Science.gov

Sample records for 3-stimulus visual oddball

  1. Affective ERP Processing in a Visual Oddball Task: Arousal, Valence, and Gender

    PubMed Central

    Rozenkrants, Bella; Polich, John

    2008-01-01

    Objective To assess affective event-related brain potentials (ERPs) using visual pictures that were highly distinct on arousal level/valence category ratings and a response task. Methods Images from the International Affective Pictures System (IAPS) were selected to obtain distinct affective arousal (low, high) and valence (negative, positive) rating levels. The pictures were used as target stimuli in an oddball paradigm, with a visual pattern as the standard stimulus. Participants were instructed to press a button whenever a picture occurred and to ignore the standard. Task performance and response time did not differ across conditions. Results High-arousal compared to low-arousal stimuli produced larger amplitudes for the N2, P3, early slow wave, and late slow wave components. Valence amplitude effects were weak overall and originated primarily from the later waveform components and interactions with electrode position. Gender differences were negligible. Conclusion The findings suggest that arousal level is the primary determinant of affective oddball processing, and valence minimally influences ERP amplitude. Significance Affective processing engages selective attentional mechanisms that are primarily sensitive to the arousal properties of emotional stimuli. The application and nature of task demands are important considerations for interpreting these effects. PMID:18783987

  2. Genetic effects on source level evoked and induced oscillatory brain responses in a visual oddball task.

    PubMed

    Antonakakis, Marios; Zervakis, Michalis; van Beijsterveldt, Catharina E M; Boomsma, Dorret I; De Geus, Eco J C; Micheloyannis, Sifis; Smit, Dirk J A

    2016-02-01

    Stimuli in simple oddball target detection paradigms cause evoked responses in brain potential. These responses are heritable traits, and potential endophenotypes for clinical phenotypes. These stimuli also cause responses in oscillatory activity, both evoked responses phase-locked to stimulus presentation and phase-independent induced responses. Here, we investigate whether phase-locked and phase-independent oscillatory responses are heritable traits. Oscillatory responses were examined in EEG recordings from 213 twin pairs (91 monozygotic and 122 dizygotic twins) performing a visual oddball task. After group Independent Component Analysis (group-ICA) and time-frequency decomposition, individual differences in evoked and induced oscillatory responses were compared between MZ and DZ twin pairs. Induced (phase-independent) oscillatory responses consistently showed the highest heritability (24-55%) compared to evoked (phase-locked) oscillatory responses and spectral energy, which revealed lower heritability at 1-35.6% and 4.5-32.3%, respectively. Since the phase-independent induced response encodes functional aspects of the brain response to target stimuli different from evoked responses, we conclude that the modulation of ongoing oscillatory activity may serve as an additional endophenotype for behavioral phenotypes and psychiatric genetics. PMID:26744236

  3. Neural correlates of emotional intelligence in a visual emotional oddball task: an ERP study.

    PubMed

    Raz, Sivan; Dan, Orrie; Zysberg, Leehu

    2014-11-01

    The present study was aimed at identifying potential behavioral and neural correlates of Emotional Intelligence (EI) by using scalp-recorded Event-Related Potentials (ERPs). EI levels were defined according to both self-report questionnaire and a performance-based ability test. We identified ERP correlates of emotional processing by using a visual-emotional oddball paradigm, in which subjects were confronted with one frequent standard stimulus (a neutral face) and two deviant stimuli (a happy and an angry face). The effects of these faces were then compared across groups with low and high EI levels. The ERP results indicate that participants with high EI exhibited significantly greater mean amplitudes of the P1, P2, N2, and P3 ERP components in response to emotional and neutral faces, at frontal, posterior-parietal and occipital scalp locations. P1, P2 and N2 are considered indexes of attention-related processes and have been associated with early attention to emotional stimuli. The later P3 component has been thought to reflect more elaborative, top-down, emotional information processing including emotional evaluation and memory encoding and formation. These results may suggest greater recruitment of resources to process all emotional and non-emotional faces at early and late processing stages among individuals with higher EI. The present study underscores the usefulness of ERP methodology as a sensitive measure for the study of emotional stimuli processing in the research field of EI. PMID:25265320

  4. Single-subject classification of schizophrenia using event-related potentials obtained during auditory and visual oddball paradigms.

    PubMed

    Neuhaus, Andres H; Popescu, Florin C; Bates, John A; Goldberg, Terry E; Malhotra, Anil K

    2013-04-01

    In the search for the biomarkers of schizophrenia, event-related potential (ERP) deficits obtained by applying the classic oddball paradigm are among the most consistent findings. However, the single-subject classification rate based on these parameters remains to be determined. Here, we present a data-driven approach by applying machine learning classifiers to relevant oddball ERPs. Twenty-four schizophrenic patients and 24 matched healthy controls finished auditory and visual oddball tasks while high-density electrophysiological recordings were applied. The N1 component in response to standards and target as well as the P3 component following targets were submitted to different machine learning algorithms and the resulting ERP features were submitted to further correlation analyses. We obtained a classification accuracy of 72.4 % using only two ERP components. Latencies of parietal N1 components to visual standard stimuli at electrode positions Pz and P1 were sufficient for classification. Further analysis revealed a high correlation of these features in controls and an intermediate correlation in schizophrenia patients. These data exemplarily show how automated inference may be applied to classify a pathological state in single subjects without prior knowledge of their diagnoses and illustrate the potential of machine learning algorithms for the identification of potential biomarkers. Moreover, this approach assesses the discriminative accuracy of one of the most consistent findings in schizophrenia research by means of single-subject classification. PMID:22584805

  5. The enhanced processing of visual novel events in females: ERP correlates from two modified three-stimulus oddball tasks.

    PubMed

    Yuan, Jiajin; Xu, Shuang; Li, Chengqiang; Yang, Jiemin; Li, Hong; Yuan, Yin; Huang, Yu

    2012-02-01

    The ability to detect and cope with unpredictable novel events is fundamental for adapting to a rapidly changing environment and ensuring the survival of the organism. Despite knowledge of gender differences in emotional processing, little is currently known about the impact of gender on neural processing of emotion-irrelevant, novel stimuli. Using two modified three-stimulus oddball tasks and event-related potentials (ERPs), the present study investigated the impact of sex on brain processing of novel events and the associated neurophysiological correlates. With novel and non-novel control stimuli used as task-irrelevant distracters, Experiment 1 showed higher novelty rating scores and larger size of novelty effects in brain potentials at 200-300 ms and 300-430 ms time intervals in females compared to males. After excluding the contribution of stimulus probability, Experiment 2 continued to display significant novelty effects in the response times and the amplitudes of the 130-500 ms time windows. Most importantly, females displayed a sustained novelty effect in the late positive component (LPC) amplitudes of the 500-600 ms interval, which was not observed in males. Therefore, Experiment 1 and 2 demonstrated that females are equipped with enhanced brain processing of emotion-irrelevant, novel stimuli. This phenomenon is independent of the established gender difference in infrequent stimulus processing. We suggest that our findings reflect the differential adaptive demands on females and males during evolution. PMID:22230670

  6. Nicotine effects on brain function during a visual oddball task: a comparison between conventional and EEG-informed fMRI analysis.

    PubMed

    Warbrick, Tracy; Mobascher, Arian; Brinkmeyer, Jürgen; Musso, Francesco; Stoecker, Tony; Shah, N Jon; Fink, Gereon R; Winterer, Georg

    2012-08-01

    In a previous oddball task study, it was shown that the inclusion of electrophysiology (EEG), that is, single-trial P3 ERP parameters, in the analysis of fMRI responses can detect activation that is not apparent with conventional fMRI data modeling strategies [Warbrick, T., Mobascher, A., Brinkmeyer, J., Musso, F., Richter, N., Stoecker, T., et al. Single-trial P3 amplitude and latency informed event-related fMRI models yield different BOLD response patterns to a target detection task. Neuroimage, 47, 1532-1544, 2009]. Given that P3 is modulated by nicotine, including P3 parameters in the fMRI analysis might provide additional information about nicotine effects on brain function. A 1-mg nasal nicotine spray (0.5 mg each nostril) or placebo (pepper) spray was administered in a double-blind, placebo-controlled, within-subject, randomized, cross-over design. Simultaneous EEG-fMRI and behavioral data were recorded from 19 current smokers in response to an oddball-type visual choice RT task. Conventional general linear model analysis and single-trial P3 amplitude informed general linear model analysis of the fMRI data were performed. Comparing the nicotine with the placebo condition, reduced RTs in the nicotine condition were related to decreased BOLD responses in the conventional analysis encompassing the superior parietal lobule, the precuneus, and the lateral occipital cortex. On the other hand, reduced RTs were related to increased BOLD responses in the precentral and postcentral gyri, and ACC in the EEG-informed fMRI analysis. Our results show how integrated analyses of simultaneous EEG-fMRI data can be used to detect nicotine effects that would not have been revealed through conventional analysis of either measure in isolation. This emphasizes the significance of applying multimodal imaging methods to pharmacoimaging. PMID:22452559

  7. Oddballs and a Low Odderon Intercept

    SciTech Connect

    Llanes-Estrada, Felipe J.; Bicudo, Pedro; Cotanch, Stephen R.; /North Carolina State U.

    2005-07-27

    The authors report an odderon Regge trajectory emerging from a field theoretical Coulomb gauge QCD model for the odd signature J{sup PC} (P = C = -1) glueball states (oddballs). The trajectory intercept is clearly smaller than the pomeron and even the {omega} trajectory's intercept which provides an explanation for the nonobservation of the odderon in high energy scattering data. To further support this result we compare to glueball lattice data and also perform calculations with an alternative model based upon an exact Hamiltonian diagonalization for three constituent gluons.

  8. Do Rare Stimuli Evoke Large P3s by Being Unexpected? A Comparison of Oddball Effects Between Standard-Oddball and Prediction-Oddball Tasks

    PubMed Central

    Verleger, Rolf; Śmigasiewicz, Kamila

    2016-01-01

    The P3 component of event-related potentials increases when stimuli are rarely presented. It has been assumed that this oddball effect (rare-frequent difference) reflects the unexpectedness of rare stimuli. The assumption of unexpectedness and its link to P3 amplitude were tested here. A standard- oddball task requiring alternative key-press responses to frequent and rare stimuli was compared with an oddball-prediction task where stimuli had to be first predicted and then confirmed by key-pressing. Oddball effects in the prediction task depended on whether the frequent or the rare stimulus had been predicted. Oddball effects on P3 amplitudes and error rates in the standard oddball task closely resembled effects after frequent predictions. This corroborates the notion that these effects occur because frequent stimuli are expected and rare stimuli are unexpected. However, a closer look at the prediction task put this notion into doubt because the modifications of oddball effects on P3 by expectancies were entirely due to effects on frequent stimuli, whereas the large P3 amplitudes evoked by rare stimuli were insensitive to predictions (unlike response times and error rates). Therefore, rare stimuli cannot be said to evoke large P3 amplitudes because they are unexpected. We discuss these diverging effects of frequency and expectancy, as well as general differences between tasks, with respect to concepts and hypotheses about P3b’s function and conclude that each discussed concept or hypothesis encounters some problems, with a conception in terms of subjective relevance assigned to stimuli offering the most consistent account of these basic effects. PMID:27512527

  9. Do resting brain dynamics predict oddball evoked-potential?

    PubMed Central

    2011-01-01

    Background The oddball paradigm is widely applied to the investigation of cognitive function in neuroscience and in neuropsychiatry. Whether cortical oscillation in the resting state can predict the elicited oddball event-related potential (ERP) is still not clear. This study explored the relationship between resting electroencephalography (EEG) and oddball ERPs. The regional powers of 18 electrodes across delta, theta, alpha and beta frequencies were correlated with the amplitude and latency of N1, P2, N2 and P3 components of oddball ERPs. A multivariate analysis based on partial least squares (PLS) was applied to further examine the spatial pattern revealed by multiple correlations. Results Higher synchronization in the resting state, especially at the alpha spectrum, is associated with higher neural responsiveness and faster neural propagation, as indicated by the higher amplitude change of N1/N2 and shorter latency of P2. None of the resting quantitative EEG indices predict P3 latency and amplitude. The PLS analysis confirms that the resting cortical dynamics which explains N1/N2 amplitude and P2 latency does not show regional specificity, indicating a global property of the brain. Conclusions This study differs from previous approaches by relating dynamics in the resting state to neural responsiveness in the activation state. Our analyses suggest that the neural characteristics carried by resting brain dynamics modulate the earlier/automatic stage of target detection. PMID:22114868

  10. Selective adaptation to "oddball" sounds by the human auditory system.

    PubMed

    Simpson, Andrew J R; Harper, Nicol S; Reiss, Joshua D; McAlpine, David

    2014-01-29

    Adaptation to both common and rare sounds has been independently reported in neurophysiological studies using probabilistic stimulus paradigms in small mammals. However, the apparent sensitivity of the mammalian auditory system to the statistics of incoming sound has not yet been generalized to task-related human auditory perception. Here, we show that human listeners selectively adapt to novel sounds within scenes unfolding over minutes. Listeners' performance in an auditory discrimination task remains steady for the most common elements within the scene but, after the first minute, performance improves for distinct and rare (oddball) sound elements, at the expense of rare sounds that are relatively less distinct. Our data provide the first evidence of enhanced coding of oddball sounds in a human auditory discrimination task and suggest the existence of an adaptive mechanism that tracks the long-term statistics of sounds and deploys coding resources accordingly. PMID:24478375

  11. Processing Cantonese lexical tones: Evidence from oddball paradigms.

    PubMed

    Jia, S; Tsang, Y-K; Huang, J; Chen, H-C

    2015-10-01

    Two event-related potential (ERP) experiments were conducted to investigate whether Cantonese lexical tones are processed with general auditory perception mechanisms and/or a special speech module. Two tonal features (f0 direction and f0 height deviation) were manipulated to reflect acoustic processing, and the contrast between syllables and hums was used to reveal the involvement of a speech module. Experiment 1 adopted a passive oddball paradigm to study a relatively early stage of tonal processing. Mismatch negativity (MMN) and novelty P3 (P3a) were modulated by the interaction between tonal feature and stimulus type. Similar interactions were found for N2 and P3 in Experiment 2, where more in-depth tonal processing was examined with an active oddball paradigm. Moreover, detecting tonal deviants of syllables elicited N1 and P2 that were not found in hum detection. Together, these findings suggest that the processing of lexical tone relies on both acoustic and linguistic processes from the early stage. Another noteworthy finding is the absence of brain lateralization in both experiments, which challenges the use of a lateralization pattern as evidence for processing lexical tones through a special speech module. PMID:26265553

  12. Electrical mapping in bipolar disorder patients during the oddball paradigm.

    PubMed

    Di Giorgio Silva, Luiza Wanick; Cartier, Consuelo; Cheniaux, Elie; Novis, Fernanda; Silveira, Luciana Angélica; Cavaco, Paola Anaquim; de Assis da Silva, Rafael; Batista, Washington Adolfo; Tanaka, Guaraci Ken; Gongora, Mariana; Bittencourt, Juliana; Teixeira, Silmar; Basile, Luis Fernando; Budde, Henning; Cagy, Mauricio; Ribeiro, Pedro; Velasques, Bruna

    2016-01-01

    Bipolar disorder (BD) is characterized by an alternated occurrence between acute mania episodes and depression or remission moments. The objective of this study is to analyze the information processing changes in BP (Bipolar Patients) (euthymia, depression and mania) during the oddball paradigm, focusing on the P300 component, an electric potential of the cerebral cortex generated in response to external sensorial stimuli, which involves more complex neurophysiological processes related to stimulus interpretation. Twenty-eight bipolar disorder patients (BP) (17 women and 11 men with average age of 32.5, SD: 9.5) and eleven healthy controls (HC) (7 women and 4 men with average age of 29.78, SD: 6.89) were enrolled in this study. The bipolar patients were divided into 3 major groups (i.e., euthymic, depressive and maniac) according to the score on the Clinical Global Impression--Bipolar Version (CGI-BP). The subjects performed the oddball paradigm simultaneously to the EEG record. EEG data were also recorded before and after the execution of the task. A one-way ANOVA was applied to compare the P300 component among the groups. After observing P300 and the subcomponents P3a and P3b, a similarity of amplitude and latency between euthymic and depressive patients was observed, as well as small amplitude in the pre-frontal cortex and reduced P3a response. This can be evidence of impaired information processing, cognitive flexibility, working memory, executive functions and ability to shift the attention and processing to the target and away from distracting stimuli in BD. Such neuropsychological impairments are related to different BD symptoms, which should be known and considered, in order to develop effective clinical treatment strategies. PMID:26551764

  13. Target and Non-Target Processing during Oddball and Cyberball: A Comparative Event-Related Potential Study.

    PubMed

    Weschke, Sarah; Niedeggen, Michael

    2016-01-01

    The phenomenon of social exclusion can be investigated by using a virtual ball-tossing game called Cyberball. In neuroimaging studies, structures have been identified which are activated during social exclusion. But to date the underlying mechanisms are not fully disclosed. In previous electrophysiological studies it was shown that the P3 complex is sensitive to exclusion manipulations in the Cyberball paradigm and that there is a correlation between P3 amplitude and self-reported social pain. Since this posterior event-related potential (ERP) was widely investigated using the oddball paradigm, we directly compared the ERP effects elicited by the target (Cyberball: "ball possession") and non-target (Cyberball: "ball possession of a co-player) events in both paradigms. Analyses mainly focused on the effect of altered stimulus probabilities of the target and non-target events between two consecutive blocks of the tasks. In the first block, the probability of the target and non-target event was 33% (Cyberball: inclusion), in the second block target probability was reduced to 17%, and accordingly, non-target probability was increased to 66% (Cyberball: exclusion). Our results indicate that ERP amplitude differences between inclusion and exclusion are comparable to ERP amplitude effects in a visual oddball task. We therefore suggest that ERP effects-especially in the P3 range-in the Oddball and Cyberball paradigm rely on similar mechanisms, namely the probability of target and non-target events. Since the simulation of social exclusion (Cyberball) did not trigger a unique ERP response, the idea of an exclusion-specific neural alarm system is not supported. The limitations of an ERP-based approach will be discussed. PMID:27100787

  14. Target and Non-Target Processing during Oddball and Cyberball: A Comparative Event-Related Potential Study

    PubMed Central

    Weschke, Sarah; Niedeggen, Michael

    2016-01-01

    The phenomenon of social exclusion can be investigated by using a virtual ball-tossing game called Cyberball. In neuroimaging studies, structures have been identified which are activated during social exclusion. But to date the underlying mechanisms are not fully disclosed. In previous electrophysiological studies it was shown that the P3 complex is sensitive to exclusion manipulations in the Cyberball paradigm and that there is a correlation between P3 amplitude and self-reported social pain. Since this posterior event-related potential (ERP) was widely investigated using the oddball paradigm, we directly compared the ERP effects elicited by the target (Cyberball: “ball possession”) and non-target (Cyberball: “ball possession of a co-player) events in both paradigms. Analyses mainly focused on the effect of altered stimulus probabilities of the target and non-target events between two consecutive blocks of the tasks. In the first block, the probability of the target and non-target event was 33% (Cyberball: inclusion), in the second block target probability was reduced to 17%, and accordingly, non-target probability was increased to 66% (Cyberball: exclusion). Our results indicate that ERP amplitude differences between inclusion and exclusion are comparable to ERP amplitude effects in a visual oddball task. We therefore suggest that ERP effects–especially in the P3 range–in the Oddball and Cyberball paradigm rely on similar mechanisms, namely the probability of target and non-target events. Since the simulation of social exclusion (Cyberball) did not trigger a unique ERP response, the idea of an exclusion-specific neural alarm system is not supported. The limitations of an ERP-based approach will be discussed. PMID:27100787

  15. Frontal-parietal responses to "oddball" stimuli depicting "fattened" faces are increased in successful dieters: an electroencephalographic study.

    PubMed

    Babiloni, Claudio; Del Percio, Claudio; Triggiani, Antonio Ivano; Marzano, Nicola; Valenzano, Anna; De Rosas, Mario; Petito, Annamaria; Bellomo, Antonello; Lecce, Brunello; Mundi, Ciro; Limatola, Cristina; Cibelli, Giuseppe

    2011-11-01

    Here we tested the hypothesis that compared with normal weight non dieting (control) subjects, normal weight successful dieters submitted to a rigorous and continuous monitoring of body weight (i.e. karate athletes) are characterized by an increase of cortical responses to oddball visual stimuli depicting the enlargement of faces or foods, as neural underpinning of attention processes related to the control of weight and eating. Electroencephalographic (EEG) data were recorded in 18 successful dieters (5 females) and 24 non dieting subjects (9 females). The subjects were given frequent (70%) and rare (30%) stimuli depicting faces (FACE), food (FOOD), and landscapes (CONTROL). The task was to click the mouse after the rare stimuli. The rare stimuli depicted the frequent stimuli graphically dilated by 25% along the horizontal axis. Cortical responses accompanying attention processes were probed by the difference between positive event-related potentials peaking around 400-500ms post-stimulus for the rare minus frequent stimuli (P300). The popular freeware LORETA estimated P300 cortical sources. The results showed that in the FACE condition, the amplitude of left frontal (BA 6) and medial parietal (BA 5) P300 sources was higher in the successful dieters (karate athletes) than non dieting subjects. These results disclose that frontal-parietal responses to "oddball" stimuli depicting enlarged faces (i.e. representing face fattening) are enhanced in successful dieters (karate athletes). Future studies should evaluate this effect in other populations of successful dieters (i.e. boxers, top models etc.). PMID:21854815

  16. Evidence for a new late positive ERP component in an attended novelty oddball task.

    PubMed

    McDonald, Craig G; Gabbay, Frances H; Rietschel, Jeremy C; Duncan, Connie C

    2010-09-01

    In attended novelty oddball tasks, rare nontarget stimuli can elicit two late positive ERP components: P3a and P300. In passive oddball tasks, P300 is not elicited by these stimuli. In passive tasks, however, P3a is accompanied by another positive component, termed eP3a, which may have evaded detection in attended oddball tasks because of its spatiotemporal overlap with P300. To address this, temporal-spatial principal components analysis was used to quantify ERPs recorded in attended three-tone and novelty oddball tasks. As expected, novel stimuli elicited both P3a and P300. The analysis also identified a third component, evident in novelty ERPs as an inflection on the leading edge of P3a. This component has the same antecedent conditions as P3a, but is earlier and more centrally distributed. Its spatiotemporal characteristics suggest that it may be the eP3a component recently described in passive oddball tasks. PMID:20230498

  17. The Cognitive Locus of Distraction by Acoustic Novelty in the Cross-Modal Oddball Task

    ERIC Educational Resources Information Center

    Parmentier, Fabrice B. R.; Elford, Gregory; Escera, Carles; Andres, Pilar; San Miguel, Iria

    2008-01-01

    Unexpected stimuli are often able to distract us away from a task at hand. The present study seeks to explore some of the mechanisms underpinning this phenomenon. Studies of involuntary attention capture using the oddball task have repeatedly shown that infrequent auditory changes in a series of otherwise repeating sounds trigger an automatic…

  18. Lifespan Differences in Nonlinear Dynamics during Rest and Auditory Oddball Performance

    ERIC Educational Resources Information Center

    Muller, Viktor; Lindenberger, Ulman

    2012-01-01

    Electroencephalographic recordings (EEG) were used to assess age-associated differences in nonlinear brain dynamics during both rest and auditory oddball performance in children aged 9.0-12.8 years, younger adults, and older adults. We computed nonlinear coupling dynamics and dimensional complexity, and also determined spectral alpha power as an…

  19. Effects of semantic relatedness on recall of stimuli preceding emotional oddballs.

    PubMed

    Smith, Ryan M; Beversdorf, David Q

    2008-07-01

    Semantic and episodic memory networks function as highly interconnected systems, both relying on the hippocampal/medial temporal lobe complex (HC/MTL). Episodic memory encoding triggers the retrieval of semantic information, serving to incorporate contextual relationships between the newly acquired memory and existing semantic representations. While emotional material augments episodic memory encoding at the time of stimulus presentation, interactions between emotion and semantic memory that contribute to subsequent episodic recall are not well understood. Using a modified oddball task, we examined the modulatory effects of negative emotion on semantic interactions with episodic memory by measuring the free-recall of serially presented neutral or negative words varying in semantic relatedness. We found increased free-recall for words related to and preceding emotionally negative oddballs, suggesting that negative emotion can indirectly facilitate episodic free-recall by enhancing semantic contributions during encoding. Our findings demonstrate the ability of emotion and semantic memory to interact to mutually enhance free-recall. PMID:18577291

  20. Subjective time dilation: spatially local, object-based, or a global visual experience?

    PubMed

    New, Joshua J; Scholl, Brian J

    2009-01-01

    Time can appear to slow down in certain brief real-life events-e.g. during car accidents or critical moments of athletes' performances. Such time dilation can also be produced to a smaller degree in the laboratory by 'oddballs' presented in series of otherwise identical stimuli. We explored the spatial distribution of subjective time dilation: Does time expand only for the oddball objects themselves, only for the local spatial region including the oddball, or for the entire visual field? Because real-life traumatic events provoke an apparently global visual experience of time expansion, we predicted-and observed-that a locally discrete oddball would also dilate the apparent duration of other concurrent events in other parts of the visual field. This 'dilation at a distance' was not diminished by increasing spatial separation between the oddball and target events, and was not influenced by manipulations of objecthood that drive object-based attention. In addition, behaviorally 'urgent' oddballs (looming objects) yielded time dilation, but visually similar receding objects did not. We interpret these results in terms of the influence of attention on time perception-where attention reflects general arousal and faster internal pacing rather than spatial or object-based selection, per se. As a result, attention influences subjective time dilation as a global visual experience. PMID:19271914

  1. Decrease of theta response in euthymic bipolar patients during an oddball paradigm.

    PubMed

    Atagün, M İ; Güntekin, B; Ozerdem, A; Tülay, E; Başar, E

    2013-06-01

    Theta oscillations are related to cognitive functions and reflect functional integration of frontal and medial temporal structures into coherent neurocognitive networks. This study assessed event-related theta oscillations in medication-free, euthymic patients with bipolar disorder upon auditory oddball paradigm. Twenty-two DSM-IV euthymic bipolar I (n = 19) and II (n = 3) patients and twenty-two healthy subjects were included. Patients were euthymic for at least 6 months, and psychotropic-free for at least 2 weeks. EEG was recorded at 30 electrode sites. Auditory oddball paradigm and sensory stimuli were used. Event-related Oscillations were analyzed using adaptive filtering in two different theta frequency bands (4-6 Hz, 6-8 Hz). In healthy subjects, slow theta (4-6 Hz) responses were significantly higher than those of euthymic patients upon target, non-target and sensory stimuli (p < 0.05). Fast theta (6-8 Hz) responses of healthy subjects were significantly higher than those of euthymic patients upon target-only stimuli (p < 0.05). Reduced theta oscillations during auditory processing provide strong quantitative evidence of activation deficits in related networks in bipolar disorder. Fast theta responses are related to cognitive functions, whereas slow theta responses are related to sensory processes more than cognitive processes. PMID:24427202

  2. A comparative study of event-related coupling patterns during an auditory oddball task in schizophrenia

    NASA Astrophysics Data System (ADS)

    Bachiller, Alejandro; Poza, Jesús; Gómez, Carlos; Molina, Vicente; Suazo, Vanessa; Hornero, Roberto

    2015-02-01

    Objective. The aim of this research is to explore the coupling patterns of brain dynamics during an auditory oddball task in schizophrenia (SCH). Approach. Event-related electroencephalographic (ERP) activity was recorded from 20 SCH patients and 20 healthy controls. The coupling changes between auditory response and pre-stimulus baseline were calculated in conventional EEG frequency bands (theta, alpha, beta-1, beta-2 and gamma), using three coupling measures: coherence, phase-locking value and Euclidean distance. Main results. Our results showed a statistically significant increase from baseline to response in theta coupling and a statistically significant decrease in beta-2 coupling in controls. No statistically significant changes were observed in SCH patients. Significance. Our findings support the aberrant salience hypothesis, since SCH patients failed to change their coupling dynamics between stimulus response and baseline when performing an auditory cognitive task. This result may reflect an impaired communication among neural areas, which may be related to abnormal cognitive functions.

  3. Changes in Event-Related Desynchronization and Synchronization during the Auditory Oddball Task in Schizophrenia Patients

    PubMed Central

    Fujimoto, Toshiro; Okumura, Eiichi; Takeuchi, Kouzou; Kodabashi, Atsushi; Tanaka, Hiroaki; Otsubo, Toshiaki; Nakamura, Katsumi; Sekine, Masaki; Kamiya, Shinichiro; Higashi, Yuji; Tsuji, Miwa; Shimooki, Susumu; Tamura, Toshiyo

    2012-01-01

    Objective: We studied differences in the spatiotemporal dynamics of cortical oscillation across brain regions of patients with schizophrenia and normal subjects during the auditory oddball task using magnetoencephalography (MEG) and electroencephalography (EEG). Methods: Ten right-handed male schizophrenia patients were studied. We used a newly developed adaptive spatial filtering algorithm optimized for robust source time-frequency reconstruction of MEG and EEG data, and obtained consecutive images in functional maps of event-related desynchronization (ERD) and synchronization (ERS) in theta, lower alpha (8–10 Hz), upper alpha (10–13 Hz), and beta bands. Results: Beta ERD power at 750–1000 ms in patients was significantly increased in large right upper temporal and parietal regions and small upper portions of bilateral dorsal frontal and dorsal-medial parietal regions. Theta ERS power in schizophrenic patients during the oddball task was significantly increased in the left temporal pole at 250–500 ms, and was significantly increased in dorsal, medial frontal, and anterior portions of the anterior cingulate cortex in both hemispheres, and the left portion of lateral temporal regions at 500–750 ms, compared to the control group (family-wise error correction p<0.05). Lower alpha ERS power was significantly decreased in the right occipital region at 500–750 ms and in the right midline parietal and bilateral occipital regions at 750–1000 ms. Upper alpha ERS power was significantly decreased in right midline parietal and left occipital regions at 750–1000 ms. Conclusions: ERD/ERS changes were noted in the left temporal pole and midline frontal and anterior cingulate cortex in theta ERS, occipital lobe in alpha ERS, and right temporal-frontal-parietal, midline frontal, and anterior cingulate cortex in beta ERD. These findings may reflect disturbances in interaction among active large neuronal groups and their communication with each other that may be

  4. [Alpha ERD and human visual selective attention].

    PubMed

    Ermachenko, N S; Ermachenko, A A; Latanov, A V

    2011-01-01

    We compared the alpha band EEG depression (event-related desynchnization, ERD) level in two tasks, involving activation of different attentional processes: visual search for a deviant relevant stimulus among many similar ones and visual oddball. Control data for the visual search task consisted of simple viewing of several stimuli being of the same shape as the relevant stimulus in the search trials. Gaze position was verified by eye tracking method. We interpreted alpha band ERD as a correlate of activation of attentional processes. Fixating the target in visual search task caused a significantly larger ERD than fixating the same stimuli in control trials over all leads. We suppose this to be related with task and visual environment complexities. The frontal ERD domination may indicate attentional control over voluntary movements execution (top-down attention). The caudal ERD may be related with updating of visual information as a result of search process (bottom-up attention). Both relevant and irrelevant stimuli in the oddball task also induced alpha band ERD, but it was larger in response to relevant one and reached maximum level over occipital leads. Domination of caudal ERD in oddball task is supposed to indicate bottom-up attention processes. PMID:22332425

  5. Estimation of Temporary Change of Brain Activities in Auditory Oddball Paradigm

    NASA Astrophysics Data System (ADS)

    Fukami, Tadanori; Koyanagi, Yusuke; Tanno, Yukinori; Shimada, Takamasa; Akatsuka, Takao; Saito, Yoichi

    In this research, we estimated temporary change of brain activities in auditory oddball paradigm by moving an analysis time window. An advantage of this method is that it can acquire rough changes of activated areas even with data having low time resolution. Eight normal subjects participated in the study, which consisted of a random series of 30 target and 70 nontarget stimuli. We investigated the activated area in three kinds of analysis time sections, from stimulus onset to 5 seconds after the stimulus (time section A), from 2 to 7 seconds after (B) and from 4 to 9 seconds after (C). In time section A, representative activated areas were regions including superior temporal gyrus centered around inferior frontal gyrus, left precentral gyrus corresponding to Broadmann area 6 (BA 6), right fusiform gyrus corresponding to BA 20, bilaterally medial frontal gyrus and right inferior temporal gyrus were activated. In B, we could see the activations in bilatelally cerebellum, inferior frontal gyrus, and region including left motor area. In C, bilatelally postcentral gyrus, left cingulate gyrus , right cerebellum and right insula were activated. Most activations were consistent with previous studies.

  6. The utility of brief, spectrally rich, dynamic sounds in the passive oddball paradigm.

    PubMed

    Horváth, János; Roeber, Urte; Schröger, Erich

    2009-09-25

    Experiments investigating auditory processing often utilize spectrally rich, dynamic stimuli to simulate an ecologically valid auditory environment in the laboratory. Often, however, these stimuli do not allow for a strict control of the timing of auditory sensory information which may be distributed over the whole duration of a given sound. In the present study, brief (20 ms long), dynamic, spectrally rich sounds were presented in the context of a passive oddball paradigm to young adults. The short duration made certain that the sensory information was delivered entirely within a 20 ms interval. Two sounds were presented as standards (45-45% probability), other two as deviants (5-5% probability) in random sequences, with a stimulus onset asynchrony (SOA) of 1500 ms. Deviants elicited the mismatch negativity and late difference negativity (LDN) event-related potential components. No N1-effect was produced by deviants, which suggests that the acoustic energy is spread over many different features due to the dynamic spectral properties, which, combined with the brief duration, causes insignificant refractoriness-effects at the present SOA. These results support the usefulness of brief natural sounds in auditory research. The elicitation of LDN in an adult group was an unexpected finding, because LDN is mostly found in children, but not in adults. This result might indicate that LDN elicitation depends on stimulation complexity: stimulus settings in which an LDN is registered in children but not in adults may be perceived as more complex by children than by adults. PMID:19545606

  7. Anterior insular cortex activity to emotional salience of voices in a passive oddball paradigm

    PubMed Central

    Chen, Chenyi; Lee, Yu-Hsuan; Cheng, Yawei

    2014-01-01

    The human voice, which has a pivotal role in communication, is processed in specialized brain regions. Although a general consensus holds that the anterior insular cortex (AIC) plays a critical role in negative emotional experience, previous studies have not observed AIC activation in response to hearing disgust in voices. We used magnetoencephalography to measure the magnetic counterparts of mismatch negativity (MMNm) and P3a (P3am) in healthy adults while the emotionally meaningless syllables dada, spoken as neutral, happy, or disgusted prosodies, along with acoustically matched simple and complex tones, were presented in a passive oddball paradigm. The results revealed that disgusted relative to happy syllables elicited stronger MMNm-related cortical activities in the right AIC and precentral gyrus along with the left posterior insular cortex, supramarginal cortex, transverse temporal cortex, and upper bank of superior temporal cortex. The AIC activity specific to disgusted syllables (corrected p < 0.05) was associated with the hit rate of the emotional categorization task. These findings may clarify the neural correlates of emotional MMNm and lend support to the role of AIC in the processing of emotional salience already at the preattentive level. PMID:25346670

  8. Response inhibition of cigarette-related cues in male light smokers: behavioral evidence using a two-choice oddball paradigm

    PubMed Central

    Xin, Zhao; Ting, Liu X.; Yi, Zan X.; Li, Dai; Bao, Zhou A.

    2015-01-01

    Behavioral inhibitory control has been shown to play an important role in a variety of addictive behaviors. A number of studies involving the use of Go/NoGo and stop-signal paradigms have shown that smokers have reduced response inhibition for cigarette-related cues. However, it is not known whether male light smokers’ response inhibition for cigarette-related cues is lower than that of non-smokers in the two-choice oddball paradigm. The objective of the current study was to provide further behavioral evidence of male light smokers’ impaired response inhibition for cigarette-related cues, using the two-choice oddball paradigm. Sixty-two male students (31 smokers, 31 non-smokers), who were recruited via an advertisement, took part in this two-choice oddball experiment. Cigarette-related pictures (deviant stimuli) and pictures unrelated to cigarettes (standard stimuli) were used. Response inhibition for cigarette-related cues was measured by comparing accuracy (ACC) and reaction time (RT) for deviant and standard stimuli in the two groups of subjects. An analysis of variance (ANOVA) showed that in all the participants, ACC was significantly lower for deviant stimuli than for standard stimuli. For deviant stimuli, the RTs were significantly longer for male light smokers than for male non-smokers; however, there was no significant difference in RTs for standard stimuli. Compared to male non-smokers, male light smokers seem to have a reduced ability to inhibit responses to cigarette-related cues. PMID:26528200

  9. Response inhibition of cigarette-related cues in male light smokers: behavioral evidence using a two-choice oddball paradigm.

    PubMed

    Xin, Zhao; Ting, Liu X; Yi, Zan X; Li, Dai; Bao, Zhou A

    2015-01-01

    Behavioral inhibitory control has been shown to play an important role in a variety of addictive behaviors. A number of studies involving the use of Go/NoGo and stop-signal paradigms have shown that smokers have reduced response inhibition for cigarette-related cues. However, it is not known whether male light smokers' response inhibition for cigarette-related cues is lower than that of non-smokers in the two-choice oddball paradigm. The objective of the current study was to provide further behavioral evidence of male light smokers' impaired response inhibition for cigarette-related cues, using the two-choice oddball paradigm. Sixty-two male students (31 smokers, 31 non-smokers), who were recruited via an advertisement, took part in this two-choice oddball experiment. Cigarette-related pictures (deviant stimuli) and pictures unrelated to cigarettes (standard stimuli) were used. Response inhibition for cigarette-related cues was measured by comparing accuracy (ACC) and reaction time (RT) for deviant and standard stimuli in the two groups of subjects. An analysis of variance (ANOVA) showed that in all the participants, ACC was significantly lower for deviant stimuli than for standard stimuli. For deviant stimuli, the RTs were significantly longer for male light smokers than for male non-smokers; however, there was no significant difference in RTs for standard stimuli. Compared to male non-smokers, male light smokers seem to have a reduced ability to inhibit responses to cigarette-related cues. PMID:26528200

  10. Acoustic Oddball during NREM Sleep: A Combined EEG/fMRI Study

    PubMed Central

    Czisch, Michael; Wehrle, Renate; Stiegler, Andrea; Peters, Henning; Andrade, Katia; Holsboer, Florian; Sämann, Philipp G.

    2009-01-01

    Background A condition vital for the consolidation and maintenance of sleep is generally reduced responsiveness to external stimuli. Despite this, the sleeper maintains a level of stimulus processing that allows to respond to potentially dangerous environmental signals. The mechanisms that subserve these contradictory functions are only incompletely understood. Methodology/Principal Findings Using combined EEG/fMRI we investigated the neural substrate of sleep protection by applying an acoustic oddball paradigm during light NREM sleep. Further, we studied the role of evoked K-complexes (KCs), an electroencephalographic hallmark of NREM sleep with a still unknown role for sleep protection. Our main results were: (1) Other than in wakefulness, rare tones did not induce a blood oxygenation level dependent (BOLD) signal increase in the auditory pathway but a strong negative BOLD response in motor areas and the amygdala. (2) Stratification of rare tones by the presence of evoked KCs detected activation of the auditory cortex, hippocampus, superior and middle frontal gyri and posterior cingulate only for rare tones followed by a KC. (3) The typical high frontocentral EEG deflections of KCs were not paralleled by a BOLD equivalent. Conclusions/Significance We observed that rare tones lead to transient disengagement of motor and amygdala responses during light NREM sleep. We interpret this as a sleep protective mechanism to delimit motor responses and to reduce the sensitivity of the amygdala towards further incoming stimuli. Evoked KCs are suggested to originate from a brain state with relatively increased stimulus processing, revealing an activity pattern resembling novelty processing as previously reported during wakefulness. The KC itself is not reflected by increased metabolic demand in BOLD based imaging, arguing that evoked KCs result from increased neural synchronicity without altered metabolic demand. PMID:19707599

  11. A neurocomputational model of stimulus-specific adaptation to oddball and Markov sequences.

    PubMed

    Mill, Robert; Coath, Martin; Wennekers, Thomas; Denham, Susan L

    2011-08-01

    Stimulus-specific adaptation (SSA) occurs when the spike rate of a neuron decreases with repetitions of the same stimulus, but recovers when a different stimulus is presented. It has been suggested that SSA in single auditory neurons may provide information to change detection mechanisms evident at other scales (e.g., mismatch negativity in the event related potential), and participate in the control of attention and the formation of auditory streams. This article presents a spiking-neuron model that accounts for SSA in terms of the convergence of depressing synapses that convey feature-specific inputs. The model is anatomically plausible, comprising just a few homogeneously connected populations, and does not require organised feature maps. The model is calibrated to match the SSA measured in the cortex of the awake rat, as reported in one study. The effect of frequency separation, deviant probability, repetition rate and duration upon SSA are investigated. With the same parameter set, the model generates responses consistent with a wide range of published data obtained in other auditory regions using other stimulus configurations, such as block, sequential and random stimuli. A new stimulus paradigm is introduced, which generalises the oddball concept to Markov chains, allowing the experimenter to vary the tone probabilities and the rate of switching independently. The model predicts greater SSA for higher rates of switching. Finally, the issue of whether rarity or novelty elicits SSA is addressed by comparing the responses of the model to deviants in the context of a sequence of a single standard or many standards. The results support the view that synaptic adaptation alone can explain almost all aspects of SSA reported to date, including its purported novelty component, and that non-trivial networks of depressing synapses can intensify this novelty response. PMID:21876661

  12. Event-related desynchronization of frontal-midline theta rhythm during preconscious auditory oddball processing.

    PubMed

    Kawamata, Masaru; Kirino, Eiji; Inoue, Reiichi; Arai, Heii

    2007-10-01

    The goal of this study was to explore the frontal-midline theta rhythm (Fm theta) generation mechanism employing event-related desynchronization/synchronization (ERD/ERS) analysis in relation to task-irrelevant external stimuli. A dual paradigm was employed: a videogame and the simultaneous presentation of passive auditory oddball stimuli. We analyzed the data concerning ERD/ERS using both Fast Fourier Transformation (FFT) and wavelet transform (WT). In the FFT data, during the periods with appearance of Fm theta, apparent ERD of the theta band was observed at Fz and Cz. ERD when Fm theta was present was much more prominent than when Fm theta was absent. In the WT data, as in the FFT data, ERD was seen again, but in this case the ERD was preceded by ERS during both the periods with and without Fm theta. Furthermore, the WT analysis indicated that ERD was followed by ERS during the periods without Fm theta. However, during Fm theta, no apparent ERS following ERD was seen. In our study, Fm theta was desynchronized by the auditory stimuli that were independent of the video game task used to evoke the Fm theta. The ERD of Fm theta might be reflecting the mechanism of "positive suppression" to process external auditory stimuli automatically and preventing attentional resources from being unnecessarily allocated to those stimuli. Another possibility is that Fm theta induced by our dual paradigm may reflect information processing modeled by multi-item working memory requirements for playing the videogame and the simultaneous auditory processing using a memory trace. ERS in the WT data without Fm theta might indicate further processing of the auditory information free from "positive suppression" control reflected by Fm theta. PMID:17993201

  13. Altered Small-World Brain Networks in Temporal Lobe in Patients with Schizophrenia Performing an Auditory Oddball Task

    PubMed Central

    Yu, Qingbao; Sui, Jing; Rachakonda, Srinivas; He, Hao; Pearlson, Godfrey; Calhoun, Vince D.

    2011-01-01

    The functional architecture of the human brain has been extensively described in terms of complex networks characterized by efficient small-world features. Recent functional magnetic resonance imaging (fMRI) studies have found altered small-world topological properties of brain functional networks in patients with schizophrenia (SZ) during the resting state. However, little is known about the small-world properties of brain networks in the context of a task. In this study, we investigated the topological properties of human brain functional networks derived from fMRI during an auditory oddball (AOD) task. Data were obtained from 20 healthy controls and 20 SZ; A left and a right task-related network which consisted of the top activated voxels in temporal lobe of each hemisphere were analyzed separately. All voxels were detected by group independent component analysis. Connectivity of the left and right task-related networks were estimated by partial correlation analysis and thresholded to construct a set of undirected graphs. The small-worldness values were decreased in both hemispheres in SZ. In addition, SZ showed longer shortest path length and lower global efficiency only in the left task-related networks. These results suggested small-world attributes are altered during the AOD task-related networks in SZ which provided further evidences for brain dysfunction of connectivity in SZ. PMID:21369355

  14. Objective Assessment of Spectral Ripple Discrimination in Cochlear Implant Listeners Using Cortical Evoked Responses to an Oddball Paradigm

    PubMed Central

    Lopez Valdes, Alejandro; Mc Laughlin, Myles; Viani, Laura; Walshe, Peter; Smith, Jaclyn; Zeng, Fan-Gang; Reilly, Richard B.

    2014-01-01

    Cochlear implants (CIs) can partially restore functional hearing in deaf individuals. However, multiple factors affect CI listener's speech perception, resulting in large performance differences. Non-speech based tests, such as spectral ripple discrimination, measure acoustic processing capabilities that are highly correlated with speech perception. Currently spectral ripple discrimination is measured using standard psychoacoustic methods, which require attentive listening and active response that can be difficult or even impossible in special patient populations. Here, a completely objective cortical evoked potential based method is developed and validated to assess spectral ripple discrimination in CI listeners. In 19 CI listeners, using an oddball paradigm, cortical evoked potential responses to standard and inverted spectrally rippled stimuli were measured. In the same subjects, psychoacoustic spectral ripple discrimination thresholds were also measured. A neural discrimination threshold was determined by systematically increasing the number of ripples per octave and determining the point at which there was no longer a significant difference between the evoked potential response to the standard and inverted stimuli. A correlation was found between the neural and the psychoacoustic discrimination thresholds (R2 = 0.60, p<0.01). This method can objectively assess CI spectral resolution performance, providing a potential tool for the evaluation and follow-up of CI listeners who have difficulty performing psychoacoustic tests, such as pediatric or new users. PMID:24599314

  15. Objective assessment of spectral ripple discrimination in cochlear implant listeners using cortical evoked responses to an oddball paradigm.

    PubMed

    Lopez Valdes, Alejandro; Mc Laughlin, Myles; Viani, Laura; Walshe, Peter; Smith, Jaclyn; Zeng, Fan-Gang; Reilly, Richard B

    2014-01-01

    Cochlear implants (CIs) can partially restore functional hearing in deaf individuals. However, multiple factors affect CI listener's speech perception, resulting in large performance differences. Non-speech based tests, such as spectral ripple discrimination, measure acoustic processing capabilities that are highly correlated with speech perception. Currently spectral ripple discrimination is measured using standard psychoacoustic methods, which require attentive listening and active response that can be difficult or even impossible in special patient populations. Here, a completely objective cortical evoked potential based method is developed and validated to assess spectral ripple discrimination in CI listeners. In 19 CI listeners, using an oddball paradigm, cortical evoked potential responses to standard and inverted spectrally rippled stimuli were measured. In the same subjects, psychoacoustic spectral ripple discrimination thresholds were also measured. A neural discrimination threshold was determined by systematically increasing the number of ripples per octave and determining the point at which there was no longer a significant difference between the evoked potential response to the standard and inverted stimuli. A correlation was found between the neural and the psychoacoustic discrimination thresholds (R2=0.60, p<0.01). This method can objectively assess CI spectral resolution performance, providing a potential tool for the evaluation and follow-up of CI listeners who have difficulty performing psychoacoustic tests, such as pediatric or new users. PMID:24599314

  16. Towards neural correlates of auditory stimulus processing: A simultaneous auditory evoked potentials and functional magnetic resonance study using an odd-ball paradigm

    PubMed Central

    Milner, Rafał; Rusiniak, Mateusz; Lewandowska, Monika; Wolak, Tomasz; Ganc, Małgorzata; Piątkowska-Janko, Ewa; Bogorodzki, Piotr; Skarżyński, Henryk

    2014-01-01

    Background The neural underpinnings of auditory information processing have often been investigated using the odd-ball paradigm, in which infrequent sounds (deviants) are presented within a regular train of frequent stimuli (standards). Traditionally, this paradigm has been applied using either high temporal resolution (EEG) or high spatial resolution (fMRI, PET). However, used separately, these techniques cannot provide information on both the location and time course of particular neural processes. The goal of this study was to investigate the neural correlates of auditory processes with a fine spatio-temporal resolution. A simultaneous auditory evoked potentials (AEP) and functional magnetic resonance imaging (fMRI) technique (AEP-fMRI), together with an odd-ball paradigm, were used. Material/Methods Six healthy volunteers, aged 20–35 years, participated in an odd-ball simultaneous AEP-fMRI experiment. AEP in response to acoustic stimuli were used to model bioelectric intracerebral generators, and electrophysiological results were integrated with fMRI data. Results fMRI activation evoked by standard stimuli was found to occur mainly in the primary auditory cortex. Activity in these regions overlapped with intracerebral bioelectric sources (dipoles) of the N1 component. Dipoles of the N1/P2 complex in response to standard stimuli were also found in the auditory pathway between the thalamus and the auditory cortex. Deviant stimuli induced fMRI activity in the anterior cingulate gyrus, insula, and parietal lobes. Conclusions The present study showed that neural processes evoked by standard stimuli occur predominantly in subcortical and cortical structures of the auditory pathway. Deviants activate areas non-specific for auditory information processing. PMID:24413019

  17. A New Visual Stimulation Program for Improving Visual Acuity in Children with Visual Impairment: A Pilot Study.

    PubMed

    Tsai, Li-Ting; Hsu, Jung-Lung; Wu, Chien-Te; Chen, Chia-Ching; Su, Yu-Chin

    2016-01-01

    The purpose of this study was to investigate the effectiveness of visual rehabilitation of a computer-based visual stimulation (VS) program combining checkerboard pattern reversal (passive stimulation) with oddball stimuli (attentional modulation) for improving the visual acuity (VA) of visually impaired (VI) children and children with amblyopia and additional developmental problems. Six children (three females, three males; mean age = 3.9 ± 2.3 years) with impaired VA caused by deficits along the anterior and/or posterior visual pathways were recruited. Participants received eight rounds of VS training (two rounds per week) of at least eight sessions per round. Each session consisted of stimulation with 200 or 300 pattern reversals. Assessments of VA (assessed with the Lea symbol VA test or Teller VA cards), visual evoked potential (VEP), and functional vision (assessed with the Chinese-version Functional Vision Questionnaire, FVQ) were carried out before and after the VS program. Significant gains in VA were found after the VS training [VA = 1.05 logMAR ± 0.80 to 0.61 logMAR ± 0.53, Z = -2.20, asymptotic significance (2-tailed) = 0.028]. No significant changes were observed in the FVQ assessment [92.8 ± 12.6 to 100.8 ±SD = 15.4, Z = -1.46, asymptotic significance (2-tailed) = 0.144]. VEP measurement showed improvement in P100 latency and amplitude or integration of the waveform in two participants. Our results indicate that a computer-based VS program with passive checkerboard stimulation, oddball stimulus design, and interesting auditory feedback could be considered as a potential intervention option to improve the VA of a wide age range of VI children and children with impaired VA combined with other neurological disorders. PMID:27148014

  18. A New Visual Stimulation Program for Improving Visual Acuity in Children with Visual Impairment: A Pilot Study

    PubMed Central

    Tsai, Li-Ting; Hsu, Jung-Lung; Wu, Chien-Te; Chen, Chia-Ching; Su, Yu-Chin

    2016-01-01

    The purpose of this study was to investigate the effectiveness of visual rehabilitation of a computer-based visual stimulation (VS) program combining checkerboard pattern reversal (passive stimulation) with oddball stimuli (attentional modulation) for improving the visual acuity (VA) of visually impaired (VI) children and children with amblyopia and additional developmental problems. Six children (three females, three males; mean age = 3.9 ± 2.3 years) with impaired VA caused by deficits along the anterior and/or posterior visual pathways were recruited. Participants received eight rounds of VS training (two rounds per week) of at least eight sessions per round. Each session consisted of stimulation with 200 or 300 pattern reversals. Assessments of VA (assessed with the Lea symbol VA test or Teller VA cards), visual evoked potential (VEP), and functional vision (assessed with the Chinese-version Functional Vision Questionnaire, FVQ) were carried out before and after the VS program. Significant gains in VA were found after the VS training [VA = 1.05 logMAR ± 0.80 to 0.61 logMAR ± 0.53, Z = –2.20, asymptotic significance (2-tailed) = 0.028]. No significant changes were observed in the FVQ assessment [92.8 ± 12.6 to 100.8 ±SD = 15.4, Z = –1.46, asymptotic significance (2-tailed) = 0.144]. VEP measurement showed improvement in P100 latency and amplitude or integration of the waveform in two participants. Our results indicate that a computer-based VS program with passive checkerboard stimulation, oddball stimulus design, and interesting auditory feedback could be considered as a potential intervention option to improve the VA of a wide age range of VI children and children with impaired VA combined with other neurological disorders. PMID:27148014

  19. Neuropharmacological effect of atomoxetine on attention network in children with attention deficit hyperactivity disorder during oddball paradigms as assessed using functional near-infrared spectroscopy

    PubMed Central

    Nagashima, Masako; Monden, Yukifumi; Dan, Ippeita; Dan, Haruka; Mizutani, Tsutomu; Tsuzuki, Daisuke; Kyutoku, Yasushi; Gunji, Yuji; Hirano, Daisuke; Taniguchi, Takamichi; Shimoizumi, Hideo; Momoi, Mariko Y.; Yamagata, Takanori; Watanabe, Eiju

    2014-01-01

    Abstract. The current study aimed to explore the neural substrate for atomoxetine effects on attentional control in school-aged children with attention deficit hyperactivity disorder (ADHD) using functional near-infrared spectroscopy (fNIRS), which can be applied to young children with ADHD more easily than conventional neuroimaging modalities. Using fNIRS, we monitored the oxy-hemoglobin signal changes of 15 ADHD children (6 to 14 years old) performing an oddball task before and 1.5 h after atomoxetine or placebo administration, in a randomized, double-blind, placebo-controlled, crossover design. Fifteen age-, gender-, and intelligence quotient-matched normal controls without atomoxetine administration were also monitored. In the control subjects, the oddball task recruited the right prefrontal and inferior parietal cortices. The right prefrontal and parietal activation was normalized after atomoxetine administration in ADHD children. This was in contrast to our previous study using a similar protocol showing methylphenidate-induced normalization of only the right prefrontal function. fNIRS allows the detection of differential neuropharmacological profiles of both substances in the attentional network: the neuropharmacological effects of atomoxetine to upregulate the noradrenergic system reflected in the right prefrontal and inferior parietal activations and those of methylphenidate to upregulate the dopamine system reflected in the prefrontal cortex activation. PMID:26157979

  20. Neuropharmacological effect of methylphenidate on attention network in children with attention deficit hyperactivity disorder during oddball paradigms as assessed using functional near-infrared spectroscopy.

    PubMed

    Nagashima, Masako; Monden, Yukifumi; Dan, Ippeita; Dan, Haruka; Tsuzuki, Daisuke; Mizutani, Tsutomu; Kyutoku, Yasushi; Gunji, Yuji; Momoi, Mariko Y; Watanabe, Eiju; Yamagata, Takanori

    2014-07-01

    The current study aimed to explore the neural substrate for methylphenidate effects on attentional control in school-aged children with attention deficit hyperactivity disorder (ADHD) using functional near-infrared spectroscopy (fNIRS), which can be applied to young children with ADHD more easily than conventional neuroimaging modalities. Using fNIRS, we monitored the oxy-hemoglobin signal changes of 22 ADHD children (6 to 14 years old) performing an oddball task before and 1.5 h after methylphenidate or placebo administration, in a randomized, double-blind, placebo-controlled, crossover design. Twenty-two age- and gender-matched normal controls without methylphenidate administration were also monitored. In the control subjects, the oddball task recruited the right prefrontal and inferior parietal cortices, and this activation was absent in premedicated ADHD children. The reduced right prefrontal activation was normalized after methylphenidate but not placebo administration in ADHD children. These results are consistent with the neuropharmacological effects of methylphenidate to upregulate the dopamine system in the prefrontal cortex innervating from the ventral tegmentum (mesocortical pathway), but not the noradrenergic system from the parietal cortex to the locus coeruleus. Thus, right prefrontal activation would serve as an objective neurofunctional biomarker to indicate the effectiveness of methylphenidate on ADHD children in attentional control. fNIRS monitoring enhances early clinical diagnosis and the treatment of ADHD children, especially those with an inattention phenotype. PMID:26157971

  1. Neuropharmacological effect of methylphenidate on attention network in children with attention deficit hyperactivity disorder during oddball paradigms as assessed using functional near-infrared spectroscopy

    PubMed Central

    Nagashima, Masako; Monden, Yukifumi; Dan, Ippeita; Dan, Haruka; Tsuzuki, Daisuke; Mizutani, Tsutomu; Kyutoku, Yasushi; Gunji, Yuji; Momoi, Mariko Y.; Watanabe, Eiju; Yamagata, Takanori

    2014-01-01

    Abstract. The current study aimed to explore the neural substrate for methylphenidate effects on attentional control in school-aged children with attention deficit hyperactivity disorder (ADHD) using functional near-infrared spectroscopy (fNIRS), which can be applied to young children with ADHD more easily than conventional neuroimaging modalities. Using fNIRS, we monitored the oxy-hemoglobin signal changes of 22 ADHD children (6 to 14 years old) performing an oddball task before and 1.5 h after methylphenidate or placebo administration, in a randomized, double-blind, placebo-controlled, crossover design. Twenty-two age- and gender-matched normal controls without methylphenidate administration were also monitored. In the control subjects, the oddball task recruited the right prefrontal and inferior parietal cortices, and this activation was absent in premedicated ADHD children. The reduced right prefrontal activation was normalized after methylphenidate but not placebo administration in ADHD children. These results are consistent with the neuropharmacological effects of methylphenidate to upregulate the dopamine system in the prefrontal cortex innervating from the ventral tegmentum (mesocortical pathway), but not the noradrenergic system from the parietal cortex to the locus coeruleus. Thus, right prefrontal activation would serve as an objective neurofunctional biomarker to indicate the effectiveness of methylphenidate on ADHD children in attentional control. fNIRS monitoring enhances early clinical diagnosis and the treatment of ADHD children, especially those with an inattention phenotype. PMID:26157971

  2. Crossmodal facilitation of masked visual target identification.

    PubMed

    Ngo, Mary Kim; Spence, Charles

    2010-10-01

    In the present study, participants identified the location of a visual target presented in a rapidly masked, changing sequence of visual distractors. In Experiment 1, we examined performance when a high tone, embedded in a sequence of low tones, was presented in synchrony with the visual target and observed that the high tone improved visual target identification, relative to a condition in which a low tone was synchronized with the visual target, thus replicating Vroomen and de Gelder's (2000, Experiment 1) findings. In subsequent experiments, we presented a single visual, auditory, vibrotactile, or combined audiotactile cue with the visual target and found similar improvements in participants' performance regardless of cue type. These results suggest that crossmodal perceptual organization may account for only a part of the improvement in participants' visual target identification performance reported in Vroomen and de Gelder's original study. Moreover, in contrast with many previous crossmodal cuing studies, our results also suggest that visual cues can enhance visual target identification performance. Alternative accounts for these results are discussed in terms of enhanced saliency, the presence of a temporal marker, and attentional capture by oddball stimuli as potential explanations for the observed performance benefits. PMID:20952790

  3. The development of the N1 and N2 components in auditory oddball paradigms: a systematic review with narrative analysis and suggested normative values.

    PubMed

    Tomé, David; Barbosa, Fernando; Nowak, Kamila; Marques-Teixeira, João

    2015-03-01

    Auditory event-related potentials (AERPs) are widely used in diverse fields of today's neuroscience, concerning auditory processing, speech perception, language acquisition, neurodevelopment, attention and cognition in normal aging, gender, developmental, neurologic and psychiatric disorders. However, its transposition to clinical practice has remained minimal. Mainly due to scarce literature on normative data across age, wide spectrum of results, variety of auditory stimuli used and to different neuropsychological meanings of AERPs components between authors. One of the most prominent AERP components studied in last decades was N1, which reflects auditory detection and discrimination. Subsequently, N2 indicates attention allocation and phonological analysis. The simultaneous analysis of N1 and N2 elicited by feasible novelty experimental paradigms, such as auditory oddball, seems an objective method to assess central auditory processing. The aim of this systematic review was to bring forward normative values for auditory oddball N1 and N2 components across age. EBSCO, PubMed, Web of Knowledge and Google Scholar were systematically searched for studies that elicited N1 and/or N2 by auditory oddball paradigm. A total of 2,764 papers were initially identified in the database, of which 19 resulted from hand search and additional references, between 1988 and 2013, last 25 years. A final total of 68 studies met the eligibility criteria with a total of 2,406 participants from control groups for N1 (age range 6.6-85 years; mean 34.42) and 1,507 for N2 (age range 9-85 years; mean 36.13). Polynomial regression analysis revealed that N1 latency decreases with aging at Fz and Cz, N1 amplitude at Cz decreases from childhood to adolescence and stabilizes after 30-40 years and at Fz the decrement finishes by 60 years and highly increases after this age. Regarding N2, latency did not covary with age but amplitude showed a significant decrement for both Cz and Fz. Results

  4. Spatio-temporal dynamics of automatic processing of phonological information in visual words.

    PubMed

    Wang, Xiao-Dong; Wu, Yin-Yuan; A-Ping Liu; Wang, Peng

    2013-01-01

    Sensory-specific cortices appear to be sensitive to information from another modality. Here we investigate whether the human brain automatically extracts the phonological information in visual words in early visual processing. We continuously presented native Chinese speakers peripherally with Chinese homophone characters in an oddball paradigm, while they performed a visual detection task presented in the centre of the visual field. We found the lexical tone phonology embedded in the characters is processed automatically by the brain of native speakers, as revealed by whole-head electrical recordings of the mismatch negativity (MMN). Source solution further revealed the MMN involved the neural activations from the visual cortex to the auditory cortex (130-460 ms). The spatial-temporal dynamics indicate a visual-auditory interaction in the early, automatic processing of phonological information in visual words. PMID:24336606

  5. Analysis of the time-varying energy of brain responses to an oddball paradigm using short-term smoothed Wigner-Ville distribution.

    PubMed

    Tağluk, M E; Cakmak, E D; Karakaş, S

    2005-04-30

    Cognitive brain responses to external stimuli, as measured by event related potentials (ERPs), have been analyzed from a variety of perspectives to investigate brain dynamics. Here, the brain responses of healthy subjects to auditory oddball paradigms, standard and deviant stimuli, recorded on an Fz electrode site were studied using a short-term version of the smoothed Wigner-Ville distribution (STSW) method. A smoothing kernel was designed to preserve the auto energy of the signal with maximum time and frequency resolutions. Analysis was conducted mainly on the time-frequency distributions (TFDs) of sweeps recorded during successive trials including the TFD of averaged single sweeps as the evoked time-frequency (ETF) brain response and the average of TFDs of single sweeps as the time-frequency (TF) brain response. Also the power entropy and the phase angles of the signal at frequency f and time t locked to the stimulus onset were studied across single trials as the TF power-locked and the TF phase-locked brain responses, respectively. TFDs represented in this way demonstrated the ERP spectro-temporal characteristics from multiple perspectives. The time-varying energy of the individual components manifested interesting TF structures in the form of amplitude modulated (AM) and frequency modulated (FM) energy bursts. The TF power-locked and phase-locked brain responses provoked ERP energies in a manner modulated by cognitive functions, an observation requiring further investigation. These results may lead to a better understanding of integrative brain dynamics. PMID:15814152

  6. Brain Dynamics of Aging: Multiscale Variability of EEG Signals at Rest and during an Auditory Oddball Task1,2,3

    PubMed Central

    Sleimen-Malkoun, Rita; Perdikis, Dionysios; Müller, Viktor; Blanc, Jean-Luc; Huys, Raoul; Temprado, Jean-Jacques

    2015-01-01

    Abstract The present work focused on the study of fluctuations of cortical activity across time scales in young and older healthy adults. The main objective was to offer a comprehensive characterization of the changes of brain (cortical) signal variability during aging, and to make the link with known underlying structural, neurophysiological, and functional modifications, as well as aging theories. We analyzed electroencephalogram (EEG) data of young and elderly adults, which were collected at resting state and during an auditory oddball task. We used a wide battery of metrics that typically are separately applied in the literature, and we compared them with more specific ones that address their limits. Our procedure aimed to overcome some of the methodological limitations of earlier studies and verify whether previous findings can be reproduced and extended to different experimental conditions. In both rest and task conditions, our results mainly revealed that EEG signals presented systematic age-related changes that were time-scale-dependent with regard to the structure of fluctuations (complexity) but not with regard to their magnitude. Namely, compared with young adults, the cortical fluctuations of the elderly were more complex at shorter time scales, but less complex at longer scales, although always showing a lower variance. Additionally, the elderly showed signs of spatial, as well as between, experimental conditions dedifferentiation. By integrating these so far isolated findings across time scales, metrics, and conditions, the present study offers an overview of age-related changes in the fluctuation electrocortical activity while making the link with underlying brain dynamics. PMID:26464983

  7. Brain Dynamics of Aging: Multiscale Variability of EEG Signals at Rest and during an Auditory Oddball Task(1,2,3).

    PubMed

    Sleimen-Malkoun, Rita; Perdikis, Dionysios; Müller, Viktor; Blanc, Jean-Luc; Huys, Raoul; Temprado, Jean-Jacques; Jirsa, Viktor K

    2015-01-01

    The present work focused on the study of fluctuations of cortical activity across time scales in young and older healthy adults. The main objective was to offer a comprehensive characterization of the changes of brain (cortical) signal variability during aging, and to make the link with known underlying structural, neurophysiological, and functional modifications, as well as aging theories. We analyzed electroencephalogram (EEG) data of young and elderly adults, which were collected at resting state and during an auditory oddball task. We used a wide battery of metrics that typically are separately applied in the literature, and we compared them with more specific ones that address their limits. Our procedure aimed to overcome some of the methodological limitations of earlier studies and verify whether previous findings can be reproduced and extended to different experimental conditions. In both rest and task conditions, our results mainly revealed that EEG signals presented systematic age-related changes that were time-scale-dependent with regard to the structure of fluctuations (complexity) but not with regard to their magnitude. Namely, compared with young adults, the cortical fluctuations of the elderly were more complex at shorter time scales, but less complex at longer scales, although always showing a lower variance. Additionally, the elderly showed signs of spatial, as well as between, experimental conditions dedifferentiation. By integrating these so far isolated findings across time scales, metrics, and conditions, the present study offers an overview of age-related changes in the fluctuation electrocortical activity while making the link with underlying brain dynamics. PMID:26464983

  8. What is the specificity of the response to the own first-name when presented as a novel in a passive oddball paradigm? An ERP study.

    PubMed

    Eichenlaub, Jean-Baptiste; Ruby, Perrine; Morlet, Dominique

    2012-04-01

    One's own first-name is a special stimulus: one's attention is more likely captured by hearing one's own first-name than by hearing another first-name. Previous event-related potential (ERP) studies demonstrated that this special stimulus produces differential responses both in active and in passive condition. Such results suggest that passively hearing one's own first-name triggers processing levels generally activated by the explicit detection of stimuli. This questions about the particular power of the own first-name to automatically orient attention, but no study investigated the specific response to this special stimulus in a paradigm designed to study automatic attention orienting. In this ERP study, we compared the responses elicited by the own first-name (OWN) and one unfamiliar first-name (OTHER) presented, rarely, randomly and at the same frequency among repetitive tones (i.e., as novel stimuli in an oddball paradigm) while subjects (N=36) were watching a silent movie with subtitles. We tested at what latency the responses to OWN and OTHER diverge, and whether OWN modulates the brain orienting response (novelty P3). Data analysis showed specific responses to OWN after 300 ms. OWN only evoked a central negativity (320 ms) and a parietal positivity (550 ms). However, OWN had no significant effect on the brain orienting response (260 ms). Our results confirm that the own first-name does elicit a late specific brain response. However, they challenge the idea that in passive condition, the own first-name is systematically more powerful than another first-name to orient attention when it is heard unexpectedly. PMID:22361115

  9. One-year developmental stability and covariance among oddball, novelty, go/no-go, and flanker event-related potentials in adolescence: A monozygotic twin study.

    PubMed

    Burwell, Scott J; Malone, Stephen M; Iacono, William G

    2016-07-01

    ERP measures may index genetic risk for psychopathology before disorder onset in adolescence, but little is known about their developmental rank-order stability during this period of significant brain maturation. We studied ERP stability in 48 pairs of identical twins (age 14-16 years) tested 1 year apart. Trial-averaged voltage waveforms were extracted from electroencephalographic recordings from oddball/novelty, go/no-go, and flanker tasks, and 16 amplitude measures were examined. Members of twin pairs were highly similar, whether based on ERP amplitude measures (intraclass correlation [ICC] median = .64, range = .44-.86) or three factor scores (all ICCs ≥ .69) derived from them. Stability was high overall, with 69% of the 16 individual measures generating stability coefficients exceeding .70 and all factor scores showing stability above .75. Measures from 10 difference waveforms calculated from paired conditions within tasks were also examined, and were associated with lower twin similarity (ICC median = .52, .38-.64) and developmental stability (only 30% exceeding .70). In a supplemental analysis, we found significant developmental stability for error-related negativity (range = .45-.55) and positivity (.56-.70) measures when average waveforms were based on one or more trials, and that these values were equivalent to those derived from averages using the current field recommendation, which requires six or more trials. Overall, we conclude that the studied brain measures are largely stable over 1 year of mid- to late adolescence, likely reflecting familial etiologic influences on brain functions pertaining to cognitive control and salience recognition. PMID:26997525

  10. Modeling the effect of selection history on pop-out visual search.

    PubMed

    Tseng, Yuan-Chi; Glaser, Joshua I; Caddigan, Eamon; Lleras, Alejandro

    2014-01-01

    While attentional effects in visual selection tasks have traditionally been assigned "top-down" or "bottom-up" origins, more recently it has been proposed that there are three major factors affecting visual selection: (1) physical salience, (2) current goals and (3) selection history. Here, we look further into selection history by investigating Priming of Pop-out (POP) and the Distractor Preview Effect (DPE), two inter-trial effects that demonstrate the influence of recent history on visual search performance. Using the Ratcliff diffusion model, we model observed saccadic selections from an oddball search experiment that included a mix of both POP and DPE conditions. We find that the Ratcliff diffusion model can effectively model the manner in which selection history affects current attentional control in visual inter-trial effects. The model evidence shows that bias regarding the current trial's most likely target color is the most critical parameter underlying the effect of selection history. Our results are consistent with the view that the 3-item color-oddball task used for POP and DPE experiments is best understood as an attentional decision making task. PMID:24595032

  11. Visual field

    MedlinePlus

    Perimetry; Tangent screen exam; Automated perimetry exam; Goldmann visual field exam; Humphrey visual field exam ... Confrontation visual field exam : This is a quick and basic check of the visual field. The health care provider ...

  12. Visual Learning.

    ERIC Educational Resources Information Center

    Kirrane, Diane E.

    1992-01-01

    An increasingly visual culture is affecting work and training. Achievement of visual literacy means acquiring competence in critical analysis of visual images and in communicating through visual media. (SK)

  13. Visual field

    MedlinePlus

    Perimetry; Tangent screen exam; Automated perimetry exam; Goldmann visual field exam; Humphrey visual field exam ... Confrontation visual field exam : This is a quick and basic check of the visual field. The health care provider sits directly in front ...

  14. Visual Evoked Responses During Standing and Walking

    PubMed Central

    Gramann, Klaus; Gwin, Joseph T.; Bigdely-Shamlo, Nima; Ferris, Daniel P.; Makeig, Scott

    2010-01-01

    Human cognition has been shaped both by our body structure and by its complex interactions with its environment. Our cognition is thus inextricably linked to our own and others’ motor behavior. To model brain activity associated with natural cognition, we propose recording the concurrent brain dynamics and body movements of human subjects performing normal actions. Here we tested the feasibility of such a mobile brain/body (MoBI) imaging approach by recording high-density electroencephalographic (EEG) activity and body movements of subjects standing or walking on a treadmill while performing a visual oddball response task. Independent component analysis of the EEG data revealed visual event-related potentials that during standing, slow walking, and fast walking did not differ across movement conditions, demonstrating the viability of recording brain activity accompanying cognitive processes during whole body movement. Non-invasive and relatively low-cost MoBI studies of normal, motivated actions might improve understanding of interactions between brain and body dynamics leading to more complete biological models of cognition. PMID:21267424

  15. Visual agnosia.

    PubMed

    Álvarez, R; Masjuan, J

    2016-03-01

    Visual agnosia is defined as an impairment of object recognition, in the absence of visual acuity or cognitive dysfunction that would explain this impairment. This condition is caused by lesions in the visual association cortex, sparing primary visual cortex. There are 2 main pathways that process visual information: the ventral stream, tasked with object recognition, and the dorsal stream, in charge of locating objects in space. Visual agnosia can therefore be divided into 2 major groups depending on which of the two streams is damaged. The aim of this article is to conduct a narrative review of the various visual agnosia syndromes, including recent developments in a number of these syndromes. PMID:26358494

  16. Neural adaptation to non-symbolic number and visual shape: an electrophysiological study.

    PubMed

    Soltész, Fruzsina; Szűcs, Dénes

    2014-12-01

    Several studies assumed that the analysis of numerical information happens in a fast and automatic manner in the human brain. Utilizing the high temporal resolution of electroencephalography (EEG) in a passive oddball adaptation paradigm, we compared event-related brain potentials (ERPs) evoked by unattended shape changes and unattended numerosity changes. We controlled visual stimulus properties in a stringent manner. Unattended changes in shape elicited significant, gradual adaptation effects in the range of early visual components, indicating the fast and automatic processing of shapes. Changes in numerosity did not elicit significant changes in these early ERP components. The lack of early number-specific effects was qualified by a significant interaction between Shape and Number conditions. Number change elicited gradual ERP effects only on late ERP components. We conclude that numerosity is a higher-level property assembled from naturally correlating perceptual cues and hence, it is identified later in the cognitive processing stream. PMID:25258032

  17. Visual Scripting.

    ERIC Educational Resources Information Center

    Halas, John

    Visual scripting is the coordination of words with pictures in sequence. This book presents the methods and viewpoints on visual scripting of fourteen film makers, from nine countries, who are involved in animated cinema; it contains concise examples of how a storybook and preproduction script can be prepared in visual terms; and it includes a…

  18. Subclinical alexithymia modulates early audio-visual perceptive and attentional event-related potentials

    PubMed Central

    Delle-Vigne, Dyna; Kornreich, Charles; Verbanck, Paul; Campanella, Salvatore

    2014-01-01

    Introduction: Previous studies have highlighted the advantage of using audio–visual oddball tasks (instead of unimodal ones) in order to electrophysiologically index subclinical behavioral differences. Since alexithymia is highly prevalent in the general population, we investigated whether the use of various bimodal tasks could elicit emotional effects in low- vs. high-alexithymic scorers. Methods: Fifty students (33 females and 17 males) were split into groups based on low and high scores on the Toronto Alexithymia Scale (TAS-20). During event-related potential (ERP) recordings, they were exposed to three kinds of audio–visual oddball tasks: neutral-AVN—(geometrical forms and bips), animal-AVA—(dog and cock with their respective shouts), or emotional-AVE—(faces and voices) stimuli. In each condition, participants were asked to quickly detect deviant events occurring amongst a train of repeated and frequent matching stimuli (e.g., push a button when a sad face–voice pair appeared amongst a train of neutral face–voice pairs). P100, N100, and P300 components were analyzed: P100 refers to visual perceptive and attentional processing, N100 to auditory ones, and the P300 relates to response-related stages, involving memory processes. Results: High-alexithymic scorers presented a particular pattern of results when processing the emotional stimulations, reflected in early ERP components by increased P100 and N100 amplitudes in the emotional oddball tasks [P100: F(2, 48) = 20,319, p < 0.001; N100: F(2, 96) = 8,807, p = 0.001] as compared to the animal or neutral ones. Indeed, regarding the P100, subjects exhibited a higher amplitude in the AVE condition (8.717 μV), which was significantly different from that observed during the AVN condition (4.382 μV, p < 0.001). For the N100, the highest amplitude was found in the AVE condition (−4.035 μV) and the lowest was observed in the AVN condition (−2.687 μV, p = 0.003). However, no effect was found on the

  19. Visual Imagery without Visual Perception?

    ERIC Educational Resources Information Center

    Bertolo, Helder

    2005-01-01

    The question regarding visual imagery and visual perception remain an open issue. Many studies have tried to understand if the two processes share the same mechanisms or if they are independent, using different neural substrates. Most research has been directed towards the need of activation of primary visual areas during imagery. Here we review…

  20. Reduced visual event-related δ oscillatory responses in amnestic mild cognitive impairment.

    PubMed

    Yener, Görsev G; Kurt, Pınar; Emek-Savaş, Derya Durusu; Güntekin, Bahar; Başar, Erol

    2013-01-01

    Mild cognitive impairment (MCI) is considered as a prodromal stage for Alzheimer's disease (AD) in the majority of cases. Event-related oscillations might be used for detection of cognitive deficits. Our group's earlier results showed diminished delta visual and auditory target oscillatory responses in AD, and we investigated whether this prevails for MCI. Eighteen MCI subjects and 18 age-matched healthy elderly controls were investigated. The maximum peak-to-peak amplitudes of oscillatory responses for each subject's averaged oscillatory target responses in delta, theta, and alpha frequency bands upon application of visual oddball paradigm were measured. Repeated measures of ANOVA was used to analyze four locations (frontal, central, parietal, occipital), at three coronal (left, midline, right) sites. Independent t tests were applied for post-hoc analyses. The oddball target delta response (0.5-3.0 Hz) was 26-32% lower in MCI than healthy controls over fronto-central-parietal regions [F(1.34) = 4.562, p = 0.04]. Without a group effect, theta oscillatory responses (4-7 Hz) showed significant differences in coronal electrodes indicating highest values over mid-electrode sites, and a anteriorposterior x coronal effect, being maximum at mid-central. Alpha frequency band analyses indicated no statistical differences. Peak-to-peak amplitudes of visual target delta oscillatory responses were lower in fronto-central-parietal regions in MCI than in healthy controls. This supports our earlier findings in AD, showing hypoactive delta fronto-central-parietal regions during cognitive tasks. These results indicate that event-related oscillations may detect early changes of brain dynamics in MCI, and deserves to be investigated as a candidate biomarker in further studies using multimodal techniques. PMID:23948923

  1. Processing of unattended facial emotions: a visual mismatch negativity study.

    PubMed

    Stefanics, Gábor; Csukly, Gábor; Komlósi, Sarolta; Czobor, Pál; Czigler, István

    2012-02-01

    Facial emotions express our internal states and are fundamental in social interactions. Here we explore whether the repetition of unattended facial emotions builds up a predictive representation of frequently encountered emotions in the visual system. Participants (n=24) were presented peripherally with facial stimuli expressing emotions while they performed a visual detection task presented in the center of the visual field. Facial stimuli consisted of four faces of different identity, but expressed the same emotion (happy or fearful). Facial stimuli were presented in blocks of oddball sequence (standard emotion: p=0.9, deviant emotion: p=0.1). Event-related potentials (ERPs) to the same emotions were compared when the emotions were deviant and standard, respectively. We found visual mismatch negativity (vMMN) responses to unattended deviant emotions in the 170-360 ms post-stimulus range over bilateral occipito-temporal sites. Our results demonstrate that information about the emotional content of unattended faces presented at the periphery of the visual field is rapidly processed and stored in a predictive memory representation by the visual system. We also found evidence that differential processing of deviant fearful faces starts already at 70-120 ms after stimulus onset. This finding shows a 'negativity bias' under unattended conditions. Differential processing of fearful deviants were more pronounced in the right hemisphere in the 195-275 ms and 360-390 ms intervals, whereas processing of happy deviants evoked larger differential response in the left hemisphere in the 360-390 ms range, indicating differential hemispheric specialization for automatic processing of positive and negative affect. PMID:22037000

  2. Global Image Dissimilarity in Macaque Inferotemporal Cortex Predicts Human Visual Search Efficiency

    PubMed Central

    Sripati, Arun P.; Olson, Carl R.

    2010-01-01

    Finding a target in a visual scene can be easy or difficult depending on the nature of the distractors. Research in humans has suggested that search is more difficult the more similar the target and distractors are to each other. However, it has not yielded an objective definition of similarity. We hypothesized that visual search performance depends on similarity as determined by the degree to which two images elicit overlapping patterns of neuronal activity in visual cortex. To test this idea, we recorded from neurons in monkey inferotemporal cortex (IT) and assessed visual search performance in humans using pairs of images formed from the same local features in different global arrangements. The ability of IT neurons to discriminate between two images was strongly predictive of the ability of humans to discriminate between them during visual search, accounting overall for 90% of the variance in human performance. A simple physical measure of global similarity – the degree of overlap between the coarse footprints of a pair of images – largely explains both the neuronal and the behavioral results. To explain the relation between population activity and search behavior, we propose a model in which the efficiency of global oddball search depends on contrast-enhancing lateral interactions in high-order visual cortex. PMID:20107054

  3. Mathematical Visualization

    ERIC Educational Resources Information Center

    Rogness, Jonathan

    2011-01-01

    Advances in computer graphics have provided mathematicians with the ability to create stunning visualizations, both to gain insight and to help demonstrate the beauty of mathematics to others. As educators these tools can be particularly important as we search for ways to work with students raised with constant visual stimulation, from video games…

  4. Visual Literacy

    ERIC Educational Resources Information Center

    Felten, Peter

    2008-01-01

    Living in an image-rich world does not mean students (or faculty and administrators) naturally possess sophisticated visual literacy skills, just as continually listening to an iPod does not teach a person to critically analyze or create music. Instead, "visual literacy involves the ability to understand, produce, and use culturally significant…

  5. Visual Literacy.

    ERIC Educational Resources Information Center

    Lamberski, Richard J.

    A series of articles examines visual literacy from the perspectives of definition, research, curriculum, and resources. Articles examining the definition of visual literacy approach it in terms of semantics, techniques, and exploratory definition areas. There are surveys of present and potential research, and a discussion of the problem of…

  6. Visual Closure.

    ERIC Educational Resources Information Center

    Groffman, Sidney

    An experimental test of visual closure based on an information-theory concept of perception was devised to test the ability to discriminate visual stimuli with reduced cues. The test is to be administered in a timed individual situation in which the subject is presented with sets of incomplete drawings of simple objects that he is required to name…

  7. Visual Thinking.

    ERIC Educational Resources Information Center

    Arnheim, Rudolf

    Based on the more general principle that all thinking (including reasoning) is basically perceptual in nature, the author proposes that visual perception is not a passive recording of stimulus material but an active concern of the mind. He delineates the task of visually distinguishing changes in size, shape, and position and points out the…

  8. Automatic prediction regarding the next state of a visual object: Electrophysiological indicators of prediction match and mismatch.

    PubMed

    Kimura, Motohiro; Takeda, Yuji

    2015-11-11

    Behavioral phenomena such as representational momentum suggest that the brain can automatically predict the next state of a visual object, based on sequential rules embedded in its preceding spatiotemporal context. To identify electrophysiological indicators of automatic visual prediction in terms of prediction match and mismatch, we recorded event-related brain potentials (ERPs) while participants passively viewed three types of task-irrelevant sequences of a bar stimulus: (1) an oddball sequence, which contained a sequential rule defined by stimulus repetition, providing repetition-rule-conforming (standard) and -violating (deviant) stimuli; (2) a rotating-oddball sequence, which contained a sequential rule defined by stimulus change (i.e., rotation), providing change-rule-conforming (regular) and -violating (irregular) stimuli; and (3) a random sequence, which did not contain a sequential rule, providing a neutral (control) stimulus. This protocol allowed us to expect that (1) an ERP effect that reflects a prediction-mismatch process should be exclusively observed in both the deviant-minus-control and irregular-minus-control comparisons and (2) an ERP effect that reflects a prediction-match process should be exclusively observed in both the standard-minus-control and regular-minus-control comparisons. The results showed that the ERP effect that met the criterion for prediction mismatch was an occipito-temporal negative deflection at around 170-300ms (visual mismatch negativity), while the ERP effect that met the criterion for prediction match was a frontal/central negative deflection at around 150-270ms (probably, the reduction of P2). These two contrasting ERP effects support a hypothetical view that automatic visual prediction would involve both an increase in the neural response to prediction-incongruent (i.e., novel) events and a decrease in the neural response to prediction-congruent (i.e., redundant) events. This article is part of a Special Issue entitled

  9. Visual cognition

    PubMed Central

    Cavanagh, Patrick

    2011-01-01

    Visual cognition, high-level vision, mid-level vision and top-down processing all refer to decision-based scene analyses that combine prior knowledge with retinal input to generate representations. The label “visual cognition” is little used at present, but research and experiments on mid- and high-level, inference-based vision have flourished, becoming in the 21st century a significant, if often understated part, of current vision research. How does visual cognition work? What are its moving parts? This paper reviews the origins and architecture of visual cognition and briefly describes some work in the areas of routines, attention, surfaces, objects, and events (motion, causality, and agency). Most vision scientists avoid being too explicit when presenting concepts about visual cognition, having learned that explicit models invite easy criticism. What we see in the literature is ample evidence for visual cognition, but few or only cautious attempts to detail how it might work. This is the great unfinished business of vision research: at some point we will be done with characterizing how the visual system measures the world and we will have to return to the question of how vision constructs models of objects, surfaces, scenes, and events. PMID:21329719

  10. Orbitofrontal Cortex and the Early Processing of Visual Novelty in Healthy Aging.

    PubMed

    Kaufman, David A S; Keith, Cierra M; Perlstein, William M

    2016-01-01

    Event-related potential (ERP) studies have previously found that scalp topographies of attention-related ERP components show frontal shifts with age, suggesting an increased need for compensatory frontal activity to assist with top-down facilitation of attention. However, the precise neural time course of top-down attentional control in aging is not clear. In this study, 20 young (mean: 22 years) and 14 older (mean: 64 years) adults completed a three-stimulus visual oddball task while high-density ERPs were acquired. Colorful, novel distracters were presented to engage early visual processing. Relative to young controls, older participants exhibited elevations in occipital early posterior positivity (EPP), approximately 100 ms after viewing colorful distracters. Neural source models for older adults implicated unique patterns of orbitofrontal cortex (OFC; BA 11) activity during early visual novelty processing (100 ms), which was positively correlated with subsequent activations in primary visual cortex (BA 17). Older adult EPP amplitudes and OFC activity were associated with performance on tests of complex attention and executive function. These findings are suggestive of age-related, compensatory neural changes that may driven by a combination of weaker cortical efficiency and increased need for top-down control over attention. Accordingly, enhanced early OFC activity during visual attention may serve as an important indicator of frontal lobe integrity in healthy aging. PMID:27199744

  11. From pre-attentive processes to durable representation: an ERP index of visual distraction.

    PubMed

    Sysoeva, Olga V; Lange, Elke B; Sorokin, Alexander B; Campbell, Tom

    2015-03-01

    Visual search and oddball paradigms were combined to investigate memory for to-be-ignored color changes in a group of 12 healthy participants. The onset of unexpected color change of an irrelevant stimulus evoked two reliable ERP effects: a component of the event-related potential (ERP), similar to the visual mismatch negativity response (vMMN), with a latency of 120-160 ms and a posterior distribution over the left hemisphere and Late Fronto-Central Negativity (LFCN) with a latency of 320-400 ms, apparent at fronto-central electrodes and some posterior sites. Color change of that irrelevant stimulus also slowed identification of a visual target, indicating distraction. The amplitude of this color-change vMMN, but not LFCN, indexed this distraction effect. That is, electrophysiological and behavioral measures were correlated. The interval between visual scenes approximated 1s (611-1629 ms), indicating that the brain's sensory memory for the color of the preceding visual scenes must persist for at least 600 ms. Therefore, in the case of the neural code for color, durable memory representations are formed in an obligatory manner. PMID:25523346

  12. Orbitofrontal Cortex and the Early Processing of Visual Novelty in Healthy Aging

    PubMed Central

    Kaufman, David A. S.; Keith, Cierra M.; Perlstein, William M.

    2016-01-01

    Event-related potential (ERP) studies have previously found that scalp topographies of attention-related ERP components show frontal shifts with age, suggesting an increased need for compensatory frontal activity to assist with top-down facilitation of attention. However, the precise neural time course of top-down attentional control in aging is not clear. In this study, 20 young (mean: 22 years) and 14 older (mean: 64 years) adults completed a three-stimulus visual oddball task while high-density ERPs were acquired. Colorful, novel distracters were presented to engage early visual processing. Relative to young controls, older participants exhibited elevations in occipital early posterior positivity (EPP), approximately 100 ms after viewing colorful distracters. Neural source models for older adults implicated unique patterns of orbitofrontal cortex (OFC; BA 11) activity during early visual novelty processing (100 ms), which was positively correlated with subsequent activations in primary visual cortex (BA 17). Older adult EPP amplitudes and OFC activity were associated with performance on tests of complex attention and executive function. These findings are suggestive of age-related, compensatory neural changes that may driven by a combination of weaker cortical efficiency and increased need for top-down control over attention. Accordingly, enhanced early OFC activity during visual attention may serve as an important indicator of frontal lobe integrity in healthy aging. PMID:27199744

  13. Visual impairment.

    PubMed

    Ellenberger, Carl

    2016-01-01

    This chapter can guide the use of imaging in the evaluation of common visual syndromes: transient visual disturbance, including migraine and amaurosis fugax; acute optic neuropathy complicating multiple sclerosis, neuromyelitis optica spectrum disorder, Leber hereditary optic neuropathy, and Susac syndrome; papilledema and pseudotumor cerebri syndrome; cerebral disturbances of vision, including posterior cerebral arterial occlusion, posterior reversible encephalopathy, hemianopia after anterior temporal lobe resection, posterior cortical atrophy, and conversion blindness. Finally, practical efforts in visual rehabilitation by sensory substitution for blind patients can improve their lives and disclose new information about the brain. PMID:27430448

  14. Visual cognition

    SciTech Connect

    Pinker, S.

    1985-01-01

    This book consists of essays covering issues in visual cognition presenting experimental techniques from cognitive psychology, methods of modeling cognitive processes on computers from artificial intelligence, and methods of studying brain organization from neuropsychology. Topics considered include: parts of recognition; visual routines; upward direction; mental rotation, and discrimination of left and right turns in maps; individual differences in mental imagery, computational analysis and the neurological basis of mental imagery: componental analysis.

  15. Visual Prosthesis

    PubMed Central

    Schiller, Peter H.; Tehovnik, Edward J.

    2009-01-01

    There are more than 40 million blind individuals in the world whose plight would be greatly ameliorated by creating a visual prosthetic. We begin by outlining the basic operational characteristics of the visual system as this knowledge is essential for producing a prosthetic device based on electrical stimulation through arrays of implanted electrodes. We then list a series of tenets that we believe need to be followed in this effort. Central among these is our belief that the initial research in this area, which is in its infancy, should first be carried out in animals. We suggest that implantation of area V1 holds high promise as the area is of a large volume and can therefore accommodate extensive electrode arrays. We then proceed to consider coding operations that can effectively convert visual images viewed by a camera to stimulate electrode arrays to yield visual impressions that can provide shape, motion and depth information. We advocate experimental work that mimics electrical stimulation effects non-invasively in sighted human subjects using a camera from which visual images are converted into displays on a monitor akin to those created by electrical stimulation. PMID:19065857

  16. Visual stability

    PubMed Central

    Melcher, David

    2011-01-01

    Our vision remains stable even though the movements of our eyes, head and bodies create a motion pattern on the retina. One of the most important, yet basic, feats of the visual system is to correctly determine whether this retinal motion is owing to real movement in the world or rather our own self-movement. This problem has occupied many great thinkers, such as Descartes and Helmholtz, at least since the time of Alhazen. This theme issue brings together leading researchers from animal neurophysiology, clinical neurology, psychophysics and cognitive neuroscience to summarize the state of the art in the study of visual stability. Recently, there has been significant progress in understanding the limits of visual stability in humans and in identifying many of the brain circuits involved in maintaining a stable percept of the world. Clinical studies and new experimental methods, such as transcranial magnetic stimulation, now make it possible to test the causal role of different brain regions in creating visual stability and also allow us to measure the consequences when the mechanisms of visual stability break down. PMID:21242136

  17. Visual Task Demands and the Auditory Mismatch Negativity: An Empirical Study and a Meta-Analysis

    PubMed Central

    Wiens, Stefan; Szychowska, Malina; Nilsson, Mats E.

    2016-01-01

    Because the auditory system is particularly useful in monitoring the environment, previous research has examined whether task-irrelevant, auditory distracters are processed even if subjects focus their attention on visual stimuli. This research suggests that attentionally demanding visual tasks decrease the auditory mismatch negativity (MMN) to simultaneously presented auditory distractors. Because a recent behavioral study found that high visual perceptual load decreased detection sensitivity of simultaneous tones, we used a similar task (n = 28) to determine if high visual perceptual load would reduce the auditory MMN. Results suggested that perceptual load did not decrease the MMN. At face value, these nonsignificant findings may suggest that effects of perceptual load on the MMN are smaller than those of other demanding visual tasks. If so, effect sizes should differ systematically between the present and previous studies. We conducted a selective meta-analysis of published studies in which the MMN was derived from the EEG, the visual task demands were continuous and varied between high and low within the same task, and the task-irrelevant tones were presented in a typical oddball paradigm simultaneously with the visual stimuli. Because the meta-analysis suggested that the present (null) findings did not differ systematically from previous findings, the available evidence was combined. Results of this meta-analysis confirmed that demanding visual tasks reduce the MMN to auditory distracters. However, because the meta-analysis was based on small studies and because of the risk for publication biases, future studies should be preregistered with large samples (n > 150) to provide confirmatory evidence for the results of the present meta-analysis. These future studies should also use control conditions that reduce confounding effects of neural adaptation, and use load manipulations that are defined independently from their effects on the MMN. PMID:26741815

  18. One of the most well-established age-related changes in neural activity disappears after controlling for visual acuity.

    PubMed

    Porto, Fábio H G; Tusch, Erich S; Fox, Anne M; Alperin, Brittany R; Holcomb, Phillip J; Daffner, Kirk R

    2016-04-15

    Numerous studies using a variety of imaging techniques have reported age-related differences in neural activity while subjects carry out cognitive tasks. Surprisingly little attention has been paid to the potential impact of age-associated changes in sensory acuity on these findings. Studies in the visual modality frequently report that their subjects had "normal or corrected- to-normal vision." However, in most cases, there is no indication that visual acuity was actually measured, and it is likely that the investigators relied largely on self-reported visual status of subjects, which is often inaccurate. We investigated whether differences in visual acuity influence one of the most commonly observed findings in the event-related potentials literature on cognitive aging, a reduction in posterior P3b amplitude, which is an index of cognitive decision-making/updating. Well-matched young (n=26) and old adults (n=29) participated in a visual oddball task. Measured visual acuity with corrective lenses was worse in old than young adults. Results demonstrated that the robust age-related decline in P3b amplitude to visual targets disappeared after controlling for visual acuity, but was unaffected by accounting for auditory acuity. Path analysis confirmed that the relationship between age and diminished P3b to visual targets was mediated by visual acuity, suggesting that conveyance of suboptimal sensory data due to peripheral, rather than central, deficits may undermine subsequent neural processing. We conclude that until the relationship between age-associated differences in visual acuity and neural activity during experimental tasks is clearly established, investigators should exercise caution attributing results to differences in cognitive processing. PMID:26825439

  19. Visualizing inequality

    NASA Astrophysics Data System (ADS)

    Eliazar, Iddo

    2016-07-01

    The study of socioeconomic inequality is of substantial importance, scientific and general alike. The graphic visualization of inequality is commonly conveyed by Lorenz curves. While Lorenz curves are a highly effective statistical tool for quantifying the distribution of wealth in human societies, they are less effective a tool for the visual depiction of socioeconomic inequality. This paper introduces an alternative to Lorenz curves-the hill curves. On the one hand, the hill curves are a potent scientific tool: they provide detailed scans of the rich-poor gaps in human societies under consideration, and are capable of accommodating infinitely many degrees of freedom. On the other hand, the hill curves are a powerful infographic tool: they visualize inequality in a most vivid and tangible way, with no quantitative skills that are required in order to grasp the visualization. The application of hill curves extends far beyond socioeconomic inequality. Indeed, the hill curves are highly effective 'hyperspectral' measures of statistical variability that are applicable in the context of size distributions at large. This paper establishes the notion of hill curves, analyzes them, and describes their application in the context of general size distributions.

  20. Visualizing Progress

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Reality Capture Technologies, Inc. is a spinoff company from Ames Research Center. Offering e-business solutions for optimizing management, design and production processes, RCT uses visual collaboration environments (VCEs) such as those used to prepare the Mars Pathfinder mission.The product, 4-D Reality Framework, allows multiple users from different locations to manage and share data. The insurance industry is one targeted commercial application for this technology.

  1. Flow visualization

    NASA Astrophysics Data System (ADS)

    Weinstein, Leonard M.

    Flow visualization techniques are reviewed, with particular attention given to those applicable to liquid helium flows. Three techniques capable of obtaining qualitative and quantitative measurements of complex 3D flow fields are discussed including focusing schlieren, particle image volocimetry, and holocinematography (HCV). It is concluded that the HCV appears to be uniquely capable of obtaining full time-varying, 3D velocity field data, but is limited to the low speeds typical of liquid helium facilities.

  2. Flow visualization

    NASA Technical Reports Server (NTRS)

    Weinstein, Leonard M.

    1991-01-01

    Flow visualization techniques are reviewed, with particular attention given to those applicable to liquid helium flows. Three techniques capable of obtaining qualitative and quantitative measurements of complex 3D flow fields are discussed including focusing schlieren, particle image volocimetry, and holocinematography (HCV). It is concluded that the HCV appears to be uniquely capable of obtaining full time-varying, 3D velocity field data, but is limited to the low speeds typical of liquid helium facilities.

  3. Visual bioethics.

    PubMed

    Lauritzen, Paul

    2008-12-01

    Although images are pervasive in public policy debates in bioethics, few who work in the field attend carefully to the way that images function rhetorically. If the use of images is discussed at all, it is usually to dismiss appeals to images as a form of manipulation. Yet it is possible to speak meaningfully of visual arguments. Examining the appeal to images of the embryo and fetus in debates about abortion and stem cell research, I suggest that bioethicists would be well served by attending much more carefully to how images function in public policy debates. PMID:19085479

  4. The visual cognitive network, but not the visual sensory network, is affected in amnestic mild cognitive impairment: a study of brain oscillatory responses.

    PubMed

    Yener, Görsev G; Emek-Savaş, Derya Durusu; Güntekin, Bahar; Başar, Erol

    2014-10-17

    Mild Cognitive Impairment (MCI) is considered in many as prodromal stage of Alzheimer's disease (AD). Event-related oscillations (ERO) reflect cognitive responses of brain whereas sensory-evoked oscillations (SEO) inform about sensory responses. For this study, we compared visual SEO and ERO responses in MCI to explore brain dynamics (BACKGROUND). Forty-three patients with MCI (mean age=74.0 year) and 41 age- and education-matched healthy-elderly controls (HC) (mean age=71.1 year) participated in the study. The maximum peak-to-peak amplitudes for each subject's averaged delta response (0.5-3.0 Hz) were measured from two conditions (simple visual stimulation and classical visual oddball paradigm target stimulation) (METHOD). Overall, amplitudes of target ERO responses were higher than SEO amplitudes. The preferential location for maximum amplitude values was frontal lobe for ERO and occipital lobe for SEO. The ANOVA for delta responses showed significant results for the group Xparadigm. Post-hoc tests indicated that (1) the difference between groups were significant for target delta responses, but not for SEO, (2) ERO elicited higher responses for HC than MCI patients, and (3) females had higher target ERO than males and this difference was pronounced in the control group (RESULTS). Overall, cognitive responses display almost double the amplitudes of sensory responses over frontal regions. The topography of oscillatory responses differs depending on stimuli: visualsensory responses are highest over occipitals and -cognitive responses over frontal regions. A group effect is observed in MCI indicating that visual sensory and cognitive circuits behave differently indicating preserved visual sensory responses, but decreased cognitive responses (CONCLUSION). PMID:25152459

  5. Visual Mismatch Negativity Reveals Automatic Detection of Sequential Regularity Violation

    PubMed Central

    Stefanics, Gábor; Kimura, Motohiro; Czigler, István

    2011-01-01

    Sequential regularities are abstract rules based on repeating sequences of environmental events, which are useful to make predictions about future events. Here, we tested whether the visual system is capable to detect sequential regularity in unattended stimulus sequences. The visual mismatch negativity (vMMN) component of the event-related potentials is sensitive to the violation of complex regularities (e.g., object-related characteristics, temporal patterns). We used the vMMN component as an index of violation of conditional (if, then) regularities. In the first experiment, to investigate emergence of vMMN and other change-related activity to the violation of conditional rules, red and green disk patterns were delivered in pairs. The majority of pairs comprised of disk patterns with identical colors, whereas in deviant pairs the colors were different. The probabilities of the two colors were equal. The second member of the deviant pairs elicited a vMMN with longer latency and more extended spatial distribution to deviants with lower probability (10 vs. 30%). In the second (control) experiment the emergence of vMMN to violation of a simple, feature-related rule was studied using oddball sequences of stimulus pairs where deviant colors were presented with 20% probabilities. Deviant colored patterns elicited a vMMN, and this component was larger for the second member of the pair, i.e., after a shorter inter-stimulus interval. This result corresponds to the SOA/(v)MMN relationship, expected on the basis of a memory-mismatch process. Our results show that the system underlying vMMN is sensitive to abstract, conditional rules. Representation of such rules implicates expectation of a subsequent event, therefore vMMN can be considered as a correlate of violated predictions about the characteristics of environmental events. PMID:21629766

  6. Visualization rhetoric: framing effects in narrative visualization.

    PubMed

    Hullman, Jessica; Diakopoulos, Nicholas

    2011-12-01

    Narrative visualizations combine conventions of communicative and exploratory information visualization to convey an intended story. We demonstrate visualization rhetoric as an analytical framework for understanding how design techniques that prioritize particular interpretations in visualizations that "tell a story" can significantly affect end-user interpretation. We draw a parallel between narrative visualization interpretation and evidence from framing studies in political messaging, decision-making, and literary studies. Devices for understanding the rhetorical nature of narrative information visualizations are presented, informed by the rigorous application of concepts from critical theory, semiotics, journalism, and political theory. We draw attention to how design tactics represent additions or omissions of information at various levels-the data, visual representation, textual annotations, and interactivity-and how visualizations denote and connote phenomena with reference to unstated viewing conventions and codes. Classes of rhetorical techniques identified via a systematic analysis of recent narrative visualizations are presented, and characterized according to their rhetorical contribution to the visualization. We describe how designers and researchers can benefit from the potentially positive aspects of visualization rhetoric in designing engaging, layered narrative visualizations and how our framework can shed light on how a visualization design prioritizes specific interpretations. We identify areas where future inquiry into visualization rhetoric can improve understanding of visualization interpretation. PMID:22034342

  7. Visual embedding: a model for visualization.

    PubMed

    Demiralp, Çağatay; Scheidegger, Carlos E; Kindlmann, Gordon L; Laidlaw, David H; Heer, Jeffrey

    2014-01-01

    The authors propose visual embedding as a model for automatically generating and evaluating visualizations. A visual embedding is a function from data points to a space of visual primitives that measurably preserves structures in the data (domain) within the mapped perceptual space (range). The authors demonstrate its use with three examples: coloring of neural tracts, scatterplots with icons, and evaluation of alternative diffusion tensor glyphs. They discuss several techniques for generating visual-embedding functions, including probabilistic graphical models for embedding in discrete visual spaces. They also describe two complementary approaches--crowdsourcing and visual product spaces--for building visual spaces with associated perceptual--distance measures. In addition, they recommend several research directions for further developing the visual-embedding model. PMID:24808163

  8. Why Teach Visual Culture?

    ERIC Educational Resources Information Center

    Passmore, Kaye

    2007-01-01

    Visual culture is a hot topic in art education right now as some teachers are dedicated to teaching it and others are adamant that it has no place in a traditional art class. Visual culture, the author asserts, can include just about anything that is visually represented. Although people often think of visual culture as contemporary visuals such…

  9. Concept of visual sensation.

    PubMed

    Bundesen, C

    1977-06-01

    A direct-realist account of visual sensation is outlined. The explanatory notion of elements in visual sensation (atomic sensations) is reinterpreted, and the suggested interpretation is formally justified by constructing a Boolean algebra for visual sensations. The related notion of sensory levels (visual field vs visual world) is discussed. PMID:887374

  10. Distributed visualization

    SciTech Connect

    Arnold, T.R.

    1991-12-31

    Within the last half decade or so, two technological evolutions have culminated in mature products of potentially great utility to computer simulation. One is the emergence of low-cost workstations with versatile graphics and substantial local CPU power. The other is the adoption of UNIX as a de facto ``standard`` operating system on at least some machines offered by virtually all vendors. It is now possible to perform transient simulations in which the number- crunching capability of a supercomputer is harnessed to allow both process control and graphical visualization on a workstation. Such a distributed computer system is described as it now exists: a large FORTRAN application on a CRAY communicates with the balance of the simulation on a SUN-3 or SUN-4 via remote procedure call (RPC) protocol. The hooks to the application and the graphics have been made very flexible. Piping of output from the CRAY to the SUN is nonselective, allowing the user to summon data and draw or plot at will. The ensemble of control, application, data handling, and graphics modules is loosely coupled, which further generalizes the utility of the software design.

  11. Distributed visualization

    SciTech Connect

    Arnold, T.R.

    1991-01-01

    Within the last half decade or so, two technological evolutions have culminated in mature products of potentially great utility to computer simulation. One is the emergence of low-cost workstations with versatile graphics and substantial local CPU power. The other is the adoption of UNIX as a de facto standard'' operating system on at least some machines offered by virtually all vendors. It is now possible to perform transient simulations in which the number- crunching capability of a supercomputer is harnessed to allow both process control and graphical visualization on a workstation. Such a distributed computer system is described as it now exists: a large FORTRAN application on a CRAY communicates with the balance of the simulation on a SUN-3 or SUN-4 via remote procedure call (RPC) protocol. The hooks to the application and the graphics have been made very flexible. Piping of output from the CRAY to the SUN is nonselective, allowing the user to summon data and draw or plot at will. The ensemble of control, application, data handling, and graphics modules is loosely coupled, which further generalizes the utility of the software design.

  12. Visual hallucinations.

    PubMed

    Collerton, Daniel; Mosimann, Urs Peter

    2010-11-01

    Understanding of visual hallucinations is developing rapidly. Single-factor explanations based on specific pathologies have given way to complex multifactor models with wide potential applicability. Clinical studies of disorders with frequent hallucinations-dementia, delirium, eye disease and psychosis-show that dysfunction within many parts of the distributed ventral object perception system is associated with a range of perceptions from simple flashes and dots to complex formed figures and landscapes. Dissociations between these simple and complex hallucinations indicate at least two hallucinatory syndromes, though exact boundaries need clarification. Neural models of hallucinations variably emphasize the importance of constraints from top down dorsolateral frontal systems, bottom up occipital systems, interconnecting tracts, and thalamic and brainstem regulatory systems. No model has yet gained general acceptance. Both qualitative (a small number of necessary and sufficient constraints) and quantitative explanations (an accumulation of many nonspecific factors) fit existing data. Variable associations of hallucinations with emotional distress and thought disorders across and within pathologies may reflect the roles of cognitive and regulatory systems outside of the purely perceptual. Functional imaging demonstrates that hallucinations and veridical perceptions occur in the same brain areas, intimating a key role for the negotiating interface between top down and bottom up processes. Thus, hallucinations occur when a perception that incorporates a hallucinatory element can provide a better match between predicted and actual sensory input than does a purely veridical experience. Translational research that integrates understandings from clinical hallucinations and basic vision science is likely to be the key to better treatments. WIREs Cogn Sci 2010 1 781-786 For further resources related to this article, please visit the WIREs website. PMID:26271777

  13. Learning Visualizations by Analogy: Promoting Visual Literacy through Visualization Morphing.

    PubMed

    Ruchikachorn, Puripant; Mueller, Klaus

    2015-09-01

    We propose the concept of teaching (and learning) unfamiliar visualizations by analogy, that is, demonstrating an unfamiliar visualization method by linking it to another more familiar one, where the in-betweens are designed to bridge the gap of these two visualizations and explain the difference in a gradual manner. As opposed to a textual description, our morphing explains an unfamiliar visualization through purely visual means. We demonstrate our idea by ways of four visualization pair examples: data table and parallel coordinates, scatterplot matrix and hyperbox, linear chart and spiral chart, and hierarchical pie chart and treemap. The analogy is commutative i.e. any member of the pair can be the unfamiliar visualization. A series of studies showed that this new paradigm can be an effective teaching tool. The participants could understand the unfamiliar visualization methods in all of the four pairs either fully or at least significantly better after they observed or interacted with the transitions from the familiar counterpart. The four examples suggest how helpful visualization pairings be identified and they will hopefully inspire other visualization morphings and associated transition strategies to be identified. PMID:26357285

  14. Snowflake Visualization

    NASA Astrophysics Data System (ADS)

    Bliven, L. F.; Kucera, P. A.; Rodriguez, P.

    2010-12-01

    NASA Snowflake Video Imagers (SVIs) enable snowflake visualization at diverse field sites. The natural variability of frozen precipitation is a complicating factor for remote sensing retrievals in high latitude regions. Particle classification is important for understanding snow/ice physics, remote sensing polarimetry, bulk radiative properties, surface emissivity, and ultimately, precipitation rates and accumulations. Yet intermittent storms, low temperatures, high winds, remote locations and complex terrain can impede us from observing falling snow in situ. SVI hardware and software have some special features. The standard camera and optics yield 8-bit gray-scale images with resolution of 0.05 x 0.1 mm, at 60 frames per second. Gray-scale images are highly desirable because they display contrast that aids particle classification. Black and white (1-bit) systems display no contrast, so there is less information to recognize particle types, which is particularly burdensome for aggregates. Data are analyzed at one-minute intervals using NASA's Precipitation Link Software that produces (a) Particle Catalogs and (b) Particle Size Distributions (PSDs). SVIs can operate nearly continuously for long periods (e.g., an entire winter season), so natural variability can be documented. Let’s summarize results from field studies this past winter and review some recent SVI enhancements. During the winter of 2009-2010, SVIs were deployed at two sites. One SVI supported weather observations during the 2010 Winter Olympics and Paralympics. It was located close to the summit (Roundhouse) of Whistler Mountain, near the town of Whistler, British Columbia, Canada. In addition, two SVIs were located at the King City Weather Radar Station (WKR) near Toronto, Ontario, Canada. Access was prohibited to the SVI on Whistler Mountain during the Olympics due to security concerns. So to meet the schedule for daily data products, we operated the SVI by remote control. We also upgraded the

  15. Visuals for Information.

    ERIC Educational Resources Information Center

    Pettersson, Rune

    This report focuses on the visual component of verbo-visual literacy, a communications concept involving the production, transmission, and perception of verbal and visual images. Five current problem areas in verbal-visual research are introduced and discussed: (1) communication (communication models, media consumption, new media, the information…

  16. Spelling: A Visual Skill.

    ERIC Educational Resources Information Center

    Hendrickson, Homer

    1988-01-01

    Spelling problems arise due to problems with form discrimination and inadequate visualization. A child's sequence of visual development involves learning motor control and coordination, with vision directing and monitoring the movements; learning visual comparison of size, shape, directionality, and solidity; developing visual memory or recall;…

  17. Visual examination apparatus

    NASA Technical Reports Server (NTRS)

    Haines, R. F.; Fitzgerald, J. W.; Rositano, S. A. (Inventor)

    1976-01-01

    An automated visual examination apparatus for measuring visual sensitivity and mapping blind spot location including a projection system for displaying to a patient a series of visual stimuli. A response switch enables him to indicate his reaction to the stimuli, and a recording system responsive to both the visual stimuli per se and the patient's response. The recording system thereby provides a correlated permanent record of both stimuli and response from which a substantive and readily apparent visual evaluation can be made.

  18. Declarative Visualization Queries

    NASA Astrophysics Data System (ADS)

    Pinheiro da Silva, P.; Del Rio, N.; Leptoukh, G. G.

    2011-12-01

    In an ideal interaction with machines, scientists may prefer to write declarative queries saying "what" they want from a machine than to write code stating "how" the machine is going to address the user request. For example, in relational database, users have long relied on specifying queries using Structured Query Language (SQL), a declarative language to request data results from a database management system. In the context of visualizations, we see that users are still writing code based on complex visualization toolkit APIs. With the goal of improving the scientists' experience of using visualization technology, we have applied this query-answering pattern to a visualization setting, where scientists specify what visualizations they want generated using a declarative SQL-like notation. A knowledge enhanced management system ingests the query and knows the following: (1) know how to translate the query into visualization pipelines; and (2) how to execute the visualization pipelines to generate the requested visualization. We define visualization queries as declarative requests for visualizations specified in an SQL like language. Visualization queries specify what category of visualization to generate (e.g., volumes, contours, surfaces) as well as associated display attributes (e.g., color and opacity), without any regards for implementation, thus allowing scientists to remain partially unaware of a wide range of visualization toolkit (e.g., Generic Mapping Tools and Visualization Toolkit) specific implementation details. Implementation details are only a concern for our knowledge-based visualization management system, which uses both the information specified in the query and knowledge about visualization toolkit functions to construct visualization pipelines. Knowledge about the use of visualization toolkits includes what data formats the toolkit operates on, what formats they output, and what views they can generate. Visualization knowledge, which is not

  19. Universal visualization platform

    NASA Astrophysics Data System (ADS)

    Gee, Alexander G.; Li, Hongli; Yu, Min; Smrtic, Mary Beth; Cvek, Urska; Goodell, Howie; Gupta, Vivek; Lawrence, Christine; Zhou, Jainping; Chiang, Chih-Hung; Grinstein, Georges G.

    2005-03-01

    Although there are a number of visualization systems to choose from when analyzing data, only a few of these allow for the integration of other visualization and analysis techniques. There are even fewer visualization toolkits and frameworks from which one can develop ones own visualization applications. Even within the research community, scientists either use what they can from the available tools or start from scratch to define a program in which they are able to develop new or modified visualization techniques and analysis algorithms. Presented here is a new general-purpose platform for constructing numerous visualization and analysis applications. The focus of this system is the design and experimentation of new techniques, and where the sharing of and integration with other tools becomes second nature. Moreover, this platform supports multiple large data sets, and the recording and visualizing of user sessions. Here we introduce the Universal Visualization Platform (UVP) as a modern data visualization and analysis system.

  20. The Visual Analysis of Visual Metaphor.

    ERIC Educational Resources Information Center

    Dake, Dennis M.; Roberts, Brian

    This paper presents an approach to understanding visual metaphor which uses metaphoric analysis and comprehension by graphic and pictorial means. The perceptible qualities of shape, line, form, color, and texture, that make up the visual structure characteristic of any particular shape, configuration, or scene, are called physiognomic properties;…

  1. A Visual Test for Visual "Literacy."

    ERIC Educational Resources Information Center

    Messaris, Paul

    Four different principles of visual manipulation constitute a minimal list of what a visually "literate" viewer should know about, but certain problems exist which are inherent in measuring viewers' awareness of each of them. The four principles are: (1) paraproxemics, or camera work which derives its effectiveness from an analogy to the…

  2. Visualizer cognitive style enhances visual creativity.

    PubMed

    Palmiero, Massimiliano; Nori, Raffaella; Piccardi, Laura

    2016-02-26

    In the last two decades, interest towards creativity has increased significantly since it was recognized as a skill and as a cognitive reserve and is now always more frequently used in ageing training. Here, the relationships between visual creativity and Visualization-Verbalization cognitive style were investigated. Fifty college students were administered the Creative Synthesis Task aimed at measuring the ability to construct creative objects and the Visualization-Verbalization Questionnaire (VVQ) aimed at measuring the attitude to preferentially use either imagery or verbal strategy while processing information. Analyses showed that only the originality score of inventions was positively predicted by the VVQ score: higher VVQ score (indicating the preference to use imagery) predicted originality of inventions. These results showed that the visualization strategy is involved especially in the originality dimension of creative objects production. In light of neuroimaging results, the possibility that different strategies, such those that involve motor processes, affect visual creativity is also discussed. PMID:26806864

  3. Automatic Change Detection to Facial Expressions in Adolescents: Evidence from Visual Mismatch Negativity Responses

    PubMed Central

    Liu, Tongran; Xiao, Tong; Shi, Jiannong

    2016-01-01

    Adolescence is a critical period for the neurodevelopment of social-emotional processing, wherein the automatic detection of changes in facial expressions is crucial for the development of interpersonal communication. Two groups of participants (an adolescent group and an adult group) were recruited to complete an emotional oddball task featuring on happy and one fearful condition. The measurement of event-related potential was carried out via electroencephalography and electrooculography recording, to detect visual mismatch negativity (vMMN) with regard to the automatic detection of changes in facial expressions between the two age groups. The current findings demonstrated that the adolescent group featured more negative vMMN amplitudes than the adult group in the fronto-central region during the 120–200 ms interval. During the time window of 370–450 ms, only the adult group showed better automatic processing on fearful faces than happy faces. The present study indicated that adolescent’s posses stronger automatic detection of changes in emotional expression relative to adults, and sheds light on the neurodevelopment of automatic processes concerning social-emotional information. PMID:27065927

  4. Brain potentials reflect access to visual and emotional memories for faces.

    PubMed

    Bobes, Maria A; Quiñonez, Ileana; Perez, Jhoanna; Leon, Inmaculada; Valdés-Sosa, Mitchell

    2007-05-01

    Familiar faces convey different types of information, unlocking memories related to social-emotional significance. Here, the availability over time of different types of memory was evaluated using the time-course of P3 event related potentials. Two oddball paradigms were employed, both using unfamiliar faces as standards. The infrequent targets were, respectively, artificially-learned faces (devoid of social-emotional content) and faces of acquaintances. Although in both tasks targets were detected accurately, the corresponding time-course and scalp distribution of the P3 responses differed. Artificially-learned and acquaintance faces both elicited a P3b, maximal over centro-parietal sites, and a latency of 500ms. Faces of acquaintances elicited an additional component, an early P3 maximal over frontal sites: with a latency of 350ms. This suggests that visual familiarity can only trigger the overt recognition processes leading to the slower P3b, whereas emotional-social information can also elicit fast and automatic assessments (indexed by the frontal-P3) crucial for successful social interactions. PMID:17350154

  5. Automatic Change Detection to Facial Expressions in Adolescents: Evidence from Visual Mismatch Negativity Responses.

    PubMed

    Liu, Tongran; Xiao, Tong; Shi, Jiannong

    2016-01-01

    Adolescence is a critical period for the neurodevelopment of social-emotional processing, wherein the automatic detection of changes in facial expressions is crucial for the development of interpersonal communication. Two groups of participants (an adolescent group and an adult group) were recruited to complete an emotional oddball task featuring on happy and one fearful condition. The measurement of event-related potential was carried out via electroencephalography and electrooculography recording, to detect visual mismatch negativity (vMMN) with regard to the automatic detection of changes in facial expressions between the two age groups. The current findings demonstrated that the adolescent group featured more negative vMMN amplitudes than the adult group in the fronto-central region during the 120-200 ms interval. During the time window of 370-450 ms, only the adult group showed better automatic processing on fearful faces than happy faces. The present study indicated that adolescent's posses stronger automatic detection of changes in emotional expression relative to adults, and sheds light on the neurodevelopment of automatic processes concerning social-emotional information. PMID:27065927

  6. Asymmetric effect of automatic deviant detection: The effect of familiarity in visual mismatch negativity.

    PubMed

    Sulykos, István; Kecskés-Kovács, Krisztina; Czigler, István

    2015-11-11

    The visual mismatch negativity (vMMN) component is regarded as a prediction error signal elicited by events violating the sequential regularities of environmental stimulation. The aim of the study was to investigate the effect of familiarity on the vMMN. Stimuli were patterns comprised of familiar (N) or unfamiliar (И) letters. In a passive oddball paradigm, letters (N and И) were presented as either standard or deviant in separate conditions. VMMNs emerged in both conditions; peak latency of vMMN was shorter to the И deviant compared to the vMMN elicited by the N deviant. To test the orientation-specific effect of the oblique lines on the vMMN, we introduced a control experiment. In the control experiment, the patterns were constructed solely from oblique lines, identical to the oblique lines of the N and И stimuli. Contrary to the first experiment, there was no significant difference between the vMNNs elicited by the two orientations. Therefore, the differences in vMMNs to И and N deviants are not attributable to the physical difference between the И and N stimuli. Consequently, the vMMN is sensitive to the familiarity of the stimuli. This article is part of a Special Issue entitled SI: Prediction and Attention. PMID:25724142

  7. Near-infrared spectroscopy assessment of divided visual attention task-invoked cerebral hemodynamics during prolonged true driving

    NASA Astrophysics Data System (ADS)

    Li, Ting; Zhao, Yue; Sun, Yunlong; Gao, Yuan; Su, Yu; Hetian, Yiyi; Chen, Min

    2015-03-01

    Driver fatigue is one of the leading causes of traffic accidents. It is imperative to develop a technique to monitor fatigue of drivers in real situation. Near-infrared spectroscopy (fNIRS) is now capable of measuring brain functional activity noninvasively in terms of hemodynamic responses sensitively, which shed a light to us that it may be possible to detect fatigue-specified brain functional activity signal. We developed a sensitive, portable and absolute-measure fNIRS, and utilized it to monitor cerebral hemodynamics on car drivers during prolonged true driving. An odd-ball protocol was employed to trigger the drivers' visual divided attention, which is a critical function in safe driving. We found that oxyhemoglobin concentration and blood volume in prefrontal lobe dramatically increased with driving duration (stand for fatigue degree; 2-10 hours), while deoxyhemoglobin concentration increased to the top at 4 hours then decreased slowly. The behavior performance showed clear decrement only after 6 hours. Our study showed the strong potential of fNIRS combined with divided visual attention protocol in driving fatigue degree monitoring. Our findings indicated the fNIRS-measured hemodynamic parameters were more sensitive than behavior performance evaluation.

  8. Vision and Visual Comfort

    ERIC Educational Resources Information Center

    Carl, David

    1977-01-01

    Visual comfort and legibility are not the same thing. Visual comfort is the light brightness range between glare and insufficient light. Eye adjustment to changing light levels is described. (Author/STS)

  9. Visualizing Knowledge Domains.

    ERIC Educational Resources Information Center

    Borner, Katy; Chen, Chaomei; Boyack, Kevin W.

    2003-01-01

    Reviews visualization techniques for scientific disciplines and information retrieval and classification. Highlights include historical background of scientometrics, bibliometrics, and citation analysis; map generation; process flow of visualizing knowledge domains; measures and similarity calculations; vector space model; factor analysis;…

  10. Visual limitations shape audio-visual integration.

    PubMed

    Pérez-Bellido, Alexis; Ernst, Marc O; Soto-Faraco, Salvador; López-Moliner, Joan

    2015-01-01

    Recent studies have proposed that some cross-modal illusions might be expressed in what were previously thought of as sensory-specific brain areas. Therefore, one interesting question is whether auditory-driven visual illusory percepts respond to manipulations of low-level visual attributes (such as luminance or chromatic contrast) in the same way as their nonillusory analogs. Here, we addressed this question using the double flash illusion (DFI), whereby one brief flash can be perceived as two when combined with two beeps presented in rapid succession. Our results showed that the perception of two illusory flashes depended on luminance contrast, just as the temporal resolution for two real flashes did. Specifically we found that the higher the luminance contrast, the stronger the DFI. Such a pattern seems to contradict what would be predicted from a maximum likelihood estimation perspective, and can be explained by considering that low-level visual stimulus attributes similarly modulate the perception of sound-induced visual phenomena and "real" visual percepts. This finding provides psychophysical support for the involvement of sensory-specific brain areas in the expression of the DFI. On the other hand, the addition of chromatic contrast failed to produce a change in the strength of the DFI despite it improved visual sensitivity to real flashes. The null impact of chromaticity on the cross-modal illusion might suggest a weaker interaction of the parvocellular visual pathway with the auditory system for cross-modal illusions. PMID:26462174

  11. Visual Channel Problems.

    ERIC Educational Resources Information Center

    Mann, Philip H.; Suiter, Patricia A.

    This teacher training module classifies visual channel problems into the following four main areas: visual perception, revisualization (memory), visual-motor (eye-hand coordination), and ocular-motor tasks. Specific deficits are listed under these main headings, behaviors are given to help identify the problem, and ways to improve the condition…

  12. ESnet Visualization Widgets

    2012-07-01

    The ESnet Visualization widgets are various data visualization widgets for use in web browsers to aid in the visualization of computer networks. In particular the widgets are targetted at displaying timeseries and topology data. They were developed for use in the MyESnet portal but are general enough to be used other places. The widgets are built using the d3.js library.

  13. Realistic and Schematic Visuals.

    ERIC Educational Resources Information Center

    Heuvelman, Ard

    1996-01-01

    A study examined three different visual formats (studio presenter only, realistic visuals, or schematic visuals) of an educational television program. Recognition and recall of the abstract subject matter were measured in 101 adult viewers directly after the program and 3 months later. The schematic version yielded better recall of the program,…

  14. Semantic Visualization Mapping for Illustrative Volume Visualization

    NASA Astrophysics Data System (ADS)

    Rautek, P.; Bruckner, S.; Gröller, M. E.

    2009-04-01

    Measured and simulated data is usually divided into several meaningful intervals that are relevant to the domain expert. Examples from medicine are the specific semantics for different measuring modalities. A PET scan of a brain measures brain activity. It shows regions of homogeneous activity that are labeled by experts with semantic values such as low brain activity or high brain activity. Diffusion MRI data provides information about the healthiness of tissue regions and is classified by experts with semantic values like healthy, diseased, or necrotic. Medical CT data encode the measured density values in Hounsfield units. Specific intervals of the Hounsfield scale refer to different tissue types like air, soft tissue, bone, contrast enhanced vessels, etc. However, the semantic parameters from expert domains are not necessarily used to describe a mapping between the volume attributes and visual appearance. Volume rendering techniques commonly map attributes of the underlying data on visual appearance via a transfer function. Transfer functions are a powerful tool to achieve various visualization mappings. The specification of transfer functions is a complex task. The user has to have expert knowledge about the underlying rendering technique to achieve the desired results. Especially the specification of higher-dimensional transfer functions is challenging. Common user interfaces provide methods to brush in two dimensions. While brushing is an intuitive method to select regions of interest or to specify features, user interfaces for higher-dimensions are more challenging and often non-intuitive. For seismic data the situation is even more difficult since the data typically consists of many more volumetric attributes than for example medical datasets. Scientific illustrators are experts in conveying information by visual means. They also make use of semantics in a natural way describing visual abstractions such as shading, tone, rendering style, saturation

  15. Visual examination apparatus

    NASA Technical Reports Server (NTRS)

    Haines, R. F.; Fitzgerald, J. W.; Rositano, S. A. (Inventor)

    1973-01-01

    An automated visual examination apparatus for measuring visual sensitivity and mapping blind spot location is described. The apparatus includes a projection system for displaying to a patient a series of visual stimuli, a response switch enabling him to indicate his reaction to the stimuli, and a recording system responsive to both the visual stimuli per se and the patient's response. The recording system provides a correlated permanent record of both stimuli and response from which a substantive and readily apparent visual evaluation can be made.

  16. Functional Visual Loss

    PubMed Central

    Bruce, Beau B; Newman, Nancy J

    2010-01-01

    Synopsis Neurologists frequently evaluate patients complaining of vision loss, especially when the patient has been examined by an ophthalmologist who has found no ocular disease. A significant proportion of patients presenting to the neurologist with visual complaints will have non-organic or functional visual loss. While there are examination techniques which can aid in the detection and diagnosis of functional visual loss, the frequency with which functional visual loss occurs concomitantly with organic disease warrants substantial caution on the part of the clinician. Furthermore, purely functional visual loss is never a diagnosis of exclusion, and must be supported by positive findings on examination that demonstrate normal visual function. The relationship of true psychological disease and functional visual loss is unclear and most patients respond well to simple reassurance. PMID:20638000

  17. Attention and visual memory in visualization and computer graphics.

    PubMed

    Healey, Christopher G; Enns, James T

    2012-07-01

    A fundamental goal of visualization is to produce images of data that support visual analysis, exploration, and discovery of novel insights. An important consideration during visualization design is the role of human visual perception. How we "see" details in an image can directly impact a viewer's efficiency and effectiveness. This paper surveys research on attention and visual perception, with a specific focus on results that have direct relevance to visualization and visual analytics. We discuss theories of low-level visual perception, then show how these findings form a foundation for more recent work on visual memory and visual attention. We conclude with a brief overview of how knowledge of visual attention and visual memory is being applied in visualization and graphics. We also discuss how challenges in visualization are motivating research in psychophysics. PMID:21788672

  18. Visual field asymmetries in visual evoked responses

    PubMed Central

    Hagler, Donald J.

    2014-01-01

    Behavioral responses to visual stimuli exhibit visual field asymmetries, but cortical folding and the close proximity of visual cortical areas make electrophysiological comparisons between different stimulus locations problematic. Retinotopy-constrained source estimation (RCSE) uses distributed dipole models simultaneously constrained by multiple stimulus locations to provide separation between individual visual areas that is not possible with conventional source estimation methods. Magnetoencephalography and RCSE were used to estimate time courses of activity in V1, V2, V3, and V3A. Responses to left and right hemifield stimuli were not significantly different. Peak latencies for peripheral stimuli were significantly shorter than those for perifoveal stimuli in V1, V2, and V3A, likely related to the greater proportion of magnocellular input to V1 in the periphery. Consistent with previous results, sensor magnitudes for lower field stimuli were about twice as large as for upper field, which is only partially explained by the proximity to sensors for lower field cortical sources in V1, V2, and V3. V3A exhibited both latency and amplitude differences for upper and lower field responses. There were no differences for V3, consistent with previous suggestions that dorsal and ventral V3 are two halves of a single visual area, rather than distinct areas V3 and VP. PMID:25527151

  19. Thalamic Visual Prosthesis.

    PubMed

    Nguyen, Hieu T; Tangutooru, Siva M; Rountree, Corey M; Kantzos, Andrew J Kantzos; Tarlochan, Faris; Yoon, W Jong; Troy, John B

    2016-08-01

    Glaucoma is a neurological disorder leading to blindness initially through the loss of retinal ganglion cells, followed by loss of neurons higher in the visual system. Some work has been undertaken to develop prostheses for glaucoma patients targeting tissues along the visual pathway, including the lateral geniculate nucleus (LGN) of the thalamus, but especially the visual cortex. This review makes the case for a visual prosthesis that targets the LGN. The compact nature and orderly structure of this nucleus make it a potentially better target to restore vision than the visual cortex. Existing research for the development of a thalamic visual prosthesis will be discussed along with the gaps that need to be addressed before such a technology could be applied clinically, as well as the challenge posed by the loss of LGN neurons as glaucoma progresses. PMID:27214884

  20. [Migraine with visual aura].

    PubMed

    Bidot, S; Biotti, D

    2016-06-01

    Migraine with visual aura is marked by recurrent episodes of transient visual disturbance, often followed by headaches. Its pathophysiology has not been fully understood, but visual auras might be related to a self-propagating wave of cortical depolarization called "cortical spreading depression", triggering a trigemino-vascular "storm" ultimately leading to headaches. The most specific visual symptom is the "fortification spectrum" consisting of glimmering jagged lines spreading from the center to the periphery, and leaving a transient scotoma in its wake. Other visual symptoms are numerous, ranging from elementary positive or negative visual phenomena to complex and elaborate hallucinations. The diagnosis can be made according to the International Classification of Headache Disorders revised in 2013. The main goal of the treatment is to relieve the patient's pain quickly and to decrease the frequency of the episodes. PMID:27324232

  1. Evaluation of Visualization Software

    NASA Technical Reports Server (NTRS)

    Globus, Al; Uselton, Sam

    1995-01-01

    Visualization software is widely used in scientific and engineering research. But computed visualizations can be very misleading, and the errors are easy to miss. We feel that the software producing the visualizations must be thoroughly evaluated and the evaluation process as well as the results must be made available. Testing and evaluation of visualization software is not a trivial problem. Several methods used in testing other software are helpful, but these methods are (apparently) often not used. When they are used, the description and results are generally not available to the end user. Additional evaluation methods specific to visualization must also be developed. We present several useful approaches to evaluation, ranging from numerical analysis of mathematical portions of algorithms to measurement of human performance while using visualization systems. Along with this brief survey, we present arguments for the importance of evaluations and discussions of appropriate use of some methods.

  2. Visual Alert System

    NASA Technical Reports Server (NTRS)

    1985-01-01

    A visual alert system resulted from circuitry developed by Applied Cybernetics Systems for Langley as part of a space related telemetry system. James Campman, Applied Cybernetics president, left the company and founded Grace Industries, Inc. to manufacture security devices based on the Langley technology. His visual alert system combines visual and audible alerts for hearing impaired people. The company also manufactures an arson detection device called the electronic nose, and is currently researching additional applications of the NASA technology.

  3. Progress in Scientific Visualization

    SciTech Connect

    Max, N

    2004-11-15

    Visualization of observed data or simulation output is important to science and engineering. I have been particularly interested in visualizing 3-D structures, and report here my personal impressions on progress in the last 20 years in visualizing molecules, scalar fields, and vector fields and their associated flows. I have tried to keep the survey and list of references manageable, so apologize to those authors whose techniques I have not mentioned, or have described without a reference citation.

  4. How to Select Visuals: The Information-Visualization System.

    ERIC Educational Resources Information Center

    Langdon, Danny G.

    1986-01-01

    Presents an overview and an example of use of the Information-Visualization System, an approach to visual selection enabling educators to match desired learning outcomes with the best visuals to carry the message. Decision tables and resource book containing visual options, information types, and suggested methods of enhancing visuals are…

  5. Personal Visualization and Personal Visual Analytics.

    PubMed

    Huang, Dandan; Tory, Melanie; Aseniero, Bon Adriel; Bartram, Lyn; Bateman, Scott; Carpendale, Sheelagh; Tang, Anthony; Woodbury, Robert

    2015-03-01

    Data surrounds each and every one of us in our daily lives, ranging from exercise logs, to archives of our interactions with others on social media, to online resources pertaining to our hobbies. There is enormous potential for us to use these data to understand ourselves better and make positive changes in our lives. Visualization (Vis) and visual analytics (VA) offer substantial opportunities to help individuals gain insights about themselves, their communities and their interests; however, designing tools to support data analysis in non-professional life brings a unique set of research and design challenges. We investigate the requirements and research directions required to take full advantage of Vis and VA in a personal context. We develop a taxonomy of design dimensions to provide a coherent vocabulary for discussing personal visualization and personal visual analytics. By identifying and exploring clusters in the design space, we discuss challenges and share perspectives on future research. This work brings together research that was previously scattered across disciplines. Our goal is to call research attention to this space and engage researchers to explore the enabling techniques and technology that will support people to better understand data relevant to their personal lives, interests, and needs. PMID:26357073

  6. Creativity, Visualization Abilities, and Visual Cognitive Style

    ERIC Educational Resources Information Center

    Kozhevnikov, Maria; Kozhevnikov, Michael; Yu, Chen Jiao; Blazhenkova, Olesya

    2013-01-01

    Background: Despite the recent evidence for a multi-component nature of both visual imagery and creativity, there have been no systematic studies on how the different dimensions of creativity and imagery might interrelate. Aims: The main goal of this study was to investigate the relationship between different dimensions of creativity (artistic and…

  7. Problems Confronting Visual Culture

    ERIC Educational Resources Information Center

    Efland, Arthur D.

    2005-01-01

    A new movement has appeared recommending, in part, that the field of art education should lessen its traditional ties to drawing, painting, and the study of masterpieces to become the study of visual culture. Visual cultural study refers to an all-encompassing category of cultural practice that includes the fine arts but also deals with the study…

  8. English 3135: Visual Rhetoric

    ERIC Educational Resources Information Center

    Gatta, Oriana

    2013-01-01

    As an advanced rhetoric and composition doctoral student, I taught Engl 3135: Visual Rhetoric, a three-credit upper-level course offered by the Department of English at Georgia State University. Mary E. Hocks originally designed this course in 2000 to, in her words, "introduce visual information design theories and practices for writers [and]…

  9. Multidimensional Visual Statistical Learning

    ERIC Educational Resources Information Center

    Turk-Browne, Nicholas B.; Isola, Phillip J.; Scholl, Brian J.; Treat, Teresa A.

    2008-01-01

    Recent studies of visual statistical learning (VSL) have demonstrated that statistical regularities in sequences of visual stimuli can be automatically extracted, even without intent or awareness. Despite much work on this topic, however, several fundamental questions remain about the nature of VSL. In particular, previous experiments have not…

  10. Reading Visual Representations

    ERIC Educational Resources Information Center

    Rubenstein, Rheta N.; Thompson, Denisse R.

    2012-01-01

    Mathematics is rich in visual representations. Such visual representations are the means by which mathematical patterns "are recorded and analyzed." With respect to "vocabulary" and "symbols," numerous educators have focused on issues inherent in the language of mathematics that influence students' success with mathematics communication.…

  11. Design for Visual Arts.

    ERIC Educational Resources Information Center

    Skeries, Larry

    Experiences suggested within this visual arts packet provide high school students with awareness of visual expression in graphic design, product design, architecture, and crafts. The unit may be used in whole or in part and includes information about art careers and art-related jobs found in major occupational fields. Specific lesson topics…

  12. Mandarin Visual Speech Information

    ERIC Educational Resources Information Center

    Chen, Trevor H.

    2010-01-01

    While the auditory-only aspects of Mandarin speech are heavily-researched and well-known in the field, this dissertation addresses its lesser-known aspects: The visual and audio-visual perception of Mandarin segmental information and lexical-tone information. Chapter II of this dissertation focuses on the audiovisual perception of Mandarin…

  13. Visualization of relaminarizing flows

    NASA Technical Reports Server (NTRS)

    Viswanath, P. R.; Narasimha, R.; Prabhu, A.

    1978-01-01

    The experiments described in the present paper provided conclusive evidence for the feasibility of achieving reverse transition by several different mechanisms. Turbulent-to-laminar transition in water was visualized by injection of purple and green dyes. Air flows were visualized by colored schlieren photography.

  14. Visual Arts Research, 1995.

    ERIC Educational Resources Information Center

    Gardner, Nancy C., Ed.; Thompson, Christine, Ed.

    1995-01-01

    This document consists of the two issues of the journal "Visual Arts Research" published in 1995. This journal focuses on the theory and practice of visual arts education from educational, historical, philosophical, and psychological perspectives. Number 1 of this volume includes the following contributions: (1) "Children's Sensitivity to…

  15. Visual Arts Research, 1994.

    ERIC Educational Resources Information Center

    Gardner, Nancy C., Ed.; Thompson, Christine, Ed.

    1994-01-01

    This document consists of the two issues of the journal "Visual Arts in Research" published in 1994. This journal focuses on the theory and practice of visual arts education from educational, historical, philosophical, and psychological perspectives. Number 1 of this volume includes the following contributions: (1) "Zooming in on the Qualitative…

  16. Program Supports Scientific Visualization

    NASA Technical Reports Server (NTRS)

    Keith, Stephan

    1994-01-01

    Primary purpose of General Visualization System (GVS) computer program is to support scientific visualization of data generated by panel-method computer program PMARC_12 (inventory number ARC-13362) on Silicon Graphics Iris workstation. Enables user to view PMARC geometries and wakes as wire frames or as light shaded objects. GVS is written in C language.

  17. Complex Digital Visual Systems

    ERIC Educational Resources Information Center

    Sweeny, Robert W.

    2013-01-01

    This article identifies possibilities for data visualization as art educational research practice. The author presents an analysis of the relationship between works of art and digital visual culture, employing aspects of network analysis drawn from the work of Barabási, Newman, and Watts (2006) and Castells (1994). Describing complex network…

  18. Complicating Visual Culture

    ERIC Educational Resources Information Center

    Daiello, Vicki; Hathaway, Kevin; Rhoades, Mindi; Walker, Sydney

    2006-01-01

    Arguing for complicating the study of visual culture, as advocated by James Elkins, this article explicates and explores Lacanian psychoanalytic theory and pedagogy in view of its implications for art education practice. Subjectivity, a concept of import for addressing student identity and the visual, steers the discussion informed by pedagogical…

  19. Visual Function in Dyslexia.

    ERIC Educational Resources Information Center

    Flax, Nathan

    1968-01-01

    Using published research data, the problem of the seriously retarded reader was examined to determine the role of vision. The most obvious visual factors such as acuity and refractive error did not seem related to the problem. Impairment of visual skills such as fusion and accommodation did seem to contribute to reading difficulty, but such…

  20. Meaning and Visual Metaphor.

    ERIC Educational Resources Information Center

    Feinstein, Hermine

    1982-01-01

    Discusses Langer's thesis that metaphor is essential to thought and art is metaphor in terms of symbolization and the components of metaphor. The nature of visual metaphor, using Ortony's construct of linguistic metaphor, and how differences between visual and linguistic metaphors bear on the problem of interpreting art are discussed. (AM)

  1. Visual Complexity: A Review

    ERIC Educational Resources Information Center

    Donderi, Don C.

    2006-01-01

    The idea of visual complexity, the history of its measurement, and its implications for behavior are reviewed, starting with structuralism and Gestalt psychology at the beginning of the 20th century and ending with visual complexity theory, perceptual learning theory, and neural circuit theory at the beginning of the 21st. Evidence is drawn from…

  2. Interactive Visualization of Dependencies

    ERIC Educational Resources Information Center

    Moreno, Camilo Arango; Bischof, Walter F.; Hoover, H. James

    2012-01-01

    We present an interactive tool for browsing course requisites as a case study of dependency visualization. This tool uses multiple interactive visualizations to allow the user to explore the dependencies between courses. A usability study revealed that the proposed browser provides significant advantages over traditional methods, in terms of…

  3. Visualizing Qualitative Information

    ERIC Educational Resources Information Center

    Slone, Debra J.

    2009-01-01

    The abundance of qualitative data in today's society and the need to easily scrutinize, digest, and share this information calls for effective visualization and analysis tools. Yet, no existing qualitative tools have the analytic power, visual effectiveness, and universality of familiar quantitative instruments like bar charts, scatter-plots, and…

  4. Visualizing the Heliosphere

    NASA Technical Reports Server (NTRS)

    Bridgman, William T.; Sirah, Greg W.; Mitchell, Horace G.

    2008-01-01

    Today, scientific data and models can combine with modern animation tools to produce compelling visualizations to inform and educate. The Scientific Visualization Studio at Goddard Space Flight Center merges these techniques from the very different worlds of entertainment and science to enable scientists and the general public to 'see the unseeable' in new ways.

  5. Visual sensitivity tester

    NASA Technical Reports Server (NTRS)

    Haines, R. F.; Fitzgerald, J. W.; Rositano, S. A.

    1972-01-01

    Testing device uses closed loop film cassettes to project programmed visual stimuli on screen which the observer views through a lens making the stimuli appear to be at optical infinity. Tester is useful for determining changes in glautomatous visual field sensitivity.

  6. Visual projection reticle

    NASA Technical Reports Server (NTRS)

    Haines, R. F.

    1977-01-01

    Small lightweight device visually superimposes visual-sensitivity and response contours on displays and instrument panels. Optical system provides 45 deg arc/diameter field of view; however, special wide-angle optics can be substituted without significant size or weight penalty.

  7. Visual Factors in Reading

    ERIC Educational Resources Information Center

    Singleton, Chris; Henderson, Lisa-Marie

    2006-01-01

    This article reviews current knowledge about how the visual system recognizes letters and words, and the impact on reading when parts of the visual system malfunction. The physiology of eye and brain places important constraints on how we process text, and the efficient organization of the neurocognitive systems involved is not inherent but…

  8. Visualization of Social Networks

    NASA Astrophysics Data System (ADS)

    Chen, Ing-Xiang; Yang, Cheng-Zen

    With the ubiquitous characteristic of the Internet, today many online social environments are provided to connect people. Various social relationships are thus created, connected, and migrated from our real lives to the Internet environment from different social groups. Many social communities and relationships are also quickly constructed and connected via instant personal messengers, blogs, Twitter, Facebook, and a great variety of online social services. Since social network visualizations can structure the complex relationships between different groups of individuals or organizations, they are helpful to analyze the social activities and relationships of actors, particularly over a large number of nodes. Therefore, many studies and visualization tools have been investigated to present social networks with graph representations. In this chapter, we will first review the background of social network analysis and visualization methods, and then introduce various novel visualization applications for social networks. Finally, the challenges and the future development of visualizing online social networks are discussed.

  9. Visualization of JPEG Metadata

    NASA Astrophysics Data System (ADS)

    Malik Mohamad, Kamaruddin; Deris, Mustafa Mat

    There are a lot of information embedded in JPEG image than just graphics. Visualization of its metadata would benefit digital forensic investigator to view embedded data including corrupted image where no graphics can be displayed in order to assist in evidence collection for cases such as child pornography or steganography. There are already available tools such as metadata readers, editors and extraction tools but mostly focusing on visualizing attribute information of JPEG Exif. However, none have been done to visualize metadata by consolidating markers summary, header structure, Huffman table and quantization table in a single program. In this paper, metadata visualization is done by developing a program that able to summarize all existing markers, header structure, Huffman table and quantization table in JPEG. The result shows that visualization of metadata helps viewing the hidden information within JPEG more easily.

  10. NASA's Scientific Visualization Studio

    NASA Technical Reports Server (NTRS)

    Mitchell, Horace G.

    2003-01-01

    Since 1988, the Scientific Visualization Studio(SVS) at NASA Goddard Space Flight Center has produced scientific visualizations of NASA s scientific research and remote sensing data for public outreach. These visualizations take the form of images, animations, and end-to-end systems and have been used in many venues: from the network news to science programs such as NOVA, from museum exhibits at the Smithsonian to White House briefings. This presentation will give an overview of the major activities and accomplishments of the SVS, and some of the most interesting projects and systems developed at the SVS will be described. Particular emphasis will be given to the practices and procedures by which the SVS creates visualizations, from the hardware and software used to the structures and collaborations by which products are designed, developed, and delivered to customers. The web-based archival and delivery system for SVS visualizations at svs.gsfc.nasa.gov will also be described.

  11. Is it a face of a woman or a man? Visual mismatch negativity is sensitive to gender category

    PubMed Central

    Kecskés-Kovács, Krisztina; Sulykos, István; Czigler, István

    2013-01-01

    The present study investigated whether gender information for human faces was represented by the predictive mechanism indexed by the visual mismatch negativity (vMMN) event-related brain potential (ERP). While participants performed a continuous size-change-detection task, random sequences of cropped faces were presented in the background, in an oddball setting: either various female faces were presented infrequently among various male faces, or vice versa. In Experiment 1 the inter-stimulus-interval (ISI) was 400 ms, while in Experiment 2 the ISI was 2250 ms. The ISI difference had only a small effect on the P1 component, however the subsequent negativity (N1/N170) was larger and more widely distributed at longer ISI, showing different aspects of stimulus processing. As deviant-minus-standard ERP difference, a parieto-occipital negativity (vMMN) emerged in the 200–500 ms latency range (~350 ms peak latency in both experiments). We argue that regularity of gender on the photographs is automatically registered, and the violation of the gender category is reflected by the vMMN. In conclusion the results can be interpreted as evidence for the automatic activity of a predictive brain mechanism, in case of an ecologically valid category. PMID:24027518

  12. Designing Visual Earth: Multimedia Geographic Visualization for the Classroom.

    ERIC Educational Resources Information Center

    McWilliams, Harold

    1998-01-01

    Provides information on computer software using Geographic Information Systems (GIS) and visualization technologies and Visual Earth, a series of integrated classroom solutions for a variety of science topics. Describes some uses of GIS and Visual Earth in science classrooms. (ASK)

  13. Biomolecular visualization using AVS.

    PubMed

    Duncan, B S; Macke, T J; Olson, A J

    1995-10-01

    Dataflow systems for scientific visualization are becoming increasingly sophisticated in their architecture and functionality. AVS, from Advanced Visual Systems Inc., is a powerful dataflow environment that has been applied to many computation and visualization tasks. An important, yet complex, application area is molecular modeling and biomolecular visualization. Problems in biomolecular visualization tax the capability of dataflow systems because of the diversity of operations that are required and because many operations do not fit neatly into the dataflow paradigm. Here we describe visualization strategies and auxiliary programs developed to enhance the applicability of AVS for molecular modelling. Our visualization strategy is to use general-purpose AVS modules and a small number of chemistry-specific modules. We have developed methods to control AVS using AVS-tool, a programmable interface to the AVS Command Line Interpreter (CLI), and have also developed NAB, a C-like language for writing AVS modules that has extensions for operating on proteins and nucleic acids. This strategy provides a flexible and extensible framework for a wide variety of molecular modeling tasks. PMID:8603055

  14. Visualization of electronic density

    DOE PAGESBeta

    Grosso, Bastien; Cooper, Valentino R.; Pine, Polina; Hashibon, Adham; Yaish, Yuval; Adler, Joan

    2015-04-22

    An atom’s volume depends on its electronic density. Although this density can only be evaluated exactly for hydrogen-like atoms, there are many excellent numerical algorithms and packages to calculate it for other materials. 3D visualization of charge density is challenging, especially when several molecular/atomic levels are intertwined in space. We explore several approaches to 3D charge density visualization, including the extension of an anaglyphic stereo visualization application based on the AViz package to larger structures such as nanotubes. We will describe motivations and potential applications of these tools for answering interesting questions about nanotube properties.

  15. Architecture for Teraflop Visualization

    SciTech Connect

    Breckenridge, A.R.; Haynes, R.A.

    1999-04-09

    Sandia Laboratories' computational scientists are addressing a very important question: How do we get insight from the human combined with the computer-generated information? The answer inevitably leads to using scientific visualization. Going one technology leap further is teraflop visualization, where the computing model and interactive graphics are an integral whole to provide computing for insight. In order to implement our teraflop visualization architecture, all hardware installed or software coded will be based on open modules and dynamic extensibility principles. We will illustrate these concepts with examples in our three main research areas: (1) authoring content (the computer), (2) enhancing precision and resolution (the human), and (3) adding behaviors (the physics).

  16. Training Visual Attention

    ERIC Educational Resources Information Center

    Mulholland, Thomas B.

    1974-01-01

    The effects of brain waves and alpha rhythms on attentiveness to visual stimuli are discussed, and preliminary research findings and research needs are considered in connection with measuring and training for attention. (LH)

  17. Visualization Design Environment

    SciTech Connect

    Pomplun, A.R.; Templet, G.J.; Jortner, J.N.; Friesen, J.A.; Schwegel, J.; Hughes, K.R.

    1999-02-01

    Improvements in the performance and capabilities of computer software and hardware system, combined with advances in Internet technologies, have spurred innovative developments in the area of modeling, simulation and visualization. These developments combine to make it possible to create an environment where engineers can design, prototype, analyze, and visualize components in virtual space, saving the time and expenses incurred during numerous design and prototyping iterations. The Visualization Design Centers located at Sandia National Laboratories are facilities built specifically to promote the ''design by team'' concept. This report focuses on designing, developing and deploying this environment by detailing the design of the facility, software infrastructure and hardware systems that comprise this new visualization design environment and describes case studies that document successful application of this environment.

  18. Case study: Wildfire visualization

    SciTech Connect

    Ahrens, J.; McCormick, P.; Bossert, J.; Reisner, J.; Winterkamp, J.

    1997-11-01

    The ability to forecast the progress of crisis events would significantly reduce human suffering and loss of life, the destruction of property, and expenditures for assessment and recovery. Los Alamos National Laboratory has established a scientific thrust in crisis forecasting to address this national challenge. In the initial phase of this project, scientists at Los Alamos are developing computer models to predict the spread of a wildfire. Visualization of the results of the wildfire simulation will be used by scientists to assess the quality of the simulation and eventually by fire personnel as a visual forecast of the wildfire`s evolution. The fire personnel and scientists want the visualization to look as realistic as possible without compromising scientific accuracy. This paper describes how the visualization was created, analyzes the tools and approach that was used, and suggests directions for future work and research.

  19. Handbook of flow visualization

    NASA Astrophysics Data System (ADS)

    Yang, Wen-Jei

    The present conference flow visualization encompasses the fundamental principles of visualization, methods for visualizing different flow types, image processing and computer-assisted methods, and a number of practical applications of the methodologies for studying heat transfer, gas-turbine-disk cooling flows, indoor environments, building aerodynamics, and land vehicles. Specific issues addressed include fluid dynamics, the basics of heat and mass transfer, electrical discharges, liquid crystals, streaming birefringence, speckle photography, Schlieren methods, surface tracing, planar fluorescence imaging in gases, digital processing in interferograms, and ultrasonic image processing. Also addressed are computer-aided flow visualization, flow-field survey data, thermography, flow solutions with scalar variable presentation, and special applications including aerospace and wind-tunnel testing, internal flows, and explosive flows such as shock tubes and blast waves.

  20. Extreme Scale Visual Analytics

    SciTech Connect

    Steed, Chad A; Potok, Thomas E; Pullum, Laura L; Ramanathan, Arvind; Shipman, Galen M; Thornton, Peter E

    2013-01-01

    Given the scale and complexity of today s data, visual analytics is rapidly becoming a necessity rather than an option for comprehensive exploratory analysis. In this paper, we provide an overview of three applications of visual analytics for addressing the challenges of analyzing climate, text streams, and biosurveilance data. These systems feature varying levels of interaction and high performance computing technology integration to permit exploratory analysis of large and complex data of global significance.

  1. Helicopter Visual Aid System

    NASA Technical Reports Server (NTRS)

    Baisley, R. L.

    1973-01-01

    The results of an evaluation of police helicopter effectiveness revealed a need for improved visual capability. A JPL program developed a method that would enhance visual observation capability for both day and night usage and demonstrated the feasibility of the adopted approach. This approach made use of remote pointable optics, a display screen, a slaved covert searchlight, and a coupled camera. The approach was proved feasible through field testing and by judgement against evaluation criteria.

  2. Visualization and data analysis

    SciTech Connect

    Ahrens, James P; Rodgers, David; Springmeyer, Becky

    2010-12-21

    Talk about Visualization and Data Analysis Current State and Exascale challenges. The goal is to update with colleagues our current status in our research. What challenges we need to face, and what future possibilities. Our goal is to propose to approach the problems with the visualization approach operating on the supercomputing platform. This presentation is about the L2 Milestone, we intend to discuss further possibilities of enhancing our results and optimizing our solutions.

  3. Visual attention and stability

    PubMed Central

    Mathôt, Sebastiaan; Theeuwes, Jan

    2011-01-01

    In the present review, we address the relationship between attention and visual stability. Even though with each eye, head and body movement the retinal image changes dramatically, we perceive the world as stable and are able to perform visually guided actions. However, visual stability is not as complete as introspection would lead us to believe. We attend to only a few items at a time and stability is maintained only for those items. There appear to be two distinct mechanisms underlying visual stability. The first is a passive mechanism: the visual system assumes the world to be stable, unless there is a clear discrepancy between the pre- and post-saccadic image of the region surrounding the saccade target. This is related to the pre-saccadic shift of attention, which allows for an accurate preview of the saccade target. The second is an active mechanism: information about attended objects is remapped within retinotopic maps to compensate for eye movements. The locus of attention itself, which is also characterized by localized retinotopic activity, is remapped as well. We conclude that visual attention is crucial in our perception of a stable world. PMID:21242140

  4. Indirect visual cryptography scheme

    NASA Astrophysics Data System (ADS)

    Yang, Xiubo; Li, Tuo; Shi, Yishi

    2015-10-01

    Visual cryptography (VC), a new cryptographic scheme for image. Here in encryption, image with message is encoded to be N sub-images and any K sub-images can decode the message in a special rules (N>=2, 2<=K<=N). Then any K of the N sub-images are printed on transparency and stacked exactly, the message of original image will be decrypted by human visual system, but any K-1 of them get no information about it. This cryptographic scheme can decode concealed images without any cryptographic computations, and it has high security. But this scheme lacks of hidden because of obvious feature of sub-images. In this paper, we introduce indirect visual cryptography scheme (IVCS), which encodes sub-images to be pure phase images without visible strength based on encoding of visual cryptography. The pure phase image is final ciphertexts. Indirect visual cryptography scheme not only inherits the merits of visual cryptography, but also raises indirection, hidden and security. Meanwhile, the accuracy alignment is not required any more, which leads to the strong anti-interference capacity and robust in this scheme. System of decryption can be integrated highly and operated conveniently, and its process of decryption is dynamic and fast, which all lead to the good potentials in practices.

  5. Quantized visual awareness

    PubMed Central

    Escobar, W. A.

    2013-01-01

    The proposed model holds that, at its most fundamental level, visual awareness is quantized. That is to say that visual awareness arises as individual bits of awareness through the action of neural circuits with hundreds to thousands of neurons in at least the human striate cortex. Circuits with specific topologies will reproducibly result in visual awareness that correspond to basic aspects of vision like color, motion, and depth. These quanta of awareness (qualia) are produced by the feedforward sweep that occurs through the geniculocortical pathway but are not integrated into a conscious experience until recurrent processing from centers like V4 or V5 select the appropriate qualia being produced in V1 to create a percept. The model proposed here has the potential to shift the focus of the search for visual awareness to the level of microcircuits and these likely exist across the kingdom Animalia. Thus establishing qualia as the fundamental nature of visual awareness will not only provide a deeper understanding of awareness, but also allow for a more quantitative understanding of the evolution of visual awareness throughout the animal kingdom. PMID:24319436

  6. Visualization of multidimensional database

    NASA Astrophysics Data System (ADS)

    Lee, Chung

    2008-01-01

    The concept of multidimensional databases has been extensively researched and wildly used in actual database application. It plays an important role in contemporary information technology, but due to the complexity of its inner structure, the database design is a complicated process and users are having a hard time fully understanding and using the database. An effective visualization tool for higher dimensional information system helps database designers and users alike. Most visualization techniques focus on displaying dimensional data using spreadsheets and charts. This may be sufficient for the databases having three or fewer dimensions but for higher dimensions, various combinations of projection operations are needed and a full grasp of total database architecture is very difficult. This study reviews existing visualization techniques for multidimensional database and then proposes an alternate approach to visualize a database of any dimension by adopting the tool proposed by Kiviat for software engineering processes. In this diagramming method, each dimension is represented by one branch of concentric spikes. This paper documents a C++ based visualization tool with extensive use of OpenGL graphics library and GUI functions. Detailed examples of actual databases demonstrate the feasibility and effectiveness in visualizing multidimensional databases.

  7. Visualization of Uncertainty

    NASA Astrophysics Data System (ADS)

    Jones, P. W.; Strelitz, R. A.

    2012-12-01

    The output of a simulation is best comprehended through the agency and methods of visualization, but a vital component of good science is knowledge of uncertainty. While great strides have been made in the quantification of uncertainty, especially in simulation, there is still a notable gap: there is no widely accepted means of simultaneously viewing the data and the associated uncertainty in one pane. Visualization saturates the screen, using the full range of color, shadow, opacity and tricks of perspective to display even a single variable. There is no room in the visualization expert's repertoire left for uncertainty. We present a method of visualizing uncertainty without sacrificing the clarity and power of the underlying visualization that works as well in 3-D and time-varying visualizations as it does in 2-D. At its heart, it relies on a principal tenet of continuum mechanics, replacing the notion of value at a point with a more diffuse notion of density as a measure of content in a region. First, the uncertainties calculated or tabulated at each point are transformed into a piecewise continuous field of uncertainty density . We next compute a weighted Voronoi tessellation of a user specified N convex polygonal/polyhedral cells such that each cell contains the same amount of uncertainty as defined by . The problem thus devolves into minimizing . Computation of such a spatial decomposition is O(N*N ), and can be computed iteratively making it possible to update easily over time as well as faster. The polygonal mesh does not interfere with the visualization of the data and can be easily toggled on or off. In this representation, a small cell implies a great concentration of uncertainty, and conversely. The content weighted polygons are identical to the cartogram familiar to the information visualization community in the depiction of things voting results per stat. Furthermore, one can dispense with the mesh or edges entirely to be replaced by symbols or glyphs

  8. A robust index of lexical representation in the left occipito-temporal cortex as evidenced by EEG responses to fast periodic visual stimulation.

    PubMed

    Lochy, Aliette; Van Belle, Goedele; Rossion, Bruno

    2015-01-01

    Despite decades of research on reading, including the relatively recent contributions of neuroimaging and electrophysiology, identifying selective representations of whole visual words (in contrast to pseudowords) in the human brain remains challenging, in particular without an explicit linguistic task. Here we measured discrimination responses to written words by means of electroencephalography (EEG) during fast periodic visual stimulation. Sequences of pseudofonts, nonwords, or pseudowords were presented through sinusoidal contrast modulation at a periodic 10 Hz frequency rate (F), in which words were interspersed at regular intervals of every fifth item (i.e., F/5, 2 Hz). Participants monitored a central cross color change and had no linguistic task to perform. Within only 3 min of stimulation, a robust discrimination response for words at 2 Hz (and its harmonics, i.e., 4 and 6 Hz) was observed in all conditions, located predominantly over the left occipito-temporal cortex. The magnitude of the response was largest for words embedded in pseudofonts, and larger in nonwords than in pseudowords, showing that list context effects classically reported in behavioral lexical decision tasks are due to visual discrimination rather than decisional processes. Remarkably, the oddball response was significant even for the critical words/pseudowords discrimination condition in every individual participant. A second experiment replicated this words/pseudowords discrimination, and showed that this effect is not accounted for by a higher bigram frequency of words than pseudowords. Without any explicit task, our results highlight the potential of an EEG fast periodic visual stimulation approach for understanding the representation of written language. Its development in the scientific community might be valuable to rapidly and objectively measure sensitivity to word processing in different human populations, including neuropsychological patients with dyslexia and other reading

  9. Creating a Visually Enhanced Performance.

    ERIC Educational Resources Information Center

    Allison, Joseph H.

    1998-01-01

    Maintains that visually enhanced musical performances provide an exciting and creative aspect of musical production. Explains that the conductor should choose a musical selection that offers concrete visual opportunities, focus on visual images, choose video excerpts, and use dance if possible. Finds that many visual techniques used by marching…

  10. The Levels of Visual Framing

    ERIC Educational Resources Information Center

    Rodriguez, Lulu; Dimitrova, Daniela V.

    2011-01-01

    While framing research has centered mostly on the evaluations of media texts, visual news discourse has remained relatively unexamined. This study surveys the visual framing techniques and methods employed in previous studies and proposes a four-tiered model of identifying and analyzing visual frames: (1) visuals as denotative systems, (2) visuals…

  11. Perception and Attention for Visualization

    ERIC Educational Resources Information Center

    Haroz, Steve

    2013-01-01

    This work examines how a better understanding of visual perception and attention can impact visualization design. In a collection of studies, I explore how different levels of the visual system can measurably affect a variety of visualization metrics. The results show that expert preference, user performance, and even computational performance are…

  12. The Elephants of Visual Literacy.

    ERIC Educational Resources Information Center

    Barley, Steven D., Ed.; Ball, Richard R., Ed.

    Visual literacy, as used here, refers to the skills which let a person understand and use visuals to communicate his messages and interpret the messages of others. Visual literacy should be important in the curriculum because: 1) children pay more attention to movies and television than they do to teachers; 2) the plethora of visual information…

  13. Learning Science Through Visualization

    NASA Technical Reports Server (NTRS)

    Chaudhury, S. Raj

    2005-01-01

    In the context of an introductory physical science course for non-science majors, I have been trying to understand how scientific visualizations of natural phenomena can constructively impact student learning. I have also necessarily been concerned with the instructional and assessment approaches that need to be considered when focusing on learning science through visually rich information sources. The overall project can be broken down into three distinct segments : (i) comparing students' abilities to demonstrate proportional reasoning competency on visual and verbal tasks (ii) decoding and deconstructing visualizations of an object falling under gravity (iii) the role of directed instruction to elicit alternate, valid scientific visualizations of the structure of the solar system. Evidence of student learning was collected in multiple forms for this project - quantitative analysis of student performance on written, graded assessments (tests and quizzes); qualitative analysis of videos of student 'think aloud' sessions. The results indicate that there are significant barriers for non-science majors to succeed in mastering the content of science courses, but with informed approaches to instruction and assessment, these barriers can be overcome.

  14. Camouflage and visual perception

    PubMed Central

    Troscianko, Tom; Benton, Christopher P.; Lovell, P. George; Tolhurst, David J.; Pizlo, Zygmunt

    2008-01-01

    How does an animal conceal itself from visual detection by other animals? This review paper seeks to identify general principles that may apply in this broad area. It considers mechanisms of visual encoding, of grouping and object encoding, and of search. In most cases, the evidence base comes from studies of humans or species whose vision approximates to that of humans. The effort is hampered by a relatively sparse literature on visual function in natural environments and with complex foraging tasks. However, some general constraints emerge as being potentially powerful principles in understanding concealment—a ‘constraint’ here means a set of simplifying assumptions. Strategies that disrupt the unambiguous encoding of discontinuities of intensity (edges), and of other key visual attributes, such as motion, are key here. Similar strategies may also defeat grouping and object-encoding mechanisms. Finally, the paper considers how we may understand the processes of search for complex targets in complex scenes. The aim is to provide a number of pointers towards issues, which may be of assistance in understanding camouflage and concealment, particularly with reference to how visual systems can detect the shape of complex, concealed objects. PMID:18990671

  15. Frameless Volume Visualization.

    PubMed

    Petkov, Kaloian; Kaufman, Arie E

    2016-02-01

    We have developed a novel visualization system based on the reconstruction of high resolution and high frame rate images from a multi-tiered stream of samples that are rendered framelessly. This decoupling of the rendering system from the display system is particularly suitable when dealing with very high resolution displays or expensive rendering algorithms, where the latency of generating complete frames may be prohibitively high for interactive applications. In contrast to the traditional frameless rendering technique, we generate the lowest latency samples on the optimal sampling lattice in the 3D domain. This approach avoids many of the artifacts associated with existing sample caching and reprojection methods during interaction that may not be acceptable in many visualization applications. Advanced visualization effects are generated remotely and streamed into the reconstruction system using tiered samples with varying latencies and quality levels. We demonstrate the use of our visualization system for the exploration of volumetric data at stable guaranteed frame rates on high resolution displays, including a 470 megapixel tiled display as part of the Reality Deck immersive visualization facility. PMID:26731452

  16. Oddball Cases of Fluid Mechanics: Cobwebs and Pharaohs

    ERIC Educational Resources Information Center

    Lafrance, Pierre

    1975-01-01

    Explains macroscopic properties of a number of systems as averaged-out behavior of numbers of particles. The approach is applied to a model of nuclear fission, rotational velocity in a galaxy, the nature of the rings of Saturn, oscillations of the earth, drops on a spider web, and the shape of ruined Meidum pyramid. (GH)

  17. Data Visualization in Sociology

    PubMed Central

    Healy, Kieran; Moody, James

    2014-01-01

    Visualizing data is central to social scientific work. Despite a promising early beginning, sociology has lagged in the use of visual tools. We review the history and current state of visualization in sociology. Using examples throughout, we discuss recent developments in ways of seeing raw data and presenting the results of statistical modeling. We make a general distinction between those methods and tools designed to help explore datasets, and those designed to help present results to others. We argue that recent advances should be seen as part of a broader shift towards easier sharing of the code and data both between researchers and with wider publics, and encourage practitioners and publishers to work toward a higher and more consistent standard for the graphical display of sociological insights. PMID:25342872

  18. Multimodal brain visualization

    NASA Astrophysics Data System (ADS)

    Nadeem, Saad; Kaufman, Arie

    2016-03-01

    Current connectivity diagrams of human brain image data are either overly complex or overly simplistic. In this work we introduce simple yet accurate interactive visual representations of multiple brain image structures and the connectivity among them. We map cortical surfaces extracted from human brain magnetic resonance imaging (MRI) data onto 2D surfaces that preserve shape (angle), extent (area), and spatial (neighborhood) information for 2D (circular disk) and 3D (spherical) mapping, split these surfaces into separate patches, and cluster functional and diffusion tractography MRI connections between pairs of these patches. The resulting visualizations are easier to compute on and more visually intuitive to interact with than the original data, and facilitate simultaneous exploration of multiple data sets, modalities, and statistical maps.

  19. The Drosophila visual system

    PubMed Central

    Zhu, Yan

    2013-01-01

    A compact genome and a tiny brain make Drosophila the prime model to understand the neural substrate of behavior. The neurogenetic efforts to reveal neural circuits underlying Drosophila vision started about half a century ago, and now the field is booming with sophisticated genetic tools, rich behavioral assays, and importantly, a greater number of scientists joining from different backgrounds. This review will briefly cover the structural anatomy of the Drosophila visual system, the animal’s visual behaviors, the genes involved in assembling these circuits, the new and powerful techniques, and the challenges ahead for ultimately identifying the general principles of biological computation in the brain.   A typical brain utilizes a great many compact neural circuits to collect and process information from the internal biological and external environmental worlds and generates motor commands for observable behaviors. The fruit fly Drosophila melanogaster, despite of its miniature body and tiny brain, can survive in almost any corner of the world.1 It can find food, court mate, fight rival conspecific, avoid predators, and amazingly fly without crashing into trees. Drosophila vision and its underlying neuronal machinery has been a key research model for at least half century for neurogeneticists.2 Given the efforts invested on the visual system, this animal model is likely to offer the first full understanding of how visual information is computed by a multi-cellular organism. Furthermore, research in Drosophila has revealed many genes that play crucial roles in the formation of functional brains across species. The architectural similarities between the visual systems of Drosophila and vertebrate at the molecular, cellular, and network levels suggest new principles discovered at the circuit level on the relationship between neurons and behavior in Drosophila shall also contribute greatly to our understanding of the general principles for how bigger brains work.3

  20. Visual exploration of images

    NASA Astrophysics Data System (ADS)

    Suaste-Gomez, Ernesto; Leybon, Jaime I.; Rodriguez, D.

    1998-07-01

    Visual scanpath has been an important work applied in neuro- ophthalmic and psychological studies. This is because it has been working like a tool to validate some pathologies such as visual perception in color or black/white images; color blindness; etc. On the other hand, this tool has reached a big field of applications such as marketing. The scanpath over a specific picture, shows the observer interest in color, shapes, letter size, etc.; even tough the picture be among a group of images, this tool has demonstrated to be helpful to catch people interest over a specific advertisement.

  1. CMS tracker visualization tools

    NASA Astrophysics Data System (ADS)

    Mennea, M. S.; Osborne, I.; Regano, A.; Zito, G.

    2005-08-01

    This document will review the design considerations, implementations and performance of the CMS Tracker Visualization tools. In view of the great complexity of this sub-detector (more than 50 millions channels organized in 16540 modules each one of these being a complete detector), the standard CMS visualization tools (IGUANA and IGUANACMS) that provide basic 3D capabilities and integration within CMS framework, respectively, have been complemented with additional 2D graphics objects. Based on the experience acquired using this software to debug and understand both hardware and software during the construction phase, we propose possible future improvements to cope with online monitoring and event analysis during data taking.

  2. Visual Inference Programming

    NASA Technical Reports Server (NTRS)

    Wheeler, Kevin; Timucin, Dogan; Rabbette, Maura; Curry, Charles; Allan, Mark; Lvov, Nikolay; Clanton, Sam; Pilewskie, Peter

    2002-01-01

    The goal of visual inference programming is to develop a software framework data analysis and to provide machine learning algorithms for inter-active data exploration and visualization. The topics include: 1) Intelligent Data Understanding (IDU) framework; 2) Challenge problems; 3) What's new here; 4) Framework features; 5) Wiring diagram; 6) Generated script; 7) Results of script; 8) Initial algorithms; 9) Independent Component Analysis for instrument diagnosis; 10) Output sensory mapping virtual joystick; 11) Output sensory mapping typing; 12) Closed-loop feedback mu-rhythm control; 13) Closed-loop training; 14) Data sources; and 15) Algorithms. This paper is in viewgraph form.

  3. Visualization of electronic density

    NASA Astrophysics Data System (ADS)

    Grosso, Bastien; Cooper, Valentino R.; Pine, Polina; Hashibon, Adham; Yaish, Yuval; Adler, Joan

    2015-10-01

    The spatial volume occupied by an atom depends on its electronic density. Although this density can only be evaluated exactly for hydrogen-like atoms, there are many excellent algorithms and packages to calculate it numerically for other materials. Three-dimensional visualization of charge density is challenging, especially when several molecular/atomic levels are intertwined in space. In this paper, we explore several approaches to this, including the extension of an anaglyphic stereo visualization application based on the AViz package for hydrogen atoms and simple molecules to larger structures such as nanotubes. We will describe motivations and potential applications of these tools for answering interesting physical questions about nanotube properties.

  4. Visual color image processing

    NASA Astrophysics Data System (ADS)

    Qiu, Guoping; Schaefer, Gerald

    1999-12-01

    In this paper, we propose a color image processing method by combining modern signal processing technique with knowledge about the properties of the human color vision system. Color signals are processed differently according to their visual importance. The emphasis of the technique is on the preservation of total visual quality of the image and simultaneously taking into account computational efficiency. A specific color image enhancement technique, termed Hybrid Vector Median Filtering is presented. Computer simulations have been performed to demonstrate that the new approach is technically sound and results are comparable to or better than traditional methods.

  5. Aging and Visual Impairment.

    ERIC Educational Resources Information Center

    Morse, A. R.; And Others

    1987-01-01

    Eye diseases of the aged include diabetic retinopathy, senile cataracts, senile macular degeneration, and glaucoma. Environmental modifications such as better levels of illumination and reduction of glare can enhance an individual's ability to function. Programs to screen and treat visual problems in elderly persons are called for. (Author/JDD)

  6. Visualizing Dispersion Interactions

    ERIC Educational Resources Information Center

    Gottschalk, Elinor; Venkataraman, Bhawani

    2014-01-01

    An animation and accompanying activity has been developed to help students visualize how dispersion interactions arise. The animation uses the gecko's ability to walk on vertical surfaces to illustrate how dispersion interactions play a role in macroscale outcomes. Assessment of student learning reveals that students were able to develop…

  7. Extreme Scale Visual Analytics

    SciTech Connect

    Wong, Pak C.; Shen, Han-Wei; Pascucci, Valerio

    2012-05-08

    Extreme-scale visual analytics (VA) is about applying VA to extreme-scale data. The articles in this special issue examine advances related to extreme-scale VA problems, their analytical and computational challenges, and their real-world applications.

  8. Monocular visual ranging

    NASA Astrophysics Data System (ADS)

    Witus, Gary; Hunt, Shawn

    2008-04-01

    The vision system of a mobile robot for checkpoint and perimeter security inspection performs multiple functions: providing surveillance video, providing high resolution still images, and providing video for semi-autonomous visual navigation. Mid-priced commercial digital cameras support the primary inspection functions. Semi-autonomous visual navigation is a tertiary function whose purpose is to reduce the burden of teleoperation and free the security personnel for their primary functions. Approaches to robot visual navigation require some form of depth perception for speed control to prevent the robot from colliding with objects. In this paper present the initial results of an exploration of the capabilities and limitations of using a single monocular commercial digital camera for depth perception. Our approach combines complementary methods in alternating stationary and moving behaviors. When the platform is stationary, it computes a range image from differential blur in the image stack collected at multiple focus settings. When the robot is moving, it extracts an estimate of range from the camera auto-focus function, and combines this with an estimate derived from angular expansion of a constellation of visual tracking points.

  9. NCI Visuals Online

    Cancer.gov

    NCI Visuals Online contains images from the collections of the National Cancer Institute's Office of Communications and Public Liaison, including general biomedical and science-related images, cancer-specific scientific and patient care-related images, and portraits of directors and staff of the National Cancer Institute.

  10. Visualizing Humans by Computer.

    ERIC Educational Resources Information Center

    Magnenat-Thalmann, Nadia

    1992-01-01

    Presents an overview of the problems and techniques involved in visualizing humans in a three-dimensional scene. Topics discussed include human shape modeling, including shape creation and deformation; human motion control, including facial animation and interaction with synthetic actors; and human rendering and clothing, including textures and…

  11. Curriculum: Managed Visual Reality.

    ERIC Educational Resources Information Center

    Gueulette, David G.

    This paper explores the association between the symbolized and the actualized, beginning with the prehistoric notion of a "reality double," in which no practical difference exists between pictorial representations, visual symbols, and real-life events and situations. Alchemists of the Middle Ages, with their paradoxical vision of the universe…

  12. Visualization of Traffic Accidents

    NASA Technical Reports Server (NTRS)

    Wang, Jie; Shen, Yuzhong; Khattak, Asad

    2010-01-01

    Traffic accidents have tremendous impact on society. Annually approximately 6.4 million vehicle accidents are reported by police in the US and nearly half of them result in catastrophic injuries. Visualizations of traffic accidents using geographic information systems (GIS) greatly facilitate handling and analysis of traffic accidents in many aspects. Environmental Systems Research Institute (ESRI), Inc. is the world leader in GIS research and development. ArcGIS, a software package developed by ESRI, has the capabilities to display events associated with a road network, such as accident locations, and pavement quality. But when event locations related to a road network are processed, the existing algorithm used by ArcGIS does not utilize all the information related to the routes of the road network and produces erroneous visualization results of event locations. This software bug causes serious problems for applications in which accurate location information is critical for emergency responses, such as traffic accidents. This paper aims to address this problem and proposes an improved method that utilizes all relevant information of traffic accidents, namely, route number, direction, and mile post, and extracts correct event locations for accurate traffic accident visualization and analysis. The proposed method generates a new shape file for traffic accidents and displays them on top of the existing road network in ArcGIS. Visualization of traffic accidents along Hampton Roads Bridge Tunnel is included to demonstrate the effectiveness of the proposed method.

  13. Challenges for Visual Analytics

    SciTech Connect

    Thomas, James J.; Kielman, Joseph

    2009-09-23

    Visual analytics has seen unprecedented growth in its first five years of mainstream existence. Great progress has been made in a short time, yet great challenges must be met in the next decade to provide new technologies that will be widely accepted by societies throughout the world. This paper sets the stage for some of those challenges in an effort to provide the stimulus for the research, both basic and applied, to address and exceed the envisioned potential for visual analytics technologies. We start with a brief summary of the initial challenges, followed by a discussion of the initial driving domains and applications, as well as additional applications and domains that have been a part of recent rapid expansion of visual analytics usage. We look at the common characteristics of several tools illustrating emerging visual analytics technologies, and conclude with the top ten challenges for the field of study. We encourage feedback and collaborative participation by members of the research community, the wide array of user communities, and private industry.

  14. Visual Screening: A Procedure.

    ERIC Educational Resources Information Center

    Williams, Robert T.

    Vision is a complex process involving three phases: physical (acuity), physiological (integrative), and psychological (perceptual). Although these phases cannot be considered discrete, they provide the basis for the visual screening procedure used by the Reading Services of Colorado State University and described in this document. Ten tests are…

  15. From Visuals to Words.

    ERIC Educational Resources Information Center

    Stewig, John Warren

    This speech indicates how teachers can use visual materials in classrooms to promote writing by children in primary school. Five classroom tested motivating experiences discussed are: (1) adding words to wordless picture books, (2) writing about artist's paintings, (3) writing story lines from films, (4) comparing variant editions of the same…

  16. Sounds Exaggerate Visual Shape

    ERIC Educational Resources Information Center

    Sweeny, Timothy D.; Guzman-Martinez, Emmanuel; Ortega, Laura; Grabowecky, Marcia; Suzuki, Satoru

    2012-01-01

    While perceiving speech, people see mouth shapes that are systematically associated with sounds. In particular, a vertically stretched mouth produces a /woo/ sound, whereas a horizontally stretched mouth produces a /wee/ sound. We demonstrate that hearing these speech sounds alters how we see aspect ratio, a basic visual feature that contributes…

  17. Visualization and Spelling Competence.

    ERIC Educational Resources Information Center

    Harris, Muriel

    1985-01-01

    Identifies problems resulting from the inability to spell correctly. Assesses current writing programs as inadequate for remedying spelling deficiencies. Recommends individualized instruction to meet learners' needs. Confirms the importance of visualization to spelling ability, examining the relationship between field dependence-independence and…

  18. The Visual Identity Project

    ERIC Educational Resources Information Center

    Tennant-Gadd, Laurie; Sansone, Kristina Lamour

    2008-01-01

    Identity is the focus of the middle-school visual arts program at Cambridge Friends School (CFS) in Cambridge, Massachusetts. Sixth graders enter the middle school and design a personal logo as their first major project in the art studio. The logo becomes a way for students to introduce themselves to their teachers and to represent who they are…

  19. Mainstreaming: Visually Handicapped Students

    ERIC Educational Resources Information Center

    Porter, Ernestine; And Others

    1978-01-01

    A research project at Florida State University developed teaching materials for secondary home economics teachers faced with teaching hand and machine sewing and other clothing construction skills to visually handicapped students. The article gives some suggestions for presenting instructions and adapting equipment for cutting and sewing garments.…

  20. Thinking Visually about Algebra

    ERIC Educational Resources Information Center

    Baroudi, Ziad

    2015-01-01

    Many introductions to algebra in high school begin with teaching students to generalise linear numerical patterns. This article argues that this approach needs to be changed so that students encounter variables in the context of modelling visual patterns so that the variables have a meaning. The article presents sample classroom activities,…

  1. Basic Skills: Visual Arts.

    ERIC Educational Resources Information Center

    Kentucky State Dept. of Education, Frankfort.

    A curriculum guide for the visual arts is presented. The goal of elementary and middle school education in the four arts disciplines is the development of basic understanding and skills by every student. In secondary education the aim is to continue a sequential curriculum for those students who study the arts. This document is intended as a guide…

  2. Solar System Visualizations

    NASA Technical Reports Server (NTRS)

    Brown, Alison M.

    2005-01-01

    Solar System Visualization products enable scientists to compare models and measurements in new ways that enhance the scientific discovery process, enhance the information content and understanding of the science results for both science colleagues and the public, and create.visually appealing and intellectually stimulating visualization products. Missions supported include MER, MRO, and Cassini. Image products produced include pan and zoom animations of large mosaics to reveal the details of surface features and topography, animations into registered multi-resolution mosaics to provide context for microscopic images, 3D anaglyphs from left and right stereo pairs, and screen captures from video footage. Specific products include a three-part context animation of the Cassini Enceladus encounter highlighting images from 350 to 4 meter per pixel resolution; Mars Reconnaissance Orbiter screen captures illustrating various instruments during assembly and testing at the Payload Hazardous Servicing Facility at Kennedy Space Center; and an animation of Mars Exploration Rover Opportunity's 'Rub al Khali' panorama where the rover was stuck in the deep fine sand for more than a month. This task creates new visualization products that enable new science results and enhance the public's understanding of the Solar System and NASA's missions of exploration.

  3. Perception, Cognition, and Visualization.

    ERIC Educational Resources Information Center

    Arnheim, Rudolf

    1991-01-01

    Described are how pictures can combine aspects of naturalistic representation with more formal shapes to enhance cognitive understanding. These "diagrammatic" shapes derive from geometrical elementary and thereby bestow visual concreteness to concepts conveyed by the pictures. Leonardo da Vinci's anatomical drawings are used as examples…

  4. Robotic Intelligence Kernel: Visualization

    2009-09-16

    The INL Robotic Intelligence Kernel-Visualization is the software that supports the user interface. It uses the RIK-C software to communicate information to and from the robot. The RIK-V illustrates the data in a 3D display and provides an operating picture wherein the user can task the robot.

  5. Visual Environments for CFD Research

    NASA Technical Reports Server (NTRS)

    Watson, Val; George, Michael W. (Technical Monitor)

    1994-01-01

    This viewgraph presentation gives an overview of the visual environments for computational fluid dynamics (CFD) research. It includes details on critical needs from the future computer environment, features needed to attain this environment, prospects for changes in and the impact of the visualization revolution on the human-computer interface, human processing capabilities, limits of personal environment and the extension of that environment with computers. Information is given on the need for more 'visual' thinking (including instances of visual thinking), an evaluation of the alternate approaches for and levels of interactive computer graphics, a visual analysis of computational fluid dynamics, and an analysis of visualization software.

  6. Some Thoughts on Visual Notation and Visual Ideation.

    ERIC Educational Resources Information Center

    Swinehart, Robert O.

    1980-01-01

    Presents student exercises in visual notation (doodles, maps, sketches) and visual ideation sketching. A large portion of this article consists of a classroom poster explaining these two concepts. (SJL)

  7. Spectrum of visual disorders in children with cerebral visual impairment.

    PubMed

    Fazzi, Elisa; Signorini, Sabrina Giovanna; Bova, Stefania Maria; La Piana, Roberta; Ondei, Paola; Bertone, Chiara; Misefari, Walter; Bianchi, Paolo Emilio

    2007-03-01

    Cerebral visual impairment is a visual function deficit caused by damage to the retrogeniculate visual pathways in the absence of any major ocular disease. It is the main visual deficit in children in the developed world. Preperinatal hypoxic-ischemic damage is the most frequent cause of cerebral visual impairment, but the etiology is variable. The authors set out to evaluate the presence of visual disorders not attributable to any major ocular pathology in a sample of children with central nervous system disease and to describe the clinical picture of cerebral visual impairment in this cohort. One hundred twenty-one patients with central nervous system damage and visual impairment underwent a protocol developed at the authors' center that included neurologic, neurophthalmologic, and neuroradiologic assessments (brain magnetic resonance imaging). Reduced visual acuity was found in 105 of 121 patients, reduced contrast sensitivity in 58, abnormal optokinetic nystagmus in 88, and visual field deficit in 7. Fixation was altered in 58 patients, smooth pursuit in 95, and saccadic movements in 41. Strabismus was present in 88 patients, and abnormal ocular movements were found in 43 patients. Of the 27 patients in whom they could be assessed, visual-perceptual abilities were found to be impaired in 24. Fundus oculi abnormalities and refractive errors were frequently associated findings. This study confirms that the clinical expression of cerebral visual impairment can be variable and that, in addition to already well-documented symptoms (such as reduced visual acuity, visual field deficits, reduced contrast sensitivity), the clinical picture can also be characterized by oculomotor or visual-cognitive disorders. Cerebral visual impairment is often associated with ophthalmologic abnormalities, and these should be carefully sought. Early and careful assessment, taking into account both the neurophthalmologic and the ophthalmologic aspects, is essential for a correct

  8. Infants' Visual Localization of Visual and Auditory Targets.

    ERIC Educational Resources Information Center

    Bechtold, A. Gordon; And Others

    This study is an investigation of 2-month-old infants' abilities to visually localize visual and auditory peripheral stimuli. Each subject (N=40) was presented with 50 trials; 25 of these visual and 25 auditory. The infant was placed in a semi-upright infant seat positioned 122 cm from the center speaker of an arc formed by five loudspeakers. At…

  9. Autoimmunity in visual loss.

    PubMed

    Petzold, Axel; Wong, Sui; Plant, Gordon T

    2016-01-01

    There are a number of autoimmune disorders which can affect visual function. There are a very large number of mechanisms in the visual pathway which could potentially be the targets of autoimmune attack. In practice it is the retina and the anterior visual pathway (optic nerve and chiasm) that are recognised as being affected in autoimmune disorders. Multiple Sclerosis is one of the commonest causes of visual loss in young adults because of the frequency of attacks of optic neuritis in that condition, however the basis of the inflammation in Multiple Sclerosis and the confirmation of autoimmunity is lacking. The immune process is known to be highly unusual in that it is not systemic and confined to the CNS compartment. Previously an enigmatic partner to Multiple Sclerosis, Neuromyelitis Optica is now established to be autoimmune and two antibodies - to Aquaporin4 and to Myelin Oligodendrocyte Glycoprotein - have been implicated in the pathogenesis. The term Chronic Relapsing Inflammatory Optic Neuropathy is applied to those cases of optic neuritis which require long term immunosuppression and hence are presumed to be autoimmune but where no autoimmune pathogenesis has been confirmed. Optic neuritis occurring post-infection and post vaccination and conditions such as Systemic Lupus Erythematosus and various vasculitides may cause direct autoimmune attack to visual structures or indirect damage through occlusive vasculopathy. Chronic granulomatous disorders such as Sarcoidosis affect vision commonly by a variety of mechanisms, whether and how these are placed in the autoimmune panoply is unknown. As far as the retina is concerned Cancer Associated Retinopathy and Melanoma Associated Retinopathy are well characterised clinically but a candidate autoantibody (recoverin) is only described in the former disorder. Other, usually monophasic, focal retinal inflammatory disorders (Idiopathic Big Blind Spot Syndrome, Acute Zonal Occult Outer Retinopathy and Acute Macular

  10. Distributed visualization framework architecture

    NASA Astrophysics Data System (ADS)

    Mishchenko, Oleg; Raman, Sundaresan; Crawfis, Roger

    2010-01-01

    An architecture for distributed and collaborative visualization is presented. The design goals of the system are to create a lightweight, easy to use and extensible framework for reasearch in scientific visualization. The system provides both single user and collaborative distributed environment. System architecture employs a client-server model. Visualization projects can be synchronously accessed and modified from different client machines. We present a set of visualization use cases that illustrate the flexibility of our system. The framework provides a rich set of reusable components for creating new applications. These components make heavy use of leading design patterns. All components are based on the functionality of a small set of interfaces. This allows new components to be integrated seamlessly with little to no effort. All user input and higher-level control functionality interface with proxy objects supporting a concrete implementation of these interfaces. These light-weight objects can be easily streamed across the web and even integrated with smart clients running on a user's cell phone. The back-end is supported by concrete implementations wherever needed (for instance for rendering). A middle-tier manages any communication and synchronization with the proxy objects. In addition to the data components, we have developed several first-class GUI components for visualization. These include a layer compositor editor, a programmable shader editor, a material editor and various drawable editors. These GUI components interact strictly with the interfaces. Access to the various entities in the system is provided by an AssetManager. The asset manager keeps track of all of the registered proxies and responds to queries on the overall system. This allows all user components to be populated automatically. Hence if a new component is added that supports the IMaterial interface, any instances of this can be used in the various GUI components that work with this

  11. Visually induced sensations of motion

    NASA Technical Reports Server (NTRS)

    Young, L. R.; Dichgans, J. M.; Oman, C. M.

    1973-01-01

    Modeling the visual and vestibular information integration process in humans was studied to determine the implications of these models with respect to requirements for flight simulation. The interaction between visual circularvection and vestibular responses is discussed.

  12. Visualization of Computational Fluid Dynamics

    NASA Technical Reports Server (NTRS)

    Gerald-Yamasaki, Michael; Hultquist, Jeff; Bryson, Steve; Kenwright, David; Lane, David; Walatka, Pamela; Clucas, Jean; Watson, Velvin; Lasinski, T. A. (Technical Monitor)

    1995-01-01

    Scientific visualization serves the dual purpose of exploration and exposition of the results of numerical simulations of fluid flow. Along with the basic visualization process which transforms source data into images, there are four additional components to a complete visualization system: Source Data Processing, User Interface and Control, Presentation, and Information Management. The requirements imposed by the desired mode of operation (i.e. real-time, interactive, or batch) and the source data have their effect on each of these visualization system components. The special requirements imposed by the wide variety and size of the source data provided by the numerical simulation of fluid flow presents an enormous challenge to the visualization system designer. We describe the visualization system components including specific visualization techniques and how the mode of operation and source data requirements effect the construction of computational fluid dynamics visualization systems.

  13. Chemistry for the Visually Impaired.

    ERIC Educational Resources Information Center

    Ratliff, Judy L.

    1997-01-01

    Discusses modifications to general education or introductory chemistry courses that allow visually impaired students to participate productively. Describes a strategy for teaching about elements and density, and the construction of a conductivity tester for visually impaired students. (JRH)

  14. Collaboration during visual search.

    PubMed

    Malcolmson, Kelly A; Reynolds, Michael G; Smilek, Daniel

    2007-08-01

    Two experiments examine how collaboration influences visual search performance. Working with a partner or on their own, participants reported whether a target was present or absent in briefly presented search displays. We compared the search performance of individuals working together (collaborative pairs) with the pooled responses of the individuals working alone (nominal pairs). Collaborative pairs were less likely than nominal pairs to correctly detect a target and they were less likely to make false alarms. Signal detection analyses revealed that collaborative pairs were more sensitive to the presence of the target and had a more conservative response bias than the nominal pairs. This pattern was observed even when the presence of another individual was matched across pairs. The results are discussed in the context of task-sharing, social loafing and current theories of visual search. PMID:17972737

  15. Perioperative visual loss.

    PubMed

    Kla, Koffi M; Lee, Lorri A

    2016-03-01

    Perioperative visual loss is an infrequent, devastating complication associated with spine surgery, most commonly from ischemic optic neuropathy. Current research and expert opinion indicate that it is associated with procedures that create elevated venous pressure in the head for prolonged periods of time. The largest case-control study on ischemic optic neuropathy associated with spine surgery found six independent and significant risk factors including male sex, obesity, Wilson frame use, longer operative times, greater blood loss, and a lower colloid to crystalloid ratio in the non-blood fluid administration. The American Society of Anesthesiologists developed a practice advisory for the prevention of this complication. In this setting, it is advisable to avoid significant physiologic and hemodynamic perturbations as much as possible, given the uncertainty of the pathophysiology. Because prevention of this complication cannot be guaranteed, consent for perioperative visual loss should be strongly considered in patients at high risk for this complication. PMID:27036604

  16. Hypermedia and visual technology

    NASA Technical Reports Server (NTRS)

    Walker, Lloyd

    1990-01-01

    Applications of a codified professional practice that uses visual representations of the thoughts and ideas of a working group are reported in order to improve productivity, problem solving, and innovation. This visual technology process was developed under the auspices of General Foods as part of a multi-year study. The study resulted in the validation of this professional service as a way to use art and design to facilitate productivity and innovation and to define new opportunities. It was also used by NASA for planning Lunar/Mars exploration and by other companies for general business and advanced strategic planning, developing new product concepts, and litigation support. General Foods has continued to use the service for packaging innovation studies.

  17. Exploring Ensemble Visualization

    PubMed Central

    Phadke, Madhura N.; Pinto, Lifford; Alabi, Femi; Harter, Jonathan; Taylor, Russell M.; Wu, Xunlei; Petersen, Hannah; Bass, Steffen A.; Healey, Christopher G.

    2012-01-01

    An ensemble is a collection of related datasets. Each dataset, or member, of an ensemble is normally large, multidimensional, and spatio-temporal. Ensembles are used extensively by scientists and mathematicians, for example, by executing a simulation repeatedly with slightly different input parameters and saving the results in an ensemble to see how parameter choices affect the simulation. To draw inferences from an ensemble, scientists need to compare data both within and between ensemble members. We propose two techniques to support ensemble exploration and comparison: a pairwise sequential animation method that visualizes locally neighboring members simultaneously, and a screen door tinting method that visualizes subsets of members using screen space subdivision. We demonstrate the capabilities of both techniques, first using synthetic data, then with simulation data of heavy ion collisions in high-energy physics. Results show that both techniques are capable of supporting meaningful comparisons of ensemble data. PMID:22347540

  18. Processing Visual Images

    SciTech Connect

    Litke, Alan

    2006-03-27

    The back of the eye is lined by an extraordinary biological pixel detector, the retina. This neural network is able to extract vital information about the external visual world, and transmit this information in a timely manner to the brain. In this talk, Professor Litke will describe a system that has been implemented to study how the retina processes and encodes dynamic visual images. Based on techniques and expertise acquired in the development of silicon microstrip detectors for high energy physics experiments, this system can simultaneously record the extracellular electrical activity of hundreds of retinal output neurons. After presenting first results obtained with this system, Professor Litke will describe additional applications of this incredible technology.

  19. Visualizing balloon stresses

    NASA Astrophysics Data System (ADS)

    Winker, James A.

    1994-02-01

    In a structure as indeterminate as a partially inflalted balloon it is very difficult to determine either the stress at any given point or a stress pattern over an area. Finite element analysis for this purpose is under development, but this will not likely bear fruit for years. This paper describes a process using desktop computers to convert actual experimental stress data into graphic, visual displays. The results provide valuable insight into the nature of balloon stresses.

  20. Ozone flow visualization techniques

    NASA Technical Reports Server (NTRS)

    Dickerson, R. R.; Stedman, D. H.

    1981-01-01

    Flow visualization techniques using ozone for tracing gas flows are proposed whereby ozone is detected through its strong absorption of ultraviolet light, which is easily made visible with fluorescent materials, or through its reaction with nitric oxide to form excited nitrogen dioxide, which in relaxing emits detectable light. It is shown that response speeds in the kHz range are possible with an ultraviolet detection system for initial ozone concentrations of about 1%.

  1. Visualization on fish's wake

    NASA Astrophysics Data System (ADS)

    Li, Xuemin; Lu, Xiyun; Yin, Xiezhen

    2002-05-01

    In this paper an experiment on wake of Goldfish swimming unrestricted was conducted in a water tunnel. Method of color liquid was used to visualize the wake. Results show that there is reverse Karman vortex street in symmetrical plane of the wake and the Strouhal frequency of the fish is in the range 0.25-0.35. A 3D vortex ring chain model was presented.

  2. F-106 Flow Visualization

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Convair F-106B Delta Dart: As the last piloted Convair F-106 anywhere, NASA 816 saw service at Langley researching storm hazards, experimenting with an Off-Surface flow visualization system and testing a vortex flap. The Delta Dart was not turned over for target drone duty as were the vast majority of F-106s, but retired to the Virginia Air & Space Center in Hampton, Virginia.

  3. Visualization of IACG data

    NASA Technical Reports Server (NTRS)

    Kessel, Ramona L.

    1997-01-01

    The common data format (CDF), adopted by the international solar terrestrial physics (ISTP) program and the Interagency Consultative Group (IACG), is considered. Extensive data sharing and data analysis are needed to ensure the success of the ISTP/IACG program. The CDF user guidelines and tools for creation, visualization and manipulation are underlined. Computer software applications based on CDF data sets and designed using ISTP/IACG guidelines are shown.

  4. Visual-vestibular interaction

    NASA Technical Reports Server (NTRS)

    Young, Laurence R.; Merfeld, D.

    1994-01-01

    Significant progress was achieved during the period of this grant on a number of different fronts. A list of publications, abstracts, and theses supported by this grant is provided at the end of this document. The completed studies focused on three general areas: eye movements induced by dynamic linear acceleration, eye movements and vection reports induced by visual roll stimulation, and the separation of gravito-inertial force into central estimates of gravity and linear acceleration.

  5. Holographic subsonic flow visualization.

    PubMed

    Reinheimer, C J; Wiswall, C E; Schmiege, R A; Harris, R J; Dueker, J E

    1970-09-01

    A pulsed ruby laser holographic interferometer was used to detect density gradients in the airflow around an airfoil at subsonic speeds in a low speed wind tunnel. These experiments proved that vibration of the optical components or object between exposures of the interferometric hologram does not destroy the detection of density gradients but actually can aid in the flow visualization. The density gradients determined from the fringe pattern analysis are consistent with the anticipated flow pattern. PMID:20094197

  6. Science information systems: Visualization

    NASA Technical Reports Server (NTRS)

    Wall, Ray J.

    1991-01-01

    Future programs in earth science, planetary science, and astrophysics will involve complex instruments that produce data at unprecedented rates and volumes. Current methods for data display, exploration, and discovery are inadequate. Visualization technology offers a means for the user to comprehend, explore, and examine complex data sets. The goal of this program is to increase the effectiveness and efficiency of scientists in extracting scientific information from large volumes of instrument data.

  7. Dream recall and visual memory.

    PubMed

    Schredl, M; Frauscher, S; Shendi, A

    1995-08-01

    The present study estimated correlations for 50 subjects among frequency of dream recall, length of dream report, and visual memory. Whereas the results confirmed the previously found relationship between frequency of dream recall and visual memory, influence of visual memory on length of dream report was not found. PMID:8532466

  8. Visualization of Term Discrimination Analysis.

    ERIC Educational Resources Information Center

    Zhang, Jin; Wolfram, Dietmar

    2001-01-01

    Discusses information visualization techniques and introduces a visual term discrimination value analysis method using a document density space within a distance-angle-based visual information retrieval environment. Explains that applications of these methods facilitate more effective assignment of term weights to index terms within documents and…

  9. Developing Language Via Visual Literacy.

    ERIC Educational Resources Information Center

    Feeley, Joan T.

    Elementary and secondary teachers are recognizing that today's children are products of a visual era who bring visual literacy to their school language learning. Visual resources may be developed and used as a valuable motivational technique. The following programs utilizing this approach are outlined: Dorothy Lopez' development of polaroid…

  10. What makes a visualization memorable?

    PubMed

    Borkin, Michelle A; Vo, Azalea A; Bylinskii, Zoya; Isola, Phillip; Sunkavalli, Shashank; Oliva, Aude; Pfister, Hanspeter

    2013-12-01

    An ongoing debate in the Visualization community concerns the role that visualization types play in data understanding. In human cognition, understanding and memorability are intertwined. As a first step towards being able to ask questions about impact and effectiveness, here we ask: 'What makes a visualization memorable?' We ran the largest scale visualization study to date using 2,070 single-panel visualizations, categorized with visualization type (e.g., bar chart, line graph, etc.), collected from news media sites, government reports, scientific journals, and infographic sources. Each visualization was annotated with additional attributes, including ratings for data-ink ratios and visual densities. Using Amazon's Mechanical Turk, we collected memorability scores for hundreds of these visualizations, and discovered that observers are consistent in which visualizations they find memorable and forgettable. We find intuitive results (e.g., attributes like color and the inclusion of a human recognizable object enhance memorability) and less intuitive results (e.g., common graphs are less memorable than unique visualization types). Altogether our findings suggest that quantifying memorability is a general metric of the utility of information, an essential step towards determining how to design effective visualizations. PMID:24051797

  11. Metrics and Benchmarks for Visualization

    NASA Technical Reports Server (NTRS)

    Uselton, Samuel P.; Lasinski, T. A. (Technical Monitor)

    1995-01-01

    What is a "good" visualization? How can the quality of a visualization be measured? How can one tell whether one visualization is "better" than another? I claim that the true quality of a visualization can only be measured in the context of a particular purpose. The same image generated from the same data may be excellent for one purpose and abysmal for another. A good measure of visualization quality will correspond to the performance of users in accomplishing the intended purpose, so the "gold standard" is user testing. As a user of visualization software (or at least a consultant to such users) I don't expect visualization software to have been tested in this way for every possible use. In fact, scientific visualization (as distinct from more "production oriented" uses of visualization) will continually encounter new data, new questions and new purposes; user testing can never keep up. User need software they can trust, and advice on appropriate visualizations of particular purposes. Considering the following four processes, and their impact on visualization trustworthiness, reveals important work needed to create worthwhile metrics and benchmarks for visualization. These four processes are (1) complete system testing (user-in-loop), (2) software testing, (3) software design and (4) information dissemination. Additional information is contained in the original extended abstract.

  12. Personalized visual aesthetics

    NASA Astrophysics Data System (ADS)

    Vessel, Edward A.; Stahl, Jonathan; Maurer, Natalia; Denker, Alexander; Starr, G. G.

    2014-02-01

    How is visual information linked to aesthetic experience, and what factors determine whether an individual finds a particular visual experience pleasing? We have previously shown that individuals' aesthetic responses are not determined by objective image features but are instead a function of internal, subjective factors that are shaped by a viewers' personal experience. Yet for many classes of stimuli, culturally shared semantic associations give rise to similar aesthetic taste across people. In this paper, we investigated factors that govern whether a set of observers will agree in which images are preferred, or will instead exhibit more "personalized" aesthetic preferences. In a series of experiments, observers were asked to make aesthetic judgments for different categories of visual stimuli that are commonly evaluated in an aesthetic manner (faces, natural landscapes, architecture or artwork). By measuring agreement across observers, this method was able to reveal instances of highly individualistic preferences. We found that observers showed high agreement on their preferences for images of faces and landscapes, but much lower agreement for images of artwork and architecture. In addition, we found higher agreement for heterosexual males making judgments of beautiful female faces than of beautiful male faces. These results suggest that preferences for stimulus categories that carry evolutionary significance (landscapes and faces) come to rely on similar information across individuals, whereas preferences for artifacts of human culture such as architecture and artwork, which have fewer basic-level category distinctions and reduced behavioral relevance, rely on a more personalized set of attributes.

  13. Audio-visual imposture

    NASA Astrophysics Data System (ADS)

    Karam, Walid; Mokbel, Chafic; Greige, Hanna; Chollet, Gerard

    2006-05-01

    A GMM based audio visual speaker verification system is described and an Active Appearance Model with a linear speaker transformation system is used to evaluate the robustness of the verification. An Active Appearance Model (AAM) is used to automatically locate and track a speaker's face in a video recording. A Gaussian Mixture Model (GMM) based classifier (BECARS) is used for face verification. GMM training and testing is accomplished on DCT based extracted features of the detected faces. On the audio side, speech features are extracted and used for speaker verification with the GMM based classifier. Fusion of both audio and video modalities for audio visual speaker verification is compared with face verification and speaker verification systems. To improve the robustness of the multimodal biometric identity verification system, an audio visual imposture system is envisioned. It consists of an automatic voice transformation technique that an impostor may use to assume the identity of an authorized client. Features of the transformed voice are then combined with the corresponding appearance features and fed into the GMM based system BECARS for training. An attempt is made to increase the acceptance rate of the impostor and to analyzing the robustness of the verification system. Experiments are being conducted on the BANCA database, with a prospect of experimenting on the newly developed PDAtabase developed within the scope of the SecurePhone project.

  14. Visualization of atom's orbits.

    PubMed

    Kim, Byungwhan

    2014-02-01

    High-resolution imaging techniques have been used to obtain views of internal shapes of single atoms or columns of atoms. This review article focuses on the visualization of internal atomic structures such as the configurations of electron orbits confined to atoms. This is accomplished by applying visualization techniques to the reported images of atoms or molecules as well as static and dynamic ions in a plasma. It was found that the photon and electron energies provide macroscopic and microscopic views of the orbit structures of atoms, respectively. The laser-imaged atoms showed a rugged orbit structure, containing alternating dark and bright orbits believed to be the pathways for an externally supplied laser energy and internally excited electron energy, respectively. By contrast, the atoms taken by the electron microscopy provided a structure of fine electron orbits, systematically formed in increasing order of grayscale representing the energy state of an orbit. This structure was identical to those of the plasma ions. The visualized electronic structures played a critical role in clarifying vague postulates made in the Bohr model. Main features proposed in the atomic model are the dynamic orbits absorbing an externally supplied electromagnetic energy, electron emission from them while accompanying light radiation, and frequency of electron waves not light. The light-accompanying electrons and ionic speckles induced by laser light signify that light is composed of electrons and ions. PMID:24749452

  15. Visually induced reorientation illusions

    NASA Technical Reports Server (NTRS)

    Howard, I. P.; Hu, G.; Oman, C. M. (Principal Investigator)

    2001-01-01

    It is known that rotation of a furnished room around the roll axis of erect subjects produces an illusion of 360 degrees self-rotation in many subjects. Exposure of erect subjects to stationary tilted visual frames or rooms produces only up to 20 degrees of illusory tilt. But, in studies using static tilted rooms, subjects remained erect and the body axis was not aligned with the room. We have revealed a new class of disorientation illusions that occur in many subjects when placed in a 90 degrees or 180 degrees tilted room containing polarised objects (familiar objects with tops and bottoms). For example, supine subjects looking up at a wall of the room feel upright in an upright room and their arms feel weightless when held out from the body. We call this the levitation illusion. We measured the incidence of 90 degrees or 180 degrees reorientation illusions in erect, supine, recumbent, and inverted subjects in a room tilted 90 degrees or 180 degrees. We report that reorientation illusions depend on the displacement of the visual scene rather than of the body. However, illusions are most likely to occur when the visual and body axes are congruent. When the axes are congruent, illusions are least likely to occur when subjects are prone rather than supine, recumbent, or inverted.

  16. DSN Data Visualization Suite

    NASA Technical Reports Server (NTRS)

    Bui, Bach X.; Malhotra, Mark R.; Kim, Richard M.

    2009-01-01

    The DSN Data Visualization Suite is a set of computer programs and reusable Application Programming Interfaces (APIs) that assist in the visualization and analysis of Deep Space Network (DSN) spacecraft-tracking data, which can include predicted and actual values of downlink frequencies, uplink frequencies, and antenna-pointing angles in various formats that can include tables of values and polynomial coefficients. The data can also include lists of antenna-pointing events, lists of antenna- limit events, and schedules of tracking activities. To date, analysis and correlation of these intricately related data before and after tracking have been difficult and time-consuming. The DSN Data Visualization Suite enables operators to quickly diagnose tracking-data problems before, during, and after tracking. The Suite provides interpolation on demand and plotting of DSN tracking data, correlation of all data on a given temporal point, and display of data with color coding configurable by users. The suite thereby enables rapid analysis of the data prior to transmission of the data to DSN control centers. At the control centers, the same suite enables operators to validate the data before committing the data to DSN subsystems. This software is also Web-enabled to afford its capabilities to international space agencies.

  17. Human Pupillary Dilation Response to Deviant Auditory Stimuli: Effects of Stimulus Properties and Voluntary Attention

    PubMed Central

    Liao, Hsin-I; Yoneya, Makoto; Kidani, Shunsuke; Kashino, Makio; Furukawa, Shigeto

    2016-01-01

    A unique sound that deviates from a repetitive background sound induces signature neural responses, such as mismatch negativity and novelty P3 response in electro-encephalography studies. Here we show that a deviant auditory stimulus induces a human pupillary dilation response (PDR) that is sensitive to the stimulus properties and irrespective whether attention is directed to the sounds or not. In an auditory oddball sequence, we used white noise and 2000-Hz tones as oddballs against repeated 1000-Hz tones. Participants' pupillary responses were recorded while they listened to the auditory oddball sequence. In Experiment 1, they were not involved in any task. Results show that pupils dilated to the noise oddballs for approximately 4 s, but no such PDR was found for the 2000-Hz tone oddballs. In Experiments 2, two types of visual oddballs were presented synchronously with the auditory oddballs. Participants discriminated the auditory or visual oddballs while trying to ignore stimuli from the other modality. The purpose of this manipulation was to direct attention to or away from the auditory sequence. In Experiment 3, the visual oddballs and the auditory oddballs were always presented asynchronously to prevent residuals of attention on to-be-ignored oddballs due to the concurrence with the attended oddballs. Results show that pupils dilated to both the noise and 2000-Hz tone oddballs in all conditions. Most importantly, PDRs to noise were larger than those to the 2000-Hz tone oddballs regardless of the attention condition in both experiments. The overall results suggest that the stimulus-dependent factor of the PDR appears to be independent of attention. PMID:26924959

  18. Visual feedback in stuttering therapy

    NASA Astrophysics Data System (ADS)

    Smolka, Elzbieta

    1997-02-01

    The aim of this paper is to present the results concerning the influence of visual echo and reverberation on the speech process of stutterers. Visual stimuli along with the influence of acoustic and visual-acoustic stimuli have been compared. Following this the methods of implementing visual feedback with the aid of electroluminescent diodes directed by speech signals have been presented. The concept of a computerized visual echo based on the acoustic recognition of Polish syllabic vowels has been also presented. All the research nd trials carried out at our center, aside from cognitive aims, generally aim at the development of new speech correctors to be utilized in stuttering therapy.

  19. Neuron analysis of visual perception

    NASA Technical Reports Server (NTRS)

    Chow, K. L.

    1980-01-01

    The receptive fields of single cells in the visual system of cat and squirrel monkey were studied investigating the vestibular input affecting the cells, and the cell's responses during visual discrimination learning process. The receptive field characteristics of the rabbit visual system, its normal development, its abnormal development following visual deprivation, and on the structural and functional re-organization of the visual system following neo-natal and prenatal surgery were also studied. The results of each individual part of each investigation are detailed.

  20. Do Multielement Visual Tracking and Visual Search Draw Continuously on the Same Visual Attention Resources?

    ERIC Educational Resources Information Center

    Alvarez, George A.; Horowitz, Todd S.; Arsenio, Helga C.; DiMase, Jennifer S.; Wolfe, Jeremy M.

    2005-01-01

    Multielement visual tracking and visual search are 2 tasks that are held to require visual-spatial attention. The authors used the attentional operating characteristic (AOC) method to determine whether both tasks draw continuously on the same attentional resource (i.e., whether the 2 tasks are mutually exclusive). The authors found that observers…

  1. Visual adaptation dominates bimodal visual-motor action adaptation.

    PubMed

    de la Rosa, Stephan; Ferstl, Ylva; Bülthoff, Heinrich H

    2016-01-01

    A long standing debate revolves around the question whether visual action recognition primarily relies on visual or motor action information. Previous studies mainly examined the contribution of either visual or motor information to action recognition. Yet, the interaction of visual and motor action information is particularly important for understanding action recognition in social interactions, where humans often observe and execute actions at the same time. Here, we behaviourally examined the interaction of visual and motor action recognition processes when participants simultaneously observe and execute actions. We took advantage of behavioural action adaptation effects to investigate behavioural correlates of neural action recognition mechanisms. In line with previous results, we find that prolonged visual exposure (visual adaptation) and prolonged execution of the same action with closed eyes (non-visual motor adaptation) influence action recognition. However, when participants simultaneously adapted visually and motorically - akin to simultaneous execution and observation of actions in social interactions - adaptation effects were only modulated by visual but not motor adaptation. Action recognition, therefore, relies primarily on vision-based action recognition mechanisms in situations that require simultaneous action observation and execution, such as social interactions. The results suggest caution when associating social behaviour in social interactions with motor based information. PMID:27029781

  2. Visual adaptation dominates bimodal visual-motor action adaptation

    PubMed Central

    de la Rosa, Stephan; Ferstl, Ylva; Bülthoff, Heinrich H.

    2016-01-01

    A long standing debate revolves around the question whether visual action recognition primarily relies on visual or motor action information. Previous studies mainly examined the contribution of either visual or motor information to action recognition. Yet, the interaction of visual and motor action information is particularly important for understanding action recognition in social interactions, where humans often observe and execute actions at the same time. Here, we behaviourally examined the interaction of visual and motor action recognition processes when participants simultaneously observe and execute actions. We took advantage of behavioural action adaptation effects to investigate behavioural correlates of neural action recognition mechanisms. In line with previous results, we find that prolonged visual exposure (visual adaptation) and prolonged execution of the same action with closed eyes (non-visual motor adaptation) influence action recognition. However, when participants simultaneously adapted visually and motorically – akin to simultaneous execution and observation of actions in social interactions - adaptation effects were only modulated by visual but not motor adaptation. Action recognition, therefore, relies primarily on vision-based action recognition mechanisms in situations that require simultaneous action observation and execution, such as social interactions. The results suggest caution when associating social behaviour in social interactions with motor based information. PMID:27029781

  3. Advances in scientific visualization

    SciTech Connect

    Max, N.; Crawfis, R. |

    1995-01-11

    This paper discusses scientific visualization of scalar and vector fields, particularly relating to clouds and climate modeling. One cloud rendering method applies a 3-D texture to cloudiness contour surfaces, to simulate a view from outer space. The texture is advected by the wind flow, so that it follows the cloud motion. Another technique simulates multiple scattering of incident light from the sun and sky. This paper also presents a simulation of the microscopic cross-bridge motion which powers muscle contraction. It was rendered by ray-tracing contour surfaces of summed Gaussian ellipsoids approximating the actin and myosin protein shapes.

  4. The visually impaired child.

    PubMed

    Thompson, Lisa; Kaufman, Lawrence M

    2003-02-01

    This article discusses the causes of childhood blindness and how the primary care provider may begin the appropriate steps toward diagnosing and managing the visually impaired child. Community resources (see Box 3) and low-vision programs in schools should be used so that parents do not need to reinvent strategies to raise a blind child. Worldwide, childhood blindness, which places is a tremendous burden on families and communities of the third world, is mostly preventable with improved hygiene, diet, and immunization. PMID:12713115

  5. Methods of visualizing graphs

    DOEpatents

    Wong, Pak C.; Mackey, Patrick S.; Perrine, Kenneth A.; Foote, Harlan P.; Thomas, James J.

    2008-12-23

    Methods for visualizing a graph by automatically drawing elements of the graph as labels are disclosed. In one embodiment, the method comprises receiving node information and edge information from an input device and/or communication interface, constructing a graph layout based at least in part on that information, wherein the edges are automatically drawn as labels, and displaying the graph on a display device according to the graph layout. In some embodiments, the nodes are automatically drawn as labels instead of, or in addition to, the label-edges.

  6. NASA Enterprise Visual Analysis

    NASA Technical Reports Server (NTRS)

    Lopez-Tellado, Maria; DiSanto, Brenda; Humeniuk, Robert; Bard, Richard, Jr.; Little, Mia; Edwards, Robert; Ma, Tien-Chi; Hollifield, Kenneith; White, Chuck

    2007-01-01

    NASA Enterprise Visual Analysis (NEVA) is a computer program undergoing development as a successor to Launch Services Analysis Tool (LSAT), formerly known as Payload Carrier Analysis Tool (PCAT). NEVA facilitates analyses of proposed configurations of payloads and packing fixtures (e.g. pallets) in a space shuttle payload bay for transport to the International Space Station. NEVA reduces the need to use physical models, mockups, and full-scale ground support equipment in performing such analyses. Using NEVA, one can take account of such diverse considerations as those of weight distribution, geometry, collision avoidance, power requirements, thermal loads, and mechanical loads.

  7. Propeller flow visualization techniques

    NASA Technical Reports Server (NTRS)

    Stefko, G. L.; Paulovich, F. J.; Greissing, J. P.; Walker, E. D.

    1982-01-01

    Propeller flow visualization techniques were tested. The actual operating blade shape as it determines the actual propeller performance and noise was established. The ability to photographically determine the advanced propeller blade tip deflections, local flow field conditions, and gain insight into aeroelastic instability is demonstrated. The analytical prediction methods which are being developed can be compared with experimental data. These comparisons contribute to the verification of these improved methods and give improved capability for designing future advanced propellers with enhanced performance and noise characteristics.

  8. GVS - GENERAL VISUALIZATION SYSTEM

    NASA Technical Reports Server (NTRS)

    Keith, S. R.

    1994-01-01

    The primary purpose of GVS (General Visualization System) is to support scientific visualization of data output by the panel method PMARC_12 (inventory number ARC-13362) on the Silicon Graphics Iris computer. GVS allows the user to view PMARC geometries and wakes as wire frames or as light shaded objects. Additionally, geometries can be color shaded according to phenomena such as pressure coefficient or velocity. Screen objects can be interactively translated and/or rotated to permit easy viewing. Keyframe animation is also available for studying unsteady cases. The purpose of scientific visualization is to allow the investigator to gain insight into the phenomena they are examining, therefore GVS emphasizes analysis, not artistic quality. GVS uses existing IRIX 4.0 image processing tools to allow for conversion of SGI RGB files to other formats. GVS is a self-contained program which contains all the necessary interfaces to control interaction with PMARC data. This includes 1) the GVS Tool Box, which supports color histogram analysis, lighting control, rendering control, animation, and positioning, 2) GVS on-line help, which allows the user to access control elements and get information about each control simultaneously, and 3) a limited set of basic GVS data conversion filters, which allows for the display of data requiring simpler data formats. Specialized controls for handling PMARC data include animation and wakes, and visualization of off-body scan volumes. GVS is written in C-language for use on SGI Iris series computers running IRIX. It requires 28Mb of RAM for execution. Two separate hardcopy documents are available for GVS. The basic document price for ARC-13361 includes only the GVS User's Manual, which outlines major features of the program and provides a tutorial on using GVS with PMARC_12 data. Programmers interested in modifying GVS for use with data in formats other than PMARC_12 format may purchase a copy of the draft GVS 3.1 Software Maintenance

  9. Visualizing Interstellar's Wormhole

    NASA Astrophysics Data System (ADS)

    James, Oliver; von Tunzelmann, Eugénie; Franklin, Paul; Thorne, Kip S.

    2015-06-01

    Christopher Nolan's science fiction movie Interstellar offers a variety of opportunities for students in elementary courses on general relativity theory. This paper describes such opportunities, including: (i) At the motivational level, the manner in which elementary relativity concepts underlie the wormhole visualizations seen in the movie; (ii) At the briefest computational level, instructive calculations with simple but intriguing wormhole metrics, including, e.g., constructing embedding diagrams for the three-parameter wormhole that was used by our visual effects team and Christopher Nolan in scoping out possible wormhole geometries for the movie; (iii) Combining the proper reference frame of a camera with solutions of the geodesic equation, to construct a light-ray-tracing map backward in time from a camera's local sky to a wormhole's two celestial spheres; (iv) Implementing this map, for example, in Mathematica, Maple or Matlab, and using that implementation to construct images of what a camera sees when near or inside a wormhole; (v) With the student's implementation, exploring how the wormhole's three parameters influence what the camera sees—which is precisely how Christopher Nolan, using our implementation, chose the parameters for Interstellar's wormhole; (vi) Using the student's implementation, exploring the wormhole's Einstein ring and particularly the peculiar motions of star images near the ring, and exploring what it looks like to travel through a wormhole.

  10. Reconsidering Visual Search

    PubMed Central

    2015-01-01

    The visual search paradigm has had an enormous impact in many fields. A theme running through this literature has been the distinction between preattentive and attentive processing, which I refer to as the two-stage assumption. Under this assumption, slopes of set-size and response time are used to determine whether attention is needed for a given task or not. Even though a lot of findings question this two-stage assumption, it still has enormous influence, determining decisions on whether papers are published or research funded. The results described here show that the two-stage assumption leads to very different conclusions about the operation of attention for identical search tasks based only on changes in response (presence/absence versus Go/No-go responses). Slopes are therefore an ambiguous measure of attentional involvement. Overall, the results suggest that the two-stage model cannot explain all findings on visual search, and they highlight how slopes of response time and set-size should only be used with caution. PMID:27551357

  11. Tactical visualization module

    NASA Astrophysics Data System (ADS)

    Kachejian, Kerry C.; Vujcic, Doug

    1999-07-01

    The Tactical Visualization Module (TVM) research effort will develop and demonstrate a portable, tactical information system to enhance the situational awareness of individual warfighters and small military units by providing real-time access to manned and unmanned aircraft, tactically mobile robots, and unattended sensors. TVM consists of a family of portable and hand-held devices being advanced into a next- generation, embedded capability. It enables warfighters to visualize the tactical situation by providing real-time video, imagery, maps, floor plans, and 'fly-through' video on demand. When combined with unattended ground sensors, such as Combat- Q, TVM permits warfighters to validate and verify tactical targets. The use of TVM results in faster target engagement times, increased survivability, and reduction of the potential for fratricide. TVM technology can support both mounted and dismounted tactical forces involved in land, sea, and air warfighting operations. As a PCMCIA card, TVM can be embedded in portable, hand-held, and wearable PCs. Thus, it leverages emerging tactical displays including flat-panel, head-mounted displays. The end result of the program will be the demonstration of the system with U.S. Army and USMC personnel in an operational environment. Raytheon Systems Company, the U.S. Army Soldier Systems Command -- Natick RDE Center (SSCOM- NRDEC) and the Defense Advanced Research Projects Agency (DARPA) are partners in developing and demonstrating the TVM technology.

  12. Interactive Terascale Particle Visualization

    NASA Technical Reports Server (NTRS)

    Ellsworth, David; Green, Bryan; Moran, Patrick

    2004-01-01

    This paper describes the methods used to produce an interactive visualization of a 2 TB computational fluid dynamics (CFD) data set using particle tracing (streaklines). We use the method introduced by Bruckschen et al. [2001] that pre-computes a large number of particles, stores them on disk using a space-filling curve ordering that minimizes seeks, and then retrieves and displays the particles according to the user's command. We describe how the particle computation can be performed using a PC cluster, how the algorithm can be adapted to work with a multi-block curvilinear mesh, and how the out-of-core visualization can be scaled to 296 billion particles while still achieving interactive performance on PG hardware. Compared to the earlier work, our data set size and total number of particles are an order of magnitude larger. We also describe a new compression technique that allows the lossless compression of the particles by 41% and speeds the particle retrieval by about 30%.

  13. Visual Experiences during Paralysis

    PubMed Central

    Whitham, Emma M.; Fitzgibbon, Sean P.; Lewis, Trent W.; Pope, Kenneth J.; DeLosAngeles, Dylan; Clark, C. Richard; Lillie, Peter; Hardy, Andrew; Gandevia, Simon C.; Willoughby, John O.

    2011-01-01

    Rationale: Paralyzed human volunteers (n = 6) participated in several studies the primary one of which required full neuromuscular paralysis while awake. After the primary experiment, while still paralyzed and awake, subjects undertook studies of humor and of attempted eye-movement. The attempted eye-movements tested a central, intentional component to one’s internal visual model and are the subject of this report. Methods: Subjects reclined in a supportive chair and were ventilated after paralysis (cisatracurium, 20 mg intravenously). In illumination, subjects were requested to focus alternately on the faces of investigators standing on the left and the right within peripheral vision. In darkness, subjects were instructed to look away from a point source of light. Subjects were to report their experiences after reversal of paralysis. Results: During attempted eye-movement in illumination, one subject had an illusion of environmental movement but four subjects perceived faces as clearly as if they were in central vision. In darkness, four subjects reported movement of the target light in the direction of attempted eye-movements and three could control the movement of the light at will. Conclusion: The hypothesis that internal visual models receive intended ocular-movement-information directly from oculomotor centers is strengthened by this evidence. PMID:22162967

  14. Grid Visualization Tool

    NASA Technical Reports Server (NTRS)

    Chouinard, Caroline; Fisher, Forest; Estlin, Tara; Gaines, Daniel; Schaffer, Steven

    2005-01-01

    The Grid Visualization Tool (GVT) is a computer program for displaying the path of a mobile robotic explorer (rover) on a terrain map. The GVT reads a map-data file in either portable graymap (PGM) or portable pixmap (PPM) format, representing a gray-scale or color map image, respectively. The GVT also accepts input from path-planning and activity-planning software. From these inputs, the GVT generates a map overlaid with one or more rover path(s), waypoints, locations of targets to be explored, and/or target-status information (indicating success or failure in exploring each target). The display can also indicate different types of paths or path segments, such as the path actually traveled versus a planned path or the path traveled to the present position versus planned future movement along a path. The program provides for updating of the display in real time to facilitate visualization of progress. The size of the display and the map scale can be changed as desired by the user. The GVT was written in the C++ language using the Open Graphics Library (OpenGL) software. It has been compiled for both Sun Solaris and Linux operating systems.

  15. Visualization of Seifert surfaces.

    PubMed

    van Wijk, Jarke J; Cohen, Arjeh M

    2006-01-01

    The genus of a knot or link can be defined via Seifert surfaces. A Seifert surface of a knot or link is an oriented surface whose boundary coincides with that knot or link. Schematic images of these surfaces are shown in every text book on knot theory, but from these it is hard to understand their shape and structure. In this paper, the visualization of such surfaces is discussed. A method is presented to produce different styles of surface for knots and links, starting from the so-called braid representation. Application of Seifert's algorithm leads to depictions that show the structure of the knot and the surface, while successive relaxation via a physically based model gives shapes that are natural and resemble the familiar representations of knots. Also, we present how to generate closed oriented surfaces in which the knot is embedded, such that the knot subdivides the surface into two parts. These closed surfaces provide a direct visualization of the genus of a knot. All methods have been integrated in a freely available tool, called SeifertView, which can be used for educational and presentation purposes. PMID:16805258

  16. Visual integration in autism

    PubMed Central

    Smith, Danielle; Ropar, Danielle; Allen, Harriet A.

    2015-01-01

    Atypical integration is a topic of debate in the autism literature. Some theories suggest that altered perception in autism spectrum disorder (ASD) is due to a failure to integrate information from meaningful context into the final percept, whereas others suggest that integration of low-level features is impaired. Empirical research which forms the basis for these theories has failed to account for higher-level influences not inherent in the stimuli (i.e., instructions and goals) and assess integration at both lower and higher perceptual levels within the same task. Here, we describe how perceived expectations and goals of a task can modulate the processing of low-level visual input via the medial prefrontal cortex (mPFC). We then go on to illustrate how future research might assess the relative contribution of both low and high-level processes using the same paradigm. We conclude by recommending that when results appear conflicting, consideration of the relative strength of low-level input vs. feedback or high-level processes may prove helpful. Importantly, research in this area needs to more broadly consider the various influences on perception, and find better ways to assess the contributions of early and later visual processes. PMID:26190994

  17. Space flight visual simulation.

    PubMed

    Xu, L

    1985-01-01

    In this paper, based on the scenes of stars seen by astronauts in their orbital flights, we have studied the mathematical model which must be constructed for CGI system to realize the space flight visual simulation. Considering such factors as the revolution and rotation of the Earth, exact date, time and site of orbital injection of the spacecraft, as well as its orbital flight and attitude motion, etc., we first defined all the instantaneous lines of sight and visual fields of astronauts in space. Then, through a series of coordinate transforms, the pictures of the scenes of stars changing with time-space were photographed one by one mathematically. In the procedure, we have designed a method of three-times "mathematical cutting." Finally, we obtained each instantaneous picture of the scenes of stars observed by astronauts through the window of the cockpit. Also, the dynamic conditions shaded by the Earth in the varying pictures of scenes of stars could be displayed. PMID:11542842

  18. Expanding the Frontiers of Visual Analytics and Visualization

    SciTech Connect

    Dill, John; Earnshaw, Rae; Kasik, David; Vince, John; Wong, Pak C.

    2012-05-31

    Expanding the Frontiers of Visual Analytics and Visualization contains international contributions by leading researchers from within the field. Dedicated to the memory of Jim Thomas, the book begins with the dynamics of evolving a vision based on some of the principles that Jim and colleagues established and in which Jim’s leadership was evident. This is followed by chapters in the areas of visual analytics, visualization, interaction, modelling, architecture, and virtual reality, before concluding with the key area of technology transfer to industry.

  19. Are Deaf Students Visual Learners?

    PubMed

    Marschark, Marc; Morrison, Carolyn; Lukomski, Jennifer; Borgna, Georgianna; Convertino, Carol

    2013-06-01

    It is frequently assumed that by virtue of their hearing losses, deaf students are visual learners. Deaf individuals have some visual-spatial advantages relative to hearing individuals, but most have been are linked to use of sign language rather than auditory deprivation. How such cognitive differences might affect academic performance has been investigated only rarely. This study examined relations among deaf college students' language and visual-spatial abilities, mathematics problem solving, and hearing thresholds. Results extended some previous findings and clarified others. Contrary to what might be expected, hearing students exhibited visual-spatial skills equal to or better than deaf students. Scores on a Spatial Relations task were associated with better mathematics problem solving. Relations among the several variables, however, suggested that deaf students are no more likely to be visual learners than hearing students and that their visual-spatial skill may be related more to their hearing than to sign language skills. PMID:23750095

  20. Sound can suppress visual perception.

    PubMed

    Hidaka, Souta; Ide, Masakazu

    2015-01-01

    In a single modality, the percept of an input (e.g., voices of neighbors) is often suppressed by another (e.g., the sound of a car horn nearby) due to close interactions of neural responses to these inputs. Recent studies have also suggested that close interactions of neural responses could occur even across sensory modalities, especially for audio-visual interactions. However, direct behavioral evidence regarding the audio-visual perceptual suppression effect has not been reported in a study with humans. Here, we investigated whether sound could have a suppressive effect on visual perception. We found that white noise bursts presented through headphones degraded visual orientation discrimination performance. This auditory suppression effect on visual perception frequently occurred when these inputs were presented in a spatially and temporally consistent manner. These results indicate that the perceptual suppression effect could occur across auditory and visual modalities based on close and direct neural interactions among those sensory inputs. PMID:26023877

  1. An Assessment of Visual Testing

    SciTech Connect

    Cumblidge, Stephen E.; Anderson, Michael T.; Doctor, Steven R.

    2004-11-01

    In response to increasing interest from nuclear utilities in replacing some volumetric examinations of nuclear reactor components with remote visual testing, the Pacific Northwest National Laboratory has examined the capabilities of remote visual testing for the Nuclear Regulatory Commission. This report describes visual testing and explores the visual acuities of the camera systems used to examine nuclear reactor components. The types and sizes of cracks typically found in nuclear reactor components are reviewed. The current standards in visual testing are examined critically, and several suggestions for improving these standards are proposed. Also proposed for future work is a round robin test to determine the effectiveness of visual tests and experimental studies to determine the values for magnification and resolution needed to reliably image very tight cracks.

  2. Visual Navigation in Nocturnal Insects.

    PubMed

    Warrant, Eric; Dacke, Marie

    2016-05-01

    Despite their tiny eyes and brains, nocturnal insects have evolved a remarkable capacity to visually navigate at night. Whereas some use moonlight or the stars as celestial compass cues to maintain a straight-line course, others use visual landmarks to navigate to and from their nest. These impressive abilities rely on highly sensitive compound eyes and specialized visual processing strategies in the brain. PMID:27053732

  3. HEP visualization and video technology

    SciTech Connect

    Lebrun, P.; Swoboda, D.

    1994-12-31

    The use of scientific visualization for HEP analysis is briefly reviewed. The applications are highly interactive and very dynamical in nature. At Fermilab, E687, in collaboration with Visual Media Services, has produced a 1/2 hour video tape demonstrating the capability of SGI-EXPLORER applied to a Dalitz Analysis of Charm decay. This short contribution describes the authors experience with visualization and video technologies.

  4. A model of visual perception.

    PubMed

    Borello, L; Ferraro, M; Penengo, P; Rossotti, M L

    1981-01-01

    In this paper we propose a model of visual perception in which a positive feedback mechanism can reproduce the pattern stimulus on a neurons screen. The pattern stimulus reproduction is based on informations coming from the spatial derivatives of visual pattern. This information together with the response of the feature extractors provides to the reproduction of the visual pattern as neuron screen electric activity. We simulate several input patterns and prove that the model reproduces the percept. PMID:7236747

  5. Visualization of Magnetically Confined Plasmas

    SciTech Connect

    J.L.V. Lewandowski

    1999-12-10

    With the rapid developments in experimental and theoretical fusion energy research towards more geometric details, visualization plays an increasingly important role. In this paper we will give an overview of how visualization can be used to compare and contrast some different configurations for future fusion reactors. Specifically we will focus on the stellarator and tokamak concepts. In order to gain understanding of the underlying fundamental differences and similarities these two competing concepts are compared and contrasted by visualizing some key attributes.

  6. Visual motion transforms visual space representations similarly throughout the human visual hierarchy.

    PubMed

    Harvey, Ben M; Dumoulin, Serge O

    2016-02-15

    Several studies demonstrate that visual stimulus motion affects neural receptive fields and fMRI response amplitudes. Here we unite results of these two approaches and extend them by examining the effects of visual motion on neural position preferences throughout the hierarchy of human visual field maps. We measured population receptive field (pRF) properties using high-field fMRI (7T), characterizing position preferences simultaneously over large regions of the visual cortex. We measured pRFs properties using sine wave gratings in stationary apertures, moving at various speeds in either the direction of pRF measurement or the orthogonal direction. We find direction- and speed-dependent changes in pRF preferred position and size in all visual field maps examined, including V1, V3A, and the MT+ map TO1. These effects on pRF properties increase up the hierarchy of visual field maps. However, both within and between visual field maps the extent of pRF changes was approximately proportional to pRF size. This suggests that visual motion transforms the representation of visual space similarly throughout the visual hierarchy. Visual motion can also produce an illusory displacement of perceived stimulus position. We demonstrate perceptual displacements using the same stimulus configuration. In contrast to effects on pRF properties, perceptual displacements show only weak effects of motion speed, with far larger speed-independent effects. We describe a model where low-level mechanisms could underlie the observed effects on neural position preferences. We conclude that visual motion induces similar transformations of visuo-spatial representations throughout the visual hierarchy, which may arise through low-level mechanisms. PMID:26666897

  7. Information efficiency in visual communication

    NASA Technical Reports Server (NTRS)

    Alter-Gartenberg, Rachel; Rahman, Zia-Ur

    1993-01-01

    This paper evaluates the quantization process in the context of the end-to-end performance of the visual-communication channel. Results show that the trade-off between data transmission and visual quality revolves around the information in the acquired signal, not around its energy. Improved information efficiency is gained by frequency dependent quantization that maintains the information capacity of the channel and reduces the entropy of the encoded signal. Restorations with energy bit-allocation lose both in sharpness and clarity relative to restorations with information bit-allocation. Thus, quantization with information bit-allocation is preferred for high information efficiency and visual quality in optimized visual communication.

  8. The Statistics of Visual Representation

    NASA Technical Reports Server (NTRS)

    Jobson, Daniel J.; Rahman, Zia-Ur; Woodell, Glenn A.

    2002-01-01

    The experience of retinex image processing has prompted us to reconsider fundamental aspects of imaging and image processing. Foremost is the idea that a good visual representation requires a non-linear transformation of the recorded (approximately linear) image data. Further, this transformation appears to converge on a specific distribution. Here we investigate the connection between numerical and visual phenomena. Specifically the questions explored are: (1) Is there a well-defined consistent statistical character associated with good visual representations? (2) Does there exist an ideal visual image? And (3) what are its statistical properties?

  9. Improving Visuals for Televised Instruction

    ERIC Educational Resources Information Center

    Dwyer, Francis M.

    1970-01-01

    To assist educators to develop improved instructional television presentations, research is needed to assess the instructional effects of stimuli emitted by various types of visual illustrations. (IR)

  10. Scientific Visualization, Seeing the Unseeable

    ScienceCinema

    LBNL

    2009-09-01

    June 24, 2008 Berkeley Lab lecture: Scientific visualization transforms abstract data into readily comprehensible images, provide a vehicle for "seeing the unseeable," and play a central role in bo... June 24, 2008 Berkeley Lab lecture: Scientific visualization transforms abstract data into readily comprehensible images, provide a vehicle for "seeing the unseeable," and play a central role in both experimental and computational sciences. Wes Bethel, who heads the Scientific Visualization Group in the Computational Research Division, presents an overview of visualization and computer graphics, current research challenges, and future directions for the field.

  11. Visual field defects in onchocerciasis.

    PubMed Central

    Thylefors, B; Tønjum, A M

    1978-01-01

    Lesions in the posterior segment of the eye in onchocerciasis may give visual field defects, but so far no detailed investigation has been done to determine the functional visual loss. Examination of the visual fields in 18 selected cases of onchocerciasis by means of a tangent screen test revealed important visual field defects associated with lesions in the posterior segment of the eye. Involvement of the optic nerve seemed to be important, giving rise to severely constricted visual fields. Cases of postneuritic optic atrophy showed a very uniform pattern of almost completely constricted visual fields, with only 5 to 10 degree central rest spared. Papillitis gave a similar severe constriction of the visual fields. The pattern of visual fields associated with optic neuropathy in onchocerciasis indicates that a progressive lesion of the optic nerve from the periphery may be responsible for the loss of vision. The visual field defects in onchocerciasis constitute a serious handicap, which must be taken into consideration when estimating the socioeconomic importance of the disease. Images PMID:678499

  12. Scientific Visualization, Seeing the Unseeable

    SciTech Connect

    LBNL

    2008-07-08

    June 24, 2008 Berkeley Lab lecture: Scientific visualization transforms abstract data into readily comprehensible images, provide a vehicle for "seeing the unseeable," and play a central role in bo... June 24, 2008 Berkeley Lab lecture: Scientific visualization transforms abstract data into readily comprehensible images, provide a vehicle for "seeing the unseeable," and play a central role in both experimental and computational sciences. Wes Bethel, who heads the Scientific Visualization Group in the Computational Research Division, presents an overview of visualization and computer graphics, current research challenges, and future directions for the field.

  13. Post-Traumatic Visual Loss

    PubMed Central

    Atkins, Edward J.; Newman, Nancy J.; Biousse, Valérie

    2010-01-01

    Visual loss following head trauma is common, and the diagnosis can be challenging for the neurologist called to perform an emergency room assessment. The approach to the patient with post-traumatic visual loss is complicated by a wide range of potential ocular and brain injuries with varying pathophysiology. In addition to direct injuries of the eye and orbit, traumatic optic neuropathies, carotid cavernous fistulas, and damage to the intracranial visual pathways are classic causes of visual loss after head trauma. This review provides an update on the diagnosis and management of these conditions. PMID:18660739

  14. Presentation-Oriented Visualization Techniques.

    PubMed

    Kosara, Robert

    2016-01-01

    Data visualization research focuses on data exploration and analysis, yet the vast majority of visualizations people see were created for a different purpose: presentation. Whether we are talking about charts showing data to help make a presenter's point, data visuals created to accompany a news story, or the ubiquitous infographics, many more people consume charts than make them. Traditional visualization techniques treat presentation as an afterthought, but are there techniques uniquely suited to data presentation but not necessarily ideal for exploration and analysis? This article focuses on presentation-oriented techniques, considering their usefulness for presentation first and any other purposes as secondary. PMID:26780762

  15. Engagement Sensitive Visual Stimulation

    PubMed Central

    Kumar, Deepesh; Dutta, Anirban; Das, Abhijit; Lahiri, Uttama

    2016-01-01

    Stroke is one of leading cause of death and disability worldwide. Early detection during golden hour and treatment of individual neurological dysfunction in stroke using easy-to-access biomarkers based on a simple-to-use, cost-effective, clinically-valid screening tool can bring a paradigm shift in healthcare, both urban and rural. In our research we have designed a quantitative automatic home-based oculomotor assessment tool that can play an important complementary role in prognosis of neurological disorders like stroke for the neurologist. Once the patient has been screened for stroke, the next step is to design proper rehabilitation platform to alleviate the disability. In addition to the screening platform, in our research, we work in designing virtual reality based rehabilitation exercise platform that has the potential to deliver visual stimulation and in turn contribute to improving one’s performance. PMID:27478569

  16. Visual observations over oceans

    NASA Technical Reports Server (NTRS)

    Terry, R. D.

    1979-01-01

    Important factors in locating, identifying, describing, and photographing ocean features from space are presented. On the basis of crew comments and other findings, the following recommendations can be made for Earth observations on Space Shuttle missions: (1) flyover exercises must include observations and photography of both temperate and tropical/subtropical waters; (2) sunglint must be included during some observations of ocean features; (3) imaging remote sensors should be used together with conventional photographic systems to document visual observations; (4) greater consideration must be given to scheduling earth observation targets likely to be obscured by clouds; and (5) an annotated photographic compilation of ocean features can be used as a training aid before the mission and as a reference book during space flight.

  17. Engagement Sensitive Visual Stimulation.

    PubMed

    Kumar, Deepesh; Dutta, Anirban; Das, Abhijit; Lahiri, Uttama

    2016-06-13

    Stroke is one of leading cause of death and disability worldwide. Early detection during golden hour and treatment of individual neurological dysfunction in stroke using easy-to-access biomarkers based on a simple-to-use, cost-effective, clinically-valid screening tool can bring a paradigm shift in healthcare, both urban and rural. In our research we have designed a quantitative automatic home-based oculomotor assessment tool that can play an important complementary role in prognosis of neurological disorders like stroke for the neurologist. Once the patient has been screened for stroke, the next step is to design proper rehabilitation platform to alleviate the disability. In addition to the screening platform, in our research, we work in designing virtual reality based rehabilitation exercise platform that has the potential to deliver visual stimulation and in turn contribute to improving one's performance. PMID:27478569

  18. Visual Computing Environment Workshop

    NASA Technical Reports Server (NTRS)

    Lawrence, Charles (Compiler)

    1998-01-01

    The Visual Computing Environment (VCE) is a framework for intercomponent and multidisciplinary computational simulations. Many current engineering analysis codes simulate various aspects of aircraft engine operation. For example, existing computational fluid dynamics (CFD) codes can model the airflow through individual engine components such as the inlet, compressor, combustor, turbine, or nozzle. Currently, these codes are run in isolation, making intercomponent and complete system simulations very difficult to perform. In addition, management and utilization of these engineering codes for coupled component simulations is a complex, laborious task, requiring substantial experience and effort. To facilitate multicomponent aircraft engine analysis, the CFD Research Corporation (CFDRC) is developing the VCE system. This system, which is part of NASA's Numerical Propulsion Simulation System (NPSS) program, can couple various engineering disciplines, such as CFD, structural analysis, and thermal analysis.

  19. Visual PEF Reader - VIPER

    NASA Technical Reports Server (NTRS)

    Luo, Victor; Khanampornpan, Teerapat; Boehmer, Rudy A.; Kim, Rachel Y.

    2011-01-01

    This software graphically displays all pertinent information from a Predicted Events File (PEF) using the Java Swing framework, which allows for multi-platform support. The PEF is hard to weed through when looking for specific information and it is a desire for the MRO (Mars Reconn aissance Orbiter) Mission Planning & Sequencing Team (MPST) to have a different way to visualize the data. This tool will provide the team with a visual way of reviewing and error-checking the sequence product. The front end of the tool contains much of the aesthetically appealing material for viewing. The time stamp is displayed in the top left corner, and highlighted details are displayed in the bottom left corner. The time bar stretches along the top of the window, and the rest of the space is allotted for blocks and step functions. A preferences window is used to control the layout of the sections along with the ability to choose color and size of the blocks. Double-clicking on a block will show information contained within the block. Zooming into a certain level will graphically display that information as an overlay on the block itself. Other functions include using hotkeys to navigate, an option to jump to a specific time, enabling a vertical line, and double-clicking to zoom in/out. The back end involves a configuration file that allows a more experienced user to pre-define the structure of a block, a single event, or a step function. The individual will have to determine what information is important within each block and what actually defines the beginning and end of a block. This gives the user much more flexibility in terms of what the tool is searching for. In addition to the configurability, all the settings in the preferences window are saved in the configuration file as well

  20. Moon Color Visualizations

    NASA Technical Reports Server (NTRS)

    1990-01-01

    These color visualizations of the Moon were obtained by the Galileo spacecraft as it left the Earth after completing its first Earth Gravity Assist. The image on the right was acquired at 6:47 p.m. PST Dec. 8, 1990, from a distance of almost 220,000 miles, while that on the left was obtained at 9:35 a.m. PST Dec. 9, at a range of more than 350,000 miles. On the right, the nearside of the Moon and about 30 degrees of the far side (left edge) are visible. In the full disk on the left, a little less than half the nearside and more than half the far side (to the right) are visible. The color composites used images taken through the violet and two near infrared filters. The visualizations depict spectral properties of the lunar surface known from analysis of returned samples to be related to composition or weathering of surface materials. The greenish-blue region at the upper right in the full disk and the upper part of the right hand picture is Oceanus Procellarum. The deeper blue mare regions here and elsewhere are relatively rich in titanium, while the greens, yellows and light oranges indicate basalts low in titanium but rich in iron and magnesium. The reds (deep orange in the right hand picture) are typically cratered highlands relatively poor in titanium, iron and magnesium. In the full disk picture on the left, the yellowish area to the south is part of the newly confirmed South Pole Aitken basin, a large circular depression some 1,200 miles across, perhaps rich in iron and magnesium. Analysis of Apollo lunar samples provided the basis for calibration of this spectral map; Galileo data, in turn, permit broad extrapolation of the Apollo based composition information, reaching ultimately to the far side of the Moon.

  1. VMD: visual molecular dynamics.

    PubMed

    Humphrey, W; Dalke, A; Schulten, K

    1996-02-01

    VMD is a molecular graphics program designed for the display and analysis of molecular assemblies, in particular biopolymers such as proteins and nucleic acids. VMD can simultaneously display any number of structures using a wide variety of rendering styles and coloring methods. Molecules are displayed as one or more "representations," in which each representation embodies a particular rendering method and coloring scheme for a selected subset of atoms. The atoms displayed in each representation are chosen using an extensive atom selection syntax, which includes Boolean operators and regular expressions. VMD provides a complete graphical user interface for program control, as well as a text interface using the Tcl embeddable parser to allow for complex scripts with variable substitution, control loops, and function calls. Full session logging is supported, which produces a VMD command script for later playback. High-resolution raster images of displayed molecules may be produced by generating input scripts for use by a number of photorealistic image-rendering applications. VMD has also been expressly designed with the ability to animate molecular dynamics (MD) simulation trajectories, imported either from files or from a direct connection to a running MD simulation. VMD is the visualization component of MDScope, a set of tools for interactive problem solving in structural biology, which also includes the parallel MD program NAMD, and the MDCOMM software used to connect the visualization and simulation programs. VMD is written in C++, using an object-oriented design; the program, including source code and extensive documentation, is freely available via anonymous ftp and through the World Wide Web. PMID:8744570

  2. ERP Evidence of Visualization at Early Stages of Visual Processing

    ERIC Educational Resources Information Center

    Page, Jonathan W.; Duhamel, Paul; Crognale, Michael A.

    2011-01-01

    Recent neuroimaging research suggests that early visual processing circuits are activated similarly during visualization and perception but have not demonstrated that the cortical activity is similar in character. We found functional equivalency in cortical activity by recording evoked potentials while color and luminance patterns were viewed and…

  3. Intersensory redundancy promotes visual rhythm discrimination in visually impaired infants.

    PubMed

    Brenna, Viola; Nava, Elena; Turati, Chiara; Montirosso, Rosario; Cavallini, Anna; Borgatti, Renato

    2015-05-01

    Infants' attention is captured by the redundancy of amodal stimulation in multimodal objects and events. Evidence from this study demonstrates that intersensory redundancy can facilitate discrimination of rhythm changes presented in the visual modality alone in visually impaired infants, suggesting that multisensory rehabilitation strategies could prove helpful in this population. PMID:25827259

  4. Data visualization methods, data visualization devices, data visualization apparatuses, and articles of manufacture

    DOEpatents

    Turner, Alan E.; Crow, Vernon L.; Payne, Deborah A.; Hetzler, Elizabeth G.; Cook, Kristin A.; Cowley, Wendy E.

    2015-06-30

    Data visualization methods, data visualization devices, data visualization apparatuses, and articles of manufacture are described according to some aspects. In one aspect, a data visualization method includes accessing a plurality of initial documents at a first moment in time, first processing the initial documents providing processed initial documents, first identifying a plurality of first associations of the initial documents using the processed initial documents, generating a first visualization depicting the first associations, accessing a plurality of additional documents at a second moment in time after the first moment in time, second processing the additional documents providing processed additional documents, second identifying a plurality of second associations of the additional documents and at least some of the initial documents, wherein the second identifying comprises identifying using the processed initial documents and the processed additional documents, and generating a second visualization depicting the second associations.

  5. Visual feature extraction and establishment of visual tags in the intelligent visual internet of things

    NASA Astrophysics Data System (ADS)

    Zhao, Yiqun; Wang, Zhihui

    2015-12-01

    The Internet of things (IOT) is a kind of intelligent networks which can be used to locate, track, identify and supervise people and objects. One of important core technologies of intelligent visual internet of things ( IVIOT) is the intelligent visual tag system. In this paper, a research is done into visual feature extraction and establishment of visual tags of the human face based on ORL face database. Firstly, we use the principal component analysis (PCA) algorithm for face feature extraction, then adopt the support vector machine (SVM) for classifying and face recognition, finally establish a visual tag for face which is already classified. We conducted a experiment focused on a group of people face images, the result show that the proposed algorithm have good performance, and can show the visual tag of objects conveniently.

  6. Relating Standardized Visual Perception Measures to Simulator Visual System Performance

    NASA Technical Reports Server (NTRS)

    Kaiser, Mary K.; Sweet, Barbara T.

    2013-01-01

    Human vision is quantified through the use of standardized clinical vision measurements. These measurements typically include visual acuity (near and far), contrast sensitivity, color vision, stereopsis (a.k.a. stereo acuity), and visual field periphery. Simulator visual system performance is specified in terms such as brightness, contrast, color depth, color gamut, gamma, resolution, and field-of-view. How do these simulator performance characteristics relate to the perceptual experience of the pilot in the simulator? In this paper, visual acuity and contrast sensitivity will be related to simulator visual system resolution, contrast, and dynamic range; similarly, color vision will be related to color depth/color gamut. Finally, we will consider how some characteristics of human vision not typically included in current clinical assessments could be used to better inform simulator requirements (e.g., relating dynamic characteristics of human vision to update rate and other temporal display characteristics).

  7. Neural Anatomy of Primary Visual Cortex Limits Visual Working Memory.

    PubMed

    Bergmann, Johanna; Genç, Erhan; Kohler, Axel; Singer, Wolf; Pearson, Joel

    2016-01-01

    Despite the immense processing power of the human brain, working memory storage is severely limited, and the neuroanatomical basis of these limitations has remained elusive. Here, we show that the stable storage limits of visual working memory for over 9 s are bound by the precise gray matter volume of primary visual cortex (V1), defined by fMRI retinotopic mapping. Individuals with a bigger V1 tended to have greater visual working memory storage. This relationship was present independently for both surface size and thickness of V1 but absent in V2, V3 and for non-visual working memory measures. Additional whole-brain analyses confirmed the specificity of the relationship to V1. Our findings indicate that the size of primary visual cortex plays a critical role in limiting what we can hold in mind, acting like a gatekeeper in constraining the richness of working mental function. PMID:25100854

  8. From Quantification to Visualization: A Taxonomy of Uncertainty Visualization Approaches

    PubMed Central

    Potter, Kristin; Rosen, Paul; Johnson, Chris R.

    2014-01-01

    Quantifying uncertainty is an increasingly important topic across many domains. The uncertainties present in data come with many diverse representations having originated from a wide variety of disciplines. Communicating these uncertainties is a task often left to visualization without clear connection between the quantification and visualization. In this paper, we first identify frequently occurring types of uncertainty. Second, we connect those uncertainty representations to ones commonly used in visualization. We then look at various approaches to visualizing this uncertainty by partitioning the work based on the dimensionality of the data and the dimensionality of the uncertainty. We also discuss noteworthy exceptions to our taxonomy along with future research directions for the uncertainty visualization community. PMID:25663949

  9. Visual Recognition Memory across Contexts

    ERIC Educational Resources Information Center

    Jones, Emily J. H.; Pascalis, Olivier; Eacott, Madeline J.; Herbert, Jane S.

    2011-01-01

    In two experiments, we investigated the development of representational flexibility in visual recognition memory during infancy using the Visual Paired Comparison (VPC) task. In Experiment 1, 6- and 9-month-old infants exhibited recognition when familiarization and test occurred in the same room, but showed no evidence of recognition when…

  10. Visual Literacy and Message Design

    ERIC Educational Resources Information Center

    Pettersson, Rune

    2009-01-01

    Many researchers from different disciplines have explained their views and interpretations and written about visual literacy from their various perspectives. Visual literacy may be applied in almost all areas such as advertising, anatomy, art, biology, business presentations, communication, education, engineering, etc. (Pettersson, 2002a). Despite…

  11. Are Deaf Students Visual Learners?

    ERIC Educational Resources Information Center

    Marschark, Marc; Morrison, Carolyn; Lukomski, Jennifer; Borgna, Georgianna; Convertino, Carol

    2013-01-01

    It is frequently assumed that by virtue of their hearing losses, deaf students are visual learners. Deaf individuals have some visual-spatial advantages relative to hearing individuals, but most have been linked to use of sign language rather than auditory deprivation. How such cognitive differences might affect academic performance has been…

  12. Vection and induced visual motion

    NASA Astrophysics Data System (ADS)

    Howard, Ian P.

    1991-12-01

    When exposed to a large moving visual display, a person experiences illusory self motion (vection). Specialized devices were used to investigate the relation between illusory visual motion of stationary objects and illusory self motion induced by motion of a visual scene. In a first set of experiments, two distinct components of induced visual motion were measured: exocentric induced motion which causes a stationary object to appear to move with the self, and egocentric induced motion which causes an object to seem to move relative to the self. Another set of experiments was designed to reveal the extent to which vection depends on the presence of stationary objects in the field of view and to explore what types of relative motion between the moving display and the stationary objects most strongly induce vection. It was observed that when all stationary objects were removed, vection had a long latency and was very weak when it occurred. A third set of experiments was designed to reveal the extent to which illusory body tilt induced by viewing a tilted or rotating scene depends on the motion of a visual stimulus and on the geometrical features of the stimulus. The results reveal the relative contributions of visual polarity and visual motion to illusory body tilt and the extent to which visual stimuli can override conflicting stimuli arising from the otolith organs.

  13. The Spectacle of Visual Culture

    ERIC Educational Resources Information Center

    Garoian, Charles R.; Gaudelius, Yvonne M.

    2004-01-01

    In this article we characterize the ideology of visual culture as "spectacle pedagogy" in that images teach us what and how to see and think and, in doing so, they mediate the ways in which we interact with one another as social beings. Given that we are always immersed in visual culture, an understanding of its impact on social relations enables…

  14. Scaffolding Learning from Molecular Visualizations

    ERIC Educational Resources Information Center

    Chang, Hsin-Yi; Linn, Marcia C.

    2013-01-01

    Powerful online visualizations can make unobservable scientific phenomena visible and improve student understanding. Instead, they often confuse or mislead students. To clarify the impact of molecular visualizations for middle school students we explored three design variations implemented in a Web-based Inquiry Science Environment (WISE) unit on…

  15. Heredity Factors in Spatial Visualization.

    ERIC Educational Resources Information Center

    Vandenberg, S. G.

    Spatial visualization is not yet clearly understood. Some researchers have concluded that two factors or abilities are involved, spatial orientation and spatial visualization. Different definitions and different tests have been proposed for these two abilities. Several studies indicate that women generally perform more poorly on spatial tests than…

  16. Spatial Visualization by Isometric View

    ERIC Educational Resources Information Center

    Yue, Jianping

    2007-01-01

    Spatial visualization is a fundamental skill in technical graphics and engineering designs. From conventional multiview drawing to modern solid modeling using computer-aided design, visualization skills have always been essential for representing three-dimensional objects and assemblies. Researchers have developed various types of tests to measure…

  17. Are visual peripheries forever young?

    PubMed

    Burnat, Kalina

    2015-01-01

    The paper presents a concept of lifelong plasticity of peripheral vision. Central vision processing is accepted as critical and irreplaceable for normal perception in humans. While peripheral processing chiefly carries information about motion stimuli features and redirects foveal attention to new objects, it can also take over functions typical for central vision. Here I review the data showing the plasticity of peripheral vision found in functional, developmental, and comparative studies. Even though it is well established that afferent projections from central and peripheral retinal regions are not established simultaneously during early postnatal life, central vision is commonly used as a general model of development of the visual system. Based on clinical studies and visually deprived animal models, I describe how central and peripheral visual field representations separately rely on early visual experience. Peripheral visual processing (motion) is more affected by binocular visual deprivation than central visual processing (spatial resolution). In addition, our own experimental findings show the possible recruitment of coarse peripheral vision for fine spatial analysis. Accordingly, I hypothesize that the balance between central and peripheral visual processing, established in the course of development, is susceptible to plastic adaptations during the entire life span, with peripheral vision capable of taking over central processing. PMID:25945262

  18. Visualization of Concurrent Program Executions

    NASA Technical Reports Server (NTRS)

    Artho, Cyrille; Havelund, Klaus; Honiden, Shinichi

    2007-01-01

    Various program analysis techniques are efficient at discovering failures and properties. However, it is often difficult to evaluate results, such as program traces. This calls for abstraction and visualization tools. We propose an approach based on UML sequence diagrams, addressing shortcomings of such diagrams for concurrency. The resulting visualization is expressive and provides all the necessary information at a glance.

  19. Lethally Innocuous Visual Display Units.

    ERIC Educational Resources Information Center

    Cawkell, A. E.

    1991-01-01

    Examines conflicting studies which report on the effects of Visual Display Units (VDU) on health. Five aspects of alleged VDU effects are discussed: (1) radiation or emission effects; (2) visual effects; (3) postural effects; (4) effects on the arms and fingers; and (5) ultrasonic noise from scanning components. (36 references) (MAB)

  20. VISUAL DEFICIENCIES AND READING DISABILITY.

    ERIC Educational Resources Information Center

    ROSEN, CARL L.

    THE ROLE OF VISUAL SENSORY DEFICIENCIES IN THE CAUSATION READING DISABILITY IS DISCUSSED. PREVIOUS AND CURRENT RESEARCH STUDIES DEALING WITH SPECIFIC VISUAL PROBLEMS WHICH HAVE BEEN FOUND TO BE NEGATIVELY RELATED TO SUCCESSFUL READING ACHIEVEMENT ARE LISTED--(1) FARSIGHTEDNESS, (2) ASTIGMATISM, (3) BINOCULAR INCOORDINATIONS, AND (4) FUSIONAL…

  1. Perceptual Load Alters Visual Excitability

    ERIC Educational Resources Information Center

    Carmel, David; Thorne, Jeremy D.; Rees, Geraint; Lavie, Nilli

    2011-01-01

    Increasing perceptual load reduces the processing of visual stimuli outside the focus of attention, but the mechanism underlying these effects remains unclear. Here we tested an account attributing the effects of perceptual load to modulations of visual cortex excitability. In contrast to stimulus competition accounts, which propose that load…

  2. Visualizing Clonal Evolution in Cancer.

    PubMed

    Krzywinski, Martin

    2016-06-01

    Rapid and inexpensive single-cell sequencing is driving new visualizations of cancer instability and evolution. Krzywinski discusses how to present clone evolution plots in order to visualize temporal, phylogenetic, and spatial aspects of a tumor in a single static image. PMID:27259197

  3. Why Visual Sequences Come First.

    ERIC Educational Resources Information Center

    Barley, Steven D.

    Visual sequences should be the first visual literacy exercises for reasons that are physio-psychological, semantic, and curricular. In infancy, vision is undifferentiated and undetailed. The number of details a child sees increases with age. Therefore, a series of pictures, rather than one photograph which tells a whole story, is more appropriate…

  4. Visual Marking Inhibits Singleton Capture

    ERIC Educational Resources Information Center

    Olivers, Christian N. L.; Humphreys, Glyn W.

    2003-01-01

    This paper is concerned with how we prioritize the selection of new objects in visual scenes. We present four experiments investigating the effects of distractor previews on visual search through new objects. Participants viewed a set of to-be-ignored nontargets, with the task being to search for a target in a second set, added to the first after…

  5. Learning from Balance Sheet Visualization

    ERIC Educational Resources Information Center

    Tanlamai, Uthai; Soongswang, Oranuj

    2011-01-01

    This exploratory study examines alternative visuals and their effect on the level of learning of balance sheet users. Executive and regular classes of graduate students majoring in information technology in business were asked to evaluate the extent of acceptance and enhanced capability of these alternative visuals toward their learning…

  6. Visual Resources on the Internet.

    ERIC Educational Resources Information Center

    Jaber, William E.; Hou, Feng

    With the development of the Internet technology and proliferation of the network application, visual materials have been digitized and archived on many publicly accessible computer servers. However, these visual resources can be beneficial to educators only when they know what they are, what they look like, in what format they are created, and how…

  7. "Reading" Young Children's Visual Texts

    ERIC Educational Resources Information Center

    Pantaleo, Sylvia

    2005-01-01

    This article discusses a study that explored first-grade students' responses to and interpretations of eight picture books with metafictive devices. The article focuses on children's visual and written responses to the picture books and describes the relationship between the students' visual and verbal texts with respect to storytelling. The two…

  8. A Virtual World of Visualization

    NASA Technical Reports Server (NTRS)

    1998-01-01

    In 1990, Sterling Software, Inc., developed the Flow Analysis Software Toolkit (FAST) for NASA Ames on contract. FAST is a workstation based modular analysis and visualization tool. It is used to visualize and animate grids and grid oriented data, typically generated by finite difference, finite element and other analytical methods. FAST is now available through COSMIC, NASA's software storehouse.

  9. VISUAL TRAINING AND READING PERFORMANCE.

    ERIC Educational Resources Information Center

    ANAPOLLE, LOUIS

    VISUAL TRAINING IS DEFINED AS THE FIELD OF OCULAR REEDUCATION AND REHABILITATION OF THE VARIOUS VISUAL SKILLS THAT ARE OF PARAMOUNT IMPORTANCE TO SCHOOL ACHIEVEMENT, AUTOMOBILE DRIVING, OUTDOOR SPORTS ACTIVITIES, AND OCCUPATIONAL PURSUITS. A HISTORY OF ORTHOPTICS, THE SUGGESTED NAME FOR THE ENTIRE FIELD OF OCULAR REEDUCATION, IS GIVEN. READING AS…

  10. Mapping the Visual Communication Field.

    ERIC Educational Resources Information Center

    Moriarty, Sandra E.

    This paper discusses visual communication theory. After an examination of the literature, this study built a more extensive bibliography of visual communication in general--theory, research, teaching--as well as a taxonomy that was better grounded. A 95-page bibliography was developed for works from a number of scholarly journals dealing with…

  11. NASA Planetary Visualization Tool

    NASA Astrophysics Data System (ADS)

    Hogan, P.; Kim, R.

    2004-12-01

    NASA World Wind allows one to zoom from satellite altitude into any place on Earth, leveraging the combination of high resolution LandSat imagery and SRTM elevation data to experience Earth in visually rich 3D, just as if they were really there. NASA World Wind combines LandSat 7 imagery with Shuttle Radar Topography Mission (SRTM) elevation data, for a dramatic view of the Earth at eye level. Users can literally fly across the world's terrain from any location in any direction. Particular focus was put into the ease of usability so people of all ages can enjoy World Wind. All one needs to control World Wind is a two button mouse. Additional guides and features can be accessed though a simplified menu. Navigation is automated with single clicks of a mouse as well as the ability to type in any location and automatically zoom to it. NASA World Wind was designed to run on recent PC hardware with the same technology used by today's 3D video games. NASA World Wind delivers the NASA Blue Marble, spectacular true-color imagery of the entire Earth at 1-kilometer-per-pixel. Using NASA World Wind, you can continue to zoom past Blue Marble resolution to seamlessly experience the extremely detailed mosaic of LandSat 7 data at an impressive 15-meters-per-pixel resolution. NASA World Wind also delivers other color bands such as the infrared spectrum. The NASA Scientific Visualization Studio at Goddard Space Flight Center (GSFC) has produced a set of visually intense animations that demonstrate a variety of subjects such as hurricane dynamics and seasonal changes across the globe. NASA World Wind takes these animations and plays them directly on the world. The NASA Moderate Resolution Imaging Spectroradiometer (MODIS) produces a set of time relevant planetary imagery that's updated every day. MODIS catalogs fires, floods, dust, smoke, storms and volcanic activity. NASA World Wind produces an easily customized view of this information and marks them directly on the globe. When one

  12. Manipulating and Visualizing Proteins

    SciTech Connect

    Simon, Horst D.

    2003-12-05

    ProteinShop Gives Researchers a Hands-On Tool for Manipulating, Visualizing Protein Structures. The Human Genome Project and other biological research efforts are creating an avalanche of new data about the chemical makeup and genetic codes of living organisms. But in order to make sense of this raw data, researchers need software tools which let them explore and model data in a more intuitive fashion. With this in mind, researchers at Lawrence Berkeley National Laboratory and the University of California, Davis, have developed ProteinShop, a visualization and modeling program which allows researchers to manipulate protein structures with pinpoint control, guided in large part by their own biological and experimental instincts. Biologists have spent the last half century trying to unravel the ''protein folding problem,'' which refers to the way chains of amino acids physically fold themselves into three-dimensional proteins. This final shape, which resembles a crumpled ribbon or piece of origami, is what determines how the protein functions and translates genetic information. Understanding and modeling this geometrically complex formation is no easy matter. ProteinShop takes a given sequence of amino acids and uses visualization guides to help generate predictions about the secondary structures, identifying alpha helices and flat beta strands, and the coil regions that bind them. Once secondary structures are in place, researchers can twist and turn these pre-configurations until they come up with a number of possible tertiary structure conformations. In turn, these are fed into a computationally intensive optimization procedure that tries to find the final, three-dimensional protein structure. Most importantly, ProteinShop allows users to add human knowledge and intuition to the protein structure prediction process, thus bypassing bad configurations that would otherwise be fruitless for optimization. This saves compute cycles and accelerates the entire process, so

  13. Student Visual Communication of Evolution

    NASA Astrophysics Data System (ADS)

    Oliveira, Alandeom W.; Cook, Kristin

    2016-05-01

    Despite growing recognition of the importance of visual representations to science education, previous research has given attention mostly to verbal modalities of evolution instruction. Visual aspects of classroom learning of evolution are yet to be systematically examined by science educators. The present study attends to this issue by exploring the types of evolutionary imagery deployed by secondary students. Our visual design analysis revealed that students resorted to two larger categories of images when visually communicating evolution: spatial metaphors (images that provided a spatio-temporal account of human evolution as a metaphorical "walk" across time and space) and symbolic representations ("icons of evolution" such as personal portraits of Charles Darwin that simply evoked evolutionary theory rather than metaphorically conveying its conceptual contents). It is argued that students need opportunities to collaboratively critique evolutionary imagery and to extend their visual perception of evolution beyond dominant images.

  14. Serial dependence in visual perception

    PubMed Central

    Fischer, Jason; Whitney, David

    2014-01-01

    Visual input often arrives in a noisy and discontinuous stream, owing to head and eye movements, occlusion, lighting changes, and many other factors. Yet the physical world is generally stable—objects and physical characteristics rarely change spontaneously. How then does the human visual system capitalize on continuity in the physical environment over time? Here we show that visual perception is serially dependent, using both prior and present input to inform perception at the present moment. Using an orientation judgment task, we found that even when visual input changes randomly over time, perceived orientation is strongly and systematically biased toward recently seen stimuli. Further, the strength of this bias is modulated by attention and tuned to the spatial and temporal proximity of successive stimuli. These results reveal a serial dependence in perception characterized by a spatiotemporally tuned, orientation-selective operator—which we call a continuity field—that may promote visual stability over time. PMID:24686785

  15. Tensor visualizations in computational geomechanics

    NASA Astrophysics Data System (ADS)

    Jeremi, Boris; Scheuermann, Gerik; Frey, Jan; Yang, Zhaohui; Hamann, Bernd; Joy, Kenneth I.; Hagen, Hans

    2002-08-01

    We present a novel technique for visualizing tensors in three dimensional (3D) space. Of particular interest is the visualization of stress tensors resulting from 3D numerical simulations in computational geomechanics. To this end we present three different approaches to visualizing tensors in 3D space, namely hedgehogs, hyperstreamlines and hyperstreamsurfaces. We also present a number of examples related to stress distributions in 3D solids subjected to single and load couples. In addition, we present stress visualizations resulting from single-pile and pile-group computations. The main objective of this work is to investigate various techniques for visualizing general Cartesian tensors of rank 2 and it's application to geomechanics problems.

  16. Experiencing and perceiving visual surfaces.

    PubMed

    Nakayama, K; Shimojo, S

    1992-09-01

    A theoretical framework is proposed to understand binocular visual surface perception based on the idea of a mobile observer sampling images from random vantage points in space. Application of the generic sampling principle indicates that the visual system acts as if it were viewing surface layouts from generic not accidental vantage points. Through the observer's experience of optical sampling, which can be characterized geometrically, the visual system makes associative connections between images and surfaces, passively internalizing the conditional probabilities of image sampling from surfaces. This in turn enables the visual system to determine which surface a given image most strongly indicates. Thus, visual surface perception can be considered as inverse ecological optics based on learning through ecological optics. As such, it is formally equivalent to a degenerate form of Bayesian inference where prior probabilities are neglected. PMID:1529336

  17. Visual compliance: Task-directed visual servo control

    SciTech Connect

    Castano, A.; Hutchinson, S. )

    1994-06-01

    This paper introduces visual compliance, a new vision-based control scheme that lends itself to task-level specification of manipulation goals. Visual compliance is effected by a hybrid vision/position control structure. Specifically, the two degrees of freedom parallel to the image plane of a supervisory camera are controlled using visual feedback, and the remaining degree of freedom (perpendicular to the camera image plane) is controlled using position feedback provided by the robot joint encoders. With visual compliance, the motion of the end effector is constrained so that the tool center of the end effector maintains contact with a specified projection ray of the imaging system. This type of constrained motion can be exploited for grasping, parts mating, and assembly. The authors begin by deriving the projection equations for the vision system. They then derive equations used to position the manipulator prior to the execution of visual compliant motion. Following this, they derive the hybrid Jacobian matrix that is used to effect visual compliance. Experimental results are given for a number of scenarios, including grasping using visual compliance.

  18. An Enhanced Visualization Process Model for Incremental Visualization.

    PubMed

    Schulz, Hans-Jorg; Angelini, Marco; Santucci, Giuseppe; Schumann, Heidrun

    2016-07-01

    With today's technical possibilities, a stable visualization scenario can no longer be assumed as a matter of course, as underlying data and targeted display setup are much more in flux than in traditional scenarios. Incremental visualization approaches are a means to address this challenge, as they permit the user to interact with, steer, and change the visualization at intermediate time points and not just after it has been completed. In this paper, we put forward a model for incremental visualizations that is based on the established Data State Reference Model, but extends it in ways to also represent partitioned data and visualization operators to facilitate intermediate visualization updates. In combination, partitioned data and operators can be used independently and in combination to strike tailored compromises between output quality, shown data quantity, and responsiveness-i.e., frame rates. We showcase the new expressive power of this model by discussing the opportunities and challenges of incremental visualization in general and its usage in a real world scenario in particular. PMID:27244708

  19. Quality of Visual Cue Affects Visual Reweighting in Quiet Standing.

    PubMed

    Moraes, Renato; de Freitas, Paulo Barbosa; Razuk, Milena; Barela, José Angelo

    2016-01-01

    Sensory reweighting is a characteristic of postural control functioning adopted to accommodate environmental changes. The use of mono or binocular cues induces visual reduction/increment of moving room influences on postural sway, suggesting a visual reweighting due to the quality of available sensory cues. Because in our previous study visual conditions were set before each trial, participants could adjust the weight of the different sensory systems in an anticipatory manner based upon the reduction in quality of the visual information. Nevertheless, in daily situations this adjustment is a dynamical process and occurs during ongoing movement. The purpose of this study was to examine the effect of visual transitions in the coupling between visual information and body sway in two different distances from the front wall of a moving room. Eleven young adults stood upright inside of a moving room in two distances (75 and 150 cm) wearing a liquid crystal lenses goggles, which allow individual lenses transition from opaque to transparent and vice-versa. Participants stood still during five minutes for each trial and the lenses status changed every one minute (no vision to binocular vision, no vision to monocular vision, binocular vision to monocular vision, and vice-versa). Results showed that farther distance and monocular vision reduced the effect of visual manipulation on postural sway. The effect of visual transition was condition dependent, with a stronger effect when transitions involved binocular vision than monocular vision. Based upon these results, we conclude that the increased distance from the front wall of the room reduced the effect of visual manipulation on postural sway and that sensory reweighting is stimulus quality dependent, with binocular vision producing a much stronger down/up-weighting than monocular vision. PMID:26939058

  20. Quality of Visual Cue Affects Visual Reweighting in Quiet Standing

    PubMed Central

    Moraes, Renato; de Freitas, Paulo Barbosa; Razuk, Milena; Barela, José Angelo

    2016-01-01

    Sensory reweighting is a characteristic of postural control functioning adopted to accommodate environmental changes. The use of mono or binocular cues induces visual reduction/increment of moving room influences on postural sway, suggesting a visual reweighting due to the quality of available sensory cues. Because in our previous study visual conditions were set before each trial, participants could adjust the weight of the different sensory systems in an anticipatory manner based upon the reduction in quality of the visual information. Nevertheless, in daily situations this adjustment is a dynamical process and occurs during ongoing movement. The purpose of this study was to examine the effect of visual transitions in the coupling between visual information and body sway in two different distances from the front wall of a moving room. Eleven young adults stood upright inside of a moving room in two distances (75 and 150 cm) wearing a liquid crystal lenses goggles, which allow individual lenses transition from opaque to transparent and vice-versa. Participants stood still during five minutes for each trial and the lenses status changed every one minute (no vision to binocular vision, no vision to monocular vision, binocular vision to monocular vision, and vice-versa). Results showed that farther distance and monocular vision reduced the effect of visual manipulation on postural sway. The effect of visual transition was condition dependent, with a stronger effect when transitions involved binocular vision than monocular vision. Based upon these results, we conclude that the increased distance from the front wall of the room reduced the effect of visual manipulation on postural sway and that sensory reweighting is stimulus quality dependent, with binocular vision producing a much stronger down/up-weighting than monocular vision. PMID:26939058

  1. Visualization in quantum fluids

    NASA Astrophysics Data System (ADS)

    Lathrop, Daniel

    2015-11-01

    The motion of quantized vortices, which are topological phase defects analogous to crystalline dislocations, substantially controls the dynamics of quantum fluids. Quantized vortices have been observed in superfluid 4He and AMO trapped atom systems, and have been inferred in superfluid 3He and neutron stars. Long-range quantum order underlies a number of related physical phenomena, including superfluidity, trapped-atom Bose-Einstein condensates, superconductivity, ferromagnetism, anti-ferromagnetism, lasers, and the Higgs mechanism. While superfluidity in 4He is one of the first discovered of these phenomena, it is one of the least understood, given that the strongly interacting nature of helium makes theory difficult, and that development of local experimental probes is lagging. The advent of flow visualization of particles that trace quantized vortices has led to many advances. That progress was caused by repeated suggestions from Russ Donnelly, Joe Niemela, and Joe Vinen. Those suggestions led the team, including Gregory P. Bewley, K.R. Sreenivasan and myself, to venture into the quantum fluid realm. We acknowledge the support of NSF DMR/CMP 0906109 and 1407472.

  2. Visual Sample Plan

    2007-10-25

    VSP selects the appropriate number and location of environmental samples to ensure that the results of statistical tests performed to provide input to risk decisions have the required confidence and performance. VSP Version 5.0 provides sample-size equations or algorithms needed by specific statistical tests appropriate for specific environmental sampling objectives. It also provides data quality assessment and statistical analysis functions to support evaluation of the data and determine whether the data support decisions regarding sitesmore » suspected of contamination. The easy-to-use program is highly visual and graphic. VSP runs on personal computers with Microsoft Windows operating systems (98, NT, 2000, Millennium Edition, CE, and XP) Designed primarily for project managers and users without expertise in statistics, VSP is applicable to two- and three-dimensional populations to be sampled (e.g., rooms and buildings, surface soil, a defined layer of subsurface soil, water bodies, and other similar applications) for studies of environmental quality. VSP is also applicable for designing sampling plans for assessing chem./rad/bio threat and hazard identification within rooms and buildings, and for designing geophysical surveys for UXO identification.« less

  3. Structure of visual perception.

    PubMed Central

    Zhang, J; Wu, S Y

    1990-01-01

    The response properties of a class of motion detectors (Reichardt detectors) are investigated extensively here. Since the outputs of the detectors, responding to an image undergoing two-dimensional rigid translation, are dependent on both the image velocity and the image intensity distribution, they are nonuniform across the entire image, even though the object is moving rigidly as a whole. To achieve perceptual "oneness" in the rigid motion, we are led to contend that visual perception must take place in a space that is non-Euclidean in nature. We then derive the affine connection and the metric of this perceptual space. The Riemann curvature tensor is identically zero, which means that the perceptual space is intrinsically flat. A geodesic in this space is composed of points of constant image intensity gradient along a certain direction. The deviation of geodesics (which are perceptually "straight") from physically straight lines may offer an explanation to the perceptual distortion of angular relationships such as the Hering illusion. PMID:2235999

  4. Spatial Visualization Measurement: A Modification of the Purdue Spatial Visualization Test - Visualization of Rotations.

    ERIC Educational Resources Information Center

    Branoff, Theodore J.

    2000-01-01

    Investigates the effectiveness of using trimetric pictorials instead of isometric pictorials on the Purdue Spatial Visualization Test - Visualization of Rotations (Guay, 1977). Records student responses and response times as well as information on gender, current major, and number of previous graphics courses completed. (Contains 18 references.)…

  5. Multiperspective Focus+Context Visualization.

    PubMed

    Wu, Meng-Lin; Popescu, Voicu

    2016-05-01

    Occlusions are a severe bottleneck for the visualization of large and complex datasets. Conventional images only show dataset elements to which there is a direct line of sight, which significantly limits the information bandwidth of the visualization. Multiperspective visualization is a powerful approach for alleviating occlusions to show more than what is visible from a single viewpoint. However, constructing and rendering multiperspective visualizations is challenging. We present a framework for designing multiperspective focus+context visualizations with great flexibility by manipulating the underlying camera model. The focus region viewpoint is adapted to alleviate occlusions. The framework supports multiperspective visualization in three scenarios. In a first scenario, the viewpoint is altered independently for individual image regions to avoid occlusions. In a second scenario, conventional input images are connected into a multiperspective image. In a third scenario, one or several data subsets of interest (i.e., targets) are visualized where they would be seen in the absence of occluders, as the user navigates or the targets move. The multiperspective images are rendered at interactive rates, leveraging the camera model's fast projection operation. We demonstrate the framework on terrain, urban, and molecular biology geometric datasets, as well as on volume rendered density datasets. PMID:27045911

  6. Lightness Constancy in Surface Visualization.

    PubMed

    Szafir, Danielle Albers; Sarikaya, Alper; Gleicher, Michael

    2016-09-01

    Color is a common channel for displaying data in surface visualization, but is affected by the shadows and shading used to convey surface depth and shape. Understanding encoded data in the context of surface structure is critical for effective analysis in a variety of domains, such as in molecular biology. In the physical world, lightness constancy allows people to accurately perceive shadowed colors; however, its effectiveness in complex synthetic environments such as surface visualizations is not well understood. We report a series of crowdsourced and laboratory studies that confirm the existence of lightness constancy effects for molecular surface visualizations using ambient occlusion. We provide empirical evidence of how common visualization design decisions can impact viewers' abilities to accurately identify encoded surface colors. These findings suggest that lightness constancy aids in understanding color encodings in surface visualization and reveal a correlation between visualization techniques that improve color interpretation in shadow and those that enhance perceptions of surface depth. These results collectively suggest that understanding constancy in practice can inform effective visualization design. PMID:26584495

  7. Visualization of localization microscopy data.

    PubMed

    Baddeley, David; Cannell, Mark B; Soeller, Christian

    2010-02-01

    Localization microscopy techniques based on localizing single fluorophore molecules now routinely achieve accuracies better than 30 nm. Unlike conventional optical microscopies, localization microscopy experiments do not generate an image but a list of discrete coordinates of estimated fluorophore positions. Data display and analysis therefore generally require visualization methods that translate the position data into conventional images. Here we investigate the properties of several widely used visualization techniques and show that a commonly used algorithm based on rendering Gaussians may lead to a 1.44-fold loss of resolution. Existing methods typically do not explicitly take sampling considerations into account and thus may produce spurious structures. We present two additional visualization algorithms, an adaptive histogram method based on quad-trees and a Delaunay triangulation based visualization of point data that address some of these deficiencies. The new visualization methods are designed to suppress erroneous detail in poorly sampled image areas but avoid loss of resolution in well-sampled regions. A number of criteria for scoring visualization methods are developed as a guide for choosing among visualization methods and are used to qualitatively compare various algorithms. PMID:20082730

  8. Visualization of volumetric seismic data

    NASA Astrophysics Data System (ADS)

    Spickermann, Dela; Böttinger, Michael; Ashfaq Ahmed, Khawar; Gajewski, Dirk

    2015-04-01

    Mostly driven by demands of high quality subsurface imaging, highly specialized tools and methods have been developed to support the processing, visualization and interpretation of seismic data. 3D seismic data acquisition and 4D time-lapse seismic monitoring are well-established techniques in academia and industry, producing large amounts of data to be processed, visualized and interpreted. In this context, interactive 3D visualization methods proved to be valuable for the analysis of 3D seismic data cubes - especially for sedimentary environments with continuous horizons. In crystalline and hard rock environments, where hydraulic stimulation techniques may be applied to produce geothermal energy, interpretation of the seismic data is a more challenging problem. Instead of continuous reflection horizons, the imaging targets are often steep dipping faults, causing a lot of diffractions. Without further preprocessing these geological structures are often hidden behind the noise in the data. In this PICO presentation we will present a workflow consisting of data processing steps, which enhance the signal-to-noise ratio, followed by a visualization step based on the use the commercially available general purpose 3D visualization system Avizo. Specifically, we have used Avizo Earth, an extension to Avizo, which supports the import of seismic data in SEG-Y format and offers easy access to state-of-the-art 3D visualization methods at interactive frame rates, even for large seismic data cubes. In seismic interpretation using visualization, interactivity is a key requirement for understanding complex 3D structures. In order to enable an easy communication of the insights gained during the interactive visualization process, animations of the visualized data were created which support the spatial understanding of the data.

  9. Effective Visualization of Temporal Ensembles.

    PubMed

    Hao, Lihua; Healey, Christopher G; Bass, Steffen A

    2016-01-01

    An ensemble is a collection of related datasets, called members, built from a series of runs of a simulation or an experiment. Ensembles are large, temporal, multidimensional, and multivariate, making them difficult to analyze. Another important challenge is visualizing ensembles that vary both in space and time. Initial visualization techniques displayed ensembles with a small number of members, or presented an overview of an entire ensemble, but without potentially important details. Recently, researchers have suggested combining these two directions, allowing users to choose subsets of members to visualization. This manual selection process places the burden on the user to identify which members to explore. We first introduce a static ensemble visualization system that automatically helps users locate interesting subsets of members to visualize. We next extend the system to support analysis and visualization of temporal ensembles. We employ 3D shape comparison, cluster tree visualization, and glyph based visualization to represent different levels of detail within an ensemble. This strategy is used to provide two approaches for temporal ensemble analysis: (1) segment based ensemble analysis, to capture important shape transition time-steps, clusters groups of similar members, and identify common shape changes over time across multiple members; and (2) time-step based ensemble analysis, which assumes ensemble members are aligned in time by combining similar shapes at common time-steps. Both approaches enable users to interactively visualize and analyze a temporal ensemble from different perspectives at different levels of detail. We demonstrate our techniques on an ensemble studying matter transition from hadronic gas to quark-gluon plasma during gold-on-gold particle collisions. PMID:26529728

  10. Foundations of Advanced Information Visualization for Visual Information (Retrieval) Systems.

    ERIC Educational Resources Information Center

    Rorvig, Mark; Hemmje, Matthias

    1999-01-01

    Reports on a conference workshop that addressed Visual Information Retrieval Interfaces (VIRIs). Topics include evaluation methods; task dimension for evaluating VIRIs; efforts to fund European development of VIRIs; metrics, including cosine vector; navigation among documents; and interactions with users. (LRW)

  11. Hemispace-visual field interactions in visual extinction.

    PubMed

    Rapcsak, S Z; Watson, R T; Heilman, K M

    1987-09-01

    Visual extinction was studied in a patient with neglect from a right hemispheric lesion. Extinction occurred during double simultaneous stimulation within the same visual hemi-field (VHF). This finding suggests that interhemispheric rivalry is not a critical factor. During double simultaneous stimulation within the same VHF as well as with stimuli in different VHFs, the severity of extinction was determined by both the retinotopic and the hemi-spatial position of the extinguished stimulus. The location of the other stimulus, however, did not seem relevant. It is proposed that damage to a corticolimbic-reticular system reduces attentional capacity and that extinction during double simultaneous stimulation in the visual modality reflects an inability to distribute the limited attentional resources equally to two different locations. The severity of extinction is a measure of an unequal distribution of attention along a gradient within visual space. PMID:3668561

  12. A Visual Analytics Agenda

    SciTech Connect

    Thomas, James J.; Cook, Kristin A.

    2006-01-01

    The September 11, 2001 attacks on the World Trade Center and the Pentagon were a wakeup call to the United States. The Hurricane Katrina disaster in August 2005 provided yet another reminder that unprecedented disasters can and do occur. And when they do, we must be able to analyze large amounts of disparate data in order to make sense of exceedingly complex situations and save lives. Responding to an Urgent Need This need to support penetrating analysis of massive data collections is not limited to security, though. From systems biology to human health, from evaluations of product effectiveness to strategizing for competitive positioning, to assessing the results of marketing campaigns, there is a critical need to analyze very large amounts of complex information. Simply put, our ability to collect data far outstrips our ability to analyze the data we have collected. Following the September 11 attacks, the government initiated efforts to evaluate the technologies that are available today or are on the near horizon. Two National Academy of Sciences reports identified serious gaps in the technologies. Making the Nation Safer [Alberts & Wulf, 2002] describes how science and technology can be advanced to protect the nation against terrorism. Information Technology for Counterterrorism [Hennessy et al., 2003] expands upon the work of Making the Nation Safer, focusing specifically on the opportunities for information technology to help counter and respond to terrorist attacks. Significant research progress has been made in disciplines such as scientific and information visualization, statistically-based exploratory and confirmatory analysis, data and knowledge representations, and perceptual and cognitive sciences, However, the research community has not adequately addressed the integration of these subspecialties to advance the ability for analysts to apply their expert human judgment to complex data in pressure-filled situations. Although some research is being done

  13. MISR Instrument Data Visualization

    NASA Technical Reports Server (NTRS)

    Nelson, David; Garay, Michael; Diner, David; Thompson, Charles; Hall, Jeffrey; Rheingans, Brian; Mazzoni, Dominic

    2008-01-01

    The MISR Interactive eXplorer (MINX) software functions both as a general-purpose tool to visualize Multiangle Imaging SpectroRadiometer (MISR) instrument data, and as a specialized tool to analyze properties of smoke, dust, and volcanic plumes. It includes high-level options to create map views of MISR orbit locations; scrollable, single-camera RGB (red-greenblue) images of MISR level 1B2 (L1B2) radiance data; and animations of the nine MISR camera images that provide a 3D perspective of the scenes that MISR has acquired. NASA Tech Briefs, September 2008 55 The plume height capability provides an accurate estimate of the injection height of plumes that is needed by air quality and climate modelers. MISR provides global high-quality stereo height information, and this program uses that information to perform detailed height retrievals of aerosol plumes. Users can interactively digitize smoke, dust, or volcanic plumes and automatically retrieve heights and winds, and can also archive MISR albedos and aerosol properties, as well as fire power and brightness temperatures associated with smoke plumes derived from Moderate Resolution Imaging Spectroradiometer (MODIS) data. Some of the specialized options in MINX enable the user to do other tasks. Users can display plots of top-of-atmosphere bidirectional reflectance factors (BRFs) versus camera-angle for selected pixels. Images and animations can be saved to disk in various formats. Also, users can apply a geometric registration correction to warp camera images when the standard processing correction is inadequate. It is possible to difference the images of two MISR orbits that share a path (identical ground track), as well as to construct pseudo-color images by assigning different combinations of MISR channels (angle or spectral band) to the RGB display channels. This software is an interactive application written in IDL and compiled into an IDL Virtual Machine (VM) ".sav" file.

  14. Information visualization: Beyond traditional engineering

    NASA Technical Reports Server (NTRS)

    Thomas, James J.

    1995-01-01

    This presentation addresses a different aspect of the human-computer interface; specifically the human-information interface. This interface will be dominated by an emerging technology called Information Visualization (IV). IV goes beyond the traditional views of computer graphics, CADS, and enables new approaches for engineering. IV specifically must visualize text, documents, sound, images, and video in such a way that the human can rapidly interact with and understand the content structure of information entities. IV is the interactive visual interface between humans and their information resources.

  15. Flight simulator with spaced visuals

    NASA Technical Reports Server (NTRS)

    Gilson, Richard D. (Inventor); Thurston, Marlin O. (Inventor); Olson, Karl W. (Inventor); Ventola, Ronald W. (Inventor)

    1980-01-01

    A flight simulator arrangement wherein a conventional, movable base flight trainer is combined with a visual cue display surface spaced a predetermined distance from an eye position within the trainer. Thus, three degrees of motive freedom (roll, pitch and crab) are provided for a visual proprioceptive, and vestibular cue system by the trainer while the remaining geometric visual cue image alterations are developed by a video system. A geometric approach to computing runway image eliminates a need to electronically compute trigonometric functions, while utilization of a line generator and designated vanishing point at the video system raster permits facile development of the images of the longitudinal edges of the runway.

  16. Peripheral visual response time and visual display layout

    NASA Technical Reports Server (NTRS)

    Haines, R. F.

    1974-01-01

    Experiments were performed on a group of 42 subjects in a study of their peripheral visual response time to visual signals under positive acceleration, during prolonged bedrest, at passive 70 deg headup body lift, under exposures to high air temperatures and high luminance levels, and under normal stress-free laboratory conditions. Diagrams are plotted for mean response times to white, red, yellow, green, and blue stimuli under different conditions.

  17. Visual rehabilitation: visual scanning, multisensory stimulation and vision restoration trainings

    PubMed Central

    Dundon, Neil M.; Bertini, Caterina; Làdavas, Elisabetta; Sabel, Bernhard A.; Gall, Carolin

    2015-01-01

    Neuropsychological training methods of visual rehabilitation for homonymous vision loss caused by postchiasmatic damage fall into two fundamental paradigms: “compensation” and “restoration”. Existing methods can be classified into three groups: Visual Scanning Training (VST), Audio-Visual Scanning Training (AViST) and Vision Restoration Training (VRT). VST and AViST aim at compensating vision loss by training eye scanning movements, whereas VRT aims at improving lost vision by activating residual visual functions by training light detection and discrimination of visual stimuli. This review discusses the rationale underlying these paradigms and summarizes the available evidence with respect to treatment efficacy. The issues raised in our review should help guide clinical care and stimulate new ideas for future research uncovering the underlying neural correlates of the different treatment paradigms. We propose that both local “within-system” interactions (i.e., relying on plasticity within peri-lesional spared tissue) and changes in more global “between-system” networks (i.e., recruiting alternative visual pathways) contribute to both vision restoration and compensatory rehabilitation, which ultimately have implications for the rehabilitation of cognitive functions. PMID:26283935

  18. Visual Handicaps of Mentally Handicapped People.

    ERIC Educational Resources Information Center

    Ellis, David

    1979-01-01

    Recent literature concerning visual handicaps of mentally handicapped people is reviewed. Topic areas considered are etiology and epidemiology, visual acuity, color vision, and educational techniques. (Author)

  19. FAITH Water Channel Flow Visualization

    NASA Video Gallery

    Water channel flow visualization experiments are performed on a three dimensional model of a small hill. This experiment was part of a series of measurements of the complex fluid flow around the hi...

  20. Visual direction finding by fishes

    NASA Technical Reports Server (NTRS)

    Waterman, T. H.

    1972-01-01

    The use of visual orientation, in the absence of landmarks, for underwater direction finding exercises by fishes is reviewed. Celestial directional clues observed directly near the water surface or indirectly at an asymptatic depth are suggested as possible orientation aids.

  1. Visual Data Analysis for Satellites

    NASA Technical Reports Server (NTRS)

    Lau, Yee; Bhate, Sachin; Fitzpatrick, Patrick

    2008-01-01

    The Visual Data Analysis Package is a collection of programs and scripts that facilitate visual analysis of data available from NASA and NOAA satellites, as well as dropsonde, buoy, and conventional in-situ observations. The package features utilities for data extraction, data quality control, statistical analysis, and data visualization. The Hierarchical Data Format (HDF) satellite data extraction routines from NASA's Jet Propulsion Laboratory were customized for specific spatial coverage and file input/output. Statistical analysis includes the calculation of the relative error, the absolute error, and the root mean square error. Other capabilities include curve fitting through the data points to fill in missing data points between satellite passes or where clouds obscure satellite data. For data visualization, the software provides customizable Generic Mapping Tool (GMT) scripts to generate difference maps, scatter plots, line plots, vector plots, histograms, timeseries, and color fill images.

  2. Reconfigurable Auditory-Visual Display

    NASA Technical Reports Server (NTRS)

    Begault, Durand R. (Inventor); Anderson, Mark R. (Inventor); McClain, Bryan (Inventor); Miller, Joel D. (Inventor)

    2008-01-01

    System and method for visual and audible communication between a central operator and N mobile communicators (N greater than or equal to 2), including an operator transceiver and interface, configured to receive and display, for the operator, visually perceptible and audibly perceptible signals from each of the mobile communicators. The interface (1) presents an audible signal from each communicator as if the audible signal is received from a different location relative to the operator and (2) allows the operator to select, to assign priority to, and to display, the visual signals and the audible signals received from a specified communicator. Each communicator has an associated signal transmitter that is configured to transmit at least one of the visual signals and the audio signal associated with the communicator, where at least one of the signal transmitters includes at least one sensor that senses and transmits a sensor value representing a selected environmental or physiological parameter associated with the communicator.

  3. Photographic measurements of visual binaries

    NASA Astrophysics Data System (ADS)

    Scardia, M.; Gellera, D.

    1992-11-01

    The results of 164 photographic measurements of 50 large and, generally, neglected visual double stars are presented. The measurements have been made at Brera-Merate Observatory during the years 1984-88 with Zen astrograph.

  4. Dynamic visualization of data streams

    DOEpatents

    Wong, Pak Chung; Foote, Harlan P.; Adams, Daniel R.; Cowley, Wendy E.; Thomas, James J.

    2009-07-07

    One embodiment of the present invention includes a data communication subsystem to receive a data stream, and a data processing subsystem responsive to the data communication subsystem to generate a visualization output based on a group of data vectors corresponding to a first portion of the data stream. The processing subsystem is further responsive to a change in rate of receipt of the data to modify the visualization output with one or more other data vectors corresponding to a second portion of the data stream as a function of eigenspace defined with the group of data vectors. The system further includes a display device responsive to the visualization output to provide a corresponding visualization.

  5. Visualizing Dynamic Data with Maps.

    PubMed

    Mashima, Daisuke; Kobourov, Stephen G; Hu, Yifan

    2012-09-01

    Maps offer a familiar way to present geographic data (continents, countries), and additional information (topography, geology), can be displayed with the help of contours and heat-map overlays. In this paper, we consider visualizing large-scale dynamic relational data by taking advantage of the geographic map metaphor. We describe a map-based visualization system which uses animation to convey dynamics in large data sets, and which aims to preserve the viewer's mental map while also offering readable views at all times. Our system is fully functional and has been used to visualize user traffic on the Internet radio station last.fm, as well as TV-viewing patterns from an IPTV service. All map images in this paper are available in high-resolution at [1] as are several movies illustrating the dynamic visualization. PMID:22184261

  6. Visual Literacy: A Selected Bibliography.

    ERIC Educational Resources Information Center

    Fork, Donald J., Ed.

    Listed are nearly 300 books, articles, and audiovisual materials relating to visual literacy. Listings for written materials include author, title, publisher, and date of publication. Audiovisual listings include title, media type, date of production, and distributor. (EMH)

  7. GROTTO visualization for decision support

    NASA Astrophysics Data System (ADS)

    Lanzagorta, Marco O.; Kuo, Eddy; Uhlmann, Jeffrey K.

    1998-08-01

    In this paper we describe the GROTTO visualization projects being carried out at the Naval Research Laboratory. GROTTO is a CAVE-like system, that is, a surround-screen, surround- sound, immersive virtual reality device. We have explored the GROTTO visualization in a variety of scientific areas including oceanography, meteorology, chemistry, biochemistry, computational fluid dynamics and space sciences. Research has emphasized the applications of GROTTO visualization for military, land and sea-based command and control. Examples include the visualization of ocean current models for the simulation and stud of mine drifting and, inside our computational steering project, the effects of electro-magnetic radiation on missile defense satellites. We discuss plans to apply this technology to decision support applications involving the deployment of autonomous vehicles into contaminated battlefield environments, fire fighter control and hostage rescue operations.

  8. Visual cues for data mining

    NASA Astrophysics Data System (ADS)

    Rogowitz, Bernice E.; Rabenhorst, David A.; Gerth, John A.; Kalin, Edward B.

    1996-04-01

    This paper describes a set of visual techniques, based on principles of human perception and cognition, which can help users analyze and develop intuitions about tabular data. Collections of tabular data are widely available, including, for example, multivariate time series data, customer satisfaction data, stock market performance data, multivariate profiles of companies and individuals, and scientific measurements. In our approach, we show how visual cues can help users perform a number of data mining tasks, including identifying correlations and interaction effects, finding clusters and understanding the semantics of cluster membership, identifying anomalies and outliers, and discovering multivariate relationships among variables. These cues are derived from psychological studies on perceptual organization, visual search, perceptual scaling, and color perception. These visual techniques are presented as a complement to the statistical and algorithmic methods more commonly associated with these tasks, and provide an interactive interface for the human analyst.

  9. Signature Visualization of Software Binaries

    SciTech Connect

    Panas, T

    2008-07-01

    In this paper we present work on the visualization of software binaries. In particular, we utilize ROSE, an open source compiler infrastructure, to pre-process software binaries, and we apply a landscape metaphor to visualize the signature of each binary (malware). We define the signature of a binary as a metric-based layout of the functions contained in the binary. In our initial experiment, we visualize the signatures of a series of computer worms that all originate from the same line. These visualizations are useful for a number of reasons. First, the images reveal how the archetype has evolved over a series of versions of one worm. Second, one can see the distinct changes between version. This allows the viewer to form conclusions about the development cycle of a particular worm.

  10. Virtual Environments in Scientific Visualization

    NASA Technical Reports Server (NTRS)

    Bryson, Steve; Lisinski, T. A. (Technical Monitor)

    1994-01-01

    Virtual environment technology is a new way of approaching the interface between computers and humans. Emphasizing display and user control that conforms to the user's natural ways of perceiving and thinking about space, virtual environment technologies enhance the ability to perceive and interact with computer generated graphic information. This enhancement potentially has a major effect on the field of scientific visualization. Current examples of this technology include the Virtual Windtunnel being developed at NASA Ames Research Center. Other major institutions such as the National Center for Supercomputing Applications and SRI International are also exploring this technology. This talk will be describe several implementations of virtual environments for use in scientific visualization. Examples include the visualization of unsteady fluid flows (the virtual windtunnel), the visualization of geodesics in curved spacetime, surface manipulation, and examples developed at various laboratories.

  11. Engineering visualization utilizing advanced animation

    NASA Technical Reports Server (NTRS)

    Sabionski, Gunter R.; Robinson, Thomas L., Jr.

    1989-01-01

    Engineering visualization is the use of computer graphics to depict engineering analysis and simulation in visual form from project planning through documentation. Graphics displays let engineers see data represented dynamically which permits the quick evaluation of results. The current state of graphics hardware and software generally allows the creation of two types of 3D graphics. The use of animated video as an engineering visualization tool is presented. The engineering, animation, and videography aspects of animated video production are each discussed. Specific issues include the integration of staffing expertise, hardware, software, and the various production processes. A detailed explanation of the animation process reveals the capabilities of this unique engineering visualization method. Automation of animation and video production processes are covered and future directions are proposed.

  12. Developing Tests of Visual Dependency

    NASA Technical Reports Server (NTRS)

    Kindrat, Alexandra N.

    2011-01-01

    Astronauts develop neural adaptive responses to microgravity during space flight. Consequently these adaptive responses cause maladaptive disturbances in balance and gait function when astronauts return to Earth and are re-exposed to gravity. Current research in the Neuroscience Laboratories at NASA-JSC is focused on understanding how exposure to space flight produces post-flight disturbances in balance and gait control and developing training programs designed to facilitate the rapid recovery of functional mobility after space flight. In concert with these disturbances, astronauts also often report an increase in their visual dependency during space flight. To better understand this phenomenon, studies were conducted with specially designed training programs focusing on visual dependency with the aim to understand and enhance subjects ability to rapidly adapt to novel sensory situations. The Rod and Frame test (RFT) was used first to assess an individual s visual dependency, using a variety of testing techniques. Once assessed, subjects were asked to perform two novel tasks under transformation (both the Pegboard and Cube Construction tasks). Results indicate that head position cues and initial visual test conditions had no effect on an individual s visual dependency scores. Subjects were also able to adapt to the manual tasks after several trials. Individual visual dependency correlated with ability to adapt manual to a novel visual distortion only for the cube task. Subjects with higher visual dependency showed decreased ability to adapt to this task. Ultimately, it was revealed that the RFT may serve as an effective prediction tool to produce individualized adaptability training prescriptions that target the specific sensory profile of each crewmember.

  13. Ultrascale Visualization of Climate Data

    SciTech Connect

    Williams, Dean N.; Bremer, Peer-Timo; Doutriaux, Charles; Patchett, John; Williams, Sean; Shipman, Galen M.; Miller, Ross G.; Pugmire, Dave; Smith, Brian E.; Steed, Chad A.; Bethel, E. Wes; Childs, Hank; Krishnan, Harinarayan; Silva, Claudio T.; Santos, Emanuele; Koop, David; Ellqvist, Tommy; Poco, Jorge; Geveci, Berk; Chaudhary, Aashish; Bauer, Andy; Pletzer, Alexander; Kindig, Dave; Potter, Gerald; Maxwell, Thomas P.

    2013-09-01

    To support interactive visualization and analysis of complex, large-scale climate data sets, UV-CDAT integrates a powerful set of scientific computing libraries and applications to foster more efficient knowledge discovery. Connected through a provenance framework, the UV-CDAT components can be loosely coupled for fast integration or tightly coupled for greater functionality and communication with other components. This framework addresses many challenges in the interactive visual analysis of distributed large-scale data for the climate community.

  14. Alternative representations of visual space

    NASA Technical Reports Server (NTRS)

    Arditi, Aries

    1989-01-01

    This paper discusses a method for delineating and testing hypotheses about the relationship between the retinal images and the three-dimensional visual space they serve. The method may be used under the conditions of changing eye position, occlusion by structures that are part of or are mounted on the observer, occlusions by environmental objects, defects of the visual field, and variables that alter the focus of environmental imagery on the retinas.

  15. Cortical Visual Impairment: New Directions

    PubMed Central

    Good, William V.

    2009-01-01

    Cortical visual impairment is the leading cause of bilateral low vision in children in the U.S., yet very little research is being done to find new diagnostic measures and treatments. Dr. Velma Dobson's pioneering work on visual assessments of developmentally delayed children stands out as highly significant in this field. Future research will assess new diagnostic measures, including advanced imaging techniques. In addition, research will evaluate methods to prevent, treat, and rehabilitate infants and children afflicted with this condition. PMID:19417710

  16. Visualization and data analysis outbrief

    SciTech Connect

    Ahrens, James P; Monroe, Laura M; Tomlinson, Robert D; Rodgers, David; Springmeyer, Becky; Harrison, Cyrus; Pavlakos, Dino

    2010-12-21

    Talk about Visualization and Data Analysis Current State and Exascale challenges. The goal is to update with colleagues our current status in our research. What challenges we need to face, and what future possibilities. Our goal is to propose to approach the problems with the visualization approach operating on the supercomputing platform. This presentation is about the L2 Milestone, we intend to discuss further possibilities of enhancing our results and optimizing our solutions.

  17. Data mining and visualization techniques

    DOEpatents

    Wong, Pak Chung; Whitney, Paul; Thomas, Jim

    2004-03-23

    Disclosed are association rule identification and visualization methods, systems, and apparatus. An association rule in data mining is an implication of the form X.fwdarw.Y where X is a set of antecedent items and Y is the consequent item. A unique visualization technique that provides multiple antecedent, consequent, confidence, and support information is disclosed to facilitate better presentation of large quantities of complex association rules.

  18. Visual Analytics Technology Transition Progress

    SciTech Connect

    Scholtz, Jean; Cook, Kristin A.; Whiting, Mark A.; Lemon, Douglas K.; Greenblatt, Howard

    2009-09-23

    The authors provide a description of the transition process for visual analytic tools and contrast this with the transition process for more traditional software tools. This paper takes this into account and describes a user-oriented approach to technology transition including a discussion of key factors that should be considered and adapted to each situation. The progress made in transitioning visual analytic tools in the past five years is described and the challenges that remain are enumerated.

  19. Visual ergonomics in the workplace.

    PubMed

    Anshel, Jeffrey R

    2007-10-01

    This article provides information about visual function and its role in workplace productivity. By understanding the connection among comfort, health, and productivity and knowing the many options for effective ergonomic workplace lighting, the occupational health nurse can be sensitive to potential visual stress that can affect all areas of performance. Computer vision syndrome-the eye and vision problems associated with near work experienced during or related to computer use-is defined and solutions to it are discussed. PMID:17969539

  20. Managing Complexity in Multidisciplinary Visualization

    NASA Technical Reports Server (NTRS)

    Miceli, Kristina D.; Lasinski, T. A. (Technical Monitor)

    1995-01-01

    As high performance computing technology progresses, computational simulations are becoming more advanced in their capabilities. In the computational aerosciences domain, single discipline steady-state simulations computed on a single grid are far from the state-of-the-art. In their place are complex, time-dependent multidisciplinary simulations that attempt to model a given geometry more realistically. The product of these multidisciplinary simulations is a massive amount of data stored in different formats, grid topologies, units of measure, etc., as a result of the differences in the simulated physical domains. In addition to the challenges posed by setting up and performing the simulation, additional challenges exist in analyzing computational results. Visualization plays an important role in the advancement of multidisciplinary simulations. To date, visualization has been used to aid in the interpretation of large amounts of simulation data. Because the human visual system is effective in digesting a large amount of information presented graphically, visualization has helped simulation scientists to understand complex simulation results. As these simulations become even more complex, integrating several different physical domains, visualization will be critical to digest the massive amount of information. Another important role for visualization is to provide a common communication medium from which the domain scientists can use to develop, debug, and analyze their work. Multidisciplinary analyses are the next step in simulation technology, not only in computational aerosciences, but in many other areas such as global climate modeling. Visualization researchers must understand and work towards the challenges posed by multidisciplinary simulation scenarios. This paper addresses some of these challenges, describing technologies that must be investigated to create a useful visualization analysis tool for domain scientists.

  1. Chemistry for the Visually Impaired

    NASA Astrophysics Data System (ADS)

    Ratliff, Judy L.

    1997-06-01

    Methods used to try to provide a valuable experience for visually impaired students in a general education or an introductory chemistry class are discussed. Modifications that can be made cheaply and with little time commitment which will allow visually impaired students to participate productively in the laboratory are examined. A conductivity tester that cost less than $4.00 to construct, is easy to assemble, very rugged, and provides a great deal of entertainment for sighted and non-sighted students is described.

  2. Saccade Adaptation and Visual Uncertainty

    PubMed Central

    Souto, David; Gegenfurtner, Karl R.; Schütz, Alexander C.

    2016-01-01

    Visual uncertainty may affect saccade adaptation in two complementary ways. First, an ideal adaptor should take into account the reliability of visual information for determining the amount of correction, predicting that increasing visual uncertainty should decrease adaptation rates. We tested this by comparing observers' direction discrimination and adaptation rates in an intra-saccadic-step paradigm. Second, clearly visible target steps may generate a slower adaptation rate since the error can be attributed to an external cause, instead of an internal change in the visuo-motor mapping that needs to be compensated. We tested this prediction by measuring saccade adaptation to different step sizes. Most remarkably, we found little correlation between estimates of visual uncertainty and adaptation rates and no slower adaptation rates with more visible step sizes. Additionally, we show that for low contrast targets backward steps are perceived as stationary after the saccade, but that adaptation rates are independent of contrast. We suggest that the saccadic system uses different position signals for adapting dysmetric saccades and for generating a trans-saccadic stable visual percept, explaining that saccade adaptation is found to be independent of visual uncertainty. PMID:27252635

  3. [Visual Texture Agnosia in Humans].

    PubMed

    Suzuki, Kyoko

    2015-06-01

    Visual object recognition requires the processing of both geometric and surface properties. Patients with occipital lesions may have visual agnosia, which is impairment in the recognition and identification of visually presented objects primarily through their geometric features. An analogous condition involving the failure to recognize an object by its texture may exist, which can be called visual texture agnosia. Here we present two cases with visual texture agnosia. Case 1 had left homonymous hemianopia and right upper quadrantanopia, along with achromatopsia, prosopagnosia, and texture agnosia, because of damage to his left ventromedial occipitotemporal cortex and right lateral occipito-temporo-parietal cortex due to multiple cerebral embolisms. Although he showed difficulty matching and naming textures of real materials, he could readily name visually presented objects by their contours. Case 2 had right lower quadrantanopia, along with impairment in stereopsis and recognition of texture in 2D images, because of subcortical hemorrhage in the left occipitotemporal region. He failed to recognize shapes based on texture information, whereas shape recognition based on contours was well preserved. Our findings, along with those of three reported cases with texture agnosia, indicate that there are separate channels for processing texture, color, and geometric features, and that the regions around the left collateral sulcus are crucial for texture processing. PMID:26062585

  4. Visual exploration of nasal airflow.

    PubMed

    Zachow, Stefan; Muigg, Philipp; Hildebrandt, Thomas; Doleisch, Helmut; Hege, Hans-Christian

    2009-01-01

    Rhinologists are often faced with the challenge of assessing nasal breathing from a functional point of view to derive effective therapeutic interventions. While the complex nasal anatomy can be revealed by visual inspection and medical imaging, only vague information is available regarding the nasal airflow itself: Rhinomanometry delivers rather unspecific integral information on the pressure gradient as well as on total flow and nasal flow resistance. In this article we demonstrate how the understanding of physiological nasal breathing can be improved by simulating and visually analyzing nasal airflow, based on an anatomically correct model of the upper human respiratory tract. In particular we demonstrate how various Information Visualization (InfoVis) techniques, such as a highly scalable implementation of parallel coordinates, time series visualizations, as well as unstructured grid multi-volume rendering, all integrated within a multiple linked views framework, can be utilized to gain a deeper understanding of nasal breathing. Evaluation is accomplished by visual exploration of spatio-temporal airflow characteristics that include not only information on flow features but also on accompanying quantities such as temperature and humidity. To our knowledge, this is the first in-depth visual exploration of the physiological function of the nose over several simulated breathing cycles under consideration of a complete model of the nasal airways, realistic boundary conditions, and all physically relevant time-varying quantities. PMID:19834215

  5. Visual inspection for CTBT verification

    SciTech Connect

    Hawkins, W.; Wohletz, K.

    1997-03-01

    On-site visual inspection will play an essential role in future Comprehensive Test Ban Treaty (CTBT) verification. Although seismic and remote sensing techniques are the best understood and most developed methods for detection of evasive testing of nuclear weapons, visual inspection can greatly augment the certainty and detail of understanding provided by these more traditional methods. Not only can visual inspection offer ``ground truth`` in cases of suspected nuclear testing, but it also can provide accurate source location and testing media properties necessary for detailed analysis of seismic records. For testing in violation of the CTBT, an offending party may attempt to conceal the test, which most likely will be achieved by underground burial. While such concealment may not prevent seismic detection, evidence of test deployment, location, and yield can be disguised. In this light, if a suspicious event is detected by seismic or other remote methods, visual inspection of the event area is necessary to document any evidence that might support a claim of nuclear testing and provide data needed to further interpret seismic records and guide further investigations. However, the methods for visual inspection are not widely known nor appreciated, and experience is presently limited. Visual inspection can be achieved by simple, non-intrusive means, primarily geological in nature, and it is the purpose of this report to describe the considerations, procedures, and equipment required to field such an inspection.

  6. Spatial resolution in visual memory.

    PubMed

    Ben-Shalom, Asaf; Ganel, Tzvi

    2015-04-01

    Representations in visual short-term memory are considered to contain relatively elaborated information on object structure. Conversely, representations in earlier stages of the visual hierarchy are thought to be dominated by a sensory-based, feed-forward buildup of information. In four experiments, we compared the spatial resolution of different object properties between two points in time along the processing hierarchy in visual short-term memory. Subjects were asked either to estimate the distance between objects or to estimate the size of one of the objects' features under two experimental conditions, of either a short or a long delay period between the presentation of the target stimulus and the probe. When different objects were referred to, similar spatial resolution was found for the two delay periods, suggesting that initial processing stages are sensitive to object-based properties. Conversely, superior resolution was found for the short, as compared with the long, delay when features were referred to. These findings suggest that initial representations in visual memory are hybrid in that they allow fine-grained resolution for object features alongside normal visual sensitivity to the segregation between objects. The findings are also discussed in reference to the distinction made in earlier studies between visual short-term memory and iconic memory. PMID:25112394

  7. Novel Scientific Visualization Interfaces for Interactive Information Visualization and Sharing

    NASA Astrophysics Data System (ADS)

    Demir, I.; Krajewski, W. F.

    2012-12-01

    As geoscientists are confronted with increasingly massive datasets from environmental observations to simulations, one of the biggest challenges is having the right tools to gain scientific insight from the data and communicate the understanding to stakeholders. Recent developments in web technologies make it easy to manage, visualize and share large data sets with general public. Novel visualization techniques and dynamic user interfaces allow users to interact with data, and modify the parameters to create custom views of the data to gain insight from simulations and environmental observations. This requires developing new data models and intelligent knowledge discovery techniques to explore and extract information from complex computational simulations or large data repositories. Scientific visualization will be an increasingly important component to build comprehensive environmental information platforms. This presentation provides an overview of the trends and challenges in the field of scientific visualization, and demonstrates information visualization and communication tools in the Iowa Flood Information System (IFIS), developed within the light of these challenges. The IFIS is a web-based platform developed by the Iowa Flood Center (IFC) to provide access to and visualization of flood inundation maps, real-time flood conditions, flood forecasts both short-term and seasonal, and other flood-related data for communities in Iowa. The key element of the system's architecture is the notion of community. Locations of the communities, those near streams and rivers, define basin boundaries. The IFIS provides community-centric watershed and river characteristics, weather (rainfall) conditions, and streamflow data and visualization tools. Interactive interfaces allow access to inundation maps for different stage and return period values, and flooding scenarios with contributions from multiple rivers. Real-time and historical data of water levels, gauge heights, and

  8. A ventral visual stream reading center independent of visual experience.

    PubMed

    Reich, Lior; Szwed, Marcin; Cohen, Laurent; Amedi, Amir

    2011-03-01

    The visual word form area (VWFA) is a ventral stream visual area that develops expertise for visual reading. It is activated across writing systems and scripts and encodes letter strings irrespective of case, font, or location in the visual field with striking anatomical reproducibility across individuals. In the blind, comparable reading expertise can be achieved using Braille. This study investigated which area plays the role of the VWFA in the blind. One would expect this area to be at either parietal or bilateral occipital cortex, reflecting the tactile nature of the task and crossmodal plasticity, respectively. However, according to the metamodal theory, which suggests that brain areas are responsive to a specific representation or computation regardless of their input sensory modality, we predicted recruitment of the left-hemispheric VWFA, identically to the sighted. Using functional magnetic resonance imaging, we show that activation during Braille reading in blind individuals peaks in the VWFA, with striking anatomical consistency within and between blind and sighted. Furthermore, the VWFA is reading selective when contrasted to high-level language and low-level sensory controls. Thus, we propose that the VWFA is a metamodal reading area that develops specialization for reading regardless of visual experience. PMID:21333539

  9. The visual mismatch negativity elicited with visual speech stimuli

    PubMed Central

    Files, Benjamin T.; Auer, Edward T.; Bernstein, Lynne E.

    2013-01-01

    The visual mismatch negativity (vMMN), deriving from the brain's response to stimulus deviance, is thought to be generated by the cortex that represents the stimulus. The vMMN response to visual speech stimuli was used in a study of the lateralization of visual speech processing. Previous research suggested that the right posterior temporal cortex has specialization for processing simple non-speech face gestures, and the left posterior temporal cortex has specialization for processing visual speech gestures. Here, visual speech consonant-vowel (CV) stimuli with controlled perceptual dissimilarities were presented in an electroencephalography (EEG) vMMN paradigm. The vMMNs were obtained using the comparison of event-related potentials (ERPs) for separate CVs in their roles as deviant vs. their roles as standard. Four separate vMMN contrasts were tested, two with the perceptually far deviants (i.e., “zha” or “fa”) and two with the near deviants (i.e., “zha” or “ta”). Only far deviants evoked the vMMN response over the left posterior temporal cortex. All four deviants evoked vMMNs over the right posterior temporal cortex. The results are interpreted as evidence that the left posterior temporal cortex represents speech contrasts that are perceived as different consonants, and the right posterior temporal cortex represents face gestures that may not be perceived as different CVs. PMID:23882205

  10. Head Tracking of Auditory, Visual, and Audio-Visual Targets.

    PubMed

    Leung, Johahn; Wei, Vincent; Burgess, Martin; Carlile, Simon

    2015-01-01

    The ability to actively follow a moving auditory target with our heads remains unexplored even though it is a common behavioral response. Previous studies of auditory motion perception have focused on the condition where the subjects are passive. The current study examined head tracking behavior to a moving auditory target along a horizontal 100° arc in the frontal hemisphere, with velocities ranging from 20 to 110°/s. By integrating high fidelity virtual auditory space with a high-speed visual presentation we compared tracking responses of auditory targets against visual-only and audio-visual "bisensory" stimuli. Three metrics were measured-onset, RMS, and gain error. The results showed that tracking accuracy (RMS error) varied linearly with target velocity, with a significantly higher rate in audition. Also, when the target moved faster than 80°/s, onset and RMS error were significantly worst in audition the other modalities while responses in the visual and bisensory conditions were statistically identical for all metrics measured. Lastly, audio-visual facilitation was not observed when tracking bisensory targets. PMID:26778952

  11. Head Tracking of Auditory, Visual, and Audio-Visual Targets

    PubMed Central

    Leung, Johahn; Wei, Vincent; Burgess, Martin; Carlile, Simon

    2016-01-01

    The ability to actively follow a moving auditory target with our heads remains unexplored even though it is a common behavioral response. Previous studies of auditory motion perception have focused on the condition where the subjects are passive. The current study examined head tracking behavior to a moving auditory target along a horizontal 100° arc in the frontal hemisphere, with velocities ranging from 20 to 110°/s. By integrating high fidelity virtual auditory space with a high-speed visual presentation we compared tracking responses of auditory targets against visual-only and audio-visual “bisensory” stimuli. Three metrics were measured—onset, RMS, and gain error. The results showed that tracking accuracy (RMS error) varied linearly with target velocity, with a significantly higher rate in audition. Also, when the target moved faster than 80°/s, onset and RMS error were significantly worst in audition the other modalities while responses in the visual and bisensory conditions were statistically identical for all metrics measured. Lastly, audio-visual facilitation was not observed when tracking bisensory targets. PMID:26778952

  12. [Visual field defects in hydrocephalus].

    PubMed

    Kojima, N; Tamaki, N; Hosoda, K; Matsumoto, S

    1985-03-01

    Eight patients representing visual field defects associated with hydrocephalus are reviewed. Seven cases had aqueductal stenosis and one had congenital communicating hydrocephalus. We found five cases of defects in visual field typical of a chiasmal or optic nerve lesion: (1) inferior altitudinal hemianopia with inferior nasal quadrantanopia in the opposite eye; (2) inferior binasal quadrantanopia; (3) unilateral inferior nasal depression; (4) unilateral temporal defect; (5) bilateral central scotoma. In these cases CT demonstrated moderate or marked symmetrical dilatation of the third and lateral ventricles. Four out of five cases showed bulging of the third ventricle anteriorly into the sella turcica on CT or ventriculography. Other three patients had incongruous homonymous hemianopia. Characteristic asymmetrical dilatation of the lateral ventricles was noted in all three cases. The more enlarged lateral ventricles were ipsilateral with the affected visual pathways. The sites of lesion responsible for these field defects seemed to be optic tract in one case and optic radiation in two cases. Ventriculoperitoneal shunt was placed in five out of seven cases. Impaired visual field improved in three patients after shunt insertion. A 28-year-old female who had history of blurred vision fos 14 days showed improvement in visual acuity and field when the enlarged ventricles became slit-like by shunting. In the other two patients defects in visual fields improved in spite of consistent ventriculomegaly. These facts suggested that not only the mechanical forces with distended third ventricle but also increased intracranial pressure played an important role in producing visual field defects in hydrocephalic patients. PMID:3874634

  13. Which visual functions depend on intermediate visual regions? Insights from a case of developmental visual form agnosia.

    PubMed

    Gilaie-Dotan, Sharon

    2016-03-01

    A key question in visual neuroscience is the causal link between specific brain areas and perceptual functions; which regions are necessary for which visual functions? While the contribution of primary visual cortex and high-level visual regions to visual perception has been extensively investigated, the contribution of intermediate visual areas (e.g. V2/V3) to visual processes remains unclear. Here I review more than 20 visual functions (early, mid, and high-level) of LG, a developmental visual agnosic and prosopagnosic young adult, whose intermediate visual regions function in a significantly abnormal fashion as revealed through extensive fMRI and ERP investigations. While expectedly, some of LG's visual functions are significantly impaired, some of his visual functions are surprisingly normal (e.g. stereopsis, color, reading, biological motion). During the period of eight-year testing described here, LG trained on a perceptual learning paradigm that was successful in improving some but not all of his visual functions. Following LG's visual performance and taking into account additional findings in the field, I propose a framework for how different visual areas contribute to different visual functions, with an emphasis on intermediate visual regions. Thus, although rewiring and plasticity in the brain can occur during development to overcome and compensate for hindering developmental factors, LG's case seems to indicate that some visual functions are much less dependent on strict hierarchical flow than others, and can develop normally in spite of abnormal mid-level visual areas, thereby probably less dependent on intermediate visual regions. PMID:26209358

  14. Body image, visual working memory and visual mental imagery

    PubMed Central

    Uytman, Clare; Allen, Richard J.; Havelka, Jelena; Pearson, David G.

    2015-01-01

    Body dissatisfaction (BD) is a highly prevalent feature amongst females in society, with the majority of individuals regarding themselves to be overweight compared to their personal ideal, and very few self-describing as underweight. To date, explanations of this dramatic pattern have centred on extrinsic social and media factors, or intrinsic factors connected to individuals’ knowledge and belief structures regarding eating and body shape, with little research examining links between BD and basic cognitive mechanisms. This paper reports a correlational study in which visual and executive cognitive processes that could potentially impact on BD were assessed. Visual memory span and self-rated visual imagery were found to be predictive of BD, alongside a measure of inhibition derived from the Stroop task. In contrast, spatial memory and global precedence were not related to BD. Results are interpreted with reference to the influential multi-component model of working memory. PMID:25737815

  15. Visual attention mediated by biased competition in extrastriate visual cortex.

    PubMed Central

    Desimone, R

    1998-01-01

    According to conventional neurobiological accounts of visual attention, attention serves to enhance extrastriate neuronal responses to a stimulus at one spatial location in the visual field. However, recent results from recordings in extrastriate cortex of monkeys suggest that any enhancing effect of attention is best understood in the context of competitive interactions among neurons representing all of the stimuli present in the visual field. These interactions can be biased in favour of behaviourally relevant stimuli as a result of many different processes, both spatial and non-spatial, and both bottom-up and top-down. The resolution of this competition results in the suppression of the neuronal representations of behaviourally irrelevant stimuli in extrastriate cortex. A main source of top-down influence may derive from neuronal systems underlying working memory. PMID:9770219

  16. Visual snow: A thalamocortical dysrhythmia of the visual pathway?

    PubMed

    Lauschke, Jenny L; Plant, Gordon T; Fraser, Clare L

    2016-06-01

    In this paper we review the visual snow (VS) characteristics of a case cohort of 32 patients. History of symptoms and associated co-morbidities, ophthalmic examination, previous investigations and the results of intuitive colourimetry were collected and reviewed. VS symptoms follow a stereotypical description and are strongly associated with palinopsia, migraine and tinnitus, but also tremor. The condition is a chronic one and often results in misdiagnosis with psychiatric disorders or malingering. Colour filters, particularly in the yellow-blue colour spectrum, subjectively reduced symptoms of VS. There is neurobiological evidence for the syndrome of VS that links it with other disorders of visual and sensory processing such as migraine and tinnitus. Colour filters in the blue-yellow spectrum may alter the koniocellular pathway processing, which has a regulatory effect on background electroencephalographic rhythms, and may add weight to the hypothesis that VS is a thalamocortical dysrhythmia of the visual pathway. PMID:26791474

  17. Learning Related Visual Problems. ERIC Fact Sheet.

    ERIC Educational Resources Information Center

    ERIC Clearinghouse on Handicapped and Gifted Children, Reston, VA.

    This fact sheet defines vision, outlines the visual skills needed for school achievement (ocular motility, binocularity, eye-hand coordination skills, and visual form perception), and describes how visual problems are evaluated and treated. The fact sheet also lists clues to look for when a visual problem is suspected, including the appearance of…

  18. 49 CFR 213.365 - Visual inspections.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Visual inspections. 213.365 Section 213.365... Visual inspections. (a) All track shall be visually inspected in accordance with the schedule prescribed..., electrical, and other track inspection devices may be used to supplement visual inspection. If a vehicle...

  19. 49 CFR 213.365 - Visual inspections.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Visual inspections. 213.365 Section 213.365... Visual inspections. (a) All track shall be visually inspected in accordance with the schedule prescribed..., electrical, and other track inspection devices may be used to supplement visual inspection. If a vehicle...

  20. Visual Spreadsheets in VisIt

    SciTech Connect

    Whitlock, B; Childs, H

    2007-02-05

    The VACET team would like to add visual spreadsheeting capability to the visualization tool VisIt, to make it be a viable tool for current users of AMRVis and ChomboVis. This document describes AMRVis and ChomboVis approaches to visual spreadsheets and describes a proposed visual spreadsheet mechanism for VisIt.

  1. Development of a Computerized Visual Search Test

    ERIC Educational Resources Information Center

    Reid, Denise; Babani, Harsha; Jon, Eugenia

    2009-01-01

    Visual attention and visual search are the features of visual perception, essential for attending and scanning one's environment while engaging in daily occupations. This study describes the development of a novel web-based test of visual search. The development information including the format of the test will be described. The test was designed…

  2. Laser Optometric Assessment Of Visual Display Viewability

    NASA Astrophysics Data System (ADS)

    Murch, Gerald M.

    1983-08-01

    Through the technique of laser optometry, measurements of a display user's visual accommodation and binocular convergence were used to assess the visual impact of display color, technology, contrast, and work time. The studies reported here indicate the potential of visual-function measurements as an objective means of improving the design of visual displays.

  3. Distinct Acute Zones for Visual Stimuli in Different Visual Tasks in Drosophila

    PubMed Central

    Yang, Xing; Guo, Aike

    2013-01-01

    The fruit fly Drosophila melanogaster has a sophisticated visual system and exhibits complex visual behaviors. Visual responses, vision processing and higher cognitive processes in Drosophila have been studied extensively. However, little is known about whether the retinal location of visual stimuli can affect fruit fly performance in various visual tasks. We tested the response of wild-type Berlin flies to visual stimuli at several vertical locations. Three paradigms were used in our study: visual operant conditioning, visual object fixation and optomotor response. We observed an acute zone for visual feature memorization in the upper visual field when visual patterns were presented with a black background. However, when a white background was used, the acute zone was in the lower visual field. Similar to visual feature memorization, the best locations for visual object fixation and optomotor response to a single moving stripe were in the lower visual field with a white background and the upper visual field with a black background. The preferred location for the optomotor response to moving gratings was around the equator of the visual field. Our results suggest that different visual processing pathways are involved in different visual tasks and that there is a certain degree of overlap between the pathways for visual feature memorization, visual object fixation and optomotor response. PMID:23585891

  4. Visual space perception on a computer graphics night visual attachment

    NASA Technical Reports Server (NTRS)

    Palmer, E.; Petitt, J.

    1976-01-01

    A series of experiments was conducted to compare five psychophysical methods of measuring how people perceive visual space in simulators. Psychologists have used such methods traditionally to measure visual space perception in the real world. Of the five tasks - objective-size judgments, angular-size judgments, shape judgments, slant judgments, and distance judgments - only the angular-size judgment task proved to be of potential use as a measure of simulator realism. In this experiment pilots estimated the relative angular size of triangles placed at various distances along a simulated runway. Estimates made when the display was collimated were closer to real-world performance than estimates made with an uncollimated display.

  5. Visualizing quantitative microscopy data: History and challenges

    PubMed Central

    Sailem, Heba Z.; Cooper, Sam; Bakal, Chris

    2016-01-01

    Abstract Data visualization is a fundamental aspect of science. In the context of microscopy-based studies, visualization typically involves presentation of the images themselves. However, data visualization is challenging when microscopy experiments entail imaging of millions of cells, and complex cellular phenotypes are quantified in a high-content manner. Most well-established visualization tools are inappropriate for displaying high-content data, which has driven the development of new visualization methodology. In this review, we discuss how data has been visualized in both classical and high-content microscopy studies; as well as the advantages, and disadvantages, of different visualization methods. PMID:26906253

  6. Visualizing quantitative microscopy data: History and challenges.

    PubMed

    Sailem, Heba Z; Cooper, Sam; Bakal, Chris

    2016-01-01

    Data visualization is a fundamental aspect of science. In the context of microscopy-based studies, visualization typically involves presentation of the images themselves. However, data visualization is challenging when microscopy experiments entail imaging of millions of cells, and complex cellular phenotypes are quantified in a high-content manner. Most well-established visualization tools are inappropriate for displaying high-content data, which has driven the development of new visualization methodology. In this review, we discuss how data has been visualized in both classical and high-content microscopy studies; as well as the advantages, and disadvantages, of different visualization methods. PMID:26906253

  7. Visual attention on the sphere.

    PubMed

    Bogdanova, Iva; Bur, Alexandre; Hugli, Heinz

    2008-11-01

    Human visual system makes an extensive use of visual attention in order to select the most relevant information and speed-up the vision process. Inspired by visual attention, several computer models have been developed and many computer vision applications rely today on such models. However, the actual algorithms are not suitable to omnidirectional images, which contain a significant amount of geometrical distortion. In this paper, we present a novel computational approach that performs in spherical geometry and thus is suitable for omnidirectional images. Following one of the actual models of visual attention, the spherical saliency map is obtained by fusing together intensity, chromatic, and orientation spherical cue conspicuity maps that are themselves obtained through multiscale analysis on the sphere. Finally, the consecutive maxima in the spherical saliency map represent the spots of attention on the sphere. In the experimental part, the proposed method is then compared to the standard one using a synthetic image. Also, we provide examples of spots detection in real omnidirectional scenes which show its advantages. Finally, an experiment illustrates the homogeneity of the detected visual attention in omnidirectional images. PMID:18854253

  8. Visual Analytics Science and Technology

    SciTech Connect

    Wong, Pak C.

    2007-03-01

    It is an honor to welcome you to the first theme issue of information visualization (IVS) dedicated entirely to the study of visual analytics. It all started from the establishment of the U.S. Department of Homeland Security (DHS) sponsored National Visualization and Analytics Center™ (NVAC™) at the Pacific Northwest National Laboratory (PNNL) in 2004. In 2005, under the leadership of NVAC, a team of the world’s best and brightest multidisciplinary scholars coauthored its first research and development (R&D) agenda Illuminating the Path, which defines the study as “the science of analytical reasoning facilitated by interactive visual interfaces.” Among the most exciting, challenging, and educational events developed since then was the first IEEE Symposium on Visual Analytics Science and Technology (VAST) held in Baltimore, Maryland in October 2006. This theme issue features seven outstanding articles selected from the IEEE VAST proceedings and a commentary article contributed by Jim Thomas, the director of NVAC, on the status and progress of the center.

  9. Reconfigurable visualization for HWIL simulation

    NASA Astrophysics Data System (ADS)

    Buford, James A., Jr.; Garcia, Tricia A.; Bowden, Mark H.

    1998-08-01

    The U.S. Army Aviation and Missile Command (AMCOM) Missile Research, Engineering, and Development Center (MRDEC) Advanced Simulation Center has recognized the need for re- configurable visualization in support of hardware-in-the- loop (HWIL) simulations. AMCOM MRDEC made the development of re-configurable visualization tools a priority. SimSight, developed at AMCOM MRDEC, is designed to provide 3D visualization to HWIL simulations and after action reviews. Leveraging both the latest hardware and software visual simulation technologies, SimSight displays a concise, 3D view of the simulated world providing the HWIL engineer with unprecedented power to analyze quickly the progress of a simulation from pre-launch to impact. Providing 3D visualization is only half the solution; data management, distribution, and analysis is the companion problem being dealt with by AMCOM MRDEC with the development of Fulcrum, a cross-platform data capture, distribution, analysis, and display framework of which SimSight will become a component.

  10. Visual Analytics for MOOC Data.

    PubMed

    Qu, Huamin; Chen, Qing

    2015-01-01

    With the rise of massive open online courses (MOOCs), tens of millions of learners can now enroll in more than 1,000 courses via MOOC platforms such as Coursera and edX. As a result, a huge amount of data has been collected. Compared with traditional education records, the data from MOOCs has much finer granularity and also contains new pieces of information. It is the first time in history that such comprehensive data related to learning behavior has become available for analysis. What roles can visual analytics play in this MOOC movement? The authors survey the current practice and argue that MOOCs provide an opportunity for visualization researchers and that visual analytics systems for MOOCs can benefit a range of end users such as course instructors, education researchers, students, university administrators, and MOOC providers. PMID:26594957

  11. Characteristic sounds facilitate visual search.

    PubMed

    Iordanescu, Lucica; Guzman-Martinez, Emmanuel; Grabowecky, Marcia; Suzuki, Satoru

    2008-06-01

    In a natural environment, objects that we look for often make characteristic sounds. A hiding cat may meow, or the keys in the cluttered drawer may jingle when moved. Using a visual search paradigm, we demonstrated that characteristic sounds facilitated visual localization of objects, even when the sounds carried no location information. For example, finding a cat was faster when participants heard a meow sound. In contrast, sounds had no effect when participants searched for names rather than pictures of objects. For example, hearing "meow" did not facilitate localization of the word cat. These results suggest that characteristic sounds cross-modally enhance visual (rather than conceptual) processing of the corresponding objects. Our behavioral demonstration of object-based cross-modal enhancement complements the extensive literature on space-based cross-modal interactions. When looking for your keys next time, you might want to play jingling sounds. PMID:18567253

  12. Visualization of three dimensional data

    NASA Astrophysics Data System (ADS)

    Ellis, Stephen R.; Smith, Stephen; Hacisalihzade, Selim

    1990-03-01

    The objective of research is to characterize patterns of errors observers make when relating the judged exocentric direction of a target presented on a perspective display to their egocentric sense of visual direction. This type of spatial task is commonly faced by operators of telerobotic systems when using a map-like display of their workspace to determine the visual location and orientation of objects seen by direct view. It is also essentially the same task as faced by an aircraft pilot using a cockpit perspective traffic display of his surrounding airspace to locate traffic out his windows. The results of the current study clearly show that the visual direction is a significantly biased metric of virtual space presented by flat panel perspective displays. Modeling and explanation of the causes of the observed biases will allow design of compensated perspective displays.

  13. Visualization of three dimensional data

    NASA Technical Reports Server (NTRS)

    Ellis, Stephen R.; Smith, Stephen; Hacisalihzade, Selim

    1990-01-01

    The objective of research is to characterize patterns of errors observers make when relating the judged exocentric direction of a target presented on a perspective display to their egocentric sense of visual direction. This type of spatial task is commonly faced by operators of telerobotic systems when using a map-like display of their workspace to determine the visual location and orientation of objects seen by direct view. It is also essentially the same task as faced by an aircraft pilot using a cockpit perspective traffic display of his surrounding airspace to locate traffic out his windows. The results of the current study clearly show that the visual direction is a significantly biased metric of virtual space presented by flat panel perspective displays. Modeling and explanation of the causes of the observed biases will allow design of compensated perspective displays.

  14. Visualization Software for Molecular Assemblies

    PubMed Central

    Goddard, Thomas D; Ferrin, Thomas E

    2007-01-01

    Summary Software for viewing three-dimensional models and maps of viruses, ribosomes, filaments and other molecular assemblies is advancing on many fronts. New developments include molecular representations that offer better control over level of detail, lighting that improves the perception of depth, and two-dimensional projections that simplify data interpretation. Programmable graphics processors offer quality, speed and visual effects not previously possible, while 3D printers, haptic interaction devices, and auto-stereo displays show promise in more naturally engaging our senses. Visualization methods are developed by diverse groups of researchers with differing goals: experimental biologists, database developers, computer scientists, and package developers. We survey recent developments and problems faced by the developer community in bringing innovative visualization methods into widespread use. PMID:17728125

  15. Discovering Knowledge Through Visual Analysis

    SciTech Connect

    Thomas, James J.; Cowley, Paula J.; Kuchar, Olga A.; Nowell, Lucy T.; Thomson, Judi R.; Wong, Pak C.

    2001-07-12

    This paper describes a vision for the near future in digital content analysis as it relates to the creation, verification, and presentation of knowledge. This paper focuses on how visualization enables humans to gain knowledge. Visualization, in this context, is not just the picture representing the data, but a two-way interaction between the human and their information resources for the purposes of knowledge discovery, verification, and the sharing of knowledge with others. We present PNNL-developed software to demonstrate how current technology can use visualization tools to analyze large diverse collections of text. This will be followed by lessons learned and the presentation of a core concept for a new human information discourse.

  16. Orbits of six visual binaries

    NASA Astrophysics Data System (ADS)

    Couteau, P.

    1987-12-01

    Recent interferometric and visual observations have been used to compile orbital elements for the binaries COU 79, Phi 342, ADS 5726, COU 292, ADS 15487, and COU 542. The problematic binaries COU 79 and Phi 342 are discussed in detail. The results for COU 79 indicate a dynamic parallax of 0.0182 arcsec and absolute visual magnitudes of 2.5 and 2.8, values which are not consistent with the previously-determined spectral type of F6V. A parallax of 0.01420 arcsec is found for Phi 342, and the visual magnitudes of 2.74 and 3.13 are indicative of superluminous stars outside of the main sequence.

  17. Interactive Visual Profiling of Musicians.

    PubMed

    Janicke, Stefan; Focht, Josef; Scheuermann, Gerik

    2016-01-01

    Determining similar objects based upon the features of an object of interest is a common task for visual analytics systems. This process is called profiling, if the object of interest is a person with individual attributes. The profiling of musicians similar to a musician of interest with the aid of visual means became an interesting research question for musicologists working with the Bavarian Musicians Encyclopedia Online. This paper illustrates the development of a visual analytics profiling system that is used to address such research questions. Taking musicological knowledge into account, we outline various steps of our collaborative digital humanities project, priority (1) the definition of various measures to determine the similarity of musicians' attributes, and (2) the design of an interactive profiling system that supports musicologists in iteratively determining similar musicians. The utility of the profiling system is emphasized by various usage scenarios illustrating current research questions in musicology. PMID:26529700

  18. Visualizing Parallel Computer System Performance

    NASA Technical Reports Server (NTRS)

    Malony, Allen D.; Reed, Daniel A.

    1988-01-01

    Parallel computer systems are among the most complex of man's creations, making satisfactory performance characterization difficult. Despite this complexity, there are strong, indeed, almost irresistible, incentives to quantify parallel system performance using a single metric. The fallacy lies in succumbing to such temptations. A complete performance characterization requires not only an analysis of the system's constituent levels, it also requires both static and dynamic characterizations. Static or average behavior analysis may mask transients that dramatically alter system performance. Although the human visual system is remarkedly adept at interpreting and identifying anomalies in false color data, the importance of dynamic, visual scientific data presentation has only recently been recognized Large, complex parallel system pose equally vexing performance interpretation problems. Data from hardware and software performance monitors must be presented in ways that emphasize important events while eluding irrelevant details. Design approaches and tools for performance visualization are the subject of this paper.

  19. Visualizing uncertainty about the future.

    PubMed

    Spiegelhalter, David; Pearson, Mike; Short, Ian

    2011-09-01

    We are all faced with uncertainty about the future, but we can get the measure of some uncertainties in terms of probabilities. Probabilities are notoriously difficult to communicate effectively to lay audiences, and in this review we examine current practice for communicating uncertainties visually, using examples drawn from sport, weather, climate, health, economics, and politics. Despite the burgeoning interest in infographics, there is limited experimental evidence on how different types of visualizations are processed and understood, although the effectiveness of some graphics clearly depends on the relative numeracy of an audience. Fortunately, it is increasingly easy to present data in the form of interactive visualizations and in multiple types of representation that can be adjusted to user needs and capabilities. Nonetheless, communicating deeper uncertainties resulting from incomplete or disputed knowledge--or from essential indeterminacy about the future--remains a challenge. PMID:21903802

  20. Feature-Based Memory-Driven Attentional Capture: Visual Working Memory Content Affects Visual Attention

    ERIC Educational Resources Information Center

    Olivers, Christian N. L.; Meijer, Frank; Theeuwes, Jan

    2006-01-01

    In 7 experiments, the authors explored whether visual attention (the ability to select relevant visual information) and visual working memory (the ability to retain relevant visual information) share the same content representations. The presence of singleton distractors interfered more strongly with a visual search task when it was accompanied by…

  1. Estimation of visibility using a visual image.

    PubMed

    Kim, Kyung Won

    2015-03-01

    Optical-based visibility measurement instruments have been widely used to quantify atmospheric light extinction for decades. The light extinction coefficient is converted to visual range using a well-known formula since visibility is defined as the longest distance at which a black object can be observed against the horizon. In this study, a camera-based visibility monitoring technique was introduced to directly estimate visual range using a visual image obtained from a camera system. It was denoted as image visual range. The visual, optical, and geographical visibility monitoring were conducted to investigate the relationship between image visual range and distance from camera installed at the monitoring site. The visibility estimation formula, which is the function of the y position of the coordinates in the visual image, was introduced. And image visual range was estimated from the visual image using the chromatic analysis. It was found that the relationship between the image visual range and the y position of the visual image was a nonlinear function. The average relative error of image visual range less than 50 km was acceptable from the results of the relationship between optical-based visual range and image visual range. It was estimated that the relative error between two variables was not only attributed to the perspective and the faint outline of the visual image in the chromatic analysis but also associated with the assumption of the uniform distribution of the light extinction by aerosol within the field of view in the optical monitoring. PMID:25647796

  2. Visual Search of Mooney Faces

    PubMed Central

    Goold, Jessica E.; Meng, Ming

    2016-01-01

    Faces spontaneously capture attention. However, which special attributes of a face underlie this effect is unclear. To address this question, we investigate how gist information, specific visual properties and differing amounts of experience with faces affect the time required to detect a face. Three visual search experiments were conducted investigating the rapidness of human observers to detect Mooney face images. Mooney images are two-toned, ambiguous images. They were used in order to have stimuli that maintain gist information but limit low-level image properties. Results from the experiments show: (1) Although upright Mooney faces were searched inefficiently, they were detected more rapidly than inverted Mooney face targets, demonstrating the important role of gist information in guiding attention toward a face. (2) Several specific Mooney face identities were searched efficiently while others were not, suggesting the involvement of specific visual properties in face detection. (3) By providing participants with unambiguous gray-scale versions of the Mooney face targets prior to the visual search task, the targets were detected significantly more efficiently, suggesting that prior experience with Mooney faces improves the ability to extract gist information for rapid face detection. However, a week of training with Mooney face categorization did not lead to even more efficient visual search of Mooney face targets. In summary, these results reveal that specific local image properties cannot account for how faces capture attention. On the other hand, gist information alone cannot account for how faces capture attention either. Prior experience facilitates the effect of gist on visual search of faces; making faces a special object category for guiding attention. PMID:26903941

  3. A Presentation of Spectacular Visualizations

    NASA Technical Reports Server (NTRS)

    Hasler, Fritz; Einaudi, Franco (Technical Monitor)

    2000-01-01

    The NASA/NOAA/AMS Earth Science Electronic Theater presents Earth science observations and visualizations in a historical perspective. Fly in from outer space to Florida and the KSC Visitor's Center. Go back to the early weather satellite images from the 1960s see them contrasted with the latest International global satellite weather movies including killer hurricanes and tornadic thunderstorms. See the latest spectacular images from NASA and the National Oceanic and Atmospheric Administration (NOAA) remote sensing missions like the Geostationary Operational Environmental Satellites (GOES), NOAA, Tropical Rainfall Measuring Mission (TRMM), SeaWiFS, Landsat7, and new Terra which will be visualized with state-of-the art tools. Shown in High Definition TV resolution (2048 x 768 pixels) are visualizations of hurricanes Lenny, Floyd, Georges, Mitch, Fran, and Linda. See visualizations featured on covers of magazines like Newsweek, TIME, National Geographic, Popular Science, and on National and International Network TV. New Digital Earth visualization tools allow us to roam and zoom through massive global images including a Landsat tour of the US, with drill-downs into major cities using one meter resolution spy-satellite technology from the Space Imaging IKONOS satellite. Spectacular new visualizations of the global atmosphere and oceans are shown. See massive dust storms sweeping across Africa. See ocean vortexes and currents that bring up the nutrients to feed tiny plankton and draw the fish, giant whales and fisherman. See the how the ocean blooms in response to these currents and El Nino/La Nina climate changes. The demonstration is interactively driven by a SGI Octane Graphics Supercomputer with dual CPUs, 5 Gigabytes of RAM and Terabyte disk using two projectors across the super sized Universe Theater panoramic screen.

  4. A Presentation of Spectracular Visualizations

    NASA Technical Reports Server (NTRS)

    Hasler, Fritz; Pierce, Hal; Einaudi, Franco (Technical Monitor)

    2000-01-01

    The NASA/NOAA/AMS Earth Science Electronic Theater presents Earth science observations and visualizations in a historical perspective. Fly in from outer space to Florida and the KSC Visitor's Center. Go back to the early weather satellite images from the 1960s see them contrasted with the latest International global satellite weather movies including killer hurricanes & tornadic thunderstorms. See the latest spectacular images from NASA and NOAA remote sensing missions like GOES, NOAA, TRMM, SeaWiFS, Landsat7, & new Terra which will be visualized with state-of-the art tools. Shown in High Definition TV resolution (2048 x 768 pixels) are visualizations of hurricanes Lenny, Floyd, Georges, Mitch, Fran and Linda. See visualizations featured on covers of magazines like Newsweek, TIME, National Geographic, Popular Science and on National & International Network TV. New Digital Earth visualization tools allow us to roam & zoom through massive global images including a Landsat tour of the US, with drill-downs into major cities using I m resolution spy-satellite technology from the Space Imaging IKONOS satellite. Spectacular new visualizations of the global atmosphere & oceans are shown. See massive dust storms sweeping across Africa. See ocean vortexes and currents that bring up the nutrients to feed tiny plankton and draw the fish, giant whales and fisherman. See the how the ocean blooms in response to these currents and El Nino/La Nina climate changes. The demonstration is interactively driven by a SGI Octane Graphics Supercomputer with dual CPUs, 5 Gigabytes of RAM and Terabyte disk using two projectors across the super sized Universe Theater panoramic screen.

  5. Visual Communication: Integrating Visual Instruction into Business Communication Courses

    ERIC Educational Resources Information Center

    Baker, William H.

    2006-01-01

    Business communication courses are ideal for teaching visual communication principles and techniques. Many assignments lend themselves to graphic enrichment, such as flyers, handouts, slide shows, Web sites, and newsletters. Microsoft Publisher and Microsoft PowerPoint are excellent tools for these assignments, with Publisher being best for…

  6. Assessing the utility of visual acuity measures in visual prostheses.

    PubMed

    Caspi, Avi; Zivotofsky, Ari Z

    2015-03-01

    There are presently several ongoing clinical trials to provide usable sight to profoundly visually impaired patients by means of electrical stimulation of the retina. Some of the blind patients implanted with retinal prosthesis reported un-patterned perception and yet benefit from the device in many activities of daily living, seemingly because they adopt active scanning strategies. The aim of the present work is to evaluate if and under what conditions a measured visual acuity level is truly an indication that the brain perceived a patterned image from the electrical stimulation of the visual prosthesis. Sighted subjects used a pixelized simulator in which they perceived either a low resolution sub-sampling of the original image ("normal mode"--patterned vision) or an image that was solely a function of the brightness and size of the original image ("brightness mode"--no patterned vision). Results show that subjects were able to adopt a head scanning strategy that enabled acuity beyond the resolution set by a static view of the stimulus. In brightness mode, i.e. without patterned vision, most subjects achieved a measurable acuity level better than the limit set by the geometrical resolution of the entire array but worse than the limit set by the distance between neighboring simulated pixels. In normal mode all subject achieved acuity level that is better than the geometrical resolution of the simulated pixels. Thus, visual acuity levels comparable with the electrodes/pixels resolution implies that the patient perceives an image with spatial patterns. PMID:25637855

  7. Similarity relations in visual search predict rapid visual categorization

    PubMed Central

    Mohan, Krithika; Arun, S. P.

    2012-01-01

    How do we perform rapid visual categorization?It is widely thought that categorization involves evaluating the similarity of an object to other category items, but the underlying features and similarity relations remain unknown. Here, we hypothesized that categorization performance is based on perceived similarity relations between items within and outside the category. To this end, we measured the categorization performance of human subjects on three diverse visual categories (animals, vehicles, and tools) and across three hierarchical levels (superordinate, basic, and subordinate levels among animals). For the same subjects, we measured their perceived pair-wise similarities between objects using a visual search task. Regardless of category and hierarchical level, we found that the time taken to categorize an object could be predicted using its similarity to members within and outside its category. We were able to account for several classic categorization phenomena, such as (a) the longer times required to reject category membership; (b) the longer times to categorize atypical objects; and (c) differences in performance across tasks and across hierarchical levels. These categorization times were also accounted for by a model that extracts coarse structure from an image. The striking agreement observed between categorization and visual search suggests that these two disparate tasks depend on a shared coarse object representation. PMID:23092947

  8. Course File for "Documentary Film, Visual Anthropology, and Visual Sociology."

    ERIC Educational Resources Information Center

    Tomaselli, Keyan G.; Shepperson, Arnold

    1997-01-01

    Describes a course that addresses and relocates questions of representation and reconstruction in the context of reflexive explanations for ethnographic films. Examines questions of power/power relations; anthropological and media construction of the Other; and trends in visual anthropology. Contextualizes the course within the human experience of…

  9. Learning Visual Design through Hypermedia: Pathways to Visual Literacy.

    ERIC Educational Resources Information Center

    Lockee, Barbara; Hergert, Tom

    The interactive multimedia application described here attempts to provide learners and teachers with a common frame of reference for communicating about visual media. The system is based on a list of concepts related to composition, and illustrates those concepts with photographs, paintings, graphic designs, and motion picture scenes. The ability…

  10. Visual discrimination learning under switching procedure in visually deprived cats.

    PubMed

    Zernicki, B

    1999-04-01

    Previous studies have shown that fine visual discrimination learning is severely impaired in cats binocularly deprived in the early period of life (BD cats) and also somewhat in control cats reared with open eyes in the limited laboratory environment (C cats) compared with cats reared in a normal rural environment (N cats). It was concluded that visual deprivation impairs perceptual learning. In the present study discriminative stimuli were dissimilar and so the task was perceptually easy, but using a switching procedure made it associatively difficult. In regular trials a gate with a grating pattern was positive and a blank gate negative, whereas in switching trials the meaning of the gates was reversed. The switching stimulus was intermittent light in some stages of training and intermittent tone in others. Learning was severely impaired in BD cats and somewhat in C cats and the deficit was similar under visual and auditory switching. Thus, early visual deprivation impairs associative learning. The impairment probably includes associations between switching stimulus and instrumental responses and configural associations between switching stimulus and discriminative stimuli. PMID:10212071

  11. Helping the Visually Impaired Student with Electronic Video Visual Aids.

    ERIC Educational Resources Information Center

    Visualtek, Inc., Santa Monica, CA.

    THE FOLLOWING IS THE FULL TEXT OF THIS DOCUMENT: Video visual aids are Closed Circuit TV systems (CCTV's) which magnify print and enlarge it electronically upon a screen so partially sighted persons with some residual vision can read and write normal size print. These devices are in use around the world in homes, schools, industries and libraries,…

  12. Visually Guided Control of Movement

    NASA Technical Reports Server (NTRS)

    Johnson, Walter W. (Editor); Kaiser, Mary K. (Editor)

    1991-01-01

    The papers given at an intensive, three-week workshop on visually guided control of movement are presented. The participants were researchers from academia, industry, and government, with backgrounds in visual perception, control theory, and rotorcraft operations. The papers included invited lectures and preliminary reports of research initiated during the workshop. Three major topics are addressed: extraction of environmental structure from motion; perception and control of self motion; and spatial orientation. Each topic is considered from both theoretical and applied perspectives. Implications for control and display are suggested.

  13. Astronomy Data Visualization with Blender

    NASA Astrophysics Data System (ADS)

    Kent, Brian R.

    2015-08-01

    We present innovative methods and techniques for using Blender, a 3D software package, in the visualization of astronomical data. N-body simulations, data cubes, galaxy and stellar catalogs, and planetary surface maps can be rendered in high quality videos for exploratory data analysis. Blender's API is Python based, making it advantageous for use in astronomy with flexible libraries like astroPy. Examples will be exhibited that showcase the features of the software in astronomical visualization paradigms. 2D and 3D voxel texture applications, animations, camera movement, and composite renders are introduced to the astronomer's toolkit and how they mesh with different forms of data.

  14. Procedures for precap visual inspection

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Screening procedures for the final precap visual inspection of microcircuits used in electronic system components are described as an aid in training personnel unfamiliar with microcircuits. Processing techniques used in industry for the manufacture of monolithic and hybrid components are presented and imperfections that may be encountered during this inspection are discussed. Problem areas such as scratches, voids, adhesions, and wire bonding are illustrated by photomicrographs. This guide can serve as an effective tool in training personnel to perform precap visual inspections efficiently and reliably.

  15. AWE: Aviation Weather Data Visualization

    NASA Technical Reports Server (NTRS)

    Spirkovska, Lilly; Lodha, Suresh K.

    2001-01-01

    The two official sources for aviation weather reports both require the pilot to mentally visualize the provided information. In contrast, our system, Aviation Weather Environment (AWE) presents aviation specific weather available to pilots in an easy to visualize form. We start with a computer-generated textual briefing for a specific area. We map this briefing onto a grid specific to the pilot's route that includes only information relevant to his flight route that includes only information relevant to his flight as defined by route, altitude, true airspeed, and proposed departure time. By modifying various parameters, the pilot can use AWE as a planning tool as well as a weather briefing tool.

  16. Patient DF's visual brain in action: Visual feedforward control in visual form agnosia.

    PubMed

    Whitwell, Robert L; Milner, A David; Cavina-Pratesi, Cristiana; Barat, Masihullah; Goodale, Melvyn A

    2015-05-01

    Patient DF, who developed visual form agnosia following ventral-stream damage, is unable to discriminate the width of objects, performing at chance, for example, when asked to open her thumb and forefinger a matching amount. Remarkably, however, DF adjusts her hand aperture to accommodate the width of objects when reaching out to pick them up (grip scaling). While this spared ability to grasp objects is presumed to be mediated by visuomotor modules in her relatively intact dorsal stream, it is possible that it may rely abnormally on online visual or haptic feedback. We report here that DF's grip scaling remained intact when her vision was completely suppressed during grasp movements, and it still dissociated sharply from her poor perceptual estimates of target size. We then tested whether providing trial-by-trial haptic feedback after making such perceptual estimates might improve DF's performance, but found that they remained significantly impaired. In a final experiment, we re-examined whether DF's grip scaling depends on receiving veridical haptic feedback during grasping. In one condition, the haptic feedback was identical to the visual targets. In a second condition, the haptic feedback was of a constant intermediate width while the visual target varied trial by trial. Despite this incongruent feedback, DF still scaled her grip aperture to the visual widths of the target blocks, showing only normal adaptation to the false haptically-experienced width. Taken together, these results strengthen the view that DF's spared grasping relies on a normal mode of dorsal-stream functioning, based chiefly on visual feedforward processing. PMID:25199609

  17. Computerized measures of visual complexity.

    PubMed

    Machado, Penousal; Romero, Juan; Nadal, Marcos; Santos, Antonino; Correia, João; Carballal, Adrián

    2015-09-01

    Visual complexity influences people's perception of, preference for, and behaviour toward many classes of objects, from artworks to web pages. The ability to predict people's impression of the complexity of different kinds of visual stimuli holds, therefore, great potential for many domains, basic and applied. Here we use edge detection operations and several image metrics based on image compression error and Zipf's law to estimate the visual complexity of images. The experiments involved 800 images, each previously rated by thirty participants on perceived complexity. In a first set of experiments we analysed the correlation of individual features with the average human response, obtaining correlations up to rs = .771. In a second set of experiments we employed Machine Learning techniques to predict the average visual complexity score attributed by humans to each stimuli. The best configurations obtained a correlation of rs = .832. The average prediction error of the Machine Learning system over the set of all stimuli was .096 in a normalized 0 to 1 interval, showing that it is possible to predict, with high accuracy human responses. Overall, edge density and compression error were the strongest predictors of human complexity ratings. PMID:26164647

  18. Neural Networks For Visual Telephony

    NASA Astrophysics Data System (ADS)

    Gottlieb, A. M.; Alspector, J.; Huang, P.; Hsing, T. R.

    1988-10-01

    By considering how an image is processed by the eye and brain, we may find ways to simplify the task of transmitting complex video images over a telecommunication channel. Just as the retina and visual cortex reduce the amount of information sent to other areas of the brain, electronic systems can be designed to compress visual data, encode features, and adapt to new scenes for video transmission. In this talk, we describe a system inspired by models of neural computation that may, in the future, augment standard digital processing techniques for image compression. In the next few years it is expected that a compact low-cost full motion video telephone operating over an ISDN basic access line (144 KBits/sec) will be shown to be feasible. These systems will likely be based on a standard digital signal processing approach. In this talk, we discuss an alternative method that does not use standard digital signal processing but instead uses eletronic neural networks to realize the large compression necessary for a low bit-rate video telephone. This neural network approach is not being advocated as a near term solution for visual telephony. However, low bit rate visual telephony is an area where neural network technology may, in the future, find a significant application.

  19. Educational Aids for Visually Handicapped.

    ERIC Educational Resources Information Center

    American Printing House for the Blind, Louisville, KY.

    Listings specifying source and cost are provided of tactile aids and materials designed for the visually handicapped. Items are presented in the following categories: supply sources and catalogs for aids; braille devices, including duplicators, reading and writing aids, reading readiness materials, and writing machines, slates, and styluses; deaf…

  20. Acuity-driven gigapixel visualization.

    PubMed

    Papadopoulos, Charilaos; Kaufman, Arie E

    2013-12-01

    We present a framework for acuity-driven visualization of super-high resolution image data on gigapixel displays. Tiled display walls offer a large workspace that can be navigated physically by the user. Based on head tracking information, the physical characteristics of the tiled display and the formulation of visual acuity, we guide an out-of-core gigapixel rendering scheme by delivering high levels of detail only in places where it is perceivable to the user. We apply this principle to gigapixel image rendering through adaptive level of detail selection. Additionally, we have developed an acuity-driven tessellation scheme for high-quality Focus-and-Context (F+C) lenses that significantly reduces visual artifacts while accurately capturing the underlying lens function. We demonstrate this framework on the Reality Deck, an immersive gigapixel display. We present the results of a user study designed to quantify the impact of our acuity-driven rendering optimizations in the visual exploration process. We discovered no evidence suggesting a difference in search task performance between our framework and naive rendering of gigapixel resolution data, while realizing significant benefits in terms of data transfer overhead. Additionally, we show that our acuity-driven tessellation scheme offers substantially increased frame rates when compared to naive pre-tessellation, while providing indistinguishable image quality. PMID:24051856

  1. Visual thinking in organizational analysis

    NASA Astrophysics Data System (ADS)

    Grantham, Charles E.

    1991-06-01

    The ability to visualize the relationship among elements of large complex databases is a trend which is yielding new insights into several fields. The author demonstrates the use of 'visual thinking' as an analytical tool to the analysis of formal, complex organizations. Recent developments in organizational design and office automation are making the visual analysis of workflows possible. An analytical mental model of organizational functioning can be built upon a depiction of information flows among work group members. The dynamics of organizational functioning can be described in terms of six essential processes. Furthermore, each of these sub-systems develop within a staged cycle referred to as an enneagram model. Together these mental models present a visual metaphor of healthy function in large formal organizations; both in static and dynamic terms. These models can be used to depict the 'state' of an organization at points in time by linking each process to quantitative data taken from the monitoring of the flow of information in computer networks.

  2. Visual Analytics of Brain Networks

    PubMed Central

    Li, Kaiming; Guo, Lei; Faraco, Carlos; Zhu, Dajiang; Chen, Hanbo; Yuan, Yixuan; Lv, Jinglei; Deng, Fan; Jiang, Xi; Zhang, Tuo; Hu, Xintao; Zhang, Degang; Miller, L Stephen; Liu, Tianming

    2014-01-01

    Identification of regions of interest (ROIs) is a fundamental issue in brain network construction and analysis. Recent studies demonstrate that multimodal neuroimaging approaches and joint analysis strategies are crucial for accurate, reliable and individualized identification of brain ROIs. In this paper, we present a novel approach of visual analytics and its open-source software for ROI definition and brain network construction. By combining neuroscience knowledge and computational intelligence capabilities, visual analytics can generate accurate, reliable and individualized ROIs for brain networks via joint modeling of multimodal neuroimaging data and an intuitive and real-time visual analytics interface. Furthermore, it can be used as a functional ROI optimization and prediction solution when fMRI data is unavailable or inadequate. We have applied this approach to an operation span working memory fMRI/DTI dataset, a schizophrenia DTI/resting state fMRI (R-fMRI) dataset, and a mild cognitive impairment DTI/R-fMRI dataset, in order to demonstrate the effectiveness of visual analytics. Our experimental results are encouraging. PMID:22414991

  3. Visualizing Science by Citation Mapping.

    ERIC Educational Resources Information Center

    Small, Henry

    1999-01-01

    Discusses science mapping in the general context of information visualization and reviews attempts to construct maps of science using citation data, focusing on the use of co-citation clusters. Reports new work on a dataset of 36,00 documents using simplified methods for ordination and nesting maps hierarchically. Also discusses virtual-reality…

  4. Visualizing Elections Using Saari Triangles

    ERIC Educational Resources Information Center

    Alfaro, Ricardo; Han, Lixing; Schilling, Kenneth; Birgen, Mariah

    2010-01-01

    Students sometimes have difficulty calculating the result of a voting system applied to a particular set of voter preference lists. Saari triangles offer a way to visualize the result of an election and make this calculation easier in the case of several important voting systems.

  5. Algorithm Visualization in Teaching Practice

    ERIC Educational Resources Information Center

    Törley, Gábor

    2014-01-01

    This paper presents the history of algorithm visualization (AV), highlighting teaching-methodology aspects. A combined, two-group pedagogical experiment will be presented as well, which measured the efficiency and the impact on the abstract thinking of AV. According to the results, students, who learned with AV, performed better in the experiment.

  6. Audio-Visual Teaching Machines.

    ERIC Educational Resources Information Center

    Dorsett, Loyd G.

    An audiovisual teaching machine (AVTM) presents programed audio and visual material simultaneously to a student and accepts his response. If his response is correct, the machine proceeds with the lesson; if it is incorrect, the machine so indicates and permits another choice (linear) or automatically presents supplementary material (branching).…

  7. Collaborative interactive visualization: exploratory concept

    NASA Astrophysics Data System (ADS)

    Mokhtari, Marielle; Lavigne, Valérie; Drolet, Frédéric

    2015-05-01

    Dealing with an ever increasing amount of data is a challenge that military intelligence analysts or team of analysts face day to day. Increased individual and collective comprehension goes through collaboration between people. Better is the collaboration, better will be the comprehension. Nowadays, various technologies support and enhance collaboration by allowing people to connect and collaborate in settings as varied as across mobile devices, over networked computers, display walls, tabletop surfaces, to name just a few. A powerful collaboration system includes traditional and multimodal visualization features to achieve effective human communication. Interactive visualization strengthens collaboration because this approach is conducive to incrementally building a mental assessment of the data meaning. The purpose of this paper is to present an overview of the envisioned collaboration architecture and the interactive visualization concepts underlying the Sensemaking Support System prototype developed to support analysts in the context of the Joint Intelligence Collection and Analysis Capability project at DRDC Valcartier. It presents the current version of the architecture, discusses future capabilities to help analyst(s) in the accomplishment of their tasks and finally recommends collaboration and visualization technologies allowing to go a step further both as individual and as a team.

  8. Visual analytics of brain networks.

    PubMed

    Li, Kaiming; Guo, Lei; Faraco, Carlos; Zhu, Dajiang; Chen, Hanbo; Yuan, Yixuan; Lv, Jinglei; Deng, Fan; Jiang, Xi; Zhang, Tuo; Hu, Xintao; Zhang, Degang; Miller, L Stephen; Liu, Tianming

    2012-05-15

    Identification of regions of interest (ROIs) is a fundamental issue in brain network construction and analysis. Recent studies demonstrate that multimodal neuroimaging approaches and joint analysis strategies are crucial for accurate, reliable and individualized identification of brain ROIs. In this paper, we present a novel approach of visual analytics and its open-source software for ROI definition and brain network construction. By combining neuroscience knowledge and computational intelligence capabilities, visual analytics can generate accurate, reliable and individualized ROIs for brain networks via joint modeling of multimodal neuroimaging data and an intuitive and real-time visual analytics interface. Furthermore, it can be used as a functional ROI optimization and prediction solution when fMRI data is unavailable or inadequate. We have applied this approach to an operation span working memory fMRI/DTI dataset, a schizophrenia DTI/resting state fMRI (R-fMRI) dataset, and a mild cognitive impairment DTI/R-fMRI dataset, in order to demonstrate the effectiveness of visual analytics. Our experimental results are encouraging. PMID:22414991

  9. Visual Literacy: An Institutional Imperative

    ERIC Educational Resources Information Center

    Metros, Susan E.; Woolsey, Kristina

    2006-01-01

    Academics have a long history of claiming and defending the superiority of verbal over visual for representing knowledge. By dismissing imagery as mere decoration, they have upheld the sanctity of print for academic discourse. However, in the last decade, digital technologies have broken down the barriers between words and pictures, and many of…

  10. Data sonification and sound visualization.

    SciTech Connect

    Kaper, H. G.; Tipei, S.; Wiebel, E.; Mathematics and Computer Science; Univ. of Illinois

    1999-07-01

    Sound can help us explore and analyze complex data sets in scientific computing. The authors describe a digital instrument for additive sound synthesis (Diass) and a program to visualize sounds in a virtual reality environment (M4Cave). Both are part of a comprehensive music composition environment that includes additional software for computer-assisted composition and automatic music notation.

  11. Diversity, Pedagogy, and Visual Culture

    ERIC Educational Resources Information Center

    Amburgy, Patricia M.

    2011-01-01

    As new approaches have emerged in art education, teacher preparation programs in higher education have revised existing courses or created new ones that reflect those new approaches. At the university where the author teaches, one such course is Diversity, Pedagogy, and Visual Culture (A ED 225). A ED 225 is intended to offer preservice art…

  12. Visual Aids for English Teaching

    ERIC Educational Resources Information Center

    Matsuda, Masahira

    1975-01-01

    Techniques for the use of the following visual aids are described: hand gestures, drawing diagrams on the blackboard, real objects, magnetic boards and pictures and charts. The aids help to maintain student interest and bridge the gap between drill and communication. (AG)

  13. Visualizing Chemistry with Infrared Imaging

    ERIC Educational Resources Information Center

    Xie, Charles

    2011-01-01

    Almost all chemical processes release or absorb heat. The heat flow in a chemical system reflects the process it is undergoing. By showing the temperature distribution dynamically, infrared (IR) imaging provides a salient visualization of the process. This paper presents a set of simple experiments based on IR imaging to demonstrate its enormous…

  14. Visual Manipulatives for Proportional Reasoning.

    ERIC Educational Resources Information Center

    Moore, Joyce L.; Schwartz, Daniel L.

    The use of a visual representation in learning about proportional relations was studied, examining students' understandings of the invariance of a multiplicative relation on both sides of a proportion equation and the invariance of the structural relations that exist in different semantic types of proportion problems. Subjects were 49 high-ability…

  15. Oceanography for the Visually Impaired

    ERIC Educational Resources Information Center

    Fraser, Kate

    2008-01-01

    Amy Bower is a physical oceanographer and senior scientist at the Woods Hole Oceanographic Institution (WHOI) in Woods Hole, Massachusetts--she has also been legally blind for 14 years. Through her partnership with the Perkins School for the Blind in Watertown, Massachusetts, the oldest K-12 school for the visually impaired in the United States,…

  16. ICASE: Scientific Visualization Solutions 8

    NASA Technical Reports Server (NTRS)

    1997-01-01

    ICASE: Institute for Computer Applications in Science and Engineering Visualizing the results of supercomputer simulations can be a computationaly demanding process. Research in applying supercomputing tecnology to the problem of data visualisation is being conducted at ICASE, ar NASA LAngley. These clips look at the work of ICASE and are illustrated with examples of complex 3D renderings of data sets.

  17. ICASE: Scientific Visualization Solutions 5

    NASA Technical Reports Server (NTRS)

    1997-01-01

    ICASE: Institute for Computer Applications in Science and Engineering Visualizing the results of supercomputer simulations can be a computationaly demanding process. Research in applying supercomputing tecnology to the problem of data visualisation is being conducted at ICASE, ar NASA LAngley. These clips look at the work of ICASE and are illustrated with examples of complex 3D renderings of data sets.

  18. ICASE: Scientific Visualization Solutions 2

    NASA Technical Reports Server (NTRS)

    1997-01-01

    ICASE: Institute for Computer Applications in Science and Engineering Visualizing the results of supercomputer simulations can be a computationaly demanding process. Research in applying supercomputing tecnology to the problem of data visualisation is being conducted at ICASE, ar NASA LAngley. These clips look at the work of ICASE and are illustrated with examples of complex 3D renderings of data sets.

  19. ICASE: Scientific Visualization Solutions 4

    NASA Technical Reports Server (NTRS)

    1997-01-01

    ICASE: Institute for Computer Applications in Science and Engineering Visualizing the results of supercomputer simulations can be a computationaly demanding process. Research in applying supercomputing tecnology to the problem of data visualisation is being conducted at ICASE, ar NASA LAngley. These clips look at the work of ICASE and are illustrated with examples of complex 3D renderings of data sets.

  20. ICASE: Scientific Visualization Solutions 6

    NASA Technical Reports Server (NTRS)

    1997-01-01

    ICASE: Institute for Computer Applications in Science and Engineering Visualizing the results of supercomputer simulations can be a computationaly demanding process. Research in applying supercomputing tecnology to the problem of data visualisation is being conducted at ICASE, ar NASA LAngley. These clips look at the work of ICASE and are illustrated with examples of complex 3D renderings of data sets.

  1. ICASE: Scientific Visualization Solutions 3

    NASA Technical Reports Server (NTRS)

    1997-01-01

    ICASE: Institute for Computer Applications in Science and Engineering Visualizing the results of supercomputer simulations can be a computationaly demanding process. Research in applying supercomputing tecnology to the problem of data visualisation is being conducted at ICASE, ar NASA LAngley. These clips look at the work of ICASE and are illustrated with examples of complex 3D renderings of data sets.

  2. ICASE: Scientific Visualization Solutions 1

    NASA Technical Reports Server (NTRS)

    1997-01-01

    ICASE: Institute for Computer Applications in Science and Engineering Visualizing the results of supercomputer simulations can be a computationaly demanding process. Research in applying supercomputing tecnology to the problem of data visualisation is being conducted at ICASE, ar NASA LAngley. These clips look at the work of ICASE and are illustrated with examples of complex 3D renderings of data sets.

  3. ICASE: Scientific Visualization Solutions 7

    NASA Technical Reports Server (NTRS)

    1997-01-01

    ICASE: Institute for Computer Applications in Science and Engineering Visualizing the results of supercomputer simulations can be a computationaly demanding process. Research in applying supercomputing tecnology to the problem of data visualisation is being conducted at ICASE, ar NASA LAngley. These clips look at the work of ICASE and are illustrated with examples of complex 3D renderings of data sets.

  4. Visualizing Dynamic Bitcoin Transaction Patterns

    PubMed Central

    McGinn, Dan; Birch, David; Akroyd, David; Molina-Solana, Miguel; Guo, Yike; Knottenbelt, William J.

    2016-01-01

    Abstract This work presents a systemic top-down visualization of Bitcoin transaction activity to explore dynamically generated patterns of algorithmic behavior. Bitcoin dominates the cryptocurrency markets and presents researchers with a rich source of real-time transactional data. The pseudonymous yet public nature of the data presents opportunities for the discovery of human and algorithmic behavioral patterns of interest to many parties such as financial regulators, protocol designers, and security analysts. However, retaining visual fidelity to the underlying data to retain a fuller understanding of activity within the network remains challenging, particularly in real time. We expose an effective force-directed graph visualization employed in our large-scale data observation facility to accelerate this data exploration and derive useful insight among domain experts and the general public alike. The high-fidelity visualizations demonstrated in this article allowed for collaborative discovery of unexpected high frequency transaction patterns, including automated laundering operations, and the evolution of multiple distinct algorithmic denial of service attacks on the Bitcoin network. PMID:27441715

  5. Visualizing Dynamic Bitcoin Transaction Patterns.

    PubMed

    McGinn, Dan; Birch, David; Akroyd, David; Molina-Solana, Miguel; Guo, Yike; Knottenbelt, William J

    2016-06-01

    This work presents a systemic top-down visualization of Bitcoin transaction activity to explore dynamically generated patterns of algorithmic behavior. Bitcoin dominates the cryptocurrency markets and presents researchers with a rich source of real-time transactional data. The pseudonymous yet public nature of the data presents opportunities for the discovery of human and algorithmic behavioral patterns of interest to many parties such as financial regulators, protocol designers, and security analysts. However, retaining visual fidelity to the underlying data to retain a fuller understanding of activity within the network remains challenging, particularly in real time. We expose an effective force-directed graph visualization employed in our large-scale data observation facility to accelerate this data exploration and derive useful insight among domain experts and the general public alike. The high-fidelity visualizations demonstrated in this article allowed for collaborative discovery of unexpected high frequency transaction patterns, including automated laundering operations, and the evolution of multiple distinct algorithmic denial of service attacks on the Bitcoin network. PMID:27441715

  6. Visual Modelling of Learning Processes

    ERIC Educational Resources Information Center

    Copperman, Elana; Beeri, Catriel; Ben-Zvi, Nava

    2007-01-01

    This paper introduces various visual models for the analysis and description of learning processes. The models analyse learning on two levels: the dynamic level (as a process over time) and the functional level. Two types of model for dynamic modelling are proposed: the session trace, which documents a specific learner in a particular learning…

  7. Component-Based Visualization System

    NASA Technical Reports Server (NTRS)

    Delgado, Francisco

    2005-01-01

    A software system has been developed that gives engineers and operations personnel with no "formal" programming expertise, but who are familiar with the Microsoft Windows operating system, the ability to create visualization displays to monitor the health and performance of aircraft/spacecraft. This software system is currently supporting the X38 V201 spacecraft component/system testing and is intended to give users the ability to create, test, deploy, and certify their subsystem displays in a fraction of the time that it would take to do so using previous software and programming methods. Within the visualization system there are three major components: the developer, the deployer, and the widget set. The developer is a blank canvas with widget menu items that give users the ability to easily create displays. The deployer is an application that allows for the deployment of the displays created using the developer application. The deployer has additional functionality that the developer does not have, such as printing of displays, screen captures to files, windowing of displays, and also serves as the interface into the documentation archive and help system. The third major component is the widget set. The widgets are the visual representation of the items that will make up the display (i.e., meters, dials, buttons, numerical indicators, string indicators, and the like). This software was developed using Visual C++ and uses COTS (commercial off-the-shelf) software where possible.

  8. Instructional Technology and Molecular Visualization

    ERIC Educational Resources Information Center

    Appling, Jeffrey R.; Peake, Lisa C.

    2004-01-01

    The effect of intervening use of molecular visualization software was tested on 73 first-year general chemistry students. Pretests and posttests included both traditional multiple-choice questions and model-building activities. Overall students improved after working with the software, although students performed less well on the model-building…

  9. VCAT: Visual Crosswalk Analysis Tool

    SciTech Connect

    Cleland, Timothy J.; Forslund, David W.; Cleland, Catherine A.

    2012-08-31

    VCAT is a knowledge modeling and analysis tool. It was synthesized from ideas in functional analysis, business process modeling, and complex network science. VCAT discovers synergies by analyzing natural language descriptions. Specifically, it creates visual analytic perspectives that capture intended organization structures, then overlays the serendipitous relationships that point to potential synergies within an organization or across multiple organizations.

  10. Teaching Rhetoric through Data Visualization

    ERIC Educational Resources Information Center

    Butler, Shannan H.

    2011-01-01

    The ability to understand a speaker's or author's worldview better, whether an openly espoused ideology or one veiled and deeply hidden, should help students hone their critical thinking skills. This article describes an activity which attempts to do just that by applying new data visualization methods to a rhetorical artifact and examining the…

  11. Conditioned fear modulates visual selection.

    PubMed

    Mulckhuyse, Manon; Crombez, Geert; Van der Stigchel, Stefan

    2013-06-01

    Eye movements reflect the dynamic interplay between top-down- and bottom-up-driven processes. For example, when we voluntarily move our eyes across the visual field, salient visual stimuli in the environment may capture our attention, our eyes, or modulate the trajectory of an eye movement. Previous research has shown that the behavioral relevance of a salient stimulus modulates these processes. This study investigated whether a stimulus signaling an aversive event modulates saccadic behavior. Using a differential fear-conditioning procedure, we presented a threatening (conditional stimulus: CS+) and a nonthreatening stimulus distractor (CS-) during an oculomotor selection task. The results show that short-latency saccades deviated more strongly toward the CS+ than toward the CS- distractor, whereas long-latency saccades deviated more strongly away from the CS+ than from the CS- distractor. Moreover, the CS+ distractor captured the eyes more often than the CS- distractor. Together, these results demonstrate that conditioned fear has a direct and immediate influence on visual selection. The findings are interpreted in terms of a neurobiological model of emotional visual processing. PMID:23356561

  12. Visual Acuity and the Eye.

    ERIC Educational Resources Information Center

    Beynon, J.

    1985-01-01

    Shows that visual acuity is a function of the structure of the eye and that its limit is set by the structure of the retina, emphasizing the role of lens aberrations and difraction on image quality. Also compares human vision with that of other vertebrates and insects. (JN)

  13. Visualizing ensembles in structural biology.

    PubMed

    Melvin, Ryan L; Salsbury, Freddie R

    2016-06-01

    Displaying a single representative conformation of a biopolymer rather than an ensemble of states mistakenly conveys a static nature rather than the actual dynamic personality of biopolymers. However, there are few apparent options due to the fixed nature of print media. Here we suggest a standardized methodology for visually indicating the distribution width, standard deviation and uncertainty of ensembles of states with little loss of the visual simplicity of displaying a single representative conformation. Of particular note is that the visualization method employed clearly distinguishes between isotropic and anisotropic motion of polymer subunits. We also apply this method to ligand binding, suggesting a way to indicate the expected error in many high throughput docking programs when visualizing the structural spread of the output. We provide several examples in the context of nucleic acids and proteins with particular insights gained via this method. Such examples include investigating a therapeutic polymer of FdUMP (5-fluoro-2-deoxyuridine-5-O-monophosphate) - a topoisomerase-1 (Top1), apoptosis-inducing poison - and nucleotide-binding proteins responsible for ATP hydrolysis from Bacillus subtilis. We also discuss how these methods can be extended to any macromolecular data set with an underlying distribution, including experimental data such as NMR structures. PMID:27179343

  14. Visual Persistence and Adult Dyslexia.

    ERIC Educational Resources Information Center

    Winters, Roberta L.; And Others

    1989-01-01

    Visual persistence was investigated in adults with and without dyslexia in order to determine whether dyslexic adults demonstrate problems similar to those found in childhood dyslexia. Results showed that sensitivity of dyslexic adults was impaired when parts of a test stimulus were presented to adjacent retinal areas, suggesting that under…

  15. Visual Literacy/Process Writing.

    ERIC Educational Resources Information Center

    Karolides, Nicholas J., Ed.

    1984-01-01

    The articles in this journal issue provide a rationale and methods for enhancing students' critical awareness of visual media and for a process approach to composition instruction. The titles of the articles and their authors are as follows: (1) "Reel English: Film Study in the High Schools" (James Griswold); (2) "Introducing History Media"…

  16. Visualization of Longitudinal Student Data

    ERIC Educational Resources Information Center

    Bendinelli, Anthony J.; Marder, M.

    2012-01-01

    We use visualization to find patterns in educational data. We represent student scores from high-stakes exams as flow vectors in fluids, define two types of streamlines and trajectories, and show that differences between streamlines and trajectories are due to regression to the mean. This issue is significant because it determines how quickly…

  17. Boundaries in Visualizing Mathematical Behaviour

    ERIC Educational Resources Information Center

    Hare, Andrew Francis

    2013-01-01

    It is surprising to students to learn that a natural combination of simple functions, the function sin(1/x), exhibits behaviour that is a great challenge to visualize. When x is large the function is relatively easy to draw; as x gets smaller the function begins to behave in an increasingly wild manner. The sin(1/x) function can serve as one of…

  18. NASA Dryden flow visualization facility

    NASA Technical Reports Server (NTRS)

    Delfrate, John H.

    1995-01-01

    This report describes the Flow Visualization Facility at NASA Dryden Flight Research Center, Edwards, California. This water tunnel facility is used primarily for visualizing and analyzing vortical flows on aircraft models and other shapes at high-incidence angles. The tunnel is used extensively as a low-cost, diagnostic tool to help engineers understand complex flows over aircraft and other full-scale vehicles. The facility consists primarily of a closed-circuit water tunnel with a 16- x 24-in. vertical test section. Velocity of the flow through the test section can be varied from 0 to 10 in/sec; however, 3 in/sec provides optimum velocity for the majority of flow visualization applications. This velocity corresponds to a unit Reynolds number of 23,000/ft and a turbulence level over the majority of the test section below 0.5 percent. Flow visualization techniques described here include the dye tracer, laser light sheet, and shadowgraph. Limited correlation to full-scale flight data is shown.

  19. Visual Performing Arts. Program Review.

    ERIC Educational Resources Information Center

    State Univ. System of Florida, Tallahassee. Board of Regents.

    This is the third review of higher education visual and performing arts programs in the state of Florida. The report is based on descriptive and self-evaluative reports and videotapes provided by each of the nine universities in the state system (the University of Florida, Florida State University, Florida A & M University, University of South…

  20. Visual Disability and Horse Riding

    ERIC Educational Resources Information Center

    Brickell, Diana

    2005-01-01

    It is now commonplace for horse riding to be included in the extra-curricular activities of students with physical disabilities. In this article an account is given of how visually impaired people can derive physical, mental, and emotional benefits from this supervised activity. It is argued that the rider, in learning to exercise self-control and…

  1. A Visual Information Retrieval Tool.

    ERIC Educational Resources Information Center

    Zhang, Jin

    2000-01-01

    Discussion of visualization for information retrieval, that transforms unseen internal semantic representation of a document collection into visible geometric displays, focuses on DARE (Distance Angle Retrieval Environment). Highlights include expression of information need; interpretation and manipulation of information retrieval models; ranking…

  2. A Visually Oriented Text Editor

    NASA Technical Reports Server (NTRS)

    Gomez, J. E.

    1985-01-01

    HERMAN employs Evans & Sutherland Picture System 2 to provide screenoriented editing capability for DEC PDP-11 series computer. Text altered by visual indication of characters changed. Group of HERMAN commands provides for higher level operations. HERMAN provides special features for editing FORTRAN source programs.

  3. Attentional Episodes in Visual Perception

    ERIC Educational Resources Information Center

    Wyble, Brad; Potter, Mary C.; Bowman, Howard; Nieuwenstein, Mark

    2011-01-01

    Is one's temporal perception of the world truly as seamless as it appears? This article presents a computationally motivated theory suggesting that visual attention samples information from temporal episodes (episodic simultaneous type/serial token model; Wyble, Bowman, & Nieuwenstein, 2009). Breaks between these episodes are punctuated by periods…

  4. Six Degrees of "Visual" Separation

    ERIC Educational Resources Information Center

    Wall, Sharon

    2006-01-01

    Whether referring to psychologist Stanley Milgram's intriguing theory, John Guare's successful play and film, or Kevin Bacon's party game, six degrees of separation may also be used as a way to help students make visual connections. The six degrees of separation is the concept that everyone is connected to everyone else in the world by only six…

  5. Perceptual Bases of Visual Literacy.

    ERIC Educational Resources Information Center

    Messaris, Paul

    The perceptual bases of visual literacy are explored, drawing on research into the interpretation of pictures by viewers not familiar with pictorial representation. Research has indicated that inexperienced viewers do not find it difficult to recognize pictures that may be discrepant in color or shape from a familiar object, but may be troubled by…

  6. Introduction to Vector Field Visualization

    NASA Technical Reports Server (NTRS)

    Kao, David; Shen, Han-Wei

    2010-01-01

    Vector field visualization techniques are essential to help us understand the complex dynamics of flow fields. These can be found in a wide range of applications such as study of flows around an aircraft, the blood flow in our heart chambers, ocean circulation models, and severe weather predictions. The vector fields from these various applications can be visually depicted using a number of techniques such as particle traces and advecting textures. In this tutorial, we present several fundamental algorithms in flow visualization including particle integration, particle tracking in time-dependent flows, and seeding strategies. For flows near surfaces, a wide variety of synthetic texture-based algorithms have been developed to depict near-body flow features. The most common approach is based on the Line Integral Convolution (LIC) algorithm. There also exist extensions of LIC to support more flexible texture generations for 3D flow data. This tutorial reviews these algorithms. Tensor fields are found in several real-world applications and also require the aid of visualization to help users understand their data sets. Examples where one can find tensor fields include mechanics to see how material respond to external forces, civil engineering and geomechanics of roads and bridges, and the study of neural pathway via diffusion tensor imaging. This tutorial will provide an overview of the different tensor field visualization techniques, discuss basic tensor decompositions, and go into detail on glyph based methods, deformation based methods, and streamline based methods. Practical examples will be used when presenting the methods; and applications from some case studies will be used as part of the motivation.

  7. Predicting visual acuity from the structure of visual cortex

    PubMed Central

    Srinivasan, Shyam; Carlo, C. Nikoosh; Stevens, Charles F.

    2015-01-01

    Three decades ago, Rockel et al. proposed that neuronal surface densities (number of neurons under a square millimeter of surface) of primary visual cortices (V1s) in primates is 2.5 times higher than the neuronal density of V1s in nonprimates or many other cortical regions in primates and nonprimates. This claim has remained controversial and much debated. We replicated the study of Rockel et al. with attention to modern stereological precepts and show that indeed primate V1 is 2.5 times denser (number of neurons per square millimeter) than many other cortical regions and nonprimate V1s; we also show that V2 is 1.7 times as dense. As primate V1s are denser, they have more neurons and thus more pinwheels than similar-sized nonprimate V1s, which explains why primates have better visual acuity. PMID:26056277

  8. Neural pathways for visual speech perception

    PubMed Central

    Bernstein, Lynne E.; Liebenthal, Einat

    2014-01-01

    This paper examines the questions, what levels of speech can be perceived visually, and how is visual speech represented by the brain? Review of the literature leads to the conclusions that every level of psycholinguistic speech structure (i.e., phonetic features, phonemes, syllables, words, and prosody) can be perceived visually, although individuals differ in their abilities to do so; and that there are visual modality-specific representations of speech qua speech in higher-level vision brain areas. That is, the visual system represents the modal patterns of visual speech. The suggestion that the auditory speech pathway receives and represents visual speech is examined in light of neuroimaging evidence on the auditory speech pathways. We outline the generally agreed-upon organization of the visual ventral and dorsal pathways and examine several types of visual processing that might be related to speech through those pathways, specifically, face and body, orthography, and sign language processing. In this context, we examine the visual speech processing literature, which reveals widespread diverse patterns of activity in posterior temporal cortices in response to visual speech stimuli. We outline a model of the visual and auditory speech pathways and make several suggestions: (1) The visual perception of speech relies on visual pathway representations of speech qua speech. (2) A proposed site of these representations, the temporal visual speech area (TVSA) has been demonstrated in posterior temporal cortex, ventral and posterior to multisensory posterior superior temporal sulcus (pSTS). (3) Given that visual speech has dynamic and configural features, its representations in feedforward visual pathways are expected to integrate these features, possibly in TVSA. PMID:25520611

  9. Comparative Visualization of Climate Simulation Data

    NASA Astrophysics Data System (ADS)

    Röber, Niklas; Meier-Fleischer, Karin; Böttinger, Michael

    2014-05-01

    Visualization is the process of transforming abstract (scientific) data into a graphical representation, to aid in the understanding of the information contained within the data. Climate data sets are typically quite large, time varying, and consist of many different variables that are sampled on an underlying grid. A variety of different climate models - and sub models - are developed to simulate the climate system and its components, such as the physics of the atmosphere and the ocean, marine biogeochemical processes and the land biosphere. Visualization software is used to assist in the process of visualization and data analysis by transforming the abstract numerical information into a graphical illustration. Different approaches exist in the design of visualization software and for the process of visualization itself, depending on the type and nature of the data as well as on the visualization goal. In addition to a large high performance compute cluster that is exclusively used for climate simulations, the German Climate Computing Centre (DKRZ) also hosts a dedicated visualization cluster for post-processing, data analysis and visualization. On this visualization server, a variety of software is installed to assist the user in the data visualization task. Amongst others, the software stack includes Avizo Green, CDO, NCL, Paraview and SimVis. Each tool has its own strengths and weaknesses, and is selected by the user with regard to the visualization goal. While Avizo Green is great for visualizing the data out of the box, SimVis and Paraview are better suited for an interactive and explorative data analysis. This PICO presentation uses several different visualization solutions - among them Avizo Green, NCL, Paraview and SimVis - to analyze and visualize the same climate data set. We will thereby explicitly focus on each software's strengths, and not highlight its weaknesses. This PICO interactively shows that - depending on the visualization tool used - not

  10. Separate visual representations for perception and for visually guided behavior

    NASA Technical Reports Server (NTRS)

    Bridgeman, Bruce

    1989-01-01

    Converging evidence from several sources indicates that two distinct representations of visual space mediate perception and visually guided behavior, respectively. The two maps of visual space follow different rules; spatial values in either one can be biased without affecting the other. Ordinarily the two maps give equivalent responses because both are veridically in register with the world; special techniques are required to pull them apart. One such technique is saccadic suppression: small target displacements during saccadic eye movements are not preceived, though the displacements can change eye movements or pointing to the target. A second way to separate cognitive and motor-oriented maps is with induced motion: a slowly moving frame will make a fixed target appear to drift in the opposite direction, while motor behavior toward the target is unchanged. The same result occurs with stroboscopic induced motion, where the frame jump abruptly and the target seems to jump in the opposite direction. A third method of separating cognitive and motor maps, requiring no motion of target, background or eye, is the Roelofs effect: a target surrounded by an off-center rectangular frame will appear to be off-center in the direction opposite the frame. Again the effect influences perception, but in half of the subjects it does not influence pointing to the target. This experience also reveals more characteristics of the maps and their interactions with one another, the motor map apparently has little or no memory, and must be fed from the biased cognitive map if an enforced delay occurs between stimulus presentation and motor response. In designing spatial displays, the results mean that what you see isn't necessarily what you get. Displays must be designed with either perception or visually guided behavior in mind.

  11. Reconstructing representations of dynamic visual objects in early visual cortex.

    PubMed

    Chong, Edmund; Familiar, Ariana M; Shim, Won Mok

    2016-02-01

    As raw sensory data are partial, our visual system extensively fills in missing details, creating enriched percepts based on incomplete bottom-up information. Despite evidence for internally generated representations at early stages of cortical processing, it is not known whether these representations include missing information of dynamically transforming objects. Long-range apparent motion (AM) provides a unique test case because objects in AM can undergo changes both in position and in features. Using fMRI and encoding methods, we found that the "intermediate" orientation of an apparently rotating grating, never presented in the retinal input but interpolated during AM, is reconstructed in population-level, feature-selective tuning responses in the region of early visual cortex (V1) that corresponds to the retinotopic location of the AM path. This neural representation is absent when AM inducers are presented simultaneously and when AM is visually imagined. Our results demonstrate dynamic filling-in in V1 for object features that are interpolated during kinetic transformations. PMID:26712004

  12. Visual reinforcement shapes eye movements in visual search.

    PubMed

    Paeye, Céline; Schütz, Alexander C; Gegenfurtner, Karl R

    2016-08-01

    We use eye movements to gain information about our visual environment; this information can indirectly be used to affect the environment. Whereas eye movements are affected by explicit rewards such as points or money, it is not clear whether the information gained by finding a hidden target has a similar reward value. Here we tested whether finding a visual target can reinforce eye movements in visual search performed in a noise background, which conforms to natural scene statistics and contains a large number of possible target locations. First we tested whether presenting the target more often in one specific quadrant would modify eye movement search behavior. Surprisingly, participants did not learn to search for the target more often in high probability areas. Presumably, participants could not learn the reward structure of the environment. In two subsequent experiments we used a gaze-contingent display to gain full control over the reinforcement schedule. The target was presented more often after saccades into a specific quadrant or a specific direction. The proportions of saccades meeting the reinforcement criteria increased considerably, and participants matched their search behavior to the relative reinforcement rates of targets. Reinforcement learning seems to serve as the mechanism to optimize search behavior with respect to the statistics of the task. PMID:27559719

  13. Reconstructing representations of dynamic visual objects in early visual cortex

    PubMed Central

    Chong, Edmund; Familiar, Ariana M.; Shim, Won Mok

    2016-01-01

    As raw sensory data are partial, our visual system extensively fills in missing details, creating enriched percepts based on incomplete bottom-up information. Despite evidence for internally generated representations at early stages of cortical processing, it is not known whether these representations include missing information of dynamically transforming objects. Long-range apparent motion (AM) provides a unique test case because objects in AM can undergo changes both in position and in features. Using fMRI and encoding methods, we found that the “intermediate” orientation of an apparently rotating grating, never presented in the retinal input but interpolated during AM, is reconstructed in population-level, feature-selective tuning responses in the region of early visual cortex (V1) that corresponds to the retinotopic location of the AM path. This neural representation is absent when AM inducers are presented simultaneously and when AM is visually imagined. Our results demonstrate dynamic filling-in in V1 for object features that are interpolated during kinetic transformations. PMID:26712004

  14. Classifying EEG Signals during Stereoscopic Visualization to Estimate Visual Comfort.

    PubMed

    Frey, Jérémy; Appriou, Aurélien; Lotte, Fabien; Hachet, Martin

    2016-01-01

    With stereoscopic displays a sensation of depth that is too strong could impede visual comfort and may result in fatigue or pain. We used Electroencephalography (EEG) to develop a novel brain-computer interface that monitors users' states in order to reduce visual strain. We present the first system that discriminates comfortable conditions from uncomfortable ones during stereoscopic vision using EEG. In particular, we show that either changes in event-related potentials' (ERPs) amplitudes or changes in EEG oscillations power following stereoscopic objects presentation can be used to estimate visual comfort. Our system reacts within 1 s to depth variations, achieving 63% accuracy on average (up to 76%) and 74% on average when 7 consecutive variations are measured (up to 93%). Performances are stable (≈62.5%) when a simplified signal processing is used to simulate online analyses or when the number of EEG channels is lessened. This study could lead to adaptive systems that automatically suit stereoscopic displays to users and viewing conditions. For example, it could be possible to match the stereoscopic effect with users' state by modifying the overlap of left and right images according to the classifier output. PMID:26819580

  15. Classifying EEG Signals during Stereoscopic Visualization to Estimate Visual Comfort

    PubMed Central

    Frey, Jérémy; Appriou, Aurélien; Lotte, Fabien; Hachet, Martin

    2016-01-01

    With stereoscopic displays a sensation of depth that is too strong could impede visual comfort and may result in fatigue or pain. We used Electroencephalography (EEG) to develop a novel brain-computer interface that monitors users' states in order to reduce visual strain. We present the first system that discriminates comfortable conditions from uncomfortable ones during stereoscopic vision using EEG. In particular, we show that either changes in event-related potentials' (ERPs) amplitudes or changes in EEG oscillations power following stereoscopic objects presentation can be used to estimate visual comfort. Our system reacts within 1 s to depth variations, achieving 63% accuracy on average (up to 76%) and 74% on average when 7 consecutive variations are measured (up to 93%). Performances are stable (≈62.5%) when a simplified signal processing is used to simulate online analyses or when the number of EEG channels is lessened. This study could lead to adaptive systems that automatically suit stereoscopic displays to users and viewing conditions. For example, it could be possible to match the stereoscopic effect with users' state by modifying the overlap of left and right images according to the classifier output. PMID:26819580

  16. Visual Disturbances: Related to Migraine or Not?

    MedlinePlus

    ... or Not? Print Email Visual Disturbances: Related to Migraine or Not? ACHE Newsletter Sign up for our ... e-mail address below. Visual Disturbances: Related to Migraine or Not? By: Deborah I. Friedman, MD, MPH ...

  17. Visual Image Sensor Organ Replacement: Implementation

    NASA Technical Reports Server (NTRS)

    Maluf, A. David (Inventor)

    2011-01-01

    Method and system for enhancing or extending visual representation of a selected region of a visual image, where visual representation is interfered with or distorted, by supplementing a visual signal with at least one audio signal having one or more audio signal parameters that represent one or more visual image parameters, such as vertical and/or horizontal location of the region; region brightness; dominant wavelength range of the region; change in a parameter value that characterizes the visual image, with respect to a reference parameter value; and time rate of change in a parameter value that characterizes the visual image. Region dimensions can be changed to emphasize change with time of a visual image parameter.

  18. When audiovisual correspondence disturbs visual processing.

    PubMed

    Hong, Sang Wook; Shim, Won Mok

    2016-05-01

    Multisensory integration is known to create a more robust and reliable perceptual representation of one's environment. Specifically, a congruent auditory input can make a visual stimulus more salient, consequently enhancing the visibility and detection of the visual target. However, it remains largely unknown whether a congruent auditory input can also impair visual processing. In the current study, we demonstrate that temporally congruent auditory input disrupts visual processing, consequently slowing down visual target detection. More importantly, this cross-modal inhibition occurs only when the contrast of visual targets is high. When the contrast of visual targets is low, enhancement of visual target detection is observed, consistent with the prediction based on the principle of inverse effectiveness (PIE) in cross-modal integration. The switch of the behavioral effect of audiovisual interaction from benefit to cost further extends the PIE to encompass the suppressive cross-modal interaction. PMID:26884130

  19. Visual Encoding in Preschoolers' Serial Retention

    ERIC Educational Resources Information Center

    Hayes, Donald S.; Schulze, Sharon A.

    1977-01-01

    To determine whether young children consistently employ a visual code for remembering pictures in serial recall, 36 preschool children were asked to match picture lists composed of visually similar, phonetically similar, or unrelated items. (JMB)

  20. Data Visualization and Animation Lab (DVAL): Applications

    NASA Technical Reports Server (NTRS)

    Severance, Kurt; Weisenborn, Mike

    1994-01-01

    A wide variety of software tools has been successfully used to visualize, analyze and present computational and experimental data at Langley Research Center. These tools can be categorized according to five primary uses: (1) 2-D image analysis, (2) conventional 3-D visualization, (3) volume visualization, (4) photo-realistic rendering, or (5) special purpose applications. Software is accessible in each of these categories for Langley personnel, and training or consultation can be arranged with the Data Visualization and Animation laboratory staff.

  1. Complex visual hallucinations in the hemianopic field.

    PubMed Central

    Kölmel, H W

    1985-01-01

    From 120 patients with an homonymous hemianopia 16 experienced complex visual hallucinations in the hemianopic field. The brain lesion was located in the occipital lobe, though damage was not limited to this area. Complex hallucinations appeared after a latent period. They were weak in colour and stereotypical in appearance, which allowed differentiation from visual hallucinations of other causes. Different behaviour after saccadic eye movement differentiated between complex visual hallucinations in the hemianopic field and visual auras of an epileptic origin. PMID:3973619

  2. Surface flow visualization using indicators

    NASA Technical Reports Server (NTRS)

    Crowder, J. P.

    1982-01-01

    Surface flow visualization using indicators in the cryogenic wind tunnel which requires a fresh look at materials and procedures to accommodate the new test conditions is described. Potential liquid and gaseous indicators are identified. The particular materials illustrate the various requirements an indicator must fulfill. The indicator must respond properly to the flow phenomenon of interest and must be observable. Boundary layer transition is the most important phenomenon for which flow visualization indicators may be employed. The visibility of a particular indicator depends on utilizing various optical or chemical reactions. Gaseous indicators are more difficult to utilize, but because of their diversity may present unusual and useful opportunities. Factors to be considered in selecting an indicator include handling safety, toxicity, potential for contamination of the tunnel, and cost.

  3. Visual Surround Suppression in Schizophrenia

    PubMed Central

    Tibber, Marc S.; Anderson, Elaine J.; Bobin, Tracy; Antonova, Elena; Seabright, Alice; Wright, Bernice; Carlin, Patricia; Shergill, Sukhwinder S.; Dakin, Steven C.

    2013-01-01

    Compared to unaffected observers patients with schizophrenia (SZ) show characteristic differences in visual perception, including a reduced susceptibility to the influence of context on judgments of contrast – a manifestation of weaker surround suppression (SS). To examine the generality of this phenomenon we measured the ability of 24 individuals with SZ to judge the luminance, contrast, orientation, and size of targets embedded in contextual surrounds that would typically influence the target’s appearance. Individuals with SZ demonstrated weaker SS compared to matched controls for stimuli defined by contrast or size, but not for those defined by luminance or orientation. As perceived luminance is thought to be regulated at the earliest stages of visual processing our findings are consistent with a suppression deficit that is predominantly cortical in origin. In addition, we propose that preserved orientation SS in SZ may reflect the sparing of broadly tuned mechanisms of suppression. We attempt to reconcile these data with findings from previous studies. PMID:23450069

  4. Visual analysis of code security

    SciTech Connect

    Goodall, John R; Radwan, Hassan; Halseth, Lenny

    2010-01-01

    To help increase the confidence that software is secure, researchers and vendors have developed different kinds of automated software security analysis tools. These tools analyze software for weaknesses and vulnerabilities, but the individual tools catch different vulnerabilities and produce voluminous data with many false positives. This paper describes a system that brings together the results of disparate software analysis tools into a visual environment to support the triage and exploration of code vulnerabilities. Our system allows software developers to explore vulnerability results to uncover hidden trends, triage the most important code weaknesses, and show who is responsible for introducing software vulnerabilities. By correlating and normalizing multiple software analysis tools' data, the overall vulnerability detection coverage of software is increased. A visual overview and powerful interaction allows the user to focus attention on the most pressing vulnerabilities within huge volumes of data, and streamlines the secure software development workflow through integration with development tools.

  5. Enhancing AFLOW Visualization using Jmol

    NASA Astrophysics Data System (ADS)

    Lanasa, Jacob; New, Elizabeth; Stefek, Patrik; Honaker, Brigette; Hanson, Robert; Aflow Collaboration

    The AFLOW library is a database of theoretical solid-state structures and calculated properties created using high-throughput ab initio calculations. Jmol is a Java-based program capable of visualizing and analyzing complex molecular structures and energy landscapes. In collaboration with the AFLOW consortium, our goal is the enhancement of the AFLOWLIB database through the extension of Jmol's capabilities in the area of materials science. Modifications made to Jmol include the ability to read and visualize AFLOW binary alloy data files, the ability to extract from these files information using Jmol scripting macros that can be utilized in the creation of interactive web-based convex hull graphs, the capability to identify and classify local atomic environments by symmetry, and the ability to search one or more related crystal structures for atomic environments using a novel extension of inorganic polyhedron-based SMILES strings

  6. Visualization drivers for Geant4

    SciTech Connect

    Beretvas, Andy; /Fermilab

    2005-10-01

    This document is on Geant4 visualization tools (drivers), evaluating pros and cons of each option, including recommendations on which tools to support at Fermilab for different applications. Four visualization drivers are evaluated. They are OpenGL, HepRep, DAWN and VRML. They all have good features, OpenGL provides graphic output without an intermediate file. HepRep provides menus to assist the user. DAWN provides high quality plots and even for large files produces output quickly. VRML uses the smallest disk space for intermediate files. Large experiments at Fermilab will want to write their own display. They should proceed to make this display graphics independent. Medium experiment will probably want to use HepRep because of it's menu support. Smaller scale experiments will want to use OpenGL in the spirit of having immediate response, good quality output and keeping things simple.

  7. Activity detection in scientific visualization.

    PubMed

    Ozer, Sedat; Silver, Deborah; Bemis, Karen; Martin, Pino

    2014-03-01

    For large-scale simulations, the data sets are so massive that it is sometimes not feasible to view the data with basic visualization methods, let alone explore all time steps in detail. Automated tools are necessary for knowledge discovery, i.e., to help sift through the data and isolate specific time steps that can then be further explored. Scientists study patterns and interactions and want to know when and where interesting things happen. Activity detection, the detection of specific interactions of objects which span a limited duration of time, has been an active research area in the computer vision community. In this paper, we introduce activity detection to scientific simulations and show how it can be utilized in scientific visualization. We show how activity detection allows a scientist to model an activity and can then validate their hypothesis on the underlying processes. Three case studies are presented. PMID:24434219

  8. An interpersonal multimedia visualization system

    SciTech Connect

    Phillips, R.L.

    1990-01-01

    Media View is a computer program that provides a generic infrastructure for authoring and interacting with multimedia documents. Among its many applications is the ability to furnish a user with a comprehensive environment for analysis and visualization. With MediaView the user produces a document'' that contains mathematics, datasets and associated visualizations. From the dataset or embedded mathematics animated sequences can be produced in situ. The mathematical content of the document'' can be explored through manipulation with Mathematica {trademark}. Since the document'' is all digital, it can be shared with a co-worker on a local network or mailed electronically to a colleague at a distant site. Animations and any other substructure of the document'' persist through the mailing process and can be awakened at the destination by the recipient. 5 refs., 4 figs.

  9. Control information in visual flight

    NASA Technical Reports Server (NTRS)

    Naish, J. M.

    1972-01-01

    The purpose of the inquiry is to determine how precisely a pilot can estimate the movements of his vehicle, and thus exercise control, during an unaided visual approach. The method is to relate changes in the forward view, due to movements along and across the approach path, to human visual thresholds and errors. The scope is restricted to effects of inclination, expansion, size, and rotation in runway features during approaches at small angles of elevation. Quantitative relations are given which provide a basis for ranking the several information mechanisms. Alignment by inclination of a ground line is found to be an accurate lateral mechanism, probably superior to the expansion mechanism. Vertical control mechanisms are complex, of questionable accuracy, and difficult to rank. The results throw some doubt on the usefulness of a runway symbol as a source of displayed information.

  10. Ultrascale Visualization of Climate Data

    NASA Technical Reports Server (NTRS)

    Williams, Dean N.; Bremer, Timo; Doutriaux, Charles; Patchett, John; Williams, Sean; Shipman, Galen; Miller, Ross; Pugmire, David R.; Smith, Brian; Steed, Chad; Bethel, E. Wes; Childs, Hank; Krishnan, Harinarayan; Prabhat; Wehner, Michael; Silva, Claudio T.; Santos, Emanuele; Koop, David; Ellqvist, Tommy; Poco, Jorge; Gevecki, Berk; Chaudhary, Aashish; Bauer, Andy; Potter, Gerald L.; Maxwell, Thomas P.

    2013-01-01

    Fueled by exponential increases in the computational and storage capabilities of high-performance computing platforms, climate simulations are evolving toward higher numerical fidelity, complexity, volume, and dimensionality. These technological breakthroughs are coming at a time of exponential growth in climate data, with estimates of hundreds of exabytes by 2020. To meet the challenges and exploit the opportunities that such explosive growth affords, a consortium of four national laboratories, two universities, a government agency, and two private companies formed to explore the next wave in climate science. Working in close collaboration with domain experts, the Ultrascale Visualization Climate Data Analysis Tools (UV-CDAT) project aims to provide high-level solutions to a variety of climate data analysis and visualization problems.

  11. Aesthetic valence of visual illusions

    PubMed Central

    Stevanov, Jasmina; Marković, Slobodan; Kitaoka, Akiyoshi

    2012-01-01

    Visual illusions constitute an interesting perceptual phenomenon, but they also have an aesthetic and affective dimension. We hypothesized that the illusive nature itself causes the increased aesthetic and affective valence of illusions compared with their non-illusory counterparts. We created pairs of stimuli. One qualified as a standard visual illusion whereas the other one did not, although they were matched in as many perceptual dimensions as possible. The phenomenal quality of being an illusion had significant effects on “Aesthetic Experience” (fascinating, irresistible, exceptional, etc), “Evaluation” (pleasant, cheerful, clear, bright, etc), “Arousal” (interesting, imaginative, complex, diverse, etc), and “Regularity” (balanced, coherent, clear, realistic, etc). A subsequent multiple regression analysis suggested that Arousal was a better predictor of Aesthetic Experience than Evaluation. The findings of this study demonstrate that illusion is a phenomenal quality of the percept which has measurable aesthetic and affective valence. PMID:23145272

  12. Visualizing Spatially Varying Distribution Data

    NASA Technical Reports Server (NTRS)

    Kao, David; Luo, Alison; Dungan, Jennifer L.; Pang, Alex; Biegel, Bryan A. (Technical Monitor)

    2002-01-01

    Box plot is a compact representation that encodes the minimum, maximum, mean, median, and quarters information of a distribution. In practice, a single box plot is drawn for each variable of interest. With the advent of more accessible computing power, we are now facing the problem of visual icing data where there is a distribution at each 2D spatial location. Simply extending the box plot technique to distributions over 2D domain is not straightforward. One challenge is reducing the visual clutter if a box plot is drawn over each grid location in the 2D domain. This paper presents and discusses two general approaches, using parametric statistics and shape descriptors, to present 2D distribution data sets. Both approaches provide additional insights compared to the traditional box plot technique

  13. MemAxes Visualization Software

    2014-08-28

    Hardware advancements such as Intel's PEBS and AMD's IBS, as well as software developments such as the perf_event API in Linux have made available the acquisition of memory access samples with performance information. MemAxes is a visualization and analysis tool for memory access sample data. By mapping the samples to their associated code, variables, node topology, and application dataset, MemAxes provides intuitive views of the data.

  14. Visualizing Cyber Security: Usable Workspaces

    SciTech Connect

    Fink, Glenn A.; North, Christopher L.; Endert, Alexander; Rose, Stuart J.

    2009-10-11

    An environment that supports cyber analytics work should enable multiple, simultaneous investigations, information foraging, and provide a solution space for organizing data. We describe our study of cyber security professionals and visualizations in a large, high-resolution display work environment. We discuss the tasks and needs of analysts that such an environment can support and present several prototypes designed to support these needs. We conclude with a usability evaluation of the prototypes and additional lessons learned.

  15. Cognitive Foundations for Visual Analytics

    SciTech Connect

    Greitzer, Frank L.; Noonan, Christine F.; Franklin, Lyndsey

    2011-02-25

    In this report, we provide an overview of scientific/technical literature on information visualization and VA. Topics discussed include an update and overview of the extensive literature search conducted for this study, the nature and purpose of the field, major research thrusts, and scientific foundations. We review methodologies for evaluating and measuring the impact of VA technologies as well as taxonomies that have been proposed for various purposes to support the VA community. A cognitive science perspective underlies each of these discussions.

  16. Surface-Streamline Flow Visualization

    NASA Technical Reports Server (NTRS)

    Langston, L.; Boyle, M.

    1985-01-01

    Matrix of ink dots covers matte surface of polyester drafting film. Film placed against wind-tunnel wall. Layer of methyl salicylate (oil of wintergreen) sprayed over dotted area. Ink dot streaklines show several characteristics of flow, including primary saddle point of separations, primary horseshoe vortex and smaller vortex at cylinder/ endwall junction. Surface streamline flow visualization technique suitable for use in low-speed windtunnels or other low-speed gas flows.

  17. Visual air quality simulation techniques

    NASA Astrophysics Data System (ADS)

    Molenar, John V.; Malm, William C.; Johnson, Christopher E.

    Visual air quality is primarily a human perceptual phenomenon beginning with the transfer of image-forming information through an illuminated, scattering and absorbing atmosphere. Visibility, especially the visual appearance of industrial emissions or the degradation of a scenic view, is the principal atmospheric characteristic through which humans perceive air pollution, and is more sensitive to changing pollution levels than any other air pollution effect. Every attempt to quantify economic costs and benefits of air pollution has indicated that good visibility is a highly valued and desired environmental condition. Measurement programs can at best approximate the state of the ambient atmosphere at a few points in a scenic vista viewed by an observer. To fully understand the visual effect of various changes in the concentration and distribution of optically important atmospheric pollutants requires the use of aerosol and radiative transfer models. Communication of the output of these models to scientists, decision makers and the public is best done by applying modern image-processing systems to generate synthetic images representing the modeled air quality conditions. This combination of modeling techniques has been under development for the past 15 yr. Initially, visual air quality simulations were limited by a lack of computational power to simplified models depicting Gaussian plumes or uniform haze conditions. Recent explosive growth in low cost, high powered computer technology has allowed the development of sophisticated aerosol and radiative transfer models that incorporate realistic terrain, multiple scattering, non-uniform illumination, varying spatial distribution, concentration and optical properties of atmospheric constituents, and relative humidity effects on aerosol scattering properties. This paper discusses these improved models and image-processing techniques in detail. Results addressing uniform and non-uniform layered haze conditions in both

  18. Eye movements reset visual perception

    PubMed Central

    Paradiso, Michael A.; Meshi, Dar; Pisarcik, Jordan; Levine, Samuel

    2012-01-01

    Human vision uses saccadic eye movements to rapidly shift the sensitive foveal portion of our retina to objects of interest. For vision to function properly amidst these ballistic eye movements, a mechanism is needed to extract discrete percepts on each fixation from the continuous stream of neural activity that spans fixations. The speed of visual parsing is crucial because human behaviors ranging from reading to driving to sports rely on rapid visual analysis. We find that a brain signal associated with moving the eyes appears to play a role in resetting visual analysis on each fixation, a process that may aid in parsing the neural signal. We quantified the degree to which the perception of tilt is influenced by the tilt of a stimulus on a preceding fixation. Two key conditions were compared, one in which a saccade moved the eyes from one stimulus to the next and a second simulated saccade condition in which the stimuli moved in the same manner but the subjects did not move their eyes. We find that there is a brief period of time at the start of each fixation during which the tilt of the previous stimulus influences perception (in a direction opposite to the tilt aftereffect)—perception is not instantaneously reset when a fixation starts. Importantly, the results show that this perceptual bias is much greater, with nearly identical visual input, when saccades are simulated. This finding suggests that, in real-saccade conditions, some signal related to the eye movement may be involved in the reset phenomenon. While proprioceptive information from the extraocular muscles is conceivably a factor, the fast speed of the effect we observe suggests that a more likely mechanism is a corollary discharge signal associated with eye movement. PMID:23241264

  19. Eye movements reset visual perception.

    PubMed

    Paradiso, Michael A; Meshi, Dar; Pisarcik, Jordan; Levine, Samuel

    2012-01-01

    Human vision uses saccadic eye movements to rapidly shift the sensitive foveal portion of our retina to objects of interest. For vision to function properly amidst these ballistic eye movements, a mechanism is needed to extract discrete percepts on each fixation from the continuous stream of neural activity that spans fixations. The speed of visual parsing is crucial because human behaviors ranging from reading to driving to sports rely on rapid visual analysis. We find that a brain signal associated with moving the eyes appears to play a role in resetting visual analysis on each fixation, a process that may aid in parsing the neural signal. We quantified the degree to which the perception of tilt is influenced by the tilt of a stimulus on a preceding fixation. Two key conditions were compared, one in which a saccade moved the eyes from one stimulus to the next and a second simulated saccade condition in which the stimuli moved in the same manner but the subjects did not move their eyes. We find that there is a brief period of time at the start of each fixation during which the tilt of the previous stimulus influences perception (in a direction opposite to the tilt aftereffect)--perception is not instantaneously reset when a fixation starts. Importantly, the results show that this perceptual bias is much greater, with nearly identical visual input, when saccades are simulated. This finding suggests that, in real-saccade conditions, some signal related to the eye movement may be involved in the reset phenomenon. While proprioceptive information from the extraocular muscles is conceivably a factor, the fast speed of the effect we observe suggests that a more likely mechanism is a corollary discharge signal associated with eye movement. PMID:23241264

  20. Visualization and Modeling Working Group

    SciTech Connect

    Fernandez, S.J.; Dodrill, K.A.

    2007-03-01

    During the 2005 Hurricane season, many consequence predictions were available from 36 to 96 hours before landfalls, via the Department of Energy’s Visualization and Modeling Working Group (VMWG). Real-time data can be tapped by local officials and utilities, and can also be accessed for post-event regulatory audits. An overview of VMWG’s models, results and uses will be presented.