Science.gov

Sample records for 3-sulfopropyl methacrylate potassium

  1. Adsorption and desorption of bis-(3-sulfopropyl) disulfide during Cu electrodeposition and stripping at Au electrodes.

    PubMed

    Chiu, Yong-Da; Dow, Wei-Ping; Krug, Klaus; Liu, Yung-Fang; Lee, Yuh-Lang; Yau, Shueh-Lin

    2012-10-09

    The adsorption and desorption of bis-(3-sulfopropyl) disulfide (SPS) on Cu and Au electrodes and its electrochemical effect on Cu deposition and dissolution were examined using cyclic voltammetry stripping (CVS), field-emission scanning electron microscopy (FESEM), and X-ray photoelectron spectroscopy (XPS). SPS dissociates into 3-mercapto-1-propanesulfonate when it is contacted with Au and Cu electrodes, producing Cu(I)- and Au(I)-thiolate species. These thiolates couple with chloride ions and promote not only the reduction of Cu(2+) in Cu deposition but also the oxidation of Cu(0) to Cu(+) in Cu stripping. During Cu electrodeposition on the SPS-modified Au electrode, thiolates transfer from Au onto the Cu underpotential deposition (UPD) layer. The Cu UPD layer stabilizes a large part of the transferred thiolates which subsequently is buried by the Cu overpotential deposition (OPD) layer. The buried thiolates reappear on the Au electrode after the copper deposit is electrochemically stripped off. A much smaller part of thiolates transfers to the top of the Cu OPD layer. In contrast, when SPS preadsorbs on a Cu-coated Au electrode, almost all of the adsorbed SPS leaves the Cu surface during Cu electrochemical stripping and does not return to the uncovered Au surface. A reaction mechanism is proposed to explain these results.

  2. Long-term stability of cell micropatterns on poly((3-(methacryloylamino)propyl)-dimethyl(3-sulfopropyl)ammonium hydroxide)-patterned silicon oxide surfaces.

    PubMed

    Cho, Woo Kyung; Kong, Bokyung; Park, Hyung Ju; Kim, Jinkyu; Chegal, Won; Choi, Joon Sig; Choi, Insung S

    2010-12-01

    In this work, we compared the long-term stability and integrity of cell patterns on newly reported, zwitterionic poly((3-(methacryloylamino)propyl)dimethyl(3-sulfopropyl)ammonium hydroxide) (poly(MPDSAH)) films with those on widely used, poly(poly(ethylene glycol) methyl ether methacrylate) (poly(PEGMEMA)) ones. The micropatterns of both polymers were formed on a silicon oxide surface by a combination of micropattern generation of a photoresist, vapor deposition of a silane-based polymerization initiator, and surface-initiated, atom transfer radical polymerization (SI-ATRP) of each monomer, MPDSAH or PEGMEMA. The successful formation of the silane initiator SAMs, and poly(MPDSAH) and poly(PEGMEMA) micropatterns was confirmed by X-ray photoelectron spectroscopy (XPS) and imaging ellipsometry. Onto each substrate patterned with poly(MPDSAH) or poly(PEGMEMA), NIH 3T3 fibroblast cells were seeded, and the cell micropatterns were generated by the selective adhesion of cells on the cell-adhesive region of the patterned surfaces. The cell pattern formed on the poly(MPDSAH)-patterned surface was observed to have a superior ability of finely maintaining its original, line-shaped structure up to for 20 days, when compared with the cell pattern formed on the poly(PEGMEMA)-patterned surface. In order to verify the relationship between the integrity of the cell micropatterns and the stability of the underlying non-biofouling polymer layers, we also investigated the long-term stability of the polymer films themselves, immersed in the cell culture media, for one month, in the aid of ellipsometry, contact goniometry, and XPS.

  3. A flow cytometric method for measurement of intracellular chloride concentration in lymphocytes using the halide-specific probe 6-methoxy-N-(3-sulfopropyl) quinolinium (SPQ).

    PubMed

    Pilas, B; Durack, G

    1997-08-01

    A flow cytometry method using the halide-specific fluorescent dye, 6-methoxy-N-(3-sulfopropyl) quinolinium (SPQ), has been developed to measure intracellular chloride concentration in single cells. Collisions with chloride quench the fluorescence of SPQ, making it possible to relate the measured fluorescence intensity to chloride concentration with a Stern-Volmer equation. To demonstrate the method, porcine lymphocytes were loaded in vitro, using a hypotonic method, with 5 mM SPQ. Fluorescence excitation was provided by a UV laser and the fluorescence emission intensity at 485 nm was recorded. Calibration was performed by using 7 microM nigericin (a K/H antiporter) and 10 microM tributyltin (a Cl/OH antiporter) to equilibrate the concentrations of intracellular and extracellular chloride. Calibration measurements were made for chloride concentrations between 0 mM and 140 mM. The calibration produced a Stern-Volmer quenching constant of 16.2 M(-1) which was used to relate measured cell fluorescence to intracellular chloride concentration. The intracellular chloride concentration for fresh porcine lymphocytes was determined to be 56.2 +/- 3.3 mM. Stable loading of cells with 5 mM SPQ was accomplished in 15 minutes, leakage of SPQ from the cells was minimal, and over 95% of the cells remained viable after loading.

  4. Adsorptive voltammetry of 2-(5-bromo-2-pyridyl)azo-5-[N-n-propyl-N-(3-sulfopropyl)amino]phenol on a carbon paste electrode in the presence of organic cations and polycation.

    PubMed

    Hattori, Toshiaki; Tsurumi, Naoko; Kato, Ryo; Nakayama, Masanori

    2006-12-01

    The adsorption of ion-association complexes on a carbon paste electrode (CPE) was investigated by cyclic voltammetry using an electroactive hydrophobic anion probe. The redox reactions of 2-(5-bromo-2-pyridyl)azo-5-[N-n-propyl-N-(3-sulfopropyl)amino]phenol (5-Br-PAPS), the analytical probe, were irreversible. The reduction of the azo group and the oxidation of the phenol were observed at -0.1 V and 0.9 V vs. SCE, respectively, in a 0.1 mol L(-1) H(2)SO(4) solution. The peak currents for the redox reaction increased with the concentration of the cationic surfactant and the accumulation time. The increase in the ratio of the peak current to the concentration of cationic surfactants was proportional to the hydrophobicity. The peak current for 5-Br-PAPS also increased when a polycation, polyhexamethylene biguanide hydrochloride, was added and was strongly dependent on the ionic strength and pH, in contrast to cationic surfactants.

  5. Fluorescent nanosensors for intracellular chemical analysis: decyl methacrylate liquid polymer matrix and ion-exchange-based potassium PEBBLE sensors with real-time application to viable rat C6 glioma cells.

    PubMed

    Brasuel, M; Kopelman, R; Miller, T J; Tjalkens, R; Philbert, M A

    2001-05-15

    Fluorescent spherical nanosensors, or PEBBLEs (probes encapsulated by biologically localized embedding), in the 500 nm-1 microm size range have been developed using decyl methacrylate as a matrix. A general scheme for the polymerization and introduction of sensing components creates a matrix that allows for the utilization of the highly selective ionophores used in poly(vinyl chloride) and decyl methacrylate ion-selective electrodes. We have applied these optically silent ionophores to fluorescence-based sensing by using ion-exchange and highly selective pH chromoionophores. This allows the tailoring of selective submicrometer sensors for use in intracellular measurements of important analytes for which selective enough fluorescent probes do not exist. The protocol for sensor development has been worked out for potassium sensing. It is based on the BME-44 ionophore (2-dodecyl-2-methyl-1,3-propanediylbis[N-[5'nitro(benzo-15-crown-5)-4'-yl]carbamate]). The general scheme should work for any available ionophore used in PVC or decyl methacrylate ion-selective electrodes, with minor adjustments to account for differences in ionophore charge and analyte binding constant. The reversible and highly selective sensors developed have a subsecond response time and an adjustable dynamic range. Applications to live C6 glioma cells demonstrate their utility; the intracellular potassium activity is followed in real time upon extracellular administration of kainic acid.

  6. Methyl methacrylate

    Integrated Risk Information System (IRIS)

    TOXICOLOGICAL REVIEW of METHYL METHACRYLATE ( CAS No . 80 - 62 - 6 ) In Support of Summary Information on the Integrated Risk Information System ( IRIS ) January 1998 U.S . Environmental Protection Agency Washington , DC TABLE OF CONTENTS DISCLAIMER . . . . . . . . . . . . . . . . . . . . . . . . .

  7. Ammonium methacrylate

    Integrated Risk Information System (IRIS)

    Ammonium methacrylate ; CASRN 16325 - 47 - 6 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcin

  8. Methacrylic Zwitterionic, Thermoresponsive, and Hydrophilic (Co)Polymers via Cu(0)-Polymerization: The Importance of Halide Salt Additives.

    PubMed

    Simula, Alexandre; Anastasaki, Athina; Haddleton, David M

    2016-02-01

    The synthesis of hydrophilic, thermoresponsive, and zwitterionic polymethacrylates is reported by Cu(0)-mediated reversible deactivation radical polymerization in water and/or water/alcohol mixtures. The predisproportionation of [Cu(I) (PMDETA)Cl] in water prior to initiator and monomer addition is exploited to yield well-defined polymethacrylates with full monomer conversions in 30 min. The addition of supplementary halide salts (NaCl) enables the synthesis of various molecular weight poly[poly(ethylene glycol) methyl ether methacrylate] (PEGMA475) (DPn = 10-80, Mn ≈ 10,000-40 000 g mol(-1)) with full monomer conversion and narrow molecular weight distributions attained in all cases (Đ ≈ 1.20-1.30). A bifunctional PEG initiator (average Mn ≈ 1000 g mol(-1)) is utilized for the polymerization of a wide range of methacrylates including 2-dimethylaminoethyl methacrylate, 2-morpholinoethyl methacrylate, [2-(methacryloyloxy)ethyl]dimethyl-(3-sulfopropyl)ammonium hydroxide, and 2-methacryloyloxyethyl phosphorylcholine. Despite the high water content, high end group fidelity is demonstrated by in situ chain extensions and block copolymerizations with PEGMA475 yielding well-defined functional telechelic pentablock copolymers within 2.5 h.

  9. 76 FR 69659 - Methacrylic Acid-Methyl Methacrylate-Polyethylene Glycol Monomethyl Ether Methacrylate Graft...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-09

    ... AGENCY 40 CFR Part 180 Methacrylic Acid-Methyl Methacrylate-Polyethylene Glycol Monomethyl Ether... residues of methacrylic acid-methyl methacrylate- polyethylene glycol monomethyl ether methacrylate graft... permissible level for residues of methacrylic acid-methyl methacrylate-polyethylene glycol monomethyl...

  10. Potassium Counts.

    ERIC Educational Resources Information Center

    Gipps, John

    1995-01-01

    Presents an activity to determine whether the radioactivity of a pure potassium salt is directly proportional to the amount of potassium in it and whether this could be used as a method of analysis for potassium in a solid. (MKR)

  11. Acrylates and Methacrylates,

    DTIC Science & Technology

    1987-09-15

    of ethylene and hydrocyanic acid through ethylene cyanohydrin. In the presence of basic catalysts ethylene oxide easily adds hydrocyanic acid with the...of synthesis of methacrylates. At present methacrylates are obtained in the industry by continuous method from acetone and hydrocyanic acid through...acetone cyanohydrin. The addition/connection to it of hydrocyanic acid with the formation of acetone cyanohydrin is one of the most important reactions

  12. Thermoforming polymethyl methacrylate.

    PubMed

    Jagger, R G; Okdeh, A

    1995-11-01

    This study characterized a range of commercially available polymethyl methacrylate sheets with respect to molecular weight, residual monomer content, and glass transition temperature and then developed a thermoforming procedure that produced visually satisfactory thermoformed polymethyl methacrylate specimens. Molecular weight values of Perspex material were considerably greater than those of the other materials. All materials but Diakon had residual monomer concentrations of less than 1% and glass transition temperature values greater than 100 degrees C. Perspex material was selected for further investigation. It was necessary to preheat Perspex sheets in an oven at 160 degrees C for at least 30 minutes before heating and forming on the thermoforming apparatus to obtain acceptable specimens.

  13. Potassium test

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/003484.htm Potassium test To use the sharing features on this ... enable JavaScript. This test measures the amount of potassium in the fluid portion (serum) of the blood. ...

  14. Potassium Iodide

    MedlinePlus

    ... gland.Potassium iodide can protect you from the effects of radioactive iodine that may be released during ... increase the risk that you may experience side effects.The dose of potassium iodide you should take ...

  15. Potassium physiology.

    PubMed

    Thier, S O

    1986-04-25

    Potassium is the most abundant exchangeable cation in the body. It exists predominantly in the intracellular fluid at concentrations of 140 to 150 meq/liter and in the extracellular fluid at concentrations of 3.5 to 5 meq/liter. The maintenance of the serum potassium concentration is a complex bodily function and results from the balance between intake, excretion, and distribution between intracellular and extracellular space. Ingested potassium is virtually completely absorbed from and minimally excreted through the intestine under nonpathologic circumstances. Renal excretion of potassium, which is the major chronic protective mechanism against abnormalities in potassium balance, depends on filtration, reabsorption, and a highly regulated distal nephron secretory process. Factors regulating potassium secretion include prior potassium intake, intracellular potassium, delivery of sodium chloride and poorly reabsorbable anions to the distal nephron, the urine flow rate, hormones such as aldosterone and beta-catecholamines, and the integrity of the renal tubular cell. The maintenance of distribution between the inside and outside of cells depends on the integrity of the cell membrane and its pumps, osmolality, pH, and the hormones insulin, aldosterone, beta 2-catecholamines, alpha-catecholamines, and prostaglandins. Both distribution across cell membranes and/or renal excretion of potassium may be altered by pharmacologic agents such as diuretics, alpha- and beta-catechol antagonists and agonists, depolarizing agents, and digitalis. Problems with hypokalemia and hyperkalemia can be analyzed on the basis of potassium physiology and pharmacology; proper treatment depends on an accurate analysis.

  16. Synthesis and characterization of injectable, water-soluble copolymers of tertiary amine methacrylates and poly(ethylene glycol) containing methacrylates.

    PubMed

    Anderson, Brian C; Mallapragada, Surya K

    2002-11-01

    Several homopolymers and copolymers of 2-(diethylamino)ethyl methacrylate (DEAEM) and poly(ethylene glycol) methyl ether methacrylate (PEGMEM) were synthesized using anionic polymerization initiated by potassium t-butoxide. The polymers were characterized by average molecular weight, polydispersity and monomeric unit composition. A very narrow molecular weight distribution was achieved with a well-controlled composition. The glass transition temperatures and compositions of the copolymers followed a Gordon-Taylor relationship. The water solubility and biocompatibility of the copolymers was compared to their parent homopolymers to determine if the addition of a poly(ethylene glycol) group was sufficient to solubilize the polymers in aqueous buffer solutions and to increase the biocompatibility of the polymers. These water-soluble, injectable cationic copolymers have potential applications in gene delivery as well as other biomaterial applications.

  17. Potassium cyanide

    Integrated Risk Information System (IRIS)

    Jump to main content . Integrated Risk Information System Recent Additions | Contact Us Search : All EPA IRIS • You are here : EPA Home • Research • Environmental Assessment • IRIS • IRIS Summaries Redirect Page As of September 28 , 2010 , the assessment summary for potassium cyanide is included in

  18. Potassium in diet

    MedlinePlus

    ... the diet; Hypokalemia - potassium in the diet; Chronic kidney disease - potassium in diet; Kidney failure - potassium in diet ... are also excellent sources of potassium. People with kidney problems, especially those on dialysis, should not eat ...

  19. Effect of polacrilin potassium as disintegrant on bioavailability of diclofenac potassium in tablets : a technical note.

    PubMed

    Bele, Mrudula H; Derle, Diliprao V

    2012-09-01

    Polacrilin potassium is an ion exchange resin used in oral pharmaceutical formulations as a tablet disintegrant. It is a weakly acidic cation exchange resin. Chemically, it is a partial potassium salt of a copolymer of methacrylic acid with divinyl benzene. It ionizes to an anionic polymer chain and potassium cations. It was hypothesized that polacrilin potassium may be able to improve the permeability of anionic drugs according to the Donnan membrane phenomenon. The effect of polacrilin potassium on the permeability of diclofenac potassium, used as a model anionic drug, was tested in vitro using diffusion cells and in vivo by monitoring serum levels in rats. The amount of drug permeated across a dialysis membrane in vitro was significantly more in the presence of polacrilin potassium. Significant improvement was found in the extent of drug absorption in vivo. It could be concluded that polacrilin potassium may be used as a high-functionality excipient for improving the bioavailability of anionic drugs having poor gastrointestinal permeability.

  20. 78 FR 55644 - Styrene, Copolymers with Acrylic Acid and/or Methacrylic Acid; Tolerance Exemption

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-11

    ... methacrylate, hydroxypropyl acrylate, hydroxyethyl methacrylate, and/or hydroxyethyl acrylate; and its sodium... methacrylate, hydroxypropyl acrylate, hydroxyethyl methacrylate, and/or hydroxyethyl acrylate; and its sodium... methacrylate, hydroxypropyl acrylate, hydroxyethyl methacrylate, and/or hydroxyethyl acrylate, and its...

  1. Thermomechanical behavior of amorphous tactic methacrylate polymers

    NASA Technical Reports Server (NTRS)

    Kiran, E.; Gillham, J. K.; Gipstein, E.

    1974-01-01

    Dynamic mechanical spectra of amorphous stereoregular poly(methyl methacrylate)s and poly(t-butyl methacrylate)s with assigned microtacticities are presented and discussed. An intermolecular argument is invoked to account for the higher glass transition temperature of syndiotactic vis a vis isotactic PMMA, in spite of the higher density of the latter at 30 C. An argument is presented to show that the ratio of glassy-region relaxation temperature to glass transition temperature is not only a measure of the degree of coupling of the beta and glass transition processes, but also of the degree to which intermolecular factors influence these processes. The greater extent of the low-temperature irreversibilities observed in the thermomechanical spectra of poly(t-butyl methacrylate)s is attributed to the brittle character induced by the bulky side groups which presumably weaken cohesive forces.

  2. 40 CFR 721.10153 - Modified methyl methacrylate, 2-hydroxyethyl methacrylate polymer (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...-hydroxyethyl methacrylate polymer (generic). 721.10153 Section 721.10153 Protection of Environment...-hydroxyethyl methacrylate polymer (generic). (a) Chemical substance and significant new uses subject to... methacrylate polymer (PMN P-08-6) is subject to reporting under this section for the significant new...

  3. 40 CFR 721.10153 - Modified methyl methacrylate, 2-hydroxyethyl methacrylate polymer (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...-hydroxyethyl methacrylate polymer (generic). 721.10153 Section 721.10153 Protection of Environment...-hydroxyethyl methacrylate polymer (generic). (a) Chemical substance and significant new uses subject to... methacrylate polymer (PMN P-08-6) is subject to reporting under this section for the significant new...

  4. 40 CFR 721.9492 - Polymers of styrene, cyclohexyl methacrylate and substituted methacrylate.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Polymers of styrene, cyclohexyl... Significant New Uses for Specific Chemical Substances § 721.9492 Polymers of styrene, cyclohexyl methacrylate... generically as polymers of styrene, cyclohexyl methacrylate and substituted methacrylate (PMNs...

  5. 40 CFR 721.10153 - Modified methyl methacrylate, 2-hydroxyethyl methacrylate polymer (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...-hydroxyethyl methacrylate polymer (generic). 721.10153 Section 721.10153 Protection of Environment...-hydroxyethyl methacrylate polymer (generic). (a) Chemical substance and significant new uses subject to... methacrylate polymer (PMN P-08-6) is subject to reporting under this section for the significant new...

  6. 40 CFR 721.10153 - Modified methyl methacrylate, 2-hydroxyethyl methacrylate polymer (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...-hydroxyethyl methacrylate polymer (generic). 721.10153 Section 721.10153 Protection of Environment...-hydroxyethyl methacrylate polymer (generic). (a) Chemical substance and significant new uses subject to... methacrylate polymer (PMN P-08-6) is subject to reporting under this section for the significant new...

  7. 40 CFR 721.10153 - Modified methyl methacrylate, 2-hydroxyethyl methacrylate polymer (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...-hydroxyethyl methacrylate polymer (generic). 721.10153 Section 721.10153 Protection of Environment...-hydroxyethyl methacrylate polymer (generic). (a) Chemical substance and significant new uses subject to... methacrylate polymer (PMN P-08-6) is subject to reporting under this section for the significant new...

  8. UV-Curable Polyurethane-Methacrylate Co-Networks and Interpenetrating Networks

    DTIC Science & Technology

    1989-05-30

    were: methyl methacrylate (MMA), ethyl methacrylate (EMA), hydroxyethyl methacrylate ( HEMA ), butyl methacrylate (BMA), lauryl methacrylate (LMA), and...ACCESSION NO. 11. TITLE (include Security Classification) UV’V-Curable Polyurethane- Methacrylate Co-Networks and Interpenetrating Networks 12. PERSONAL...by block number 4 Castor oil was reacted in varying ratios with 6-isocyanatoethyl methacrylate to form a liquid urethane- methacrylate prepolymer. This

  9. Exposure to volatile methacrylates in dental personnel.

    PubMed

    Hagberg, Stig; Ljungkvist, Göran; Andreasson, Harriet; Karlsson, Stig; Barregård, Lars

    2005-06-01

    Dental personnel are exposed to acrylates due to the acrylic resin-based composites and bonding agents used in fillings. It is well known that these compounds can cause contact allergy in dental personnel. However, in the 1990s, reports emerged on asthma also caused by methacrylates. The main volatile acrylates in dentistry are 2-hydroxyethyl methacrylate and methyl methacrylate. The aim of this study was to quantify the exposure to these acrylates in Swedish dental personnel. We studied the exposure to 2-hydroxyethyl methacrylate and methyl methacrylate in five randomly selected public dental clinics and at the Faculty of Odontology at Göteborg University. In total, 21 whole-day and 46 task-specific short-term (1-18 min) measurements were performed. The median 8-hour time-weighted averages were 2.5 microg/m3 (dentists) and 2.9 microg/m3 (dental nurses) for 2-hydroxyethyl methacrylate, and 0.8 microg/m3 (dentists) and 0.3 microg/m3 (dental nurses) for methyl methacrylate. The maximum short-term exposure levels were 79 microg/m3 for 2-hydroxyethyl methacrylate and 15 microg/m3 for methyl methacrylate, similar in dentists and dental nurses. The observed levels are much lower than in complete denture fabrication. We found only one previous study in dentistry and it showed similar results (though it reported short-term measurements only). Irritant effects would not be expected in healthy people at these levels. Nevertheless, occupational respiratory diseases due to methacrylates may occur in dental personnel, and improvements in the handling of these chemicals in dentistry are warranted. This includes better vials for the bonding agents and avoiding evaporation from discarded materials.

  10. Derangements of potassium.

    PubMed

    Medford-Davis, Laura; Rafique, Zubaid

    2014-05-01

    Changes in potassium elimination, primarily due to the renal and GI systems, and shifting potassium between the intracellular and extracellular spaces cause potassium derangement. Symptoms are vague, but can be cardiac, musculoskeletal, or gastrointestinal. There are no absolute guidelines for when to treat, but it is generally recommended when the patient is symptomatic or has ECG changes. Treatment of hyperkalemia includes cardiac membrane stabilization with IV calcium, insulin and beta-antagonists to push potassium intracellularly, and dialysis. Neither sodium bicarbonate nor kayexelate are recommended. Treatment of symptomatic hypokalemia consists of PO or IV repletion with potassium chloride and magnesium sulfate.

  11. 21 CFR 172.775 - Methacrylic acid-divinylbenzene copolymer.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Methacrylic acid-divinylbenzene copolymer. 172.775... Additives § 172.775 Methacrylic acid-divinylbenzene copolymer. Methacrylic acid-divinylbenzene copolymer may... produced by the polymerization of methacrylic acid and divinylbenzene. The divinylbenzene functions as...

  12. Potassium Secondary Batteries.

    PubMed

    Eftekhari, Ali; Jian, Zelang; Ji, Xiulei

    2017-02-08

    Potassium may exhibit advantages over lithium or sodium as a charge carrier in rechargeable batteries. Analogues of Prussian blue can provide millions of cyclic voltammetric cycles in aqueous electrolyte. Potassium intercalation chemistry has recently been demonstrated compatible with both graphite and nongraphitic carbons. In addition to potassium-ion batteries, potassium-O2 (or -air) and potassium-sulfur batteries are emerging. Additionally, aqueous potassium-ion batteries also exhibit high reversibility and long cycling life. Because of potentially low cost, availability of basic materials, and intriguing electrochemical behaviors, this new class of secondary batteries is attracting much attention. This mini-review summarizes the current status, opportunities, and future challenges of potassium secondary batteries.

  13. Methacrylated glycol chitosan as a photopolymerizable biomaterial.

    PubMed

    Amsden, Brian G; Sukarto, Abby; Knight, Darryl K; Shapka, Stephen N

    2007-12-01

    Glycol chitosan is a derivative of chitosan that is soluble at neutral pH and possesses potentially useful biological properties. With the goal of obtaining biocompatible hydrogels for use as tissue engineering scaffolds or drug delivery depots, glycol chitosan was converted to a photopolymerizable prepolymer through graft methacrylation using glycidyl methacrylate in aqueous media at pH 9. N-Methacrylation was verified by both (1)H NMR and (13)C NMR. The degree of N-methacrylation, measured via (1)H NMR, was easily varied from 1.5% to approximately 25% by varying the molar ratio of glycidyl methacrylate to glycol chitosan and the reaction time. Using a chondrocyte cell line, the N-methacrylated glycol chitosan was found to be noncytotoxic up to a concentration of 1 mg/mL. The prepolymer was cross-linked in solution using UV light and Irgacure 2959 photoinitiator under various conditions to yield gels of low sol content ( approximately 5%), high equilibrium water content (85-95%), and thicknesses of up to 6 mm. Cross-polarization magic-angle spinning (13)C solid state NMR verified the complete conversion of the double bonds in the gel. Chondrocytes seeded directly onto the gel surface, populated the entirety of the gel and remained viable for up to one week. The hydrogels degraded slowly in vitro in the presence of lysozyme at a rate that increased as the cross-link density of the gels decreased.

  14. Carboxymethyl cellulose-g-poly(2-(dimethylamino) ethyl methacrylate) hydrogel as adsorbent for dye removal.

    PubMed

    Salama, Ahmed; Shukry, Nadia; El-Sakhawy, Mohamed

    2015-02-01

    A novel adsorbent was prepared via crosslinking graft copolymerization of 2-(dimethylamino) ethyl methacrylate (DMAEMA) onto carboxymethyl cellulose (CMC) backbone. Ethylene glycol dimethacrylate and potassium persulphate were used as crosslinker and initiator, respectively. CMC-g-PDMAEMA hydrogel was used to remove methyl orange (MO) from aqueous solutions. The adsorption kinetics and isotherms were found to follow Pseudo-second-order kinetic model and Langmuir model, respectively. The high maximum adsorption capacity (1825 mg/g) implied that CMC-g-PDMAEMA can be used as promising adsorbent for the synthetic dyes removal from wastewater.

  15. 40 CFR 721.9492 - Polymers of styrene, cyclohexyl methacrylate and substituted methacrylate.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Polymers of styrene, cyclohexyl... Significant New Uses for Specific Chemical Substances § 721.9492 Polymers of styrene, cyclohexyl methacrylate...) The chemical substances identified generically as polymers of styrene, cyclohexyl methacrylate...

  16. 40 CFR 721.9492 - Polymers of styrene, cyclohexyl methacrylate and substituted methacrylate.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Polymers of styrene, cyclohexyl... Significant New Uses for Specific Chemical Substances § 721.9492 Polymers of styrene, cyclohexyl methacrylate...) The chemical substances identified generically as polymers of styrene, cyclohexyl methacrylate...

  17. 40 CFR 721.9492 - Polymers of styrene, cyclohexyl methacrylate and substituted methacrylate.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Polymers of styrene, cyclohexyl... Significant New Uses for Specific Chemical Substances § 721.9492 Polymers of styrene, cyclohexyl methacrylate...) The chemical substances identified generically as polymers of styrene, cyclohexyl methacrylate...

  18. 40 CFR 721.9492 - Polymers of styrene, cyclohexyl methacrylate and substituted methacrylate.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Polymers of styrene, cyclohexyl... Significant New Uses for Specific Chemical Substances § 721.9492 Polymers of styrene, cyclohexyl methacrylate...) The chemical substances identified generically as polymers of styrene, cyclohexyl methacrylate...

  19. Low Potassium (Hypokalemia)

    MedlinePlus

    ... critical to the proper functioning of nerve and muscles cells, particularly heart muscle cells. Normally, your blood potassium level is 3.6 to 5.2 millimoles per liter (mmol/L). A very low potassium level (less than 2.5 ... isolated symptoms such as muscle cramps if you are feeling well in other ...

  20. Potassium food supplement

    NASA Technical Reports Server (NTRS)

    Bourland, C. T.; Huber, C. S.; Rambaut, C.; Heidelbaugh, N. D.

    1973-01-01

    Potassium gluconate is considered best supplementary source for potassium. Gluconate consistently received highest taste rating and was indistinguishable from nonsupplemented samples. No unfavorable side effects were found during use, and none are reported in literature. Gluconate is normal intermediary metabolite that is readily adsorbed and produces no evidence of gastrointestinal ulcerations.

  1. Potassium and health.

    PubMed

    Weaver, Connie M

    2013-05-01

    Potassium was identified as a shortfall nutrient by the Dietary Guidelines for Americans 2010 Advisory Committee. The committee concluded that there was a moderate body of evidence of the association between potassium intake and blood pressure reduction in adults, which in turn influences the risk of stroke and coronary heart disease. Evidence is also accumulating of the protective effect of adequate dietary potassium on age-related bone loss and reduction of kidney stones. These benefits depend on organic anions associated with potassium as occurs in foods such as fruits and vegetables, in contrast to similar blood pressure-lowering benefits of potassium chloride. Benefits to blood pressure and bone health may occur at levels below current recommendations for potassium intake, especially from diet, but dose-response trials are needed to confirm this. Nevertheless, intakes considerably above current levels are needed for optimal health, and studies evaluating small increases in fruit and vegetable intake on bone and heart outcomes for short periods have had disappointing results. In modern societies, Western diets have led to a decrease in potassium intake with reduced consumption of fruits and vegetables with a concomitant increase in sodium consumption through increased consumption of processed foods. Consumption of white vegetables is associated with decreased risk of stroke, possibly related to their high potassium content. Potatoes are the highest source of dietary potassium, but the addition of salt should be limited. Low potassium-to-sodium intake ratios are more strongly related to cardiovascular disease risk than either nutrient alone. This relationship deserves further attention for multiple target tissue endpoints.

  2. 21 CFR 882.5300 - Methyl methacrylate for cranioplasty.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... methacrylate for cranioplasty. (a) Identification. Methyl methacrylate for cranioplasty (skull repair) is a self-curing acrylic that a surgeon uses to repair a skull defect in a patient. At the time of...

  3. 21 CFR 882.5300 - Methyl methacrylate for cranioplasty.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... methacrylate for cranioplasty. (a) Identification. Methyl methacrylate for cranioplasty (skull repair) is a self-curing acrylic that a surgeon uses to repair a skull defect in a patient. At the time of...

  4. 21 CFR 882.5300 - Methyl methacrylate for cranioplasty.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... methacrylate for cranioplasty. (a) Identification. Methyl methacrylate for cranioplasty (skull repair) is a self-curing acrylic that a surgeon uses to repair a skull defect in a patient. At the time of...

  5. 21 CFR 882.5300 - Methyl methacrylate for cranioplasty.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... methacrylate for cranioplasty. (a) Identification. Methyl methacrylate for cranioplasty (skull repair) is a self-curing acrylic that a surgeon uses to repair a skull defect in a patient. At the time of...

  6. 21 CFR 882.5300 - Methyl methacrylate for cranioplasty.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... methacrylate for cranioplasty. (a) Identification. Methyl methacrylate for cranioplasty (skull repair) is a self-curing acrylic that a surgeon uses to repair a skull defect in a patient. At the time of...

  7. pH-sensitive methacrylic copolymers and the production thereof

    SciTech Connect

    Mallapragada, Surya K.; Anderson, Brian C.; Bloom, Paul D.; Sheares Ashby, Valerie V.

    2007-01-09

    The present invention provides novel multi-functional methacrylic copolymers that exhibit cationic pH-sensitive behavior as well as good water solubility under acidic conditions. The copolymers are constructed from tertiary amine methacrylates and poly(ethylene glycol) containing methacrylates. The copolymers are useful as gene vectors, pharmaceutical carriers, and in protein separation applications.

  8. pH-sensitive methacrylic copolymers and the production thereof

    DOEpatents

    Mallapragada, Surya K.; Anderson, Brian C.; Bloom, Paul D.; Sheares Ashby, Valerie V.

    2006-02-14

    The present invention provides novel multi-functional methacrylic copolymers that exhibit cationic pH-sensitive behavior as well as good water solubility under acidic conditions. The copolymers are constructed from tertiary amine methacrylates and poly(ethylene glycol) containing methacrylates. The copolymers are useful as gene vectors, pharmaceutical carriers, and in protein separation applications.

  9. 21 CFR 172.775 - Methacrylic acid-divinylbenzene copolymer.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Methacrylic acid-divinylbenzene copolymer. 172.775... HUMAN CONSUMPTION Other Specific Usage Additives § 172.775 Methacrylic acid-divinylbenzene copolymer. Methacrylic acid-divinylbenzene copolymer may be safely used in food in accordance with the...

  10. 21 CFR 172.775 - Methacrylic acid-divinylbenzene copolymer.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Methacrylic acid-divinylbenzene copolymer. 172.775... HUMAN CONSUMPTION Other Specific Usage Additives § 172.775 Methacrylic acid-divinylbenzene copolymer. Methacrylic acid-divinylbenzene copolymer may be safely used in food in accordance with the...

  11. 21 CFR 172.775 - Methacrylic acid-divinylbenzene copolymer.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Methacrylic acid-divinylbenzene copolymer. 172.775... HUMAN CONSUMPTION Other Specific Usage Additives § 172.775 Methacrylic acid-divinylbenzene copolymer. Methacrylic acid-divinylbenzene copolymer may be safely used in food in accordance with the...

  12. Potassium targets from KI

    NASA Astrophysics Data System (ADS)

    Sletten, G.

    1982-09-01

    Targets of potassium iodide (KI) on thin carbon backings have been prepared. Potassium isotopes are supplied as chlorides, and the chlorine is, in certain experiments, an unwanted contaminant. Target peeparation involves conversion of KCl to KI and subsequent vacuum evaporation of the iodide. Targets of both 39K and 41K in the thickness range of 60 to 100 μg/cm 2 of potassium have been prepared. These targets contain less than 0.5 μg/cm 2 of chlorine impurity and are stable in α-beams of 25 MeV.

  13. Solute solvent interaction in methyl methacrylate and 2-hydroxyethyl methacrylate monomers solutions

    NASA Astrophysics Data System (ADS)

    Al-ghamdi, Attieh A.; Bahattab, M. A.; Farhoud, M.; Al-Dossary, Mishal; Al-Enizi, Abdullah; Al-Deyab, S. S.

    2006-11-01

    Solute-solvent interactions are studied using induced birefringence measurements in monomers solutions of methyl methacrylate (MMA) and 2-hydroxyethyl methacrylate (HEMA), dissolved in ethanol, acetone, ethyl acetate, tetrahydrofuran and dimethyl sulfoxide, over a broad range of concentrations. The data are combined with refractive index and density to calculate the electric, optical and molar Kerr constants. All related microscopic parameters concerning the molecular structure such as nonlinear Kerr constants, anisotropic factors, and optical anisotropy have been calculated.

  14. High potassium level

    MedlinePlus

    ... symptoms. Tests that may be ordered include: Electrocardiogram (ECG) Potassium level Your provider will likely check your ... have danger signs, such as changes in an ECG . Emergency treatment may include: Calcium given into your ...

  15. Potassium carbonate poisoning

    MedlinePlus

    ... is a white powder used to make soap, glass, and other items. This article discusses poisoning from ... Potassium carbonate is found in: Glass Some dishwasher soaps Some ... that is used in fertilizers) Some home permanent-wave solutions ...

  16. Potassium urine test

    MedlinePlus

    ... be due to: Certain medicines, including beta blockers, lithium, trimethoprim, potassium-sparing diuretics, or nonsteroidal anti-inflammatory ... Diabetic ketoacidosis Hyperaldosteronism - primary and secondary Medullary cystic kidney disease Review Date 8/29/2015 Updated by: Laura ...

  17. Dendrimer/methyl methacrylate co-polymers: residual methyl methacrylate and degree of conversion.

    PubMed

    Viljanen, Eeva K; Skrifvars, Mikael; Vallittu, Pekka K

    2005-01-01

    Dendrimer/methyl methacrylate co-polymers were studied for use in dental composites. The aim was to determine the effects of methyl methacrylate concentration in the resin mixture and polymerization method on the degree of conversion and residual monomer content of the copolymers. Two dendrimers were studied, D12 with 12 reactive methacrylate groups and D24 with 24 reactive groups. The concentration of methyl methacrylate varied from 20 wt% to 50 wt% of monomers. Camphorquinone (CQ) was used as the light-activation initiator and 2-(N,N-dimethylamino)ethyl methacrylate (DMAEMA) as the activator, both in the quantity of 3.0 wt%. Three polymerization methods were used: photo-polymerization, photo-polymerized immediately followed by post-polymerization at 120 degrees C for 15 min, and photo-polymerization followed by postpolymerization after 7 days. The degree of conversion was determined using FT-IR. Residual monomers were extracted with tetrahydrofuran and methanol and analyzed with HPLC. The highest degrees of conversion were 65 and 62%, and the lowest residual monomer contents 1.0 and 1.5% for D12 and D24, respectively. These were measured after heat-induced post-polymerization. For D12, increasing the proportion of methyl methacrylate decreased the degree of conversion and increased the residual monomer content after photo-polymerization. Post-polymerization enhanced the polymerization of the dendrimer co-polymers in respect of degree of conversion and residual monomer content. The present study suggested that the tested dendrimer/methyl methacrylate copolymers require heat-induced polymerization to reach the generally accepted levels of degree of conversion and residual monomers.

  18. Effect of methacrylic acid:methyl methacrylate monomer ratios on polymerization rates and properties of polymethyl methacrylates.

    PubMed

    Chen, T; Kusy, R P

    1997-08-01

    Five binary formulations were prepared from methyl methacrylate (MMA) and methacrylic acid (MAA) monomers, and six ternary formulations were prepared from polysols of 30% wt polymethyl methacrylate (PMMA)/MMA and MAA. Using thermal analyses (DSC and TGA) the polymerization kinetics, condition of postcuring, relative amount of residual monomers, and glass transition temperature (Tg) were determined. From bar-shaped samples, 25 x 5 x 0.9 mm in dimensions, mechanical properties [flexural moduli (E) and maximum strengths (sigma)] were measured in three-point bending. Polymerization kinetics of binary formulations improved over pure PMMA (from 15 to 4 min) as a result of over a 60-fold increase in propagation-to-termination constants (Kp/Kt) of MAA/MMA. The further addition of PMMA increased the viscosity, slowed down termination, and, consequently, improved the polymerization kinetics twofold. These enhancements occurred without a substantive change in the Tg of the ternary system (ca. 107 degrees C) over pure PMMA (ca. 112 degrees C). Moreover, the Es of the four ternary formulations averaged 2.94 GPa, which was comparable with many values reported in the literature. In contrast the sigma s of these same formulations averaged 97 MPa, which was about 25% better than earlier investigations of pure acrylic. When a thermoplastic material is required for pultruding profiles that cure fast and have good thermal-mechanical properties, ternaries of PMMA/MMA/MAA should be considered.

  19. High Temperature Stability of Potassium Beta Alumina

    NASA Technical Reports Server (NTRS)

    Williams, R. M.; Kisor, A.; Ryan, M. A.

    1996-01-01

    None. From Objectives section: Evaluate the stability of potassium beta alumina under potassium AMTEC operating conditions. Evaluate the stability regime in which potassium beta alumina can be fabricated.

  20. Recipe for potassium

    SciTech Connect

    Izutani, Natsuko

    2012-11-12

    I investigate favorable conditions for producing potassium (K). Observations show [K/Fe] > 0 at low metallicities, while zero-metal supernova models show low [K/Fe] (< 0). Theoretically, it is natural that the odd-Z element, potassium decreases with lower metallicity, and thus, the observation should imply new and unknown sites for potassium. In this proceedings, I calculate proton-rich nucleosynthesis with three parameters, the initial Y{sub e} (from 0.51 to 0.60), the initial density {rho}{sub max} (10{sup 7}, 10{sup 8}, and 10{sup 9} [g/cm{sup 3}]), and the e-fold time {tau} for the density (0.01, 0.1, and 1.0 [sec]). Among 90 models I have calculated, only 26 models show [K/Fe] > 0, and they all have {rho}{sub max} = 10{sup 9}[g/cm{sup 3}]. I discuss parameter dependence of [K/Fe].

  1. A pre-formed methyl methacrylate cranioplasty.

    PubMed

    Cooper, P R; Schechter, B; Jacobs, G B; Rubin, R C; Wille, R L

    1977-09-01

    The use of a pre-formed methyl methacrylate cranioplasty prosthesis reinforced with stainless steel wire is described. The prosthesis is non-reactive, virtually unbreakable, and undentable. Pre-forming of the prosthesis in the dental laboratory using a mold of the patient's bony defect as a model saves considerable operating time, and when employed for a large cranial defect the three dimensional cosmetic effect is superior to intra-operatively fashioned prostheses.

  2. Potassium Beta-Alumina/Molybdenum/Potassium Electrochemical Cells

    NASA Technical Reports Server (NTRS)

    Williams, R.; Kisor, A.; Ryan, M.; Nakamura, B.; Kikert, S.; O'Connor, D.

    1994-01-01

    potassium alkali metal thermal-to-electric converter (K-AMTEC) cells utilizing potassium beta alumina solid electrolyte (K-BASE) are predicted to have improved properties for thermal to electric conversion at somewhat lower temperatures than sodium AMTEC's.

  3. Reactivity of methacrylates in insertion polymerization.

    PubMed

    Rünzi, Thomas; Guironnet, Damien; Göttker-Schnetmann, Inigo; Mecking, Stefan

    2010-11-24

    Polymerization of ethylene by complexes [{(P^O)PdMe(L)}] (P^O = κ(2)-(P,O)-2-(2-MeOC(6)H(4))(2)PC(6)H(4)SO(3))) affords homopolyethylene free of any methyl methacrylate (MMA)-derived units, even in the presence of substantial concentrations of MMA. In stoichiometric studies, reactive {(P^O)Pd(Me)L} fragments generated by halide abstraction from [({(P^O)Pd(Me)Cl}μ-Na)(2)] insert MMA in a 1,2- as well as 2,1-mode. The 1,2-insertion product forms a stable five-membered chelate by coordination of the carbonyl group. Thermodynamic parameters for MMA insertion are ΔH(++) = 69.0(3.1) kJ mol(-1) and ΔS(++) = -103(10) J mol(-1) K(-1) (total average for 1,2- and 2,1-insertion), in comparison to ΔH(++) = 48.5(3.0) kJ mol(-1) and ΔS(++) = -138(7) J mol(-1) K(-1) for methyl acrylate (MA) insertion. These data agree with an observed at least 10(2)-fold preference for MA incorporation vs MMA incorporation (not detected) under polymerization conditions. Copolymerization of ethylene with a bifunctional acrylate-methacrylate monomer yields linear polyethylenes with intact methacrylate substituents. Post-polymerization modification of the latter was exemplified by free-radical thiol addition and by cross-metathesis.

  4. Dimensional accuracy of thermoformed polymethyl methacrylate.

    PubMed

    Jagger, R G

    1996-12-01

    Thermoforming of polymethyl methacrylate sheet is used to produce a number of different types of dental appliances. The purpose of this study was to determine the dimensional accuracy of thermoformed polymethyl methacrylate specimens. Five blanks of the acrylic resin were thermoformed on stone casts prepared from a silicone mold of a brass master die. The distances between index marks were measured both on the cast and on the thermoformed blanks with an optical comparator. Measurements on the blanks were made again 24 hours after processing and then 1 week, 1 month, and 3 months after immersion in water. Linear shrinkage of less than 1% (range 0.37% to 0.52%) was observed 24 hours after removal of the blanks from the cast. Immersion of the thermoformed specimens in water resulted in an increase in measured dimensions, but after 3 months' immersion these increases were still less than those of the cast (range 0.07% to 0.18%). It was concluded that it is possible to thermoform Perspex polymethyl methacrylate accurately.

  5. Errors in potassium balance

    SciTech Connect

    Forbes, G.B.; Lantigua, R.; Amatruda, J.M.; Lockwood, D.H.

    1981-01-01

    Six overweight adult subjects given a low calorie diet containing adequate amounts of nitrogen but subnormal amounts of potassium (K) were observed on the Clinical Research Center for periods of 29 to 40 days. Metabolic balance of potassium was measured together with frequent assays of total body K by /sup 40/K counting. Metabolic K balance underestimated body K losses by 11 to 87% (average 43%): the intersubject variability is such as to preclude the use of a single correction value for unmeasured losses in K balance studies.

  6. Immobilization of enzymes on 2-hydroxyethyl methacrylate and glycidyl methacrylate copolymer brushes.

    PubMed

    Ren, Tanchen; Mao, Zhengwei; Moya, Sergio Enrique; Gao, Changyou

    2014-08-01

    The immobilization of enzymes is of paramount importance to maintain their activity and stability. In this study, surface-initiated atom-transfer radical polymerization was applied to prepare poly(2-hydroxyethyl methacrylate)-block-poly(2-hydroxyethyl methacrylate-co-glycidyl methacrylate) brushes on glass slides. The polymerization kinetics was followed by using a quartz crystal microbalance with dissipation monitoring and ellipsometry in terms of mass and thickness growth, respectively. The surface chemical compositions of the obtained polymer brushes were characterized by X-ray photoelectron spectroscopy. Their mass, thickness, and enzyme-immobilization ability could be easily tuned by the initiator reaction time, monomer ratio, and polymerization time. The antibacterial activity and stability of the immobilized lysozymes were studied by fluorescent staining and bacteria lysis assay, which revealed that the lysozymes on the copolymer brushes had good stability during storage at 4 °C for up to 30 days.

  7. Penicillin V Potassium Oral

    MedlinePlus

    ... or have ever had kidney or liver disease, allergies, asthma, blood disease, colitis, stomach problems, or hay fever.tell your doctor if you are pregnant, plan to become pregnant, or are breast-feeding. If you become pregnant while taking penicillin V potassium, call your doctor.if you are ...

  8. Potassium silver cyanide

    Integrated Risk Information System (IRIS)

    Jump to main content . Integrated Risk Information System Recent Additions | Contact Us Search : All EPA IRIS • You are here : EPA Home • Research • Environmental Assessment • IRIS • IRIS Summaries Redirect Page As of September 28 , 2010 , the assessment summary for potassium silver cyanide is inclu

  9. Multifunctional poly(alkyl methacrylate) films for dental care.

    PubMed

    Nielsen, Birthe V; Nevell, Thomas G; Barbu, Eugen; Smith, James R; Rees, Gareth D; Tsibouklis, John

    2011-02-01

    Towards the evaluation of non-permanent dental coatings for their capacity to impart dental-care benefits, thin films of a homologous series of comb-like poly(alkyl methacrylate)s (ethyl to octadecyl) have been deposited, from aqueous latex formulations, onto dentally relevant substrates. AFM studies have shown that the thickness (40-300 nm) and surface roughness (8-12 nm) of coherent polymer films are influenced by the degree of polymerization and by the length of the pendant chain. Of the polymers under consideration, poly(butyl methacrylate) formed a close-packed film that conferred to dental substrates a high degree of inhibition to acid-mediated erosion (about 27%), as evaluated by released-phosphate determinations. The potential utility of the coatings to act as anti-sensitivity barriers has been evaluated by determining the hydraulic conductance of coated bovine-dentine substrates; single treatments of dentine discs with poly(butyl methacrylate) or with poly(ethyl methacrylate) effected mean respective reductions in fluid flow of about 23% with respect to water-treated controls; repeated applications of the poly(butyl methacrylate) latex led to mean reductions in fluid flow of about 80%. Chromometric measurements have shown that pellicle-coated hydroxyapatite discs treated with poly(butyl methacrylate), poly(hexyl methacrylate) or poly(lauryl methacrylate) exhibit significant resistance to staining by food chromogens.

  10. On permeability of methyl methacrylate, 2-hydroxyethyl methacrylate and triethyleneglycol dimethacrylate through protective gloves in dentistry.

    PubMed

    Andreasson, Harriet; Boman, Anders; Johnsson, Stina; Karlsson, Stig; Barregård, Lars

    2003-12-01

    Continuous glove use is more common in dentistry than in most other occupations, and the glove should offer protection against blood-borne infections, skin irritants and contact allergens. Methacrylate monomers are potent contact allergens, and it is known that these substances may penetrate the glove materials commonly used. The aim of this study was to assess the permeability of various types of gloves to methyl methacrylate (MMA), 2-hydroxyethyl methacrylate (HEMA) and triethyleneglycol dimethacrylate (TEGDMA) with special reference to combinations with ethanol or acetone. The permeation rate and time lag breakthrough (lag-BT) for MMA (neat, or diluted to 30% in ethanol or acetone), HEMA (30% in water, ethanol, or acetone) and TEGDMA (30% in ethanol or acetone) were investigated for different protective gloves. Nine different types of gloves were tested for one or several of these methacrylates. The lag-BT for neat MMA was

  11. Zwitterionic Poly(amino acid methacrylate) Brushes

    PubMed Central

    2014-01-01

    A new cysteine-based methacrylic monomer (CysMA) was conveniently synthesized via selective thia-Michael addition of a commercially available methacrylate-acrylate precursor in aqueous solution without recourse to protecting group chemistry. Poly(cysteine methacrylate) (PCysMA) brushes were grown from the surface of silicon wafers by atom-transfer radical polymerization. Brush thicknesses of ca. 27 nm were achieved within 270 min at 20 °C. Each CysMA residue comprises a primary amine and a carboxylic acid. Surface zeta potential and atomic force microscopy (AFM) studies of the pH-responsive PCysMA brushes confirm that they are highly extended either below pH 2 or above pH 9.5, since they possess either cationic or anionic character, respectively. At intermediate pH, PCysMA brushes are zwitterionic. At physiological pH, they exhibit excellent resistance to biofouling and negligible cytotoxicity. PCysMA brushes undergo photodegradation: AFM topographical imaging indicates significant mass loss from the brush layer, while XPS studies confirm that exposure to UV radiation produces surface aldehyde sites that can be subsequently derivatized with amines. UV exposure using a photomask yielded sharp, well-defined micropatterned PCysMA brushes functionalized with aldehyde groups that enable conjugation to green fluorescent protein (GFP). Nanopatterned PCysMA brushes were obtained using interference lithography, and confocal microscopy again confirmed the selective conjugation of GFP. Finally, PCysMA undergoes complex base-catalyzed degradation in alkaline solution, leading to the elimination of several small molecules. However, good long-term chemical stability was observed when PCysMA brushes were immersed in aqueous solution at physiological pH. PMID:24884533

  12. Injectible bodily prosthetics employing methacrylic copolymer gels

    DOEpatents

    Mallapragada, Surya K.; Anderson, Brian C.

    2007-02-27

    The present invention provides novel block copolymers as structural supplements for injectible bodily prosthetics employed in medical or cosmetic procedures. The invention also includes the use of such block copolymers as nucleus pulposus replacement materials for the treatment of degenerative disc disorders and spinal injuries. The copolymers are constructed by polymerization of a tertiary amine methacrylate with either a (poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) polymer, such as the commercially available Pluronic.RTM. polymers, or a poly(ethylene glycol) methyl ether polymer.

  13. Facile Soap-Free Miniemulsion Polymerization of Methyl Methacrylate via Reverse Atom Transfer Radical Polymerization.

    PubMed

    Zhu, Gaohua; Zhang, Lifen; Pan, Xiangqiang; Zhang, Wei; Cheng, Zhenping; Zhu, Xiulin

    2012-12-21

    A facile soap-free miniemulsion polymerization of methyl methacrylate (MMA) was successfully carried out via a reverse ATRP technique, using a water-soluble potassium persulfate (KPS) or 2,2'-azobis(2-methylpropionamidine) dihydrochloride (V-50) both as the initiator and the stabilizer, and using an oil-soluble N,N-n-butyldithiocarbamate copper (Cu(S2CN(C4H9)2)2) as the catalyst without adding any additional ligand. Polymerization results demonstrated the "living"/controlled characteristics of ATRP and the resultant latexes showed good colloidal stability with average particle size around 300-700 nm in diameter. The monomer droplet nucleation mechanism was proposed. NMR spectroscopy and chain-extension experiments under UV light irradiation confirmed the attachment and livingness of UV light sensitive -S-C(=S)-N(C4H9)2 group in the chain end.

  14. Methacrylic resin having a high solar radiant energy absorbing property and process for producing the same

    SciTech Connect

    Abe, K.; Kamada, K.; Nakai, Y.

    1981-10-20

    A methacrylic resin having a high solar radiant energy absorbing property wherein an organic compound (A) containing cupric ion and a compound (B) having at least one p-o-h bond in a molecule are contained into the methacrylic resin selected from poly(Methyl methacrylate) or methacrylic polymers containing at least 50% by weight of a methyl methacrylate unit. A process for producing said methacrylic resin is also disclosed.

  15. Formation of poly(methyl methacrylate) thin films onto wool fiber surfaces by vapor deposition polymerization.

    PubMed

    Hassan, M Mahbubul; McLaughlin, J Robert

    2013-03-13

    Chemical vapor deposition (CVD) polymerization is a useful technique because of the possibility of forming very thin film of pure polymers on substrates with any geometric shape. In this work, thin films of poly(methyl methacrylate) or PMMA were formed on the surfaces of wool fabrics by a CVD polymerization process. Various polymerization initiators including dicumyl peroxide, tert-butyl peroxide, and potassium peroxydisulfate have been investigated to polymerize methyl methacrylate onto the surfaces of wool by the CVD polymerization. The wool fabrics were impregnated with initiators and were then exposed to MMA monomer vapor under vacuum at the boiling temperature of the monomer. Wool fabrics with vapor-deposited PMMA surfaces were characterized by elemental analysis, TGA, FTIR, disperse dye absorption, contact angles measurement, AFM, and SEM. PMMA-coated wool fabrics showed higher contact angle and absorbed more dyes than that of the control wool. It was evident from the results obtained by various characterization techniques that MMA was successfully polymerized and formed thin films on the surfaces of wool fabrics by all initiators investigated but the best results were achieved with tert-butyl peroxide.

  16. Detecting potassium on Mercury

    NASA Technical Reports Server (NTRS)

    Killen, R. M.; Potter, A. E.; Morgan, T. H.

    1991-01-01

    A critical comment on the work of A.L. Sprague et al. (1990) is presented. It is argued that, in attributing an enhanced emission in the potassium D lines on Oct. 14, 1987 in the equatorial region of Mercury to a diffusion source centered on Caloris Basin, Sprague et al. misinterpreted the data. Sprague et al. present a reply, taking issue with the commenters.

  17. [Diet low in potassium].

    PubMed

    Sáez Rodríguez, Loreto; Meizoso Ameneiro, Ana; Pérez Paz, Ma Jesús; Valiño Pazos, Cristina

    2011-11-01

    After confirming the high prevalence rates in our hemodialysis unit of the following nursing diagnoses: nutritional imbalances--both excesses and shortages, willingness to improve nutrition and fear related to the consequences of excessive intake of potassium and manifested by the inhibition in some people towards the enjoyment of food, we decided to plan an educational strategy which later resulted in a nursing intervention for these diagnoses, with the objective of providing adequate resources for the monitoring of balanced diets with a restriction of potassium. Inspired by dietary rations, as well as recognized dietary programs of learning by points, we decided to incorporate these ideas to design an educational tool to facilitate advice to our patients on how to follow diet plans as well as the choice of appropriate foods. The result was a set of cards incorporating nutritional information of various kinds, aimed at our patients covering different aspects of the diet appropriate food rations using household measurements, promoting good food preparation, appropriate dietary advice for different chronic diseases and a scoring system of foods according to their potassium content. Together they form a board game available during the hemodialysis sessions that also takes into consideration other issues of importance related to conditions such as cognitive stimulation, coping with the disease, improving the therapeutic performance or resources to increase patient motivation. Although initially it was only an educational exercise, the result has turned out to be both enjoyable and entertaining.

  18. DEGRADATION OF POLY(METHYL METHACRYLATE) IN SOLUTION

    EPA Science Inventory

    The rate of degradation of poly(methyl methacrylate) (PMMA) to methyl methacrylate (MMA) was investigated in the liquid phase with toluene as the solvent. The degradation experiments were carried out in a tubular flow reactor at 1000 psig (6.8 MPa) and at four different temperat...

  19. Potassium Channelopathies and Gastrointestinal Ulceration

    PubMed Central

    Han, Jaeyong; Lee, Seung Hun; Giebisch, Gerhard; Wang, Tong

    2016-01-01

    Potassium channels and transporters maintain potassium homeostasis and play significant roles in several different biological actions via potassium ion regulation. In previous decades, the key revelations that potassium channels and transporters are involved in the production of gastric acid and the regulation of secretion in the stomach have been recognized. Drugs used to treat peptic ulceration are often potassium transporter inhibitors. It has also been reported that potassium channels are involved in ulcerative colitis. Direct toxicity to the intestines from nonsteroidal anti-inflammatory drugs has been associated with altered potassium channel activities. Several reports have indicated that the long-term use of the antianginal drug Nicorandil, an adenosine triphosphate-sensitive potassium channel opener, increases the chances of ulceration and perforation from the oral to anal regions throughout the gastrointestinal (GI) tract. Several of these drug features provide further insights into the role of potassium channels in the occurrence of ulceration in the GI tract. The purpose of this review is to investigate whether potassium channelopathies are involved in the mechanisms responsible for ulceration that occurs throughout the GI tract. PMID:27784845

  20. Uptake of isoprene, methacrylic acid and methyl methacrylate into aqueous solutions of sulfuric acid and hydrogen peroxide.

    PubMed

    Liu, Ze; Ge, Maofa; Wang, Weigang

    2012-01-01

    Multiphase acid-catalyzed oxidation by hydrogen peroxide has been suggested to be a potential route to secondary organic aerosol formation from isoprene and its gas-phase oxidation products, but the lack of kinetics data significantly limited the evaluation of this process in the atmosphere. Here we report the first measurement of the uptake of isoprene, methacrylic acid and methyl methacrylate into aqueous solutions of sulfuric acid and hydrogen peroxide. Isoprene cannot readily partition into the solution because of its high volatility and low solubility, which hinders its further liquid-phase oxidation. Both methacrylic acid and methyl methacrylate can enter the solutions and be oxidized by hydrogen peroxide, and steady-state uptake was observed with the acidity of solution above 30 wt.% and 70 wt.%, respectively. The steady-state uptake coefficient of methacrylic acid is much larger than that of methyl methacrylate for a solution with same acidity. These observations can be explained by the different reactivity of these two compounds caused by the different electron-withdrawing conjugation between carboxyl and ester groups. The atmospheric lifetimes were estimated based on the calculated steady-state uptake coefficients. These results demonstrate that the multiphase acid-catalyzed oxidation of methacrylic acid plays a role in secondary organic aerosol formation, but for isoprene and methyl methacrylate, this process is not important in the troposphere.

  1. Improvement of holographic thermal stability in phenanthrenequinone-doped poly(methyl methacrylate-co-methacrylic acid) photopolymer

    NASA Astrophysics Data System (ADS)

    Yu, Dan; Liu, Hongpeng; Wang, Heng; Wang, Jian; Jiang, Yongyuan; Sun, Xiudong

    2011-08-01

    Experimental studies of holographic thermal stability in phenanthrenequinone (PQ)-doped poly(methyl methacrylate-co-methacrylic acid) [P(MMA-co-MAA)] photopolymers are presented. A possibility to improve the thermal stability of holograms is demonstrated by doping methacrylic acid (MAA) into the poly(methyl methacrylate) (PMMA) polymer matrix. MAA as a copolymerization monomer can form a more stable polymer matrix with methyl methacrylate (MMA) monomer and increase average molecular weight of photoproducts, which finally depress the diffusion of photoproduct. The optimized MAA concentration copolymerized into P(MMA-co-MAA) polymer matrix can bring nearly a month's lifetime of gratings, which is obviously an improvement over the usual PQ-PMMA material under thermal treatment.

  2. Hairy polyelectrolyte brushes-grafted thermosensitive microgels as artificial synovial fluid for simultaneous biomimetic lubrication and arthritis treatment.

    PubMed

    Liu, Guoqiang; Liu, Zhilu; Li, Na; Wang, Xiaolong; Zhou, Feng; Liu, Weimin

    2014-11-26

    We report the fabrication of poly(3-sulfopropyl methacrylate potassium salt) (PSPMK) brushes grafted poly(N-isopropylacrylamide) (PNIPAAm) microgels and their potential as artificial synovial fluid for biomimetic aqueous lubrication and arthritis treatment. The negatively charged PSPMK brushes and thermosensitive PNIPAAm microgels play water-based hydration lubrication and temperature-triggered drug release, respectively. Under soft friction pairs, an ultralow coefficient of friction was achieved, while the hairy thermosensitive microgels showed a desirable temperature-triggered drugs release performance. Such a soft charged hairy microgel offers great possibility for designing intelligent synovial fluid. What is more, the combination of lubrication and drug loading capabilities enables the large clinical potential of novel soft hairy nanoparticles as synthetic joint lubricant fluid in arthritis treatment.

  3. Studies on novel radiopaque methyl methacrylate: glycidyl methacrylate based polymer for biomedical applications.

    PubMed

    Dawlee, S; Jayakrishnan, A; Jayabalan, M

    2009-12-01

    A new class of radiopaque copolymer using methyl methacrylate (MMA) and glycidyl methacrylate (GMA) monomers was synthesized and characterized. The copolymer was made radiopaque by the epoxide ring opening of GMA using the catalyst o-phenylenediamine and the subsequent covalent attachment of elemental iodine. The copolymer was characterized by Fourier transform infrared (FTIR) spectra, energy dispersive X-ray analysis using environmental scanning electron microscope (EDAX), thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC). X-ray visibility of the copolymer was checked by X-radiography. Blood compatibility and cytotoxicity of the newly synthesized copolymer were also evaluated. The iodinated copolymer was thermally stable, blood compatible, non-cytotoxic, and highly radiopaque. The presence of bulky iodine group created a new copolymer with modified properties for potential use in biomedical applications.

  4. Solid state dye lasers based on 2-hydroxyethyl methacrylate and methyl methacrylate co-polymers

    NASA Astrophysics Data System (ADS)

    Giffin, Shirin M.; McKinnie, Iain T.; Wadsworth, William J.; Woolhouse, Anthony D.; Smith, Gerald J.; Haskell, Tim G.

    1999-03-01

    The laser performance of a range of solid state dye lasers based on rhodamine 590-doped co-polymers of 2-hydroxyethyl methacrylate (HEMA) and methyl methacrylate (MMA) has been investigated. The optimisation of preparation conditions, including polymerisation initiator and solvent for dye delivery is discussed in detail. Laser efficiency is compared for different polymeric hosts and dye concentrations with a range of output couplers, cavity lengths and repetition rates. Passive and dynamic loss have been determined for each host medium. Laser efficiencies of optimised polymers are among the highest reported for rhodamine 590-doped solid state dye lasers under these operating conditions. Highest slope efficiency of 35% and lowest threshold fluence of 0.06 J cm -2 were obtained with dimethyl sulphoxide (DMSO) additive in MPMMA at 10 Hz repetition rate.

  5. 21 CFR 184.1610 - Potassium alginate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Potassium alginate. 184.1610 Section 184.1610 Food... GRAS § 184.1610 Potassium alginate. (a) Potassium alginate (CAS Reg. No. 9005-36-1) is the potassium salt of alginic acid, a natural polyuronide constituent of certain brown algae. Potassium alginate...

  6. 21 CFR 184.1613 - Potassium bicarbonate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Potassium bicarbonate. 184.1613 Section 184.1613... Listing of Specific Substances Affirmed as GRAS § 184.1613 Potassium bicarbonate. (a) Potassium... potassium hydroxide with carbon dioxide; (2) By treating a solution of potassium carbonate with...

  7. 21 CFR 184.1631 - Potassium hydroxide.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Potassium hydroxide. 184.1631 Section 184.1631... GRAS § 184.1631 Potassium hydroxide. (a) Potassium hydroxide (KOH, CAS Reg. No. 1310-58-3) is also... powders. Potassium hydroxide is obtained commercially from the electrolysis of potassium chloride...

  8. 21 CFR 172.800 - Acesulfame potassium.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Acesulfame potassium. 172.800 Section 172.800 Food... Multipurpose Additives § 172.800 Acesulfame potassium. Acesulfame potassium (CAS Reg. No. 55589-62-3), also... not preclude such use, under the following conditions: (a) Acesulfame potassium is the potassium...

  9. 21 CFR 184.1613 - Potassium bicarbonate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Potassium bicarbonate. 184.1613 Section 184.1613... Listing of Specific Substances Affirmed as GRAS § 184.1613 Potassium bicarbonate. (a) Potassium... potassium hydroxide with carbon dioxide; (2) By treating a solution of potassium carbonate with...

  10. 21 CFR 172.800 - Acesulfame potassium.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Acesulfame potassium. 172.800 Section 172.800 Food... Acesulfame potassium. Acesulfame potassium (CAS Reg. No. 55589-62-3), also known as acesulfame K, may be... following conditions: (a) Acesulfame potassium is the potassium salt of...

  11. 21 CFR 184.1619 - Potassium carbonate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Potassium carbonate. 184.1619 Section 184.1619... Listing of Specific Substances Affirmed as GRAS § 184.1619 Potassium carbonate. (a) Potassium carbonate... of potassium chloride followed by exposing the resultant potassium to carbon dioxide; (2) By...

  12. 21 CFR 172.800 - Acesulfame potassium.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Acesulfame potassium. 172.800 Section 172.800 Food... Multipurpose Additives § 172.800 Acesulfame potassium. Acesulfame potassium (CAS Reg. No. 55589-62-3), also... not preclude such use, under the following conditions: (a) Acesulfame potassium is the potassium...

  13. 21 CFR 184.1643 - Potassium sulfate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Potassium sulfate. 184.1643 Section 184.1643 Food... GRAS § 184.1643 Potassium sulfate. (a) Potassium sulfate (K2SO4, CAS Reg. No. 7778-80-5) occurs.... It is prepared by the neutralization of sulfuric acid with potassium hydroxide or potassium...

  14. 21 CFR 184.1613 - Potassium bicarbonate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Potassium bicarbonate. 184.1613 Section 184.1613... Listing of Specific Substances Affirmed as GRAS § 184.1613 Potassium bicarbonate. (a) Potassium... potassium hydroxide with carbon dioxide; (2) By treating a solution of potassium carbonate with...

  15. 21 CFR 184.1613 - Potassium bicarbonate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Potassium bicarbonate. 184.1613 Section 184.1613... Listing of Specific Substances Affirmed as GRAS § 184.1613 Potassium bicarbonate. (a) Potassium... potassium hydroxide with carbon dioxide; (2) By treating a solution of potassium carbonate with...

  16. 21 CFR 184.1634 - Potassium iodide.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Potassium iodide. 184.1634 Section 184.1634 Food... GRAS § 184.1634 Potassium iodide. (a) Potassium iodide (KI, CAS Reg. No. 7681-11-0) is the potassium... reacting hydriodic acid (HI) with potassium bicarbonate (KHCO3). (b) The ingredient meets...

  17. 21 CFR 184.1619 - Potassium carbonate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Potassium carbonate. 184.1619 Section 184.1619... Listing of Specific Substances Affirmed as GRAS § 184.1619 Potassium carbonate. (a) Potassium carbonate... of potassium chloride followed by exposing the resultant potassium to carbon dioxide; (2) By...

  18. 21 CFR 172.800 - Acesulfame potassium.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Acesulfame potassium. 172.800 Section 172.800 Food... Multipurpose Additives § 172.800 Acesulfame potassium. Acesulfame potassium (CAS Reg. No. 55589-62-3), also... not preclude such use, under the following conditions: (a) Acesulfame potassium is the potassium...

  19. 21 CFR 184.1619 - Potassium carbonate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Potassium carbonate. 184.1619 Section 184.1619... Listing of Specific Substances Affirmed as GRAS § 184.1619 Potassium carbonate. (a) Potassium carbonate... of potassium chloride followed by exposing the resultant potassium to carbon dioxide; (2) By...

  20. 21 CFR 184.1619 - Potassium carbonate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Potassium carbonate. 184.1619 Section 184.1619 Food... Specific Substances Affirmed as GRAS § 184.1619 Potassium carbonate. (a) Potassium carbonate (K2CO3, CAS... potassium chloride followed by exposing the resultant potassium to carbon dioxide; (2) By treating...

  1. Genotoxicity and cytotoxicity of 2-hydroxyethyl methacrylate.

    PubMed

    Pawlowska, Elzbieta; Poplawski, Tomasz; Ksiazek, Dominika; Szczepanska, Joanna; Blasiak, Janusz

    2010-02-01

    Resin-based methacrylate materials are widely used in restorative dentistry. They are viscous substances that are converted into solid material via polymerization. This process, however, may be incomplete, leading to the release of monomers into the oral cavity and the pulp, which can be reached through the dentin micro-channels. This opens the opportunity for the monomers to reach the bloodstream. Monomers can reach concentrations in the millimolar range, high enough to cause cellular damage, so it is justified to study their potential toxic effects. In the present work we investigated the cytotoxicity and genotoxicity of 2-hydroxyethyl methacrylate (HEMA) in human peripheral blood lymphocytes and A549 lung-tumour cells. HEMA at concentrations up to 10mM neither affected the viability of the cells nor interacted with isolated plasmid DNA during a 1h exposure. However, HEMA induced concentration-dependent DNA damage in lymphocytes, as assessed by alkaline and pH 12.1 versions of the comet assay. HEMA did not cause double-strand breaks, as assessed by the neutral version of the comet assay and pulsed-field gel electrophoresis. The use of DNA repair enzymes, spin traps and vitamin C produced results suggesting that HEMA induced oxidative modifications to DNA bases. DNA damage caused by HEMA at 10mM was removed within 120min. HEMA induced apoptosis in a concentration-dependent manner and caused cell-cycle delay at the G0/G1-checkpoint. Methylglycol chitosan displayed a protective effect against the DNA-damaging action of HEMA. The results obtained in this study suggest that HEMA induces adverse biological effects, mainly via reactive oxygen species, which can lead to DNA damage, apoptosis and cell-cycle delay. Chitosan and its derivatives can be considered as additional components of dental restoration to decrease the harmful potency of HEMA.

  2. Biocompatible Bacterial Cellulose-Poly(2-hydroxyethyl methacrylate) Nanocomposite Films

    PubMed Central

    Figueiredo, Andrea G. P. R.; Figueiredo, Ana R. P.; Alonso-Varona, Ana; Fernandes, Susana C. M.; Palomares, Teodoro; Rubio-Azpeitia, Eva; Barros-Timmons, Ana; Silvestre, Armando J. D.; Pascoal Neto, Carlos; Freire, Carmen S. R.

    2013-01-01

    A series of bacterial cellulose-poly(2-hydroxyethyl methacrylate) nanocomposite films was prepared by in situ radical polymerization of 2-hydroxyethyl methacrylate (HEMA), using variable amounts of poly(ethylene glycol) diacrylate (PEGDA) as cross-linker. Thin films were obtained, and their physical, chemical, thermal, and mechanical properties were evaluated. The films showed improved translucency compared to BC and enhanced thermal stability and mechanical performance when compared to poly(2-hydroxyethyl methacrylate) (PHEMA). Finally, BC/PHEMA nanocomposites proved to be nontoxic to human adipose-derived mesenchymal stem cells (ADSCs) and thus are pointed as potential dry dressings for biomedical applications. PMID:24093101

  3. Biocompatible bacterial cellulose-poly(2-hydroxyethyl methacrylate) nanocomposite films.

    PubMed

    Figueiredo, Andrea G P R; Figueiredo, Ana R P; Alonso-Varona, Ana; Fernandes, Susana C M; Palomares, Teodoro; Rubio-Azpeitia, Eva; Barros-Timmons, Ana; Silvestre, Armando J D; Pascoal Neto, Carlos; Freire, Carmen S R

    2013-01-01

    A series of bacterial cellulose-poly(2-hydroxyethyl methacrylate) nanocomposite films was prepared by in situ radical polymerization of 2-hydroxyethyl methacrylate (HEMA), using variable amounts of poly(ethylene glycol) diacrylate (PEGDA) as cross-linker. Thin films were obtained, and their physical, chemical, thermal, and mechanical properties were evaluated. The films showed improved translucency compared to BC and enhanced thermal stability and mechanical performance when compared to poly(2-hydroxyethyl methacrylate) (PHEMA). Finally, BC/PHEMA nanocomposites proved to be nontoxic to human adipose-derived mesenchymal stem cells (ADSCs) and thus are pointed as potential dry dressings for biomedical applications.

  4. Frequently Asked Questions on Potassium Iodide (KI)

    MedlinePlus

    ... needs to take potassium iodide (KI) after a nuclear radiation release? What potassium iodide (KI) products are currently ... needs to take potassium iodide (KI) after a nuclear radiation release? The FDA guidance prioritizes groups based on ...

  5. Total body potassium measurement method

    SciTech Connect

    Tomlinson, F.K.

    1985-09-01

    The body counter facility at Mound was used to measure the total body potassium (TBK) in hypertensive patients. Radioactive /sup 40/K accounts for 0.0118% of natural potassium and can be readily measured in vivo. The normal adult human generally has 80 to 185 g of TBK depending on sex, age, height, etc. 10 refs., 1 tab.

  6. Quaternary ammonium poly(diethylaminoethyl methacrylate) possessing antimicrobial activity.

    PubMed

    Farah, Shady; Aviv, Oren; Laout, Natalia; Ratner, Stanislav; Beyth, Nurit; Domb, Abraham J

    2015-04-01

    Quaternary ammonium (QA) methacrylate monomers and polymers were synthesized from a N-alkylation of N,N-diethylaminoethyl methacrylate (DEAEM) monomer. Linear copolymers, and for the first time reported crosslinked nanoparticles (NPs), based QA-PDEAEM were prepared by radical polymerization of the quaternized QA-DEAEM monomers with either methyl methacrylate (MMA) or a divinyl monomer. QA-PDEAEM NPs of 50-70 nm were embedded in polyethylene vinyl acetate coating. QA-polymers with N-C8 and N-C18 alkyl chains and copolymers with methyl methacrylate were prepared at different molar ratios and examined for their antimicrobial effectiveness. These coatings exhibited strong antibacterial activity against four representative Gram-positive and Gram-negative bacteria.

  7. Methacrylate-based monolithic layers for planar chromatography of polymers.

    PubMed

    Maksimova, E F; Vlakh, E G; Tennikova, T B

    2011-04-29

    A series of macroporous monolithic methacrylate-based materials was synthesized by in situ free radical UV-initiated copolymerization of functional monomers, such as glycidyl methacrylate (GMA), butyl methacrylate (BuMA), 2-aminoethyl methacrylate (AEMA), 2-hydroxyethyl methacrylate (HEMA) and 2-cyanoethyl methacrylate (CEMA), with crosslinking agent, namely, ethylene glycol dimethacrylate (EDMA). The materials obtained were applied as the stationary phases in simple and robust technique - planar chromatography (PLC). The method of separation layer fabrication representing macroporous polymer monolith bound to the specially prepared glass surface was developed and optimized. The GMA-EDMA and BuMA-EDMA matrixes were successfully applied for the separation of low molecular weight compounds (the mixture of several dies), as well as poly(vinylpyrrolidone) and polystyrene homopolymers of different molecular weights using reversed-phase mechanism. The materials based on copolymers AEMA-HEMA-EDMA and CEMA-HEMA-EDMA were used for normal-phase PLC separation of 2,4-dinitrophenyl amino acids and polystyrene standards.

  8. Thermally Switchable Thin Films of an ABC Triblock Copolymer of Poly(n-butyl methacrylate)-poly(methyl methacrylate)-poly(2-fluoroethyl methacrylate)

    SciTech Connect

    Zhang, Shanju; Liu, Zhan; Bucknall, David G.; He, Lihong; Hong, Kunlun; Mays, Jimmy; Allen, Mark

    2011-01-01

    The thermo-responsive behavior of polymer films consisting of novel linear triblock copolymers of poly(n-butyl methacrylate)-poly(methyl methacrylate)-poly(2-fluoroethyl methacrylate) (PnBuMA-PMMA-P2FEMA) are reported using differential scanning calorimetry (DSC), atomic forcing microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and contacting angle (CA) measurements. The surface morphology, wettability and chemical structure of thin films of these triblock copolymers on silicon wafers as a function of temperature have been investigated. It has been shown that the wettability of the films is thermally switchable. Detailed structural analysis shows that thermo-responsive surface composition changes are produced. The underlying mechanism of the thermoresponsive behavior is discussed.

  9. Thermally switchable thin films of an ABC triblock copolymer of poly( n -butyl methacrylate)-poly(methyl methacrylate)-poly(2-fluoroethyl methacrylate)

    NASA Astrophysics Data System (ADS)

    Zhang, Shanju; Liu, Zhan; Bucknall, David G.; He, Lihong; Hong, Kunlun; Mays, Jimmy W.; Allen, Mark G.

    2011-09-01

    The thermo-responsive behavior of polymer films consisting of novel linear triblock copolymers of poly( n-butyl methacrylate)-poly(methyl methacrylate)-poly(2-fluoroethyl methacrylate) (PnBuMA-PMMA-P2FEMA) are reported using differential scanning calorimetry (DSC), atomic forcing microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and contacting angle (CA) measurements. The surface morphology, wettability and chemical structure of thin films of these triblock copolymers on silicon wafers as a function of temperature have been investigated. It has been shown that the wettability of the films is thermally switchable. Detailed structural analysis shows that thermo-responsive surface composition changes are produced. The underlying mechanism of the thermoresponsive behavior is discussed.

  10. Chlorhexidine-releasing methacrylate dental composite materials.

    PubMed

    Leung, Danny; Spratt, David A; Pratten, Jonathan; Gulabivala, Kishor; Mordan, Nicola J; Young, Anne M

    2005-12-01

    Light curable antibacterial, dental composite restoration materials, consisting of 80 wt% of a strontium fluoroaluminosilicate glass dispersed in methacrylate monomers have been produced. The monomers contained 40-100 wt% of a 10 wt% chlorhexidine diacetate (CHXA) in hydroxyethylmethacrylate (HEMA) solution and 60-0 wt% of a 50/50 mix of urethane dimethacrylate (UDMA) and triethyleneglycol dimethacrylate (TEGDMA). On raising HEMA content, light cure polymerisation rates decreased. Conversely, water sorption induced swelling and rates of diffusion controlled CHXA release from the set materials increased. Experimental composites with 50 and 90 wt% of the CHXA in HEMA solution in the monomer were shown, within a constant depth film fermentor (CDFF), to have slower rates of biofilm growth on their surfaces between 1 and 7 days than the commercial dental composite Z250 or fluoride-releasing dental cements, Fuji II LC and Fuji IX. When an excavated bovine dentine cylinder re-filled with Z250 was placed for 10 weeks in the CDFF, both bacteria and polymers from the artificial saliva penetrated between the material and dentine. With the 50 wt% experimental HEMA/CHXA formulation, this bacterial microleakage was substantially reduced. Polymer leakage, however, still occurred. Both polymer and bacterial microleakage were prevented with a 90 wt% HEMA/CHXA restoration in the bovine dentine due to swelling compensation for polymerisation shrinkage in combination with antibacterial release.

  11. Furfuryl methacrylate plasma polymers for biomedical applications.

    PubMed

    Shirazi, Hanieh Safizadeh; Rogers, Nicholas; Michelmore, Andrew; Whittle, Jason D

    2016-09-08

    Furfuryl methacrylate (FMA) is a promising precursor for producing polymers for biomedical and cell therapy applications. Herein, FMA plasma polymer coatings were prepared with different powers, deposition times, and flow rates. The plasma polymer coatings were characterized using atomic force microscopy (AFM), scanning electron microscopy (SEM), x-ray photoelectron spectroscopy (XPS), and time-of-flight secondary ion mass spectrometry (ToF-SIMS). The results from AFM and SEM show the early growth of the coatings and the existence of particle aggregates on the surfaces. XPS results indicated no measureable chemical differences between the deposited films produced under different power and flow rate conditions. ToF-SIMS analysis demonstrated differing amounts of C5H5O (81 m/z) and C10H9O2 (161 m/z) species in the coatings which are related to the furan ring structure. Through judicious choice of plasma polymerization parameters, the quantity of the particle aggregates was reduced, and the fabricated plasma polymer coatings were chemically uniform and smooth. Primary human fibroblasts were cultured on FMA plasma polymer surfaces to determine the effect of surface chemical composition and the presence of particle aggregates on cell culture. Particle aggregates were shown to inhibit fibroblast attachment and proliferation.

  12. Sequence dependent conformations of glycidyl methacrylate/butyl methacrylate copolymers in the gas phase

    NASA Astrophysics Data System (ADS)

    Baker, Erin Shammel; Gidden, Jennifer; Simonsick, William J.; Grady, Michael C.; Bowers, Michael T.

    2004-11-01

    Sequence dependent conformations of a series of glycidyl methacrylate/butyl methacrylate (GMA/BMA) copolymers cationized by sodium were analyzed in the gas phase using ion mobility methods. GMA and BMA have the same nominal mass but vary in exact mass by 0.036 Da (CH4 versus O). Matrix assisted laser desorption/ionization (MALDI) was used to form Na+(GMA/BMA) copolymer ions and their collision cross-sections were measured in helium using ion mobility methods. The copolymer sequences from Na+(GMA/BMA)3 to Na+(GMA/BMA)5 (i.e. for the trimer to the pentamer) were studied. Analysis by molecular mechanics/dynamics indicates that each copolymer (regardless of sequence) forms a ring around the sodium ions due to Na+/oxygen electrostatic interactions. However, the structures vary in size, since the epoxy oxygen atoms in the glycidyl groups are attracted to the sodium ions while the carbon-composed butyl groups are not. This allows copolymers with more GMA segments to fold tighter (more spherically) around the sodium ion and have smaller cross-sections than copolymers with a larger amount of BMA segments in the sequence. Due to this cross-sectional difference, the GMA/BMA sequence compositions of the trimer and tetramer could be quantified.

  13. Characterization of new acrylic bone cement based on methyl methacrylate/1-hydroxypropyl methacrylate monomer.

    PubMed

    Pascual, B; Goñi, I; Gurruchaga, M

    1999-01-01

    New formulations of acrylic bone cement based on methyl methacrylate/1-hydroxypropyl methacrylate (MMA/HPMA) monomers were developed with the purpose of obtaining more ductile materials with reduced polymerization shrinkage. In this way, the ductility of such materials increased, but the introduction of high percentages of the hydrophilic component produced an important decrease in Young's modulus and strength. To ascertain the reason for the deterioration of the tensile parameters, an analysis by scanning electron microscopy of these formulations was carried out; it revealed poor adhesion between the matrix and poly(MMA) beads. We also observed that the polymerization shrinkage increased as the amount of hydrophilic monomer in the formulation decreased, and the 50% (v/v) HPMA modified bone cement compensated for this volume reduction with its water uptake swelling. Measurements taken on the setting time and polymerization exotherm showed a decrease in the former and an increase in the latter, because of the introduction of a more reactive monomer in the bone cement formulation.

  14. 21 CFR 184.1613 - Potassium bicarbonate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Potassium bicarbonate. 184.1613 Section 184.1613... GRAS § 184.1613 Potassium bicarbonate. (a) Potassium bicarbonate (KHCO3, CAS Reg. No. 298-14-6) is made by the following processes: (1) By treating a solution of potassium hydroxide with carbon dioxide;...

  15. 21 CFR 184.1610 - Potassium alginate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Potassium alginate. 184.1610 Section 184.1610 Food... Specific Substances Affirmed as GRAS § 184.1610 Potassium alginate. (a) Potassium alginate (CAS Reg. No. 9005-36-1) is the potassium salt of alginic acid, a natural polyuronide constituent of certain...

  16. 21 CFR 184.1634 - Potassium iodide.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Potassium iodide. 184.1634 Section 184.1634 Food... Specific Substances Affirmed as GRAS § 184.1634 Potassium iodide. (a) Potassium iodide (KI, CAS Reg. No. 7681-11-0) is the potassium salt of hydriodic acid. It occurs naturally in sea water and in...

  17. 21 CFR 184.1610 - Potassium alginate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Potassium alginate. 184.1610 Section 184.1610 Food... Specific Substances Affirmed as GRAS § 184.1610 Potassium alginate. (a) Potassium alginate (CAS Reg. No. 9005-36-1) is the potassium salt of alginic acid, a natural polyuronide constituent of certain...

  18. 21 CFR 184.1622 - Potassium chloride.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Potassium chloride. 184.1622 Section 184.1622 Food... Specific Substances Affirmed as GRAS § 184.1622 Potassium chloride. (a) Potassium chloride (KCl, CAS Reg... levels not to exceed current good manufacturing practice. Potassium chloride may be used in...

  19. 21 CFR 184.1610 - Potassium alginate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Potassium alginate. 184.1610 Section 184.1610 Food... Specific Substances Affirmed as GRAS § 184.1610 Potassium alginate. (a) Potassium alginate (CAS Reg. No. 9005-36-1) is the potassium salt of alginic acid, a natural polyuronide constituent of certain...

  20. 21 CFR 184.1634 - Potassium iodide.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Potassium iodide. 184.1634 Section 184.1634 Food... Specific Substances Affirmed as GRAS § 184.1634 Potassium iodide. (a) Potassium iodide (KI, CAS Reg. No. 7681-11-0) is the potassium salt of hydriodic acid. It occurs naturally in sea water and in...

  1. 21 CFR 184.1631 - Potassium hydroxide.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Potassium hydroxide. 184.1631 Section 184.1631 Food... Specific Substances Affirmed as GRAS § 184.1631 Potassium hydroxide. (a) Potassium hydroxide (KOH, CAS Reg... pellets, flakes, sticks, lumps, and powders. Potassium hydroxide is obtained commercially from...

  2. 21 CFR 184.1631 - Potassium hydroxide.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Potassium hydroxide. 184.1631 Section 184.1631... Listing of Specific Substances Affirmed as GRAS § 184.1631 Potassium hydroxide. (a) Potassium hydroxide..., including pellets, flakes, sticks, lumps, and powders. Potassium hydroxide is obtained commercially from...

  3. 21 CFR 184.1619 - Potassium carbonate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Potassium carbonate. 184.1619 Section 184.1619... GRAS § 184.1619 Potassium carbonate. (a) Potassium carbonate (K2CO3, CAS Reg. No. 584-08-7) is produced by the following methods of manufacture: (1) By electrolysis of potassium chloride followed...

  4. 21 CFR 184.1622 - Potassium chloride.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Potassium chloride. 184.1622 Section 184.1622 Food... Specific Substances Affirmed as GRAS § 184.1622 Potassium chloride. (a) Potassium chloride (KCl, CAS Reg... levels not to exceed current good manufacturing practice. Potassium chloride may be used in...

  5. 21 CFR 184.1610 - Potassium alginate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Potassium alginate. 184.1610 Section 184.1610 Food... Specific Substances Affirmed as GRAS § 184.1610 Potassium alginate. (a) Potassium alginate (CAS Reg. No. 9005-36-1) is the potassium salt of alginic acid, a natural polyuronide constituent of certain...

  6. 21 CFR 184.1634 - Potassium iodide.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Potassium iodide. 184.1634 Section 184.1634 Food... Specific Substances Affirmed as GRAS § 184.1634 Potassium iodide. (a) Potassium iodide (KI, CAS Reg. No. 7681-11-0) is the potassium salt of hydriodic acid. It occurs naturally in sea water and in...

  7. 21 CFR 184.1631 - Potassium hydroxide.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Potassium hydroxide. 184.1631 Section 184.1631... Listing of Specific Substances Affirmed as GRAS § 184.1631 Potassium hydroxide. (a) Potassium hydroxide..., including pellets, flakes, sticks, lumps, and powders. Potassium hydroxide is obtained commercially from...

  8. 21 CFR 184.1635 - Potassium iodate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Potassium iodate. 184.1635 Section 184.1635 Food... GRAS § 184.1635 Potassium iodate. (a) Potassium iodate (KIO3, CAS Reg. No. 7758-05-6) does not occur naturally but can be prepared by reacting iodine with potassium hydroxide. (b) The ingredient meets...

  9. 21 CFR 184.1622 - Potassium chloride.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Potassium chloride. 184.1622 Section 184.1622 Food... Specific Substances Affirmed as GRAS § 184.1622 Potassium chloride. (a) Potassium chloride (KCl, CAS Reg... levels not to exceed current good manufacturing practice. Potassium chloride may be used in...

  10. 21 CFR 184.1622 - Potassium chloride.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Potassium chloride. 184.1622 Section 184.1622 Food... GRAS § 184.1622 Potassium chloride. (a) Potassium chloride (KCl, CAS Reg. No. 7447-40-7) is a white... manufacturing practice. Potassium chloride may be used in infant formula in accordance with section 412(g)...

  11. 21 CFR 184.1622 - Potassium chloride.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Potassium chloride. 184.1622 Section 184.1622 Food... Specific Substances Affirmed as GRAS § 184.1622 Potassium chloride. (a) Potassium chloride (KCl, CAS Reg... levels not to exceed current good manufacturing practice. Potassium chloride may be used in...

  12. 21 CFR 184.1634 - Potassium iodide.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Potassium iodide. 184.1634 Section 184.1634 Food... Specific Substances Affirmed as GRAS § 184.1634 Potassium iodide. (a) Potassium iodide (KI, CAS Reg. No. 7681-11-0) is the potassium salt of hydriodic acid. It occurs naturally in sea water and in...

  13. 21 CFR 184.1635 - Potassium iodate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Potassium iodate. 184.1635 Section 184.1635 Food... Specific Substances Affirmed as GRAS § 184.1635 Potassium iodate. (a) Potassium iodate (KIO3, CAS Reg. No. 7758-05-6) does not occur naturally but can be prepared by reacting iodine with potassium hydroxide....

  14. 21 CFR 184.1631 - Potassium hydroxide.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Potassium hydroxide. 184.1631 Section 184.1631... Listing of Specific Substances Affirmed as GRAS § 184.1631 Potassium hydroxide. (a) Potassium hydroxide..., including pellets, flakes, sticks, lumps, and powders. Potassium hydroxide is obtained commercially from...

  15. 21 CFR 184.1635 - Potassium iodate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Potassium iodate. 184.1635 Section 184.1635 Food... Specific Substances Affirmed as GRAS § 184.1635 Potassium iodate. (a) Potassium iodate (KIO3, CAS Reg. No. 7758-05-6) does not occur naturally but can be prepared by reacting iodine with potassium hydroxide....

  16. Potassium Disorders: Hypokalemia and Hyperkalemia.

    PubMed

    Viera, Anthony J; Wouk, Noah

    2015-09-15

    Hypokalemia and hyperkalemia are common electrolyte disorders caused by changes in potassium intake, altered excretion, or transcellular shifts. Diuretic use and gastrointestinal losses are common causes of hypokalemia, whereas kidney disease, hyperglycemia, and medication use are common causes of hyperkalemia. When severe, potassium disorders can lead to life-threatening cardiac conduction disturbances and neuromuscular dysfunction. Therefore, a first priority is determining the need for urgent treatment through a combination of history, physical examination, laboratory, and electrocardiography findings. Indications for urgent treatment include severe or symptomatic hypokalemia or hyperkalemia; abrupt changes in potassium levels; electrocardiography changes; or the presence of certain comorbid conditions. Hypokalemia is treated with oral or intravenous potassium. To prevent cardiac conduction disturbances, intravenous calcium is administered to patients with hyperkalemic electrocardiography changes. Insulin, usually with concomitant glucose, and albuterol are preferred to lower serum potassium levels in the acute setting; sodium polystyrene sulfonate is reserved for subacute treatment. For both disorders, it is important to consider potential causes of transcellular shifts because patients are at increased risk of rebound potassium disturbances.

  17. Does Hemodialysis Dialysate Potassium Composition Matter?.

    PubMed

    Haras, Mary S

    2015-01-01

    Dyskalemia is known to cause cardiac arrhythmias and cardiac arrest. In persons undergoing hemodialysis, potassium dialysate composition has been identified as a contributingfactor in addition to co-morbidities, medications, dietary potassium intake, and stage of kidney disease. Current evidence recommends a thorough evaluation of all factors affecting potassium balance, and lower potassium concentration should be used cautiously in patients who are likely to develop cardiac arrhythmias. Nephrology nurses play a key role inpatient assessment and edu- cation related to potassium balance.

  18. Osteoblast cell death on methacrylate polymers involves apoptosis.

    PubMed

    Gough, J E; Downes, S

    2001-12-15

    The success of an implant depends on the implant-tissue interface. There are many causes of implant failure, one of which is tissue necrosis. The aim of this in vitro study was to determine whether cell death of primary human osteoblasts (implant site specific cells) occurred by apoptosis (a form of programmed cell death) on two methacrylate polymers. Cells were cultured on poly(ethyl methacrylate)/tetrahydrofurfuryl methacrylate and poly(methyl methacrylate in the form of 13-mm discs, in conditioned medium containing leachable monomer and in the presence of various concentrations of monomer itself in the culture medium. It was found that monomer and leached monomer caused apoptosis of human osteoblast cells in this system. Tetrahydrofurfuryl methacrylate monomer was found to be more toxic than currently used monomer methylmethacrylate. Preincubation of polymers in serum containing medium was found to increase the biocompatibility of the polymers. High levels of apoptosis occurred on polymer used directly after polymerization. Apoptosis levels were decreased after polymer was incubated at 60 degrees C overnight or for 3 days. Apoptosis therefore may occur in cells at the implant site in vivo.

  19. DPPX potassium channel antibody

    PubMed Central

    Tobin, William Oliver; Lennon, Vanda A.; Komorowski, Lars; Probst, Christian; Clardy, Stacey Lynn; Aksamit, Allen J.; Appendino, Juan Pablo; Lucchinetti, Claudia F.; Matsumoto, Joseph Y.; Pittock, Sean J.; Sandroni, Paola; Tippmann-Peikert, Maja; Wirrell, Elaine C.

    2014-01-01

    Objective: To describe the detection frequency and clinical associations of immunoglobulin G (IgG) targeting dipeptidyl-peptidase-like protein-6 (DPPX), a regulatory subunit of neuronal Kv4.2 potassium channels. Methods: Specimens from 20 patients evaluated on a service basis by tissue-based immunofluorescence yielded a synaptic immunostaining pattern consistent with DPPX-IgG (serum, 20; CSF, all 7 available). Transfected HEK293 cell-based assay confirmed DPPX specificity in all specimens. Sixty-nine patients with stiff-person syndrome and related disorders were also evaluated by DPPX-IgG cell-based assay. Results: Of 20 seropositive patients, 12 were men; median symptom onset age was 53 years (range, 13–75). Symptom onset was insidious in 15 and subacute in 5. Twelve patients reported prodromal weight loss. Neurologic disorders were multifocal. All had one or more brain or brainstem manifestations: amnesia (16), delirium (8), psychosis (4), depression (4), seizures (2), and brainstem disorders (15; eye movement disturbances [8], ataxia [7], dysphagia [6], dysarthria [4], respiratory failure [3]). Nine patients reported sleep disturbance. Manifestations of central hyperexcitability included myoclonus (8), exaggerated startle (6), diffuse rigidity (6), and hyperreflexia (6). Dysautonomia involved the gastrointestinal tract (9; diarrhea [6], gastroparesis, and constipation [3]), bladder (7), cardiac conduction system (3), and thermoregulation (1). Two patients had B-cell neoplasms: gastrointestinal lymphoma (1), and chronic lymphocytic leukemia (1). Substantial neurologic improvements followed immunotherapy in 7 of 11 patients with available treatment data. DPPX-IgG was not detected in any of the stiff-person syndrome patients. Conclusions: DPPX-IgG is a biomarker for an immunotherapy-responsive multifocal neurologic disorder of the central and autonomic nervous systems. PMID:25320100

  20. Complex microparticulate systems based on glycidyl methacrylate and xanthan.

    PubMed

    Lungan, Maria-Andreea; Popa, Marcel; Desbrieres, Jacques; Racovita, Stefania; Vasiliu, Silvia

    2014-04-15

    Porous microparticles based on glycidyl methacrylate, dimethacrylic monomers [ethylene glycol dimethacrylate, diethylene glycol dimethacrylate, triethylene glycol dimethacrylate] and xanthan gum were synthesized by aqueous suspension polymerization method in the presence of toluene as diluent using two types of initiators: benzoyl peroxide and ammonium persulfate. The G microparticles based on glycidyl methacrylate and dimethacrylic monomers and X microparticles based on glycidyl methacrylate, xanthan and dimethacrylic monomers were characterized by various techniques including FT-IR spectroscopy, TG analysis, SEM analysis and DVS method. The specific surface areas were determined by DVS method, while the copolymer porosities and pore volume were obtained from the apparent and skeletal densities. The results have indicated that xanthan was included in the crosslinked matrix by means of covalent bonds. X microparticles have a porous structure with higher specific surface area (129-44 m(2)/g) and higher sorption capacities compared with G microparticles (69-31 m(2)/g).

  1. Health and Environmental Effects Profile for ethyl methacrylate

    SciTech Connect

    Not Available

    1986-06-01

    The Health and Environmental Effects Profile for ethyl methacrylate was prepared to support listings of hazardous constituents of a wide range of waste streams under Section 3001 of the Resource Conservation and Recovery Act (RCRA) and to provide health-related limits for emergency actions under Section 101 of the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA). Both published literature and information obtained from Agency program office files were evaluated as they pertained to potential human health, aquatic life and environmental effects. Quantitative estimates are presented provided sufficient data are available. Ethyl methacrylate has been determined to be a systemic toxicant. An acceptable daily intake (ADI) for ethyl methacrylate is 0.086 mg/kg/day for oral exposure.

  2. Protonation of diethylaminoethyl methacrylate by acids in various solvents

    SciTech Connect

    Zhuravleva, I.L.; Bune, E.V.; Bogachev, Yu.S.; Sheinker, A.P.; Teleshov, E.N.

    1988-04-10

    It was established by /sup 1/H and /sup 13/C NMR that diethylaminoethyl methacrylate exists in the unprotonated form in solvents which are not acids. In the presence of an equimolar amount of hydrochloric or trifluoroacetic acids the amino ester is fully protonated, irrespective of the solvent. The diethylaminoethyl methacrylate-acetic acid system exists in the form of a molecular complex with a hydrogen bond and in the protonated form; the proportions of the protonated form were estimated in various solvents. The change in the reactivity of diethylaminoethyl methacrylate and its salts in polymerization was explained by a change in the electronic state of CH/sub 2/ = group of the monomer as a result of its protonation and of the formation of a hydrogen bond between the C = O group of the monomer and the solvent.

  3. Poly(methyl methacrylate)-cellulose nitrate copolymers. I. Preparation

    SciTech Connect

    Badran, B.M.; Sherif, S.; Abu-Sedira, A.A.

    1981-03-01

    Poly(methyl methacrylate)-cellulose nitrate copolymers were prepared in the form of rods and sheets by bulk polymerization using benzoyl peroxide as initiator. Suspension polymerization did not succeed in preparing poly(methyl methacrylate)-cellulose nitrate copolymers, especially when cellulose nitrate of 11.4% nitrogen content was used. The parameters such as cellulose nitrate concentration, nitrogen content of cellulose nitrate, the amount of initiator and the reaction time, and the temperature are discussed. The prepared copolymers were irradiated for specified periods of up to 11.83 Mrad. It was found that poly(methyl methacrylate)-cellulose nitrate copolymers did not dissolve in any conventional solvent, but they swelled. Swelling decreases with increasing cellulose nitrate concentrations, nitrogen content of cellulose nitrate, and irradiation dose, indicating the crosslinked structure of the prepared copolymers.

  4. 40 CFR 721.10523 - Perfluoroalkylethyl methacrylate copolymer with hydroxymethyl acrylamide, vinyl chloride and long...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... copolymer with hydroxymethyl acrylamide, vinyl chloride and long chain fatty alkyl acrylate (generic). 721... Substances § 721.10523 Perfluoroalkylethyl methacrylate copolymer with hydroxymethyl acrylamide, vinyl... methacrylate copolymer with hydroxymethyl acrylamide, vinyl chloride and long chain fatty alkyl acrylate (PMN...

  5. 40 CFR 721.10523 - Perfluoroalkylethyl methacrylate copolymer with hydroxymethyl acrylamide, vinyl chloride and long...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... copolymer with hydroxymethyl acrylamide, vinyl chloride and long chain fatty alkyl acrylate (generic). 721... Substances § 721.10523 Perfluoroalkylethyl methacrylate copolymer with hydroxymethyl acrylamide, vinyl... methacrylate copolymer with hydroxymethyl acrylamide, vinyl chloride and long chain fatty alkyl acrylate (PMN...

  6. Regulation of renal potassium secretion: molecular mechanisms.

    PubMed

    Welling, Paul A

    2013-05-01

    A new understanding of renal potassium balance has emerged as the molecular underpinnings of potassium secretion have become illuminated, highlighting the key roles of apical potassium channels, renal outer medullary potassium channel (ROMK) and Big Potassium (BK), in the aldosterone-sensitive distal nephron and collecting duct. These channels act as the final-regulated components of the renal potassium secretory machinery. Their activity, number, and driving forces are precisely modulated to ensure potassium excretion matches dietary potassium intake. Recent identification of the underlying regulatory mechanisms at the molecular level provides a new appreciation of the physiology and reveals a molecular insight to explain the paradoxic actions of aldosterone on potassium secretion. Here, we review the current state of knowledge in the field.

  7. Review of Polymerization and Properties of Aminoalkyl Acrylates and Aminoalkyl Methacrylates

    DTIC Science & Technology

    1988-07-01

    to Russian investigators Korshunov, Bodnaryuk, and Kut’in, in 1975.2 The patent concerned the synthesis of methacrylate monomers containing an amino...group through transesterification. These researchers used alkyl methacrylates , mainly methyl methacrylate (MMA), as precursors for the synthesis. For...Ratios (rl, r2) of Aminoalkyl Methacrylates and Other Vinyl Monomers Monomer1 Moromer2 rl r2 DMAEMA MMA 0.717 0.676 DMAEMA BMA 0.705 0.66 BDIMA MMA 0.612

  8. Final report of the safety assessment of methacrylate ester monomers used in nail enhancement products.

    PubMed

    2005-01-01

    Methacrylate ester monomers are used in as artificial nail builders in nail enhancement products. They undergo rapid polymerization to form a hard material on the nail that is then shaped. While Ethyl Methacrylate is the primary monomer used in nail enhancement products, other methacrylate esters are also used. This safety assessment addresses 22 other methacrylate esters reported by industry to be present in small percentages as artificial nail builders in cosmetic products. They function to speed up polymerization and/or form cross-links. Only Tetrahydrofurfuryl Methacrylate was reported to the FDA to be in current use. The polymerization rates of these methacrylate esters are within the same range as Ethyl Methacrylate. While data are not available on all of these methacrylate esters, the available data demonstrated little acute oral, dermal, or i.p. toxicity. In a 28-day inhalation study on rats, Butyl Methacrylate caused upper airway irritation; the NOAEL was 1801 mg/m3. In a 28-day oral toxicity study on rats, t-Butyl Methacrylate had a NOAEL of 20 mg/kg/day. Beagle dogs dosed with 0.2 to 2.0 g/kg/day of C12 to C18 methacrylate monomers for 13 weeks exhibited effects only in the highest dose group: weight loss, emesis, diarrhea, mucoid feces, or salivation were observed. Butyl Methacrylate (0.1 M) and Isobutyl Methacrylate (0.1 M) are mildly irritating to the rabbit eye. HEMA is corrosive when instilled in the rabbit eye, while PEG-4 Dimethacrylate and Trimethylolpropane Trimethacrylate are minimally irritating to the eye. Dermal irritation caused by methacrylates is documented in guinea pigs and rabbits. In guinea pigs, HEMA, Isopropylidenediphenyl Bisglycidyl Methacrylate, Lauryl Methacrylate, and Trimethylolpropane Trimethacrylate are strong sensitizers; Butyl Methacrylate, Cyclohexyl Methacrylate, Hexyl Methacrylate, and Urethane Methacrylate are moderate sensitizers; Hydroxypropyl Methacrylate is a weak sensitizer; and PEG-4 Dimethacrylate and

  9. The lower alkyl methacrylates: Genotoxic profile of non-carcinogenic compounds.

    PubMed

    Albertini, Richard J

    2017-03-01

    All of the lower alkyl methacrylates are high production chemicals with potential for human exposure. The genotoxicity of seven mono-functional alkyl esters of methacrylic acid, i.e. methyl methacrylate, ethyl methacrylate, hydroxyethyl methacrylate, n-, i- and t-butyl methacrylate and 2 ethyl hexyl methacrylate, as well as methacrylic acid itself, the acyl component common to all, is reviewed and compared with the lack of carcinogenicity of methyl methacrylate, the representative member of the series so evaluated. Also reviewed are the similarity of structure, chemical and biological reactivity, metabolism and common metabolic products of this group of compounds which allows a category approach for assessing genotoxicity. As a class, the lower alkyl methacrylates are universally negative for gene mutations in prokaryotes but do exhibit high dose clastogenicity in mammalian cells in vitro. There is no convincing evidence that these compounds induce genotoxic effects in vivo in either sub-mammalian or mammalian species. This dichotomy of effects can be explained by the potential genotoxic intermediates generated in vitro. This genotoxic profile of the lower alkyl methacrylates is consistent with the lack of carcinogenicity of methyl methacrylate.

  10. 21 CFR 73.3127 - Vinyl alcohol/methyl methacrylate-dye reaction products.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 1 2013-04-01 2013-04-01 false Vinyl alcohol/methyl methacrylate-dye reaction... Vinyl alcohol/methyl methacrylate-dye reaction products. (a) Identity. The color additives are formed by reacting the dyes, either alone or in combination, with a vinyl alcohol/methyl methacrylate copolymer,...

  11. 21 CFR 73.3127 - Vinyl alcohol/methyl methacrylate-dye reaction products.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 1 2012-04-01 2012-04-01 false Vinyl alcohol/methyl methacrylate-dye reaction... Vinyl alcohol/methyl methacrylate-dye reaction products. (a) Identity. The color additives are formed by reacting the dyes, either alone or in combination, with a vinyl alcohol/methyl methacrylate copolymer,...

  12. 21 CFR 73.3127 - Vinyl alcohol/methyl methacrylate-dye reaction products.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 1 2014-04-01 2014-04-01 false Vinyl alcohol/methyl methacrylate-dye reaction... Vinyl alcohol/methyl methacrylate-dye reaction products. (a) Identity. The color additives are formed by reacting the dyes, either alone or in combination, with a vinyl alcohol/methyl methacrylate copolymer,...

  13. 21 CFR 73.3127 - Vinyl alcohol/methyl methacrylate-dye reaction products.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 1 2011-04-01 2011-04-01 false Vinyl alcohol/methyl methacrylate-dye reaction... Vinyl alcohol/methyl methacrylate-dye reaction products. (a) Identity. The color additives are formed by... methacrylate-dye reaction product listed under this section into commerce shall submit to the Food and...

  14. 21 CFR 73.3127 - Vinyl alcohol/methyl methacrylate-dye reaction products.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Vinyl alcohol/methyl methacrylate-dye reaction... Vinyl alcohol/methyl methacrylate-dye reaction products. (a) Identity. The color additives are formed by... methacrylate-dye reaction product listed under this section into commerce shall submit to the Food and...

  15. 21 CFR 177.2000 - Vinylidene chloride/methyl acrylate/methyl methacrylate polymers.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... methacrylate polymers. 177.2000 Section 177.2000 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) INDIRECT FOOD ADDITIVES: POLYMERS Substances for Use as Basic.../methyl methacrylate polymers. The vinylidene chloride/methyl acrylate/methyl methacrylate polymers...

  16. Mössbauer studies of solid state decomposition of methyl methacrylate-ethyl methacrylate copolymers containing ferric chloride

    NASA Astrophysics Data System (ADS)

    Kapur, G. S.; Brar, A. S.

    1990-07-01

    Methyl methacrylate (MMA)-ethyl methacrylate (EMA) copolymers of different monomer concentrations containing anhydrous ferric chloride were prepared by bulk polymerization at 70°C. TGA studies showed that inclusion of iron salt increases the thermal stability of copolymers by 50°C. Mössbauer spectra of copolymers heated at different temperatures showed the presence of Fe3+ species only, in different environments. The mechanism of thermal stabilization of copolymer has been proposed on the basis of IR, TGA and Mössbauer spectroscopy studies.

  17. Solid-state dye lasers based on copolymers of 2-hydroxyethyl methacrylate and methyl methacrylate doped with rhodamine 6G

    NASA Astrophysics Data System (ADS)

    Costela, A.; Florido, F.; Garcia-Moreno, I.; Duchowicz, R.; Amat-Guerri, F.; Figuera, J. M.; Sastre, R.

    1995-04-01

    Rhodamine 6G has been dissolved in copolymers of 2-HydroxyEthyl MethAcrylate (HEMA) and Methyl MethAcrylate (MMA) and the resulting solid-state solutions have been pumped at 337 nm and 532 nm. Lasing efficiencies similar to those found in ethanol solution have been obtained with a 1:1 vol/vol HEMA: MMA copolymer matrix, and lifetimes of ca. 10 000 (337 nm pumping) and ca. 75 000 (532 nm pumping) pulses at repetition rates up to 15 Hz and 10 Hz, respectively, have been demonstrated.

  18. Cold blood--potassium cardioplegia.

    PubMed

    Levinsky, L; Lee, A B; Lee, K C; Tatransky, F; Dockstader, R; Schimert, G

    1980-09-01

    A technique is described for providing myocardial protection utilizing oxygenated blood that is drawn from the pump oxygenator and passed through two disposable cardioplegic cooling coils, which are joined in series and submerged in ice slush. A potassium-containing cardioplegic solution is run into the oxygenated blood at the level of the cooling coils. The amount of blood used in the blood-potassium cardioplegic mixture is controlled using a screw clamp. This method has been used with excellent results in 150 consecutive patients undergoing aortocoronary saphenous vein bypass grafting.

  19. Equatorial potassium currents in lenses.

    PubMed

    Wind, B E; Walsh, S; Patterson, J W

    1988-02-01

    Earlier work with the vibrating probe demonstrated the existence of outward potassium currents at the equator and inward sodium currents at the optical poles of the lens. By adding microelectrodes to the system, it is possible to relate steady currents (J) to the potential difference (PD) measured with a microelectrode. By injecting an outward current (I), it is possible to determine resistances and also the PD at which the steady outward potassium current becomes zero (PDJ = 0). At this PD the concentration gradient for potassium efflux and the electrical gradient for potassium influx are balanced so that there is no net flow of potassium across the membranes associated with the production of J. The PDJ = 0 for 18 rat lenses was 86 mV and that for 12 frogs lenses was -95 mV. This agrees with the potassium equilibrium potential and provides strong evidence to support the view that the outward equatorial current, J, is a potassium current. With the injection of outward current, I, the PD becomes more negative, the outward equatorial current, J, decreases, and the inward current at the optical poles increases. This suggests that there are separate electrical loops for K+ and Na+ that are partially linked by the Na, K-pump. Using Ohm's law, it is possible to calculate the input resistance (R = delta PD/I), the resistance related to the production of J (RJ = delta PD/delta J), and the effect of the combined resistances (delta J/I). The driving force for J can be estimated (PDJ = 0-PD). The relationships among currents, voltages and resistance can be used to determine the characteristics of the membranes that are associated with the outward potassium current observed at the equator. The effects of graded deformation of the lens were determined. The effects were reversible. The sites of inward and outward currents were not altered. Following deformation, the equatorial current, J, increased, and the PD became less negative. The PDJ = 0 remains the same so the ratio of K

  20. Extrarenal potassium adaptation: role of skeletal muscle

    SciTech Connect

    Blachley, J.D.; Crider, B.P.; Johnson, J.H.

    1986-08-01

    Following the ingestion of a high-potassium-content diet for only a few days, the plasma potassium of rats rises only modestly in response to a previously lethal dose of potassium salts. This acquired tolerance, termed potassium adaptation, is principally the result of increased capacity to excrete potassium into the urine. However, a substantial portion of the acute potassium dose is not immediately excreted and is apparently translocated into cells. Previous studies have failed to show an increase in the content of potassium of a variety of tissues from such animals. Using /sup 86/Rb as a potassium analogue, we have shown that the skeletal muscle of potassium-adapted rats takes up significantly greater amounts of potassium in vivo in response to an acute challenge than does that of control animals. Furthermore, the same animals exhibit greater efflux of /sup 86/Rb following the termination of the acute infusion. We have also shown that the Na+-K+-ATPase activity and ouabain-binding capacity of skeletal muscle microsomes are increased by the process of potassium adaptation. We conclude that skeletal muscle is an important participant in potassium adaptation and acts to temporarily buffer acute increases in the extracellular concentration of potassium.

  1. Physiology and pathophysiology of potassium homeostasis.

    PubMed

    Palmer, Biff F; Clegg, Deborah J

    2016-12-01

    Total body potassium content and proper distribution of potassium across the cell membrane is of critical importance for normal cellular function. Potassium homeostasis is maintained by several different methods. In the kidney, total body potassium content is achieved by alterations in renal excretion of potassium in response to variations in intake. Insulin and beta-adrenergic tone play critical roles in maintaining the internal distribution of potassium under normal conditions. Despite homeostatic pathways designed to maintain potassium levels within the normal range, disorders of altered potassium homeostasis are common. The clinical approach to designing effective treatments relies on understanding the pathophysiology and regulatory influences which govern the internal distribution and external balance of potassium. Here we provide an overview of the key regulatory aspects of normal potassium physiology. This review is designed to provide an overview of potassium homeostasis as well as provide references of seminal papers to guide the reader into a more in depth discussion of the importance of potassium balance. This review is designed to be a resource for educators and well-informed clinicians who are teaching trainees about the importance of potassium balance.

  2. A Butyl Methacrylate Monolithic Column Prepared In-Situ on a Microfluidic Chip and its Applications

    PubMed Central

    Xu, Yi; Zhang, Wenpin; Zeng, Ping; Cao, Qiang

    2009-01-01

    A butyl methacrylate (BMA) monolithic column was polymerized in-situ with UV irradiation in an ultraviolet transparent PDMS micro-channel on a homemade micro-fluidic chip. Under the optimized conditions and using a typical polymerization mixture consisting of 75% porogenic solvents and 25% monomers, the BMA monolithic column was obtained as expected. The BET surface area ratio of the BMA monolithic column was 366 m2·g-1. The corresponding SEM images showed that the monolithic column material polymerized in a glass channel was composed of uniform pores and spherical particles with diameters ranging from 3 to 5 μm. The promethazine–luminal–potassium ferricyanide chemiluminescence system was selected for testing the capability of the column. A flow injection analytical technique–chemiluminescence (FIA–CL) system on the microfluidic chip with a BMA monolithic column pretreatment unit was established to determine promethazine. Trace promethazine was enriched by the BMA monolithic column, with more than a 10-fold average enrichment ratio. The proposed method has a linear response concentration range of 1.0×10-8 - 1.0×10-6g·mL-1 and the detection limit was 1.6×10-9g·mL-1. PMID:22412320

  3. Crosslinked superhydrophobic films fabricated by simply casting poly(methyl methacrylate-butyl acrylate-hydroxyethyl methacrylate)-b-poly(perfluorohexylethyl methacrylate) solution

    NASA Astrophysics Data System (ADS)

    Wen, Xiufang; Ye, Chao; Cai, Zhiqi; Xu, Shouping; Pi, Pihui; Cheng, Jiang; Zhang, Lijuan; Qian, Yu

    2015-06-01

    This study focuses on the preparation of superhydrophobic films by crosslinkable polymer material-Poly(methyl methacrylate-butyl acrylate-hydroxyethyl methacrylate)-b-Poly(perfluorohexylethyl methacrylate) (P (MMA-BA-HEMA)-b-PFMA) with a simple one-step casting process. Nanoscale micelle particles with core-shell structure was obtained by dissolving the polymer and curing agent in the mixture of acetone and 1H, 1H, 5H octafluoropentyl-1,1,2,2 tetrafluoroethyl ether (FHT). Superhydrophobic films were fabricated by casting the micelle solution on the glass slides. By controlling the polymer concentration and acetone/FHT volume ratio, superhydrophobic polymer film with water contact angle of 153.2 ± 2.1° and sliding angle of 4° was obtained. By introducing a curing agent into the micelle solution, mechanical properties of the films can be improved. The adhension grade and hardness of the crosslinked superhydrophobic films reached 2 grade and 3H, respectively. The hydrophobicity is attributed to the synergistic effect of micro-submicro-nano-meter scale roughness by nanoscale micelle particles and low surface energy of fluoropolymer. This procedure makes it possible for widespread applications of superhydrophobic film due to its simplicity and practicability.

  4. 21 CFR 177.1830 - Styrene-methyl methacrylate copolymers.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... methacrylate copolymers identified in this section may be safely used as components of plastic articles... weight percent of polymer units derived from styrene. (b) The finished plastic food-contact article, when... not to exceed an absorbance of 0.15. (3) Ultraviolet-absorbing distilled water and 8 and 50...

  5. Synthesis of acrylates and methacrylates from coal-derived syngas

    SciTech Connect

    Spivey, J.J.; Gogate, M.R.; Jang, B.W.L.

    1995-12-31

    Acrylates and methacrylates are among the most widely used chemical intermediates in the world. One of the key chemicals of this type is methyl methacrylate. Of the 4 billion pounds produced each year, roughly 85% is made using the acetone-cyanohydrin process, which requires handling of large quantities of hydrogen cyanide and produces ammonium sulfate wastes that pose an environmental disposal challenge. The U.S. Department of Energy and Eastman Chemical Company are sharing the cost of research to develop an alternative process for the synthesis of methyl methacrylate from syngas. Research Triangle Institute is focusing on the synthesis and testing of active catalysts for the condensation reactions, and Bechtel is analyzing the costs to determine the competitiveness of several process alternatives. Results thus far show that the catalysts for the condensation of formaldehyde and the propionate are key to selectively producing the desired product, methacrylic acid, with a high yield. These condensation catalysts have both acid and base functions and the strength and distribution of these acid-base sites controls the product selectivity and yield.

  6. Synthesis and Characterization of Carboxymethylcellulose-Methacrylate Hydrogel Cell Scaffolds

    PubMed Central

    Reeves, Robert; Ribeiro, Andreia; Lombardo, Leonard; Boyer, Richard; Leach, Jennie B.

    2012-01-01

    Many carbohydrates pose advantages for tissue engineering applications due to their hydrophilicity, degradability, and availability of chemical groups for modification. For example, carboxymethylcellulose (CMC) is a water-soluble cellulose derivative that is degradable by cellulase. Though this enzyme is not synthesized by mammalian cells, cellulase and the fragments derived from CMC degradation are biocompatible. With this in mind, we created biocompatible, selectively degradable CMC-based hydrogels that are stable in routine culture, but degrade when exposed to exogenous cellulase. Solutions of CMC-methacrylate and polyethylene glycol dimethacrylate (PEG-DM) were co-crosslinked to form stable hydrogels; we found that greater CMC-methacrylate content resulted in increased gel swelling, protein diffusion and rates of degradation by cellulase, as well as decreased gel shear modulus. CMC-methacrylate/PEG-DM gels modified with the adhesive peptide RGD supported fibroblast adhesion and viability. We conclude that hydrogels based on CMC-methacrylate are suitable for bioengineering applications where selective degradability may be favorable, such as cell scaffolds or controlled release devices. PMID:22708058

  7. Occupational asthma due to methyl methacrylate and cyanoacrylates.

    PubMed Central

    Lozewicz, S; Davison, A G; Hopkirk, A; Burge, P S; Boldy, D A; Riordan, J F; McGivern, D V; Platts, B W; Davies, D; Newman Taylor, A J

    1985-01-01

    Five patients had asthma provoked by cyanoacrylates and one by methyl methacrylate, possibly because of the development of a specific hypersensitivity response. Acrylates have wide domestic as well as industrial uses, and inhalation of vapour emitted during their use can cause asthma. PMID:4071461

  8. Can Diuretics Decrease Your Potassium Level?

    MedlinePlus

    ... High blood pressure (hypertension) Can diuretics decrease your potassium level? Answers from Sheldon G. Sheps, M.D. Yes, some diuretics — also called water pills — decrease potassium in the blood. Diuretics are commonly used to ...

  9. 21 CFR 172.730 - Potassium bromate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ....730 Potassium bromate. The food additive potassium bromate may be safely used in the malting of barley... barley under conditions whereby the amount of the additive present in the malt from the treatment...

  10. Reactive compatibilization of PBT/ABS blends by methyl methacrylate, glycidyl methacrylate, ethyl acrylate terpolymers

    NASA Astrophysics Data System (ADS)

    Hale, Wesley Raymond

    The impact resistance of poly(butylene terephthalate), PBT, has been improved by blending with acrylonitrile-butadiene-styrene terpolymers, ABS, as a minor dispersed phase; however, extensive coarsening of the dispersed phase in the blends occurs under certain heat fabrication conditions. The incorporation of certain reactive polymers (compatibilizers) that are miscible with the styrene/acrylonitrile (SAN) matrix of ABS should result in more stable morphologies. Terpolymers of methyl methacrylate, glycidyl methacrylate (GMA), ethyl acrylate, MGE, are effective as reactive compatibilizers for blends of PBT with SAN and ABS materials. The epoxide groups of MGE react with the carboxyl endgroups of PBT to form a MGE-g-PBT graft copolymer at the PBT/SAN interface to provide improved SAN or ABS dispersion, morphological stability, and a broadening of the melt processing window. Additionally, compatibilization produces large improvements in the low temperature fracture toughness of PBT/ABS blends; however, the toughness depends on the order of mixing blend components due to crosslinking reactions involving the epoxide groups of MGE catalyzed by residual acids present in some emulsion-made ABS materials. The PBT, ABS, and MGE type, content, and composition have been examined to evaluate their effects on the mechanical and morphological properties of PBT/ABS blends. Additionally, the effects of different processing conditions have been examined. High PBT melt viscosity is desirable for improving ABS dispersion and low temperature toughness of the blends. Generally, ABS materials with a high rubber content and low melt viscosity are desirable for toughening PBT. Moderate amounts of GMA in the blend were found to significantly improve blend properties. Melt blending can be performed using a variety of equipment; however, a co-rotating intermeshing twin screw extruder is the most effective for producing blends with excellent properties. The fracture properties of PBT

  11. Release of Water Soluble Drugs from Dynamically Swelling POLY(2-HYDROXYETHYL Methacrylate - CO - Methacrylic Acid) Hydrogels.

    NASA Astrophysics Data System (ADS)

    Kou, Jim Hwai-Cher

    In this study, ionizable copolymers of HEMA and methacrylic acid (MA) are investigated for their potential use in developing pH dependent oral delivery systems. Because of the MA units, these gels swell extensively at high pH. Since solute diffusion in the hydrophilic polymers depends highly on the water content of the matrix, it is anticipated that the release rate will be modulated by this pH induced swelling. From a practical point of view, the advantage of the present system is that one can minimize drug loss in the stomach and achieve a programmed release in intestine. This approach is expected to improve delivery of acid labile drugs or drugs that cause severe gastrointestinal side effects. This work mainly focuses on the basic understanding of the mechanism involved in drug release from the poly(HEMA -co- MA) gels, especially under dynamic swelling conditions. Equilibrium swelling is first characterized since water content is the major determinant of transport properties in these gels. Phenylpropanolamine (PPA) is chosen as the model drug for the release study and its diffusion characteristics in the gel matrix determined. The data obtained show that the PPA diffusivity follows the free volume theory of Yasuda, which explains the accelerating effect of swelling on drug release. A mathematical model based on a diffusion mechanism has been developed to describe PPA release from the swelling gels. Based on this model, several significant conclusions can be drawn. First, the release rate can be modulated by the aspect ratio of the cylindrical geometry, and this has a practical implication in dosage form design. Second, the release rate can be lowered quite considerably if the dimensional increase due to swelling is significant. Consequently, it is the balance between the drug diffusivity increase and the gel dimensional growth that determines the release rate from the swelling matrix. Third, quasi-steady release kinetics, which are characteristic of swelling

  12. 21 CFR 184.1625 - Potassium citrate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Potassium citrate. 184.1625 Section 184.1625 Food... Specific Substances Affirmed as GRAS § 184.1625 Potassium citrate. (a) Potassium citrate (C6H5K3O7·H2O, CAS Reg. No. 006100-0905-096) is the potassium salt of citric acid. It is prepared by neutralizing...

  13. 21 CFR 184.1639 - Potassium lactate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Potassium lactate. 184.1639 Section 184.1639 Food... Specific Substances Affirmed as GRAS § 184.1639 Potassium lactate. (a) Potassium lactate (C3H5O3K, CAS Reg. No. 996-31-6) is the potassium salt of lactic acid. It is a hydroscopic, white, odorless solid and...

  14. The Ketogenic Diet and Potassium Channel Function

    DTIC Science & Technology

    2014-10-01

    1 AWARD NUMBER: W81XWH-13-1-0463 TITLE: The Ketogenic Diet and Potassium Channel Function...Diet and Potassium Channel Function 5b. GRANT NUMBER W81XWH-13-1-0463 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Geoffrey Murphy 5d. PROJECT...regulates neuronal excitability by influencing potassium channel activity via the auxiliary potassium channel subunit Kvβ2. To test this hypothesis we

  15. 21 CFR 184.1625 - Potassium citrate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Potassium citrate. 184.1625 Section 184.1625 Food... Specific Substances Affirmed as GRAS § 184.1625 Potassium citrate. (a) Potassium citrate (C6H5K3O7·H2O, CAS Reg. No. 006100-0905-096) is the potassium salt of citric acid. It is prepared by neutralizing...

  16. 21 CFR 184.1625 - Potassium citrate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Potassium citrate. 184.1625 Section 184.1625 Food... Specific Substances Affirmed as GRAS § 184.1625 Potassium citrate. (a) Potassium citrate (C6H5K3O7·H2O, CAS Reg. No. 006100-0905-096) is the potassium salt of citric acid. It is prepared by neutralizing...

  17. 21 CFR 184.1639 - Potassium lactate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Potassium lactate. 184.1639 Section 184.1639 Food... GRAS § 184.1639 Potassium lactate. (a) Potassium lactate (C3H5O3K, CAS Reg. No. 996-31-6) is the potassium salt of lactic acid. It is a hydroscopic, white, odorless solid and is prepared commercially...

  18. 21 CFR 184.1625 - Potassium citrate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Potassium citrate. 184.1625 Section 184.1625 Food... GRAS § 184.1625 Potassium citrate. (a) Potassium citrate (C6H5K3O7·H2O, CAS Reg. No. 006100-0905-096) is the potassium salt of citric acid. It is prepared by neutralizing citric acid with...

  19. 21 CFR 184.1639 - Potassium lactate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Potassium lactate. 184.1639 Section 184.1639 Food... Specific Substances Affirmed as GRAS § 184.1639 Potassium lactate. (a) Potassium lactate (C3H5O3K, CAS Reg. No. 996-31-6) is the potassium salt of lactic acid. It is a hydroscopic, white, odorless solid and...

  20. 21 CFR 184.1639 - Potassium lactate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Potassium lactate. 184.1639 Section 184.1639 Food... Specific Substances Affirmed as GRAS § 184.1639 Potassium lactate. (a) Potassium lactate (C3H5O3K, CAS Reg. No. 996-31-6) is the potassium salt of lactic acid. It is a hydroscopic, white, odorless solid and...

  1. 21 CFR 184.1639 - Potassium lactate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Potassium lactate. 184.1639 Section 184.1639 Food... Specific Substances Affirmed as GRAS § 184.1639 Potassium lactate. (a) Potassium lactate (C3H5O3K, CAS Reg. No. 996-31-6) is the potassium salt of lactic acid. It is a hydroscopic, white, odorless solid and...

  2. 21 CFR 184.1625 - Potassium citrate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Potassium citrate. 184.1625 Section 184.1625 Food... Specific Substances Affirmed as GRAS § 184.1625 Potassium citrate. (a) Potassium citrate (C6H5K3O7·H2O, CAS Reg. No. 006100-0905-096) is the potassium salt of citric acid. It is prepared by neutralizing...

  3. 75 FR 23298 - Potassium Permanganate From China

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-03

    ... COMMISSION Potassium Permanganate From China AGENCY: United States International Trade Commission. ACTION: Institution of a five-year review concerning the antidumping duty order on potassium permanganate from China... antidumping duty order on potassium permanganate from China would be likely to lead to continuation...

  4. Potassium channels and their evolving gates.

    PubMed

    Jan, L Y; Jan, Y N

    1994-09-08

    Potassium channels allow potassium ions to flow across the membrane and play a key role in maintaining membrane potential. Recent research has begun to reveal how these channels transport potassium in preference to other ions, how their activity is controlled, and how they are related to other channels.

  5. 21 CFR 182.3640 - Potassium sorbate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Potassium sorbate. 182.3640 Section 182.3640 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Potassium sorbate. (a) Product. Potassium sorbate. (b) Conditions of use. This substance is...

  6. 21 CFR 582.1625 - Potassium citrate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Potassium citrate. 582.1625 Section 582.1625 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1625 Potassium citrate. (a) Product. Potassium citrate. (b) Conditions of use....

  7. 21 CFR 184.1643 - Potassium sulfate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Potassium sulfate. 184.1643 Section 184.1643 Food... Specific Substances Affirmed as GRAS § 184.1643 Potassium sulfate. (a) Potassium sulfate (K2SO4, CAS Reg... having a bitter, saline taste. It is prepared by the neutralization of sulfuric acid with...

  8. 21 CFR 182.3640 - Potassium sorbate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Potassium sorbate. 182.3640 Section 182.3640 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Potassium sorbate. (a) Product. Potassium sorbate. (b) Conditions of use. This substance is...

  9. 21 CFR 582.1613 - Potassium bicarbonate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Potassium bicarbonate. 582.1613 Section 582.1613 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1613 Potassium bicarbonate. (a) Product. Potassium bicarbonate. (b) Conditions of use....

  10. 21 CFR 201.72 - Potassium labeling.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 4 2014-04-01 2014-04-01 false Potassium labeling. 201.72 Section 201.72 Food and... LABELING Labeling Requirements for Over-the-Counter Drugs § 201.72 Potassium labeling. (a) The labeling of over-the-counter (OTC) drug products intended for oral ingestion shall contain the potassium...

  11. 21 CFR 582.1619 - Potassium carbonate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Potassium carbonate. 582.1619 Section 582.1619 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1619 Potassium carbonate. (a) Product. Potassium carbonate. (b) Conditions of use....

  12. 21 CFR 182.3616 - Potassium bisulfite.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Potassium bisulfite. 182.3616 Section 182.3616 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Potassium bisulfite. (a) Product. Potassium bisulfite. (b) (c) Limitations, restrictions, or...

  13. 21 CFR 582.3640 - Potassium sorbate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Potassium sorbate. 582.3640 Section 582.3640 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL....3640 Potassium sorbate. (a) Product. Potassium sorbate. (b) Conditions of use. This substance...

  14. 21 CFR 582.7610 - Potassium alginate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Potassium alginate. 582.7610 Section 582.7610 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Potassium alginate. (a) Product. Potassium alginate. (b) Conditions of use. This substance is...

  15. 21 CFR 201.72 - Potassium labeling.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 4 2011-04-01 2011-04-01 false Potassium labeling. 201.72 Section 201.72 Food and... LABELING Labeling Requirements for Over-the-Counter Drugs § 201.72 Potassium labeling. (a) The labeling of over-the-counter (OTC) drug products intended for oral ingestion shall contain the potassium...

  16. 21 CFR 582.1643 - Potassium sulfate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Potassium sulfate. 582.1643 Section 582.1643 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1643 Potassium sulfate. (a) Product. Potassium sulfate. (b) Conditions of use....

  17. 21 CFR 582.5628 - Potassium glycerophosphate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Potassium glycerophosphate. 582.5628 Section 582.5628 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Dietary Supplements 1 § 582.5628 Potassium glycerophosphate. (a) Product. Potassium glycerophosphate....

  18. 21 CFR 582.7610 - Potassium alginate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Potassium alginate. 582.7610 Section 582.7610 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Potassium alginate. (a) Product. Potassium alginate. (b) Conditions of use. This substance is...

  19. 21 CFR 582.6625 - Potassium citrate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Potassium citrate. 582.6625 Section 582.6625 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Potassium citrate. (a) Product. Potassium citrate. (b) Conditions of use. This substance is...

  20. 21 CFR 582.3616 - Potassium bisulfite.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Potassium bisulfite. 582.3616 Section 582.3616 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL....3616 Potassium bisulfite. (a) Product. Potassium bisulfite. (b) (c) Limitations, restrictions,...

  1. 21 CFR 582.5634 - Potassium iodide.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Potassium iodide. 582.5634 Section 582.5634 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5634 Potassium iodide. (a) Product. Potassium iodide. (b) Tolerance. 0.01 percent....

  2. 21 CFR 182.3616 - Potassium bisulfite.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Potassium bisulfite. 182.3616 Section 182.3616...) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Chemical Preservatives § 182.3616 Potassium bisulfite. (a) Product. Potassium bisulfite. (b) (c) Limitations, restrictions, or explanation. This substance is...

  3. 21 CFR 182.3616 - Potassium bisulfite.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Potassium bisulfite. 182.3616 Section 182.3616 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD....3616 Potassium bisulfite. (a) Product. Potassium bisulfite. (b) (c) Limitations, restrictions,...

  4. 21 CFR 582.1619 - Potassium carbonate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Potassium carbonate. 582.1619 Section 582.1619 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1619 Potassium carbonate. (a) Product. Potassium carbonate. (b) Conditions of use....

  5. 21 CFR 582.6625 - Potassium citrate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Potassium citrate. 582.6625 Section 582.6625 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Potassium citrate. (a) Product. Potassium citrate. (b) Conditions of use. This substance is...

  6. 21 CFR 182.3616 - Potassium bisulfite.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Potassium bisulfite. 182.3616 Section 182.3616 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD....3616 Potassium bisulfite. (a) Product. Potassium bisulfite. (b) (c) Limitations, restrictions,...

  7. 21 CFR 582.1625 - Potassium citrate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Potassium citrate. 582.1625 Section 582.1625 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1625 Potassium citrate. (a) Product. Potassium citrate. (b) Conditions of use....

  8. 21 CFR 582.1619 - Potassium carbonate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Potassium carbonate. 582.1619 Section 582.1619 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1619 Potassium carbonate. (a) Product. Potassium carbonate. (b) Conditions of use....

  9. 21 CFR 182.3637 - Potassium metabisulfite.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Potassium metabisulfite. 182.3637 Section 182.3637 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD....3637 Potassium metabisulfite. (a) Product. Potassium metabisulfite. (b) (c) Limitations,...

  10. 21 CFR 582.3640 - Potassium sorbate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Potassium sorbate. 582.3640 Section 582.3640 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL....3640 Potassium sorbate. (a) Product. Potassium sorbate. (b) Conditions of use. This substance...

  11. 21 CFR 172.730 - Potassium bromate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Potassium bromate. 172.730 Section 172.730 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Specific Usage Additives § 172.730 Potassium bromate. The food additive potassium bromate may be...

  12. 21 CFR 582.3616 - Potassium bisulfite.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Potassium bisulfite. 582.3616 Section 582.3616 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL....3616 Potassium bisulfite. (a) Product. Potassium bisulfite. (b) (c) Limitations, restrictions,...

  13. 21 CFR 182.3640 - Potassium sorbate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Potassium sorbate. 182.3640 Section 182.3640 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Potassium sorbate. (a) Product. Potassium sorbate. (b) Conditions of use. This substance is...

  14. 21 CFR 582.1613 - Potassium bicarbonate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Potassium bicarbonate. 582.1613 Section 582.1613 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1613 Potassium bicarbonate. (a) Product. Potassium bicarbonate. (b) Conditions of use....

  15. 21 CFR 582.1619 - Potassium carbonate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Potassium carbonate. 582.1619 Section 582.1619 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1619 Potassium carbonate. (a) Product. Potassium carbonate. (b) Conditions of use....

  16. 21 CFR 582.1643 - Potassium sulfate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Potassium sulfate. 582.1643 Section 582.1643 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1643 Potassium sulfate. (a) Product. Potassium sulfate. (b) Conditions of use....

  17. 21 CFR 582.3637 - Potassium metabisulfite.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Potassium metabisulfite. 582.3637 Section 582.3637 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL....3637 Potassium metabisulfite. (a) Product. Potassium metabisulfite. (b) (c) Limitations,...

  18. 21 CFR 582.7610 - Potassium alginate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Potassium alginate. 582.7610 Section 582.7610 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Potassium alginate. (a) Product. Potassium alginate. (b) Conditions of use. This substance is...

  19. 21 CFR 582.7610 - Potassium alginate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Potassium alginate. 582.7610 Section 582.7610 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Potassium alginate. (a) Product. Potassium alginate. (b) Conditions of use. This substance is...

  20. 21 CFR 582.3637 - Potassium metabisulfite.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Potassium metabisulfite. 582.3637 Section 582.3637 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL....3637 Potassium metabisulfite. (a) Product. Potassium metabisulfite. (b) (c) Limitations,...

  1. 21 CFR 582.1625 - Potassium citrate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Potassium citrate. 582.1625 Section 582.1625 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1625 Potassium citrate. (a) Product. Potassium citrate. (b) Conditions of use....

  2. 21 CFR 582.1625 - Potassium citrate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Potassium citrate. 582.1625 Section 582.1625 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1625 Potassium citrate. (a) Product. Potassium citrate. (b) Conditions of use....

  3. 21 CFR 582.3640 - Potassium sorbate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Potassium sorbate. 582.3640 Section 582.3640 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL....3640 Potassium sorbate. (a) Product. Potassium sorbate. (b) Conditions of use. This substance...

  4. 21 CFR 182.3616 - Potassium bisulfite.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Potassium bisulfite. 182.3616 Section 182.3616 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD....3616 Potassium bisulfite. (a) Product. Potassium bisulfite. (b) (c) Limitations, restrictions,...

  5. 21 CFR 582.3637 - Potassium metabisulfite.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Potassium metabisulfite. 582.3637 Section 582.3637 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL....3637 Potassium metabisulfite. (a) Product. Potassium metabisulfite. (b) (c) Limitations,...

  6. 21 CFR 582.1625 - Potassium citrate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Potassium citrate. 582.1625 Section 582.1625 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1625 Potassium citrate. (a) Product. Potassium citrate. (b) Conditions of use....

  7. 21 CFR 182.3640 - Potassium sorbate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Potassium sorbate. 182.3640 Section 182.3640 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Potassium sorbate. (a) Product. Potassium sorbate. (b) Conditions of use. This substance is...

  8. 21 CFR 582.1631 - Potassium hydroxide.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Potassium hydroxide. 582.1631 Section 582.1631 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1631 Potassium hydroxide. (a) Product. Potassium hydroxide. (b) Conditions of use....

  9. 21 CFR 582.1643 - Potassium sulfate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Potassium sulfate. 582.1643 Section 582.1643 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1643 Potassium sulfate. (a) Product. Potassium sulfate. (b) Conditions of use....

  10. 21 CFR 182.3637 - Potassium metabisulfite.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Potassium metabisulfite. 182.3637 Section 182.3637 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD....3637 Potassium metabisulfite. (a) Product. Potassium metabisulfite. (b) (c) Limitations,...

  11. 21 CFR 582.1619 - Potassium carbonate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Potassium carbonate. 582.1619 Section 582.1619 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1619 Potassium carbonate. (a) Product. Potassium carbonate. (b) Conditions of use....

  12. 21 CFR 582.1613 - Potassium bicarbonate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Potassium bicarbonate. 582.1613 Section 582.1613 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1613 Potassium bicarbonate. (a) Product. Potassium bicarbonate. (b) Conditions of use....

  13. 21 CFR 582.5634 - Potassium iodide.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Potassium iodide. 582.5634 Section 582.5634 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5634 Potassium iodide. (a) Product. Potassium iodide. (b) Tolerance. 0.01 percent....

  14. 21 CFR 582.5622 - Potassium chloride.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Potassium chloride. 582.5622 Section 582.5622 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5622 Potassium chloride. (a) Product. Potassium chloride. (b) Conditions of use....

  15. 21 CFR 582.5628 - Potassium glycerophosphate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Potassium glycerophosphate. 582.5628 Section 582.5628 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Dietary Supplements 1 § 582.5628 Potassium glycerophosphate. (a) Product. Potassium glycerophosphate....

  16. 21 CFR 582.1631 - Potassium hydroxide.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Potassium hydroxide. 582.1631 Section 582.1631 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1631 Potassium hydroxide. (a) Product. Potassium hydroxide. (b) Conditions of use....

  17. 21 CFR 582.6625 - Potassium citrate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Potassium citrate. 582.6625 Section 582.6625 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Potassium citrate. (a) Product. Potassium citrate. (b) Conditions of use. This substance is...

  18. 21 CFR 172.730 - Potassium bromate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Potassium bromate. 172.730 Section 172.730 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Other Specific Usage Additives § 172.730 Potassium bromate. The food additive potassium bromate may...

  19. 21 CFR 582.1643 - Potassium sulfate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Potassium sulfate. 582.1643 Section 582.1643 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1643 Potassium sulfate. (a) Product. Potassium sulfate. (b) Conditions of use....

  20. 21 CFR 184.1643 - Potassium sulfate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Potassium sulfate. 184.1643 Section 184.1643 Food... Specific Substances Affirmed as GRAS § 184.1643 Potassium sulfate. (a) Potassium sulfate (K2SO4, CAS Reg... having a bitter, saline taste. It is prepared by the neutralization of sulfuric acid with...

  1. 21 CFR 582.6625 - Potassium citrate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Potassium citrate. 582.6625 Section 582.6625 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Potassium citrate. (a) Product. Potassium citrate. (b) Conditions of use. This substance is...

  2. 21 CFR 184.1643 - Potassium sulfate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Potassium sulfate. 184.1643 Section 184.1643 Food... Specific Substances Affirmed as GRAS § 184.1643 Potassium sulfate. (a) Potassium sulfate (K2SO4, CAS Reg... having a bitter, saline taste. It is prepared by the neutralization of sulfuric acid with...

  3. 21 CFR 182.3637 - Potassium metabisulfite.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Potassium metabisulfite. 182.3637 Section 182.3637 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD....3637 Potassium metabisulfite. (a) Product. Potassium metabisulfite. (b) (c) Limitations,...

  4. 21 CFR 201.72 - Potassium labeling.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 4 2012-04-01 2012-04-01 false Potassium labeling. 201.72 Section 201.72 Food and... LABELING Labeling Requirements for Over-the-Counter Drugs § 201.72 Potassium labeling. (a) The labeling of over-the-counter (OTC) drug products intended for oral ingestion shall contain the potassium...

  5. 21 CFR 582.6625 - Potassium citrate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Potassium citrate. 582.6625 Section 582.6625 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Potassium citrate. (a) Product. Potassium citrate. (b) Conditions of use. This substance is...

  6. 21 CFR 582.5634 - Potassium iodide.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Potassium iodide. 582.5634 Section 582.5634 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5634 Potassium iodide. (a) Product. Potassium iodide. (b) Tolerance. 0.01 percent....

  7. 21 CFR 182.3637 - Potassium metabisulfite.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Potassium metabisulfite. 182.3637 Section 182.3637 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD....3637 Potassium metabisulfite. (a) Product. Potassium metabisulfite. (b) (c) Limitations,...

  8. 21 CFR 582.1631 - Potassium hydroxide.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Potassium hydroxide. 582.1631 Section 582.1631 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1631 Potassium hydroxide. (a) Product. Potassium hydroxide. (b) Conditions of use....

  9. 21 CFR 582.3640 - Potassium sorbate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Potassium sorbate. 582.3640 Section 582.3640 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL....3640 Potassium sorbate. (a) Product. Potassium sorbate. (b) Conditions of use. This substance...

  10. 21 CFR 582.7610 - Potassium alginate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Potassium alginate. 582.7610 Section 582.7610 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Potassium alginate. (a) Product. Potassium alginate. (b) Conditions of use. This substance is...

  11. 21 CFR 582.3637 - Potassium metabisulfite.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Potassium metabisulfite. 582.3637 Section 582.3637 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL....3637 Potassium metabisulfite. (a) Product. Potassium metabisulfite. (b) (c) Limitations,...

  12. 21 CFR 201.72 - Potassium labeling.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 4 2013-04-01 2013-04-01 false Potassium labeling. 201.72 Section 201.72 Food and... LABELING Labeling Requirements for Over-the-Counter Drugs § 201.72 Potassium labeling. (a) The labeling of over-the-counter (OTC) drug products intended for oral ingestion shall contain the potassium...

  13. 21 CFR 582.1631 - Potassium hydroxide.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Potassium hydroxide. 582.1631 Section 582.1631 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1631 Potassium hydroxide. (a) Product. Potassium hydroxide. (b) Conditions of use....

  14. 21 CFR 582.1631 - Potassium hydroxide.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Potassium hydroxide. 582.1631 Section 582.1631 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1631 Potassium hydroxide. (a) Product. Potassium hydroxide. (b) Conditions of use....

  15. 21 CFR 582.3616 - Potassium bisulfite.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Potassium bisulfite. 582.3616 Section 582.3616 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL....3616 Potassium bisulfite. (a) Product. Potassium bisulfite. (b) (c) Limitations, restrictions,...

  16. 21 CFR 184.1643 - Potassium sulfate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Potassium sulfate. 184.1643 Section 184.1643 Food... Specific Substances Affirmed as GRAS § 184.1643 Potassium sulfate. (a) Potassium sulfate (K2SO4, CAS Reg... having a bitter, saline taste. It is prepared by the neutralization of sulfuric acid with...

  17. 21 CFR 582.1643 - Potassium sulfate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Potassium sulfate. 582.1643 Section 582.1643 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1643 Potassium sulfate. (a) Product. Potassium sulfate. (b) Conditions of use....

  18. 21 CFR 582.3616 - Potassium bisulfite.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Potassium bisulfite. 582.3616 Section 582.3616 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL....3616 Potassium bisulfite. (a) Product. Potassium bisulfite. (b) (c) Limitations, restrictions,...

  19. 21 CFR 582.3637 - Potassium metabisulfite.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Potassium metabisulfite. 582.3637 Section 582.3637 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL....3637 Potassium metabisulfite. (a) Product. Potassium metabisulfite. (b) (c) Limitations,...

  20. 21 CFR 182.3637 - Potassium metabisulfite.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Potassium metabisulfite. 182.3637 Section 182.3637...) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Chemical Preservatives § 182.3637 Potassium metabisulfite. (a) Product. Potassium metabisulfite. (b) (c) Limitations, restrictions, or explanation. This substance...

  1. 21 CFR 582.3640 - Potassium sorbate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Potassium sorbate. 582.3640 Section 582.3640 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL....3640 Potassium sorbate. (a) Product. Potassium sorbate. (b) Conditions of use. This substance...

  2. 21 CFR 582.5622 - Potassium chloride.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Potassium chloride. 582.5622 Section 582.5622 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5622 Potassium chloride. (a) Product. Potassium chloride. (b) Conditions of use....

  3. 21 CFR 582.1613 - Potassium bicarbonate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Potassium bicarbonate. 582.1613 Section 582.1613 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1613 Potassium bicarbonate. (a) Product. Potassium bicarbonate. (b) Conditions of use....

  4. 21 CFR 582.3616 - Potassium bisulfite.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Potassium bisulfite. 582.3616 Section 582.3616 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL....3616 Potassium bisulfite. (a) Product. Potassium bisulfite. (b) (c) Limitations, restrictions,...

  5. 21 CFR 582.1613 - Potassium bicarbonate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Potassium bicarbonate. 582.1613 Section 582.1613 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1613 Potassium bicarbonate. (a) Product. Potassium bicarbonate. (b) Conditions of use....

  6. 21 CFR 172.160 - Potassium nitrate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Potassium nitrate. 172.160 Section 172.160 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Preservatives § 172.160 Potassium nitrate. The food additive potassium nitrate may be safely used as a...

  7. 21 CFR 172.160 - Potassium nitrate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Potassium nitrate. 172.160 Section 172.160 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Food Preservatives § 172.160 Potassium nitrate. The food additive potassium nitrate may be safely...

  8. 21 CFR 172.160 - Potassium nitrate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Potassium nitrate. 172.160 Section 172.160 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Food Preservatives § 172.160 Potassium nitrate. The food additive potassium nitrate may be safely...

  9. 21 CFR 172.160 - Potassium nitrate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Potassium nitrate. 172.160 Section 172.160 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Food Preservatives § 172.160 Potassium nitrate. The food additive potassium nitrate may be safely...

  10. Poly(methacrylic acid-co-methyl methacrylate) beads promote vascularization and wound repair in diabetic mice.

    PubMed

    Martin, Daniel C; Semple, John L; Sefton, Michael V

    2010-05-01

    Topical application of beads made from poly(methacrylic acid-co-methyl methacrylate) (45 mol % methacrylic acid, MAA) increased the number of blood vessels and improved 1.5 x 1.5 cm full thickness wound closure in a diabetic mouse (db/db) model. Three groups were compared: MAA beads, control poly(methyl methacrylate) beads (PMMA), and no bead blanks. MAA bead treatment significantly increased percent wound closure at all timepoints (7, 14, and 21 days) with MAA bead-treated wounds almost closed at day 21 (91 +/- 5.4% MAA vs. 79 +/- 3.2% PMMA or 76 +/- 4.8% no beads; p < 0.05). This was consistent with the expected significant increase in vascularity in the MAA group at days 7 and 14. For example at day 14, MAA bead-treated wounds had a vascular density of 22.7 +/- 2.6 vessels/hpf compared with 17.0 +/- 2.0 vessels/hpf in the PMMA bead group (p < 0.05). Epithelial gap and migration measurements suggested that the increased vascularity leads to enhanced epithelial cell migration as a principal means of wound closure. Although studies are underway to elucidate the mechanism of this angiogenic response, the results presented here support the notion that such materials, perhaps in other forms, may be useful in wound care or in other situations where vascularity is to be enhanced without the use of exogenous growth factors.

  11. Poly(sulfobetaine methacrylate)s as electrode modifiers for inverted organic electronics.

    PubMed

    Lee, Hyunbok; Puodziukynaite, Egle; Zhang, Yue; Stephenson, John C; Richter, Lee J; Fischer, Daniel A; DeLongchamp, Dean M; Emrick, Todd; Briseno, Alejandro L

    2015-01-14

    We demonstrate the use of poly(sulfobetaine methacrylate) (PSBMA), and its pyrene-containing copolymer, as solution-processable work function reducers for inverted organic electronic devices. A notable feature of PSBMA is its orthogonal solubility relative to solvents typically employed in the processing of organic semiconductors. A strong permanent dipole moment on the sulfobetaine moiety was calculated by density functional theory. PSBMA interlayers reduced the work function of metals, graphene, and poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) by over 1 eV, and an ultrathin interlayer of PSBMA reduced the electron injection barrier between indium tin oxide (ITO) and C70 by 0.67 eV. As a result, the performance of organic photovoltaic devices with PSBMA interlayers is significantly improved, and enhanced electron injection is demonstrated in electron-only devices with ITO, PEDOT:PSS, and graphene electrodes. This work makes available a new class of dipole-rich, counterion-free, pH insensitive polymer interlayers with demonstrated effectiveness in inverted devices.

  12. [Effects of fertilization on aquic brown soil potassium budget and crop potassium allocation].

    PubMed

    Jiang, Zishao; Yu, Wantai; Zhang, Lu

    2006-12-01

    Through a consecutive 15 years field trial on the aquic brown soil in Shenyang suburb of Northeast China, this paper studied the soil potassium budget and crop potassium allocation under effects of different fertilization systems. The results indicated that applying nitrogen or nitrogen plus phosphorous without potassium application accelerated the deficit of soil potassium. The potassium concentration in soybean grain and stalk was higher under potassium application than with no potassium supply, while that in maize grain had no significant difference in different fertilization treatments. The reutilization of recycled nutrients in farming system could mitigate the deficit of soil potassium budget, and such reutilization assorted with appropriate amount of potassium fertilization could not only produce high crop yield, but also balance soil potassium budget.

  13. Solid coatings deposited from liquid methyl methacrylate via Plasma Polymerization

    NASA Astrophysics Data System (ADS)

    Wurlitzer, Lisa; Maus-Friedrichs, Wolfgang; Dahle, Sebastian

    2016-09-01

    The polymerization of methyl methacrylate via plasma discharges is well known today. Usually, plasma-enhanced chemical vapor deposition (PECVD) is used to deposit polymer coatings. Solid coatings are formed out of the liquid phase from methyl methacrylate via dielectric barrier discharge. The formation of the coating proceeds in the gas and the liquid phase. To learn more about the reactions in the two phases, the coatings from MMA monomer will be compared to those from MMA resin. Finally, attenuated total reflection infrared spectroscopy, confocal laser scanning microscopy and X-ray photoelectron spectroscopy are employed to characterize the solid coatings. In conclusion, the plasma enhanced chemical solution deposition is compared to the classical thermal polymerization of MMA.

  14. Azulene methacrylate polymers: synthesis, electronic properties, and solar cell fabrication.

    PubMed

    Puodziukynaite, Egle; Wang, Hsin-Wei; Lawrence, Jimmy; Wise, Adam J; Russell, Thomas P; Barnes, Michael D; Emrick, Todd

    2014-08-06

    We report the synthesis of novel azulene-substituted methacrylate polymers by free radical polymerization, in which the azulene moieties represent hydrophobic dipoles strung pendant to the polymer backbone and impart unique electronic properties to the polymers. Tunable optoelectronic properties were realized by adjusting the azulene density, ranging from homopolymers (having one azulene group per repeat unit) to copolymers in which the azulene density was diluted with other pendant groups. Treating these polymers with organic acids revealed optical and excitonic behavior that depended critically on the azulene density along the polymer chain. Copolymers of azulene with zwitterionic methacrylates proved useful as cathode modification layers in bulk-heterojunction solar cells, where the relative azulene content affected the device metrics and the power conversion efficiency reached 7.9%.

  15. Physical properties of agave cellulose graft polymethyl methacrylate

    SciTech Connect

    Rosli, Noor Afizah; Ahmad, Ishak; Abdullah, Ibrahim; Anuar, Farah Hannan

    2013-11-27

    The grafting polymerization of methyl methacrylate and Agave cellulose was prepared and their structural analysis and morphology were investigated. The grafting reaction was carried out in an aqueous medium using ceric ammonium nitrate as an initiator. The structural analysis of the graft copolymers was carried out by Fourier transform infrared and X-ray diffraction. The graft copolymers were also characterized by field emission scanning electron microscopy (FESEM). An additional peak at 1732 cm{sup −1} which was attributed to the C=O of ester stretching vibration of poly(methyl methacrylate), appeared in the spectrum of grafted Agave cellulose. A slight decrease of crystallinity index upon grafting was found from 0.74 to 0.68 for cellulose and grafted Agave cellulose, respectively. Another evidence of grafting showed in the FESEM observation, where the surface of the grafted cellulose was found to be roughed than the raw one.

  16. [Chest granuloma secondary to methyl methacrylate. Case report].

    PubMed

    Martínez-Bistrain, Ricardo; Robles García, Verónica; Cornejo-Morales, Ivonne

    2010-01-01

    We present the case of a patient with a history of a massive left hemithorax crushing injury in 1985; the exact management of the lesion is unknown. Twenty years later he had a thoracic fistula with a culture that was reported as positive for Enteroccocus faecalis and Staphyloccocus epidermidis. The patient was referred by the chest surgery service with the diagnosis of rib osteomyelitis once complementary imaging tests were performed (plain X-rays, CAT scan and MRI). The patient underwent surgery at our service; a granulomatous reaction secondary to a foreign body (methyl methacrylate and Ethibon) was reported. Chest reconstruction for massive lesions is possible with methyl methacrylate. Imaging studies involve the well-known difficulty to identify this material, given that it may produce signals and densities that are difficult to interpret by specialized physicians.

  17. Penile enlargement with methacrylate injection: is it safe?

    PubMed

    Torricelli, Fabio Cesar Miranda; Andrade, Enrico Martins de; Marchini, Giovanni Scala; Lopes, Roberto Iglesias; Claro, Joaquim Francisco Almeida; Cury, Jose; Srougi, Miguel

    2013-01-01

    CONTEXT Penis size is a great concern for men in many cultures. Despite the great variety of methods for penile augmentation, none has gained unanimous acceptance among experts in the field. However, in this era of minimally invasive procedure, injection therapy for penile augmentation has become more popular. Here we report a case of methacrylate injection in the penis that evolved with penile deformity and sexual dysfunction. This work also reviews the investigation and management of this pathological condition. CASE REPORT A 36-year-old male sought medical care with a complaint of penile deformity and sexual dysfunction after methacrylate injection. The treatment administered was surgical removal. Satisfactory cosmetic and functional results were reached after two months. CONCLUSIONS There is a need for better structured scientific research to evaluate the outcomes and complication rates from all penile augmentation procedures.

  18. SYNTHESIS OF METHYL METHACRYLATE FROM COAL-DERIVED SYNGAS

    SciTech Connect

    Makarand R. Gogate; James J. Spivey; Joseph R. Zoeller; Richard D. Colberg; Gerald N. Choi; Samuel S. Tam

    1999-04-21

    Research Triangle Institute (RTI), Eastman Chemical Company, and Bechtel collectively are developing a novel three-step process for the synthesis of methyl methacrylate (MMA) from coal-derived syngas that consists of the steps of synthesis of a propionate, its condensation with formaldehyde to form methacrylic acid (MAA), and esterification of MAA with methanol to produce MMA. The research team has completed the research on the three-step methanol-based route to MMA. Under an extension to the original contract, we are currently evaluating a new DME-based process for MMA. The key research need for DME route is to develop catalysts for DME partial oxidation reactions and DME condensation reactions. Over the last quarter (January-March/99), in-situ formaldehyde generation and condensation with methyl propionate were tested over various catalysts and reaction conditions. The patent application is in preparation and the results are retained for future reports.

  19. Positron annihilation investigations on poly(methyl methacrylate)

    NASA Astrophysics Data System (ADS)

    Mohamed, Hamdy F. M.; Abd-Elsadek, Gomaa G.

    2000-06-01

    Positron lifetime and Doppler broadened annihilation radiation were measured for seven different samples of poly(methyl methacrylate) at room temperature in vacuum. The polymerisation of methyl methacrylate was carried out as a bulk polymerisation in the presence of benzoyl peroxide as an initiator. The effect of the amount of the initiator on the viscosity-average molecular weight was studied. It was found that the viscosity-average molecular weight decreased with increasing amount of the initiator. The average lifetime and intensity of ortho-positronium ( o-Ps) increased with increasing viscosity-average molecular weight up to 6.85 × 10 4 and remained constant after that. The S-parameter showed a similar behaviour as that of the o-Ps intensity.

  20. Preparation and characterization of methacrylate hydrogels for zeta potential control

    NASA Technical Reports Server (NTRS)

    Gregonis, D. E.; Ma, S. M.; Vanwagenen, R.; Andrade, J. D.

    1976-01-01

    A technique based on the measurement of streaming potentials has been developed to evaluate the effects of hydrophilic coatings on electroosmotic flow. The apparatus and procedure are described as well as some results concerning the electrokinetic potential of glass capillaries as a function of ionic strength, pH, and temperature. The effect that turbulence and entrance flow conditions have on accurate streaming potential measurements is discussed. Various silane adhesion promoters exhibited only a slight decrease in streaming potential. A coating utilizing a glycidoxy silane base upon which methylcellulose is applied affords a six-fold decrease over uncoated tubes. Hydrophilic methacrylate gels show similar streaming potential behavior, independent of the water content of the gel. By introduction of positive or negative groups into the hydrophilic methacrylate gels, a range of streaming potential values are obtained having absolute positive or negative signs.

  1. Physical properties of agave cellulose graft polymethyl methacrylate

    NASA Astrophysics Data System (ADS)

    Rosli, Noor Afizah; Ahmad, Ishak; Abdullah, Ibrahim; Anuar, Farah Hannan

    2013-11-01

    The grafting polymerization of methyl methacrylate and Agave cellulose was prepared and their structural analysis and morphology were investigated. The grafting reaction was carried out in an aqueous medium using ceric ammonium nitrate as an initiator. The structural analysis of the graft copolymers was carried out by Fourier transform infrared and X-ray diffraction. The graft copolymers were also characterized by field emission scanning electron microscopy (FESEM). An additional peak at 1732 cm-1 which was attributed to the C=O of ester stretching vibration of poly(methyl methacrylate), appeared in the spectrum of grafted Agave cellulose. A slight decrease of crystallinity index upon grafting was found from 0.74 to 0.68 for cellulose and grafted Agave cellulose, respectively. Another evidence of grafting showed in the FESEM observation, where the surface of the grafted cellulose was found to be roughed than the raw one.

  2. SYNTHESIS OF METHACRYLATES FROM COAL-DERIVED SYNGAS

    SciTech Connect

    Jang, B.W.L.; Spivey, J.J.; Gogate, M.R.; Zoeller, J.R.; Colberg, R.D.; Choi, G.N.

    1999-12-01

    Research Triangle Institute (RTI), Eastman Chemical Company, and Bechtel have developed a novel process for synthesis of methyl methacrylate (MMA) from coal-derived syngas, under a contract from the US Department of Energy/Fossil Energy Technology Center (DOE/FETC). This project has resulted in five US patents (four already published and one pending publication). It has served as the basis for the technical and economic assessment of the production of this high-volume intermediate from coal-derived synthesis gas. The three-step process consists of the synthesis of a propionate from ethylene carbonylation using coal-derived CO, condensation of the propionate with formaldehyde to form methacrylic acid (MAA); and esterification of MAA with methanol to yield MMA. The first two steps, propionate synthesis and condensation catalysis, are the key technical challenges and the focus of the research presented here.

  3. Pediatric poisonings from household products: hydrofluoric acid and methacrylic acid.

    PubMed

    Perry, H E

    2001-04-01

    Household products continue to be a cause of poisoning morbibidity and mortality. Young children frequently are exposed to cleaning products and cosmetics in the course of exploring their environment. Most of these exposures are insignificant, but some result in death or permanent disability. This review discusses two products that have been responsible for serious injury and death in children: hydrofluoric acid and methacrylic acid. It also discusses federal initiatives designed to protect children from these and other household hazards.

  4. Gelatin methacrylate microspheres for controlled growth factor release.

    PubMed

    Nguyen, Anh H; McKinney, Jay; Miller, Tobias; Bongiorno, Tom; McDevitt, Todd C

    2015-02-01

    Gelatin has been commonly used as a delivery vehicle for various biomolecules for tissue engineering and regenerative medicine applications due to its simple fabrication methods, inherent electrostatic binding properties, and proteolytic degradability. Compared to traditional chemical cross-linking methods, such as the use of glutaraldehyde (GA), methacrylate modification of gelatin offers an alternative method to better control the extent of hydrogel cross-linking. Here we examined the physical properties and growth factor delivery of gelatin methacrylate (GMA) microparticles (MPs) formulated with a wide range of different cross-linking densities (15-90%). Less methacrylated MPs had decreased elastic moduli and larger mesh sizes compared to GA MPs, with increasing methacrylation correlating to greater moduli and smaller mesh sizes. As expected, an inverse correlation between microparticle cross-linking density and degradation was observed, with the lowest cross-linked GMA MPs degrading at the fastest rate, comparable to GA MPs. Interestingly, GMA MPs at lower cross-linking densities could be loaded with up to a 10-fold higher relative amount of growth factor than conventional GA cross-linked MPs, despite the GA MPs having an order of magnitude greater gelatin content. Moreover, a reduced GMA cross-linking density resulted in more complete release of bone morphogenic protein 4 and basic fibroblast growth factor and accelerated release rate with collagenase treatment. These studies demonstrate that GMA MPs provide a more flexible platform for growth factor delivery by enhancing the relative binding capacity and permitting proteolytic degradation tunability, thereby offering a more potent controlled release system for growth factor delivery.

  5. Gelatin Methacrylate Microspheres for Growth Factor Controlled Release

    PubMed Central

    Nguyen, Anh H.; McKinney, Jay; Miller, Tobias; Bongiorno, Tom; McDevitt, Todd C.

    2014-01-01

    Gelatin has been commonly used as a delivery vehicle for various biomolecules for tissue engineering and regenerative medicine applications due to its simple fabrication methods, inherent electrostatic binding properties, and proteolytic degradability. Compared to traditional chemical cross-linking methods, such as the use of glutaraldehyde (GA), methacrylate modification of gelatin offers an alternative method to better control the extent of hydrogel cross-linking. Here we examined the physical properties and growth factor delivery of gelatin methacrylate (GMA) microparticles formulated with a wide range of different cross-linking densities (15–90%). Less methacrylated MPs had decreased elastic moduli and larger mesh sizes compared to GA MPs, with increasing methacrylation correlating to greater moduli and smaller mesh sizes. As expected, an inverse correlation between microparticle cross-linking density and degradation was observed, with the lowest cross-linked GMA MPs degrading at the fastest rate, comparable to GA MPs. Interestingly, GMA MPs at lower cross-linking densities could be loaded with up to a 10-fold higher relative amount of growth factor over conventional GA cross-linked MPs, despite an order of magnitude greater gelatin content of GA MPs. Moreover, a reduced GMA cross-linking density resulted in more complete release of bone morphogenic protein 4 (BMP4) and basic fibroblast growth factor (bFGF) and accelerated release rate with collagenase treatment. These studies demonstrate that GMA MPs provide a more flexible platform for growth factor delivery by enhancing the relative binding capacity and permitting proteolytic degradation tunability, thereby offering a more potent controlled release system for growth factor delivery. PMID:25463489

  6. Plasma Potassium Levels in Healthy Prehypertension Subjects and the Role of A High Potassium Drink.

    PubMed

    Farapti, Farapti; Sayogo, Savitri; Siregar, Parlindungan

    2017-02-24

    Most populations around the world consume less than the recommended levels of potassium. Long term low potassium intake could lead to decreased plasma potassium levels and induce hypokalemia. The increasing of plasma potassium levels 0,2-0,4 mmol/L by improving potassium intake decreased significantly blood pressure (BP). Assessing plasma potassium levels in healthy people related to potassium intake have not been studied. In this study, we analysed plasma potassium levels in prehypertension (PHT) subjects and to evaluate the effect of tender coconut water (TCW) as a high potassium drink on plasma potassium levels in PHT adults. Thirthy-two female aged 25-44 years were randomly allocated to 14 days on TCW or water in a parallel randomized clinical trial . The treatment (T) group received TCW 300 ml twice daily and the control (C) group received water 300 ml twice daily too. At baseline, plasma potassium levels was 3.71±0.41 mmol/L, and 22.58% were categorized as hypokalemia. After 14 days treatment, potassium plasma level between T and C groups were not significantly different (p=0,247). The change of plasma potassium levels in both groups showed tendency to increase but not statistically significant (p=0.166). In healthy prehypertension women, the low levels of potassium plasma may be caused by low potassium intake for long time and intervension with TCW 300 ml twice daily for 14 consecutive days has not proven yet to increase plasma potassium levels. It is necessary to give higher dose and longer time to increase potassium plasma in low potassium plasma level subjects.

  7. Enhanced surface segregation of poly(methyl methacrylate) end-capped with 2-perfluorooctylethyl methacrylate by introduction of a second block.

    PubMed

    Ni, Huagang; Gao, Jie; Li, Xuehua; Hu, Yanyan; Yan, Donghuan; Ye, XiuYun; Wang, Xinping

    2012-01-01

    New fluorinated copolymers of poly(methyl methacrylate)-b-poly(butyl methacrylate) or poly(n-octadecyl methacrylate) end-capped with 2-perfluorooctylethyl methacrylate (PMMA(x)-b-PBMA(y)-ec-PFMA(z) or PMMA(x)-b-PODMA(y)-ec-PFMA(z)) were synthesized by living atom transfer radical polymerization. Thin films made of PMMA(230)-b-PODMA(y)-ec-PFMA(1) were characterized by differential scanning calorimetry, angle-resolved X-ray photoelectron spectroscopy and X-ray diffraction. These films were found to exhibit robust surface segregation of the end groups. Furthermore, the fluorine enrichment factor at the film surface was found to increase linearly with increasing degree of polymerization of poly(n-octadecyl methacrylate) and its increasing fusion enthalpy in the second block, which enhances the segregation of the fluorinated moieties.

  8. Multifunctional methacrylate-based coatings for glass and metal surfaces

    NASA Astrophysics Data System (ADS)

    Pospiech, Doris; Jehnichen, Dieter; Starke, Sandra; Müller, Felix; Bünker, Tobias; Wollenberg, Anne; Häußler, Liane; Simon, Frank; Grundke, Karina; Oertel, Ulrich; Opitz, Michael; Kruspe, Rainer

    2017-03-01

    In order to prevent freshwater biofouling glass and metal surfaces were coated with novel transparent methacrylate-based copolymers. The multifunctionality of the copolymers, such as adhesion to the substrate, surface polarity, mechanical long-term stability in water, and ability to form metal complexes was inserted by the choice of suitable comonomers. The monomer 2-acetoacetoxy ethyl methacrylate (AAMA) was used as complexing unit to produce copper(II) complexes in the coating's upper surface layer. The semifluorinated monomer 1H,1H,2H,2H-perfluorodecyl methacrylate was employed to adjust the surface polarity and wettability. Comprehensive surface characterization techniques, such as X-ray photoelectron spectroscopy (XPS) and contact angle measurements showed that surface compositions and properties can be easily adjusted by varying the concentrations of the comonomers. The formation of copper(II) complexes along the copolymer chains and their stability against washing out with plenty of water was proven by XPS. Copolymers containing semifluorinated comonomers significantly inhibited the growth of Achnanthidium species. Copolymers with copper-loaded AAMA-sequences were able to reduce both the growth of Achnanthidium spec. and Staphylococcus aureus.

  9. Methacrylate based gel polymer electrolyte for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Isken, P.; Winter, M.; Passerini, S.; Lex-Balducci, A.

    2013-03-01

    A methacrylate based gel polymer electrolyte (GPE) was prepared and electrochemically investigated. The polymer was synthesized as a statistical co-polymer of oligo(ethylene glycol) methyl ether methacrylate (OEGMA) and benzyl methacrylate (BnMA) by free radical polymerization. The ethylene glycol side chain of OEGMA should be able to interact with the liquid electrolyte, thus keeping it inside the GPE, whereas BnMA was used to enhance the mechanical stability of the GPE. Such a polymer was able to retain liquid electrolyte up to 400% of its own weight, while the mechanical stability of the GPE was still high enough to be used as separator in lithium-ion batteries. The GPE displayed a conductivity of 1.8 mS cm-1 at 25 °C and an electrochemical stability window comparable to that of a standard liquid electrolyte. When used in lithium-ion batteries, such a GPE allowed a performance comparable to that obtained using conventional liquid electrolytes. Therefore the reported electrolyte was identified as a promising candidate as electrolyte for lithium-ion batteries.

  10. Evaluation of alternate routes for the synthesis of methyl methacrylate

    SciTech Connect

    Spivey, J.J.; Gogate, M.R.; Zoeller, J.R.; Colberg, R.D.; Choi, G.N.

    1998-12-31

    The use of coal-derived syngas to produce high value chemicals is an important means of upgrading this resource. One example of a chemical that can be produced from coal-derived syngas is methyl methacrylate (MMA). Poly-methyl methacrylate is widely used in coatings and in various industrial molded products. The most widely practiced commercial technology for the synthesis of MMA is the acetone cyanohydrin (ACH) process. This process requires handling of large quantities of toxic hydrogen cyanide and generates one mole of ammonium bisulfate waste per mole of MMA. This bisulfate must either be regenerated or discarded, either of which substantially increases the cost. The ACH technology is thus environmentally and economically untenable for any new MMA plant expansions that would be needed to meet increasing demand. The RTI-Eastman-Bechtel research team is developing an alternative, environmentally benign route to MMA consisting of three steps; (step 1) synthesis of a propionate from ethylene, carbon monoxide, and steam, (step 2) condensation of this propionate with formaldehyde, and (step 3) esterification of resulting methacrylic acid with methanol to form MMA. This paper describes the preliminary economics of the overall process compared to other emerging processes, and focuses on step 2, including long term testing of catalysts for the condensation of propionic acid with formaldehyde to form MAA.

  11. Potassium Intake, Bioavailability, Hypertension, and Glucose Control

    PubMed Central

    Stone, Michael S.; Martyn, Lisa; Weaver, Connie M.

    2016-01-01

    Potassium is an essential nutrient. It is the most abundant cation in intracellular fluid where it plays a key role in maintaining cell function. The gradient of potassium across the cell membrane determines cellular membrane potential, which is maintained in large part by the ubiquitous ion channel the sodium-potassium (Na+-K+) ATPase pump. Approximately 90% of potassium consumed (60–100 mEq) is lost in the urine, with the other 10% excreted in the stool, and a very small amount lost in sweat. Little is known about the bioavailability of potassium, especially from dietary sources. Less is understood on how bioavailability may affect health outcomes. Hypertension (HTN) is the leading cause of cardiovascular disease (CVD) and a major financial burden ($50.6 billion) to the US public health system, and has a significant impact on all-cause morbidity and mortality worldwide. The relationship between increased potassium supplementation and a decrease in HTN is relatively well understood, but the effect of increased potassium intake from dietary sources on blood pressure overall is less clear. In addition, treatment options for hypertensive individuals (e.g., thiazide diuretics) may further compound chronic disease risk via impairments in potassium utilization and glucose control. Understanding potassium bioavailability from various sources may help to reveal how specific compounds and tissues influence potassium movement, and further the understanding of its role in health. PMID:27455317

  12. Potassium Intake, Bioavailability, Hypertension, and Glucose Control.

    PubMed

    Stone, Michael S; Martyn, Lisa; Weaver, Connie M

    2016-07-22

    Potassium is an essential nutrient. It is the most abundant cation in intracellular fluid where it plays a key role in maintaining cell function. The gradient of potassium across the cell membrane determines cellular membrane potential, which is maintained in large part by the ubiquitous ion channel the sodium-potassium (Na+-K+) ATPase pump. Approximately 90% of potassium consumed (60-100 mEq) is lost in the urine, with the other 10% excreted in the stool, and a very small amount lost in sweat. Little is known about the bioavailability of potassium, especially from dietary sources. Less is understood on how bioavailability may affect health outcomes. Hypertension (HTN) is the leading cause of cardiovascular disease (CVD) and a major financial burden ($50.6 billion) to the US public health system, and has a significant impact on all-cause morbidity and mortality worldwide. The relationship between increased potassium supplementation and a decrease in HTN is relatively well understood, but the effect of increased potassium intake from dietary sources on blood pressure overall is less clear. In addition, treatment options for hypertensive individuals (e.g., thiazide diuretics) may further compound chronic disease risk via impairments in potassium utilization and glucose control. Understanding potassium bioavailability from various sources may help to reveal how specific compounds and tissues influence potassium movement, and further the understanding of its role in health.

  13. Efficient Synthesis of Poly(hydroxyethyl Methacrylate)-b-Poly(dimethylaminoethyl Methacrylate) Block Copolymer by Atom Transfer Radical Polymerization.

    NASA Astrophysics Data System (ADS)

    Tang, Wei; Loo, Yueh-Lin

    2009-03-01

    Polymers containing hydroxyethyl methacrylate (HEMA) and dimethylaminoethyl methacrylate (DMAEMA) have found wide applications in areas such as bioseparation, tissue engineering and controlled drug delivery. The controlled synthesis of block copolymers of PDMAEMA-b-PHEMA from PDMAEMA macroinitiator by atom transfer radical polymerization (ATRP), however, has not been successful due to the loss of chain end functionality during polymerization. We report an ATRP system that affords efficient chain extension from PDMAEMA to HEMA using Cu(0)/1,1,4,7,10,10-hexamethyltriethylenetetramine as the catalyst, 2-chloropropionitrile as the initiator in methanol at room temperature. A clear peak shift in the gel permeation chromatography trace towards shorter elution times indicates chain growth on HEMA addition. The chain end functionalities of PDMAEMA are thus retained and can be used to efficiently initiate chain extension reaction of HEMA. This new synthetic route opens new possibilities for the synthesis of pH- and temperature-responsive systems containing DMAEMA.

  14. Preparation of hydroxyapatite/poly(methyl methacrylate) and calcium silicate/poly(methyl methacrylate) interpenetrating hybrid composites.

    PubMed

    Monvisade, Pathavuth; Siriphannon, Punnama; Jermsungnern, Rapee; Rattanabodee, Sirirat

    2007-10-01

    Hydroxyapatite/poly(methyl methacrylate) (HAp/PMMA) and calcium silicate/poly(methyl methacrylate) (CS/PMMA) composites were prepared by interpenetrating bulk polymerization of methyl methacrylate (MMA) monomer in porous structures of HAp and CS. The porous HAp and CS templates were prepared by mixing their calcined powders with poly(vinyl alcohol) (PVA) solution, shaping by uniaxial pressing and then firing at 1,100 degrees C for HAp and 900 degrees C for CS. The templates were soaked in the solution mixture of MMA monomer and 0.1 mol% of benzoyl peroxide (BPO) for 24 h. The pre-composites were then bulk polymerized at 85 degrees C for 24 h under nitrogen atmosphere. The microstructures of the composites showed the interpenetrating of PMMA into the porous HAp and CS structures. Thermogravimetric analysis indicated that the PMMA content in the HAp/PMMA and CS/PMMA composites were 13 and 26 wt%, respectively. Weight average molecular weights (M(w)) of PMMA were about 491,000 for HAp/PMMA composites and about 348,000 for CS/PMMA composites. Compressive strengths of these composites were about 90-131 MPa in which they were significantly higher than their starting porous templates.

  15. Affinity chromatography of proteins on non-porous copolymerized particles of styrene, methyl methacrylate and glycidyl methacrylate.

    PubMed

    Chen, C H; Lee, W C

    2001-06-29

    Non-porous particles having an average diameter of 2.1 microm were prepared by co-polymerization of styrene, methyl methacrylate and glycidyl methacrylate, which was abbreviated as P(S-MMA-GMA). The particles were mechanically stable due to the presence of benzene rings in the backbone of polymer chains, and could withstand high pressures when a column packed with these particles was operated in the HPLC mode. The polymer particles were advantaged by immobilization of ligands via the epoxy groups on the particle surface that were introduced by one of the monomers, glycidyl methacrylate. As a model system, Cibacron Blue 3G-A was covalently immobilized onto the non-porous copolymer beads. The dye-immobilized P(S-MMA-GMA) particles were slurry packed into a 1.0 cm x 0.46 cm I.D. column. This affinity column was effective for the separation of turkey egg white lysozyme from a protein mixture. The bound lysozyme could be eluted to yield a sharp peak by using a phosphate buffer containing 1 M NaCl. For a sample containing up to 8 microg of lysozyme, the retained portion of proteins could be completely eluted without any slit peak. Due to the use of a shorter column, the analysis time was shorter in comparison with other affinity systems reported in the literature. The retention time could be reduced significantly by increasing the flow-rate, while the capacity factor remained at the same level.

  16. Molecular Dynamics Simulations of Hugoniot Relations for Poly[methyl methacrylate

    DTIC Science & Technology

    2011-11-01

    Molecular Dynamics Simulations of Hugoniot Relations for Poly[ methyl methacrylate ] by Tanya L. Chantawansri, Edward F. C. Byrd, Betsy M. Rice...Ground, MD 21005-5066 ARL-TR-5819 November 2011 Molecular Dynamics Simulations of Hugoniot Relations for Poly[ methyl methacrylate ...4. TITLE AND SUBTITLE Molecular Dynamics Simulations of Hugoniot Relations for Poly[ methyl methacrylate ] 5a. CONTRACT NUMBER 5b. GRANT NUMBER

  17. [Rare, severe hypersensitivity reaction to potassium iodide].

    PubMed

    Korsholm, Anne Sofie; Ebbehøj, Eva; Richelsen, Bjørn

    2014-07-07

    The literature reports a large variety of adverse reactions to potassium iodide. A severe hypersensitivity reaction to potassium iodide in a 51-year-old woman with Graves' thyrotoxicosis is described. Following administration the patient developed sialadenitis, conjunctivitis, stomatitis and acneiform iododerma that responded dramatically to withdrawal of the potassium iodide and administration with corticosteroids. Awareness of these adverse reactions may prevent prolonged hospitalization and unnecessary tests and treatments.

  18. Potassium

    MedlinePlus

    ... Talk to your pharmacist or contact your local garbage/recycling department to learn about take-back programs in your community. See the FDA's Safe Disposal of Medicines website (http://goo.gl/c4Rm4p) for ...

  19. Potassium

    MedlinePlus

    ... a Healthy Heart Healthy Kids Our Kids Programs Childhood Obesity What is childhood obesity? Overweight in Children BMI in Children Is Childhood Obesity an Issue in Your Home? Addressing your Child's ...

  20. Genetic Control of Potassium Channels.

    PubMed

    Amin, Ahmad S; Wilde, Arthur A M

    2016-06-01

    Approximately 80 genes in the human genome code for pore-forming subunits of potassium (K(+)) channels. Rare variants (mutations) in K(+) channel-encoding genes may cause heritable arrhythmia syndromes. Not all rare variants in K(+) channel-encoding genes are necessarily disease-causing mutations. Common variants in K(+) channel-encoding genes are increasingly recognized as modifiers of phenotype in heritable arrhythmia syndromes and in the general population. Although difficult, distinguishing pathogenic variants from benign variants is of utmost importance to avoid false designations of genetic variants as disease-causing mutations.

  1. The importance of potassium in managing hypertension.

    PubMed

    Houston, Mark C

    2011-08-01

    Dietary potassium intake has been demonstrated to significantly lower blood pressure (BP) in a dose-responsive manner in both hypertensive and nonhypertensive patients in observational studies, clinical trials, and several meta-analyses. In hypertensive patients, the linear dose-response relationship is a 1.0 mm Hg reduction in systolic BP and a 0.52 mm Hg reduction in diastolic BP per 0.6 g per day increase in dietary potassium intake that is independent of baseline potassium deficiency. The average reduction in BP with 4.7 g (120 mmol) of dietary potassium per day is 8.0/4.1 mm Hg, depending race and on the relative intakes of other minerals such as sodium, magnesium, and calcium. If the dietary sodium chloride intake is high, there is a greater BP reduction with an increased intake of dietary potassium. Blacks have a greater decrease in BP than Caucasians with an equal potassium intake. Potassium-induced reduction in BP significantly lowers the incidence of stroke (cerebrovascular accident, CVA), coronary heart disease, myocardial infarction, and other cardiovascular events. However, potassium also reduces the risk of CVA independent of BP reductions. Increasing consumption of potassium to 4.7 g per day predicts lower event rates for future cardiovascular disease, with estimated decreases of 8% to 15% in CVA and 6% to 11% in myocardial infarction.

  2. Preparation and evaluation of poly(alkyl methacrylate-co-methacrylic acid-co-ethylene dimethacrylate) monolithic columns for separating polar small molecules by capillary liquid chromatography.

    PubMed

    Lin, Shu-Ling; Wu, Yu-Ru; Lin, Tzuen-Yeuan; Fuh, Ming-Ren

    2015-04-29

    In this study, methacrylic acid (MAA) was incorporated with alkyl methacrylates to increase the hydrophilicity of the synthesized ethylene dimethacrylate-based (EDMA-based) monoliths for separating polar small molecules by capillary LC analysis. Different alkyl methacrylate-MAA ratios were investigated to prepare a series of 30% alkyl methacrylate-MAA-EDMA monoliths in fused-silica capillaries (250-μm i.d.). The porosity, permeability, and column efficiency of the synthesized MAA-incorporated monolithic columns were characterized. A mixture of phenol derivatives is employed to evaluate the applicability of using the prepared monolithic columns for separating small molecules. Fast separation of six phenol derivatives was achieved in 5 min with gradient elution using the selected poly(lauryl methacrylate-co-MAA-co-EDMA) monolithic column. In addition, the effect of acetonitrile content in mobile phase on retention factor and plate height as well as the plate height-flow velocity curves were also investigated to further examine the performance of the selected poly(lauryl methacrylate-co-MAA-co-EDMA) monolithic column. Moreover, the applicability of prepared polymer-based monolithic column for potential food safety applications was also demonstrated by analyzing five aflatoxins and three phenicol antibiotics using the selected poly(lauryl methacrylate-co-MAA-co-EDMA) monolithic column.

  3. Dietary potassium modulates active potassium absorption and secretion in rat distal colon

    SciTech Connect

    Foster, E.S.; Sandle, G.I.; Hayslett, J.P.; Binder, H.J.

    1986-11-01

    To determine the effect of variations in body stores of potassium on the rate of active potassium transport in the large intestine, unidirectional 42K fluxes were performed under short-circuit conditions across isolated distal colonic mucosa of control, dietary potassium-depleted and dietary potassium-loaded rats. Potassium depletion stimulated net potassium absorption (JK net) (0.87 +/- 0.19 vs. 0.49 +/- 0.04 mu eq X h-1 X cm-2, P less than 0.025) due to a 40% increase in mucosal-to-serosal potassium transport (JK m----s). In sodium-free Ringer solution JK net in the potassium-depleted group was also significantly greater than in controls (1.93 +/- 0.26 vs. 1.01 +/- 0.11 mu eq X h-1 X cm-2, P less than 0.005). In contrast, in chloride-free Ringer solution JK net was identical in the control and potassium-depleted groups (0.39 +/- 0.05 vs. 0.46 +/- 0.07 mu eq X h-1 X cm-2, P = NS). Potassium loading reversed net potassium absorption to net potassium secretion (-0.76 +/- 0.08 mu eq X h-1 X cm-2, P less than 0.001) as the result of a decrease in JK m----s and an increase in serosal-to-mucosal potassium transport (JK s----m). Net potassium secretion was abolished in the absence of either sodium or chloride from the bathing solution but not by mucosal amiloride. In sodium-free Ringer solution JK net was similar in control and potassium-loaded groups, respectively.

  4. Hardness of irradiated poly(methyl methacrylate) at elevated temperatures

    SciTech Connect

    Lu, K.-P.; Lee, Sanboh; Cheng, Cheu Pyeng

    2001-08-15

    The decrease in hardness induced by gamma irradiation in poly(methyl methacrylate) (PMMA) has been investigated. The hardness is assumed to decrease linearly with the concentration of radiation-induced defects. Annealing at high temperatures induces defect annihilation as tracked by an increase in hardness. The annihilation follows first-order kinetics during isothermal annealing. The dependence of hardness on the reciprocal of the time constant satisfies the Arrhenius equation, and the corresponding activation energy of the kinetic process decreases with increasing dose. The hardness of postannealed PMMA decreases linearly with increasing dose. {copyright} 2001 American Institute of Physics.

  5. Characterization and degradation of functionalized chitosan with glycidyl methacrylate.

    PubMed

    Flores-Ramírez, Nelly; Elizalde-Peña, Eduardo A; Vásquez-García, Salomón R; González-Hernández, Jesús; Martinez-Ruvalcaba, Agustín; Sanchez, Isaac C; Luna-Bárcenas, Gabriel; Gupta, Ram B

    2005-01-01

    The synthesis, characterization and degradation of a hybrid chitosan (CTS)/glycidyl methacrylate (GMA) material are reported. These versatile materials (natural-synthetic materials) are potential candidates for dental restoratives. All materials were characterized by infrared spectroscopy (FT-IR), X-ray diffraction and thermal (DSC) analysis. Particular attention was paid to the thermal stability and chemical resistance of the hybrid CTS materials. From dynamical rheological tests, it was concluded that CTS-GMA solutions behave as physical hydrogels. These pH-sensitive gels are an example of stimuli-responsive polymers, also known as 'smart polymers'.

  6. Methyl methacrylate permeability of dental and industrial gloves.

    PubMed

    Thomas, Sebastian; Padmanabhan, T V

    2009-01-01

    Our study was undertaken to measure the amount and time it took for methyl methacrylate monomer (MMA) to permeate latex, vinyl and industrial neoprene gloves and to compare the results to obtain a rating of the permeability of each of the gloves studied to MMA. The monomer, permeated under static conditions, was measured using a spectrophotometer. Latex and vinyl clinical gloves became permeable to MMA in a very short amount of time. Neoprene industrial gloves remained impervious for 25 minutes. Dentists and dental technicians should be aware of the toxic effects of MMA and understand that clinical gloves do not afford protection from MMA.

  7. Shifting the Balance of Sodium and Potassium in Your Diet

    MedlinePlus

    ... Resources About FAQ Contact Shifting the Balance of Sodium and Potassium in Your Diet Most Americans consume ... doctor before trying a potassium-based salt substitute. Sodium and Potassium Amounts in Fresh and Processed Foods ...

  8. 75 FR 51112 - Potassium Permanganate From China

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-18

    ... COMMISSION Potassium Permanganate From China AGENCY: United States International Trade Commission. ACTION... from China. SUMMARY: The Commission hereby gives notice of the scheduling of an expedited review... whether revocation of the antidumping duty order on potassium permanganate from China would be likely...

  9. 21 CFR 182.3640 - Potassium sorbate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Potassium sorbate. 182.3640 Section 182.3640 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Chemical Preservatives § 182.3640 Potassium sorbate. (a) Product....

  10. Potassium - Multiple Languages: MedlinePlus

    MedlinePlus

    ... Center Chinese - Traditional (繁體中文) Potassium Content of Common Foods (High) English 含高量鉀質的食品(每份所含鉀質多過200毫克) - 繁體中文 (Chinese - Traditional) PDF Chinese Community Health Resource Center Potassium Content ...

  11. Process for preparation of potassium-38

    DOEpatents

    Lambrecht, Richard M.; Wolf, Alfred P.

    1981-01-01

    A solution of potassium-38 suitable for use as a radiopharmaceutical and a method for its production. Argon is irradiated with protons having energies above the threshold for the .sup.40 Ar(p,3n).sup.38 K reaction. The resulting potassium-38 is dissolved in a sterile water and any contaminating chlorine-38 is removed.

  12. 21 CFR 172.160 - Potassium nitrate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Potassium nitrate. 172.160 Section 172.160 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD... nitrate. The food additive potassium nitrate may be safely used as a curing agent in the processing of...

  13. Potassium in hypertension and cardiovascular disease.

    PubMed

    Castro, Hector; Raij, Leopoldo

    2013-05-01

    The increased prevalence of hypertension and cardiovascular disease in industrialized societies undoubtedly is associated with the modern high-sodium/low-potassium diet. Extensive experimental and clinical data strongly link potassium intake to cardiovascular outcome. Most studies suggest that the sodium-to-potassium intake ratio is a better predictor of cardiovascular outcome than either nutrient individually. A high-sodium/low-potassium environment results in significant abnormalities in central hemodynamics, leading to potential target organ damage. Altered renal sodium handling, impaired endothelium-dependent vasodilatation, and increased oxidative stress are important mediators of this effect. It remains of paramount importance to reinforce consumption of a low-sodium/high-potassium diet as a critical strategy for prevention and treatment of hypertension and cardiovascular disease.

  14. Novel Nanocomposite-based Potassium Ion Biosensor

    NASA Astrophysics Data System (ADS)

    Xue, R.; Gouma, P. I.

    2009-05-01

    Potassium ion (K+) is important in regulating normal cell function in the human body, specifically the heartbeat and the muscle function. Thus, it is important to be able to monitor potassium ion concentrations in human fluids. This paper describes a novel concept for a potassium ion biosensor that accurately, rapidly, and efficiently monitors the presence and records the concentration of potassium ions with high specificity, not only in serum and urine, but also in the sweat or even eye fluid. This specific biosensor design utilizes a nanomanufacturing technique, i.e. electrospinning, to produce advanced nano-bio-composites that specifically trace even minute quantities of potassium ions through the use of selective bio-receptors (ionophores) attached to high surface area nanofibers. Electroactive polymers are then employed as transducers to produce an electronic (rather than ionic) output that changes instantly with the change in K+ concentration. Such biosensors may be manufactured in a skin patch configuration.

  15. Preparation of novel poly(hydroxyethyl methacrylate-co-glycidyl methacrylate)-grafted core-shell magnetic chitosan microspheres and immobilization of lactase.

    PubMed

    Zhao, Wei; Yang, Rui-Jin; Qian, Ting-Ting; Hua, Xiao; Zhang, Wen-Bin; Katiyo, Wendy

    2013-06-06

    Poly(hydroxyethyl methacrylate-co-glycidyl methacrylate)-grafted magnetic chitosan microspheres (HG-MCM) were prepared using reversed-phase suspension polymerization method. The HG-MCM presented a core-shell structure and regular spherical shape with poly(hydroxyethyl methacrylate-co-glycidyl methacrylate) grafted onto the chitosan layer coating the Fe3O4 cores. The average diameter of the magnetic microspheres was 10.67 μm, within a narrow size distribution of 6.6-17.4 μm. The saturation magnetization and retentivity of the magnetic microspheres were 7.0033 emu/g and 0.6273 emu/g, respectively. The application of HG-MCM in immobilization of lactase showed that the immobilized enzyme presented higher storage, pH and thermal stability compared to the free enzyme. This indicates that HG-MCM have potential applications in bio-macromolecule immobilization.

  16. Synthesis of branched poly(methyl methacrylate)s via controlled/living polymerisations exploiting ethylene glycol dimethacrylate as branching agent.

    PubMed

    Isaure, Francoise; Cormack, Peter A G; Graham, Susan; Sherrington, David C; Armes, Steven P; Bütun, Vural

    2004-05-07

    With appropriate choice of reaction composition and conditions, copolymerisation of methyl methacrylate and ethylene glycol dimethacrylate using Cu-based ATRP or GTP methodologies yields soluble branched polymers in facile one-pot reactions.

  17. Cell toxicity of methacrylate monomers-the role of glutathione adduct formation.

    PubMed

    Ansteinsson, V; Kopperud, H B; Morisbak, E; Samuelsen, J T

    2013-12-01

    Polymer-based dental restorative materials are designed to polymerize in situ. However, the conversion of methacrylate monomer to polymer is never complete, and leakage of the monomer occurs. It has been shown that these monomers are toxic in vitro; hence concerns regarding exposure of patients and dental personnel have been raised. Different monomer methacrylates are thought to cause toxicity through similar mechanisms, and the sequestration of cellular glutathione (GSH) may be a key event. In this study we examined the commonly used monomer methacrylates, 2-hydroxyethylmethacrylate (HEMA), triethylenglycol-dimethacrylate (TEGDMA), bisphenol-A-glycidyl-dimethacrylate (BisGMA), glycerol-dimethacrylate (GDMA) and methyl-methacrylate (MMA). The study aimed to establish monomers' ability to complex with GSH, and relate this to cellular toxicity endpoints. Except for BisGMA, all the monomer methacrylates decreased the GSH levels both in cells and in a cell-free system. The spontaneous formation of methacrylate-GSH adducts were observed for all methacrylate monomers except BisGMA. However, we were not able to correlate GSH depletion and toxic response measured as SDH activity and changes in cell growth pattern. Together, the current study indicates mechanisms other than GSH-binding to be involved in the toxicity of methacrylate monomers.

  18. 40 CFR 721.6920 - Butyl acrylate, polymer with substituted methyl styrene, methyl methacrylate, and substituted...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Butyl acrylate, polymer with... acrylate, polymer with substituted methyl styrene, methyl methacrylate, and substituted silane. (a... butyl acrylate, polymer with substituted methyl styrene, methyl methacrylate, and substituted...

  19. 40 CFR 721.6920 - Butyl acrylate, polymer with substituted methyl styrene, methyl methacrylate, and substituted...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Butyl acrylate, polymer with... acrylate, polymer with substituted methyl styrene, methyl methacrylate, and substituted silane. (a... butyl acrylate, polymer with substituted methyl styrene, methyl methacrylate, and substituted...

  20. 40 CFR 721.6920 - Butyl acrylate, polymer with substituted methyl styrene, methyl methacrylate, and substituted...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Butyl acrylate, polymer with... acrylate, polymer with substituted methyl styrene, methyl methacrylate, and substituted silane. (a... butyl acrylate, polymer with substituted methyl styrene, methyl methacrylate, and substituted...

  1. 40 CFR 721.6920 - Butyl acrylate, polymer with substituted methyl styrene, methyl methacrylate, and substituted...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Butyl acrylate, polymer with... acrylate, polymer with substituted methyl styrene, methyl methacrylate, and substituted silane. (a... butyl acrylate, polymer with substituted methyl styrene, methyl methacrylate, and substituted...

  2. 21 CFR 177.2000 - Vinylidene chloride/methyl acrylate/methyl methacrylate polymers.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... methacrylate polymers. 177.2000 Section 177.2000 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF...: POLYMERS Substances for Use as Basic Components of Single and Repeated Use Food Contact Surfaces § 177.2000 Vinylidene chloride/methyl acrylate/methyl methacrylate polymers. The vinylidene chloride/methyl...

  3. 21 CFR 177.2000 - Vinylidene chloride/methyl acrylate/methyl methacrylate polymers.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... methacrylate polymers. 177.2000 Section 177.2000 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF...: POLYMERS Substances for Use as Basic Components of Single and Repeated Use Food Contact Surfaces § 177.2000 Vinylidene chloride/methyl acrylate/methyl methacrylate polymers. The vinylidene chloride/methyl...

  4. 21 CFR 177.2000 - Vinylidene chloride/methyl acrylate/methyl methacrylate polymers.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... methacrylate polymers. 177.2000 Section 177.2000 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF...: POLYMERS Substances for Use as Basic Components of Single and Repeated Use Food Contact Surfaces § 177.2000 Vinylidene chloride/methyl acrylate/methyl methacrylate polymers. The vinylidene chloride/methyl...

  5. 21 CFR 177.2000 - Vinylidene chloride/methyl acrylate/methyl methacrylate polymers.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... methacrylate polymers. 177.2000 Section 177.2000 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF...: POLYMERS Substances for Use as Basic Components of Single and Repeated Use Food Contact Surfaces § 177.2000 Vinylidene chloride/methyl acrylate/methyl methacrylate polymers. The vinylidene chloride/methyl...

  6. 40 CFR 721.6920 - Butyl acrylate, polymer with substituted methyl styrene, methyl methacrylate, and substituted...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Butyl acrylate, polymer with... acrylate, polymer with substituted methyl styrene, methyl methacrylate, and substituted silane. (a... butyl acrylate, polymer with substituted methyl styrene, methyl methacrylate, and substituted...

  7. Allergic contact gingivostomatitis from a temporary crown made of methacrylates and epoxy diacrylates.

    PubMed

    Kanerva, L; Alanko, K; Estlander, T

    1999-12-01

    Occupational allergic contact dermatitis caused by (meth)acrylates is common in dental personnel, whereas dental acrylic fillings and crowns have rarely been reported to cause problems in dental patients. Here we report on a 48-year-old woman who developed gingivitis, stomatitis, and perioral dermatitis after a temporary crown made of restorative, two-component material had been inserted. The manufacturer stated that the temporary crown base paste and catalyst contained three (meth)acrylates, namely, a proacrylate, which is a modification of 2,2-bis[4-(2-hydroxy-3-methacryloxypropoxy)phenyl]propane (BIS-GMA); a tricyclate, which is a saturated, aliphatic, tricyclic methacrylate; and urethane methacrylate. The manufacturer refused to give more exact information on the (meth)acrylates. Patch testing revealed that the patient was highly allergic to BIS-GMA, other epoxy diacrylates, and (meth)acrylates, as well as to the base paste and catalyst of the temporary crown. Accordingly, it was concluded that the allergic reaction was caused by BIS-GMA, or a cross-reacting (meth)acrylate, or other (meth)acrylates in the temporary crown.

  8. Polymeric potassium triformatocobalt(II)

    PubMed Central

    Wöhlert, Susanne; Wriedt, Mario; Jess, Inke; Näther, Christian

    2011-01-01

    In the crystal structure of the title compound, poly[tri-μ-formato-cobalt(II)potassium], [CoK(CHO2)3]n the Co2+ cations are coordinated by six O-bonded formate anions in an octa­hedral coordination mode and the K+ cations are eightfold coordinated by seven O-bonded formate anions within irregular polyhedra. The Co2+ cations are connected by bridging formate anions into a three-dimensional coordination network in which the K+ cations are embedded. The asymmetric unit consits of one Co2+ cation located on a center of inversion, one K+ cation located on a twofold axis and two crystallographically independent formato anions, of which one is located on a twofold axis and the other occupies a general position. PMID:21753951

  9. Antibacterial Adhesion of Polymethyl Methacrylate Modified by Borneol Acrylate.

    PubMed

    Sun, Xueli; Qian, Zhiyong; Luo, Lingqiong; Yuan, Qipeng; Guo, Ximin; Tao, Lei; Wei, Yen; Wang, Xing

    2016-10-07

    Polymethyl methacrylate (PMMA) is a widely used biomaterial. But there is still a challenge facing its unwanted bacterial adhesion, because the subsequent biofilm formation usually leads to failure of related implants. Herein, we present a borneol-modified PMMA based on a facile and effective stereochemical strategy, generating antibacterial copolymer named as P(MMA-co-BA). It was synthesized by free radical polymerization and studied with different ratio between methyl methacrylate (MMA) and borneol acrylate (BA) monomers. NMR, GPC and EA etc. were used to confirm their chemical features. Their films were challenged with Escherichia coli (Gram-negative) and Bacillus subtilis (Gram-positive), showing a BA content-dependent antibacterial performance. The minimum effective dose should be 10%. Then in vivo subcutaneous implantations in mice demonstrated their biocompatibilities through routine histotomy and HE staining. Therefore, P(MMA-co-BA)s not only exhibited their unique antibacterial character, but also suggested a potential for the safe usage of borneol-modified PMMA frame and devices for further implantation.

  10. Modified acrylic bone cement with high amounts of ethoxytriethyleneglycol methacrylate.

    PubMed

    Pascual, B; Gurruchaga, M; Ginebra, M P; Gil, F J; Planell, J A; Vázquez, B; San Román, J; Goñi, I

    1999-03-01

    One cause of arthroplasty failure is the brittle mechanical behavior of bone cements. However, the improvement of cement formulations must also be accompanied by the maintenance of a wide variety of characteristics. New bone cements were obtained by the substitution of high percentages, up to 60% (v/v), of methyl methacrylate (MMA) by a higher molecular weight and more hydrophilic monomer, ethoxytriethyleneglycol methacrylate (TEG). The essential advantages of these materials were the decrease of maximum temperature together with a decrease in the residual monomer content with respect to conventional cement formulations. The water absorption process obeyed diffusion laws and the equilibrium water content increased by the introduction of higher percentages of the hydrophilic component. This characteristic had an appreciable effect on the viscoelastic behavior analyzed by DMTA. These modified bone cements had reduced polymerization shrinkage and similar levels of porosity. Tensile test revealed that the introduction of TEGMA gave rise to an important modification of the mechanical behavior, with a noticeable increase in the fracture strain. This fact was also confirmed by means of the analysis of the fracture surfaces by SEM.

  11. Synthesis of Methyl Methacrylate from Coal-Derived Syngas

    SciTech Connect

    Gerald N. Choi; James J. Spivey; Jospeh R. Zoeller; Makarand R. Gogate; Richard D. Colberg; Samuel S. Tam

    1998-04-17

    Research Triangle Institute (RTI), Eastman Chemical Company, and Bechtel collectively are developing a novel three-step process for the synthesis of methyl methacrylate (MMA) from coal-derived syngas that consists of the steps of synthesis of a propionate, its condensation with formaldehyde to form methacrylic acid (MAA), and esterification of MAA with methanol to produce MMA. RTI has completed the research on the three-step methanol-based route to MMA. Under an extension to the original contract, RTI is currently evaluating a new DME-based process for MMA. The key research need for DME route is to develop catalysts for DME partial oxidation reactions and DME condensation reactions. Over the last month, RTI has finalized the design of a fixed-bed microreactor system for DME partial oxidation reactions. RTI incorporated some design changes to the feed blending system, so as to be able to blend varying proportions of DME and oxygen. RTI has also examined the flammability limits of DME-air mixtures. Since the lower flammability limit of DME in air is 3.6 volume percent, RTI will use a nominal feed composition of 1.6 percent in air, which is less than half the lower explosion limit for DME-air mixtures. This nominal feed composition is thus considered operationally safe, for DME partial oxidation reactions. RTI is also currently developing an analytical system for DME partial oxidation reaction system.

  12. CEC separation of heterocyclic amines using methacrylate monolithic columns.

    PubMed

    Barceló-Barrachina, Elena; Moyano, Encarnación; Puignou, Lluís; Galceran, Maria Teresa

    2007-06-01

    Two methacrylate-based monolithic columns, one with a negatively charged group (sulfonic group) and another with a new monomer N,N-dimethylamino ethyl acrylate (DMAEA), were prepared and tested for the separation of basic compounds by CEC. This new monolithic stationary phase was prepared by the in situ polymerization of DMAEA with butyl methacrylate and ethylene dimethacrylate, using a ternary porogenic solvent consisting of water, 1-propanol and 1,4-butanediol. The performance of this column was evaluated by means of the analysis of a family of heterocyclic amines. Separation conditions such as pH, amount of organic modifier, ionic strength and elution mode (normal or counterdirectional flow) were studied. At the optimal running electrolyte composition, and using the counterdirectional mode, symmetrical electrochromatographic peaks were obtained, with the number of theoretical plates up to 30,000 and a good resolution between closely related peaks. The 2-acrylamido-2-methyl-1-propane-sulfonic acid column was used for CEC-MS, taking advantage of the compatibility of its elution mode (normal flow) with the MS coupling.

  13. Degradation of poly(methyl methacrylate) in solution

    SciTech Connect

    Madras, G.; Smith, J.M.; McCoy, B.J.

    1996-06-01

    The rate of degradation of poly(methyl methacrylate) (PMMA) to methyl methacrylate (MMA) was investigated in the liquid phase with toluene as the solvent. The degradation experiments were carried out in a tubular flow reactor at 1,000 psig (6.8 MPa) and at four different temperatures (200, 225, 275, and 300 C). The polymer concentration was varied by 1 to 4 g/L. A discrete model for the first-order rate of polymer degradation was derived and compared to the continuous kinetics approach. Both models lead to the same expression for monomer concentration increasing linearly with time. Rate constants were evaluated using the moments of the molecular weight distributions of the reacted and unreacted polymer. The rate was first order in polymer concentration, and the activation energy was 8.4 kcal/mol (34 kJ/mol). This activation energy suggests that the rate controlling step for the thermal degradation of PMMA is the depropagation process.

  14. The biological properties of a novel ethyl methacrylate resin.

    PubMed

    Suzuki, T; Jinno, S; Hattori, N; Okeya, H; Ishikawa, A; Deguchi, M; Ohno, Y; Kawai, T; Noguchi, T

    2006-01-01

    A novel ethyl methacrylate (EMA) resin was developed to overcome the tissue, organ and systemic damage associated with the residual monomer of conventional methyl methacrylate (MMA) resin bone cement. EMA resin is a chemical/ photopolymerizable material and is easy to handle during clinical procedures. The biocompatibility of EMA was evaluated in accordance with ISO10993-6. No inflammatory response was observed 1 and 9 weeks after implantation in the dorsal subcutaneous tissue of ddY mice. EMA resin also demonstrated better biocompatibility when compared with conventional bone cements. Poly-L-lactic acid (PLLA) was used as a carrier for bone morphogenetic protein (BMP) and added to the EMA slurry. The EMA-PLLA composite membrane was sticky and BMP readily adhered to its surface. The EMA-PLLA-BMP composite membrane induced new bone formation, the new bone growing in the shape of the EMA in the thigh muscle pouch of ddY mice. This novel EMA resin has many potential clinical applications.

  15. Superhydrophobic terpolymer nanofibers containing perfluoroethyl alkyl methacrylate by electrospinning

    NASA Astrophysics Data System (ADS)

    Cengiz, Ugur; Avci, Merih Z.; Erbil, H. Yildirim; Sarac, A. Sezai

    2012-05-01

    A new statistical terpolymer containing perfluoroethyl alkyl methacrylate (Zonyl-TM), methyl methacrylate and butyl acrylate, poly(Zonyl-TM-ran-MMA-ran-BA) was synthesized in supercritical carbon dioxide at 200 bar and 80 °C using AIBN as an initiator by heterogeneous free radical copolymerization. Nanofibers of this terpolymer were produced by electrospinning from its DMF solution. The structural and thermal properties of terpolymers and electrospun poly(Zonyl-TM-MMA-BA) nanofibers were analyzed using Fourier transform infrared spectroscopy, nuclear magnetic resonance spectroscopy and differential scanning calorimetry. Nanofiber morphology was investigated by scanning electron microscopy. Electrospun nanofiber layer was found to be superhydrophobic with a water contact angle of 172 ± 1° and highly oleophobic with hexadecane, glycerol and ethylene glycol contact angles of 70 ± 1°, 167 ± 1° and 163 ± 1° respectively. The change of the contact angle results on the electrospun fiber layer and flat terpolymer surfaces by varying feed monomer composition were compared and discussed in the text.

  16. Novel syngas-based process for methyl methacrylate

    SciTech Connect

    Gogate, M.R.; Spivey, J.J.; Zoeller, J.R.; Choi, G.N.; Tam, S.S.; Tischer, R.E.; Srivastava, R.D.

    1996-12-31

    Research Triangle Institute (RTI), Eastman Chemical Company, and Bechtel are developing a novel process for synthesis of methyl methacrylate (MMA) from coal-derived syngas, under a contract from the U.S. Department of Energy, Pittsburgh Energy Technology Center. This three-step process consists of synthesis of a propionate, its condensation with formaldehyde, and esterification of resulting methacrylic acid (MAA) with methanol to produce MMA. Eastman has focused on the research on propionate synthesis step. The resultant Mo catalysts work efficiently at much less severe conditions (170{degrees}C and 30 atm) than the conventional Ni catalysts (270{degrees}C and 180 atm). Bechtel has performed an extensive cost analysis, which shows that Eastman`s propionate synthesis process is competitive with other technologies to produce the anhydride. In the second step, RTI and Eastman have developed active and stable V-SI-P and Ta metal oxide catalysts for condensation reactions of propionates with formaldehyde. RTI has demonstrated a novel correlation among the catalyst acid-base properties, condensation reaction yield, and long-term catalyst activity. Current research focuses on enhancing the condensation reaction yields, acid-base properties, in situ condensation in a high- temperature, high-pressure (HTHP) slurry reactor, and alternate formaldehyde feedstocks. Based on Eastman and RTI laboratory reactor operating data, a cost estimate is also being developed for the integrated process.

  17. The acute aquatic toxicity of a series of acrylate and methacrylate esters

    SciTech Connect

    Staples, C.A.; McLaughlin, J.E.; Hamilton, J.D.

    1994-12-31

    Acute aquatic toxicity data for several acrylate and methacrylate esters were reviewed. Acrylates included acrylic acid, ethyl-, and butyl-acrylate. Methacrylates included methacrylic acid, methyl-, and butyl-methacrylate. Tests were 48 hr or 96 hr standard flow through (invertebrates and fish) assays (measured exposure concentrations). These data are currently used in a risk assessment of acrylate/methacrylate environmental safety. Algal growth (Selanastrum capricomutum) 96 hr EC{sub 50}s were 0.17 mg/L (NOEC < 0.13 mg/L) for acrylic acid, 11.0 mg/L (NOEC < 6.5 mg/L) for ethyl acrylate, and 5.2 mg/L (NOEC < 3.8 mg/L) for butyl acrylate. Invertebrate (Daphnia magna) 48 hr LC{sub 50}s were 95.0 mg/L (NOEC 23.0 mg/L) for acrylic acid, 7.9 mg/L (NOEC 3.4 mg/L) for ethyl acrylate, and 8.2 mg/L (NOEC 2.4 mg/L) for butyl acrylate. Rainbow trout (Oncorhynchus mykiss) 96 hr LC{sub 50}s were 27.0 mg/L (NOEC 6.3 mg/L) for acrylic acid, 4.6 mg/L (NOEC 0.78 mg/L) for ethyl acrylate, and 5.2 mg/L (NOEC 3.8 mg/L) for butyl acrylate. Algae 96 hr EC{sub 50}s were 0.59 mg/L (NOEC 0.38 mg/L) for methacrylic acid, 170.0 mg/L (NOEC 100.0 mg/L) for methyl methacrylate, and 130.0 mg/L for butyl methacrylate. Daphnia magna 48 hr LC{sub 50}s were > 130.0 mg/L (NOEC 130.0 mg/L) for methacrylic acid, 69.0 mg/L (NOEC 48.0 mg/L) for methyl methacrylate, and 32.0 mg/L (NOEC 23.0 mg/L) for butyl methacrylate. Trout 96 hr LC{sub 50}s were 85.0 mg/L (NOEC 12.0 mg/L) for methacrylic acid and > 79.0 mg/L (NOEC 40.0 mg/L) for methyl methacrylate. The fathead minnow (Pimephales promelas) 96 hr LC{sub 50} was 11.0 mg/L for butyl methacrylate.

  18. Structural characterization of a poly(methacrylic acid)-poly(methyl methacrylate) copolymer by nuclear magnetic resonance and mass spectrometry.

    PubMed

    Giordanengo, Rémi; Viel, Stéphane; Hidalgo, Manuel; Allard-Breton, Béatrice; Thévand, André; Charles, Laurence

    2009-11-03

    Mass spectrometry (MS) and nuclear magnetic resonance (NMR) have been combined to achieve the complete microstructural characterization of a poly(methacrylic acid)-poly(methyl methacrylate) (PMAA-PMMA) copolymer synthesized by nitroxide-mediated polymerization. Various PMAA-PMMA species could be identified which mainly differ in terms of terminaisons. 1H and 13C NMR experiments revealed the structure of the end-groups as well as the proportion of each co-monomer in the copolymers. These end-group masses were further confirmed from m/z values of doubly charged copolymer anions detected in the single stage mass spectrum. In contrast, copolymer composition derived from MS data was not consistent with NMR results, obviously due to strong mass bias well known to occur during electrospray ionization of these polymeric species. Tandem mass spectrometry could reveal the random nature of the copolymer based on typical dissociation reactions, i.e., water elimination occurred from any two contiguous MAA units while MAA-MMA pairs gave rise to the loss of a methanol molecule. Polymer backbone cleavages were also observed to occur and gave low abundance fragment ions which allowed the structure of the initiating end-group to be confirmed.

  19. Analytical strategy for the molecular weight determination of random copolymers of poly(methyl methacrylate) and poly(methacrylic acid).

    PubMed

    Giordanengo, Rémi; Viel, Stéphane; Hidalgo, Manuel; Allard-Breton, Béatrice; Thévand, André; Charles, Laurence

    2010-06-01

    Molecular weight characterization of random amphiphilic copolymers currently represents an analytical challenge. In particular, molecules composed of methacrylic acid (MAA) and methyl methacrylate (MMA) as the repeat units raise issues in commonly used techniques. The present study shows that when random copolymers cannot be properly ionized by MALDI, and hence detected and measured in MS, one possible analytical strategy is to transform them into homopolymers, which are more amenable to this ionization technique. Then, by combining the molecular weight of the so-obtained homopolymers, as measured by MS, with the relative molar proportion of the MMA and MMA units, as given by (1)H NMR spectrum, one can straightforwardly estimate the molecular weight of the initial copolymer. A methylation reaction was performed to transform MAA-MMA copolymer samples into PMMA homopolymers, using trimethylsilyldiazomethane as a derivatization agent. Weight average molecular weight (M(w)) parameters of the MAA-MMA copolymers could then be derived from M(w) values obtained for the methylated MAA-MMA molecules by MALDI, which were also validated by pulsed gradient spin echo (PGSE) NMR. An alkene function in one of the studied copolymer end-groups was also shown to react with the methylation agent, giving rise to MMA-like polymeric by-products characterized by tandem mass spectrometry and which could be avoided by adjusting the amount of the trimethylsilyldiazomethane in the reaction medium.

  20. Poly(2-hydroxyethyl methacrylate-co-dodecyl methacrylate-co-acrylic acid): synthesis, physico-chemical characterisation and nafcillin carrier.

    PubMed

    Zecheru, Teodora; Rotariu, Traian; Rusen, Edina; Mărculescu, Bogdan; Miculescu, Florin; Alexandrescu, Laura; Antoniac, Iulian; Stancu, Izabela-Cristina

    2010-10-01

    In the present study polymeric microbeads of poly(2-hydroxyethyl methacrylate-co-dodecyl methacrylate-co-acrylic acid) or p(HEMA-co-dDMA-co-AA) were synthesised and characterized through FT-IR and scanning electron microscopy (SEM); their swelling behavior against saline solution was explored and their in vitro cytotoxicity was evaluated. Further, in order to elucidate kinetic aspects regarding the ternary system p(HEMA-co-dDMA-co-AA), a mathematical model of the reactivity ratios of the comonomers in the terpolymer has been conceived and analyzed. An intensified tendency of AA units accumulation in the copolymer has been noticed, in spite of HEMA units, while dDMA conserves in the copolymer the fraction from the feed. Three compositions have been selected for nafcillin-loading and their in vitro release capacity was evaluated. The compositions of 80:10:10 and 75:10:15 M ratios appear suitable for further in vivo testing, in order to be used as drug delivery systems in the treatment of different osseous diseases.

  1. Feedback-regulated paclitaxel delivery based on poly(N,N-dimethylaminoethyl methacrylate-co-2-hydroxyethyl methacrylate) nanoparticles.

    PubMed

    You, Jin-Oh; Auguste, Debra T

    2008-04-01

    pH-Sensitive poly(N,N-dimethylaminoethyl methacrylate (DMAEMA)/2-hydroxyethyl methacrylate (HEMA)) nanoparticles were prepared for the triggered release of paclitaxel within a tumor microenvironment. Tumors exhibit a lower extracellular pH than normal tissues. We show that paclitaxel release from DMAEMA/HEMA particles can be actively triggered by small, physiological changes in pH (within 0.2-0.6 pH units). Monodispersed nanoparticles were synthesized by forming an O/W emulsion followed by photopolymerization. Particles were characterized by transmission electron microscopy, dynamic light scattering, electrophoresis, and cytotoxicity. High release rates and swelling ratios are achieved at low pH, low crosslinking density, and high content of DMAEMA. Paclitaxel release is limited to 9% of the payload at pH 7.4 after a 2-h incubation at 37 degrees C. After adjusting to pH 6.8, 25% of the payload is released within 2h. Cell viability studies indicate that pH-sensitive DMAEMA/HEMA nanoparticles are not cytotoxic and may be used as an efficient, feedback-regulated drug delivery carrier.

  2. Radiation-grafted polymers for biomaterial applications. I. 2-hydroxyethyl methacrylate: ethyl methacrylate grafting onto low density polyethylene films

    SciTech Connect

    Cohn, D.; Hoffman, A.S.; Ratner, B.D.

    1984-08-01

    Studies were conducted on the radiation grafting of 2-hydroxyethyl methacrylate (HEMA) and ethyl methacrylate (EMA) by the mutual irradation technique onto low density polyethylene. Four different solution concentrations were used, and radiation doses ranged from 0.03 to 0.50 Mrad. Four copolymer compositions having different HEMA:EMA ratios were also studied using two total monomer concentrations. The kinetics of the grafting process demonstrated by the two monomers were basically different. While EMA showed a typical diffusion-controlled kinetic pattern, HEMA exhibited a more complex behavior, the main features of which were an induction period, a slight autoacceleration and a significant drop in graft level after a maximum is reached. The difference in behavior was interpreted in terms of partitioning of monomers into the polyethlene substrate. The surface topography of the grafted films was studied by means of scanning electron microscopy. A mechanism based on osmotic cell formation was suggested for the HEMA graft system. The copolymer systems investigated showed that the graft reaction is faster in the initial stages for higher percentages of EMA in the monomer mixtures; as grafting proceeds the trend is reversed. 24 references, 16 figures, 2 tables.

  3. A novel process for separation of polycarbonate, polyvinyl chloride and polymethyl methacrylate waste plastics by froth flotation.

    PubMed

    Wang, Chong-Qing; Wang, Hui; Huang, Luo-Luo

    2017-04-08

    A novel process was proposed for separation of ternary waste plastics by froth flotation. Pretreatment of plastics with potassium permanganate (KMnO4) solution was conducted to aid flotation separation of polycarbonate (PC), polyvinyl chloride (PVC) and polymethyl methacrylate (PMMA) plastics. The effect of pretreatment parameters including KMnO4 concentration, treatment time, temperature and stirring rate on flotation recovery were investigated by single factor experiments. Surface treatment with KMnO4 changes selectively the flotation behavior of PC, PVC and PMMA, enabling separation of the plastics by froth flotation. Mechanism of surface treatment was studied by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and X-ray photoelectron spectrum (XPS). Effect of frother concentration and flotation time on flotation behavior of plastic mixtures was further studied for flotation separation. The optimized conditions for separation of PC are KMnO4 concentration 2mmolL(-1), treatment time 10min, temperature 60°C, stirring rate 300rpm, flotation time 1min and frother concentration 17.5mgL(-1). Under optimum conditions, PVC and PMMA mixtures are also separated efficiently by froth flotation associated with KMnO4 treatment. The purity of PC, PVC and PMMA is up to 100%, 98.41% and 98.68%, while the recovery reaches 96.82%, 98.71% and 98.38%, respectively. Economic analysis manifests remarkable profits of the developed process. Reusing KMnO4 solution is feasible, enabling the process greener.

  4. Potassium in the atmosphere of Mercury

    NASA Technical Reports Server (NTRS)

    Potter, A. E.; Morgan, T. H.

    1986-01-01

    Spectral data are reported from a search for potassium in the Mercury atmosphere. The data were collected with instrumentation at Kitt Peak (7699 A) and at McDonald Observatory (7698.98 and 7664.86 A). The equivalent mean widths of the potassium emission lines observed are tabulated, along with the estimated abundances, which are compared with sodium abundances as determined by resonance lines. The average column abundance of potassium is projected to be 1 billion atoms/sq cm, about 1 percent the column abundance of sodium.

  5. SYNTHESIS OF METHYL METHACRYLATE FROM COAL-DERIVED SYNGAS

    SciTech Connect

    BEN W.-L. JANG; GERALD N. CHOI; JAMES J. SPIVEY; JOSPEH R. ZOELLER; RICHARD D. COLBERG.

    1999-01-20

    Research Triangle Institute (RTI), Eastman Chemical Company, and Bechtel collectively are developing a novel three-step process for the synthesis of methyl methacrylate (MMA) from coal-derived syngas that consists of the steps of synthesis of a propionate, its condensation with formaldehyde to form methacrylic acid (MAA), and esterification of MAA with methanol to produce MMA. The research team has completed the research on the three-step methanol-based route to MMA. Under an extension to the original contract, we are currently evaluating a new DME-based process for MMA. The key research need for DME route is to develop catalysts for DME partial oxidation reactions and DME condensation reactions. Over the last quarter(Oct.-Dec./98), we have investigated the condensation between methyl propionate and formaldehyde (MP/HCHO=4.5/1) at various reaction temperatures(280-360EC) over 5%, 10%, and 20% Nb O /SiO catalysts. The conversion of HCHO increases with reaction 2 5 2 temperature and niobium loading. MMA+MAA selectivity goes through a maximum with the temperature over both 10% and 20% Nb O /SiO . The selectivities to MMA+MAA are 67.2%, 2 5 2 72.3%and 58.1% at 320EC over 5%, 10%, 20% Nb O /SiO , respectively. However, the 2 5 2 conversion of formaldehyde decreases rapidly with time on stream. The results suggest that silica supported niobium catalysts are active and selective for condensation of MP with HCHO, but deactivation needs to be minimized for the consideration of commercial application. We have preliminarily investigated the partial oxidation of dimethyl ether(DME) over 5% Nb O /SiO catalyst. Reactant gas mixture of 0.1% DME, 0.1% O and balance nitrogen is 2 5 2 2 studied with temperature ranging from 200C to 500C. The conversion of DME first increases with temperature reaching an maximum at 400C then decreases. The selectivity to HCHO also increases with reaction temperature first. But the selectivity to HCHO decreases at temperature above 350C accompanied by

  6. SYNTHESIS OF METHYL METHACRYLATE FROM COAL-DERIVED SYNGAS

    SciTech Connect

    BEN W.-L. JANG; GERALD N. CHOI; JAMES J. SPIVEY; JOSPEH R. ZOELLER; RICHARD D. COLBERG

    1999-01-20

    Research Triangle Institute (RTI), Eastman Chemical Company, and Bechtel collectively are developing a novel three-step process for the synthesis of methyl methacrylate (MMA) from coal-derived syngas that consists of the steps of synthesis of a propionate, its condensation with formaldehyde to form methacrylic acid (MAA), and esterification of MAA with methanol to produce MMA. The research team has completed the research on the three-step methanol-based route to MMA. Under an extension to the original contract, we are currently evaluating a new DME-based process for MMA. The key research need for DME route is to develop catalysts for DME partial oxidation reactions and DME condensation reactions. Over the last quarter(Oct.-Dec./98), we have investigated the condensation between methyl propionate and formaldehyde (MP/HCHO=4.5/1) at various reaction temperatures(280-360EC) over 5%, 10%, and 20% Nb O /SiO catalysts. The conversion of HCHO increases with reaction 2 5 2 temperature and niobium loading. MMA+MAA selectivity goes through a maximum with the temperature over both 10% and 20% Nb O /SiO . The selectivities to MMA+MAA are 67.2%, 2 5 2 72.3%and 58.1% at 320EC over 5%, 10%, 20% Nb O /SiO , respectively. However, the 2 5 2 conversion of formaldehyde decreases rapidly with time on stream. The results suggest that silica supported niobium catalysts are active and selective for condensation of MP with HCHO, but deactivation needs to be minimized for the consideration of commercial application. We have preliminarily investigated the partial oxidation of dimethyl ether(DME) over 5% Nb O /SiO catalyst. Reactant gas mixture of 0.1% DME, 0.1% O and balance nitrogen is 2 5 2 2 studied with temperature ranging from 200°C to 500°C. The conversion of DME first increases with temperature reaching an maximum at 400°C then decreases. The selectivity to HCHO also increases with reaction temperature first. But the selectivity to HCHO decreases at temperature above 350

  7. Synthesis and aqueous solution properties of novel sugar methacrylate-based homopolymers and block copolymers.

    PubMed

    Narain, Ravin; Armes, Steven P

    2003-01-01

    We report the facile preparation of a range of novel, well-defined cyclic sugar methacrylate-based polymers without recourse to protecting group chemistry. 2-Gluconamidoethyl methacrylate (GAMA) and 2-lactobionamidoethyl methacrylate (LAMA) were prepared directly by reacting 2-aminoethyl methacrylate with D-gluconolactone and lactobionolactone, respectively. Homopolymerization of GAMA and LAMA by atom transfer radical polymerization (ATRP) gave reasonably low polydispersities as judged by aqueous gel permeation chromatography. A wide range of sugar-based block copolymers were prepared using near-monodisperse macroinitiators based on poly(ethylene oxide) [PEO], poly(propylene oxide) [PPO], or poly(e-caprolactone) [PCL] and/or by sequential monomer addition of other methacrylic monomers such as 2-(diethylamino)ethyl methacrylate [DEA], 2-(diisopropylaminoethyl methacrylate [DPA], or glycerol monomethacrylate [GMA]. The reversible micellar self-assembly of selected sugar-based block copolymers [PEO23-GAMA50-DEA100, PEO23-LAMA30-DEA50, PPO33-GAMA50, and PPO33-LAMA50] was studied in aqueous solution as a function of pH and temperature using dynamic light scattering, transmission electron microscopy, surface tensiometry, and 1H NMR spectroscopy.

  8. Poly(divinylbenzene-alkyl methacrylate) monolithic stationary phases in capillary electrochromatography.

    PubMed

    Huang, Hsi-Ya; Cheng, Yi-Jie; Liu, Wan-Ling; Hsu, Yi-Fen; Lee, Szetsen

    2010-09-10

    In this study, a series of poly(divinylbenzene-alkyl methacrylate) monolithic stationary phases, which were prepared by single step in situ polymerization of divinylbenzene and various alkyl methacrylates (butyl-, octyl-, or lauryl-methacrylate), were developed as separation columns of benzophenone compounds for capillary electrochromatography (CEC). In addition to the presence of plenty of benzene moieties, the stationary phases contained long and flexible alkyl groups on the surface. With an increase in the molecular length of alkyl methacrylate, the polymeric monolith, which had higher hydrophobicity, effectively reduced the peak tailing of benzophenones, but a weaker retention was observed. The unusual phenomenon was likely due to the pi-pi interaction between the aromatic compound and the polymeric material. The usage of longer alkyl methacrylate as reaction monomer limited the retention of aromatic compounds on the stationary phase surface, thus the pi-pi interaction between them was possibly reduced. Consequently, the retention time of aromatic compounds was markedly decreased with an increase in carbon length of alkyl methacrylate that was carried on the polymeric monolith. Compared to previous reports on polystyrene-based columns in which the peak-tailing problem was reduced by decreasing the benzene moieties on the stationary phase, this study demonstrated that the undesirable retention (peak-tailing) could also be improved by the inclusion of long alkyl methacrylate to the polystyrene-based columns.

  9. Cytotoxic effects of acrylates and methacrylates: relationships of monomer structures and cytotoxicity.

    PubMed

    Yoshii, E

    1997-12-15

    Thirty-nine acrylates and methacrylates that had been used in dental resin materials were evaluated by a cytotoxicity test, and the relationships between their structures and cytotoxicity were studied to predict cytotoxic levels of dental resin materials in order to develop new low-toxic resin materials. All the acrylates evaluated were more toxic than corresponding methacrylates. In both the acrylates and methacrylates, a hydroxyl group seemed to enhance cytotoxicity. Dimethacrylates with 14 or fewer oxyethylene chains showed similar cytotoxicity while dimethacrylates with 23 oxyethylene chains showed lower cytotoxicity. The cytotoxicity ranking of monomers widely used in dental resin materials was bisphenol A bis 2-hydroxypropyl methacrylate (bisGMA) > urethane dimethacrylate (UDMA) > triethyleneglycol dimethacrylate (3G) > 2-hydroxyethyl methacrylate (HEMA) > methyl methacrylate (MMA). In acrylates, methacrylates, and ethylmethacrylates with either substituents, the lipophilicity of substituents affected their cytotoxicity, and an inverse correlation between IC50 and logP was observed. These results will be useful in developing new resin materials with low toxic monomer compositions.

  10. Synthesis and fluorescence properties of divalent europium-poly(methacrylate containing crown ether structure) complexes

    SciTech Connect

    Higashiyama, N.; Nakamura, H.; Mishima, T.; Shiokawa, J.; Adachi, G. )

    1991-02-01

    This paper reports on divalent europium complexes with poly(methacrylate containing crown ether structure)s, poly(crown ether)s, prepared and their fluorescence properties studied. The polymers used were poly(15-crown-5-methyl methacrylate) (PMA15C5), copoly(15- crown-5-methyl methacrylate-X) (copoly(MA15C5-X)); (X = MMA, EMA, BMA, 2-methoxyethyl methacrylate (MAGI) 3,6,9,12,15- pentaoxahexadecyl methacrylate (MAG5)), poly(18-crown-6- methyl methacrylate) (PMA18C6), and copoly(18-crown-6-methyl methacrylate-MMA) (copoly(MA18C6-MMA)), which were obtained by bulk polymerization. The fluorescence properties of Eu{sup 2+} polymers activated by complexing Eu{sup 2+} ions with crown ether groups were measured in powder form. The Eu{sup 2+}-poly (crown ether)s irradiated by UV light generally gave blue bright emission in the region of 420-465 nm. It was Eu{sup 2+}-copoly(Ma15C5-X); (X = MMA, EMA, and MAG1) that showed the largest emission intensity among the Eu{sup 2+} polymers, and its emission intensity was ca. 20% of that for CaWO{sub 4}:Pb (NBS1026) whose quantum efficiency is about 76%. The intensities of emission for the Eu{sup 2+} polymers containing 15-crown-5 were much larger than that for the ones containing 18-crown-6.

  11. Dye attached poly(hydroxyethyl methacrylate) cryogel for albumin depletion from human serum.

    PubMed

    Andac, Muge; Galaev, Igor; Denizli, Adil

    2012-05-01

    Cibacron Blue F3GA was immobilized on poly(hydroxyethyl methacrylate) cryogel and it was used for selective and efficient depletion of albumin from human serum. The poly(hydroxyethyl methacrylate) was selected as the basic component because of its inertness, mechanical strength, chemical and biological stability, and biocompatibility. Cibacron Blue F3GA was covalently attached to the poly(hydroxyethyl methacrylate) cryogel to produce poly(hydroxyethyl methacrylate)-Cibacron Blue F3GA cryogel affinity column. The poly(hydroxyethyl methacrylate)-Cibacron Blue F3GA cryogel was characterized with respect to gelation yield, swelling degree, total volume of macropores, Fourier Transform Infrared spectroscopy, and scanning electron microscopy. It was found that the maximum amount of adsorption (343 mg/g of dry cryogel) obtained from experimental results is very close to the calculated Langmuir adsorption capacity (345 mg/g of dry cryogel). The maximum adsorption capacity for poly(hydroxyethyl methacrylate)-Cibacron Blue F3GA cryogel column was obtained as 950 mg/g of dry cryogel for nondiluted serum. The adsorption capacity decreased with increasing dilution ratios while the depletion ratio of albumin remained as 77% in serum sample. Finally, the poly(hydroxyethyl methacrylate)-Cibacron Blue F3GA cryogel was optimized for using in the fast protein liquid chromatography system for rapid removal of the high abundant proteins from the human serum.

  12. Study of scintillation in natural and synthetic quartz and methacrylate

    NASA Astrophysics Data System (ADS)

    Amaré, J.; Borjabad, S.; Cebrián, S.; Cuesta, C.; Fortuño, D.; García, E.; Ginestra, C.; Gómez, H.; Herrera, D. C.; Martínez, M.; Oliván, M. A.; Ortigoza, Y.; Ortiz de Solórzano, A.; Pobes, C.; Puimedón, J.; Sarsa, M. L.; Villar, J. A.; Villar, P.

    2014-06-01

    Samples from different materials typically used as optical windows or light guides in scintillation detectors were studied in a very low background environment, at the Canfranc Underground Laboratory, searching for scintillation. A positive result can be confirmed for natural quartz: two distinct scintillation components have been identified, not being excited by an external gamma source. Although similar effect has not been observed neither for synthetic quartz nor for methacrylate, a fast light emission excited by intense gamma flux is evidenced for all the samples in our measurements. These results could affect the use of these materials in low energy applications of scintillation detectors requiring low radioactive background conditions, as they entail a source of background.

  13. A review of methods used to reinforce polymethyl methacrylate resin.

    PubMed

    Vallittu, P K

    1995-09-01

    Various methods to reinforce acrylic denture base material have been used to repair fractures in complete dentures. Metal wires and plates have been tested as reinforcement of polymethyl methacrylate (PMMA) resin. The contributions of the studies conducted on this biphase composite system are discussed in this review article. The literature has reported that even thin metal wires incorporated into the PMMA matrix increased the transverse strength of the PMMA construction. Metal mesh inserted into PMMA resin had negligible effects on the transverse strength of the restoration. macroscopic retention of the metal strengtheners to the PMMA had only a minor effect on the strength in contrast to microscopic retention, which showed a more marked effect. Chemical bonding between the PMMA and metal reinforcer enhanced the strength of the prosthesis with some exceptions.

  14. Methyl Methacrylate Polymerization in Nanoporous Matrix: Reactivity and Molecular Weight

    NASA Astrophysics Data System (ADS)

    Zhao, Haoyu; Simon, Sindee

    2011-03-01

    The influence of nanoconfinement on the free radical polymerization of methyl methacrylate is investigated. Nanoporous controlled pore glass (CPG) is used as a nanoconfining matrix for the polymerization. The reaction is followed by measuring heat flow as a function of reaction time during isothermal polymerization using differential scanning calorimetry (DSC). Preliminary results indicate several interesting effects for polymerization in 110 nm diameter pores: the induction time increases under nanoconfinement, the effective reaction rate constant increases, the effective activation energy is unchanged, and the gel effect or autoaccleration occurs at earlier times after induction. The latter result concerning the gel effect is presumably due to the decrease in diffusivity under nanoconfinement which results in a decrease in the termination rate of free radicals. The cause of the longer induction times and accelerated reaction rates just after induction are under investigation. The influence of nanoconfinement on molecular weight will also be examined.

  15. Interaction between N-vinylpyrrolidone and methyl methacrylate

    NASA Astrophysics Data System (ADS)

    Zaitseva, V. V.; Shtonda, A. V.; Tyurina, T. G.; Bagdasarova, A. R.; Zaitsev, S. Yu.

    2014-04-01

    It is established that the interaction of the isomers of N-vinylpyrrolidone (NVP) and methyl methacrylate (MMA) leads to the formation of molecular π-H- and H-complexes with energies within the limits of 10.2-13.6 (AM1) or 18.2-24.0 (B3LYP/6-311++G( d)) kJ/mol. The structures of complex-bound molecules are examined with respect to changes in the charges on terminal -C1=C2- groups, the distance between them and atoms in an H-bond, and the presence of combined overlapping molecular orbitals (MOs). The presence of an averaged complex that includes presumably all possible structures and allows us to perform the copolymerization of specified monomers in the absence of an initiator is confirmed by means of UV and NMR spectroscopy.

  16. Porous conductive polyblends of polyaniline in poly(methyl methacrylate)

    NASA Astrophysics Data System (ADS)

    Price, Aaron D.; Naguib, Hani E.

    2008-03-01

    The conductive polymer polyaniline is typically blended with conventional industrial thermoplastics in order to obtain an electrically conductive polymer blend with adequate mechanical properties. Processing these polyblends into foams yields a porous conductive material that exhibits immense application potential such as dynamic separation media and low-density electrostatic discharge protection. In the current study, the morphology of a thermally-processable blend consisting of an electrically conductive polyaniline-dodecylbenzene sulfonic acid complex and poly(methyl methacrylate) is explored using a two-phase batch foaming setup. The effect of blend composition and processing parameters on the resulting cellular morphology is investigated. Finally, the impact of the underlying microstructure on the frequency dependent electrical conductivity is elucidated.

  17. Radiation synthesis of nanosilver nanohydrogels of poly(methacrylic acid)

    NASA Astrophysics Data System (ADS)

    Gupta, Bhuvanesh; Gautam, Deepti; Anjum, Sadiya; Saxena, Shalini; Kapil, Arti

    2013-11-01

    Nanosilver nanohydrogels (nSnH) of poly(methacrylic acid) were synthesized and stabilized using gamma irradiation. The main objective of this study was to develop silver nanoparticles and to evaluate the antimicrobial activity. Radiation helps in the polymerization, crosslinking and reduction of silver nitrate as well. Highly stable and uniformly distributed silver nanoparticles have been obtained within hydrogel network by water in oil nanoemulsion polymerization and were evaluated by dynamic light scattering (DLS) and transmission electron microscopy (TEM) respectively. TEM showed almost spherical and uniform distribution of silver nanoparticles through the hydrogel network. The mean size of silver nanoparticles ranging is 10-50 nm. The nanohydrogels showed good swelling in water. Antibacterial studies of nSnH suggest that it can be a good candidate as coating material in biomedical applications.

  18. Chest wall reconstruction with methacrylate prosthesis in Poland syndrome.

    PubMed

    Arango Tomás, Elisabet; Baamonde Laborda, Carlos; Algar Algar, Javier; Salvatierra Velázquez, Angel

    2013-10-01

    Poland syndrome is a rare congenital malformation. This syndrome was described in 1841 by Alfred Poland at Guy's Hospital in London. It is characterized by hypoplasia of the breast and nipple, subcutaneous tissue shortages, lack of the costosternal portion of the pectoralis major muscle and associated alterations of the fingers on the same side. Corrective treatment of the chest and soft tissue abnormalities in Poland syndrome varies according to different authors. We report the case of a 17-year-old adolescent who underwent chest wall reconstruction with a methyl methacrylate prosthesis. This surgical procedure is recommended for large anterior chest wall defects, and it prevents paradoxical movement. Moreover it provides for individual remodeling of the defect depending on the shape of the patient's chest.

  19. [Potassium physiology, hypokalaemia and hyperkalaemia].

    PubMed

    Dussol, Bertrand

    2010-06-01

    Potassium (K+) is a key component of the resting membrane potential of all cells that influences many important biologic events. The clinical importance of K+ is that surpluses or deficits in K+ in the extracellular fluid may predispose the patient to cardiac arrhythmias. The kidneys adjust overall K+ homeostasis by increasing or decreasing the rate of excretion of K+. Urinary excretion of K+ has 2 components: (i) the concentration of K+ in the tubular fluid that depends on the capacity of the cortical collecting duct to secrete K+. The capacity is determined by the lumen-negative transepithelial potential difference generated by the electrogenic reabsorption of Na+. Aldosterone and to a lesser degree HCO3- and Na+ in the tubular fluid are implicated in the generation of the potential difference. This component is evaluated by the transtubular K+ gradient (TTKG). (ii) The volume of fluid delivered to the cortical collecting duct that depends on the osmolar rate of excretion. These 2 components can be calculated if blood osmolality is higher than urine osmolality. Thus, investigating K+ abnormalities is based on the determination of TTKG and osmolar rate of excretion in the cortical collecting duct, on other clinical (extracellular fluid, blood pressure...) and biological data (24-hour K+ excretion, renin, aldosterone...) easily available. First treatment of K+ abnormality is the treatment of its cause. Insulin and glucose supply and dialysis are the best symptomatic treatments of hyperkalaemia.

  20. Calcium Activation of Mougeotia Potassium Channels 1

    PubMed Central

    Lew, Roger R.; Serlin, Bruce S.; Schauf, Charles L.; Stockton, Marsha E.

    1990-01-01

    Phytochrome mediates chloroplast movement in the alga Mougeotia, possibly via changes in cytosolic calcium. It is known to regulate a calcium-activated potassium channel in the algal plasma membrane. As part of a characterization of the potassium channel, we examined the properties of calcium activation. The calcium ionophore A23187 activates the channel at external [Ca2+] as low as 20 micromolar. However, external [Ca2+] is not required for activation of the channel by photoactivated phytochrome. Furthermore, when an inhibitor of calcium release from internal stores, 8-(diethylamino)-octyl-3,4,5-trimethoxybenzoate, hydrochloride (TMB-8), is present, red light no longer stimulates channel activity. We conclude that phytochrome activates the plasma membrane potassium channel by releasing calcium from intracellular calcium vesicles; the elevated cytosolic calcium then stimulates channel activity by an unknown mechanism. In the presence of TMB-8, red light does induce chloroplast rotation; thus, potassium channel activation may not be coupled to chloroplast rotation. PMID:16667356

  1. 21 CFR 862.1600 - Potassium test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Potassium test system. 862.1600 Section 862.1600....1600 Potassium test system. (a) Identification. A potassium test system is a device intended to measure potassium in serum, plasma, and urine. Measurements obtained by this device are used to monitor...

  2. 21 CFR 181.34 - Sodium nitrite and potassium nitrite.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Sodium nitrite and potassium nitrite. 181.34...-Sanctioned Food Ingredients § 181.34 Sodium nitrite and potassium nitrite. Sodium nitrite and potassium... fixatives and preservative agents, with or without sodium or potassium nitrate, in the curing of red...

  3. 21 CFR 181.34 - Sodium nitrite and potassium nitrite.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Sodium nitrite and potassium nitrite. 181.34... nitrite and potassium nitrite. Sodium nitrite and potassium nitrite are subject to prior sanctions issued... without sodium or potassium nitrate, in the curing of red meat and poultry products....

  4. 21 CFR 181.34 - Sodium nitrite and potassium nitrite.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Sodium nitrite and potassium nitrite. 181.34...-Sanctioned Food Ingredients § 181.34 Sodium nitrite and potassium nitrite. Sodium nitrite and potassium... fixatives and preservative agents, with or without sodium or potassium nitrate, in the curing of red...

  5. 21 CFR 862.1600 - Potassium test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Potassium test system. 862.1600 Section 862.1600....1600 Potassium test system. (a) Identification. A potassium test system is a device intended to measure potassium in serum, plasma, and urine. Measurements obtained by this device are used to monitor...

  6. 21 CFR 181.34 - Sodium nitrite and potassium nitrite.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sodium nitrite and potassium nitrite. 181.34...-Sanctioned Food Ingredients § 181.34 Sodium nitrite and potassium nitrite. Sodium nitrite and potassium... fixatives and preservative agents, with or without sodium or potassium nitrate, in the curing of red...

  7. 21 CFR 181.34 - Sodium nitrite and potassium nitrite.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Sodium nitrite and potassium nitrite. 181.34...-Sanctioned Food Ingredients § 181.34 Sodium nitrite and potassium nitrite. Sodium nitrite and potassium... fixatives and preservative agents, with or without sodium or potassium nitrate, in the curing of red...

  8. 21 CFR 862.1600 - Potassium test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Potassium test system. 862.1600 Section 862.1600....1600 Potassium test system. (a) Identification. A potassium test system is a device intended to measure potassium in serum, plasma, and urine. Measurements obtained by this device are used to monitor...

  9. 21 CFR 862.1600 - Potassium test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Potassium test system. 862.1600 Section 862.1600....1600 Potassium test system. (a) Identification. A potassium test system is a device intended to measure potassium in serum, plasma, and urine. Measurements obtained by this device are used to monitor...

  10. Synthesis of Methyl Methacrylate From Coal-Derived Syngas

    SciTech Connect

    Ben W.-L. Jang; Gerald N. Choi; James J. Spivey; Jospeh R. Zoeller; Richard D. Colberg; Samuel S. Tam

    1998-07-27

    Research Triangle Institute (RTI), Eastman Chemical Company, and Bechtel collectively are developing a novel three-step process for the synthesis of methyl methacrylate (MMA) from coal-derived syngas that consists of the steps of synthesis of a propionate, its condensation with formaldehyde to form methacrylic acid (MAA), and esterification of MAA with methanol to produce MMA. RTI has completed the research on the three-step methanol-based route to MMA. Under an extension to the original contract, RTI is currently evaluating a new DME-based process for MMA. The key research need for DME route is to develop catalysts for DME partial oxidation reactions and DME condensation reactions. Over the last quarter(April-June, 1998), RTI has modified the reactor system including a new preheater and new temperature settings for the preheater. Continuous condensation of formaldehyde with propionic acid were carried out over 10% Nb O /SiO at 300°C without 2 5 2 interruption. Five activity and four regeneration cycles have been completed without plugging or material balance problems. The results show that 10% Nb O /SiO deactivates slowly with time 2 5 2 but can be regenerated, at least four times, to 100% of its original activity with 2% O in nitrogen 2 at 400°C. The cycles continue with consistent 90-95% of carbon balance. The reaction is scheduled to complete with 6 activity cycles and 5 regenerations. Used catalysts will be analyzed with TGA and XPS to determine bulk and surface coke content and coke properties. RTI will start the investigation of effects of propionic acid/formaldehyde ratio on reaction activity and product selectivity over 20% Nb O /SiO catalysts.

  11. Reactivity of Monovinyl (Meth)Acrylates Containing Cyclic Carbonates.

    PubMed

    Berchtold, Kathryn A; Nie, Jun; Stansbury, Jeffrey W; Bowman, Christopher N

    2008-12-09

    The tremendous diversity of materials properties available with polymers is due in large part to the ability to design structures from the monomeric state. The ease of use of comonomer mixtures only expands this versatility. While final polymer properties are obviously important in the selection or development of a material for a given purpose, for a number of applications, such as optical fiber coatings, photolithography and microelectronics, the additional requirement of a very rapid polymerization process may be equally critical. A class of unusually reactive mono-(meth)acrylate monomers bearing secondary functionality that includes carbonates, carbamates and oxazolidones, has been demonstrated but not fully explained. Here, the influence of an integral cyclic carbonate functional group on (meth)acrylate photopolymerization kinetics is examined in detail with respect to monomers with a wide variety of alternative secondary functionality structure as well as in comparison to conventional mono- and di-(meth)acrylates. The kinetic results from full cure studies of several cyclic carbonate-containing monomers clearly highlight specific structural variations that effectively promote monomer reactivity. Copolymerizations with tetrahydrofurfuryl methacrylate reflect similar dramatic kinetic effects associated with the novel monomers while partial cure homopolymerization studies reveal exceptional dark cure behavior linked to observations of uncommonly low ratios of termination to propagation rates throughout the conversion profile. Temperature effects on reaction kinetics, including both reaction rate and the individual kinetic parameters, as well as the temperature dependence of hydrogen bonding interactions specifically involving the secondary functional groups are probed as a means to understand better the fundamentally interesting and practically important behavior of these monomers.

  12. Vascular responsiveness to dimethylaminoethyl methacrylate and its degradation products.

    PubMed

    Abebe, Worku; Maddux, William F; Schuster, George S; Lewis, Jill B

    2003-07-01

    The increasing use of acrylate-based resins in dentistry has raised questions about the biocompatibility of these substances with oral tissues. The focus of the present investigation was to assess the responsiveness of blood vessels to the resin polymerization accelerating agent dimethylaminoethyl methacrylate (DMAEMA) and its degradation products dimethylethanolamine (DME) and methacrylic acid (MAA), using the rat aortic ring preparation as a tissue model. DMAEMA induced concentration-dependent relaxation of norepinephrine (NE)-contracted aortic rings with and without endothelium. N-nitro-L-arginine methyl ester (L-NAME) selectively inhibited the endothelium-dependent relaxation induced by DMAEMA, suggesting the release of nitric oxide from the endothelium by DMAEMA. Both indomethacin and glybenclamide attenuated the vasorelaxation elicited by DMAEMA in the presence as well as in the absence of endothelium, providing evidence for the role of vasorelaxant prostanoid(s) and K(ATP) channel activation in the responses observed. On the other hand, while MAA was without any apparent effect on the rat aorta, DMAEMA at high and DME at relatively low concentrations caused contraction of the tissues with and without endothelium in the absence of NE. The DME-induced contraction was inhibited by indomethacin, suggesting the involvement of contractile arachidonic acid metabolite(s) in the action of DME. This observation was supported by the findings of increased thromboxane A(2) (TXA(2)) production in aortic rings incubated with DME. Taken together, the data suggest that both DMAEMA and its degradation product, DME, are vasoactive, inducing vasorelaxation and contraction by various mechanisms that may involve the release of nitric oxide from the endothelium, the activation of smooth muscle K(ATP) channels, and the generation of vasorelaxant prostanoid(s) and TXA(2). These effects may play a role in tissue homeostasis and certain adverse conditions associated with the use of

  13. Synthesis of acrylates and Methacrylates from Coal-Derived Syngas

    SciTech Connect

    1997-05-12

    Research Triangle Institute (RTI), Eastman Chemical Company, and Bechtel collectively are developing a novel process for the synthesis of methyl methacrylate (MMA) from coal-derived syngas, under a contract from the U.S. Department of Energy, Federal Energy Technology Center. This three-step process consists of synthesis of a propionate, its condensation with formaldehyde, and esterification of resulting methacrylic acid (MAA) with methanol to produce MMA. Eastman has focused on the propionate synthesis step. The resultant Mo catalysts work efficiently at much less severe conditions (170{degrees}C and 30 atm) than the conventional Ni catalysts (270{degrees} C and 180 atm). Bechtel has performed an extensive cost analysis which shows that Eastman`s propionate synthesis step is competitive with other technologies to produce the anhydride. Eastman and Bechtel have also compared the RTI- Eastman-Bechtel three-step methanol route to five other process routes to MMA. The results show that the product MMA can be produced at 520/lb, for a 250 Mlb/year MMA plant, and this product cost is competitive to all other process routes to MMA, except propyne carbonylation. In the second step, RTI and Eastman have developed active and stable V-SI-P tertiary metal oxide catalysts, Nb/Si0{sub 2}, and Ta/Si0{sub 2} catalysts for condensation of propionic anhydride or propionic acid with formaldehyde. RTI has demonstrated a novel correlation among the catalyst acid-base properties, condensation reaction yield, and long-term catalyst performance. Eastman and Bechtel have used the RTI experimental results of a 20 percent Nb/Si0{sub 2} catalyst, in terms of reactant conversions, MAA selectivities, and MAA yield, for their economic analysis. Recent research focuses on enhancing the condensation reaction yields, a better understanding of the acid-base property correlation and enhancing the catalyst lifetime.

  14. Circadian variation of intercompartmental potassium fluxes in man

    NASA Technical Reports Server (NTRS)

    Moore Ede, M. C.; Brennan, M. F.; Ball, M. R.

    1975-01-01

    Circadian rhythms of plasma potassium concentration and urinary potassium excretion persisted in three normal volunteers when diurnal variations in activity, posture, and dietary intake were eliminated for 3-10 days. Measurements of the arteriovenous difference in plasma potassium concentration across the resting forearm and of erythrocyte potassium concentration suggested that there is a net flux of potassium from ICF to ECF in the early morning and a reverse net flux later in the day. The total net ICF-ECF fluxes were estimated from the diurnal variations in extracellular potassium content corrected for dietary intake and urinary potassium loss. The net fluxes between ICF and ECF were found to be counterbalanced by the circadian rhythm in urinary potassium excretion. Desynchronization of these rhythms would result in marked fluctuations in extracellular potassium content. These findings suggest that some revision is required of the concept of basal state in potassium homeostasis.

  15. Renal and extrarenal regulation of potassium.

    PubMed

    Giebisch, G; Krapf, R; Wagner, C

    2007-08-01

    The ISN Forefronts in Nephrology Symposium took place 8-11 September 2005 in Kartause Ittingen, Switzerland. It was dedicated to the memory of Robert W. Berliner, who died at age 86 on 5 February 2002. Dr Berliner contributed in a major way to our understanding of potassium transport in the kidney. Starting in the late 1940s, without knowledge of how potassium was transported across specific nephron segments and depending only on renal clearance methods, he and his able associates provided a still-valid blueprint of the basic transport properties of potassium handling by the kidney. They firmly established that potassium was simultaneously reabsorbed and secreted along the nephron; that variations in secretion in the distal nephron segments play a major role in regulating potassium excretion; and that such secretion is modulated by sodium, acid-base factors, hormones, and diuretics. These conclusions were presented in a memorable Harvey Lecture some forty years ago, and they have remained valid ever since. The concepts have also provided the foundation and stimulation for later work on single nephrons, tubule cells, and transport proteins involved in potassium transport.

  16. Drug-induced abnormalities of potassium metabolism.

    PubMed

    Kokot, Franciszek; Hyla-Klekot, Lidia

    2008-01-01

    Pharmacotherapy has progressed rapidly over the last 20 years with the result that general practioners more and more often use drugs which may influence potassium metabolism at the kidney or gastrointestinal level, or the transmembrane transport of potassium at the cellular level. Potassium abnormalities may result in life-theatening clinical conditions. Hypokalemia is most frequently caused by renal loss of this electrolyte (thiazide, thiazide-like and loop diuretics, glucocorticoids) and the gastrointestinal tract (laxatives, diarrhea, vomiting, external fistula), and may be the result of an increased intracellular potassium influx induced by sympathicomimetics used mostly by patients with asthma, or by insulin overdosage in diabetic subjects. The leading symptoms of hypokalemia are skeletal and smooth muscle weakness and cardiac arrhythmias. Hyperkalemia may be caused by acute or end-stage renal failure, impaired tubular excretion of potassium (blockers of the renin-angiotensin-aldosterone system, nonsteroidal anti-inflammatory drugs, cyclosporine, antifungal drugs, potassium sparing diuretics), acidemia, and severe cellular injury (tumor lysis syndrome). Hyperkalemia may be the cause of severe injury of both skeletal and smooth muscle cells. The specific treatment counteracting hyperkalemia is a bolus injection of calcium salts and, when necessary, hemodialysis.

  17. Estimated Potassium Content in Hanford Workers

    SciTech Connect

    Lynch, Timothy P.; Rivard, James; Garcia, Silvia

    2004-10-15

    Potassium content in male and female workers at the Department of Energy Hanford Site was estimated based on measurements made in 2002 of 40K activity in the body. A coaxial germanium detection system was used for the measurements. The activity in female workers ranged from 2.1 to 4.1 kBq with an average of 3.1 ± 0.02 kBq. Total body potassium (TBK) content in female workers averaged 96 ± 0.3 g. The activity in male workers ranged from 2.8 to 6.6 kBq with an average of 4.3 ± 0.01 kBq and the average TBK was 136 ± 0.3 g. The average potassium concentration decreased with age in both males and females. The average potassium content and potassium concentrations for both males and females were less than the corresponding reference values. Potassium concentrations were inversely correlated with body-build index, body-mass index, and body weight for both males and females.

  18. 21 CFR 184.1077 - Potassium acid tartrate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Potassium acid tartrate. 184.1077 Section 184.1077... GRAS § 184.1077 Potassium acid tartrate. (a) Potassium acid tartrate (C4H5KO6, CAS Reg. No. 868-14-4) is the potassium acid salt of l−(+)−tartaric acid and is also called potassium bitartrate or cream...

  19. Manufacture of poly(2-hydroxyethyl methacrylate-co-methyl methacrylate) hydrogel tubes for use as nerve guidance channels.

    PubMed

    Dalton, Paul D; Flynn, Lauren; Shoichet, Molly S

    2002-09-01

    Hydrogel tubes of poly(2-hydroxyethyl methacrylate-co-methyl methacrylate) (p(HEMA-co-MMA)) made by liquid-liquid centrifugal casting are being investigated as potential nerve guidance channels in the central nervous system. An important criterion for the nerve guidance channel is that its mechanical properties are similar to those of the spinal cord, where it will be implanted. The formulated p(HEMA-co-MMA) tubes are soft and flexible, consisting of a gel-like outer layer, and an interconnected macroporous, inner layer. The relative thickness of the gel phase to macroporous phase is controlled by the formulation chemistry, and specifically by the ratio of co-monomers, HEMA and MMA. By varying the surface chemistry of the mold within which the tubes are synthesized, tubes were prepared with either a "cracked" or a smooth outer morphology. Tubes with the cracked outer morphology had periodic channels that traversed the wall of the tube, which resulted in a lower modulus than smooth outer morphology tubes, yet likely greater diffusive permeability. For tubes (and not rods) to be formed, phase separation must precede gelation as is detailed in a formulation phase diagram for HEMA, MMA and water. The tensile elastic modulus of p(HEMA-co-MMA) tubes reflected the formulation chemistry, with greater moduli (up to 400 kPa) recorded for tubes having 10 wt% MMA. The p(HEMA-co-MMA) tubes therefore had similar mechanical properties to those of the spinal cord, which has a reported elastic modulus range between 200 and 600 kPa.

  20. Monitoring of acid-base status of workers at a methyl methacrylate and polymethyl methacrylate production plant in Bulgaria.

    PubMed

    Prakova, Gospodinka R

    2003-01-01

    This study was carried out on 104 workers at three work operations and a control (nonproduction) area, within a methyl methacrylate (MMA)/polymethyl methacrylate (PMMA) production facility in Bulgaria. Airborne monitoring was conducted over a 10-year period for MMA and the reactant chemicals methanol and acetone cyanhydrine at the MMA operation, and MMA was monitored at the PMMA operation. Acid-base status of the workers was evaluated using traditional criteria (pH, pCO(2), pO(2), and HCO(3) in plasma). Data from retrospective monitoring of air levels of the chemicals were compared with the acid-base status of workers at the plant. In some cases air concentrations exceeded the threshold limit value, with the highest percentage of overexposure occurring with airborne MMA in the PMMA production operation. Acid-base disruption indicated by reductions in plasma pH and HCO(3) was found for all groups except the control population. The highest percentage reduction was associated with PMMA production workers. Additionally, respiratory acidosis, indicated by increased pCO(2), was noted in the MMA production and maintenance groups, implying that the response to MMA exposure may involve both the metabolic and respiratory acidosis component. This study was unique in that the combined exposure to MMA and the precursor chemical (methanol) were shown to produce the same effects in workers. It is suggested that when combined exposure occurs, disruption of acid-base status may occur. Enforcement of PPM requirements for coveralls and gloves should prevent skin contamination. Additionally, improvement of equipment in MMA and PMMA production areas is recommended: (1) automation of some manual operations; (2) use of respiratory protection during equipment cleaning; and (3) installation of local ventilation when applicable.

  1. Potassium acetate and potassium lactate enhance the microbiological and physical properties of marinated catfish fillets

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sodium or potassium salts such as lactate and acetate can be used to inhibit the growth of spoilage bacteria and food-borne pathogens, and thereby prolong the shelf-life of refrigerated seafood. However, minimal information is available regarding the combined effects of potassium salts (acetate and ...

  2. Dual-Responsive pH and Temperature Sensitive Nanoparticles Based on Methacrylic Acid and Di(ethylene glycol) Methyl Ether Methacrylate for the Triggered Release of Drugs.

    PubMed

    Khine, Yee Yee; Jiang, Yanyan; Dag, Aydan; Lu, Hongxu; Stenzel, Martina H

    2015-08-01

    A series of thermo-and pH-responsive poly(methyl methacrylate)-block-poly[methacrylic acid-co-di(ethylene glycol) methyl ether methacrylate] PMMA-b-P[MAA-co-DEGMA] block copolymers were synthesized by RAFT polymerization and self-assembled into micelles. The molar ratio of MAA was altered from 0-12% in order to modulate the lower critical solution temperature (LCST) of PDEGMA. The release of the drug albendazole from the micelle was strongly dependent on the temperature and the LCST value of the polymer. Systems below the LCST released the drug slowly while increasing the temperature above the LCST or decreasing the pH value to 5 resulted in the burst-like release of the drug. ABZ delivered in this pH-responsive drug carrier had a higher toxicity than the free drug or the drug delivered in a non-responsive drug carrier.

  3. Radical Polymerization of Vinyl Acetate and Methyl Methacrylate Using Organochromium Initiators Complexed with Macrocyclic Polyamines

    DTIC Science & Technology

    1994-06-30

    METHYL METHACRYLATE USING ORGANOCHROMIUM REA NTS COMPLEXED WITH MACROCYCLIC A• by Daniela Mardare, Scott Gaynor, Krzysztof Matyjaszewski DTIC Published... Daniela Mardare, Scott Gaynor, Krzysztof Matyjaszewski 7. PERFORMING ORGANIZATION NAME(S) AND ADORESS(ES) a. PERFORMING ORGANIZATION Carnegie Mellon

  4. Amphiphilic copolymers of sucrose methacrylate and acrylic monomers: bio-based materials from renewable resource.

    PubMed

    de Oliveira, Heitor F N; Felisberti, Maria Isabel

    2013-04-15

    Regioselective sucrose 1'-O-methacrylate obtained by transesterification catalyzed by Proteinase-N was copolymerized with hydrophilic N-isopropylacrylamide and hydrophobic methyl methacrylate in different molar ratios by free radical polymerization. The copolymers were characterized by (13)C nuclear magnetic resonance spectroscopy, gel permeation chromatography, differential scanning calorimetry and thermogravimetry. Solubility and phase behavior of aqueous solutions were also investigated. The glass transition of the copolymers presents a positive deviation from the values of the homopolymers due to the high density of inter and intramolecular hydrogen bonding. Their solubility is strongly dependent on the composition. Copolymers poor in methyl methacrylate are water soluble, while copolymers richer in methyl methacrylate behaves as hydrogel. These hydrogels are not chemically crosslinked and their form can be design prior swelling by the conventional processing methods, such as solvent casting and extrusion for instance. Copolymers of N-isopropylacrylamide are water soluble and their aqueous solutions present a lower critical solution temperature behavior forming thermoreversible hydrogels.

  5. Biomimetic potential of some methacrylate-based copolymers: a comparative study.

    PubMed

    Zecheru, Teodora; Filmon, Robert; Rusen, Edina; Mărculescu, Bogdan; Zerroukhi, Amar; Cincu, Corneliu; Chappard, Daniel

    2009-11-01

    Preparation of new biocompatible materials for bone recovery has consistently gained interest in the last few decades. Special attention was given to polymers that contain negatively charged groups, such as phosphate, carboxyl, and sulfonic groups toward calcification. This present paper work demonstrates that other functional groups present also potential application in bone pathology. New copolymers of 2-hydroxyethyl methacrylate with diallyldimethylammonium chloride (DADMAC), glycidyl methacrylate (GlyMA), methacrylic acid (MAA), 2-methacryloyloxymethyl acetoacetate (MOEAA), 2-methacryloyloxyethyltriethylammonium chloride (MOETAC), and tetrahydrofurfuryl methacrylate (THFMA) were obtained. The copolymers were characterized by FTIR, swelling potential, and they were submitted to in vitro tests for calcification and cytotoxicity evaluation. GlyMA and MOETAC-containing copolymers show promising results for further in vivo mineralization tests, as a potential alternative to the classical bone grafts, in bone tissue engineering.

  6. Estimation of monomer content in polymethyl methacrylate contact lens materials by Raman spectroscopy.

    PubMed

    Kantarci, Z; Aksoy, S; Hasirci, N

    1997-07-01

    Polymethyl methacrylate is the most commonly used contact lens material due to its excellent optical properties. However the presence of residual monomer in the structure alters its transparency as well as its biocompatibility, thus, there is a need to detect any remaining methyl methacrylate. Raman spectroscopy is a rapid, sensitive, and non destructive method as compared to other spectroscopic, chromatographic or polarographic methods. In this study, the spectra of some lens materials (prepared from methyl methacrylate, 2-hydroxy ethyl methacrylate, Hexamethyl disiloxane and polypropylene glycol with or without the addition of crosslinker ethylene glycol dimethylacrylate) were obtained by Raman spectroscopy. It was observed that an amount of crosslinker present in the structure proves effective for the unpolymerized monomer content. None of the samples, except those containing nexamethyl disiloxane, demonstrated any monomer residue.

  7. 40 CFR 721.10517 - Alkyl methacrylates, polymer with substituted carbomonocycle, hydroxymethyl acrylamide and...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... substituted carbomonocycle, hydroxymethyl acrylamide and fluorinatedalkyl acrylate (generic). 721.10517... Substances § 721.10517 Alkyl methacrylates, polymer with substituted carbomonocycle, hydroxymethyl acrylamide... substituted carbomonocycle, hydroxymethyl acrylamide and fluorinatedalkyl acrylate (PMN P-10-485) is...

  8. 40 CFR 721.10517 - Alkyl methacrylates, polymer with substituted carbomonocycle, hydroxymethyl acrylamide and...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... substituted carbomonocycle, hydroxymethyl acrylamide and fluorinatedalkyl acrylate (generic). 721.10517... Substances § 721.10517 Alkyl methacrylates, polymer with substituted carbomonocycle, hydroxymethyl acrylamide... substituted carbomonocycle, hydroxymethyl acrylamide and fluorinatedalkyl acrylate (PMN P-10-485) is...

  9. Effects of potassium chloride and potassium bicarbonate on endothelial function, cardiovascular risk factors, and bone turnover in mild hypertensives.

    PubMed

    He, Feng J; Marciniak, Maciej; Carney, Christine; Markandu, Nirmala D; Anand, Vidya; Fraser, William D; Dalton, R Neil; Kaski, Juan C; MacGregor, Graham A

    2010-03-01

    To determine the effects of potassium supplementation on endothelial function, cardiovascular risk factors, and bone turnover and to compare potassium chloride with potassium bicarbonate, we carried out a 12-week randomized, double-blind, placebo-controlled crossover trial in 42 individuals with untreated mildly raised blood pressure. Urinary potassium was 77+/-16, 122+/-25, and 125+/-27 mmol/24 hours after 4 weeks on placebo, potassium chloride, and potassium bicarbonate, respectively. There were no significant differences in office blood pressure among the 3 treatment periods, and only 24-hour and daytime systolic blood pressures were slightly lower with potassium chloride. Compared with placebo, both potassium chloride and potassium bicarbonate significantly improved endothelial function as measured by brachial artery flow-mediated dilatation, increased arterial compliance as assessed by carotid-femoral pulse wave velocity, decreased left ventricular mass, and improved left ventricular diastolic function. There was no significant difference between the 2 potassium salts in these measurements. The study also showed that potassium chloride reduced 24-hour urinary albumin and albumin:creatinine ratio, and potassium bicarbonate decreased 24-hour urinary calcium, calcium:creatinine ratio, and plasma C-terminal cross-linking telopeptide of type 1 collagen significantly. These results demonstrated that an increase in potassium intake had beneficial effects on the cardiovascular system, and potassium bicarbonate may improve bone health. Importantly, these effects were found in individuals who already had a relatively low-salt and high-potassium intake.

  10. Development of potassium ion conducting hollow glass fibers. [potassium sulfur battery

    NASA Technical Reports Server (NTRS)

    Tsang, F. Y.

    1974-01-01

    Potassium ion conducting glasses, chemically resistant to potassium, potassium sulfide and sulfur, were made and their possible utility as the membrane material for a potassium/sulfur battery was evaluated. At least one satisfactory candidate was found. It possesses an electrical resistance which makes it usable as a membrane in the form of a fine hollow fiber. It's chemical and electrochemical resistances are excellent. The other aspects of the possible potassium sulfur battery utilizing such fine hollow fibers, including the header (or tube sheet) and a cathode current collector were studied. Several cathode materials were found to be satisfactory. None of the tube sheet materials studied possessed all the desired properties. Multi-fiber cells had very limited life-time due to physical failure of fibers at the fiber/tube sheet junctions.

  11. Preparation of Optically Transparent Films of Poly(methyl methacrylate) (PMMA) and Montmorillonite

    DTIC Science & Technology

    2001-11-01

    methacrylate] [PMMA] and Montmorillonite DISTRIBUTION: Approved for public release, distribution unlimited This paper is part of the following report...Society V6.4 Preparation of Optically Transparent Films of Poly(methyl methacrylate) (PMMA) and Montmorillonite Elena Vasiliul, Chyi-Shan Wang"’ 2...exchanged with 1.40 meq/g of dimethyl dehydrogenated tallow ammonium from a sodium montmorillonite , Cloisite Na+ (CNa). Since the cation-exchange

  12. Synthesis of Acrylates and Methacrylates from Coal-Derived Syngas.

    SciTech Connect

    Gogate, M.R.; Spivey, J.J.; Zoeller, J.R.; Colberg, R.D.; Choi, G.N.; Tam, S.S.

    1997-10-17

    Research Triangle Institute (RTI), Eastman Chemical Company, and Bechtel collectively are developing a novel process for the synthesis of methyl methacrylate (MMA) from coal-derived syngas, under a contract from the U.S. Department of Energy/Federal Energy Technology Center (DOE/FETC). This three-step process consists of synthesis of a propionate, its condensation with formaldehyde, and esterification of resulting methacrylic acid (MAA) with methanol to produce MMA. Over the last quarter, RTI carried out activity tests on a pure (99 percent) Nb{sub 2}O{sub 5} catalyst, received from Alfa Aesar, under the following experimental conditions: T=300 C; P=4 atm, 72:38:16:4:220 mmol/h, PA:H{sub 2}0:HCHO:CH{sub 3}0H:N{sub 2}; 5-g catalyst charge. For the pure material, the MAA yields (based on HCHO and PA) were at 8.8 and 1.5 percent, clearly inferior compared to those for a 10-percent Nb{sub 2}O{sub 5}/Si0{sub 2} catalyst (20.1 and 4.5 percent). The X-ray diffraction (XRD) patterns of pure Nb{sub 2}O{sub 5} and 20-percent Nb{sub 2}O{sub 5}/Si0{sub 2} that while pure Nb{sub 2}O{sub 5} is very highly crystalline, Si0{sub 2} support for an amorphous nature of the 20 percent Nb{sub 2}O{sub 5}/Si0{sub 2} catalyst the last quarter, RTI also began research on the use of dimethyl ether (DME), product of methanol dehydrocondensation, as an alternate feedstock in MMA synthesis. As a result, formaldehyde is generated either externally or in situ, from DME, in the process envisaged in the contract extension. The initial work on the DME extension of the contract focuses on a tradeoff analysis that will include a preliminary economic analysis of the DME and formaldehyde routes and catalyst synthesis and testing for DME partial oxidation and condensation reactions. Literature guides exist for DME partial oxidation catalysts; however, there are no precedent studies on catalyst development for DME-methyl propionate (MP) condensation reactions, thereby making DME-MP reaction studies a

  13. SYNTHESIS OF METHYL METHACRYLATE FROM COAL-DERIVED SYNGAS

    SciTech Connect

    Makarand R. Gogate; James J. Spivey; Joseph R. Zoeller; Richard D. Colberg; Gerald N. Choi

    1999-07-19

    Research Triangle Institute (RTI), Eastman Chemical Company, and Bechtel collectively are developing a novel three-step process for the synthesis of methyl methacrylate (MMA) from coal-derived syngas that consists of the steps of synthesis of a propionate, its condensation with formaldehyde to form methacrylic acid (MAA), and esterification of MAA with methanol to produce MMA. The research team has completed the research on the three-step methanol-based route to MMA. Under an extension to the original contract, we are currently evaluating a new DME-based process for MMA. The key research need for DME route is to develop catalysts for DME partial oxidation reactions and DME condensation reactions. During the April-June quarter(04-06/99) the first in-situ formaldehyde generation from DME and condensation with methyl propionate is demonstrated and the results are summarized. The supported niobium catalyst shows better condensation activity, but supported tungsten catalyst has higher formaldehyde selectivity. The project team has also completed a 200-hour long term test of PA-HCHO condensation over 30% Nb{sub 2}O{sub 5}/SiO{sub 2}. Three activity cycles and two regeneration cycles were carried out. 30% Nb{sub 2}O{sub 5}/SiO{sub 2} showed similar MAA yields as 10% Nb{sub 2}O{sub 5}/SiO{sub 2} at 300 C. However, the deactivation appears to be slower with 30% Nb{sub 2}O{sub 5}/SiO{sub 2} than 10% Nb{sub 2}O{sub 5}/SiO{sub 2}. An detailed economic analysis of PA-HCHO condensation process for a 250 million lb/yr MMA plant is currently studied by Bechtel. Using the Amoco data-based azeotropic distillation model as the basis, an ASPEN flow sheet model was constructed to simulate the formaldehyde and propionic acid condensation processing section based on RTI's design data. The RTI MAA effluent azeotropic distillation column was found to be much more difficult to converge. The presence of non-condensible gases along with the byproduct DEK (both of which were not presented in

  14. SYNTHESIS OF METHYL METHACRYLATE FROM COAL-DERIVED SYNGAS

    SciTech Connect

    BEN W.-L. JANG; GERALD N. CHOI; JAMES J. SPIVEY; JOSPEH R. ZOELLER; RICHARD D. COLBERG

    1998-10-20

    Research Triangle Institute (RTI), Eastman Chemical Company, and Bechtel collectively are developing a novel three-step process for the synthesis of methyl methacrylate (MMA) from coal-derived syngas that consists of the steps of synthesis of a propionate, its condensation with formaldehyde to form methacrylic acid (MAA), and esterification of MAA with methanol to produce MMA. RTI has completed the research on the three-step methanol-based route to MMA. Under an extension to the original contract, RTI is currently evaluating a new DME-based process for MMA. The key research need for DME route is to develop catalysts for DME partial oxidation reactions and DME condensation reactions. Over the last quarter (July-September, 1998), the project team has completed the continuous condensation of formaldehyde with propionic acid over 10% Nb{sub 2}O{sub 5}/SiO{sub 2} at 300 C. Six activity and five regeneration cycles have been completed. The results show that 10% Nb{sub 2}O{sub 5}/SiO{sub 2} deactivates slowly with time but can be regenerated to its original activity with 2% O{sub 2} in nitrogen over night at 400 C. We have investigated the effects of regeneration, propionic acid/formaldehyde ratio (PA/HCHO = 4.5/1 to 1.5/1) and reaction temperature(280-300 C) on reaction activity and product selectivity over 20% Nb{sub 2}O{sub 5}/SiO{sub 2} catalysts. The regeneration effect on 20% Nb{sub 2}O{sub 5}/SiO{sub 2} is similar to the effect on 10% Nb{sub 2}O{sub 5}/SiO{sub 2}. The regeneration can bring the deactivated catalyst to its original activity. However, the selectivity to MAA decreases with regeneration while the selectivity to DEK and CO{sub 2} increases. When PA/HCHO ratio is decreased from 4.5/1 to 2.25/1 then to 1.5/1 at 300 C the MAA yield decreases but the MAA selectivity first increases then decreases. Decreasing the reaction temperature from 300 C to 280 C decreases the MAA yield from 39.5% to 30.7% but increases the MAA selectivity from 73.7% to 82.2%. The

  15. Novel catalysts for the environmentally friendly synthesis of methyl methacrylate

    SciTech Connect

    Spivey, J.J.; Gogate, M.R.; Zoeller, J.R.; Colberg, R.D.

    1997-11-01

    The development of a process for the synthesis of methyl methacrylate (MMA) from coal-derived syngas can alleviate the environmental hazards associated with the current commercial MMA technology, the acetone cyanohydrin (ACH) process. A three-step syngas-based process consisted of synthesis of a propionic acid, its condensation with formaldehyde, and esterification of resulting methacrylic acid (MAA) to form MMA. The first two steps, propionic acid synthesis and condensation, are discussed here. The low-temperature, low-pressure process for single-step hydrocarbonylation of ethylene to propionic acid is carried out using a homogeneous iodine-promoted Mo(CO){sub 6} catalyst at pressures (30--70 atm) and temperatures (150--200 C) lower than those reported for other catalysts. Mechanistic investigations suggest that catalysis is initiated by a rate-limiting CO dissociation from Mo(CO){sub 6}. This dissociation appears to be followed by an inner electron-transfer process of an I atom from EtI to the coordinately unsaturated Mo(CO){sub 5}. This homogeneous catalyst for propionate synthesis represents the first case of an efficient carbonylation process based on Cr group metals. The condensation of formaldehyde with propionic acid is carried out by acid-base bifunctional catalysts. As a result of screening over 80 catalytic materials, group V metals supported on an amorphous silica are found to be most effective. A 20% Nb/SiO{sub 2} catalyst appears to be the most active and stable catalyst thus far. Preliminary relations among the reaction yield and catalyst properties indicate that a high surface area and a low overall surface acidity (<50 = mol of NH{sub 3}/g), with a high proportion of the acidity being weak (<350 C desorption of NH{sub 3}), are desirable. Long-term deactivation of V-Si-P, Nb-Si, and Ta-Si catalysts suggests that carbon deposition is the primary cause for activity decay, and the catalyst activity is partially restorable by oxidative regeneration.

  16. Serum Potassium Levels in Sigmoid Volvulus

    PubMed Central

    Atamanalp, S. Selcuk; Keles, M. Sait; Aydinli, Bulent

    2009-01-01

    Objective: This study aimed to determine the serum potassium concentrations in patients with sigmoid volvulus (SV), which is a rare large bowel obstruction. Materials and Methods: The records of 86 patients with SV were reviewed retrospectively, while the records of 41 patients diagnosed with obstructive rectosigmoid cancer (ORC) were considered as the control group and as such, served as a source for comparison. Results: The analysis revealed a mean serum potassium concentration of 3.9 ± 0.6 mEq/L for the patients with SV, while the mean potassium concentration was 3.9 ± 0.5 mEq/L for the patients diagnosed with ORC (t:0.1, P>0.05). The number of hypokalemic and hyperkalemic patients identified in this study sample were 11 versus 5 patients and 1 versus 0 patients, respectively for the SV and ORC groups (x2 = 0.1 and 0.5, respectively with a P>0.05). Conclusions: No cause-and-effect relationship was observed between the serum potassium concentrations and SV. The serum potassium concentration is not pathognomonic for SV. PMID:25610090

  17. Cholesterol-modified superporous poly(2-hydroxyethyl methacrylate) scaffolds for tissue engineering.

    PubMed

    Kubinová, Sárka; Horák, Daniel; Syková, Eva

    2009-09-01

    Modifications of poly(2-hydroxyethyl methacrylate) (PHEMA) with cholesterol and laminin have been developed to design scaffolds that promote cell-surface interaction. Cholesterol-modified superporous PHEMA scaffolds have been prepared by the bulk radical copolymerization of 2-hydroxyethyl methacrylate (HEMA), cholesterol methacrylate (CHLMA) and the cross-linking agent ethylene dimethacrylate (EDMA) in the presence of ammonium oxalate crystals to introduce interconnected superpores in the matrix. With the aim of immobilizing laminin (LN), carboxyl groups were also introduced to the scaffold by the copolymerization of the above monomers with 2-[(methoxycarbonyl)methoxy]ethyl methacrylate (MCMEMA). Subsequently, the MCMEMA moiety in the resulting hydrogel was hydrolyzed to [2-(methacryloyloxy)ethoxy]acetic acid (MOEAA), and laminin was immobilized via carbodiimide and N-hydroxysulfosuccinimide chemistry. The attachment, viability and morphology of mesenchymal stem cells (MSCs) were evaluated on both nonporous and superporous laminin-modified as well as laminin-unmodified PHEMA and poly(2-hydroxyethyl methacrylate-co-cholesterol methacrylate) P(HEMA-CHLMA) hydrogels. Neat PHEMA and laminin-modified PHEMA (LN-PHEMA) scaffolds facilitated MSC attachment, but did not support cell spreading and proliferation; the viability of the attached cells decreased with time of cultivation. In contrast, MSCs spread and proliferated on P(HEMA-CHLMA) and LN-P(HEMA-CHLMA) hydrogels.

  18. Potassium channels in pulmonary arterial hypertension.

    PubMed

    Boucherat, Olivier; Chabot, Sophie; Antigny, Fabrice; Perros, Frédéric; Provencher, Steeve; Bonnet, Sébastien

    2015-10-01

    Pulmonary arterial hypertension (PAH) is a devastating cardiopulmonary disorder with various origins. All forms of PAH share a common pulmonary arteriopathy characterised by vasoconstriction, remodelling of the pre-capillary pulmonary vessel wall, and in situ thrombosis. Although the pathogenesis of PAH is recognised as a complex and multifactorial process, there is growing evidence that potassium channels dysfunction in pulmonary artery smooth muscle cells is a hallmark of PAH. Besides regulating many physiological functions, reduced potassium channels expression and/or activity have significant effects on PAH establishment and progression. This review describes the molecular mechanisms and physiological consequences of potassium channel modulation. Special emphasis is placed on KCNA5 (Kv1.5) and KCNK3 (TASK1), which are considered to play a central role in determining pulmonary vascular tone and may represent attractive therapeutic targets in the treatment of PAH.

  19. Synthesis and properties of methacrylic-functionalized tween monomer networks.

    PubMed

    Muzzalupo, Rita; Tavano, Lorena; Rossi, Cesare Oliviero; Cassano, Roberta; Trombino, Sonia; Picci, Nevio

    2009-02-03

    Tween surfactants possess very interesting properties such as biodegradability, biocompatibility, and low toxicity. The synthesis of acrylate monomers by means of the chemical modification of polysorbate surfactants Tween 20, 40, and 60 with unsaturated groups is described. Monomers were obtained as a result of the reaction of methacrylic anhydride with different grades of Tween surfactants. Further polymerization was carried out in tetrahydrofuran, dimethylformamide, and a mixture of water-tetrahydrofuran. Physicochemistry properties of the polymer networks were investigated, and the obtained results reveal that they strongly depend on the type of solvent used during the polymerization, as well as on the concentration of the casting solution. In particular, our study demonstrated that, depending on the solvent boiling point, i.e., the facility to remove the solvent from the polymer matrix, it is possible to predict properties of the network morphology. Moreover, in vitro studies on controlled release were accomplished to demonstrate the possibility of utilizing these new materials as drug delivery systems. All resulting networks represent a novel class of cross-linked polymeric materials useful both in pharmaceutical and chemical applications.

  20. Methyl methacrylate and respiratory sensitization: A Critical review

    PubMed Central

    Borak, Jonathan; Fields, Cheryl; Andrews, Larry S; Pemberton, Mark A

    2011-01-01

    Methyl methacrylate (MMA) is a respiratory irritant and dermal sensitizer that has been associated with occupational asthma in a small number of case reports. Those reports have raised concern that it might be a respiratory sensitizer. To better understand that possibility, we reviewed the in silico, in chemico, in vitro, and in vivo toxicology literature, and also epidemiologic and occupational medicine reports related to the respiratory effects of MMA. Numerous in silico and in chemico studies indicate that MMA is unlikely to be a respiratory sensitizer. The few in vitro studies suggest that MMA has generally weak effects. In vivo studies have documented contact skin sensitization, nonspecific cytotoxicity, and weakly positive responses on local lymph node assay; guinea pig and mouse inhalation sensitization tests have not been performed. Cohort and cross-sectional worker studies reported irritation of eyes, nose, and upper respiratory tract associated with short-term peaks exposures, but little evidence for respiratory sensitization or asthma. Nineteen case reports described asthma, laryngitis, or hypersensitivity pneumonitis in MMA-exposed workers; however, exposures were either not well described or involved mixtures containing more reactive respiratory sensitizers and irritants.The weight of evidence, both experimental and observational, argues that MMA is not a respiratory sensitizer. PMID:21401327

  1. Methyl Methacrylate Polymerization in Nanoporous Matrix: Reactivity and Resulting Properties

    NASA Astrophysics Data System (ADS)

    Zhao, Haoyu; Begum, Fatema; Simon, Sindee

    2012-02-01

    Nanoconfinement is well known to affect the properties of polymers, including changes in the glass transition temperature (Tg). In this work, the focus is on the influence of nanoconfinement on free radical polymerization reaction kinetics and the properties of the polymer produced. Controlled pore glass (CPG) is used as a nanoconfining matrix for methyl methacrylate (MMA) polymerization with pore diameters of 13 nm, 50 nm, and 110 nm. The reaction is followed by measuring heat flow as a function of reaction time during isothermal polymerization at temperatures ranging from 60 C to 95 C using differential scanning calorimetry (DSC). After reaction, the properties of the polymer are measured, including Tg, molecular weight, and tacticity. Nanoconfiment is found to result in earlier onset of autoacceleration, presumablely due to a decrease in the rate of termination arising from decreases in chain diffusivity in the confined state. In addition, Tg and molecular weight of the resulting PMMA are found to increase. A model of the nanoconfined reaction is able to quantitatively capture these effects by accounting for changes in chain diffusivity, and in native pores, also accounting for changes in intrinsic reaction rates.

  2. Directed Endothelial Cell Morphogenesis in Micropatterned Gelatin Methacrylate Hydrogels

    PubMed Central

    Nikkhah, Mehdi; Eshak, Nouran; Zorlutuna, Pinar; Annabi, Nasim; Castello, Marco; Kim, Keekyoung; Dolatshahi-Pirouz, Alireza; Edalat, Faramarz; Bae, Hojae; Yang, Yunzhi; Khademhosseini, Ali

    2013-01-01

    Engineering of organized vasculature is a crucial step in the development of functional and clinically relevant tissue constructs. A number of previous techniques have been proposed to spatially regulate the distribution of angiogenic biomolecules and vascular cells within biomaterial matrices to promote vascularization. Most of these approaches have been limited to two-dimensional (2D) micropatterned features or have resulted in formation of random vasculature within three-dimensional (3D) microenvironments. In this study, we investigate 3D endothelial cord formation within micropatterned gelatin methacrylate (GelMA) hydrogels with varying geometrical features (50–150 µm height). We demonstrated the significance dependence of endothelial cells proliferation, alignment and cord formation on geometrical dimensions of the patterned features. The cells were able to align and organize within the micropatterned constructs and assemble to form cord structures with organized actin fibers and circular/elliptical cross-sections. The inner layer of the cord structure was filled with gel showing that the micropatterned hydrogel constructs guided the assembly of endothelial cells into cord structures. Notably, the endothelial cords were retained within the hydrogel microconstructs for all geometries after two weeks of culture; however, only the 100 µm-high constructs provided the optimal microenvironment for the formation of circular and stable cord structures. Our findings suggest that endothelial cord formation is a preceding step to tubulogenesis and the proposed system can be used to develop organized vasculature for engineered tissue constructs. PMID:23018132

  3. The toxicokinetics and distribution of 2-hydroxyethyl methacrylate in mice.

    PubMed

    Durner, J; Kreppel, H; Zaspel, J; Schweikl, H; Hickel, R; Reichl, Franz X

    2009-04-01

    The cytotoxicity of dental composites has been attributed to the release of residual monomers from polymerized resin-based composites due to the degradation processes or the incomplete polymerisation of materials. 2-Hydroxyethyl methacrylate (HEMA) is one of the major components released from dental resin-based composites. It was shown in vitro that HEMA was released into the adjacent biophase from such materials during the first days after placement. In this study uptake, distribution, and excretion of 14C-HEMA applied via gastric tube or subcutaneous administration at dose levels well above those encountered in dental care were examined in mice to test the hypothesis that HEMA can reach cytotoxic levels in mammalian tissues. 14C-HEMA was taken up rapidly from the stomach and intestines after gastric administration and was widely distributed in the body following administration by each route. Most 14C was excreted within one day as (14)CO(2). Two metabolic pathways of 14C-HEMA can be described. The peak HEMA levels in all tissues examined after 24h were lower than known toxic levels. Therefore the study did not support the hypothesis.

  4. Aggregation and transport of Brij surfactants in hydroxyethyl methacrylate hydrogels.

    PubMed

    Kapoor, Yash; Bengani, Lokendrakumar C; Tan, Grace; John, Vijay; Chauhan, Anuj

    2013-10-01

    Surfactant loaded polymeric hydrogels find applications in several technological areas including drug delivery. Drug transport can be attenuated in surfactant loaded gels through partitioning of the drug in the surfactant aggregates. The drug transport depends on the type of the aggregates and also on the surfactant transport because diffusion of the surfactant leads to dissolution of the aggregates. The drug and the surfactant transport can be characterized by the surfactant monomer diffusivity Ds. and the critical aggregation concentration C(*). Here we focus on the transport in hydroxyethyl methacrylate (HEMA) hydrogels loaded with three different types of Brij surfactants. We measure transport of a hydrophobic drug cyclosporine and the surfactant for surfactant loadings ranging from 0.1% to 8%, and utilize the data to predict the values of Ds. and C(*). We show that the predictions based on surfactant transport are significantly different from those based on modeling the drug transport. The differences are attributed to the assumption of just one type of aggregate in the gel irrespective of the total concentration. The transport data suggests existence of multiple types of aggregates and this hypothesis is validated for Brij 98 by imaging of the microstructure with free fracture SEM.

  5. 2-hydroxyethyl methacrylate as an inhibitor of matrix metalloproteinase-2.

    PubMed

    Carvalho, Rodrigo V; Ogliari, Fabrício A; de Souza, Ana P; Silva, Adriana F; Petzhold, Cesar L; Line, Sergio R P; Piva, Evandro; Etges, Adriana

    2009-02-01

    This study evaluated the effect of different concentrations of 2-hydroxyethyl methacrylate (HEMA) on the inhibition of matrix metalloproteinase-2 (MMP-2) in vitro. Mouse gingival explants were cultured overnight in Dulbecco's modified Eagle's minimal essential medium, following which the expression of secreted enzymes was analyzed by gelatin zymography and the effects of different amounts of HEMA on enzyme activity were investigated. The gelatinolytic proteinases present in the conditioned media were characterized as being matrix metalloproteinases (MMPs) by means of specific chemical inhibition. The MMPs present in the conditioned media were identified, using immunoprecipitation, as MMP-2. Three major bands were detected in the zymographic assays and were characterized, according to their respective molecular weights, into the following forms of MMP-2: zymogene (72 kDa), intermediate (66 kDa), and active (62 kDa). All forms of MMP-2 were inhibited by HEMA in a dose-dependent manner, implying that MMP-2 may be inhibited by HEMA in vivo.

  6. Carboxybetaine methacrylate oligomer modified nylon for circulating tumor cells capture.

    PubMed

    Dong, Chaoqun; Wang, Huiyu; Zhang, Zhuo; Zhang, Tao; Liu, Baorui

    2014-10-15

    Circulating tumor cells (CTC) capture is one of the most effective approaches in diagnosis and treatment of cancers in the field of personalized cancer medicine. In our study, zwitterionic carboxybetaine methacrylate (CBMA) oligomers were grafted onto nylon via atomic transfer random polymerization (ATRP) which would serve as a novel material for the development of convenient CTC capture interventional medical devices. The chemical, physical and biological properties of pristine and modified nylon surfaces were assessed by Fourier transform infrared spectra, atomic force microscope, water contact angle measurements, X-ray photoelectron spectroscopy, protein adsorption, platelet adhesion, and plasma recalcification time (PRT) determinations, etc. The results, including the significant decrease of proteins adsorption and platelets adhesion, as well as prolonged PRTs demonstrated the extraordinary biocompatibility and blood compatibility of the modified surface. Furthermore, we showed that upon immobilization of anti-epithelial cell adhesion molecular (anti-EpCAM) antibody onto the CBMA moiety, the modified nylon surface can selectively capture EpCAM positive tumor cells from blood with high efficiency, indicating the potential of the modified nylon in the manufacture of convenient interventional CTC capture medical devices.

  7. Wettability interpretation of oxygen plasma modified poly(methyl methacrylate).

    PubMed

    Chai, Jinan; Lu, Fuzhi; Li, Baoming; Kwok, Daniel Y

    2004-12-07

    Poly(methyl methacrylate) (PMMA) has been modified via a dc pulsed oxygen plasma for different treatment times. The modified surfaces were characterized by X-ray photoelectron spectroscopy (XPS), optical profilometer, zeta potential, and advancing contact angle measurements. The measured advancing contact angles of water decreased considerably as a function of discharge. Several oxygen-based functionalities (carbonyl, carboxyl, carbonate, etc.) were detected by XPS, while zeta potential measurements confirmed an increase in negative charge for the treated PMMA surface. Evaluating the correlation between the concentration of polar chemical species and zeta potential, we found that increase in surface hydrophilicity results from the coeffect due to incorporation of oxygen functional groups and creation of charge states. The electrical double layer (EDL) effect was also considered in contact angle interpretation by introducing an additional surface tension term into Young's equation. We also found that EDL contribution to the solid-liquid interfacial tension is negligible and can be safely ignored for the systems considered here.

  8. Relationship and interaction between sodium and potassium.

    PubMed

    Morris, R Curtis; Schmidlin, Olga; Frassetto, Lynda A; Sebastian, Anthony

    2006-06-01

    Compared with the Stone Age diet, the modern human diet is both excessive in NaCl and deficient in fruits and vegetables which are rich in K+ and HCO3- -yielding organates like citrate. With the modern diet, the K+/Na+ ratio and the HCO3-/Cl- ratio have both become reversed. Yet, the biologic machinery that evolved to process these dietary electrolytes remains largely unchanged, genetically fixed in Paleolithic time. Thus, the electrolytic mix of the modern diet is profoundly mismatched to its processing machinery. Dietary potassium modulates both the pressor and hypercalciuric effects of the modern dietary excess of NaCl. A marginally deficient dietary intake of potassium amplifies both of these effects, and both effects are dose-dependently attenuated and may be abolished either with dietary potassium or supplemental KHCO3. The pathogenic effects of a dietary deficiency of potassium amplify, and are amplified by, those of a dietary excess of NaCl and in some instances a dietary deficiency of bicarbonate precursors. Thus, in those ingesting the modern diet, it may not be possible to discern which of these dietary electrolytic dislocations is most determining of salt-sensitive blood pressure and hypercalciuria, and the hypertension, kidney stones, and osteoporosis they may engender. Obviously abnormal plasma electrolyte concentrations rarely characterize these dietary electrolytic dislocations, and when either dietary potassium or supplemental KHCO3 corrects the pressor and hypercalciuric effects of these dislocations, the plasma concentrations of sodium, potassium, bicarbonate and chloride change little and remain well within the normal range.

  9. Titanium-potassium heat pipe corrosion studies

    SciTech Connect

    Lundberg, L.B.

    1984-07-01

    An experimental study of the susceptibility of wickless titanium/potassium heat pipes to corrosive attack has been conducted in vacuo at 800/sup 0/K for 6511h and at 900/sup 0/K for 4797h without failure or degradation. Some movement of carbon, nitrogen and oxygen was observed in the titanium container tube, but no evidence of attack could be detected in metallographic cross sections of samples taken along the length of the heat pipes. The lack of observable attack of titanium by potassium under these conditions refutes previous reports of Ti-K incompatibility.

  10. A potassium Faraday anomalous dispersion optical filter

    NASA Technical Reports Server (NTRS)

    Yin, B.; Shay, T. M.

    1992-01-01

    The characteristics of a potassium Faraday anomalous dispersion optical filter operating on the blue and near infrared transitions are calculated. The results show that the filter can be designed to provide high transmission, very narrow pass bandwidth, and low equivalent noise bandwidth. The Faraday anomalous dispersion optical filter (FADOF) provides a narrow pass bandwidth (about GHz) optical filter for laser communications, remote sensing, and lidar. The general theoretical model for the FADOF has been established in our previous paper. In this paper, we have identified the optimum operational conditions for a potassium FADOF operating on the blue and infrared transitions. The signal transmission, bandwidth, and equivalent noise bandwidth (ENBW) are also calculated.

  11. Improved Synthesis Of Potassium Beta' '-Alumina

    NASA Technical Reports Server (NTRS)

    Williams, Roger M.; Jeffries-Nakamura, Barbara; Ryan, Margaret A.; O'Connor, Dennis E.; Kisor, Adam; Underwood, Mark

    1996-01-01

    Improved formulations of precursor materials synthesize nearly-phase-pure potassium beta' '-alumina solid electrolyte (K-BASE) powder. Materials are microhomogeneous powders (or, alternatively, gels) containing K(+,) Mg(2+), and Al(3+). K-BASE powder produced used in potassium-working-fluid alkali-metal thermal-to-electric conversion (K-AMTEC), in which heat-input and heat-rejection temperatures lower than sodium-working-fluid AMTEC (Na-AMTEC). Additional potential use lies in purification of pottassium by removal of sodium and calcium.

  12. 2-hydroxylethyl methacrylate (HEMA), a tooth restoration component, exerts its genotoxic effects in human gingival fibroblasts trough methacrylic acid, an immediate product of its degradation.

    PubMed

    Szczepanska, Joanna; Poplawski, Tomasz; Synowiec, Ewelina; Pawlowska, Elzbieta; Chojnacki, Cezary J; Chojnacki, Jan; Blasiak, Janusz

    2012-02-01

    HEMA (2-hydroxyethyl methacrylate), a methacrylate commonly used in dentistry, was reported to induce genotoxic effects, but their mechanism is not fully understood. HEMA may be degraded by the oral cavity esterases or through mechanical stress following the chewing process. Methacrylic acid (MAA) is the primary product of HEMA degradation. In the present work we compared cytotoxic and genotoxic effects induced by HEMA and MAA in human gingival fibroblasts (HGFs). A 6-h exposure to HEMA or MAA induced a weak decrease in the viability of HGFs. Neither HEMA nor MAA induced strand breaks in the isolated plasmid DNA, but both compounds evoked DNA damage in HGFs, as evaluated by the alkaline comet assay. Oxidative modifications to the DNA bases were monitored by the DNA repair enzymes Endo III and Fpg. DNA damage induced by HEMA and MAA was not persistent and was removed during a 120 min repair incubation. Results from the neutral comet assay indicated that both compounds induced DNA double strand breaks (DSBs) and they were confirmed by the γ-H2AX assay. Both compounds induced apoptosis and perturbed the cell cycle. Therefore, methacrylic acid, a product of HEMA degradation, may be involved in its cytotoxic and genotoxic action.

  13. Surface modification of silk fibroin fibers with poly(methyl methacrylate) and poly(tributylsilyl methacrylate) via RAFT polymerization for marine antifouling applications.

    PubMed

    Buga, Mihaela-Ramona; Zaharia, Cătălin; Bălan, Mihai; Bressy, Christine; Ziarelli, Fabio; Margaillan, André

    2015-06-01

    In this study, silk fibroin surface containing hydroxyl and aminogroups was firstly modified using a polymerizable coupling agent 3-(trimethoxysilyl) propyl methacrylate (MPS), in order to induce vinyl groups onto the fiber surface. The reversible addition-fragmentation chain transfer (RAFT)-mediated polymerization of methyl methacrylate (MMA) and tributylsilyl methacrylate (TBSiMA) through the immobilized vinyl bond on the silk fibroin surface in the presence of 2-cyanoprop-2-yl dithiobenzoate (CPDB) as chain-transfer agent and 2,2'-azobis(isobutyronitrile) (AIBN) as initiator was conducted in toluene solution at 70°C for 24h. The structure and properties of the modified fiber were characterized by Fourier Transform Infrared Spectroscopy, (13)C, (29)Si Nuclear Magnetic Resonance (NMR) spectroscopy, thermogravimetric analysis (TGA), scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS), confirming the presence of the coupling molecule and the methacrylate groups onto the silk fibroin fiber surface. Molecular weight distributions were assessed by triple detection size exclusion chromatography (TD-SEC) in order to verify the livingness of the polymerization.

  14. Poly(glycidyl methacrylate-co-2-hydroxyethyl methacrylate) Brushes as Peptide/Protein Microarray Substrate for Improving Protein Binding and Functionality.

    PubMed

    Lei, Zhen; Gao, Jiaxue; Liu, Xia; Liu, Dianjun; Wang, Zhenxin

    2016-04-27

    We developed a three-dimensional (3D) polymer-brush substrate for protein and peptide microarray fabrication, and this substrate was facilely prepared by copolymerization of glycidyl methacrylate (GMA) and 2-hydroxyethyl methacrylate (HEMA) monomers via surface-initiated atom transfer radical polymerization (SI-ATRP) on a glass slide. The performance of obtained poly(glycidyl methacrylate-co-2-hydroxyethyl methacrylate) (P(GMA-HEMA)) brush substrate was assessed by binding of human IgG with rabbit antihuman IgG antibodies on a protein microarray and by the determination of matrix metalloproteinase (MMP) activities on a peptide microarray. The P(GMA-HEMA) brush substrate exhibited higher immobilization capacities for proteins and peptides than those of a two-dimensional (2D) planar epoxy slide. Furthermore, the sensitivity of the P(GMA-HEMA) brush-based microarray on rabbit antihuman IgG antibody detection was much higher than that of its 2D counterpart. The enzyme activities of MMPs were determined specifically with a low detection limit of 6.0 pg mL(-1) for MMP-2 and 5.7 pg mL(-1) for MMP-9. By taking advantage of the biocompatibility of PHEMA, the P(GMA-HEMA) brush-based peptide microarray was also employed to evaluate the secretion of MMP-2 and MMP-9 by cells cultured off the chip or directly on the chip, and satisfactory results were obtained.

  15. Synthesis and characterization of fluorinated methacrylates-based copolymers containing cross-linkable pendant groups for optical waveguides

    NASA Astrophysics Data System (ADS)

    Kim, Ho June; Kim, Kwangsok; Chin, In-Joo

    2006-02-01

    Methacrylate based copolymers containing thermal and UV cross-linkable groups were prepared, ad their optical properties were investigated. Copolymerization of octafluoropentyl methacrylate (OFPMA) with hydroxyethyl methacrylate (HEMA) was followed by reacting HEMA and methacrylic anhydride (MAAN), yielding a fluorinated copolymer with cross-linkable pendant group. The refractive indices of the copolymers before cross-linking ranged from 1.4329 to 1.4646, and those of the cross-linked copolymers varied from 1.4500 to 1.4822, depending on the fluorine content.

  16. Synthesis of three different galactose-based methacrylate monomers for the production of sugar-based polymers.

    PubMed

    Desport, Jessica S; Mantione, Daniele; Moreno, Mónica; Sardón, Haritz; Barandiaran, María J; Mecerreyes, David

    2016-09-02

    Glycopolymers, synthetic sugar-containing macromolecules, are attracting ever-increasing interest from the chemistry community. Glycidyl methacrylate (GMA) is an important building block for the synthesis of sugar based methacrylate monomers and polymers. Normally, glycidyl methacrylate shows some advantages such as reactivity against nucleophiles or milder synthetic conditions such as other reactive methacrylate monomers. However, condensation reactions of glycidyl methacrylate with for instance protected galactose monomer leads to a mixture of two products due to a strong competition between the two possible pathways: epoxide ring opening or transesterification. In this paper, we propose two alternative routes to synthesize regiospecific galactose-based methacrylate monomers using the epoxy-ring opening reaction. In the first alternative route, the protected galactose is first oxidized to the acid in order to make it more reactive against the epoxide of GMA. In the second route, the protected sugar was first treated with epichlorohydrin followed by the epoxy ring opening reaction with methacrylic acid, to create an identical analogue of the ring-opening product of GMA. These two monomers were polymerized using conventional radical polymerization and were compared to the previously known galactose-methacrylate one. The new polymers show similar thermal stability but lower glass transition temperature (Tg) with respect to the known galactose methacrylate polymer.

  17. 21 CFR 582.5622 - Potassium chloride.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Potassium chloride. 582.5622 Section 582.5622 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or...

  18. 21 CFR 582.5628 - Potassium glycerophosphate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Potassium glycerophosphate. 582.5628 Section 582.5628 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients...

  19. 21 CFR 582.5634 - Potassium iodide.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Potassium iodide. 582.5634 Section 582.5634 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or...

  20. 21 CFR 582.5628 - Potassium glycerophosphate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Potassium glycerophosphate. 582.5628 Section 582.5628 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients...

  1. 21 CFR 582.5622 - Potassium chloride.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Potassium chloride. 582.5622 Section 582.5622 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or...

  2. 21 CFR 582.5622 - Potassium chloride.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Potassium chloride. 582.5622 Section 582.5622 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or...

  3. 21 CFR 582.5634 - Potassium iodide.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Potassium iodide. 582.5634 Section 582.5634 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or...

  4. 21 CFR 582.5628 - Potassium glycerophosphate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Potassium glycerophosphate. 582.5628 Section 582.5628 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients...

  5. Dendritic potassium channels in hippocampal pyramidal neurons

    PubMed Central

    Johnston, Daniel; Hoffman, Dax A; Magee, Jeffrey C; Poolos, Nicholas P; Watanabe, Shigeo; Colbert, Costa M; Migliore, Michele

    2000-01-01

    Potassium channels located in the dendrites of hippocampal CA1 pyramidal neurons control the shape and amplitude of back-propagating action potentials, the amplitude of excitatory postsynaptic potentials and dendritic excitability. Non-uniform gradients in the distribution of potassium channels in the dendrites make the dendritic electrical properties markedly different from those found in the soma. For example, the influence of a fast, calcium-dependent potassium current on action potential repolarization is progressively reduced in the first 150 μm of the apical dendrites, so that action potentials recorded farther than 200 μm from the soma have no fast after-hyperpolarization and are wider than those in the soma. The peak amplitude of back-propagating action potentials is also progressively reduced in the dendrites because of the increasing density of a transient potassium channel with distance from the soma. The activation of this channel can be reduced by the activity of a number of protein kinases as well as by prior depolarization. The depolarization from excitatory postsynaptic potentials (EPSPs) can inactivate these A-type K+ channels and thus lead to an increase in the amplitude of dendritic action potentials, provided the EPSP and the action potentials occur within the appropriate time window. This time window could be in the order of 15 ms and may play a role in long-term potentiation induced by pairing EPSPs and back-propagating action potentials. PMID:10811726

  6. Ezogabine: a new angle on potassium gates.

    PubMed

    Faught, Edward

    2011-05-01

    Ezogabine is a new drug for adjunctive therapy of partial-onset seizures with a novel mechanism of action. As a potassium-channel facilitator, it promotes membrane repolarization and thus opposes rapid repetitive discharges. Side effects are typical for antiepileptic drugs and the safety profile is good. Occasional instances of urinary difficulty may require surveillance.

  7. Dialysate and serum potassium in hemodialysis.

    PubMed

    Hung, Adriana M; Hakim, Raymond M

    2015-07-01

    Most patients with end-stage renal disease depend on intermittent hemodialysis to maintain levels of serum potassium and other electrolytes within a normal range. However, one of the challenges has been the safety of using a low-potassium dialysate to achieve that goal, given the concern about the effects that rapid and/or large changes in serum potassium concentrations may have on cardiac electrophysiology and arrhythmia. Additionally, in this patient population, there is a high prevalence of structural cardiac changes and ischemic heart disease, making them even more susceptible to acute arrhythmogenic triggers. This concern is highlighted by the knowledge that about two-thirds of all cardiac deaths in dialysis are due to sudden cardiac death and that sudden cardiac death accounts for 25% of the overall death for end-stage renal disease. Developing new approaches and practice standards for potassium removal during dialysis, as well as understanding other modifiable triggers of sudden cardiac death, such as other electrolyte components of the dialysate (magnesium and calcium), rapid ultrafiltration rates, and safety of a number of medications (ie, drugs that prolong the QT interval or use of digoxin), are critical in order to decrease the unacceptably high cardiac mortality experienced by hemodialysis-dependent patients.

  8. Potassium ferrate treatment of RFETS` contaminated groundwater

    SciTech Connect

    1995-01-01

    The potassium ferrate treatment study of Rocky Flats Environmental Technology Site (RFETS) groundwater was performed under the Sitewide Treatability Studies Program (STSP). This study was undertaken to determine the effectiveness of potassium ferrate in a water treatment system to remove the contaminants of concern (COCS) from groundwater at the RFETS. Potassium ferrate is a simple salt where the iron is in the plus six valence state. It is the iron at the plus six valence state (Fe {sup +6}) that makes it an unique water treatment chemical, especially in waters where the pH is greater than seven. In basic solutions where the solubility of the oxides/hydroxides of many of the COCs is low, solids are formed as the pH is raised. By using ferrate these solids are agglomerated so they can be effectively removed by sedimentation in conventional water treatment equipment. The objective of this study was to determine the quality of water after treatment with potassium ferrate and to determine if the Colorado Water Quality Control Commission (CWQCC) discharge limits for the COCs listed in Table 1.0-1 could be met. Radionuclides in the groundwater were of special concern.

  9. The physiology of potassium in crop production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Potassium plays a major role in the basic functions of plant growth and development. In addition, K is also involved in numerous physiological functions related to plant health and tolerance to biotic and abiotic stress. However, deficiencies occur widely resulting in poor growth, lost yield and red...

  10. Calcium, magnesium, and potassium in food

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The biochemical and physiological functions and consequences of deficient intakes, which show the nutritional importance of calcium, magnesium and potassium for humans, are reviewed. The dietary recommendations and food sources for these essential mineral elements for humans are presented. Factors t...

  11. [Use of potassium canrenoate in cardiosurgery].

    PubMed

    Tufano, R; Scopa, M; Brando, G; Leone, D

    1981-04-01

    The influence of canrenoate of potassium, a new injectable antialdosteronic, on serum, urinary and intraerythrocyte ionograms has been evaluated as part of a random controlled study on patients submitted to ECC heart surgery. The results show that the drug maintains correct ionic homoestasis and gradualises and potentiates diuresis, in association with furosemide. The possible clinical implications of these results are discussed.

  12. Potentiating potassium nitrate's desensitization with dimethyl isosorbide.

    PubMed

    Hodosh, M

    2001-01-01

    Desensitization of hypersensitive teeth by the combination of dimethyl isosorbide (DMI) and potassium nitrate (KNO3) is more effective than when KNO3 is used alone. KNO3/DMI work together to desensitize hypersensitive teeth at a higher, quicker, and more profound and lasting level.

  13. Hg0 absorption in potassium persulfate solution*

    PubMed Central

    Ye, Qun-feng; Wang, Cheng-yun; Wang, Da-hui; Sun, Guan; Xu, Xin-hua

    2006-01-01

    The aqueous phase oxidation of gaseous elemental mercury (Hg0) by potassium persulfate (KPS) catalyzed by Ag+ was investigated using a glass bubble column reactor. Concentration of gaseous mercury and potassium persulfate were measured by cold vapor atom absorption (CVAA) and ion chromatograph (IC), respectively. The effects of pH value, concentration of potassium persulfate and silver nitrate (SN), temperature, Hg0 concentration in the reactor inlet and tertiary butanol (TBA), free radical scavenger, on the removal efficiency of Hg0 were studied. The results showed that the removal efficiency of Hg0 increased with increasing concentration of potassium persulfate and silver nitrate, while temperature and TBA were negatively effective. Furthermore, the removal efficiency of Hg0 was much better in neutral solution than in both acidic and alkaline solution. But the influence of pH was almost eliminated by adding AgNO3. High Hg0 concentration has positive effect. The possible reaction mechanism of gaseous mercury was also discussed. PMID:16615172

  14. Dendritic potassium channels in hippocampal pyramidal neurons.

    PubMed

    Johnston, D; Hoffman, D A; Magee, J C; Poolos, N P; Watanabe, S; Colbert, C M; Migliore, M

    2000-05-15

    Potassium channels located in the dendrites of hippocampal CA1 pyramidal neurons control the shape and amplitude of back-propagating action potentials, the amplitude of excitatory postsynaptic potentials and dendritic excitability. Non-uniform gradients in the distribution of potassium channels in the dendrites make the dendritic electrical properties markedly different from those found in the soma. For example, the influence of a fast, calcium-dependent potassium current on action potential repolarization is progressively reduced in the first 150 micrometer of the apical dendrites, so that action potentials recorded farther than 200 micrometer from the soma have no fast after-hyperpolarization and are wider than those in the soma. The peak amplitude of back-propagating action potentials is also progressively reduced in the dendrites because of the increasing density of a transient potassium channel with distance from the soma. The activation of this channel can be reduced by the activity of a number of protein kinases as well as by prior depolarization. The depolarization from excitatory postsynaptic potentials (EPSPs) can inactivate these A-type K+ channels and thus lead to an increase in the amplitude of dendritic action potentials, provided the EPSP and the action potentials occur within the appropriate time window. This time window could be in the order of 15 ms and may play a role in long-term potentiation induced by pairing EPSPs and back-propagating action potentials.

  15. 21 CFR 184.1804 - Sodium potassium tartrate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Sodium potassium tartrate. 184.1804 Section 184... Listing of Specific Substances Affirmed as GRAS § 184.1804 Sodium potassium tartrate. (a) Sodium potassium tartrate (C4H4KNaO6·4H2O, CAS Reg. No. 304-59-6) is the sodium potassium salt of l−(+)−tartaric acid and...

  16. 21 CFR 184.1804 - Sodium potassium tartrate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Sodium potassium tartrate. 184.1804 Section 184... Listing of Specific Substances Affirmed as GRAS § 184.1804 Sodium potassium tartrate. (a) Sodium potassium tartrate (C4H4KNaO6·4H2O, CAS Reg. No. 304-59-6) is the sodium potassium salt of l−(+)−tartaric acid and...

  17. 21 CFR 184.1077 - Potassium acid tartrate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Potassium acid tartrate. 184.1077 Section 184.1077... Listing of Specific Substances Affirmed as GRAS § 184.1077 Potassium acid tartrate. (a) Potassium acid tartrate (C4H5KO6, CAS Reg. No. 868-14-4) is the potassium acid salt of l−(+)−tartaric acid and is...

  18. 21 CFR 184.1804 - Sodium potassium tartrate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sodium potassium tartrate. 184.1804 Section 184... Listing of Specific Substances Affirmed as GRAS § 184.1804 Sodium potassium tartrate. (a) Sodium potassium tartrate (C4H4KNaO6·4H2O, CAS Reg. No. 304-59-6) is the sodium potassium salt of l−(+)−tartaric acid and...

  19. 21 CFR 184.1804 - Sodium potassium tartrate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Sodium potassium tartrate. 184.1804 Section 184... Listing of Specific Substances Affirmed as GRAS § 184.1804 Sodium potassium tartrate. (a) Sodium potassium tartrate (C4H4KNaO6·4H2O, CAS Reg. No. 304-59-6) is the sodium potassium salt of l−(+)−tartaric acid and...

  20. 21 CFR 184.1804 - Sodium potassium tartrate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Sodium potassium tartrate. 184.1804 Section 184... as GRAS § 184.1804 Sodium potassium tartrate. (a) Sodium potassium tartrate (C4H4KNaO6·4H2O, CAS Reg. No. 304-59-6) is the sodium potassium salt of l−(+)−tartaric acid and is also called the...

  1. 21 CFR 184.1077 - Potassium acid tartrate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Potassium acid tartrate. 184.1077 Section 184.1077... Listing of Specific Substances Affirmed as GRAS § 184.1077 Potassium acid tartrate. (a) Potassium acid tartrate (C4H5KO6, CAS Reg. No. 868-14-4) is the potassium acid salt of l−(+)−tartaric acid and is...

  2. 21 CFR 184.1077 - Potassium acid tartrate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Potassium acid tartrate. 184.1077 Section 184.1077... Listing of Specific Substances Affirmed as GRAS § 184.1077 Potassium acid tartrate. (a) Potassium acid tartrate (C4H5KO6, CAS Reg. No. 868-14-4) is the potassium acid salt of l−(+)−tartaric acid and is...

  3. 21 CFR 184.1077 - Potassium acid tartrate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Potassium acid tartrate. 184.1077 Section 184.1077... Listing of Specific Substances Affirmed as GRAS § 184.1077 Potassium acid tartrate. (a) Potassium acid tartrate (C4H5KO6, CAS Reg. No. 868-14-4) is the potassium acid salt of l−(+)−tartaric acid and is...

  4. Proton conductivity of potassium doped barium zirconates

    SciTech Connect

    Xu Xiaoxiang; Tao Shanwen; Irvine, John T.S.

    2010-01-15

    Potassium doped barium zirconates have been synthesized by solid state reactions. It was found that the solubility limit of potassium on A-sites is between 5% and 10%. Introducing extra potassium leads to the formation of second phase or YSZ impurities. The water uptake of barium zirconates was increased even with 5% doping of potassium at the A-site. The sintering conditions and conductivity can be improved significantly by adding 1 wt% ZnO during material synthesis. The maximum solubility for yttrium at B-sites is around 15 at% after introducing 1 wt% zinc. The conductivity of Ba{sub 0.95}K{sub 0.05}Zr{sub 0.85}Y{sub 0.11}Zn{sub 0.04}O{sub 3-{delta}} at 600 deg. C is 2.2x10{sup -3} S/cm in wet 5% H{sub 2}. The activation energies for bulk and grain boundary are 0.29(2), 0.79(2) eV in wet 5% H{sub 2} and 0.31(1), 0.74(3) eV in dry 5% H{sub 2}. A power density of 7.7 mW/cm{sup 2} at 718 deg. C was observed when a 1 mm thick Ba{sub 0.95}K{sub 0.05}Zr{sub 0.85}Y{sub 0.11}Zn{sub 0.04}O{sub 3-{delta}} pellet was used as electrolyte and platinum electrodes. - Graphical abstract: Potassium doped barium zirconates have been synthesized by solid state reactions. It was found that the solubility limit of potassium on A-sites is between 5% and 10 %. The sintering conditions and conductivity can be improved significantly by adding 1 wt% ZnO during material synthesis. Five percent doping of potassium at A-site can double the total conductivity.

  5. Horseradish peroxidase mediated free radical polymerization of methyl methacrylate.

    PubMed

    Kalra, B; Gross, R A

    2000-01-01

    This paper reports the free radical polymerization of methyl methacrylate (MMA) catalyzed by horseradish peroxidase (HRP). A novel method was developed whereby MMA polymerization can be carried out at ambient temperatures in the presence of low concentrations of hydrogen peroxide and 2,4-pentanedione in a mixture of water and a water-miscible solvent. Polymers of MMA formed were highly stereoregular with predominantly syndiotactic sequences (syn-dyad fractions from 0.82 to 0.87). Analyses of the chloroform-soluble fraction of syndio-PMMA products by GPC showed that they have number-average molecular weights, Mn, that range from 7500 to 75,000. By using 25% v/v of the cosolvents dioxane, tetrahydrofuran, acetone, and dimethylformamide, 85, 45, 7 and 2% product yields, respectively, resulted after 24 h. Increasing the proportion of dioxane to water from 1:3 to 1:1 and 3:1 resulted in a decrease in polymer yield from 45 to 38 and 7%, respectively. Increase in the enzyme concentration from 70 to 80 and 90 mg/mL resulted in increased reaction kinetics. By adjustment of the molar ratio of 2,4-pentanedione to hydrogen peroxide between 1.30:1.0 and 1.45:1.0, the product yields and Mn values were increased. On the basis of the catalytic properties of HRP and studies herein, we believe that the keto-enoxy radicals from 2,4-pentanedione are the first radical species generated. Then, initiation may take place through this radical or by the radical transfer to another molecule.

  6. Dual-functional electrospun poly(2-hydroxyethyl methacrylate).

    PubMed

    Zhang, Bo; Lalani, Reza; Cheng, Fang; Liu, Qingsheng; Liu, Lingyun

    2011-12-01

    Poly(2-hydroxyethyl methacrylate) (pHEMA) has been widely used in many biomedical applications due to its well-known biocompatibility. For tissue engineering applications, porous scaffolds that mimic fibrous structures of natural extracellular matrix and possess high surface-area-to-volume ratios are highly desirable. So far, a systematic approach to control diameter and morphology of pHEMA fibers has not been reported and potential applications of pHEMA fibers have barely been explored. In this work, pHEMA was synthesized and processed into fibrous scaffolds using an electrospinning approach. Fiber diameters from 270 nm to 3.6 μm were achieved by controlling polymer solution concentration and electrospinning flow rate. Post-electrospinning thermal treatment significantly improves integrity of the electrospun membranes in water. The pHEMA microfibrous membranes exhibited water absorption up to 280% (w/w), whereas the pHEMA hydrogel only absorbed 70% water. Fibrinogen adsorption experiments demonstrate that the electrospun pHEMA fibers highly resist nonspecific protein adsorption. Hydroxyl groups on electrospun pHEMA fibers were further activated for protein immobilization. A bovine serum albumin (BSA) binding capacity as high as 120 mg BSA/g membrane was realized at an intermediate fiber diameter. The pHEMA fibrous scaffolds functionalized with collagen I significantly promoted fibroblast adhesion, spreading, and proliferation. We conclude that the electrospun pHEMA fibers are dual functional, that is, they resist nonspecific protein adsorption meanwhile abundant hydroxyl groups on fibers allow effective conjugation of biomolecules in a nonfouling background. High water absorption and dual functionality of the electrospun pHEMA fibers may lead to a number of potential applications such as wound dressings, tissue scaffolds, and affinity membranes.

  7. Assessment of methyl methacrylate genotoxicity by the micronucleus test.

    PubMed

    Araújo, Amarildo Mariano de; Alves, Guilherme Rodrigues; Avanço, Guilherme Trevisan; Parizi, José Luiz Santos; Nai, Gisele Alborghetti

    2013-01-01

    The aim of this study was to evaluate the genotoxic potential of methyl methacrylate (MMA) vapor by simulating standard occupational exposure of 8 hours per day and using the micronucleus test. We used 32 adult male Wistar rats divided into three groups: A - 16 rats exposed to MMA for 8 hours a day, B - Eight rats receiving single subcutaneous doses of cyclophosphamide on the first day of the experiment (positive control), C - Eight rats receiving only water and food ad libitum (negative control). Eight rats from group A and all of the rats from groups B and C were sacrificed 24 hours after beginning the experiment (acute exposure in group A). The remaining animals in group A were sacrificed 5 days after the experiment began (repeated exposure assessment in group A, simulating occupational exposure 40 hours/week). Femoral bone marrow was collected from each rat at the time of sacrifice for use in the micronucleus test. Two slides were completed per animal and were stained with Giemsa staining. Two thousand polychromatic erythrocytes were counted per animal. The Kruskal-Wallis test followed by a multiple comparisons test (Dunn test) was used for statistical analysis. The median number of micronuclei was 7.00 in the group exposed to MMA for 1 day, 2.00 in the group exposed to MMA for 5 days, 9.00 in the group exposed to cyclophosphamide (positive control) and 0.756 in the negative control group (p < 0.0001). MMA was genotoxic when measured after 1 day of exposure but was not evidently genotoxic after 5 days.

  8. Can quaternary ammonium methacrylates inhibit matrix MMPs and cathepsins?

    PubMed Central

    Tezvergil-Mutluay, Arzu; Agee, Kelli A.; Mazzoni, Annalisa; Carvalho, Ricardo M.; Carrilho, Marcela; Tersariol, Ivarne L.; Nascimento, Fabio D.; Imazato, Satoshi; Tjäderhane, Leo; Breschi, Lorenzo; Tay, Franklin R; Pashley, David H.

    2014-01-01

    Objective Dentin matrices release ICTP and CTX fragments during collagen degradation. ICTP fragments are known to be produced by MMPs. CTX fragments are thought to come from cathepsin K activity. The purpose of this study was to determine if quaternary methacrylates (QAMs) can inhibit matrix MMPs and cathepsins. Methods Dentin beams were demineralizated, and dried to constant weight. Beams were incubated with rh-cathepsin B, K, L or S for 24 h at pH 7.4 to identify which cathepsins release CTX at neutral pH. Beams were dipped in ATA, an antimicrobial QAM to determine if it can inhibit dentin matrix proteases. Other beams were dipped in another QAM (MDPB) to determine if it produced similar inhibition of dentin proteases. Results Only beams incubated with cathepsin K lost more dry mass than the controls and released CTX. Dentin beams dipped in ATA and incubated for 1 week at pH 7.4, showed a concentration-dependent reduction in weight-loss. There was no change in ICTP release from control values, meaning that ATA did not inhibit MMPs. Media concentrations of CTX fell significantly at 15 wt% ATA indicating that ATA inhibits capthesins. Beams dipped in increasing concentrations of MDPB lost progressively less mass, showing that MDPB is a protease-inhibitor. ICTP released from controls or beams exposed to low concentrations were the same, while 5 or 10% MDPB significantly lowered ICTP production. CTX levels were strongly inhibited by 2.5–10% MDPB, indicating that MDPB is a potent inhibitor of both MMPs and cathepsin K. Significance CTX seems to be released from dentin matrix only by cathepsin K. MMPs and cathepsin K and B may all contribute to matrix degradation. PMID:25467953

  9. 40 CFR 721.638 - Silyl amine, potassium salt (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Silyl amine, potassium salt (generic... Substances § 721.638 Silyl amine, potassium salt (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as silyl amine, potassium...

  10. 40 CFR 721.7375 - Potassium salt of polyolefin acid.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Potassium salt of polyolefin acid. 721... Substances § 721.7375 Potassium salt of polyolefin acid. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a potassium salt of...

  11. 40 CFR 721.7375 - Potassium salt of polyolefin acid.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Potassium salt of polyolefin acid. 721... Substances § 721.7375 Potassium salt of polyolefin acid. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a potassium salt of...

  12. 40 CFR 721.638 - Silyl amine, potassium salt (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Silyl amine, potassium salt (generic... Substances § 721.638 Silyl amine, potassium salt (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as silyl amine, potassium...

  13. 75 FR 42783 - Certain Potassium Phosphate Salts From China

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-22

    ... COMMISSION Certain Potassium Phosphate Salts From China Determinations On the basis of the record \\1... of certain potassium phosphate salts, specifically anhydrous dipotassium phosphate (``DKP'') and... publishing the notice in the Federal Register of April 1, 2010 (Certain Potassium Phosphate Salts from...

  14. 40 CFR 721.5970 - Phosphated polyarylphenol ethoxylate, potassium salt.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., potassium salt. 721.5970 Section 721.5970 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.5970 Phosphated polyarylphenol ethoxylate, potassium salt. (a) Chemical... as phosphated polyarylphenol ethoxylate, potassium salt (PMN P-93-1222) is subject to reporting...

  15. 40 CFR 721.5970 - Phosphated polyarylphenol ethoxylate, potassium salt.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., potassium salt. 721.5970 Section 721.5970 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.5970 Phosphated polyarylphenol ethoxylate, potassium salt. (a) Chemical... as phosphated polyarylphenol ethoxylate, potassium salt (PMN P-93-1222) is subject to reporting...

  16. 75 FR 63856 - Potassium Permanganate From China Determination

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-18

    ... COMMISSION Potassium Permanganate From China Determination On the basis of the record \\1\\ developed in the... antidumping duty order on potassium permanganate from China would be likely to lead to continuation or... Potassium Permanganate from China: Investigation No. 731-TA- 125 (Third Review). Issued: October 1, 2010....

  17. Extracellular potassium homeostasis: insights from hypokalemic periodic paralysis.

    PubMed

    Cheng, Chih-Jen; Kuo, Elizabeth; Huang, Chou-Long

    2013-05-01

    Extracellular potassium makes up only about 2% of the total body's potassium store. The majority of the body potassium is distributed in the intracellular space, of which about 80% is in skeletal muscle. Movement of potassium in and out of skeletal muscle thus plays a pivotal role in extracellular potassium homeostasis. The exchange of potassium between the extracellular space and skeletal muscle is mediated by specific membrane transporters. These include potassium uptake by Na(+), K(+)-adenosine triphosphatase and release by inward-rectifier K(+) channels. These processes are regulated by circulating hormones, peptides, ions, and by physical activity of muscle as well as dietary potassium intake. Pharmaceutical agents, poisons, and disease conditions also affect the exchange and alter extracellular potassium concentration. Here, we review extracellular potassium homeostasis, focusing on factors and conditions that influence the balance of potassium movement in skeletal muscle. Recent findings that mutations of a skeletal muscle-specific inward-rectifier K(+) channel cause hypokalemic periodic paralysis provide interesting insights into the role of skeletal muscle in extracellular potassium homeostasis. These recent findings are reviewed.

  18. 21 CFR 520.1696d - Penicillin V potassium tablets.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Penicillin V potassium tablets. 520.1696d Section... Penicillin V potassium tablets. (a) Specifications. Each tablet contains penicillin V potassium equivalent to 125 milligrams (200,000 units) or 250 milligrams (400,000 units) of penicillin V. (b) Sponsors....

  19. 21 CFR 520.1696d - Penicillin V potassium tablets.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Penicillin V potassium tablets. 520.1696d Section... Penicillin V potassium tablets. (a) Specifications. Each tablet contains penicillin V potassium equivalent to 125 milligrams (200,000 units) or 250 milligrams (400,000 units) of penicillin V. (b) Sponsors....

  20. 21 CFR 520.1696d - Penicillin V potassium tablets.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Penicillin V potassium tablets. 520.1696d Section... Penicillin V potassium tablets. (a) Specifications. Each tablet contains penicillin V potassium equivalent to 125 milligrams (200,000 units) or 250 milligrams (400,000 units) of penicillin V. (b) Sponsors....

  1. Comparative Efficacy of Potassium Levulinate with/without Potassium Diacetate and Potassium Propionate vs Potassium Lactate and Sodium Diacetate for Control of Listeria monocytogenes on commercially prepared uncured t.breast

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We evaluated the efficacy of potassium levulinate, potassium diacetate, and potassium propionate to inhibit Listeria monocytogenes on commercially-prepared, uncured turkey breast during refrigerated storage. Whole muscle, uncured turkey breast chubs (ca. 5 kg each) were formulated with or without po...

  2. 21 CFR 582.6804 - Sodium potassium tartrate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Sodium potassium tartrate. 582.6804 Section 582.6804 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED....6804 Sodium potassium tartrate. (a) Product. Sodium potassium tartrate. (b) Conditions of use....

  3. 40 CFR 721.10357 - Iron, citrate phosphate potassium complexes.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Iron, citrate phosphate potassium... Specific Chemical Substances § 721.10357 Iron, citrate phosphate potassium complexes. (a) Chemical..., citrate phosphate potassium complexes (PMN P-09-382; CAS No. 120579-31-9) is subject to reporting...

  4. 40 CFR 721.10357 - Iron, citrate phosphate potassium complexes.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Iron, citrate phosphate potassium... Specific Chemical Substances § 721.10357 Iron, citrate phosphate potassium complexes. (a) Chemical..., citrate phosphate potassium complexes (PMN P-09-382; CAS No. 120579-31-9) is subject to reporting...

  5. 21 CFR 582.1804 - Sodium potassium tartrate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Sodium potassium tartrate. 582.1804 Section 582.1804 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Additives § 582.1804 Sodium potassium tartrate. (a) Product. Sodium potassium tartrate. (b) Conditions...

  6. 21 CFR 526.1130 - Hetacillin potassium for intramammary infusion.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Hetacillin potassium for intramammary infusion... Hetacillin potassium for intramammary infusion. (a) Specifications. Each 10 milliliter syringe contains hetacillin potassium equivalent of 62.5 milligrams of ampicillin. (b) Sponsor. See No. 000010 in §...

  7. 21 CFR 582.6804 - Sodium potassium tartrate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Sodium potassium tartrate. 582.6804 Section 582.6804 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED....6804 Sodium potassium tartrate. (a) Product. Sodium potassium tartrate. (b) Conditions of use....

  8. 21 CFR 582.6804 - Sodium potassium tartrate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Sodium potassium tartrate. 582.6804 Section 582.6804 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED....6804 Sodium potassium tartrate. (a) Product. Sodium potassium tartrate. (b) Conditions of use....

  9. 21 CFR 582.1077 - Potassium acid tartrate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Potassium acid tartrate. 582.1077 Section 582.1077 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1077 Potassium acid tartrate. (a) Product. Potassium acid tartrate. (b) Conditions of...

  10. 40 CFR 721.10357 - Iron, citrate phosphate potassium complexes.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Iron, citrate phosphate potassium... Specific Chemical Substances § 721.10357 Iron, citrate phosphate potassium complexes. (a) Chemical..., citrate phosphate potassium complexes (PMN P-09-382; CAS No. 120579-31-9) is subject to reporting...

  11. 21 CFR 582.1804 - Sodium potassium tartrate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Sodium potassium tartrate. 582.1804 Section 582.1804 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Additives § 582.1804 Sodium potassium tartrate. (a) Product. Sodium potassium tartrate. (b) Conditions...

  12. 21 CFR 582.6804 - Sodium potassium tartrate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Sodium potassium tartrate. 582.6804 Section 582.6804 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED....6804 Sodium potassium tartrate. (a) Product. Sodium potassium tartrate. (b) Conditions of use....

  13. 21 CFR 582.1804 - Sodium potassium tartrate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Sodium potassium tartrate. 582.1804 Section 582.1804 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Additives § 582.1804 Sodium potassium tartrate. (a) Product. Sodium potassium tartrate. (b) Conditions...

  14. 21 CFR 526.1130 - Hetacillin potassium for intramammary infusion.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Hetacillin potassium for intramammary infusion... § 526.1130 Hetacillin potassium for intramammary infusion. (a) Specifications. Each 10 milliliter syringe contains hetacillin potassium equivalent of 62.5 milligrams of ampicillin. (b) Sponsor. See...

  15. 21 CFR 526.1130 - Hetacillin potassium for intramammary infusion.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Hetacillin potassium for intramammary infusion... § 526.1130 Hetacillin potassium for intramammary infusion. (a) Specifications. Each 10 milliliter syringe contains hetacillin potassium equivalent of 62.5 milligrams of ampicillin. (b) Sponsor. See...

  16. 21 CFR 582.1804 - Sodium potassium tartrate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Sodium potassium tartrate. 582.1804 Section 582.1804 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Additives § 582.1804 Sodium potassium tartrate. (a) Product. Sodium potassium tartrate. (b) Conditions...

  17. 21 CFR 526.1130 - Hetacillin potassium for intramammary infusion.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Hetacillin potassium for intramammary infusion... § 526.1130 Hetacillin potassium for intramammary infusion. (a) Specifications. Each 10 milliliter syringe contains hetacillin potassium equivalent of 62.5 milligrams of ampicillin. (b) Sponsor. See...

  18. 21 CFR 582.1804 - Sodium potassium tartrate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Sodium potassium tartrate. 582.1804 Section 582.1804 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Additives § 582.1804 Sodium potassium tartrate. (a) Product. Sodium potassium tartrate. (b) Conditions...

  19. 21 CFR 582.6804 - Sodium potassium tartrate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Sodium potassium tartrate. 582.6804 Section 582.6804 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED....6804 Sodium potassium tartrate. (a) Product. Sodium potassium tartrate. (b) Conditions of use....

  20. 40 CFR 721.10031 - Lithium potassium titanium oxide.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Lithium potassium titanium oxide. 721... Substances § 721.10031 Lithium potassium titanium oxide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as lithium potassium titanium oxide (PMN...

  1. 40 CFR 721.10553 - Potassium titanium oxide.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Potassium titanium oxide. 721.10553... Substances § 721.10553 Potassium titanium oxide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as potassium titanium oxide (PMN P-06-149; CAS No....

  2. 40 CFR 721.10031 - Lithium potassium titanium oxide.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Lithium potassium titanium oxide. 721... Substances § 721.10031 Lithium potassium titanium oxide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as lithium potassium titanium oxide (PMN...

  3. 40 CFR 721.10031 - Lithium potassium titanium oxide.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Lithium potassium titanium oxide. 721... Substances § 721.10031 Lithium potassium titanium oxide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as lithium potassium titanium oxide (PMN...

  4. 40 CFR 721.10031 - Lithium potassium titanium oxide.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Lithium potassium titanium oxide. 721... Substances § 721.10031 Lithium potassium titanium oxide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as lithium potassium titanium oxide (PMN...

  5. 40 CFR 721.10031 - Lithium potassium titanium oxide.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Lithium potassium titanium oxide. 721... Substances § 721.10031 Lithium potassium titanium oxide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as lithium potassium titanium oxide (PMN...

  6. 40 CFR 721.10553 - Potassium titanium oxide.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Potassium titanium oxide. 721.10553... Substances § 721.10553 Potassium titanium oxide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as potassium titanium oxide (PMN P-06-149; CAS No....

  7. 40 CFR 721.638 - Silyl amine, potassium salt (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Silyl amine, potassium salt (generic... Substances § 721.638 Silyl amine, potassium salt (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as silyl amine, potassium...

  8. 40 CFR 721.7375 - Potassium salt of polyolefin acid.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Potassium salt of polyolefin acid. 721... Substances § 721.7375 Potassium salt of polyolefin acid. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a potassium salt of...

  9. 40 CFR 721.5970 - Phosphated polyarylphenol ethoxylate, potassium salt.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., potassium salt. 721.5970 Section 721.5970 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.5970 Phosphated polyarylphenol ethoxylate, potassium salt. (a) Chemical... as phosphated polyarylphenol ethoxylate, potassium salt (PMN P-93-1222) is subject to reporting...

  10. 40 CFR 721.7375 - Potassium salt of polyolefin acid.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Potassium salt of polyolefin acid. 721... Substances § 721.7375 Potassium salt of polyolefin acid. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a potassium salt of...

  11. 40 CFR 721.5970 - Phosphated polyarylphenol ethoxylate, potassium salt.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., potassium salt. 721.5970 Section 721.5970 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.5970 Phosphated polyarylphenol ethoxylate, potassium salt. (a) Chemical... as phosphated polyarylphenol ethoxylate, potassium salt (PMN P-93-1222) is subject to reporting...

  12. 40 CFR 721.638 - Silyl amine, potassium salt (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Silyl amine, potassium salt (generic... Substances § 721.638 Silyl amine, potassium salt (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as silyl amine, potassium...

  13. 40 CFR 721.5970 - Phosphated polyarylphenol ethoxylate, potassium salt.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., potassium salt. 721.5970 Section 721.5970 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.5970 Phosphated polyarylphenol ethoxylate, potassium salt. (a) Chemical... as phosphated polyarylphenol ethoxylate, potassium salt (PMN P-93-1222) is subject to reporting...

  14. 40 CFR 721.638 - Silyl amine, potassium salt (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Silyl amine, potassium salt (generic... Substances § 721.638 Silyl amine, potassium salt (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as silyl amine, potassium...

  15. 40 CFR 721.7375 - Potassium salt of polyolefin acid.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Potassium salt of polyolefin acid. 721... Substances § 721.7375 Potassium salt of polyolefin acid. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a potassium salt of...

  16. 21 CFR 182.1129 - Aluminum potassium sulfate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Aluminum potassium sulfate. 182.1129 Section 182.1129 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Food Substances § 182.1129 Aluminum potassium sulfate. (a) Product. Aluminum potassium sulfate....

  17. 21 CFR 582.1129 - Aluminum potassium sulfate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Aluminum potassium sulfate. 582.1129 Section 582.1129 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Additives § 582.1129 Aluminum potassium sulfate. (a) Product. Aluminum potassium sulfate. (b) Conditions...

  18. 21 CFR 182.1129 - Aluminum potassium sulfate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Aluminum potassium sulfate. 182.1129 Section 182.1129 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Food Substances § 182.1129 Aluminum potassium sulfate. (a) Product. Aluminum potassium sulfate....

  19. 21 CFR 182.1129 - Aluminum potassium sulfate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Aluminum potassium sulfate. 182.1129 Section 182.1129 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Food Substances § 182.1129 Aluminum potassium sulfate. (a) Product. Aluminum potassium sulfate....

  20. 21 CFR 582.1129 - Aluminum potassium sulfate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Aluminum potassium sulfate. 582.1129 Section 582.1129 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Additives § 582.1129 Aluminum potassium sulfate. (a) Product. Aluminum potassium sulfate. (b) Conditions...