hrr25 absence or overexpression decreases or increases the rate of endocytic site initiation, respectively. Ede1, an early endocytic Eps15-like protein important for endocytic initiation, is an Hrr25 target and is required for Hrr25 recruitment to endocytic sites. Hrr25 phosphorylation of Ede1 is required for Hrr25-Ede1 interaction and promotes efficient initiation of endocytic sites. These observations indicate that Hrr25 kinase and Ede1 cooperate to initiate and stabilize endocytic sites. Analysis of the mammalian homologs CK1δ/ε suggests a conserved role for these protein kinases in endocytic site initiation and stabilization. PMID:25625208

  17. Casein kinase 1 promotes initiation of clathrin-mediated endocytosis.

    PubMed

    Peng, Yutian; Grassart, Alexandre; Lu, Rebecca; Wong, Catherine C L; Yates, John; Barnes, Georjana; Drubin, David G

    2015-01-26

    In budding yeast, over 60 proteins functioning in at least five modules are recruited to endocytic sites with predictable order and timing. However, how sites of clathrin-mediated endocytosis are initiated and stabilized is not well understood. Here, the casein kinase 1 (CK1) Hrr25 is shown to be an endocytic protein and to be among the earliest proteins to appear at endocytic sites. Hrr25 absence or overexpression decreases or increases the rate of endocytic site initiation, respectively. Ede1, an early endocytic Eps15-like protein important for endocytic initiation, is an Hrr25 target and is required for Hrr25 recruitment to endocytic sites. Hrr25 phosphorylation of Ede1 is required for Hrr25-Ede1 interaction and promotes efficient initiation of endocytic sites. These observations indicate that Hrr25 kinase and Ede1 cooperate to initiate and stabilize endocytic sites. Analysis of the mammalian homologs CK1δ/ε suggests a conserved role for these protein kinases in endocytic site initiation and stabilization. PMID:25625208

  18. Casein kinase 1 promotes synchrony of the circadian clock network.

    PubMed

    Zheng, Xiangzhong; Sowcik, Mallory; Chen, Dechun; Sehgal, Amita

    2014-07-01

    Casein kinase 1, known as DOUBLETIME (DBT) in Drosophila melanogaster, is a critical component of the circadian clock that phosphorylates and promotes degradation of the PERIOD (PER) protein. However, other functions of DBT in circadian regulation are not clear, in part because severe reduction of dbt causes preadult lethality. Here we report the molecular and behavioral phenotype of a viable dbt(EY02910) loss-of-function mutant. We found that DBT protein levels are dramatically reduced in adult dbt(EY02910) flies, and the majority of mutant flies display arrhythmic behavior, with a few showing weak, long-period (∼32 h) rhythms. Peak phosphorylation of PER is delayed, and both hyper- and hypophosphorylated forms of the PER and CLOCK proteins are present throughout the day. In addition, molecular oscillations of the circadian clock are dampened. In the central brain, PER and TIM expression is heterogeneous and decoupled in the canonical clock neurons of the dbt(EY02910) mutants. We also report an interaction between dbt and the signaling pathway involving pigment dispersing factor (PDF), a synchronizing peptide in the clock network. These data thus demonstrate that overall reduction of DBT causes long and arrhythmic behavior, and they reveal an unexpected role of DBT in promoting synchrony of the circadian clock network. PMID:24820422

  19. Casein Kinase 1 Promotes Synchrony of the Circadian Clock Network

    PubMed Central

    Zheng, Xiangzhong; Sowcik, Mallory; Chen, Dechun

    2014-01-01

    Casein kinase 1, known as DOUBLETIME (DBT) in Drosophila melanogaster, is a critical component of the circadian clock that phosphorylates and promotes degradation of the PERIOD (PER) protein. However, other functions of DBT in circadian regulation are not clear, in part because severe reduction of dbt causes preadult lethality. Here we report the molecular and behavioral phenotype of a viable dbtEY02910 loss-of-function mutant. We found that DBT protein levels are dramatically reduced in adult dbtEY02910 flies, and the majority of mutant flies display arrhythmic behavior, with a few showing weak, long-period (∼32 h) rhythms. Peak phosphorylation of PER is delayed, and both hyper- and hypophosphorylated forms of the PER and CLOCK proteins are present throughout the day. In addition, molecular oscillations of the circadian clock are dampened. In the central brain, PER and TIM expression is heterogeneous and decoupled in the canonical clock neurons of the dbtEY02910 mutants. We also report an interaction between dbt and the signaling pathway involving pigment dispersing factor (PDF), a synchronizing peptide in the clock network. These data thus demonstrate that overall reduction of DBT causes long and arrhythmic behavior, and they reveal an unexpected role of DBT in promoting synchrony of the circadian clock network. PMID:24820422

  20. Structural Basis of Ribosomal S6 Kinase 1 (RSK1) Inhibition by S100B Protein: MODULATION OF THE EXTRACELLULAR SIGNAL-REGULATED KINASE (ERK) SIGNALING CASCADE IN A CALCIUM-DEPENDENT WAY.

    PubMed

    Gógl, Gergő; Alexa, Anita; Kiss, Bence; Katona, Gergely; Kovács, Mihály; Bodor, Andrea; Reményi, Attila; Nyitray, László

    2016-01-01

    Mitogen-activated protein kinases (MAPK) promote MAPK-activated protein kinase activation. In the MAPK pathway responsible for cell growth, ERK2 initiates the first phosphorylation event on RSK1, which is inhibited by Ca(2+)-binding S100 proteins in malignant melanomas. Here, we present a detailed in vitro biochemical and structural characterization of the S100B-RSK1 interaction. The Ca(2+)-dependent binding of S100B to the calcium/calmodulin-dependent protein kinase (CaMK)-type domain of RSK1 is reminiscent of the better known binding of calmodulin to CaMKII. Although S100B-RSK1 and the calmodulin-CAMKII system are clearly distinct functionally, they demonstrate how unrelated intracellular Ca(2+)-binding proteins could influence the activity of the CaMK domain-containing protein kinases. Our crystallographic, small angle x-ray scattering, and NMR analysis revealed that S100B forms a "fuzzy" complex with RSK1 peptide ligands. Based on fast-kinetics experiments, we conclude that the binding involves both conformation selection and induced fit steps. Knowledge of the structural basis of this interaction could facilitate therapeutic targeting of melanomas. PMID:26527685

  1. Coupling between endocytosis and sphingosine kinase 1 recruitment.

    PubMed

    Shen, Hongying; Giordano, Francesca; Wu, Yumei; Chan, Jason; Zhu, Chen; Milosevic, Ira; Wu, Xudong; Yao, Kai; Chen, Bo; Baumgart, Tobias; Sieburth, Derek; De Camilli, Pietro

    2014-07-01

    Genetic studies have suggested a functional link between cholesterol/sphingolipid metabolism and endocytic membrane traffic. Here we show that perturbing the cholesterol/sphingomyelin balance in the plasma membrane results in the massive formation of clusters of narrow endocytic tubular invaginations positive for N-BAR proteins. These tubules are intensely positive for sphingosine kinase 1 (SPHK1). SPHK1 is also targeted to physiologically occurring early endocytic intermediates, and is highly enriched in nerve terminals, which are cellular compartments specialized for exo/endocytosis. Membrane recruitment of SPHK1 involves a direct, curvature-sensitive interaction with the lipid bilayer mediated by a hydrophobic patch on the enzyme's surface. The knockdown of SPHKs results in endocytic recycling defects, and a mutation that disrupts the hydrophobic patch of Caenorhabditis elegans SPHK fails to rescue the neurotransmission defects in loss-of-function mutants of this enzyme. Our studies support a role for sphingosine phosphorylation in endocytic membrane trafficking beyond the established function of sphingosine-1-phosphate in intercellular signalling. PMID:24929359

  2. Identification of inhibitors of checkpoint kinase 1 through template screening.

    PubMed

    Matthews, Thomas P; Klair, Suki; Burns, Samantha; Boxall, Kathy; Cherry, Michael; Fisher, Martin; Westwood, Isaac M; Walton, Michael I; McHardy, Tatiana; Cheung, Kwai-Ming J; Van Montfort, Rob; Williams, David; Aherne, G Wynne; Garrett, Michelle D; Reader, John; Collins, Ian

    2009-08-13

    Checkpoint kinase 1 (CHK1) is an oncology target of significant current interest. Inhibition of CHK1 abrogates DNA damage-induced cell cycle checkpoints and sensitizes p53 deficient cancer cells to genotoxic therapies. Using template screening, a fragment-based approach to small molecule hit generation, we have identified multiple CHK1 inhibitor scaffolds suitable for further optimization. The sequential combination of in silico low molecular weight template selection, a high concentration biochemical assay and hit validation through protein-ligand X-ray crystallography provided 13 template hits from an initial in silico screening library of ca. 15000 compounds. The use of appropriate counter-screening to rule out nonspecific aggregation by test compounds was essential for optimum performance of the high concentration bioassay. One low molecular weight, weakly active purine template hit was progressed by iterative structure-based design to give submicromolar pyrazolopyridines with good ligand efficiency and appropriate CHK1-mediated cellular activity in HT29 colon cancer cells. PMID:19572549

  3. Development of an Orally Available and Central Nervous System (CNS) Penetrant Toxoplasma gondii Calcium-Dependent Protein Kinase 1 (TgCDPK1) Inhibitor with Minimal Human Ether-a-go-go-Related Gene (hERG) Activity for the Treatment of Toxoplasmosis.

    PubMed

    Vidadala, Rama Subba Rao; Rivas, Kasey L; Ojo, Kayode K; Hulverson, Matthew A; Zambriski, Jennifer A; Bruzual, Igor; Schultz, Tracey L; Huang, Wenlin; Zhang, Zhongsheng; Scheele, Suzanne; DeRocher, Amy E; Choi, Ryan; Barrett, Lynn K; Siddaramaiah, Latha Kallur; Hol, Wim G J; Fan, Erkang; Merritt, Ethan A; Parsons, Marilyn; Freiberg, Gail; Marsh, Kennan; Kempf, Dale J; Carruthers, Vern B; Isoherranen, Nina; Doggett, J Stone; Van Voorhis, Wesley C; Maly, Dustin J

    2016-07-14

    New therapies are needed for the treatment of toxoplasmosis, which is a disease caused by the protozoan parasite Toxoplasma gondii. To this end, we previously developed a potent and selective inhibitor (compound 1) of Toxoplasma gondii calcium-dependent protein kinase 1 (TgCDPK1) that possesses antitoxoplasmosis activity in vitro and in vivo. Unfortunately, 1 has potent human ether-a-go-go-related gene (hERG) inhibitory activity, associated with long Q-T syndrome, and consequently presents a cardiotoxicity risk. Here, we describe the identification of an optimized TgCDPK1 inhibitor 32, which does not have a hERG liability and possesses a favorable pharmacokinetic profile in small and large animals. 32 is CNS-penetrant and highly effective in acute and latent mouse models of T. gondii infection, significantly reducing the amount of parasite in the brain, spleen, and peritoneal fluid and reducing brain cysts by >85%. These properties make 32 a promising lead for the development of a new antitoxoplasmosis therapy. PMID:27309760

  4. Checkpoint kinase 1 (Chk1) is required for mitotic progression through negative regulation of polo-like kinase 1 (Plk1)

    PubMed Central

    Tang, Jiabin; Erikson, Raymond L.; Liu, Xiaoqi

    2006-01-01

    Although the essential function of checkpoint kinase 1 (Chk1) in DNA damage response has been well established, the role of Chk1 in normal cell cycle progression is unclear. By using RNAi to specifically deplete Chk1, we determined loss-of-function phenotypes in HeLa cells. A vector-based RNAi approach showed that Chk1 is required for normal cell proliferation and survival, inasmuch as a dramatic cell-cycle arrest at G2/M phase and massive apoptosis were observed in Chk1-deficient cells. Coupling of siRNA with cell synchronization further revealed that Chk1 depletion leads to metaphase block, as indicated by various mitotic markers. Neither bipolar spindle formation nor centrosome functions were affected by Chk1 depletion; however, the depleted cells exhibited chromosome misalignment during metaphase, chromosome lagging during anaphase, and kinetochore defects within the regions of misaligned/lagging chromosomes. Moreover, we showed that Chk1 is a negative regulator of polo-like kinase 1 (Plk1), in either the absence or presence of DNA damage. Finally, Chk1 depletion leads to the activation of the spindle checkpoint because codepletion of spindle checkpoint proteins rescues the Chk1 depletion-induced mitotic arrest. PMID:16873548

  5. Sphingosine kinase-1--a potential therapeutic target in cancer.

    PubMed

    Cuvillier, Olivier

    2007-02-01

    Sphingolipid metabolites play critical functions in the regulation of a number of fundamental biological processes including cancer. Whereas ceramide and sphingosine mediate and trigger apoptosis or cell growth arrest, sphingosine 1-phosphate promotes proliferation and cell survival. The delicate equilibrium between the intracellular levels of each of these sphingolipids is controlled by the enzymes that either produce or degrade these metabolites. Sphingosine kinase-1 is a crucial regulator of this two-pan balance, because it produces the prosurvival sphingosine 1-phosphate, and reduces the content of both ceramide and sphingosine, the proapoptotic sphingolipids. Sphingosine kinase-1 controls the levels of sphingolipids having opposite effects on cell survival/death, its gene was found to be of oncogenic nature, its mRNA is overexpressed in many solid tumors, its overexpression protects cells from apoptosis and its activity is decreased during anticancer treatments. Therefore, sphingosine kinase-1 appears to be a target of interest for therapeutic manipulation via its pharmacological inhibition. Strategies to kill tumor cells by increasing their ceramide and/or sphingosine content while blocking sphingosine 1-phosphate generation should have a favorable therapeutic index. PMID:17159597

  6. Low cytoplasmic casein kinase 1 epsilon expression predicts poor prognosis in patients with hepatocellular carcinoma.

    PubMed

    Lin, Shu-Hui; Yeh, Chung-Min; Hsieh, Ming-Ju; Lin, Yueh-Min; Chen, Mei-Wen; Chen, Chih-Jung; Lin, Cheng-Yu; Hung, Hsiao-Fang; Yeh, Kun-Tu; Yang, Shun-Fa

    2016-03-01

    Casein kinase 1 epsilon (CK1ε) is a member of the casein kinase 1 (CK1) family, which comprises highly conserved and ubiquitous serine/threonine protein kinases. Recent studies have demonstrated that CK1ε plays a role in human cancers; however, the role of CK1ε in hepatocellular carcinoma (HCC) remains unclear. The study used immunohistochemistry to examine CK1ε expression in 230 HCC specimens by tissue microarray (TMA) and assessed the effect of CK1ε knockdown on migration of human hepatoma cells in vitro. The immunohistochemical analyses showed that low CK1ε expression was significantly correlated with tumor differentiation (p = 0.008), T classification (p = 0.016), tumor vascular invasion (p = 0.002), and cancer stage (p = 0.010). The univariate and multivariate analyses showed that patients with low CK1ε expression had a considerably lower OS rate than that of the patients with high CK1ε expression (p = 0.041, hazard ratio = 1.4; p = 0.039, hazard ratio = 1.4). Moreover, CK1ε small interfering RNA (siRNA) treatment exerted an invasion-promoting effect in human hepatoma cells. In conclusion, our data indicated that low CK1ε expression is correlated with a low survival rate and CK1ε may play a role as a tumor suppressor in hepatocarcinogenesis. PMID:26482619

  7. Sphingosine kinase 1/sphingosine 1-phosphate signalling pathway as a potential therapeutic target of pulmonary hypertension

    PubMed Central

    Xing, Xi-Qian; Li, Yan-Li; Zhang, Yu-Xuan; Xiao, Yi; Li, Zhi-Dong; Liu, Li-Qiong; Zhou, Yu-Shan; Zhang, Hong-Yan; Liu, Yan-Hong; Zhang, Li-Hui; Zhuang, Min; Chen, Yan-Ping; Ouyang, Sheng-Rong; Wu, Xu-Wei; Yang, Jiao

    2015-01-01

    Pulmonary hypertension is characterized by extensive vascular remodelling, leading to increased pulmonary vascular resistance and eventual death due to right heart failure. The pathogenesis of pulmonary hypertension involves vascular endothelial dysfunction and disordered vascular smooth muscle cell (VSMC) proliferation and migration, but the exact processes remain unknown. Sphingosine 1-phosphate (S1P) is a bioactive lysophospholipid involved in a wide spectrum of biological processes. S1P has been shown to regulate VSMC proliferation and migration and vascular tension via a family of five S1P G-protein-coupled receptors (S1P1-SIP5). S1P has been shown to have both a vasoconstrictive and vasodilating effect. The S1P receptors S1P1 and S1P3 promote, while S1P2 inhibits VSMC proliferation and migration in vitro in response to S1P. Moreover, it has been reported recently that sphingosine kinase 1 and S1P2 inhibitors might be useful therapeutic agents in the treatment of empirical pulmonary hypertension. The sphingosine kinase 1/S1P signalling pathways may play a role in the pathogenesis of pulmonary hypertension. Modulation of this pathway may offer novel therapeutic strategies. PMID:26550106

  8. Sphingosine kinase 1/sphingosine 1-phosphate signalling pathway as a potential therapeutic target of pulmonary hypertension.

    PubMed

    Xing, Xi-Qian; Li, Yan-Li; Zhang, Yu-Xuan; Xiao, Yi; Li, Zhi-Dong; Liu, Li-Qiong; Zhou, Yu-Shan; Zhang, Hong-Yan; Liu, Yan-Hong; Zhang, Li-Hui; Zhuang, Min; Chen, Yan-Ping; Ouyang, Sheng-Rong; Wu, Xu-Wei; Yang, Jiao

    2015-01-01

    Pulmonary hypertension is characterized by extensive vascular remodelling, leading to increased pulmonary vascular resistance and eventual death due to right heart failure. The pathogenesis of pulmonary hypertension involves vascular endothelial dysfunction and disordered vascular smooth muscle cell (VSMC) proliferation and migration, but the exact processes remain unknown. Sphingosine 1-phosphate (S1P) is a bioactive lysophospholipid involved in a wide spectrum of biological processes. S1P has been shown to regulate VSMC proliferation and migration and vascular tension via a family of five S1P G-protein-coupled receptors (S1P1-SIP5). S1P has been shown to have both a vasoconstrictive and vasodilating effect. The S1P receptors S1P1 and S1P3 promote, while S1P2 inhibits VSMC proliferation and migration in vitro in response to S1P. Moreover, it has been reported recently that sphingosine kinase 1 and S1P2 inhibitors might be useful therapeutic agents in the treatment of empirical pulmonary hypertension. The sphingosine kinase 1/S1P signalling pathways may play a role in the pathogenesis of pulmonary hypertension. Modulation of this pathway may offer novel therapeutic strategies. PMID:26550106

  9. Sphingosine kinase-1 mediates androgen-induced osteoblast cell growth.

    PubMed

    Martin, Claire; Lafosse, Jean-Michel; Malavaud, Bernard; Cuvillier, Olivier

    2010-01-01

    Herein we report that the lipid kinase sphingosine kinase-1 (SphK1) is instrumental in mediating androgen-induced cell proliferation in osteoblasts. Dihydrotestosterone (DHT) triggered cell growth in steroid-deprived MC3T3 cells, which was associated with a rapid stimulation of SphK1 and activation of both Akt and ERK signaling pathways. This mechanism relied on functional androgen receptor/PI3K/Akt nongenotropic signaling as pharmacological antagonists could block SphK1 stimulation by DHT and its consequences. Finally, SphK1 inhibition not only abrogated DHT-induced ERK activation but also blocked cell proliferation, while ERK inhibition had no impact, suggesting that SphK1 was critical for DHT signaling yet independently of the ERK. PMID:19932089

  10. Sphingosine kinase-1 mediates androgen-induced osteoblast cell growth

    SciTech Connect

    Martin, Claire; Lafosse, Jean-Michel; Malavaud, Bernard; Cuvillier, Olivier

    2010-01-01

    Herein we report that the lipid kinase sphingosine kinase-1 (SphK1) is instrumental in mediating androgen-induced cell proliferation in osteoblasts. Dihydrotestosterone (DHT) triggered cell growth in steroid-deprived MC3T3 cells, which was associated with a rapid stimulation of SphK1 and activation of both Akt and ERK signaling pathways. This mechanism relied on functional androgen receptor/PI3K/Akt nongenotropic signaling as pharmacological antagonists could block SphK1 stimulation by DHT and its consequences. Finally, SphK1 inhibition not only abrogated DHT-induced ERK activation but also blocked cell proliferation, while ERK inhibition had no impact, suggesting that SphK1 was critical for DHT signaling yet independently of the ERK.

  11. Sphingosine kinase 1 as an anticancer therapeutic target

    PubMed Central

    Gao, Ying; Gao, Fei; Chen, Kan; Tian, Mei-li; Zhao, Dong-li

    2015-01-01

    The development of chemotherapeutic resistance is a major challenge in oncology. Elevated sphingosine kinase 1 (SK1) levels is predictive of a poor prognosis, and SK1 overexpression may confer resistance to chemotherapeutics. The SK/sphingosine-1-phosphate (S1P)/sphingosine-1-phosphate receptor (S1PR) signaling pathway has been implicated in the progression of various cancers and in chemotherapeutic drug resistance. Therefore, SK1 may represent an important target for cancer therapy. Targeting the SK/S1P/S1PR signaling pathway may be an effective anticancer therapeutic strategy, particularly in the context of overcoming drug resistance. This review summarizes our current understanding of the role of SK/S1P/S1PR signaling in cancer and development of SK1 inhibitors. PMID:26150697

  12. The extracellular signal-regulated kinase mitogen-activated protein kinase/ribosomal S6 protein kinase 1 cascade phosphorylates cAMP response element-binding protein to induce MUC5B gene expression via D-prostanoid receptor signaling.

    PubMed

    Choi, Yeon Ho; Lee, Sang-Nam; Aoyagi, Hiroki; Yamasaki, Yasundo; Yoo, Jung-Yoon; Park, Boryung; Shin, Dong Min; Yoon, Ho-Geun; Yoon, Joo-Heon

    2011-09-30

    Mucus hypersecretion is a prominent feature of respiratory diseases, and MUC5B is a major airway mucin. Mucin gene expression can be affected by inflammatory mediators, including prostaglandin (PG) D(2,) an inflammatory mediator synthesized by hematopoietic PGD synthase (H-PGDS). PGD(2) binds to either D-prostanoid receptor (DP1) or chemoattractant receptor homologous molecule expressed on T-helper type 2 cells (CRTH2). We investigated the mechanisms by which PGD(2) induces MUC5B gene expression in airway epithelial cells. Western blot analysis showed that H-PGDS was highly expressed in nasal polyps. Similar results were obtained for PGD(2) expression. In addition, we could clearly detect the expressions of both H-PGDS and DP1 in nasal epithelial cells but not CRTH2. We demonstrated that PGD(2) increased MUC5B gene expression in normal human nasal epithelial cells as well as in NCI-H292 cells in vitro. S5751, a DP1 antagonist, inhibited PGD(2)-induced MUC5B expression, whereas a CRTH2 antagonist (OC0459) did not. These data suggest that PGD(2) induced MUC5B expression via DP1. Pretreatment with extracellular signal-regulated kinase (ERK) inhibitor (PD98059) blocked both PGD(2)-induced ERK mitogen-activated protein kinase (MAPK) activation and MUC5B expression. Proximity ligation assays showed direct interaction between RSK1 and cAMP response element-binding protein (CREB). Stimulation with PGD(2) caused an increase in intracellular cAMP levels, whereas intracellular Ca(2+) did not have such an effect. PGD(2)-induced MUC5B mRNA levels were regulated by CREB via direct interaction with two cAMP-response element sites (-921/-914 and -900/-893). Finally, we demonstrated that PGD(2) can induce MUC5B overproduction via ERK MAPK/RSK1/CREB signaling and that DP1 receptor may have suppressive effects in controlling MUC5B overproduction in the airway. PMID:21832046

  13. Production of recombinant human apoptosis signal-regulating kinase 1 (ASK1) in Escherichia coli.

    PubMed

    Volynets, Galyna P; Gorbatiuk, Oksana B; Kukharenko, Oleksandr P; Usenko, Mariya O; Yarmoluk, Sergiy M

    2016-10-01

    Apoptosis signal-regulating kinase 1 (ASK1) is a mediator of the MAPK signaling cascade, which regulates different cellular processes including apoptosis, cell survival, and differentiation. The increased activity of ASK1 is associated with a number of human diseases and this protein kinase is considered as promising therapeutic target. In the present study, the kinase domain of human ASK1 was expressed in Escherichia coli (E. coli) in soluble form. The expression level of ASK1 was around 0.3-0.47 g per 1 L after using auto-induction protocol or IPTG induction. A one-step on column method for the efficient purification of recombinant ASK1 was performed. Our approach yields sufficient amount of recombinant ASK1, which can be used for inhibitor screening assays and different crystallographic studies. PMID:27245507

  14. NSun2 Promotes Cell Growth via Elevating Cyclin-Dependent Kinase 1 Translation

    PubMed Central

    Xing, Junyue; Yi, Jie; Cai, Xiaoyu; Tang, Hao; Liu, Zhenyun; Zhang, Xiaotian; Martindale, Jennifer L.; Yang, Xiaoling; Jiang, Bin; Gorospe, Myriam

    2015-01-01

    The tRNA methytransferase NSun2 promotes cell proliferation, but the molecular mechanism has not been elucidated. Here, we report that NSun2 regulates cyclin-dependent kinase 1 (CDK1) expression in a cell cycle-dependent manner. Knockdown of NSun2 decreased the CDK1 protein level, while overexpression of NSun2 elevated it without altering CDK1 mRNA levels. Further studies revealed that NSun2 methylated CDK1 mRNA in vitro and in cells and that methylation by NSun2 enhanced CDK1 translation. Importantly, NSun2-mediated regulation of CDK1 expression had an impact on the cell division cycle. These results provide new insight into the regulation of CDK1 during the cell division cycle. PMID:26391950

  15. Serum and Glucocorticoid Regulated Kinase 1 in Sodium Homeostasis

    PubMed Central

    Lou, Yiyun; Zhang, Fan; Luo, Yuqin; Wang, Liya; Huang, Shisi; Jin, Fan

    2016-01-01

    The ubiquitously expressed serum and glucocorticoid regulated kinase 1 (SGK1) is tightly regulated by osmotic and hormonal signals, including glucocorticoids and mineralocorticoids. Recently, SGK1 has been implicated as a signal hub for the regulation of sodium transport. SGK1 modulates the activities of multiple ion channels and carriers, such as epithelial sodium channel (ENaC), voltage-gated sodium channel (Nav1.5), sodium hydrogen exchangers 1 and 3 (NHE1 and NHE3), sodium-chloride symporter (NCC), and sodium-potassium-chloride cotransporter 2 (NKCC2); as well as the sodium-potassium adenosine triphosphatase (Na+/K+-ATPase) and type A natriuretic peptide receptor (NPR-A). Accordingly, SGK1 is implicated in the physiology and pathophysiology of Na+ homeostasis. Here, we focus particularly on recent findings of SGK1’s involvement in Na+ transport in renal sodium reabsorption, hormone-stimulated salt appetite and fluid balance and discuss the abnormal SGK1-mediated Na+ reabsorption in hypertension, heart disease, edema with diabetes, and embryo implantation failure. PMID:27517916

  16. The proliferation marker thymidine kinase 1 in clinical use

    PubMed Central

    ZHOU, JI; HE, ELLEN; SKOG, SVEN

    2013-01-01

    Tumor-related biomarkers are used for the diagnosis, prognosis and monitoring of treatments and follow-up of cancer patients, although only a few are fully accepted for the detection of invisible/visible tumors in health screening. Thymidine kinase 1 (TK1), a cell cycle-dependent and thus a proliferation-related marker, has been extensively studied during the last decades, using both biochemical and immunological techniques. Therefore, TK1 is an emerging potential proliferating biomarker in oncology that may be used for the prognosis and monitoring of tumor therapy, relapse and survival. In addition, TK1 concentration in serum (STK1p) is a useful biomarker in healthy screening for the detection of potential malignancy development as well as the identification of early-stage tumors, with a few false-positive cases (ROC value, 0.96; tumor proliferation sensitivity, 0.80; specificity, 0.99). In this review, we examine results regarding the expression of STK1p and TK1 in relation to cancer patients and STK1p in health screening published between 2000 and 2012. The use of tumor-related markers recommended by international cancer organizations is also discussed. This review provides valuable information for applications in tumor patients, in health screening and for cancer research. PMID:24649117

  17. Serum and Glucocorticoid Regulated Kinase 1 in Sodium Homeostasis.

    PubMed

    Lou, Yiyun; Zhang, Fan; Luo, Yuqin; Wang, Liya; Huang, Shisi; Jin, Fan

    2016-01-01

    The ubiquitously expressed serum and glucocorticoid regulated kinase 1 (SGK1) is tightly regulated by osmotic and hormonal signals, including glucocorticoids and mineralocorticoids. Recently, SGK1 has been implicated as a signal hub for the regulation of sodium transport. SGK1 modulates the activities of multiple ion channels and carriers, such as epithelial sodium channel (ENaC), voltage-gated sodium channel (Nav1.5), sodium hydrogen exchangers 1 and 3 (NHE1 and NHE3), sodium-chloride symporter (NCC), and sodium-potassium-chloride cotransporter 2 (NKCC2); as well as the sodium-potassium adenosine triphosphatase (Na⁺/K⁺-ATPase) and type A natriuretic peptide receptor (NPR-A). Accordingly, SGK1 is implicated in the physiology and pathophysiology of Na⁺ homeostasis. Here, we focus particularly on recent findings of SGK1's involvement in Na⁺ transport in renal sodium reabsorption, hormone-stimulated salt appetite and fluid balance and discuss the abnormal SGK1-mediated Na⁺ reabsorption in hypertension, heart disease, edema with diabetes, and embryo implantation failure. PMID:27517916

  18. Arabidopsis Receptor of Activated C Kinase1 Phosphorylation by WITH NO LYSINE8 KINASE

    DOE PAGESBeta

    Urano, Daisuke; Czarnecki, Olaf; Wang, Xiaoping; Jones, Alan M.; Chen, Jin-Gui

    2014-12-08

    Receptor of activated C kinase1 (RACK1) is a versatile scaffold protein that binds to numerous proteins to regulate diverse cellular pathways in mammals. In Arabidopsis (Arabidopsis thaliana), RACK1 has been shown to regulate plant hormone signaling, stress responses, and multiple processes of growth and development. However, little is known about the molecular mechanism underlying these regulations. In this paper, we show that an atypical serine (Ser)/threonine (Thr) protein kinase, WITH NO LYSINE8 (WNK8), phosphorylates RACK1. WNK8 physically interacted with and phosphorylated RACK1 proteins at two residues: Ser-122 and Thr-162. Genetic epistasis analysis of rack1 wnk8 double mutants indicated that RACK1more » acts downstream of WNK8 in the glucose responsiveness and flowering pathways. The phosphorylation-dead form, RACK1AS122A/T162A, but not the phosphomimetic form, RACK1AS122D/T162E, rescued the rack1a null mutant, implying that phosphorylation at Ser-122 and Thr-162 negatively regulates RACK1A function. The transcript of RACK1AS122D/T162E accumulated at similar levels as those of RACK1S122A/T162A. However, although the steady-state level of the RACK1AS122A/T162A protein was similar to wild-type RACK1A protein, the RACK1AS122D/T162E protein was nearly undetectable, suggesting that phosphorylation affects the stability of RACK1A proteins. In conclusion, these results suggest that RACK1 is phosphorylated by WNK8 and that phosphorylation negatively regulates RACK1 function by influencing its protein stability.« less

  19. Arabidopsis Receptor of Activated C Kinase1 Phosphorylation by WITH NO LYSINE8 KINASE

    SciTech Connect

    Urano, Daisuke; Czarnecki, Olaf; Wang, Xiaoping; Jones, Alan M.; Chen, Jin-Gui

    2014-12-08

    Receptor of activated C kinase1 (RACK1) is a versatile scaffold protein that binds to numerous proteins to regulate diverse cellular pathways in mammals. In Arabidopsis (Arabidopsis thaliana), RACK1 has been shown to regulate plant hormone signaling, stress responses, and multiple processes of growth and development. However, little is known about the molecular mechanism underlying these regulations. In this paper, we show that an atypical serine (Ser)/threonine (Thr) protein kinase, WITH NO LYSINE8 (WNK8), phosphorylates RACK1. WNK8 physically interacted with and phosphorylated RACK1 proteins at two residues: Ser-122 and Thr-162. Genetic epistasis analysis of rack1 wnk8 double mutants indicated that RACK1 acts downstream of WNK8 in the glucose responsiveness and flowering pathways. The phosphorylation-dead form, RACK1AS122A/T162A, but not the phosphomimetic form, RACK1AS122D/T162E, rescued the rack1a null mutant, implying that phosphorylation at Ser-122 and Thr-162 negatively regulates RACK1A function. The transcript of RACK1AS122D/T162E accumulated at similar levels as those of RACK1S122A/T162A. However, although the steady-state level of the RACK1AS122A/T162A protein was similar to wild-type RACK1A protein, the RACK1AS122D/T162E protein was nearly undetectable, suggesting that phosphorylation affects the stability of RACK1A proteins. In conclusion, these results suggest that RACK1 is phosphorylated by WNK8 and that phosphorylation negatively regulates RACK1 function by influencing its protein stability.

  20. Quantitative phospho-proteomics to investigate the polo-like kinase 1-dependent phospho-proteome.

    PubMed

    Grosstessner-Hain, Karin; Hegemann, Björn; Novatchkova, Maria; Rameseder, Jonathan; Joughin, Brian A; Hudecz, Otto; Roitinger, Elisabeth; Pichler, Peter; Kraut, Norbert; Yaffe, Michael B; Peters, Jan-Michael; Mechtler, Karl

    2011-11-01

    Polo-like kinase 1 (PLK1) is a key regulator of mitotic progression and cell division, and small molecule inhibitors of PLK1 are undergoing clinical trials to evaluate their utility in cancer therapy. Despite this importance, current knowledge about the identity of PLK1 substrates is limited. Here we present the results of a proteome-wide analysis of PLK1-regulated phosphorylation sites in mitotic human cells. We compared phosphorylation sites in HeLa cells that were or were not treated with the PLK1-inhibitor BI 4834, by labeling peptides via methyl esterification, fractionation of peptides by strong cation exchange chromatography, and phosphopeptide enrichment via immobilized metal affinity chromatography. Analysis by quantitative mass spectrometry identified 4070 unique mitotic phosphorylation sites on 2069 proteins. Of these, 401 proteins contained one or multiple phosphorylation sites whose abundance was decreased by PLK1 inhibition. These include proteins implicated in PLK1-regulated processes such as DNA damage, mitotic spindle formation, spindle assembly checkpoint signaling, and chromosome segregation, but also numerous proteins that were not suspected to be regulated by PLK1. Analysis of amino acid sequence motifs among phosphorylation sites down-regulated under PLK1 inhibition in this data set identified two potential novel variants of the PLK1 consensus motif. PMID:21857030

  1. Metabolic labeling of leucine rich repeat kinases 1 and 2 with radioactive phosphate.

    PubMed

    Taymans, Jean-Marc; Gao, Fangye; Baekelandt, Veerle

    2013-01-01

    Leucine rich repeat kinases 1 and 2 (LRRK1 and LRRK2) are paralogs which share a similar domain organization, including a serine-threonine kinase domain, a Ras of complex proteins domain (ROC), a C-terminal of ROC domain (COR), and leucine-rich and ankyrin-like repeats at the N-terminus. The precise cellular roles of LRRK1 and LRRK2 have yet to be elucidated, however LRRK1 has been implicated in tyrosine kinase receptor signaling, while LRRK2 is implicated in the pathogenesis of Parkinson's disease. In this report, we present a protocol to label the LRRK1 and LRRK2 proteins in cells with (32)P orthophosphate, thereby providing a means to measure the overall phosphorylation levels of these 2 proteins in cells. In brief, affinity tagged LRRK proteins are expressed in HEK293T cells which are exposed to medium containing (32)P-orthophosphate. The (32)P-orthophosphate is assimilated by the cells after only a few hours of incubation and all molecules in the cell containing phosphates are thereby radioactively labeled. Via the affinity tag (3xflag) the LRRK proteins are isolated from other cellular components by immunoprecipitation. Immunoprecipitates are then separated via SDS-PAGE, blotted to PVDF membranes and analysis of the incorporated phosphates is performed by autoradiography ((32)P signal) and western detection (protein signal) of the proteins on the blots. The protocol can readily be adapted to monitor phosphorylation of any other protein that can be expressed in cells and isolated by immunoprecipitation. PMID:24084685

  2. Molecular interactions of polo-like kinase 1 in human cancers.

    PubMed

    Weng Ng, Wayne Tiong; Shin, Joo-Shik; Roberts, Tara Laurine; Wang, Bin; Lee, Cheok Soon

    2016-07-01

    Polo-like kinase 1 (PLK1) is an essential protein in communicating cell-cycle progression and DNA damage. Overexpression of PLK1 has been validated as a marker for poor prognosis in many cancers. PLK1 knockdown decreases the survival of cancer cells. PLK1 is therefore an attractive target for anticancer treatments. Several inhibitors have been developed, and some have been clinically tested to show additive effects with conventional therapies. Upstream regulation of PLK1 involves multiple interactions of proteins such as FoxM1, E2F and p21. Other cancer-related proteins such as pRB and p53 also indirectly influence PLK1 expression. With the high mutation rates of these genes seen in cancers, they may be associated with PLK1 deregulation. This raises the question of whether PLK1 overexpression is a cause or a consequence of oncogenesis. In addition, hypomethylation of the CpG island of the PLK1 promoter region contributes to its upregulation. PLK1 expression can be affected by many factors; thus, it is possible that PLK1 deregulation in each individual patient tumours could be due to different underlying mechanisms. PMID:26941182

  3. The Indispensable Role of Cyclin-Dependent Kinase 1 in Skeletal Development

    PubMed Central

    Saito, Masanori; Mulati, Mieradili; Talib, S. Zakiah A.; Kaldis, Philipp; Takeda, Shu; Okawa, Atsushi; Inose, Hiroyuki

    2016-01-01

    Skeletal development is tightly regulated through the processes of chondrocyte proliferation and differentiation. Although the involvement of transcription and growth factors on the regulation of skeletal development has been extensively studied, the role of cell cycle regulatory proteins in this process remains elusive. To date, through cell-specific loss-of-function experiments in vivo, no cell cycle regulatory proteins have yet been conclusively shown to regulate skeletal development. Here, we demonstrate that cyclin-dependent kinase 1 (Cdk1) regulates skeletal development based on chondrocyte-specific loss-of-function experiments performed in a mouse model. Cdk1 is highly expressed in columnar proliferative chondrocytes and is greatly downregulated upon differentiation into hypertrophic chondrocytes. Cdk1 is essential for proper chondrocyte proliferation and deletion of Cdk1 resulted in accelerated differentiation of chondrocytes. In vitro and ex vivo analyses revealed that Cdk1 is an essential cell cycle regulatory protein for parathyroid hormone-related peptide (PTHrP) signaling pathway, which is critical to chondrocyte proliferation and differentiation. These results demonstrate that Cdk1 functions as a molecular switch from proliferation to hypertrophic differentiation of chondrocytes and thus is indispensable for skeletal development. Given the availability of inhibitors of Cdk1 activity, our results could provide insight for the treatment of diseases involving abnormal chondrocyte proliferation, such as osteoarthritis. PMID:26860366

  4. Poxviral Protein A52 Stimulates p38 Mitogen-activated Protein Kinase (MAPK) Activation by Causing Tumor Necrosis Factor Receptor-associated Factor 6 (TRAF6) Self-association Leading to Transforming Growth Factor β-activated Kinase 1 (TAK1) Recruitment*

    PubMed Central

    Stack, Julianne; Hurst, Tara P.; Flannery, Sinead M.; Brennan, Kiva; Rupp, Sebastian; Oda, Shun-ichiro; Khan, Amir R.; Bowie, Andrew G.

    2013-01-01

    Vaccinia virus encodes a number of proteins that inhibit and manipulate innate immune signaling pathways that also have a role in virulence. These include A52, a protein shown to inhibit IL-1- and Toll-like receptor-stimulated NFκB activation, via interaction with interleukin-1 receptor-associated kinase 2 (IRAK2). Interestingly, A52 was also found to activate p38 MAPK and thus enhance Toll-like receptor-dependent IL-10 induction, which was TRAF6-dependent, but the manner in which A52 manipulates TRAF6 to stimulate p38 activation was unclear. Here, we show that A52 has a non-canonical TRAF6-binding motif that is essential for TRAF6 binding and p38 activation but dispensable for NFκB inhibition and IRAK2 interaction. Wild-type A52, but not a mutant defective in p38 activation and TRAF6 binding (F154A), caused TRAF6 oligomerization and subsequent TRAF6-TAK1 association. The crystal structure of A52 shows that it adopts a Bcl2-like fold and exists as a dimer in solution. Residue Met-65 was identified as being located in the A52 dimer interface, and consistent with that, A52-M65E was impaired in its ability to dimerize. A52-M65E although capable of interacting with TRAF6, was unable to cause either TRAF6 self-association, induce the TRAF6-TAK1 association, or activate p38 MAPK. The results suggest that an A52 dimer causes TRAF6 self-association, leading to TAK1 recruitment and p38 activation. This reveals a molecular mechanism whereby poxviruses manipulate TRAF6 to activate MAPKs (which can be proviral) without stimulating antiviral NFκB activation. PMID:24114841

  5. Luteolin Suppresses Cancer Cell Proliferation by Targeting Vaccinia-Related Kinase 1

    PubMed Central

    Shin, Joon; Harikishore, Amaravadhi; Lim, Jong-Kwan; Jung, Youngseob; Lyu, Ha-Na; Baek, Nam-In; Choi, Kwan Yong; Yoon, Ho Sup; Kim, Kyong-Tai

    2014-01-01

    Uncontrolled proliferation, a major feature of cancer cells, is often triggered by the malfunction of cell cycle regulators such as protein kinases. Recently, cell cycle-related protein kinases have become attractive targets for anti-cancer therapy, because they play fundamental roles in cellular proliferation. However, the protein kinase-targeted drugs that have been developed so far do not show impressive clinical results and also display severe side effects; therefore, there is undoubtedly a need to investigate new drugs targeting other protein kinases that are critical in cell cycle progression. Vaccinia-related kinase 1 (VRK1) is a mitotic kinase that functions in cell cycle regulation by phosphorylating cell cycle-related substrates such as barrier-to-autointegration factor (BAF), histone H3, and the cAMP response element (CRE)-binding protein (CREB). In our study, we identified luteolin as the inhibitor of VRK1 by screening a small-molecule natural compound library. Here, we evaluated the efficacy of luteolin as a VRK1-targeted inhibitor for developing an effective anti-cancer strategy. We confirmed that luteolin significantly reduces VRK1-mediated phosphorylation of the cell cycle-related substrates BAF and histone H3, and directly interacts with the catalytic domain of VRK1. In addition, luteolin regulates cell cycle progression by modulating VRK1 activity, leading to the suppression of cancer cell proliferation and the induction of apoptosis. Therefore, our study suggests that luteolin-induced VRK1 inhibition may contribute to establish a novel cell cycle-targeted strategy for anti-cancer therapy. PMID:25310002

  6. SUMOylation regulates polo-like kinase 1-interacting checkpoint helicase (PICH) during mitosis.

    PubMed

    Sridharan, Vinidhra; Park, Hyewon; Ryu, Hyunju; Azuma, Yoshiaki

    2015-02-01

    Mitotic SUMOylation has an essential role in faithful chromosome segregation in eukaryotes, although its molecular consequences are not yet fully understood. In Xenopus egg extract assays, we showed that poly(ADP-ribose) polymerase 1 (PARP1) is modified by SUMO2/3 at mitotic centromeres and that its enzymatic activity could be regulated by SUMOylation. To determine the molecular consequence of mitotic SUMOylation, we analyzed SUMOylated PARP1-specific binding proteins. We identified Polo-like kinase 1-interacting checkpoint helicase (PICH) as an interaction partner of SUMOylated PARP1 in Xenopus egg extract. Interestingly, PICH also bound to SUMOylated topoisomerase IIα (TopoIIα), a major centromeric small ubiquitin-like modifier (SUMO) substrate. Purified recombinant human PICH interacted with SUMOylated substrates, indicating that PICH directly interacts with SUMO, and this interaction is conserved among species. Further analysis of mitotic chromosomes revealed that PICH localized to the centromere independent of mitotic SUMOylation. Additionally, we found that PICH is modified by SUMO2/3 on mitotic chromosomes and in vitro. PICH SUMOylation is highly dependent on protein inhibitor of activated STAT, PIASy, consistent with other mitotic chromosomal SUMO substrates. Finally, the SUMOylation of PICH significantly reduced its DNA binding capability, indicating that SUMOylation might regulate its DNA-dependent ATPase activity. Collectively, our findings suggest a novel SUMO-mediated regulation of the function of PICH at mitotic centromeres. PMID:25564610

  7. Tank binding kinase 1 is a centrosome-associated kinase necessary for microtubule dynamics and mitosis

    PubMed Central

    Pillai, Smitha; Nguyen, Jonathan; Johnson, Joseph; Haura, Eric; Coppola, Domenico; Chellappan, Srikumar

    2015-01-01

    TANK Binding Kinase 1 (TBK1) is a non-canonical IκB kinase that contributes to KRAS-driven lung cancer. Here we report that TBK1 plays essential roles in mammalian cell division. Specifically, levels of active phospho-TBK1 increase during mitosis and localize to centrosomes, mitotic spindles and midbody, and selective inhibition or silencing of TBK1 triggers defects in spindle assembly and prevents mitotic progression. TBK1 binds to the centrosomal protein CEP170 and to the mitotic apparatus protein NuMA, and both CEP170 and NuMA are TBK1 substrates. Further, TBK1 is necessary for CEP170 centrosomal localization and binding to the microtubule depolymerase Kif2b, and for NuMA binding to dynein. Finally, selective disruption of the TBK1–CEP170 complex augments microtubule stability and triggers defects in mitosis, suggesting that TBK1 functions as a mitotic kinase necessary for microtubule dynamics and mitosis. PMID:26656453

  8. Apoptosis signal-regulating kinase 1 mediates denbinobin-induced apoptosis in human lung adenocarcinoma cells

    PubMed Central

    Kuo, Chen-Tzu; Chen, Bing-Chang; Yu, Chung-Chi; Weng, Chih-Ming; Hsu, Ming-Jen; Chen, Chien-Chih; Chen, Mei-Chieh; Teng, Che-Ming; Pan, Shiow-Lin; Bien, Mauo-Ying; Shih, Chung-Hung; Lin, Chien-Huang

    2009-01-01

    In the present study, we explore the role of apoptosis signal-regulating kinase 1 (ASK1) in denbinobin-induced apoptosis in human lung adenocarcinoma (A549) cells. Denbinobin-induced cell apoptosis was attenuated by an ASK1 dominant-negative mutant (ASK1DN), two antioxidants (N-acetyl-L-cysteine (NAC) and glutathione (GSH)), a c-Jun N-terminal kinase (JNK) inhibitor (SP600125), and an activator protein-1 (AP-1) inhibitor (curcumin). Treatment of A549 cells with denbinobin caused increases in ASK1 activity and reactive oxygen species (ROS) production, and these effects were inhibited by NAC and GSH. Stimulation of A549 cells with denbinobin caused JNK activation; this effect was markedly inhibited by NAC, GSH, and ASK1DN. Denbinobin induced c-Jun phosphorylation, the formation of an AP-1-specific DNA-protein complex, and Bim expression. Bim knockdown using a bim short interfering RNA strategy also reduced denbinobin-induced A549 cell apoptosis. The denbinobin-mediated increases in c-Jun phosphorylation and Bim expression were inhibited by NAC, GSH, SP600125, ASK1DN, JNK1DN, and JNK2DN. These results suggest that denbinobin might activate ASK1 through ROS production to cause JNK/AP-1 activation, which in turn induces Bim expression, and ultimately results in A549 cell apoptosis. PMID:19405983

  9. Mitogen and stress response kinase-1 (MSK1) mediates excitotoxic induced death of hippocampal neurones.

    PubMed

    Hughes, Jane P; Staton, Penny C; Wilkinson, Marc G; Strijbos, Paul J L M; Skaper, Stephen D; Arthur, J Simon C; Reith, Alastair D

    2003-07-01

    Activation of the mitogen-activated protein kinase (MAPK/ERK) signal transduction pathway may mediate excitotoxic neuronal cell death in vitro and during ischemic brain injury in vivo. However, little is known, of the upstream regulation or downstream consequences of ERK activation under these conditions. Magnesium removal has been described to induce hyperexcitability and degeneration in cultured hippocampal neurones. Here, we show that neurotoxicity evoked by Mg2+ removal in primary hippocampal neurones stimulates ERK, but not p38, phosphorylation. Removal of Mg2+ also resulted in induction of the MAPK/ERK substrate mitogen- and stress-response kinase 1 (MSK1) and induced phosphorylation of the MSK1 substrate, the transcription factor cAMP response element binding protein (CREB). Neuronal death and phosphorylation of components in this cascade were inhibited by the Raf inhibitor SB-386023, by the MEK inhibitor U0126, or by the MSK1 inhibitors H89 and Ro318220. Importantly, this form of cell death was inhibited in hippocampal neurones cultured from MSK1-/- mice and inhibitors of Raf or MEK had no additive neuroprotective effect. Together, these data indicate that MSK1 is a physiological kinase for CREB and that this activity is an essential component of activity-dependent neuronal cell death. PMID:12807421

  10. Mumps Virus Nucleoprotein Enhances Phosphorylation of the Phosphoprotein by Polo-Like Kinase 1

    PubMed Central

    Pickar, Adrian; Zengel, James; Xu, Pei; Li, Zhuo

    2015-01-01

    ABSTRACT The viral RNA-dependent RNA polymerases (vRdRps) of nonsegmented, negative-sense viruses (NNSVs) consist of the enzymatic large protein (L) and the phosphoprotein (P). P is heavily phosphorylated, and its phosphorylation plays a critical role in viral RNA synthesis. Since NNSVs do not encode kinases, P is phosphorylated by host kinases. In this study, we investigate the roles that viral proteins play in the phosphorylation of mumps virus (MuV) P. We found that nucleoprotein (NP) enhances the phosphorylation of P. We have identified the serine/threonine kinase Polo-like kinase 1 (PLK1) as a host kinase that phosphorylates P and have found that phosphorylation of P by PLK1 is enhanced by NP. The PLK1 binding site in MuV P was mapped to residues 146 to 148 within the S(pS/T)P motif, and the phosphorylation site was identified as residues S292 and S294. IMPORTANCE It has previously been shown that P acts as a chaperone for NP, which encapsidates viral genomic RNA to form the NP-RNA complex, the functional template for viral RNA synthesis. Thus, it is assumed that phosphorylation of P may regulate NP's ability to form the NP-RNA complex, thereby regulating viral RNA synthesis. Our work demonstrates that MuV NP affects phosphorylation of P, suggesting that NP can regulate viral RNA synthesis by regulating phosphorylation of P. PMID:26608325

  11. Checkpoint kinase 1 is activated and promotes cell survival after exposure to sulphur mustard.

    PubMed

    Jowsey, Paul A; Blain, Peter G

    2015-01-22

    Sulphur mustard (SM) is a vesicating agent that has been used several times as a weapon during military conflict and continues to pose a threat as an agent of warfare/terrorism. After exposure, SM exerts both acute and delayed long-term toxic effects principally to the skin, eyes and respiratory system. These effects are thought to be mediated, at least in part, by direct interaction of SM with DNA, forming a myriad of DNA lesions and initiating effects on cell cycle and cell death pathways. Previous studies have demonstrated that a complex network of cellular DNA damage response pathways are utilised in cells exposed to SM, consistent with SM causing multiple forms of DNA damage. The present study focused on the role of Checkpoint kinase 1 (CHK1), a protein with putative roles in homologous recombination repair, p53 activation and the initiation of cell cycle checkpoints after certain forms of DNA damage. The data showed that SM caused robust activation of CHK1, monitored by multi-site phosphorylation analysis and that this activation was dependent on the ataxia telangiectasia and Rad3-related (ATR) protein kinase. Furthermore, specific inhibition of CHK1 increased SM toxicity in multiple human cell lines, with concomitant increases in markers of apoptosis, DNA damage and mitosis. Finally, the effect of CHK1 inhibition on SM toxicity was much more marked in cells with non-functional p53. PMID:25448276

  12. Spermiogenesis initiation in Caenorhabditis elegans involves a casein kinase 1 encoded by the spe-6 gene.

    PubMed Central

    Muhlrad, Paul J; Ward, Samuel

    2002-01-01

    Immature spermatids from Caenorhabditis elegans are stimulated by an external activation signal to reorganize their membranes and cytoskeleton to form crawling spermatozoa. This rapid maturation, termed spermiogenesis, occurs without any new gene expression. To better understand this signal transduction pathway, we isolated suppressors of a mutation in the spe-27 gene, which is part of the pathway. The suppressors bypass the requirement for spe-27, as well as three other genes that act in this pathway, spe-8, spe-12, and spe-29. Eighteen of the suppressor mutations are new alleles of spe-6, a previously identified gene required for an early stage of spermatogenesis. The original spe-6 mutations are loss-of-function alleles that prevent major sperm protein (MSP) assembly in the fibrous bodies of spermatocytes and arrest development in meiosis. We have isolated the spe-6 gene and find that it encodes a predicted protein-serine/threonine kinase in the casein kinase 1 family. The suppressor mutations appear to be reduction-of-function alleles. We propose a model whereby SPE-6, in addition to its early role in spermatocyte development, inhibits spermiogenesis until the activation signal is received. The activation signal is transduced through SPE-8, SPE-12, SPE-27, and SPE-29 to relieve SPE-6 repression, thus triggering the formation of crawling spermatozoa. PMID:12019230

  13. Casein Kinase 1 α Phosphorylates the Wnt Regulator Jade-1 and Modulates Its Activity*

    PubMed Central

    Borgal, Lori; Rinschen, Markus M.; Dafinger, Claudia; Hoff, Sylvia; Reinert, Matthäus J.; Lamkemeyer, Tobias; Lienkamp, Soeren S.; Benzing, Thomas; Schermer, Bernhard

    2014-01-01

    Tight regulation of Wnt/β-catenin signaling is critical for vertebrate development and tissue maintenance, and deregulation can lead to a host of disease phenotypes, including developmental disorders and cancer. Proteins associated with primary cilia and centrosomes have been demonstrated to negatively regulate canonical Wnt signaling in interphase cells. The plant homeodomain zinc finger protein Jade-1 can act as an E3 ubiquitin ligase-targeting β-catenin for proteasomal degradation and concentrates at the centrosome and ciliary basal body in addition to the nucleus in interphase cells. We demonstrate that the destruction complex component casein kinase 1α (CK1α) phosphorylates Jade-1 at a conserved SLS motif and reduces the ability of Jade-1 to inhibit β-catenin signaling. Consistently, Jade-1 lacking the SLS motif is more effective than wild-type Jade-1 in reducing β-catenin-induced secondary axis formation in Xenopus laevis embryos in vivo. Interestingly, CK1α also phosphorylates β-catenin and the destruction complex component adenomatous polyposis coli at a similar SLS motif to the effect that β-catenin is targeted for degradation. The opposing effect of Jade-1 phosphorylation by CK1α suggests a novel example of the dual functions of CK1α activity to either oppose or promote canonical Wnt signaling in a context-dependent manner. PMID:25100726

  14. Soluble fms-like tyrosine kinase 1 promotes angiotensin II sensitivity in preeclampsia.

    PubMed

    Burke, Suzanne D; Zsengellér, Zsuzsanna K; Khankin, Eliyahu V; Lo, Agnes S; Rajakumar, Augustine; DuPont, Jennifer J; McCurley, Amy; Moss, Mary E; Zhang, Dongsheng; Clark, Christopher D; Wang, Alice; Seely, Ellen W; Kang, Peter M; Stillman, Isaac E; Jaffe, Iris Z; Karumanchi, S Ananth

    2016-07-01

    Preeclampsia is a hypertensive disorder of pregnancy in which patients develop profound sensitivity to vasopressors, such as angiotensin II, and is associated with substantial morbidity for the mother and fetus. Enhanced vasoconstrictor sensitivity and elevations in soluble fms-like tyrosine kinase 1 (sFLT1), a circulating antiangiogenic protein, precede clinical signs and symptoms of preeclampsia. Here, we report that overexpression of sFlt1 in pregnant mice induced angiotensin II sensitivity and hypertension by impairing endothelial nitric oxide synthase (eNOS) phosphorylation and promoting oxidative stress in the vasculature. Administration of the NOS inhibitor l-NAME to pregnant mice recapitulated the angiotensin sensitivity and oxidative stress observed with sFlt1 overexpression. Sildenafil, an FDA-approved phosphodiesterase 5 inhibitor that enhances NO signaling, reversed sFlt1-induced hypertension and angiotensin II sensitivity in the preeclampsia mouse model. Sildenafil treatment also improved uterine blood flow, decreased uterine vascular resistance, and improved fetal weights in comparison with untreated sFlt1-expressing mice. Finally, sFLT1 protein expression inversely correlated with reductions in eNOS phosphorylation in placental tissue of human preeclampsia patients. These data support the concept that endothelial dysfunction due to high circulating sFLT1 may be the primary event leading to enhanced vasoconstrictor sensitivity that is characteristic of preeclampsia and suggest that targeting sFLT1-induced pathways may be an avenue for treating preeclampsia and improving fetal outcomes. PMID:27270170

  15. Identification of Candidate Cyclin-dependent kinase 1 (Cdk1) Substrates in Mitosis by Quantitative Phosphoproteomics.

    PubMed

    Petrone, Adam; Adamo, Mark E; Cheng, Chao; Kettenbach, Arminja N

    2016-07-01

    Cyclin-dependent kinase 1 (Cdk1) is an essential regulator of many mitotic processes including the reorganization of the cytoskeleton, chromosome segregation, and formation and separation of daughter cells. Deregulation of Cdk1 activity results in severe defects in these processes. Although the role of Cdk1 in mitosis is well established, only a limited number of Cdk1 substrates have been identified in mammalian cells. To increase our understanding of Cdk1-dependent phosphorylation pathways in mitosis, we conducted a quantitative phosphoproteomics analysis in mitotic HeLa cells using two small molecule inhibitors of Cdk1, Flavopiridol and RO-3306. In these analyses, we identified a total of 24,840 phosphopeptides on 4,273 proteins, of which 1,215 phosphopeptides on 551 proteins were significantly reduced by 2.5-fold or more upon Cdk1 inhibitor addition. Comparison of phosphopeptide quantification upon either inhibitor treatment revealed a high degree of correlation (R(2) value of 0.87) between the different datasets. Motif enrichment analysis of significantly regulated phosphopeptides revealed enrichment of canonical Cdk1 kinase motifs. Interestingly, the majority of proteins identified in this analysis contained two or more Cdk1 inhibitor-sensitive phosphorylation sites, were highly connected with other candidate Cdk1 substrates, were enriched at specific subcellular structures, or were part of protein complexes as identified by the CORUM database. Furthermore, candidate Cdk1 substrates were enriched in G2 and M phase-specific genes. Finally, we validated a subset of candidate Cdk1 substrates by in vitro kinase assays. Our findings provide a valuable resource for the cell signaling and mitosis research communities and greatly increase our knowledge of Cdk1 substrates and Cdk1-dependent signaling pathways. PMID:27134283

  16. Phosphorylation of LRRK2 by casein kinase 1α regulates trans-Golgi clustering via differential interaction with ARHGEF7

    PubMed Central

    Chia, Ruth; Haddock, Sara; Beilina, Alexandra; Rudenko, Iakov N; Mamais, Adamantios; Kaganovich, Alice; Li, Yan; Kumaran, Ravindran; Nalls, Michael A; Cookson, Mark R

    2014-01-01

    LRRK2, a gene relevant to Parkinson's disease, encodes a scaffolding protein with both GTPase and kinase activities. LRRK2 protein is itself phosphorylated and therefore subject to regulation by cell signaling but the kinase(s) responsible for this event have not been definitively identified. Here, using an unbiased siRNA kinome screen, we identify and validate casein kinase 1α (CK1α) as being responsible for LRRK2 phosphorylation, including in the adult mouse striatum. We further show that LRRK2 recruitment to TGN46-positive Golgi-derived vesicles is modulated by constitutive LRRK2 phosphorylation by CK1α. These effects are mediated by differential protein interactions of LRRK2 with a guanine nucleotide exchange factor, ARHGEF7. These pathways are therefore likely involved in the physiological maintenance of the Golgi in cells, which may play a role in the pathogenesis of Parkinson's disease. PMID:25500533

  17. Serum and glucocorticoid-regulated kinase 1 regulates neutrophil clearance during inflammation resolution.

    PubMed

    Burgon, Joseph; Robertson, Anne L; Sadiku, Pranvera; Wang, Xingang; Hooper-Greenhill, Edward; Prince, Lynne R; Walker, Paul; Hoggett, Emily E; Ward, Jonathan R; Farrow, Stuart N; Zuercher, William J; Jeffrey, Philip; Savage, Caroline O; Ingham, Philip W; Hurlstone, Adam F; Whyte, Moira K B; Renshaw, Stephen A

    2014-02-15

    The inflammatory response is integral to maintaining health by functioning to resist microbial infection and repair tissue damage. Large numbers of neutrophils are recruited to inflammatory sites to neutralize invading bacteria through phagocytosis and the release of proteases and reactive oxygen species into the extracellular environment. Removal of the original inflammatory stimulus must be accompanied by resolution of the inflammatory response, including neutrophil clearance, to prevent inadvertent tissue damage. Neutrophil apoptosis and its temporary inhibition by survival signals provides a target for anti-inflammatory therapeutics, making it essential to better understand this process. GM-CSF, a neutrophil survival factor, causes a significant increase in mRNA levels for the known anti-apoptotic protein serum and glucocorticoid-regulated kinase 1 (SGK1). We have characterized the expression patterns and regulation of SGK family members in human neutrophils and shown that inhibition of SGK activity completely abrogates the antiapoptotic effect of GM-CSF. Using a transgenic zebrafish model, we have disrupted sgk1 gene function and shown this specifically delays inflammation resolution, without altering neutrophil recruitment to inflammatory sites in vivo. These data suggest SGK1 plays a key role in regulating neutrophil survival signaling and thus may prove a valuable therapeutic target for the treatment of inflammatory disease. PMID:24431232

  18. Serum and Glucocorticoid Regulated Kinase 1 (SGK1) Regulates Neutrophil Clearance During Inflammation Resolution

    PubMed Central

    Burgon, Joseph; Robertson, Anne L.; Sadiku, Pranvera; Wang, Xingang; Hooper-Greenhill, Edward; Prince, Lynne R.; Walker, Paul; Hoggett, Emily E.; Ward, Jonathan R.; Farrow, Stuart N.; Zuercher, William J.; Jeffrey, Philip; Savage, Caroline O.; Ingham, Philip W.; Hurlstone, Adam F.; Whyte, Moira K. B.; Renshaw, Stephen A.

    2013-01-01

    The inflammatory response is integral to maintaining health, by functioning to resist microbial infection and repair tissue damage. Large numbers of neutrophils are recruited to inflammatory sites to neutralise invading bacteria through phagocytosis and the release of proteases and reactive oxygen species into the extracellular environment. Removal of the original inflammatory stimulus must be accompanied by resolution of the inflammatory response, including neutrophil clearance, to prevent inadvertent tissue damage. Neutrophil apoptosis and its temporary inhibition by survival signals provides a target for anti-inflammatory therapeutics, making it essential to better understand this process. GM-CSF, a neutrophil survival factor, causes a significant increase in mRNA levels for the known anti-apoptotic protein Serum and Glucocorticoid Regulated Kinase 1 (SGK1). We have characterised the expression patterns and regulation of SGK family members in human neutrophils, and shown that inhibition of SGK activity completely abrogates the anti-apoptotic effect of GM-CSF. Using a transgenic zebrafish model, we have disrupted sgk1 gene function and shown this specifically delays inflammation resolution, without altering neutrophil recruitment to inflammatory sites in vivo. These data suggest SGK1 plays a key role in regulating neutrophil survival signalling, and thus may prove a valuable therapeutic target for the treatment of inflammatory disease. PMID:24431232

  19. Inositol hexakisphosphate kinase-1 interacts with perilipin1 to modulate lipolysis.

    PubMed

    Ghoshal, Sarbani; Tyagi, Richa; Zhu, Qingzhang; Chakraborty, Anutosh

    2016-09-01

    Lipolysis leads to the breakdown of stored triglycerides (TAG) to release free fatty acids (FFA) and glycerol which is utilized by energy expenditure pathways to generate energy. Therefore, a decrease in lipolysis augments fat accumulation in adipocytes which promotes weight gain. Conversely, if lipolysis is not complemented by energy expenditure, it leads to FFA induced insulin resistance and type-2 diabetes. Thus, lipolysis is under stringent physiological regulation, although the precise mechanism of the regulation is not known. Deletion of inositol hexakisphosphate kinase-1 (IP6K1), the major inositol pyrophosphate biosynthetic enzyme, protects mice from high fat diet (HFD) induced obesity and insulin resistance. IP6K1-KO mice are lean due to enhanced energy expenditure. Therefore, IP6K1 is a target in obesity and type-2 diabetes. However, the mechanism/s by which IP6K1 regulates adipose tissue lipid metabolism is yet to be understood. Here, we demonstrate that IP6K1-KO mice display enhanced basal lipolysis. IP6K1 modulates lipolysis via its interaction with the lipolytic regulator protein perilipin1 (PLIN1). Furthermore, phosphorylation of IP6K1 at a PKC/PKA motif modulates its interaction with PLIN1 and lipolysis. Thus, IP6K1 is a novel regulator of PLIN1 mediated lipolysis. PMID:27373682

  20. Cellular trafficking of the IL-1RI-associated kinase-1 requires intact kinase activity

    SciTech Connect

    Boel, Gaby-Fleur . E-mail: boel@mail.dife.de; Jurrmann, Nadine; Brigelius-Flohe, Regina

    2005-06-24

    Upon stimulation of cells with interleukin-1 (IL-1) the IL-1 receptor type I (IL-1RI) associated kinase-1 (IRAK-1) transiently associates to and dissociates from the IL-1RI and thereafter translocates into the nucleus. Here we show that nuclear translocation of IRAK-1 depends on its kinase activity since translocation was not observed in EL-4 cells overexpressing a kinase negative IRAK-1 mutant (EL-4{sup IRAK-1-K239S}). IRAK-1 itself, an endogenous substrate with an apparent molecular weight of 24 kDa (p24), and exogenous substrates like histone and myelin basic protein are phosphorylated by nuclear located IRAK-1. Phosphorylation of p24 cannot be detected in EL-4{sup IRAK-1-K239S} cells. IL-1-dependent recruitment of IRAK-1 to the IL-1RI and subsequent phosphorylation of IRAK-1 is a prerequisite for nuclear translocation of IRAK-1. It is therefore concluded that intracellular localization of IRAK-1 depends on its kinase activity and that IRAK-1 may also function as a kinase in the nucleus as shown by a new putative endogenous substrate.

  1. Doublecortin-like kinase 1 expression associates with breast cancer with neuroendocrine differentiation.

    PubMed

    Liu, Yu-Hong; Tsang, Julia Y S; Ni, Yun-Bi; Hlaing, Thazin; Chan, Siu-Ki; Chan, Kui-Fat; Ko, Chun-Wai; Mujtaba, S Shafaq; Tse, Gary M

    2016-01-12

    Doublecortin-like kinase 1 (DCLK1), a microtubule associated kinase, has recently been proposed to be a putative marker for stemness and adverse prognosis in gastrointestinal cancers. However, it is not clear whether the protein also plays similar roles in breast cancer. Here, the expression of DCLK1 was analyzed in a large cohort of invasive breast cancers (IBC) by immunohistochemistry. DCKL1 was associated with favorable clinico-pathologic features, namely lower histologic grade, absence of lymphovascular invasion, fibrotic focus, necrosis and lower pN stage (p≤0.045). Additionally, independent significant correlations were found with estrogen receptor and neuroendocrine markers (p ≤0.019), implicating its relationship with IBC with neuroendocrine differentiation (IBC-NED). In the current cohort, IBC-NED showed worse outcome than luminal cancers without NED (hazard ratio=1.756, p=0.041). Interestingly, within the IBC-NED group, DCLK1 was found to be a good prognostic factor (hazard ratio =0.288, p=0.011). These findings were in contrast to those in gastrointestinal cancers, suggesting different functional roles of DCLK1 in different types of cancers. In clinical practice, NED is not routinely assessed; thus IBC-NED are not well studied. Its poor outcome and significant heterogeneity warrants more attention. DCLK1 expression could aid in the prognostication and management of this special cancer subtype. PMID:26621833

  2. Adipocyte lipolysis-stimulated interleukin-6 production requires sphingosine kinase 1 activity.

    PubMed

    Zhang, Wenliang; Mottillo, Emilio P; Zhao, Jiawei; Gartung, Allison; VanHecke, Garrett C; Lee, Jen-Fu; Maddipati, Krishna R; Xu, Haiyan; Ahn, Young-Hoon; Proia, Richard L; Granneman, James G; Lee, Menq-Jer

    2014-11-14

    Adipocyte lipolysis can increase the production of inflammatory cytokines such as interleukin-6 (IL-6) that promote insulin resistance. However, the mechanisms that link lipolysis with inflammation remain elusive. Acute activation of β3-adrenergic receptors (ADRB3) triggers lipolysis and up-regulates production of IL-6 in adipocytes, and both of these effects are blocked by pharmacological inhibition of hormone-sensitive lipase. We report that stimulation of ADRB3 induces expression of sphingosine kinase 1 (SphK1) and increases sphingosine 1-phosphate production in adipocytes in a manner that also depends on hormone-sensitive lipase activity. Mechanistically, we found that adipose lipolysis-induced SphK1 up-regulation is mediated by the c-Jun N-terminal kinase (JNK)/activating protein-1 signaling pathway. Inhibition of SphK1 by sphingosine kinase inhibitor 2 diminished the ADRB3-induced IL-6 production both in vitro and in vivo. Induction of IL-6 by ADRB3 activation was suppressed by siRNA knockdown of Sphk1 in cultured adipocytes and was severely attenuated in Sphk1 null mice. Conversely, ectopic expression of SphK1 increased IL-6 expression in adipocytes. Collectively, these data demonstrate that SphK1 is a critical mediator in lipolysis-triggered inflammation in adipocytes. PMID:25253697

  3. Sphingosine kinase-1 as a chemotherapy sensor in prostate adenocarcinoma cell and mouse models.

    PubMed

    Pchejetski, Dimitri; Golzio, Muriel; Bonhoure, Elisabeth; Calvet, Cyril; Doumerc, Nicolas; Garcia, Virginie; Mazerolles, Catherine; Rischmann, Pascal; Teissié, Justin; Malavaud, Bernard; Cuvillier, Olivier

    2005-12-15

    Systemic chemotherapy was considered of modest efficacy in prostate cancer until the recent introduction of taxanes. We took advantage of the known differential effect of camptothecin and docetaxel on human PC-3 and LNCaP prostate cancer cells to determine their effect on sphingosine kinase-1 (SphK1) activity and subsequent ceramide/sphingosine 1-phosphate (S1P) balance in relation with cell survival. In vitro, docetaxel and camptothecin induced strong inhibition of SphK1 and elevation of the ceramide/S1P ratio only in cell lines sensitive to these drugs. SphK1 overexpression in both cell lines impaired the efficacy of chemotherapy by decreasing the ceramide/S1P ratio. Alternatively, silencing SphK1 by RNA interference or pharmacologic inhibition induced apoptosis coupled with ceramide elevation and loss of S1P. The differential effect of both chemotherapeutics was confirmed in an orthotopic PC-3/green fluorescent protein model established in nude mice. Docetaxel induced a stronger SphK1 inhibition and ceramide/S1P ratio elevation than camptothecin. This was accompanied by a smaller tumor volume and the reduced occurrence and number of metastases. SphK1-overexpressing PC-3 cells implanted in animals developed remarkably larger tumors and resistance to docetaxel treatment. These results provide the first in vivo demonstration of SphK1 as a sensor of chemotherapy. PMID:16357178

  4. Casein kinase 1α–dependent feedback loop controls autophagy in RAS-driven cancers

    PubMed Central

    Cheong, Jit Kong; Zhang, Fuquan; Chua, Pei Jou; Bay, Boon Huat; Thorburn, Andrew; Virshup, David M.

    2015-01-01

    Activating mutations in the RAS oncogene are common in cancer but are difficult to therapeutically target. RAS activation promotes autophagy, a highly regulated catabolic process that metabolically buffers cells in response to diverse stresses. Here we report that casein kinase 1α (CK1α), a ubiquitously expressed serine/threonine kinase, is a key negative regulator of oncogenic RAS–induced autophagy. Depletion or pharmacologic inhibition of CK1α enhanced autophagic flux in oncogenic RAS–driven human fibroblasts and multiple cancer cell lines. FOXO3A, a master longevity mediator that transcriptionally regulates diverse autophagy genes, was a critical target of CK1α, as depletion of CK1α reduced levels of phosphorylated FOXO3A and increased expression of FOXO3A-responsive genes. Oncogenic RAS increased CK1α protein abundance via activation of the PI3K/AKT/mTOR pathway. In turn, elevated levels of CK1α increased phosphorylation of nuclear FOXO3A, thereby inhibiting transactivation of genes critical for RAS-induced autophagy. In both RAS-driven cancer cells and murine xenograft models, pharmacologic CK1α inactivation synergized with lysosomotropic agents to inhibit growth and promote tumor cell death. Together, our results identify a kinase feedback loop that influences RAS-dependent autophagy and suggest that targeting CK1α-regulated autophagy offers a potential therapeutic opportunity to treat oncogenic RAS–driven cancers. PMID:25798617

  5. Partitioning of casein kinase 1-like 6 to late endosome-like vesicles.

    PubMed

    Ben-Nissan, Gili; Yang, Yaodong; Lee, Jung-Youn

    2010-04-01

    Members of the casein kinase 1 family are highly conserved protein Ser/Thr kinases found in all eukaryotes. They are involved in various cellular, physiological, and developmental processes, but the role of this family of kinase in plants is not well known. By localization studies employing fluorescent live cell imaging and biochemical membrane fractionation, here we showed that Arabidopsis casein kinase-like 6 (CKL6) localizes to motile vesicle-like structures that cofractionate with prevacuolar markers. They were found both in the cytoplasm and at the cell periphery and were motile within the cell. Apparently, this motility was dependent on actin filaments and CKL6-positive vesicles partially colocalized with a late endosomal compartment. However, CKL6-positive structures were not sensitive to brefeldin A nor wortmannin treatment, suggesting that they may belong to a novel compartment. Association of CKL6-positive structures with the cell periphery at the cellular junctions was detected after separation of the protoplasts by plasmolysis. Collectively, these data led us to propose that CKL6 is associated with late endosomal-like compartments that are not fully characterized and may play a role in cellular processes important for regulating components in membrane trafficking. PMID:19941015

  6. MYOSIN PHOSPHATASE TARGETING SUBUNIT1 REGULATES MITOSIS BY ANTAGONIZING POLO-LIKE KINASE1

    PubMed Central

    Yamashiro, S.; Yamakita, Y.; Totsukawa, G.; Goto, H.; Kaibuchi, K.; Ito, M.; Hartshorne, D.; Matsumura, F.

    2009-01-01

    SUMMARY Myosin phosphatase targeting subunit1 (MYPT1) binds to the catalytic subunit of protein phosphatase1 (PP1C). This binding is believed to target PP1C to specific substrates including myosin II, thus controlling cellular contractility. Surprisingly, we found that during mitosis mammalian MYPT1 binds to polo-like kinase1 (PLK1). MYPT1 is phosphorylated during mitosis by proline-directed kinases including cdc2, which generates the binding motif for the polo box domain of PLK1. Depletion of PLK1 by small interfering RNAs is known to results in loss of γ-tubulin recruitment to the centrosomes, blocking centrosome maturation, leading to mitotic arrest. We found that co-depletion of MYPT1 and PLK1 reinstates γ-tubulin at the centrosomes, rescuing the mitotic arrest. MYPT1 depletion increases phosphorylation of PLK1 at its activating site (Thr210) in vivo, explaining, at least in part, the rescue phenotype by co-depletion. Taken together, our results identify a previously unrecognized role for MYPT1 in regulating mitosis by antagonizing PLK1. PMID:18477460

  7. Doublecortin-like kinase 1 expression associates with breast cancer with neuroendocrine differentiation

    PubMed Central

    Liu, Yu-Hong; Tsang, Julia Y.S.; Ni, Yun-Bi; Hlaing, Thazin; Chan, Siu-Ki; Chan, Kui-Fat; Ko, Chun-Wai; Mujtaba, S. Shafaq; Tse, Gary M.

    2016-01-01

    Doublecortin-like kinase 1 (DCLK1), a microtubule associated kinase, has recently been proposed to be a putative marker for stemness and adverse prognosis in gastrointestinal cancers. However, it is not clear whether the protein also plays similar roles in breast cancer. Here, the expression of DCLK1 was analyzed in a large cohort of invasive breast cancers (IBC) by immunohistochemistry. DCKL1 was associated with favorable clinico-pathologic features, namely lower histologic grade, absence of lymphovascular invasion, fibrotic focus, necrosis and lower pN stage (p≤0.045). Additionally, independent significant correlations were found with estrogen receptor and neuroendocrine markers (p ≤0.019), implicating its relationship with IBC with neuroendocrine differentiation (IBC-NED). In the current cohort, IBC-NED showed worse outcome than luminal cancers without NED (hazard ratio=1.756, p=0.041). Interestingly, within the IBC-NED group, DCLK1 was found to be a good prognostic factor (hazard ratio =0.288, p=0.011). These findings were in contrast to those in gastrointestinal cancers, suggesting different functional roles of DCLK1 in different types of cancers. In clinical practice, NED is not routinely assessed; thus IBC-NED are not well studied. Its poor outcome and significant heterogeneity warrants more attention. DCLK1 expression could aid in the prognostication and management of this special cancer subtype. PMID:26621833

  8. Removal of Soluble Fms-Like Tyrosine Kinase-1 by Dextran Sulfate Apheresis in Preeclampsia.

    PubMed

    Thadhani, Ravi; Hagmann, Henning; Schaarschmidt, Wiebke; Roth, Bernhard; Cingoez, Tuelay; Karumanchi, S Ananth; Wenger, Julia; Lucchesi, Kathryn J; Tamez, Hector; Lindner, Tom; Fridman, Alexander; Thome, Ulrich; Kribs, Angela; Danner, Marco; Hamacher, Stefanie; Mallmann, Peter; Stepan, Holger; Benzing, Thomas

    2016-03-01

    Preeclampsia is a devastating complication of pregnancy. Soluble Fms-like tyrosine kinase-1 (sFlt-1) is an antiangiogenic protein believed to mediate the signs and symptoms of preeclampsia. We conducted an open pilot study to evaluate the safety and potential efficacy of therapeutic apheresis with a plasma-specific dextran sulfate column to remove circulating sFlt-1 in 11 pregnant women (20-38 years of age) with very preterm preeclampsia (23-32 weeks of gestation, systolic BP ≥140 mmHg or diastolic BP ≥90 mmHg, new onset protein/creatinine ratio >0.30 g/g, and sFlt-1/placental growth factor ratio >85). We evaluated the extent of sFlt-1 removal, proteinuria reduction, pregnancy continuation, and neonatal and fetal safety of apheresis after one (n=6), two (n=4), or three (n=1) apheresis treatments. Mean sFlt-1 levels were reduced by 18% (range 7%-28%) with concomitant reductions of 44% in protein/creatinine ratios. Pregnancy continued for 8 days (range 2-11) and 15 days (range 11-21) in women treated once and multiple times, respectively, compared with 3 days (range 0-14) in untreated contemporaneous preeclampsia controls (n=22). Transient maternal BP reduction during apheresis was managed by withholding pre-apheresis antihypertensive therapy, saline prehydration, and reducing blood flow through the apheresis column. Compared with infants born prematurely to untreated women with and without preeclampsia (n=22 per group), no adverse effects of apheresis were observed. In conclusion, therapeutic apheresis reduced circulating sFlt-1 and proteinuria in women with very preterm preeclampsia and appeared to prolong pregnancy without major adverse maternal or fetal consequences. A controlled trial is warranted to confirm these findings. PMID:26405111

  9. Impairment of Angiogenic Sphingosine Kinase-1/Sphingosine-1-Phosphate Receptors Pathway in Preeclampsia

    PubMed Central

    Dobierzewska, Aneta; Palominos, Macarena; Sanchez, Marianela; Dyhr, Michael; Helgert, Katja; Venegas-Araneda, Pia; Tong, Stephen; Illanes, Sebastian E.

    2016-01-01

    Preeclampsia (PE), is a serious pregnancy disorder characterized in the early gestation by shallow trophoblast invasion, impaired placental neo-angiogenesis, placental hypoxia and ischemia, which leads to maternal and fetal morbidity and mortality. Here we hypothesized that angiogenic sphingosine kinase-1 (SPHK1)/sphingosine-1-phosphate (S1P) receptors pathway is impaired in PE. We found that SPHK1 mRNA and protein expression are down-regulated in term placentae and term chorionic villous explants from patients with PE or severe PE (PES), compared with controls. Moreover, mRNA expression of angiogenic S1PR1 and S1PR3 receptors were decreased in placental samples of PE and PES patients, whereas anti-angiogenic S1PR2 was up-regulated in chorionic villous tissue of PES subjects, pointing to its potential atherogenic and inflammatory properties. Furthermore, in in vitro (JAR cells) and ex vivo (chorionic villous explants) models of placental hypoxia, SPHK1 mRNA and protein were strongly up-regulated under low oxygen tension (1% 02). In contrast, there was no change in SPHK1 expression under the conditions of placental physiological hypoxia (8% 02). In both models, nuclear protein levels of HIF1A were increased at 1% 02 during the time course, but there was no up-regulation at 8% 02, suggesting that SPHK1 and HIF1A might be the part of the same canonical pathway during hypoxia and that both contribute to placental neovascularization during early gestation. Taken together, this study suggest the SPHK1 pathway may play a role in the human early placentation process and may be involved in the pathogenesis of PE. PMID:27284992

  10. Salt-inducible kinase 1 regulates E-cadherin expression and intercellular junction stability.

    PubMed

    Eneling, Kristina; Brion, Laura; Pinto, Vanda; Pinho, Maria J; Sznajder, Jacob I; Mochizuki, Naoki; Emoto, Kazuo; Soares-da-Silva, Patricio; Bertorello, Alejandro M

    2012-08-01

    The protein kinase liver kinase B1 (LKB1) regulates cell polarity and intercellular junction stability. Also, LKB1 controls the activity of salt-inducible kinase 1 (SIK1). The role and relevance of SIK1 and its downstream effectors in linking the LKB1 signals within these processes are partially understood. We hypothesize that SIK1 may link LKB1 signals to the maintenance of epithelial junction stability by regulating E-cadherin expression. Results from our studies using a mouse lung alveolar epithelial (MLE-12) cell line or human renal proximal tubule (HK2) cell line transiently or stably lacking the expression of SIK1 (using SIK1 siRNAs or shRNAs), or with its expression abrogated (sik1(+/+) vs. sik1(-/-) mice), indicate that suppression of SIK1 (∼40%) increases the expression of the transcriptional repressors Snail2 (∼12-fold), Zeb1 (∼100%), Zeb2 (∼50%), and TWIST (∼20-fold) by activating cAMP-response element binding protein. The lack of SIK1 and activation of transcriptional repressors decreases the availability of E-cadherin (mRNA and protein expression by ∼100 and 80%, respectively) and the stability of intercellular junctions in epithelia (decreases in transepithelial resistance). Furthermore, LKB1-mediated increases in E-cadherin expression are impaired in cells where SIK1 has been disabled. We conclude that SIK1 is a key regulator of E-cadherin expression, and thereby contributes to the stability of intercellular junctions. PMID:22522110

  11. Impairment of Angiogenic Sphingosine Kinase-1/Sphingosine-1-Phosphate Receptors Pathway in Preeclampsia.

    PubMed

    Dobierzewska, Aneta; Palominos, Macarena; Sanchez, Marianela; Dyhr, Michael; Helgert, Katja; Venegas-Araneda, Pia; Tong, Stephen; Illanes, Sebastian E

    2016-01-01

    Preeclampsia (PE), is a serious pregnancy disorder characterized in the early gestation by shallow trophoblast invasion, impaired placental neo-angiogenesis, placental hypoxia and ischemia, which leads to maternal and fetal morbidity and mortality. Here we hypothesized that angiogenic sphingosine kinase-1 (SPHK1)/sphingosine-1-phosphate (S1P) receptors pathway is impaired in PE. We found that SPHK1 mRNA and protein expression are down-regulated in term placentae and term chorionic villous explants from patients with PE or severe PE (PES), compared with controls. Moreover, mRNA expression of angiogenic S1PR1 and S1PR3 receptors were decreased in placental samples of PE and PES patients, whereas anti-angiogenic S1PR2 was up-regulated in chorionic villous tissue of PES subjects, pointing to its potential atherogenic and inflammatory properties. Furthermore, in in vitro (JAR cells) and ex vivo (chorionic villous explants) models of placental hypoxia, SPHK1 mRNA and protein were strongly up-regulated under low oxygen tension (1% 02). In contrast, there was no change in SPHK1 expression under the conditions of placental physiological hypoxia (8% 02). In both models, nuclear protein levels of HIF1A were increased at 1% 02 during the time course, but there was no up-regulation at 8% 02, suggesting that SPHK1 and HIF1A might be the part of the same canonical pathway during hypoxia and that both contribute to placental neovascularization during early gestation. Taken together, this study suggest the SPHK1 pathway may play a role in the human early placentation process and may be involved in the pathogenesis of PE. PMID:27284992

  12. Extracellular signal-regulated kinases 1 and 2 activation in endothelial cells exposed to cyclic strain

    NASA Technical Reports Server (NTRS)

    Ikeda, M.; Takei, T.; Mills, I.; Kito, H.; Sumpio, B. E.

    1999-01-01

    The aim of this study was to determine whether extracellular signal-regulated kinases 1/2 (ERK1/ERK2) are activated and might play a role in enhanced proliferation and morphological change induced by strain. Bovine aortic endothelial cells (BAEC) were subjected to an average of 6 or 10% strain at a rate of 60 cycles/min for up to 4 h. Cyclic strain caused strain- and time-dependent phosphorylation and activation of ERK1/ERK2. Peak phosphorylation and activation of ERK1/ERK2 induced by 10% strain were at 10 min. A specific ERK1/ERK2 kinase inhibitor, PD-98059, inhibited phosphorylation and activation of ERK1/ERK2 but did not inhibit the increased cell proliferation and cell alignment induced by strain. Treatment of BAEC with 2,5-di-tert-butyl-1, 4-benzohydroquinone, to deplete inositol trisphosphate-sensitive calcium storage, and gadolinium chloride, a Ca2+ channel blocker, did not inhibit the activation of ERK1/ERK2. Strain-induced ERK1/ERK2 activation was partly inhibited by the protein kinase C inhibitor calphostin C and completely inhibited by the tyrosine kinase inhibitor genistein. These data suggest that 1) ERK1/ERK2 are not critically involved in the strain-induced cell proliferation and orientation, 2) strain-dependent activation of ERK1/ERK2 is independent of intracellular and extracellular calcium mobilization, and 3) protein kinase C activation and tyrosine kinase regulate strain-induced activation of ERK1/ERK2.

  13. Inhibition of apoptosis signal-regulating kinase 1 enhances endochondral bone formation by increasing chondrocyte survival.

    PubMed

    Eaton, G J; Zhang, Q-S; Diallo, C; Matsuzawa, A; Ichijo, H; Steinbeck, M J; Freeman, T A

    2014-01-01

    Endochondral ossification is the result of chondrocyte differentiation, hypertrophy, death and replacement by bone. The careful timing and progression of this process is important for normal skeletal bone growth and development, as well as fracture repair. Apoptosis Signal-Regulating Kinase 1 (ASK1) is a mitogen-activated protein kinase (MAPK), which is activated by reactive oxygen species and other cellular stress events. Activation of ASK1 initiates a signaling cascade known to regulate diverse cellular events including cytokine and growth factor signaling, cell cycle regulation, cellular differentiation, hypertrophy, survival and apoptosis. ASK1 is highly expressed in hypertrophic chondrocytes, but the role of ASK1 in skeletal tissues has not been investigated. Herein, we report that ASK1 knockout (KO) mice display alterations in normal growth plate morphology, which include a shorter proliferative zone and a lengthened hypertrophic zone. These changes in growth plate dynamics result in accelerated long bone mineralization and an increased formation of trabecular bone, which can be attributed to an increased resistance of terminally differentiated chondrocytes to undergo cell death. Interestingly, under normal cell culture conditions, mouse embryonic fibroblasts (MEFs) derived from ASK1 KO mice show no differences in either MAPK signaling or osteogenic or chondrogenic differentiation when compared with wild-type (WT) MEFs. However, when cultured with stress activators, H2O2 or staurosporine, the KO cells show enhanced survival, an associated decrease in the activation of proteins involved in death signaling pathways and a reduction in markers of terminal differentiation. Furthermore, in both WT mice treated with the ASK1 inhibitor, NQDI-1, and ASK1 KO mice endochondral bone formation was increased in an ectopic ossification model. These findings highlight a previously unrealized role for ASK1 in regulating endochondral bone formation. Inhibition of ASK1 has

  14. Casein kinase 1 controls the activation threshold of an α-arrestin by multisite phosphorylation of the interdomain hinge

    PubMed Central

    Herrador, Antonio; Livas, Daniela; Soletto, Lucía; Becuwe, Michel; Léon, Sébastien; Vincent, Olivier

    2015-01-01

    α-Arrestins play a key role as trafficking adaptors in both yeast and mammals. The yeast Rim8/Art9 α-arrestin mediates the recruitment of endosomal sorting complex required for transport (ESCRT) to the seven-transmembrane protein Rim21 in the ambient pH signaling RIM pathway. ESCRT is believed to function as a signaling platform that enables the proteolytic activation of the Rim101 transcription factor upon external alkalization. Here we provide evidence that the pH signal promotes the stable association of Rim8 with Rim21 at the plasma membrane. We show that Rim8 is phosphorylated in a pH-independent but Rim21-dependent manner by the plasma membrane–associated casein kinase 1 (CK1). We further show that this process involves a cascade of phosphorylation events within the hinge region connecting the arrestin domains. Strikingly, loss of casein kinase 1 activity causes constitutive activation of the RIM pathway, and, accordingly, pH signaling is activated in a phosphodeficient Rim8 mutant and impaired in the corresponding phosphomimetic mutant. Our results indicate that Rim8 phosphorylation prevents its accumulation at the plasma membrane at acidic pH and thereby inhibits RIM signaling. These findings support a model in which CK1-mediated phosphorylation of Rim8 contributes to setting a signaling threshold required to inhibit the RIM pathway at acidic pH. PMID:25851600

  15. Casein kinase 1 controls the activation threshold of an α-arrestin by multisite phosphorylation of the interdomain hinge.

    PubMed

    Herrador, Antonio; Livas, Daniela; Soletto, Lucía; Becuwe, Michel; Léon, Sébastien; Vincent, Olivier

    2015-06-01

    α-Arrestins play a key role as trafficking adaptors in both yeast and mammals. The yeast Rim8/Art9 α-arrestin mediates the recruitment of endosomal sorting complex required for transport (ESCRT) to the seven-transmembrane protein Rim21 in the ambient pH signaling RIM pathway. ESCRT is believed to function as a signaling platform that enables the proteolytic activation of the Rim101 transcription factor upon external alkalization. Here we provide evidence that the pH signal promotes the stable association of Rim8 with Rim21 at the plasma membrane. We show that Rim8 is phosphorylated in a pH-independent but Rim21-dependent manner by the plasma membrane-associated casein kinase 1 (CK1). We further show that this process involves a cascade of phosphorylation events within the hinge region connecting the arrestin domains. Strikingly, loss of casein kinase 1 activity causes constitutive activation of the RIM pathway, and, accordingly, pH signaling is activated in a phosphodeficient Rim8 mutant and impaired in the corresponding phosphomimetic mutant. Our results indicate that Rim8 phosphorylation prevents its accumulation at the plasma membrane at acidic pH and thereby inhibits RIM signaling. These findings support a model in which CK1-mediated phosphorylation of Rim8 contributes to setting a signaling threshold required to inhibit the RIM pathway at acidic pH. PMID:25851600

  16. Polo-like kinase 1 inhibition sensitizes neuroblastoma cells for vinca alkaloid-induced apoptosis

    PubMed Central

    Czaplinski, Sebastian; Hugle, Manuela; Stiehl, Valerie; Fulda, Simone

    2016-01-01

    High polo-like kinase 1 (PLK1) expression has been linked to poor outcome in neuroblastoma (NB), indicating that it represents a relevant therapeutic target in this malignancy. Here, we identify a synergistic induction of apoptosis by the PLK1 inhibitor BI 2536 and vinca alkaloids in NB cells. Synergistic drug interaction of BI 2536 together with vincristine (VCR), vinblastine (VBL) or vinorelbine (VNR) is confirmed by calculation of combination index (CI). Also, BI 2536 and VCR act in concert to reduce long-term clonogenic survival. Importantly, BI 2536 significantly enhances the antitumor activity of VCR in an in vivo model of NB. Mechanistically, BI 2536/VCR co-treatment triggers prolonged mitotic arrest, which is necessary for BI 2536/VCR-mediated apoptosis, since pharmacological inhibition of mitotic arrest by the CDK1 inhibitor RO-3306 significantly reduces cell death. Prolonged mitotic arrest leads to phosphorylation-mediated inactivation of BCL-2 and BCL-XL as well as downregulation of MCL-1, since inhibition of mitotic arrest by RO-3306 also prevents phosphorylation of BCL-2 and BCL-XL and MCL-1 downregulation. This inactivation of antiapoptotic BCL-2 proteins promotes activation of BAX and BAK, cleavage of caspase-9 and -3 and caspase-dependent apoptosis. Engagement of the mitochondrial pathway of apoptosis is critically required for BI 2536/VCR-induced apoptosis, since ectopic expression of a non-degradable MCL-1 phospho-mutant, BCL-2 overexpression or BAK knockdown significantly reduce BI 2536/VCR-mediated apoptosis. Thus, PLK1 inhibitors may open new perspectives for chemosensitization of NB. PMID:26046302

  17. Bioinformatic Analysis of Pathogenic Missense Mutations of Activin Receptor Like Kinase 1 Ectodomain

    PubMed Central

    Scotti, Claudia; Olivieri, Carla; Boeri, Laura; Canzonieri, Cecilia; Ornati, Federica; Buscarini, Elisabetta; Pagella, Fabio; Danesino, Cesare

    2011-01-01

    Activin A receptor, type II-like kinase 1 (also called ALK1), is a serine-threonine kinase predominantly expressed on endothelial cells surface. Mutations in its ACVRL1 encoding gene (12q11-14) cause type 2 Hereditary Haemorrhagic Telangiectasia (HHT2), an autosomal dominant multisystem vascular dysplasia. The study of the structural effects of mutations is crucial to understand their pathogenic mechanism. However, while an X-ray structure of ALK1 intracellular domain has recently become available (PDB ID: 3MY0), structure determination of ALK1 ectodomain (ALK1EC) has been elusive so far. We here describe the building of a homology model for ALK1EC, followed by an extensive bioinformatic analysis, based on a set of 38 methods, of the effect of missense mutations at the sequence and structural level. ALK1EC potential interaction mode with its ligand BMP9 was then predicted combining modelling and docking data. The calculated model of the ALK1EC allowed mapping and a preliminary characterization of HHT2 associated mutations. Major structural changes and loss of stability of the protein were predicted for several mutations, while others were found to interfere mainly with binding to BMP9 or other interactors, like Endoglin (CD105), whose encoding ENG gene (9q34) mutations are known to cause type 1 HHT. This study gives a preliminary insight into the potential structure of ALK1EC and into the structural effects of HHT2 associated mutations, which can be useful to predict the potential effect of each single mutation, to devise new biological experiments and to interpret the biological significance of new mutations, private mutations, or non-synonymous polymorphisms. PMID:22028876

  18. Inhibitor of Apoptosis Signal-Regulating Kinase 1 Protects Against Acetaminophen-induced Liver Injury

    PubMed Central

    Xie, Yuchao; Ramachandran, Anup; Breckenridge, David G.; Liles, John T.; Lebofsky, Margitta; Farhood, Anwar; Jaeschke, Hartmut

    2015-01-01

    Metabolic activation and oxidant stress are key events in the pathophysiology of acetaminophen (APAP) hepatotoxicity. The initial mitochondrial oxidative stress triggered by protein adduct formation is amplified by c-jun-N-terminal kinase (JNK), resulting in mitochondrial dysfunction and ultimately cell necrosis. Apoptosis signal-regulating kinase 1 (ASK1) is considered the link between oxidant stress and JNK activation. The objective of the current study was to assess the efficacy and mechanism of action of the small-molecule ASK1 inhibitor GS-459679 in a murine model of APAP hepatotoxicity. APAP (300 mg/kg) caused extensive glutathione depletion, JNK activation and translocation to the mitochondria, oxidant stress and liver injury as indicated by plasma ALT activities and area of necrosis over a 24h observation period. Pretreatment with 30 mg/kg of GS-459679 almost completely prevented JNK activation, oxidant stress and injury without affected the metabolic activation of APAP. To evaluate the therapeutic potential of GS-459679, mice were treated with APAP and then with the inhibitor. Given 1.5h after APAP, GS-459679 was still protective, which was paralleled by reduced JNK activation and p-JNK translocation to mitochondria. However, GS-459679 treatment was not more effective than N-acetylcysteine, and the combination of GS-459679 and N-acetylcysteine exhibited similar efficacy as N-acetylcysteine monotherapy, suggesting that GS-459769 and N-acetylcysteine affect the same pathway. Importantly, inhibition of ASK1 did not impair liver regeneration as indicated by PCNA staining. In conclusion, the ASK1 inhibitor GS-459679 protected against APAP toxicity by attenuating JNK activation and oxidant stress in mice and may have therapeutic potential for APAP overdose patients. PMID:25818599

  19. Inhibitor of apoptosis signal-regulating kinase 1 protects against acetaminophen-induced liver injury.

    PubMed

    Xie, Yuchao; Ramachandran, Anup; Breckenridge, David G; Liles, John T; Lebofsky, Margitta; Farhood, Anwar; Jaeschke, Hartmut

    2015-07-01

    Metabolic activation and oxidant stress are key events in the pathophysiology of acetaminophen (APAP) hepatotoxicity. The initial mitochondrial oxidative stress triggered by protein adduct formation is amplified by c-jun-N-terminal kinase (JNK), resulting in mitochondrial dysfunction and ultimately cell necrosis. Apoptosis signal-regulating kinase 1 (ASK1) is considered the link between oxidant stress and JNK activation. The objective of the current study was to assess the efficacy and mechanism of action of the small-molecule ASK1 inhibitor GS-459679 in a murine model of APAP hepatotoxicity. APAP (300 mg/kg) caused extensive glutathione depletion, JNK activation and translocation to the mitochondria, oxidant stress and liver injury as indicated by plasma ALT activities and area of necrosis over a 24h observation period. Pretreatment with 30 mg/kg of GS-459679 almost completely prevented JNK activation, oxidant stress and injury without affecting the metabolic activation of APAP. To evaluate the therapeutic potential of GS-459679, mice were treated with APAP and then with the inhibitor. Given 1.5h after APAP, GS-459679 was still protective, which was paralleled by reduced JNK activation and p-JNK translocation to mitochondria. However, GS-459679 treatment was not more effective than N-acetylcysteine, and the combination of GS-459679 and N-acetylcysteine exhibited similar efficacy as N-acetylcysteine monotherapy, suggesting that GS-459769 and N-acetylcysteine affect the same pathway. Importantly, inhibition of ASK1 did not impair liver regeneration as indicated by PCNA staining. In conclusion, the ASK1 inhibitor GS-459679 protected against APAP toxicity by attenuating JNK activation and oxidant stress in mice and may have therapeutic potential for APAP overdose patients. PMID:25818599

  20. Functional Dynamics of Polo-Like Kinase 1 at the Centrosome▿ †

    PubMed Central

    Kishi, Kazuhiro; van Vugt, Marcel A. T. M.; Okamoto, Ken-ichi; Hayashi, Yasunori; Yaffe, Michael B.

    2009-01-01

    Polo-like kinase 1 (Plk1) functions as a key regulator of mitotic events by phosphorylating substrate proteins on centrosomes, kinetochores, the mitotic spindle, and the midbody. Through mechanisms that are incompletely understood, Plk1 is released from and relocalizes to different mitotic structures as cells proceed through mitosis. We used fluorescence recovery after photobleaching to examine the kinetics of this process in more detail. We observed that Plk1 displayed a range of different recovery rates that differ at each mitotic substructure and depend on both the Polo-box domain and a functional kinase domain. Upon mitotic entry, centrosomal Plk1 becomes more dynamic, a process that is directly enhanced by Plk1 kinase activity. In contrast, Plk1 displays little dynamic exchange at the midbody, a process that again is modulated by the kinase activity of Plk1. Our findings suggest that the intrinsic kinase activity of Plk1 triggers its release from early mitotic structures and its relocalization to late mitotic structures. To assess the importance of Plk1 dynamic relocalization, Plk1 was persistently tethered to the centrosome. This resulted in a G2 delay, followed by a prominent prometaphase arrest, as a consequence of defective spindle formation and activation of the spindle checkpoint. The dynamic release of Plk1 from early mitotic structures is thus crucial for mid- to late-stage mitotic events and demonstrates the importance of a fully dynamic Plk1 at the centrosome for proper cell cycle progression. This dependence on dynamic Plk1 was further observed during the mitotic reentry of cells after a DNA damage G2 checkpoint, as this process was significantly delayed upon centrosomal tethering of Plk1. These results indicate that mitotic progression and control of mitotic reentry after DNA damage resides, at least in part, on the dynamic behavior of Plk1. PMID:19307309

  1. Polo-like kinase 1 inhibition sensitizes neuroblastoma cells for vinca alkaloid-induced apoptosis.

    PubMed

    Czaplinski, Sebastian; Hugle, Manuela; Stiehl, Valerie; Fulda, Simone

    2016-02-23

    High polo-like kinase 1 (PLK1) expression has been linked to poor outcome in neuroblastoma (NB), indicating that it represents a relevant therapeutic target in this malignancy. Here, we identify a synergistic induction of apoptosis by the PLK1 inhibitor BI 2536 and vinca alkaloids in NB cells. Synergistic drug interaction of BI 2536 together with vincristine (VCR), vinblastine (VBL) or vinorelbine (VNR) is confirmed by calculation of combination index (CI). Also, BI 2536 and VCR act in concert to reduce long-term clonogenic survival. Importantly, BI 2536 significantly enhances the antitumor activity of VCR in an in vivo model of NB. Mechanistically, BI 2536/VCR co-treatment triggers prolonged mitotic arrest, which is necessary for BI 2536/VCR-mediated apoptosis, since pharmacological inhibition of mitotic arrest by the CDK1 inhibitor RO-3306 significantly reduces cell death. Prolonged mitotic arrest leads to phosphorylation-mediated inactivation of BCL-2 and BCL-XL as well as downregulation of MCL-1, since inhibition of mitotic arrest by RO-3306 also prevents phosphorylation of BCL-2 and BCL-XL and MCL-1 downregulation. This inactivation of antiapoptotic BCL-2 proteins promotes activation of BAX and BAK, cleavage of caspase-9 and -3 and caspase-dependent apoptosis. Engagement of the mitochondrial pathway of apoptosis is critically required for BI 2536/VCR-induced apoptosis, since ectopic expression of a non-degradable MCL-1 phospho-mutant, BCL-2 overexpression or BAK knockdown significantly reduce BI 2536/VCR-mediated apoptosis. Thus, PLK1 inhibitors may open new perspectives for chemosensitization of NB. PMID:26046302

  2. TANK-binding kinase-1 broadly affects oyster immune response to bacteria and viruses.

    PubMed

    Tang, Xueying; Huang, Baoyu; Zhang, Linlin; Li, Li; Zhang, Guofan

    2016-09-01

    As a benthic filter feeder of estuaries, the immune system of oysters provides one of the best models for studying the genetic and molecular basis of the innate immune pathway in marine invertebrates and examining the influence of environmental factors on the immune system. Here, the molecular function of molluscan TANK-binding kinase-1 (TBK1) (which we named CgTBK1) was studied in the Pacific oyster, Crassostrea gigas. Compared with known TBK1 proteins in other model organisms, CgTBK1 contains a conserved S-TKc domain and a coiled coil domain at the N- and C-terminals but lacks an important ubiquitin domain. Quantitative real-time PCR analysis revealed that the expression level of CgTBK1 was ubiquitous in all selected tissues, with highest expression in the gills. CgTBK1 expression was significantly upregulated in response to infections with Vibrio alginolyticus, ostreid herpesvirus 1 (OsHV-1 reference strain and μvar), and polyinosinic:polycytidylic acid sodium salt, suggesting its broad function in immune response. Subcellular localization showed the presence of CgTBK1 in the cytoplasm of HeLa cells, suggesting its potential function as the signal transducer between the receptor and transcription factor. We further demonstrated that CgTBK1 interacted with CgSTING in HEK293T cells, providing evidence that CgTBK1 could be activated by direct binding to CgSTING. In summary, we characterized the TBK1 gene in C. gigas and demonstrated its role in the innate immune response to pathogen infections. PMID:27422757

  3. Sphingosine Kinase 1 Deficiency Confers Protection against Hyperoxia-Induced Bronchopulmonary Dysplasia in a Murine Model

    PubMed Central

    Harijith, Anantha; Pendyala, Srikanth; Reddy, Narsa M.; Bai, Tao; Usatyuk, Peter V.; Berdyshev, Evgeny; Gorshkova, Irina; Huang, Long Shuang; Mohan, Vijay; Garzon, Steve; Kanteti, Prasad; Reddy, Sekhar P.; Raj, J. Usha; Natarajan, Viswanathan

    2014-01-01

    Bronchopulmonary dysplasia of the premature newborn is characterized by lung injury, resulting in alveolar simplification and reduced pulmonary function. Exposure of neonatal mice to hyperoxia enhanced sphingosine-1-phosphate (S1P) levels in lung tissues; however, the role of increased S1P in the pathobiological characteristics of bronchopulmonary dysplasia has not been investigated. We hypothesized that an altered S1P signaling axis, in part, is responsible for neonatal lung injury leading to bronchopulmonary dysplasia. To validate this hypothesis, newborn wild-type, sphingosine kinase1−/− (Sphk1−/−), sphingosine kinase 2−/− (Sphk2−/−), and S1P lyase+/− (Sgpl1+/−) mice were exposed to hyperoxia (75%) from postnatal day 1 to 7. Sphk1−/−, but not Sphk2−/− or Sgpl1+/−, mice offered protection against hyperoxia-induced lung injury, with improved alveolarization and alveolar integrity compared with wild type. Furthermore, SphK1 deficiency attenuated hyperoxia-induced accumulation of IL-6 in bronchoalveolar lavage fluids and NADPH oxidase (NOX) 2 and NOX4 protein expression in lung tissue. In vitro experiments using human lung microvascular endothelial cells showed that exogenous S1P stimulated intracellular reactive oxygen species (ROS) generation, whereas SphK1 siRNA, or inhibitor against SphK1, attenuated hyperoxia-induced S1P generation. Knockdown of NOX2 and NOX4, using specific siRNA, reduced both basal and S1P-induced ROS formation. These results suggest an important role for SphK1-mediated S1P signaling–regulated ROS in the development of hyperoxia-induced lung injury in a murine neonatal model of bronchopulmonary dysplasia. PMID:23933064

  4. Targeting polo-like kinase 1 suppresses essential functions of alloreactive T cells.

    PubMed

    Berges, Carsten; Chatterjee, Manik; Topp, Max S; Einsele, Hermann

    2016-06-01

    Acute graft-versus-host disease (aGvHD) is still a major cause of transplant-related mortality after allogeneic stem cell transplantation (ASCT). It requires immunosuppressive treatments that broadly abrogate T cell responses including beneficial ones directed against tumor cells or infective pathogens. Polo-like kinase 1 (PLK1) is overexpressed in many cancer types including leukemia, and clinical studies demonstrated that targeting PLK1 using selective PLK1 inhibitors resulted in inhibition of proliferation and induction of apoptosis predominantly in tumor cells, supporting the feasibility of PLK1 as target for anticancer therapy. Here, we show that activation of alloreactive T cells (Tallo) up-regulate expression of PLK1, suggesting that PLK1 is a potential new candidate for dual therapy of aGvHD and leukemia after ASCT. Inhibition of PLK1, using PLK1-specific inhibitor GSK461364A selectively depletes Tallo by preventing activation and by inducing apoptosis in already activated Tallo, while memory T cells are preserved. Activated Tallo cells which survive exposure to PLK1 undergo inhibition of proliferation by induction of G2/M cell cycle arrest, which is accompanied by accumulation of cell cycle regulator proteins p21(WAF/CIP1), p27(Kip1), p53 and cyclin B1, whereas abundance of CDK4 decreased. We also show that suppressive effects of PLK1 inhibition on Tallo were synergistically enhanced by concomitant inhibition of molecular chaperone Hsp90. Taken together, our data suggest that PLK1 inhibition represents a reasonable dual strategy to suppress residual tumor growth and efficiently deplete Tallo, and thus provide a rationale to selectively prevent and treat aGvHD. PMID:26724940

  5. Ligand-based Pharmacophore Modeling; Atom-based 3D-QSAR Analysis and Molecular Docking Studies of Phosphoinositide-Dependent Kinase-1 Inhibitors

    PubMed Central

    Kirubakaran, P.; Muthusamy, K.; Singh, K. H. D.; Nagamani, S.

    2012-01-01

    Phosphoinositide-dependent kinase-1 plays a vital role in the PI3-kinase signaling pathway that regulates gene expression, cell cycle growth and proliferation. The common human cancers include lung, breast, blood and prostate possess over stimulation of the phosphoinositide-dependent kinase-1 signaling and making phosphoinositide-dependent kinase-1 an interesting therapeutic target in oncology. A ligand-based pharmacophore and atom-based 3D-QSAR studies were carried out on a set of 82 inhibitors of PDK1. A six point pharmacophore with two hydrogen bond acceptors (A), three hydrogen bond donors (D) and one hydrophobic group (H) was obtained. The pharmacophore hypothesis yielded a 3D-QSAR model with good partial least square statistics results. The training set correlation is characterized by partial least square factors (R2 = 0.9557, SD = 0.2334, F = 215.5, P = 1.407e-32). The test set correlation is characterized by partial least square factors (Q2 ext = 0.7510, RMSE = 0.5225, Pearson-R =0.8676). The external validation indicated that our QSAR model possess high predictive power with good value of 0.99 and value of 0.88. The docking results show the binding orientations of these inhibitors at active site amino acid residues (Ala162, Thr222, Glu209 and Glu166) of phosphoinositide-dependent kinase-1 protein. The binding free energy interactions of protein-ligand complex have been calculated, which plays an important role in molecular recognition and drug design approach. PMID:23325995

  6. Activation of serum/glucocorticoid-induced kinase 1 (SGK1) is important to maintain skeletal muscle homeostasis and prevent atrophy

    PubMed Central

    Andres-Mateos, Eva; Brinkmeier, Heinrich; Burks, Tyesha N; Mejias, Rebeca; Files, Daniel C; Steinberger, Martin; Soleimani, Arshia; Marx, Ruth; Simmers, Jessica L; Lin, Benjamin; Finanger Hedderick, Erika; Marr, Tom G; Lin, Brian M; Hourdé, Christophe; Leinwand, Leslie A; Kuhl, Dietmar; Föller, Michael; Vogelsang, Silke; Hernandez-Diaz, Ivan; Vaughan, Dana K; Alvarez de la Rosa, Diego; Lang, Florian; Cohn, Ronald D

    2013-01-01

    Maintaining skeletal muscle mass is essential for general health and prevention of disease progression in various neuromuscular conditions. Currently, no treatments are available to prevent progressive loss of muscle mass in any of these conditions. Hibernating mammals are protected from muscle atrophy despite prolonged periods of immobilization and starvation. Here, we describe a mechanism underlying muscle preservation and translate it to non-hibernating mammals. Although Akt has an established role in skeletal muscle homeostasis, we find that serum- and glucocorticoid-inducible kinase 1 (SGK1) regulates muscle mass maintenance via downregulation of proteolysis and autophagy as well as increased protein synthesis during hibernation. We demonstrate that SGK1 is critical for the maintenance of skeletal muscle homeostasis and function in non-hibernating mammals in normal and atrophic conditions such as starvation and immobilization. Our results identify a novel therapeutic target to combat loss of skeletal muscle mass associated with muscle degeneration and atrophy. PMID:23161797

  7. Nuclear pool of phosphatidylinositol 4 phosphate 5 kinase 1α is modified by polySUMO-2 during apoptosis.

    PubMed

    Chakrabarti, Rajarshi; Bhowmick, Debajit; Bhargava, Varsha; Bhar, Kaushik; Siddhanta, Anirban

    2013-09-20

    Phosphatidylinositol 4 phosphate 5 kinase 1α (PIP5K) is mainly localized in the cytosol and plasma membrane. Studies have also indicated its prominent association with nuclear speckles. The exact nature of this nuclear pool of PIP5K is not clear. Using biochemical and microscopic techniques, we have demonstrated that the nuclear pool of PIP5K is modified by SUMO-1 in HEK-293 cells stably expressing PIP5K. Moreover, this SUMOylated pool of PIP5K increased during apoptosis. PolySUMO-2 chain conjugated PIP5K was detected by pull-down experiment using affinity-tagged RNF4, a polySUMO-2 binding protein, during late apoptosis. PMID:23994136

  8. Biochemical methods for quantifying sphingolipids: ceramide, sphingosine, sphingosine kinase-1 activity, and sphingosine-1-phosphate.

    PubMed

    Brizuela, Leyre; Cuvillier, Olivier

    2012-01-01

    Sphingolipids (ceramide, sphingosine, and sphingosine-1-phosphate) are bioactive lipids with important biological functions in proliferation, apoptosis, angiogenesis, and inflammation. Herein, we describe easy and rapid biochemical methods with the use of radiolabeled molecules ((3)H, (32)P) for their mass determination. Quantitation of sphingosine kinase-1 activity, the most studied isoform, is also included. PMID:22528435

  9. Angiogenin Reduces Immune Inflammation via Inhibition of TANK-Binding Kinase 1 Expression in Human Corneal Fibroblast Cells

    PubMed Central

    Min, Kyong-Mi; Kim, Kyu-Wan; Chang, Soo-Ik

    2014-01-01

    Angiogenin (ANG) is reportedly multifunctional, with roles in angiogenesis and autoimmune diseases. This protein is involved in the innate immune system and has been implicated in several inflammatory diseases. Although ANG may be involved in the anti-inflammatory response, there is no evidence that it has direct anti-inflammatory effects. In this study we sought to determine whether ANG has an anti-inflammatory effect in human corneal fibroblasts (HCFs) exposed to media containing tumor necrosis factor-alpha (TNF-α). We found that ANG reduced the mRNA expression of interleukin-1 beta (IL-1β), -6, -8 and TNF-α receptors (TNFR) 1 and 2. In contrast, ANG increased the mRNA expression of IL-4 and -10. Protein levels of TANK-binding kinase 1 (TBK1) were reduced by ANG in HCFs treated with TNF-α. Moreover, ANG diminished the expression of IL-6 and -8 and monocyte chemotactic protein- (MCP-) 1. The protein expression of nuclear factor-κB (NF-κB) was downregulated by ANG treatment. These findings suggest that ANG suppressed the TNF-α-induced inflammatory response in HCFs through inhibition of TBK1-mediated NF-κB nuclear translocation. These novel results are likely to play a significant role in the selection of immune-mediated inflammatory therapeutic targets and may shed light on the pathogenesis of immune-mediated inflammatory diseases. PMID:24860242

  10. Insights into human phosphoglycerate kinase 1 deficiency as a conformational disease from biochemical, biophysical, and in vitro expression analyses.

    PubMed

    Pey, Angel L; Maggi, Maristella; Valentini, Giovanna

    2014-11-01

    Mutations in genes encoding metabolic enzymes are often the cause of inherited diseases. Mutations usually affect the ability of proteins to fold properly, thus leading to enzyme loss of function. In this work, we explored the relationships between protein stability, aggregation, and degradation in vitro and inside cells in a large set of mutants associated with human phosphoglycerate kinase 1 (hPGK1) deficiency. To this end, we studied a third of the pathogenic alleles reported in the literature using expression analyses and biochemical, biophysical, and computational procedures. Our results show that most pathogenic variants studied had an increased tendency to aggregate when expressed in Escherichia coli, well correlating with the denaturation half-lives measured by thermal denaturation in vitro. Further, the most deleterious mutants show reduced stability toward chemical denaturation and proteolysis, supporting a pivotal role of thermodynamic stability in the propensity toward aggregation and proteolysis of pathogenic hPGK1 mutants in vitro and inside cells. Our strategy allowed us to unravel the complex relationships between protein stability, aggregation, and degradation in hPGK1 deficiency, which might be used to understand disease mechanisms in many inborn errors of metabolism. Our results suggest that pharmacological chaperones and protein homeostasis modulators could be considered as good candidates for therapeutic approaches for hPGK1 deficiency. PMID:24838780

  11. Salt-Inducible Kinase 1 (SIK1) Is Induced by Gastrin and Inhibits Migration of Gastric Adenocarcinoma Cells

    PubMed Central

    Selvik, Linn-Karina M.; Rao, Shalini; Steigedal, Tonje S.; Haltbakk, Ildri; Misund, Kristine; Bruland, Torunn; Prestvik, Wenche S.; Lægreid, Astrid; Thommesen, Liv

    2014-01-01

    Salt-inducible kinase 1 (SIK1/Snf1lk) belongs to the AMP-activated protein kinase (AMPK) family of kinases, all of which play major roles in regulating metabolism and cell growth. Recent studies have shown that reduced levels of SIK1 are associated with poor outcome in cancers, and that this involves an invasive cellular phenotype with increased metastatic potential. However, the molecular mechanism(s) regulated by SIK1 in cancer cells is not well explored. The peptide hormone gastrin regulates cellular processes involved in oncogenesis, including proliferation, apoptosis, migration and invasion. The aim of this study was to examine the role of SIK1 in gastrin responsive adenocarcinoma cell lines AR42J, AGS-GR and MKN45. We show that gastrin, known to signal through the Gq/G11-coupled CCK2 receptor, induces SIK1 expression in adenocarcinoma cells, and that transcriptional activation of SIK1 is negatively regulated by the Inducible cAMP early repressor (ICER). We demonstrate that gastrin-mediated signalling induces phosphorylation of Liver Kinase 1B (LKB1) Ser-428 and SIK1 Thr-182. Ectopic expression of SIK1 increases gastrin-induced phosphorylation of histone deacetylase 4 (HDAC4) and enhances gastrin-induced transcription of c-fos and CRE-, SRE-, AP1- and NF-κB-driven luciferase reporter plasmids. We also show that gastrin induces phosphorylation and nuclear export of HDACs. Next we find that siRNA mediated knockdown of SIK1 increases migration of the gastric adenocarcinoma cell line AGS-GR. Evidence provided here demonstrates that SIK1 is regulated by gastrin and influences gastrin elicited signalling in gastric adenocarcinoma cells. The results from the present study are relevant for the understanding of molecular mechanisms involved in gastric adenocarcinomas. PMID:25384047

  12. Cell division cycle 6, a mitotic substrate of polo-like kinase 1, regulates chromosomal segregation mediated by cyclin-dependent kinase 1 and separase

    PubMed Central

    Yim, Hyungshin; Erikson, Raymond L.

    2010-01-01

    Defining the links between cell division and DNA replication is essential for understanding normal cell cycle progression and tumorigenesis. In this report we explore the effect of phosphorylation of cell division cycle 6 (Cdc6), a DNA replication initiation factor, by polo-like kinase 1 (Plk1) on the regulation of chromosomal segregation. In mitosis, the phosphorylation of Cdc6 was highly increased, in correlation with the level of Plk1, and conversely, Cdc6 is hypophosphorylated in Plk1-depleted cells, although cyclin A- and cyclin B1-dependent kinases are active. Binding between Cdc6 and Plk1 occurs through the polo-box domain of Plk1, and Cdc6 is phosphorylated by Plk1 on T37. Immunohistochemistry studies reveal that Cdc6 and Plk1 colocalize to the central spindle in anaphase. Expression of T37V mutant of Cdc6 (Cdc6-TV) induces binucleated cells and incompletely separated nuclei. Wild-type Cdc6 but not Cdc6-TV binds cyclin-dependent kinase 1 (Cdk1). Expression of wild-type Plk1 but not kinase-defective mutant promotes the binding of Cdc6 to Cdk1. Cells expressing wild-type Cdc6 display lower Cdk1 activity and higher separase activity than cells expressing Cdc6-TV. These results suggest that Plk1-mediated phosphorylation of Cdc6 promotes the interaction of Cdc6 and Cdk1, leading to the attenuation of Cdk1 activity, release of separase, and subsequent anaphase progression. PMID:21041660

  13. Inhibitor of apoptosis signal-regulating kinase 1 protects against acetaminophen-induced liver injury

    SciTech Connect

    Xie, Yuchao; Ramachandran, Anup; Breckenridge, David G.; Liles, John T.; Lebofsky, Margitta; Farhood, Anwar; Jaeschke, Hartmut

    2015-07-01

    Metabolic activation and oxidant stress are key events in the pathophysiology of acetaminophen (APAP) hepatotoxicity. The initial mitochondrial oxidative stress triggered by protein adduct formation is amplified by c-jun-N-terminal kinase (JNK), resulting in mitochondrial dysfunction and ultimately cell necrosis. Apoptosis signal-regulating kinase 1 (ASK1) is considered the link between oxidant stress and JNK activation. The objective of the current study was to assess the efficacy and mechanism of action of the small-molecule ASK1 inhibitor GS-459679 in a murine model of APAP hepatotoxicity. APAP (300 mg/kg) caused extensive glutathione depletion, JNK activation and translocation to the mitochondria, oxidant stress and liver injury as indicated by plasma ALT activities and area of necrosis over a 24 h observation period. Pretreatment with 30 mg/kg of GS-459679 almost completely prevented JNK activation, oxidant stress and injury without affecting the metabolic activation of APAP. To evaluate the therapeutic potential of GS-459679, mice were treated with APAP and then with the inhibitor. Given 1.5 h after APAP, GS-459679 was still protective, which was paralleled by reduced JNK activation and p-JNK translocation to mitochondria. However, GS-459679 treatment was not more effective than N-acetylcysteine, and the combination of GS-459679 and N-acetylcysteine exhibited similar efficacy as N-acetylcysteine monotherapy, suggesting that GS-459769 and N-acetylcysteine affect the same pathway. Importantly, inhibition of ASK1 did not impair liver regeneration as indicated by PCNA staining. In conclusion, the ASK1 inhibitor GS-459679 protected against APAP toxicity by attenuating JNK activation and oxidant stress in mice and may have therapeutic potential for APAP overdose patients. - Highlights: • Two ASK1 inhibitors protected against acetaminophen-induced liver injury. • The ASK1 inhibitors protect when used as pre- or post-treatment. • Protection by ASK1 inhibitor is

  14. Ricinine: a pyridone alkaloid from Ricinus communis that activates the Wnt signaling pathway through casein kinase 1α.

    PubMed

    Ohishi, Kensuke; Toume, Kazufumi; Arai, Midori A; Sadhu, Samir K; Ahmed, Firoj; Mizoguchi, Takamasa; Itoh, Motoyuki; Ishibashi, Masami

    2014-09-01

    Wnt signaling plays important roles in proliferation, differentiation, development of cells, and various diseases. Activity-guided fractionation of the MeOH extract of the Ricinus communis stem led to the isolation of four compounds (1-4). The TCF/β-catenin transcription activities of 1 and 3 were 2.2 and 2.5 fold higher at 20 and 30μM, respectively. Cells treated with ricinine (1) had higher β-catenin and lower of p-β-catenin (ser 33, 37, 45, Thr 41) protein levels, whereas glycogen synthase kinase 3β (GSK3β) and casein kinase 1α (CK1α) protein levels remained unchanged. Cells treated with pyrvinium, an activator of CK1α, had lower β-catenin levels. However, the combined treatment of pyrvinium and 1 led to higher β-catenin levels than those in cells treated with pyrvinium alone, which suggested that 1 inhibited CK1α activity. Furthermore, 1 increased β-catenin protein levels in zebrafish embryos. These results indicated that 1 activated the Wnt signaling pathway by inhibiting CK1α. PMID:25124862

  15. Activation of sphingosine kinase-1 in cancer: implications for therapeutic targeting.

    PubMed

    Cuvillier, Olivier; Ader, Isabelle; Bouquerel, Pierre; Brizuela, Leyre; Malavaud, Bernard; Mazerolles, Catherine; Rischmann, Pascal

    2010-06-01

    Sphingolipid metabolites are critical to the regulation of a number of fundamental biological processes including cancer. Whereas ceramide and sphingosine mediate and trigger apoptosis or cell growth arrest, sphingosine 1-phosphate promotes proliferation, cell survival and angiogenesis. The delicate equilibrium between the intracellular levels of each of these sphingolipids is controlled by the enzymes that either produce or degrade these metabolites. Sphingosine kinase-1 is a crucial regulator of this two-pan balance, because its produces the pro-survival and pro-angiogenic sphingosine 1-phosphate and decreases the amount of both ceramide and sphingosine, the pro-apoptotic sphingolipids. Moreover, its gene is oncogenic, its mRNA is overproduced in several solid tumors, its overexpression protects cells from apoptosis, and its activity is down-regulated by anti-cancer treatments. Therefore, the sphingosine kinase-1/sphingosine 1-phosphate signaling pathway appears to be a target of interest for therapeutic manipulation. PMID:20302564

  16. Casein Kinase 1 Epsilon Expression Predicts Poorer Prognosis in Low T-Stage Oral Cancer Patients

    PubMed Central

    Lin, Shu-Hui; Lin, Yueh-Min; Yeh, Chung-Min; Chen, Chih-Jung; Chen, Mei-Wen; Hung, Hsiao-Fang; Yeh, Kun-Tu; Yang, Shun-Fa

    2014-01-01

    Casein kinase 1 is a group of ubiquitous serine/threonine kinases that are involved in normal cellular functions and several pathological conditions, such as DNA repair, cell cycle progression, cytokinesis, differentiation, and apoptosis. Recent studies have indicated that casein kinase 1-epsilon (CK1ɛ) and casein kinase 1-delta (CK1δ) expression has a role in human cancers. We investigated the associations between CK1ɛ and CK1δ expression and the clinical parameters of oral cancer using immunohistochemical study methods on oral squamous cell carcinoma specimens. The results of our immunohistochemical analysis showed that the loss of CK1ɛ expression was greatly associated with a poor four-year survival rate in oral cancer patients (p = 0.002). A Kaplan-Meier analysis showed that patients who had a loss of CK1ɛ expression had a considerably poorer overall survival rate than patients who had positive CK1ɛ expressions (p = 0.022). A univariate analysis revealed that patients who had a loss of CK1ɛ expression had considerably poorer overall survival (OS) than patients who had positive expression (p = 0.024, hazard ratio (HR) = 1.7). In conclusion, our data indicated that the loss of cytoplasmic CK1ɛ expression is greatly associated with poor survival and might be an adverse survival factor. PMID:24557581

  17. Genetic variations in tau-tubulin kinase-1 are linked to Alzheimer's disease in a Spanish case-control cohort.

    PubMed

    Vázquez-Higuera, José Luis; Martínez-García, Ana; Sánchez-Juan, Pascual; Rodríguez-Rodríguez, Eloy; Mateo, Ignacio; Pozueta, Ana; Frank, Ana; Valdivieso, Fernando; Berciano, José; Bullido, María J; Combarros, Onofre

    2011-03-01

    Neurofibrillary tangles, one of the characteristic neuropathological lesions found in Alzheimer's disease (AD) brains, are composed of abnormally hyperphosphorylated tau protein. Tau-tubulin kinase-1 (TTBK1) is a brain-specific protein kinase involved in tau phosphorylation at AD-related sites. We examined genetic variations of TTBK1 by genotyping nine haplotype tagging SNPs (htSNPs) (rs2104142, rs2651206, rs10807287, rs7764257, rs3800294, rs1995300, rs2756173, rs6936397, and rs6458330) in a group of 645 Spanish late-onset AD patients and 738 healthy controls. Using a recessive genetic model, minor allele homozygotes for rs2651206 in intron 1 (OR=0.50, p=0.0003), rs10807287 in intron 5 (OR=0.49, p=0.0002), and rs7764257 in intron 9 (OR=0.57, p=0.023), which are in strong linkage disequilibrium, had a lower risk of developing AD than subjects homozygotes and heterozygotes for the major allele. TTBK1 is a promising new candidate tau phosphorylation-related gene for AD risk. PMID:20096481

  18. Casein Kinase 1 and Phosphorylation of Cohesin Subunit Rec11 (SA3) Promote Meiotic Recombination through Linear Element Formation

    PubMed Central

    Phadnis, Naina; Cipak, Lubos; Polakova, Silvia; Hyppa, Randy W.; Cipakova, Ingrid; Anrather, Dorothea; Karvaiova, Lucia; Mechtler, Karl

    2015-01-01

    Proper meiotic chromosome segregation, essential for sexual reproduction, requires timely formation and removal of sister chromatid cohesion and crossing-over between homologs. Early in meiosis cohesins hold sisters together and also promote formation of DNA double-strand breaks, obligate precursors to crossovers. Later, cohesin cleavage allows chromosome segregation. We show that in fission yeast redundant casein kinase 1 homologs, Hhp1 and Hhp2, previously shown to regulate segregation via phosphorylation of the Rec8 cohesin subunit, are also required for high-level meiotic DNA breakage and recombination. Unexpectedly, these kinases also mediate phosphorylation of a different meiosis-specific cohesin subunit Rec11. This phosphorylation in turn leads to loading of linear element proteins Rec10 and Rec27, related to synaptonemal complex proteins of other species, and thereby promotes DNA breakage and recombination. Our results provide novel insights into the regulation of chromosomal features required for crossing-over and successful reproduction. The mammalian functional homolog of Rec11 (STAG3) is also phosphorylated during meiosis and appears to be required for fertility, indicating wide conservation of the meiotic events reported here. PMID:25993311

  19. Structural and functional analyses of minimal phosphopeptides targeting the polo-box domain of polo-like kinase 1

    SciTech Connect

    Yun, Sang-Moon; Moulaei, Tinoush; Lim, Dan; Bang, Jeong K.; Park, Jung-Eun; Shenoy, Shilpa R.; Liu, Fa; Kang, Young H.; Liao, Chenzhong; Soung, Nak-Kyun; Lee, Sunhee; Yoon, Do-Young; Lim, Yoongho; Lee, Dong-Hee; Otaka, Akira; Appella, Ettore; McMahon, James B.; Nicklaus, Marc C.; Burke, Jr., Terrence R.; Yaffe, Michael B.; Wlodawer, Alexander; Lee, Kyung S.

    2009-09-14

    Polo-like kinase-1 (Plk1) has a pivotal role in cell proliferation and is considered a potential target for anticancer therapy. The noncatalytic polo-box domain (PBD) of Plk1 forms a phosphoepitope binding module for protein-protein interaction. Here, we report the identification of minimal phosphopeptides that specifically interact with the PBD of human PLK1, but not those of the closely related PLK2 and PLK3. Comparative binding studies and analyses of crystal structures of the PLK1 PBD in complex with the minimal phosphopeptides revealed that the C-terminal SpT dipeptide functions as a high-affinity anchor, whereas the N-terminal residues are crucial for providing specificity and affinity to the interaction. Inhibition of the PLK1 PBD by phosphothreonine mimetic peptides was sufficient to induce mitotic arrest and apoptotic cell death. The mode of interaction between the minimal peptide and PBD may provide a template for designing therapeutic agents that target PLK1.

  20. Overcoming MDR-associated chemoresistance in HL-60 acute myeloid leukemia cells by targeting sphingosine kinase-1.

    PubMed

    Bonhoure, E; Pchejetski, D; Aouali, N; Morjani, H; Levade, T; Kohama, T; Cuvillier, O

    2006-01-01

    We examined the involvement of sphingosine kinase-1, a critical regulator of the sphingolipid balance, in susceptibility to antineoplastic agents of either sensitive or multidrug-resistant acute myeloid leukemia cells. Contrary to parental HL-60 cells, doxorubicin and etoposide failed to trigger apoptosis in chemoresistant HL-60/Doxo and HL-60NP16 cells overexpressing MRP1 and MDR1, respectively. Chemosensitive HL-60 cells displayed sphingosine kinase-1 inhibition coupled with ceramide generation. In contrast, chemoresistant HL-60/ Doxo and HL-60/VP16 had sustained sphingosine kinase-1 activity and did not produce ceramide during treatment. Enforced expression of sphingosine kinase-1 in chemosensitive HL-60 cells resulted in marked inhibition of apoptosis that was mediated by blockade of mitochondrial cytochrome c efflux hence suggesting a control of apoptosis at the pre-mitochondrial level. Incubation with cell-permeable ceramide of chemoresistant cells led to a sphingosine kinase-1 inhibition and apoptosis both prevented by sphingosine kinase-1 over-expression. Furthermore, F-12509a, a new sphingosine kinase inhibitor, led to ceramide accumulation, decrease in sphingosine 1-phosphate content and caused apoptosis equally in chemosensitive and chemoresistant cell lines that is inhibited by adding sphingosine 1-phosphate or overexpressing sphingosine kinase-1. F-12509a induced classical apoptosis hallmarks namely nuclear fragmentation, caspase-3 cleavage as well as downregulation of antiapoptotic XIAP, and release of cytochrome c and SMAC/Diablo. PMID:16281067

  1. Albumin-induced apoptosis of glomerular parietal epithelial cells is modulated by extracellular signal-regulated kinase 1/2

    PubMed Central

    Ohse, Takamoto; Krofft, Ron D.; Wu, Jimmy S.; Eddy, Allison A.; Pippin, Jeffrey W.; Shankland, Stuart J.

    2012-01-01

    Background. The biological role(s) of glomerular parietal epithelial cells (PECs) is not fully understood in health or disease. Given its location, PECs are constantly exposed to low levels of filtered albumin, which is increased in nephrotic states. We tested the hypothesis that PECs internalize albumin and increased uptake results in apoptosis. Methods. Confocal microscopy of immunofluorescent staining and immunohistochemistry were used to demonstrate albumin internalization in PECs and to quantitate albumin uptake in normal mice and rats as well as experimental models of membranous nephropathy, minimal change disease/focal segmental glomerulosclerosis and protein overload nephropathy. Fluorescence-activated cell sorting analysis was performed on immortalized cultured PECs exposed to fluorescein isothiocyanate (FITC)-labeled albumin in the presence of an endosomal inhibitor or vehicle. Apoptosis was measured by Hoechst staining in cultured PECs exposed to bovine serum albumin. Levels of phosphorylated extracellular signal-regulated kinase 1 and 2 (p-ERK1/2) were restored by retroviral infection of mitogen-activated protein kinase (MEK) 1/2 and reduced by U0126 in PECs exposed to high albumin levels in culture and apoptosis measured by Hoechst staining. Results. PECs internalized albumin normally, and this was markedly increased in all of the experimental disease models (P < 0.05 versus controls). Cultured immortalized PECs also internalize FITC-labeled albumin, which was reduced by endosomal inhibition. A consequence of increased albumin internalization was PEC apoptosis in vitro and in vivo. Candidate signaling pathways underlying these events were examined. Data showed markedly reduced levels of phosphorylated extracellular signal-regulated kinase 1 and 2 (ERK1/2) in PECs exposed to high albumin levels in nephropathy and in culture. A role for ERK1/2 in limiting albumin-induced apoptosis was shown by restoring p-ERK1/2 by retroviral infection, which reduced

  2. Dynactin helps target Polo-like kinase 1 to kinetochores via its left-handed beta-helical p27 subunit

    PubMed Central

    Yeh, Ting-Yu; Kowalska, Anna K; Scipioni, Brett R; Cheong, Frances Ka Yan; Zheng, Meiying; Derewenda, Urszula; Derewenda, Zygmunt S; Schroer, Trina A

    2013-01-01

    Dynactin is a protein complex required for the in vivo function of cytoplasmic dynein, a microtubule (MT)-based motor. Dynactin binds both dynein and MTs via its p150Glued subunit, but little is known about the ‘pointed-end complex' that includes the protein subunits Arp11, p62 and the p27/p25 heterodimer. Here, we show that the p27/p25 heterodimer undergoes mitotic phosphorylation by cyclin-dependent kinase 1 (Cdk1) at a single site, p27 Thr186, to generate an anchoring site for polo-like kinase 1 (Plk1) at kinetochores. Removal of p27/p25 from dynactin results in reduced levels of Plk1 and its phosphorylated substrates at kinetochores in prometaphase, which correlates with aberrant kinetochore–MT interactions, improper chromosome alignment and abbreviated mitosis. To investigate the structural implications of p27 phosphorylation, we determined the structure of human p27. This revealed an unusual left-handed β-helix domain, with the phosphorylation site located within a disordered, C-terminal segment. We conclude that dynactin plays a previously undescribed regulatory role in the spindle assembly checkpoint by recruiting Plk1 to kinetochores and facilitating phosphorylation of important downstream targets. PMID:23455152

  3. Structural Basis for the Potent and Selective Inhibition of Casein Kinase 1 Epsilon

    SciTech Connect

    Long, Alexander M.; Zhao, Huilin; Huang, Xin

    2012-10-29

    Casein kinase 1 epsilon (CK1ε) and its closest homologue CK1δ are key regulators of diverse cellular processes. We report two crystal structures of PF4800567, a potent and selective inhibitor of CK1ε, bound to the kinase domains of human CK1ε and CK1δ as well as one apo CK1ε crystal structure. These structures provide a molecular basis for the strong and specific inhibitor interactions with CK1ε and suggest clues for further development of CK1δ inhibitors.

  4. Comparative theoretical study of the binding of potential cancer-treatment drugs to Checkpoint kinase 1

    NASA Astrophysics Data System (ADS)

    Araújo, Pedro M. M.; Pinto da Silva, Luís; Esteves da Silva, Joaquim C. G.

    2014-01-01

    This Letter focuses the binding between Checkpoint kinase 1 and two molecules with known inhibition potential, C39 and C40. In order to find the most relevant residues the structures were submitted to an optimization process. As expected C39 presented the highest inhibitory power towards Chk1, being this inhibition mode highly dependent on the interactions with Lys38 and Glu91. Glu55 and Asp148 exhibit unfavorable interactions to C39. Glu91 was the most important residues in the binding of C40 to Chk1, while interaction with Lys38, Glu55 and Gly90 resulted in repulsion.

  5. Heterozygous Mutations in MAP3K7, Encoding TGF-β-Activated Kinase 1, Cause Cardiospondylocarpofacial Syndrome.

    PubMed

    Le Goff, Carine; Rogers, Curtis; Le Goff, Wilfried; Pinto, Graziella; Bonnet, Damien; Chrabieh, Maya; Alibeu, Olivier; Nistchke, Patrick; Munnich, Arnold; Picard, Capucine; Cormier-Daire, Valérie

    2016-08-01

    Cardiospondylocarpofacial (CSCF) syndrome is characterized by growth retardation, dysmorphic facial features, brachydactyly with carpal-tarsal fusion and extensive posterior cervical vertebral synostosis, cardiac septal defects with valve dysplasia, and deafness with inner ear malformations. Whole-exome sequencing identified heterozygous MAP3K7 mutations in six distinct CSCF-affected individuals from four families and ranging in age from 5 to 37 years. MAP3K7 encodes transforming growth factor β (TGF-β)-activated kinase 1 (TAK1), which is involved in the mitogen-activated protein kinase (MAPK)-p38 signaling pathway. MAPK-p38 signaling was markedly altered when expression of non-canonical TGF-β-driven target genes was impaired. These findings support the loss of transcriptional control of the TGF-β-MAPK-p38 pathway in fibroblasts obtained from affected individuals. Surprisingly, although TAK1 is located at the crossroad of inflammation, immunity, and cancer, this study reports MAP3K7 mutations in a developmental disorder affecting mainly cartilage, bone, and heart. PMID:27426734

  6. Phosphoinositide-Dependent Kinase 1 and mTORC2 Synergistically Maintain Postnatal Heart Growth and Heart Function in Mice

    PubMed Central

    Zhao, Xia; Lu, Shuangshuang; Nie, Junwei; Hu, Xiaoshan; Luo, Wen; Wu, Xiangqi; Liu, Hailang; Feng, Qiuting; Chang, Zai; Liu, Yaoqiu; Cao, Yunshan; Sun, Haixiang; Li, Xinli; Hu, Yali

    2014-01-01

    The protein kinase Akt plays a critical role in heart function and is activated by phosphorylation of threonine 308 (T308) and serine 473 (S473). While phosphoinositide-dependent kinase 1 (PDK1) is responsible for Akt T308 phosphorylation, the identities of the kinases for Akt S473 phosphorylation in the heart remain controversial. Here, we disrupted mTOR complex 2 (mTORC2) through deletion of Rictor in the heart and found normal heart growth and function. Rictor deletion caused significant reduction of Akt S473 phosphorylation but enhanced Akt T308 phosphorylation, suggesting that a high level of Akt T308 phosphorylation maintains Akt activity and heart function. Deletion of Pdk1 in the heart caused significantly enhanced Akt S473 phosphorylation that was suppressed by removal of Rictor, leading to worsened dilated cardiomyopathy (DCM) and accelerated heart failure in Pdk1-deficient mice. In addition, we found that increasing Akt S473 phosphorylation through deletion of Pten or chemical inhibition of PTEN reversed DCM and heart failure in Pdk1-deficient mice. Investigation of heart samples from human DCM patients revealed changes similar to those in the mouse models. These results demonstrated that PDK1 and mTORC2 synergistically promote postnatal heart growth and maintain heart function in postnatal mice. PMID:24662050

  7. Polyphosphate kinase 1, a conserved bacterial enzyme, in a eukaryote, Dictyostelium discoideum, with a role in cytokinesis

    PubMed Central

    Zhang, Haiyu; Gómez-García, María R.; Shi, Xiaobing; Rao, Narayana N.; Kornberg, Arthur

    2007-01-01

    Polyphosphate kinase 1 (PPK1), the principal enzyme responsible for reversible synthesis of polyphosphate (poly P) from the terminal phosphate of ATP, is highly conserved in bacteria and archaea. Dictyostelium discoideum, a social slime mold, is one of a few eukaryotes known to possess a PPK1 homolog (DdPPK1). Compared with PPK1 of Escherichia coli, DdPPK1 contains the conserved residues for ATP binding and autophosphorylation, but has an N-terminal extension of 370 aa, lacking homology with any known protein. Polyphosphate or ATP promote oligomerization of the enzyme in vitro. The DdPPK1 products are heterogeneous in chain length and shorter than those of E. coli. The unique DdPPK1 N-terminal domain was shown to be necessary for its enzymatic activity, cellular localization, and physiological functions. Mutants of DdPPK1, as previously reported, are defective in development, sporulation, and predation, and as shown here, in late stages of cytokinesis and cell division. PMID:17940044

  8. Polyphosphate kinase 1, a conserved bacterial enzyme, in a eukaryote, Dictyostelium discoideum, with a role in cytokinesis.

    PubMed

    Zhang, Haiyu; Gómez-García, María R; Shi, Xiaobing; Rao, Narayana N; Kornberg, Arthur

    2007-10-16

    Polyphosphate kinase 1 (PPK1), the principal enzyme responsible for reversible synthesis of polyphosphate (poly P) from the terminal phosphate of ATP, is highly conserved in bacteria and archaea. Dictyostelium discoideum, a social slime mold, is one of a few eukaryotes known to possess a PPK1 homolog (DdPPK1). Compared with PPK1 of Escherichia coli, DdPPK1 contains the conserved residues for ATP binding and autophosphorylation, but has an N-terminal extension of 370 aa, lacking homology with any known protein. Polyphosphate or ATP promote oligomerization of the enzyme in vitro. The DdPPK1 products are heterogeneous in chain length and shorter than those of E. coli. The unique DdPPK1 N-terminal domain was shown to be necessary for its enzymatic activity, cellular localization, and physiological functions. Mutants of DdPPK1, as previously reported, are defective in development, sporulation, and predation, and as shown here, in late stages of cytokinesis and cell division. PMID:17940044

  9. Polo-like kinase 1 mediates BRCA1 phosphorylation and recruitment at DNA double-strand breaks

    PubMed Central

    Chabalier-Taste, Corinne; Canitrot, Yvan; Calsou, Patrick; Larminat, Florence

    2016-01-01

    Accurate repair of DNA double-strand breaks (DSB) caused during DNA replication and by exogenous stresses is critical for the maintenance of genomic integrity. There is growing evidence that the Polo-like kinase 1 (Plk1) that plays a number of pivotal roles in cell proliferation can directly participate in regulation of DSB repair. In this study, we show that Plk1 regulates BRCA1, a key mediator protein required to efficiently repair DSB through homologous recombination (HR). Following induction of DSB, BRCA1 concentrates in distinctive large nuclear foci at damage sites where multiple DNA repair factors accumulate. First, we found that inhibition of Plk1 shortly before DNA damage sensitizes cells to ionizing radiation and reduces DSB repair by HR. Second, we provide evidence that BRCA1 foci formation induced by DSB is reduced when Plk1 is inhibited or depleted. Third, we identified BRCA1 as a novel Plk1 substrate and determined that Ser1164 is the major phosphorylation site for Plk1 in vitro. In cells, mutation of Plk1 sites on BRCA1 significantly delays BRCA1 foci formation following DSB, recapitulating the phenotype observed upon Plk1 inhibition. Our data then assign a key function to Plk1 in BRCA1 foci formation at DSB, emphasizing Plk1 importance in the HR repair of human cells. PMID:26745677

  10. Combined deficiency for MAP kinase-interacting kinase 1 and 2 (Mnk1 and Mnk2) delays tumor development

    PubMed Central

    Ueda, Takeshi; Sasaki, Masato; Elia, Andrew J.; Chio, Iok In Christine; Hamada, Koichi; Fukunaga, Rikiro; Mak, Tak W.

    2010-01-01

    MAP kinase-interacting kinase 1 and 2 (Mnk1 and Mnk2) are protein-serine/threonine kinases that are activated by ERK or p38 and phosphorylate eIF4E, which is involved in cap-dependent translation initiation. However, Mnk1/2 double knockout (Mnk-DKO) mice show normal cell growth and development despite an absence of eIF4E phosphorylation. Here we show that the tumorigenesis occurring in the Lck-Pten mouse model (referred to here as tPten−/− mice) can be suppressed by the loss of Mnk1/2. Phosphorylation of eIF4E was greatly enhanced in lymphomas of parental tPten−/− mice compared with lymphoid tissues of wild-type mice, but was totally absent in lymphomas of tPten−/−; Mnk-DKO mice. Notably, stable knockdown of Mnk1 in the human glioma cell line U87MG resulted in dramatically decreased tumor formation when these cells were injected into athymic nude mice. Our data demonstrate an oncogenic role for Mnk1/2 in tumor development, and highlight these molecules as potential anticancer drug targets that could be inactivated with minimal side effects. PMID:20679220

  11. Sphingosine Kinase 1 Localized to the Plasma Membrane Lipid Raft Microdomain Overcomes Serum Deprivation Induced Growth Inhibition

    PubMed Central

    Hengst, Jeremy A.; Francy-Guilford, Jacquelyn M.; Fox, Todd E.; Wang, Xujun; Conroy, Elizabeth J.; Yun, Jong K.

    2009-01-01

    Several studies have demonstrated that sphingosine kinase 1 (SphK1) translocates to the plasma membrane (PM) upon its activation and further suggested the plasma membrane lipid raft microdomain (PMLRM) as a target for SphK1 relocalization. To date, however, direct evidence of SphK1 localization to the PMLRM has been lacking. In this report, using multiple biochemical and subcellular fractionation techniques we demonstrate that endogenous SphK1 protein and its substrate, D-erythro sphingosine, are present within the PMLRM. Additionally, we demonstrate that the PMA stimulation of SphK1 localized to the PMLRM results in production of sphingosine-1-phosphate as well as induction of cell growth under serum-deprivation conditions. We further report that Ser225Ala and Thr54Cys mutations, reported to abrogate phosphatidylserine binding, block SphK1 targeting to the PMLRM and SphK1 induced cell growth. Together these findings provide direct evidence that the PMLRM is the major site-of-action for SphK1 to overcome serum-deprived cell growth inhibition. PMID:19782042

  12. ENHANCEMENT OF SPHINGOSINE KINASE 1 CATALYTIC ACTIVITY BY DELETION OF 21 AMINO ACIDS FROM THE COOH-TERMINUS*

    PubMed Central

    Hengst, Jeremy A.; Guilford, Jacquelyn M.; Conroy, Elizabeth J.; Wang, Xujun; Yun, Jong K.

    2009-01-01

    Sphingosine kinase 1 (SphK1) responds to a variety of growth factor signals by increasing catalytic activity as it translocates to the plasma membrane (PM). Several studies have identified amino acids residues involved in translocation yet how SphK1 increases its catalytic activity remains to be elucidated. Herein, we report that deletion of 21 amino acids from the COOH terminus of SphK1 (1-363) results in increased catalytic activity relative to wild-type SphK1 (1-384) which is independent of the phosphorylation state of Serine 225 and PMA stimulation. Importantly, HEK293 cells stably expressing the 1-363 protein exhibit enhanced cell growth under serum-deprived cell culture conditions. Together the evidence indicates that the COOH-terminal region of SphK1 encompasses a structural element that is necessary for the increase in catalytic activity in response to PMA treatment and that its deletion renders SphK1 constitutively active with respect to PMA treatment. PMID:19914200

  13. Sphingosine kinase 1: a new modulator of hypoxia inducible factor 1alpha during hypoxia in human cancer cells.

    PubMed

    Ader, Isabelle; Brizuela, Leyre; Bouquerel, Pierre; Malavaud, Bernard; Cuvillier, Olivier

    2008-10-15

    Here, we provide the first evidence that sphingosine kinase 1 (SphK1), an oncogenic lipid kinase balancing the intracellular level of key signaling sphingolipids, modulates the transcription factor hypoxia inducible factor 1alpha (HIF-1alpha), master regulator of hypoxia. SphK1 activity is stimulated under low oxygen conditions and regulated by reactive oxygen species. The SphK1-dependent stabilization of HIF-1alpha levels is mediated by the Akt/glycogen synthase kinase-3beta signaling pathway that prevents its von Hippel-Lindau protein-mediated degradation by the proteasome. The pharmacologic and RNA silencing inhibition of SphK1 activity prevents the accumulation of HIF-1alpha and its transcriptional activity in several human cancer cell lineages (prostate, brain, breast, kidney, and lung), suggesting a canonical pathway. Therefore, we propose that SphK1 can act as a master regulator for hypoxia, giving support to its inhibition as a valid strategy to control tumor hypoxia and its molecular consequences. PMID:18922940

  14. Synthesis and evaluation of a series of 4-azaindole-containing p21-activated kinase-1 inhibitors.

    PubMed

    Lee, Wendy; Crawford, James J; Aliagas, Ignacio; Murray, Lesley J; Tay, Suzanne; Wang, Weiru; Heise, Christopher E; Hoeflich, Klaus P; La, Hank; Mathieu, Simon; Mintzer, Robert; Ramaswamy, Sreemathy; Rouge, Lionel; Rudolph, Joachim

    2016-08-01

    A series of 4-azaindole-containing p21-activated kinase-1 (PAK1) inhibitors was prepared with the goal of improving physicochemical properties relative to an indole starting point. Indole 1 represented an attractive, non-basic scaffold with good PAK1 affinity and cellular potency but was compromised by high lipophilicity (clogD=4.4). Azaindole 5 was designed as an indole surrogate with the goal of lowering logD and resulted in equipotent PAK1 inhibition with a 2-fold improvement in cellular potency over 1. Structure-activity relationship studies around 5 identified additional 4-azaindole analogs with superior PAK1 biochemical activity (Ki <10nM) and up to 24-fold selectivity for group I over group II PAKs. Compounds from this series showed enhanced permeability, improved aqueous solubility, and lower plasma protein binding over indole 1. The improvement in physicochemical properties translated to a 20-fold decrease in unbound clearance in mouse PK studies for azaindole 5 relative to indole 1. PMID:27346791

  15. Identification of a Tumor Specific, Active-Site Mutation in Casein Kinase 1α by Chemical Proteomics

    PubMed Central

    Okerberg, Eric S.; Hainley, Anna; Brown, Heidi; Aban, Arwin; Alemayehu, Senait; Shih, Ann; Wu, Jane; Patricelli, Matthew P.; Kozarich, John W.; Nomanbhoy, Tyzoon; Rosenblum, Jonathan S.

    2016-01-01

    We describe the identification of a novel, tumor-specific missense mutation in the active site of casein kinase 1α (CSNK1A1) using activity-based proteomics. Matched normal and tumor colon samples were analyzed using an ATP acyl phosphate probe in a kinase-targeted LC-MS2 platform. An anomaly in the active-site peptide from CSNK1A1 was observed in a tumor sample that was consistent with an altered catalytic aspartic acid. Expression and analysis of the suspected mutant verified the presence of asparagine in the probe-labeled, active-site peptide for CSNK1A1. Genomic sequencing of the colon tumor samples confirmed the presence of a missense mutation in the catalytic aspartic acid of CSNK1A1 (GAC→AAC). To our knowledge, the D163N mutation in CSNK1A1 is a newly defined mutation to the conserved, catalytic aspartic acid of a protein kinase and the first missense mutation identified using activity-based proteomics. The tumorigenic potential of this mutation remains to be determined. PMID:27031502

  16. Suppressed Production of Soluble Fms-Like Tyrosine Kinase-1 Contributes to Myocardial Remodeling and Heart Failure.

    PubMed

    Seno, Ayako; Takeda, Yukiji; Matsui, Masaru; Okuda, Aya; Nakano, Tomoya; Nakada, Yasuki; Kumazawa, Takuya; Nakagawa, Hitoshi; Nishida, Taku; Onoue, Kenji; Somekawa, Satoshi; Watanabe, Makoto; Kawata, Hiroyuki; Kawakami, Rika; Okura, Hiroyuki; Uemura, Shiro; Saito, Yoshihiko

    2016-09-01

    Soluble fms-like tyrosine kinase-1 (sFlt-1), an endogenous inhibitor of vascular endothelial growth factor and placental growth factor, is involved in the pathogenesis of cardiovascular disease. However, the significance of sFlt-1 in heart failure has not been fully elucidated. We found that sFlt-1 is decreased in renal failure and serves as a key molecule in atherosclerosis. In this study, we aimed to investigate the role of the decreased sFlt-1 production in heart failure, using sFlt-1 knockout mice. sFlt-1 knockout mice and wild-type mice were subjected to transverse aortic constriction and evaluated after 7 days. The sFlt-1 knockout mice had significantly higher mortality (52% versus 15%; P=0.0002) attributable to heart failure and showed greater cardiac hypertrophy (heart weight to body weight ratio, 8.95±0.45 mg/g in sFlt-1 knockout mice versus 6.60±0.32 mg/g in wild-type mice; P<0.0001) and cardiac dysfunction, which was accompanied by a significant increase in macrophage infiltration and cardiac fibrosis, than wild-type mice after transverse aortic constriction. An anti-placental growth factor-neutralizing antibody prevented pressure overload-induced cardiac hypertrophy, fibrosis, and cardiac dysfunction. Moreover, monocyte chemoattractant protein-1 expression was significantly increased in the hypertrophied hearts of sFlt-1 knockout mice compared with wild-type mice. Monocyte chemoattractant protein-1 inhibition with neutralizing antibody ameliorated maladaptive cardiac remodeling in sFlt-1 knockout mice after transverse aortic constriction. In conclusion, decreased sFlt-1 production plays a key role in the aggravation of cardiac hypertrophy and heart failure through upregulation of monocyte chemoattractant protein-1 expression in pressure-overloaded heart. PMID:27480835

  17. pH-dependent relationship between thermodynamic and kinetic stability in the denaturation of human phosphoglycerate kinase 1.

    PubMed

    Pey, Angel L

    2014-08-01

    Human phosphoglycerate kinase 1 (hPGK1) is a glycolytic enzyme essential for ATP synthesis, and it is implicated in different pathological conditions such as inherited diseases, oncogenesis and activation of drugs for cancer and viral treatments. Particularly, mutations in hPGK1 cause human PGK1 deficiency, a rate metabolic conformational disease. We have recently found that most of these mutations cause protein kinetic destabilization by significant changes in the structure/energetics of the transition state for irreversible denaturation. In this work, we explore the relationships between protein conformation, thermodynamic and kinetic stability in hPGK1 by performing comprehensive analyses in a wide pH range (2.5-8). hPGK1 remains in a native conformation at pH 5-8, but undergoes a conformational transition to a molten globule-like state at acidic pH. Interestingly, hPGK1 kinetic stability remains essentially constant at pH 6-8, but is significantly reduced when pH is decreased from 6 to 5. We found that this decrease in kinetic stability is caused by significant changes in the energetic/structural balance of the denaturation transition state, which diverge from those found for disease-causing mutations. We also show that protein kinetic destabilization by acidic pH is strongly linked to lower thermodynamic stability, while in disease-causing mutations seems to be linked to lower unfolding cooperativity. These results highlight the plasticity of the hPGK1 denaturation mechanism that responds differently to changes in pH and in disease-causing mutations. New insight is presented into the different factors contributing to hPGK1 thermodynamic and kinetic stability and the role of denaturation mechanisms in hPGK1 deficiency. PMID:24721582

  18. Structural Basis of Human p70 Ribosomal S6 Kinase-1 Regulation by Activation Loop Phosphorylation

    SciTech Connect

    Sunami, Tomoko; Byrne, Noel; Diehl, Ronald E.; Funabashi, Kaoru; Hall, Dawn L.; Ikuta, Mari; Patel, Sangita B.; Shipman, Jennifer M.; Smith, Robert F.; Takahashi, Ikuko; Zugay-Murphy, Joan; Iwasawa, Yoshikazu; Lumb, Kevin J.; Munshi, Sanjeev K.; Sharma, Sujata

    2010-03-04

    p70 ribosomal S6 kinase (p70S6K) is a downstream effector of the mTOR signaling pathway involved in cell proliferation, cell growth, cell-cycle progression, and glucose homeostasis. Multiple phosphorylation events within the catalytic, autoinhibitory, and hydrophobic motif domains contribute to the regulation of p70S6K. We report the crystal structures of the kinase domain of p70S6K1 bound to staurosporine in both the unphosphorylated state and in the 3{prime}-phosphoinositide-dependent kinase-1-phosphorylated state in which Thr-252 of the activation loop is phosphorylated. Unphosphorylated p70S6K1 exists in two crystal forms, one in which the p70S6K1 kinase domain exists as a monomer and the other as a domain-swapped dimer. The crystal structure of the partially activated kinase domain that is phosphorylated within the activation loop reveals conformational ordering of the activation loop that is consistent with a role in activation. The structures offer insights into the structural basis of the 3{prime}-phosphoinositide-dependent kinase-1-induced activation of p70S6K and provide a platform for the rational structure-guided design of specific p70S6K inhibitors.

  19. Keratins Modulate c-Flip/Extracellular Signal-Regulated Kinase 1 and 2 Antiapoptotic Signaling in Simple Epithelial Cells

    PubMed Central

    Gilbert, Stéphane; Loranger, Anne; Marceau, Normand

    2004-01-01

    Among the large family of intermediate filament proteins, the keratin 8 and 18 (K8/K18) pair constitutes a hallmark for all simple epithelial cells, such as hepatocytes and mammary cells. Functional studies with different cell models have suggested that K8/K18 are involved in simple epithelial cell resistance to several forms of stress that may lead to cell death. We have reported recently that K8/K18-deprived hepatocytes from K8-null mice are more sensitive to Fas-mediated apoptosis. Here we show that upon Fas, tumor necrosis factor alpha receptor, or tumor necrosis factor alpha-related apoptosis-inducing ligand receptor stimulation, an inhibition of extracellular signal-regulated kinase 1 and 2 (ERK1/2) activation sensitizes wild-type but not K8-null mouse hepatocytes to apoptosis and that a much weaker ERK1/2 activation occurs in K8-null hepatocytes. In turn, this impaired ERK1/2 activation in K8-null hepatocytes is associated with a drastic reduction in c-Flip protein, an event that also holds in a K8-null mouse mammary cell line. c-Flip, along with Raf-1, is part of a K8/K18-immunoisolated complex from wild-type hepatocytes, and Fas stimulation leads to further c-Flip and Raf-1 recruitment in the complex. This points to a new regulatory role of simple epithelium keratins in the c-Flip/ERK1/2 antiapoptotic signaling pathway. PMID:15282307

  20. Targeting Translation Control with p70 S6 Kinase 1 Inhibitors to Reverse Phenotypes in Fragile X Syndrome Mice.

    PubMed

    Bhattacharya, Aditi; Mamcarz, Maggie; Mullins, Caitlin; Choudhury, Ayesha; Boyle, Robert G; Smith, Daniel G; Walker, David W; Klann, Eric

    2016-07-01

    Aberrant neuronal translation is implicated in the etiology of numerous brain disorders. Although mTORC1-p70 ribosomal S6 kinase 1 (S6K1) signaling is critical for translational control, pharmacological manipulation in vivo has targeted exclusively mTORC1 due to the paucity of specific inhibitors to S6K1. However, small molecule inhibitors of S6K1 could potentially ameliorate pathological phenotypes of diseases, which are based on aberrant translation and protein expression. One such condition is fragile X syndrome (FXS), which is considered to be caused by exaggerated neuronal translation and is the most frequent heritable cause of autism spectrum disorder (ASD). To date, potential therapeutic interventions in FXS have focused largely on targets upstream of translational control to normalize FXS-related phenotypes. Here we test the ability of two S6K1 inhibitors, PF-4708671 and FS-115, to normalize translational homeostasis and other phenotypes exhibited by FXS model mice. We found that although the pharmacokinetic profiles of the two S6K1 inhibitors differed, they overlapped in reversing multiple disease-associated phenotypes in FXS model mice including exaggerated protein synthesis, inappropriate social behavior, behavioral inflexibility, altered dendritic spine morphology, and macroorchidism. In contrast, the two inhibitors differed in their ability to rescue stereotypic marble-burying behavior and weight gain. These findings provide an initial pharmacological characterization of the impact of S6K1 inhibitors in vivo for FXS, and have therapeutic implications for other neuropsychiatric conditions involving aberrant mTORC1-S6K1 signaling. PMID:26708105

  1. Receptor for activated C kinase 1 (RACK1) promotes the progression of OSCC via the AKT/mTOR pathway.

    PubMed

    Zhang, Xuefeng; Liu, Na; Ma, Danhua; Liu, Ling; Jiang, Lu; Zhou, Yu; Zeng, Xin; Li, Jing; Chen, Qianming

    2016-08-01

    Our previous study suggested that receptor for activated C kinase 1 (RACK1) contribute to the progression of oral squamous cell carcinoma (OSCC). The aim of this study is to elucidate the mechanism by which RACK1 regulates cell growth in OSCC using in vitro and in vivo models. The effects of RACK1 knockdown with lentivirus based shRNA in stable cell lines were evaluated by Q-PCR and western blot analysis. RACK1 silencing effects on the cell cycle in OSCC cells were detected by flow cytometry and western blot analysis. The effect of RACK1 silencing on inhibiting the progression of OSCC was illustrated using a xenografted mouse model. RACK1 and relevant signaling pathways were investigated in tissues and cells using immunohistochemistry and/or western blot analysis. Stable silencing of the RACK1 gene resulted in a distinct G1 and G2 phase arrest by downregulating Cyclin B1 and Cyclin D1. Depleted RACK1 led to markedly decreased tumor volume and the expression of Ki67, CD34, and VEGF in vivo. The expression of RACK1 and p-AKT has a parallel pattern in different stages of oral carcinogenesis tissues. In addition, the protein level of RACK1 was positively correlated with p-AKT in OSCC tissue samples and cell lines. We found specific transient knockdown of RACK1 could downregulate the protein levels of p-AKT, p-mTOR, and p-S6 in a dose-dependent manner. This study demonstrates that RACK1-dependent OSCC growth and survival may be related to the increased activation of the AKT/mTOR/S6 pathway. PMID:27279145

  2. Piperine Causes G1 Phase Cell Cycle Arrest and Apoptosis in Melanoma Cells through Checkpoint Kinase-1 Activation

    PubMed Central

    Fofaria, Neel M.; Kim, Sung-Hoon; Srivastava, Sanjay K.

    2014-01-01

    In this study, we determined the cytotoxic effects of piperine, a major constituent of black and long pepper in melanoma cells. Piperine treatment inhibited the growth of SK MEL 28 and B16 F0 cells in a dose and time-dependent manner. The growth inhibitory effects of piperine were mediated by cell cycle arrest of both the cell lines in G1 phase. The G1 arrest by piperine correlated with the down-regulation of cyclin D1 and induction of p21. Furthermore, this growth arrest by piperine treatment was associated with DNA damage as indicated by phosphorylation of H2AX at Ser139, activation of ataxia telangiectasia and rad3-related protein (ATR) and checkpoint kinase 1 (Chk1). Pretreatment with AZD 7762, a Chk1 inhibitor not only abrogated the activation of Chk1 but also piperine mediated G1 arrest. Similarly, transfection of cells with Chk1 siRNA completely protected the cells from G1 arrest induced by piperine. Piperine treatment caused down-regulation of E2F1 and phosphorylation of retinoblastoma protein (Rb). Apoptosis induced by piperine was associated with down-regulation of XIAP, Bid (full length) and cleavage of Caspase-3 and PARP. Furthermore, our results showed that piperine treatment generated ROS in melanoma cells. Blocking ROS by tiron protected the cells from piperine mediated cell cycle arrest and apoptosis. These results suggest that piperine mediated ROS played a critical role in inducing DNA damage and activation of Chk1 leading to G1 cell cycle arrest and apoptosis. PMID:24804719

  3. Targeting Apoptosis Signalling Kinase-1 (ASK-1) Does Not Prevent the Development of Neuropathy in Streptozotocin-Induced Diabetic Mice

    PubMed Central

    Newton, Victoria L.; Ali, Sumia; Duddy, Graham; Whitmarsh, Alan J.; Gardiner, Natalie J.

    2014-01-01

    Apoptosis signal-regulating kinase-1 (ASK1) is a mitogen-activated protein 3 kinase (MAPKKK/MAP3K) which lies upstream of the stress-activated MAPKs, JNK and p38. ASK1 may be activated by a variety of extracellular and intracellular stimuli. MAP kinase activation in the sensory nervous system as a result of diabetes has been shown in numerous preclinical and clinical studies. As a common upstream activator of both p38 and JNK, we hypothesised that activation of ASK1 contributes to nerve dysfunction in diabetic neuropathy. We therefore wanted to characterize the expression of ASK1 in sensory neurons, and determine whether the absence of functional ASK1 would protect against the development of neuropathy in a mouse model of experimental diabetes. ASK1 mRNA and protein is constitutively expressed by multiple populations of sensory neurons of the adult mouse lumbar DRG. Diabetes was induced in male C57BL/6 and transgenic ASK1 kinase-inactive (ASK1n) mice using streptozotocin. Levels of ASK1 do not change in the DRG, spinal cord, or sciatic nerve following induction of diabetes. However, levels of ASK2 mRNA increase in the spinal cord at 4 weeks of diabetes, which could represent a future target for this field. Neither motor nerve conduction velocity deficits, nor thermal or mechanical hypoalgesia were prevented or ameliorated in diabetic ASK1n mice. These results suggest that activation of ASK1 is not responsible for the nerve deficits observed in this mouse model of diabetic neuropathy. PMID:25329046

  4. Role of N-methyl-D-aspartate receptors in the neuroprotective activation of extracellular signal-regulated kinase 1/2 by cisplatin.

    PubMed

    Gozdz, Agata; Habas, Agata; Jaworski, Jacek; Zielinska, Magdalena; Albrecht, Jan; Chlystun, Marcin; Jalili, Ahmad; Hetman, Michal

    2003-10-31

    Neurons are exposed to damaging stimuli that can trigger cell death and subsequently cause serious neurological disorders. Therefore, it is important to define defense mechanisms that can be activated in response to damage to reduce neuronal loss. Here we report that cisplatin (CPDD), a neurotoxic anticancer drug that damages DNA, triggered apoptosis and activated the extracellular signal-regulated kinase 1/2 (ERK1/2) pathway in cultured rat cortical neurons. Inhibition of ERK1/2 activation using either pharmacological inhibitors or a dominant-negative mutant of the ERK1/2 activator, mitogen-activated protein kinase kinase 1, increased the toxicity of CPDD. Interestingly, N-methyl-d-aspartate (NMDA) receptor (NMDAR) antagonists reduced the ERK1/2 activation and exacerbated apoptosis in CPDD-treated neurons. Pre-treatment with CPDD increased ERK1/2 activation triggered by exogenous NMDA, suggesting that CPDD augmented NMDAR responsiveness. CPDD-enhanced response of NMDAR and CPDD-mediated ERK1/2 activation were both decreased by inhibition of poly(ADP-ribose) polymerase (PARP). Interestingly, PARP activation did not produce ATP depletion, suggesting involvement of a non-energetic mechanism in NMDAR regulation by PARP. Finally, CPDD toxicity was reduced by brain-derived neurotrophic factor, and this protection required ERK1/2. In summary, our data identify a novel compensatory circuit in central nervous system neurons that couples the DNA injury, through PARP and NMDAR, to the defensive ERK1/2 activation. PMID:12930843

  5. Sphingosine kinase-1 mediates TNF-alpha-induced MCP-1 gene expression in endothelial cells: upregulation by oscillatory flow.

    PubMed

    Chen, Xi-Lin; Grey, Janice Y; Thomas, Suzanne; Qiu, Fei-Hua; Medford, Russell M; Wasserman, Martin A; Kunsch, Charles

    2004-10-01

    Atherosclerosis is a focal inflammatory disease and preferentially occurs in areas of low fluid shear stress and oscillatory flow, whereas the risk of atherosclerosis is decreased in regions of high fluid shear stress and steady laminar flow. Sphingosine kinase-1 (SphK1) catalyzes the conversion of sphingosine to sphingosine-1 phosphate (S1P), a sphingolipid metabolite that plays important roles in angiogenesis, inflammation, and cell growth. In the present study, we demonstrated that exposure of human aortic endothelial cells to oscillatory flow (shear stress, +/-5 dyn/cm(2) for 48 h) resulted in a marked increase in SphK1 mRNA levels compared with endothelial cells kept in static culture. In contrast, laminar flow (shear stress, 20 dyn/cm(2) for 48 h) decreased SphK1 mRNA levels. We further investigated the role of SphK1 in TNF-alpha-induced expression of inflammatory genes, such as monocyte chemoattractant protein-1 (MCP-1) and VCAM-1 by using small interfering RNA (siRNA) specifically for SphK1. Treatment of endothelial cells with SphK1 siRNA suppressed TNF-alpha-induced increase in MCP-1 mRNA levels, MCP-1 protein secretion, and activation of p38 MAPK. SphK1 siRNA also inhibited TNF-alpha-induced cell surface expression of VCAM-1, but not ICAM-1, protein. Exposure of endothelial cells to S1P led to an increase in MCP-1 protein secretion and MCP-1 mRNA levels and activation of NF-kappaB-mediated transcriptional activity. Treatment of endothelial cells with the p38 MAPK inhibitor SB-203580 suppressed S1P-induced MCP-1 protein secretion. These data suggest that SphK1 mediates TNF-alpha-induced MCP-1 gene expression through a p38 MAPK-dependent pathway and may participate in oscillatory flow-mediated proinflammatory signaling pathway in the vasculature. PMID:15191888

  6. [Peculiarities of phosphoglycerate kinase-1 pseudogene evolution in Schrenck salamander (Salamandrella schrenckii Strauch, 1870)].

    PubMed

    Malyarchuk, B A; Denisova, G A; Derenko, M V

    2013-07-01

    Processed copies of genes generally evolve in neutral mode as pseudogenes, however, some of them might be important sources of new functional genes. The psiPGK1 pseudogene has been discovered in Schrenck salamander (Salamandrella schrenckii, Amphibia, Caudata, Hynobiidae) via polymerase chain reaction used to amplify the phosphoglycerate kinase 1 gene (PGK1). This pseudogene is an intronless copy of PGK1 gene absent of exon 6. Analysis of psiPGK1 pseudogene polymorphism has demonstrated that it lacks mutations, which results in shifts in the stop codons and reading frames, as well as that the interspecies variation of this pseudogene was inconsistent with the neutral model of evolution. In addition, the pattern of phylogeographic differentiation of the psiPGK1 variants mainly coincides with that observed in mitochondrial DNA. These observations allow it to be suggested that the psiPGK1 pseudogene is a new functional gene in the Schrenck salamander. PMID:24450152

  7. Design and synthesis of orally bioavailable serum and glucocorticoid-regulated kinase 1 (SGK1) inhibitors

    SciTech Connect

    Hammond, Marlys; Washburn, David G.; Hoang, Tram H.; Manns, Sharada; Frazee, James S.; Nakamura, Hiroko; Patterson, Jaclyn R.; Trizna, Walter; Wu, Charlene; Azzarano, Leonard M.; Nagilla, Rakesh; Nord, Melanie; Trejo, Rebecca; Head, Martha S.; Zhao, Baoguang; Smallwood, Angela M.; Hightower, Kendra; Laping, Nicholas J.; Schnackenberg, Christine G.; Thompson, Scott K.

    2010-09-27

    The lead serum and glucocorticoid-related kinase 1 (SGK1) inhibitors 4-(5-phenyl-1H-pyrrolo[2,3-b]pyridin-3-yl)benzoic acid (1) and {l_brace}4-[5-(2-naphthalenyl)-1H-pyrrolo[2,3-b]pyridin-3-yl]phenyl{r_brace}acetic acid (2) suffer from low DNAUC values in rat, due in part to formation and excretion of glucuronic acid conjugates. These PK/glucuronidation issues were addressed either by incorporating a substituent on the 3-phenyl ring ortho to the key carboxylate functionality of 1 or by substituting on the group in between the carboxylate and phenyl ring of 2. Three of these analogs have been identified as having good SGK1 inhibition potency and have DNAUC values suitable for in vivo testing.

  8. Dynamic conformational ensembles regulate casein kinase-1 isoforms: Insights from molecular dynamics and molecular docking studies.

    PubMed

    Singh, Surya Pratap; Gupta, Dwijendra K

    2016-04-01

    Casein kinase-1 (CK1) isoforms actively participate in the down-regulation of canonical Wnt signaling pathway; however recent studies have shown their active roles in oncogenesis of various tissues through this pathway. Functional loss of two isoforms (CK1-α/ε) has been shown to activate the carcinogenic pathway which involves the stabilization of of cytoplasmic β-catenin. Development of anticancer therapeutics is very laborious task and depends upon the structural and conformational details of the target. This study focuses on, how the structural dynamics and conformational changes of two CK1 isoforms are synchronized in carcinogenic pathway. The conformational dynamics in kinases is the responsible for their action as has been supported by the molecular docking experiments. PMID:26788877

  9. Tyrosine phosphorylation of mitochondrial pyruvate dehydrogenase kinase 1 is important for cancer metabolism

    PubMed Central

    Hitosugi, Taro; Fan, Jun; Chung, Tae-Wook; Lythgoe, Katherine; Wang, Xu; Xie, Jianxin; Ge, Qingyuan; Gu, Ting-Lei; Polakiewicz, Roberto D.; Roesel, Johannes L.; Chen, Zhuo (Georgia); Boggon, Titus J.; Lonial, Sagar; Fu, Haian; Khuri, Fadlo R.; Kang, Sumin; Chen, Jing

    2011-01-01

    SUMMARY Many tumor cells rely on aerobic glycolysis instead of oxidative phosphorylation for their continued proliferation and survival. Myc and HIF-1 are believed to promote such a metabolic switch by, in part, upregulating gene expression of pyruvate dehydrogenase (PDH) kinase 1 (PDHK1), which phosphorylates and inactivates mitochondrial PDH and consequently pyruvate dehydrogenase complex (PDC). Here we report that tyrosine phosphorylation enhances PDHK1 kinase activity by promoting ATP and PDC binding. Functional PDC can form in mitochondria outside of matrix in some cancer cells and PDHK1 is commonly tyrosine phosphorylated in human cancers by diverse oncogenic tyrosine kinases localized to different mitochondrial compartments. Expression of phosphorylation-deficient, catalytic hypomorph PDHK1 mutants in cancer cells leads to decreased cell proliferation under hypoxia and increased oxidative phosphorylation with enhanced mitochondrial utilization of pyruvate, and reduced tumor growth in xenograft nude mice. Together, tyrosine phosphorylation activates PDHK1 to promote the Warburg effect and tumor growth. PMID:22195962

  10. p21-Activated Kinase 1 Plays a Critical Role in Cellular Activation by Nef

    PubMed Central

    Fackler, Oliver T.; Lu, Xiaobin; Frost, Jeffrey A.; Geyer, Matthias; Jiang, Bing; Luo, Wen; Abo, Arie; Alberts, Arthur S.; Peterlin, B. Matija

    2000-01-01

    The activation of Nef-associated kinase (NAK) by Nef from human and simian immunodeficiency viruses is critical for efficient viral replication and pathogenesis. This induction occurs via the guanine nucleotide exchange factor Vav and the small GTPases Rac1 and Cdc42. In this study, we identified NAK as p21-activated kinase 1 (PAK1). PAK1 bound to Nef in vitro and in vivo. Moreover, the induction of cytoskeletal rearrangements such as the formation of trichopodia, the activation of Jun N-terminal kinase, and the increase of viral production were blocked by an inhibitory peptide that targets the kinase activity of PAK1 (PAK1 83-149). These results identify NAK as PAK1 and emphasize the central role its kinase activity plays in cytoskeletal rearrangements and cellular signaling by Nef. PMID:10713183

  11. Heterozygous disruption of activin receptor-like kinase 1 is associated with increased arterial pressure in mice

    PubMed Central

    González-Núñez, María; Riolobos, Adela S.; Castellano, Orlando; Fuentes-Calvo, Isabel; de los Ángeles Sevilla, María; Oujo, Bárbara; Pericacho, Miguel; Cruz-Gonzalez, Ignacio; Pérez-Barriocanal, Fernando; ten Dijke, Peter; López-Novoa, Jose M.

    2015-01-01

    ABSTRACT The activin receptor-like kinase 1 (ALK-1) is a type I cell-surface receptor for the transforming growth factor-β (TGF-β) family of proteins. Hypertension is related to TGF-β1, because increased TGF-β1 expression is correlated with an elevation in arterial pressure (AP) and TGF-β expression is upregulated by the renin-angiotensin-aldosterone system. The purpose of this study was to assess the role of ALK-1 in regulation of AP using Alk1 haploinsufficient mice (Alk1+/−). We observed that systolic and diastolic AP were significantly higher in Alk1+/− than in Alk1+/+ mice, and all functional and structural cardiac parameters (echocardiography and electrocardiography) were similar in both groups. Alk1+/− mice showed alterations in the circadian rhythm of AP, with higher AP than Alk1+/+ mice during most of the light period. Higher AP in Alk1+/− mice is not a result of a reduction in the NO-dependent vasodilator response or of overactivation of the peripheral renin-angiotensin system. However, intracerebroventricular administration of losartan had a hypotensive effect in Alk1+/− and not in Alk1+/+ mice. Alk1+/− mice showed a greater hypotensive response to the β-adrenergic antagonist atenolol and higher concentrations of epinephrine and norepinephrine in plasma than Alk1+/+ mice. The number of brain cholinergic neurons in the anterior basal forebrain was reduced in Alk1+/− mice. Thus, we concluded that the ALK-1 receptor is involved in the control of AP, and the high AP of Alk1+/− mice is explained mainly by the sympathetic overactivation shown by these animals, which is probably related to the decreased number of cholinergic neurons. PMID:26398936

  12. Doublecortin-Like Kinase 1 Is Elevated Serologically in Pancreatic Ductal Adenocarcinoma and Widely Expressed on Circulating Tumor Cells

    PubMed Central

    Weygant, Nathaniel; May, Randal; Aiello, Nicole; Rhim, Andrew; Zhao, Lichao; Zheng, Wei; Lightfoot, Stanley; Pant, Shubham; Irvan, Jeremy; Postier, Russell; Hocker, James; Hanas, Jay S.; Ali, Naushad; Sureban, Sripathi M.; An, Guangyu; Schlosser, Michael J.; Stanger, Ben; Houchen, Courtney W.

    2015-01-01

    Doublecortin-like kinase 1 (DCLK1) is a putative pancreatic stem cell marker and is upregulated in pancreatic cancer, colorectal cancer, and many other solid tumors. It marks tumor stem cells in mouse models of intestinal neoplasia. Here we sought to determine whether DCLK1 protein can be detected in the bloodstream and if its levels in archived serum samples could be quantitatively assessed in pancreatic cancer patients. DCLK1 specific ELISA, western blotting, and immunohistochemical analyses were used to determine expression levels in the serum and staining intensity in archived tumor tissues of pancreatic ductal adenocarcinoma (PDAC) patients and in pancreatic cancer mouse models. DCLK1 levels in the serum were elevated in early stages of PDAC (stages I and II) compared to healthy volunteers (normal controls). No differences were observed between stages III/IV and normal controls. In resected surgical tissues, DCLK1 expression intensity in the stromal cells was significantly higher than that observed in tumor epithelial cells. Circulating tumor cells were isolated from KPCY mice and approximately 52% of these cells were positive for Dclk1 staining. Dclk1 levels in the serum of KPC mice were also elevated. We have previously demonstrated that DCLK1 plays a potential role in regulating epithelial mesenchymal transition (EMT). Given the increasingly recognized role of EMT derived stem cells in cancer progression and metastasis, we hypothesize that DCLK1 may contribute to the metastatic process. Taken together, our results suggest that DCLK1 serum levels and DCLK1 positive circulating tumor cells should be further assessed for their potential diagnostic and prognostic significance. PMID:25723399

  13. Apoptosis signal-regulating kinase 1 is mediated in TNF-α-induced CCL2 expression in human synovial fibroblasts.

    PubMed

    Tsou, Hsi-Kai; Chen, Hsien-Te; Chang, Chia-Hao; Yang, Wan-Yu; Tang, Chih-Hsin

    2012-11-01

    Tumor necrosis factor-α (TNF-α), a pro-inflammatory cytokine with a critical role in osteoarthritis (OA), was primarily produced by monocytes/macrophages and plays a crucial role in the inflammatory response. Here, we investigated the intracellular signaling pathways involved in TNF-α-induced monocyte chemoattractant protein 1 (MCP-1)/CCL2 expression in human synovial fibroblast cells. Stimulation of synovial fibroblasts (OASF) with TNF-α induced concentration- and time-dependent increases in CCL2 expression. TNF-α-mediated CCL2 production was attenuated by TNFR1 monoclonal antibody (Ab). Pretreatment with an apoptosis signal-regulating kinase 1 (ASK1) inhibitor (thioredoxin), JNK inhibitor (SP600125), p38 inhibitor (SB203580), or AP-1 inhibitor (curcumin or tanshinone IIA) also blocked the potentiating action of TNF-α. Stimulation of cells with TNF-α enhanced ASK1, JNK, and p38 activation. Treatment of OASF with TNF-α also increased the accumulation of phosphorylated c-Jun in the nucleus, AP-1-luciferase activity, and c-Jun binding to the AP-1 element on the CCL2 promoter. TNF-α-mediated AP-1-luciferase activity and c-Jun binding to the AP-1 element were inhibited by TNFR1 Ab, thioredoxin, SP600125, and SB203580. Our results suggest that the interaction between TNF-α and TNFR1 increases CCL2 expression in human synovial fibroblasts via the ASK1, JNK/p38, c-Jun, and AP-1 signaling pathway. PMID:22711527

  14. Serum thymidine kinase 1 is a reliable maker for the assessment of the risk of developing malignancy: A case report

    PubMed Central

    CHEN, ZHIHENG; GUAN, HONG; YUAN, HONG; CAO, XIA; LIU, YINGXIN; ZHOU, JI; HE, ELLEN; SKOG, SVEN

    2015-01-01

    With regard to different types of malignancies, thymidine kinase 1 (TK1) is a useful prognostic marker in clinical oncology, both as a serum proliferation marker and in immunohistochemistry. The present study investigated the use of serum TK1 protein (STK1p) for the identification of multiple proliferating diseases linked to the risk of developing cancer, by following one patient during the period of 2003–2014. The patient presented with adenomatous polyps in the stomach in 2003, follicular cervicitis in 2007 and hyperplasia of the breast/fibrocystic breasts in 2010. The breast cysts increased from 4×5 mm in size in 2010 to 8×7 mm in size in 2013, and were assessed as a suspicious malignancy at the end of this period. In parallel, the STK1p values increased from 2.0 to 7.6 pM. Based on this information, a minimally invasive surgery using the Mammotome® Biopsy System was performed. Immunohistochemistry on the cyst tissue showed strong staining of TK1 in the ductal epithelial cells and thus confirmed the abnormal proliferation in the lesion. One week after the surgery, the STK1p value had decreased to almost normal values (1.6 pM), but then fluctuated above 2.0 pM for the next 7 months. After the surgery, the patient was re-examined and small foci with squamous cell hyperplasia and a suspected ulcerated cervix, as well as flat gastric erosive, were identified, but not treated; this may explain why the STK1 P-values did not return to within normal values. The patient is currently being followed up using STK1p analysis combined with imaging/pathology in order to begin therapeutic intervention as early as possible to avoid the risk of developing cancer. Overall, STK1p is useful in health screening to identify individuals at risk of developing premalignancy/malignancy. PMID:26622729

  15. A derivative of chrysin suppresses two-stage skin carcinogenesis by inhibiting mitogen- and stress-activated kinase 1

    PubMed Central

    Liu, Haidan; Hwang, Joon-Sung; Li, Wei; Choi, Tae Woong; Liu, Kangdong; Huang, Zunnan; Jang, Jae-Hyuk; Thimmegowda, N. R.; Lee, Ki-Won; Ryoo, In-Ja; Ahn, Jong-Seog; Bode, Ann M.; Zhou, Xinmin; Yang, Yifeng; Erikson, Raymond L.; Kim, Bo-Yeon; Dong, Zigang

    2013-01-01

    Mitogen-activated and stress-activated kinase 1 (MSK1) is a nuclear serine/threonine protein kinase that acts downstream of both ERKs and p38 MAP kinases in response to stress or mitogenic extracellular stimuli. Increasing evidence has shown that MSK1 is closely associated with malignant transformation and cancer development. MSK1 should be an effective target for cancer chemoprevention and chemotherapy. However, very few MSK1 inhibitors, especially natural compounds, have been reported. We used virtual screening of a natural products database and the active conformation of the C-terminal kinase domain of MSK1 (PDB id 3KN) as the receptor structure to identify chrysin and its derivative, compound 69407, as inhibitors of MSK1. Compared with chrysin, compound 69407 more strongly inhibited proliferation and TPA-induced neoplastic transformation of JB6 P+ cells with lower cytotoxicity. Western blot data demonstrated that compound 69407 suppressed phosphorylation of the MSK1 downstream effector histone H3 in intact cells. Knocking down the expression of MSK1 effectively reduced the sensitivity of JB6 P+ cells to compound 69407. Moreover, topical treatment with compound 69407 prior to TPA application significantly reduced papilloma development in terms of number and size in a two-stage mouse skin carcinogenesis model. The reduction in papilloma development was accompanied by the inhibition of histone H3 phosphorylation at Ser10 in tumors extracted from mouse skin. The results indicated that compound 69407 exerts inhibitory effects on skin tumorigenesis by directly binding with MSK1 and attenuates the MSK1/histone H3 signaling pathway, which makes it an ideal chemopreventive agent against skin cancer. PMID:24169959

  16. The Functional Significance of Posttranslational Modifications on Polo-Like Kinase 1 Revealed by Chemical Genetic Complementation

    PubMed Central

    Lasek, Amber L.; McPherson, Brittany M.; Trueman, Natalie G.; Burkard, Mark E.

    2016-01-01

    Mitosis is coordinated by carefully controlled phosphorylation and ubiquitin-mediated proteolysis. Polo-like kinase 1 (Plk1) plays a central role in regulating mitosis and cytokinesis by phosphorylating target proteins. Yet, Plk1 is itself a target for posttranslational modification by phosphorylation and ubiquitination. We developed a chemical-genetic complementation assay to evaluate the functional significance of 34 posttranslational modifications (PTMs) on human Plk1. To do this, we used human cells that solely express a modified analog-sensitive Plk1 (Plk1AS) and complemented with wildtype Plk1. The wildtype Plk1 provides cells with a functional Plk1 allele in the presence of 3-MB-PP1, a bulky ATP-analog inhibitor that specifically inhibits Plk1AS. Using this approach, we evaluated the ability of 34 singly non-modifiable Plk1 mutants to complement Plk1AS in the presence of 3-MB-PP1. Mutation of the T-loop activating residue T210 and adjacent T214 are lethal, but surprisingly individual mutation of the remaining 32 posttranslational modification sites did not disrupt the essential functions of Plk1. To evaluate redundancy, we simultaneously mutated all phosphorylation sites in the kinase domain except for T210 and T214 or all sites in the C-terminal polo-box domain (PBD). We discovered that redundant phosphorylation events within the kinase domain are required for accurate chromosome segregation in anaphase but those in the PBD are dispensable. We conclude that PTMs within the T-loop of Plk1 are essential and nonredundant, additional modifications in the kinase domain provide redundant control of Plk1 function, and those in the PBD are dispensable for essential mitotic functions of Plk1. This comprehensive evaluation of Plk1 modifications demonstrates that although phosphorylation and ubiquitination are important for mitotic progression, many individual PTMs detected in human tissue may have redundant, subtle, or dispensable roles in gene function. PMID

  17. TGF-β-activated kinase-1: New insights into the mechanism of TGF-β signaling and kidney disease

    PubMed Central

    Kim, Sung Il; Choi, Mary E.

    2012-01-01

    Transforming growth factor-β (TGF-β) is a multifunctional cytokine that regulates a wide variety of cellular functions, including cell growth, cellular differentiation, apoptosis, and wound healing. TGF-β1, the prototype member of the TGF-β superfamily, is well established as a central mediator of renal fibrosis. In chronic kidney disease, dysregulation of expression and activation of TGF-β1 results in the relentless synthesis and accumulation of extracellular matrix proteins that lead to the development of glomerulosclerosis and tubulointerstitial fibrosis, and ultimately to end-stage renal disease. Therefore, specific targeting of the TGF-β signaling pathway is seemingly an attractive molecular therapeutic strategy in chronic kidney disease. Accumulating evidence demonstrates that the multifunctionality of TGF-β1 is connected with the complexity of its cell signaling networks. TGF-β1 signals through the interaction of type I and type II receptors to activate distinct intracellular pathways. Although the Smad signaling pathway is known as a canonical pathway induced by TGF-β1, and has been the focus of many previous reviews, importantly TGF-β1 also induces various Smad-independent signaling pathways. In this review, we describe evidence that supports current insights into the mechanism and function of TGF-β-activated kinase 1 (TAK1), which has emerged as a critical signaling molecule in TGF-β-induced Smad-independent signaling pathways. We also discuss the functional role of TAK1 in mediating the profibrotic effects of TGF-β1. PMID:26889415

  18. Thrombin Regulates Soluble fms-Like Tyrosine Kinase-1 (sFlt-1) Expression in First Trimester Decidua

    PubMed Central

    Lockwood, Charles J.; Toti, Paolo; Arcuri, Felice; Norwitz, Errol; Funai, Edmund F.; Huang, Se-Te J.; Buchwalder, Lynn F.; Krikun, Graciela; Schatz, Frederick

    2007-01-01

    The primary placental defect in preeclampsia is shallow trophoblast invasion of the decidua leading to incomplete vascular transformation and inadequate uteroplacental perfusion. Soluble fms-like tyrosine kinase-1 (sFlt-1) seems to interfere with these events by inhibiting local angiogenesis and/or by impeding trophoblast invasion. Preeclampsia is also associated with maternal thrombophilias and decidual hemorrhage, which form thrombin from decidual cell-expressed tissue factor. Although sFlt-1 is highly expressed by trophoblasts, sFlt-1 expression has not been studied in decidual cells, which are the predominant cell type encountered by invading trophoblasts. Here, we demonstrate that isolated decidual cells express sFlt-1 mRNA, suggesting that they can synthesize sFlt-1. Moreover, in first trimester decidual cells, thrombin enhanced sFlt-1 mRNA levels, as measured by quantitative reverse transcriptase-polymerase chain reaction, and levels of secreted sFlt-1 protein, as measured by enzyme-linked immunosorbent assay. The thrombin antagonist hirudin blocked this effect, demonstrating that active thrombin is required. Emphasizing the specificity of the thrombin response, neither interleukin-1β nor tumor necrosis factor-α affected sFlt-1 expression in the decidual cells. In contrast to first trimester decidual cells, thrombin did not affect sFlt-1 levels in cultured term decidual cells. In early pregnancy, thrombin may act as an autocrine/paracrine enhancer of sFlt-1 expression by decidual cells to promote pre-eclampsia by interfering with local vascular transformation. PMID:17392178

  19. Increased Expression of Phosphorylated Polo-Like Kinase 1 and Histone in Bypass Vein Graft and Coronary Arteries following Angioplasty

    PubMed Central

    Sur, Swastika; Swier, Vicki J.; Radwan, Mohamed M.; Agrawal, Devendra K.

    2016-01-01

    Interventional procedures, including percutaneous transluminal coronary angioplasty (PTCA) and coronary artery bypass surgery (CABG) to re-vascularize occluded coronary arteries, injure the vascular wall and cause endothelial denudation and medial vascular smooth muscle cell (VSMCs) metaplasia. Proliferation of the phenotypically altered SMCs is the key event in the pathogenesis of intimal hyperplasia (IH). Several kinases and phosphatases regulate cell cycle in SMC proliferation. It is our hypothesis that increased expression and activity of polo-like kinase-1 (PLK1) in SMCs, following PTCA and CABG, contributes to greater SMC proliferation in the injured than uninjured blood vessels. Using immunofluorescence (IF), we assessed the expression of PLK1 and phosphorylated-PLK1 (pPLK1) in post-PTCA coronary arteries, and superficial epigastric vein grafts (SEV) and compared it with those in the corresponding uninjured vessels. We also compared the expressions of mitotic marker phospho-histone, synthetic-SMC marker, contractile SMC marker, IFN-γ and phosphorylated STAT-3 in the post-PTCA arteries, SEV-grafts, and the uninjured vessels. Immunostaining demonstrated an increase in the number of cells expressing PLK1 and pPLK1 in the neointima of post PTCA-coronary arteries and SEV-grafts compared to their uninjured counterparts. VSMCs in the neointima showed an increased expression of phospho-histone, synthetic and contractile SMC markers, IFN-γ and phosphorylated STAT-3. However, VSMCs of uninjured coronaries and SEV had no significant expression of the aforementioned proteins. These data suggest that PLK1 might play a critical role in VSMC mitosis in hyperplastic intima of the injured vessels. Thus, novel therapies to inhibit PLK1 could be developed to inhibit the mitogenesis of VSMCs and control neointimal hyperplasia. PMID:26820885

  20. Rac1 and ROCK are implicated in the cell surface delivery of GLUT4 under the control of the insulin signal mimetic diDCP-LA-PE.

    PubMed

    Tsuchiya, Ayako; Kanno, Takeshi; Shimizu, Tadashi; Tanaka, Akito; Nishizaki, Tomoyuki

    2015-08-01

    The phosphatidylethanolamine derivative 1,2-O-bis-[8-{2-(2-pentyl-cyclopropylmethyl)-cyclopropyl}-octanoyl]-sn-glycero-3-phosphatidylethanolamine (diDCP-LA-PE) promoted GLUT4 translocation to the cell surface in differentiated 3T3-L1-GLUT4myc adipocytes through a pathway along a phosphatidylinositol 3-kinase (PI3K)/3-phosphoinositide-dependent protein kinase-1 (PDK1)/Akt axis, that mimics insulin signaling. Moreover, diDCP-LA-PE-induced GLUT4 translocation was suppressed by inhibitors of the Rho GTPase Rac1 and Rho-associated coiled-coil-containing protein kinase (ROCK) or knocking-down Rac1 and ROCK1. The results of the present study show that Rac1 and ROCK are critical for regulation of GLUT4 trafficking by diDCP-LA-PE as well as insulin. PMID:26238253

  1. Constitutive hypophosphorylation of extracellular signal-regulated kinases-1/2 and down-regulation of c-Jun in human gastric adenocarcinoma

    SciTech Connect

    Wu, William Ka Kei; Sung, Joseph Joe Yiu; Yu Le; Li Zhijie; Chu, Kent Man; Cho, C.H.

    2008-08-22

    Hyperphosphorylation of extracellular signal-regulated protein kinases-1/2 (ERK1/2) is known to promote cancer cell proliferation. We therefore investigated the constitutive phosphorylation levels of ERK1/2 and the expression of its downstream targets c-Fos, c-Jun, and cyclooxygenase-2 (COX-2) in biopsied human gastric cancer tissues. Results showed that ERK1/2 phosphorylation and c-Jun expression were significantly lowered in gastric cancer compared with the non-cancer adjacent tissues. The expression of c-Fos, however, was not altered while COX-2 was significantly up-regulated. To conclude, we demonstrate that hypophosphorylation of ERK1/2 may occur in gastric cancer. Such discovery may have implication in the application of pathway-directed therapy for this malignant disease.

  2. A high-throughput kinome screen reveals serum/glucocorticoid-regulated kinase 1 as a therapeutic target for NF2-deficient meningiomas

    PubMed Central

    Beauchamp, Roberta L.; James, Marianne F.; DeSouza, Patrick A.; Wagh, Vilas; Zhao, Wen-Ning; Jordan, Justin T.; Stemmer-Rachamimov, Anat; Plotkin, Scott R.; Gusella, James F.; Haggarty, Stephen J.; Ramesh, Vijaya

    2015-01-01

    Meningiomas are the most common primary intracranial adult tumor. All Neurofibromatosis 2 (NF2)-associated meningiomas and ~60% of sporadic meningiomas show loss of NF2 tumor suppressor protein. There are no effective medical therapies for progressive and recurrent meningiomas. Our previous work demonstrated aberrant activation of mTORC1 signaling that led to ongoing clinical trials with rapamycin analogs for NF2 and sporadic meningioma patients. Here we performed a high-throughput kinome screen to identify kinases responsible for mTORC1 pathway activation in NF2-deficient meningioma cells. Among the emerging top candidates were the mTORC2-specific target serum/glucocorticoid-regulated kinase 1 (SGK1) and p21-activated kinase 1 (PAK1). In NF2-deficient meningioma cells, inhibition of SGK1 rescues mTORC1 activation, and SGK1 activation is sensitive to dual mTORC1/2 inhibitor AZD2014, but not to rapamycin. PAK1 inhibition also leads to attenuated mTORC1 but not mTORC2 signaling, suggesting that mTORC2/SGK1 and Rac1/PAK1 pathways are independently responsible for mTORC1 activation in NF2-deficient meningiomas. Using CRISPR-Cas9 genome editing, we generated isogenic human arachnoidal cell lines (ACs), the origin cell type for meningiomas, expressing or lacking NF2. NF2-null CRISPR ACs recapitulate the signaling of NF2-deficient meningioma cells. Interestingly, we observe increased SGK1 transcription and protein expression in NF2-CRISPR ACs and in primary NF2-negative meningioma lines. Moreover, we demonstrate that the dual mTORC1/mTORC2 inhibitor, AZD2014 is superior to rapamycin and PAK inhibitor FRAX597 in blocking proliferation of meningioma cells. Importantly, AZD2014 is currently in use in several clinical trials of cancer. Therefore, we believe that AZD2014 may provide therapeutic advantage over rapalogs for recurrent and progressive meningiomas. PMID:26219339

  3. A high-throughput kinome screen reveals serum/glucocorticoid-regulated kinase 1 as a therapeutic target for NF2-deficient meningiomas.

    PubMed

    Beauchamp, Roberta L; James, Marianne F; DeSouza, Patrick A; Wagh, Vilas; Zhao, Wen-Ning; Jordan, Justin T; Stemmer-Rachamimov, Anat; Plotkin, Scott R; Gusella, James F; Haggarty, Stephen J; Ramesh, Vijaya

    2015-07-10

    Meningiomas are the most common primary intracranial adult tumor. All Neurofibromatosis 2 (NF2)-associated meningiomas and ~60% of sporadic meningiomas show loss of NF2 tumor suppressor protein. There are no effective medical therapies for progressive and recurrent meningiomas. Our previous work demonstrated aberrant activation of mTORC1 signaling that led to ongoing clinical trials with rapamycin analogs for NF2 and sporadic meningioma patients. Here we performed a high-throughput kinome screen to identify kinases responsible for mTORC1 pathway activation in NF2-deficient meningioma cells. Among the emerging top candidates were the mTORC2-specific target serum/glucocorticoid-regulated kinase 1 (SGK1) and p21-activated kinase 1 (PAK1). In NF2-deficient meningioma cells, inhibition of SGK1 rescues mTORC1 activation, and SGK1 activation is sensitive to dual mTORC1/2 inhibitor AZD2014, but not to rapamycin. PAK1 inhibition also leads to attenuated mTORC1 but not mTORC2 signaling, suggesting that mTORC2/SGK1 and Rac1/PAK1 pathways are independently responsible for mTORC1 activation in NF2-deficient meningiomas. Using CRISPR-Cas9 genome editing, we generated isogenic human arachnoidal cell lines (ACs), the origin cell type for meningiomas, expressing or lacking NF2. NF2-null CRISPR ACs recapitulate the signaling of NF2-deficient meningioma cells. Interestingly, we observe increased SGK1 transcription and protein expression in NF2-CRISPR ACs and in primary NF2-negative meningioma lines. Moreover, we demonstrate that the dual mTORC1/mTORC2 inhibitor, AZD2014 is superior to rapamycin and PAK inhibitor FRAX597 in blocking proliferation of meningioma cells. Importantly, AZD2014 is currently in use in several clinical trials of cancer. Therefore, we believe that AZD2014 may provide therapeutic advantage over rapalogs for recurrent and progressive meningiomas. PMID:26219339

  4. Platycodin D induces reactive oxygen species-mediated apoptosis signal-regulating kinase 1 activation and endoplasmic reticulum stress response in human breast cancer cells.

    PubMed

    Yu, Ji Sun; Kim, An Keun

    2012-08-01

    Platycodin D (PD), a natural compound found in Platycodon grandiflorum, induces apoptotic cell death in various carcinoma cells. One mechanism of PD-mediated cell death is by activation of mitogen-activated protein kinases, as suggested in a recent report. In this study, we further examined upstream signal pathways and the relationship between these signals and reactive oxygen species (ROS). Using immunoblotting assays, we found that PD activated apoptosis signal-regulating kinase 1 (ASK1) through phosphorylation of ASK1 at threonine and dephosphorylation of ASK1 at serine. We also showed that PD caused activation of the endoplasmic reticulum (ER) stress response. This was supported by observations showing that treatment with PD induces phosphorylation of PKR-like ER kinase (PERK) and eukaryotic initiation factor 2 α (eIF 2α), up-regulating expression of glucose-regulated protein 78/immunoglobulin heavy chain binding protein (GRP78/Bip) and CCAAT/enhancer-binding protein homologous protein/growth arrest and DNA damage-inducible gene 153 (CHOP/GADD153) and activation of caspase-4. Furthermore, PD-induced ASK1 and ER stress responses were inhibited by the antioxidant N-acetyl-l-cysteine. These results suggest that ROS play a critical role for activation of ASK1 and ER stress in PD-treated cancer cells. PMID:22784044

  5. Arabidopsis SOMATIC EMBRYOGENESIS RECEPTOR KINASES1 and 2 are essential for tapetum development and microspore maturation.

    PubMed

    Colcombet, Jean; Boisson-Dernier, Aurélien; Ros-Palau, Roc; Vera, Carlos E; Schroeder, Julian I

    2005-12-01

    Among the >200 members of the leucine-rich repeat receptor kinase family in Arabidopsis thaliana, only a few have been functionally characterized. Here, we report a critical function in anther development for the SOMATIC EMBRYOGENESIS RECEPTOR KINASE1 (SERK1) and SERK2 genes. Both SERK1 and SERK2 are expressed widely in locules until stage 6 anthers and are more concentrated in the tapetal cell layer later. Whereas serk1 and serk2 single insertion mutants did not show developmental phenotypes, serk1 serk2 double mutants were not able to produce seeds because of a lack of pollen development in mutant anthers. In young buds, double mutant anthers developed normally, but serk1 serk2 microsporangia produced more sporogenous cells that were unable to develop beyond meiosis. Furthermore, serk1 serk2 double mutants developed only three cell layers surrounding the sporogenous cell mass, whereas wild-type anthers developed four cell layers. Further confocal microscopic and molecular analyses showed that serk1 serk2 double mutant anthers lack development of the tapetal cell layer, which accounts for the microspore abortion and male sterility. Taken together, these findings demonstrate that the SERK1 and SERK2 receptor kinases function redundantly as an important control point for sporophytic development controlling male gametophyte production. PMID:16284306

  6. Calcium-independent activation of extracellular signal-regulated kinases 1 and 2 by cyclic strain

    NASA Technical Reports Server (NTRS)

    Ikeda, M.; Takei, T.; Mills, I.; Sumpio, B. E.

    1998-01-01

    We have previously demonstrated that cyclic strain induces extracellular signal-regulated kinases 1 and 2 (ERK1/2) activation in endothelial cells (EC). The aim of this study was to investigate the effect of Ca2+ on the activation of ERK1/2. Bovine aortic EC were pretreated with a chelator of extracellular Ca2+, ethylaneglycol-bis(aminoethylether)-tetra-acetate (EGTA), a depleter of Ca2+ pools, 2,5-Di-(tert-butyl)-1,4-benzohydroquinone (BHQ), or a Ca2+ channel blocker, GdCl3, and subjected to an average 10 % strain at a rate of 60 cycles/min for 10 min. BHQ and GdCl3 did not inhibit the strain-induced ERK1/2 activation. Chelation of normal extracellular Ca2+ (1.8 mM) medium with EGTA (3 mM) acutely stimulated baseline phosphorylation and activation of ERK1/2, thereby obscuring any strain-induced activation of ERK1/2. However, in EC preincubated for 24 hours in Ca2+-free medium, elevated baseline phosphorylation was minimally activated by EGTA (200 microM) such that cyclic strain stimulated ERK1/2 in the presence or absence of BHQ. These results suggest a Ca2+ independence of the ERK1/2 signaling pathway by cyclic strain. Copyright 1998 Academic Press.

  7. Polo-like kinase 1 licenses CENP-A deposition at centromeres.

    PubMed

    McKinley, Kara L; Cheeseman, Iain M

    2014-07-17

    To ensure the stable transmission of the genome during vertebrate cell division, the mitotic spindle must attach to a single locus on each chromosome, termed the centromere. The fundamental requirement for faithful centromere inheritance is the controlled deposition of the centromere-specifying histone, CENP-A. However, the regulatory mechanisms that ensure the precise control of CENP-A deposition have proven elusive. Here, we identify polo-like kinase 1 (Plk1) as a centromere-localized regulator required to initiate CENP-A deposition in human cells. We demonstrate that faithful CENP-A deposition requires integrated signals from Plk1 and cyclin-dependent kinase (CDK), with Plk1 promoting the localization of the key CENP-A deposition factor, the Mis18 complex, and CDK inhibiting Mis18 complex assembly. By bypassing these regulated steps, we uncoupled CENP-A deposition from cell-cycle progression, resulting in mitotic defects. Thus, CENP-A deposition is controlled by a two-step regulatory paradigm comprised of Plk1 and CDK that is crucial for genomic integrity. PMID:25036634

  8. Polo-like kinase 1 licenses CENP-A deposition at centromeres

    PubMed Central

    McKinley, Kara L.; Cheeseman, Iain M.

    2014-01-01

    Summary: To ensure the stable transmission of the genome during vertebrate cell division, the mitotic spindle must attach to a single locus on each chromosome, termed the centromere. The fundamental requirement for faithful centromere inheritance is the controlled deposition of the centromere-specifying histone, CENP-A. However, the regulatory mechanisms that ensure the precise control of CENP-A deposition have proved elusive. Here, we identify Polo-like kinase 1 (Plk1) as a centromere-localized regulator required to initiate CENP-A deposition in human cells. We demonstrate that faithful CENP-A deposition requires integrated signals from Plk1 and cyclin-dependent kinase (CDK), with Plk1 promoting the localization of the key CENP-A assembly factor, the Mis18 complex, and CDK inhibiting Mis18 complex assembly. By bypassing these regulated steps, we uncoupled CENP-A deposition from cell cycle progression, resulting in mitotic defects. Thus, CENP-A deposition is controlled by a two-step regulatory paradigm comprised of Plk1 and CDK that is crucial for genomic integrity. PMID:25036634

  9. Pharmacophore modeling and virtual screening studies of checkpoint kinase 1 inhibitors.

    PubMed

    Chen, Jin-Juan; Liu, Ting-Lin; Yang, Li-Jun; Li, Lin-Li; Wei, Yu-Quan; Yang, Sheng-Yong

    2009-07-01

    In this study, chemical feature-based 3-dimensional (3D) pharmacophore models of Checkpoint kinase 1 (Chk1) inhibitors were developed based on the known inhibitors of Chk1. The best pharmacophore model Hypo1 was characterized by the best correlation coefficient (0.9577), and the lowest root mean square deviation (0.8871). Hypo1 consists of one hydrogen-bond acceptor, one hydrogen-bond donor, and two hydrophobic features, as well as one excluded volume. This pharmacophore model was further validated by both test set and cross validation methods. A comparison analysis of Hypo1 with chemical features in the active site of Chk1 indicates that the pharmacophore model Hypo1 can correctly reflect the interactions between Chk1 and its ligands. Then Hypo1 was used to screen chemical databases, including Specs and Chinese Nature Product Database (CNPD) for potential lead compounds. The hit compounds were subsequently subjected to filtering by Lipinski's rule of five and docking study to refine the retrieved hits. Finally some of the most potent (estimated) compounds were selected from the final refined hits and suggested for further experimental investigation. PMID:19571415

  10. Serum- and glucocorticoid-inducible kinase 1 in the regulation of renal and extrarenal potassium transport.

    PubMed

    Lang, Florian; Vallon, Volker

    2012-02-01

    Serum- and glucocorticoid inducible-kinase 1 (SGK1) is an early gene transcriptionally upregulated by cell stress such as cell shrinkage and hypoxia and several hormones including gluco- and mineralocorticoids. It is activated by insulin and growth factors. SGK1 is a powerful regulator of a wide variety of channels and transporters. The present review describes the role of SGK1 in the regulation of potassium (K(+)) channels, K(+) transporters and K(+) homeostasis. SGK1-regulated K(+) channels include renal outer medullary K+ channel, Kv1.3, Kv1.5, KCNE1/KCNQ1, KCNQ4 and, via regulation of calcium (Ca(2+)) entry, Ca(2+)-sensitive K(+) channels. SGK1-sensitive transporters include sodium-potassium-chloride cotransporter 2 and sodium/potassium-adenosine triphosphatase. SGK1-dependent regulation of K(+) channels and K(+) transport contributes to the stimulation of renal K(+) excretion following high K(+) intake, to insulin-induced cellular K(+) uptake and hypokalemia, to inhibition of insulin release by glucocorticoids, to stimulation of mast cell degranulation and gastric acid secretion, and to cardiac repolarization. Thus, SGK1 has a profound effect on K(+) homeostasis and on a multitude of K(+)-sensitive cellular functions. PMID:22038256

  11. Genetic depletion of Polo-like kinase 1 leads to embryonic lethality due to mitotic aberrancies.

    PubMed

    Wachowicz, Paulina; Fernández-Miranda, Gonzalo; Marugán, Carlos; Escobar, Beatriz; de Cárcer, Guillermo

    2016-07-01

    Polo-like kinase 1 (PLK1) is a serine/threonine kinase that plays multiple and essential roles during the cell division cycle. Its inhibition in cultured cells leads to severe mitotic aberrancies and cell death. Whereas previous reports suggested that Plk1 depletion in mice leads to a non-mitotic arrest in early embryos, we show here that the bi-allelic Plk1 depletion in mice certainly results in embryonic lethality due to extensive mitotic aberrations at the morula stage, including multi- and mono-polar spindles, impaired chromosome segregation and cytokinesis failure. In addition, the conditional depletion of Plk1 during mid-gestation leads also to severe mitotic aberrancies. Our data also confirms that Plk1 is completely dispensable for mitotic entry in vivo. On the other hand, Plk1 haploinsufficient mice are viable, and Plk1-heterozygous fibroblasts do not harbor any cell cycle alterations. Plk1 is overexpressed in many human tumors, suggesting a therapeutic benefit of inhibiting Plk1, and specific small-molecule inhibitors for this kinase are now being evaluated in clinical trials. Therefore, the different Plk1 mouse models here presented are a valuable tool to reexamine the relevance of the mitotic kinase Plk1 during mammalian development and animal physiology. PMID:27417127

  12. The Impact of Sphingosine Kinase-1 in Head and Neck Cancer

    PubMed Central

    Tamashiro, Paulette M.; Furuya, Hideki; Shimizu, Yoshiko; Iino, Kayoko; Kawamori, Toshihiko

    2013-01-01

    Head and neck squamous cell carcinoma (HNSCC) has a high reoccurrence rate and an extremely low survival rate. There is limited availability of effective therapies to reduce the rate of recurrence, resulting in high morbidity and mortality of advanced cases. Late presentation, delay in detection of lesions, and a high rate of metastasis make HNSCC a devastating disease. This review offers insight into the role of sphingosine kinase-1 (SphK1), a key enzyme in sphingolipid metabolism, in HNSCC. Sphingolipids not only play a structural role in cellular membranes, but also modulate cell signal transduction pathways to influence biological outcomes such as senescence, differentiation, apoptosis, migration, proliferation, and angiogenesis. SphK1 is a critical regulator of the delicate balance between proliferation and apoptosis. The highest expression of SphK1 is found in the advanced stage of disease, and there is a positive correlation between SphK1 expression and recurrent tumors. On the other hand, silencing SphK1 reduces HNSCC tumor growth and sensitizes tumors to radiation-induced death. Thus, SphK1 plays an important and influential role in determining HNSCC proliferation and metastasis. We discuss roles of SphK1 and other sphingolipids in HNSCC development and therapeutic strategies against HNSCC. PMID:24970177

  13. Structure and ubiquitination-dependent activation of TANK-binding kinase 1.

    PubMed

    Tu, Daqi; Zhu, Zehua; Zhou, Alicia Y; Yun, Cai-hong; Lee, Kyung-Eun; Toms, Angela V; Li, Yiqun; Dunn, Gavin P; Chan, Edmond; Thai, Tran; Yang, Shenghong; Ficarro, Scott B; Marto, Jarrod A; Jeon, Hyesung; Hahn, William C; Barbie, David A; Eck, Michael J

    2013-03-28

    Upon stimulation by pathogen-associated inflammatory signals, TANK-binding kinase 1 (TBK1) induces type I interferon expression and modulates nuclear factor κB (NF-κB) signaling. Here, we describe the 2.4 Å-resolution crystal structure of nearly full-length TBK1 in complex with specific inhibitors. The structure reveals a dimeric assembly created by an extensive network of interactions among the kinase, ubiquitin-like, and scaffold/dimerization domains. An intact TBK1 dimer undergoes K63-linked polyubiquitination on lysines 30 and 401, and these modifications are required for TBK1 activity. The ubiquitination sites and dimer contacts are conserved in the close homolog inhibitor of κB kinase ε (IKKε) but not in IKKβ, a canonical IKK that assembles in an unrelated manner. The multidomain architecture of TBK1 provides a structural platform for integrating ubiquitination with kinase activation and IRF3 phosphorylation. The structure of TBK1 will facilitate studies of the atypical IKKs in normal and disease physiology and further the development of more specific inhibitors that may be useful as anticancer or anti-inflammatory agents. PMID:23453972

  14. Sphingosine kinase 1 inhibition sensitizes hormone-resistant prostate cancer to docetaxel.

    PubMed

    Sauer, Lysann; Nunes, Joao; Salunkhe, Vishal; Skalska, Lenka; Kohama, Takafumi; Cuvillier, Olivier; Waxman, Jonathan; Pchejetski, Dmitry

    2009-12-01

    It has recently been shown that docetaxel chemotherapy is effective in prolonging life in patients with prostate cancer (PCa). We have investigated potential ways of increasing the effectiveness of chemotherapy in this disease. We have previously reported that sphingosine kinase 1 (SphK1) inhibition is a key step in docetaxel-induced apoptosis in the PC-3 PCa cell line and that pharmacologicalSphK1 inhibition is chemosensitizing in the docetaxel-resistant PCa LNCaP cell line. In this study we have addressed the mechanism of docetaxel-induced apoptosis of PC-3 cells and identified SphK1-dependent and -independent components. We have shown that SphK1 inhibition by docetaxel is a two-step process involving an initial loss of enzyme activity followed by a decrease in SphK1 gene expression. Using hormoneresistant PC-3 and DU145 PCa cells we have demonstrated that both pharmacological and siRNA-mediated SphK1 inhibition leads to a four-fold decrease in the docetaxel IC50 dose. This work points out to potential ways of increasing the effectiveness of chemotherapy for PCa by SphK1 inhibition. PMID:19521959

  15. Chemosensitizing effects of sphingosine kinase-1 inhibition in prostate cancer cell and animal models.

    PubMed

    Pchejetski, Dimitri; Doumerc, Nicolas; Golzio, Muriel; Naymark, Maria; Teissié, Justin; Kohama, Takafumi; Waxman, Jonathan; Malavaud, Bernard; Cuvillier, Olivier

    2008-07-01

    We have previously reported that, in prostate cancer, inhibition of the oncogenic sphingosine kinase-1/sphingosine 1-phosphate (SphK1/S1P) pathway is a key element in chemotherapy-induced apoptosis. Here, we show that selective pharmacologic inhibition of SphK1 triggers apoptosis in LNCaP and PC-3 prostate cancer cells, an effect that is reversed by SphK1 enforced expression. More importantly, we show for the first time that the up-regulation of the SphK1/S1P pathway plays a crucial role in the resistance of prostate cancer cells to chemotherapy. Importantly, pharmacologic SphK1 inhibition with the B-5354c compound sensitizes LNCaP and PC-3 cells to docetaxel and camptothecin, respectively. In vivo, camptothecin and B-5354c alone display a limited effect on tumor growth in PC-3 cells, whereas in combination there is a synergy of effect on tumor size with a significant increase in the ceramide to S1P sphingolipid ratio. To conclude, our study highlights the notion that drugs specifically designed to inhibit SphK1 could provide a means of enhancing the effects of conventional treatment through the prosurvival antiapoptotic SphK1/S1P pathway. PMID:18644996

  16. FTY720 (fingolimod) sensitizes prostate cancer cells to radiotherapy by inhibition of sphingosine kinase-1.

    PubMed

    Pchejetski, Dmitri; Bohler, Torsten; Brizuela, Leyre; Sauer, Lysann; Doumerc, Nicolas; Golzio, Muriel; Salunkhe, Vishal; Teissié, Justin; Malavaud, Bernard; Waxman, Jonathan; Cuvillier, Olivier

    2010-11-01

    Radiotherapy is widely used as a radical treatment for prostate cancer, but curative treatments are elusive for poorly differentiated tumors where survival is just 15% at 15 years. Dose escalation improves local response rates but is limited by tolerance in normal tissues. A sphingosine analogue, FTY720 (fingolimod), a drug currently in phase III studies for treatment of multiple sclerosis, has been found to be a potent apoptosis inducer in prostate cancer cells. Using in vitro and in vivo approaches, we analyzed the impact of FTY720 on sphingolipid metabolism in hormone-refractory metastatic prostate cancer cells and evaluated its potential as a radiosensitizer on cell lines and prostate tumor xenografts. In prostate cancer cell lines, FTY720 acted as a sphingosine kinase 1 (SphK1) inhibitor that induced prostate cancer cell apoptosis in a manner independent of sphingosine-1-phosphate receptors. In contrast, γ irradiation did not affect SphK1 activity in prostate cancer cells yet synergized with FTY720 to inhibit SphK1. In mice bearing orthotopic or s.c. prostate cancer tumors, we show that FTY720 dramatically increased radiotherapeutic sensitivity, reducing tumor growth and metastasis without toxic side effects. Our findings suggest that low, well-tolerated doses of FTY720 could offer significant improvement to the clinical treatment of prostate cancer. PMID:20959468

  17. Apoptosis signal-regulating kinase 1 mediates striatal degeneration via the regulation of C1q

    PubMed Central

    Cho, Kyoung Joo; Cheon, So Young; Kim, Gyung Whan

    2016-01-01

    Apoptosis signal-regulating kinase-1 (ASK1), an early signaling element in the cell death pathway, has been hypothesized to participate in the pathology of neurodegenerative diseases. The systemic administration of 3-nitropropionic acid (3-NP) facilitates the development of selective striatal lesions. However, it remains unclear whether specific neurons are selectively targeted in 3-NP-infused striatal degeneration. Recently, it has been proposed that complement-mediated synapse elimination may be reactivated aberrantly in the pathology of neurodegenerative diseases. We hypothesized that ASK1 is involved in striatal astrocyte reactivation; reactive astrocyte secretes molecules detrimental to neuron; and striatal neurons are more susceptible to these factors. Our results indicate that striatal astrocyte is reactivated and ASK1 level increases after 3-NP general and chronic infusion. Reactive striatal astrocyte increases TGF-beta differentially to cortex and striatum. ASK1 may be involved in regulation of astrocyte TGF-beta and it is linked to the C1q level in spatial and temporal, and moreover in the earlier stage of progressing striatal neuronal loss. Conclusively the present study suggests that ASK1 mediates 3-NP toxicity and regulates C1q level through the astrocyte TGF-beta. And also it may suggest that C1q level may be a surrogate of prediction marker representing neurodegenerative disease progress before developing behavioral impairment. PMID:26728245

  18. Design of Targeted Inhibitors of Polo-like Kinase 1 (Plk1)

    NASA Astrophysics Data System (ADS)

    Dalafave, D. S.

    2011-03-01

    Computational design of small molecule inhibitors of Polo-like Kinase 1 (Plk1) is presented. Plk1, which regulates cell cycle, is often overexpressed in cancers. Its downregulation was shown to inhibit cancer progression. Most inhibitors of kinases' interact with the highly conserved ATP binding site. This makes the development of Plk1-specific inhibitors challenging, since different kinases have similar ATP sites. However, Plk1 also contains the polo-box domain (PBD), which is absent from other kinases. In this study, the PBD site was used as a target for designed Plk1 inhibitors. Common structural features of experimentally known Plk1 ligands were first identified. The information was used to design putative small molecules that specifically bonded Plk1. Druglikeness and possible toxicities of the designed molecules were determined. Molecules with no implied toxicities and optimal druglikeness were used for docking studies. The docking studies identified several molecules that made stable complexes with the Plk1 PBD site. Possible utilization of the designed molecules in drugs against cancers with overexpressed Plk1 is discussed.

  19. Checkpoint kinase 1 inhibitors as targeted molecular agents for clear cell carcinoma of the ovary

    PubMed Central

    KOBAYASHI, HIROSHI; SHIGETOMI, HIROSHI; YOSHIMOTO, CHIHARU

    2015-01-01

    In clear cell carcinoma of the ovary, chemoresistance frequently results in treatment failure. The present study aimed to review the potential association of transcription factor hepatocyte nuclear factor (HNF)-1β with cell cycle checkpoint machinery, as a mechanism for chemoresistance. The English-language literature on the subject was reviewed to identify genomic alterations and aberrant molecular pathways interacting with chemoresistance in clear cell carcinoma. Oxidative stress induced by repeated hemorrhage induces greater susceptibility of endometriotic cells to DNA damage, and subsequent malignant transformation results in endometriosis-associated ovarian cancer. Molecular changes, including those in HNF-1β and checkpoint kinase 1 (Chk1), may be a manifestation of essential alterations in cell cycle regulation, detoxification and chemoresistance in clear cell carcinoma. Chk1 is a critical signal transducer in the cell cycle checkpoint machinery. DNA damage, in turn, increases persistent phosphorylation of Chk1 and induction of G2/M phase cell cycle arrest in cells overexpressing HNF-1β. HNF-1β deletion induces apoptosis, suggesting that enhanced levels of HNF-1β may be associated with chemoresistance. Targeted therapy with Chk1 inhibitors may be explored as a potential treatment modality for patients with clear cell carcinoma. This provides a novel direction for combination therapy, including targeting of Chk1, which may overcome drug resistance and improve treatment efficacy. PMID:26622535

  20. Role of checkpoint kinase 1 (Chk1) in the mechanisms of resistance to histone deacetylase inhibitors.

    PubMed

    Lee, Ju-Hee; Choy, Megan L; Ngo, Lang; Venta-Perez, Gisela; Marks, Paul A

    2011-12-01

    Histone deacetylase inhibitors (HDACi) are a new group of anticancer drugs with tumor selective toxicity. Normal cells are relatively resistant to HDACi-induced cell death compared with cancer cells. Previously, we found that vorinostat induces DNA breaks in normal and transformed cells, which normal but not cancer cells can repair. In this study, we found that checkpoint kinase 1 (Chk1), a component of the G2 DNA damage checkpoint, is important in the resistance of normal cells to HDACi in vitro and in vivo. Inhibition of Chk1 activity with Chk1 inhibitor (UCN-01, AZD7762, or CHIR-124) in normal cells increases their sensitivity to HDACi (vorinostat, romidepsin, or entinostat) induced cell death, associated with extensive mitotic disruption. Mitotic abnormalities included loss of sister chromatid cohesion and chromosomal disruption. Inhibition of Chk1 did increase HDACi-induced cell death of transformed cells. Thus, Chk1 is an important factor in the resistance of normal cells, and some transformed cells, to HDACi-induced cell death. Use of Chk1 inhibitors in combination with anticancer agents to treat cancers may be associated with substantial toxicity. PMID:22106282

  1. Circadian Metabolic Regulation through Crosstalk between Casein Kinase 1δ and Transcriptional Coactivator PGC-1α

    PubMed Central

    Li, Siming; Chen, Xiao-Wei; Yu, Lei; Saltiel, Alan R.

    2011-01-01

    Circadian clock coordinates behavior and physiology in mammals in response to light and feeding cycles. Disruption of normal clock function is associated with increased risk for cardiovascular and metabolic diseases, underscoring the emerging concept that temporal regulation of tissue metabolism is a fundamental aspect of energy homeostasis. We have previously demonstrated that transcriptional coactivator, peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α), coordinates circadian metabolic rhythms through simultaneous regulation of metabolic and clock gene expression. In this study, we found that PGC-1α physically interacts with, and is phosphorylated by, casein kinase 1δ (CK1δ), a core component of the circadian pacemaker. CK1δ represses the transcriptional function of PGC-1α in cultured hepatocytes, resulting in decreased gluconeogenic gene expression and glucose secretion. At the molecular level, CK1δ phosphorylation of PGC-1α within its arginine/serine-rich domain enhances its degradation through the proteasome system. Together, these results elucidate a novel mechanism through which circadian pacemaker transduces timing signals to the metabolic regulatory network that controls hepatic energy metabolism. PMID:22052997

  2. Palmitoylation of LIM Kinase-1 ensures spine-specific actin polymerization and morphological plasticity

    PubMed Central

    George, Joju; Soares, Cary; Montersino, Audrey; Beique, Jean-Claude; Thomas, Gareth M

    2015-01-01

    Precise regulation of the dendritic spine actin cytoskeleton is critical for neurodevelopment and neuronal plasticity, but how neurons spatially control actin dynamics is not well defined. Here, we identify direct palmitoylation of the actin regulator LIM kinase-1 (LIMK1) as a novel mechanism to control spine-specific actin dynamics. A conserved palmitoyl-motif is necessary and sufficient to target LIMK1 to spines and to anchor LIMK1 in spines. ShRNA knockdown/rescue experiments reveal that LIMK1 palmitoylation is essential for normal spine actin polymerization, for spine-specific structural plasticity and for long-term spine stability. Palmitoylation is critical for LIMK1 function because this modification not only controls LIMK1 targeting, but is also essential for LIMK1 activation by its membrane-localized upstream activator PAK. These novel roles for palmitoylation in the spatial control of actin dynamics and kinase signaling provide new insights into structural plasticity mechanisms and strengthen links between dendritic spine impairments and neuropathological conditions. DOI: http://dx.doi.org/10.7554/eLife.06327.001 PMID:25884247

  3. Concurrent targeting Akt and sphingosine kinase 1 by A-674563 in acute myeloid leukemia cells.

    PubMed

    Xu, Lin; Zhang, Yanan; Gao, Meng; Wang, Guangping; Fu, Yunfeng

    2016-04-15

    Akt signaling plays a pivotal role in acute myeloid leukemia (AML) development and progression. In the present study, we evaluated the potential anti-AML activity by a novel Akt kinase inhibitor A-674563. Our results showed that A-674563 dose-dependently inhibited survival and proliferation of U937 AML cells and six lines of human AML progenitor cells, yet sparing human peripheral blood mononuclear leukocytes (PBMCs). A-674563 activated caspase-3/9 and apoptosis in the AML cells. Reversely, the pan-caspase inhibitor z-VAD-CHO dramatically alleviated A-674563-induced AML cell apoptosis and cytotoxicity. For the molecular study, we showed that A-674563 blocked Akt activation in U937 cells and human AML progenitor cells. Further, A-674563 decreased sphingosine kinase 1 (SphK1) activity in above AML cells to deplete pro-survival sphingosine-1-phosphate (S1P) and boost pro-apoptotic ceramide production. Such an effect on SphK1 signaling by A-674563 appeared independent of Akt blockage. Significantly, K6PC-5, a novel SphK1 activator, or supplement with S1P attenuated A-674563-induced ceramide production, and subsequent U937 cell death and apoptosis. Importantly, intraperitoneal injection of A-674563 at well-tolerated doses suppressed U937 leukemic xenograft tumor growth in nude mice, whiling significantly improving the animal survival. The results of the current study demonstrate that A-674563 exerts potent anti-leukemic activity in vitro and in vivo, possibly via concurrent targeting Akt and SphK1 signalings. PMID:26920060

  4. Activation-Induced Cell Death of Dendritic Cells Is Dependent on Sphingosine Kinase 1

    PubMed Central

    Schwiebs, Anja; Friesen, Olga; Katzy, Elisabeth; Ferreirós, Nerea; Pfeilschifter, Josef M.; Radeke, Heinfried H.

    2016-01-01

    Sphingosine 1-phosphate (S1P) is an immune modulatory lipid mediator and has been implicated in numerous pathophysiological processes. S1P is produced by sphingosine kinase 1 (Sphk1) and Sphk2. Dendritic cells (DCs) are central for the direction of immune responses and crucially involved in autoimmunity and cancerogenesis. In this study we examined the function and survival of bone marrow-derived DCs under long-term inflammatory stimulation. We observed that differentiated cells undergo activation-induced cell death (AICD) upon LPS stimulation with an increased metabolic activity shortly after stimulation, followed by a rapid activation of caspase 3 and subsequent augmented apoptosis. Importantly, we highlight a profound role of Sphk1 in secretion of inflammatory cytokines and survival of dendritic cells that might be mediated by a change in sphingolipid levels as well as by a change in STAT3 expression. Cell growth during differentiation of Sphk1-deficient cells treated with the functional S1P receptor antagonist FTYP was reduced. Importantly, in dendritic cells we did not observe a compensatory regulation of Sphk2 mRNA in Sphk1-deficient cells. Instead, we discovered a massive increase in Sphk1 mRNA concentration upon long-term stimulation with LPS in wild type cells that might function as an attempt to rescue from inflammation-caused cell death. Taken together, in this investigation we describe details of a crucial involvement of sphingolipids and Sphk1 in AICD during long-term immunogenic activity of DCs that might play an important role in autoimmunity and might explain the differences in immune response observed in in vivo studies of Sphk1 modulation. PMID:27148053

  5. Skeletal muscle salt inducible kinase 1 promotes insulin resistance in obesity

    PubMed Central

    Nixon, Mark; Stewart-Fitzgibbon, Randi; Fu, Jingqi; Akhmedov, Dmitry; Rajendran, Kavitha; Mendoza-Rodriguez, Maria G.; Rivera-Molina, Yisel A.; Gibson, Micah; Berglund, Eric D.; Justice, Nicholas J.; Berdeaux, Rebecca

    2015-01-01

    Objective Insulin resistance causes type 2 diabetes mellitus and hyperglycemia due to excessive hepatic glucose production and inadequate peripheral glucose uptake. Our objectives were to test the hypothesis that the proposed CREB/CRTC2 inhibitor salt inducible kinase 1 (SIK1) contributes to whole body glucose homeostasis in vivo by regulating hepatic transcription of gluconeogenic genes and also to identify novel SIK1 actions on glucose metabolism. Methods We created conditional (floxed) SIK1-knockout mice and studied glucose metabolism in animals with global, liver, adipose or skeletal muscle Sik1 deletion. We examined cAMP-dependent regulation of SIK1 and the consequences of SIK1 depletion on primary mouse hepatocytes. We probed metabolic phenotypes in tissue-specific SIK1 knockout mice fed high fat diet through hyperinsulinemic-euglycemic clamps and biochemical analysis of insulin signaling. Results SIK1 knockout mice are viable and largely normoglycemic on chow diet. On high fat diet, global SIK1 knockout animals are strikingly protected from glucose intolerance, with both increased plasma insulin and enhanced peripheral insulin sensitivity. Surprisingly, liver SIK1 is not required for regulation of CRTC2 and gluconeogenesis, despite contributions of SIK1 to hepatocyte CRTC2 and gluconeogenesis regulation ex vivo. Sik1 mRNA accumulates in skeletal muscle of obese high fat diet-fed mice, and knockout of SIK1 in skeletal muscle, but not liver or adipose tissue, improves insulin sensitivity and muscle glucose uptake on high fat diet. Conclusions SIK1 is dispensable for glycemic control on chow diet. SIK1 promotes insulin resistance on high fat diet by a cell-autonomous mechanism in skeletal muscle. Our study establishes SIK1 as a promising therapeutic target to improve skeletal muscle insulin sensitivity in obese individuals without deleterious effects on hepatic glucose production. PMID:26844205

  6. Disrupting Cyclin Dependent Kinase 1 in Spermatocytes Causes Late Meiotic Arrest and Infertility in Mice.

    PubMed

    Clement, Tracy M; Inselman, Amy L; Goulding, Eugenia H; Willis, William D; Eddy, Edward M

    2015-12-01

    While cyclin dependent kinase 1 (CDK1) has a critical role in controlling resumption of meiosis in oocytes, its role has not been investigated directly in spermatocytes. Unique aspects of male meiosis led us to hypothesize that its role is different in male meiosis than in female meiosis. We generated a conditional knockout (cKO) of the Cdk1 gene in mouse spermatocytes to test this hypothesis. We found that CDK1-null spermatocytes undergo synapsis, chiasmata formation, and desynapsis as is seen in oocytes. Additionally, CDK1-null spermatocytes relocalize SYCP3 to centromeric foci, express H3pSer10, and initiate chromosome condensation. However, CDK1-null spermatocytes fail to form condensed bivalent chromosomes in prophase of meiosis I and instead are arrested at prometaphase. Thus, CDK1 has an essential role in male meiosis that is consistent with what is known about the role of CDK1 in female meiosis, where it is required for formation of condensed bivalent metaphase chromosomes and progression to the first meiotic division. We found that cKO spermatocytes formed fully condensed bivalent chromosomes in the presence of okadaic acid, suggesting that cKO chromosomes are competent to condense, although they do not do so in vivo. Additionally, arrested cKO spermatocytes exhibited irregular cell shape, irregular large nuclei, and large distinctive nucleoli. These cells persist in the seminiferous epithelium through the next seminiferous epithelial cycle with a lack of stage XII checkpoint-associated cell death. This indicates that CDK1 is required upstream of a checkpoint-associated cell death as well as meiotic metaphase progression in mouse spermatocytes. PMID:26490841

  7. Plant thymidine kinase 1: a novel efficient suicide gene for malignant glioma therapy.

    PubMed

    Khan, Zahidul; Knecht, Wolfgang; Willer, Mette; Rozpedowska, Elzbieta; Kristoffersen, Peter; Clausen, Anders Ranegaard; Munch-Petersen, Birgitte; Almqvist, Per M; Gojkovic, Zoran; Piskur, Jure; Ekström, Tomas J

    2010-06-01

    The prognosis for malignant gliomas remains poor, and new treatments are urgently needed. Targeted suicide gene therapy exploits the enzymatic conversion of a prodrug, such as a nucleoside analog, into a cytotoxic compound. Although this therapeutic strategy has been considered a promising regimen for central nervous system (CNS) tumors, several obstacles have been encountered such as inefficient gene transfer to the tumor cells, limited prodrug penetration into the CNS, and inefficient enzymatic activity of the suicide gene. We report here the cloning and successful application of a novel thymidine kinase 1 (TK1) from the tomato plant, with favorable characteristics in vitro and in vivo. This enzyme (toTK1) is highly specific for the nucleoside analog prodrug zidovudine (azidothymidine, AZT), which is known to penetrate the blood-brain barrier. An important feature of toTK1 is that it efficiently phosphorylates its substrate AZT not only to AZT monophosphate, but also to AZT diphosphate, with excellent kinetics. The efficiency of the toTK1/AZT system was confirmed when toTK1-transduced human glioblastoma (GBM) cells displayed a 500-fold increased sensitivity to AZT compared with wild-type cells. In addition, when neural progenitor cells were used as delivery vectors for toTK1 in intracranial GBM xenografts in nude rats, substantial attenuation of tumor growth was achieved in animals exposed to AZT, and survival of the animals was significantly improved compared with controls. The novel toTK1/AZT suicide gene therapy system in combination with stem cell-mediated gene delivery promises new treatment of malignant gliomas. PMID:20154339

  8. Targeting colorectal cancer cells by a novel sphingosine kinase 1 inhibitor PF-543.

    PubMed

    Ju, TongFa; Gao, DaQuan; Fang, Zheng-yu

    2016-02-12

    In this study, we showed that PF-543, a novel sphingosine kinase 1 (SphK1) inhibitor, exerted potent anti-proliferative and cytotoxic effects against a panel of established (HCT-116, HT-29 and DLD-1) and primary human colorectal cancer (CRC) cells. Its sensitivity was negatively associated with SphK1 expression level in the CRC cells. Surprisingly, PF-543 mainly induced programmed necrosis, but not apoptosis, in the CRC cells. CRC cell necrotic death was detected by lactate dehydrogenase (LDH) release, mitochondrial membrane potential (MMP) collapse and mitochondrial P53-cyclophilin-D (Cyp-D) complexation. Correspondingly, the necrosis inhibitor necrostatin-1 largely attenuated PF-543-induced cytotoxicity against CRC cells. Meanwhile, the Cyp-D inhibitors (sanglifehrin A and cyclosporin A), or shRNA-mediated knockdown of Cyp-D, remarkably alleviated PF-543-induced CRC cell necrotic death. Reversely, over-expression of wild-type Cyp-D in HCT-116 cells significantly increased PF-543's sensitivity. In vivo, PF-543 intravenous injection significantly suppressed HCT-116 xenograft growth in severe combined immunodeficient (SCID) mice, whiling remarkably improving the mice survival. The in vivo activity by PF-543 was largely attenuated when combined with the Cyp-D inhibitor cyclosporin A. Collectively, our results demonstrate that PF-543 exerts potent anti-CRC activity in vitro and in vivo. Mitochondrial programmed necrosis pathway is likely the key mechanism responsible for PF-543's actions in CRC cells. PMID:26775841

  9. Extracellular signal-regulated kinase 1/2 signalling in SLE T cells is influenced by oestrogen and disease activity.

    PubMed

    Gorjestani, S; Rider, V; Kimler, B F; Greenwell, C; Abdou, N I

    2008-06-01

    Systemic lupus erythematosus (SLE) is an autoimmune disease that occurs primarily in women of reproductive age. The disease is characterized by exaggerated T-cell activity and abnormal T-cell signalling. The mitogen-activated protein kinase (MAPK) pathway is involved in the maintenance of T-cell tolerance that fails in patients with SLE. Oestrogen is a female sex hormone that binds to nuclear receptors and alters the rate of gene transcription. Oestrogen can also act through the plasma membrane and rapidly stimulate second messengers including calcium flux and kinase activation. In this study, we investigated whether oestrogen influences the activation of MAPK signalling through the phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2) in activated SLE T cells. SLE and control T cells were cultured in serum-free medium without and with oestradiol (10(-7) M) for 18 h. The T cells were activated with phorbol 12 myristate 13-acetate and ionomycin for various time points (0-60 min), and the amount of phosphorylated ERK1/2 was measured by immunoblotting. There were no differences in ERK1/2 phosphorylation between SLE and control T cells at 5 and 15 min after the activation stimulus. However, comparison between the amount of phosphorylated ERK1/2 in SLE T cells from the same patients cultured without and with oestradiol showed a significant oestrogen-dependent suppression (P=0.48) of ERK1/2 in patients with inactive/mild systemic lupus erythematosus disease activity index (SLEDAI) (0-2) compared with patients with moderate (4-6) or active (8-12) SLEDAI scores. These results suggest that the suppression of MAPK through ERK1/2 phosphorylation is sensitive to oestradiol in patients with inactive or mild disease, but the sensitivity is not maintained when disease activity increases. Furthermore, studies are now necessary to understand the mechanisms by which oestrogen influences MAPK activation in SLE T cells. PMID:18539708

  10. The Granuloma Response Controlling Cryptococcosis in Mice Depends on the Sphingosine Kinase 1–Sphingosine 1-Phosphate Pathway

    PubMed Central

    Farnoud, Amir M.; Bryan, Arielle M.; Kechichian, Talar; Luberto, Chiara

    2015-01-01

    Cryptococcus neoformans is a fungal pathogen that causes pulmonary infections, which may progress into life-threatening meningitis. In commonly used mouse models of C. neoformans infections, fungal cells are not contained in the lungs, resulting in dissemination to the brain. We have previously reported the generation of an engineered C. neoformans strain (C. neoformans Δgcs1) which can be contained in lung granulomas in the mouse model and have shown that granuloma formation is dependent upon the enzyme sphingosine kinase 1 (SK1) and its product, sphingosine 1-phosphate (S1P). In this study, we have used four mouse models, CBA/J and C57BL6/J (both immunocompetent), Tgε26 (an isogenic strain of strain CBA/J lacking T and NK cells), and SK−/− (an isogenic strain of strain C57BL6/J lacking SK1), to investigate how the granulomatous response and SK1-S1P pathway are interrelated during C. neoformans infections. S1P and monocyte chemotactic protein-1 (MCP-1) levels were significantly elevated in the bronchoalveolar lavage fluid of all mice infected with C. neoformans Δgcs1 but not in mice infected with the C. neoformans wild type. SK1−/− mice did not show elevated levels of S1P or MCP-1. Primary neutrophils isolated from SK1−/− mice showed impaired antifungal activity that could be restored by the addition of extracellular S1P. In addition, high levels of tumor necrosis factor alpha were found in the mice infected with C. neoformans Δgcs1 in comparison to the levels found in mice infected with the C. neoformans wild type, and their levels were also dependent on the SK1-S1P pathway. Taken together, these results suggest that the SK1-S1P pathway promotes host defense against C. neoformans infections by regulating cytokine levels, promoting extracellular killing by phagocytes, and generating a granulomatous response. PMID:25895971

  11. Cyclin-dependent Kinase 5 (Cdk5)-dependent Phosphorylation of p70 Ribosomal S6 Kinase 1 (S6K) Is Required for Dendritic Spine Morphogenesis.

    PubMed

    Lai, Kwok-On; Liang, Zhuoyi; Fei, Erkang; Huang, Huiqian; Ip, Nancy Y

    2015-06-01

    The maturation and maintenance of dendritic spines depends on neuronal activity and protein synthesis. One potential mechanism involves mammalian target of rapamycin, which promotes protein synthesis through phosphorylation of eIF4E-binding protein and p70 ribosomal S6 kinase 1 (S6K). Upon extracellular stimulation, mammalian target of rapamycin phosphorylates S6K at Thr-389. S6K also undergoes phosphorylation at other sites, including four serine residues in the autoinhibitory domain. Despite extensive biochemical studies, the importance of phosphorylation in the autoinhibitory domain in S6K function remains unresolved, and its role has not been explored in the cellular context. Here we demonstrated that S6K in neuron was phosphorylated at Ser-411 within the autoinhibitory domain by cyclin-dependent kinase 5. Ser-411 phosphorylation was regulated by neuronal activity and brain-derived neurotrophic factor (BDNF). Knockdown of S6K in hippocampal neurons by RNAi led to loss of dendritic spines, an effect that mimics neuronal activity blockade by tetrodotoxin. Notably, coexpression of wild type S6K, but not the phospho-deficient S411A mutant, could rescue the spine defects. These findings reveal the importance of cyclin-dependent kinase 5-mediated phosphorylation of S6K at Ser-411 in spine morphogenesis driven by BDNF and neuronal activity. PMID:25903132

  12. Cyclin-Dependent Kinase 1-Mediated Bcl-xL/Bcl-2 Phosphorylation Acts as a Functional Link Coupling Mitotic Arrest and Apoptosis ▿

    PubMed Central

    Terrano, David T.; Upreti, Meenakshi; Chambers, Timothy C.

    2010-01-01

    Despite detailed knowledge of the components of the spindle assembly checkpoint, a molecular explanation of how cells die after prolonged spindle checkpoint activation, and thus how microtubule inhibitors and other antimitotic drugs ultimately elicit their lethal effects, has yet to emerge. Mitotically arrested cells typically display extensive phosphorylation of two key antiapoptotic proteins, Bcl-xL and Bcl-2, and evidence suggests that phosphorylation disables their antiapoptotic activity. However, the responsible kinase has remained elusive. In this report, evidence is presented that cyclin-dependent kinase 1 (CDK1)/cyclin B catalyzes mitotic-arrest-induced Bcl-xL/Bcl-2 phosphorylation. Furthermore, we show that CDK1 transiently and incompletely phosphorylates these proteins during normal mitosis. When mitosis is prolonged in the absence of microtubule inhibition, Bcl-xL and Bcl-2 become highly phosphorylated. Transient overexpression of nondegradable cyclin B1 caused apoptotic death, which was blocked by a phosphodefective Bcl-xL mutant but not by a phosphomimetic Bcl-xL mutant, confirming Bcl-xL as a key target of proapoptotic CDK1 signaling. These findings suggest a model whereby a switch in the duration of CDK1 activation, from transient during mitosis to sustained during mitotic arrest, dramatically increases the extent of Bcl-xL/Bcl-2 phosphorylation, resulting in inactivation of their antiapoptotic function. Thus, phosphorylation of antiapoptotic Bcl-2 proteins acts as a sensor for CDK1 signal duration and as a functional link coupling mitotic arrest to apoptosis. PMID:19917720

  13. Eribulin synergizes with Polo-like kinase 1 inhibitors to induce apoptosis in rhabdomyosarcoma.

    PubMed

    Stehle, Angelika; Hugle, Manuela; Fulda, Simone

    2015-08-28

    Eribulin, a novel microtubule-interfering drug, was recently shown to exhibit high antitumor activity in vivo against various pediatric cancers. Here, we identify a novel synthetic lethal interaction of Eribulin together with Polo-like kinase 1 (PLK1) inhibitors against rhabdomyosarcoma (RMS) in vitro and in vivo. Eribulin and the PLK1 inhibitor BI 2536 at subtoxic concentrations synergize to induce apoptosis in RMS cells as confirmed by calculation of combination index (CI). Also, Eribulin/BI 2536 co-treatment is significantly more effective than monotherapy to reduce cell viability and inhibit colony formation of RMS cells. Similarly, Eribulin and BI 2536 act in concert to trigger apoptosis in a primary, patient-derived ARMS culture, underscoring the clinical relevance of this combination. Importantly, Eribulin and BI 2536 cooperate to suppress tumor growth in an in vivo model of RMS. On molecular grounds, Eribulin/BI 2536 co-treatment causes profound mitotic arrest, which is critically required for synergism, since inhibition of mitotic arrest by CDK1 inhibitor RO-3306 abolishes Eribulin/BI 2536-mediated apoptosis. Eribulin and BI 2536 cooperate to activate caspase-9, -3 and -8, which is necessary for apoptosis induction, since the broad-range caspase inhibitor N-benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone (zVAD.fmk) reduces Eribulin/BI 2536-induced apoptosis significantly, yet partially. Intriguingly, knockdown of endonuclease G (ENDOG) also significantly inhibits Eribulin/BI 2536-triggered apoptosis, demonstrating the involvement of both caspase-dependent and -independent effector pathways. Synergistic induction of apoptosis is similarly found for Eribulin/BI 2536 co-treatment in neuroblastoma cells and for the combination of vincristine (another antimicrotubule chemotherapeutic) with Poloxin (another PLK1 inhibitor), thus pointing to a broader significance of this concomitant microtubule- and PLK1-targeting strategy for pediatric oncology. In

  14. Different approaches of teaching in chemistry. Membrane targeting mechanism of human sphingosine kinase 1

    NASA Astrophysics Data System (ADS)

    Hwang, Jeong-Hye

    Part 1. Biochemistry research involves elucidating the mechanism of membrane targeting of human sphingosine kinase 1 (hSK1). Sphingosine kinase (SK) is an enzyme that catalyzes phosphorylation of sphingosine to sphingosine-1-phosphate (S-1-P). hSK1 can be activated by its agonists resulting in rapid and transient increased production of S-1-P, resulting in enhancement of apoptosis. Upon activation by PMA, SK translocates to the plasma membrane. In vitro measurement demonstrated hSK1 selectively bound phosphatidylserine over anionic lipids and showed strong preference for the plasma membrane-mimetics. Mutational analysis of conserved Thr54 and Asn89 on putative membrane-binding surface from the model structure showed both in vivo and in vitro that these two residues are important for the membrane selectivity of hSK1. Part 2. Chemical education research focuses on three different ways of scientific learning and teaching. First, inquiry teaching that involves a writing method called the Science Writing Heuristic (SWH) is analyzed using grounded theory. This is done in a general education course for pre-service teachers. As a result, (1) students experience understanding of concept through mastery of their own methods and experience different aspects of inquiry processes; (2) SWH method allows instructors to detect misconceptions generated by students' incorrect, but logical interpretations of their data, and helps instructors to make changes to guide students; (3) as students experience meta-cognition, students gain understanding of concepts by relating mathematical progression to different parts of the experiments and also by applying what they learn into other situations. Second, statistical analysis on the long term effects of a combined math/chemistry program is analyzed through multiple linear regression and discriminant function analysis. The results demonstrate the program was beneficial to the underrepresented students when the college success was measured

  15. Sphingosine Kinase-1 Is Central to Androgen-Regulated Prostate Cancer Growth and Survival

    PubMed Central

    Dayon, Audrey; Brizuela, Leyre; Martin, Claire; Mazerolles, Catherine; Pirot, Nelly; Doumerc, Nicolas; Nogueira, Leonor; Golzio, Muriel; Teissié, Justin; Serre, Guy; Rischmann, Pascal; Malavaud, Bernard; Cuvillier, Olivier

    2009-01-01

    Background Sphingosine kinase-1 (SphK1) is an oncogenic lipid kinase notably involved in response to anticancer therapies in prostate cancer. Androgens regulate prostate cancer cell proliferation, and androgen deprivation therapy is the standard of care in the management of patients with advanced disease. Here, we explored the role of SphK1 in the regulation of androgen-dependent prostate cancer cell growth and survival. Methodology/Principal Findings Short-term androgen removal induced a rapid and transient SphK1 inhibition associated with a reduced cell growth in vitro and in vivo, an event that was not observed in the hormono-insensitive PC-3 cells. Supporting the critical role of SphK1 inhibition in the rapid effect of androgen depletion, its overexpression could impair the cell growth decrease. Similarly, the addition of dihydrotestosterone (DHT) to androgen-deprived LNCaP cells re-established cell proliferation, through an androgen receptor/PI3K/Akt dependent stimulation of SphK1, and inhibition of SphK1 could markedly impede the effects of DHT. Conversely, long-term removal of androgen support in LNCaP and C4-2B cells resulted in a progressive increase in SphK1 expression and activity throughout the progression to androgen-independence state, which was characterized by the acquisition of a neuroendocrine (NE)-like cell phenotype. Importantly, inhibition of the PI3K/Akt pathway—by negatively impacting SphK1 activity—could prevent NE differentiation in both cell models, an event that could be mimicked by SphK1 inhibitors. Fascinatingly, the reversability of the NE phenotype by exposure to normal medium was linked with a pronounced inhibition of SphK1 activity. Conclusions/Significance We report the first evidence that androgen deprivation induces a differential effect on SphK1 activity in hormone-sensitive prostate cancer cell models. These results also suggest that SphK1 activation upon chronic androgen deprivation may serve as a compensatory mechanism

  16. NEMO Prevents RIP Kinase 1-Mediated Epithelial Cell Death and Chronic Intestinal Inflammation by NF-κB-Dependent and -Independent Functions

    PubMed Central

    Vlantis, Katerina; Wullaert, Andy; Polykratis, Apostolos; Kondylis, Vangelis; Dannappel, Marius; Schwarzer, Robin; Welz, Patrick; Corona, Teresa; Walczak, Henning; Weih, Falk; Klein, Ulf; Kelliher, Michelle; Pasparakis, Manolis

    2016-01-01

    Summary Intestinal epithelial cells (IECs) regulate gut immune homeostasis, and impaired epithelial responses are implicated in the pathogenesis of inflammatory bowel diseases (IBD). IEC-specific ablation of nuclear factor κB (NF-κB) essential modulator (NEMO) caused Paneth cell apoptosis and impaired antimicrobial factor expression in the ileum, as well as colonocyte apoptosis and microbiota-driven chronic inflammation in the colon. Combined RelA, c-Rel, and RelB deficiency in IECs caused Paneth cell apoptosis but not colitis, suggesting that NEMO prevents colon inflammation by NF-κB-independent functions. Inhibition of receptor-interacting protein kinase 1 (RIPK1) kinase activity or combined deficiency of Fas-associated via death domain protein (FADD) and RIPK3 prevented epithelial cell death, Paneth cell loss, and colitis development in mice with epithelial NEMO deficiency. Therefore, NEMO prevents intestinal inflammation by inhibiting RIPK1 kinase activity-mediated IEC death, suggesting that RIPK1 inhibitors could be effective in the treatment of colitis in patients with NEMO mutations and possibly in IBD. PMID:26982364

  17. Glycogen synthase kinase-3β antagonizes ROS-induced hepatocellular carcinoma cell death through suppression of the apoptosis signal-regulating kinase 1.

    PubMed

    Zhang, Na; Liu, Lu; Dou, Yueying; Song, Danqing; Deng, Hongbin

    2016-07-01

    Glycogen synthase kinase-3β (GSK-3β), a multifunctional kinase, is an important regulator of cancer cell survival. Apoptosis signal-regulating kinase 1 (ASK1) is also a key factor for controlling several cellular events including the cell cycle, senescence, and apoptosis, in response to reactive oxygen species (ROS). The role of GSK-3β regulating the activity and protein level of ASK1 in the cancer cells remains largely unexplored. In this study, we showed that GSK-3β inhibits ROS-induced hepatocellular carcinoma cell death by suppressing ASK1. We first found that ectopic expression of GSK-3β suppressed hydrogen peroxide (H2O2)-induced cell death in HepG2 cells and knockdown of endogenous GSK-3β expression exhibited opposite effects. Moreover, GSK-3β expression clearly inhibited H2O2-induced phosphorylation of ASK1 in HepG2 cells, in association with a decrease in ASK1 protein level. Further exploration revealed that GSK-3β induced ubiquitination and proteasome-dependent degradation of ASK1 via inhibition of ubiquitin-specific protease USP9X. Our results thus suggest that GSK-3β is a key factor involved in ASK1 activation and ROS-induced cell death. PMID:27221474

  18. Identification of Extracellular Signal-regulated Kinase 1 (ERK1) Direct Substrates using Stable Isotope Labeled Kinase Assay-Linked Phosphoproteomics*

    PubMed Central

    Xue, Liang; Wang, Pengcheng; Cao, Pianpian; Zhu, Jian-kang; Tao, W. Andy

    2014-01-01

    Kinase mediated phosphorylation signaling is extensively involved in cellular functions and human diseases, and unraveling phosphorylation networks requires the identification of substrates targeted by kinases, which has remained challenging. We report here a novel proteomic strategy to identify the specificity and direct substrates of kinases by coupling phosphoproteomics with a sensitive stable isotope labeled kinase reaction. A whole cell extract was moderately dephosphorylated and subjected to in vitro kinase reaction under the condition in which 18O-ATP is the phosphate donor. The phosphorylated proteins are then isolated and identified by mass spectrometry, in which the heavy phosphate (+85.979 Da) labeled phosphopeptides reveal the kinase specificity. The in vitro phosphorylated proteins with heavy phosphates are further overlapped with in vivo kinase-dependent phosphoproteins for the identification of direct substrates with high confidence. The strategy allowed us to identify 46 phosphorylation sites on 38 direct substrates of extracellular signal-regulated kinase 1, including multiple known substrates and novel substrates, highlighting the ability of this high throughput method for direct kinase substrate screening. PMID:25022875

  19. Kinetic Mechanism and Rate-Limiting Steps of Focal Adhesion Kinase-1

    SciTech Connect

    Schneck, Jessica L.; Briand, Jacques; Chen, Stephanie; Lehr, Ruth; McDevitt, Patrick; Zhao, Baoguang; Smallwood, Angela; Concha, Nestor; Oza, Khyati; Kirkpatrick, Robert; Yan, Kang; Villa, James P.; Meek, Thomas D.; Thrall, Sara H.

    2010-12-07

    Steady-state kinetic analysis of focal adhesion kinase-1 (FAK1) was performed using radiometric measurement of phosphorylation of a synthetic peptide substrate (Ac-RRRRRRSETDDYAEIID-NH{sub 2}, FAK-tide) which corresponds to the sequence of an autophosphorylation site in FAK1. Initial velocity studies were consistent with a sequential kinetic mechanism, for which apparent kinetic values k{sub cat} (0.052 {+-} 0.001 s{sup -1}), K{sub MgATP} (1.2 {+-} 0.1 {micro}M), K{sub iMgATP} (1.3 {+-} 0.2 {micro}M), K{sub FAK-tide} (5.6 {+-} 0.4 {micro}M), and K{sub iFAK-tide} (6.1 {+-} 1.1 {micro}M) were obtained. Product and dead-end inhibition data indicated that enzymatic phosphorylation of FAK-tide by FAK1 was best described by a random bi bi kinetic mechanism, for which both E-MgADP-FAK-tide and E-MgATP-P-FAK-tide dead-end complexes form. FAK1 catalyzed the {beta}{gamma}-bridge:{beta}-nonbridge positional oxygen exchange of [{gamma}-{sup 18}O{sub 4}]ATP in the presence of 1 mM [{gamma}-{sup 18}O{sub 4}]ATP and 1.5 mM FAK-tide with a progressive time course which was commensurate with catalysis, resulting in a rate of exchange to catalysis of k{sub x}/k{sub cat} = 0.14 {+-} 0.01. These results indicate that phosphoryl transfer is reversible and that a slow kinetic step follows formation of the E-MgADP-P-FAK-tide complex. Further kinetic studies performed in the presence of the microscopic viscosogen sucrose revealed that solvent viscosity had no effect on k{sub cat}/K{sub FAK-tide}, while k{sub cat} and k{sub cat}/K{sub MgATP} were both decreased linearly at increasing solvent viscosity. Crystallographic characterization of inactive versus AMP-PNP-liganded structures of FAK1 showed that a large conformational motion of the activation loop upon ATP binding may be an essential step during catalysis and would explain the viscosity effect observed on k{sub cat}/K{sub m} for MgATP but not on k{sub cat}/K{sub m} for FAK-tide. From the positional isotope exchange, viscosity, and

  20. Discovery of a potent and orally bioavailable benzolactam-derived inhibitor of Polo-like kinase 1 (MLN0905).

    PubMed

    Duffey, Matthew O; Vos, Tricia J; Adams, Ruth; Alley, Jennifer; Anthony, Justin; Barrett, Cynthia; Bharathan, Indu; Bowman, Douglas; Bump, Nancy J; Chau, Ryan; Cullis, Courtney; Driscoll, Denise L; Elder, Amy; Forsyth, Nancy; Frazer, Jonathan; Guo, Jianping; Guo, Luyi; Hyer, Marc L; Janowick, David; Kulkarni, Bheemashankar; Lai, Su-Jen; Lasky, Kerri; Li, Gang; Li, Jing; Liao, Debra; Little, Jeremy; Peng, Bo; Qian, Mark G; Reynolds, Dominic J; Rezaei, Mansoureh; Scott, Margaret Porter; Sells, Todd B; Shinde, Vaishali; Shi, Qiuju Judy; Sintchak, Michael D; Soucy, Francois; Sprott, Kevin T; Stroud, Stephen G; Nestor, Michelle; Visiers, Irache; Weatherhead, Gabriel; Ye, Yingchun; D'Amore, Natalie

    2012-01-12

    This article describes the discovery of a series of potent inhibitors of Polo-like kinase 1 (PLK1). Optimization of this benzolactam-derived chemical series produced an orally bioavailable inhibitor of PLK1 (12c, MLN0905). In vivo pharmacokinetic-pharmacodynamic experiments demonstrated prolonged mitotic arrest after oral administration of 12c to tumor bearing nude mice. A subsequent efficacy study in nude mice achieved tumor growth inhibition or regression in a human colon tumor (HT29) xenograft model. PMID:22070629

  1. SERINE ARGININE PROTEIN KINASE-1 (SRPK1) INHIBITION AS A POTENTIAL NOVEL TARGETED THERAPEUTIC STRATEGY IN PROSTATE CANCER

    PubMed Central

    Mavrou, Athina; Brakspear, Karen; Hamdollah-Zadeh, Maryam; Damodaran, Gopinath; Babaei-Jadidi, Roya; Oxley, Jon; Gillatt, David A; Ladomery, Michael R; Harper, Steven J; Bates, David O; Oltean, Sebastian

    2014-01-01

    Angiogenesis is required for tumour growth and is induced principally by VEGF-A. VEGF-A pre-mRNA is alternatively spliced at the terminal exon to produce two families of isoforms, pro- and anti-angiogenic, only the former of which is upregulated in prostate cancer. In renal epithelial cells and colon cancer cells, the choice of VEGF splice isoforms is controlled by the splicing factor SRSF1, phosphorylated by SRPK1. Immunohistochemistry staining of human samples revealed a significant increase in SRPK1 expression both in prostate intra-epithelial neoplasia lesions as well as malignant adenocarcinoma compared to benign prostate tissue. We therefore tested the hypothesis that the selective upregulation of pro-angiogenic VEGF in prostate cancer may be under the control of SRPK1 activity. A switch in the expression of VEGF165 towards the anti-angiogenic splice isoform, VEGF165b, was seen in PC-3 cells with SRPK1 knock-down (KD). PC-3 SRPK1-KD cells resulted in tumours that grew more slowly in xenografts, with decreased microvessel density. No effect was seen as a result of SRPK1-KD on growth, proliferation, migration and invasion capabilities of PC-3 cells in vitro. Small molecule inhibitors of SRPK1 switched splicing towards the anti-angiogenic isoform VEGF165b in PC3 cells and decreased tumour growth when administered intraperitoneally in an orthotopic mouse model of prostate cancer. Our study suggests that modulation of SRPK1 and subsequent inhibition of tumour angiogenesis by regulation of VEGF splicing can alter prostate tumour growth and supports further studies into the use of SRPK1 inhibition as a potential anti-angiogenic therapy in prostate cancer. PMID:25381816

  2. Knockdown of PFTAIRE Protein Kinase 1 (PFTK1) Inhibits Proliferation, Invasion, and EMT in Colon Cancer Cells.

    PubMed

    Zhu, Jiankang; Liu, Chongzhong; Liu, Fengyue; Wang, Yadong; Zhu, Min

    2016-01-01

    PFTK1 is a member of the cyclin-dependent kinase (CDK) family and is upregulated in many types of tumors. However, its expression and role in colon cancer remain unclear. In this study, we aimed to investigate the expression and function of PFTK1 in colon cancer. Our results showed that PFTK1 was highly expressed in colon cancer cell lines. The in vitro experiments demonstrated that knockdown of PFTK1 inhibited the proliferation, migration, and invasion of colon cancer cells as well as the epithelial-to-mesenchymal transition (EMT) progress. Furthermore, knockdown of PFTK1 suppressed the expression of Shh as well as Smo, Ptc, and Gli-1 in colon cancer cells. Taken together, these results suggest that knockdown of PFTK1 inhibited the proliferation and invasion of colon cancer cells as well as the EMT progress by suppressing the Sonic hedgehog signaling pathway. Therefore, these findings reveal that PFTK1 may be a potential therapeutic target for the treatment of colon cancer. PMID:27458094

  3. Involvement of Cyclin-Dependent Kinase 1 during Postovulatory Aging-Mediated Abortive Spontaneous Egg Activation in Rat Eggs Cultured In Vitro.

    PubMed

    Prasad, Shilpa; Koch, Biplob; Chaube, Shail K

    2016-04-01

    Freshly ovulated rat eggs do not remain arrested at metaphase II (MII) and undergo exit from MII arrest with initiation of extrusion of the second polar body (PBII), a characteristic feature of abortive spontaneous egg activation (SEA). The biochemical and molecular changes during postovulatory aging-mediated abortive SEA remain poorly understood. We investigated the morphological, cellular, and molecular changes during postovulatory aging-mediated abortive SEA in eggs cultured in vitro. Our results suggest that postovulatory egg aging in vitro induced initiation of PBII extrusion in a time-dependent manner. Postovulatory aging increased Wee1 kinase and Thr-14/Tyr-15 phosphorylated cyclin-dependent kinase 1 (Cdk1) levels, whereas Thr-161 phosphorylated Cdk1 and cyclin B1 levels were significantly decreased in eggs cultured in vitro. The early mitotic inhibitor 2 (Emi2) level was significantly reduced, but anaphase promoting complex/cyclosome (APC/C) and mitotic arrest deficient protein (MAD2) levels were increased initially and then reduced during a later period of in vitro culture. These results suggest that an increased Wee1 kinase level modulated the specific phosphorylation status of Cdk1, increased Cdk1 activity, and decreased the cyclin B1 level. Furthermore, the decreased Emi2 level was associated with an increased level of APC/C and decreased level of cyclin B1, which resulted in maturation promoting factor (MPF) destabilization and finally led to postovulatory aging-mediated abortive SEA in rat eggs cultured in vitro. PMID:26982431

  4. Enhanced cellular uptake of a TAT-conjugated peptide inhibitor targeting the polo-box domain of polo-like kinase 1.

    PubMed

    Kim, Sung Min; Chae, Min Kyung; Lee, Chulhyun; Yim, Min Su; Bang, Jeong Kyu; Ryu, Eun Kyoung

    2014-11-01

    In the last decade, drug delivery systems using biologically active molecules for cellular uptake of therapeutic targets have been studied for application and testing in clinical trials. For instance, the transactivator of transcription (TAT) peptide, or cell-penetrating peptide, was shown to deliver a variety of cargoes, including proteins, peptides, and nucleic acids. Polo-like kinase 1 (Plk1) plays key roles in the regulation of cell cycle events (e.g., mitotic progression). Plk1 was also shown to be activated and highly expressed in proliferating cells such as tumor cells. Amongst these phosphopeptides, Pro-Leu-His-Ser-p-Thr (PLHSpT), which is the minimal sequence for polo-box domain (PBD) binding, was shown to have an inhibitory effect and to induce apoptotic cell death. However, the phosphopeptide showed low cell membrane penetration. Thus, in our study, we synthesized Plk1 inhibitor TAT-PLHSpT to improve agent internalization into cells. TAT-PLHSpT was shown to internalize into the nucleus. The conjugation of TAT with PLHSpT inhibited cancer cell growth and survival. Moreover, it showed an increase in cellular uptake and inhibition of Plk1 kinase activity. Further studies are needed for biological evaluation of the new peptide in tumor-bearing animal models (in vivo). Our results prove that TAT-PLHSpT is a good candidate for specific PBD binding of Plk1 as a therapeutic agent for humans. PMID:25151148

  5. UV Light Potentiates STING (Stimulator of Interferon Genes)-dependent Innate Immune Signaling through Deregulation of ULK1 (Unc51-like Kinase 1).

    PubMed

    Kemp, Michael G; Lindsey-Boltz, Laura A; Sancar, Aziz

    2015-05-01

    The mechanism by which ultraviolet (UV) wavelengths of sunlight trigger or exacerbate the symptoms of the autoimmune disorder lupus erythematosus is not known but may involve a role for the innate immune system. Here we show that UV radiation potentiates STING (stimulator of interferon genes)-dependent activation of the immune signaling transcription factor interferon regulatory factor 3 (IRF3) in response to cytosolic DNA and cyclic dinucleotides in keratinocytes and other human cells. Furthermore, we find that modulation of this innate immune response also occurs with UV-mimetic chemical carcinogens and in a manner that is independent of DNA repair and several DNA damage and cell stress response signaling pathways. Rather, we find that the stimulation of STING-dependent IRF3 activation by UV is due to apoptotic signaling-dependent disruption of ULK1 (Unc51-like kinase 1), a pro-autophagic protein that negatively regulates STING. Thus, deregulation of ULK1 signaling by UV-induced DNA damage may contribute to the negative effects of sunlight UV exposure in patients with autoimmune disorders. PMID:25792739

  6. An Active Form of Sphingosine Kinase-1 Is Released in the Extracellular Medium as Component of Membrane Vesicles Shed by Two Human Tumor Cell Lines

    PubMed Central

    Rigogliuso, Salvatrice; Donati, Chiara; Cassarà, Donata; Taverna, Simona; Salamone, Monica; Bruni, Paola; Vittorelli, Maria Letizia

    2010-01-01

    Expression of sphingosine kinase-1 (SphK-1) correlates with a poor survival rate of tumor patients. This effect is probably due to the ability of SphK-1 to be released into the extracellular medium where it catalyzes the biosynthesis of sphingosine-1-phosphate (S1P), a signaling molecule endowed with profound proangiogenic effects. SphK-1 is a leaderless protein which is secreted by an unconventional mechanism. In this paper, we will show that in human hepatocarcinoma Sk-Hep1 cells, extracellular signaling is followed by targeting the enzyme to the cell surface and parallels targeting of FGF-2 to the budding vesicles. We will also show that SphK-1 is present in a catalitycally active form in vesicles shed by SK-Hep1 and human breast carcinoma 8701-BC cells. The enzyme substrate sphingosine is present in shed vesicles where it is produced by neutral ceramidase. Shed vesicles are therefore a site for S1P production in the extracellular medium and conceivably also within host cell following vesicle endocytosis. PMID:20508814

  7. In Silico Exploration of 1,7-Diazacarbazole Analogs as Checkpoint Kinase 1 Inhibitors by Using 3D QSAR, Molecular Docking Study, and Molecular Dynamics Simulations.

    PubMed

    Gao, Xiaodong; Han, Liping; Ren, Yujie

    2016-01-01

    Checkpoint kinase 1 (Chk1) is an important serine/threonine kinase with a self-protection function. The combination of Chk1 inhibitors and anti-cancer drugs can enhance the selectivity of tumor therapy. In this work, a set of 1,7-diazacarbazole analogs were identified as potent Chk1 inhibitors through a series of computer-aided drug design processes, including three-dimensional quantitative structure-activity relationship (3D-QSAR) modeling, molecular docking, and molecular dynamics simulations. The optimal QSAR models showed significant cross-validated correlation q² values (0.531, 0.726), fitted correlation r² coefficients (higher than 0.90), and standard error of prediction (less than 0.250). These results suggested that the developed models possess good predictive ability. Moreover, molecular docking and molecular dynamics simulations were applied to highlight the important interactions between the ligand and the Chk1 receptor protein. This study shows that hydrogen bonding and electrostatic forces are key interactions that confer bioactivity. PMID:27164065

  8. Combining docking-based comparative intermolecular contacts analysis and k-nearest neighbor correlation for the discovery of new check point kinase 1 inhibitors.

    PubMed

    Jaradat, Nour Jamal; Khanfar, Mohammad A; Habash, Maha; Taha, Mutasem Omar

    2015-06-01

    Check point kinase 1 (Chk1) is an important protein in G2 phase checkpoint arrest required by cancer cells to maintain cell cycle and to prevent cell death. Therefore, Chk1 inhibitors should have potential as anti-cancer therapeutics. Docking-based comparative intermolecular contacts analysis (dbCICA) is a new three-dimensional quantitative structure activity relationship method that depends on the quality and number of contact points between docked ligands and binding pocket amino acid residues. In this presented work we implemented a novel combination of k-nearest neighbor/genetic function algorithm modeling coupled with dbCICA to select critical ligand-Chk1 contacts capable of explaining anti-Chk1 bioactivity among a long list of inhibitors. The finest set of contacts were translated into two valid pharmacophore hypotheses that were used as 3D search queries to screen the National Cancer Institute's structural database for new Chk1 inhibitors. Three potent Chk1 inhibitors were discovered with IC50 values ranging from 2.4 to 69.7 µM. PMID:25956379

  9. Muscle-Derived Extracellular Signal-Regulated Kinases 1 and 2 Are Required for the Maintenance of Adult Myofibers and Their Neuromuscular Junctions

    PubMed Central

    Seaberg, Bonnie; Henslee, Gabrielle; Wang, Shuo; Paez-Colasante, Ximena; Landreth, Gary E.

    2015-01-01

    The Ras–extracellular signal-regulated kinase 1 and 2 (ERK1/2) pathway appears to be important for the development, maintenance, aging, and pathology of mammalian skeletal muscle. Yet no gene targeting of Erk1/2 in muscle fibers in vivo has been reported to date. We combined a germ line Erk1 mutation with Cre-loxP Erk2 inactivation in skeletal muscle to produce, for the first time, mice lacking ERK1/2 selectively in skeletal myofibers. Animals lacking muscle ERK1/2 displayed stunted postnatal growth, muscle weakness, and a shorter life span. Their muscles examined in this study, sternomastoid and tibialis anterior, displayed fragmented neuromuscular synapses and a mixture of modest fiber atrophy and loss but failed to show major changes in fiber type composition or absence of cell surface dystrophin. Whereas the lack of only ERK1 had no effects on the phenotypes studied, the lack of myofiber ERK2 explained synaptic fragmentation in the sternomastoid but not the tibialis anterior and a decrease in the expression of the acetylcholine receptor (AChR) epsilon subunit gene mRNA in both muscles. A reduction in AChR protein was documented in line with the above mRNA results. Evidence of partial denervation was found in the sternomastoid but not the tibialis anterior. Thus, myofiber ERK1/2 are differentially required for the maintenance of myofibers and neuromuscular synapses in adult mice. PMID:25605336

  10. Phosphatase and tensin homologue (PTEN)-induced putative kinase 1 reduces pancreatic β-cells apoptosis in glucotoxicity through activation of autophagy.

    PubMed

    Zhang, Juan; Chen, Ke; Wang, Linghao; Wan, Xinxin; Shrestha, Chandrama; Zhou, Jingsong; Mo, Zhaohui

    2016-08-01

    Chronic elevated glucose is harmful to pancreatic β-cells, resulting in pancreatic β-cells dysfunction and apoptosis. Understanding the molecular mechanisms associated with β-cells survival is pivotal for the prevention of β-cells injury caused by glucotoxicity. The role of Phosphatase and tensin homologue (PTEN)-induced putative kinase 1 (PINK1) in the fate of pancreatic β-cells constantly exposed to high glucose was studied. Sustained high glucose increased PINK1 protein expression both in rat pancreatic β-cells and INS-1 β-cells, and that this increase can be inhibited by PINK1 knockdown and further enhanced by PINK1 over-expression. PINK1 deficiency aggravated glucotoxicity-induced pancreatic β-cells apoptosis and inhibition of autophagy whereas PINK1 could reverse these adverse effects. This study provides fundamental data supporting the potential protective role of PINK1 as a new therapeutic target necessary to preserve β-cells survival under non-physiological hyperglycemia conditions. PMID:27233610

  11. Structural basis for recognition of Emi2 by Polo-like kinase 1 and development of peptidomimetics blocking oocyte maturation and fertilization

    PubMed Central

    Jia, Jia-Lin; Han, Young-Hyun; Kim, Hak-Cheol; Ahn, Mija; Kwon, Jeong-Woo; Luo, Yibo; Gunasekaran, Pethaiah; Lee, Soo-Jae; Lee, Kyung S.; Kyu Bang, Jeong; Kim, Nam-Hyung; Namgoong, Suk

    2015-01-01

    In a mammalian oocyte, completion of meiosis is suspended until fertilization by a sperm, and the cell cycle is arrested by a biochemical activity called cytostatic factor (CSF). Emi2 is one of the CSFs, and it maintains the protein level of maturation promoting factor (MPF) by inhibiting ubiquitin ligase anaphase promoting complex/cyclosome (APC/C). Degradation of Emi2 via ubiquitin-mediated proteolysis after fertilization requires phosphorylation by Polo-like kinase 1 (Plk1). Therefore, recognition and phosphorylation of Emi2 by Plk1 are crucial steps for cell cycle resumption, but the binding mode of Emi2 and Plk1 is poorly understood. Using biochemical assays and X-ray crystallography, we found that two phosphorylated threonines (Thr152 and Thr176) in Emi2 are each responsible for the recruitment of one Plk1 molecule by binding to its C-terminal polo box domain (PBD). We also found that meiotic maturation and meiosis resumption via parthenogenetic activation were impaired when Emi2 interaction with Plk1-PBD was blocked by a peptidomimetic called 103-8. Because of the inherent promiscuity of kinase inhibitors, our results suggest that targeting PBD of Plk1 may be an effective strategy for the development of novel and specific contraceptive agents that block oocyte maturation and/or fertilization. PMID:26459104

  12. Structure of the Brachydanio Rerio Polo-Like Kinase 1 (Plk1) Catalytic Domain in Complex With An Extended Inhibitor Targeting the Adaptive Pocket of the Enzyme

    SciTech Connect

    Elling, R.A.; Fucini, R.V.; Hanan, E.J.; Barr, K.J.; Zhu, J.; Paulvannan, K.; Yang, W.; Romanowski, M.J.

    2009-05-18

    Polo-like kinase 1 (Plk1) is a member of the Polo-like kinase family of serine/threonine kinases involved in the regulation of cell-cycle progression and cytokinesis and is an attractive target for the development of anticancer therapeutics. The catalytic domain of this enzyme shares significant primary amino-acid homology and structural similarity with another mitotic kinase, Aurora A. While screening an Aurora A library of ATP-competitive compounds, a urea-containing inhibitor with low affinity for mouse Aurora A but with submicromolar potency for human and zebrafish Plk1 (hPlk1 and zPlk1, respectively) was identified. A crystal structure of the zebrafish Plk1 kinase domain-inhibitor complex reveals that the small molecule occupies the purine pocket and extends past the catalytic lysine into the adaptive region of the active site. Analysis of the structures of this protein-inhibitor complex and of similar small molecules cocrystallized with other kinases facilitates understanding of the specificity of the inhibitor for Plk1 and documents for the first time that Plk1 can accommodate extended ATP-competitive compounds that project toward the adaptive pocket and help the enzyme order its activation segment.

  13. Upregulation of Unc-51-Like Kinase 1 by Nitric Oxide Stabilizes SIRT1, Independent of Autophagy

    PubMed Central

    Xing, Junhui; Liu, Hongtao; Yang, Huabing; Chen, Rui; Chen, Yuguo; Xu, Jian

    2014-01-01

    SIRT1 is central to the lifespan and vascular health, but undergoes degradation that contributes to several medical conditions, including diabetes. How SIRT1 turnover is regulated remains unclear. However, emerging evidence suggests that endothelial nitric oxide synthase (eNOS) positively regulates SIRT1 protein expression. We recently identified NO as an endogenous inhibitor of 26S proteasome functionality with a cellular reporter system. Here we extended this finding to a novel pathway that regulates SIRT1 protein breakdown. In cycloheximide (CHX)-treated endothelial cells, NONOate, an NO donor, and A23187, an eNOS activator, significantly stabilized SIRT1 protein. Similarly, NO enhanced SIRT1 protein, but not mRNA expression, in CHX-free cells. NO also stabilized an autophagy-related protein unc-51 like kinase (ULK1), but did not restore SIRT1 protein levels in ULK1-siRNA-treated cells or in mouse embryonic fibroblasts (MEF) from Ulk1−/− mice. This suggests that ULK1 mediated the NO regulation of SIRT1. Furthermore, adenoviral overexpression of ULK1 increased SIRT1 protein expression, while ULK1 siRNA treatment decreased it. Rapamycin-induced autophagy did not mimic these effects, suggesting that the effects of ULK1 were autophagy-independent. Treatment with MG132, a proteasome inhibitor, or siRNA of β-TrCP1, an E3 ligase, prevented SIRT1 reduction induced by ULK1-siRNA. Mechanistically, ULK1 negatively regulated 26S proteasome functionality, which was at least partly mediated by O-linked-GlcNAc transferase (OGT), probably by increased O-GlcNAc modification of proteasomal subunit Rpt2. The NO-ULK1-SIRT1 axis was likely operative in the whole animal: both ULK1 and SIRT1 protein levels were significantly reduced in tissue homogenates in eNOS-knockout mice (lung) and in db/db mice where eNOS is downregulated (lung and heart). Taken together, the results show that NO stabilizes SIRT1 by regulating 26S proteasome functionality through ULK1 and OGT, but not

  14. Serum Glucocorticoid-Regulated Kinase 1 Blocks CKD-Induced Muscle Wasting Via Inactivation of FoxO3a and Smad2/3.

    PubMed

    Luo, Jinlong; Liang, Anlin; Liang, Ming; Xia, Ruohan; Rizvi, Yasmeen; Wang, Yun; Cheng, Jizhong

    2016-09-01

    Muscle proteolysis in CKD is stimulated when the ubiquitin-proteasome system is activated. Serum glucocorticoid-regulated kinase 1 (SGK-1) is involved in skeletal muscle homeostasis, but the role of this protein in CKD-induced muscle wasting is unknown. We found that, compared with muscles from healthy controls, muscles from patients and mice with CKD express low levels of SGK-1. In mice, SGK-1-knockout (SGK-1-KO) induced muscle loss that correlated with increased expression of ubiquitin E3 ligases known to facilitate protein degradation by the ubiquitin-proteasome, and CKD substantially aggravated this response. SGK-1-KO also altered the phosphorylation levels of transcription factors FoxO3a and Smad2/3. In C2C12 muscle cells, expression of dominant negative FoxO3a or knockdown of Smad2/3 suppressed the upregulation of E3 ligases induced by loss of SGK-1. Additionally, SGK-1 overexpression increased the level of phosphorylated N-myc downstream-regulated gene 1 protein, which directly interacted with and suppressed the phosphorylation of Smad2/3. Overexpression of SGK-1 in wild-type mice with CKD had similar effects on the phosphorylation of FoxO3a and Smad2/3 and prevented CKD-induced muscle atrophy. Finally, mechanical stretch of C2C12 muscle cells or treadmill running of wild-type mice with CKD stimulated SGK-1 production, and treadmill running inhibited proteolysis in muscle. These protective responses were absent in SGK-1-KO mice. Thus, SGK-1 could be a mechanical sensor that mediates exercise-induced improvement in muscle wasting stimulated by CKD. PMID:26880799

  15. Effect of the sphingosine kinase 1 selective inhibitor, PF-543 on arterial and cardiac remodelling in a hypoxic model of pulmonary arterial hypertension.

    PubMed

    MacRitchie, Neil; Volpert, Giora; Al Washih, Mohammed; Watson, David G; Futerman, Anthony H; Kennedy, Simon; Pyne, Susan; Pyne, Nigel J

    2016-08-01

    Recent studies have demonstrated that the expression of sphingosine kinase 1, the enzyme that catalyses formation of the bioactive lipid, sphingosine 1-phosphate, is increased in lungs from patients with pulmonary arterial hypertension. In addition, Sk1(-/-) mice are protected from hypoxic-induced pulmonary arterial hypertension. Therefore, we assessed the effect of the sphingosine kinase 1 selective inhibitor, PF-543 and a sphingosine kinase 1/ceramide synthase inhibitor, RB-005 on pulmonary and cardiac remodelling in a mouse hypoxic model of pulmonary arterial hypertension. Administration of the potent sphingosine kinase 1 inhibitor, PF-543 in a mouse hypoxic model of pulmonary hypertension had no effect on vascular remodelling but reduced right ventricular hypertrophy. The latter was associated with a significant reduction in cardiomyocyte death. The protection involves a reduction in the expression of p53 (that promotes cardiomyocyte death) and an increase in the expression of anti-oxidant nuclear factor (erythroid-derived 2)-like 2 (Nrf-2). In contrast, RB-005 lacked effects on right ventricular hypertrophy, suggesting that sphingosine kinase 1 inhibition might be nullified by concurrent inhibition of ceramide synthase. Therefore, our findings with PF-543 suggest an important role for sphingosine kinase 1 in the development of hypertrophy in pulmonary arterial hypertension. PMID:27063355

  16. Akt kinase-interacting protein1, a novel therapeutic target for lung cancer with EGFR-activating and gatekeeper mutations.

    PubMed

    Yamada, T; Takeuchi, S; Fujita, N; Nakamura, A; Wang, W; Li, Q; Oda, M; Mitsudomi, T; Yatabe, Y; Sekido, Y; Yoshida, J; Higashiyama, M; Noguchi, M; Uehara, H; Nishioka, Y; Sone, S; Yano, S

    2013-09-12

    Despite initial dramatic response, epidermal growth factor receptor (EGFR) mutant lung cancer patients always acquire resistance to EGFR-tyrosine kinase inhibitors (TKIs). Gatekeeper T790M mutation in EGFR is the most prevalent genetic alteration underlying acquired resistance to EGFR-TKI, and EGFR mutant lung cancer cells are reported to be addictive to EGFR/Akt signaling even after acquired T790M mutation. Here, we focused on Akt kinase-interacting protein1 (Aki1), a scaffold protein of PI3K (phosphoinositide 3-kinase)/PDK1 (3-phosphoinositide-dependent protein kinase)/Akt that determines receptor signal selectivity for non-mutated EGFR, and assessed its role in EGFR mutant lung cancer with or without gatekeeper T790M mutation. Cell line-based assays showed that Aki1 constitutively associates with mutant EGFR in lung cancer cells with (H1975) or without (PC-9 and HCC827) T790M gatekeeper mutation. Silencing of Aki1 induced apoptosis of EGFR mutant lung cancer cells. Treatment with Aki1 siRNA dramatically inhibited growth of H1975 cells in a xenograft model. Moreover, silencing of Aki1 further potentiated growth inhibitory effect of new generation EGFR-TKIs against H1975 cells in vitro. Aki1 was frequently expressed in tumor cells of EGFR mutant lung cancer patients (53/56 cases), including those with acquired resistance to EGFR-TKI treatment (7/7 cases). Our data suggest that Aki1 may be a critical mediator of survival signaling from mutant EGFR to Akt, and may therefore be an ideal target for EGFR mutant lung cancer patients, especially those with acquired EGFR-TKI resistance due to EGFR T790M gatekeeper mutation. PMID:23045273

  17. Novel P-TEN-induced putative kinase 1 (PINK1) variant in Indian Parkinson's disease patient.

    PubMed

    Halder, Tamali; Raj, Janak; Sharma, Vivek; Das, Parimal

    2015-09-25

    Loss-of-function mutation in PINK1 is known for causing autosomal recessive early onset Parkinsonism accounting approximately 6.5% of PD cases. Recently, PINK1 has also been shown to cause Parkinson's disease (PD) in eastern India. Present study is aimed to see its contribution in north-Indian PD patients. A total of 106 PD patients and 60 ethnically matched healthy controls were included in the study. All the patients were screened for mutation in PINK1 by direct DNA sequence analysis of the PCR amplicons covering all exons and exon-intron boundaries. Identified novel variant was reconfirmed by DNA sequencing of 10 randomly selected TA clones containing the variant amplicon. In vitro functional assay of the mutant protein was performed by transfecting COS-7 cell line with wild type and mutant (created by site-directed-mutagenesis) cDNA construct of PINK1 fused to N' terminal GFP followed by western blot analysis. Two potentially pathogenic, one being novel (p.Q267X) and 6 other apparently non-pathogenic variants were identified. Western blot analysis reveals production of truncated PINK1 fusion protein of ∼55kDa in p.Q267X mutant instead of 82/93kDa of wild type PINK1 fusion protein (molecular weight of GFP is ∼27kDa). Our study concludes that PINK1 variants are prevalent for causing Parkinson's disease (PD) in India, as revealed by the occurrence of 1.8% (2/106) in PD patients from north Indian population. The novel homozygous variant of PINK1 (c.799C>T) reported here is the plausible cause for disease manifestation in this patient. Future study, however, would be helpful to understand the functional mechanism how this premature PINK1 protein (p.Q267X) responds to cellular stress leading to the PD pathophysiology. PMID:26282903

  18. Tissue specific characterisation of Lim-kinase 1 expression during mouse embryogenesis.

    PubMed

    Lindström, Nils O; Neves, Carlos; McIntosh, Rebecca; Miedzybrodzka, Zosia; Vargesson, Neil; Collinson, J Martin

    2011-01-01

    The Lim-kinase (LIMK) proteins are important for the regulation of the actin cytoskeleton, in particular the control of actin nucleation and depolymerisation via regulation of cofilin, and hence may control a large number of processes during development, including cell tensegrity, migration, cell cycling, and axon guidance. LIMK1/LIMK2 knockouts disrupt spinal cord morphogenesis and synapse formation but other tissues and developmental processes that require LIMK are yet to be fully determined. To identify tissues and cell-types that may require LIMK, we characterised the pattern of LIMK1 protein during mouse embryogenesis. We showed that LIMK1 displays an expression pattern that is temporally dynamic and tissue-specific. In several tissues LIMK1 is detected in cell-types that also express Wilms' tumour protein 1 and that undergo transitions between epithelial and mesenchymal states, including the pleura, epicardium, kidney nephrons, and gonads. LIMK1 was also found in a subset of cells in the dorsal retina, and in mesenchymal cells surrounding the peripheral nerves. This detailed study of the spatial and temporal expression of LIMK1 shows that LIMK1 expression is more dynamic than previously reported, in particular at sites of tissue-tissue interactions guiding multiple developmental processes. PMID:21167960

  19. Checkpoint Kinase 1 Activation Enhances Intestinal Epithelial Barrier Function via Regulation of Claudin-5 Expression

    PubMed Central

    Watari, Akihiro; Hasegawa, Maki; Yagi, Kiyohito; Kondoh, Masuo

    2016-01-01

    Several stressors are known to influence epithelial tight junction (TJ) integrity, but the association between DNA damage and TJ integrity remains unclear. Here we examined the effects of daunorubicin and rebeccamycin, two anti-tumor chemicals that induce DNA damage, on TJ integrity in human intestinal epithelial cells. Daunorubicin and rebeccamycin dose-dependently enhanced transepithelial electrical resistance (TER) and decreased flux of the 4 kDa FITC-dextran in Caco-2 cell monolayer. Daunorubicin- or rebeccamycin-induced enhancement of the TJ barrier function partly rescued attenuation of the barrier function by the inflammatory cytokines TNF-α and IFN-γ. Daunorubicin and rebeccamycin increased claudin-5 expression and the product was distributed in the actin cytoskeleton fraction, which was enriched with TJ proteins. Caffeine, which is an inhibitor of ataxia telangiectasia mutated protein (ATM) and ataxia telangiectasia mutated and Rad3-related protein (ATR), and the Chk1 inhibitor inhibited the TER increases induced by daunorubicin and rebeccamycin, whereas a Chk2 inhibitor did not. Treatment with Chk1 siRNA also significantly inhibited the TER increases. Induction of claudin-5 expression was inhibited by Chk1 inhibitor and by siRNA treatment. Our results suggest that Chk1 activation by daunorubicin and rebeccamycin induced claudin-5 expression and enhanced TJ barrier function in Caco-2 cell monolayer, which suggests a link between DNA damage and TJ integrity in the human intestine. PMID:26727128

  20. Dexamethasone and insulin activate serum and glucocorticoid-inducible kinase 1 (SGK1) via different molecular mechanisms in cortical collecting duct cells.

    PubMed

    Mansley, Morag K; Watt, Gordon B; Francis, Sarah L; Walker, David J; Land, Stephen C; Bailey, Matthew A; Wilson, Stuart M

    2016-05-01

    Serum and glucocorticoid-inducible kinase 1 (SGK1) is a protein kinase that contributes to the hormonal control of renal Na(+) retention by regulating the abundance of epithelial Na(+) channels (ENaC) at the apical surface of the principal cells of the cortical collecting duct (CCD). Although glucocorticoids and insulin stimulate Na(+) transport by activating SGK1, the responses follow different time courses suggesting that these hormones act by different mechanisms. We therefore explored the signaling pathways that allow dexamethasone and insulin to stimulate Na(+) transport in mouse CCD cells (mpkCCDcl4). Dexamethasone evoked a progressive augmentation of electrogenic Na(+) transport that became apparent after ~45 min latency and was associated with increases in SGK1 activity and abundance and with increased expression of SGK1 mRNA Although the catalytic activity of SGK1 is maintained by phosphatidylinositol-OH-3-kinase (PI3K), dexamethasone had no effect upon PI3K activity. Insulin also stimulated Na(+) transport but this response occurred with no discernible latency. Moreover, although insulin also activated SGK1, it had no effect upon SGK1 protein or mRNA abundance. Insulin did, however, evoke a clear increase in cellular PI3K activity. Our data are consistent with earlier work, which shows that glucocorticoids regulate Na(+) retention by inducing sgk1 gene expression, and also establish that this occurs independently of increased PI3K activity. Insulin, on the other hand, stimulates Na(+) transport via a mechanism independent of sgk1 gene expression that involves PI3K activation. Although both hormones act via SGK1, our data show that they activate this kinase by distinct physiological mechanisms. PMID:27225626

  1. MEK kinase 1 is essential for Bcr-Abl-induced STAT3 and self-renewal activity in embryonic stem cells.

    PubMed

    Nakamura, Yukinori; Yujiri, Toshiaki; Nawata, Ryouhei; Tagami, Kozo; Tanizawa, Yukio

    2005-11-17

    BCR-ABL oncogene, the molecular hallmark of chronic myelogenous leukemia, arises in a primitive hematopoietic stem cell that has the capacity for both differentiation and self-renewal. Its product, Bcr-Abl protein, has been shown to activate signal transducers and activators of transcription 3 (STAT3) and to promote self-renewal in embryonic stem (ES) cells, even in the absence of leukemia inhibitory factor (LIF). MEK kinase 1 (MEKK1) is a 196-kDa mitogen-activated protein kinase (MAPK) kinase kinase involved in Bcr-Abl signal transduction. To investigate the role of MEKK1 in Bcr-Abl-induced transformation of stem cells, p210 Bcr-Abl was stably transfected into wild-type (WT(p210)) and MEKK1-/- (MEKK1-/-(p210)) ES cells. Bcr-Abl enhanced MEKK1 expression in ES transfectants, as it does in other Bcr-Abl-transformed cells. In the absence of LIF, WT(p210) cells showed constitutive STAT3 activation and formed rounded, compact colonies having strong alkaline phosphatase activity, a characteristic phenotype of undifferentiated ES cells. MEKK1-/-(p210) cells, by contrast, showed less STAT3 activity than WT(p210) cells and formed large, flattened colonies having weak alkaline phosphatase activity, a phenotype of differentiated ES cells. These results indicate that MEKK1 plays a key role in Bcr-Abl-induced STAT3 activation and in ES cells' capacity for LIF-independent self-renewal, and may thus be involved in Bcr-Abl-mediated leukemogenesis in stem cells. PMID:16044153

  2. Ambroxol inhalation ameliorates LPS-induced airway inflammation and mucus secretion through the extracellular signal-regulated kinase 1/2 signaling pathway.

    PubMed

    Zhang, Shui-Juan; Jiang, Juan-Xia; Ren, Qian-Qian; Jia, Yong-Liang; Shen, Jian; Shen, Hui-Juan; Lin, Xi-Xi; Lu, Hong; Xie, Qiang-Min

    2016-03-15

    Ambroxol, a metabolite of bromhexine, is shown to exert several pharmacological activities, including secretolytic, anti-inflammatory and antioxidant actions. Oral and intravenous administration of ambroxol is useful for the airway inflammatory diseases. However, little is known about its potential in inhalation therapy for lipopolysaccharide (LPS)-induced mucous hypersecretion and inflammatory response. In the present study, we compared the pharmacological effects of ambroxol by inhalation with intravenous administration and preliminarily explored its mechanism of action. Our results demonstrated that ambroxol administered by inhalation inhibited MUC5AC expression, reduced glycosaminoglycan levels, enhanced the function of mucociliary clearance and promoted sputum excretion, suggesting that ambroxol increases expectoration of sputum by reducing its viscosity. Moreover, ambroxol significantly alleviated LPS-induced the influx of inflammatory cells and the extracellular signal-regulated kinase 1/2 (Erk 1/2) expression in lung tissues, and inhibited increases in the mRNA expression of the pro-inflammatory cytokines tumor necrosis factor (TNF)-α, CCL-2 (monocyte chemotactic protein-1), KC (keratinocyte cell protein) and interleukin (IL)-1β in lung tissues. The secretolytic and anti-inflammatory effects of inhaled ambroxol at a dose of 7.5mg/ml was comparable to that of ambroxol at 20mg/ml i.v. and dexamethasone at 0.5mg/kg i.p. In addition, we found that ambroxol dose-dependently inhibited LPS-induced increases in the mRNA expression of MUC5AC, TNF-α, and IL-1β in human bronchial epithelial cell (NCI-H292) by inhibiting the Erk signaling pathway. These results demonstrate the beneficial effects of ambroxol in inhalation therapy for the airway inflammatory diseases. PMID:26872986

  3. The inhibition of transforming growth factor beta-activated kinase 1 contributed to neuroprotection via inflammatory reaction in pilocarpine-induced rats with epilepsy.

    PubMed

    Tian, Q; Xiao, Q; Yu, W; Gu, M; Zhao, N; Lü, Y

    2016-06-14

    Recently, more and more studies support that inflammation is involved in the pathogenesis of epilepsy. Although TGFβ signaling is involved in epileptogenesis, whether TGFβ-associated neuroinflammation is sufficient to regulate epilepsy remains unknown to date. Furthermore, tumor necrosis factor-α receptor-associated factor-6 (TRAF6), transforming growth factor beta-activated kinase 1 (TAK1), which are the key elements of TGFβ-associated inflammation, is still unclear in epilepsy. Therefore, the present study aimed to explore the role of TRAF6 and TAK1 in pilocarpine-induced epileptic rat model. Firstly, the gene levels and protein expression of TRAF6 and TAK1 were detected in different time points after pilocarpine-induced status epilepticus (SE). 5z-7-oxozeaenol treatment (TAK1 antagonist) was then performed; the changes in TRAF6, TAK1, phosphorylated-TAK1 (P-TAK1), interleukin-1β (IL-1β) levels, neuronal survival and apoptosis, and seizure activity were detected. Our results showed that expressions of TRAF6 were increased after SE, reached the peak in 7day, maintained at the high level to 30days, and the TAK1, P-TAK1 levels were increased after SE following time. After 5z-7-oxozeaenol treatment in epileptic rats, TRAF6-TAK1-P-TAK1 signaling protein expressions were reduced, inflammatory cytokine IL-1β expression was decreased, neuron survival index was improved, the neuron apoptosis index was decreased and seizure durations were alleviated. In conclusion, the expression of TRAF6 and TAK1 are related to the progression of epilepsy. TAK1 might be a potential intervention target for the treatment of epilepsy via neuroprotection. PMID:27012613

  4. Macrophage Migration Inhibitory Factor: A Novel Inhibitor of Apoptosis Signal-Regulating Kinase 1-p38-Xanthine Oxidoreductase-Dependent Cigarette Smoke-Induced Apoptosis.

    PubMed

    Fallica, Jonathan; Varela, Lidenys; Johnston, Laura; Kim, Bo; Serebreni, Leonid; Wang, Lan; Damarla, Mahendra; Kolb, Todd M; Hassoun, Paul M; Damico, Rachel

    2016-04-01

    Cigarette smoke (CS) exposure is the leading cause of emphysema. CS mediates pathologic emphysematous remodeling of the lung via apoptosis of lung parenchymal cells resulting in enlargement of the airspaces, loss of the capillary bed, and diminished surface area for gas exchange. Macrophage migration inhibitory factor (MIF), a pleiotropic cytokine, is reduced both in a preclinical model of CS-induced emphysema and in patients with chronic obstructive pulmonary disease, particularly those with the most severe disease and emphysematous phenotype. MIF functions to antagonize CS-induced DNA damage, p53-dependent apoptosis of pulmonary endothelial cells (EndoCs) and resultant emphysematous tissue remodeling. Using primary alveolar EndoCs and a mouse model of CS-induced lung damage, we investigated the capacity and molecular mechanism(s) by which MIF modifies oxidant injury. Here, we demonstrate that both the activity of xanthine oxidoreductase (XOR), a superoxide-generating enzyme obligatory for CS-induced DNA damage and EndoC apoptosis, and superoxide concentrations are increased after CS exposure in the absence of MIF. Both XOR hyperactivation and apoptosis in the absence of MIF occurred via a p38 mitogen-activated protein kinase-dependent mechanism. Furthermore, a mitogen-activated protein kinase kinase kinase family member, apoptosis signal-regulating kinase 1 (ASK1), was necessary for CS-induced p38 activation and EndoC apoptosis. MIF was sufficient to directly suppress ASK1 enzymatic activity. Taken together, MIF suppresses CS-mediated cytotoxicity in the lung, in part by antagonizing ASK1-p38-XOR-dependent apoptosis. PMID:26390063

  5. Transforming growth factor β-activated kinase 1 negatively regulates interleukin-1α-induced stromal-derived factor-1 expression in vascular smooth muscle cells

    SciTech Connect

    Yang, Bin; Li, Wei; Zheng, Qichang; Qin, Tao; Wang, Kun; Li, Jinjin; Guo, Bing; Yu, Qihong; Wu, Yuzhe; Gao, Yang; Cheng, Xiang; Hu, Shaobo; Kumar, Stanley Naveen; Liu, Sanguang; Song, Zifang

    2015-07-17

    Stromal-derived Factor-1 (SDF-1) derived from vascular smooth muscle cells (VSMCs) contributes to vascular repair and remodeling in various vascular diseases. In this study, the mechanism underlying regulation of SDF-1 expression by interleukin-1α (IL-1α) was investigated in primary rat VSMCs. We found IL-1α promotes SDF-1 expression by up-regulating CCAAT-enhancer-binding protein β (C/EBPβ) in an IκB kinase β (IKKβ) signaling-dependent manner. Moreover, IL-1α-induced expression of C/EBPβ and SDF-1 was significantly potentiated by knockdown of transforming growth factor β-activated kinase 1 (TAK1), an upstream activator of IKKβ signaling. In addition, we also demonstrated that TAK1/p38 mitogen-activated protein kinase (p38 MAPK) signaling exerted negative effect on IL-1α-induced expression of C/EBPβ and SDF-1 through counteracting ROS-dependent up-regulation of nuclear factor erythroid 2-related factor 2 (NRF2). In conclusion, TAK1 acts as an important regulator of IL-1α-induced SDF-1 expression in VSMCs, and modulating activity of TAK1 may serve as a potential strategy for modulating vascular repair and remodeling. - Highlights: • IL-1α induces IKKβ signaling-dependent SDF-1 expression by up-regulating C/EBPβ. • Activation of TAK1 by IL-1α negatively regulates C/EBPβ-dependent SDF-1 expression. • IL-1α-induced TAK1/p38 MAPK signaling counteracts ROS-dependent SDF-1 expression. • TAK1 counteracts IL-1α-induced SDF-1 expression by attenuating NRF2 up-regulation.

  6. Mitotic Control of Planar Cell Polarity by Polo-like Kinase 1.

    PubMed

    Shrestha, Rezma; Little, Katherine A; Tamayo, Joel V; Li, Wenyang; Perlman, David H; Devenport, Danelle

    2015-06-01

    During cell division, polarized epithelial cells employ mechanisms to preserve cell polarity and tissue integrity. In dividing cells of the mammalian skin, planar cell polarity (PCP) is maintained through the bulk internalization, equal segregation, and polarized recycling of cortical PCP proteins. The dramatic redistribution of PCP proteins coincides precisely with cell-cycle progression, but the mechanisms coordinating PCP and mitosis are unknown. Here we identify Plk1 as a master regulator of PCP dynamics during mitosis. Plk1 interacts with core PCP component Celsr1 via a conserved polo-box domain (PBD)-binding motif, localizes to mitotic endosomes, and directly phosphorylates Celsr1. Plk1-dependent phosphorylation activates the endocytic motif specifically during mitosis, allowing bulk recruitment of Celsr1 into endosomes. Inhibiting Plk1 activity blocks PCP internalization and perturbs PCP asymmetry. Mimicking dileucine motif phosphorylation is sufficient to drive Celsr1 internalization during interphase. Thus, Plk1-mediated phosphorylation of Celsr1 ensures that PCP redistribution is precisely coordinated with mitotic entry. PMID:26004507

  7. Mitotic Control of Planar Cell Polarity by Polo-like Kinase 1

    PubMed Central

    Shrestha, Rezma; Little, Katherine A.; Tamayo, Joel V.; Li, Wenyang; Perlman, David H.; Devenport, Danelle

    2015-01-01

    SUMMARY During cell division, polarized epithelial cells employ mechanisms to preserve cell polarity and tissue integrity. In dividing cells of the mammalian skin, planar cell polarity (PCP) is maintained through the bulk internalization, equal segregation, and polarized recycling of cortical PCP proteins. The dramatic redistribution of PCP proteins coincides precisely with cell cycle progression, but the mechanisms coordinating PCP and mitosis are unknown. Here we identify Plk1 as a master regulator of PCP dynamics during mitosis. Plk1 interacts with core PCP component, Celsr1, via a conserved polo-box domain (PBD) binding motif, localizes to mitotic endosomes and directly phosphorylates Celsr1. Plk1-dependent phosphorylation activates the endocytic motif specifically during mitosis, allowing bulk recruitment of Celsr1 into endosomes. Inhibiting Plk1 activity blocks PCP internalization and perturbs PCP asymmetry. Mimicking dileucine motif phosphorylation is sufficient to drive Celsr1 internalization during interphase. Thus, Plk1-mediated phosphorylation of Celsr1 ensures PCP redistribution is precisely coordinated with mitotic entry. PMID:26004507

  8. Resveratrol induces apoptosis of leukemia cell line K562 by modulation of sphingosine kinase-1 pathway.

    PubMed

    Tian, Hongying; Yu, Zhongcui

    2015-01-01

    To explore the effects of resveratrol in a human myelogenous leukemia cell line K562 and its potential molecular mechanisms. The anti-proliferation effect of resveratrol-induced apoptosis on K562 cells were detected using MTT assay. Western blotting was performed for detecting changes of SphK1 expression in total cell protein and membrane/cytosol protein in K562 cells respectively after exposure to resveratrol. A biochemical assay was used to measure the activity of SphK after treatment of resveratrol, and then S1P and ceramide levels were examined using ELISA kits. Hochest 33258 staining and flow cytometry were applied to detect the apoptosis condition of K562 cells treated with resveratrol. Resveratrol inhibited the proliferation and induced apoptosis in K562 cells in a dose and time-dependent manner. Western blotting revealed that resveratrol did not affect total SphK1 expression level in K562 cells, but significantly changed the translocation of SphK1, the membrane SphK1 was decreased while cytosol SphK1 level was elevated. The activity of SphK1 in resveratrol treated groups was decreased compared to control group with a significant decrease of S1P and increase of ceramide level. Furthermore, Hoechst 33258 staining and Annexin V-FITC analysis confirmed the notable apoptotic effect of resveratrol in its anti-leukemia process. Resveratrol-induced proliferation inhibition of K562 cells might be mediated through its modulation activity of SphK1 pathway by regulating S1P and ceramide levels, which then affected the proliferation and apoptosis process of leukemia cells. SphK1/S1P pathway represents a target of resveratrol in human leukemia. PMID:26045781

  9. Serum- and glucocorticoid-inducible kinase 1 in doxorubicin-induced nephrotic syndrome.

    PubMed

    Artunc, Ferruh; Nasir, Omaima; Amann, Kerstin; Boini, Krishna M; Häring, Hans-Ulrich; Risler, Teut; Lang, Florian

    2008-12-01

    Doxorubicin-induced nephropathy leads to epithelial sodium channel (ENaC)-dependent volume retention and renal fibrosis. The aldosterone-sensitive serum- and glucocorticoid-inducible kinase SGK1 has been shown to participate in the stimulation of ENaC and to mediate renal fibrosis following mineralocorticoid and salt excess. The present study was performed to elucidate the role of SGK1 in the volume retention and fibrosis during nephrotic syndrome. To this end, doxorubicin (15 mug/g body wt) was injected intravenously into gene-targeted mice lacking SGK1 (sgk1(-/-)) and their wild-type littermates (sgk1(+/+)). Doxorubicin treatment resulted in heavy proteinuria (>100 mg protein/mg crea) in 15/44 of sgk1(+/+) and 15/44 of sgk1(-/-) mice leading to severe nephrotic syndrome with ascites, lipidemia, and hypoalbuminemia in both genotypes. Plasma aldosterone levels increased in nephrotic mice of both genotypes and was followed by increased SGK1 protein expression in sgk1(+/+) mice. Urinary sodium excretion reached signficantly lower values in sgk1(+/+) mice (15 +/- 5 mumol/mg crea) than in sgk1(-/-) mice (35 +/- 5 mumol/mg crea) and was associated with a significantly higher body weight gain in sgk1(+/+) compared with sgk1(-/-) mice (+6.6 +/- 0.7 vs. +4.1 +/- 0.8 g). During the course of nephrotic syndrome, serum urea concentrations increased significantly faster in sgk1(-/-) mice than in sgk1(+/+) mice leading to uremia and a reduced median survival in sgk1(-/-) mice (29 vs. 40 days in sgk1(+/+) mice). In conclusion, gene-targeted mice lacking SGK1 showed blunted volume retention, yet were not protected against renal fibrosis during experimental nephrotic syndrome. PMID:18768591

  10. Checkpoint kinase 1 modulates sensitivity to cisplatin after spindle checkpoint activation in SW620 cells.

    PubMed

    Peralta-Sastre, A; Manguan-Garcia, C; de Luis, A; Belda-Iniesta, C; Moreno, S; Perona, R; Sanchez-Perez, I

    2010-02-01

    Aneuploidy is a common feature of tumours that arise by errors in chromosome segregation during mitosis. The aim of this study was to evaluate possible signaling pathways involved in sensitization to chemotherapy in cells with chromosomal instability. We designed a screen using the fission yeast Squizossaccharomyces pombe, to isolate strains showing a phenotype of chromosome mis-segregation and higher sensitivity to the antitumoral drug Bleomycin. We examined differences in gene expression using a comparative analysis of genome-wide expression of the wild type strain and one of the mutants. The results revealed a set of genes involved in cell cycle control, including Mad3/BubR1 and Chk1. We then studied the levels of these two proteins in colorectal cancer human cell lines with different genomic content. Among these, SW620 cells showed higher BubR1 and Chk1 mRNA levels than control cells under normal conditions. Since Chk1 is required for both S and G2/M checkpoints, and the microtubule-destabilizing agent, nocodazole induces mitotic arrest, we attempted to investigate the potential anticancer effects of nocodazole in combination with cisplatin. These studies showed that SW620 cells undergo synergistic cell death after spindle checkpoint activation followed by cisplatin treatment, suggesting a role of Chk1 in this checkpoint, very likely dependent on BubR1 protein. Importantly, Chk1-depleted SW620 cells lost this synergistic effect. In summary, we propose that Chk1 could be a biomarker predictive of the efficacy of chemotherapy across different types of tumors with aneuploidy. These findings may be potentially very useful for the stratification of patients for treatment. PMID:19931410

  11. A selective sphingosine kinase 1 inhibitor integrates multiple molecular therapeutic targets in human leukemia

    PubMed Central

    Paugh, Steven W.; Paugh, Barbara S.; Rahmani, Mohamed; Kapitonov, Dmitri; Almenara, Jorge A.; Kordula, Tomasz; Milstien, Sheldon; Adams, Jeffrey K.; Zipkin, Robert E.; Grant, Steven

    2008-01-01

    The potent bioactive sphingolipid mediator, sphingosine-1-phosphate (S1P), is produced by 2 sphingosine kinase isoenzymes, SphK1 and SphK2. Expression of SphK1 is up-regulated in cancers, including leukemia, and associated with cancer progression. A screen of sphingosine analogs identified (2R,3S,4E)-N-methyl-5-(4′-pentylphenyl)-2-aminopent-4-ene-1,3-diol, designated SK1-I (BML-258), as a potent, water-soluble, isoenzyme-specific inhibitor of SphK1. In contrast to pan-SphK inhibitors, SK1-I did not inhibit SphK2, PKC, or numerous other protein kinases. SK1-I decreased growth and survival of human leukemia U937 and Jurkat cells, and enhanced apoptosis and cleavage of Bcl-2. Lethality of SK1-I was reversed by caspase inhibitors and by expression of Bcl-2. SK1-I not only decreased S1P levels but concomitantly increased levels of its proapoptotic precursor ceramide. Conversely, S1P protected against SK1-I–induced apoptosis. SK1-I also induced multiple perturbations in activation of signaling and survival-related proteins, including diminished phosphorylation of ERK1/2 and Akt. Expression of constitutively active Akt protected against SK1-I–induced apoptosis. Notably, SK1-I potently induced apoptosis in leukemic blasts isolated from patients with acute myelogenous leukemia but was relatively sparing of normal peripheral blood mononuclear leukocytes. Moreover, SK1-I markedly reduced growth of AML xenograft tumors. Our results suggest that specific inhibitors of SphK1 warrant attention as potential additions to the therapeutic armamentarium in leukemia. PMID:18511810

  12. Sphingosine kinase-1 pathway mediates high glucose-induced fibronectin expression in glomerular mesangial cells.

    PubMed

    Lan, Tian; Liu, Weihua; Xie, Xi; Xu, Suowen; Huang, Kaipeng; Peng, Jing; Shen, Xiaoyan; Liu, Peiqing; Wang, Lijing; Xia, Pu; Huang, Heqing

    2011-12-01

    Diabetic nephropathy is characterized by accumulation of glomerular extracellular matrix proteins, such as fibronectin (FN). Here, we investigated whether sphingosine kinase (SphK)1 pathway is responsible for the elevated FN expression in diabetic nephropathy. The SphK1 pathway and FN expression were examined in streptozotocin-induced diabetic rat kidney and glomerular mesangial cells (GMC) exposed to high glucose (HG). FN up-regulation was concomitant with activation of the SphK1 pathway as reflected in an increase in the expression and activity of SphK1 and sphingosine 1-phosphate (S1P) production in both diabetic kidney and HG-treated GMC. Overexpression of wild-type SphK1 (SphK(WT)) significantly induced FN expression, whereas treatment with a SphK inhibitor, N,N-dimethylsphingosine, or transfection of SphK1 small interference RNA or dominant-negative SphK1 (SphK(G82D)) abolished HG-induced FN expression. Furthermore, addition of exogenous S1P significantly induced FN expression in GMC with an induction of activator protein 1 (AP-1) activity. Inhibition of AP-1 activity by curcumin attenuated the S1P-induced FN expression. Finally, by inhibiting SphK1 activity, both N,N-dimethylsphingosine and SphK(G82D) markedly attenuated the HG-induced AP-1 activity. Taken together, these results demonstrated that the SphK1 pathway plays a critical role in matrix accumulation in GMC under diabetic condition, suggesting that the SphK1 pathway could be a potential therapeutic target for diabetic nephropathy. PMID:21998146

  13. Sphingosine Kinase-1 Pathway Mediates High Glucose-Induced Fibronectin Expression in Glomerular Mesangial Cells

    PubMed Central

    Lan, Tian; Liu, Weihua; Xie, Xi; Xu, Suowen; Huang, Kaipeng; Peng, Jing; Shen, Xiaoyan; Liu, Peiqing; Wang, Lijing; Xia, Pu

    2011-01-01

    Diabetic nephropathy is characterized by accumulation of glomerular extracellular matrix proteins, such as fibronectin (FN). Here, we investigated whether sphingosine kinase (SphK)1 pathway is responsible for the elevated FN expression in diabetic nephropathy. The SphK1 pathway and FN expression were examined in streptozotocin-induced diabetic rat kidney and glomerular mesangial cells (GMC) exposed to high glucose (HG). FN up-regulation was concomitant with activation of the SphK1 pathway as reflected in an increase in the expression and activity of SphK1 and sphingosine 1-phosphate (S1P) production in both diabetic kidney and HG-treated GMC. Overexpression of wild-type SphK1 (SphKWT) significantly induced FN expression, whereas treatment with a SphK inhibitor, N,N-dimethylsphingosine, or transfection of SphK1 small interference RNA or dominant-negative SphK1 (SphKG82D) abolished HG-induced FN expression. Furthermore, addition of exogenous S1P significantly induced FN expression in GMC with an induction of activator protein 1 (AP-1) activity. Inhibition of AP-1 activity by curcumin attenuated the S1P-induced FN expression. Finally, by inhibiting SphK1 activity, both N,N-dimethylsphingosine and SphKG82D markedly attenuated the HG-induced AP-1 activity. Taken together, these results demonstrated that the SphK1 pathway plays a critical role in matrix accumulation in GMC under diabetic condition, suggesting that the SphK1 pathway could be a potential therapeutic target for diabetic nephropathy. PMID:21998146

  14. Phosphatase and tensin homolog-induced putative kinase 1 and Parkin in diabetic heart: Role of mitophagy.

    PubMed

    Tang, Ying; Liu, Jiankang; Long, Jiangang

    2015-05-01

    Diabetes is an independent risk factor for cardiovascular morbidity and mortality. Diabetes-associated cardiac pathophysiology is recognized to be due to reasons including metabolic consequences on the myocardium. The heart is a highly energy-demanding tissue, with mitochondria supplying over 90% of adenosine triphosphate. The involvement of mitochondrial dysfunction in diabetes-related cardiac pathogenesis has been studied. Phosphatase and tensin homolog-induced putative kinase 1 (PINK1) and Parkin, initially identified to be associated with the pathogenesis of a familiar form of Parkinson's disease, have recently been recognized to play a critical role in mediating cardiomyocytes' adaption to stresses. Extensive studies have suggested PINK1 and Parkin as key regulators of mitophagy. In the present review article, we will first summarize the new findings on PINK1/Parkin acting in cardioprotection, and then discuss the potential role of PINK1/Parkin in diabetic heart by mediating mitophagy. PMID:25969707

  15. When the sphingosine kinase 1/sphingosine 1-phosphate pathway meets hypoxia signaling: new targets for cancer therapy.

    PubMed

    Ader, Isabelle; Malavaud, Bernard; Cuvillier, Olivier

    2009-05-01

    The reduction in the normal level of tissue oxygen tension or hypoxia is a characteristic of solid tumors that triggers the activation of signaling pathways promoting neovascularization, metastasis, increased tumor growth, and resistance to treatments. The activation of the transcription factor hypoxia-inducible factor 1alpha (HIF-1alpha) has been identified as the master mechanism of adaptation to hypoxia. In a recent study, we identified the sphingosine kinase 1/sphingosine 1-phosphate (SphK1/S1P) pathway, which elicits various cellular processes including cell proliferation, cell survival, or angiogenesis, as a new modulator of HIF-1alpha activity under hypoxic conditions. Here, we consider how the SphK1/S1P signaling pathway could represent a very important target for therapeutic intervention in cancer. PMID:19383898

  16. Functional and Spatial Regulation of Mitotic Centromere- Associated Kinesin by Cyclin-Dependent Kinase 1▿ †

    PubMed Central

    Sanhaji, Mourad; Friel, Claire Therese; Kreis, Nina-Naomi; Krämer, Andrea; Martin, Claudia; Howard, Jonathon; Strebhardt, Klaus; Yuan, Juping

    2010-01-01

    Mitotic centromere-associated kinesin (MCAK) plays an essential role in spindle formation and in correction of improper microtubule-kinetochore attachments. The localization and activity of MCAK at the centromere/kinetochore are controlled by Aurora B kinase. However, MCAK is also abundant in the cytosol and at centrosomes during mitosis, and its regulatory mechanism at these sites is unknown. We show here that cyclin-dependent kinase 1 (Cdk1) phosphorylates T537 in the core domain of MCAK and attenuates its microtubule-destabilizing activity in vitro and in vivo. Phosphorylation of MCAK by Cdk1 promotes the release of MCAK from centrosomes and is required for proper spindle formation. Interfering with the regulation of MCAK by Cdk1 causes dramatic defects in spindle formation and in chromosome positioning. This is the first study demonstrating that Cdk1 regulates the localization and activity of MCAK in mitosis by directly phosphorylating the catalytic core domain of MCAK. PMID:20368358

  17. Targeting Polo-Like Kinase 1 Enhances Radiation Efficacy for Head-and-Neck Squamous Cell Carcinoma

    SciTech Connect

    Gerster, Kate; Shi Wei; Ng, Benjamin; Yue Shijun; Ito, Emma; Waldron, John; Gilbert, Ralph; Liu Feifei

    2010-05-01

    Purpose: To investigate the efficacy of targeting polo-like kinase 1 (Plk1) combined with ionizing radiotherapy (RT) for head-and-neck squamous cell carcinoma (HNSCC). Methods and Materials: Polo-like kinase 1 messenger ribonucleic acid (mRNA) was targeted by small interfering RNA (siRNA) transfection into the FaDu HNSCC cell line; reduction was confirmed using quantitative real-time polymerase chain reaction. The cellular effects were assessed using [3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl) -2-(4-sulfophenyl)-2H-tetrazolium], clonogenic, flow cytometric, and caspase assays. In vivo efficacy of siPlk1 was evaluated using mouse xenograft models. Results: Small interfering Plk1 significantly decreased Plk1 mRNA expression, while also increasing cyclin B1 and p21(Waf1/CIP1) mRNA levels after 24 h. This depletion resulted in a time-dependent increase in FaDu cytotoxicity, which was enhanced by the addition of RT. Flow cytometric and caspase assays demonstrated progressive apoptosis, DNA double-strand breaks (gamma-H2AX), G2/M arrest, and activation of caspases 3 and 7. Implantation of siPlk1-treated FaDu cells in severe combined immunodeficient mice delayed tumor formation, and systemic administration of siPlk1 inhibited tumor growth enhanced by RT. Conclusions: These data demonstrate the suitability of Plk1 as a potential therapeutic target for HNSCC, because Plk1 depletion resulted in significant cytotoxicity in vitro and abrogated tumor-forming potential in vivo. The effects of Plk1 depletion were enhanced with the addition of RT, indicating that Plk1 represents an important potential radiation sensitizer for HNSCC.

  18. Sphingosine kinase-1 is a hypoxia-regulated gene that stimulates migration of human endothelial cells

    SciTech Connect

    Schwalm, Stephanie; Doell, Frauke; Roemer, Isolde; Bubnova, Svetlana

    2008-04-18

    Sphingosine kinases (SK) catalyze the production of sphingosine-1-phosphate which in turn regulates cell responses such as proliferation and migration. Here, we show that exposure of the human endothelial cell line EA.hy 926 to hypoxia stimulates a increased SK-1, but not SK-2, mRNA, protein expression, and activity. This effect was due to stimulated SK-1 promoter activity which contains two putative hypoxia-inducible factor-responsive-elements (HRE). By deletion of one of the two HREs, hypoxia-induced promoter activation was abrogated. Furthermore, hypoxia upregulated the expression of HIF-1{alpha} and HIF-2{alpha}, and both contributed to SK-1 gene transcription as shown by selective depletion of HIF-1{alpha} or HIF-2{alpha} by siRNA. The hypoxia-stimulated SK-1 upregulation was functionally coupled to increased migration since the selective depletion of SK-1, but not of SK-2, by siRNAs abolished the migratory response. In summary, these data show that hypoxia upregulates SK-1 activity and results in an accelerated migratory capacity of endothelial cells. SK-1 may thus serve as an attractive therapeutic target to treat diseases associated with increased endothelial migration and angiogenesis such as cancer growth and progression.

  19. Co-inhibition of polo-like kinase 1 and Aurora kinases promotes mitotic catastrophe.

    PubMed

    Li, Jingjing; Hong, Myung Jin; Chow, Jeremy P H; Man, Wing Yu; Mak, Joyce P Y; Ma, Hoi Tang; Poon, Randy Y C

    2015-04-20

    Mitosis is choreographed by a number of protein kinases including polo-like kinases and Aurora kinases. As these kinases are frequently dysregulated in cancers, small-molecule inhibitors have been developed for targeted anticancer therapies. Given that PLK1 and Aurora kinases possess both unique functions as well as co-regulate multiple mitotic events, whether pharmacological inhibition of these kinases together can enhance mitotic catastrophe remains an outstanding issue to be determined. Using concentrations of inhibitors that did not induce severe mitotic defects on their own, we found that both the metaphase arrest and mitotic slippage induced by inhibitors targeting Aurora A and Aurora B (MK-5108 and Barasertib respectively) were enhanced by a PLK1 inhibitor (BI 2536). We found that PLK1 is overexpressed in cells from nasopharyngeal carcinoma, a highly invasive cancer with poor prognosis, in comparison to normal nasopharyngeal epithelial cells. Nasopharyngeal carcinoma cells were more sensitive to BI 2536 as a single agent and co-inhibition with Aurora kinases than normal cells. These observations underscore the mechanism and potential benefits of targeting PLK1 and Aurora kinases to induce mitotic catastrophe in cancer cells. PMID:25871386

  20. Effects of p21-activated kinase 1 inhibition on 11q13-amplified ovarian cancer cells.

    PubMed

    Prudnikova, T Y; Villamar-Cruz, O; Rawat, S J; Cai, K Q; Chernoff, J

    2016-04-28

    p21-activated kinases (Paks) are Cdc42/Rac-activated serine-threonine protein kinases that regulate several key cancer-relevant signaling pathways, such as the Mek/Erk, PI3K/Akt and Wnt/b-catenin signaling pathways. Pak1 is frequently overexpressed and/or hyperactivated in different human cancers, including human breast, ovary, prostate and brain cancer, due to amplification of the PAK1 gene in an 11q13 amplicon. Genetic or pharmacological inactivation of Pak1 has been shown to reduce proliferation of different cancer cells in vitro and reduce tumor progression in vivo. In this work, we examined the roles of Pak1 in cellular and animal models of PAK1-amplified ovarian cancer. We found that inhibition of Pak1 leads to decreased proliferation and migration in PAK1-amplified/overexpressed ovarian cancer cells, and has no effect in cell that lack such amplification/overexpression. Further, we observed that loss of Pak1 function causes 11q13-amplified ovarian cancer cells to arrest in the G2/M phase of the cell cycle. This arrest correlates with activation of p53 and p21(Cip) and decreased expression of cyclin B1. These findings suggest that small-molecule inhibitors of Pak1 may have a therapeutic role in the ~25% of ovarian cancers characterized by PAK1 gene amplification. PMID:26257058

  1. Janus Kinase 1 Is Essential for Inflammatory Cytokine Signaling and Mammary Gland Remodeling.

    PubMed

    Sakamoto, Kazuhito; Wehde, Barbara L; Yoo, Kyung Hyun; Kim, Taemook; Rajbhandari, Nirakar; Shin, Ha Youn; Triplett, Aleata A; Rädler, Patrick D; Schuler, Fabian; Villunger, Andreas; Kang, Keunsoo; Hennighausen, Lothar; Wagner, Kay-Uwe

    2016-06-01

    Despite a wealth of knowledge about the significance of individual signal transducers and activators of transcription (STATs), essential functions of their upstream Janus kinases (JAKs) during postnatal development are less well defined. Using a novel mammary gland-specific JAK1 knockout model, we demonstrate here that this tyrosine kinase is essential for the activation of STAT1, STAT3, and STAT6 in the mammary epithelium. The loss of JAK1 uncouples interleukin-6-class ligands from their downstream effector, STAT3, which leads to the decreased expression of STAT3 target genes that are associated with the acute-phase response, inflammation, and wound healing. Consequently, JAK1-deficient mice exhibit impaired apoptosis and a significant delay in mammary gland remodeling. Using RNA sequencing, we identified several new JAK1 target genes that are upregulated during involution. These include Bmf and Bim, which are known regulators of programmed cell death. Using a BMF/BIM-double-knockout epithelial transplant model, we further validated that the synergistic action of these proapoptotic JAK1 targets is obligatory for the remodeling of the mammary epithelium. The collective results of this study suggest that JAK1 has nonredundant roles in the activation of particular STAT proteins and this tyrosine kinase is essential for coupling inflammatory cytokine signals to the cell death machinery in the differentiated mammary epithelium. PMID:27044867

  2. Co-inhibition of polo-like kinase 1 and Aurora kinases promotes mitotic catastrophe

    PubMed Central

    Li, Jingjing; Hong, Myung Jin; Chow, Jeremy P.H.; Man, Wing Yu; Mak, Joyce P.Y.; Ma, Hoi Tang; Poon, Randy Y.C.

    2015-01-01

    Mitosis is choreographed by a number of protein kinases including polo-like kinases and Aurora kinases. As these kinases are frequently dysregulated in cancers, small-molecule inhibitors have been developed for targeted anticancer therapies. Given that PLK1 and Aurora kinases possess both unique functions as well as co-regulate multiple mitotic events, whether pharmacological inhibition of these kinases together can enhance mitotic catastrophe remains an outstanding issue to be determined. Using concentrations of inhibitors that did not induce severe mitotic defects on their own, we found that both the metaphase arrest and mitotic slippage induced by inhibitors targeting Aurora A and Aurora B (MK-5108 and Barasertib respectively) were enhanced by a PLK1 inhibitor (BI 2536). We found that PLK1 is overexpressed in cells from nasopharyngeal carcinoma, a highly invasive cancer with poor prognosis, in comparison to normal nasopharyngeal epithelial cells. Nasopharyngeal carcinoma cells were more sensitive to BI 2536 as a single agent and co-inhibition with Aurora kinases than normal cells. These observations underscore the mechanism and potential benefits of targeting PLK1 and Aurora kinases to induce mitotic catastrophe in cancer cells. PMID:25871386

  3. Inhibition of Rho-Associated Kinase 1/2 Attenuates Tumor Growth in Murine Gastric Cancer.

    PubMed

    Hinsenkamp, Isabel; Schulz, Sandra; Roscher, Mareike; Suhr, Anne-Maria; Meyer, Björn; Munteanu, Bogdan; Fuchser, Jens; Schoenberg, Stefan O; Ebert, Matthias P A; Wängler, Björn; Hopf, Carsten; Burgermeister, Elke

    2016-08-01

    Gastric cancer (GC) remains a malignant disease with high mortality. Patients are frequently diagnosed in advanced stages where survival prognosis is poor. Thus, there is high medical need to find novel drug targets and treatment strategies. Recently, the comprehensive molecular characterization of GC subtypes revealed mutations in the small GTPase RHOA as a hallmark of diffuse-type GC. RHOA activates RHO-associated protein kinases (ROCK1/2) which regulate cell contractility, migration and growth and thus may play a role in cancer. However, therapeutic benefit of RHO-pathway inhibition in GC has not been shown so far. The ROCK1/2 inhibitor 1-(5-isoquinoline sulfonyl)-homopiperazine (HA-1077, fasudil) is approved for cerebrovascular bleeding in patients. We therefore investigated whether fasudil (i.p., 10 mg/kg per day, 4 times per week, 4 weeks) inhibits tumor growth in a preclinical model of GC. Fasudil evoked cell death in human GC cells and reduced the tumor size in the stomach of CEA424-SV40 TAg transgenic mice. Small animal PET/CT confirmed preclinical efficacy. Mass spectrometry imaging identified a translatable biomarker for mouse GC and suggested rapid but incomplete in situ distribution of the drug to gastric tumor tissue. RHOA expression was increased in the neoplastic murine stomach compared with normal non-malignant gastric tissue, and fasudil reduced (auto) phosphorylation of ROCK2 at THR249 in vivo and in human GC cells in vitro. In sum, our data suggest that RHO-pathway inhibition may constitute a novel strategy for treatment of GC and that enhanced distribution of future ROCK inhibitors into tumor tissue may further improve efficacy. PMID:27566106

  4. p90 ribosomal S6 kinase 1 (RSK1) isoenzyme specifically regulates cytokinesis progression.

    PubMed

    Nam, Hyun-Ja; Lee, In Jeong; Jang, Seunghoon; Bae, Chang-Dae; Kwak, Sahng-June; Lee, Jae-Ho

    2014-02-01

    The p90 ribosomal S6 kinase family (RSK1-4) of Ser/Thr kinases is a downstream component of the Ras-MAPK cascade responsible for regulating various cellular processes. Here, we examined the potential involvement of RSKs in regulating mitosis by transfecting HeLa cells with siRNAs targeting RSK1 and -2, which are the major isoforms. Depletion of RSK1 but not RSK2 triggered a significant accumulation of binucleated cells compared to control cells (0.5% vs. 10.5%, respectively); this was rescued by expression of exogenous RSK1 but not a kinase-defective mutant. Monitoring of cell division by time-lapse imaging revealed that the observed binucleation mainly stemmed from a failure to form and ingress the cleavage furrow during early cytokinesis. Immunocytochemical analysis of RhoA and anillin, the two principal regulators of cleavage furrow formation and ingression, showed that these proteins were abnormally localized during anaphase in RSK1-depleted cells. Furthermore, RSK1-depleted cells seemed to have impairments in midzone microtubule formation, as suggested by morphological changes and lengthening of the midzone (15.2 ± 1.7 μm vs. 17.4 ± 1.7 μm in control cells). We also observed shortening of the pole-to-polar-cortex distance in RSK1-depleted cells (4.30 ± 1.37 μm vs. 2.80 ± 0.84 μm in control cells) and scanty distribution of microtubules at the periphery of the equatorial region during anaphase, suggesting an aberrant distribution of astral microtubules. Taken together, these results suggest that RSK1 is specifically required for cleavage furrow formation and ingression during cytokinesis. This may occur via the involvement of RSK1 in proper midzone and astral microtubule structure formation during anaphase, which is essential for the correct localization of anillin and RhoA. PMID:24269382

  5. Slow Inhibition and Conformation Selective Properties of Extracellular Signal-Regulated Kinase 1 and 2 Inhibitors

    PubMed Central

    Rudolph, Johannes; Xiao, Yao; Pardi, Arthur; Ahn, Natalie G.

    2016-01-01

    The mitogen-activated protein (MAP) kinase pathway is a target for anticancer therapy, validated using inhibitors of B-Raf and MAP kinase kinase (MKK) 1 and 2. Clinical outcomes show a high frequency of acquired resistance in patient tumors, involving upregulation of activity of the MAP kinase, extracellular signal-regulated kinase (ERK) 1 and 2. Thus, inhibitors for ERK1/2 are potentially important for targeted therapeutics against cancer. The structures and potencies of different ERK inhibitors have been published, but their kinetic mechanisms have not been characterized. Here we perform enzyme kinetic studies on six representative ERK inhibitors, with potencies varying from 100 pM to 20 μM. Compounds with significant biological activity (IC50 < 100 nM) that inhibit in the subnanomolar range (Vertex-11e and SCH772984) display slow-onset inhibition and represent the first inhibitors of ERK2 known to demonstrate slow dissociation rate constants (values of 0.2 and 1.1 h−1, respectively). Furthermore, we demonstrate using kinetic competition assays that Vertex-11e binds with differing affinities to ERK2 in its inactive, unphosphorylated and active, phosphorylated forms. Finally, two-dimensional heteronuclear multiple-quantum correlation nuclear magnetic resonance experiments reveal that distinct conformational states are formed in complexes of Vertex-11e with inactive and active ERK2. Importantly, two conformers interconvert in equilibrium in the active ERK2 apoenzyme, but Vertex-11e strongly shifts the equilibrium completely to one conformer. Thus, a high-affinity, slow dissociation inhibitor stabilizes different enzyme conformations depending on the activity state of ERK2 and reveals properties of conformational selection toward the active kinase. PMID:25350931

  6. Polo-like Kinase 1 (PLK1) Regulates Interferon (IFN) Induction by MAVS*

    PubMed Central

    Vitour, Damien; Dabo, Stéphanie; Ahmadi Pour, Malek; Vilasco, Myriam; Vidalain, Pierre-Olivier; Jacob, Yves; Mezel-Lemoine, Mariana; Paz, Suzanne; Arguello, Meztli; Lin, Rongtuan; Tangy, Frédéric; Hiscott, John; Meurs, Eliane F.

    2009-01-01

    The mitochondria-bound adapter MAVS participates in IFN induction by recruitment of downstream partners such as members of the TRAF family, leading to activation of NF-κB, and the IRF3 pathways. A yeast two-hybrid search for MAVS-interacting proteins yielded the Polo-box domain (PBD) of the mitotic Polo-like kinase PLK1. We showed that PBD associates with two different domains of MAVS in both dependent and independent phosphorylation events. The phosphodependent association requires the phosphopeptide binding ability of PBD. It takes place downstream of the proline-rich domain of MAVS, within an STP motif, characteristic of the binding of PLK1 to its targets, where the central Thr234 residue is phosphorylated. Its phosphoindependent association takes place at the C terminus of MAVS. PLK1 strongly inhibits the ability of MAVS to activate the IRF3 and NF-κB pathways and to induce IFN. Reciprocally, depletion of PLK1 can increase IFN induction in response to RIG-I/SeV or RIG-I/poly(I)-poly(C) treatments. This inhibition is dependent on the phosphoindependent association of PBD at the C terminus of MAVS where it disrupts the association of MAVS with its downstream partner TRAF3. IFN induction was strongly inhibited in cells arrested in G2/M by nocodazole, which provokes increased expression of endogenous PLK1. Interestingly, depletion of PLK1 from these nocodazole-treated cells could restore, at least partially, IFN induction. Altogether, these data demonstrate a new function for PLK1 as a regulator of IFN induction and provide the basis for the development of inhibitors preventing the PLK1/MAVS association to sustain innate immunity. PMID:19546225

  7. Constitutively active Akt1 expression in mouse pancreas requires S6 kinase 1 for insulinoma formation

    PubMed Central

    Alliouachene, Samira; Tuttle, Robyn L.; Boumard, Stephanie; Lapointe, Thomas; Berissi, Sophie; Germain, Stephane; Jaubert, Francis; Tosh, David; Birnbaum, Morris J.; Pende, Mario

    2008-01-01

    Factors that promote pancreatic β cell growth and function are potential therapeutic targets for diabetes mellitus. In mice, genetic experiments suggest that signaling cascades initiated by insulin and IGFs positively regulate β cell mass and insulin secretion. Akt and S6 kinase (S6K) family members are activated as part of these signaling cascades, but how the interplay between these proteins controls β cell growth and function has not been determined. Here, we found that although transgenic mice overexpressing the constitutively active form of Akt1 under the rat insulin promoter (RIP-MyrAkt1 mice) had enlarged β cells and high plasma insulin levels, leading to improved glucose tolerance, a substantial proportion of the mice developed insulinomas later in life, which caused decreased viability. This oncogenic transformation tightly correlated with nuclear exclusion of the tumor suppressor PTEN. To address the role of the mammalian target of rapamycin (mTOR) substrate S6K1 in the MyrAkt1-mediated phenotype, we crossed RIP-MyrAkt1 and S6K1-deficient mice. The resulting mice displayed reduced insulinemia and glycemia compared with RIP-MyrAkt1 mice due to a combined effect of improved insulin secretion and insulin sensitivity. Importantly, although the increase in β cell size in RIP-MyrAkt1 mice was not affected by S6K1 deficiency, the hyperplastic transformation required S6K1. Our results therefore identify S6K1 as a critical element for MyrAkt1-induced tumor formation and suggest that it may represent a useful target for anticancer therapy downstream of mTOR. PMID:18846252

  8. Kinome wide functional screen identifies role of Polo-like kinase 1 (PLK1) in hormone-independent, ER-positive breast cancer

    PubMed Central

    Bhola, Neil; Jansen, Valerie M.; Bafna, Sangeeta; Giltnane, Jennifer M.; Balko, Justin M.; Estrada, Mónica V.; Meszoely, Ingrid; Mayer, Ingrid; Abramson, Vandana; Ye, Fei; Sanders, Melinda; Dugger, Teresa C.; Van Allen, Eliezer; Arteaga, Carlos L.

    2014-01-01

    Estrogen receptor α (ER)-positive breast cancers initially respond to antiestrogens but eventually become estrogen-independent and recur. ER+ breast cancer cells resistant to long-term estrogen deprivation (LTED) exhibit hormone-independent ER transcriptional activity and growth. A kinome-wide siRNA screen using a library targeting 720 kinases identified Polo-like kinase 1 (PLK1) as one of the top genes whose downregulation resulted in inhibition of estrogen-independent ER transcriptional activity and growth of LTED cells. High PLK1 mRNA and protein correlated with a high Ki67 score in primary ER+ breast cancers after treatment with the aromatase inhibitor letrozole. RNAi-mediated knockdown of PLK1 inhibited ER expression, estrogen-independent growth and ER transcription in MCF7 and HCC1428 LTED cells. Pharmacological inhibition of PLK1 with volasertib, a small molecule ATP-competitive PLK1 inhibitor, decreased LTED cell growth, ER transcriptional activity and ER expression. Volasertib in combination with the ER antagonist, fulvestrant, decreased MCF7 xenograft growth in ovariectomized mice more potently than each drug alone. JUNB, a component of the AP-1 complex, was expressed 16-fold higher in MCF7/LTED compared to parental MCF7 cells. Further, JUNB and BCL2L1 (which encodes anti-apoptotic BCL-xL) mRNA levels were markedly reduced upon volasertib treatment in MCF7/LTED cells while they were increased in parental MCF7 cells. Finally, JUNB knockdown decreased ER expression and transcriptional activity in MCF7/LTED cells, suggesting that PLK1 drives ER expression and estrogen-independent growth via JUNB. These data support a critical role of PLK1 in acquired hormone-independent growth of ER+ human breast cancer and is therefore a promising target in tumors that have escaped estrogen deprivation therapy. PMID:25480943

  9. Regulation of cell apoptosis and proliferation in pancreatic cancer through PI3K/Akt pathway via Polo-like kinase 1

    PubMed Central

    MAO, YONGHUAN; XI, LING; LI, QUAN; CAI, ZELING; LAI, YIMEI; ZHANG, XINHUA; YU, CHUNZHAO

    2016-01-01

    Pancreatic cancer has a poor prognosis. It is reported that the PI3K/Akt pathway is activated in many cancers, and inhibition of the PI3K/Akt pathway can induce cell apoptosis in most cancers. Polo-like kinase 1 (Plk1) is also overexpressed in most malignancies, and it controls multiple aspects of mitosis and apoptosis. Previous studies identified that PI3K/Akt-dependent phosphorylation of Plk1-Ser99 is required for metaphase-anaphase transition. In this study, we aimed to investigate the molecular mechanism of PI3K/Akt pathway regulating cell proliferation and apoptosis in pancreatic cancer cell lines (AsPC-1, BxPC-3, PANC-1). Immunohistochemistry (IHC) was used to assess Akt levels in human pancreatic tissues and pancreatic cancer tissues. MTT assay was used to detect cell proliferation. The mRNA was quantified by quantitative reverse transcription-PCR. Western blot analysis was used to detect the protein levels of p-Akt, Akt, Plk1, BAX, Bcl-2, XIAP, cleaved caspase-3 and caspase-3. Recombinant adenovirus vector containing Plk1-shRNA was constructed to inhibit Plk1 expression. Cell apoptosis was detected by flow cytometry and the apoptosis of tumor xenograft was assessed by TUNEL assay. The study showed that inhibition of PI3K/Akt pathway can induce cell apoptosis and reduce cell proliferation by downregulating Plk1 in vitro and in vivo. Additionally, Plk1 inhibition can lead to cancer cell apoptosis through inactivating XIAP, activating caspase-3, upregulating BAX and downregulating Bcl-2. Therefore, this study provided the molecular mechanism of PI3K/Akt pathway and Plk1 in the pancreatic cancer cell proliferation and apoptosis, which may benefit for the therapy of pancreatic cancer. PMID:27220401

  10. The TIR/BB-loop mimetic AS-1 attenuates mechanical stress-induced cardiac fibroblast activation and paracrine secretion via modulation of large tumor suppressor kinase 1.

    PubMed

    Fan, Min; Song, Juan; He, Yijie; Shen, Xin; Li, Jiantao; Que, Linli; Zhu, Guoqing; Zhu, Quan; Cai, Xin; Ha, Tuanzhu; Chen, Qi; Xu, Yong; Li, Chuanfu; Li, Yuehua

    2016-06-01

    The TIR/BB-loop mimetic AS-1 has been reported to prevent cardiac hypertrophy by inhibiting interleukin-1 receptor (IL-1R)-mediated myeloid differentiation primary response gene 88 (MyD88)-dependent signaling. To date, it remains unknown whether and if so how AS-1 contributes to mechanical stress (MS)-induced cardiac fibroblast activation, a key process in pressure overload-induced cardiac remodeling and heart failure. Here, we show that phosphorylation and expression of large tumor suppressor kinase 1 (LATS1), a key molecule in the Hippo-Yes associated protein (YAP) signaling pathway, were down-regulated in primary neonatal rat cardiac fibroblasts (NRCFs) in response to MS and in the hearts of mice subjected to transverse aortic constriction (TAC) procedure; AS-1 treatment was able to restore LATS1 phosphorylation and expression both in vitro and in vivo. AS-1 treatment suppressed the induction of proliferation, differentiation and collagen synthesis in response to MS in NRCFs. AS-1 also ameliorated cardiomyocyte hypertrophy and apoptosis through dampening paracrine secretion of stretched cardiac fibroblasts. In mice, AS-1 treatment could protect against TAC-induced cardiac hypertrophy, myocardial fibrosis and heart failure. Of note, LATS1 depletion using siRNA completely abrogated the inhibitory effects of AS-1 on NRCFs under MS including accelerated proliferation, differentiation, enhanced ability to produce collagen and augmented paracrine secretion of tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) to induce cardiomyocyte hypertrophy. Therefore, our results delineate a previously unrecognized role for LATS1 in cardiac fibroblast to mediate the beneficial effects of AS-1 in preventing pressure overload-induced cardiac remodeling and heart failure. PMID:26964796

  11. Resveratrol inhibits cell cycle progression by targeting Aurora kinase A and Polo-like kinase 1 in breast cancer cells.

    PubMed

    Medina-Aguilar, Rubiceli; Marchat, Laurence A; Arechaga Ocampo, Elena; Gariglio, Patricio; García Mena, Jaime; Villegas Sepúlveda, Nicolás; Martínez Castillo, Macario; López-Camarillo, César

    2016-06-01

    The Aurora protein kinase (AURKA) and the Polo-like kinase-1 (PLK1) activate the cell cycle, and they are considered promising druggable targets in cancer therapy. However, resistance to chemotherapy and to specific small‑molecule inhibitors is common in cancer patients; thus alternative therapeutic approaches are needed to overcome clinical resistance. Here, we showed that the dietary compound resveratrol suppressed the cell cycle by targeting AURKA and PLK1 kinases. First, we identified genes modulated by resveratrol using a genome-wide analysis of gene expression in MDA-MB-231 breast cancer cells. Transcriptional profiling indicated that 375 genes were modulated at 24 h after resveratrol intervention, whereas 579 genes were regulated at 48 h. Of these, 290 genes were deregulated in common at 24 and 48 h. Interestingly, a significant decrease in the expression of genes involved in the cell cycle, DNA repair, cytoskeleton organization, and angiogenesis was detected. In particular, AURKA and PLK1 kinases were downregulated by resveratrol at 24 h. In addition the BRCA1 gene, an AURKA/PLK1 inhibitor, was upregulated at 24 h of treatment. Moreover, two well-known resveratrol effectors, cyclin D1 (CCND1) and cyclin B1 (CCNB1), were also repressed at both times. Congruently, we found that resveratrol impaired G1/S phase transition in both MDA-MB-231 and MCF-7 cells. By western blot assays, we confirmed that resveratrol suppressed AURKA, CCND1 and CCNB1 at 24 and 48 h. In summary, we showed for the first time that resveratrol regulates cell cycle progression by targeting AURKA and PLK1. Our findings highlight the potential use of resveratrol as an adjuvant therapy for breast cancer. PMID:27109433

  12. Characterization of a sugarcane (Saccharum spp.) gene homolog to the brassinosteroid insensitive1-associated receptor kinase 1 that is associated to sugar content.

    PubMed

    Vicentini, Renato; Felix, Juliana de Maria; Dornelas, Marcelo Carnier; Menossi, Marcelo

    2009-03-01

    The present article reports on the characterization of ScBAK1, a leucine-rich repeat receptor-like kinase from sugarcane (Saccharum spp.), expressed predominantly in bundle-sheath cells of the mature leaf and potentially involved in cellular signaling cascades mediated by high levels of sugar in this organ. In this report, it was shown that the ScBAK1 sequence was similar to the brassinosteroid insensitive1-associated receptor kinase1 (BAK1). The putative cytoplasmatic domain of ScBAK1 contains all the amino acids characteristic of protein kinases, and the extracellular domain contains five leucine-rich repeats and a putative leucine zipper. Transcripts of ScBAK1 were almost undetectable in sugarcane roots or in any other sink tissue, but accumulated abundantly in the mature leaves. The ScBAK1 expression was higher in the higher sugar content individuals from a population segregating for sugar content throughout the growing season. In situ hybridization in sugarcane leaves showed that the ScBAK1 mRNA accumulated at much higher levels in bundle-sheath cells than in mesophyll cells. In addition, using biolistic bombardment of onion epidermal cells, it was shown that ScBAK1-GFP fusions were localized in the plasma membrane as predicted for a receptor kinase. All together, the present data indicate that ScBAK1 might be a receptor involved in the regulation of specific processes in bundle-sheath cells and in sucrose synthesis in mature sugarcane leaves. PMID:19096852

  13. An Overdose of the Arabidopsis Coreceptor BRASSINOSTEROID INSENSITIVE1-ASSOCIATED RECEPTOR KINASE1 or Its Ectodomain Causes Autoimmunity in a SUPPRESSOR OF BIR1-1-Dependent Manner.

    PubMed

    Domínguez-Ferreras, Ana; Kiss-Papp, Marta; Jehle, Anna Kristina; Felix, Georg; Chinchilla, Delphine

    2015-07-01

    The membrane-bound Brassinosteroid insensitive1-associated receptor kinase1 (BAK1) is a common coreceptor in plants and regulates distinct cellular programs ranging from growth and development to defense against pathogens. BAK1 functions through binding to ligand-stimulated transmembrane receptors and activating their kinase domains via transphosphorylation. In the absence of microbes, BAK1 activity may be suppressed by different mechanisms, like interaction with the regulatory BIR (for BAK1-interacting receptor-like kinase) proteins. Here, we demonstrated that BAK1 overexpression in Arabidopsis (Arabidopsis thaliana) could cause detrimental effects on plant development, including growth arrest, leaf necrosis, and reduced seed production. Further analysis using an inducible expression system showed that BAK1 accumulation quickly stimulated immune responses, even under axenic conditions, and led to increased resistance to pathogenic Pseudomonas syringae pv tomato DC3000. Intriguingly, our study also revealed that the plasma membrane-associated BAK1 ectodomain was sufficient to induce autoimmunity, indicating a novel mode of action for BAK1 in immunity control. We postulate that an excess of BAK1 or its ectodomain could trigger immune receptor activation in the absence of microbes through unbalancing regulatory interactions, including those with BIRs. Consistently, mutation of suppressor of BIR1-1, which encodes an emerging positive regulator of transmembrane receptors in plants, suppressed the effects of BAK1 overexpression. In conclusion, our findings unravel a new role for the BAK1 ectodomain in the tight regulation of Arabidopsis immune receptors necessary to avoid inappropriate activation of immunity. PMID:25944825

  14. Establishment of Extracellular Signal-Regulated Kinase 1/2 Bistability and Sustained Activation through Sprouty 2 and Its Relevance for Epithelial Function▿

    PubMed Central

    Liu, Weimin; Tundwal, Kavita; Liang, Qiaoling; Goplen, Nicholas; Rozario, Sadee; Quayum, Nayeem; Gorska, Magdalena; Wenzel, Sally; Balzar, Silvana; Alam, Rafeul

    2010-01-01

    Our objective was to establish an experimental model of a self-sustained and bistable extracellular signal-regulated kinase 1/2 (ERK1/2) signaling process. A single stimulation of cells with cytokines causes rapid ERK1/2 activation, which returns to baseline in 4 h. Repeated stimulation leads to sustained activation of ERK1/2 but not Jun N-terminal protein kinase (JNK), p38, or STAT6. The ERK1/2 activation lasts for 3 to 7 days and depends upon a positive-feedback mechanism involving Sprouty 2. Overexpression of Sprouty 2 induces, and its genetic deletion abrogates, ERK1/2 bistability. Sprouty 2 directly activates Fyn kinase, which then induces ERK1/2 activation. A genome-wide microarray analysis shows that the bistable phospho-ERK1/2 (pERK1/2) does not induce a high level of gene transcription. This is due to its nuclear exclusion and compartmentalization to Rab5+ endosomes. Cells with sustained endosomal pERK1/2 manifest resistance against growth factor withdrawal-induced cell death. They are primed for heightened cytokine production. Epithelial cells from cases of human asthma and from a mouse model of chronic asthma manifest increased pERK1/2, which is associated with Rab5+ endosomes. The increase in pERK1/2 was associated with a simultaneous increase in Sprouty 2 expression in these tissues. Thus, we have developed a cellular model of sustained ERK1/2 activation, which may provide a mechanistic understanding of self-sustained biological processes in chronic illnesses such as asthma. PMID:20123980

  15. Establishment of extracellular signal-regulated kinase 1/2 bistability and sustained activation through Sprouty 2 and its relevance for epithelial function.

    PubMed

    Liu, Weimin; Tundwal, Kavita; Liang, Qiaoling; Goplen, Nicholas; Rozario, Sadee; Quayum, Nayeem; Gorska, Magdalena; Wenzel, Sally; Balzar, Silvana; Alam, Rafeul

    2010-04-01

    Our objective was to establish an experimental model of a self-sustained and bistable extracellular signal-regulated kinase 1/2 (ERK1/2) signaling process. A single stimulation of cells with cytokines causes rapid ERK1/2 activation, which returns to baseline in 4 h. Repeated stimulation leads to sustained activation of ERK1/2 but not Jun N-terminal protein kinase (JNK), p38, or STAT6. The ERK1/2 activation lasts for 3 to 7 days and depends upon a positive-feedback mechanism involving Sprouty 2. Overexpression of Sprouty 2 induces, and its genetic deletion abrogates, ERK1/2 bistability. Sprouty 2 directly activates Fyn kinase, which then induces ERK1/2 activation. A genome-wide microarray analysis shows that the bistable phospho-ERK1/2 (pERK1/2) does not induce a high level of gene transcription. This is due to its nuclear exclusion and compartmentalization to Rab5+ endosomes. Cells with sustained endosomal pERK1/2 manifest resistance against growth factor withdrawal-induced cell death. They are primed for heightened cytokine production. Epithelial cells from cases of human asthma and from a mouse model of chronic asthma manifest increased pERK1/2, which is associated with Rab5+ endosomes. The increase in pERK1/2 was associated with a simultaneous increase in Sprouty 2 expression in these tissues. Thus, we have developed a cellular model of sustained ERK1/2 activation, which may provide a mechanistic understanding of self-sustained biological processes in chronic illnesses such as asthma. PMID:20123980

  16. Reduction in sphingosine kinase 1 influences the susceptibility to dengue virus infection by altering antiviral responses.

    PubMed

    Clarke, Jennifer N; Davies, Lorena K; Calvert, Julie K; Gliddon, Briony L; Al Shujari, Wisam H; Aloia, Amanda L; Helbig, Karla J; Beard, Michael R; Pitson, Stuart M; Carr, Jillian M

    2016-01-01

    Sphingosine kinase (SK) 1 is a host kinase that enhances some viral infections. Here we investigated the ability of SK1 to modulate dengue virus (DENV) infection in vitro. Overexpression of SK1 did not alter DENV infection; however, targeting SK1 through chemical inhibition resulted in reduced DENV RNA and infectious virus release. DENV infection of SK1⁻/ ⁻ murine embryonic fibroblasts (MEFs) resulted in inhibition of infection in an immortalized line (iMEF) but enhanced infection in primary MEFs (1°MEFs). Global cellular gene expression profiles showed expected innate immune mRNA changes in DENV-infected WT but no induction of these responses in SK1⁻/⁻  iMEFs. Reverse transciption PCR demonstrated a low-level induction of IFN-β and poor induction of mRNA for the interferon-stimulated genes (ISGs) viperin, IFIT1 and CXCL10 in DENV-infected SK1⁻/⁻  compared with WT iMEFs. Similarly, reduced induction of ISGs was observed in SK1⁻/⁻  1°MEFs, even in the face of high-level DENV replication. In both iMEFs and 1°MEFs, DENV infection induced production of IFN-β protein. Additionally, higher basal levels of antiviral factors (IRF7, CXCL10 and OAS1) were observed in uninfected SK1⁻/⁻  iMEFs but not 1°MEFs. This suggests that, in this single iMEF line, lack of SK1 upregulates the basal levels of factors that may protect cells against DENV infection. More importantly, regardless of the levels of DENV replication, all cells that lacked SK1 produced IFN-β but were refractory to induction of ISGs such as viperin, IFIT1 and CXCL10. Based on these findings, we propose new roles for SK1 in affecting innate responses that regulate susceptibility to DENV infection. PMID:26541871

  17. Triptolide, a diterpenoid triepoxide, induces antitumor proliferation via activation of c-Jun NH{sub 2}-terminal kinase 1 by decreasing phosphatidylinositol 3-kinase activity in human tumor cells

    SciTech Connect

    Miyata, Yoshiki; Sato, Takashi . E-mail: satotak@ps.toyaku.ac.jp; Ito, Akira

    2005-11-04

    Triptolide, a diterpenoid triepoxide extracted from the Chinese herb Tripterygium wilfordii Hook f., exerts antitumorigenic actions against several tumor cells, but the intracellular target signal molecule(s) for this antitumorigenesis activity of triptolide remains to be identified. In the present study, we demonstrated that triptolide, in a dose-dependent manner, inhibited the proliferation of human fibrosarcoma HT-1080, human squamous carcinoma SAS, and human uterine cervical carcinoma SKG-II cells. In addition, triptolide was found to decrease phosphatidylinositol 3-kinase (PI3K) activity. A PI3K inhibitor, LY-294002, mimicked the triptolide-induced antiproliferative activity in HT-1080, SAS, and SKG-II cells. There was no change in the activity of Akt or protein kinase C (PKC), both of which are downstream effectors in the PI3K pathway. Furthermore, the phosphorylation of Ras, Raf, and mitogen-activated protein/extracellular signal-regulated kinase 1/2 was not modified in HT-1080 cells treated with triptolide. However, the phosphorylation of c-Jun NH{sub 2}-terminal kinase 1 (JNK1) was found to increase in both triptolide- and LY-294002-treated cells. Furthermore, the triptolide-induced inhibition of HT-1080 cell proliferation was not observed by JNK1 siRNA-treatment. These results provide novel evidence that PI3K is a crucial target molecule in the antitumorigenic action of triptolide. They further suggest a possible triptolide-induced inhibitory signal for tumor cell proliferation that is initiated by the decrease in PI3K activity, which in turn leads to the augmentation of JNK1 phosphorylation via the Akt and/or PKC-independent pathway(s). Moreover, it is likely that the activation of JNK1 is required for the triptolide-induced inhibition of tumor proliferation.

  18. Identification and characterization of transforming growth factor β-activated kinase 1 from Litopenaeus vannamei involved in anti-bacterial host defense.

    PubMed

    Wang, Sheng; Li, Haoyang; L, Kai; Qian, Zhe; Weng, Shaoping; He, Jianguo; Li, Chaozheng

    2016-05-01

    LvTAK1, a member of transforming growth factor β-activated kinase 1 (TAK1) families, has been identified from Litopenaeus vannamei in this study. The full length of LvTAK1 is 2670 bp, including a 2277 bp open reading frame (ORF) that encoded a putative protein of 758 amino acids with a calculated molecular weight of ∼83.4 kDa LvTAK1 expression was most abundant in muscles and was up-regulated in gills after LPS, Vibrio parahaemolyticus, Staphhylococcu saureus, Poly (I:C) and WSSV challenge. Both in vivo and in vitro experiments indicated that LvTAK1 could activate the expression of several antimicrobial peptide genes (AMPs). In addition, the dsRNA-mediated knockdown of LvTAK1 enhanced the susceptibility of shrimps to Vibrio parahaemolyticus, a kind of Gram-negative bacteria. These results suggested LvTAK1 played important roles in anti-bacterial infection. CoIP and subcellular localization assay demonstrated that LvTAK1 could interact with its binding protein LvTAB2, a key component of IMD pathway. Moreover, over-expression of LvTAK1 in Drosophila S2 cell could strongly induce the promoter activity of Diptericin (Dpt), a typical AMP which is used to read out of the activation of IMD pathway. These findings suggested that LvTAK1 could function as a component of IMD pathway. Interestingly, with the over-expression of LvTAK1 in S2 cell, the promoter activity of Metchnikowin (Mtk), a main target gene of Toll/Dif pathway, was up-regulated over 30 times, suggesting that LvTAK1 may also take part in signal transduction of the Toll pathway. In conclusion, we provided some evidences that the involvement of LvTAK1 in the regulation of both Toll and IMD pathways, as well as innate immune against bacterial infection in shrimp. PMID:27033469

  19. Heme Oxygenase-1 Is Not Decreased in Preeclamptic Placenta and Does Not Negatively Regulate Placental Soluble fms-Like Tyrosine Kinase-1 or Soluble Endoglin Secretion.

    PubMed

    Tong, Stephen; Kaitu'u-Lino, Tu'uhevaha J; Onda, Kenji; Beard, Sally; Hastie, Roxanne; Binder, Natalie K; Cluver, Cathy; Tuohey, Laura; Whitehead, Clare; Brownfoot, Fiona; De Silva, Manarangi; Hannan, Natalie J

    2015-11-01

    Elevated placental release of the antiangiogenic factors, soluble fms-like tyrosine kinase-1 (sFlt-1) and soluble endoglin (sENG), is central to the pathophysiology of preeclampsia. It is widely accepted that heme oxygenase-1 (HO-1) is decreased in preeclamptic placenta and negatively regulates sFlt-1 and sENG production. We set out to verify these contentions. There was no difference in HO-1 mRNA or protein levels in preterm preeclamptic placentas (n=17) compared with gestationally matched controls (n=27). In silico analysis of microarray studies did not identify decreased placental HO-1 expression in preeclamptic placenta. Silencing HO-1 in primary trophoblasts did not affect sFlt-1 protein secretion after 24 or 48 hours. Silencing nuclear factor (erythroid-derived 2)-like 2 (transcription factor that upregulates HO-1) in trophoblasts also did not affect sFlt-1 secretion. Administering tin protoporphyrin IX dichloride (HO-1 inhibitor) or cobalt protoporphyrin (HO-1 inducer) into placental explants did not affect sFlt-1 or sENG secretion. Silencing HO-1 in 2 types of primary endothelial cells (human umbilical vein endothelial and uterine microvascular endothelial cells) significantly increased sFlt-1 secretion but not sENG secretion. However, HO-1 silencing selectively increased mRNA expression of sFlt-1 i13 (generically expressed sFlt-1 variant) but not of sFlt-1 e15a (sFlt-1 variant mainly expressed in placenta). Furthermore, adding tin protoporphyrin IX dichloride decreased sFlt-1, whereas adding HO-1 inducers (cobalt protoporphyrin, dimethyl fumarate, and rosiglitazone) either had no effect or increased sFlt-1 or sENG secretion (these trends are opposite to what is expected). We conclude that HO-1 expression is not decreased in preeclamptic placenta and HO-1 does not negatively regulate placental sFlt-1 and sENG secretion in placental or endothelial cells. PMID:26324507

  20. Agonist-induced activation of histamine H3 receptor signals to extracellular signal-regulated kinases 1 and 2 through PKC-, PLD-, and EGFR-dependent mechanisms.

    PubMed

    Lai, Xiangru; Ye, Lingyan; Liao, Yuan; Jin, Lili; Ma, Qiang; Lu, Bing; Sun, Yi; Shi, Ying; Zhou, Naiming

    2016-04-01

    The histamine H3 receptor (H3R), abundantly expressed in the central and the peripheral nervous system, has been recognized as a promising target for the treatment of various important CNS diseases including narcolepsy, Alzheimer's disease, and attention deficit hyperactivity disorder. The H3R acts via Gi/o -proteins to inhibit adenylate cyclase activity and modulate MAPK activity. However, the underlying molecular mechanisms for H3R mediation of the activation of extracellular signal-regulated kinases 1 and 2 (ERK1/2) remain to be elucidated. In this study, using HEK293 cells stably expressing human H3R and mouse primary cortical neurons endogenously expressing mouse H3R, we found that the H3R-mediated activation of ERK1/2 was significantly blocked by both the pertussis toxin and the MEK1/2 inhibitor U0126. Upon stimulation by H3R agonist histamine or imetit, H3R was shown to rapidly induce ERK1/2 phosphorylation via PLC/PKC-, PLDs-, and epidermal growth factor receptor (EGFR) transactivation-dependent pathways. Furthermore, it was also indicated that while the βγ-subunits play a key role in H3R-activated ERK1/2 phosphorylation, β-arrestins were not required for ERK1/2 activation. In addition, when the cultured mouse cortical neurons were exposed to oxygen and glucose deprivation conditions (OGD), imetit exhibited neuroprotective properties through the H3R. Treatment of cells with the inhibitor UO126 abolished these protective effects. This suggests a possible neuroprotective role of the H3R-mediated ERK1/2 pathway under hypoxia conditions. These observations may provide new insights into the pharmacological effects and the physiological functions modulated by the H3R-mediated activation of ERK1/2. Histamine H3 receptors are abundantly expressed in the brain and play important roles in various CNS physiological functions. However, the underlying mechanisms for H3R-induced activation of extracellular signal-regulated kinase (ERK)1/2 remain largely unknown. Here

  1. Sphingosine kinase 1 is required for TGF-β mediated fibroblast-to-myofibroblast differentiation in ovarian cancer

    PubMed Central

    Cheon, Dong-Joo; Lawrenson, Kate; Agadjanian, Hasmik; Walsh, Christine S.; Karlan, Beth Y.; Orsulic, Sandra

    2016-01-01

    Sphingosine kinase 1 (SPHK1), the enzyme that produces sphingosine 1 phosphate (S1P), is known to be highly expressed in many cancers. However, the role of SPHK1 in cells of the tumor stroma remains unclear. Here, we show that SPHK1 is highly expressed in the tumor stroma of high-grade serous ovarian cancer (HGSC), and is required for the differentiation and tumor promoting function of cancer-associated fibroblasts (CAFs). Knockout or pharmacological inhibition of SPHK1 in ovarian fibroblasts attenuated TGF-β-induced expression of CAF markers, and reduced their ability to promote ovarian cancer cell migration and invasion in a coculture system. Mechanistically, we determined that SPHK1 mediates TGF-β signaling via the transactivation of S1P receptors (S1PR2 and S1PR3), leading to p38 MAPK phosphorylation. The importance of stromal SPHK1 in tumorigenesis was confirmed in vivo, by demonstrating a significant reduction of tumor growth and metastasis in SPHK1 knockout mice. Collectively, these findings demonstrate the potential of SPHK1 inhibition as a novel stroma-targeted therapy in HGSC. PMID:26716409

  2. The role of TGF-β-activated kinase 1 in db/db mice and high glucose-induced macrophage.

    PubMed

    Xu, Xingxin; Fan, Zhe; Qi, Xiangming; Shao, Yunxia; Wu, Yonggui

    2016-09-01

    Accumulating evidence reveals that inflammation plays a vital part in the development of diabetic nephropathy (DN), little information is available about the TGF-β-activated kinase 1 (TAK1) signal pathway activating inflammatory response in DN. We used bone marrow-derived macrophages (BMMs) and db/db mice to investigate the potential protective effects and mechanisms of TAK1 inhibitor (5Z-7-oxozeaenol) on diabetic kidney disease. The study showed that pretreatment with 5Z-7-oxozeaenol not only remarkably decreased high glucose (HG) stimulated excessive release of MCP-1 and TNF-α, but also significantly down-regulated ERK1/2, p38MAPK phosphorylation, and NF-κB activation in macrophages. In consistent, 5Z-7-oxozeaenol markedly reduced diabetes-induced albuminuria, histological changes, macrophage infiltration, and renal inflammatory cytokines expression and exerted its function through down-regulating ERK1/2, p38MAPK, NF-κB activation in the kidneys of db/db mice. Our findings may provide a novel direction to study the molecular mechanism and a perspective intervention to halt the progression of DN. PMID:27268284

  3. Identification of TGF-β-activated kinase 1 as a possible novel target for renal cell carcinoma intervention

    SciTech Connect

    Meng, Fandong; Li, Yan; Tian, Xin; Fu, Liye; Yin, Yuanqin; Sui, Chengguang; Ma, Ping; Jiang, Youhong

    2014-10-10

    Highlights: • Inhibition of TAK1 kinase activity suppresses NF-κB activation and RCC cell survival. • TAK1 inhibitors induces apoptotic cytotoxicity against RCC cells. • RCC cells with TAK1 depletion show reduced cell viability and increased apoptosis. • TAK1 and p-NF-κB are both over-expressed in human RCC tissues. • Inhibition or depletion of TAK1 enhances the activity of vinblastine sulfate. - Abstract: Renal cell carcinoma (RCC) is common renal malignancy within poor prognosis. TGF-β-activated kinase 1 (TAK1) plays vital roles in cell survival, apoptosis-resistance and carcinogenesis through regulating nuclear factor-κB (NF-κB) and other cancer-related pathways. Here we found that TAK1 inhibitors (LYTAK1, 5Z-7-oxozeanol (5Z) and NG-25) suppressed NF-κB activation and RCC cell (786-O and A489 lines) survival. TAK1 inhibitors induced apoptotic cytotoxicity against RCC cells, which was largely inhibited by the broad or specific caspase inhibitors. Further, shRNA-mediated partial depletion of TAK1 reduced 786-O cell viability whiling activating apoptosis. Significantly, TAK1 was over-expressed in human RCC tissues, and its level was correlated with phosphorylated NF-κB. Finally, kinase inhibition or genetic depletion of TAK1 enhanced the activity of vinblastine sulfate (VLB) in RCC cells. Together, these results suggest that TAK1 may be an important oncogene or an effective target for RCC intervention.

  4. Synthesis and evaluation of thymidine kinase 1-targeting carboranyl pyrimidine nucleoside analogues for boron neutron capture therapy of cancer

    PubMed Central

    Agarwal, Hitesh K.; Khalil, Ahmed; Ishita, Keisuke; Yang, Weilian; Nakkula, Robin J.; Wu, Lai-Chu; Ali, Tehane; Tiwari, Rohit; Byun, Youngjoo; Barth, Rolf F.; Tjarks, Werner

    2015-01-01

    A library of sixteen 2nd generation amino- and amido-substituted carboranyl pyrimidine nucleoside analogues, designed as substrates and inhibitors of thymidine kinase 1 (TK1) for potential use in boron neutron capture therapy (BNCT) of cancer, was synthesized and evaluated in enzyme kinetic-, enzyme inhibition-, metabolomic-, and biodistribution studies. One of these 2nd generation carboranyl pyrimidine nucleoside analogues (YB18A [3]), having an amino group directly attached to a meta-carborane cage tethered via ethylene spacer to the 3-position of thymidine, was approximately 3–4 times superior as a substrate and inhibitor of hTK1 than N5-2OH (2), a 1st generation carboranyl pyrimidine nucleoside analogue. Both 2 and 3 appeared to be 5′-monophosphorylated in TK1(+) RG2 cells, both in vitro and in vivo. Biodistribution studies in rats bearing intracerebral RG2 glioma resulted in selective tumor uptake of 3 with an intratumoral concentration that was approximately 4 times higher than that of 2. The obtained results significantly advance the understanding of the binding interactions between TK1 and carboranyl pyrimidine nucleoside analogues and will profoundly impact future design strategies for these agents. PMID:26087030

  5. Cotargeting Polo-Like Kinase 1 and the Wnt/β-Catenin Signaling Pathway in Castration-Resistant Prostate Cancer

    PubMed Central

    Li, Jie; Karki, Anju; Hodges, Kurt B.; Ahmad, Nihal; Zoubeidi, Amina; Strebhardt, Klaus; Ratliff, Timothy L.; Konieczny, Stephen F.

    2015-01-01

    The Wnt/β-catenin signaling pathway has been identified as one of the predominantly upregulated pathways in castration-resistant prostate cancer (CRPC). However, whether targeting the β-catenin pathway will prove effective as a CRPC treatment remains unknown. Polo-like kinase 1 (Plk1) is a critical regulator in many cell cycle events, and its level is significantly elevated upon castration of mice carrying xenograft prostate tumors. Indeed, inhibition of Plk1 has been shown to inhibit tumor growth in several in vivo studies. Here, we show that Plk1 is a negative regulator of Wnt/β-catenin signaling. Plk1 inhibition or depletion enhances the level of cytosolic and nuclear β-catenin in human prostate cancer cells. Furthermore, inhibition of Wnt/β-catenin signaling significantly potentiates the antineoplastic activity of the Plk1 inhibitor BI2536 in both cultured prostate cancer cells and CRPC xenograft tumors. Mechanistically, axin2, a negative regulator of the β-catenin pathway, serves as a substrate of Plk1, and Plk1 phosphorylation of axin2 facilitates the degradation of β-catenin by enhancing binding between glycogen synthase kinase 3β (GSK3β) and β-catenin. Plk1-phosphorylated axin2 also exhibits resistance to Cdc20-mediated degradation. Overall, this study identifies a novel Plk1-Wnt signaling axis in prostate cancer, offering a promising new therapeutic option to treat CRPC. PMID:26438599

  6. Mitigation of Acetylcholine Esterase Activity in the 1,7-Diazacarbazole Series of Inhibitors of Checkpoint Kinase 1.

    PubMed

    Gazzard, Lewis; Williams, Karen; Chen, Huifen; Axford, Lorraine; Blackwood, Elizabeth; Burton, Brenda; Chapman, Kerry; Crackett, Peter; Drobnick, Joy; Ellwood, Charles; Epler, Jennifer; Flagella, Michael; Gancia, Emanuela; Gill, Matthew; Goodacre, Simon; Halladay, Jason; Hewitt, Joanne; Hunt, Hazel; Kintz, Samuel; Lyssikatos, Joseph; Macleod, Calum; Major, Sarah; Médard, Guillaume; Narukulla, Raman; Ramiscal, Judi; Schmidt, Stephen; Seward, Eileen; Wiesmann, Christian; Wu, Ping; Yee, Sharon; Yen, Ivana; Malek, Shiva

    2015-06-25

    Checkpoint kinase 1 (ChK1) plays a key role in the DNA damage response, facilitating cell-cycle arrest to provide sufficient time for lesion repair. This leads to the hypothesis that inhibition of ChK1 might enhance the effectiveness of DNA-damaging therapies in the treatment of cancer. Lead compound 1 (GNE-783), the prototype of the 1,7-diazacarbazole class of ChK1 inhibitors, was found to be a highly potent inhibitor of acetylcholine esterase (AChE) and unsuitable for development. A campaign of analogue synthesis established SAR delineating ChK1 and AChE activities and allowing identification of new leads with improved profiles. In silico docking using a model of AChE permitted rationalization of the observed SAR. Compounds 19 (GNE-900) and 30 (GNE-145) were identified as selective, orally bioavailable ChK1 inhibitors offering excellent in vitro potency with significantly reduced AChE activity. In combination with gemcitabine, these compounds demonstrate an in vivo pharmacodynamic effect and are efficacious in a mouse p53 mutant xenograft model. PMID:25988399

  7. β1 integrins mediate resistance to ionizing radiation in vivo by inhibiting c-Jun amino terminal kinase 1

    PubMed Central

    Goel, Hira Lal; Sayeed, Aejaz; Breen, Michael; Zarif, Matthew J.; Garlick, David S.; Leav, Irwin; Davis, Roger J.; FitzGerald, Thomas J.; Morrione, Andrea; Hsieh, Chung-Cheng; Liu, Qin; Dicker, Adam P.; Altieri, Dario C.; Languino, Lucia R.

    2013-01-01

    This study was carried out to dissect the mechanism by which β1 integrins promote resistance to radiation. For this purpose, we conditionally ablated β1 integrins in the prostatic epithelium of transgenic adenocarcinoma of mouse prostate (TRAMP) mice. The ability of β1 to promote resistance to radiation was also analyzed by using an inhibitory antibody to β1, AIIB2, in a xenograft model. The role of β1 integrins and of a β1 downstream target, c-Jun amino-terminal kinase 1 (JNK1), in regulating radiation-induced apoptosis in vivo and in vitro was studied. We show that β1 integrins promote prostate cancer (PrCa) progression and resistance to radiation in vivo. Mechanistically, β1 integrins are shown here to suppress activation of JNK1 and, consequently apoptosis, in response to irradiation. Downregulation of JNK1 is necessary to preserve the effect of β1 on resistance to radiation in vitro and in vivo. Finally, given the established cross-talk between β1 integrins and type 1 insulin-like growth factor receptor (IGF-IR), we analyzed the ability of IGF-IR to modulate β1 integrin levels. We report that IGF-IR regulates the expression of β1 integrins, which in turn confer resistance to radiation in PrCa cells. In conclusion, this study demonstrates that β1 integrins mediate resistance to ionizing radiation through inhibition of JNK1 activation. PMID:23359252

  8. Synthesis and evaluation of thymidine kinase 1-targeting carboranyl pyrimidine nucleoside analogs for boron neutron capture therapy of cancer.

    PubMed

    Agarwal, Hitesh K; Khalil, Ahmed; Ishita, Keisuke; Yang, Weilian; Nakkula, Robin J; Wu, Lai-Chu; Ali, Tehane; Tiwari, Rohit; Byun, Youngjoo; Barth, Rolf F; Tjarks, Werner

    2015-07-15

    A library of sixteen 2nd generation amino- and amido-substituted carboranyl pyrimidine nucleoside analogs, designed as substrates and inhibitors of thymidine kinase 1 (TK1) for potential use in boron neutron capture therapy (BNCT) of cancer, was synthesized and evaluated in enzyme kinetic-, enzyme inhibition-, metabolomic-, and biodistribution studies. One of these 2nd generation carboranyl pyrimidine nucleoside analogs (YB18A [3]), having an amino group directly attached to a meta-carborane cage tethered via ethylene spacer to the 3-position of thymidine, was approximately 3-4 times superior as a substrate and inhibitor of hTK1 than N5-2OH (2), a 1st generation carboranyl pyrimidine nucleoside analog. Both 2 and 3 appeared to be 5'-monophosphorylated in TK1(+) RG2 cells, both in vitro and in vivo. Biodistribution studies in rats bearing intracerebral RG2 glioma resulted in selective tumor uptake of 3 with an intratumoral concentration that was approximately 4 times higher than that of 2. The obtained results significantly advance the understanding of the binding interactions between TK1 and carboranyl pyrimidine nucleoside analogs and will profoundly impact future design strategies for these agents. PMID:26087030

  9. Epiblastin A Induces Reprogramming of Epiblast Stem Cells Into Embryonic Stem Cells by Inhibition of Casein Kinase 1.

    PubMed

    Ursu, Andrei; Illich, Damir J; Takemoto, Yasushi; Porfetye, Arthur T; Zhang, Miao; Brockmeyer, Andreas; Janning, Petra; Watanabe, Nobumoto; Osada, Hiroyuki; Vetter, Ingrid R; Ziegler, Slava; Schöler, Hans R; Waldmann, Herbert

    2016-04-21

    The discovery of novel small molecules that induce stem cell reprogramming and give efficient access to pluripotent stem cells is of major importance for potential therapeutic applications and may reveal novel insights into the factors controlling pluripotency. Chemical reprogramming of mouse epiblast stem cells (EpiSCs) into cells corresponding to embryonic stem cells (cESCs) is an inefficient process. In order to identify small molecules that promote this cellular transition, we analyzed the LOPAC library in a phenotypic screen monitoring Oct4-GFP expression and identified triamterene (TR) as initial hit. Synthesis of a TR-derived compound collection and investigation for reprogramming of EpiSCs into cESCs identified casein kinases 1 (CK1) α/δ/ɛ as responsible cellular targets of TR and unraveled the structural parameters that determine reprogramming. Delineation of a structure-activity relationship led to the development of Epiblastin A, which engages CK1 isoenzymes in cell lysate and induces efficient conversion of EpiSCs into cESCs. PMID:27049670

  10. Cotargeting Polo-Like Kinase 1 and the Wnt/β-Catenin Signaling Pathway in Castration-Resistant Prostate Cancer.

    PubMed

    Li, Jie; Karki, Anju; Hodges, Kurt B; Ahmad, Nihal; Zoubeidi, Amina; Strebhardt, Klaus; Ratliff, Timothy L; Konieczny, Stephen F; Liu, Xiaoqi

    2015-12-01

    The Wnt/β-catenin signaling pathway has been identified as one of the predominantly upregulated pathways in castration-resistant prostate cancer (CRPC). However, whether targeting the β-catenin pathway will prove effective as a CRPC treatment remains unknown. Polo-like kinase 1 (Plk1) is a critical regulator in many cell cycle events, and its level is significantly elevated upon castration of mice carrying xenograft prostate tumors. Indeed, inhibition of Plk1 has been shown to inhibit tumor growth in several in vivo studies. Here, we show that Plk1 is a negative regulator of Wnt/β-catenin signaling. Plk1 inhibition or depletion enhances the level of cytosolic and nuclear β-catenin in human prostate cancer cells. Furthermore, inhibition of Wnt/β-catenin signaling significantly potentiates the antineoplastic activity of the Plk1 inhibitor BI2536 in both cultured prostate cancer cells and CRPC xenograft tumors. Mechanistically, axin2, a negative regulator of the β-catenin pathway, serves as a substrate of Plk1, and Plk1 phosphorylation of axin2 facilitates the degradation of β-catenin by enhancing binding between glycogen synthase kinase 3β (GSK3β) and β-catenin. Plk1-phosphorylated axin2 also exhibits resistance to Cdc20-mediated degradation. Overall, this study identifies a novel Plk1-Wnt signaling axis in prostate cancer, offering a promising new therapeutic option to treat CRPC. PMID:26438599

  11. Still Benched on its Way to the Bedside: Sphingosine Kinase 1 as an Emerging Target in Cancer Chemotherapy

    PubMed Central

    Gault, Christopher R.; Obeid, Lina M.

    2011-01-01

    For several decades, lipid biologists have investigated how sphingolipids contribute to physiology, cell biology, and cell fate. Foremost among these discoveries is the finding that the bioactive sphingolipids ceramide, sphingosine, and sphingosine-1-phosphate (S1P) have diverse and often opposing effects on cell fate. Interestingly, these bioactive sphingolipids can be interconverted by just a few enzymatic reactions. Therefore, much attention has been paid to the enzymes which govern these reactions with a disproportionate amount of focus on the enzyme sphingosine kinase 1 (SK1). Several studies have found that tissue expression of SK1 correlates with cancer stage, chemotherapy response, and tumor aggressiveness. In addition, overexpression of SK1 in multiple cancer cell lines increases their resistance to chemotherapy, promotes proliferation, allows for anchorage independent growth, and increases local angiogenesis. Inhibition of SK1 using either pharmacological inhibitors or by crossing SK1 null mice has shown promise in many xenograft models of cancer as well as several genetic and chemically induced mouse models of carcinogenesis. Here we review the majority of the evidence that suggests SK1 is a promising target for the prevention and or treatment of various cancers. Also, we strongly advocate for further research into basic mechanisms of bioactive sphingolipid signaling and an increased focus on the efficacy of SK inhibitors in non-xenograft models of cancer progression. PMID:21787121

  12. TARGETING SPHINGOSINE KINASE 1 INHIBITS AKT SIGNALING, INDUCES APOPTOSIS, AND SUPPRESSES GROWTH OF HUMAN GLIOBLASTOMA CELLS AND XENOGRAFTS

    PubMed Central

    Kapitonov, Dmitri; Allegood, Jeremy C.; Mitchell, Clint; Hait, Nitai C.; Almenara, Jorge A.; Adams, Jeffrey K.; Zipkin, Robert E.; Dent, Paul; Kordula, Tomasz; Milstien, Sheldon; Spiegel, Sarah

    2009-01-01

    Sphingosine-1-phosphate (S1P) is a potent sphingolipid mediator of diverse processes important for brain tumors, including cell growth, survival, migration, invasion, and angiogenesis. Sphingosine kinase 1 (SphK1), one of the two isoenzymes that produce S1P, is upregulated in glioblastoma and has been linked to poor prognosis in patients with glioblastoma multiforme (GBM). In the present study, we found that a potent isotype-specific SphK1 inhibitor, SK1-I, suppressed growth of LN229 and U373 glioblastoma cell lines and non-established human GBM6 cells. SK1-I also enhanced GBM cell death and inhibited their migration and invasion. SK1-I rapidly reduced phosphorylation of Akt but had no significant effect on activation of ERK1/2, another important survival pathway for GBM. Inhibition of the concomitant activation of the JNK pathway induced by SK1-I attenuated death of GBM cells. Importantly, SK1-I markedly reduced tumor growth rate of glioblastoma xenografts, inducing apoptosis and reducing tumor vascularization and enhanced the survival of mice harboring LN229 intracranial tumors. Our results support the notion that SphK1 may be an important factor in GBM and suggest that an isozyme-specific inhibitor of SphK1 deserves consideration as a new therapeutic agent for this disease. PMID:19723667

  13. Hypoxia-Mediated Soluble Fms-Like Tyrosine Kinase 1 Increase Is Not Attenuated in Interleukin 6-Deficient Mice.

    PubMed

    Appel, Sarah; Turnwald, Eva-Maria; Ankerne, Janina; Wohlfarth, Maria; Appel, Jan; Rother, Eva; Janoschek, Ruth; Alejandre Alcazar, Miguel A; Schnare, Markus; Meißner, Udo; Dötsch, Jörg

    2015-06-01

    The soluble fms-like tyrosine kinase 1 (sFlt-1), known to be increased in the serum of preeclamptic patients, is a relevant factor in causing maternal symptoms like hypertension and proteinuria. In this study, we aimed to reveal whether hypoxia is a cause of increased sFlt-1 levels and inflammation markers in vivo and whether these symptoms can be attenuated by interleukin 6 (IL-6) depletion. For this purpose, pregnant wild-type (wt) mice or IL-6(-/-) mice on embryonic day 16 were placed under either normoxic (20.9% oxygen) or hypoxic (6% oxygen) conditions for 6 hours. This led to a rise of sFlt-1 levels in maternal serum, independent of the IL-6 status of the dam. Increased maternal sFlt-1 serum levels were, however, not due to an increase in sFlt-1 messenger RNA levels in the placenta. Moreover, there was no increase in inflammatory markers in neither wt mice nor IL-6(-/-) mice. This suggests that hypoxia alone does not contribute to the induction of an inflammatory placenta. Also, the hypoxia-induced rise in sFlt-1 levels seems not to be mediated by IL-6 in vivo. PMID:25415335

  14. Dengue Virus-Induced Inflammation of the Endothelium and the Potential Roles of Sphingosine Kinase-1 and MicroRNAs

    PubMed Central

    Aloia, Amanda L.; Abraham, Alexander M.; Bonder, Claudine S.; Pitson, Stuart M.; Carr, Jillian M.

    2015-01-01

    One of the main pathogenic effects of severe dengue virus (DENV) infection is a vascular leak syndrome. There are no available antivirals or specific DENV treatments and without hospital support severe DENV infection can be life-threatening. The cause of the vascular leakage is permeability changes in the endothelial cells lining the vasculature that are brought about by elevated vasoactive cytokine and chemokines induced following DENV infection. The source of these altered cytokine and chemokines is traditionally believed to be from DENV-infected cells such as monocyte/macrophages and dendritic cells. Herein we discuss the evidence for the endothelium as an additional contributor to inflammatory and innate responses during DENV infection which may affect endothelial cell function, in particular the ability to maintain vascular integrity. Furthermore, we hypothesise roles for two factors, sphingosine kinase-1 and microRNAs (miRNAs), with a focus on several candidate miRNAs, which are known to control normal vascular function and inflammatory responses. Both of these factors may be potential therapeutic targets to regulate inflammation of the endothelium during DENV infection. PMID:26609198

  15. P21 Activated Kinase-1 Mediates Transforming Growth Factor β1-Induced Prostate Cancer Cell Epithelial to Mesenchymal Transition

    PubMed Central

    Al-Azayzih, Ahmad; Gao, Fei; Somanath, Payaningal R.

    2015-01-01

    Transforming growth factor beta (TGFβ) is believed to play a dual role in prostate cancer. Molecular mechanism by which TGFβ1 suppresses early prostate tumor growth and induces epithelial-to-mesenchymal transition (EMT) in advanced stages is not known. We determined if P21-activated kinase1 (Pak1), which mediates cytoskeletal remodeling is necessary for the TGFβ1 induced prostate cancer EMT. Effects of TGFβ1 on control prostate cancer PC3 and DU145 cells and those with IPA 3 and siRNA mediated Pak1 inhibition were tested for prostate tumor xenograft in vivo and EMT in vitro. TGFβ1 inhibited PC3 tumor xenograft growth via activation of P38-MAPK and caspase-3, 9. Long-term stimulation with TGFβ1 induced PC3 and DU145 cell scattering and increased expression of EMT markers such as Snail and N-cadherin through tumor necrosis factor receptor-associated factor-6 (TRAF6)-mediated activation of Rac1/Pak1 pathway. Selective inhibition of Pak1 using IPA 3 or knockdown using siRNA both significantly inhibited TGFβ1-induced prostate cancer cell EMT and expression of mesenchymal markers. Our study demonstrated that TGFβ1 induces apoptosis and EMT in prostate cancer cells via activation of P38-MAPK and Rac1/Pak1 respectively. Our results reveal the potential therapeutic benefits of targeting TGFβ1-Pak1 pathway for advanced-stage prostate cancer. PMID:25746720

  16. Structure-based and shape-complemented pharmacophore modeling for the discovery of novel checkpoint kinase 1 inhibitors.

    PubMed

    Chen, Xiu-Mei; Lu, Tao; Lu, Shuai; Li, Hui-Fang; Yuan, Hao-Liang; Ran, Ting; Liu, Hai-Chun; Chen, Ya-Dong

    2010-07-01

    Checkpoint kinase 1 (Chk1), a member of the serine/threonine kinase family, is an attractive therapeutic target for anticancer combination therapy. A structure-based modeling approach complemented with shape components was pursued to develop a reliable pharmacophore model for ATP-competitive Chk1 inhibitors. Common chemical features of the pharmacophore model were derived by clustering multiple structure-based pharmacophore features from different Chk1-ligand complexes in comparable binding modes. The final model consisted of one hydrogen bond acceptor (HBA), one hydrogen bond donor (HBD), two hydrophobic (HY) features, several excluded volumes and shape constraints. In the validation study, this feature-shape query yielded an enrichment factor of 9.196 and performed fairly well at distinguishing active from inactive compounds, suggesting that the pharmacophore model can serve as a reliable tool for virtual screening to facilitate the discovery of novel Chk1 inhibitors. Besides, these pharmacophore features were assumed to be essential for Chk1 inhibitors, which might be useful for the identification of potential Chk1 inhibitors. PMID:20020310

  17. A novel DYRK1A (dual specificity tyrosine phosphorylation-regulated kinase 1A) inhibitor for the treatment of Alzheimer's disease: effect on Tau and amyloid pathologies in vitro.

    PubMed

    Coutadeur, Séverine; Benyamine, Hélène; Delalonde, Laurence; de Oliveira, Catherine; Leblond, Bertrand; Foucourt, Alicia; Besson, Thierry; Casagrande, Anne-Sophie; Taverne, Thierry; Girard, Angélique; Pando, Matthew P; Désiré, Laurent

    2015-05-01

    The dual-specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A) gene is located within the Down Syndrome (DS) critical region on chromosome 21 and is implicated in the generation of Tau and amyloid pathologies that are associated with the early onset Alzheimer's Disease (AD) observed in DS. DYRK1A is also found associated with neurofibrillary tangles in sporadic AD and phosphorylates key AD players (Tau, amyloid precursor, protein, etc). Thus, DYRK1A may be an important therapeutic target to modify the course of Tau and amyloid beta (Aβ) pathologies. Here, we describe EHT 5372 (methyl 9-(2,4-dichlorophenylamino) thiazolo[5,4-f]quinazoline-2-carbimidate), a novel, highly potent (IC50 = 0.22 nM) DYRK1A inhibitor with a high degree of selectivity over 339 kinases. Models in which inhibition of DYRK1A by siRNA reduced and DYRK1A over-expression induced Tau phosphorylation or Aβ production were used. EHT 5372 inhibits DYRK1A-induced Tau phosphorylation at multiple AD-relevant sites in biochemical and cellular assays. EHT 5372 also normalizes both Aβ-induced Tau phosphorylation and DYRK1A-stimulated Aβ production. DYRK1A is thus as a key element of Aβ-mediated Tau hyperphosphorylation, which links Tau and amyloid pathologies. EHT 5372 and other compounds in its class warrant in vivo investigation as a novel, high-potential therapy for AD and other Tau opathies. Inhibition of the dual specificity tyrosine-phosphorylation-regulated kinase 1A (DYRK1A) is a new high-potential therapeutic approach for Alzheimer disease. Here we describe EHT 5372, a novel potent and selective DYRK1A inhibitor. EHT 5372 inhibits DYRK1A-induced Tau phosphorylation, Aβ production and Aβ effects on phospho-Tau, including Tau aggregation. PMID:25556849

  18. Functional Analysis of Dishevelled-3 Phosphorylation Identifies Distinct Mechanisms Driven by Casein Kinase 1ϵ and Frizzled5*

    PubMed Central

    Bernatík, Ondřej; Šedová, Kateřina; Schille, Carolin; Ganji, Ranjani Sri; Červenka, Igor; Trantírek, Lukáš; Schambony, Alexandra; Zdráhal, Zbyněk; Bryja, Vítězslav

    2014-01-01

    Dishevelled-3 (Dvl3), a key component of the Wnt signaling pathways, acts downstream of Frizzled (Fzd) receptors and gets heavily phosphorylated in response to pathway activation by Wnt ligands. Casein kinase 1ϵ (CK1ϵ) was identified as the major kinase responsible for Wnt-induced Dvl3 phosphorylation. Currently it is not clear which Dvl residues are phosphorylated and what is the consequence of individual phosphorylation events. In the present study we employed mass spectrometry to analyze in a comprehensive way the phosphorylation of human Dvl3 induced by CK1ϵ. Our analysis revealed >50 phosphorylation sites on Dvl3; only a minority of these sites was found dynamically induced after co-expression of CK1ϵ, and surprisingly, phosphorylation of one cluster of modified residues was down-regulated. Dynamically phosphorylated sites were analyzed functionally. Mutations within PDZ domain (S280A and S311A) reduced the ability of Dvl3 to activate TCF/LEF (T-cell factor/lymphoid enhancer factor)-driven transcription and induce secondary axis in Xenopus embryos. In contrast, mutations of clustered Ser/Thr in the Dvl3 C terminus prevented ability of CK1ϵ to induce electrophoretic mobility shift of Dvl3 and its even subcellular localization. Surprisingly, mobility shift and subcellular localization changes induced by Fzd5, a Wnt receptor, were in all these mutants indistinguishable from wild type Dvl3. In summary, our data on the molecular level (i) support previous the assumption that CK1ϵ acts via phosphorylation of distinct residues as the activator as well as the shut-off signal of Wnt/β-catenin signaling and (ii) suggest that CK1ϵ acts on Dvl via different mechanism than Fzd5. PMID:24993822

  19. SPHK1/sphingosine kinase 1-mediated autophagy differs between neurons and SH-SY5Y neuroblastoma cells.

    PubMed

    Moruno Manchon, Jose Felix; Uzor, Ndidi-Ese; Finkbeiner, Steven; Tsvetkov, Andrey S

    2016-08-01

    Although implicated in neurodegeneration, autophagy has been characterized mostly in yeast and mammalian non-neuronal cells. In a recent study, we sought to determine if SPHK1 (sphingosine kinase 1), implicated previously in macroautophagy/autophagy in cancer cells, regulates autophagy in neurons. SPHK1 synthesizes sphingosine-1-phosphate (S1P), a bioactive lipid involved in cell survival. In our study, we discovered that, when neuronal autophagy is pharmacologically stimulated, SPHK1 relocalizes to the endocytic and autophagic organelles. Interestingly, in non-neuronal cells stimulated with growth factors, SPHK1 translocates to the plasma membrane, where it phosphorylates sphingosine to produce S1P. Whether SPHK1 also binds to the endocytic and autophagic organelles in non-neuronal cells upon induction of autophagy has not been demonstrated. Here, we determined if the effect in neurons is operant in the SH-SY5Y neuroblastoma cell line. In both non-differentiated and differentiated SH-SY5Y cells, a short incubation of cells in amino acid-free medium stimulated the formation of SPHK1-positive puncta, as in neurons. We also found that, unlike neurons in which these puncta represent endosomes, autophagosomes, and amphisomes, in SH-SY5Y cells SPHK1 is bound only to the endosomes. In addition, a dominant negative form of SPHK1 was very toxic to SH-SY5Y cells, but cultured primary cortical neurons tolerated it significantly better. These results suggest that autophagy in neurons is regulated by mechanisms that differ, at least in part, from those in SH-SY5Y cells. PMID:27467777

  20. Dual role of sphingosine kinase-1 in promoting the differentiation of dermal fibroblasts and the dissemination of melanoma cells.

    PubMed

    Albinet, V; Bats, M-L; Huwiler, A; Rochaix, P; Chevreau, C; Ségui, B; Levade, T; Andrieu-Abadie, N

    2014-06-26

    Despite progress in the understanding of the biology and genetics of melanoma, no effective treatment against this cancer is available. The adjacent microenvironment has an important role in melanoma progression. Defining the molecular signals that control the bidirectional dialog between malignant cells and the surrounding stroma is crucial for efficient targeted therapy. Our study aimed at defining the role of sphingosine-1-phosphate (S1P) in melanoma-stroma interactions. Transcriptomic analysis of human melanoma cell lines showed increased expression of sphingosine kinase-1 (SPHK1), the enzyme that produces S1P, as compared with normal melanocytes. Such an increase was also observed by immunohistochemistry in melanoma specimens as compared with nevi, and occurred downstream of ERK activation because of BRAF or NRAS mutations. Importantly, migration of melanoma cells was not affected by changes in SPHK1 activity in tumor cells, but was stimulated by comparable modifications of S1P-metabolizing enzymes in cocultured dermal fibroblasts. Reciprocally, incubation of fibroblasts with the conditioned medium from SPHK1-expressing melanoma cells resulted in their differentiation to myofibroblasts, increased production of matrix metalloproteinases and enhanced SPHK1 expression and activity. In vivo tumorigenesis experiments showed that the lack of S1P in the microenvironment prevented the development of orthotopically injected melanoma cells. Finally, local tumor growth and dissemination were enhanced more efficiently by coinjection of wild-type skin fibroblasts than by fibroblasts from Sphk1(-/-) mice. This report is the first to document that SPHK1/S1P modulates the communication between melanoma cells and dermal fibroblasts. Altogether, our findings highlight SPHK1 as a potential therapeutic target in melanoma progression. PMID:23893239

  1. High casein kinase 1 epsilon levels are correlated with better prognosis in subsets of patients with breast cancer

    PubMed Central

    Lopez-Guerra, Jose Luis; Verdugo-Sivianes, Eva M.; Otero-Albiol, Daniel; Vieites, Begoña; Ortiz-Gordillo, Maria J.; De León, Jose M.; Praena-Fernandez, Juan M.; Marin, Juan J.; Carnero, Amancio

    2015-01-01

    Reliable biological markers that predict breast cancer (BC) outcomes after multidisciplinary therapy have not been fully elucidated. We investigated the association between casein kinase 1 epsilon (CK1ε) and the risk of recurrence in patients with BC. Using 168 available tumor samples from patients with BC treated with surgery +/− chemo(radio)therapy, we scored the CK1ε expression as high (≥1.5) or low (<1.5) using an immunohistochemical method. Kaplan-Meier analysis was performed to assess the risk of relapse, and Cox proportional hazards analyses were utilized to evaluate the effect of CK1ε expression on this risk. The median age at diagnosis was 60 years (range 35-96). A total of 58% of the patients underwent breast conservation surgery, while 42% underwent mastectomy. Adjuvant chemotherapy and radiation therapy were administered in 101 (60%) and 137 cases (82%), respectively. Relapse was observed in 24 patients (14%). Multivariate analysis found high expression of CK1ε to be associated with a statistically significant higher disease-free survival (DFS) in BC patients with wild-type p53 (Hazard ratio [HR] = 0.33; 95% CI, 0.12-0.91; P = 0.018) or poor histological differentiation ([HR] = 0.34; 95% CI, 0.12-0.94; P = 0.039) or in those without adjuvant chemotherapy ([HR] = 0.11; 95% CI, 0.01-0.97; P = 0.006). Our data indicate that CK1ε expression is associated with DFS in BC patients with wild-type p53 or poor histological differentiation or in those without adjuvant chemotherapy and thus may serve as a predictor of recurrence in these subsets of patients. PMID:26327509

  2. The role of sphingosine kinase-1 in EGFRvIII-regulated growth and survival of glioblastoma cells

    PubMed Central

    Estrada-Bernal, Adriana; Lawler, Sean E.; Nowicki, Michal O.; Chaudhury, Abhik Ray

    2011-01-01

    We have previously shown that high expression levels of the lipid kinase sphingosine kinase-1 (SphK1) correlate with poor survival of glioblastoma (GBM) patients. In this study we examined the regulation of SphK1 expression by epidermal growth factor receptor (EGFR) signaling in GBM cells. As the EGFR gene is often overexpressed and mutated in GBM, and EGFR has been shown to regulate SphK1 in some cell types, we examined the effect of EGF signaling and the constitutively active EGFRvIII mutant on SphK1 in GBM cells. Treatment of glioma cell lines with EGF led to increased expression and activity of SphK1. Expression of EGFRvIII in glioma cells also activated and induced SphK1. In addition, siRNA to SphK1 partially inhibited EGFRvIII-induced growth and survival of glioma cells as well as ERK MAP kinase activation. To further evaluate the connection between EGFR and SphK1 in GBM we examined primary neurosphere cells isolated from fresh human GBM tissue. The GBM-derived neurosphere cell line GBM9, which forms GBM-like tumors intracranially in nude mice, maintained expression of EGFRvIII in culture and had high levels of SphK1 activity. EGFR inhibitors modestly decreased SphK1 activity and proliferation of GBM9 cells. More extensive blockage of SphK1 activity by a SphK inhibitor, potently blocked cell proliferation and induced apoptotic cell death of GBM9 cells. Thus, SphK1 activity is necessary for survival of GBM-derived neurosphere cells, and EGFRvIII partially utilizes SphK1 to further enhance cell proliferation. PMID:20938717

  3. Critical role for sphingosine kinase-1 in regulating survival of neuroblastoma cells exposed to amyloid-beta peptide.

    PubMed

    Gomez-Brouchet, Anne; Pchejetski, Dimitri; Brizuela, Leyre; Garcia, Virginie; Altié, Marie-Françoise; Maddelein, Marie-Lise; Delisle, Marie-Bernadette; Cuvillier, Olivier

    2007-08-01

    We examined the role of sphingosine kinase-1 (SphK1), a critical regulator of the ceramide/sphingosine 1-phosphate (S1P) biostat, in the regulation of death and survival of SH-SY5Y neuroblastoma cells in response to amyloid beta (Abeta) peptide (25-35). Upon incubation with Abeta, SH-SY5Y cells displayed a marked down-regulation of SphK1 activity coupled with an increase in the ceramide/S1P ratio followed by cell death. This mechanism was redox-sensitive; N-acetylcysteine totally abrogated the down-regulation of SphK1 activity and strongly inhibited Abeta-induced cell death. SphK1 overexpression impaired the cytotoxicity of Abeta, whereas SphK1 silencing by RNA interference mimicked Abeta-induced cell death, thereby establishing a critical role for SphK1. We further demonstrated that SphK1 could mediate the well established cytoprotective action of insulin-like growth factor (IGF-I) against Abeta toxicity. A dominant-negative form of SphK1 or its pharmacological inhibition not only abrogated IGF-I-triggered stimulation of SphK1 but also hampered IGF-I protective effect. Similarly to IGF-I, the neuroprotective action of TGF-beta1 was also dependent on SphK1 activity; activation of SphK1 as well as cell survival were impeded by a dominant-negative form of SphK1. Taken together, these results provide the first illustration of SphK1 role as a critical regulator of death and survival of Abeta-treated cells. PMID:17522181

  4. Sphingosine kinase-1 is a downstream regulator of imatinib-induced apoptosis in chronic myeloid leukemia cells.

    PubMed

    Bonhoure, E; Lauret, A; Barnes, D J; Martin, C; Malavaud, B; Kohama, T; Melo, J V; Cuvillier, O

    2008-05-01

    We examined the involvement of sphingosine kinase-1 (SphK1), which governs the ceramide/sphingosine-1-phosphate balance, in susceptibility to imatinib of either sensitive or resistant chronic myeloid leukemia cells. Imatinib-sensitive LAMA84-s displayed marked SphK1 inhibition coupled with increased content of ceramide and decreased pro-survival sphingosine-1-phosphate. Conversely, no changes in the sphingolipid metabolism were observed in LAMA84-r treated with imatinib. Overcoming imatinib resistance in LAMA84-r with farnesyltransferase or MEK/ERK inhibitors as well as with cytosine arabinoside led to SphK1 inhibition. Overexpression of SphK1 in LAMA84-s cells impaired apoptosis and inhibited the effects of imatinib on caspase-3 activation, cytochrome c and Smac release from mitochondria through modulation of Bim, Bcl-xL and Mcl-1 expression. Pharmacological inhibition of SphK1 with F-12509a or its silencing by siRNA induced apoptosis of both imatinib-sensitive and -resistant cells, suggesting that SphK1 inhibition was critical for apoptosis signaling. We also show that imatinib-sensitive and -resistant primary cells from chronic myeloid leukemia patients can be successfully killed in vitro by the F-12509a inhibitor. These results uncover the involvement of SphK1 in regulating imatinib-induced apoptosis and establish that SphK1 is a downstream effector of the Bcr-Abl/Ras/ERK pathway inhibited by imatinib but upstream regulator of Bcl-2 family members. PMID:18401414

  5. Oxidative stress-dependent sphingosine kinase-1 inhibition mediates monoamine oxidase A-associated cardiac cell apoptosis.

    PubMed

    Pchejetski, Dimitri; Kunduzova, Oxana; Dayon, Audrey; Calise, Denis; Seguelas, Marie-Hélène; Leducq, Nathalie; Seif, Isabelle; Parini, Angelo; Cuvillier, Olivier

    2007-01-01

    The mitochondrial enzyme monoamine oxidase (MAO), its isoform MAO-A, plays a major role in reactive oxygen species-dependent cardiomyocyte apoptosis and postischemic cardiac damage. In the current study, we investigated whether sphingolipid metabolism can account for mediating MAO-A- and reactive oxygen species-dependent cardiomyocyte apoptosis. In H9c2 cardiomyoblasts, MAO-A-dependent reactive oxygen species generation led to mitochondria-mediated apoptosis, along with sphingosine kinase-1 (SphK1) inhibition. These phenomena were associated with generation of proapoptotic ceramide and decrease in prosurvival sphingosine 1-phosphate. These events were mimicked by inhibition of SphK1 with either pharmacological inhibitor or small interfering RNA, as well as by extracellular addition of C(2)-ceramide or H(2)O(2). In contrast, enforced expression of SphK1 protected H9c2 cells from serotonin- or H(2)O(2)-induced apoptosis. Analysis of cardiac tissues from wild-type mice subjected to ischemia/reperfusion revealed significant upregulation of ceramide and inhibition of SphK1. It is noteworthy that SphK1 inhibition, ceramide accumulation, and concomitantly infarct size and cardiomyocyte apoptosis were significantly decreased in MAO-A-deficient animals. In conclusion, we show for the first time that the upregulation of ceramide/sphingosine 1-phosphate ratio is a critical event in MAO-A-mediated cardiac cell apoptosis. In addition, we provide the first evidence linking generation of reactive oxygen species with SphK1 inhibition. Finally, we propose sphingolipid metabolites as key mediators of postischemic/reperfusion cardiac injury. PMID:17158340

  6. Sphingosine kinase 1 is a reliable prognostic factor and a novel therapeutic target for uterine cervical cancer.

    PubMed

    Kim, Hyun-Soo; Yoon, Gun; Ryu, Ji-Yoon; Cho, Young-Jae; Choi, Jung-Joo; Lee, Yoo-Young; Kim, Tae-Joong; Choi, Chel-Hun; Song, Sang Yong; Kim, Byoung-Gie; Bae, Duk-Soo; Lee, Jeong-Won

    2015-09-29

    Sphingosine kinase 1 (SPHK1), an oncogenic kinase, has previously been found to be upregulated in various types of human malignancy and to play a crucial role in tumor development and progression. Although SPHK1 has gained increasing prominence as an important enzyme in cancer biology, its potential as a predictive biomarker and a therapeutic target in cervical cancer remains unknown. SPHK1 expression was examined in 287 formalin-fixed, paraffin-embedded cervical cancer tissues using immunohistochemistry, and its clinical implications and prognostic significance were analyzed. Cervical cancer cell lines including HeLa and SiHa were treated with the SPHK inhibitors SKI-II or FTY720, and effects on cell survival, apoptosis, angiogenesis, and invasion were examined. Moreover, the effects of FTY720 on tumor growth were evaluated using a patient-derived xenograft (PDX) model of cervical cancer. Immunohistochemical analysis revealed that expression of SPHK1 was significantly increased in cervical cancer compared with normal tissues. SPHK1 expression was significantly associated with tumor size, invasion depth, FIGO stage, lymph node metastasis, and lymphovascular invasion. Patients with high SPHK1 expression had lower overall survival and recurrence-free survival rates than those with low expression. Treatment with SPHK inhibitors significantly reduced viability and increased apoptosis in cervical cancer cells. Furthermore, FTY720 significantly decreased in vivo tumor weight in the PDX model of cervical cancer. We provide the first convincing evidence that SPHK1 is involved in tumor development and progression of cervical cancer. Our data suggest that SPHK1 might be a potential prognostic marker and therapeutic target for the treatment of cervical cancer. PMID:26311741

  7. BOTRYTIS-INDUCED KINASE1 Modulates Arabidopsis Resistance to Green Peach Aphids via PHYTOALEXIN DEFICIENT41[W][OPEN

    PubMed Central

    Lei, Jiaxin; A. Finlayson, Scott; Salzman, Ron A.; Shan, Libo; Zhu-Salzman, Keyan

    2014-01-01

    BOTRYTIS-INDUCED KINASE1 (BIK1) plays important roles in induced defense against fungal and bacterial pathogens in Arabidopsis (Arabidopsis thaliana). Its tomato (Solanum lycopersicum) homolog is required for host plant resistance to a chewing insect herbivore. However, it remains unknown whether BIK1 functions in plant defense against aphids, a group of insects with a specialized phloem sap-feeding style. In this study, the potential role of BIK1 was investigated in Arabidopsis infested with the green peach aphid (Myzus persicae). In contrast to the previously reported positive role of intact BIK1 in defense response, loss of BIK1 function adversely impacted aphid settling, feeding, and reproduction. Relative to wild-type plants, bik1 displayed higher aphid-induced hydrogen peroxide accumulation and more severe lesions, resembling a hypersensitive response (HR) against pathogens. These symptoms were limited to the infested leaves. The bik1 mutant showed elevated basal as well as induced salicylic acid and ethylene accumulation. Intriguingly, elevated salicylic acid levels did not contribute to the HR-like symptoms or to the heightened aphid resistance associated with the bik1 mutant. Elevated ethylene levels in bik1 accounted for an initial, short-term repellence. Introducing a loss-of-function mutation in the aphid resistance and senescence-promoting gene PHYTOALEXIN DEFICIENT4 (PAD4) into the bik1 background blocked both aphid resistance and HR-like symptoms, indicating bik1-mediated resistance to aphids is PAD4 dependent. Taken together, Arabidopsis BIK1 confers susceptibility to aphid infestation through its suppression of PAD4 expression. Furthermore, the results underscore the role of reactive oxygen species and cell death in plant defense against phloem sap-feeding insects. PMID:24963070

  8. Deletion of sphingosine kinase 1 ameliorates hepatic steatosis in diet-induced obese mice: Role of PPARγ.

    PubMed

    Chen, Jinbiao; Wang, Wei; Qi, Yanfei; Kaczorowski, Dominik; McCaughan, Geoffrey W; Gamble, Jennifer R; Don, Anthony S; Gao, Xin; Vadas, Mathew A; Xia, Pu

    2016-02-01

    Sphingolipid metabolites have emerged playing important roles in the pathogenesis of nonalcoholic fatty liver disease, whereas the underlying mechanism remains largely unknown. In the present study, we provide both in vitro and in vivo evidence showing a pathogenic role of sphingosine kinase 1 (SphK1) in hepatocellular steatosis. We found that levels of SphK1 expression were significantly increased in steatotic hepatocytes. Enforced overexpression of SphK1 or treatment with sphingosine 1-phosphate (S1P) markedly enhanced hepatic lipid accumulation. In contrast, the siRNA-mediated knockdown of SphK1 or S1P receptors, S1P2 and S1P3, profoundly inhibited lipid accumulation in hepatocytes. Moreover, Sphk1(-/-) mice exhibited a significant amelioration of hepatosteatosis under diet-induced obese (DIO) conditions, compared to wild-type littermates. In addition, DIO-induced up-regulation of PPARγ and its target genes were significantly reduced by SphK1 deficiency. Furthermore, treatment of hepatocytes with S1P induces a dose-dependent increase in PPARγ expression at the transcriptional level. Blockage of S1P receptors and the Akt-mTOR signaling profoundly inhibited S1P-induced PPARγ expression. Notably, down-regulation of PPARγ by using its siRNA significantly diminished the pro-steatotic effect of SphK1/S1P. Thus, the study demonstrates a new pathway connecting SphK1 and PPARγ involved in the pathogenesis of hepatocellular steatosis. PMID:26615875

  9. Tumor-suppressive sphingosine-1-phosphate receptor-2 counteracting tumor-promoting sphingosine-1-phosphate receptor-1 and sphingosine kinase 1 — Jekyll Hidden behind Hyde

    PubMed Central

    Takuwa, Noriko; Du, Wa; Kaneko, Erika; Okamoto, Yasuo; Yoshioka, Kazuaki; Takuwa, Yoh

    2011-01-01

    Sphingosine-1-phosphate (S1P) is a plasma lipid mediator with multiple roles in mammalian development, physiology and pathophysiology. It is constitutively produced mostly by erythrocytes by the action of sphingosine kinase 1 (SphK1), resulting in high (∼0.5 micromolar) steady-state plasma S1P content and steep S1P concentration gradient imposed between plasma/lymph/tissue interstitial fluid. S1P is also locally produced by activated platelets and tumor cells, in the latter case SphK1 is a downstream target of activated Ras mutant and hypoxia, and is frequently upregulated especially in advanced stages of tumors. Most if not all of the S1P actions in vertebrates are mediated through evolutionarily conserved G protein-coupled S1P receptor family. Ubiquitously expressed mammalian subtypes S1PR1, S1PR2 and S1PR3 mediate pleiotropic actions of S1P in diverse cell types, through coupling to distinctive repertoire of heterotrimeric G proteins. S1PR1 and S1PR3 mediate directed cell migration toward S1P through coupling to Gi and activating Rac, a Rho family small G protein essential for cell migration. Indeed, S1PR1 expressed in lymphocytes directs their egress from lymph nodes into lymph and recirculation, serving as the target for downregulation by the immunosuppressant FTY720 (fingolimod). S1PR1 in endothelial cells plays an essential role in vascular maturation in embryonic stage, and mediates angiogenic and vascular protective roles of S1P which include eNOS activation and maintenance of barrier integrity. It is likely that S1PR1 and SphK1 expressed in host endothelial cells and tumor cells act in concert in a paracrine loop to contribute to tumor angiogenesis, tumor invasion and progression. In sharp contrast, S1PR2 mediates S1P inhibition of Rac at the site downstream of G12/13-mediated Rho activation, thus identified as the first G protein-coupled receptor that negatively regulates Rac and cell migration. S1PR2 could also mediate inhibition of Akt and cell

  10. Synthesis of N3-Substituted Carboranyl Thymidine Bioconjugates and their Evaluation as Substrates of Recombinant Human Thymidine Kinase 1

    PubMed Central

    Agarwal, Hitesh K.; McElroy, Craig A.; Sjuvarsson, Elena; Eriksson, Staffan; Darby, Michael V.; Tjarks, Werner

    2013-01-01

    Four different libraries of overall twenty three N3-substituted thymidine (dThd) analogues, including eleven 3-carboranyl thymidine analogues (3CTAs), were synthesized. The latter are potential agents for Boron Neutron Capture Therapy (BNCT) of cancer. Linker between the dThd scaffold and the m-carborane cluster at the N3-position of the 3CTAs contained amidinyl-(3e and 3f), guanidyl-(7e-7g), tetrazolylmethyl-(9b1/2-9d1/2), or tetrazolyl groups (11b1/2-11d1/2) to improve human thymidine kinase 1 (hTK1) substrate characteristics and water solubilities compared with 1st generation 3CTAs, such as N5 and N5-2OH. The amidinyl- and guanidyl-type N3-substitued dThd analogues (3a-3f and 7a-7g) had hTK1 phosphorylation rates of <30% relative to that of dThd, the endogenous hTK1 substrate, whereas the tetrazolyl-type N3-substitued dThd analogues 9a, 9b1/2-9d1/2 and 11a, 11b1/2-11d1/2) had relative phosphorylation rates (rPRs) of >40%. Compounds 9a, 9b1/2-9d1/2 and 11a, 11b1/2-11d1/2 were subjected to in-depth enzyme kinetics studies and the obtained rkcat/Km (kcat/Km relative to that of dThd) ranged from 2.5-26%. The tetrazolyl-type N3-substitued dThd analogues 9b1/2 and 11d1/2 were the best substrates of hTK1 with rPRs of 52.4% and 42.5% and rkcat/Km values of 14.9% and 19.7% respectively. In comparison, the rPR and rkcat/Km values of N5-2OH in this specific study were 41.5% and 10.8%, respectively. Compounds 3e and 3f were >1,900 and >1,500 times, respectively, better soluble in PBS (pH 7.4) than N5-2OH whereas solubilities for 9b1/2-9d1/2 and 11b1/2-11d1/2 were only 1.3 – 13 times better. PMID:23318906

  11. Protein

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Proteins are the major structural and functional components of all cells in the body. They are macromolecules that comprise 1 or more chains of amino acids that vary in their sequence and length and are folded into specific 3-dimensional structures. The sizes and conformations of proteins, therefor...

  12. Proteins.

    ERIC Educational Resources Information Center

    Doolittle, Russell F.

    1985-01-01

    Examines proteins which give rise to structure and, by virtue of selective binding to other molecules, make genes. Binding sites, amino acids, protein evolution, and molecular paleontology are discussed. Work with encoding segments of deoxyribonucleic acid (exons) and noncoding stretches (introns) provides new information for hypotheses. (DH)

  13. Prolonged action potential duration in cardiac ablation of PDK1 mice.

    PubMed

    Han, Zhonglin; Jiang, Yu; Yang, Zhongzhou; Cao, Kejiang; Wang, Dao W

    2015-01-01

    The involvement of the AGC protein kinase family in regulating arrhythmia has drawn considerable attention, but the underlying mechanisms are still not clear. The aim of this study is to explore the role of 3-phosphoinositide-dependent protein kinase-1 (PDK1), one of upstream protein kinases of the AGC protein kinase family, in the pathogenesis of dysregulated electrophysiological basis. PDK1(F/F) αMHC-Cre mice and PDK1(F/F) mice were divided into experiment group and control group. Using patch clamping technology, we explored action potential duration in both groups, and investigated the functions of transient outward potassium channel and L-type Ca(2+) channel to explain the abnormal action potential duration. Significant prolongation action potential duration was found in mice with PDK1 deletion. Further, the peak current of transient outward potassium current and L-type Ca(2+) current were decreased by 84% and 49% respectively. In addition, dysregulation of channel kinetics lead to action potential duration prolongation further. In conclusion, we have demonstrated that PDK1 participates in action potential prolongation in cardiac ablation of PDK1 mice. This effect is likely to be mediated largely through downregulation of transient outward potassium current. These findings indicate the modulation of the PDK1 pathway could provide a new mechanism for abnormal electrophysiological basis. PMID:26131127

  14. PKC-dependent extracellular signal-regulated kinase 1/2 pathway is involved in the inhibition of Ib on AngiotensinII-induced proliferation of vascular smooth muscle cells

    SciTech Connect

    Wang Yu; Yan Tianhua; Wang Qiujuan Wang Wei; Xu Jinyi; Wu Xiaoming; Ji Hui

    2008-10-10

    AngiotensinII (AngII) induces vascular smooth muscle cell (VSMC) proliferation, which plays an important role in the development and progression of hypertension. AngII-induced cellular events have been implicated, in part, in the activation of protein kinase C (PKC) and extracellular signal-regulated kinases 1/2 (ERK1/2). In the present study, we investigated the effect of Ib, a novel nonpeptide AngII receptor type 1 (AT{sub 1}) antagonist, on the activation of PKC and ERK1/2 in VSMC proliferation induced by AngII. MTT, and [{sup 3}H]thymidine incorporation assay showed that AngII-induced VSMC proliferation was inhibited significantly by Ib. The specific binding of [{sup 125}I]AngII to AT{sub 1} receptors was blocked by Ib in a concentration-dependent manner with IC{sub 50} value of 0.96 nM. PKC activity assay and Western blot analysis demonstrated that Ib significantly inhibited the activation of PKC and phosphorylation of ERK1/2 induced by AngII, respectively. Furthermore, AngII-induced ERK1/2 activation was obviously blocked by GF109203X, a PKC inhibitor. These findings suggest that the suppression of Ib on AngII-induced VSMC proliferation may be attributed to its inhibitory effect on PKC-dependent ERK1/2 pathway.

  15. Hologram QSAR Models of a Series of 6-Arylquinazolin-4-Amine Inhibitors of a New Alzheimer’s Disease Target: Dual Specificity Tyrosine-Phosphorylation-Regulated Kinase-1A Enzyme

    PubMed Central

    Leal, Felipe Dias; da Silva Lima, Camilo Henrique; de Alencastro, Ricardo Bicca; Castro, Helena Carla; Rodrigues, Carlos Rangel; Albuquerque, Magaly Girão

    2015-01-01

    Dual specificity tyrosine-phosphorylation-regulated kinase-1A (DYRK1A) is an enzyme directly involved in Alzheimer’s disease, since its increased expression leads to β-amyloidosis, Tau protein aggregation, and subsequent formation of neurofibrillary tangles. Hologram quantitative structure-activity relationship (HQSAR, 2D fragment-based) models were developed for a series of 6-arylquinazolin-4-amine inhibitors (36 training, 10 test) of DYRK1A. The best HQSAR model (q2 = 0.757; SEcv = 0.493; R2 = 0.937; SE = 0.251; R2pred = 0.659) presents high goodness-of-fit (R2 > 0.9), as well as high internal (q2 > 0.7) and external (R2pred > 0.5) predictive power. The fragments that increase and decrease the biological activity values were addressed using the colored atomic contribution maps provided by the method. The HQSAR contribution map of the best model is an important tool to understand the activity profiles of new derivatives and may provide information for further design of novel DYRK1A inhibitors. PMID:25756379

  16. Claudin-18 inhibits cell proliferation and motility mediated by inhibition of phosphorylation of PDK1 and Akt in human lung adenocarcinoma A549 cells.

    PubMed

    Shimobaba, Shun; Taga, Saeko; Akizuki, Risa; Hichino, Asami; Endo, Satoshi; Matsunaga, Toshiyuki; Watanabe, Ryo; Yamaguchi, Masahiko; Yamazaki, Yasuhiro; Sugatani, Junko; Ikari, Akira

    2016-06-01

    Abnormal expression of claudin subtypes has been reported in various cancers. However, the pathological role of each claudin has not been clarified in detail. Claudin-18 was absent in human non-small cell and small cell lung cancers, although it is expressed in normal lung tissues. Here, we examined the effect of claudin-18 expression on the expression of junctional proteins, cell proliferation, and cell motility using human lung adenocarcinoma A549 cells. Real-time PCR and western blotting showed that exogenous expression of claudin-18 had no effect on the expression of junctional proteins including claudin-1, zonula occludens-1 (ZO-1), occludin, and E-cadherin. Claudin-18 was mainly distributed in cell-cell contact areas concomitant with ZO-1. Cell proliferation was significantly decreased at 48 and 72h after seeding of claudin 18-expressing cells. Claudin-18 suppressed cell motility, whereas it increased cell death in anoikis. Claudin-18 decreased phosphorylated (p)-3-phosphoinositide-dependent protein kinase-1 (PDK1) and p-Akt levels without affecting p-epidermal growth factor receptor and p-phosphatidylinositol-3 kinase (PI3K) levels. Furthermore, claudin-18 was bound with PDK1 and suppressed the nuclear localization of PDK1. We suggest that claudin-18 suppresses the abnormal proliferation and motility of lung epithelial cells mediated by inhibition of the PI3K/PDK1/Akt signaling pathway. PMID:26919807

  17. The tRNA methylase METTL1 is phosphorylated and inactivated by PKB and RSK in vitro and in cells

    PubMed Central

    Cartlidge, Robert A; Knebel, Axel; Peggie, Mark; Alexandrov, Andrei; Phizicky, Eric M; Cohen, Philip

    2005-01-01

    A substrate for protein kinase B (PKB)α in HeLa cell extracts was identified as methyltransferase-like protein-1 (METTL1), the orthologue of trm8, which catalyses the 7-methylguanosine modification of tRNA in Saccharomyces cerevisiae. PKB and ribosomal S6 kinase (RSK) both phosphorylated METTL1 at Ser27 in vitro. Ser27 became phosphorylated when HEK293 cells were stimulated with insulin-like growth factor-1 (IGF-1) and this was prevented by inhibition of phosphatidyinositol 3-kinase. The IGF-1-induced Ser27 phosphorylation did not occur in 3-phosphoinositide-dependent protein kinase-1 (PDK1)-deficient embryonic stem cells, but occurred normally in PDK1[L155E] cells, indicating that the effect of IGF-1 is mediated by PKB. METTL1 also became phosphorylated at Ser27 in response to phorbol-12-myristate 13-acetate and this was prevented by PD 184352 or pharmacological inhibition of RSK. Phosphorylation of METTL1 by PKB or RSK inactivated METTL1 in vitro, as did mutation of Ser27 to Asp or Glu. Expression of METTL1[S27D] or METTL1[S27E] did not rescue the growth phenotype of yeast lacking trm8. In contrast, expression of METTL1 or METTL1[S27A] partially rescued growth. These results demonstrate that METTL1 is inactivated by PKB and RSK in cells, and the potential implications of this finding are discussed. PMID:15861136

  18. Combination of PKCε Activation and PTP1B Inhibition Effectively Suppresses Aβ-Induced GSK-3β Activation and Tau Phosphorylation.

    PubMed

    Kanno, Takeshi; Tsuchiya, Ayako; Tanaka, Akito; Nishizaki, Tomoyuki

    2016-09-01

    Glycogen synthase kinase-3β (GSK-3β) is a key element to phosphorylate tau and form neurofibrillary tangles (NFTs) found in tauopathies including Alzheimer's disease (AD). A current topic for AD therapy is focused upon how to prevent tau phosphorylation. In the present study, PKCε activated Akt and inactivated GSK-3β by directly interacting with each protein. Inhibition of protein tyrosine phosphatase 1B (PTP1B), alternatively, caused an enhancement in the tyrosine phosphorylation of insulin receptor substrate 1 (IRS-1), allowing activation of Akt through a pathway along an IRS-1/phosphatidylinositol 3 kinase (PI3K)/3-phosphoinositide-dependent protein kinase-1 (PDK1)/Akt axis, to phosphorylate and inactivate GSK-3β. Combination of PKCε activation and PTP1B inhibition more sufficiently activated Akt and inactivated GSK-3β than each independent treatment, to suppress amyloid β (Aβ)-induced tau phosphorylation and ameliorate spatial learning and memory impairment in 5xFAD transgenic mice, an animal model of AD. This may represent an innovative strategy for AD therapy. PMID:26328540

  19. Altered expression of sphingosine kinase 1 and sphingosine-1-phosphate receptor 1 in mouse hippocampus after kainic acid treatment

    SciTech Connect

    Lee, Dong Hoon; Jeon, Byeong Tak; Jeong, Eun Ae; Kim, Joon Soo; Cho, Yong Woon; Kim, Hyun Joon; Kang, Sang Soo; Cho, Gyeong Jae; Choi, Wan Sung; Roh, Gu Seob

    2010-03-12

    Kainic acid (KA) induces hippocampal cell death and astrocyte proliferation. There are reports that sphingosine kinase (SPHK)1 and sphingosine-1- phosphate (S1P) receptor 1 (S1P{sub 1}) signaling axis controls astrocyte proliferation. Here we examined the temporal changes of SPHK1/S1P{sub 1} in mouse hippocampus during KA-induced hippocampal cell death. Mice were killed at 2, 6, 24, or 48 h after KA (30 mg/kg) injection. There was an increase in Fluoro-Jade B-positive cells in the hippocampus of KA-treated mice with temporal changes of glial fibrillary acidic protein (GFAP) expression. The lowest level of SPHK1 protein expression was found 2 h after KA treatment. Six hours after KA treatment, the expression of SPHK1 and S1P{sub 1} proteins steadily increased in the hippocampus. In immunohistochemical analysis, SPHK1 and S1P{sub 1} are more immunoreactive in astrocytes within the hippocampus of KA-treated mice than in hippocampus of control mice. These results indicate that SPHK1/S1P{sub 1} signaling axis may play an important role in astrocytes proliferation during KA-induced excitotoxicity.

  20. SCFFBXW7α modulates the intra-S-phase DNA-damage checkpoint by regulating Polo like kinase-1 stability

    PubMed Central

    Giráldez, Servando; Herrero-Ruiz, Joaquín; Mora-Santos, Mar; Japón, Miguel Á.; Tortolero, Maria; Romero, Francisco

    2014-01-01

    The intra-S-checkpoint is essential to control cell progression through S phase under normal conditions and in response to replication stress. When DNA lesions are detected, replication fork progression is blocked allowing time for repair to avoid genomic instability and the risk of cancer. DNA replication initiates at many origins of replication in eukaryotic cells, where a series of proteins form pre-replicative complexes (pre-RCs) that are activated to become pre-initiation complexes and ensure a single round of replication in each cell cycle. PLK1 plays an important role in the regulation of DNA replication, contributing to the regulation of pre-RCs formation by phosphorylating several proteins, under both normal and stress conditions. Here we report that PLK1 is ubiquitinated and degraded by SCFFBXW7α/proteasome. Moreover, we identified a new Cdc4 phosphodegron in PLK1, conserved from yeast to humans, whose mutation prevents PLK1 destruction. We established that endogenous SCFFBXW7α degrades PLK1 in the G1 and S phases of an unperturbed cell cycle and in S phase following UV irradiation. Furthermore, we showed that FBXW7α overexpression or UV irradiation prevented the loading of proteins onto chromatin to form pre-RCs and, accordingly, reduced cell proliferation. We conclude that PLK1 degradation mediated by SCFFBXW7α modulates the intra-S-phase checkpoint. PMID:24970797

  1. The Molecular Mechanism of Amyloid β42 Peptide Toxicity: The Role of Sphingosine Kinase-1 and Mitochondrial Sirtuins

    PubMed Central

    Strosznajder, Joanna B.

    2015-01-01

    Our study focused on the relationship between amyloid β 1–42 (Aβ), sphingosine kinases (SphKs) and mitochondrial sirtuins in regulating cell fate. SphK1 is a key enzyme involved in maintaining sphingolipid rheostat in the brain. Deregulation of the sphingolipid metabolism may play a crucial role in the pathogenesis of Alzheimer’s disease (AD). Mitochondrial function and mitochondrial deacetylases, i.e. sirtuins (Sirt3,-4,-5), are also important for cell viability. In this study, we evaluated the interaction between Aβ1–42, SphKs and Sirts in cell survival/death, and we examined several compounds to indicate possible target(s) for a strategy protecting against cytotoxicity of Aβ1–42. PC12 cells were subjected to Aβ1–42 oligomers and SphK inhibitor SKI II for 24–96 h. Our data indicated that Aβ1–42 enhanced SphK1 expression and activity after 24 h, but down-regulated them after 96 h and had no effect on Sphk2. Aβ1–42 and SKI II induced free radical formation, disturbed the balance between pro- and anti-apoptotic proteins and evoked cell death. Simultaneously, up-regulation of anti-oxidative enzymes catalase and superoxide dismutase 2 was observed. Moreover, the total protein level of glycogen synthase kinase-3β was decreased. Aβ1–42 significantly increased the level of mitochondrial proteins: apoptosis-inducing factor AIF and Sirt3, -4, -5. By using several pharmacologically active compounds we showed that p53 protein plays a significant role at very early stages of Aβ1–42 toxicity. However, during prolonged exposure to Aβ1–42, the activation of caspases, MEK/ERK, and alterations in mitochondrial permeability transition pores were additional factors leading to cell death. Moreover, SphK product, sphingosine-1-phosphate (S1P), and Sirt activators and antioxidants, resveratrol and quercetin, significantly enhanced viability of cells subjected to Aβ1–42. Our data indicated that p53 protein and inhibition of SphKs may be early key

  2. Amino Acids Involved in Polyphosphate Synthesis and Its Mobilization Are Distinct in Polyphosphate Kinase-1 from Mycobacterium tuberculosis

    PubMed Central

    Mittal, Payal; Karthikeyan, Subramanian; Chakraborti, Pradip K.

    2011-01-01

    Background In bacteria polyphosphates (poly-P) are involved in cellular metabolism and development especially during stress. The enzyme, principally involved in polyphosphate biosynthesis and its mobilization leading to generation of NTPs, is known as polyphosphate kinase (PPK). Principal Findings Among two genes of polyphosphate kinases present in Mycobacterium tuberculosis, we cloned and expressed PPK1 in Escherichia coli as histidine-tagged protein. This ∼86 kDa protein is capable of autophosphorylation and synthesis of poly-P as well as NTP. Among 22 conserved histidine residues, we found only His-491 is autophosphorylated and crucial for any enzymatic activity. Substitution of His-510 caused mPPK1 protein deficient but not defective in autophosphorylation, thereby contrary to earlier reports negating any role of this residue in the process. However, mutation of His-510 with either Ala or Gln affected ATP or poly-P synthesis depending on the substitution; while such effects were severe with H510A but mild with H510Q. Furthermore, mPPK1 also renders auxiliary nucleotide diphosphate kinase function by synthesizing virtually all NTPs/dNTPs from their cognate NDPs/dNDPs by utilizing poly-P as the phosphate donor albeit with varied efficiency. To assess the influence of other catalytic domain residues of mPPK1 towards its functionality, we designed mutations based on E. coli PPK1 crystal structure since it owes 68% amino acid sequence similarity with mPPK1. Interestingly, our results revealed that mutations in mPPK1 affecting poly-P synthesis always affected its ATP synthesizing ability; however, the reverse may not be true. Conclusions/Significance We conclude that amino acid residues involved in poly-P and ATP synthesizing activities of mPPK1 are distinct. Considering conserved nature of PPK1, it seems our observations have broader implications and not solely restricted to M. tuberculosis only. PMID:22110640

  3. The phosphatidylethanolamine derivative diDCP-LA-PE mimics intracellular insulin signaling

    PubMed Central

    Nishizaki, Tomoyuki; Gotoh, Akinobu; Shimizu, Tadashi; Tanaka, Akito

    2016-01-01

    Insulin facilitates glucose uptake into cells by translocating the glucose transporter GLUT4 towards the cell surface through a pathway along an insulin receptor (IR)/IR substrate 1 (IRS-1)/phosphatidylinositol 3 kinase (PI3K)/3-phosphoinositide-dependent protein kinase-1 (PDK1)/Akt axis. The newly synthesized phosphatidylethanolamine derivative 1,2-O-bis-[8-{2-(2-pentyl-cyclopropylmethyl)-cyclopropyl}-octanoyl]-sn-glycero-3-phosphatidylethanolamine (diDCP-LA-PE) has the potential to inhibit protein tyrosine phosphatase 1B (PTP1B) and to directly activate PKCζ, an atypical isozyme, and PKCε, a novel isozyme. PTP1B inhibition enhanced insulin signaling cascades downstream IR/IRS-1 by preventing tyrosine dephosphorylation. PKCζ and PKCε directly activated Akt2 by phosphorylating at Thr309 and Ser474, respectively. diDCP-LA-PE increased cell surface localization of GLUT4 and stimulated glucose uptake into differentiated 3T3-L1 adipocytes, still with knocking-down IR or in the absence of insulin. Moreover, diDCP-LA-PE effectively reduced serum glucose levels in type 1 diabetes (DM) model mice. diDCP-LA-PE, thus, may enable type 1 DM therapy without insulin injection. PMID:27251941

  4. The phosphatidylethanolamine derivative diDCP-LA-PE mimics intracellular insulin signaling.

    PubMed

    Nishizaki, Tomoyuki; Gotoh, Akinobu; Shimizu, Tadashi; Tanaka, Akito

    2016-01-01

    Insulin facilitates glucose uptake into cells by translocating the glucose transporter GLUT4 towards the cell surface through a pathway along an insulin receptor (IR)/IR substrate 1 (IRS-1)/phosphatidylinositol 3 kinase (PI3K)/3-phosphoinositide-dependent protein kinase-1 (PDK1)/Akt axis. The newly synthesized phosphatidylethanolamine derivative 1,2-O-bis-[8-{2-(2-pentyl-cyclopropylmethyl)-cyclopropyl}-octanoyl]-sn-glycero-3-phosphatidylethanolamine (diDCP-LA-PE) has the potential to inhibit protein tyrosine phosphatase 1B (PTP1B) and to directly activate PKCζ, an atypical isozyme, and PKCε, a novel isozyme. PTP1B inhibition enhanced insulin signaling cascades downstream IR/IRS-1 by preventing tyrosine dephosphorylation. PKCζ and PKCε directly activated Akt2 by phosphorylating at Thr309 and Ser474, respectively. diDCP-LA-PE increased cell surface localization of GLUT4 and stimulated glucose uptake into differentiated 3T3-L1 adipocytes, still with knocking-down IR or in the absence of insulin. Moreover, diDCP-LA-PE effectively reduced serum glucose levels in type 1 diabetes (DM) model mice. diDCP-LA-PE, thus, may enable type 1 DM therapy without insulin injection. PMID:27251941

  5. Administration of BMP2/7 in utero partially reverses Rubinstein-Taybi syndrome-like skeletal defects induced by Pdk1 or Cbp mutations in mice.

    PubMed

    Shim, Jae-Hyuck; Greenblatt, Matthew B; Singh, Anju; Brady, Nicholas; Hu, Dorothy; Drapp, Rebecca; Ogawa, Wataru; Kasuga, Masato; Noda, Tetsuo; Yang, Sang-Hwa; Lee, Sang-Kyou; Rebel, Vivienne I; Glimcher, Laurie H

    2012-01-01

    Mutations in the coactivator CREB-binding protein (CBP) are a major cause of the human skeletal dysplasia Rubinstein-Taybi syndrome (RTS); however, the mechanism by which these mutations affect skeletal mineralization and patterning is unknown. Here, we report the identification of 3-phosphoinositide-dependent kinase 1 (PDK1) as a key regulator of CBP activity and demonstrate that its functions map to both osteoprogenitor cells and mature osteoblasts. In osteoblasts, PDK1 activated the CREB/CBP complex, which in turn controlled runt-related transcription factor 2 (RUNX2) activation and expression of bone morphogenetic protein 2 (BMP2). These pathways also operated in vivo, as evidenced by recapitulation of RTS spectrum phenotypes with osteoblast-specific Pdk1 deletion in mice (Pdk1osx mice) and by the genetic interactions observed in mice heterozygous for both osteoblast-specific Pdk1 deletion and either Runx2 or Creb deletion. Finally, treatment of Pdk1osx and Cbp+/- embryos with BMPs in utero partially reversed their skeletal anomalies at birth. These findings illustrate the in vivo function of the PDK1-AKT-CREB/CBP pathway in bone formation and provide proof of principle for in utero growth factor supplementation as a potential therapy for skeletal dysplasias. PMID:22133875

  6. A Small Molecule Inhibitor of PDK1/PLCγ1 Interaction Blocks Breast and Melanoma Cancer Cell Invasion

    PubMed Central

    Raimondi, Claudio; Calleja, Veronique; Ferro, Riccardo; Fantin, Alessandro; Riley, Andrew M.; Potter, Barry V. L.; Brennan, Caroline H.; Maffucci, Tania; Larijani, Banafshé; Falasca, Marco

    2016-01-01

    Strong evidence suggests that phospholipase Cγ1 (PLCγ1) is a suitable target to counteract tumourigenesis and metastasis dissemination. We recently identified a novel signalling pathway required for PLCγ1 activation which involves formation of a protein complex with 3-phosphoinositide-dependent protein kinase 1 (PDK1). In an effort to define novel strategies to inhibit PLCγ1-dependent signals we tested here whether a newly identified and highly specific PDK1 inhibitor, 2-O-benzyl-myo-inositol 1,3,4,5,6-pentakisphosphate (2-O-Bn-InsP5), could affect PDK1/PLCγ1 interaction and impair PLCγ1-dependent cellular functions in cancer cells. Here, we demonstrate that 2-O-Bn-InsP5 interacts specifically with the pleckstrin homology domain of PDK1 and impairs formation of a PDK1/PLCγ1 complex. 2-O-Bn-InsP5 is able to inhibit the epidermal growth factor-induced PLCγ1 phosphorylation and activity, ultimately resulting in impaired cancer cell migration and invasion. Importantly, we report that 2-O-Bn-InsP5 inhibits cancer cell dissemination in zebrafish xenotransplants. This work demonstrates that the PDK1/PLCγ1 complex is a potential therapeutic target to prevent metastasis and it identifies 2-O-Bn-InsP5 as a leading compound for development of anti-metastatic drugs. PMID:27199173

  7. A Small Molecule Inhibitor of PDK1/PLCγ1 Interaction Blocks Breast and Melanoma Cancer Cell Invasion.

    PubMed

    Raimondi, Claudio; Calleja, Veronique; Ferro, Riccardo; Fantin, Alessandro; Riley, Andrew M; Potter, Barry V L; Brennan, Caroline H; Maffucci, Tania; Larijani, Banafshé; Falasca, Marco

    2016-01-01

    Strong evidence suggests that phospholipase Cγ1 (PLCγ1) is a suitable target to counteract tumourigenesis and metastasis dissemination. We recently identified a novel signalling pathway required for PLCγ1 activation which involves formation of a protein complex with 3-phosphoinositide-dependent protein kinase 1 (PDK1). In an effort to define novel strategies to inhibit PLCγ1-dependent signals we tested here whether a newly identified and highly specific PDK1 inhibitor, 2-O-benzyl-myo-inositol 1,3,4,5,6-pentakisphosphate (2-O-Bn-InsP5), could affect PDK1/PLCγ1 interaction and impair PLCγ1-dependent cellular functions in cancer cells. Here, we demonstrate that 2-O-Bn-InsP5 interacts specifically with the pleckstrin homology domain of PDK1 and impairs formation of a PDK1/PLCγ1 complex. 2-O-Bn-InsP5 is able to inhibit the epidermal growth factor-induced PLCγ1 phosphorylation and activity, ultimately resulting in impaired cancer cell migration and invasion. Importantly, we report that 2-O-Bn-InsP5 inhibits cancer cell dissemination in zebrafish xenotransplants. This work demonstrates that the PDK1/PLCγ1 complex is a potential therapeutic target to prevent metastasis and it identifies 2-O-Bn-InsP5 as a leading compound for development of anti-metastatic drugs. PMID:27199173

  8. Structural and functional analyses of minimal phosphopeptides targeting the polo-box domain of polo-like kinase 1

    PubMed Central

    Yun, Sang-Moon; Moulaei, Tinoush; Lim, Dan; Bang, Jeong K.; Park, Jung-Eun; Shenoy, Shilpa R.; Liu, Fa; Kang, Young Hwi; Liao, Chenzhong; Soung, Nak-Kyun; Lee, Sunhee; Yoon, Do-Young; Lim, Yoongho; Lee, Dong-Hee; Otaka, Akira; Appella, Ettore; McMahon, James B.; Nicklaus, Marc C.; Burke, Terrence R.; Yaffe, Michael B.; Wlodawer, Alexander; Lee, Kyung S.

    2009-01-01

    Plk1 plays a pivotal role in cell proliferation and is considered an attractive target for anti-cancer therapy. The noncatalytic polo-box domain (PBD) of Plk1 forms a phosphoepitope-binding module for protein-protein interaction. Here, we report the identification of minimal phosphopeptides that specifically interacted with the PBD of Plk1, but not the two closely-related Plk2 and Plk3. Comparative binding studies and analyses of crystal structures of the Plk1 PBD in complex with the minimal phosphopeptides revealed that the C-terminal SpT dipeptide functions as a high affinity anchor, whereas the N-terminal residues are critical for providing both specificity and affinity to the interaction. Inhibition of the Plk1 PBD by phospho-Thr mimetic peptides was sufficient to induce mitotic arrest and apoptotic cell death. Thus, the mode of the minimal peptide and PBD interaction may provide a template for designing anti-Plk1 therapeutic agents. PMID:19597481

  9. Identification of Phosphorylated Cyclin-Dependent Kinase 1 Associated with Colorectal Cancer Survival Using Label-Free Quantitative Analyses

    PubMed Central

    Tyan, Yu-Chang; Hsiao, Eric S. L.; Chu, Po-Chen; Lee, Chung-Ta; Lee, Jenq-Chang; Chen, Yi-Ming Arthur; Liao, Pao-Chi

    2016-01-01

    Colorectal cancer is the most common form of cancer in the world, and the five-year survival rate is estimated to be almost 90% in the early stages. Therefore, the identification of potential biomarkers to assess the prognosis of early stage colorectal cancer patients is critical for further clinical treatment. Dysregulated tyrosine phosphorylation has been found in several diseases that play a significant regulator of signaling in cellular pathways. In this study, this strategy was used to characterize the tyrosine phosphoproteome of colorectal cell lines with different progression abilities (SW480 and SW620). We identified a total of 280 phosphotyrosine (pTyr) peptides comprising 287 pTyr sites from 261 proteins. Label-free quantitative analysis revealed the differential level of a total of 103 pTyr peptides between SW480 and SW620 cells. We showed that cyclin-dependent kinase I (CDK1) pTyr15 level in SW480 cells was 3.3-fold greater than in SW620 cells, and these data corresponded with the label-free mass spectrometry-based proteomic quantification analysis. High level CDK1 pTyr15 was associated with prolonged disease-free survival for stage II colorectal cancer patients (n = 79). Taken together, our results suggest that the CDK1 pTyr15 protein is a potential indicator of the progression of colorectal cancer. PMID:27383761

  10. c-Jun-N-terminal kinase 1 is necessary for nicotine-induced enhancement of contextual fear conditioning.

    PubMed

    Leach, Prescott T; Kenney, Justin W; Gould, Thomas J

    2016-08-01

    Acute nicotine enhances hippocampus-dependent learning. Identifying how acute nicotine improves learning will aid in understanding how nicotine facilitates the development of maladaptive memories that contribute to drug-seeking behaviors, help development of medications to treat disorders associated with cognitive decline, and advance understanding of the neurobiology of learning and memory. The effects of nicotine on learning may involve recruitment of signaling through the c-Jun N-terminal kinase family (JNK 1-3). Learning in the presence of acute nicotine increases the transcription of mitogen-activated protein kinase 8 (MAPK8, also known as JNK1), likely through a CREB-dependent mechanism. The functional significance of JNK1 in the effects of acute nicotine on learning, however, is unknown. The current studies undertook a backward genetic approach to determine the functional contribution JNK1 protein makes to nicotine-enhanced contextual fear conditioning. JNK1 wildtype (WT) and knockout (KO) mice were administered acute nicotine prior to contextual and cued fear conditioning. 24h later, mice were evaluated for hippocampus-dependent (contextual fear conditioning) and hippocampus-independent (cued fear conditioning) memory. Nicotine selectively enhanced contextual conditioning in WT mice, but not in KO mice. Nicotine had no effect on hippocampus-independent learning in either genotype. JNK1 KO and WT mice given saline showed similar levels of learning. These data suggest that JNK1 may be recruited by nicotine and is functionally necessary for the acute effects of nicotine on learning and memory. PMID:27235579

  11. Identification of PECAM-1 association with sphingosine kinase 1 and its regulation by agonist-induced phosphorylation.

    PubMed

    Fukuda, Yu; Aoyama, Yuki; Wada, Atsushi; Igarashi, Yasuyuki

    2004-02-27

    Sphingosine 1-phosphate (S1P) is a bioactive lipid mediator generated from sphingosine by sphingosine kinase (SPHK). S1P acts both extracellularly and intracellularly as a signaling molecule, although its intracellular targets are still undefined. Intracellular level of S1P is under strict regulatory control of SPHK regulation, S1P degradation, and S1P dephosphorylation. Therefore, clarifying the mechanisms regulating SPHK activity may help us understand when and where S1P is generated. In this study, we performed yeast two-hybrid screening to search for SPHK1a-binding molecules that may be involved in the regulation of the kinase localization or activity. Platelet endothelial cell adhesion molecule-1 (PECAM-1) was identified as a protein potentially associating with SPHK1a. Their association was confirmed by co-immunoprecipitation analysis using HEK293 cells overexpressing PECAM-1 and SPHK1a. Moreover, the kinase activity appeared to be reduced in stable PECAM-1-expressing cells. PECAM-1 is expressed on the cell surface of vascular cells, and several stimuli are known to induce phosphorylation of its tyrosine residues. We found that such phosphorylation attenuated its association with SPHK1a. This association/dissociation of SPHK with PECAM-1, regulated by the phosphorylated state of the membrane protein, may be involved in the control of localized kinase activity in certain cell types. PMID:14984734

  12. Nuclear Localization Signal and p53 Binding Site in MAP/ERK Kinase Kinase 1 (MEKK1).

    PubMed

    Chipps, Elizabeth; Protzman, April; Muhi, M Zubayed; Ando, Shoko; Calvet, James P; Islam, M Rafiq

    2015-12-01

    Previously, we showed that Mekk1 translocates to the nucleus, interacts with tumor suppressor protein p53, and co-represses PKD1 transcription via an atypical p53 binding site on the minimal PKD1 promoter (JBC 285:38,818-38,831, 2010). In this study, we report the mechanisms of Mekk1 nuclear transport and p53 binding. Using GFP-linked constitutively active-Mekk1 (CA-Mekk1) and a deletion strategy, we identified a nuclear localization signal (HRDVK) located at amino acid (aa) residues 1,349-1,353 in the C-terminal Mekk1 catalytic domain. Deletion of this sequence in CA-Mekk1 and full-length Mekk1 significantly reduced their nuclear translocation in both HEK293T and COS-1 cells. Using co-immunoprecipitation, we identified an adjacent sequence (GANLID, aa 1,354-1,360) in Mekk1 responsible for p53 binding. Deletion of this sequence markedly reduced the interaction of Mekk1 with p53. Mekk1 does not appear to affect phosphorylation of Ser15, located in the Mdm2 interaction site, or other Ser residues in p53. However, Mekk1 mediates p53 protein stability in the presence of Mdm2 and reduces p53 ubiquitination, suggesting an interference with Mdm2-mediated degradation of p53 by the ubiquitin-proteasome pathway. PMID:26018553

  13. Foot-and-mouth disease virus structural protein VP3 degrades Janus kinase 1 to inhibit IFN-γ signal transduction pathways.

    PubMed

    Li, Dan; Wei, Jin; Yang, Fan; Liu, Hua-Nan; Zhu, Zi-Xiang; Cao, Wei-Jun; Li, Shu; Liu, Xiang-Tao; Zheng, Hai-Xue; Shu, Hong-Bing

    2016-01-01

    Foot-and-mouth disease is a highly contagious viral disease of cloven-hoofed animals that is caused by foot-and-mouth disease virus (FMDV). To replicate efficiently in vivo, FMDV has evolved methods to circumvent host antiviral defense mechanisms, including those induced by interferons (IFNs). Previous research has focused on the effect of FMDV L(pro) and 3C(pro) on type I IFNs. In this study, FMDV VP3 was found to inhibit type II IFN signaling pathways. The overexpression of FMDV VP3 inhibited the IFN-γ-triggered phosphorylation of STAT1 at Tyr701 and the subsequent expression of downstream genes. Mechanistically, FMDV VP3 interacted with JAK1/2 and inhibited the tyrosine phosphorylation, dimerization and nuclear accumulation of STAT1. FMDV VP3 also disrupted the assembly of the JAK1 complex and degraded JAK1 but not JAK2 via a lysosomal pathway. Taken together, the results reveal a novel mechanism used by which FMDV VP3 counteracts the type II IFN signaling pathways. PMID:26901336

  14. Melatonin inhibits the sphingosine kinase 1/sphingosine-1-phosphate signaling pathway in rabbits with fulminant hepatitis of viral origin.

    PubMed

    Crespo, Irene; San-Miguel, Beatriz; Sánchez, Diana I; González-Fernández, Bárbara; Álvarez, Marcelino; González-Gallego, Javier; Tuñón, María J

    2016-09-01

    The sphingosine kinase (SphK)1/sphingosine-1-phosphate (S1P) pathway is involved in multiple biological processes, including liver diseases. This study investigate whether modulation of the SphK1/S1P system associates to the beneficial effects of melatonin in an animal model of acute liver failure (ALF) induced by the rabbit hemorrhagic disease virus (RHDV). Rabbits were experimentally infected with 2 × 10(4) hemagglutination units of a RHDV isolate and received 20 mg/kg of melatonin at 0, 12, and 24 hr postinfection. Liver mRNA levels, protein concentration, and immunohistochemical labeling for SphK1 increased in RHDV-infected rabbits. S1P production and protein expression of the S1PR1 receptor were significantly elevated following RHDV infection. These effects were significantly reduced by melatonin. Rabbits also exhibited increased expression of toll-like receptor (TLR)4, tumor necrosis factor alpha (TNF-α), interleukin (IL)-6, nuclear factor-kappa B (NF-κB) p50 and p65 subunits, and phosphorylated inhibitor of kappa B (IκB)α. Melatonin administration significantly inhibited those changes and induced a decreased immunoreactivity for RHDV viral VP60 antigen in the liver. Results obtained indicate that the SphK1/S1P system activates in parallel to viral replication and the inflammatory process induced by the virus. Inhibition of the lipid signaling pathway by the indole reveals novel molecular pathways that may account for the protective effect of melatonin in this animal model of ALF, and supports the potential of melatonin as an antiviral agent. PMID:27101794

  15. A kinome screen identifies checkpoint kinase 1 (CHK1) as a sensitizer for RRM1-dependent gemcitabine efficacy.

    PubMed

    Zhou, Jun; Chen, Zhengming; Malysa, Agnes; Li, Xin; Oliveira, Paula; Zhang, Yingtao; Bepler, Gerold

    2013-01-01

    Gemcitabine is among the most efficacious and widely used antimetabolite agents. Its molecular targets are ribonucleotide reductase M1 (RRM1) and elongating DNA. Acquired and de novo resistance as a result of RRM1 overexpression are major obstacles to therapeutic efficacy. We deployed a synthetic lethality screen to investigate if knockdown of 87 selected protein kinases by siRNA could overcome RRM1-dependent gemcitabine resistance in high and low RRM1-expressing model systems. The models included genetically RRM1-modified lung and breast cancer cell lines, cell lines with gemcitabine-induced RRM1 overexpression, and a series of naturally gemcitabine-resistant cell lines. Lead molecular targets were validated by determination of differential gemcitabine activity using cell lines with and without target knock down, and by assessing synergistic activity between gemcitabine and an inhibitor of the lead target. CHK1 was identified has the kinase with the most significant and robust interaction, and it was validated using AZD7762, a small-molecule ATP-competitive inhibitor of CHK1 activation. Synergism between CHK1 inhibition and RRM1-dependent gemcitabine efficacy was observed in cells with high RRM1 levels, while antagonism was observed in cells with low RRM1 levels. In addition, four cell lines with natural gemcitabine resistance demonstrated improved gemcitabine efficacy after CHK1 inhibition. In tumor specimens from 187 patients with non-small-cell lung cancer, total CHK1 and RRM1 in situ protein levels were significantly (p = 0.003) and inversely correlated. We conclude that inhibition of CHK1 may have its greatest clinical utility in malignancies where gemcitabine resistance is a result of elevated RRM1 levels. We also conclude that CHK1 inhibition in tumors with low RRM1 levels may be detrimental to gemcitabine efficacy. PMID:23483975

  16. Concentration of thymidine kinase 1 in serum (S-TK1) is a more sensitive proliferation marker in human solid tumors than its activity.

    PubMed

    He, Qimin; Zhang, Pinggn; Zou, Li; Li, Hongxun; Wang, Xiuqin; Zhou, Shan; Fornander, Tommy; Skog, Sven

    2005-10-01

    Activity of thymidine kinase 1 in serum (STK) is a useful marker for leukaemia and lymphoma, but not for solid tumors. We investigate thymidine kinase 1 concentration in serum (S-TK1) as a potential tumor marker. S-TK1 concentration and STK activity levels were determined in 9 human malignant diseases (breast, gastric, rectal, colorectal, lung, brain cancer, hepatoma, lymphoma, leukaemia) and in benign and non-cancerous diseases, representing 850 preoperative cases. Healthy volunteers (n=43) were used as positive controls. S-TK1 concentration was determined by ECL dot blot assay and STK activity levels by an RIA assay. S-TK1 concentrations and STK activity levels in preoperative malignant patients were significantly higher than in healthy individuals, in patients with benign tumors and in those with non-cancerous diseases. Significant correlations between concentration and activity level were only found in healthy individuals, in patients with benign tumors, and in some patients with malignancies, i.e. leukaemia, and breast and gastric cancers. About 90-95 percent of the malignant patients showed S-TK1 concentrations above those of the healthy controls. The corresponding value for STK activity was about 75 percent. When sera from malignant patients were diluted with sera from healthy individuals, S-TK1 concentrations and STK activity levels decreased more than expected. This indicates the presence of a compound (or compounds) in the serum of healthy individuals that destabilises S-TK1. We conclude that S-TK1 concentration is a more sensitive tumor marker in solid malignancies than is STK activity. PMID:16142366

  17. Serum- and Glucocorticoid-Inducible Kinase-1 (SGK-1) Plays a Role in Membrane Trafficking in Caenorhabditis elegans

    PubMed Central

    Zhu, Ming; Wu, Gang; Li, Yu-Xin; Stevens, Julia Kathrin; Fan, Chao-Xuan; Spang, Anne; Dong, Meng-Qiu

    2015-01-01

    The mammalian serum- and glucocorticoid-inducible kinase SGK1 regulates the endocytosis of ion channels. Here we report that in C. elegans sgk-1 null mutants, GFP-tagged MIG-14/Wntless, the sorting receptor of Wnt, failed to localize to the basolateral membrane of intestinal cells; instead, it was mis-sorted to lysosomes. This effect can be explained in part by altered sphingolipid levels, because reducing glucosylceramide biosynthesis restored the localization of MIG-14::GFP. Membrane traffic was not perturbed in general, as no obvious morphological defects were detected for early endosomes, the Golgi apparatus, and the endoplasmic reticulum (ER) in sgk-1 null animals. The recycling of MIG-14/Wntless through the Golgi might be partially responsible for the observed phenotype because the subcellular distribution of two plasma membrane cargoes that do not recycle through the trans-Golgi network (TGN) was affected to a lesser degree. Consistently, knockdown of the ArfGEF gbf-1 altered the distribution of SGK-1 at the basolateral membrane of intestinal cells. In addition, we found that sgk-1(RNAi) induced unfolded protein response in the ER, suggesting at least an indirect role of SGK-1 early in the secretory pathway. We propose that SGK-1 function is required for lipid homeostasis and that it acts at different intracellular trafficking steps. PMID:26115433

  18. Chrysin inhibits human airway smooth muscle cells proliferation through the extracellular signal-regulated kinase 1/2 signaling pathway.

    PubMed

    Yao, Jing; Zhang, Yun-Shi; Feng, Gan-Zhu; Du, Qiang

    2015-11-01

    Asthma is a chronic airway inflammatory disease characterized by an increased mass of airway smooth muscle (ASM). Chrysin (5,7-dihydroxyflavone), a natural flavonoid, has been shown to exert multiple biological activities, including anti-inflammatory, anti-proliferative and anti-oxidant effects, as well as the potency to ameliorate asthma in animal models. The objective of the present study was to identify the underlying mechanism of the therapeutic effects of chrysin. The impact of chrysin on basal and platelet-derived growth factor (PDGF)-induced proliferation and apoptosis of human airway smooth muscle cells (HASMCs) was investigated. Furthermore, the activation of the extracellular signal-regulated protein kinase (ERK) signaling pathway was evaluated in HASMCs. The results revealed that chrysin significantly inhibited basal as well as PDGF-induced HASMC proliferation, most likely through the suppression of ERK1/2 phosphorylation. However, chrysin did not significantly reduce PDGF-induced apoptosis of HASMCs. The present study indicated that chrysin may be a promising medication for controlling airway remodeling and clinical manifestations of asthma. PMID:26502995

  19. Cyclin B-dependent kinase 1 regulates human TRF1 to modulate the resolution of sister telomeres

    PubMed Central

    McKerlie, Megan; Zhu, Xu-Dong

    2016-01-01

    Cyclin B-Cdk1 is a key mediator of mitotic entry, however little is known about its role in the separation of sister chromatids. Here we report that upon mitotic entry, Cdk1 specifically phosphorylates threonine 371 of TRF1, a telomere binding protein implicated in the regulation of sister telomere cohesion. Such phosphorylation is removed in late mitosis when Cdk1 activity is inhibited, indicative of a tight regulation of T371 phosphorylation. We show that T371 phosphorylation by Cdk1 keeps TRF1 free of chromatin and this phosphorylation is associated with loss of telomere-bound TRF1 and TIN2, and a reduction in telomere heterochromatin. We find that a phosphomimic mutation at T371 of TRF1 induces telomere deprotection, resulting in telomere loss and the formation of telomere fusions whereas a non-phosphorylatable substitution of T371 blocks sister telomere resolution, promotes micronuclei formation and impairs cell proliferation. Our work suggests that Cdk1 controls TRF1 association with telomeres to facilitate temporal telomere de-protection essential for sister telomere resolution. PMID:21712819

  20. Therapeutic targeting of Polo-like kinase-1 and Aurora kinases in T-cell acute lymphoblastic leukemia

    PubMed Central

    Spartà, Antonino Maria; Bressanin, Daniela; Chiarini, Francesca; Lonetti, Annalisa; Cappellini, Alessandra; Evangelisti, Cecilia; Evangelisti, Camilla; Melchionda, Fraia; Pession, Andrea; Bertaina, Alice; Locatelli, Franco; McCubrey, James A; Martelli, Alberto M

    2014-01-01

    Polo-like kinases (PLKs) and Aurora kinases (AKs) act as key cell cycle regulators in healthy human cells. In cancer, these protein kinases are often overexpressed and dysregulated, thus contributing to uncontrolled cell proliferation and growth. T-cell acute lymphoblastic leukemia (T-ALL) is a heterogeneous malignancy arising in the thymus from T-cell progenitors. Primary chemoresistant and relapsed T-ALL patients have yet a poor outcome, therefore novel therapies, targeting signaling pathways important for leukemic cell proliferation, are required. Here, we demonstrate the potential therapeutic effects of BI6727, MK-5108, and GSK1070916, three selective inhibitors of PLK1, AK-A, and AK-B/C, respectively, in a panel of T-ALL cell lines and primary cells from T-ALL patients. The drugs were both cytostatic and cytotoxic to T-ALL cells by inducing G2/M-phase arrest and apoptosis. The drugs retained part of their pro-apoptotic activity in the presence of MS-5 bone marrow stromal cells. Moreover, we document for the first time that BI6727 perturbed both the PI3K/Akt/mTORC2 and the MEK/ERK/mTORC1 signaling pathways, and that a combination of BI6727 with specific inhibitors of the aforementioned pathways (MK-2206, CCI-779) displayed significantly synergistic cytotoxic effects. Taken together, our findings indicate that PLK1 and AK inhibitors display the potential for being employed in innovative therapeutic strategies for improving T-ALL patient outcome. PMID:24874015

  1. Functional integrity of the t-tubular system in cardiomyocytes depends on p21-activated kinase 1

    PubMed Central

    DeSantiago, Jaime; Bare, Dan J; Ke, Yunbo; Sheehan, Katherine A.; Solaro, R. John; Banach, Kathrin

    2013-01-01

    p21-activated kinase (Pak1), a serine-threonine protein kinase, regulates cytoskeletal dynamics and cell motility. Recent experiments further demonstrate that loss of Pak1 results in exaggerated hypertrophic growth in response to pathophysiological stimuli. Calcium (Ca) signaling plays an important role in the regulation of transcription factors involved in hypertrophic remodeling. Here we aimed to determine the role of Pak1 in cardiac excitation-contraction coupling (ECC). Ca transients were recorded in isolated, ventricular myocytes (VMs) from WT and Pak1−/− mice. Pak1−/− Ca transients had a decreased amplitude, prolonged rise time and delayed recovery time. Di-8-ANNEPS staining revealed a decreased t-tubular density in Pak1−/− VMs that coincided with decreased cell capacitance and increased dis-synchrony of Ca induced Ca release (CICR) at individual release units. These changes were not observed in atrial myocytes of Pak1−/− mice where the t-tubular system is only sparsely developed. Experiments in cultured rabbit VMs supported a role of Pak1 in the maintenance of the t-tubular structure. T-tubular density in rabbit VMs significantly decreased within 24h of culture. This was accompanied by a decrease of the Ca transient amplitude and a prolongation of its rise time. However, overexpression of constitutively active Pak1 in VMs attenuated the structural remodeling as well as changes in ECC. The results provide significant support for a prominent role of Pak1 activity not only in the functional regulation of ECC but for the structural maintenance of the t-tubular system whose remodeling is an integral feature of hypertrophic remodeling. PMID:23612118

  2. PI3 kinase directly phosphorylates Akt1/2 at Ser473/474 in the insulin signal transduction pathway

    PubMed Central

    Tsuchiya, A; Kanno, T; Nishizaki, T

    2014-01-01

    Insulin stimulated translocation of the glucose transporter GLUT4 from the cytosol to the plasma membrane in a concentration (1 nM–1 μM)-dependent manner and increased glucose uptake in 3T3-L1 adipocytes. Insulin-induced GLUT4 translocation to the cell surface was prevented by the phosphoinositide 3 kinase (PI3K) inhibitor wortmannin, the 3-phosphoinositide-dependent protein kinase 1 (PDK1) inhibitor BX912 or the Akt1/2 inhibitor MK2206, and by knocking-down PI3K, PDK1 or Akt1/2. Insulin increased phosphorylation of Akt1/2 at Thr308/309 and Ser473/474, to activate Akt1/2, in the adipocytes. Insulin-induced phosphorylation of Akt1/2 was suppressed by wortmannin and knocking-down PI3K, while no significant inhibition of the phosphorylation was obtained with BX912 or knocking-down PDK1. In the cell-free Akt assay, PI3K phosphorylated Akt1 both at Thr308 and Ser473 and Akt2 at Ser474 alone. In contrast, PDK1 phosphorylates Akt1 at Thr308 and Akt2 at Thr309. The results of this study indicate that PI3K activates Akt1, independently of PDK1, and Akt2 by cooperating with PDK1 in the insulin signal transduction pathway linked to GLUT4 translocation. PMID:24169049

  3. Loss of Frataxin induces iron toxicity, sphingolipid synthesis, and Pdk1/Mef2 activation, leading to neurodegeneration

    PubMed Central

    Chen, Kuchuan; Lin, Guang; Haelterman, Nele A; Ho, Tammy Szu-Yu; Li, Tongchao; Li, Zhihong; Duraine, Lita; Graham, Brett H; Jaiswal, Manish; Yamamoto, Shinya; Rasband, Matthew N; Bellen, Hugo J

    2016-01-01

    Mutations in Frataxin (FXN) cause Friedreich’s ataxia (FRDA), a recessive neurodegenerative disorder. Previous studies have proposed that loss of FXN causes mitochondrial dysfunction, which triggers elevated reactive oxygen species (ROS) and leads to the demise of neurons. Here we describe a ROS independent mechanism that contributes to neurodegeneration in fly FXN mutants. We show that loss of frataxin homolog (fh) in Drosophila leads to iron toxicity, which in turn induces sphingolipid synthesis and ectopically activates 3-phosphoinositide dependent protein kinase-1 (Pdk1) and myocyte enhancer factor-2 (Mef2). Dampening iron toxicity, inhibiting sphingolipid synthesis by Myriocin, or reducing Pdk1 or Mef2 levels, all effectively suppress neurodegeneration in fh mutants. Moreover, increasing dihydrosphingosine activates Mef2 activity through PDK1 in mammalian neuronal cell line suggesting that the mechanisms are evolutionarily conserved. Our results indicate that an iron/sphingolipid/Pdk1/Mef2 pathway may play a role in FRDA. DOI: http://dx.doi.org/10.7554/eLife.16043.001 PMID:27343351

  4. Lithium potentiates GSK-3β activity by inhibiting phosphoinositide 3-kinase-mediated Akt phosphorylation.

    PubMed

    Tian, Nie; Kanno, Takeshi; Jin, Yu; Nishizaki, Tomoyuki

    2014-07-18

    Accumulating evidence has pointed to the direct inhibitory action of lithium, an anti-depressant, on GSK-3β. The present study investigated further insight into lithium signaling pathways. In the cell-free assay Li2CO3 significantly inhibited phosphoinositide 3-kinase (PI3K)-mediated phosphorylation of Akt1 at Ser473, but Li2CO3 did not affect PI3K-mediated PI(3,4,5)P3 production and 3-phosphoinositide-dependent protein kinase 1 (PDK1)-mediated phosphorylation of Akt1 at Thr308. This indicates that lithium could enhance GSK-3β activity by suppressing Akt-mediated Ser9 phosphorylation of GSK-3β in association with inhibition of PI3K-mediated Akt activation. There was no direct effect of Li2CO3 on Akt1-induced phosphorylation of GSK-3β at Ser9, but otherwise Li2CO3 significantly reduced GSK-3β-mediated phosphorylation of β-catenin at Ser33/37 and Thr41. This indicates that lithium directly inhibits GSK-3β in an Akt-independent manner. In rat hippocampal slices Li2CO3 significantly inhibited phosphorylation of Akt1/2 at Ser473/474, GSK-3β at Ser9, and β-catenin at Ser33/37 and Thr41. Taken together, these results indicate that lithium exerts its potentiating and inhibiting bidirectional actions on GSK-3β activity. PMID:24950409

  5. Structures of the Wild-Type And Activated Catalytic Domains of Brachydanio Rerio Polo-Like Kinase 1 (Plk1): Changes in the Active-Site Conformation And Interactions With Ligands

    SciTech Connect

    Elling, R.A.; Fucini, R.V.; Romanowski, M.J.

    2009-05-18

    Polo-like kinase 1 (Plk1) is a member of a family of serine/threonine kinases involved in the regulation of cell-cycle progression and cytokinesis and is an attractive target for the development of anticancer therapeutics. A zebrafish homolog of the human Plk1 (hPlk1) kinase domain (KD) was identified that can be expressed in large quantities in bacteria and crystallizes readily, whether in a wild-type form or as a variant containing the activating Thr196-->Asp substitution, in one space group and under similar conditions both in the absence and presence of active-site compounds. This construct was validated by testing a panel of hPlk1 inhibitors against human and zebrafish proteins and it was shown that the selected small molecules inhibited the homologs with a high degree of correlation. Crystal structures of ligand-free wild-type and activated zebrafish Plk1 (zPlk1) KDs revealed the organization of the secondary structural elements around the active site and demonstrated that the activation segment was disordered in the activated form of the domain but possessed a well defined secondary structure in the wild-type enzyme. The cocrystal structure of wild-type zPlk1 KD with ADP documented the hydrolysis of ATP and revealed the phosphorylation site. The cocrystal structure of the activated KD with wortmannin, a covalent inhibitor of Plk1 and PI3 kinases, showed the binding mode of the small molecule to the enzyme and may facilitate the design of more potent Plk1 inhibitors. The work presented in this study establishes the zPlk1 KD as a useful tool for rapid low- and high-throughput structure-based screening and drug discovery of compounds specific for this mitotic target.

  6. Receptor tyrosine kinase-like orphan receptor 1, a target of NKX2-1/TTF-1 lineage-survival oncogene, inhibits apoptosis signal-regulating kinase 1-mediated pro-apoptotic signaling in lung adenocarcinoma.

    PubMed

    Ida, Lisa; Yamaguchi, Tomoya; Yanagisawa, Kiyoshi; Kajino, Taisuke; Shimada, Yukako; Suzuki, Motoshi; Takahashi, Takashi

    2016-02-01

    We previously identified receptor tyrosine kinase-like orphan receptor 1 (ROR1) as a transcriptional target of the NKX2-1/TTF-1 lineage-survival oncogene in lung adenocarcinoma. ROR1 consequently sustains a favorable balance between pro-survival phosphatidylinositol 3-kinase-protein kinase B and pro-apoptotic apoptosis signal-regulating kinase 1 (ASK1)-p38MAPK signaling. In contrast to recent advances in understanding how ROR1 sustains pro-survival signaling, the mechanism of ROR1 repression of pro-apoptotic signaling remains rather elusive. In the present study, we investigated the underlying mechanism of ROR1-mediated inhibition of the ASK1-p38MAPK signaling pathway. Growth inhibition mediated by siROR1 was partially but significantly alleviated by ASK1 co-knockdown in lung adenocarcinoma cell lines. Also, ASK1 phosphorylation at Thr845, which reflects its activated state, was clearly inhibited by ROR1 overexpression in both steady state and oxidative stress-elicited conditions in MSTO-211H cells. In addition, we found that ROR1 was physically associated with ASK1 at the C-terminal serine threonine-rich domain of ROR1. Furthermore, ROR1 kinase activity was shown to be required to repress the ASK1-p38 axis and oxidative stress-induced cell death. The present findings thus support our notion that ROR1 sustains lung adenocarcinoma survival, at least in part, through direct physical interaction with ASK1 and consequential repression of the pro-apoptotic ASK1-p38 axis in a ROR1 kinase activity-dependent manner. PMID:26661061

  7. An Overdose of the Arabidopsis Coreceptor BRASSINOSTEROID INSENSITIVE1-ASSOCIATED RECEPTOR KINASE1 or Its Ectodomain Causes Autoimmunity in a SUPPRESSOR OF BIR1-1-Dependent Manner1

    PubMed Central

    Domínguez-Ferreras, Ana; Kiss-Papp, Marta; Jehle, Anna Kristina; Felix, Georg; Chinchilla, Delphine

    2015-01-01

    The membrane-bound BRASSINOSTEROID INSENSITIVE1-ASSOCIATED RECEPTOR KINASE1 (BAK1) is a common coreceptor in plants and regulates distinct cellular programs ranging from growth and development to defense against pathogens. BAK1 functions through binding to ligand-stimulated transmembrane receptors and activating their kinase domains via transphosphorylation. In the absence of microbes, BAK1 activity may be suppressed by different mechanisms, like interaction with the regulatory BIR (for BAK1-INTERACTING RECEPTOR-LIKE KINASE) proteins. Here, we demonstrated that BAK1 overexpression in Arabidopsis (Arabidopsis thaliana) could cause detrimental effects on plant development, including growth arrest, leaf necrosis, and reduced seed production. Further analysis using an inducible expression system showed that BAK1 accumulation quickly stimulated immune responses, even under axenic conditions, and led to increased resistance to pathogenic Pseudomonas syringae pv tomato DC3000. Intriguingly, our study also revealed that the plasma membrane-associated BAK1 ectodomain was sufficient to induce autoimmunity, indicating a novel mode of action for BAK1 in immunity control. We postulate that an excess of BAK1 or its ectodomain could trigger immune receptor activation in the absence of microbes through unbalancing regulatory interactions, including those with BIRs. Consistently, mutation of SUPPRESSOR OF BIR1-1, which encodes an emerging positive regulator of transmembrane receptors in plants, suppressed the effects of BAK1 overexpression. In conclusion, our findings unravel a new role for the BAK1 ectodomain in the tight regulation of Arabidopsis immune receptors necessary to avoid inappropriate activation of immunity. PMID:25944825

  8. Glutaredoxin GrxC2 catalyzes the glutathionylation and inactivation of Arabidopsis BRI1-ASSOCIATED RECEPTOR-LIKE KINASE 1 (BAK1) in vitro

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Reversible protein phosphorylation, catalyzed by protein kinases, is the most widely studied post-translational modification (PTM) both in terms of its occurrence and the regulatory consequences of phosphorylation events on phosphorylated proteins. In addition to reversible phosphorylation, many pro...

  9. c-Jun NH2-Terminal Kinase 1/2 and Endoplasmic Reticulum Stress as Interdependent and Reciprocal Causation in Diabetic Embryopathy

    PubMed Central

    Li, Xuezheng; Xu, Cheng; Yang, Peixin

    2013-01-01

    Embryos exposed to high glucose exhibit aberrant maturational and cytoarchitectural cellular changes, implicating cellular organelle stress in diabetic embryopathy. c-Jun-N-terminal kinase 1/2 (JNK1/2) activation is a causal event in maternal diabetes–induced neural tube defects (NTD). However, the relationship between JNK1/2 activation and endoplasmic reticulum (ER) stress in diabetic embryopathy has never been explored. We found that maternal diabetes significantly increased ER stress markers and induced swollen/enlarged ER lumens in embryonic neuroepithelial cells during neurulation. Deletion of either jnk1 or jnk2 gene diminished hyperglycemia-increased ER stress markers and ER chaperone gene expression. In embryos cultured under high-glucose conditions (20 mmol/L), the use of 4-phenylbutyric acid (4-PBA), an ER chemical chaperone, diminished ER stress markers and abolished the activation of JNK1/2 and its downstream transcription factors, caspase 3 and caspase 8, and Sox1 neural progenitor apoptosis. Consequently, both 1 and 2 mmol/L 4-PBA significantly ameliorated high glucose–induced NTD. We conclude that hyperglycemia induces ER stress, which is responsible for the proapoptotic JNK1/2 pathway activation, apoptosis, and NTD induction. Suppressing JNK1/2 activation by either jnk1 or jnk2 gene deletion prevents ER stress. Thus, our study reveals a reciprocal causation of ER stress and JNK1/2 in mediating the teratogenicity of maternal diabetes. PMID:22961085

  10. Polo-like kinase 1 induces epithelial-to-mesenchymal transition and promotes epithelial cell motility by activating CRAF/ERK signaling

    PubMed Central

    Wu, Jianguo; Ivanov, Andrei I; Fisher, Paul B; Fu, Zheng

    2016-01-01

    Polo-like kinase 1 (PLK1) is a key cell cycle regulator implicated in the development of various cancers, including prostate cancer. However, the functions of PLK1 beyond cell cycle regulation remain poorly characterized. Here, we report that PLK1 overexpression in prostate epithelial cells triggers oncogenic transformation. It also results in dramatic transcriptional reprogramming of the cells, leading to epithelial-to-mesenchymal transition (EMT) and stimulation of cell migration and invasion. Consistently, PLK1 downregulation in metastatic prostate cancer cells enhances epithelial characteristics and inhibits cell motility. The signaling mechanisms underlying the observed cellular effects of PLK1 involve direct PLK1-dependent phosphorylation of CRAF with subsequent stimulation of the MEK1/2-ERK1/2-Fra1-ZEB1/2 signaling pathway. Our findings highlight novel non-canonical functions of PLK1 as a key regulator of EMT and cell motility in normal prostate epithelium and prostate cancer. This study also uncovers a previously unanticipated role of PLK1 as a potent activator of MAPK signaling. DOI: http://dx.doi.org/10.7554/eLife.10734.001 PMID:27003818

  11. Human ATP-Binding Cassette Transporter ABCB1 Confers Resistance to Volasertib (BI 6727), a Selective Inhibitor of Polo-like Kinase 1.

    PubMed

    Wu, Chung-Pu; Hsieh, Chia-Hung; Hsiao, Sung-Han; Luo, Shi-Yu; Su, Ching-Ya; Li, Yan-Qing; Huang, Yang-Hui; Huang, Chiun-Wei; Hsu, Sheng-Chieh

    2015-11-01

    The overexpression of the serine/threonine specific polo-like kinase 1 (Plk1) is associated with poor prognosis in many types of cancer. Consequently, Plk1 has emerged as a valid therapeutic target for anticancer drug design. Volasertib is a potent inhibitor of Plk1 that inhibits the proliferation of multiple human cancer cell lines by promoting cell cycle arrest at nanomolar concentrations. However, the risk of developing drug resistance, which is often associated with the overexpression of the ATP-binding cassette (ABC) transporter ABCB1 (P-glycoprotein), can present a therapeutic challenge for volasertib and many other therapeutic drugs. Although volasertib is highly effective against the proliferation of numerous cancer cell lines, we found that the overexpression of ABCB1 in cancer cells leads to cellular resistance to volasertib and reduces the level of volasertib-stimulated G2/M cell cycle arrest and subsequent onset of apoptosis. Furthermore, we demonstrate that volasertib competitively inhibits the function of ABCB1 and stimulates the basal ATPase activity of ABCB1 in a concentration-dependent manner, which is consistent with substrate transport by ABCB1. More importantly, we discovered that the coadministration of an inhibitor or drug substrate of ABCB1 restored the anticancer activity of volasertib in ABCB1-overexpressing cancer cells. In conclusion, the results of our study reveal that ABCB1 negatively affects the efficacy of volasertib and supports its combination with a modulator of ABCB1 to improve clinical responses. PMID:26412161

  12. TRAF2 regulates TNF and NF-κB signalling to suppress apoptosis and skin inflammation independently of Sphingosine kinase 1

    PubMed Central

    Etemadi, Nima; Chopin, Michael; Anderton, Holly; Tanzer, Maria C; Rickard, James A; Abeysekera, Waruni; Hall, Cathrine; Spall, Sukhdeep K; Wang, Bing; Xiong, Yuquan; Hla, Timothy; Pitson, Stuart M; Bonder, Claudine S; Wong, Wendy Wei-Lynn; Ernst, Matthias; Smyth, Gordon K; Vaux, David L; Nutt, Stephen L; Nachbur, Ueli; Silke, John

    2015-01-01

    TRAF2 is a component of TNF superfamily signalling complexes and plays an essential role in the regulation and homeostasis of immune cells. TRAF2 deficient mice die around birth, therefore its role in adult tissues is not well-explored. Furthermore, the role of the TRAF2 RING is controversial. It has been claimed that the atypical TRAF2 RING cannot function as a ubiquitin E3 ligase but counterclaimed that TRAF2 RING requires a co-factor, sphingosine-1-phosphate, that is generated by the enzyme sphingosine kinase 1, to function as an E3 ligase. Keratinocyte-specific deletion of Traf2, but not Sphk1 deficiency, disrupted TNF mediated NF-κB and MAP kinase signalling and caused epidermal hyperplasia and psoriatic skin inflammation. This inflammation was driven by TNF, cell death, non-canonical NF-κB and the adaptive immune system, and might therefore represent a clinically relevant model of psoriasis. TRAF2 therefore has essential tissue specific functions that do not overlap with those of Sphk1. DOI: http://dx.doi.org/10.7554/eLife.10592.001 PMID:26701909

  13. Association of the expression of unc-51-Like kinase 1 with lymph node metastasis and survival in patients with esophageal squamous cell carcinoma.

    PubMed

    Jiang, Lin; Duan, Ben-Song; Huang, Jun-Xing; Jiao, Xia; Zhu, Xiao-Wei; Sheng, Hai-Hui; Gao, Heng-Jun; Yu, Hong

    2014-01-01

    Unc-51-Like Kinase 1 (ULK1) is regarded as a central role in autophagy. Although the details of how ULK1 triggers autophagy are obscure, the relationship between ULK1 expression and the diagnosis and prognosis of cancer patients may guide the clinical practice and scientific research. The aim of this study was to investigate and compare the expression level of ULK1 in 86 paired esophageal squamous cell carcinoma (ESCC) and paracancerous tissues, and to examine the effect of ULK1 expression on the prognosis of ESCC patients. ULK1 was primarily expressed in cytoplasm, but was rarely seen in nucleus. The levels of cytoplasmic ULK1 in ESCC tissues were higher than those in paracancerous tissue (P < 0.01) and significantly associated with lymph node metastasis (LNM) (P = 0.025). Survival analysis showed that patients with low expression of cytoplasmic ULK1 had worse survival time than those with high expression of cytoplasmic ULK1 (hazard ratio = 1.754, 95% confidence interval: 1.022-3.010, P = 0.041), which disappeared after adjustment for TNM stages and LNM (P = 0.319). In conclusion, ULK1 might play an important role in the occurrence and development of ESCC and represent a potential prognostic biomarker for ESCC patients. However, the precise impact of ULK1 on predicting the prognosis of patients with ESCC requires further investigation. PMID:24995094

  14. Inhibition of Angiotensin II-Induced Cardiac Hypertrophy and Associated Ventricular Arrhythmias by a p21 Activated Kinase 1 Bioactive Peptide

    PubMed Central

    Lin, Wee K.; Zhang, Yanmin; Liu, Wei; Huang, Kai; Terrar, Derek A.; Solaro, R. John; Wang, Xin; Ke, Yunbo; Lei, Ming

    2014-01-01

    Cardiac hypertrophy increases the risk of morbidity and mortality of cardiovascular disease and thus inhibiting such hypertrophy is beneficial. In the present study, we explored the effect of a bioactive peptide (PAP) on angiotensin II (Ang II)-induced hypertrophy and associated ventricular arrhythmias in in vitro and in vivo models. PAP enhances p21 activated kinase 1 (Pak1) activity by increasing the level of phosphorylated Pak1 in cultured neonatal rat ventricular myocytes (NRVMs). Such PAP-induced Pak1 activation is associated with a significant reduction of Ang II-induced hypertrophy in NRVMs and C57BL/6 mice, in vitro and in vivo, respectively. Furthermore, PAP antagonizes ventricular arrhythmias associated with Ang II-induced hypertrophy in mice. Its antiarrhythmic effect is likely to be involved in multiple mechanisms to affect both substrate and trigger of ventricular arrhythmogenesis. Thus our results suggest that Pak1 activation achieved by specific bioactive peptide represents a potential novel therapeutic strategy for cardiac hypertrophy and associated ventricular arrhythmias. PMID:25014109

  15. Casein Kinase 1γ Ensures Monopolar Growth Polarity under Incomplete DNA Replication Downstream of Cds1 and Calcineurin in Fission Yeast

    PubMed Central

    Koyano, Takayuki; Konishi, Manabu; Martin, Sophie G.; Ohya, Yoshikazu; Hirata, Dai

    2015-01-01

    Cell polarity is essential for various cellular functions during both proliferative and developmental stages, and it displays dynamic alterations in response to intracellular and extracellular cues. However, the molecular mechanisms underlying spatiotemporal control of polarity transition are poorly understood. Here, we show that fission yeast Cki3 (a casein kinase 1γ homolog) is a critical regulator to ensure persistent monopolar growth during S phase. Unlike the wild type, cki3 mutant cells undergo bipolar growth when S phase is blocked, a condition known to delay transition from monopolar to bipolar growth (termed NETO [new end takeoff]). Consistent with this role, Cki3 kinase activity is substantially increased, and cells lose their viability in the absence of Cki3 upon an S-phase block. Cki3 acts downstream of the checkpoint kinase Cds1/Chk2 and calcineurin, and the latter physically interacts with Cki3. Autophosphorylation in the C terminus is inhibitory toward Cki3 kinase activity, and calcineurin is responsible for its dephosphorylation. Cki3 localizes to the plasma membrane, and this localization requires the palmitoyltransferase complex Erf2-Erf4. Membrane localization is needed not only for proper NETO timing but also for Cki3 kinase activity. We propose that Cki3 acts as a critical inhibitor of cell polarity transition under S-phase arrest. PMID:25691662

  16. Ursolic acid exerts anti-cancer activity by suppressing vaccinia-related kinase 1-mediated damage repair in lung cancer cells

    PubMed Central

    Kim, Seong-Hoon; Ryu, Hye Guk; Lee, Juhyun; Shin, Joon; Harikishore, Amaravadhi; Jung, Hoe-Youn; Kim, Ye Seul; Lyu, Ha-Na; Oh, Eunji; Baek, Nam-In; Choi, Kwan-Yong; Yoon, Ho Sup; Kim, Kyong-Tai

    2015-01-01

    Many mitotic kinases have been targeted for the development of anti-cancer drugs, and inhibitors of these kinases have been expected to perform well for cancer therapy. Efforts focused on selecting good targets and finding specific drugs to target are especially needed, largely due to the increased frequency of anti-cancer drugs used in the treatment of lung cancer. Vaccinia-related kinase 1 (VRK1) is a master regulator in lung adenocarcinoma and is considered a key molecule in the adaptive pathway, which mainly controls cell survival. We found that ursolic acid (UA) inhibits the catalytic activity of VRK1 via direct binding to the catalytic domain of VRK1. UA weakens surveillance mechanisms by blocking 53BP1 foci formation induced by VRK1 in lung cancer cells, and possesses synergistic anti-cancer effects with DNA damaging drugs. Taken together, UA can be a good anti-cancer agent for targeted therapy or combination therapy with DNA damaging drugs for lung cancer patients. PMID:26412148

  17. Complete knockout of the lactate dehydrogenase A gene is lethal in pyruvate dehydrogenase kinase 1, 2, 3 down-regulated CHO cells.

    PubMed

    Yip, Shirley S M; Zhou, Meixia; Joly, John; Snedecor, Bradley; Shen, Amy; Crawford, Yongping

    2014-09-01

    Accumulation of high level of lactate can negatively impact cell growth during fed-batch culture process. In this study, we attempted to knockout the lactate dehydrogenase A (LDHA) gene in CHO cells in order to attenuate the lactate level. To prevent the potential deleterious effect of pyruvate accumulation, consequent to LDHA knockout, on cell culture, we chose a pyruvate dehydrogenase kinase 1, 2, and 3 (PDHK1, 2, and 3) knockdown cell line in which to knock out LDHA alleles. Around 3,000 clones were screened to obtain 152 mutants. Only heterozygous mutants were identified. An attempt to knockout the remaining wild-type allele from one such heterozygote yielded only two mutants after screening 567 clones. One had an extra valine. Another evidenced a duplication event, possessing at lease one wild-type and two different frameshifted alleles. Both mutants still retained LDH activity. Together, our data strongly suggest that a complete knockout of LDHA is lethal in CHO cells, despite simultaneous down-regulation of PDHK1, 2, and 3. PMID:24841241

  18. Small molecule kinase inhibitor LRRK2-IN-1 demonstrates potent activity against colorectal and pancreatic cancer through inhibition of doublecortin-like kinase 1

    PubMed Central

    2014-01-01

    Background Doublecortin-like kinase 1 (DCLK1) is emerging as a tumor specific stem cell marker in colorectal and pancreatic cancer. Previous in vitro and in vivo studies have demonstrated the therapeutic effects of inhibiting DCLK1 with small interfering RNA (siRNA) as well as genetically targeting the DCLK1+ cell for deletion. However, the effects of inhibiting DCLK1 kinase activity have not been studied directly. Therefore, we assessed the effects of inhibiting DCLK1 kinase activity using the novel small molecule kinase inhibitor, LRRK2-IN-1, which demonstrates significant affinity for DCLK1. Results Here we report that LRRK2-IN-1 demonstrates potent anti-cancer activity including inhibition of cancer cell proliferation, migration, and invasion as well as induction of apoptosis and cell cycle arrest. Additionally we found that it regulates stemness, epithelial-mesenchymal transition, and oncogenic targets on the molecular level. Moreover, we show that LRRK2-IN-1 suppresses DCLK1 kinase activity and downstream DCLK1 effector c-MYC, and demonstrate that DCLK1 kinase activity is a significant factor in resistance to LRRK2-IN-1. Conclusions Given DCLK1’s tumor stem cell marker status, a strong understanding of its biological role and interactions in gastrointestinal tumors may lead to discoveries that improve patient outcomes. The results of this study suggest that small molecule inhibitors of DCLK1 kinase should be further investigated as they may hold promise as anti-tumor stem cell drugs. PMID:24885928

  19. Dynamic expansion of gastric mucosal doublecortin-like kinase 1-expressing cells in response to parietal cell loss is regulated by gastrin.

    PubMed

    Choi, Eunyoung; Petersen, Christine P; Lapierre, Lynne A; Williams, Janice A; Weis, Victoria G; Goldenring, James R; Nam, Ki Taek

    2015-08-01

    Doublecortin-like kinase 1 (Dclk1) is considered a reliable marker for tuft cells in the gastrointestinal tract. We investigated the dynamic changes of tuft cells associated with mouse models of oxyntic atrophy and metaplasia in the stomach. Increases in the numbers of Dclk1-positive tuft cells were observed in several models of parietal cell loss. However, the expanded population of Dclk1-expressing cells showed a morphologically distinct structure in apical microvilli and acetylated microtubules, which was not seen in the tuft cells present in the normal gastric mucosa. These microvillar sensory cells (MVSCs) showed no evidence of proliferation. The expansion of the MVSCs induced by oxyntic atrophy was reversible after the return of parietal cells. More important, expansion of MVSCs after induced parietal cell loss was not observed in Gast(-/-) mice. Although the Dclk1-expressing cells in the normal gastric mucosa were in part derived from Lrig1-expressing stem cells, the Lrig1-lineaged cells did not produce the expanded Dclk1-expressing cells associated with oxyntic atrophy. These studies indicate that loss of parietal cells leads to the reversible emergence of a novel Dclk1-expressing sensory cell population in the gastric mucosa. PMID:26073039

  20. Liposome-mediated delivery of the p21 activated kinase-1 (PAK-1) inhibitor IPA-3 limits prostate tumor growth in vivo.

    PubMed

    Al-Azayzih, Ahmad; Missaoui, Wided N; Cummings, Brian S; Somanath, Payaningal R

    2016-07-01

    P21 activated kinases-1 (PAK-1) is implicated in various diseases. It is inhibited by the small molecule 'inhibitor targeting PAK1 activation-3' (IPA-3), which is highly specific but metabolically unstable. To address this limitation we encapsulated IPA-3 in sterically stabilized liposomes (SSL). SSL-IPA-3 averaged 139nm in diameter, polydispersity index (PDI) of 0.05, and a zeta potential of -28.1, neither of which changed over 14days; however, the PDI increased to 0.139. Analysis of liposomal IPA-3 levels demonstrated good stability, with 70% of IPA-3 remaining after 7days. SSL-IPA-3 inhibited prostate cancer cell growth in vitro with comparable efficacy to free IPA-3. Excitingly, only a 2day/week dose of SSL-IPA-3 was needed to inhibit the growth of prostate xenografts in vivo, while a similar dose of free IPA-3 was ineffective. These data demonstrate the development and clinical utility of a novel liposomal formulation for the treatment of prostate cancer. PMID:26949163

  1. TRAF2 regulates TNF and NF-κB signalling to suppress apoptosis and skin inflammation independently of Sphingosine kinase 1.

    PubMed

    Etemadi, Nima; Chopin, Michael; Anderton, Holly; Tanzer, Maria C; Rickard, James A; Abeysekera, Waruni; Hall, Cathrine; Spall, Sukhdeep K; Wang, Bing; Xiong, Yuquan; Hla, Timothy; Pitson, Stuart M; Bonder, Claudine S; Wong, Wendy Wei-Lynn; Ernst, Matthias; Smyth, Gordon K; Vaux, David L; Nutt, Stephen L; Nachbur, Ueli; Silke, John

    2015-01-01

    TRAF2 is a component of TNF superfamily signalling complexes and plays an essential role in the regulation and homeostasis of immune cells. TRAF2 deficient mice die around birth, therefore its role in adult tissues is not well-explored. Furthermore, the role of the TRAF2 RING is controversial. It has been claimed that the atypical TRAF2 RING cannot function as a ubiquitin E3 ligase but counterclaimed that TRAF2 RING requires a co-factor, sphingosine-1-phosphate, that is generated by the enzyme sphingosine kinase 1, to function as an E3 ligase. Keratinocyte-specific deletion of Traf2, but not Sphk1 deficiency, disrupted TNF mediated NF-κB and MAP kinase signalling and caused epidermal hyperplasia and psoriatic skin inflammation. This inflammation was driven by TNF, cell death, non-canonical NF-κB and the adaptive immune system, and might therefore represent a clinically relevant model of psoriasis. TRAF2 therefore has essential tissue specific functions that do not overlap with those of Sphk1. PMID:26701909

  2. The Membrane-Anchored BOTRYTIS-INDUCED KINASE1 Plays Distinct Roles in Arabidopsis Resistance to Necrotrophic and Biotrophic PathogensW⃞

    PubMed Central

    Veronese, Paola; Nakagami, Hirofumi; Bluhm, Burton; AbuQamar, Synan; Chen, Xi; Salmeron, John; Dietrich, Robert A.; Hirt, Heribert; Mengiste, Tesfaye

    2006-01-01

    Plant resistance to disease is controlled by the combination of defense response pathways that are activated depending on the nature of the pathogen. We identified the Arabidopsis thaliana BOTRYTIS-INDUCED KINASE1 (BIK1) gene that is transcriptionally regulated by Botrytis cinerea infection. Inactivation of BIK1 causes severe susceptibility to necrotrophic fungal pathogens but enhances resistance to a virulent strain of the bacterial pathogen Pseudomonas syringae pv tomato. The response to an avirulent bacterial strain is unchanged, limiting the role of BIK1 to basal defense rather than race-specific resistance. The jasmonate- and ethylene-regulated defense response, generally associated with resistance to necrotrophic fungi, is attenuated in the bik1 mutant based on the expression of the plant defensin PDF1.2 gene. bik1 mutants show altered root growth, producing more and longer root hairs, demonstrating that BIK1 is also required for normal plant growth and development. Whereas the pathogen responses of bik1 are mostly dependent on salicylic acid (SA) levels, the nondefense responses are independent of SA. BIK1 is membrane-localized, suggesting possible involvement in early stages of the recognition or transduction of pathogen response. Our data suggest that BIK1 modulates the signaling of cellular factors required for defense responses to pathogen infection and normal root hair growth, linking defense response regulation with that of growth and development. PMID:16339855

  3. Inhibition of Casein Kinase 1 Alpha Prevents Acquired Drug Resistance to Erlotinib in EGFR-Mutant Non-Small Cell Lung Cancer.

    PubMed

    Lantermann, Alexandra B; Chen, Dongshu; McCutcheon, Kaitlin; Hoffman, Greg; Frias, Elizabeth; Ruddy, David; Rakiec, Daniel; Korn, Joshua; McAllister, Gregory; Stegmeier, Frank; Meyer, Matthew J; Sharma, Sreenath V

    2015-11-15

    Patients with lung tumors harboring activating mutations in the EGF receptor (EGFR) show good initial treatment responses to the EGFR tyrosine kinase inhibitors (TKI) erlotinib or gefitinib. However, acquired resistance invariably develops. Applying a focused shRNA screening approach to identify genes whose knockdown can prevent and/or overcome acquired resistance to erlotinib in several EGFR-mutant non-small cell lung cancer (NSCLC) cell lines, we identified casein kinase 1 α (CSNK1A1, CK1α). We found that CK1α suppression inhibits the NF-κB prosurvival signaling pathway. Furthermore, downregulation of NF-κB signaling by approaches independent of CK1α knockdown can also attenuate acquired erlotinib resistance, supporting a role for activated NF-κB signaling in conferring acquired drug resistance. Importantly, CK1α suppression prevented erlotinib resistance in an HCC827 xenograft model in vivo. Our findings suggest that patients with EGFR-mutant NSCLC might benefit from a combination of EGFR TKIs and CK1α inhibition to prevent acquired drug resistance and to prolong disease-free survival. PMID:26490646

  4. The Cytoplasmic Domain of the HIV-1 Glycoprotein gp41 Induces NF-κB Activation Through TGF-β-Activated Kinase 1

    PubMed Central

    Postler, Thomas S.; Desrosiers, Ronald C.

    2012-01-01

    SUMMARY The human and simian immunodeficiency viruses (HIV and SIV) primarily infect lymphocytes, which must be activated for efficient viral replication. We show that the cytoplasmic domain of the transmembrane glycoprotein gp41 (gp41CD) of both HIV-1 and SIV induces activation of NF-κB, a cellular factor important for proviral genome transcription and lymphocyte activation. This NF-κB activating property localized to a region 12–25 (SIV) or 59–70 (HIV-1) residues from the gp41 membrane-spanning domain. An siRNA-based screen of 42 key NF-κB regulators revealed that gp41CD-mediated activation occurs through the canonical NF-κB pathway via TGF-β-activated kinase 1 (TAK1). TAK1 activity was required for gp41CD-mediated NF-κB activation, and HIV-1-derived gp41CD physically interacted with TAK1 through the same region required for NF-κB activation. Importantly, an NF-κB activation-deficient HIV-1 mutant exhibited increased dependence on cellular activation for replication. These findings demonstrate an evolutionarily conserved role for gp41CD in activating NF-κB to promote infection. PMID:22341466

  5. Sensitization of the transient receptor potential vanilloid type 1 ion channel by isoflurane or sevoflurane does not result in extracellular signal-regulated kinase 1/2 activation in rat spinal dorsal horn neurons.

    PubMed

    White, J P M; Cibelli, M; Fidalgo, A R; Paule, C C; Anderson, P J; Jenes, A; Rice, A S C; Nagy, I

    2010-03-17

    Clinically relevant concentrations of isoflurane or sevoflurane sensitize transient receptor potential vanilloid type 1 to several of its activators, including capsaicin. It has, moreover, been suggested these volatile general anaesthetics may augment nociceptive signalling arising from surgical procedures and thereby contribute to post-operative pain. To investigate this suggestion, we have studied intraplantar capsaicin injection-induced phosphorylation of extracellular signal-regulated kinase 1/2 in spinal dorsal horn neurons (which is a recognized marker of spinal nociceptive processing) in rat during isoflurane or sevoflurane anaesthesia after 60 min under anaesthesia. Control animals were anaesthetized with pentobarbital (which of itself does not activate extracellular signal-regulated kinase 1/2 in spinal dorsal horn neurons). Unilateral intraplantar capsaicin injection in control animals evoked extracellular signal-regulated kinase 1/2 phosphorylation in a group of neurons in lamina I and lamina II of the ipsilateral spinal dorsal horn in a somatotopically appropriate area. In contrast, both anaesthetic gases (given for 60 min and without subsequent capsaicin injection) induced extracellular signal-regulated kinase 1/2 activation in a different group of mainly lamina I neurons bilaterally. The total number of spinal dorsal horn neurons labelled on the ipliateral side following capsaicin injection into the isoflurane-, or sevoflurane-, anaesthetized animals was significantly less than that produced by capsaicin alone. Further, capsaicin injection into isoflurane-, or sevoflurane-, anaesthetized animals reduced extracellular signal-regulated kinase 1/2 phosphorylation induced by the gases alone on both sides. These findings do not support the suggestion that isoflurane-, or sevoflurane-, induced sensitization of transient receptor potential vanilloid type 1 by capsaicin, or other agonist, is translated into induction of spinal nociceptive processing and

  6. Stress Induced Expression of a Beta vulgaris L. Gene for a Chloroplast-Targeted Signal Calmodulin-Binding Protein

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In sugarbeet, Beta vulgaris L., Medicago truncatula Gaertn and Populus trichocarpa Torr & Gray, a cluster of orthologous genes includes NPR1, a disease resistance-controlling gene, CaMP, encoding a calmodulin-binding protein and CK1PK, determining a dual-specificity casein kinase 1-class protein kin...

  7. Initial Solid Tumor Testing (Stage 1) of AZD1480, an Inhibitor of Janus Kinases 1 and 2 by the Pediatric Preclinical Testing Program

    PubMed Central

    Houghton, Peter J.; Kurmasheva, Raushan T.; Lyalin, Dmitry; Maris, John M.; Kolb, E. Anders; Gorlick, Richard; Reynolds, C. Patrick; Kang, Min H.; Keir, Stephen T.; Wu, Jianrong; Smith, Malcolm A.

    2014-01-01

    Background AZD1480 is an ATP competitive inhibitor of Janus kinases 1 and 2 (JAK1, 2) that has been shown to inhibit the growth of solid tumor models. This agent was selected for testing the putative role of JAK/STAT signaling in the standard PPTP solid tumor models. Procedures AZD1480 was tested against the PPTP in vitro cell line panel at concentrations from 1.0 nM to 10 M and against the PPTP in vivo solid tumor xenograft panels at (60 mg/kg once daily (SID) × 5) for 3 consecutive weeks. Additional studies evaluated 5 to 20 mg/kg BID × 5 with SID dosing at 7–30 mg/kg at weekends for 3 consecutive weeks. Results In vitro the median relative IC50 (rIC50) for the PPTP cell lines was 1.5 µM, with a range from 0.3 µM to 5.9 µM. The two cell lines with rIC50 values of 0.3 µM both had ALK activating genomic alterations. AZD1480 demonstrated statistically significant differences (p<0.05) in EFS distribution compared to control in 89% of the solid tumor xenografts. AZD1480 induced intermediate (EFS T/C > 2) or high-level growth inhibition in 15 of 30 (50%) solid tumor xenografts. Tumor regressions were observed in 3 of 6 Wilms tumor models at doses that induced inhibition of Stat3(Y705) phosphorylation. Conclusions AZD1480 demonstrated significant tumor growth inhibition against most PPTP solid tumor xenografts, similar to that observed for antiangiogenic agents tested by the PPTP. Tumor regressing activity was noted for Wilms tumor xenografts. PMID:25131802

  8. Sphingosine kinase-1, S1P transporter spinster homolog 2 and S1P2 mRNA expressions are increased in liver with advanced fibrosis in human

    PubMed Central

    Sato, Masaya; Ikeda, Hitoshi; Uranbileg, Baasanjav; Kurano, Makoto; Saigusa, Daisuke; Aoki, Junken; Maki, Harufumi; Kudo, Hiroki; Hasegawa, Kiyoshi; Kokudo, Norihiro; Yatomi, Yutaka

    2016-01-01

    The role of sphingosine 1-phosphate (S1P) in liver fibrosis or inflammation was not fully examined in human. Controversy exists which S1P receptors, S1P1 and S1P3 vs S1P2, would be importantly involved in its mechanism. To clarify these matters, 80 patients who received liver resection for hepatocellular carcinoma and 9 patients for metastatic liver tumor were enrolled. S1P metabolism was analyzed in background, non-tumorous liver tissue. mRNA levels of sphingosine kinase 1 (SK1) but not SK2 were increased in livers with fibrosis stages 3–4 compared to those with 0–2 and to normal liver. However, S1P was not increased in advanced fibrotic liver, where mRNA levels of S1P transporter spinster homolog 2 (SPNS2) but not S1P-degrading enzymes were enhanced. Furthermore, mRNA levels of S1P2 but not S1P1 or S1P3 were increased in advanced fibrotic liver. These increased mRNA levels of SK1, SPNS2 and S1P2 in fibrotic liver were correlated with α-smooth muscle actin mRNA levels in liver, and with serum ALT levels. In conclusion, S1P may be actively generated, transported to outside the cells, and bind to its specific receptor in human liver to play a role in fibrosis or inflammation. Altered S1P metabolism in fibrotic liver may be their therapeutic target. PMID:27562371

  9. Overexpression of human ABCB1 in cancer cells leads to reduced activity of GSK461364, a specific inhibitor of polo-like kinase 1.

    PubMed

    Wu, Chung-Pu; Hsiao, Sung-Han; Luo, Shi-Yu; Tuo, Wei-Cherng; Su, Ching-Ya; Li, Yan-Qing; Huang, Yang-Hui; Hsieh, Chia-Hung

    2014-10-01

    Polo-like kinase 1 (Plk1) is a serine/threonine kinase involved in the regulation of mitosis and is overexpressed in many tumor types. Inhibition of Plk1 leads to cell cycle arrest, onset of apoptosis, and cell death, thus Plk1 has emerged as an important target for cancer treatment. GSK461364 is a potent inhibitor of Plk1 that inhibits the proliferation of multiple human cancer cell lines by promoting G2/M cell cycle arrest at low concentrations. However, as is the case for many therapeutic drugs, the risk of developing drug resistance to GSK461364 can present a therapeutic challenge to clinicians. Since the overexpression of ATP-binding cassette (ABC) drug transporter ABCB1 is one of the most common mechanisms of drug resistance, we aimed to investigate the effect of ABCB1 on the cellular efficacy of GSK461364. In this study, we observed a significantly reduced activity of GSK461364 in cells overexpressing human ABCB1. We showed that GSK461364 stimulates the ABCB1 ATPase activity and competitively inhibits ABCB1-mediated efflux of calcein-AM in a concentration-dependent manner. Moreover, as a way to assess the impact of ABCB1 on the efficacy of GSK461364, we evaluated the G2/M cell cycle arrest and apoptosis induced by GSK461364. We discovered that, by inhibiting the function of ABCB1, the reduced G2/M cell cycle arrest, apoptosis, and sensitivity to GSK461364 treatment in ABCB1-overexpressing cells can be significantly restored. In conclusion, in order to achieve a better therapeutic outcome, combination therapy of GSK461364 with a modulator of ABCB1 should be further investigated as a potential treatment approach. PMID:25192198

  10. p21-activated kinase 1 determines stem-like phenotype and sunitinib resistance via NF-κB/IL-6 activation in renal cell carcinoma

    PubMed Central

    Zhu, Y; Liu, H; Xu, L; An, H; Liu, W; Liu, Y; Lin, Z; Xu, J

    2015-01-01

    The p21-activated kinase 1 (PAK1), a serine/threonine kinase that orchestrates cytoskeletal remodeling and cell motility, has been shown to function as downstream node for various oncogenic signaling pathways to promote cell proliferation, regulate apoptosis and accelerate mitotic abnormalities, resulting in tumor formation and invasiveness. Although alterations in PAK1 expression and activity have been detected in various human malignancies, its potential biological and clinical significance in renal cell carcinoma (RCC) remains obscure. In this study, we found increased PAK1 and phosphorylated PAK1 levels in tumor tissues according to TNM stage progression. Elevated phosphorylated PAK1 levels associated with progressive features and indicated unfavorable overall survival (OS) as an independent adverse prognosticator for patients with RCC. Moreover, PAK1 kinase activation with constitutive active PAK1 mutant T423E promoted growth, colony formation, migration, invasion and stem-like phenotype of RCC cells, and vice versa, in PAK1 inhibition by PAK1 kinase inactivation with specific PAK1 shRNA, dead kinase PAK1 mutant K299R or allosteric inhibitor IPA3. Stem-like phenotype due to sunitinib administration via increased PAK1 kinase activation could be ameliorated by PAK1 shRNA, PAK1 mutant K299R and IPA3. Furthermore, nuclear factor-κB (NF-κB)/interleukin-6 (IL-6) activation was found to be responsible for PAK1-mediated stem-like phenotype following sunitinib treatment. Both IL-6 neutralizing antibody and IPA3 administration enhanced tumor growth inhibition effect of sunitinib treatment on RCC cells in vitro and in vivo. Our results unraveled that oncogenic activation of PAK1 defines an important mechanism for maintaining stem-like phenotype and sunitinib resistance through NF-κB/IL-6 activation in RCC, lending PAK1-mediated NF-κB/IL-6 activation considerable appeal as novel pharmacological therapeutic targets against sunitinib resistance. PMID:25675297

  11. Sodium nitrite attenuates hypertension-in-pregnancy and blunts increases in soluble fms-like tyrosine kinase-1 and in vascular endothelial growth factor.

    PubMed

    Gonçalves-Rizzi, Victor Hugo; Possomato-Vieira, Jose Sergio; Sales Graça, Tamiris Uracs; Nascimento, Regina Aparecida; Dias-Junior, Carlos A

    2016-07-01

    Preeclampsia is a pregnancy-associated disorder characterized by hypertension with uncertain pathogenesis. Increases in antiangiogenic soluble fms-like tyrosine kinase-1 (sFlt-1) and reductions in nitric oxide (NO) bioavailability have been observed in preeclamptic women. However, the specific mechanisms linking these detrimental changes to the hypertension-in-pregnancy are not clearly understood. In this regard, while recent findings have suggested that nitrite-derived NO formation exerts antihypertensive and antioxidant effects, no previous study has examined these responses to orally administered nitrite in hypertension-in-pregnancy. We then hypothesized restoring NO bioavailability with sodium nitrite in pregnant rats upon NO synthesis inhibition with N(omega)-nitro-l-arginine methyl ester (L-NAME) attenuates hypertension and high circulating levels of sFlt-1. Number and weight of pups and placentae were recorded to assess maternal-fetal interface. Plasma sFlt-1, vascular endothelial growth factor (VEGF) and biochemical determinants of NO formation and of antioxidant function were measured. We found that sodium nitrite blunts the hypertension-in-pregnancy and restores the NO bioavailability, and concomitantly prevents the L-NAME-induced high circulating sFlt-1 and VEGF levels. Also, our results suggest that nitrite-derived NO protected against reductions in litter size and placental weight caused by L-NAME, improving number of viable and resorbed fetuses and antioxidant function. Therefore, the present findings are consistent with the hypothesis that nitrite-derived NO may possibly be the driving force behind the maternal and fetal beneficial effects observed with sodium nitrite during hypertension-in-pregnancy. Certainly further investigations are required in preeclampsia, since counteracting the damages to the mother and fetal sides resulting from hypertension and elevated sFlt-1 levels may provide a great benefit in this gestational hypertensive disease

  12. Intracellular localization of sphingosine kinase 1 alters access to substrate pools but does not affect the degradative fate of sphingosine-1-phosphate[S

    PubMed Central

    Siow, Deanna L.; Anderson, Charles D.; Berdyshev, Evgeny V.; Skobeleva, Anastasia; Pitson, Stuart M.; Wattenberg, Binks W.

    2010-01-01

    Sphingosine kinase 1 (SK1) produces sphingosine-1-phosphate (S1P), a potent signaling lipid. The subcellular localization of SK1 can dictate its signaling function. Here, we use artificial targeting of SK1 to either the plasma membrane (PM) or the endoplasmic reticulum (ER) to test the effects of compartmentalization of SK1 on substrate utilization and downstream metabolism of S1P. Expression of untargeted or ER-targeted SK1, but surprisingly not PM-targeted SK1, results in a dramatic increase in the phosphorylation of dihydrosphingosine, a metabolic precursor in de novo ceramide synthesis. Conversely, knockdown of endogenous SK1 diminishes both dihydrosphingosine-1-phosphate and S1P levels. We tested the effects of SK1 localization on degradation of S1P by depletion of the ER-localized S1P phosphatases and lyase. Remarkably, S1P produced at the PM was degraded to the same extent as that produced in the ER. This indicates that there is an efficient mechanism for the transport of S1P from the PM to the ER. In acute labeling experiments, we find that S1P degradation is primarily driven by lyase cleavage of S1P. Counterintuitively, when S1P-specific phosphatases are depleted, acute labeling of S1P is significantly reduced, indicative of a phosphatase-dependent recycling process. We conclude that the localization of SK1 influences the substrate pools that it has access to and that S1P can rapidly translocate from the site where it is synthesized to other intracellular sites.51: 2546–2559. PMID:20386061

  13. Sphingosine kinase-1, S1P transporter spinster homolog 2 and S1P2 mRNA expressions are increased in liver with advanced fibrosis in human.

    PubMed

    Sato, Masaya; Ikeda, Hitoshi; Uranbileg, Baasanjav; Kurano, Makoto; Saigusa, Daisuke; Aoki, Junken; Maki, Harufumi; Kudo, Hiroki; Hasegawa, Kiyoshi; Kokudo, Norihiro; Yatomi, Yutaka

    2016-01-01

    The role of sphingosine 1-phosphate (S1P) in liver fibrosis or inflammation was not fully examined in human. Controversy exists which S1P receptors, S1P1 and S1P3 vs S1P2, would be importantly involved in its mechanism. To clarify these matters, 80 patients who received liver resection for hepatocellular carcinoma and 9 patients for metastatic liver tumor were enrolled. S1P metabolism was analyzed in background, non-tumorous liver tissue. mRNA levels of sphingosine kinase 1 (SK1) but not SK2 were increased in livers with fibrosis stages 3-4 compared to those with 0-2 and to normal liver. However, S1P was not increased in advanced fibrotic liver, where mRNA levels of S1P transporter spinster homolog 2 (SPNS2) but not S1P-degrading enzymes were enhanced. Furthermore, mRNA levels of S1P2 but not S1P1 or S1P3 were increased in advanced fibrotic liver. These increased mRNA levels of SK1, SPNS2 and S1P2 in fibrotic liver were correlated with α-smooth muscle actin mRNA levels in liver, and with serum ALT levels. In conclusion, S1P may be actively generated, transported to outside the cells, and bind to its specific receptor in human liver to play a role in fibrosis or inflammation. Altered S1P metabolism in fibrotic liver may be their therapeutic target. PMID:27562371

  14. Exercise pre‑conditioning alleviates brain damage via excitatory amino acid transporter 2 and extracellular signal‑regulated kinase 1/2 following ischemic stroke in rats.

    PubMed

    Wang, Xiao; Zhang, Min; Feng, Rui; Li, Wen-Bin; Ren, Shi-Qing; Zhang, Feng

    2015-02-01

    Previous studies have reported that physical exercise may exert a neuroprotective effect in humans as well as animals. However, the detailed mechanisms underlying the neuroprotective effect of exercise has remained to be elucidated. The aim of the present study was to explore the possible signaling pathways involved in the protective effect of pre‑ischemic treadmill training for ischemic stroke in rats. A total of 36 male Sprague‑Dawley rats were divided at random into three groups as follows (n=12 for each): Sham surgery group; middle cerebral artery occlusion (MCAO) group; and exercise with MCAO group. Following treadmill training for three weeks, the middle cerebral artery was occluded for 90 min in order to induce ischemic stroke, followed by reperfusion. Following 24 h post‑reperfusion, six rats from each group were assessed for neurological deficits and then sacrificed to calculate the infarct volume. The remaining rats (n=6 for each group) were sacrificed and the expression levels of excitatory amino acid transporter 2 (EAAT‑2) and extracellular signal‑regulated kinase 1/2 (ERK1/2) were detected using western blot analysis. The results of the present study demonstrated that rats that underwent pre‑ischemic exercise intervention had a significantly decreased brain infarct volume and neurological deficits; in addition, the pre‑ischemic exercise group showed decreased overexpression of phosphorylated ERK1/2 and increased expression of EAAT‑2 following ischemic stroke. In conclusion, treadmill training exercise prior to ischemic stroke alleviated brain damage in rats via regulation of EAAT‑2 and ERK1/2. PMID:25370789

  15. GABA(A) Receptor Pi (GABRP) Stimulates Basal-like Breast Cancer Cell Migration through Activation of Extracellular-regulated Kinase 1/2 (ERK1/2)*

    PubMed Central

    Sizemore, Gina M.; Sizemore, Steven T.; Seachrist, Darcie D.; Keri, Ruth A.

    2014-01-01

    Breast cancer is a heterogeneous disease comprised of distinct subtypes predictive of patient outcome. Tumors of the basal-like subtype have a poor prognosis due to inherent aggressiveness and the lack of targeted therapeutics. Basal-like tumors typically lack estrogen receptor-α, progesterone receptor and HER2/ERBB2, or in other words they are triple negative (TN). Continued evaluation of basal-like breast cancer (BLBC) biology is essential to identify novel therapeutic targets. Expression of the pi subunit of the GABA(A) receptor (GABRP) is associated with the BLBC/TN subtype, and herein, we reveal its expression also correlates with metastases to the brain and poorer patient outcome. GABRP expression in breast cancer cell lines also demonstrates a significant correlation with the basal-like subtype suggesting that GABRP functions in the initiation and/or progression of basal-like tumors. To address this postulate, we stably silenced GABRP in two BLBC cell lines, HCC1187 and HCC70 cells. Decreased GABRP reduces in vitro tumorigenic potential and migration concurrent with alterations in the cytoskeleton, specifically diminished cellular protrusions and expression of the BLBC-associated cytokeratins, KRT5, KRT6B, KRT14, and KRT17. Silencing GABRP also decreases phosphorylation of extracellular regulated kinase 1/2 (ERK1/2) in both cell lines and selective inhibition of ERK1/2 similarly decreases the basal-like cytokeratins as well as migration. Combined, these data reveal a GABRP-ERK1/2-cytokeratin axis that maintains the migratory phenotype of basal-like breast cancer. GABRP is a component of a cell surface receptor, thus, these findings suggest that targeting this new signaling axis may have therapeutic potential in BLBC. PMID:25012653

  16. Severe burn injury induces a characteristic activation of extracellular signal-regulated kinase 1/2 in spinal dorsal horn neurons.

    PubMed

    White, John P M; Ko, Chin Wing; Fidalgo, Antonio Rei; Cibelli, Mario; Paule, Cleoper C; Anderson, Peter J; Cruz, Celia; Gomba, Szabolcs; Matesz, Klara; Veress, Gabor; Avelino, Antonio; Nagy, Istvan

    2011-08-01

    We have studied scalding-type burn injury-induced activation of extracellular signal-regulated kinase 1/2 (ERK1/2) in the spinal dorsal horn, which is a recognised marker for spinal nociceptive processing. At 5min after severe scalding injury to mouse hind-paw, a substantial number of phosphorylated ERK1/2 (pERK1/2) immunopositive neurons were found in the ipsilateral dorsal horn. At 1h post-injury, the number of pERK1/2-labelled neurons remained substantially the same. However, at 3h post-injury, a further increase in the number of labelled neurons was found on the ipsilateral side, while a remarkable increase in the number of labelled neurons on the contralateral side resulted in there being no significant difference between the extent of the labelling on both sides. By 6h post-injury, the number of labelled neurons was reduced on both sides without there being significant difference between the two sides. A similar pattern of severe scalding injury-induced activation of ERK1/2 in spinal dorsal horn neurons over the same time-course was found in mice which lacked the transient receptor potential type 1 receptor (TRPV1) except that the extent to which ERK1/2 was activated in the ipsilateral dorsal horn at 5 min post-injury was significantly greater in wild-type animals when compared to TRPV1 null animals. This difference in activation of ERK1/2 in spinal dorsal horn neurons was abolished within 1h after injury, demonstrating that TRPV1 is not essential for the maintenance of ongoing spinal nociceptive processing in inflammatory pain conditions in mouse resulting from at least certain types of severe burn injury. PMID:21371920

  17. Apoptosis induces expression of sphingosine kinase 1 to release sphingosine-1-phosphate as a “come-and-get-me” signal

    PubMed Central

    Gude, David R.; Alvarez, Sergio E.; Paugh, Steven W.; Mitra, Poulami; Yu, JiaDe; Griffiths, Rachael; Barbour, Suzanne E.; Milstien, Sheldon; Spiegel, Sarah

    2008-01-01

    Sphingosine-1-phosphate (S1P) is a bioactive lipid that regulates myriad important cellular processes, including growth, survival, cytoskeleton rearrangements, motility, and immunity. Here we report that treatment of Jurkat and U937 leukemia cells with the pan-sphingosine kinase (SphK) inhibitor N,N-dimethylsphingosine to block S1P formation surprisingly caused a large increase in expression of SphK1 concomitant with induction of apoptosis. Another SphK inhibitor, d,l-threo-dihydrosphingosine, also induced apoptosis and produced dramatic increases in SphK1 expression. However, up-regulation of SphK1 was not a specific effect of its inhibition but rather was a consequence of apoptotic stress. The chemotherapeutic drug doxorubicin, a potent inducer of apoptosis in these cells, also stimulated SphK1 expression and activity and promoted S1P secretion. The caspase inhibitor ZVAD reduced not only doxorubicin-induced lethality but also the increased expression of SphK1 and secretion of S1P. Apoptotic cells secrete chemotactic factors to attract phagocytic cells, and we found that S1P potently stimulated chemotaxis of monocytic THP-1 and U937 cells and primary monocytes and macrophages. Collectively, our data suggest that apoptotic cells may up-regulate SphK1 to produce and secrete S1P that serves as a “come-and-get-me” signal for scavenger cells to engulf them in order to prevent necrosis.—Gude, D. R., Alvarez, S. E., Paugh, S. W., Mitra, P., Yu, J., Griffiths, R., Barbour, S. E., Milstien, S., Spiegel, S. Apoptosis induces expression of sphingosine kinase 1 to release sphingosine-1-phosphate as a “come-and-get-me” signal. PMID:18362204

  18. The sphingosine kinase-1 survival pathway is a molecular target for the tumor-suppressive tea and wine polyphenols in prostate cancer.

    PubMed

    Brizuela, Leyre; Dayon, Audrey; Doumerc, Nicolas; Ader, Isabelle; Golzio, Muriel; Izard, Jean-Claude; Hara, Yukihiko; Malavaud, Bernard; Cuvillier, Olivier

    2010-10-01

    The sphingosine kinase-1/sphingosine 1-phosphate (SphK1/S1P) pathway has been associated with cancer promotion and progression and resistance to treatments in a number of cancers, including prostate adenocarcinoma. Here we provide the first evidence that dietary agents, namely, epigallocatechin gallate (EGCg, IC(50)≈75 μM), resveratrol (IC(50)≈40 μM), or a mixture of polyphenols from green tea [polyphenon E (PPE), IC(50)≈70 μM] or grapevine extract (vineatrol, IC(50)≈30 μM), impede prostate cancer cell growth in vitro and in vivo by inhibiting the SphK1/S1P pathway. We establish that SphK1 is a downstream effector of the ERK/phospholipase D (PLD) pathway, which is inhibited by green tea and wine polyphenols. Enforced expression of SphK1 impaired the ability of green tea and wine polyphenols, as well as pharmacological inhibitors of PLD and ERK activities, to induce apoptosis in PC-3 and C4-2B cells. The therapeutic efficacy of these polyphenols on tumor growth and the SphK1/S1P pathway were confirmed in animals using a heterotopic PC-3 tumor in place model. PC-3/SphK1 cells implanted in animals developed larger tumors and resistance to treatment with polyphenols. Furthermore, using an orthotopic PC-3/GFP model, the chemopreventive effect of an EGCg or PPE diet was associated with SphK1 inhibition, a decrease in primary tumor volume, and occurrence and number of metastases. These results provide the first demonstration that the prosurvival, antiapoptotic SphK1/S1P pathway represents a target of dietary green tea and wine polyphenols in cancer. PMID:20522783

  19. Reduced sphingosine kinase-1 and enhanced sphingosine 1-phosphate lyase expression demonstrate deregulated sphingosine 1-phosphate signaling in Alzheimer’s disease

    PubMed Central

    2014-01-01

    Background The accumulation of beta amyloid (Aβ) peptides, a hallmark of Alzheimer’s disease (AD) is related to mechanisms leading to neurodegeneration. Among its pleiotropic cellular effects, Aβ accumulation has been associated with a deregulation of sphingolipid metabolism. Sphingosine 1-phosphate (S1P) derived from sphingosine is emerging as a critical lipid mediator regulating various biological activities including cell proliferation, survival, migration, inflammation, or angiogenesis. S1P tissue level is low and kept under control through equilibrium between its synthesis mostly governed by sphingosine kinase-1 (SphK1) and its degradation by sphingosine 1-phosphate lyase (SPL). We have previously reported that Aβ peptides were able to decrease the activity of SphK1 in cell culture models, an effect that could be blocked by the prosurvival IGF-1/IGF-1R signaling. Results Herein, we report for the first time the expression of both SphK1 and SPL by immunohistochemistry in frontal and entorhinal cortices from 56 human AD brains. Immunohistochemical analysis revealed a decreased expression of SphK1 and an increased expression of SPL both correlated to amyloid deposits in the entorhinal cortex. Otherwise, analysis of brain tissue extracts showed a decrease of SphK1 expression in AD brains whereas SPL expression was increased. The content of IGF-1R, an activator of SphK1, was found decreased in AD brains as well as S1P1, the major receptor for S1P. Conclusions Collectively, these results highlight the importance of S1P in AD suggesting the existence of a global deregulation of S1P signaling in this disease from its synthesis by SphK1 and degradation by SPL to its signaling by the S1P1 receptor. PMID:24468113

  20. A High-Content Small Molecule Screen Identifies Sensitivity of Glioblastoma Stem Cells to Inhibition of Polo-Like Kinase 1

    PubMed Central

    Danovi, Davide; Folarin, Amos; Gogolok, Sabine; Ender, Christine; Elbatsh, Ahmed M. O.; Engström, Pär G.; Stricker, Stefan H.; Gagrica, Sladjana; Georgian, Ana; Yu, Ding; U, Kin Pong; Harvey, Kevin J.; Ferretti, Patrizia; Paddison, Patrick J.; Preston, Jane E.; Abbott, N. Joan; Bertone, Paul; Smith, Austin; Pollard, Steven M.

    2013-01-01

    Glioblastoma multiforme (GBM) is the most common primary brain cancer in adults and there are few effective treatments. GBMs contain cells with molecular and cellular characteristics of neural stem cells that drive tumour growth. Here we compare responses of human glioblastoma-derived neural stem (GNS) cells and genetically normal neural stem (NS) cells to a panel of 160 small molecule kinase inhibitors. We used live-cell imaging and high content image analysis tools and identified JNJ-10198409 (J101) as an agent that induces mitotic arrest at prometaphase in GNS cells but not NS cells. Antibody microarrays and kinase profiling suggested that J101 responses are triggered by suppression of the active phosphorylated form of polo-like kinase 1 (Plk1) (phospho T210), with resultant spindle defects and arrest at prometaphase. We found that potent and specific Plk1 inhibitors already in clinical development (BI 2536, BI 6727 and GSK 461364) phenocopied J101 and were selective against GNS cells. Using a porcine brain endothelial cell blood-brain barrier model we also observed that these compounds exhibited greater blood-brain barrier permeability in vitro than J101. Our analysis of mouse mutant NS cells (INK4a/ARF−/−, or p53−/−), as well as the acute genetic deletion of p53 from a conditional p53 floxed NS cell line, suggests that the sensitivity of GNS cells to BI 2536 or J101 may be explained by the lack of a p53-mediated compensatory pathway. Together these data indicate that GBM stem cells are acutely susceptible to proliferative disruption by Plk1 inhibitors and that such agents may have immediate therapeutic value. PMID:24204733

  1. Cell type-- dependent effects of Polo-like kinase 1 inhibition compared with targeted polo box interference in cancer cell lines.

    PubMed

    Fink, Jenny; Sanders, Karl; Rippl, Alexandra; Finkernagel, Sylvia; Beckers, Thomas L; Schmidt, Mathias

    2007-12-01

    Multiple critical roles within mitosis have been assigned to Polo-like kinase 1 (Plk1), making it an attractive candidate for mitotic targeting of cancer cells. Plk1 contains two domains amenable for targeted interference: a kinase domain responsible for the enzymatic function and a polo box domain necessary for substrate recognition and subcellular localization. Here, we compare two approaches for targeted interference with Plk1 function, either by a Plk1 small-molecule enzyme inhibitor or by inducible overexpression of the polo box in human cancer cell lines. Inducible expression of the Plk1 polo box resulted in growth inhibition of RKOp27 human colon adenocarcinoma cells without obvious signs of mitotic abnormalities. A Plk1 kinase inhibitor in the same cell line arrested cells in mitosis with subsequent onset of apoptosis. Similarly, PC-3 human prostate cancer cells were growth inhibited on expression of the polo box. Prolonged expression of the polo box in these cells resulted in the occurrence of binucleated or multinucleated cells. In contrast, U2OS human osteosarcoma cells responded to overexpression of the polo box with a massive mitotic accumulation coinciding with the onset of apoptosis. Comparison of spindle formation revealed very similar mitotic abnormalities in polo box-overexpressing U2OS cells compared with U2OS cells treated with the Plk1 kinase inhibitor. We conclude that interference with polo box function and inhibition of Plk1 kinase activity can exert very similar phenotypic effects in certain cell lines but highly contrasting effects in others. This may point to subtle differences in the molecular machinery of mitosis regulation in cancer cells. PMID:18089713

  2. Crucial roles of thymidine kinase 1 and deoxyUTPase in incorporating the antineoplastic nucleosides trifluridine and 2'-deoxy-5-fluorouridine into DNA.

    PubMed

    Sakamoto, Kazuki; Yokogawa, Tatsushi; Ueno, Hiroyuki; Oguchi, Kei; Kazuno, Hiromi; Ishida, Keiji; Tanaka, Nozomu; Osada, Akiko; Yamada, Yukari; Okabe, Hiroyuki; Matsuo, Kenichi

    2015-01-01

    Trifluridine (FTD) and 2'-deoxy-5-fluorouridine (FdUrd), a derivative of 5-fluorouracil (5-FU), are antitumor agents that inhibit thymidylate synthase activity and their nucleotides are incorporated into DNA. However, it is evident that several differences occur in the underlying antitumor mechanisms associated with these nucleoside analogues. Recently, TAS-102 (composed of FTD and tipiracil hydrochloride, TPI) was shown to prolong the survival of patients with colorectal cancer who received a median of 2 prior therapies, including 5-FU. TAS-102 was recently approved for clinical use in Japan. These data suggest that the antitumor activities of TAS-102 and 5-FU proceed via different mechanisms. Thus, we analyzed their properties in terms of thymidine salvage pathway utilization, involving membrane transporters, a nucleoside kinase, a nucleotide-dephosphorylating enzyme, and DNA polymerase α. FTD incorporated into DNA with higher efficiency than FdUrd did. Both FTD and FdUrd were transported into cells by ENT1 and ENT2 and were phosphorylated by thymidine kinase 1, which showed a higher catalytic activity for FTD than for FdUrd. deoxyUTPase (DUT) did not recognize dTTP and FTD-triphosphate (F3dTTP), whereas deoxyuridine-triphosphate (dUTP) and FdUrd-triphosphate (FdUTP) were efficiently degraded by DUT. DNA polymerase α incorporated both F3dTTP and FdUTP into DNA at sites aligned with adenine on the opposite strand. FTD-treated cells showed differing nuclear morphologies compared to FdUrd-treated cells. These findings indicate that FTD and FdUrd are incorporated into DNA with different efficiencies due to differences in the substrate specificities of TK1 and DUT, causing abundant FTD incorporation into DNA. PMID:25901475

  3. Crucial roles of thymidine kinase 1 and deoxyUTPase in incorporating the antineoplastic nucleosides trifluridine and 2′-deoxy-5-fluorouridine into DNA

    PubMed Central

    SAKAMOTO, KAZUKI; YOKOGAWA, TATSUSHI; UENO, HIROYUKI; OGUCHI, KEI; KAZUNO, HIROMI; ISHIDA, KEIJI; TANAKA, NOZOMU; OSADA, AKIKO; YAMADA, YUKARI; OKABE, HIROYUKI; MATSUO, KENICHI

    2015-01-01

    Trifluridine (FTD) and 2′-deoxy-5-fluorouridine (FdUrd), a derivative of 5-fluorouracil (5-FU), are antitumor agents that inhibit thymidylate synthase activity and their nucleotides are incorporated into DNA. However, it is evident that several differences occur in the underlying antitumor mechanisms associated with these nucleoside analogues. Recently, TAS-102 (composed of FTD and tipiracil hydrochloride, TPI) was shown to prolong the survival of patients with colorectal cancer who received a median of 2 prior therapies, including 5-FU. TAS-102 was recently approved for clinical use in Japan. These data suggest that the antitumor activities of TAS-102 and 5-FU proceed via different mechanisms. Thus, we analyzed their properties in terms of thymidine salvage pathway utilization, involving membrane transporters, a nucleoside kinase, a nucleotide-dephosphorylating enzyme, and DNA polymerase α. FTD incorporated into DNA with higher efficiency than FdUrd did. Both FTD and FdUrd were transported into cells by ENT1 and ENT2 and were phosphorylated by thymidine kinase 1, which showed a higher catalytic activity for FTD than for FdUrd. deoxyUTPase (DUT) did not recognize dTTP and FTD-triphosphate (F3dTTP), whereas deoxyuridine-triphosphate (dUTP) and FdUrd-triphosphate (FdUTP) were efficiently degraded by DUT. DNA polymerase α incorporated both F3dTTP and FdUTP into DNA at sites aligned with adenine on the opposite strand. FTD-treated cells showed differing nuclear morphologies compared to FdUrd-treated cells. These findings indicate that FTD and FdUrd are incorporated into DNA with different efficiencies due to differences in the substrate specificities of TK1 and DUT, causing abundant FTD incorporation into DNA. PMID:25901475

  4. Differential Modulation of Brainstem Phosphatidylinositol 3-Kinase/Akt and Extracellular Signal-Regulated Kinase 1/2 Signaling Underlies WIN55,212-2 Centrally Mediated Pressor Response in Conscious Rats

    PubMed Central

    Ibrahim, Badr Mostafa

    2012-01-01

    Our recent study demonstrated that central cannabinoid receptor 1 (CB1R) activation caused dose-related pressor response in conscious rats, and reported studies implicated the brainstem phosphatidylinositol 3-kinase (PI3K)/Akt-extracellular signal-regulated kinase 1/2 (ERK1/2) pathway in blood pressure control. Therefore, in this study, we tested the hypothesis that the modulation of brainstem PI3K/Akt-ERK1/2 signaling plays a critical role in the central CB1R-mediated pressor response. In conscious freely moving rats, the pressor response elicited by intracisternal (i.c.) (R)-(+)-[2,3-dihydro-5-methyl-3[(4-morpholinyl)methyl]pyrrolo[1,2,3-de]-1,4-benzoxazinyl]-(1-naphthalenyl) methanone mesylate salt (WIN55,212-2) (15 μg) was associated with significant increases in ERK1/2 phosphorylation in the rostral ventrolateral medulla (RVLM) and the nucleus tractus solitarius (NTS). In contrast, Akt phosphorylation was significantly reduced in the same neuronal pools. Pretreatment with the selective CB1R antagonist N-(piperidin-1-yl)-5-(4-iodophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide (AM251) (30 μg i.c.) attenuated the neurochemical responses elicited by central CB1R activation. Furthermore, pretreatment with the ERK/mitogen-activated protein kinase kinase inhibitor 2′-amino-3′-methoxyflavone (PD98059) (5 μg i.c.) abrogated WIN55,212-2-evoked increases in blood pressure and neuronal ERK1/2 phosphorylation but not the reduction in Akt phosphorylation. On the other hand, prior PI3K inhibition with wortmannin (0.4 μg i.c.) exacerbated the WIN55,212-2 (7.5 and 15 μg i.c.) dose-related increases in blood pressure and ERK1/2 phosphorylation in the RVLM. The present neurochemical and integrative studies yield new insight into the critical role of two brainstem kinases, PI3K and ERK1/2, in the pressor response elicited by central CB1R activation in conscious rats. PMID:21946192

  5. Serological thymidine kinase 1 is a biomarker for early detection of tumours--a health screening study on 35,365 people, using a sensitive chemiluminescent dot blot assay.

    PubMed

    Chen, Zhi Heng; Huang, Shou Qing; Wang, Yande; Yang, Ai Zhen; Wen, Jian; Xu, Xiao Hong; Chen, Yan; Chen, Qu Bo; Wang, Ying Hong; He, Ellen; Zhou, Ji; Skog, Sven

    2011-01-01

    Serological thymidine kinase 1 (STK1) is a reliable proliferation marker for prognosis, monitoring tumour therapy, and relapse. Here we investigated the use of STK1 in health screening for early detection of pre-malignant and malignant diseases. The investigation was based on 35,365 participants in four independent health screening studies in China between 2005-2011. All participants were clinically examined. The concentration of STK1 was determined by a sensitive chemiluminescent dot blot ECL assay. The ROCvalue of the STK1 assay was 0.96. At a cut-off STK1 value of 2.0 pM, the likelihood (+) value was 236.5, and the sensitivity and the specificity were 0.78 and 0.99, respectively. The relative number of city-dwelling people with elevated STK1 values (≥2.0 pM) was 0.8% (198/26,484), while the corresponding value for the group of oil-field workers was 5.8% (514/8,355). The latter group expressed significantly higher frequency of refractory anaemia, fatty liver, and obesity, compared to the city dwellers, but no cases of breast hyperplasia or prostate hyperplasia. Furthermore, people working in oil drilling/oil transportation showed higher STK1 values and higher frequency of pre-malignancies and benign diseases than people working in the oil-field administration. In the STK1 elevated group of the city-dwelling people, a statistically significantly higher number of people were found to have malignancies, pre-malignancies of all types, moderate/severe type of hyperplasia of breast or prostate, or refractory anaemia, or to be at high risk for hepatitis B, compared to people with normal STK1 values (<2.0 pM). No malignancies were found in the normal STK1 group. In the elevated STK1 group 85.4% showed diseases linked to a higher risk for pre-/early cancerous progression, compared to 52.4% of those with normal STK1 values. Among participants with elevated STK1 values, 8.8% developed new malignancies or progress in their pre-malignancies within 5 to 72 months, compared