Science.gov

Sample records for 3-t mri system

  1. Philips 3T Intera Magnetic Resonance Imaging System and Upgrade of existing MRI equipment

    SciTech Connect

    Evanochko, William T

    2004-05-14

    The objective of this proposal was twofold. First, upgrade existing MRI equipment, specifically a research 4.1T whole-body system. Second, purchase a clinical, state-of-the-art 3T MRI system tailored specifically to cardiovascular and neurological applications. This project was within the guidelines of ''Medical Applications and Measurement Science''. The goals were: [1] to develop beneficial applications of magnetic resonance imaging; [2] discover new applications of MR strategies for medical research; and [2] apply them for clinical diagnosis. Much of this proposal searched for breakthroughs in this noninvasive and nondestructive imaging technology. Finally, this proposal's activities focused on research in the basic science of chemistry, biochemistry, physics, and engineering as applied to bioengineering. The centerpiece of this grant was our 4.1T ultra-high field whole-body nuclear magnetic resonance system and the newly acquired state-of-the-art, heart and head dedicated 3T clinical MRI system. We have successfully upgraded the equipment for the 4.1T system so that it is now state-of-the-art with new gradient and radio frequency amplifiers. We also purchase a unique In Vivo EKG monitoring unit that will permit tracking clinical quality EKG signals while the patient is in a high field MR scanner. Important upgrades of a peripheral vascular coil and a state-of-the-art clinical workstation for processing complex heart images were implemented. The most recent acquisition was the purchase of a state-of-the-art Philips 3T Intera clinical MRI system. This system is unique in that the magnet is only 5 1/2 feet long compare to over 12 feet long magnet of our 4.1T MRI system. The 3T MRI system is fully functional and its use and applications are already greatly benefiting the UAB with 200-300 micron resolution brain images and diagnostic quality MR angiography of coronary arteries in less than 5 minutes.

  2. A 20-Channel Receive-Only Mouse Array Coil for a 3T Clinical MRI System

    PubMed Central

    Keil, Boris; Wiggins, Graham C.; Triantafyllou, Christina; Wald, Lawrence L.; Meise, Florian M.; Schreiber, Laura M.; Klose, Klaus J.; Heverhagen, Johannes T.

    2010-01-01

    A 20-channel phased-array coil for Magnetic Resonance Imaging (MRI) of mice has been designed, constructed and validated with bench measurements and high resolution accelerated imaging. The technical challenges of designing a small, high density array have been overcome using individual small-diameter coil elements arranged on a cylinder in a hexagonal overlapping design with adjacent low impedance preamplifiers to further decouple the array elements. Signal-to-noise ratio (SNR) and noise amplification in accelerated imaging were simulated and quantitatively evaluated in phantoms and in vivo mouse images. Comparison between the 20-channel mouse array and a length-matched quadrature driven small animal birdcage coil showed an SNR increase at the periphery and in the center of the phantom of 3-fold and 1.3-fold, respectively. Comparison to a shorter but SNR-optimized birdcage coil (aspect ratio 1:1 and only half mouse coverage) showed an SNR gain of 2-fold at the edge of the phantom and similar SNR in the center. G-factor measurements indicate that the coil is well suited to acquire highly accelerated images. PMID:21433066

  3. Design of a loop resonator with a split-ring-resonator (SRR) for a human-body coil in 3 T MRI systems

    NASA Astrophysics Data System (ADS)

    Son, Hyeok Woo; Cho, Young Ki; Kim, Byung Mun; Back, Hyun Man; Yoo, Hyoungsuk

    2016-04-01

    A new radio-frequency (RF) resonator for Nuclear Magnetic Resonance (NMR) imaging at clinical magnetic resonance imaging (MRI) systems is proposed in this paper. An approach based on the effects of the properties of metamaterials in split-ring resonators (SRRs) is used to design a new loop resonator with a SRR for NMR imaging. This loop resonator with a SRR is designed for NMR imaging at 3 T MRI systems. The 3D electromagnetic simulation was used to optimize the design of the proposed RF resonator and analyze it's performance at 3 T MRI systems. The proposed RF resonator provides strong penetrating magnetic fields at the center of the human phantom model, approximately 10%, as compared to the traditional loop-type RF resonator used for NMR imaging at clinical MRI systems. We also designed an 8-channel body coil for human-body NMR imaging by using the proposed loop resonator with a SRR. This body coil also produces more homogeneous and highly penetrating magnetic fields into the human phantom model.

  4. 3-T MRI safety assessments of magnetic dental attachments and castable magnetic alloys

    PubMed Central

    Miyata, K; Abe, Y; Ishii, T; Ishigami, T; Ohtani, K; Nagai, E; Ohyama, T; Umekawa, Y; Nakabayashi, S

    2015-01-01

    Objectives: To assess the safety of different magnetic dental attachments during 3-T MRI according to the American Society for Testing and Materials F2182-09 and F2052-06e1 standard testing methods and to develop a method to determine MRI compatibility by measuring magnetically induced torque. Methods: The temperature elevations, magnetically induced forces and torques of a ferromagnetic stainless steel keeper, a coping comprising a keeper and a cast magnetic alloy coping were measured on MRI systems. Results: The coping comprising a keeper demonstrated the maximum temperature increase (1.42 °C) for the whole-body-averaged specific absorption rate and was calculated as 2.1 W kg−1 with the saline phantom. All deflection angles exceeded 45°. The cast magnetic alloy coping had the greatest deflection force (0.33 N) during 3-T MRI and torque (1.015 mN m) during 0.3-T MRI. Conclusions: The tested devices showed minimal radiofrequency (RF)-induced heating in a 3-T MR environment, but the cast magnetic alloy coping showed a magnetically induced deflection force and torque approximately eight times that of the keepers. For safety, magnetic dental attachments should be inspected before and after MRI and large prostheses containing cast magnetic alloy should be removed. Although magnetic dental attachments may pose no great risk of RF-induced heating or magnetically induced torque during 3-T MRI, their magnetically induced deflection forces tended to exceed acceptable limits. Therefore, the inspection of such devices before and after MRI is important for patient safety. PMID:25785821

  5. Normal findings on brain FLAIR MRI scans at 3T

    PubMed Central

    Neema, Mohit; Guss, Zachary D.; Stankiewicz, James M.; Arora, Ashish; Healy, Brian C.; Bakshi, Rohit

    2010-01-01

    BACKGROUND AND PURPOSE Fluid attenuated inversion recovery (FLAIR) MR imaging of the brain has become a routine tool for assessing lesions in patients with suspected neurologic disorders. There is growing interest in 3T brain FLAIR MR imaging but little normative data are available. The purpose of this study was to evaluate the frequency and topography of cerebral hyperintensities seen with FLAIR MR imaging of the brain at 3T in a normal population and compare those findings to 1.5T. MATERIALS AND METHODS Whole-brain 2D FLAIR MR imaging was performed in 22 healthy controls (mean age, 44 ± 8 years; range, 30–53 years) at 3T. Fifteen of these subjects also underwent 2D FLAIR at 1.5T, with similar optimized parameters and voxel size. Cerebral hyperintense areas, including discrete foci, anterior and posterior periventricular capping, diffuse parenchymal hyperintensity, septal hyperintensity, corticospinal tract hyperintensity, and CSF flow artifacts were assessed. The Spearman rank test assessed the correlation between discrete hyperintense foci and age. The Wilcoxon signed rank test compared foci detectability at 3T versus 1.5T. RESULTS FLAIR at 3T commonly showed hyperintensities such as discrete foci (mean, 10.68 per subject; at least 1 present in 68% of subjects), anterior and posterior periventricular capping, diffuse posterior white matter hyperintensity, septal hyperintensity, corticospinal tract hyperintensity, and ventricular CSF flow artifacts. FLAIR at 3T showed a higher hyperintense foci volume (170 ± 243 versus 93 ± 152 mm3, P < .01) and number (9.4 ± 13 versus 5.5 ± 9.2, P < .01) than at 1.5T. No significant differences (P = .68) in the length/diameter of individual discrete hyperintense foci were seen between 3T and 1.5T. Discrete foci volume (r = 0.72 at 3T, r = 0.70 at 1.5T) and number (r = 0.74 at 3T; r = 0.69 at 1.5T) correlated with age to a similar degree on both platforms. All discrete foci were confined to the noncallosal supratentorial

  6. Ex-PRESS glaucoma filter: an MRI compatible metallic orbital foreign body imaged at 1.5 and 3 T

    PubMed Central

    Mabray, M.C.; Uzelac, A.; Talbott, J.F.; Lin, S.C.; Gean, A.D.

    2015-01-01

    AIM To report on the MRI compatibility of the Ex-PRESS glaucoma filtration device, a tiny metallic implant placed into the anterior chamber of the eye that is much smaller than traditional glaucoma shunts, and to educate the radiology community regarding its appearance. MATERIALS AND METHODS Seven patients with Ex-PRESS glaucoma filtration devices were identified that had undergone MRI at San Francisco General Hospital/University of California San Francisco Medical Center by searching and cross-referencing the radiology reporting system and the electronic medical record. MRI images were reviewed for artefact interfering with interpretation. Ophthalmology examinations were reviewed for evidence of complications. RESULTS Eighteen individual MRI examinations were performed during 12 unique MRI events on these 7 patients. 13/18 individual MRI examinations and 7/12 MRI events were performed at 3 T with the others performed at 1.5 T. Mean time from Ex-PRESS implantation to MRI was 17.5 months. Mean time from MRI to first ophthalmology examination was 1.1 months and from MRI to latest ophthalmology examination was 6.6 months. Susceptibility artefact did not interfere with image interpretation and no complications related to MRI were encountered. CONCLUSION The Ex-PRESS glaucoma filtration device appears to be safe for MRI at 1.5 and 3 T and does not produce significant susceptibility artefact to affect diagnostic interpretation adversely. PMID:25735675

  7. The effect of 3 T MRI on microleakage of amalgam restorations

    PubMed Central

    Yilmaz, S; Misirlioğlu, M

    2013-01-01

    Objectives: To evaluate the effects of 3 T magnetic field on microleakage of amalgam restorations containing three different types of silver (Ag). Methods: 60 extracted teeth were restored with three different types of amalgam filling materials. Restored teeth were sectioned mesiodistally and divided into experimental and control groups. Experimental groups were exposed to a magnetic field of 3 T for 20 min. All samples were plunged into 2% basic fuchsin solution and examined under a digital microscope by three different observers with regard to microleakage. Results: Statistical analysis showed significant differences in microleakage between the groups exposed to MRI and controls, whereas differences in microleakage between amalgam types were insignificant. Conclusions: The primary risk of MRI systems arises from the effects of its strong magnetic field on objects containing ferromagnetic materials. An MRI of 1.5 T is known to be safe for amalgam restorations. However, our research indicates that MRI is not completely devoid of any effects on amalgam restorations. PMID:23674614

  8. Eight-channel transmit/receive body MRI coil at 3T.

    PubMed

    Vernickel, P; Röschmann, P; Findeklee, C; Lüdeke, K-M; Leussler, Ch; Overweg, J; Katscher, U; Grässlin, I; Schünemann, K

    2007-08-01

    Multichannel transmit magnetic resonance imaging (MR) systems have the potential to compensate for signal-intensity variations occurring at higher field strengths due to wave propagation effects in tissue. Methods such as RF shimming and local excitation in combination with parallel transmission can be applied to compensate for these effects. Moreover, parallel transmission can be applied to ease the excitation of arbitrarily shaped magnetization patterns. The implementation of these methods adds new requirements in terms of MRI hardware. This article describes the design of a decoupled eight-element transmit/receive body coil for 3T. The setup of the coil is explained, starting with standard single-channel resonators. Special focus is placed on the decoupling of the elements to obtain independent RF resonators. After a brief discussion of the underlying theory, the properties and limitations of the coil are outlined. Finally, the functionality and capabilities of the coil are demonstrated using RF measurements as well as MRI sequences. PMID:17654592

  9. A novel RF resonator for human-body MRI at 3 T

    NASA Astrophysics Data System (ADS)

    Son, Hyeok-Woo; Cho, Young-Ki; Yoo, Hyoungsuk

    2014-03-01

    A square-slot-loaded (SSL) radio-frequency (RF) resonator using a microstrip transmission line (MTL) is designed for human-body magnetic resonance imaging (MRI) at 3 T MRI. The SSL RF resonator shows improved RF magnetic fields resulting in more homogenous fields near the center of the phantom than traditional RF resonators using MTL. A multichannel body coil using the SSL RF resonators is also simulated and provides improved parallel excitation performance. In addition, RF shimming for homogenization can be effectively controlled by adjusting the inputs to the eight resonators. Numerical results are obtained by using a spherical phantom and a realistic human-body model at 3 T to calculate the B {1/+} fields.

  10. Visual evoked potential (VEP) measured by simultaneous 64-channel EEG and 3T fMRI.

    PubMed

    Bonmassar, G; Anami, K; Ives, J; Belliveau, J W

    1999-06-23

    We present the first simultaneous measurements of evoked potentials (EPs) and fMRI hemodynamic responses to visual stimulation. Visual evoked potentials (VEPs) were recorded both inside and outside the static 3T magnetic field, and during fMRI examination. We designed, constructed, and tested a non-magnetic 64-channel EEG recording cap. By using a large number of EEG channels it is possible to design a spatial filter capable of removing the artifact noise present when recording EEG/EPs within a strong magnetic field. We show that the designed spatial filter is capable of recovering the ballistocardiogram-contaminated original EEG signal. Isopotential plots of the electrode array recordings at the peak of the VEP response (approximately 100ms) correspond well with simultaneous fMRI observed activated areas of primary and secondary visual cortices. PMID:10501528

  11. In-bore setup and software for 3T MRI-guided transperineal prostate biopsy

    NASA Astrophysics Data System (ADS)

    Tokuda, Junichi; Tuncali, Kemal; Iordachita, Iulian; Song, Sang-Eun; Fedorov, Andriy; Oguro, Sota; Lasso, Andras; Fennessy, Fiona M.; Tempany, Clare M.; Hata, Nobuhiko

    2012-09-01

    MRI-guided prostate biopsy in conventional closed-bore scanners requires transferring the patient outside the bore during needle insertion due to the constrained in-bore space, causing a safety hazard and limiting image feedback. To address this issue, we present our custom-made in-bore setup and software to support MRI-guided transperineal prostate biopsy in a wide-bore 3 T MRI scanner. The setup consists of a specially designed tabletop and a needle-guiding template with a Z-frame that gives a physician access to the perineum of the patient at the imaging position and allows the physician to perform MRI-guided transperineal biopsy without moving the patient out of the scanner. The software and Z-frame allow registration of the template, target planning and biopsy guidance. Initially, we performed phantom experiments to assess the accuracy of template registration and needle placement in a controlled environment. Subsequently, we embarked on our clinical trial (N = 10). The phantom experiments showed that the translational errors of the template registration along the right-left (RP) and anterior-posterior (AP) axes were 1.1 ± 0.8 and 1.4 ± 1.1 mm, respectively, while the rotational errors around the RL, AP and superior-inferior axes were (0.8 ± 1.0)°, (1.7 ± 1.6)° and (0.0 ± 0.0)°, respectively. The 2D root-mean-square (RMS) needle-placement error was 3 mm. The clinical biopsy procedures were safely carried out in all ten clinical cases with a needle-placement error of 5.4 mm (2D RMS). In conclusion, transperineal prostate biopsy in a wide-bore 3T scanner is feasible using our custom-made tabletop setup and software, which supports manual needle placement without moving the patient out of the magnet.

  12. Adaptation of a haptic robot in a 3T fMRI.

    PubMed

    Snider, Joseph; Plank, Markus; May, Larry; Liu, Thomas T; Poizner, Howard

    2011-01-01

    Functional magnetic resonance imaging (fMRI) provides excellent functional brain imaging via the BOLD signal with advantages including non-ionizing radiation, millimeter spatial accuracy of anatomical and functional data, and nearly real-time analyses. Haptic robots provide precise measurement and control of position and force of a cursor in a reasonably confined space. Here we combine these two technologies to allow precision experiments involving motor control with haptic/tactile environment interaction such as reaching or grasping. The basic idea is to attach an 8 foot end effecter supported in the center to the robot allowing the subject to use the robot, but shielding it and keeping it out of the most extreme part of the magnetic field from the fMRI machine (Figure 1). The Phantom Premium 3.0, 6DoF, high-force robot (SensAble Technologies, Inc.) is an excellent choice for providing force-feedback in virtual reality experiments, but it is inherently non-MR safe, introduces significant noise to the sensitive fMRI equipment, and its electric motors may be affected by the fMRI's strongly varying magnetic field. We have constructed a table and shielding system that allows the robot to be safely introduced into the fMRI environment and limits both the degradation of the fMRI signal by the electrically noisy motors and the degradation of the electric motor performance by the strongly varying magnetic field of the fMRI. With the shield, the signal to noise ratio (SNR: mean signal/noise standard deviation) of the fMRI goes from a baseline of ~380 to ~330, and ~250 without the shielding. The remaining noise appears to be uncorrelated and does not add artifacts to the fMRI of a test sphere (Figure 2). The long, stiff handle allows placement of the robot out of range of the most strongly varying parts of the magnetic field so there is no significant effect of the fMRI on the robot. The effect of the handle on the robot's kinematics is minimal since it is lightweight (~2

  13. An optically powered CMOS tracking system for 3 T magnetic resonance environment.

    PubMed

    Sarioglu, Baykal; Tumer, Murat; Cindemir, Umut; Camli, Berk; Dundar, Gunhan; Ozturk, Cengizhan; Yalcinkaya, Arda D

    2015-02-01

    In this work, a fully optical Complementary Metal Oxide Semiconductor (CMOS) based catheter tracking system designed for 3 T Magnetic Resonance Imaging (MRI) environment is presented. The system aims to solve the Radio Frequency (RF) induced heating problem present in conventional wired catheter tracking systems used in MRI. It is based on an integrated circuit, consisting of a receiver and an optical power supply unit. The optical power supply unit includes a single on-chip photodiode and a DC-DC converter that boosts the low photodiode voltage output to voltages greater than 1.5 V. Through an optically driven switch, the accumulated charge on an a storage capacitor is transferred to the rest of the system. This operation is novel in the way that it is fully optical and the switch control is done through modulation of the applied light. An on-chip local oscillator signal for the receiver is avoided by application of an RF signal that is generated by the MRI machine at the receiving period. The signals received by a micro-coil antenna are processed by the on-chip direct conversion receiver. The processed signal is then transferred, also optically, to the outside world for tracking purposes. The frequency encoding method is used for MRI tracking. Operation with various levels of external optical power does not generate noticeble temperature increase in the system. The overall system is successfully tested in a 3 T MRI machine to demonstrate its full operation. PMID:24893369

  14. Ag/AgCl electrodes in the EEG/fMRI method in 3T MRI scanner

    NASA Astrophysics Data System (ADS)

    Akay, Cengiz; Kepceoğlu, Abdullah

    2013-10-01

    This study focuses on the comparison of two different types of EEG electrodes (the first B10-S-150 Ag/AgCl sintered ring electrode with 1, 5 mm touch proof safety socket and 150 cm heavy-duty lead wire and the second, B12-LS-100 Ag/AgCl sintered FE-electrode with 100 cm light-duty lead wire and 1, 5 mm touch proof safety socket with 5 kΩ resistor near sensor) used in the EEG/fMRI method in 3T MRI scanner. We compared these electrodes by their specific absorption rate (SAR) simulation values and the temperature change calculated by PRF method. The experimental setup of the study is described as follows: a phantom is prepared and the electrodes are placed on it. Then, a simulation for SAR values is realized. The temperature change is calculated by MR thermometer. As a result of this study, Ag/AgCl pin electrode is better to be use in EEG/fMRI; because the measured temperature change is expected to be low.

  15. Superior Cervical Sympathetic Ganglion: Normal Imaging Appearance on 3T-MRI

    PubMed Central

    Lee, Joo Yeon; Song, Joon Seon; Song, Min Jeong; Hwang, Seung-Jun; Yoon, Ra Gyoung; Jang, Seung Won; Park, Ji Eun; Heo, Young Jin; Choi, Young Jun; Baek, Jung Hwan

    2016-01-01

    Objective To identify superior cervical sympathetic ganglion (SCSG) and describe their characteristic MR appearance using 3T-MRI. Materials and Methods In this prospective study, we recruited 53 consecutive patients without history of head and neck irradiation. Using anatomic location based on literature review, both sides of the neck were evaluated to identify SCSGs in consensus. SCSGs were divided into definite (medial to internal carotid artery [ICA] and lateral to longus capitis muscle [LCM]) and probable SCSGs based on relative location to ICA and LCM. Two readers evaluated signal characteristics including intraganglionic hypointensity of all SCSGs and relative location of probable SCSGs. Interrater and intrarater agreements were quantified using unweighted kappa. Results Ninety-one neck sites in 53 patients were evaluated after exclusion of 15 neck sites with pathology. Definite SCSGs were identified at 66 (73%) sites, and probable SCSGs were found in 25 (27%). Probable SCSGs were located anterior to LCM in 16 (18%), lateral to ICA in 6 (7%), and posterior to ICA in 3 (3%). Intraganglionic hypointensity was identified in 82 (90%) on contrast-enhanced fat-suppressed T1-weighted images. There was no statistical difference in the relative location between definite and probable SCSGs of the right and left sides with intragnalionic hypointensity on difference pulse sequences. Interrater and intrarater agreements on the location and intraganglionic hypointensity were excellent (κ-value, 0.749–1.000). Conclusion 3T-MRI identified definite SCSGs at 73% of neck sites and varied location of the remaining SCSGs. Intraganglionic hypointensity was a characteristic feature of SCSGs. PMID:27587954

  16. MRBrainS Challenge: Online Evaluation Framework for Brain Image Segmentation in 3T MRI Scans

    PubMed Central

    Mendrik, Adriënne M.; Vincken, Koen L.; Kuijf, Hugo J.; Breeuwer, Marcel; Bouvy, Willem H.; de Bresser, Jeroen; Alansary, Amir; de Bruijne, Marleen; Carass, Aaron; El-Baz, Ayman; Jog, Amod; Katyal, Ranveer; Khan, Ali R.; van der Lijn, Fedde; Mahmood, Qaiser; Mukherjee, Ryan; van Opbroek, Annegreet; Paneri, Sahil; Pereira, Sérgio; Rajchl, Martin; Sarikaya, Duygu; Smedby, Örjan; Silva, Carlos A.; Vrooman, Henri A.; Vyas, Saurabh; Wang, Chunliang; Zhao, Liang; Biessels, Geert Jan; Viergever, Max A.

    2015-01-01

    Many methods have been proposed for tissue segmentation in brain MRI scans. The multitude of methods proposed complicates the choice of one method above others. We have therefore established the MRBrainS online evaluation framework for evaluating (semi)automatic algorithms that segment gray matter (GM), white matter (WM), and cerebrospinal fluid (CSF) on 3T brain MRI scans of elderly subjects (65–80 y). Participants apply their algorithms to the provided data, after which their results are evaluated and ranked. Full manual segmentations of GM, WM, and CSF are available for all scans and used as the reference standard. Five datasets are provided for training and fifteen for testing. The evaluated methods are ranked based on their overall performance to segment GM, WM, and CSF and evaluated using three evaluation metrics (Dice, H95, and AVD) and the results are published on the MRBrainS13 website. We present the results of eleven segmentation algorithms that participated in the MRBrainS13 challenge workshop at MICCAI, where the framework was launched, and three commonly used freeware packages: FreeSurfer, FSL, and SPM. The MRBrainS evaluation framework provides an objective and direct comparison of all evaluated algorithms and can aid in selecting the best performing method for the segmentation goal at hand. PMID:26759553

  17. Normal-appearing brain tissue analysis in radiologically isolated syndrome using 3 T MRI.

    PubMed

    Labiano-Fontcuberta, Andrés; Mato-Abad, Virginia; Álvarez-Linera, Juan; Hernández-Tamames, Juan Antonio; Martínez-Ginés, María Luisa; Aladro, Yolanda; Ayuso, Lucía; Domingo-Santos, Ángela; Benito-León, Julián

    2016-07-01

    To date, it remains largely unknown whether there is in radiologically isolated syndrome (RIS) brain damage beyond visible T2 white matter lesions. We used single- voxel proton magnetic resonance spectroscopy and diffusion tensor imaging (3 T MRI) to analyze normal-appearing brain tissue regions in 18 RIS patients and 18 matched healthy controls. T2-hyperintense lesion volumes and structural brain volumes were also measured. The absolute metabolite concentrations and ratios of total N-acetylaspartate+N-acetylaspartyl glutamate (NAA), choline-containing compounds, myoinositol, and glutamine-glutamate complex to creatine were calculated. Spectral analysis was performed by LCModel. Voxelwise morphometry analysis was performed to localize regions of brain tissue showing significant changes of fractional anisotropy or mean diffusivity. Compared with healthy controls, RIS patients did not show any significant differences in either the absolute concentration of NAA or NAA/Cr ratio in mid-parietal gray matter. A trend toward lower NAA concentrations (-3.35%) was observed among RIS patients with high risk for conversion to multiple sclerosis. No differences in the other metabolites or their ratios were observed. RIS patients showed lower fractional anisotropy only in clusters overlapping lesional areas, namely in the cingulate gyrus bilaterally and the frontal lobe subgyral bilaterally (P < 0.001). Normalized brain and cortical volumes were significantly lower in RIS patients than in controls (P = 0.01 and P = 0.03, respectively). Our results suggest that in RIS, global brain and cortical atrophy are not primarily driven by significant occult microstructural normal appearing brain damage. Longitudinal MRI studies are needed to better understand the pathological processes underlying this novel entity. PMID:27399108

  18. Using High Spatial Resolution to Improve BOLD fMRI Detection at 3T

    PubMed Central

    Claise, Béatrice; Jean, Betty

    2015-01-01

    For different functional magnetic resonance imaging experiments using blood oxygenation level-dependent (BOLD) contrast, the acquisition of T2*-weighted scans at a high spatial resolution may be advantageous in terms of time-course signal-to-noise ratio and of BOLD sensitivity when the regions are prone to susceptibility artifacts. In this study, we explore this solution by examining how spatial resolution influences activations elicited when appetizing food pictures are viewed. Twenty subjects were imaged at 3 T with two different voxel volumes, 3.4 μl and 27 μl. Despite the diminution of brain coverage, we found that high-resolution acquisition led to a better detection of activations. Though known to suffer to different degrees from susceptibility artifacts, the activations detected by high spatial resolution were notably consistent with those reported in published activation likelihood estimation meta-analyses, corresponding to taste-responsive regions. Furthermore, these regions were found activated bilaterally, in contrast with previous findings. Both the reduction of partial volume effect, which improves BOLD contrast, and the mitigation of susceptibility artifact, which boosts the signal to noise ratio in certain regions, explained the better detection noted with high resolution. The present study provides further evidences that high spatial resolution is a valuable solution for human BOLD fMRI, especially for studying food-related stimuli. PMID:26550990

  19. Automatic tuned MRI RF coil for multinuclear imaging of small animals at 3T.

    PubMed

    Muftuler, L Tugan; Gulsen, Gultekin; Sezen, Kumsal D; Nalcioglu, Orhan

    2002-03-01

    We have developed an MRI RF coil whose tuning can be adjusted automatically between 120 and 128 MHz for sequential spectroscopic imaging of hydrogen and fluorine nuclei at field strength 3 T. Variable capacitance (varactor) diodes were placed on each rung of an eight-leg low-pass birdcage coil to change the tuning frequency of the coil. The diode junction capacitance can be controlled by the amount of applied reverse bias voltage. Impedance matching was also done automatically by another pair of varactor diodes to obtain the maximum SNR at each frequency. The same bias voltage was applied to the tuning varactors on all rungs to avoid perturbations in the coil. A network analyzer was used to monitor matching and tuning of the coil. A Pentium PC controlled the analyzer through the GPIB bus. A code written in LABVIEW was used to communicate with the network analyzer and adjust the bias voltages of the varactors via D/A converters. Serially programmed D/A converter devices were used to apply the bias voltages to the varactors. Isolation amplifiers were used together with RF choke inductors to provide isolation between the RF coil and the DC bias lines. We acquired proton and fluorine images sequentially from a multicompartment phantom using the designed coil. Good matching and tuning were obtained at both resonance frequencies. The tuning and matching of the coil were changed from one resonance frequency to the other within 60 s. PMID:11945031

  20. A 64-channel 3T array coil for accelerated brain MRI

    PubMed Central

    Keil, Boris; Blau, James N.; Biber, Stephan; Hoecht, Philipp; Tountcheva, Veneta; Setsompop, Kawin; Triantafyllou, Christina; Wald, Lawrence L.

    2012-01-01

    A 64-channel brain array coil was developed and compared to a 32-channel array constructed with the same coil former geometry in order to precisely isolate the benefit of the two-fold increase in array coil elements. The constructed coils were developed for a standard clinical 3T MRI scanner and used a contoured head-shape curved former around the occipital pole and tapered in at the neck to both improve sensitivity and patient comfort. Additionally, the design is a compact, split-former design intended for robust daily use. Signal-to-noise ratio (SNR) and noise amplification (G-factor) for parallel imaging were quantitatively evaluated in human imaging and compared to a size and shape-matched 32-channel array coil. For unaccelerated imaging, the 64-channel array provided similar SNR in the brain center to the 32-channel array and 1.3-fold more SNR in the brain cortex. Reduced noise amplification during highly parallel imaging of the 64-channel array provided the ability to accelerate at approximately one unit higher at a given noise amplification compared to the sized-matched 32-channel array. For example, with a 4-fold acceleration rate, the central brain and cortical SNR of the 64-channel array was 1.2 and 1.4-fold higher, respectively, compared to the 32-channel array. The characteristics of the coil are demonstrated in accelerated brain imaging. PMID:22851312

  1. Plasma system of the GOL-3T facility

    SciTech Connect

    Arzhannikov, A. V.; Burdakov, A. V.; Burmasov, V. S.; Ivanov, I. A.; Kuznetsov, S. A.; Kuklin, K. N.; Mekler, K. I.; Polosatkin, S. V.; Postupaev, V. V. Rovenskikh, A. F.; Sinitsky, S. L.; Sklyarov, V. F.

    2015-11-15

    The plasma system and diagnostics of the new facility GOL-3T are described. This facility is the final result of the first stage in the deep upgrade of the GOL-3 multiple-mirror system, which has operated at the Budker Institute of Nuclear Physics since 1988. The upgrade project supposes creation of two new independent facilities at the site of GOL-3. The GOL-3T facility is intended to study the physics of beam—plasma interaction and generation of subterahertz electromagnetic radiation during the collective relaxation of a high-power relativistic electron beam with a duration of 5–10 μs. Studies on the physics of multiple-mirror plasma confinement in axisymmetric magnetic systems will be continued in a new range of experiment parameters at the second facility, named GOL-NB.

  2. Computational dosimetry of induced electric fields during realistic movements in the vicinity of a 3 T MRI scanner

    NASA Astrophysics Data System (ADS)

    Laakso, Ilkka; Kännälä, Sami; Jokela, Kari

    2013-04-01

    Medical staff working near magnetic resonance imaging (MRI) scanners are exposed both to the static magnetic field itself and also to electric currents that are induced in the body when the body moves in the magnetic field. However, there are currently limited data available on the induced electric field for realistic movements. This study computationally investigates the movement induced electric fields for realistic movements in the magnetic field of a 3 T MRI scanner. The path of movement near the MRI scanner is based on magnetic field measurements using a coil sensor attached to a human volunteer. Utilizing realistic models for both the motion of the head and the magnetic field of the MRI scanner, the induced fields are computationally determined using the finite-element method for five high-resolution numerical anatomical models. The results show that the time-derivative of the magnetic flux density (dB/dt) is approximately linearly proportional to the induced electric field in the head, independent of the position of the head with respect to the magnet. This supports the use of dB/dt measurements for occupational exposure assessment. For the path of movement considered herein, the spatial maximum of the induced electric field is close to the basic restriction for the peripheral nervous system and exceeds the basic restriction for the central nervous system in the international guidelines. The 99th percentile electric field is a considerably less restrictive metric for the exposure than the spatial maximum electric field; the former is typically 60-70% lower than the latter. However, the 99th percentile electric field may exceed the basic restriction for dB/dt values that can be encountered during tasks commonly performed by MRI workers. It is also shown that the movement-induced eddy currents may reach magnitudes that could electrically stimulate the vestibular system, which could play a significant role in the generation of vertigo-like sensations reported

  3. In vivo electric conductivity of cervical cancer patients based on B_{1}^{+} maps at 3T MRI

    NASA Astrophysics Data System (ADS)

    Balidemaj, E.; de Boer, P.; van Lier, A. L. H. M. W.; Remis, R. F.; Stalpers, L. J. A.; Westerveld, G. H.; Nederveen, A. J.; van den Berg, C. A. T.; Crezee, J.

    2016-02-01

    The in vivo electric conductivity (σ) values of tissue are essential for accurate electromagnetic simulations and specific absorption rate (SAR) assessment for applications such as thermal dose computations in hyperthermia. Currently used σ-values are mostly based on ex vivo measurements. In this study the conductivity of human muscle, bladder content and cervical tumors is acquired non-invasively in vivo using MRI. The conductivity of 20 cervical cancer patients was measured with the MR-based electric properties tomography method on a standard 3T MRI system. The average in vivo σ-value of muscle is 14% higher than currently used in human simulation models. The σ-value of bladder content is an order of magnitude higher than the value for bladder wall tissue that is used for the complete bladder in many models. Our findings are confirmed by various in vivo animal studies from the literature. In cervical tumors, the observed average conductivity was 13% higher than the literature value reported for cervical tissue. Considerable deviations were found for the electrical conductivity observed in this study and the commonly used values for SAR assessment, emphasizing the importance of acquiring in vivo conductivity for more accurate SAR assessment in various applications.

  4. Corticospinal Tract Tracing in the Marmoset with a Clinical Whole-Body 3T Scanner Using Manganese-Enhanced MRI

    PubMed Central

    Plas, Benjamin; Bolan, Faye; Boulanouar, Kader; Renaud, Luc; Darmana, Robert; Vaysse, Laurence; Vieu, Christophe; Loubinoux, Isabelle

    2015-01-01

    Manganese-enhanced MRI (MEMRI) has been described as a powerful tool to depict the architecture of neuronal circuits. In this study we investigated the potential use of in vivo MRI detection of manganese for tracing neuronal projections from the primary motor cortex (M1) in healthy marmosets (Callithrix Jacchus). We determined the optimal dose of manganese chloride (MnCl2) among 800, 400, 40 and 8nmol that led to manganese-induced hyperintensity furthest from the injection site, as specific to the corticospinal tract as possible, and that would not induce motor deficit. A commonly available 3T human clinical MRI scanner and human knee coil were used to follow hyperintensity in the corticospinal tract 24h after injection. A statistical parametric map of seven marmosets injected with the chosen dose, 8 nmol, showed the corticospinal tract and M1 connectivity with the basal ganglia, substantia nigra and thalamus. Safety was determined for the lowest dose that did not induce dexterity and grip strength deficit, and no behavioral effects could be seen in marmosets who received multiple injections of manganese one month apart. In conclusion, our study shows for the first time in marmosets, a reliable and reproducible way to perform longitudinal ME-MRI experiments to observe the integrity of the marmoset corticospinal tract on a clinical 3T MRI scanner. PMID:26398500

  5. 3 T magnetic resonance imaging of the musculoskeletal system.

    PubMed

    Guglielmi, G; Biccari, N; Mangano, F; Toffanin, R

    2010-06-01

    The increasing distribution of high-field (3 T) magnetic resonance (MR) systems for clinical use has been accompanied by the need to fully understand the advantages and disadvantages that the increase in signal quality confers. Continuous development of the coils is required to fully express the potential of these systems, especially given the synergy between parallel imaging and the recent multichannel phased-array coils, which are able to improve image quality, spatial resolution and diagnostic accuracy in musculoskeletal imaging. The increase in signal offered by the high field makes possible improved visualisation of bone, cartilage, tendons and ligaments. This advantage, together with increased spatial resolution, is particularly useful when studying joints or some of their components, the evaluation of which has produced suboptimal results in non arthrographic examinations such as the glenoid labrum of the shoulder and the articular cartilage of the knee. Thanks to the greater signal-to-noise ratio and improved spatial resolution, MR imaging at 3 T is able to notably increase diagnostic performance in the musculoskeletal setting, with a consequent improvement in patient treatment and management. PMID:20177987

  6. Analysis of the role of lead resistivity in specific absorption rate for deep brain stimulator leads at 3T MRI.

    PubMed

    Angelone, Leonardo M; Ahveninen, Jyrki; Belliveau, John W; Bonmassar, Giorgio

    2010-04-01

    Magnetic resonance imaging (MRI) on patients with implanted deep brain stimulators (DBSs) can be hazardous because of the antenna-effect of leads exposed to the incident radio-frequency field. This study evaluated electromagnetic field and specific absorption rate (SAR) changes as a function of lead resistivity on an anatomically precise head model in a 3T system. The anatomical accuracy of our head model allowed for detailed modeling of the path of DBS leads between epidermis and the outer table. Our electromagnetic finite difference time domain (FDTD) analysis showed significant changes of 1 g and 10 g averaged SAR for the range of lead resistivity modeled, including highly conductive leads up to highly resistive leads. Antenna performance and whole-head SAR were sensitive to the presence of the DBS leads only within 10%, while changes of over one order of magnitude were observed for the peak 10 g averaged SAR, suggesting that local SAR values should be considered in DBS guidelines. With rho(lead) = rho(copper) , and the MRI coil driven to produce a whole-head SAR without leads of 3.2 W/kg, the 1 g averaged SAR was 1080 W/kg and the 10 g averaged SAR 120 W/kg at the tip of the DBS lead. Conversely, in the control case without leads, the 1 g and 10 g averaged SAR were 0.5 W/kg and 0.6 W/kg, respectively, in the same location. The SAR at the tip of lead was similar with electrically homogeneous and electrically heterogeneous models. Our results show that computational models can support the development of novel lead technology, properly balancing the requirements of SAR deposition at the tip of the lead and power dissipation of the system battery. PMID:20335090

  7. Acute vertigo in an anesthesia provider during exposure to a 3T MRI scanner

    PubMed Central

    Gorlin, Andrew; Hoxworth, Joseph M; Pavlicek, William; Thunberg, Christopher A; Seamans, David

    2015-01-01

    Vertigo induced by exposure to the magnetic field of a magnetic resonance imaging (MRI) scanner is a well-known phenomenon within the radiology community but is not widely appreciated by other clinical specialists. Here, we describe a case of an anesthetist experiencing acute vertigo while providing sedation to a patient undergoing a 3 Tesla MRI scan. After discussing previous reports, and the evidence surrounding MRI-induced vertigo, we review potential etiologies that include the effects of both static and time-varying magnetic fields on the vestibular apparatus. We conclude our review by discussing the occupational standards that exist for MRI exposure and methods to minimize the risks of MRI-induced vertigo for clinicians working in the MRI environment. PMID:25792858

  8. Increased Visibility of Deep Medullary Veins in Leukoaraiosis: A 3-T MRI Study

    PubMed Central

    Yan, Shenqiang; Wan, Jinping; Zhang, Xuting; Tong, Lusha; Zhao, Song; Sun, Jianzhong; Lin, Yuehan; Shen, Chunhong; Lou, Min

    2013-01-01

    Cerebral venous collagenosis has been implicated in leading to white matter hyperintensities (WMHs) via venous ischemia. We sought to determine whether cerebral venous dilation or ischemia correlate with the severity of WMHs by quantitative in vivo imaging techniques. This was an investigator-initiated prospective single-center study. We reviewed clinical, laboratory data from 158 consecutive WMHs patients and 50 controls, and measured the number of voxels of deep medullary veins (DMVs) on susceptibility-weighted image and assessed the WMH volume (as a marker of the severity of WMHs) on a 3-T magnetic resonance system. We then performed the logistic-regression analysis and partial Pearson’s correlation analysis to examine the association between the venous voxel count and WMH volume. The number of voxels of DMVs was significantly higher in WMHs than in controls. Increased number of voxels of DMVs was independently associated with both WMH volume of the whole brain and coregistered regional WMH volume after adjusting for age and number of lacunes. Our study indicates that cerebral deep venous insufficiency or ischemia play a role in the pathogenesis of WMHs, which may provide prognostic information on patients with WMHs and may have implications for therapeutic interventions. PMID:25071553

  9. Image quality and signal distribution in 1.5-T and 3-T MRI in mild traumatic brain injury patients

    NASA Astrophysics Data System (ADS)

    Rossi, Maija E.; Dastidar, Prasun; Ryymin, Pertti; Ylinen, Aarne; Öhman, Juha; Soimakallio, Seppo; Eskola, Hannu

    2009-02-01

    Clear standards are lacking in the imaging modalities of the deficit in mild traumatic brain injury (MTBI) patients. The purpose of this study is to compare the image quality by signal distribution between 1.5 Tesla and 3 Tesla MRI in turbo spin echo (TSE) and gradient echo (GRE) images in normal hospital settings and to find preferences for which field to use in MTBI patients. We studied 40 MTBI patients with TSE and GRE; 20 patients were imaged at 1.5 T and 20 at 3 T. The imaging parameters were optimized separately for the two scanners. Histograms of the signal distribution in 22 ROIs were fitted to a 1-peak Gaussian model and the resulting peak positions were scaled in respect to the peak positions of genu of the corpus callosum and the caudate nuclei. Correlation of the contrast of the ROIs in reference to genu of the corpus callosum between both the two scanners and the two imaging sequences was good. Image contrast was similar at both in the TSE images; in the GRE images contrast improved from 1.5 T to 3 T. However, based on peak positions and widths, a slight drawback in the separability between the ROIs was observed when 1.5 T MRI was replaced by 3 T. No clear improvement in tissue contrast or separability of 3 T was found compared to 1.5 T. Imaging of MTBI with 3 T should therefore be based on other advantages of high-field imaging, such as improved SNR and spatial resolution.

  10. Significance of Additional Non-Mass Enhancement in Patients with Breast Cancer on Preoperative 3T Dynamic Contrast Enhanced MRI of the Breast

    PubMed Central

    Cho, Yun Hee; Cho, Kyu Ran; Park, Eun Kyung; Seo, Bo Kyoung; Woo, Ok Hee; Cho, Sung Bum; Bae, Jeoung Won

    2016-01-01

    Background In preoperative assessment of breast cancer, MRI has been shown to identify more additional breast lesions than are detectable using conventional imaging techniques. The characterization of additional lesions is more important than detection for optimal surgical treatment. Additional breast lesions can be included in focus, mass, and non-mass enhancement (NME) on MRI. According to the fifth edition of the breast imaging reporting and data system (BI-RADS®), which includes several changes in the NME descriptors, few studies to date have evaluated NME in preoperative assessment of breast cancer. Objectives We investigated the diagnostic accuracy of BI-RADS descriptors in predicting malignancy for additional NME lesions detected on preoperative 3T dynamic contrast enhanced MRI (DCE-MRI) in patients with newly diagnosed breast cancer. Patients and Methods Between January 2008 and December 2012, 88 patients were enrolled in our study, all with NME lesions other than the index cancer on preoperative 3T DCE-MRI and all with accompanying histopathologic examination. The MRI findings were analyzed according to the BI-RADS MRI lexicon. We evaluated the size, distribution, internal enhancement pattern, and location of NME lesions relative to the index cancer (i.e., same quadrant, different quadrant, or contralateral breast). Results On histopathologic analysis of the 88 NME lesions, 73 (83%) were malignant and 15 (17%) were benign. Lesion size did not differ significantly between malignant and benign lesions (P = 0.410). Malignancy was more frequent in linear (P = 0.005) and segmental (P = 0.011) distributions, and benignancy was more frequent in focal (P = 0.004) and regional (P < 0.001) NME lesions. The highest positive predictive value (PPV) for malignancy occurred in segmental (96.8%), linear (95.1%), clustered ring (100%), and clumped (92.0%) enhancement. Asymmetry demonstrated a high positive predictive value of 85.9%. The frequency of malignancy was higher

  11. New Clinically Feasible 3T MRI Protocol to Discriminate Internal Brain Stem Anatomy.

    PubMed

    Hoch, M J; Chung, S; Ben-Eliezer, N; Bruno, M T; Fatterpekar, G M; Shepherd, T M

    2016-06-01

    Two new 3T MR imaging contrast methods, track density imaging and echo modulation curve T2 mapping, were combined with simultaneous multisection acquisition to reveal exquisite anatomic detail at 7 canonical levels of the brain stem. Compared with conventional MR imaging contrasts, many individual brain stem tracts and nuclear groups were directly visualized for the first time at 3T. This new approach is clinically practical and feasible (total scan time = 20 minutes), allowing better brain stem anatomic localization and characterization. PMID:26869471

  12. Oxygenation in cervical cancer and normal uterine cervix assessed using blood oxygenation level-dependent (BOLD) MRI at 3T.

    PubMed

    Hallac, Rami R; Ding, Yao; Yuan, Qing; McColl, Roderick W; Lea, Jayanthi; Sims, Robert D; Weatherall, Paul T; Mason, Ralph P

    2012-12-01

    Hypoxia is reported to be a biomarker for poor prognosis in cervical cancer. However, a practical noninvasive method is needed for the routine clinical evaluation of tumor hypoxia. This study examined the potential use of blood oxygenation level-dependent (BOLD) contrast MRI as a noninvasive technique to assess tumor vascular oxygenation at 3T. Following Institutional Review Board-approved informed consent and in compliance with the Health Insurance Portability and Accountability Act, successful results were achieved in nine patients with locally advanced cervical cancer [International Federation of Gynecology and Obstetrics (FIGO) stage IIA to IVA] and three normal volunteers. In the first four patients, dynamic T₂*-weighted MRI was performed in the transaxial plane using a multi-shot echo planar imaging sequence whilst patients breathed room air followed by oxygen (15 dm³/min). Later, a multi-echo gradient echo examination was added to provide quantitative R₂* measurements. The baseline T₂*-weighted signal intensity was quite stable, but increased to various extents in tumors on initiation of oxygen breathing. The signal in normal uterus increased significantly, whereas that in the iliacus muscle did not change. R₂* responded significantly in healthy uterus, cervix and eight cervical tumors. This preliminary study demonstrates that BOLD MRI of cervical cancer at 3T is feasible. However, more patients must be evaluated and followed clinically before any prognostic value can be determined. PMID:22619091

  13. A comparison of distributional considerations with statistical analysis of resting state fMRI at 3T and 7T

    NASA Astrophysics Data System (ADS)

    Yang, Xue; Holmes, Martha J.; Newton, Allen T.; Morgan, Victoria L.; Landman, Bennett A.

    2012-02-01

    Ultra-high field 7T magnetic resonance imaging (MRI) offers potentially unprecedented spatial resolution of functional activity within the human brain through increased signal and contrast to noise ratios over traditional 1.5T and 3T MRI scanners. However, the effects physiological and imaging artifacts are also greatly increased. Traditional statistical parametric mapping theories based on distributional properties representative of data acquired at lower fields may be inadequate for new 7T data. Herein, we investigate the model fitting residuals based on two 7T and one 3T protocols. We find that model residuals are substantively more non-Gaussian at 7T relative to 3T. Imaging slices that passed through regions with peak inhomogeneity problems (e.g., mid-brain acquisitions for the 7T hippocampus) exhibited visually higher degrees of distortion along with spatially correlated and extreme values of kurtosis (a measure of non- Gaussianity). The impacts of artifacts have been previously addressed for 3T data by estimating the covariance matrix of the regression errors. We further extend the robust estimation approach for autoregressive models and evaluate the qualitative impacts of this technique relative to traditional inference. Clear differences in statistical significance are shown between inferences based on classical versus robust assumptions, which suggest that inferences based on Gaussian assumptions are subject to practical (as well as theoretical) concerns regarding their power and validity. Hence, modern statistical approaches, such as the robust autoregressive model posed herein, are appropriate and suitable for inference with ultra-high field functional magnetic resonance imaging.

  14. 3T diffusion-weighted MRI of the thyroid gland with reduced distortion: preliminary results

    PubMed Central

    Nagala, S; Priest, A N; McLean, M A; Jani, P; Graves, M J

    2013-01-01

    Objective: Single-shot diffusion-weighted (DW) echo planar imaging (EPI), which is commonly used for imaging the thyroid, is characterised by severe blurring and distortion. The objectives of this work were: 1, to show that a reduced-field of view (r-FOV) DW EPI technique can improve image quality; and 2, to investigate the effect of different reconstruction strategies on the resulting apparent diffusion coefficients (ADCs). Methods: We implemented a single-shot, r-FOV DW EPI technique with a two-dimensional radiofrequency excitation pulse for DW imaging of the thyroid at 3T. Images were reconstructed using root sum of squares (SOS) and an optimal-B1 reconstruction (OBR). Phantom and in vivo experiments were performed to compare r-FOV and conventional full-FOV DW EPI with root SOS and OBR. Results: r-FOV with OBR substantially improved image quality at 3T. In phantoms, r-FOV gave more accurate ADCs than full-FOV. In vivo r-FOV always gave lower ADC values with respect to the full-FOV technique irrespective of the reconstruction used and whether only two or multiple b-values were used to compute the ADCs. Conclusion: r-FOV DW EPI can reduce image blurring and distortion at the expense of a low signal-to-noise ratio. OBR is a promising reconstruction technique for accurate ADC measurements in lower signal-to-noise ratio regimes, although further studies are needed to characterise its performance. Advances in knowledge: DW imaging of the thyroid at 3T could potentially benefit from r-FOV acquisition strategies, such as the r-FOV DW EPI technique proposed in this paper. PMID:23770539

  15. Development and preliminary evaluation of an ultrasonic motor actuated needle guide for 3T MRI-guided transperineal prostate interventions

    NASA Astrophysics Data System (ADS)

    Song, Sang-Eun; Tokuda, Junichi; Tuncali, Kemal; Tempany, Clare; Hata, Nobuhiko

    2012-02-01

    Image guided prostate interventions have been accelerated by Magnetic Resonance Imaging (MRI) and robotic technologies in the past few years. However, transrectal ultrasound (TRUS) guided procedure still remains as vast majority in clinical practice due to engineering and clinical complexity of the MRI-guided robotic interventions. Subsequently, great advantages and increasing availability of MRI have not been utilized at its maximum capacity in clinic. To benefit patients from the advantages of MRI, we developed an MRI-compatible motorized needle guide device "Smart Template" that resembles a conventional prostate template to perform MRI-guided prostate interventions with minimal changes in the clinical procedure. The requirements and specifications of the Smart Template were identified from our latest MRI-guided intervention system that has been clinically used in manual mode for prostate biopsy. Smart Template consists of vertical and horizontal crossbars that are driven by two ultrasonic motors via timing-belt and mitergear transmissions. Navigation software that controls the crossbar position to provide needle insertion positions was also developed. The software can be operated independently or interactively with an open-source navigation software, 3D Slicer, that has been developed for prostate intervention. As preliminary evaluation, MRI distortion and SNR test were conducted. Significant MRI distortion was found close to the threaded brass alloy components of the template. However, the affected volume was limited outside the clinical region of interest. SNR values over routine MRI scan sequences for prostate biopsy indicated insignificant image degradation during the presence of the robotic system and actuation of the ultrasonic motors.

  16. SU-E-J-209: Geometric Distortion at 3T in a Commercial 4D MRI-Compatible Phantom

    SciTech Connect

    Fatemi-Ardekani, A; Wronski, M; Kim, A; Stanisz, G; Sarfehnia, A; Keller, B

    2015-06-15

    Purpose: There are very few commercial 4D phantoms that are marketed as MRI compatible. We are evaluating one such commercial phantom, made to be used with an MRI-Linear accelerator. The focus of this work is to characterize the geometric distortions produced in this phantom at 3T using 3 clinical MR pulse sequences. Methods: The CIRS MRI-Linac Dynamic Phantom (CIRSTM) under investigation in this study consists of a softwaredriven moving tumour volume within a thorax phantom body and enables dose accumulation by placing a dosimeter within the tumour volume. Our initial investigation is to evaluate the phantom in static mode prior to examining its 4D capability. The water-filled thorax phantom was scanned using a wide-bore Philips 3T Achieva MRI scanner employing a Thoracic xl coil and clinical 2D T1W FFE, 2D T1W TSE and 3D T1W TFE pulse sequences. Each of the MR image sets was rigidly fused with a reference CT image of the phantom employing a rigid registration with 6 degrees of freedom. Geometric distortions between the MR and CT image sets were measured in 3 dimensions at selected points along the periphery of the distortion grid embedded within the phantom body (11.5, 7.5 and 3 cm laterally, ant/post and sup/inf of magnetic isocenter respectively). Results: The maximal measured geometric distortions between the MR and reference CT points of interest were 0.9, 1.8 and 1.3 mm in the lateral, anteriorposterior and cranio-caudal directions, respectively. For all 3 spatial dimensions, the maximal distortions occurred for the FFE pulse sequence. Maximal distortions for the 2D FFE, 2D TSE and 3D TFE sequences were 1, 0.7 and 1.8 mm, respectively. Conclusion: Our initial static investigation of this phantom shows minimal geometric distortions at 3T along the periphery of the embedded grid. CIRS has provided us with a phantom at no charge for evaluation at 3 Tesla.

  17. An implanted 8-channel array coil for high-resolution macaque MRI at 3T

    PubMed Central

    Janssens, T.; Keil, B.; Farivar, R.; McNab, J.A.; Polimeni, J. R.; Gerits, A.; Arsenault, J.T.; Wald, L. L.; Vanduffel, W.

    2012-01-01

    An 8-channel receive coil array was constructed and implanted adjacent to the skull in a male rhesus monkey in order to improve the sensitivity of (functional) brain imaging. The permanent implant was part of an acrylic headpost assembly and only the coil element loop wires were implanted. The tuning, matching, and preamplifier circuitry was connected via a removable external assembly. Signal-to-noise ratio (SNR) and noise amplification for parallel imaging were compared to a single-, 4-, and 8-channel external receive-only coil routinely used for macaque fMRI. In vivo measurements showed significantly improved SNR within the brain for the implanted versus the external coils. Within a region-of-interest covering the cerebral cortex, we observed a 5.4-, 3.6-fold, and 3.4-fold increase in SNR compared to the external single-, 4-, and 8-channel coil, respectively. In the center of the brain, the implanted array maintained a 2.4×, 2.5×, and 2.1× higher SNR, respectively compared to the external coils. The array performance was evaluated for anatomical, diffusion tensor and functional brain imaging. This study suggests that a stable implanted phased-array coil can be used in macaque MRI to substantially increase the spatial resolution for anatomical, diffusion tensor, and functional imaging. PMID:22609793

  18. 3-T MRI detects inflammatory stenosis of the vertebral artery in giant cell arteritis.

    PubMed

    Geiger, J; Uhl, M; Peter, H H; Langer, M; Bley, T A

    2008-05-01

    Giant cell arteritis (GCA) is a granulomatous vasculitis. Early diagnosis is important for the initiation of corticosteroid treatment because the arteritis can result in blindness. In most of the cases, the superficial cranial arteries are affected. However, extracranial involvement of various arteries is known. Here, we report a case of histologically proven GCA with an inflammatory stenosis of the right vertebral artery. For complete evaluation of the extension of the disease, an optimized protocol of high-resolution magnetic resonance imaging at 3 T in combination with contrast-enhanced magnetic resonance angiography was performed. This non-invasive method facilitates the differentiation of inflamed and healthy segments of small cranial arteries, may help to find appropriate sites for biopsy, and allows the assessment of affected extracranial vessels. In this patient case, even the cause of vertebral stenosis--inflammatory versus arteriosclerotic--could be elucidated. PMID:18172573

  19. Physiological brainstem mechanisms of trigeminal nociception: An fMRI study at 3T.

    PubMed

    Schulte, Laura H; Sprenger, Christian; May, Arne

    2016-01-01

    The brainstem is a major site of processing and modulation of nociceptive input and plays a key role in the pathophysiology of various headache disorders. However, human imaging studies on brainstem function following trigeminal nociceptive stimulation are scarce as brainstem specific imaging approaches have to address multiple challenges such as magnetic field inhomogeneities and an enhanced level of physiological noise. In this study we used a viable protocol for brainstem fMRI of standardized trigeminal nociceptive stimulation to achieve detailed insight into physiological brainstem mechanisms of trigeminal nociception. We conducted a study of 21 healthy participants using a nociceptive ammonia stimulation of the left nasal mucosa with an optimized MR acquisition protocol for high resolution brainstem echoplanar imaging in combination with two different noise correction techniques. Significant BOLD responses to noxious ammonia stimulation were observed in areas typically involved in trigeminal nociceptive processing such as the spinal trigeminal nuclei (sTN), thalamus, secondary somatosensory cortex, insular cortex and cerebellum as well as in a pain modulating network including the periaqueductal gray area, hypothalamus (HT), locus coeruleus and cuneiform nucleus (CNF). Activations of the left CNF were positively correlated with pain intensity ratings. Employing psychophysiological interaction (PPI) analysis we found enhanced functional connectivity of the sTN with the contralateral sTN and HT following trigeminal nociception. We also observed enhanced functional connectivity of the CNF with the RVM during painful stimulation thus implying an important role of these two brainstem regions in central pain processing. The chosen approach to study trigeminal nociception with high-resolution fMRI offers new insight into human pain processing and might thus lead to a better understanding of headache pathophysiology. PMID:26388554

  20. Structural brain alterations in primary open angle glaucoma: a 3T MRI study

    PubMed Central

    Wang, Jieqiong; Li, Ting; Sabel, Bernhard A.; Chen, Zhiqiang; Wen, Hongwei; Li, Jianhong; Xie, Xiaobin; Yang, Diya; Chen, Weiwei; Wang, Ningli; Xian, Junfang; He, Huiguang

    2016-01-01

    Glaucoma is not only an eye disease but is also associated with degeneration of brain structures. We now investigated the pattern of visual and non-visual brain structural changes in 25 primary open angle glaucoma (POAG) patients and 25 age-gender-matched normal controls using T1-weighted imaging. MRI images were subjected to volume-based analysis (VBA) and surface-based analysis (SBA) in the whole brain as well as ROI-based analysis of the lateral geniculate nucleus (LGN), visual cortex (V1/2), amygdala and hippocampus. While VBA showed no significant differences in the gray matter volumes of patients, SBA revealed significantly reduced cortical thickness in the right frontal pole and ROI-based analysis volume shrinkage in LGN bilaterally, right V1 and left amygdala. Structural abnormalities were correlated with clinical parameters in a subset of the patients revealing that the left LGN volume was negatively correlated with bilateral cup-to-disk ratio (CDR), the right LGN volume was positively correlated with the mean deviation of the right visual hemifield, and the right V1 cortical thickness was negatively correlated with the right CDR in glaucoma. These results demonstrate that POAG affects both vision-related structures and non-visual cortical regions. Moreover, alterations of the brain visual structures reflect the clinical severity of glaucoma. PMID:26743811

  1. Diffusion tensor imaging in evaluation of posterior fossa tumors in children on a 3T MRI scanner

    PubMed Central

    Assis, Zarina Abdul; Saini, Jitender; Ranjan, Manish; Gupta, Arun Kumar; Sabharwal, Paramveer; Naidu, Purushotham R

    2015-01-01

    Context: Primary intracranial tumors in children are commonly located in the posterior fossa. Conventional MRI offers limited information regarding the histopathological type of tumor which is essential for better patient management. Aims: The purpose of the study was to evaluate the usefulness of advanced MR imaging techniques like diffusion tensor imaging (DTI) in distinguishing the various histopathological types of posterior fossa tumors in children. Settings and Design: DTI was performed on a 3T MRI scanner in 34 untreated children found to have posterior fossa lesions. Materials and Methods: Using third party software, various DTI parameters [apparent diffusion coefficient (ADC), fractional anisotropy (FA), radial diffusivity, planar index, spherical index, and linear index] were calculated for the lesion. Statistical Analysis Used: Data were subjected to statistical analysis [analysis of variance (ANOVA)] using SPSS 15.0 software. Results: We observed significant correlation (P < 0.01) between ADC mean and maximum, followed by radial diffusivity (RD) with the histopathological types of the lesions. Rest of the DTI parameters did not show any significant correlation in our study. Conclusions: The results of our study support the hypothesis that most cellular tumors and those with greater nuclear area like medulloblastoma would have the lowest ADC values, as compared to less cellular tumors like pilocytic astrocytoma. PMID:26752824

  2. Voxel-based morphometry at ultra-high fields. a comparison of 7T and 3T MRI data.

    PubMed

    Seiger, Rene; Hahn, Andreas; Hummer, Allan; Kranz, Georg S; Ganger, Sebastian; Küblböck, Martin; Kraus, Christoph; Sladky, Ronald; Kasper, Siegfried; Windischberger, Christian; Lanzenberger, Rupert

    2015-06-01

    Recent technological progress enables MRI recordings at ultra-high fields of 7 T and above leading to brain images of higher resolution and increased signal-to-noise ratio. Despite these benefits, imaging at 7 T exhibits distinct challenges due to B1 field inhomogeneities, causing decreased image quality and problems in data analysis. Although several strategies have been proposed, a systematic investigation of bias-corrected 7 T data for voxel-based morphometry (VBM) is still missing and it is an ongoing matter of debate if VBM at 7 T can be carried out properly. Here, an optimized VBM study was conducted, evaluating the impact of field strength (3T vs. 7 T) and pulse sequence (MPRAGE vs. MP2RAGE) on gray matter volume (GMV) estimates. More specifically, twenty-two participants were measured under the conditions 3T MPRAGE, 7 T MPRAGE and 7 T MP2RAGE. Due to the fact that 7 T MPRAGE data exhibited strong intensity inhomogeneities, an alternative preprocessing pipeline was proposed and applied for that data. VBM analysis revealed higher GMV estimates for 7 T predominantly in superior cortical areas, caudate nucleus, cingulate cortex and the hippocampus. On the other hand, 3T yielded higher estimates especially in inferior cortical areas of the brain, cerebellum, thalamus and putamen compared to 7 T. Besides minor exceptions, these results were observed for 7 T MPRAGE as well for the 7 T MP2RAGE measurements. Results gained in the inferior parts of the brain should be taken with caution, as native GM segmentations displayed misclassifications in these regions for both 7 T sequences. This was supported by the test-retest measurements showing highest variability in these inferior regions of the brain for 7 T and also for the advanced MP2RAGE sequence. Hence, our data support the use of 7 T MRI for VBM analysis in cortical areas, but direct comparison between field strengths and sequences requires careful assessment. Similarly, analysis of the inferior cortical regions

  3. MRI osteitis predicts cartilage damage at the wrist in RA: a three-year prospective 3T MRI study examining cartilage damage

    PubMed Central

    2014-01-01

    Introduction Cartilage damage impacts on patient disability in rheumatoid arthritis (RA). The aims of this magnetic resonance imaging (MRI) study were to investigate cartilage damage over three years and determine predictive factors. Methods A total of 38 RA patients and 22 controls were enrolled at t = 0 (2009). After 3 years, clinical and MRI data were available in 28 patients and 15 controls. 3T MRI scans were scored for cartilage damage, bone erosion, synovitis and osteitis. A model was developed to predict cartilage damage from baseline parameters. Results Inter-reader reliability for the Auckland MRI cartilage score (AMRICS) was high for status scores; intraclass correlation coefficient (ICC), 0.90 (0.81 to 0.95) and moderate for change scores (ICC 0.58 (0.24 to 0.77)). AMRICS scores correlated with the Outcome MEasures in Rheumatoid Arthritis Clinical Trials (OMERACT) MRI joint space narrowing (jsn) and X-Ray (XR) jsn scores (r =0.96, P < 0.0001 and 0.80, P < 0.0001, respectively). AMRICS change scores were greater for RA patients than controls (P = 0.06 and P = 0.04 for the two readers). Using linear regression, baseline MRI cartilage, synovitis and osteitis scores predicted the three-year AMRICS (R2 = 0.67, 0.37 and 0.39, respectively). A multiple linear regression model predicted the three-year AMRICS (R2 = 0.78). Baseline radial osteitis predicted increased cartilage scores at the radiolunate and radioscaphoid joints, P = 0.0001 and 0.0012, respectively and synovitis at radioulnar, radiocarpal and intercarpal-carpometacarpal joints also influenced three-year cartilage scores (P-values of 0.001, 0.04 and 0.01, respectively). Conclusions MRI cartilage damage progression is preceded by osteitis and synovitis but is most influenced by pre-existing cartilage damage suggesting primacy of the cartilage damage pathway in certain patients. PMID:24476340

  4. Improved T1 mapping by motion correction and template based B1 correction in 3T MRI brain studies

    NASA Astrophysics Data System (ADS)

    Castro, Marcelo A.; Yao, Jianhua; Lee, Christabel; Pang, Yuxi; Baker, Eva; Butman, John; Thomasson, David

    2009-02-01

    Accurate estimation of relaxation time T1 from MRI images is increasingly important for some clinical applications. Low noise, high resolution, fast and accurate T1 maps from MRI images of the brain can be performed using a dual flip angle method. However, accuracy is limited by the scanners ability to deliver the prescribed flip angle due to the B1 inhomogeneity, particularly at high field strengths (e.g. 3T). One of the most accurate methods to correct that inhomogeneity is to acquire a subject-specific B1 map. However, since B1 map acquisition takes up precious scanning time and most retrospective studies do not have B1 map, it would be desirable to perform that correction from a template. For this work a dual repetition time method was used for B1 map acquisition in five normal subjects. Inaccuracies due to misregistration of acquired T1-weighted images were corrected by rigid registration, and the effects of misalignment were compared to those of B1 inhomogeneity. T1-intensity histograms were produced and three-Gaussian curves were fitted for every fully-, partially- and non-corrected histogram in order to estimate and compare the white and gray matter peaks. In addition, in order to reduce the scanning time we designed a template based correction strategy. Images from different subjects were aligned using a twelve-parameter affine registration, and B1 maps were aligned according to that transformation. Recomputed T1 maps showed a significant improvement with respect to non-corrected ones. These results are very promising and have the potential for clinical application.

  5. Amygdala volume in depressed patients with bipolar disorder assessed using high resolution 3T MRI: the impact of medication.

    PubMed

    Savitz, Jonathan; Nugent, Allison C; Bogers, Wendy; Liu, Alice; Sills, Rebecca; Luckenbaugh, David A; Bain, Earle E; Price, Joseph L; Zarate, Carlos; Manji, Husseini K; Cannon, Dara M; Marrett, Sean; Charney, Dennis S; Drevets, Wayne C

    2010-02-15

    MRI-based reports of both abnormally increased and decreased amygdala volume in bipolar disorder (BD) have surfaced in the literature. Two major methodological weaknesses characterizing extant studies are treatment with medication and inaccurate segmentation of the amygdala due to limitations in spatial and tissue contrast resolution. Here, we acquired high-resolution images (voxel size=0.55 x 0.55 x 0.60 mm) using a GE 3T MRI scanner, and a pulse sequence optimized for tissue contrast resolution. The amygdala was manually segmented by one rater blind to diagnosis, using coronal images. Eighteen unmedicated (mean medication-free period 11+/-10 months) BD subjects were age and gender matched with 18 healthy controls, and 17 medicated (lithium or divalproex) subjects were matched to 17 different controls. The unmedicated BD patients displayed smaller left and right amygdala volumes than their matched control group (p<0.01). Conversely, the BD subjects undergoing medication treatment showed a trend towards greater amygdala volumes than their matched HC sample (p=0.051). Right and left amygdala volumes were larger (p<0.05) or trended larger, respectively, in the medicated BD sample compared with the unmedicated BD sample. The two control groups did not differ from each other in either left or right amygdala volume. BD patients treated with lithium have displayed increased gray matter volume of the cortex and hippocampus relative to untreated BD subjects in previous studies. Here we extend these results to the amygdala. We raise the possibility that neuroplastic changes in the amygdala associated with BD are moderated by some mood stabilizing medications. PMID:19931399

  6. Whole body sodium MRI at 3T using an asymmetric birdcage resonator and short echo time sequence: first images of a male volunteer

    NASA Astrophysics Data System (ADS)

    Wetterling, Friedrich; Corteville, Dominique M.; Kalayciyan, Raffi; Rennings, Andreas; Konstandin, Simon; Nagel, Armin M.; Stark, Helmut; Schad, Lothar R.

    2012-07-01

    Sodium magnetic resonance imaging (23Na MRI) is a non-invasive technique which allows spatial resolution of the tissue sodium concentration (TSC) in the human body. TSC measurements could potentially serve to monitor early treatment success of chemotherapy on patients who suffer from whole body metastases. Yet, the acquisition of whole body sodium (23Na) images has been hampered so far by the lack of large resonators and the extremely low signal-to-noise ratio (SNR) achieved with existing resonator systems. In this study, a 23Na resonator was constructed for whole body 23Na MRI at 3T comprising of a 16-leg, asymmetrical birdcage structure with 34 cm height, 47.5 cm width and 50 cm length. The resonator was driven in quadrature mode and could be used either as a transceiver resonator or, since active decoupling was included, as a transmit-only resonator in conjunction with a receive-only (RO) surface resonator. The relative B1-field profile was simulated and measured on phantoms, and 3D whole body 23Na MRI data of a healthy male volunteer were acquired in five segments with a nominal isotropic resolution of (6 × 6 × 6) mm3 and a 10 min acquisition time per scan. The measured SNR values in the 23Na-MR images varied from 9 ± 2 in calf muscle, 15 ± 2 in brain tissue, 23 ± 2 in the prostate and up to 42 ± 5 in the vertebral discs. Arms, legs, knees and hands could also be resolved with applied resonator and short time-to-echo (TE) (0.5 ms) radial sequence. Up to fivefold SNR improvement was achieved through combining the birdcage with local RO surface coil. In conclusion, 23Na MRI of the entire human body provides sub-cm spatial resolution, which allows resolution of all major human body parts with a scan time of less than 60 min.

  7. Signal-to-noise ratio increase in carotid atheroma MRI: a comparison of 1.5 and 3 T

    PubMed Central

    Young, V E; Patterson, A J; Tunnicliffe, E M; Sadat, U; Graves, M J; Tang, T Y; Priest, A N; Kirkpatrick, P J; Gillard, J H

    2012-01-01

    Objectives This study reports quantitative comparisons of signal-to-noise ratio (SNR) at 1.5 and 3 T from images of carotid atheroma obtained using a multicontrast, cardiac-gated, blood-suppressed fast spin echo protocol. Methods 18 subjects, with carotid atherosclerosis (>30% stenosis) confirmed on ultrasound, were imaged on both 1.5 and 3 T systems using phased-array coils with matched hardware specifications. T1 weighted (T1W), T2 weighted (T2W) and proton density-weighted (PDW) images were acquired with identical scan times. Multiple slices were prescribed to encompass both the carotid bifurcation and the plaque. Image quality was quantified using the SNR and contrast-to-noise ratio (CNR). A phantom experiment was also performed to validate the SNR method and confirm the size of the improvement in SNR. Comparisons of the SNR values from the vessel wall with muscle and plaque/lumen CNR measurements were performed at a patient level. To account for the multiple comparisons a Bonferroni correction was applied. Results One subject was excluded from the protocol owing to image quality and protocol failure. The mean improvement in SNR in plaque was 1.9, 2.1 and 2.1 in T1W, T2W and PDW images, respectively. All plaque SNR improvements were statistically significant at the p<0.05 level. The phantom experiment reported an improvement in SNR of 2.4 for PDW images. Conclusions Significant gains in SNR can be obtained for carotid atheroma imaging at 3 T compared with 1.5 T. There was also a trend towards increased CNR. However, this was not significant after the application of the Bonferroni correction. PMID:22294703

  8. Abdominal adipose tissue quantification on water-suppressed and non-water-suppressed MRI at 3T using semi-automated FCM clustering algorithm

    NASA Astrophysics Data System (ADS)

    Valaparla, Sunil K.; Peng, Qi; Gao, Feng; Clarke, Geoffrey D.

    2014-03-01

    Accurate measurements of human body fat distribution are desirable because excessive body fat is associated with impaired insulin sensitivity, type 2 diabetes mellitus (T2DM) and cardiovascular disease. In this study, we hypothesized that the performance of water suppressed (WS) MRI is superior to non-water suppressed (NWS) MRI for volumetric assessment of abdominal subcutaneous (SAT), intramuscular (IMAT), visceral (VAT), and total (TAT) adipose tissues. We acquired T1-weighted images on a 3T MRI system (TIM Trio, Siemens), which was analyzed using semi-automated segmentation software that employs a fuzzy c-means (FCM) clustering algorithm. Sixteen contiguous axial slices, centered at the L4-L5 level of the abdomen, were acquired in eight T2DM subjects with water suppression (WS) and without (NWS). Histograms from WS images show improved separation of non-fatty tissue pixels from fatty tissue pixels, compared to NWS images. Paired t-tests of WS versus NWS showed a statistically significant lower volume of lipid in the WS images for VAT (145.3 cc less, p=0.006) and IMAT (305 cc less, p<0.001), but not SAT (14.1 cc more, NS). WS measurements of TAT also resulted in lower fat volumes (436.1 cc less, p=0.002). There is strong correlation between WS and NWS quantification methods for SAT measurements (r=0.999), but poorer correlation for VAT studies (r=0.845). These results suggest that NWS pulse sequences may overestimate adipose tissue volumes and that WS pulse sequences are more desirable due to the higher contrast generated between fatty and non-fatty tissues.

  9. Fusion in diffusion MRI for improved fibre orientation estimation: An application to the 3T and 7T data of the Human Connectome Project.

    PubMed

    Sotiropoulos, Stamatios N; Hernández-Fernández, Moisés; Vu, An T; Andersson, Jesper L; Moeller, Steen; Yacoub, Essa; Lenglet, Christophe; Ugurbil, Kamil; Behrens, Timothy E J; Jbabdi, Saad

    2016-07-01

    Determining the acquisition parameters in diffusion magnetic resonance imaging (dMRI) is governed by a series of trade-offs. Images of lower resolution have less spatial specificity but higher signal to noise ratio (SNR). At the same time higher angular contrast, important for resolving complex fibre patterns, also yields lower SNR. Considering these trade-offs, the Human Connectome Project (HCP) acquires high quality dMRI data for the same subjects at different field strengths (3T and 7T), which are publically released. Due to differences in the signal behavior and in the underlying scanner hardware, the HCP 3T and 7T data have complementary features in k- and q-space. The 3T dMRI has higher angular contrast and resolution, while the 7T dMRI has higher spatial resolution. Given the availability of these datasets, we explore the idea of fusing them together with the aim of combining their benefits. We extend a previously proposed data-fusion framework and apply it to integrate both datasets from the same subject into a single joint analysis. We use a generative model for performing parametric spherical deconvolution and estimate fibre orientations by simultaneously using data acquired under different protocols. We illustrate unique features from each dataset and how they are retained after fusion. We further show that this allows us to complement benefits and improve brain connectivity analysis compared to analyzing each of the datasets individually. PMID:27071694

  10. [Evaluation of Artificial Hip Joint with Radiofrequency Heating Issues during MRI Examination: A Comparison between 1.5 T and 3 T].

    PubMed

    Yamazaki, Masaru; Ideta, Takahiro; Kudo, Sadahiro; Nakazawa, Masami

    2016-06-01

    In magnetic resonance imaging (MRI), when radiofrequency (RF) is irradiated to a subject with metallic implant, it can generate heat by RF irradiation. Recently 3 T MRI scanner has spread widely and imaging for any regions of whole body has been conducted. However specific absorption rate (SAR) of 3 T MRI becomes approximately four times as much as the 1.5 T, which can significantly affect the heat generation of metallic implants. So, we evaluated RF heating of artificial hip joints in different shapes and materials in 1.5 T and 3 T MRI. Three types of artificial hip joints made of stainless alloy, titanium alloy and cobalt chrome alloy were embedded in the human body-equivalent phantom respectively and their temperature change were measured for twenty minutes by 1.5 T and 3 T MRI. The maximum temperature rise was observed at the bottom head in all of three types of artificial hip joints, the rise being 12°C for stainless alloy, 11.9°C for titanium alloy and 6.1°C for cobalt chrome alloy in 1.5 T. The temperature rise depended on SAR and the increase of SAR had a good linear relationship with the temperature rise. It was found from the result that the RF heating of metallic implants can take place in various kinds of material and the increase of SAR has a good linear relationship with the temperature rise. This experience shows that reduction of SAR can decrease temperature of metallic implants. PMID:27320151

  11. A fast multiparameter MRI approach for acute stroke assessment on a 3T clinical scanner: preliminary results in a non-human primate model with transient ischemic occlusion

    PubMed Central

    Tong, Frank; Li, Chun-Xia; Yan, Yumei; Nair, Govind; Nagaoka, Tsukasa; Tanaka, Yoji; Zola, Stuart; Howell, Leonard

    2014-01-01

    Many MRI parameters have been explored and demonstrated the capability or potential to evaluate acute stroke injury, providing anatomical, microstructural, functional, or neurochemical information for diagnostic purposes and therapeutic development. However, the application of multiparameter MRI approach is hindered in clinic due to the very limited time window after stroke insult. Parallel imaging technique can accelerate MRI data acquisition dramatically and has been incorporated in modern clinical scanners and increasingly applied for various diagnostic purposes. In the present study, a fast multiparameter MRI approach including structural T1-weighted imaging (T1W), T2-weighted imaging (T2W), diffusion tensor imaging (DTI), T2-mapping, proton magnetic resonance spectroscopy, cerebral blood flow (CBF), and magnetization transfer (MT) imaging, was implemented and optimized for assessing acute stroke injury on a 3T clinical scanner. A macaque model of transient ischemic stroke induced by a minimal interventional approach was utilized for evaluating the multiparameter MRI approach. The preliminary results indicate the surgical procedure successfully induced ischemic occlusion in the cortex and/or subcortex in adult macaque monkeys (n=4). Application of parallel imaging technique substantially reduced the scanning duration of most MRI data acquisitions, allowing for fast and repeated evaluation of acute stroke injury. Hence, the use of the multiparameter MRI approach with up to five quantitative measures can provide significant advantages in preclinical or clinical studies of stroke disease. PMID:24834423

  12. Clinical utility and economic viability of a 3T MRI in an anti-cancer centre: The experience of the centre Oscar Lambret.

    PubMed

    Taïeb, S; Devise, V; Pouliquen, G; Rocourt, N; Faivre-Pierret, M; Brongniart, S; Peugny, P; Ceugnart, L

    2012-07-01

    This paper will try and describe the installation of a 3T MRI in an anti-cancer centre. Functional sequences become indispensable in the assessment of targeted treatments. It is only possible to carry out these treatments on a routine basis in acceptable examination times with 3T. The technical constraints are overcome with third generation MRI and the improvement of the spatial resolution in examination times reduced by 30 to 50% increases patient comfort. Nevertheless, the financial constraints represent a major handicap. It is not possible to obtain an economic balance with rates based on the cost and depreciation of 1.5T imagers that are half the price. PMID:22726637

  13. Comparison of Standard 1.5 T vs. 3 T Optimized Protocols in Patients Treated with Glatiramer Acetate. A Serial MRI Pilot Study

    PubMed Central

    Zivadinov, Robert; Hojnacki, David; Hussein, Sara; Bergsland, Niels; Carl, Ellen; Durfee, Jacqueline; Dwyer, Michael G.; Kennedy, Cheryl; Weinstock-Guttman, Bianca

    2012-01-01

    This study explored the effect of glatiramer acetate (GA, 20 mg) on lesion activity using the 1.5 T standard MRI protocol (single dose gadolinium [Gd] and 5-min delay) or optimized 3 T protocol (triple dose of Gd, 20-min delay and application of an off-resonance saturated magnetization transfer pulse). A 15-month, phase IV, open-label, single-blinded, prospective, observational study included 12 patients with relapsing-remitting multiple sclerosis who underwent serial MRI scans (Days −45, −20, 0; the minus ign indicates the number of days before GA treatment; and on Days 30, 60, 90, 120, 150, 180, 270 and 360 during GA treatment) on 1.5 T and 3 T protocols. Cumulative number and volume of Gd enhancing (Gd-E) and T2 lesions were calculated. At Days −45 and 0, there were higher number (p < 0.01) and volume (p < 0.05) of Gd-E lesions on 3 T optimized compared to 1.5 T standard protocol. However, at 180 and 360 days of the study, no significant differences in total and cumulative number of new Gd-E and T 2 lesions were found between the two protocols. Compared to pre-treatment period, at Days 180 and 360 a significantly greater decrease in the cumulative number of Gd-E lesions (p = 0.03 and 0.021, respectively) was found using the 3 T vs. the 1.5 T protocol (p = NS for both time points). This MRI mechanistic study suggests that GA may exert a greater effect on decreasing lesion activity as measured on 3 T optimized compared to 1.5 T standard protocol. PMID:22754322

  14. Comparison of standard 1.5 T vs. 3 T optimized protocols in patients treated with glatiramer acetate. A serial MRI pilot study.

    PubMed

    Zivadinov, Robert; Hojnacki, David; Hussein, Sara; Bergsland, Niels; Carl, Ellen; Durfee, Jacqueline; Dwyer, Michael G; Kennedy, Cheryl; Weinstock-Guttman, Bianca

    2012-01-01

    This study explored the effect of glatiramer acetate (GA, 20 mg) on lesion activity using the 1.5 T standard MRI protocol (single dose gadolinium [Gd] and 5-min delay) or optimized 3 T protocol (triple dose of Gd, 20-min delay and application of an off-resonance saturated magnetization transfer pulse). A 15-month, phase IV, open-label, single-blinded, prospective, observational study included 12 patients with relapsing-remitting multiple sclerosis who underwent serial MRI scans (Days -45, -20, 0; the minus ign indicates the number of days before GA treatment; and on Days 30, 60, 90, 120, 150, 180, 270 and 360 during GA treatment) on 1.5 T and 3 T protocols. Cumulative number and volume of Gd enhancing (Gd-E) and T2 lesions were calculated. At Days -45 and 0, there were higher number (p < 0.01) and volume (p < 0.05) of Gd-E lesions on 3 T optimized compared to 1.5 T standard protocol. However, at 180 and 360 days of the study, no significant differences in total and cumulative number of new Gd-E and T 2 lesions were found between the two protocols. Compared to pre-treatment period, at Days 180 and 360 a significantly greater decrease in the cumulative number of Gd-E lesions (p = 0.03 and 0.021, respectively) was found using the 3 T vs. the 1.5 T protocol (p = NS for both time points). This MRI mechanistic study suggests that GA may exert a greater effect on decreasing lesion activity as measured on 3 T optimized compared to 1.5 T standard protocol. PMID:22754322

  15. Multimodal imaging: Simultaneous EEG in a 3T Hybrid MR-PET system

    NASA Astrophysics Data System (ADS)

    Neuner, I.; Warbrick, T.; Tellmann, L.; Rota Kops, E.; Arrubla, J.; Boers, F.; Herzog, H.; Shah, N. J.

    2013-02-01

    The new generation of integrated MR-PET systems allows the simultaneous acquisition of MR and PET data. While MR delivers structural data with an excellent spatial resolution, the advantage of PET is its information on a molecular level. However, both modalities have a low temporal resolution. Thus, for pharmacological studies or patients who suffer from treatment resistant epilepsy the combination of yet another modality such as EEG could be desirable. We tested the feasibility of evoked visual potentials in a 3T Hybrid MR-PET system (Siemens Germany) in comparison to a standalone 3T Trio System (Siemens Germany). A T2*-weighted EPI sequence was used: TR: 2.2 s, TE: 30 ms, FOV: 200 mm, slice thickness 3, 36 slices in a healthy volunteer (male, 27 years old) using an MR-compatible 32-channel EEG system (Brainproducts, Munich, Germany). We applied 200 trials of visual stimulation from a white and black checkerboard. Visual evoked potentials were analyzed using Brain Vision Analyzer (Brainproducts, Munich, Germany). Gradient correction and cardioballistic artefact correction were performed as implemented in Vision Analyzer. Visual event related potentials were successfully recorded at the 3T Hybrid MR-PET system. Both curves differ slightly in shape and latency due to the following factors: the distance from the screen varies slightly and the size of the field of view of the subjects is smaller in the 3T MR-PET system in comparison to the 3T stand alone system. Extending the 3T MR-PET Hybrid system to 3T Hybrid MR-PET-EEG is feasible and adds another tool to clinical neuroimaging and research.

  16. Changes in Prostate Shape and Volume and Their Implications for Radiotherapy After Introduction of Endorectal Balloon as Determined by MRI at 3T

    SciTech Connect

    Heijmink, Stijn W.T.P.J. Scheenen, Tom W.J.; Lin, Emile N.J.T. van; Visser, Andries G.; Kiemeney, Lambertus A.L.M.; Witjes, J. Alfred; Barentsz, Jelle O.

    2009-04-01

    Purpose: To determine the changes in prostate shape and volume after the introduction of an endorectal coil (ERC) by means of magnetic resonance imaging (MRI) at 3T. Methods and materials: A total of 44 consecutive patients with biopsy-proven prostate cancer underwent separate MRI examinations at 3T with a body array coil and subsequently with an ERC inflated with 50 mL of fluid. Prospectively, two experienced readers independently evaluated all data sets in random order. The maximal anteroposterior, right-to-left, and craniocaudal prostate diameters, as well as the total prostate and peripheral zone and central gland volumes were measured before and after ERC introduction. The changes in prostate shape and volume were analyzed using Wilcoxon's test for paired samples. Results: The introduction of the ERC significantly changed the prostate shape in all three directions, with mean changes in the anteroposterior, right-to-left, and craniocaudal diameters of 15.7% (5.5 mm), 7.7% (3.5 mm), and 6.3% (2.2 mm), respectively. The mean total prostate, peripheral zone, and central gland volume decreased significantly after ERC introduction by 17.9% (8.3 cm{sup 3}), 21.6% (4.8 cm{sup 3}), and 14.2% (3.4 cm{sup 3}), respectively. Conclusion: ERC introduction as observed by 3T MRI changed the prostate shape and volume significantly. The mean anteroposterior diameter was reduced by nearly one-sixth of its original diameter, and the mean total prostate volume was decreased by approximately 18%. This could cause difficulties and should be considered when using ERC-based MRI for MRI-computed tomography fusion and radiotherapy planning.

  17. Workflow assessment of 3T MRI-guided transperineal targeted prostate biopsy using a robotic needle guidance

    NASA Astrophysics Data System (ADS)

    Song, Sang-Eun; Tuncali, Kemal; Tokuda, Junichi; Fedorov, Andriy; Penzkofer, Tobias; Fennessy, Fiona; Tempany, Clare; Yoshimitsu, Kitaro; Magill, John; Hata, Nobuhiko

    2014-03-01

    Magnetic resonance imaging (MRI) guided transperineal targeted prostate biopsy has become a valuable instrument for detection of prostate cancer in patients with continuing suspicion for aggressive cancer after transrectal ultrasound guided (TRUS) guided biopsy. The MRI-guided procedures are performed using mechanical targeting devices or templates, which suffer from limitations of spatial sampling resolution and/or manual in-bore adjustments. To overcome these limitations, we developed and clinically deployed an MRI-compatible piezoceramic-motor actuated needle guidance device, Smart Template, which allows automated needle guidance with high targeting resolution for use in a wide closed-bore 3-Tesla MRI scanner. One of the main limitations of the MRI-guided procedure is the lengthy procedure time compared to conventional TRUS-guided procedures. In order to optimize the procedure, we assessed workflow of 30 MRI-guided biopsy procedures using the Smart Template with focus on procedure time. An average of 3.4 (range: 2~6) targets were preprocedurally selected per procedure and 2.2 ± 0.8 biopsies were performed for each target with an average insertion attempt of 1.9 ± 0.7 per biopsy. The average technical preparation time was 14 ± 7 min and the in-MRI patient preparation time was 42 ± 7 min. After 21 ± 7 min of initial imaging, 64 ± 12 min of biopsy was performed yielding an average of 10 ± 2 min per tissue sample. The total procedure time occupying the MRI suite was 138 ± 16 min. No noticeable tendency in the length of any time segment was observed over the 30 clinical cases.

  18. QUANTITATIVE PLANAR AND VOLUMETRIC CARDIAC MEASUREMENTS USING 64 MDCT AND 3T MRI VS. STANDARD 2D AND M-MODE ECHOCARDIOGRAPHY: DOES ANESTHETIC PROTOCOL MATTER?

    PubMed

    Drees, Randi; Johnson, Rebecca A; Stepien, Rebecca L; Munoz Del Rio, Alejandro; Saunders, Jimmy H; François, Christopher J

    2015-01-01

    Cross-sectional imaging of the heart utilizing computed tomography and magnetic resonance imaging (MRI) has been shown to be superior for the evaluation of cardiac morphology and systolic function in humans compared to echocardiography. The purpose of this prospective study was to test the effects of two different anesthetic protocols on cardiac measurements in 10 healthy beagle dogs using 64-multidetector row computed tomographic angiography (64-MDCTA), 3T magnetic resonance (MRI) and standard awake echocardiography. Both anesthetic protocols used propofol for induction and isoflourane for anesthetic maintenance. In addition, protocol A used midazolam/fentanyl and protocol B used dexmedetomedine as premedication and constant rate infusion during the procedure. Significant elevations in systolic and mean blood pressure were present when using protocol B. There was overall good agreement between the variables of cardiac size and systolic function generated from the MDCTA and MRI exams and no significant difference was found when comparing the variables acquired using either anesthetic protocol within each modality. Systolic function variables generated using 64-MDCTA and 3T MRI were only able to predict the left ventricular end diastolic volume as measured during awake echocardiogram when using protocol B and 64-MDCTA. For all other systolic function variables, prediction of awake echocardiographic results was not possible (P = 1). Planar variables acquired using MDCTA or MRI did not allow prediction of the corresponding measurements generated using echocardiography in the awake patients (P = 1). Future studies are needed to validate this approach in a more varied population and clinically affected dogs. PMID:26082285

  19. Quantitative planar and volumetric cardiac measurements using 64 MDCT and 3T MRI versus standard 2D and M-mode echocardiography: Does anesthetic protocol matter?

    PubMed Central

    Drees, Randi; Johnson, Rebecca A; Stepien, Rebecca L; Rio, Alejandro Munoz Del; Saunders, Jimmy H; François, Christopher J

    2016-01-01

    Cross-sectional imaging of the heart utilizing computed tomography (CT) and magnetic resonance imaging (MRI) has been shown to be superior for the evaluation of cardiac morphology and systolic function in humans compared to echocardiography. The purpose of this prospective study was to test the effects of two different anesthetic protocols on cardiac measurements in 10 healthy beagle dogs using 64-multidetector row computed tomographic angiography (64-MDCTA), 3T magnetic resonance (MRI) and standard awake echocardiography. Both anesthetic protocols used propofol for induction and isoflourane for anesthetic maintenance. In addition, protocol A used midazolam/fentanyl and protocol B used dexmedetomedine as premedication and constant rate infusion during the procedure. Significant elevations in systolic and mean blood pressure were present when using protocol B. There was overall good agreement between the variables of cardiac size and systolic function generated from the MDCTA and MRI exams and no significant difference was found when comparing the variables acquired using either anesthetic protocol within each modality. Systolic function variables generated using 64-MDCTA and 3T MRI were only able to predict the left ventricular end diastolic volume as measured during awake echocardiogram when using protocol B and 64-MDCTA. For all other systolic function variables, prediction of awake echocardiographic results was not possible (P = 1). Planar variables acquired using MDCTA or MRI did not allow prediction of the corresponding measurements generated using echocardiography in the awake patients (P=1). Future studies are needed to validate this approach in a more varied population and clinically affected dogs. PMID:26082285

  20. T2-Weighted Liver MRI Using the MultiVane Technique at 3T: Comparison with Conventional T2-Weighted MRI

    PubMed Central

    Kang, Kyung A; Kim, EunJu; Jeong, Woo Kyoung; Choi, Dongil; Lee, Won Jae; Jung, Sin-Ho; Baek, Sun-Young

    2015-01-01

    Objective To assess the value of applying MultiVane to liver T2-weighted imaging (T2WI) compared with conventional T2WIs with emphasis on detection of focal liver lesions. Materials and Methods Seventy-eight patients (43 men and 35 women) with 86 hepatic lesions and 20 pancreatico-biliary diseases underwent MRI including T2WIs acquired using breath-hold (BH), respiratory-triggered (RT), and MultiVane technique at 3T. Two reviewers evaluated each T2WI with respect to artefacts, organ sharpness, and conspicuity of intrahepatic vessels, hilar duct, and main lesion using five-point scales, and made pairwise comparisons between T2WI sequences for these categories. Diagnostic accuracy (Az) and sensitivity for hepatic lesion detection were evaluated using alternative free-response receiver operating characteristic analysis. Results MultiVane T2WI was significantly better than BH-T2WI or RT-T2WI for organ sharpness and conspicuity of intrahepatic vessels and main lesion in both separate reviews and pairwise comparisons (p < 0.001). With regard to motion artefacts, MultiVane T2WI or BH-T2WI was better than RT-T2WI (p < 0.001). Conspicuity of hilar duct was better with BH-T2WI than with MultiVane T2WI (p = 0.030) or RT-T2WI (p < 0.001). For detection of 86 hepatic lesions, sensitivity (mean, 97.7%) of MultiVane T2WI was significantly higher than that of BH-T2WI (mean, 89.5%) (p = 0.008) or RT-T2WI (mean, 84.9%) (p = 0.001). Conclusion Applying the MultiVane technique to T2WI of the liver is a promising approach to improving image quality that results in increased detection of focal liver lesions compared with conventional T2WI. PMID:26357498

  1. Home-built magnetic resonance imaging system (0.3 T) with a complete digital spectrometer

    NASA Astrophysics Data System (ADS)

    Jie, Shen; Qin, Xu; Ying, Liu; Gengying, Li

    2005-10-01

    A home-built magnetic resonance imaging (MRI) system with a complete digital spectrometer has been designed for investigation of plants and animals. With the application of the latest digital integrated circuit technology, the digital spectrometer is greatly simplified without the loss of flexibility and performance. A powerful pulse sequence compiler with a graphical editor can allow the user to edit the pulse sequence more easily and more conveniently than ever before. Moreover, a permanent magnet capable of producing a 180 mm diam spherical homogeneous region is employed in our MRI system to ensure a comparatively large image size. Compared with previous work, our MRI system has the features of flexibility, relatively large imaging size, and low cost. Experimental results obtained with the proposed system are presented in this article.

  2. Feasibility of 3-D MRI of Proximal Femur Microarchitecture at 3 T using 26 Receive Elements without and with Parallel Imaging

    PubMed Central

    Chang, Gregory; Deniz, Cem; Honig, Stephen; Rajapakse, Chamith S.; Egol, Kenneth; Regatte, Ravinder R.; Brown, Ryan

    2013-01-01

    Purpose High-resolution imaging of deeper anatomy such as the hip is challenging due to low signal-to-noise ratio (SNR), necessitating long scan times. Multi-element coils can increase SNR and reduce scan time through parallel imaging (PI). We assessed the feasibility of using a 26-element receive coil setup to perform 3 T MRI of proximal femur microarchitecture without and with PI. Materials and Methods This study had institutional review board approval. We scanned thirteen subjects on a 3 T scanner using 26 receive-elements and a 3-D FLASH sequence without and with PI (acceleration factors (AF) 2, 3, 4). We assessed SNR, depiction of individual trabeculae, PI performance (1/g-factor), and image quality with PI (1=non-visualization to 5=excellent). Results SNR maps demonstrate higher SNR for the 26-element setup compared to a 12-element setup for hip MRI. Without PI, individual proximal femur trabeculae were well-depicted, including microarchitectural deterioration in osteoporotic subjects. With PI, 1/g values for the 26-element/12-element receive-setup were 0.71/0.45, 0.56/0.25, and 0.44/0.08 at AF2, AF3, and AF4, respectively. Image quality was: AF1, excellent (4.8±0.4); AF2, good (4.2±1.0); AF3, average (3.3±1.0); AF4, non-visualization (1.4±0.9). Conclusion A 26-element receive-setup permits 3 T MRI of proximal femur microarchitecture with good image quality up to PI AF2. PMID:24711013

  3. Scalable multichannel MRI data acquisition system.

    PubMed

    Bodurka, Jerzy; Ledden, Patrick J; van Gelderen, Peter; Chu, Renxin; de Zwart, Jacco A; Morris, Doug; Duyn, Jeff H

    2004-01-01

    A scalable multichannel digital MRI receiver system was designed to achieve high bandwidth echo-planar imaging (EPI) acquisitions for applications such as BOLD-fMRI. The modular system design allows for easy extension to an arbitrary number of channels. A 16-channel receiver was developed and integrated with a General Electric (GE) Signa 3T VH/3 clinical scanner. Receiver performance was evaluated on phantoms and human volunteers using a custom-built 16-element receive-only brain surface coil array. At an output bandwidth of 1 MHz, a 100% acquisition duty cycle was achieved. Overall system noise figure and dynamic range were better than 0.85 dB and 84 dB, respectively. During repetitive EPI scanning on phantoms, the relative temporal standard deviation of the image intensity time-course was below 0.2%. As compared to the product birdcage head coil, 16-channel reception with the custom array yielded a nearly 6-fold SNR gain in the cerebral cortex and a 1.8-fold SNR gain in the center of the brain. The excellent system stability combined with the increased sensitivity and SENSE capabilities of 16-channel coils are expected to significantly benefit and enhance fMRI applications. PMID:14705057

  4. Added value of semi-quantitative breast-specific gamma imaging in the work-up of suspicious breast lesions compared to mammography, ultrasound and 3-T MRI

    PubMed Central

    Seymer, A; Keinrath, P; Holzmannhofer, J; Pirich, C; Hergan, K; Meissnitzer, M W

    2015-01-01

    Objective: To prospectively analyse the diagnostic value of semi-quantitative breast-specific gamma imaging (BSGI) in the work-up of suspicious breast lesions compared with that of mammography (MG), breast ultrasound and MRI of the breast. Methods: Within a 15-month period, 67 patients with 92 breast lesions rated as Category IV or V according to the breast imaging reporting and data system detected with MG and/or ultrasound were included into the study. After the injection of 740–1110 MBq of Technetium-99m (99mTc) SestaMIBI intravenously, scintigrams were obtained in two projections comparable to MG. The BSGI was analysed visually and semi-quantitatively by calculating a relative uptake factor (X). With the exception of two patients with cardiac pacemakers, all patients underwent 3-T breast MRI. Biopsy results were obtained as the reference standard in all patients. Sensitivity, specificity, positive- and negative-predictive values, accuracy and area under the curve were calculated for each modality. Results: Among the 92 lesions, 67 (72.8%) were malignant. 60 of the 67 cancers of any size were detected by BSGI with an overall sensitivity of 90%, only exceeded by ultrasound with a sensitivity of 99%. The sensitivity of BSGI for lesions <1 cm declined significantly to 60%. Overall specificity of ultrasound was only 20%. Specificity, accuracy and positive-predictive value were the highest for BSGI (56%, 80% and 85%, respectively). X was significantly higher for malignant lesions (mean, 4.27) and differed significantly between ductal types (mean, 4.53) and the other histopathological entities (mean, 3.12). Conclusion: Semi-quantitative BSGI with calculation of the relative uptake factor (X) can help to characterize breast lesions. BSGI negativity may obviate the need for biopsy of breast lesions >1 cm with low or intermediate prevalence for malignancy. Advances in knowledge: Compared with morphological imaging modalities, specificity, positive

  5. Evoked Potentials and Memory/Cognition Tests Validate Brain Atrophy as Measured by 3T MRI (NeuroQuant) in Cognitively Impaired Patients.

    PubMed

    Braverman, Eric R; Blum, Kenneth; Hussman, Karl L; Han, David; Dushaj, Kristina; Li, Mona; Marin, Gabriela; Badgaiyan, Rajendra D; Smayda, Richard; Gold, Mark S

    2015-01-01

    To our knowledge, this is the largest study evaluating relationships between 3T Magnetic Resonance Imaging (MRI) and P300 and memory/cognitive tests in the literature. The 3T MRI using NeuroQuant has an increased resolution 15 times that of 1.5T MRI. Utilizing NeuroQuant 3T MRI as a diagnostic tool in primary care, subjects (N=169; 19-90 years) displayed increased areas of anatomical atrophy: 34.62% hippocampal atrophy (N=54), 57.14% central atrophy (N=88), and 44.52% temporal atrophy (N=69). A majority of these patients exhibited overlap in measured areas of atrophy and were cognitively impaired. These results positively correlated with decreased P300 values and WMS-III (WMS-III) scores differentially across various brain loci. Delayed latency (p=0.0740) was marginally associated with temporal atrophy; reduced fractional anisotropy (FA) in frontal lobes correlated with aging, delayed P300 latency, and decreased visual and working memory (p=0.0115). Aging and delayed P300 latency correlated with lower FA. The correlation between working memory and reduced FA in frontal lobes is marginally significant (p=0.0787). In the centrum semiovale (CS), reduced FA correlated with visual memory (p=0.0622). Lower demyelination correlated with higher P300 amplitude (p=0.0002). Compared to males, females have higher demyelination (p=0.0064). Along these lines, the higher the P300 amplitude, the lower the bilateral atrophy (p=0.0165). Hippocampal atrophy correlated with increased auditory memory and gender, especially in males (p=0.0087). In considering temporal lobe atrophy correlations: delayed P300 latency and high temporal atrophy (p=0.0740); high auditory memory and low temporal atrophy (p=0.0417); and high working memory and low temporal atrophy (p=0.0166). Central atrophy correlated with aging and immediate memory (p=0.0294): the higher the immediate memory, the lower the central atrophy. Generally, the validation of brain atrophy by P300 and WMS-III could lead to cost

  6. Evoked Potentials and Memory/Cognition Tests Validate Brain Atrophy as Measured by 3T MRI (NeuroQuant) in Cognitively Impaired Patients

    PubMed Central

    Braverman, Eric R.; Blum, Kenneth; Hussman, Karl L.; Han, David; Dushaj, Kristina; Li, Mona; Marin, Gabriela; Badgaiyan, Rajendra D.; Smayda, Richard; Gold, Mark S.

    2015-01-01

    To our knowledge, this is the largest study evaluating relationships between 3T Magnetic Resonance Imaging (MRI) and P300 and memory/cognitive tests in the literature. The 3T MRI using NeuroQuant has an increased resolution 15 times that of 1.5T MRI. Utilizing NeuroQuant 3T MRI as a diagnostic tool in primary care, subjects (N=169; 19–90 years) displayed increased areas of anatomical atrophy: 34.62% hippocampal atrophy (N=54), 57.14% central atrophy (N=88), and 44.52% temporal atrophy (N=69). A majority of these patients exhibited overlap in measured areas of atrophy and were cognitively impaired. These results positively correlated with decreased P300 values and WMS-III (WMS-III) scores differentially across various brain loci. Delayed latency (p=0.0740) was marginally associated with temporal atrophy; reduced fractional anisotropy (FA) in frontal lobes correlated with aging, delayed P300 latency, and decreased visual and working memory (p=0.0115). Aging and delayed P300 latency correlated with lower FA. The correlation between working memory and reduced FA in frontal lobes is marginally significant (p=0.0787). In the centrum semiovale (CS), reduced FA correlated with visual memory (p=0.0622). Lower demyelination correlated with higher P300 amplitude (p=0.0002). Compared to males, females have higher demyelination (p=0.0064). Along these lines, the higher the P300 amplitude, the lower the bilateral atrophy (p=0.0165). Hippocampal atrophy correlated with increased auditory memory and gender, especially in males (p=0.0087). In considering temporal lobe atrophy correlations: delayed P300 latency and high temporal atrophy (p=0.0740); high auditory memory and low temporal atrophy (p=0.0417); and high working memory and low temporal atrophy (p=0.0166). Central atrophy correlated with aging and immediate memory (p=0.0294): the higher the immediate memory, the lower the central atrophy. Generally, the validation of brain atrophy by P300 and WMS-III could lead to cost

  7. In vivo conductivity imaging of canine male pelvis using a 3T MREIT system

    NASA Astrophysics Data System (ADS)

    Kim, H. J.; Jeong, W. C.; Kim, Y. T.; Minhas, A. S.; Lee, T. H.; Lim, C. Y.; Park, H. M.; Seo, J. K.; Woo, E. J.

    2010-04-01

    The prostate is an imaging area of growing concern related with aging. Prostate cancer and benign prostatic hyperplasia are the most common diseases and significant cause of death for elderly men. Hence, the conductivity imaging of the male pelvis is a challenging task with a clinical significance. In this study, we performed in vivo MREIT imaging experiments of the canine male pelvis using a 3T MRI scanner. Adopting carbon-hydrogel electrodes and a multi-echo pulse sequence, we could inject as much as 10 mA current in a form of 51 ms pulse into the pelvis. Collecting magnetic flux density data inside the pelvis subject to multiple injection currents, we reconstructed cross-sectional conductivity images using a MREIT software package CoReHA. Scaled conductivity images of the prostate show a clear contrast between the central and peripheral zones which are related with prostate diseases including cancer and benign prostatic hyperplasia. In our future work, we will focus on prostate cancer model animal experiments.

  8. Wavelet based characterization of ex vivo vertebral trabecular bone structure with 3T MRI compared to microCT

    SciTech Connect

    Krug, R; Carballido-Gamio, J; Burghardt, A; Haase, S; Sedat, J W; Moss, W C; Majumdar, S

    2005-04-11

    Trabecular bone structure and bone density contribute to the strength of bone and are important in the study of osteoporosis. Wavelets are a powerful tool to characterize and quantify texture in an image. In this study the thickness of trabecular bone was analyzed in 8 cylindrical cores of the vertebral spine. Images were obtained from 3 Tesla (T) magnetic resonance imaging (MRI) and micro-computed tomography ({micro}CT). Results from the wavelet based analysis of trabecular bone were compared with standard two-dimensional structural parameters (analogous to bone histomorphometry) obtained using mean intercept length (MR images) and direct 3D distance transformation methods ({micro}CT images). Additionally, the bone volume fraction was determined from MR images. We conclude that the wavelet based analyses delivers comparable results to the established MR histomorphometric measurements. The average deviation in trabecular thickness was less than one pixel size between the wavelet and the standard approach for both MR and {micro}CT analysis. Since the wavelet based method is less sensitive to image noise, we see an advantage of wavelet analysis of trabecular bone for MR imaging when going to higher resolution.

  9. An investigation of the value of spin-echo-based fMRI using a Stroop color-word matching task and EPI at 3 T.

    PubMed

    Norris, David G; Zysset, Stefan; Mildner, Toralf; Wiggins, Christopher J

    2002-03-01

    This study examines the value of spin-echo-based fMRI for cognitive studies at the main magnetic field strength of 3 T using a spin-echo EPI (SE-EPI) sequence and a Stroop color-word matching task. SE-EPI has the potential advantage over conventional gradient-echo EPI (GE-EPI) that signal losses caused by dephasing through the slice are not present, and hence although image distortion will be the same as for an equivalent GE-EPI sequence, signal voids will be eliminated. The functional contrast in SE-EPI will be lower than for GE-EPI, as static dephasing effects do not contribute. As an auxiliary experiment interleaved diffusion-weighted and non-diffusion-weighted SE-EPI was performed in the visual cortex to further elucidate the mechanims of functional contrast. In the Stroop experiment activation was detected in all areas previously found using GE-EPI. Additional frontopolar and ventral frontomedian activations were also found, which could not be detected using GE-EPI. The experiments from visual cortex indicated that at 3 T the BOLD signal change has contributions from the extravascular space and larger blood vessels in roughly equal amounts. In comparison with GE-EPI the absence of static dephasing effects would seem to result in a superior intrinsic spatial resolution. In conclusion the sensitivity of SE-EPI at 3 T is sufficient to make it the method of choice for fMR studies that require a high degree of spatial localization or where the requirement is to detect activation in regions affected by strong susceptibility gradients. PMID:11848715

  10. Development of 1.45-mm resolution four-layer DOI-PET detector for simultaneous measurement in 3T MRI.

    PubMed

    Nishikido, Fumihiko; Tachibana, Atsushi; Obata, Takayuki; Inadama, Naoko; Yoshida, Eiji; Suga, Mikio; Murayama, Hideo; Yamaya, Taiga

    2015-01-01

    Recently, various types of PET-MRI systems have been developed by a number of research groups. However, almost all of the PET detectors used in these PET-MRI systems have no depth-of-interaction (DOI) capability. The DOI detector can reduce the parallax error and lead to improvement of the performance. We are developing a new PET-MRI system which consists of four-layer DOI detectors positioned close to the measured object to achieve high spatial resolution and high scanner sensitivity. As a first step, we are investigating influences the PET detector and the MRI system have on each other using a prototype four-layer DOI-PET detector. This prototype detector consists of a lutetium yttrium orthosilicate crystal block and a 4 × 4 multi-pixel photon counter array. The size of each crystal element is 1.45 mm × 1.45 mm × 4.5 mm, and the crystals are arranged in 6 × 6 elements × 4 layers with reflectors. The detector and some electric components are packaged in an aluminum shielding box. Experiments were carried out with 3.0 T MRI (GE, Signa HDx) and a birdcage-type RF coil. We demonstrated that the DOI-PET detector was normally operated in simultaneous measurements with no influence of the MRI measurement. A slight influence of the PET detector on the static magnetic field of the MRI was observed near the PET detector. The signal-to-noise ratio was decreased by presence of the PET detector due to environmental noise entering the MRI room through the cables, even though the PET detector was not powered up. On the other hand, no influence of electric noise from the PET detector in the simultaneous measurement on the MRI images was observed, even though the PET detector was positioned near the RF coil. PMID:25348721

  11. Assessment of cerebrospinal fluid flow patterns using the time-spatial labeling inversion pulse technique with 3T MRI: early clinical experiences.

    PubMed

    Abe, Kayoko; Ono, Yuko; Yoneyama, Hiroko; Nishina, Yu; Aihara, Yasuo; Okada, Yoshikazu; Sakai, Shuji

    2014-06-01

    CSF imaging using the time-spatial labeling inversion pulse (time-SLIP) technique at 3T magnetic resonance imaging (MRI) was performed to assess cerebrospinal fluid (CSF) dynamics. The study population comprised 15 healthy volunteers and five patients with MR findings showing expansive dilation of the third and lateral ventricles suggesting aqueductal stenosis (AS). Signal intensity changes were evaluated in the tag-labeled CSF, untagged brain parenchyma, and untagged CSF of healthy volunteers by changing of black-blood time-inversion pulse (BBTI). CSF flow from the aqueduct to the third ventricle, the aqueduct to the fourth ventricle, and the foramen of Monro to the lateral ventricle was clearly rendered in all healthy volunteers with suitable BBTI. The travel distance of CSF flow as demonstrated by the time-SLIP technique was compared with the distance between the aqueduct and the fourth ventricle. The distance between the foramen of Monro and the lateral ventricle was used to calculate the CSF flow/distance ratio (CD ratio). The CD ratio at each level was significantly reduced in patients suspected to have AS compared to healthy volunteers. CSF flow was not identified at the aqueductal level in most of the patients. Two patients underwent time-SLIP assessments before and after endoscopic third ventriculostomies (ETVs). CSF flow at the ETV site was confirmed in each patient. With the time-SLIP technique, CSF imaging is sensitive enough to detect kinetic changes in CSF flow due to AS and ETV. PMID:24976193

  12. Subjects with Higher Physical Activity Levels Have More Severe Focal Knee lesions diagnosed with 3T MRI: Analysis of a Non Symptomatic Cohort of the Osteoarthritis Initiative

    PubMed Central

    Stehling, Christoph; Lane, Nancy E.; Nevitt, Michael C.; Lynch, John; McCulloch, Charles E.; Link, Thomas M.

    2016-01-01

    Purpose To study the prevalence of focal knee abnormalities using 3 Tesla (T) MR studies in relation to physical activity levels in asymptomatic, middle-aged subjects from the Osteoarthritis Initiative (OAI). Material and Methods We analyzed baseline data from 236 45–55 years old individuals (136 women, 100 men) without knee pain (based on WOMAC scores) and a BMI of 19–27 kg/m2. Physical activity levels were determined in all subjects using the Physical Activity Scale for the Elderly (PASE). MRI at 3T was performed using coronal intermediate-weighted (IW) 2D fast spin-echo (FSE), sagittal 3D dual-echo in steady state (DESS) and 2D IW fat-suppressed (fs) FSE sequences of the right knee. All images were analyzed by two musculoskeletal radiologists identifying and grading cartilage, meniscal, ligamentous and other knee abnormalities using the WORMS MRI OA scoring method. Statistical significances between subjects with different activity levels were determined using one-way analysis of variance (ANOVA), chi-square tests and a multivariate regression model adjusted for gender, age, BMI, KL-Score and OA risk factors. Results Meniscal lesions were found in 47% of the 236 subjects, cartilage lesions in 74.6%, bone marrow edema pattern (BMEP) in 40.3% and ligament lesions in 17%. Stratification of subjects by physical activity resulted in an increasing incidence of cartilage, meniscus and ligament abnormalities, BMEP and joint effusion according to activity levels (PASE). The severity grade of cartilage lesions was also associated with PASE levels and presence of other knee abnormalities was also significantly associated with cartilage defects. Conclusion Asymptomatic middle-aged individuals from the OAI incidence cohort had a high prevalence of knee abnormalities; more physically active individuals had significantly more and more severe knee abnormalities independently of gender, age, BMI, KL-Score and OA risk factors. This data therefore also suggests that subjects

  13. The Use of the Lumbosacral Enlargement as an Intrinsic Imaging Biomarker: Feasibility of Grey Matter and White Matter Cross-Sectional Area Measurements Using MRI at 3T

    PubMed Central

    Yiannakas, Marios C.; Kakar, Puneet; Hoy, Luke R.; Miller, David H.; Wheeler-Kingshott, Claudia A. M.

    2014-01-01

    Histopathological studies have demonstrated the involvement of spinal cord grey matter (GM) and white matter (WM) in several diseases and recent research has suggested the use of magnetic resonance imaging (MRI) as a promising tool for in vivo assessment of the upper spinal cord. However, many neurological conditions would benefit from quantitative assessment of tissue integrity at different levels and relatively little work has been done, mainly due to technical challenges associated with imaging the lower spinal cord. In this study, the value of the lumbosacral enlargement (LSE) as an intrinsic imaging biomarker was determined by exploring the feasibility of obtaining within it reliable GM and WM cross-sectional area (CSA) measurements by means of a commercially available MRI system at 3 tesla (T). 10 healthy volunteers (mean age 27.5 years, 6 female) gave written informed consent and high resolution images of the LSE were acquired and analysed using an optimised MRI acquisition and analysis protocol. GM and WM mean CSA measurements were obtained from a 15 mm section at the level of the LSE and the reproducibility of the measurements was determined by means of scan-rescan, intra- and inter-observer assessments. Mean (±SD) LSE cross-sectional area (LSE-CSA) was 62.3 (±4.1) mm2 and mean (±SD) LSE grey matter cross-sectional area (LSE-GM-CSA) was 19.8 (±3.3) mm2. The mean scan-rescan, intra- and inter-observer % coefficient of variation (COV) for measuring the LSE-CSA were 2%, 2% and 2.5%, respectively and for measuring the LSE-GM-CSA were 7.8%, 8% and 8.6%, respectively. This study has shown that the LSE can be used reliably as an intrinsic imaging biomarker. The method presented here can be potentially extended to study the LSE in the diseased state and could provide a solid foundation for subsequent multi-parametric MRI investigations. PMID:25170763

  14. STAT5A expression in Swiss 3T3 cells promotes adipogenesis in vivo in an athymic mice model system.

    PubMed

    Stewart, William C; Pearcy, Lisa A; Floyd, Z Elizabeth; Stephens, Jacqueline M

    2011-09-01

    Many studies from our laboratories and others have shown that STAT5 expression and activity are increased during adipogenesis of murine and human adipocytes. Ectopic expression of STAT5A in fibroblasts or preadipocytes can confer or enhance adipogenesis. To determine whether STAT5A also plays a role in adipogenesis in vivo, we injected athymic mice with Swiss 3T3 cells expressing an empty pBABE retrovirus, Swiss cells expressing a pBABE retrovirus-containing STAT5A, or 3T3-F442A preadipocytes. Athymic mice injected with either 3T3-F442A cells or Swiss 3T3 cells expressing STAT5A resulted in fat pad formation at the site of injection. However, mice injected with Swiss cells containing the parent retroviral vector did not have any observable fat pads. An analysis of the ectopic fat pads obtained from the Swiss 3T3 STAT5A mice revealed abundant expression of peroxisome proliferator-activated receptor-γ (PPAR-γ) and adiponectin. The protein levels of both of these fat cell markers were comparable to expression levels in epididymal fat pads. These results demonstrate that STAT5A can promote adipogenesis in vivo in this model system which supports a role of this transcription factor in adipocyte development in the whole animal. PMID:21494231

  15. Fat-suppression techniques for 3-T MR imaging of the musculoskeletal system.

    PubMed

    Del Grande, Filippo; Santini, Francesco; Herzka, Daniel A; Aro, Michael R; Dean, Cooper W; Gold, Garry E; Carrino, John A

    2014-01-01

    Fat suppression is an important technique in musculoskeletal imaging to improve the visibility of bone-marrow lesions; evaluate fat in soft-tissue masses; optimize the contrast-to-noise ratio in magnetic resonance (MR) arthrography; better define lesions after administration of contrast material; and avoid chemical shift artifacts, primarily at 3-T MR imaging. High-field-strength (eg, 3-T) MR imaging has specific technical characteristics compared with lower-field-strength MR imaging that influence the use and outcome of various fat-suppression techniques. The most commonly used fat-suppression techniques for musculoskeletal 3-T MR imaging include chemical shift (spectral) selective (CHESS) fat saturation, inversion recovery pulse sequences (eg, short inversion time inversion recovery [STIR]), hybrid pulse sequences with spectral and inversion-recovery (eg, spectral adiabatic inversion recovery and spectral attenuated inversion recovery [SPAIR]), spatial-spectral pulse sequences (ie, water excitation), and the Dixon techniques. Understanding the different fat-suppression options allows radiologists to adopt the most appropriate technique for their clinical practice. PMID:24428292

  16. Fat-Suppression Techniques for 3-T MR Imaging of the Musculoskeletal System1

    PubMed Central

    Del Grande, Filippo; Santini, Francesco; Herzka, Daniel A.; Aro, Michael R.; Dean, Cooper W.; Gold, Garry E.; Carrino, John A.

    2015-01-01

    Fat suppression is an important technique in musculoskeletal imaging to improve the visibility of bone-marrow lesions; evaluate fat in soft-tissue masses; optimize the contrast-to-noise ratio in magnetic resonance (MR) arthrography; better define lesions after administration of contrast material; and avoid chemical shift artifacts, primarily at 3-T MR imaging. High-field-strength (eg, 3-T) MR imaging has specific technical characteristics compared with lower-field-strength MR imaging that influence the use and outcome of various fat-suppression techniques. The most commonly used fat-suppression techniques for musculoskeletal 3-T MR imaging include chemical shift (spectral) selective (CHESS) fat saturation, inversion recovery pulse sequences (eg, short inversion time inversion recovery [STIR]), hybrid pulse sequences with spectral and inversion-recovery (eg, spectral adiabatic inversion recovery and spectral attenuated inversion recovery [SPAIR]), spatial-spectral pulse sequences (ie, water excitation), and the Dixon techniques. Understanding the different fat-suppression options allows radiologists to adopt the most appropriate technique for their clinical practice. PMID:24428292

  17. Semi-Quantitative vs. Volumetric Determination of Endolymphatic Space in Menière’s Disease Using Endolymphatic Hydrops 3T-HR-MRI after Intravenous Gadolinium Injection

    PubMed Central

    Homann, Georg; Vieth, Volker; Weiss, Daniel; Nikolaou, Konstantin; Heindel, Walter; Notohamiprodjo, Mike; Böckenfeld, Yvonne

    2015-01-01

    Magnetic resonance imaging enhances the clinical diagnosis of Menière's disease. This is accomplished by in vivo detection of endolymphatic hydrops, which are graded using different semi-quantitative grading systems. We evaluated an established, semi-quantitative endolymphatic hydrops score and with a quantitative method for volumetric assessment of the endolymphatic size. 11 patients with Menière's disease and 2 healthy subjects underwent high resolution endolymphatic hydrops 3 Tesla MRI with highly T2 weighted FLAIR and T2DRIVE sequences. The degree of endolymphatic hydrops was rated semi-quantitatively and compared to the results of 3D-volumetry. Moreover, the grade of endolymphatic hydrops was correlated with pure tone audiometry. Semi-quantitative grading and volumetric evaluation of the endolymphatic hydrops are in accordance (r = 0.92) and the grade of endolymphatic hydrops correlates with pure tone audiometry. Patients with a sickness duration of ≥ 30 months showed a significant higher total labyrinth fluid volume (p = 0.03). Fast, semi-quantitative evaluation of endolymphatic hydrops is highly reliable compared to quantitative/volumetric assessment. Endolymphatic space is significantly higher in patients with longer sickness duration. PMID:25768940

  18. Osmotically inducible uptake of betaine via amino acid transport system A in SV-3T3 cells.

    PubMed

    Petronini, P G; De Angelis, E; Borghetti, A F; Wheeler, K P

    1994-05-15

    The osmotically inducible uptake of betaine (NNN-trimethylglycine) by SV-3T3 cells has been studied and compared with the similar process in MDCK cells. Betaine uptake by SV-3T3 cells could be described in terms of a saturable, Na(+)-dependent, component plus a small non-saturable, Na(+)-independent, component. Transport was active, producing considerable accumulation of betaine in the cells. After exposure of the cells to hypertonic conditions for 6 h, there was a marked increase in betaine uptake. Kinetic analysis indicated that this increase resulted from an increase in the Vmax. value of the saturable component, from about 88 to 185 nmol of betaine/5 min per mg of protein, the corresponding Km values of about 15 and 10 mM not being significantly different. This induction of transport activity was detectable only after about 2 h exposure of the cells to hypertonic medium, closely paralleling an induction of influx of N-methylaminoisobutyric acid, and was prevented by the presence of cycloheximide. Betaine influx was markedly inhibited by several neutral amino acids, particularly those transported by system A, such as N-methylaminoisobutyric acid and the imino acid proline. A high concentration (25 mM) of betaine also significantly inhibited the uptake of proline by SV-3T3 cells. Although very similar results were obtained with MDCK cells, prolonged exposure of cells to hypertonic conditions revealed distinct differences. When the hypertonic incubation was extended from 6 h to 24 h, betaine transport in SV-3T3 cells either remained the same or decreased, whereas it showed a further marked increase in MDCK cells, and also became sensitive to inhibition by gamma-aminobutyric acid. mRNA for the betaine transporter BGT-1 [Yamauchi, Uchida, Kwon, Preston, Brooks Robey, Garcia-Perez, Burg and Handler (1992) J. Biol. Chem. 267, 649-652] was detectable in MDCK cells exposed to hypertonic medium for 24 h, but not in SV-3T3 cells under any conditions. It is concluded that

  19. Role of 3T multiparametric-MRI with BOLD hypoxia imaging for diagnosis and post therapy response evaluation of postoperative recurrent cervical cancers

    PubMed Central

    Mahajan, Abhishek; Engineer, Reena; Chopra, Supriya; Mahanshetty, Umesh; Juvekar, S.L.; Shrivastava, S.K.; Desekar, Naresh; Thakur, M.H.

    2015-01-01

    Objectives To assess the diagnostic value of multiparametric-MRI (MPMRI) with hypoxia imaging as a functional marker for characterizing and detecting vaginal vault/local recurrence following primary surgery for cervical cancer. Methods With institutional review board approval and written informed consent 30 women (median age: 45 years) from October 2009 to March 2010 with previous operated carcinoma cervix and suspected clinical vaginal vault/local recurrence were examined with 3.0T-MRI. MRI imaging included conventional and MPMRI sequences [dynamic contrast enhanced (DCE), diffusion weighted (DW), 1H-MR spectroscopy (1HMRS), blood oxygen level dependent hypoxia imaging (BOLD)]. Two radiologists, blinded to pathologic findings, independently assessed the pretherapy MRI findings and then correlated it with histopathology findings. Sensitivity, specificity, positive predictive value, negative predictive value and their confidence intervals were calculated. The pre and post therapy conventional and MPMRI parameters were analyzed and correlated with response to therapy. Results Of the 30 patients, there were 24 recurrent tumors and 6 benign lesions. The accuracy of diagnosing recurrent vault lesions was highest at combined MPMRI and conventional MRI (100%) than at conventional-MRI (70%) or MPMRI (96.7%) alone. Significant correlation was seen between percentage tumor regression and pre-treatment parameters such as negative enhancement integral (NEI) (p = 0.02), the maximum slope (p = 0.04), mADC value (p = 0.001) and amount of hypoxic fraction on the pretherapy MRI (p = 0.01). Conclusion Conventional-MR with MPMRI significantly increases the diagnostic accuracy for suspected vaginal vault/local recurrence. Post therapy serial MPMRI with hypoxia imaging follow-up objectively documents the response. MPMRI and BOLD hypoxia imaging provide information regarding tumor biology at the molecular, subcellular, cellular and tissue levels and this information may be used

  20. Significant Artifact Reduction at 1.5T and 3T MRI by the Use of a Cochlear Implant with Removable Magnet: An Experimental Human Cadaver Study

    PubMed Central

    Wagner, Franca; Wimmer, Wilhelm; Leidolt, Lars; Vischer, Mattheus; Weder, Stefan; Wiest, Roland; Mantokoudis, Georgios; Caversaccio, Marco D.

    2015-01-01

    Objective Cochlear implants (CIs) are standard treatment for postlingually deafened individuals and prelingually deafened children. This human cadaver study evaluated diagnostic usefulness, image quality and artifacts in 1.5T and 3T magnetic resonance (MR) brain scans after CI with a removable magnet. Methods Three criteria (diagnostic usefulness, image quality, artifacts) were assessed at 1.5T and 3T in five cadaver heads with CI. The brain magnetic resonance scans were performed with and without the magnet in situ. The criteria were analyzed by two blinded neuroradiologists, with focus on image distortion and limitation of the diagnostic value of the acquired MR images. Results MR images with the magnet in situ were all compromised by artifacts caused by the CI. After removal of the magnet, MR scans showed an unequivocal artifact reduction with significant improvement of the image quality and diagnostic usefulness, both at 1.5T and 3T. Visibility of the brain stem, cerebellopontine angle, and parieto-occipital lobe ipsilateral to the CI increased significantly after magnet removal. Conclusions The results indicate the possible advantages for 1.5T and 3T MR scanning of the brain in CI carriers with removable magnets. Our findings support use of CIs with removable magnets, especially in patients with chronic intracranial pathologies. PMID:26200775

  1. Quantitative pharmacokinetic analysis of prostate cancer DCE-MRI at 3T: comparison of two arterial input functions on cancer detection with digitized whole mount histopathological validation.

    PubMed

    Fennessy, Fiona M; Fedorov, Andriy; Penzkofer, Tobias; Kim, Kyung Won; Hirsch, Michelle S; Vangel, Mark G; Masry, Paul; Flood, Trevor A; Chang, Ming-Ching; Tempany, Clare M; Mulkern, Robert V; Gupta, Sandeep N

    2015-09-01

    Accurate pharmacokinetic (PK) modeling of dynamic contrast enhanced MRI (DCE-MRI) in prostate cancer (PCa) requires knowledge of the concentration time course of the contrast agent in the feeding vasculature, the so-called arterial input function (AIF). The purpose of this study was to compare AIF choice in differentiating peripheral zone PCa from non-neoplastic prostatic tissue (NNPT), using PK analysis of high temporal resolution prostate DCE-MRI data and whole-mount pathology (WMP) validation. This prospective study was performed in 30 patients who underwent multiparametric endorectal prostate MRI at 3.0T and WMP validation. PCa foci were annotated on WMP slides and MR images using 3D Slicer. Foci ≥0.5cm(3) were contoured as tumor regions of interest (TROIs) on subtraction DCE (early-arterial - pre-contrast) images. PK analyses of TROI and NNPT data were performed using automatic AIF (aAIF) and model AIF (mAIF) methods. A paired t-test compared mean and 90th percentile (p90) PK parameters obtained with the two AIF approaches. Receiver operating characteristic (ROC) analysis determined diagnostic accuracy (DA) of PK parameters. Logistic regression determined correlation between PK parameters and histopathology. Mean TROI and NNPT PK parameters were higher using aAIF vs. mAIF (p<0.05). There was no significant difference in DA between AIF methods: highest for p90 volume transfer constant (K(trans)) (aAIF differences in the area under the ROC curve (Az) = 0.827; mAIF Az=0.93). Tumor cell density correlated with aAIF K(trans) (p=0.03). Our results indicate that DCE-MRI using both AIF methods is excellent in discriminating PCa from NNPT. If quantitative DCE-MRI is to be used as a biomarker in PCa, the same AIF method should be used consistently throughout the study. PMID:25683515

  2. Advances in the continuous monitoring of erosion and deposition dynamics: Developments and applications of the new PEEP-3T system

    NASA Astrophysics Data System (ADS)

    Lawler, D. M.

    2008-01-01

    In most episodic erosion and deposition systems, knowledge of the timing of geomorphological change, in relation to fluctuations in the driving forces, is crucial to strong erosion process inference, and model building, validation and development. A challenge for geomorphology, however, is that few studies have focused on geomorphological event structure (timing, magnitude, frequency and duration of individual erosion and deposition events), in relation to applied stresses, because of the absence of key monitoring methodologies. This paper therefore (a) presents full details of a new erosion and deposition measurement system — PEEP-3T — developed from the Photo-Electronic Erosion Pin sensor in five key areas, including the addition of nocturnal monitoring through the integration of the Thermal Consonance Timing (TCT) concept, to produce a continuous sensing system; (b) presents novel high-resolution datasets from the redesigned PEEP-3T system for river bank system of the Rivers Nidd and Wharfe, northern England, UK; and (c) comments on their potential for wider application throughout geomorphology to address these key measurement challenges. Relative to manual methods of erosion and deposition quantification, continuous PEEP-3T methodologies increase the temporal resolution of erosion/deposition event detection by more than three orders of magnitude (better than 1-second resolution if required), and this facility can significantly enhance process inference. Results show that river banks are highly dynamic thermally and respond quickly to radiation inputs. Data on bank retreat timing, fixed with PEEP-3T TCT evidence, confirmed that they were significantly delayed up to 55 h after flood peaks. One event occurred 13 h after emergence from the flow. This suggests that mass failure processes rather than fluid entrainment dominated the system. It is also shown how, by integrating turbidity instrumentation with TCT ideas, linkages between sediment supply and sediment

  3. The 'swallow tail' appearance of the healthy nigrosome - a new accurate test of Parkinson's disease: a case-control and retrospective cross-sectional MRI study at 3T.

    PubMed

    Schwarz, Stefan T; Afzal, Mohammed; Morgan, Paul S; Bajaj, Nin; Gowland, Penny A; Auer, Dorothee P

    2014-01-01

    There is no well-established in vivo marker of nigral degeneration in Parkinson's disease (PD). An ideal imaging marker would directly mirror the loss of substantia nigra dopaminergic neurones, which is most prominent in sub-regions called nigrosomes. High-resolution, iron-sensitive, magnetic resonance imaging (MRI) at 7T allows direct nigrosome-1 visualisation in healthy people but not in PD. Here, we investigated the feasibility of nigrosome-1 detection using 3T - susceptibility-weighted (SWI) MRI and the diagnostic accuracy that can be achieved for diagnosing PD in a clinical population. 114 high-resolution 3T - SWI-scans were reviewed consisting of a prospective case-control study in 19 subjects (10 PD, 9 controls) and a retrospective cross-sectional study in 95 consecutive patients undergoing routine clinical SWI-scans (>50 years, 9 PD, 81 non-PD, 5 non-diagnostic studies excluded). Two raters independently classified subjects into PD and non-PD according to absence or presence of nigrosome-1, followed by consensus reading. Diagnostic accuracy was assessed against clinical diagnosis as gold standard. Absolute inter- and intra-rater agreement was ≥94% (kappa≥0.82, p<0.001). In the prospective study 8/9 control and 8/10 PD; and in the retrospective study 77/81 non-PD and all 9 PD subjects were correctly classified. Diagnostic accuracy of the retrospective cohort was: sensitivity 100%, specificity 95%, NPV 1, PPV 0.69 and accuracy 96% which dropped to 91% when including non-diagnostic scans ('intent to diagnose'). The healthy nigrosome-1 can be readily depicted on high-resolution 3T - SWI giving rise to a 'swallow tail' appearance of the dorsolateral substantia nigra, and this feature is lost in PD. Visual radiological assessment yielded a high diagnostic accuracy for PD vs. an unselected clinical control population. Assessing the substantia nigra on SWI for the typical 'swallow tail' appearance has potential to become a new and easy applicable 3T MRI

  4. CD4+CXCR3+ T cells and plasmacytoid dendritic cells drive accelerated atherosclerosis associated with systemic lupus erythematosus.

    PubMed

    Clement, Marc; Charles, Nicolas; Escoubet, Brigitte; Guedj, Kevin; Chauveheid, Marie-Paule; Caligiuri, Giuseppina; Nicoletti, Antonino; Papo, Thomas; Sacre, Karim

    2015-09-01

    Cardiovascular disease due to accelerated atherosclerosis is the leading cause of death in patients with systemic lupus erythematosus (SLE). Noteworthy, accelerated atherosclerosis in SLE patients appears to be independant of classical Framingham risk factors. This suggests that aggravated atherosclerosis in SLE patients may be a result of increased inflammation and altered immune responses. However, the mechanisms that mediate the acceleration of atherosclerosis in SLE remain elusive. Based on experimental data which includes both humans (SLE patients and control subjects) and rodents (ApoE-/- mice), we herein propose a multi-step model in which the immune dysfunction associated with SLE (i.e. high level of IFN-α production by TLR 9-stimulated pDCs) is associated with, first, an increased frequency of circulating pro inflammatory CD4+CXCR3+ T cells; second, an increased production of CXCR3 ligands by endothelial cells; third, an increased recruitment of pro-inflammatory CD4+CXCR3+ T cells into the arterial wall, and fourth, the development of atherosclerosis. In showing how SLE may promote accelerated atherosclerosis, our model also points to hypotheses for potential interventions, such as pDCs-targeted therapy, that might be studied in the future. PMID:26183767

  5. FUNCTIONAL AND ANATOMICAL DIFFERENCES BETWEEN CONTINENT AND INCONTINENT MEN POST RADICAL PROSTATECTOMY ON URODYNAMICS AND 3T MRI: A PILOT STUDY

    PubMed Central

    Cameron, Anne P.; Suskind, Anne M.; Neer, Charlene; Hussain, Hero; Montgomery, Jeffrey; Latini, Jerilyn M.; DeLancey, John O

    2014-01-01

    Aims There are competing hypotheses about the etiology of post prostatectomy incontinence (PPI).The purpose of this study was to determine the anatomical and functional differences between men with and without PPI. Methods Case control study of continent and incontinent men after radical prostatectomy who underwent functional and anatomic studies with urodynamics and 3.0 Tesla MRI. All men were at least 12 months post prostatectomy and none had a history of pelvic radiation or any prior surgery for incontinence. Results Baseline demographics, surgical approach and pathology were similar between incontinent (cases) (n=14) and continent (controls) (n=12) men. Among the cases, the average 24 hour pad weight was 400.0 ±176.9 grams with a mean of 2.4 ±0.7 pads per day. Urethral pressure profiles at rest did not significantly differ between groups; however with a Kegel maneuver the rise in urethral pressure was 2.6 fold higher in controls. On MRI, the urethral length was 31–35% shorter and the bladder neck was 28.9 degrees more funneled in cases. There were no differences in levator ani muscle size between groups. There was distortion of the sphincter area in 85.7% of cases and in 16.7% of controls (p=0.001). Conclusions Men with PPI were not able to increase urethral pressure with a Kegel maneuver despite similar resting urethral pressure profiles. Additionally, incontinent men had shorter urethras and were more likely to have distortion of the sphincter area. All suggesting that the sphincter in men with PPI is both diminutive and poorly functional. PMID:24752967

  6. Optimisation of T₂*-weighted MRI for the detection of small veins in multiple sclerosis at 3 T and 7 T.

    PubMed

    Dixon, Jennifer Elizabeth; Simpson, Ashley; Mistry, Niraj; Evangelou, Nikos; Morris, Peter Gordon

    2013-05-01

    T₂*-weighted magnetic resonance imaging at 7 T has recently been shown to allow differentiation between white-matter multiple sclerosis lesions and asymptomatic white-matter lesions, by the presence or absence of a detectable central blood vessel. The aim of the present work is to improve the technique by increasing the sensitivity to veins at both 3 T and 7 T, and to assess the benefit of ultra-high-field imaging. Signal-to-noise ratio (SNR) measurements and simulations are used to compare the sensitivity of magnitude T₂*-weighted and susceptibility-weighted images for the detection of small veins (<1 pixel in diameter), both with and without the use of gadolinium. The simulations are used to predict the optimal scanning parameters in order to increase the sensitivity to these veins at both field strengths, and to reduce the inherent dependence on vessel orientation. The sensitivities of the sequences at both field strengths are compared, theoretically and experimentally, in order to quantify the benefit of imaging at ultra-high-field. Subjects with multiple sclerosis (MS) are scanned at both field strengths, using the optimised sequence parameters, as well as those used in previously published work, and the optimisation is shown to improve the detection of veins within lesions. PMID:22138119

  7. Amygdala reactivity to masked negative faces is associated with automatic judgmental bias in major depression: a 3 T fMRI study

    PubMed Central

    Dannlowski, Udo; Ohrmann, Patricia; Bauer, Jochen; Kugel, Harald; Arolt, Volker; Heindel, Walter; Kersting, Anette; Baune, Bernhard T.; Suslow, Thomas

    2007-01-01

    Objective In a previous study, we demonstrated that amygdala reactivity to masked negative facial emotions predicts negative judgmental bias in healthy subjects. In the present study, we extended the paradigm to a sample of 35 inpatients suffering from depression to investigate the effect of amygdala reactivity on automatic negative judgmental bias and clinical characteristics in depression. Methods Amygdala activity was recorded in response to masked displays of angry, sad and happy facial expressions by means of functional magnetic resonance imaging at 3 T. In a subsequent experiment, the patients performed an affective priming task that characterizes automatic emotion processing by investigating the biasing effect of subliminally presented emotional faces on evaluative ratings to subsequently presented neutral stimuli. Results Significant associations between (right) amygdala reactivity and automatic negative judgmental bias were replicated in our patient sample (r = –0.59, p < 0.001). Further, negatively biased evaluative processing was associated with severity and longer course of illness (r = –0.57, p = 0.001). Conclusion Amygdala hyperactivity is a neural substrate of negatively biased automatic emotion processing that could be a determinant for a more severe disease course. PMID:18043766

  8. Tonotopic gradients in human primary auditory cortex: concurring evidence from high-resolution 7 T and 3 T fMRI.

    PubMed

    Da Costa, Sandra; Saenz, Melissa; Clarke, Stephanie; van der Zwaag, Wietske

    2015-01-01

    The tonotopic representations within the primary auditory cortex (PAC) have been successfully mapped with ultra-high field fMRI. Here, we compared the reliability of this tonotopic mapping paradigm at 7 T with 1.5 mm spatial resolution with maps acquired at 3 T with the same stimulation paradigm, but with spatial resolutions of 1.8 and 2.4 mm. For all subjects, the mirror-symmetric gradients within PAC were highly similar at 7 T and 3 T and across renderings at different spatial resolutions; albeit with lower percent signal changes at 3 T. In contrast, the frequency maps outside PAC tended to suffer from a reduced BOLD contrast-to-noise ratio at 3 T for a 1.8 mm voxel size, while robust at 2.4 mm and at 1.5 mm at 7 T. Overall, our results showed the robustness of the phase-encoding paradigm used here to map tonotopic representations across scanners. PMID:25098273

  9. Derivation of high-resolution MRI atlases of the human cerebellum at 3T and segmentation using multiple automatically generated templates.

    PubMed

    Park, Min Tae M; Pipitone, Jon; Baer, Lawrence H; Winterburn, Julie L; Shah, Yashvi; Chavez, Sofia; Schira, Mark M; Lobaugh, Nancy J; Lerch, Jason P; Voineskos, Aristotle N; Chakravarty, M Mallar

    2014-07-15

    The cerebellum has classically been linked to motor learning and coordination. However, there is renewed interest in the role of the cerebellum in non-motor functions such as cognition and in the context of different neuropsychiatric disorders. The contribution of neuroimaging studies to advancing understanding of cerebellar structure and function has been limited, partly due to the cerebellum being understudied as a result of contrast and resolution limitations of standard structural magnetic resonance images (MRI). These limitations inhibit proper visualization of the highly compact and detailed cerebellar foliations. In addition, there is a lack of robust algorithms that automatically and reliably identify the cerebellum and its subregions, further complicating the design of large-scale studies of the cerebellum. As such, automated segmentation of the cerebellar lobules would allow detailed population studies of the cerebellum and its subregions. In this manuscript, we describe a novel set of high-resolution in vivo atlases of the cerebellum developed by pairing MR imaging with a carefully validated manual segmentation protocol. Using these cerebellar atlases as inputs, we validate a novel automated segmentation algorithm that takes advantage of the neuroanatomical variability that exists in a given population under study in order to automatically identify the cerebellum, and its lobules. Our automatic segmentation results demonstrate good accuracy in the identification of all lobules (mean Kappa [κ]=0.731; range 0.40-0.89), and the entire cerebellum (mean κ=0.925; range 0.90-0.94) when compared to "gold-standard" manual segmentations. These results compare favorably in comparison to other publically available methods for automatic segmentation of the cerebellum. The completed cerebellar atlases are available freely online (http://imaging-genetics.camh.ca/cerebellum) and can be customized to the unique neuroanatomy of different subjects using the proposed

  10. 3-T Breast Diffusion-Weighted MRI by Echo-Planar Imaging with Spectral Spatial Excitation or with Additional Spectral Inversion Recovery: An In Vivo Comparison of Image Quality

    PubMed Central

    Jacobsen, Megan C.; Dogan, Basak E.; Adrada, Beatriz E.; Plaxco, Jeri Sue; Wei, Wei; Son, Jong Bum; Hazle, John D.; Ma, Jingfei

    2015-01-01

    Objective To compare conventional DWI with spectral spatial excitation (cDWI) and an enhanced DWI with additional adiabatic spectral inversion recovery (eDWI) for 3T breast MRI. Methods Twenty-four patients were enrolled in the study with both cDWI and eDWI. Three breast radiologists scored cDWI and eDWI images of each patient for fat-suppression quality, geometric distortion, visibility of normal structure and biopsy-proven lesions, and overall image quality. SNR, CNR and ADC for evaluable tissues were measured. Statistical tests were performed for qualitative and quantitative comparisons. Results eDWI yielded significantly higher CNR and SNR on a lesion and higher glandular CNR and SNR, and muscle SNR on a patient basis. eDWI also yielded significantly higher qualitative scores in all categories. No significant difference was found in ADC values. Conclusion eDWI provided superior image quality and higher CNR and SNR on a lesion basis. eDWI can replace cDWI for 3T breast DWI. PMID:25695868

  11. Goldvalve detachable balloon: "in vitro" assessment of safety and imaging artifacts in a 3-T MR system.

    PubMed

    Dabus, Guilherme; Gerstle, Ronald J; Goodman, James; Cross, DeWitte T; Moran, Christopher J; Derdeyn, Colin P

    2006-06-01

    The Goldvalve balloon is the only currently available detachable balloon. We undertook a study to determine safety and imaging artifacts in a MR environment. We found no evidence for heating or deflection of the balloon in a comprehensive series of in vitro experiments at 3 T. MR imaging at field strengths up to 3 T of patients with implanted Goldvalve balloons is safe. Imaging artifacts are minimal. PMID:16758155

  12. Clinical 3T MR imaging: mastering the challenges.

    PubMed

    Tanenbaum, Lawrence N

    2006-02-01

    3T MRI is ready to meet the needs of clinical practice. SAR limitations are minimized by technical advances and surface coils are available for all core applications. With appropriate adjustments to scanning protocols, one can master the challenges of scanning at 3T; studies of the brain, spine, chest, abdomen, pelvis, vasculature, and extremities can be consistently higher in quality than are those obtained at 1.5T. The superior studies that are obtainable at 3T have great appeal to clinicians who are sophisticated about MR technology in areas, such as neurology, orthopedics, vascular surgery, and oncology,and encourage a shift in referrals toward practices that invest in higher field technology. The greater sensitivity to magnetic susceptibility offers unique benefits in functional neuroimaging, and available software/hardware packages enhance clinical setting feasibility, which adds a source of new referrals. The greater overall signal of 3T can be manipulated to make scanning more comfortable and with less motion artifact because scan times could be half as long. Spectacular anatomic delineation that is provided by high-definition scanning at true 1024 resolution can improve preoperative assessment and may improve sensitivity to smaller lesions. 3T provides practices with an advantage that is sought increasingly by high field strength purchasers in a competitive market. Only cost considerations stand in the way of the eventual domination of 3T systems in the high field strength market. PMID:16530631

  13. Final Report: A CdZnTe detector for MRI-compatible SPECT Systems

    SciTech Connect

    Meng, Ling-Jian

    2012-12-27

    The key objective of this project is to develop the enabling technology for future MRI-compatible nuclear (e.g. SPECT) imaging system, and to demonstrate the feasibility of performing simultaneous MR and SPECT imaging studies of the same object. During the past three years, we have developed (a) a MRI-compatible ultrahigh resolution gamma ray detector and associated readout electronics, (b) a theoretical approach for modeling the effect of strong magnetic field on SPECT image quality, and (c) a maximum-likelihood (ML) based reconstruction routine with correction for the MR-induced distortion. With this support, we have also constructed a four-head MR-compatible SPECT system and tested the system inside a 3-T clinical MR-scanner located on UI campus. The experimental results obtained with this system have clearly demonstrated that sub-500um spatial resolution can be achieved with a SPECT system operated inside a 3-T MRI scanner. During the past three years, we have accomplished most of the major objectives outlined in the original proposal. These research efforts have laid out a solid foundation the development of future MR-compatible SPECT systems for both pre-clinical and clinical imaging applications.

  14. An eight-channel T/R head coil for parallel transmit MRI at 3T using ultra-low output impedance amplifiers

    NASA Astrophysics Data System (ADS)

    Moody, Katherine Lynn; Hollingsworth, Neal A.; Zhao, Feng; Nielsen, Jon-Fredrik; Noll, Douglas C.; Wright, Steven M.; McDougall, Mary Preston

    2014-09-01

    Parallel transmit is an emerging technology to address the technical challenges associated with MR imaging at high field strengths. When developing arrays for parallel transmit systems, one of the primary factors to be considered is the mechanism to manage coupling and create independently operating channels. Recent work has demonstrated the use of amplifiers to provide some or all of the channel-to-channel isolation, reducing the need for on-coil decoupling networks in a manner analogous to the use of isolation preamplifiers with receive coils. This paper discusses an eight-channel transmit/receive head array for use with an ultra-low output impedance (ULOI) parallel transmit system. The ULOI amplifiers eliminated the need for a complex lumped element network to decouple the eight-rung array. The design and construction details of the array are discussed in addition to the measurement considerations required for appropriately characterizing an array when using ULOI amplifiers. B1 maps and coupling matrices are used to verify the performance of the system.

  15. An eight-channel T/R head coil for parallel transmit MRI at 3T using ultra-low output impedance amplifiers.

    PubMed

    Moody, Katherine Lynn; Hollingsworth, Neal A; Zhao, Feng; Nielsen, Jon-Fredrik; Noll, Douglas C; Wright, Steven M; McDougall, Mary Preston

    2014-09-01

    Parallel transmit is an emerging technology to address the technical challenges associated with MR imaging at high field strengths. When developing arrays for parallel transmit systems, one of the primary factors to be considered is the mechanism to manage coupling and create independently operating channels. Recent work has demonstrated the use of amplifiers to provide some or all of the channel-to-channel isolation, reducing the need for on-coil decoupling networks in a manner analogous to the use of isolation preamplifiers with receive coils. This paper discusses an eight-channel transmit/receive head array for use with an ultra-low output impedance (ULOI) parallel transmit system. The ULOI amplifiers eliminated the need for a complex lumped element network to decouple the eight-rung array. The design and construction details of the array are discussed in addition to the measurement considerations required for appropriately characterizing an array when using ULOI amplifiers. B1 maps and coupling matrices are used to verify the performance of the system. PMID:25072190

  16. An eight-channel T/R head coil for parallel transmit MRI at 3T using ultra-low output impedance amplifiers

    PubMed Central

    Moody, Katherine Lynn; Hollingsworth, Neal A.; Zhao, Feng; Nielsen, Jon-Fredrik; Noll, Douglas C.; Wright, Steven M.; McDougall, Mary Preston

    2014-01-01

    Parallel transmit is an emerging technology to address the technical challenges associated with MR imaging at high field strengths. When developing arrays for parallel transmit systems, one of the primary factors to be considered is the mechanism to manage coupling and create independently operating channels. Recent work has demonstrated the use of amplifiers to provide some or all of the channel-to-channel isolation, reducing the need for on-coil decoupling networks in a manner analogous to the use of isolation preamplifiers with receive coils. This paper discusses an eight-channel transmit/receive head array for use with an ultra-low output impedance (ULOI) parallel transmit system. The ULOI amplifiers eliminated the need for a complex lumped element network to decouple the eight rung array. The design and construction details of the array are discussed in addition to the measurement considerations required for appropriately characterizing an array when using ULOI amplifiers. B1 maps and coupling matrices are used to verify the performance of the system. PMID:25072190

  17. Murine interferon system regulation: isolation and characterization of a mutant 3T6 cell engaged in the semiconstitutive synthesis of interferon.

    PubMed

    Jarvis, A P; Colby, C

    1978-06-01

    We describe the isolation and characterization of a virus-resistant mutant of murine 3T6 cells. The mutant, designated 3T6-VrB2, displays a high degree of resistance to infection by members of the toga-, rhabdo- and picornavirus classes. The level of this resistance to infection is similar to the parent 3T6 pretreated with approximately 100 lU/ml of interferon. Upon co-cultivation of 3T6-VrB2 cells with interferon-sensitive mouse cells, an antiviral state is induced in the latter cells as measured by a reduction of virus yield following infection. The nature of the induction is defined by a series of experiments using anti-mouse interferon antiserum. In the presence of this antiserum, the ability of the mutant to induce an antiviral state in interferon-sensitive mouse cells upon co-cultivation is eliminated. Additionally, growth of the mutant cells in the presence of this antiserum causes a reversal of the virus-resistant phenotype. Our results indicate that 3T6-VrB2 contains a mutation affecting the regulation of the murine interferon system such that the cell is engaged in the semiconstitutive synthesis of interferon. PMID:208779

  18. Real-time monitoring of 3T3-L1 preadipocyte differentiation using a commercially available electric cell-substrate impedance sensor system.

    PubMed

    Kramer, Adam H; Joos-Vandewalle, Julia; Edkins, Adrienne L; Frost, Carminita L; Prinsloo, Earl

    2014-01-24

    Real-time analysis offers multiple benefits over traditional end point assays. Here, we present a method of monitoring the optimisation of the growth and differentiation of murine 3T3-L1 preadipocytes to adipocytes using the commercially available ACEA xCELLigence Real-Time Cell Analyser Single Plate (RTCA SP) system. Our findings indicate that the ACEA xCELLigence RTCA SP can reproducibly monitor the primary morphological changes in pre- and post-confluent 3T3-L1 fibroblasts induced to differentiate using insulin, dexamethasone, 3-isobutyl-1-methylxanthine and rosiglitazone; and may be a viable primary method of screening compounds for adipogenic factors. PMID:24388983

  19. A MRI-COMPATIBLE SYSTEM FOR WHISKER STIMULATION

    PubMed Central

    Li, Limin; Weiss, Craig; Talk, Andrew C.; Disterhoft, John F.; Wyrwicz, Alice M.

    2013-01-01

    We describe here a system for whisker stimulation designed for functional studies in high-field magnetic resonance imaging (MRI) environments. This system, which incorporates real-time optical monitoring of the vibration stimulus, can generate well-controlled and reproducible whisker deflections with amplitudes up to 2 mm and frequencies up to 75 Hz, suitable for functional magnetic resonance imaging (fMRI) studies of animals. Whiskers on either or both sides of the head can be stimulated selectively during fMRI experiments without removing the subject from the magnet. With a user-friendly graphical interface of a computer, a user can conveniently control both the whisker vibration and gating of the MR imager, and synchronize the stimulation with the fMRI acquisition to ensure precise timing of the stimulus presentation. This whisker stimulation system should facilitate a wide variety of fMRI investigations of the neural systems mediating sensory information from the whiskers. PMID:22322316

  20. An MRI-compatible robotic system with hybrid tracking for MRI-guided prostate intervention.

    PubMed

    Krieger, Axel; Iordachita, Iulian I; Guion, Peter; Singh, Anurag K; Kaushal, Aradhana; Ménard, Cynthia; Pinto, Peter A; Camphausen, Kevin; Fichtinger, Gabor; Whitcomb, Louis L

    2011-11-01

    This paper reports the development, evaluation, and first clinical trials of the access to the prostate tissue (APT) II system-a scanner independent system for magnetic resonance imaging (MRI)-guided transrectal prostate interventions. The system utilizes novel manipulator mechanics employing a steerable needle channel and a novel six degree-of-freedom hybrid tracking method, comprising passive fiducial tracking for initial registration and subsequent incremental motion measurements. Targeting accuracy of the system in prostate phantom experiments and two clinical human-subject procedures is shown to compare favorably with existing systems using passive and active tracking methods. The portable design of the APT II system, using only standard MRI image sequences and minimal custom scanner interfacing, allows the system to be easily used on different MRI scanners. PMID:22009867

  1. An MRI-Compatible Robotic System With Hybrid Tracking for MRI-Guided Prostate Intervention

    PubMed Central

    Krieger, Axel; Iordachita, Iulian I.; Guion, Peter; Singh, Anurag K.; Kaushal, Aradhana; Ménard, Cynthia; Pinto, Peter A.; Camphausen, Kevin; Fichtinger, Gabor

    2012-01-01

    This paper reports the development, evaluation, and first clinical trials of the access to the prostate tissue (APT) II system—a scanner independent system for magnetic resonance imaging (MRI)-guided transrectal prostate interventions. The system utilizes novel manipulator mechanics employing a steerable needle channel and a novel six degree-of-freedom hybrid tracking method, comprising passive fiducial tracking for initial registration and subsequent incremental motion measurements. Targeting accuracy of the system in prostate phantom experiments and two clinical human-subject procedures is shown to compare favorably with existing systems using passive and active tracking methods. The portable design of the APT II system, using only standard MRI image sequences and minimal custom scanner interfacing, allows the system to be easily used on different MRI scanners. PMID:22009867

  2. Development of a flexible optical fiber based high resolution integrated PET/MRI system

    SciTech Connect

    Yamamoto, Seiichi; Watabe, Hiroshi; Kanai, Yasukazu; Watabe, Tadashi; Aoki, Masaaki; Sugiyama, Eiji; Kato, Katsuhiko; Hatazawa, Jun

    2012-11-15

    Purpose: The simultaneous measurement of PET and magnetic resonance imaging (MRI) is an emerging field for molecular imaging research. Although optical fiber based PET/MRI systems have advantages on less interference between PET and MRI, there is a drawback in reducing the scintillation light due to the fiber. To reduce the problem, the authors newly developed flexible optical fiber bundle based block detectors and employed them for a high resolution integrated PET/MRI system. Methods: The flexible optical fiber bundle used 0.5 mm diameter, 80 cm long double clad fibers which have dual 12 mm Multiplication-Sign 24 mm rectangular inputs and a single 24 mm Multiplication-Sign 24 mm rectangular output. In the input surface, LGSO scintillators of 0.025 mol.% (decay time: {approx}31 ns: 0.9 mm Multiplication-Sign 1.3 mm Multiplication-Sign 5 mm) and 0.75 mol.% (decay time: {approx}46 ns: 0.9 mm Multiplication-Sign 1.3 mm Multiplication-Sign 6 mm) were optically coupled in depth direction to form depth-of-interaction detector, arranged in 11 Multiplication-Sign 13 matrix and optically coupled to the fiber bundle. The two inputs of the bundle are bent for 90 Degree-Sign , bound to one, and are optically coupled to a Hamamatsu 1-in. square position sensitive photomultiplier tube. Results: Light loss due to the fiber bundle could be reduced and the performance of the block detectors was improved. Eight optical fiber based block detectors (16 LGSO blocks) were arranged in a 56 mm diameter ring to form a PET system. Spatial resolution and sensitivity were 1.2 mm full-width at half-maximum and 1.2% at the central field-of-view, respectively. Sensitivity change was less than 1% for 2 Degree-Sign C temperature changes. This PET system was integrated with a 0.3 T permanent magnet MRI system which has 17 cm diameter hole at the yoke area for insertion of the PET detector ring. There was no observable interference between PET and MRI. Simultaneous imaging of PET and MRI was

  3. MRI

    MedlinePlus

    ... scan is an imaging test that uses powerful magnets and radio waves to create pictures of the ... in your eyes) Because the MRI contains strong magnets, metal objects are not allowed into the room ...

  4. Evaluation of 2D multiband EPI imaging for high-resolution, whole-brain, task-based fMRI studies at 3T: Sensitivity and slice leakage artifacts.

    PubMed

    Todd, Nick; Moeller, Steen; Auerbach, Edward J; Yacoub, Essa; Flandin, Guillaume; Weiskopf, Nikolaus

    2016-01-01

    Functional magnetic resonance imaging (fMRI) studies that require high-resolution whole-brain coverage have long scan times that are primarily driven by the large number of thin slices acquired. Two-dimensional multiband echo-planar imaging (EPI) sequences accelerate the data acquisition along the slice direction and therefore represent an attractive approach to such studies by improving the temporal resolution without sacrificing spatial resolution. In this work, a 2D multiband EPI sequence was optimized for 1.5mm isotropic whole-brain acquisitions at 3T with 10 healthy volunteers imaged while performing simultaneous visual and motor tasks. The performance of the sequence was evaluated in terms of BOLD sensitivity and false-positive activation at multiband (MB) factors of 1, 2, 4, and 6, combined with in-plane GRAPPA acceleration of 2× (GRAPPA 2), and the two reconstruction approaches of Slice-GRAPPA and Split Slice-GRAPPA. Sensitivity results demonstrate significant gains in temporal signal-to-noise ratio (tSNR) and t-score statistics for MB 2, 4, and 6 compared to MB 1. The MB factor for optimal sensitivity varied depending on anatomical location and reconstruction method. When using Slice-GRAPPA reconstruction, evidence of false-positive activation due to signal leakage between simultaneously excited slices was seen in one instance, 35 instances, and 70 instances over the ten volunteers for the respective accelerations of MB 2×GRAPPA 2, MB 4×GRAPPA 2, and MB 6×GRAPPA 2. The use of Split Slice-GRAPPA reconstruction suppressed the prevalence of false positives significantly, to 1 instance, 5 instances, and 5 instances for the same respective acceleration factors. Imaging protocols using an acceleration factor of MB 2×GRAPPA 2 can be confidently used for high-resolution whole-brain imaging to improve BOLD sensitivity with very low probability for false-positive activation due to slice leakage. Imaging protocols using higher acceleration factors (MB 3 or MB 4

  5. Robotic System for Transapical Aortic Valve Replacement with MRI Guidance

    PubMed Central

    Li, Ming; Mazilu, Dumitru; Horvath, Keith A.

    2009-01-01

    This paper reports our work on developing a robotic surgical system for transapical beating heart aortic valve replacement (AVR) under interactive real-time magnetic resonance imaging (rtMRI) guidance. Our system integrates a real-time MRI system, a compound MRI robot, as well as an interface for the surgeon to plan the procedure and manipulate the robot. The compound robot consists of a positioning module and a valve delivery module. A 5-DOF Inno-motion positioning arm provides and maintains direct access to the native aortic valve. A newly developed 3-DOF robotic valve delivery module allows the surgeon to remotely control bioprosthetic valve delivery with MRI guidance. Preliminary evaluation of the parameters of the robotic system demonstrates it can provide sufficient capability to successfully assist the surgeon. PMID:18982639

  6. Simultaneous imaging using Si-PM-based PET and MRI for development of an integrated PET/MRI system

    NASA Astrophysics Data System (ADS)

    Yamamoto, Seiichi; Watabe, Tadashi; Watabe, Hiroshi; Aoki, Masaaki; Sugiyama, Eiji; Imaizumi, Masao; Kanai, Yasukazu; Shimosegawa, Eku; Hatazawa, Jun

    2012-01-01

    The silicon photomultiplier (Si-PM) is a promising photo-detector for PET for use in magnetic resonance imaging (MRI) systems because it has high gain and is insensitive to static magnetic fields. Recently we developed a Si-PM-based depth-of-interaction PET system for small animals and performed simultaneous measurements by combining the Si-PM-based PET and the 0.15 T permanent MRI to test the interferences between the Si-PM-based PET and an MRI. When the Si-PM was inside the MRI and installed around the radio frequency (RF) coil of the MRI, significant noise from the RF sequence of the MRI was observed in the analog signals of the PET detectors. However, we did not observe any artifacts in the PET images; fluctuation increased in the count rate of the Si-PM-based PET system. On the MRI side, there was significant degradation of the signal-to-noise ratio (S/N) in the MRI images compared with those without PET. By applying noise reduction procedures, the degradation of the S/N was reduced. With this condition, simultaneous measurements of a rat brain using a Si-PM-based PET and an MRI were made with some degradation in the MRI images. We conclude that simultaneous measurements are possible using Si-PM-based PET and MRI.

  7. Uric acid induces oxidative stress via an activation of the renin-angiotensin system in 3T3-L1 adipocytes.

    PubMed

    Zhang, Jun-xia; Zhang, Yu-ping; Wu, Qi-nan; Chen, Bing

    2015-02-01

    Hyperuricemia is recently reported involving in various obesity-related cardiovascular disorders, especially hypertension. However, the underlying mechanisms are not completely understood. In the present study, we investigated whether uric acid upregulates renin-angiotensin system (RAS) expression in adipocytes. We also examined whether RAS activation plays a role in uric acid-induced oxidative stress in adipocytes. The adipocytes of different phenotypes were incubated with uric acid for 48 h, respectively. Losartan (10(-4) M) or captopril (10(-4) M) was used to block adipose tissue RAS activation. mRNA expressions of angiotensinogen (AGT), angiotensin-converting enzyme-1 (ACE-1), renin, angiotensin type 1 receptor (AT1R), and angiotensin type 2 receptor (AT2R) were evaluated with real-time PCR. Angiotensin II concentrations in supernatant were measured by ELISA. Intracellular reactive species (ROS) levels were measured by fluorescent probe DCFH-DA, DHR, or NBT assay. The uric acid upregulated both RAS (AGT, ACE1, renin, AT1R, and AT2R) mRNA expressions and angiotensin II protein secretion and caused a significant increase in ROS production in 3T3-L1 adipocytes. These effects could be prevented by RAS inhibitors, either losartan or captopril. RAS activation has been causally implicated in oxidative stress induced by uric acid in 3T3-L1 adipocytes, suggesting a plausible mechanism through which hyperuricemia contributes to the pathogenesis of obesity-related cardiovascular diseases. PMID:24671741

  8. Design and performance evaluation of a whole-body Ingenuity TF PET–MRI system

    PubMed Central

    Zaidi, H; Ojha, N; Morich, M; Griesmer, J; Hu, Z; Maniawski, P; Ratib, O; Izquierdo-Garcia, D; Fayad, Z A; Shao, L

    2014-01-01

    The Ingenuity TF PET–MRI is a newly released whole-body hybrid PET–MR imaging system with a Philips time-of-flight GEMINI TF PET and Achieva 3T X-series MRI system. Compared to PET–CT, modifications to the positron emission tomography (PET) gantry were made to avoid mutual system interference and deliver uncompromising performance which is equivalent to the standalone systems. The PET gantry was redesigned to introduce magnetic shielding for the photomultiplier tubes (PMTs). Stringent electromagnetic noise requirements of the MR system necessitated the removal of PET gantry electronics to be housed in the PET–MR equipment room. We report the standard NEMA measurements for the PET scanner. PET imaging and performance measurements were done at Geneva University Hospital as described in the NEMA Standards NU2-2007 manual. The scatter fraction (SF) and noise equivalent count rate (NECR) measurements with the NEMA cylinder (20 cm diameter) were repeated for two larger cylinders (27 cm and 35 cm diameter), which better represent average and heavy patients. A NEMA/IEC torso phantom was used for overall assessment of image quality. The transverse and axial resolution near the center was 4.7 mm. Timing and energy resolution of the PET–MR system were measured to be 525 ps and 12%, respectively. The results were comparable to PET–CT systems demonstrating that the effect of design modifications required on the PET system to remove the harmful effect of the magnetic field on the PMTs was negligible. The absolute sensitivity of this scanner was 7.0 cps kBq−1, whereas SF was 26%. NECR measurements performed with cylinders having three different diameters, and image quality measurements performed with IEC phantom yielded excellent results. The Ingenuity TF PET–MRI represents the first commercial whole-body hybrid PET–MRI system. The performance of the PET subsystem was comparable to the GEMINI TF PET–CT system using phantom and patient studies. It is conceived

  9. Design and performance evaluation of a whole-body Ingenuity TF PET-MRI system.

    PubMed

    Zaidi, H; Ojha, N; Morich, M; Griesmer, J; Hu, Z; Maniawski, P; Ratib, O; Izquierdo-Garcia, D; Fayad, Z A; Shao, L

    2011-05-21

    The Ingenuity TF PET-MRI is a newly released whole-body hybrid PET-MR imaging system with a Philips time-of-flight GEMINI TF PET and Achieva 3T X-series MRI system. Compared to PET-CT, modifications to the positron emission tomography (PET) gantry were made to avoid mutual system interference and deliver uncompromising performance which is equivalent to the standalone systems. The PET gantry was redesigned to introduce magnetic shielding for the photomultiplier tubes (PMTs). Stringent electromagnetic noise requirements of the MR system necessitated the removal of PET gantry electronics to be housed in the PET-MR equipment room. We report the standard NEMA measurements for the PET scanner. PET imaging and performance measurements were done at Geneva University Hospital as described in the NEMA Standards NU 2-2007 manual. The scatter fraction (SF) and noise equivalent count rate (NECR) measurements with the NEMA cylinder (20 cm diameter) were repeated for two larger cylinders (27 cm and 35 cm diameter), which better represent average and heavy patients. A NEMA/IEC torso phantom was used for overall assessment of image quality. The transverse and axial resolution near the center was 4.7 mm. Timing and energy resolution of the PET-MR system were measured to be 525 ps and 12%, respectively. The results were comparable to PET-CT systems demonstrating that the effect of design modifications required on the PET system to remove the harmful effect of the magnetic field on the PMTs was negligible. The absolute sensitivity of this scanner was 7.0 cps kBq(-1), whereas SF was 26%. NECR measurements performed with cylinders having three different diameters, and image quality measurements performed with IEC phantom yielded excellent results. The Ingenuity TF PET-MRI represents the first commercial whole-body hybrid PET-MRI system. The performance of the PET subsystem was comparable to the GEMINI TF PET-CT system using phantom and patient studies. It is conceived that advantages

  10. T₁ρ MRI of human musculoskeletal system.

    PubMed

    Wang, Ligong; Regatte, Ravinder R

    2015-03-01

    Magnetic resonance imaging (MRI) offers the direct visualization of the human musculoskeletal (MSK) system, especially all diarthrodial tissues including cartilage, bone, menisci, ligaments, tendon, hip, synovium, etc. Conventional MRI techniques based on T1 - and T2 -weighted, proton density (PD) contrast are inconclusive in quantifying early biochemically degenerative changes in MSK system in general and articular cartilage in particular. In recent years, quantitative MR parameter mapping techniques have been used to quantify the biochemical changes in articular cartilage, with a special emphasis on evaluating joint injury, cartilage degeneration, and soft tissue repair. In this article we focus on cartilage biochemical composition, basic principles of T1ρ MRI, implementation of T1ρ pulse sequences, biochemical validation, and summarize the potential applications of the T1ρ MRI technique in MSK diseases including osteoarthritis (OA), anterior cruciate ligament (ACL) injury, and knee joint repair. Finally, we also review the potential advantages, challenges, and future prospects of T1ρ MRI for widespread clinical translation. PMID:24935818

  11. Localised hyperthermia in rodent models using an MRI-compatible high-intensity focused ultrasound system

    PubMed Central

    Bing, Chenchen; Nofiele, Joris; Staruch, Robert; Ladouceur-Wodzak, Michelle; Chatzinoff, Yonatan; Ranjan, Ashish; Chopra, Rajiv

    2015-01-01

    Purpose Localised hyperthermia in rodent studies is challenging due to the small target size. This study describes the development and characterisation of an MRI-compatible high-intensity focused ultrasound (HIFU) system to perform localised mild hyperthermia treatments in rodent models. Material and methods The hyperthermia platform consisted of an MRI-compatible small animal HIFU system, focused transducers with sector-vortex lenses, a custom-made receive coil, and means to maintain systemic temperatures of rodents. The system was integrated into a 3T MR imager. Control software was developed to acquire images, process temperature maps, and adjust output power using a proportional-integral-derivative feedback control algorithm. Hyperthermia exposures were performed in tissue-mimicking phantoms and in a rodent model (n = 9). During heating, an ROI was assigned in the heated region for temperature control and the target temperature was 42 °C; 30 min mild hyperthermia treatment followed by a 10-min cooling procedure was performed on each animal. Results 3D-printed sector-vortex lenses were successful at creating annular focal regions which enables customisation of the heating volume. Localised mild hyperthermia performed in rats produced a mean ROI temperature of 42.1 ± 0.3 °C. The T10 and T90 percentiles were 43.2 ± 0.4 °C and 41.0 ± 0.3 °C, respectively. For a 30-min treatment, the mean time duration between 41–45 °C was 31.1 min within the ROI. Conclusions The MRI-compatible HIFU system was successfully adapted to perform localised mild hyperthermia treatment in rodent models. A target temperature of 42 °C was well-maintained in a rat thigh model for 30 min. PMID:26540488

  12. The potential of 3T high-resolution magnetic resonance imaging for diagnosis, staging, and follow-up of retinoblastoma.

    PubMed

    de Jong, Marcus C; de Graaf, Pim; Brisse, Hervé J; Galluzzi, Paolo; Göricke, Sophia L; Moll, Annette C; Munier, Francis L; Popovic, Maja Beck; Moulin, Alexandre P; Binaghi, Stefano; Castelijns, Jonas A; Maeder, Philippe

    2015-01-01

    We demonstrate the value of high-resolution magnetic resonance imaging (MRI) in diagnosing, staging, and follow-up of retinoblastoma during eye-saving treatment. We have included informative retinoblastoma cases scanned on a 3T MRI system from a retrospective retinoblastoma cohort from 2009 through 2013. We show that high-resolution MRI has the potential to detect small intraocular seeds, hemorrhage, and metastatic risk factors not visible with fundoscopy (e.g., optic nerve invasion and choroidal invasion), and treatment response. Unfortunately, however, the diagnostic accuracy of high-resolution MRI is not perfect, especially for subtle intraocular seeds or minimal postlaminar optic nerve invasion. The most important application of MRI is the detection of metastatic risk factors, as these cannot be found by fundoscopy and ultrasound. PMID:25891031

  13. An MRI-compatible hand sensory vibrotactile system.

    PubMed

    Wang, Fa; Lakshminarayanan, Kishor; Slota, Gregory P; Seo, Na Jin; Webster, John G

    2015-01-01

    Recently, the application of vibrotactile noise to the wrist or back of the hand has been shown to enhance fingertip tactile sensory perception (Enders et al 2013), supporting the potential for an assistive device worn at the wrist, that generates minute vibrations to help the elderly or patients with sensory deficit. However, knowledge regarding the detailed physiological mechanism behind this sensory improvement in the central nervous system, especially in the human brain, is limited, hindering progress in development and use of such assistive devices. To enable investigation of the impact of vibrotactile noise on sensorimotor brain activity in humans, a magnetic resonance imaging (MRI)-compatible vibrotactile system was developed to provide vibrotactile noise during an MRI of the brain. The vibrotactile system utilizes a remote (outside the MR room) signal amplifier which provides a voltage from -40 to +40 V to drive a 12 mm diameter piezoelectric vibrator (inside the MR room). It is portable and is found to be MRI-compatible which enables its use for neurologic investigation with MRI. The system was also found to induce an improvement in fingertip tactile sensation, consistent with the previous study. PMID:25501948

  14. Development and Evaluation of an Actuated MRI-Compatible Robotic System for MRI-Guided Prostate Intervention.

    PubMed

    Krieger, Axel; Song, Sang-Eun; Cho, Nathan B; Iordachita, Iulian; Guion, Peter; Fichtinger, Gabor; Whitcomb, Louis L

    2012-09-12

    This paper reports the design, development, and magnetic resonance imaging (MRI) compatibility evaluation of an actuated transrectal prostate robot for MRI-guided needle intervention in the prostate. The robot performs actuated needle MRI-guidance with the goals of providing (i) MRI compatibility, (ii) MRI-guided needle placement with accuracy sufficient for targeting clinically significant prostate cancer foci, (iii) reducing interventional procedure times (thus increasing patient comfort and reducing opportunity for needle targeting error due to patient motion), (iv) enabling real-time MRI monitoring of interventional procedures, and (v) reducing the opportunities for error that arise in manually actuated needle placement. The design of the robot, employing piezo-ceramic-motor actuated needle guide positioning and manual needle insertion, is reported. Results of a MRI compatibility study show no reduction of MRI signal-to-noise-ratio (SNR) with the motors disabled. Enabling the motors reduces the SNR by 80% without RF shielding, but SNR is only reduced by 40% to 60% with RF shielding. The addition of radio-frequency shielding is shown to significantly reduce image SNR degradation caused by the presence of the robotic device. An accuracy study of MRI-guided biopsy needle placements in a prostate phantom is reported. The study shows an average in-plane targeting error of 2.4 mm with a maximum error of 3.7 mm. These data indicate the system's needle targeting accuracy is similar to that obtained with a previously reported manually actuated system, and is sufficient to reliably sample clinically significant prostate cancer foci under MRI-guidance. PMID:23326181

  15. Three Dimensional Modeling of an MRI Actuated Steerable Catheter System

    PubMed Central

    Liu, Taoming; Çavuşoğlu, M. Cenk

    2014-01-01

    This paper presents the three dimensional kinematic modeling of a novel steerable robotic ablation catheter system. The catheter, embedded with a set of current-carrying micro-coils, is actuated by the magnetic forces generated by the magnetic field of the MRI scanner. This paper develops a 3D model of the MRI actuated steerable catheter system by using finite differences approach. For each finite segment, a quasi-static torque-deflection equilibrium equation is calculated using beam theory. By using the deflection displacements and torsion angles, the kinematic modeling of the catheter system is derived. The proposed models are evaluated by comparing the simulation results of the proposed model with the experimental results of a proof-of-concept prototype. PMID:25328804

  16. Three Dimensional Modeling of an MRI Actuated Steerable Catheter System.

    PubMed

    Liu, Taoming; Cavuşoğlu, M Cenk

    2014-01-01

    This paper presents the three dimensional kinematic modeling of a novel steerable robotic ablation catheter system. The catheter, embedded with a set of current-carrying micro-coils, is actuated by the magnetic forces generated by the magnetic field of the MRI scanner. This paper develops a 3D model of the MRI actuated steerable catheter system by using finite differences approach. For each finite segment, a quasi-static torque-deflection equilibrium equation is calculated using beam theory. By using the deflection displacements and torsion angles, the kinematic modeling of the catheter system is derived. The proposed models are evaluated by comparing the simulation results of the proposed model with the experimental results of a proof-of-concept prototype. PMID:25328804

  17. Classification of histologically scored human knee osteochondral plugs by quantitative analysis of magnetic resonance images at 3T.

    PubMed

    Lukas, Vanessa A; Fishbein, Kenneth W; Lin, Ping-Chang; Schär, Michael; Schneider, Erika; Neu, Corey P; Spencer, Richard G; Reiter, David A

    2015-05-01

    This work evaluates the ability of quantitative MRI to discriminate between normal and pathological human osteochondral plugs characterized by the Osteoarthritis Research Society International (OARSI) histological system. Normal and osteoarthritic human osteochondral plugs were scored using the OARSI histological system and imaged at 3 T using MRI sequences producing T1 and T2 contrast and measuring T1, T2, and T2* relaxation times, magnetization transfer, and diffusion. The classification accuracies of quantitative MRI parameters and corresponding weighted image intensities were evaluated. Classification models based on the Mahalanobis distance metric for each MRI measurement were trained and validated using leave-one-out cross-validation with plugs grouped according to OARSI histological grade and score. MRI measurements used for classification were performed using a region-of-interest analysis which included superficial, deep, and full-thickness cartilage. The best classifiers based on OARSI grade and score were T1- and T2-weighted image intensities, which yielded accuracies of 0.68 and 0.75, respectively. Classification accuracies using OARSI score-based group membership were generally higher when compared with grade-based group membership. MRI-based classification--either using quantitative MRI parameters or weighted image intensities--is able to detect early osteoarthritic tissue changes as classified by the OARSI histological system. These findings suggest the benefit of incorporating quantitative MRI acquisitions in a comprehensive clinical evaluation of OA. PMID:25641500

  18. Comparisons between the 35 mm Quadrature Surface Resonator at 300 K and the 40 mm High-Temperature Superconducting Surface Resonator at 77 K in a 3T MRI Imager

    PubMed Central

    Song, Manli; Chen, Jyh-Horng; Chen, Ji; Lin, In-Tsang

    2015-01-01

    This study attempts to compare the signal-to-noise ratio (SNR) of the 40 mm High-Temperature Superconducting (HTS) surface resonator at 77 K and the 35 mm commercial quadrature (QD) surface resonator at 300 K in a 3 Tesla (T) MRI imager. To aquire images for the comparison, we implemented a phantom experiment using the 40 mm diameter Bi2Sr2Ca2Cu3Ox (Bi-2223) HTS surface resonator, the 35 mm commercial QD surface resonator and the 40 mm professionally-made copper surface resonator. The HTS surface resonator at 77 K provided a 1.43-fold SNR gain over the QD surface resonator at 300 K and provided a 3.84-fold SNR gain over the professionally-made copper surface resonator at 300 K on phantom images. The results agree with the predictions, and the difference between the predicted SNR gains and measured SNR gains is 1%. Although the geometry of the HTS surface resonator is different from the QD surface resonator, its SNR is still higher. The results demonstrate that a higher image quality can be obtained with the HTS surface resonator at 77 K. With the HTS surface resonator, the SNR can be improved, suggesting that the HTS surface resonator is a potentially helpful diagnostic tool for MRI imaging in various applications. PMID:25812124

  19. Development and Evaluation of an Actuated MRI-Compatible Robotic System for MRI-Guided Prostate Intervention

    PubMed Central

    Krieger, Axel; Song, Sang-Eun; Cho, Nathan B.; Iordachita, Iulian; Guion, Peter; Fichtinger, Gabor; Whitcomb, Louis L.

    2012-01-01

    This paper reports the design, development, and magnetic resonance imaging (MRI) compatibility evaluation of an actuated transrectal prostate robot for MRI-guided needle intervention in the prostate. The robot performs actuated needle MRI-guidance with the goals of providing (i) MRI compatibility, (ii) MRI-guided needle placement with accuracy sufficient for targeting clinically significant prostate cancer foci, (iii) reducing interventional procedure times (thus increasing patient comfort and reducing opportunity for needle targeting error due to patient motion), (iv) enabling real-time MRI monitoring of interventional procedures, and (v) reducing the opportunities for error that arise in manually actuated needle placement. The design of the robot, employing piezo-ceramic-motor actuated needle guide positioning and manual needle insertion, is reported. Results of a MRI compatibility study show no reduction of MRI signal-to-noise-ratio (SNR) with the motors disabled. Enabling the motors reduces the SNR by 80% without RF shielding, but SNR is only reduced by 40% to 60% with RF shielding. The addition of radio-frequency shielding is shown to significantly reduce image SNR degradation caused by the presence of the robotic device. An accuracy study of MRI-guided biopsy needle placements in a prostate phantom is reported. The study shows an average in-plane targeting error of 2.4 mm with a maximum error of 3.7 mm. These data indicate the system’s needle targeting accuracy is similar to that obtained with a previously reported manually actuated system, and is sufficient to reliably sample clinically significant prostate cancer foci under MRI-guidance. PMID:23326181

  20. Can ultrashort-TE (UTE) MRI sequences on a 3-T clinical scanner detect signal directly from collagen protons: freeze-dry and D2 O exchange studies of cortical bone and Achilles tendon specimens.

    PubMed

    Ma, Ya-Jun; Chang, Eric Y; Bydder, Graeme M; Du, Jiang

    2016-07-01

    Ultrashort-TE (UTE) sequences can obtain signal directly from short-T2 , collagen-rich tissues. It is generally accepted that bound and free water can be detected with UTE techniques, but the ability to detect protons directly on the collagen molecule remains controversial. In this study, we investigated the potential of UTE sequences on a 3-T clinical scanner to detect collagen protons via freeze-drying and D2 O-H2 O exchange studies. Experiments were performed on bovine cortical bone and human Achilles tendon specimens, which were either subject to freeze-drying for over 66 h or D2 O-H2 O exchange for 6 days. Specimens were imaged using two- and three-dimensional UTE with Cones trajectory techniques with a minimum TE of 8 μs at 3 T. UTE images before treatment showed high signal from all specimens with bi-component T2 * behavior. Bovine cortical bone showed a shorter T2 * component of 0.36 ms and a longer T2 * component of 2.30 ms with fractions of 78.2% and 21.8% by volume, respectively. Achilles tendon showed a shorter T2 * component of 1.22 ms and a longer T2 * component of 15.1 ms with fractions of 81.1% and 18.9% by volume, respectively. Imaging after freeze-drying or D2 O-H2 O exchange resulted in either the absence or near-absence of signal. These results indicate that bound and free water are the sole sources of UTE signal in bovine cortical bone and human Achilles tendon samples on a clinical 3-T scanner. Protons on the native collagen molecule are not directly visible when imaged using UTE sequences. Copyright © 2016 John Wiley & Sons, Ltd. PMID:27148693

  1. High-Resolution 3-T Endorectal Prostate MRI: A Multireader Study of Radiologist Preference and Perceived Interpretive Quality of 2D and 3D T2-Weighted Fast Spin-Echo MR Images

    PubMed Central

    Westphalen, Antonio C.; Noworolski, Susan M.; Harisinghani, Mukesh; Jhaveri, Kartik S.; Raman, Steve S.; Rosenkrantz, Andrew B.; Wang, Zhen J.; Zagoria, Ronald J.; Kurhanewicz, John

    2016-01-01

    OBJECTIVE The goal of this study was to compare the perceived quality of 3-T axial T2-weighted high-resolution 2D and high-resolution 3D fast spin-echo (FSE) endorectal MR images of the prostate. MATERIALS AND METHODS Six radiologists independently reviewed paired 3-T axial T2-weighted high-resolution 2D and 3D FSE endorectal MR images of the prostates of 85 men in two sessions. In the first session (n = 85), each reader selected his or her preferred images; in the second session (n = 28), they determined their confidence in tumor identification and compared the depiction of the prostatic anatomy, tumor conspicuity, and subjective intrinsic image quality of images. A meta-analysis using a random-effects model, logistic regression, and the paired Wilcoxon rank-sum test were used for statistical analyses. RESULTS Three readers preferred the 2D acquisition (67–89%), and the other three preferred the 3D images (70–80%). The option for one of the techniques was not associated with any of the predictor variables. The 2D FSE images were significantly sharper than 3D FSE (p < 0.001) and significantly more likely to exhibit other (nonmotion) artifacts (p = 0.002). No other statistically significant differences were found. CONCLUSION Our results suggest that there are strong individual preferences for the 2D or 3D FSE MR images, but there was a wide variability among radiologists. There were differences in image quality (image sharpness and presence of artifacts not related to motion) but not in the sequences’ ability to delineate the glandular anatomy and depict a cancerous tumor. PMID:26491891

  2. Superconductors Enable Lower Cost MRI Systems

    NASA Technical Reports Server (NTRS)

    2013-01-01

    The future looks bright, light, and green, especially where aircraft are concerned. The division of NASA s Fundamental Aeronautics Program called the Subsonic Fixed Wing Project is aiming to reach new heights by 2025-2035, improving the efficiency and environmental impact of air travel by developing new capabilities for cleaner, quieter, and more fuel efficient aircraft. One of the many ways NASA plans to reach its aviation goals is by combining new aircraft configurations with an advanced turboelectric distributed propulsion (TeDP) system. Jeff Trudell, an engineer at Glenn Research Center, says, "The TeDP system consists of gas turbines generating electricity to power a large number of distributed motor-driven fans embedded into the airframe." The combined effect increases the effective bypass ratio and reduces drag to meet future goals. "While room temperature components may help reduce emissions and noise in a TeDP system, cryogenic superconducting electric motors and generators are essential to reduce fuel burn," says Trudell. Superconductors provide significantly higher current densities and smaller and lighter designs than room temperature equivalents. Superconductors are also able to conduct direct current without resistance (loss of energy) below a critical temperature and applied field. Unfortunately, alternating current (AC) losses represent the major part of the heat load and depend on the frequency of the current and applied field. A refrigeration system is necessary to remove the losses and its weight increases with decreasing temperature. In 2001, a material called magnesium diboride (MgB2) was discovered to be superconducting. The challenge, however, has been learning to manufacture MgB2 inexpensively and in long lengths to wind into large coils while meeting the application requirements.

  3. Development of a BALB/c 3T3 neutral red uptake cytotoxicity test using a mainstream cigarette smoke exposure system

    PubMed Central

    2014-01-01

    Background Tobacco smoke toxicity has traditionally been assessed using the particulate fraction under submerged culture conditions which omits the vapour phase elements from any subsequent analysis. Therefore, methodologies that assess the full interactions and complexities of tobacco smoke are required. Here we describe the adaption of a modified BALB/c 3T3 neutral red uptake (NRU) cytotoxicity test methodology, which is based on the Interagency Coordinating Committee on the Validation of Alternative Methods (ICCVAM) protocol for in vitro acute toxicity testing. The methodology described takes into account the synergies of both the particulate and vapour phase of tobacco smoke. This is of particular importance as both phases have been independently shown to induce in vitro cellular cytotoxicity. Findings The findings from this study indicate that mainstream tobacco smoke and the gas vapour phase (GVP), generated using the Vitrocell® VC 10 smoke exposure system, have distinct and significantly different toxicity profiles. Within the system tested, mainstream tobacco smoke produced a dilution IC50 (dilution (L/min) at which 50% cytotoxicity is observed) of 6.02 L/min, whereas the GVP produced a dilution IC50 of 3.20 L/min. In addition, we also demonstrated significant dose-for-dose differences between mainstream cigarette smoke and the GVP fraction (P < 0.05). This demonstrates the importance of testing the entire tobacco smoke aerosol and not just the particulate fraction, as has been the historical preference. Conclusions We have adapted the NRU methodology based on the ICCVAM protocol to capture the full interactions and complexities of tobacco smoke. This methodology could also be used to assess the performance of traditional cigarettes, blend and filter technologies, tobacco smoke fractions and individual test aerosols. PMID:24935030

  4. Robotic System for MRI-Guided Stereotactic Neurosurgery

    PubMed Central

    Li, Gang; Cole, Gregory A.; Shang, Weijian; Harrington, Kevin; Camilo, Alex; Pilitsis, Julie G.; Fischer, Gregory S.

    2015-01-01

    Stereotaxy is a neurosurgical technique that can take several hours to reach a specific target, typically utilizing a mechanical frame and guided by preoperative imaging. An error in any one of the numerous steps or deviations of the target anatomy from the preoperative plan such as brain shift (up to 20 mm), may affect the targeting accuracy and thus the treatment effectiveness. Moreover, because the procedure is typically performed through a small burr hole opening in the skull that prevents tissue visualization, the intervention is basically “blind” for the operator with limited means of intraoperative confirmation that may result in reduced accuracy and safety. The presented system is intended to address the clinical needs for enhanced efficiency, accuracy, and safety of image-guided stereotactic neurosurgery for Deep Brain Stimulation (DBS) lead placement. The work describes a magnetic resonance imaging (MRI)-guided, robotically actuated stereotactic neural intervention system for deep brain stimulation procedure, which offers the potential of reducing procedure duration while improving targeting accuracy and enhancing safety. This is achieved through simultaneous robotic manipulation of the instrument and interactively updated in situ MRI guidance that enables visualization of the anatomy and interventional instrument. During simultaneous actuation and imaging, the system has demonstrated less than 15% signal-to-noise ratio (SNR) variation and less than 0.20% geometric distortion artifact without affecting the imaging usability to visualize and guide the procedure. Optical tracking and MRI phantom experiments streamline the clinical workflow of the prototype system, corroborating targeting accuracy with 3-axis root mean square error 1.38 ± 0.45 mm in tip position and 2.03 ± 0.58° in insertion angle. PMID:25376035

  5. An open-source hardware and software system for acquisition and real-time processing of electrophysiology during high field MRI.

    PubMed

    Purdon, Patrick L; Millan, Hernan; Fuller, Peter L; Bonmassar, Giorgio

    2008-11-15

    Simultaneous recording of electrophysiology and functional magnetic resonance imaging (fMRI) is a technique of growing importance in neuroscience. Rapidly evolving clinical and scientific requirements have created a need for hardware and software that can be customized for specific applications. Hardware may require customization to enable a variety of recording types (e.g., electroencephalogram, local field potentials, or multi-unit activity) while meeting the stringent and costly requirements of MRI safety and compatibility. Real-time signal processing tools are an enabling technology for studies of learning, attention, sleep, epilepsy, neurofeedback, and neuropharmacology, yet real-time signal processing tools are difficult to develop. We describe an open-source system for simultaneous electrophysiology and fMRI featuring low-noise (<0.6microV p-p input noise), electromagnetic compatibility for MRI (tested up to 7T), and user-programmable real-time signal processing. The hardware distribution provides the complete specifications required to build an MRI-compatible electrophysiological data acquisition system, including circuit schematics, print circuit board (PCB) layouts, Gerber files for PCB fabrication and robotic assembly, a bill of materials with part numbers, data sheets, and vendor information, and test procedures. The software facilitates rapid implementation of real-time signal processing algorithms. This system has been used in human EEG/fMRI studies at 3 and 7T examining the auditory system, visual system, sleep physiology, and anesthesia, as well as in intracranial electrophysiological studies of the non-human primate visual system during 3T fMRI, and in human hyperbaric physiology studies at depths of up to 300 feet below sea level. PMID:18761038

  6. Robotic system for MRI-guided prostate biopsy: feasibility of teleoperated needle insertion and ex vivo phantom study

    PubMed Central

    Seifabadi, Reza; Song, Sang-Eun; Krieger, Axel; Cho, Nathan Bongjoon; Tokuda, Junichi; Fichtinger, Gabor; Iordachita, Iulian

    2012-01-01

    Purpose Magnetic Resonance Imaging (MRI) combined with robotic assistance has the potential to improve on clinical outcomes of biopsy and local treatment of prostate cancer. Methods We report the workspace optimization and phantom evaluation of a five Degree of Freedom (DOF) parallel pneumatically actuated modular robot for MRI-guided prostate biopsy. To shorten procedure time and consequently increase patient comfort and system accuracy, a prototype of a MRI-compatible master–slave needle driver module using piezo motors was also added to the base robot. Results Variable size workspace was achieved using appropriate link length, compared with the previous design. The 5-DOF targeting accuracy demonstrated an average error of 2.5mm (STD=1.37mm) in a realistic phantom inside a 3T magnet with a bevel-tip 18G needle. The average position tracking error of the master–slave needle driver was always below 0.1mm. Conclusion Phantom experiments showed sufficient accuracy for manual prostate biopsy. Also, the implementation of teleoperated needle insertion was feasible and accurate. These two together suggest the feasibility of accurate fully actuated needle placement into prostate while keeping the clinician supervision over the task. PMID:21698389

  7. The Anti-Inflammatory Effects of Lion's Mane Culinary-Medicinal Mushroom, Hericium erinaceus (Higher Basidiomycetes) in a Coculture System of 3T3-L1 Adipocytes and RAW264 Macrophages.

    PubMed

    Mori, Koichiro; Ouchi, Kenji; Hirasawa, Noriyasu

    2015-01-01

    Chronic low-grade inflammation in the adipose tissue accompanying obesity is thought to be an underlying driver of metabolic diseases. In this study, we aimed to investigate the efficacy of Hericium erinaceus on adipose tissue inflammation. The anti-inflammatory effects of the ethyl acetate soluble fraction of H. erinaceus (EAHE) were examined using cocultures of 3T3-L1 adipocytes and RAW264 macrophages. EAHE significantly suppressed tumor necrosis factor (TNF)-α and interleukin (IL)-6 production in cultured RAW264 macrophages stimulated by lipopolysaccharide (LPS). EAHE also caused notable inhibition of c-Jun N-terminal kinase (JNK) activation, which is thought to be involved in the suppression of proinflammatory cytokines by EAHE. In a coculture system with 3T3-L1 and RAW264 cells stimulated with LPS, EAHE reduced TNF-α and IL-6 concentrations in the conditioned medium and lowered the gene expression levels of these cytokines in 3T3-L1 adipocytes. Furthermore, EAHE suppressed the LPS-induced reduction of adiponectin mRNA levels in 3T3-L1 adipocytes cocultured with RAW264 macrophages. However, in 3T3-L1 adipocytes cultured alone, the concentration of LPS used in this study did not affect the gene expression levels of these adipokines. We attributed the anti-inflammatory effects of EAHE on 3T3-L1 adipocytes cocultured with RAW264 macrophages to the suppression of Toll-like receptor 4 (TLR4) signaling and subsequent proinflammatory cytokine secretion in RAW264 cells. Our findings indicate the possibility that H. erinaceus exerts anti-inflammatory effects on macrophages through the inhibition of TLR4-JNK signaling and prevents or ameliorates adipose tissue inflammation associated with obesity. PMID:26559695

  8. A novel manipulation method of human body ownership using an fMRI-compatible master-slave system.

    PubMed

    Hara, Masayuki; Salomon, Roy; van der Zwaag, Wietske; Kober, Tobias; Rognini, Giulio; Nabae, Hiroyuki; Yamamoto, Akio; Blanke, Olaf; Higuchi, Toshiro

    2014-09-30

    Bodily self-consciousness has become an important topic in cognitive neuroscience aiming to understand how the brain creates a unified sensation of the self in a body. Specifically, full body illusion (FBI) in which changes in bodily self-consciousness are experimentally introduced by using visual-tactile stimulation has led to improve understanding of these mechanisms. This paper introduces a novel approach to the classic FBI paradigm using a robotic master-slave system which allows us to examine interactions between action and the sense of body ownership in behavioral and MRI experiments. In the proposed approach, the use of the robotic master-slave system enables unique stimulation in which experimental participants can administer tactile cues on their own back using active self-touch. This active self-touch has never been employed in FBI experiments and it allows to test the role of sensorimotor integration and agency (the feeling of control over our actions) in FBI paradigms. The objective of this study is to propose a robotic-haptic platform allowing a new FBI paradigm including the active self-touch in MRI environments. This paper, first, describes the design concept and the performance of the prototype device in the fMRI environment (for 3T and 7T MRI scanners). In addition, the prototype device is applied to a classic FBI experiment, and we verify that the use of the prototype device succeeded in inducing the FBI. These results indicate that the proposed approach has a potential to drive advances in our understanding of human body ownership and agency by allowing novel manipulation and paradigms. PMID:24924875

  9. [Framework design of MRI guided phased HIFU system and software development].

    PubMed

    Ma, Ruifeng; Shen, Guofeng; Qiao, Shan; Wei, Bo; Chen, Sheng; Chen, Yazhu

    2013-03-01

    This paper introduced a new structure of MRI guided P-HIFU therapy system and software implementation based on the current P-HIFU system and interface provided by MRI vendor. The tests showed that the system's software can achieve the appropriate form of treatment need. PMID:23777061

  10. A novel acoustically quiet coil for neonatal MRI system

    PubMed Central

    Ireland, Christopher M.; Giaquinto, Randy O.; Loew, Wolfgang; Tkach, Jean A.; Pratt, Ronald G.; Kline-Fath, Beth M.; Merhar, Stephanie L.; Dumoulin, Charles L.

    2015-01-01

    MRI acoustic exposure has the potential to elicit physiological distress and impact development in preterm and term infants. To mitigate this risk, a novel acoustically quiet coil was developed to reduce the sound pressure level experienced by neonates during MR procedures. The new coil has a conventional high-pass birdcage RF design, but is built on a framework of sound abating material. We evaluated the acoustic and MR imaging performance of the quiet coil and a conventional body coil on two small footprint NICU MRI systems. Sound pressure level and frequency response measurements were made for six standard clinical MR imaging protocols. The average sound pressure level, reported for all six imaging pulse sequences, was 82.2 dBA for the acoustically quiet coil, and 91.1 dBA for the conventional body coil. The sound pressure level values measured for the acoustically quiet coil were consistently lower, 9 dBA (range 6-10 dBA) quieter on average. The acoustic frequency response of the two coils showed a similar harmonic profile for all imaging sequences. However, the amplitude was lower for the quiet coil, by as much as 20 dBA. PMID:26457072

  11. Quantitative Evaluation of the Reticuloendothelial System Function with Dynamic MRI

    PubMed Central

    Liu, Ting; Choi, Hoon; Zhou, Rong; Chen, I-Wei

    2014-01-01

    Purpose To evaluate the reticuloendothelial system (RES) function by real-time imaging blood clearance as well as hepatic uptake of superparamagnetic iron oxide nanoparticle (SPIO) using dynamic magnetic resonance imaging (MRI) with two-compartment pharmacokinetic modeling. Materials and Methods Kinetics of blood clearance and hepatic accumulation were recorded in young adult male 01b74 athymic nude mice by dynamic T2* weighted MRI after the injection of different doses of SPIO nanoparticles (0.5, 3 or 10 mg Fe/kg). Association parameter, Kin, dissociation parameter, Kout, and elimination constant, Ke, derived from dynamic data with two-compartment model, were used to describe active binding to Kupffer cells and extrahepatic clearance. The clodrosome and liposome were utilized to deplete macrophages and block the RES function to evaluate the capability of the kinetic parameters for investigation of macrophage function and density. Results The two-compartment model provided a good description for all data and showed a low sum squared residual for all mice (0.27±0.03). A lower Kin, a lower Kout and a lower Ke were found after clodrosome treatment, whereas a lower Kin, a higher Kout and a lower Ke were observed after liposome treatment in comparison to saline treatment (P<0.005). Conclusion Dynamic SPIO-enhanced MR imaging with two-compartment modeling can provide information on RES function on both a cell number and receptor function level. PMID:25090653

  12. Brain MRI in patients with diffuse psychiatric/neuropsychological syndromes in systemic lupus erythematosus

    PubMed Central

    Arinuma, Yoshiyuki; Kikuchi, Hirotoshi; Wada, Tatsuhiko; Nagai, Tatsuo; Tanaka, Sumiaki; Oba, Hiroshi; Hirohata, Shunsei

    2014-01-01

    Background Manifestations in neuropsychiatric systemic lupus erythematosus (NPSLE), especially active diffuse NPSLE syndromes, are some of the most difficult complications of the disease. For the evaluation and the diagnosis of central nervous system manifestations, including NPSLE, MRI is a very useful tool to detect the various abnormalities. However, the relationship between brain MRI findings and clinical variables has not yet been clarified in patients with diffuse NPSLE. Objectives The aim of this study is to investigate the pathogenesis of diffuse NPSLE, by comparing various parameters such as serum autoantibodies and cytokines in cerebrospinal fluid (CSF) with abnormal findings revealed on brain MRIs in patients with diffuse NPSLE. Methods Fifty-three patients with diffuse NPSLE admitted to our University Hospital from 1992 to 2012 were exhaustively enrolled in this study. Their medical charts and brain MRI scans were reviewed. The relationship of MRI abnormalities with various parameters was analysed. Results As many as 25 of 53 patients (47.2%) had abnormal MRI findings. MRI findings improved after treatment in 10 of 17 patients for whom follow-up studies were available. MRI abnormalities were not correlated with age at the onset of diffuse NPSLE. However, the disease duration of SLE was significantly longer in patients with abnormal MRI findings (p=0.0009). MRI abnormalities were not significantly associated with serum autoantibodies. However, there were significant elevations of the CSF protein level (p=0.0106) and the CSF interleukin 6 level (p=0.0225) in patients with abnormal MRI findings. Patients with MRI abnormalities showed significantly higher overall mortality (p=0.0348). Conclusions The results revealed that MRI abnormalities in diffuse NPSLE might be heterogeneous with regard to their reversibility. These data also indicate that patients with diffuse NPSLE and MRI abnormalities have more severe inflammation in the central nervous system

  13. Incorporating MRI structural information into bioluminescence tomography: system, heterogeneous reconstruction and in vivo quantification

    PubMed Central

    Zhang, Jun; Chen, Duofang; Liang, Jimin; Xue, Huadan; Lei, Jing; Wang, Qin; Chen, Dongmei; Meng, Ming; Jin, Zhengyu; Tian, Jie

    2014-01-01

    Combining two or more imaging modalities to provide complementary information has become commonplace in clinical practice and in preclinical and basic biomedical research. By incorporating the structural information provided by computed tomography (CT) or magnetic resonance imaging (MRI), the ill poseness nature of bioluminescence tomography (BLT) can be reduced significantly, thus improve the accuracies of reconstruction and in vivo quantification. In this paper, we present a small animal imaging system combining multi-view and multi-spectral BLT with MRI. The independent MRI-compatible optical device is placed at the end of the clinical MRI scanner. The small animal is transferred between the light tight chamber of the optical device and the animal coil of MRI via a guide rail during the experiment. After the optical imaging and MRI scanning procedures are finished, the optical images are mapped onto the MRI surface by interactive registration between boundary of optical images and silhouette of MRI. Then, incorporating the MRI structural information, a heterogeneous reconstruction algorithm based on finite element method (FEM) with L 1 normalization is used to reconstruct the position, power and region of the light source. In order to validate the feasibility of the system, we conducted experiments of nude mice model implanted with artificial light source and quantitative analysis of tumor inoculation model with MDA-231-GFP-luc. Preliminary results suggest the feasibility and effectiveness of the prototype system. PMID:24940545

  14. Orbital and Intracranial Effects of Microgravity: 3T MRI Findings

    NASA Technical Reports Server (NTRS)

    Kramer, L. A.; Sargsyan, A.; Hasan, K. M.; Polk, J. D.; Hamilton, D. R.

    2012-01-01

    Goals and Objectives of this presentation are: 1. To briefly describe a newly discovered clinical entity related to space flight. 2. To describe normal anatomy and pathologic changes of the optic nerve, posterior globe, optic nerve sheath and pituitary gland related to exposure to microgravity. 3. To correlate imaging findings with known signs of intracranial hypertension.

  15. Effects of spin-lock field direction on the quantitative measurement of spin-lattice relaxation time constant in the rotating frame (T1ρ) in a clinical MRI system

    SciTech Connect

    Yee, Seonghwan; Gao, Jia-Hong

    2014-12-15

    Purpose: To investigate whether the direction of spin-lock field, either parallel or antiparallel to the rotating magnetization, has any effect on the spin-lock MRI signal and further on the quantitative measurement of T1ρ, in a clinical 3 T MRI system. Methods: The effects of inverted spin-lock field direction were investigated by acquiring a series of spin-lock MRI signals for an American College of Radiology MRI phantom, while the spin-lock field direction was switched between the parallel and antiparallel directions. The acquisition was performed for different spin-locking methods (i.e., for the single- and dual-field spin-locking methods) and for different levels of clinically feasible spin-lock field strength, ranging from 100 to 500 Hz, while the spin-lock duration was varied in the range from 0 to 100 ms. Results: When the spin-lock field was inverted into the antiparallel direction, the rate of MRI signal decay was altered and the T1ρ value, when compared to the value for the parallel field, was clearly different. Different degrees of such direction-dependency were observed for different spin-lock field strengths. In addition, the dependency was much smaller when the parallel and the antiparallel fields are mixed together in the dual-field method. Conclusions: The spin-lock field direction could impact the MRI signal and further the T1ρ measurement in a clinical MRI system.

  16. Advances in multimodality imaging through a hybrid PET/MRI system.

    PubMed

    Fatemi-Ardekani, Ali; Samavati, Navid; Tang, Jin; Kamath, Markad V

    2009-01-01

    The development of integrated imaging systems for magnetic resonance imaging (MRI) and positron emission tomography (PET) is currently being explored in a number of laboratories and industrial settings. PET/MRI scanners for both preclinical and human research applications are being developed. PET/MRI overcomes many limitations of PET/computed tomography (CT), such as limited tissue contrast and high radiation doses delivered to the patient or the animal being studied. In addition, recent PET/MRI designs allow for simultaneous rather than sequential acquisition of PET and MRI data, which could not have been achieved through a combination of PET and CT scanners. In a combined PET/CT scanner, while both scanners share a common patient bed, they are hard-wired back-to-back and therefore do not allow simultaneous data acquisition. While PET/MRI offers the possibility of novel imaging strategies, it also creates considerable challenges for acquiring artifact-free images from both modalities. In this review, we discuss motivations, challenges, and potential research applications of developing PET/MRI technology. A brief overview of both MRI and PET is presented and preclinical and clinical applications of PET/MRI are identified. Finally, issues and concerns about image quality, clinical practice, and economic feasibility are discussed. PMID:20565381

  17. Evaluation of cartilage repair and osteoarthritis with sodium MRI.

    PubMed

    Zbýň, Štefan; Mlynárik, Vladimír; Juras, Vladimir; Szomolanyi, Pavol; Trattnig, Siegfried

    2016-02-01

    The growing need for early diagnosis and higher specificity than that which can be achieved with morphological MRI is a driving force in the application of methods capable of probing the biochemical composition of cartilage tissue, such as sodium imaging. Unlike morphological imaging, sodium MRI is sensitive to even small changes in cartilage glycosaminoglycan content, which plays a key role in cartilage homeostasis. Recent advances in high- and ultrahigh-field MR systems, gradient technology, phase-array radiofrequency coils, parallel imaging approaches, MRI acquisition strategies and post-processing developments have resulted in many clinical in vivo sodium MRI studies of cartilage, even at 3 T. Sodium MRI has great promise as a non-invasive tool for cartilage evaluation. However, further hardware and software improvements are necessary to complete the translation of sodium MRI into a clinically feasible method for 3-T systems. This review is divided into three parts: (i) cartilage composition, pathology and treatment; (ii) sodium MRI; and (iii) clinical sodium MRI studies of cartilage with a focus on the evaluation of cartilage repair tissue and osteoarthritis. PMID:25810325

  18. Testing the quality of images for permanent magnet desktop MRI systems using specially designed phantoms

    NASA Astrophysics Data System (ADS)

    Qiu, Jianfeng; Wang, Guozhu; Min, Jiao; Wang, Xiaoyan; Wang, Pengcheng

    2013-12-01

    Our aim was to measure the performance of desktop magnetic resonance imaging (MRI) systems using specially designed phantoms, by testing imaging parameters and analysing the imaging quality. We designed multifunction phantoms with diameters of 18 and 60 mm for desktop MRI scanners in accordance with the American Association of Physicists in Medicine (AAPM) report no. 28. We scanned the phantoms with three permanent magnet 0.5 T desktop MRI systems, measured the MRI image parameters, and analysed imaging quality by comparing the data with the AAPM criteria and Chinese national standards. Image parameters included: resonance frequency, high contrast spatial resolution, low contrast object detectability, slice thickness, geometrical distortion, signal-to-noise ratio (SNR), and image uniformity. The image parameters of three desktop MRI machines could be measured using our specially designed phantoms, and most parameters were in line with MRI quality control criterion, including: resonance frequency, high contrast spatial resolution, low contrast object detectability, slice thickness, geometrical distortion, image uniformity and slice position accuracy. However, SNR was significantly lower than in some references. The imaging test and quality control are necessary for desktop MRI systems, and should be performed with the applicable phantom and corresponding standards.

  19. A networked modular hardware and software system for MRI-guided robotic prostate interventions

    NASA Astrophysics Data System (ADS)

    Su, Hao; Shang, Weijian; Harrington, Kevin; Camilo, Alex; Cole, Gregory; Tokuda, Junichi; Hata, Nobuhiko; Tempany, Clare; Fischer, Gregory S.

    2012-02-01

    Magnetic resonance imaging (MRI) provides high resolution multi-parametric imaging, large soft tissue contrast, and interactive image updates making it an ideal modality for diagnosing prostate cancer and guiding surgical tools. Despite a substantial armamentarium of apparatuses and systems has been developed to assist surgical diagnosis and therapy for MRI-guided procedures over last decade, the unified method to develop high fidelity robotic systems in terms of accuracy, dynamic performance, size, robustness and modularity, to work inside close-bore MRI scanner still remains a challenge. In this work, we develop and evaluate an integrated modular hardware and software system to support the surgical workflow of intra-operative MRI, with percutaneous prostate intervention as an illustrative case. Specifically, the distinct apparatuses and methods include: 1) a robot controller system for precision closed loop control of piezoelectric motors, 2) a robot control interface software that connects the 3D Slicer navigation software and the robot controller to exchange robot commands and coordinates using the OpenIGTLink open network communication protocol, and 3) MRI scan plane alignment to the planned path and imaging of the needle as it is inserted into the target location. A preliminary experiment with ex-vivo phantom validates the system workflow, MRI-compatibility and shows that the robotic system has a better than 0.01mm positioning accuracy.

  20. Simulation of the expected performance of INSERT: A new multi-modality SPECT/MRI system for preclinical and clinical imaging

    NASA Astrophysics Data System (ADS)

    Busca, P.; Fiorini, C.; Butt, A. D.; Occhipinti, M.; Peloso, R.; Quaglia, R.; Schembari, F.; Trigilio, P.; Nemeth, G.; Major, P.; Erlandsson, K.; Hutton, B. F.

    2014-01-01

    A new multi-modality imaging tool is under development in the framework of the INSERT (INtegrated SPECT/MRI for Enhanced Stratification in Radio-chemo Therapy) project, supported by the European Community. The final goal is to develop a custom SPECT apparatus, that can be used as an insert for commercially available MRI systems such as 3 T MRI with 59 cm bore diameter. INSERT is expected to offer more effective and earlier diagnosis with potentially better outcome in survival for the treatment of brain tumors, primarily glioma. Two SPECT prototypes will be developed, one dedicated to preclinical imaging, the second one dedicated to clinical imaging. The basic building block of the SPECT detector ring is a small 5 cm×5 cm gamma camera, based on the well-established Anger architecture with a continuous scintillator readout by an array of silicon photodetectors. Silicon Drift Detectors (SDDs) and Silicon PhotoMultipliers (SiPM) are being considered as possible scintillator readout, considering that the detector choice plays a predominant role for the final performance of the system, such as energy and spatial resolution, as well as the useful field of view of the camera. Both solutions are therefore under study to evaluate their performances in terms of field of view (FOV), spatial and energy resolution. Preliminary simulations for both the preclinical and clinical systems have been carried out to evaluate resolution and sensitivity.

  1. Vascular involvement of the central nervous system and systemic diseases: etiologies and MRI findings.

    PubMed

    Appenzeller, Simone; Faria, Andréia Vasconcellos; Zanardi, Verônica A; Fernandes, Sandra R; Costallat, Lilian Tereza Lavras; Cendes, Fernando

    2008-10-01

    The objective of this study was to review magnetic resonance imaging (MRI) findings in patients with vascular involvement of the central nervous system (CNS) associated with systemic diseases. We reviewed the MRI findings in clinically suspected cases of vascular involvement of the CNS associated with systemic diseases. Vascular CNS involvement was considered in the presence of characteristic clinical, MRI and/or MR angiography findings. In order to be included in the study, patients needed to have a complete clinical and laboratory investigation and a follow-up of a minimum of 6 months. Twenty-four patients (17 women and 7 men), with mean age of 29.5 years had diagnosis of CNS vasculitis and were included. The clinical presentation was variable, but the most common complaints were headache in 18, focal deficits in 9, disturbances of consciousness in 9, and seizures in 8 patients. Underlying causes for CNS vasculitis were identified in all patients and included systemic lupus erythematosus in eight, tuberculosis in three, bacterial meningitis in three, Takayasu arteritis in two, polyarteritis nodosa in two, syphilis in two, drug abuse in two, yellow fever in one and varicella in one patient. Nonspecific high intensity T2WI/FLAIR lesions in white matter were the most common finding, present in ten patients. Eight patients had infarctions in large cerebral arteries territory, associated or not with high intensity T2WI/FLAIR small foci. Vascular involvement of the CNS can be found in a great variety of systemic diseases, including rheumatologic, infectious and drug abuse. Clinical findings are unspecific and MRI/MRA may help to establish the correct diagnosis. PMID:18651146

  2. Interventional MRI-guided catheter placement and real time drug delivery to the central nervous system.

    PubMed

    Han, Seunggu J; Bankiewicz, Krystof; Butowski, Nicholas A; Larson, Paul S; Aghi, Manish K

    2016-06-01

    Local delivery of therapeutic agents into the brain has many advantages; however, the inability to predict, visualize and confirm the infusion into the intended target has been a major hurdle in its clinical development. Here, we describe the current workflow and application of the interventional MRI (iMRI) system for catheter placement and real time visualization of infusion. We have applied real time convection-enhanced delivery (CED) of therapeutic agents with iMRI across a number of different clinical trials settings in neuro-oncology and movement disorders. Ongoing developments and accumulating experience with the technique and technology of drug formulations, CED platforms, and iMRI systems will continue to make local therapeutic delivery into the brain more accurate, efficient, effective and safer. PMID:27054877

  3. A 3T Sodium and Proton Composite Array Breast Coil

    PubMed Central

    Kaggie, Joshua D.; Hadley, J. Rock; Badal, James; Campbell, John R.; Park, Daniel J.; Parker, Dennis L.; Morrell, Glen; Newbould, Rexford D.; Wood, Ali F.; Bangerter, Neal K.

    2013-01-01

    Purpose The objective of this study was to determine whether a sodium phased array would improve sodium breast MRI at 3T. The secondary objective was to create acceptable proton images with the sodium phased array in place. Methods A novel composite array for combined proton/sodium 3T breast MRI is compared to a coil with a single proton and sodium channel. The composite array consists of a 7-channel sodium receive array, a larger sodium transmit coil, and a 4-channel proton transceive array. The new composite array design utilizes smaller sodium receive loops than typically used in sodium imaging, uses novel decoupling methods between the receive loops and transmit loops, and uses a novel multi-channel proton transceive coil. The proton transceive coil reduces coupling between proton and sodium elements by intersecting the constituent loops to reduce their mutual inductance. The coil used for comparison consists of a concentric sodium and proton loop with passive decoupling traps. Results The composite array coil demonstrates a 2–5x improvement in SNR for sodium imaging and similar SNR for proton imaging when compared to a simple single-loop dual resonant design. Conclusion The improved SNR of the composite array gives breast sodium images of unprecedented quality in reasonable scan times. PMID:24105740

  4. NAD+ regulates Treg cell fate and promotes allograft survival via a systemic IL-10 production that is CD4+ CD25+ Foxp3+ T cells independent

    PubMed Central

    Elkhal, Abdallah; Rodriguez Cetina Biefer, Hector; Heinbokel, Timm; Uehara, Hirofumi; Quante, Markus; Seyda, Midas; Schuitenmaker, Jeroen M.; Krenzien, Felix; Camacho, Virginia; de la Fuente, Miguel A.; Ghiran, Ionita; Tullius, Stefan G.

    2016-01-01

    CD4+ CD25+ Foxp3+ Tregs have been shown to play a central role in immune homeostasis while preventing from fatal inflammatory responses, while Th17 cells have traditionally been recognized as pro-inflammatory mediators implicated in a myriad of diseases. Studies have shown the potential of Tregs to convert into Th17 cells, and Th17 cells into Tregs. Increasing evidence have pointed out CD25 as a key molecule during this transdifferentiation process, however molecules that allow such development remain unknown. Here, we investigated the impact of NAD+ on the fate of CD4+ CD25+ Foxp3+ Tregs in-depth, dissected their transcriptional signature profile and explored mechanisms underlying their conversion into IL-17A producing cells. Our results demonstrate that NAD+ promotes Treg conversion into Th17 cells in vitro and in vivo via CD25 cell surface marker. Despite the reduced number of Tregs, known to promote homeostasis, and an increased number of pro-inflammatory Th17 cells, NAD+ was able to promote an impressive allograft survival through a robust systemic IL-10 production that was CD4+ CD25+ Foxp3+ independent. Collectively, our study unravels a novel immunoregulatory mechanism of NAD+ that regulates Tregs fate while promoting allograft survival that may have clinical applications in alloimmunity and in a wide spectrum of inflammatory conditions. PMID:26928119

  5. Design and Preliminary Accuracy Studies of an MRI-Guided Transrectal Prostate Intervention System

    PubMed Central

    Krieger, Axel; Csoma, Csaba; Iordachita, Iulian I.; Guion, Peter; Singh, Anurag K.; Fichtinger, Gabor; Whitcomb, Louis L.

    2012-01-01

    This paper reports a novel system for magnetic resonance imaging (MRI) guided transrectal prostate interventions, such as needle biopsy, fiducial marker placement, and therapy delivery. The system utilizes a hybrid tracking method, comprised of passive fiducial tracking for initial registration and subsequent incremental motion measurement along the degrees of freedom using fiber-optical encoders and mechanical scales. Targeting accuracy of the system is evaluated in prostate phantom experiments. Achieved targeting accuracy and procedure times were found to compare favorably with existing systems using passive and active tracking methods. Moreover, the portable design of the system using only standard MRI image sequences and minimal custom scanner interfacing allows the system to be easily used on different MRI scanners. PMID:18044553

  6. Intelligent computer-aided diagnosis system for breast MRI combining kinetic and morphological aspects

    NASA Astrophysics Data System (ADS)

    Wismüller, Axel; Meyer-Bäse, Anke; Lange, Oliver

    2008-04-01

    An intelligent medical systems based on a radial basis neural network is applied to the automatic classification of suspicious lesions in breast MRI and compared with two standard mammographic reading methods. Such systems represent an important component of future sophisticated computer-aided diagnosis systems and enable the extraction of spatial and temporal features of dynamic MRI data stemming from patients with confirmed lesion diagnosis. Intelligent medical systems combining both kinetics and lesions' morphology are expected to have substantial implications in healthcare politics by contributing to the diagnosis of indeterminate breast lesions by non-invasive imaging.

  7. Method of propulsion of a ferromagnetic core in the cardiovascular system through magnetic gradients generated by an MRI system.

    PubMed

    Mathieu, Jean-Baptiste; Beaudoin, Gilles; Martel, Sylvain

    2006-02-01

    This paper reports the use of a magnetic resonance imaging (MRI) system to propel a ferromagnetic core. The concept was studied for future development of microdevices designed to perform minimally invasive interventions in remote sites accessible through the human cardiovascular system. A mathematical model is described taking into account various parameters such as the size of blood vessels, the velocities and viscous properties of blood, the magnetic properties of the materials, the characteristics of MRI gradient coils, as well as the ratio between the diameter of a spherical core and the diameter of the blood vessels. The concept of magnetic propulsion by MRI is validated experimentally by measuring the flow velocities that magnetized spheres (carbon steel 1010/1020) can withstand inside cylindrical tubes under the different magnetic forces created with a Siemens Magnetom Vision 1.5 T MRI system. The differences between the velocities predicted by the theoretical model and the experiments are approximately 10%. The results indicate that with the technology available today for gradient coils used in clinical MRI systems, it is possible to generate sufficient gradients to propel a ferromagnetic sphere in the larger sections of the arterial system. In other words, the results show that in the larger blood vessels where the diameter of the microdevices could be as large as a couple a millimeters, the few tens of mT/m of gradients required for displacement against the relatively high blood flow rate is well within the limits of clinical MRI systems. On the other hand, although propulsion of a ferromagnetic core with diameter of approximately 600 microm may be possible with existing clinical MRI systems, gradient amplitudes of several T/m would be required to propel a much smaller ferromagnetic core in small vessels such as capillaries and additional gradient coils would be required to upgrade existing MRI systems for operations at such a scale. PMID:16485758

  8. Development of a geometrically accurate imaging protocol at 3 Tesla MRI for stereotactic radiosurgery treatment planning

    NASA Astrophysics Data System (ADS)

    Zhang, B.; MacFadden, D.; Damyanovich, A. Z.; Rieker, M.; Stainsby, J.; Bernstein, M.; Jaffray, D. A.; Mikulis, D.; Ménard, C.

    2010-11-01

    The purpose of this study is to develop a geometrically accurate imaging protocol at 3 T magnetic resonance imaging (MRI) for stereotactic radiosurgery (SRS) treatment planning. In order to achieve this purpose, a methodology is developed to investigate the geometric accuracy and stability of 3 T MRI for SRS in phantom and patient evaluations. Forty patients were enrolled on a prospective clinical trial. After frame placement prior to SRS, each patient underwent 3 T MRI after 1.5 T MRI and CT. MR imaging protocols included a T1-weighted gradient echo sequence and a T2-weighted spin echo sequence. Phantom imaging was performed on 3 T prior to patient imaging using the same set-up and imaging protocols. Geometric accuracy in patients and phantoms yielded comparable results for external fiducial reference deviations and internal landmarks between 3 T and 1.5 T MRI (mean <=0.6 mm; standard deviation <=0.3 mm). Mean stereotactic reference deviations between phantoms and patients correlated well (T1: R = 0.79; T2: R = 0.84). Statistical process control analysis on phantom QA data demonstrated the stability of our SRS imaging protocols, where the geometric accuracy of the 3 T SRS imaging protocol is operating within the appropriate tolerance. Our data provide evidence supporting the spatial validity of 3 T MRI for targeting SRS under imaging conditions investigated. We have developed a systematic approach to achieve confidence on the geometric integrity of a given imaging system/technique for clinical integration in SRS application.

  9. Project Overview of HTS Magnet for Ultra-high-field MRI System

    NASA Astrophysics Data System (ADS)

    Tosaka, Taizo; Miyazaki, Hiroshi; Iwai, Sadanori; Otani, Yasumi; Takahashi, Masahiko; Tasaki, Kenji; Nomura, Shunji; Kurusu, Tsutomu; Ueda, Hiroshi; Noguchi, So; Ishiyama, Atsushi; Urayama, Shinichi; Fukuyama, Hidenao

    A project to develop an ultra-high-field magnetic resonance imaging (MRI) system based on HTS magnets using (RE)Ba2Cu3O7 (REBCO; RE=rear earth) coils is underway. The project is supported by the Japanese Ministry of Economy, Trade and Industry and aims to establish magnet technologies for a whole-body 9.4 T MRI system. REBCO wires have high critical current density in high magnetic fields and high strength against hoop stresses, and therefore, MRI magnets using REBCO coils are expected to have cryogenic systems that are smaller, lighter, and simpler than the conventional ones. A major problem in using REBCO coils for MRI magnets is the huge irregular magnetic field generated by the screening current in REBCO tapes. Thus, the main purpose of this project is to make the influence of this screening current predictable and controllable. Fundamental technologies, including treatment of the screening currents, were studied via experiments and numerical simulations using small coils. Two types of model magnets are planned to be manufactured, and the knowledge gained in the development of the model magnets will be reflected in the magnet design of a whole-body 9.4 T MRI system.

  10. Quantitative PET imaging with the 3T MR-BrainPET

    NASA Astrophysics Data System (ADS)

    Weirich, C.; Scheins, J.; Lohmann, P.; Tellmann, L.; Byars, L.; Michel, C.; Rota Kops, E.; Brenner, D.; Herzog, H.; Shah, N. J.

    2013-02-01

    The new hybrid imaging technology of MR-PET allows for simultaneous acquisition of versatile MRI contrasts and the quantitative metabolic imaging with PET. In order to achieve the quantification of PET images with minimal residual error the application of several corrections is crucial. In this work we present our results on quantification with the 3T MR BrainPET scanner.

  11. An optically coupled system for quantitative monitoring of MRI gradient currents induced into endocardial leads.

    PubMed

    Mattei, E; Calcagnini, G; Triventi, M; Delogu, A; Del Guercio, M; Angeloni, A; Bartolini, P

    2013-01-01

    The time-varying gradient fields generated during Magnetic Resonance Imaging (MRI) procedures have the potential to induce electrical current on implanted endocardial leads. Whether this current can result in undesired cardiac stimulation is unknown. This paper presents an optically coupled system with the potential to quantitatively measure the currents induced by the gradient fields into endocardial leads during MRI procedures. Our system is based on a microcontroller that works as analog-to-digital (A/D) converter and sends the current signal acquired from the lead to an optical high-speed light-emitting-diode transmitter. Plastic fiber guides the light outside the MRI chamber, to a photodiode receiver and then to an acquisition board connected to a PC. The preliminary characterization of the performances of the system is also presented. PMID:24110209

  12. Multimodal imaging with hybrid semiconductor detectors Timepix for an experimental MRI-SPECT system

    NASA Astrophysics Data System (ADS)

    Zajicek, J.; Jakubek, J.; Burian, M.; Vobecky, M.; Fauler, A.; Fiederle, M.; Zwerger, A.

    2013-01-01

    An increasing number of clinical applications are being based on multimodal imaging systems (MIS), including anatomical (CT, MRI) and functional (PET, SPECT) techniques to provide complex information in a single image. CT with one of the scintigraphic methods (PET or SPECT) is nowadays a combination of choice for clinical practice and it is mostly used in cardiography and tumour diagnostics. Combination with MRI is also being implemented as no radiation dose is imparted to the patient and it is possible to gain higher structural resolution of soft tissues (brain imaging). A major disadvantage of such systems is inability to operate scintillators with photomultipliers (used for detection of γ rays) in presence of high magnetic fields. In this work we present the application of the semiconductor pixel detector for SPECT method in combination with MR imaging. We propose a novel approach based on MRI compatible setup with CdTe pixel sensor Timepix and non-conductive collimator. Measurements were performed on high proton-density (PD) phantom (1H) with an embedded radioisotopic source inside the shielded RF coil by MRI animal scanner (4.7 T). Our results pave the way for a combined MRI-SPECT system. The project was performed in the framework of the Medipix Collaboration.

  13. Ultra-low field T1 vs. T1rho at 3T and 7T: study of rotationally immobilized protein gels and animal brain tissues

    NASA Astrophysics Data System (ADS)

    Dong, Hui; Inglis, Ben; Barr, Ian; Clarke, John

    2015-03-01

    Clinical magnetic resonance imaging (MRI) machines operating in static fields of typically 1.5 T or 3 T can capture information on slow molecular dynamics utilizing the so-called T1rho technique. This technique, in which a radiofrequency (RF) spin-lock field is applied with microtesla amplitude, has been used, for example, to determine the onset time of stroke in studies on rats. The long RF pulse, however, may exceed the specific absorption rate (SAR) limit, putting subjects at risk. Ultra-low-field (ULF) MRI, based on Superconducting Quantum Interference Devices (SQUIDs), directly detects proton signals at a static magnetic field of typically 50-250 μT. Using our ULF MRI system with adjustable static field of typically 55 to 240 μT, we systematically measured the T1 and T2 dispersion profiles of rotationally immobilized protein gels (bovine serum albumin), ex vivo pig brains, and ex vivo rat brains with induced stroke. Comparing the ULF results with T1rho dispersion obtained at 3 T and 7 T, we find that the degree of protein immobilization determines the frequency-dependence of both T1 and T1rho. Furthermore, T1rho and ULF T1 show similar results for stroke, suggesting that ULF MRI may be used to image traumatic brain injury with negligible SAR. This research was supported by the Henry H. Wheeler, Jr. Brain Imaging Center and the Donaldson Trust.

  14. 3T MR imaging of the brain.

    PubMed

    DeLano, Mark C; Fisher, Charles

    2006-02-01

    The advent of very high field clinical scanners that operate at 3T is taking structural and functional imaging to new levels and is reinvigorating clinical spectroscopy, fMR imaging, and noncontrast-enhanced methods of MRA. Most of the challenges that are related to 3T imaging have been addressed to facilitate routine clinical imaging. An awareness of the complexities that underlie the solutions to these challenges is important to the continued improvements to the 3T platform so that its maximal potential can be reached. The development of the multichannel-head coils and the improvement in the design of body coils, concurrently with the development of multichannel capabilities that enable parallel imaging, have benefited all field platforms. Perhaps the added value of parallel imaging has been greatest at 3T where the additional signal can be exploited. The definition of very high field is a moving target, and may be well on its way to 7.0 T, although in terms of the current clinical state of the art, 3T is our current reference. PMID:16530636

  15. In vivo-in vitro comparison of acute respiratory tract toxicity using human 3D airway epithelial models and human A549 and murine 3T3 monolayer cell systems.

    PubMed

    Sauer, Ursula G; Vogel, Sandra; Hess, Annemarie; Kolle, Susanne N; Ma-Hock, Lan; van Ravenzwaay, Bennard; Landsiedel, Robert

    2013-02-01

    The usefulness of in vitro systems to predict acute inhalation toxicity was investigated. Nineteen substances were tested in three-dimensional human airway epithelial models, EpiAirway™ and MucilAir™, and in A549 and 3T3 monolayer cell cultures. IC(50) values were compared to rat four-hour LC(50) values classified according to EPA and GHS hazard categories. Best results were achieved with a prediction model distinguishing toxic from non-toxic substances, with satisfactory specificities and sensitivities. Using a self-made four-level prediction model to classify substances into four in vitro hazard categories, in vivo-in vitro concordance was mediocre, but could be improved by excluding substances causing pulmonary edema and emphysema in vivo. None of the test systems was outstanding, and there was no evidence that tissue or monolayer systems using respiratory tract cells provide an added value. However, the test systems only reflected bronchiole epithelia and alveolar cells and investigated cytotoxicity. Effects occurring in other cells by other mechanisms could not be recognised. Further work should optimise test protocols and expand the set of substances tested to define applicability domains. In vivo respiratory toxicity data for in vitro comparisons should distinguish different modes of action, and their relevance for human health effects should be ensured. PMID:23085368

  16. Development of an outdoor MRI system for measuring flow in a living tree

    NASA Astrophysics Data System (ADS)

    Nagata, Akiyoshi; Kose, Katsumi; Terada, Yasuhiko

    2016-04-01

    An outdoor MRI system for noninvasive, long-term measurements of sap flow in a living tree in its natural environment has been developed. An open-access, 0.2 T permanent magnet with a 160 mm gap was combined with a radiofrequency probe, planar gradient coils, electromagnetic shielding, several electrical units, and a waterproofing box. Two-dimensional cross-sectional images were acquired for a ring-porous tree, and the anatomical structures, including xylem and phloem, were identified. The MRI flow measurements demonstrated the diurnal changes in flow velocity in the stem on a per-pixel basis. These results demonstrate that our outdoor MRI system is a powerful tool for studies of water transport in outdoor trees.

  17. Flanged-edge transverse gradient coil design for a hybrid LINAC-MRI system.

    PubMed

    Liu, Limei; Sanchez-Lopez, Hector; Liu, Feng; Crozier, Stuart

    2013-01-01

    MRI can be combined with other systems, such as linear accelerators (LINACs) to provide image-guided therapy. However, in some configurations this requires splitting the MRI scanner to provide a central gap large enough to ensure dual access for the accelerator and the patient. This raises technical difficulties for maintaining a high gradient coil performance. In this research, a dedicated split transverse gradient coil was designed with a flange connected to the central coil end, which provided an additional surface for the current to flow. The coil was compared to existing designs, in terms of coil performance and eddy current effects. It was found that a flanged-edge coil design produced a better coil performance and more moderate eddy currents than those of the other designs. It is hoped that this study will help to inform the design of optimal gradient coils for split MRI systems with a large central gap. PMID:23220182

  18. Development of an outdoor MRI system for measuring flow in a living tree.

    PubMed

    Nagata, Akiyoshi; Kose, Katsumi; Terada, Yasuhiko

    2016-04-01

    An outdoor MRI system for noninvasive, long-term measurements of sap flow in a living tree in its natural environment has been developed. An open-access, 0.2 T permanent magnet with a 160 mm gap was combined with a radiofrequency probe, planar gradient coils, electromagnetic shielding, several electrical units, and a waterproofing box. Two-dimensional cross-sectional images were acquired for a ring-porous tree, and the anatomical structures, including xylem and phloem, were identified. The MRI flow measurements demonstrated the diurnal changes in flow velocity in the stem on a per-pixel basis. These results demonstrate that our outdoor MRI system is a powerful tool for studies of water transport in outdoor trees. PMID:26896868

  19. An optically coupled system for quantitative monitoring of MRI-induced RF currents into long conductors.

    PubMed

    Zanchi, Marta G; Venook, Ross; Pauly, John M; Scott, Greig C

    2010-01-01

    The currents induced in long conductors such as guidewires by the radio-frequency (RF) field in magnetic resonance imaging (MRI) are responsible for potentially dangerous heating of surrounding media, such as tissue. This paper presents an optically coupled system with the potential to quantitatively measure the RF currents induced on these conductors. The system uses a self shielded toroid transducer and active circuitry to modulate a high speed light-emitting-diode transmitter. Plastic fiber guides the light to a photodiode receiver and transimpedance amplifier. System validation included a series of experiments with bare wires that compared wire tip heating by fluoroptic thermometers with the RF current sensor response. Validations were performed on a custom whole body 64 MHz birdcage test platform and on a 1.5 T MRI scanner. With this system, a variety of phenomena were demonstrated including cable trap current attenuation, lossy dielectric Q-spoiling and even transverse electromagnetic wave node patterns. This system should find applications in studies of MRI RF safety for interventional devices such as pacemaker leads, and guidewires. In particular, variations of this device could potentially act as a realtime safety monitor during MRI guided interventions. PMID:19758855

  20. Cost Effective Open Geometry HTS MRI System amended to BSCCO 2212 Wire for High Field Magnets

    SciTech Connect

    Kennth Marken

    2006-08-11

    The original goal of this Phase II Superconductivity Partnership Initiative project was to build and operate a prototype Magnetic Resonance Imaging (MRI) system using high temperature superconductor (HTS) coils wound from continuously processed dip-coated BSCCO 2212 tape conductor. Using dip-coated tape, the plan was for MRI magnet coils to be wound to fit an established commercial open geometry, 0.2 Tesla permanent magnet system. New electronics and imaging software for a prototype higher field superconducting system would have added significantly to the cost. However, the use of the 0.2 T platform would allow the technical feasibility and the cost issues for HTS systems to be fully established. Also it would establish the energy efficiency and savings of HTS open MRI compared with resistive and permanent magnet systems. The commercial goal was an open geometry HTS MRI running at 0.5 T and 20 K. This low field open magnet was using resistive normal metal conductor and its heat loss was rather high around 15 kolwatts. It was expected that an HTS magnet would dissipate around 1 watt, significantly reduce power consumption. The SPI team assembled to achieve this goal was led by Oxford Instruments, Superconducting Technology (OST), who developed the method of producing commercial dip coated tape. Superconductive Components Inc. (SCI), a leading US supplier of HTS powders, supported the conductor optimization through powder optimization, scaling, and cost reduction. Oxford Magnet Technology (OMT), a joint venture between Oxford Instruments and Siemens and the world’s leading supplier of MRI magnet systems, was involved to design and build the HTS MRI magnet and cryogenics. Siemens Magnetic Resonance Division, a leading developer and supplier of complete MRI imaging systems, was expected to integrate the final system and perform imaging trials. The original MRI demonstration project was ended in July 2004 by mutual consent of Oxford Instruments and Siemens. Between

  1. Head MRI

    MedlinePlus

    ... the head; MRI - cranial; NMR - cranial; Cranial MRI; Brain MRI; MRI - brain; MRI - head ... tell your health care provider if you have: Brain aneurysm clips Certain types of artificial heart valves ...

  2. Piezoelectrically Actuated Robotic System for MRI-Guided Prostate Percutaneous Therapy

    PubMed Central

    Su, Hao; Shang, Weijian; Cole, Gregory; Li, Gang; Harrington, Kevin; Camilo, Alexander; Tokuda, Junichi; Tempany, Clare M.; Hata, Nobuhiko; Fischer, Gregory S.

    2014-01-01

    This paper presents a fully-actuated robotic system for percutaneous prostate therapy under continuously acquired live magnetic resonance imaging (MRI) guidance. The system is composed of modular hardware and software to support the surgical workflow of intra-operative MRI-guided surgical procedures. We present the development of a 6-degree-of-freedom (DOF) needle placement robot for transperineal prostate interventions. The robot consists of a 3-DOF needle driver module and a 3-DOF Cartesian motion module. The needle driver provides needle cannula translation and rotation (2-DOF) and stylet translation (1-DOF). A custom robot controller consisting of multiple piezoelectric motor drivers provides precision closed-loop control of piezoelectric motors and enables simultaneous robot motion and MR imaging. The developed modular robot control interface software performs image-based registration, kinematics calculation, and exchanges robot commands and coordinates between the navigation software and the robot controller with a new implementation of the open network communication protocol OpenIGTLink. Comprehensive compatibility of the robot is evaluated inside a 3-Tesla MRI scanner using standard imaging sequences and the signal-to-noise ratio (SNR) loss is limited to 15%. The image deterioration due to the present and motion of robot demonstrates unobservable image interference. Twenty-five targeted needle placements inside gelatin phantoms utilizing an 18-gauge ceramic needle demonstrated 0.87 mm root mean square (RMS) error in 3D Euclidean distance based on MRI volume segmentation of the image-guided robotic needle placement procedure. PMID:26412962

  3. Visualization of suspicious lesions in breast MRI based on intelligent neural systems

    NASA Astrophysics Data System (ADS)

    Twellmann, Thorsten; Lange, Oliver; Nattkemper, Tim Wilhelm; Meyer-Bäse, Anke

    2006-05-01

    Intelligent medical systems based on supervised and unsupervised artificial neural networks are applied to the automatic visualization and classification of suspicious lesions in breast MRI. These systems represent an important component of future sophisticated computer-aided diagnosis systems and enable the extraction of spatial and temporal features of dynamic MRI data stemming from patients with confirmed lesion diagnosis. By taking into account the heterogenity of the cancerous tissue, these techniques reveal the malignant, benign and normal kinetic signals and and provide a regional subclassification of pathological breast tissue. Intelligent medical systems are expected to have substantial implications in healthcare politics by contributing to the diagnosis of indeterminate breast lesions by non-invasive imaging.

  4. Obstetric MRI.

    PubMed

    Levine, Deborah

    2006-07-01

    Ultrasound is the imaging modality of choice for pregnant patients. However, MRI is increasingly utilized in patients in whom the sonographic diagnosis is unclear. These include maternal conditions unique to pregnancy such as ectopic pregnancy, placenta accreta, and uterine dehiscence. MRI is also being increasingly utilized in the assessment of abdominopelvic pain in pregnancy, in particular in assessment for appendicitis. Fetal MRI is performed to assess central nervous system (CNS) abnormalities and patients who are considering fetal surgery for conditions such as neural tube defects, congenital diaphragmatic hernia, and masses that obstruct the airway. In the future, functional MRI and fetal volumetry may provide additional information that can aid in our care of complicated pregnancies. PMID:16736491

  5. MR Scanner Systems Should Be Adequately Characterized in Diffusion-MRI of the Breast

    PubMed Central

    Giannelli, Marco; Sghedoni, Roberto; Iacconi, Chiara; Iori, Mauro; Traino, Antonio Claudio; Guerrisi, Maria; Mascalchi, Mario; Toschi, Nicola; Diciotti, Stefano

    2014-01-01

    Breast imaging represents a relatively recent and promising field of application of quantitative diffusion-MRI techniques. In view of the importance of guaranteeing and assessing its reliability in clinical as well as research settings, the aim of this study was to specifically characterize how the main MR scanner system-related factors affect quantitative measurements in diffusion-MRI of the breast. In particular, phantom acquisitions were performed on three 1.5 T MR scanner systems by different manufacturers, all equipped with a dedicated multi-channel breast coil as well as acquisition sequences for diffusion-MRI of the breast. We assessed the accuracy, inter-scan and inter-scanner reproducibility of the mean apparent diffusion coefficient measured along the main orthogonal directions () as well as of diffusion-tensor imaging (DTI)-derived mean diffusivity (MD) measurements. Additionally, we estimated spatial non-uniformity of (NU) and MD (NUMD) maps. We showed that the signal-to-noise ratio as well as overall calibration of high strength diffusion gradients system in typical acquisition sequences for diffusion-MRI of the breast varied across MR scanner systems, introducing systematic bias in the measurements of diffusion indices. While and MD values were not appreciably different from each other, they substantially varied across MR scanner systems. The mean of the accuracies of measured and MD was in the range [−2.3%,11.9%], and the mean of the coefficients of variation for and MD measurements across MR scanner systems was 6.8%. The coefficient of variation for repeated measurements of both and MD was < 1%, while NU and NUMD values were <4%. Our results highlight that MR scanner system-related factors can substantially affect quantitative diffusion-MRI of the breast. Therefore, a specific quality control program for assessing and monitoring the performance of MR scanner systems for diffusion-MRI of the breast is

  6. Identification and Acute Targeting of Gaps in Atrial Ablation Lesion Sets using a Real Time MRI System

    PubMed Central

    Ranjan, Ravi; Kholmovski, Eugene G.; Blauer, Joshua; Vijayakumar, Sathya; Volland, Nelly A.; Salama, Mohamed E.; Parker, Dennis L.; MacLeod, Rob; Marrouche, Nassir F.

    2013-01-01

    Background Radiofrequency ablation is routinely used to treat cardiac arrhythmias, but gaps remain in ablation lesion sets, as there is no direct visualization of ablation related changes. In this study we describe using a real time MRI (RT-MRI) system to acutely identify and target gaps leading to a complete and transmural ablation in the atrium. Methods and Results A swine model was used for these studies (n=12). Ablation lesions with a gap were created in the atrium using fluoroscopy and an electro-anatomical system in the first group (n=5). The animal was then moved to a 3 Tesla MRI system where high-resolution late gadolinium enhancement (LGE) MRI was used to identify the gap. Using a RT-MRI catheter navigation and visualization system the gap area was ablated in the MR scanner. In a second group (n=7) ablation lesions with varying gaps in between were created under RT-MRI guidance and gap lengths determined using LGE MR images were correlated with gap length measured from gross pathology. Gaps up to 1.0 mm were identified using gross pathology and 1.4 mm using LGE MRI. Using a RT-MRI system with active catheter navigation gaps can be targeted acutely, leading to lesion sets with no gaps. The correlation coefficient (R2) between gap length identified using MRI and gross pathology was 0.95. Conclusions Real time MRI system can be used to identify and acutely target gaps in atrial ablation lesion sets. Acute targeting of gaps in ablation lesion sets can potentially lead to significant improvement in clinical outcomes. PMID:23071143

  7. Design, Development, and Evaluation of a Master-Slave Surgical System for Breast Biopsy under Continuous MRI.

    PubMed

    Yang, Bo; Roys, Steven; Tan, U-Xuan; Philip, Mathew; Richard, Howard; Gullapalli, Rao; Desai, Jaydev P

    2014-04-01

    Magnetic Resonance Imaging (MRI) provides superior soft-tissue contrast in cancer diagnosis compared to other imaging modalities. However, the strong magnetic field inside the MRI bore along with limited scanner bore size poses significant challenges. Since current approaches in breast biopsy using MR images is primarily a blind targeting approach, it is necessary to develop a MRI-compatible robot that can avoid multiple needle insertions into the breast tissue. This MRI-compatible robotic system could potentially lead to improvement in the targeting accuracy and reduce sampling errors. A master-slave surgical system has been developed comprising of a MRI-compatible slave robot which consists of one piezo motor and five pneumatic cylinders connected by long pneumatic transmission lines. The slave robot follows the configuration of the master robot, which provides an intuitive manipulation interface for the physician and operates inside the MRI bore to adjust the needle position and orientation and perform needle insertion task. Based on the MRI experiments using the slave robot, there was no significant distortion in the images and hence the slave robot can be safely operated inside the MRI with minimal loss in signal-to-noise ratio (SNR). Ex vivo and in vivo experiments have been conducted to evaluate the performance of the master-slave surgical system. PMID:25313266

  8. Design, Development, and Evaluation of a Master-Slave Surgical System for Breast Biopsy under Continuous MRI*

    PubMed Central

    Yang, Bo; Roys, Steven; Tan, U-Xuan; Philip, Mathew; Richard, Howard; Gullapalli, Rao; Desai, Jaydev P.

    2013-01-01

    Magnetic Resonance Imaging (MRI) provides superior soft-tissue contrast in cancer diagnosis compared to other imaging modalities. However, the strong magnetic field inside the MRI bore along with limited scanner bore size poses significant challenges. Since current approaches in breast biopsy using MR images is primarily a blind targeting approach, it is necessary to develop a MRI-compatible robot that can avoid multiple needle insertions into the breast tissue. This MRI-compatible robotic system could potentially lead to improvement in the targeting accuracy and reduce sampling errors. A master-slave surgical system has been developed comprising of a MRI-compatible slave robot which consists of one piezo motor and five pneumatic cylinders connected by long pneumatic transmission lines. The slave robot follows the configuration of the master robot, which provides an intuitive manipulation interface for the physician and operates inside the MRI bore to adjust the needle position and orientation and perform needle insertion task. Based on the MRI experiments using the slave robot, there was no significant distortion in the images and hence the slave robot can be safely operated inside the MRI with minimal loss in signal-to-noise ratio (SNR). Ex vivo and in vivo experiments have been conducted to evaluate the performance of the master-slave surgical system. PMID:25313266

  9. Top-Level System Designs for Hybrid Low-Field MRI-CT with Potential of Pulmonary Imaging

    NASA Astrophysics Data System (ADS)

    Yelleswarapu, Venkata R.; Liu, Fenglin; Cong, Wenxiang; Wang, Ge

    2014-11-01

    We previously discussed "omni-tomography", but intrinsic conflicts between the magnetic fields of the MRI and the X-ray tube within the CT are inherent. We propose that by using low-field MRI with a negligible fringe field at the site of the CT source, it is possible to create a CT-MRI system with minimal interference. Low field MRI is particularly useful for lung imaging, where hyperpolarized gas can enhance the signal. Three major designs were considered and simulated, with modifications in coil design and axis allowing for further variation. The first uses Halbach arrays to minimize magnetic fields outside, the second uses solenoids pairs with active shielding, and the third uses a rotating compact MRI-CT. Each system is low field, which may allow the implementation of a standard rotating CT. Both structural and functional information can be acquired simultaneously for a true hybrid image with matching temporal and spatial image acquisition.

  10. MRI-guided prostate focal laser ablation therapy using a mechatronic needle guidance system

    NASA Astrophysics Data System (ADS)

    Cepek, Jeremy; Lindner, Uri; Ghai, Sangeet; Davidson, Sean R. H.; Trachtenberg, John; Fenster, Aaron

    2014-03-01

    Focal therapy of localized prostate cancer is receiving increased attention due to its potential for providing effective cancer control in select patients with minimal treatment-related side effects. Magnetic resonance imaging (MRI)-guided focal laser ablation (FLA) therapy is an attractive modality for such an approach. In FLA therapy, accurate placement of laser fibers is critical to ensuring that the full target volume is ablated. In practice, error in needle placement is invariably present due to pre- to intra-procedure image registration error, needle deflection, prostate motion, and variability in interventionalist skill. In addition, some of these sources of error are difficult to control, since the available workspace and patient positions are restricted within a clinical MRI bore. In an attempt to take full advantage of the utility of intraprocedure MRI, while minimizing error in needle placement, we developed an MRI-compatible mechatronic system for guiding needles to the prostate for FLA therapy. The system has been used to place interstitial catheters for MRI-guided FLA therapy in eight subjects in an ongoing Phase I/II clinical trial. Data from these cases has provided quantification of the level of uncertainty in needle placement error. To relate needle placement error to clinical outcome, we developed a model for predicting the probability of achieving complete focal target ablation for a family of parameterized treatment plans. Results from this work have enabled the specification of evidence-based selection criteria for the maximum target size that can be confidently ablated using this technique, and quantify the benefit that may be gained with improvements in needle placement accuracy.

  11. MRI Guided Brain Stimulation without the Use of a Neuronavigation System

    PubMed Central

    Vaghefi, Ehsan; Cai, Peng; Fang, Fang; Byblow, Winston D.; Stinear, Cathy M.; Thompson, Benjamin

    2015-01-01

    A key issue in the field of noninvasive brain stimulation (NIBS) is the accurate localization of scalp positions that correspond to targeted cortical areas. The current gold standard is to combine structural and functional brain imaging with a commercially available “neuronavigation” system. However, neuronavigation systems are not commonplace outside of specialized research environments. Here we describe a technique that allows for the use of participant-specific functional and structural MRI data to guide NIBS without a neuronavigation system. Surface mesh representations of the head were generated using Brain Voyager and vectors linking key anatomical landmarks were drawn on the mesh. Our technique was then used to calculate the precise distances on the scalp corresponding to these vectors. These calculations were verified using actual measurements of the head and the technique was used to identify a scalp position corresponding to a brain area localized using functional MRI. PMID:26413537

  12. Open-Access, Low-Magnetic-Field MRI System for Lung Research

    NASA Technical Reports Server (NTRS)

    Mair, Ross W.; Rosen, Matthew S.; Tsai, Leo L.; Walsworth, Ronald L.; Hrovat, Mirko I.; Patz, Samuel; Ruset, Iullian C.; Hersman, F. William

    2009-01-01

    An open-access magnetic resonance imaging (MRI) system is being developed for use in research on orientational/gravitational effects on lung physiology and function. The open-access geometry enables study of human subjects in diverse orientations. This system operates at a magnetic flux density, considerably smaller than the flux densities of typical other MRI systems, that can be generated by resistive electromagnet coils (instead of the more-expensive superconducting coils of the other systems). The human subject inhales air containing He-3 or Xe-129 atoms, the nuclear spins of which have been polarized by use of a laser beam to obtain a magnetic resonance that enables high-resolution gas space imaging at the low applied magnetic field. The system includes a bi-planar, constant-current, four-coil electromagnet assembly and associated electronic circuitry to apply a static magnetic field of 6.5 mT throughout the lung volume; planar coils and associated circuitry to apply a pulsed magnetic-field-gradient for each spatial dimension; a single, detachable radio-frequency coil and associated circuitry for inducing and detecting MRI signals; a table for supporting a horizontal subject; and electromagnetic shielding surrounding the electromagnet coils.

  13. Multi-Parametric Neuroimaging Reproducibility: A 3T Resource Study

    PubMed Central

    Landman, Bennett A.; Huang, Alan J.; Gifford, Aliya; Vikram, Deepti S.; Lim, Issel Anne L.; Farrell, Jonathan A.D.; Bogovic, John A.; Hua, Jun; Chen, Min; Jarso, Samson; Smith, Seth A.; Joel, Suresh; Mori, Susumu; Pekar, James J.; Barker, Peter B.; Prince, Jerry L.; van Zijl, Peter C.M.

    2010-01-01

    Modern MRI image processing methods have yielded quantitative, morphometric, functional, and structural assessments of the human brain. These analyses typically exploit carefully optimized protocols for specific imaging targets. Algorithm investigators have several excellent public data resources to use to test, develop, and optimize their methods. Recently, there has been an increasing focus on combining MRI protocols in multi-parametric studies. Notably, these have included innovative approaches for fusing connectivity inferences with functional and/or anatomical characterizations. Yet, validation of the reproducibility of these interesting and novel methods has been severely hampered by the limited availability of appropriate multi-parametric data. We present an imaging protocol optimized to include state-of-the-art assessment of brain function, structure, micro-architecture, and quantitative parameters within a clinically feasible 60 minute protocol on a 3T MRI scanner. We present scan-rescan reproducibility of these imaging contrasts based on 21 healthy volunteers (11 M/10 F, 22–61 y/o). The cortical gray matter, cortical white matter, ventricular cerebrospinal fluid, thalamus, putamen, caudate, cerebellar gray matter, cerebellar white matter, and brainstem were identified with mean volume-wise reproducibility of 3.5%. We tabulate the mean intensity, variability and reproducibility of each contrast in a region of interest approach, which is essential for prospective study planning and retrospective power analysis considerations. Anatomy was highly consistent on structural acquisition (~1–5% variability), while variation on diffusion and several other quantitative scans was higher (~<10%). Some sequences are particularly variable in specific structures (ASL exhibited variation of 28% in the cerebral white matter) or in thin structures (quantitative T2 varied by up to 73% in the caudate) due, in large part, to variability in automated ROI placement. The

  14. MINIPILOT SOLAR SYSTEM: DESIGN/OPERATION OF SYSTEM AND RESULTS OF NON-SOLAR TESTING AT MRI

    EPA Science Inventory

    Prior to this project, MRI had carried out work for the Environmental Protection Agency (EPA) on the conceptual design of a solar system for solid waste disposal and a follow-on project to study the feasibility of bench-scale testing of desorption of organics from soil with destr...

  15. SPECT data acquisition and image reconstruction in a stationary small animal SPECT/MRI system

    NASA Astrophysics Data System (ADS)

    Xu, Jingyan; Chen, Si; Yu, Jianhua; Meier, Dirk; Wagenaar, Douglas J.; Patt, Bradley E.; Tsui, Benjamin M. W.

    2010-04-01

    The goal of the study was to investigate data acquisition strategies and image reconstruction methods for a stationary SPECT insert that can operate inside an MRI scanner with a 12 cm bore diameter for simultaneous SPECT/MRI imaging of small animals. The SPECT insert consists of 3 octagonal rings of 8 MR-compatible CZT detectors per ring surrounding a multi-pinhole (MPH) collimator sleeve. Each pinhole is constructed to project the field-of-view (FOV) to one CZT detector. All 24 pinholes are focused to a cylindrical FOV of 25 mm in diameter and 34 mm in length. The data acquisition strategies we evaluated were optional collimator rotations to improve tomographic sampling; and the image reconstruction methods were iterative ML-EM with and without compensation for the geometric response function (GRF) of the MPH collimator. For this purpose, we developed an analytic simulator that calculates the system matrix with the GRF models of the MPH collimator. The simulator was used to generate projection data of a digital rod phantom with pinhole aperture sizes of 1 mm and 2 mm and with different collimator rotation patterns. Iterative ML-EM reconstruction with and without GRF compensation were used to reconstruct the projection data from the central ring of 8 detectors only, and from all 24 detectors. Our results indicated that without GRF compensation and at the default design of 24 projection views, the reconstructed images had significant artifacts. Accurate GRF compensation substantially improved the reconstructed image resolution and reduced image artifacts. With accurate GRF compensation, useful reconstructed images can be obtained using 24 projection views only. This last finding potentially enables dynamic SPECT (and/or MRI) studies in small animals, one of many possible application areas of the SPECT/MRI system. Further research efforts are warranted including experimentally measuring the system matrix for improved geometrical accuracy, incorporating the co

  16. MR/PET or PET/MRI: does it matter?

    PubMed

    Beyer, Thomas; Moser, Ewald

    2013-02-01

    After the very successful clinical introduction of combined PET/CT imaging a decade ago, a hardware combination of PET and MR is following suit. Today, three different approaches towards integrated PET/MR have been proposed: (1) a triple-modality system with a 3T MRI and a time-of-flight PET/CT installed in adjacent rooms, (2) a tandem system with a 3T MRI and a time-of-flight PET/CT in a co-planar installation with a joint patient handling system, and (3) a fully-integrated system with a whole-body PET system mounted inside a 3T MRI system. This special issue of MAGMA brings together contributions from key experts in the field of PET/MR, PET/CT and CT. The various papers share the author's perspectives on the state-of-the-art PET/MR imaging with any of the three approaches mentioned above. In addition to several reviews discussing advantages and challenges of combining PET and MRI for clinical diagnostics, first clinical data are also presented. We expect this special issue to nurture future improvements in hardware, clinical protocols, and efficient post-processing strategies to further assess the diagnostic value of combined PET/MR imaging. It remains to be seen whether a so-called "killer application" for PET/MRI will surface. In that case PET/MR is likely to excel in pre-clinical and selected research applications for now. This special issue helps the readers to stay on track of this exciting development. PMID:23385880

  17. The Holy Grail in diagnostic neuroradiology: 3T or 3D?

    PubMed Central

    Pouwels, Petra J. W.; Wattjes, Mike P.

    2010-01-01

    Many technical developments keep occurring in the field of MRI that could benefit image acquisition in the field of diagnostic neuroradiology. While there is much focus on the potential advantages of 3T and higher field strengths, it is often unclear whether these are cosmetic only, or convey clinically relevant diagnostic value. The increased signal-to-noise at 3T is certainly beneficial in different ways particularly for the acquisition of isotropic 3D sequences like FLAIR. Single-slab 3D sequences can now be obtained with multiple contrasts in clinically attainable data acquisition times and could revolutionize MRI to evolve into a fundamentally multi-planar technique, rather similar to what has happened with the introduction of multi-detector row CT. PMID:21181406

  18. Intra-coil interactions in split gradient coils in a hybrid MRI-LINAC system

    NASA Astrophysics Data System (ADS)

    Tang, Fangfang; Freschi, Fabio; Sanchez Lopez, Hector; Repetto, Maurizio; Liu, Feng; Crozier, Stuart

    2016-04-01

    An MRI-LINAC system combines a magnetic resonance imaging (MRI) system with a medical linear accelerator (LINAC) to provide image-guided radiotherapy for targeting tumors in real-time. In an MRI-LINAC system, a set of split gradient coils is employed to produce orthogonal gradient fields for spatial signal encoding. Owing to this unconventional gradient configuration, eddy currents induced by switching gradient coils on and off may be of particular concern. It is expected that strong intra-coil interactions in the set will be present due to the constrained return paths, leading to potential degradation of the gradient field linearity and image distortion. In this study, a series of gradient coils with different track widths have been designed and analyzed to investigate the electromagnetic interactions between coils in a split gradient set. A driving current, with frequencies from 100 Hz to 10 kHz, was applied to study the inductive coupling effects with respect to conductor geometry and operating frequency. It was found that the eddy currents induced in the un-energized coils (hereby-referred to as passive coils) positively correlated with track width and frequency. The magnetic field induced by the eddy currents in the passive coils with wide tracks was several times larger than that induced by eddy currents in the cold shield of cryostat. The power loss in the passive coils increased with the track width. Therefore, intra-coil interactions should be included in the coil design and analysis process.

  19. Intra-coil interactions in split gradient coils in a hybrid MRI-LINAC system.

    PubMed

    Tang, Fangfang; Freschi, Fabio; Sanchez Lopez, Hector; Repetto, Maurizio; Liu, Feng; Crozier, Stuart

    2016-04-01

    An MRI-LINAC system combines a magnetic resonance imaging (MRI) system with a medical linear accelerator (LINAC) to provide image-guided radiotherapy for targeting tumors in real-time. In an MRI-LINAC system, a set of split gradient coils is employed to produce orthogonal gradient fields for spatial signal encoding. Owing to this unconventional gradient configuration, eddy currents induced by switching gradient coils on and off may be of particular concern. It is expected that strong intra-coil interactions in the set will be present due to the constrained return paths, leading to potential degradation of the gradient field linearity and image distortion. In this study, a series of gradient coils with different track widths have been designed and analyzed to investigate the electromagnetic interactions between coils in a split gradient set. A driving current, with frequencies from 100Hz to 10kHz, was applied to study the inductive coupling effects with respect to conductor geometry and operating frequency. It was found that the eddy currents induced in the un-energized coils (hereby-referred to as passive coils) positively correlated with track width and frequency. The magnetic field induced by the eddy currents in the passive coils with wide tracks was several times larger than that induced by eddy currents in the cold shield of cryostat. The power loss in the passive coils increased with the track width. Therefore, intra-coil interactions should be included in the coil design and analysis process. PMID:26852418

  20. Functional MRI of the Olfactory System in Conscious Dogs

    PubMed Central

    Jia, Hao; Pustovyy, Oleg M.; Waggoner, Paul; Beyers, Ronald J.; Schumacher, John; Wildey, Chester; Barrett, Jay; Morrison, Edward; Salibi, Nouha; Denney, Thomas S.; Vodyanoy, Vitaly J.; Deshpande, Gopikrishna

    2014-01-01

    We depend upon the olfactory abilities of dogs for critical tasks such as detecting bombs, landmines, other hazardous chemicals and illicit substances. Hence, a mechanistic understanding of the olfactory system in dogs is of great scientific interest. Previous studies explored this aspect at the cellular and behavior levels; however, the cognitive-level neural substrates linking them have never been explored. This is critical given the fact that behavior is driven by filtered sensory representations in higher order cognitive areas rather than the raw odor maps of the olfactory bulb. Since sedated dogs cannot sniff, we investigated this using functional magnetic resonance imaging of conscious dogs. We addressed the technical challenges of head motion using a two pronged strategy of behavioral training to keep dogs' head as still as possible and a single camera optical head motion tracking system to account for residual jerky movements. We built a custom computer-controlled odorant delivery system which was synchronized with image acquisition, allowing the investigation of brain regions activated by odors. The olfactory bulb and piriform lobes were commonly activated in both awake and anesthetized dogs, while the frontal cortex was activated mainly in conscious dogs. Comparison of responses to low and high odor intensity showed differences in either the strength or spatial extent of activation in the olfactory bulb, piriform lobes, cerebellum, and frontal cortex. Our results demonstrate the viability of the proposed method for functional imaging of the olfactory system in conscious dogs. This could potentially open up a new field of research in detector dog technology. PMID:24466054

  1. Mechanisms and prevention of thermal injury from gamma radiosurgery headframes during 3T MR imaging.

    PubMed

    Bennett, Marcus C; Wiant, David B; Gersh, Jacob A; Dolesh, Wendy; Ding, X; Best, Ryan C M; Bourland, J D

    2012-01-01

    Magnetic resonance imaging (MRI) is regularly used for stereotactic imaging of Gamma Knife (GK) radiosurgery patients for GK treatment planning. MRI-induced thermal injuries have occurred and been reported for GK patients with attached metallic headframes. Depending on the specific MR imaging and headframe conditions, a skin injury from MRI-induced heating can potentially occur where the four headframe screws contact the skin surface of the patient's head. Higher MR field strength has a greater heating potential. Two primary heating mechanisms, electromagnetic induction and the antenna effect, are possible. In this study, MRI-induced heating from a 3T clinical MRI scanner was investigated for stereotactic headframes used in gamma radiosurgery and neurosurgery. Using melons as head phantoms, optical thermometers were used to characterize the temperature profile at various points of the melon headframe composite as a function of two 3T MR pulse sequence protocols. Different combinations of GK radiosurgery headframe post and screw designs were tested to determine best and worst combinations for MRI-induced heating. Temperature increases were measured for all pulse sequences tested, indicating that the potential exists for MRI-induced skin heating and burns at the headframe attachment site. This heating originates with electromagnetic induction caused by the RF fields inducing current in a loop formed by the headframe, mounting screws, and the region of the patient's head located between any of the two screws. This induced current is then resistively dissipated, with the regions of highest resistance, located at the headframe screw-patient head interface, experiencing the most heating. Significant heating can be prevented by replacing the metallic threads holding the screw with electrically insulated nuts, which is the heating prevention and patient safety recommendation of the GK manufacturer. Our results confirm that the manufacturer's recommendation to use

  2. Investigation of Magnetic Interference Induced via Gradient Field Coils for Ultra-Low-Field MRI Systems

    NASA Astrophysics Data System (ADS)

    Oyama, D.; Hatta, J.; Miyamoto, M.; Adachi, Y.; Higuchi, M.; Kawai, J.; Fujihira, J.; Tsuyuguchi, N.; Uehara, G.

    2014-05-01

    We are developing a compact ultra-low-field MRI system that is composed of a SQUID gradiometer and a coil set that generates magnetic fields for capturing MR images. The magnetic interference induced from a power amplifier potentially disturbs MRI measurements. We investigated the path of the interference by experimental measurements and calculation of the magnetic field generated by the coil set. We found that the magnetic field generated from a particular gradient coil affected the SQUID gradiometer and that the level of the interference was strongly dependent on the shape of the gradient coils. When the coils' shapes are designed, minimizing the noise introduced from the power amplifier is crucial, in addition to consideration of the homogeneities of the magnetic field.

  3. Towards motion insensitive EEG-fMRI: Correcting motion-induced voltages and gradient artefact instability in EEG using an fMRI prospective motion correction (PMC) system.

    PubMed

    Maziero, Danilo; Velasco, Tonicarlo R; Hunt, Nigel; Payne, Edwin; Lemieux, Louis; Salmon, Carlos E G; Carmichael, David W

    2016-09-01

    The simultaneous acquisition of electroencephalography and functional magnetic resonance imaging (EEG-fMRI) is a multimodal technique extensively applied for mapping the human brain. However, the quality of EEG data obtained within the MRI environment is strongly affected by subject motion due to the induction of voltages in addition to artefacts caused by the scanning gradients and the heartbeat. This has limited its application in populations such as paediatric patients or to study epileptic seizure onset. Recent work has used a Moiré-phase grating and a MR-compatible camera to prospectively update image acquisition and improve fMRI quality (prospective motion correction: PMC). In this study, we use this technology to retrospectively reduce the spurious voltages induced by motion in the EEG data acquired inside the MRI scanner, with and without fMRI acquisitions. This was achieved by modelling induced voltages from the tracking system motion parameters; position and angles, their first derivative (velocities) and the velocity squared. This model was used to remove the voltages related to the detected motion via a linear regression. Since EEG quality during fMRI relies on a temporally stable gradient artefact (GA) template (calculated from averaging EEG epochs matched to scan volume or slice acquisition), this was evaluated in sessions both with and without motion contamination, and with and without PMC. We demonstrate that our approach is capable of significantly reducing motion-related artefact with a magnitude of up to 10mm of translation, 6° of rotation and velocities of 50mm/s, while preserving physiological information. We also demonstrate that the EEG-GA variance is not increased by the gradient direction changes associated with PMC. Provided a scan slice-based GA template is used (rather than a scan volume GA template) we demonstrate that EEG variance during motion can be supressed towards levels found when subjects are still. In summary, we show that

  4. MRI in central nervous system infections: A simplified patterned approach.

    PubMed

    Rangarajan, Krithika; Das, Chandan J; Kumar, Atin; Gupta, Arun Kumar

    2014-09-28

    Recognition and characterization of central nervous system infections poses a formidable challenge to the neuro-radiologist. Imaging plays a vital role, the lesions typically being relatively inaccessible to tisue sampling. The results of an accurate diagnosis are endlessly rewarding, given the availability of excellent pharmacological regimen. The availability of numerous magnetic resonance (MR) sequences which provide functional and molecular information is a powerful tool in the hands of the radiologist. However, the plethora of sequences and the possibilities on each sequence is also intimidating, and often confusing as well as time consuming. While a large number of reviews have already described in detail the possible imaging findings in each infection, we intend to classify infections based on their imaging characteristics. In this review we describe an algorithm for first classifying the imaging findings into patterns based on basic MR sequences (T1, T2 and enhancement pattern with Gadolinium), and then sub-classify them based on more advanced molecular and functional sequences (Diffusion, Perfusion, Susceptibility imaging, MR Spectroscopy). This patterned approach is intended as a guide to radiologists in-training and in-practice for quickly narrowing their list of differentials when faced with a clinical challenge. The entire content of the article has also been summarised in the form of flow-charts for the purpose of quick reference. PMID:25276314

  5. Deltoid Ligament and Tibiofibular Syndesmosis Injury in Chronic Lateral Ankle Instability: Magnetic Resonance Imaging Evaluation at 3T and Comparison with Arthroscopy

    PubMed Central

    Chun, Ka-Young; Lee, Seok Hoon; Kim, Jin Su; Young, Ki Won; Jeong, Min-Sun; Kim, Dae-Jung

    2015-01-01

    Objective To evaluate the prevalence of deltoid ligament and distal tibiofibular syndesmosis injury on 3T magnetic resonance imaging (MRI) in patients with chronic lateral ankle instability (CLAI). Materials and Methods Fifty patients (mean age, 35 years) who had undergone preoperative 3T MRI and surgical treatment for CLAI were enrolled. The prevalence of deltoid ligament and syndesmosis injury were assessed. The complexity of lateral collateral ligament complex (LCLC) injury was correlated with prevalence of deltoid or syndesmosis injuries. The diagnostic accuracy of ankle ligament imaging at 3T MRI was analyzed using arthroscopy as a reference standard. Results On MRI, deltoid ligament injury was identified in 18 (36%) patients as follows: superficial ligament alone, 9 (50%); deep ligament alone 2 (11%); and both ligaments 7 (39%). Syndesmosis abnormality was found in 21 (42%) patients as follows: anterior inferior tibiofibular ligament (AITFL) alone, 19 (90%); and AITFL and interosseous ligament, 2 (10%). There was no correlation between LCLC injury complexity and the prevalence of an accompanying deltoid or syndesmosis injury on both MRI and arthroscopic findings. MRI sensitivity and specificity for detection of deltoid ligament injury were 84% and 93.5%, and those for detection of syndesmosis injury were 91% and 100%, respectively. Conclusion Deltoid ligament or syndesmosis injuries were common in patients undergoing surgery for CLAI, regardless of the LCLC injury complexity. 3T MRI is helpful for the detection of all types of ankle ligament injury. Therefore, careful interpretation of pre-operative MRI is essential. PMID:26356649

  6. A recently developed MRI scoring system for hand osteoarthritis: its application in a clinical setting.

    PubMed

    Ramonda, Roberta; Favero, Marta; Vio, Stefania; Lacognata, Carmelo; Frallonardo, Paola; Belluzzi, Elisa; Campana, Carla; Lorenzin, Mariagrazia; Ortolan, Augusta; Angelini, Federico; Piccoli, Antonio; Oliviero, Francesca; Punzi, Leonardo

    2016-08-01

    This study aimed to apply the recently proposed Oslo hand osteoarthritis magnetic resonance imaging (MRI) scoring system to evaluate MRI findings in a cohort of patients affected by long-standing erosive hand osteoarthritis (EHOA). Eleven female EHOA patients (median 59 [interquartile range 62-52] years, disease duration 9.5 [interquartile range 13-3.75] years) underwent MRI (1.5 T) of the dominant hand, and synovitis, bone marrow lesions (BMLs), joint space narrowing, osteophytes, cysts, malalignment, and erosions were scored using the Oslo scoring system. Intra- and inter-reader reliability were assessed. The patients also underwent X-ray examination, and bone features were evaluated using the same scoring system. Pain and tenderness were assessed during a physical examination. Spearman's non-parametric test was used to analyze the correlations between variables. MRI intra- and inter-reader reliability were found between good and moderate for many features. No statistical differences were found between the radiographs and MRI with regard to detection of JSN, malalignment, and bone erosions. Synovitis was detected in 39.8 % of the 80 joints examined (in a mild form in 80 %), erosions were found in 51.1 %, and BMLs were identified in 20.5 and 23.9 % at the distal and the proximal side, respectively. BMLs at both the proximal and distal ends were correlated with tender joints (BML distal p = 0.0013, BML proximal p = 0.012). The presence of synovitis was correlated with tenderness (p = 0.004) and erosions at both the distal and proximal joints (p = 0.004). The presence of erosions correlated with tender joints (p < 0.01) and the mean visual analog scale (VAS) score (distal p = 0.03, proximal p = 0.01). Synovitis and BMLs were correlated with clinical symptoms in our patients affected with long-standing EHOA. PMID:27236512

  7. Electron contamination modeling and reduction in a 1 T open bore inline MRI-linac system

    SciTech Connect

    Oborn, B. M.; Kolling, S.; Metcalfe, P. E.; Crozier, S.; Litzenberg, D. W.; Keall, P. J.

    2014-05-15

    Purpose: A potential side effect of inline MRI-linac systems is electron contamination focusing causing a high skin dose. In this work, the authors reexamine this prediction for an open bore 1 T MRI system being constructed for the Australian MRI-Linac Program. The efficiency of an electron contamination deflector (ECD) in purging electron contamination from the linac head is modeled, as well as the impact of a helium gas region between the deflector and phantom surface for lowering the amount of air-generated contamination. Methods: Magnetic modeling of the 1 T MRI was used to generate 3D magnetic field maps both with and without the presence of an ECD located immediately below the MLC’s. Forty-seven different ECD designs were modeled and for each the magnetic field map was imported into Geant4 Monte Carlo simulations including the linac head, ECD, and a 30 × 30 × 30 cm{sup 3} water phantom located at isocenter. For the first generation system, the x-ray source to isocenter distance (SID) will be 160 cm, resulting in an 81.2 cm long air gap from the base of the ECD to the phantom surface. The first 71.2 cm was modeled as air or helium gas, with the latter encased between two windows of 50 μm thick high density polyethlyene. 2D skin doses (at 70 μm depth) were calculated across the phantom surface at 1 × 1 mm{sup 2} resolution for 6 MV beams of field size of 5 × 5, 10 × 10, and 20 × 20 cm{sup 2}. Results: The skin dose was predicted to be of similar magnitude as the generic systems modeled in previous work, 230% to 1400% ofD {sub max} for 5 × 5 to 20 × 20 cm{sup 2}, respectively. Inclusion of the ECD introduced a nonuniformity to the MRI imaging field that ranged from ∼20 to ∼140 ppm while the net force acting on the ECD ranged from ∼151 N to ∼1773 N. Various ECD designs were 100% efficient at purging the electron contamination into the ECD magnet banks; however, a small percentage were scattered back into the beam and continued to the phantom

  8. EEG-fMRI Based Information Theoretic Characterization of the Human Perceptual Decision System

    PubMed Central

    Ostwald, Dirk; Porcaro, Camillo; Mayhew, Stephen D.; Bagshaw, Andrew P.

    2012-01-01

    The modern metaphor of the brain is that of a dynamic information processing device. In the current study we investigate how a core cognitive network of the human brain, the perceptual decision system, can be characterized regarding its spatiotemporal representation of task-relevant information. We capitalize on a recently developed information theoretic framework for the analysis of simultaneously acquired electroencephalography (EEG) and functional magnetic resonance imaging data (fMRI) (Ostwald et al. (2010), NeuroImage 49: 498–516). We show how this framework naturally extends from previous validations in the sensory to the cognitive domain and how it enables the economic description of neural spatiotemporal information encoding. Specifically, based on simultaneous EEG-fMRI data features from n = 13 observers performing a visual perceptual decision task, we demonstrate how the information theoretic framework is able to reproduce earlier findings on the neurobiological underpinnings of perceptual decisions from the response signal features' marginal distributions. Furthermore, using the joint EEG-fMRI feature distribution, we provide novel evidence for a highly distributed and dynamic encoding of task-relevant information in the human brain. PMID:22485152

  9. Posture-Dependent Human 3He Lung Imaging in an Open Access MRI System: Initial Results

    PubMed Central

    Tsai, L. L.; Mair, R. W.; Li, C.-H.; Rosen, M. S.; Patz, S.; Walsworth, R. L.

    2008-01-01

    Rationale and Objectives The human lung and its functions are extremely sensitive to orientation and posture, and debate continues as to the role of gravity and the surrounding anatomy in determining lung function and heterogeneity of perfusion and ventilation. However, study of these effects is difficult. The conventional high-field magnets used for most hyperpolarized 3He MRI of the human lung, and most other common radiological imaging modalities including PET and CT, restrict subjects to lying horizontally, minimizing most gravitational effects. Materials and Methods In this paper, we briefly review the motivation for posture-dependent studies of human lung function, and present initial imaging results of human lungs in the supine and vertical body orientations using inhaled hyperpolarized 3He gas and an open-access MRI instrument. The open geometry of this MRI system features a “walk-in” capability that permits subjects to be imaged in vertical and horizontal positions, and potentially allows for complete rotation of the orientation of the imaging subject in a two-dimensional plane. Results Initial results include two-dimensional lung images acquired with ~ 4 × 8 mm in-plane resolution and three-dimensional images with ~ 2 cm slice thickness. Conclusion Effects of posture variation are observed, including posture-related effects of the diaphragm and distension of the lungs while vertical. PMID:18486009

  10. Effective Connectivity Modeling for fMRI: Six Issues and Possible Solutions Using Linear Dynamic Systems

    PubMed Central

    Smith, Jason F.; Pillai, Ajay; Chen, Kewei; Horwitz, Barry

    2012-01-01

    Analysis of directionally specific or causal interactions between regions in functional magnetic resonance imaging (fMRI) data has proliferated. Here we identify six issues with existing effective connectivity methods that need to be addressed. The issues are discussed within the framework of linear dynamic systems for fMRI (LDSf). The first concerns the use of deterministic models to identify inter-regional effective connectivity. We show that deterministic dynamics are incapable of identifying the trial-to-trial variability typically investigated as the marker of connectivity while stochastic models can capture this variability. The second concerns the simplistic (constant) connectivity modeled by most methods. Connectivity parameters of the LDSf model can vary at the same timescale as the input data. Further, extending LDSf to mixtures of multiple models provides more robust connectivity variation. The third concerns the correct identification of the network itself including the number and anatomical origin of the network nodes. Augmentation of the LDSf state space can identify additional nodes of a network. The fourth concerns the locus of the signal used as a “node” in a network. A novel extension LDSf incorporating sparse canonical correlations can select most relevant voxels from an anatomically defined region based on connectivity. The fifth concerns connection interpretation. Individual parameter differences have received most attention. We present alternative network descriptors of connectivity changes which consider the whole network. The sixth concerns the temporal resolution of fMRI data relative to the timescale of the inter-regional interactions in the brain. LDSf includes an “instantaneous” connection term to capture connectivity occurring at timescales faster than the data resolution. The LDS framework can also be extended to statistically combine fMRI and EEG data. The LDSf framework is a promising foundation for effective connectivity

  11. Multiple system atrophy: natural history, MRI morphology, and dopamine receptor imaging with 123IBZM-SPECT.

    PubMed Central

    Schulz, J B; Klockgether, T; Petersen, D; Jauch, M; Müller-Schauenburg, W; Spieker, S; Voigt, K; Dichgans, J

    1994-01-01

    Sixteen patients with a clinical diagnosis of probable multiple system atrophy (MSA) were examined clinically by MRI and by 123I-iodobenzamide single photon emission computed tomography (IBZM-SPECT). The clinical records of another 16 patients were also analysed retrospectively. On the basis of their clinical presentation, patients were subdivided into those with prominent parkinsonism (MSA-P, n = 11) and those with prominent cerebellar ataxia (MSA-C, n = 21). Autonomic symptoms were present in all patients and preceded the onset of motor symptoms in 63% of patients. Calculated median lifetime and the median time to become wheelchair bound after onset of disease were significantly shorter for MSA-P than for MSA-C (lifetime: 4.0 v 9.1 years; wheelchair: 3.1 vs 5.0 years) suggesting a better prognosis for cerebellar patients. A significant loss of striatal dopamine receptors (below 2 SD threshold) was detected by IBZM-SPECT in 63% of the patients (56% below 2.5 SD threshold). There was no difference between patients with MSA-C and those with MSA-P in the proportion with significant receptor loss and the extent of dopamine receptor loss. Planimetric MRI evaluation showed cerebellar and brainstem atrophy in both groups. Atrophy was more pronounced in patients with MSA-C than in those with MSA-P. Pontocerebellar hyperintensities and putaminal hypointensities on T2 weighted MRI were found in both groups. Pontocerebellar signal abnormalities were more pronounced in MSA-C than in MSA-P, whereas the rating scores for area but not for intensity of putaminal abnormalities were higher in MSA-P. MRI and IBZM-SPECT provide in vivo evidence for combined basal ganglia and pontocerebellar involvement in almost all patients in this series. Images PMID:8089667

  12. Multivariate dynamical systems models for estimating causal interactions in fMRI

    PubMed Central

    Ryali, Srikanth; Supekar, Kaustubh; Chen, Tianwen; Menon, Vinod

    2010-01-01

    Analysis of dynamical interactions between distributed brain areas is of fundamental importance for understanding cognitive information processing. However, estimating dynamic causal interactions between brain regions using functional magnetic resonance imaging (fMRI) poses several unique challenges. For one, fMRI measures Blood Oxygenation Level Dependent (BOLD) signals, rather than the underlying latent neuronal activity. Second, regional variations in the hemodynamic response function (HRF) can significantly influence estimation of casual interactions between them. Third, causal interactions between brain regions can change with experimental context over time. To overcome these problems, we developed a novel state-space Multivariate Dynamical Systems (MDS) model to estimate intrinsic and experimentally-induced modulatory causal interactions between multiple brain regions. A probabilistic graphical framework is then used to estimate the parameters of MDS as applied to fMRI data. We show that MDS accurately takes into account regional variations in the HRF and estimates dynamic causal interactions at the level of latent signals. We develop and compare two estimation procedures using maximum likelihood estimation (MLE) and variational Bayesian (VB) approaches for inferring model parameters. Using extensive computer simulations, we demonstrate that, compared to Granger causal analysis (GCA), MDS exhibits superior performance for a wide range of signal to noise ratios (SNRs), sample length and network size. Our simulations also suggest that GCA fails to uncover causal interactions when there is a conflict between the direction of intrinsic and modulatory influences. Furthermore, we show that MDS estimation using VB methods is more robust and performs significantly better at low SNRs and shorter time series than MDS with MLE. Our study suggests that VB estimation of MDS provides a robust method for estimating and interpreting causal network interactions in fMRI data

  13. Effective Connectivity Modeling for fMRI: Six Issues and Possible Solutions Using Linear Dynamic Systems.

    PubMed

    Smith, Jason F; Pillai, Ajay; Chen, Kewei; Horwitz, Barry

    2011-01-01

    Analysis of directionally specific or causal interactions between regions in functional magnetic resonance imaging (fMRI) data has proliferated. Here we identify six issues with existing effective connectivity methods that need to be addressed. The issues are discussed within the framework of linear dynamic systems for fMRI (LDSf). The first concerns the use of deterministic models to identify inter-regional effective connectivity. We show that deterministic dynamics are incapable of identifying the trial-to-trial variability typically investigated as the marker of connectivity while stochastic models can capture this variability. The second concerns the simplistic (constant) connectivity modeled by most methods. Connectivity parameters of the LDSf model can vary at the same timescale as the input data. Further, extending LDSf to mixtures of multiple models provides more robust connectivity variation. The third concerns the correct identification of the network itself including the number and anatomical origin of the network nodes. Augmentation of the LDSf state space can identify additional nodes of a network. The fourth concerns the locus of the signal used as a "node" in a network. A novel extension LDSf incorporating sparse canonical correlations can select most relevant voxels from an anatomically defined region based on connectivity. The fifth concerns connection interpretation. Individual parameter differences have received most attention. We present alternative network descriptors of connectivity changes which consider the whole network. The sixth concerns the temporal resolution of fMRI data relative to the timescale of the inter-regional interactions in the brain. LDSf includes an "instantaneous" connection term to capture connectivity occurring at timescales faster than the data resolution. The LDS framework can also be extended to statistically combine fMRI and EEG data. The LDSf framework is a promising foundation for effective connectivity analysis

  14. Development of Ultra-low Field SQUID-MRI System with an LC Resonator

    NASA Astrophysics Data System (ADS)

    Yamamoto, M.; Toyota, H.; Kawagoe, S.; Hatta, J.; Tanaka, S.

    We are developing an Ultra-Low Field (ULF) magnetic resonance imaging (MRI) system using high temperature superconductor (HTS)-rf-superconducting quantum interference device (SQUID) for food inspection. The advantage of the ULF MRI system is that non-magnetic contaminants, which are difficult to be detected by a magnetic sensor, can be detected and localized. The system uses HTS-SQUID with high sensitivity that is independent of frequency, because the signal frequency is reduced in ULF. However the detection area of HTS-SQUID is difficult to be increased. Therefore, we studied to increase the detection area using an LC resonator. The LC resonator is composed of a coil (22.9 mH, Φ40 mm inner diameter) and a capacitor (the setting resonance frequency of 1890 Hz). The signal is detected by a copper wound coil of the resonator, and transferred to HTS-SQUID that inductively coupled to the coil immersed in liquid nitrogen at 77 K. We combined the LC resonator with the ULF MRI system, and obtained the 2D-MR images. The signal detector, with the SQUID and the LC resonator, provided a 1.5 times larger detection area. The size of 2D-MR image was near the size of the actual sample. Then we obtained 2D-MR images by a filtered back projection (FBP) method and a 2D-fast fourier transform (FFT) method. In the 2D-FFT method, the pixel size of the image was smaller than that of image by FBP method. As a result, the quality of the 2D-MR image by 2D-FFT method has been improved. There results suggested that the system we are proposing is feasible.

  15. Single-unit recordings in the macaque face patch system reveal limitations of fMRI MVPA.

    PubMed

    Dubois, Julien; de Berker, Archy Otto; Tsao, Doris Ying

    2015-02-11

    Multivariate pattern analysis (MVPA) of fMRI data has become an important technique for cognitive neuroscientists in recent years; however, the relationship between fMRI MVPA and the underlying neural population activity remains unexamined. Here, we performed MVPA of fMRI data and single-unit data in the same species, the macaque monkey. Facial recognition in the macaque is subserved by a well characterized system of cortical patches, which provided the test bed for our comparison. We showed that neural population information about face viewpoint was readily accessible with fMRI MVPA from all face patches, in agreement with single-unit data. Information about face identity, although it was very strongly represented in the populations of units of the anterior face patches, could not be retrieved from the same data. The discrepancy was especially striking in patch AL, where neurons encode both the identity and viewpoint of human faces. From an analysis of the characteristics of the neural representations for viewpoint and identity, we conclude that fMRI MVPA cannot decode information contained in the weakly clustered neuronal responses responsible for coding the identity of human faces in the macaque brain. Although further studies are needed to elucidate the relationship between information decodable from fMRI multivoxel patterns versus single-unit populations for other variables in other brain regions, our result has important implications for the interpretation of negative findings in fMRI multivoxel pattern analyses. PMID:25673866

  16. Single-Unit Recordings in the Macaque Face Patch System Reveal Limitations of fMRI MVPA

    PubMed Central

    de Berker, Archy Otto; Tsao, Doris Ying

    2015-01-01

    Multivariate pattern analysis (MVPA) of fMRI data has become an important technique for cognitive neuroscientists in recent years; however, the relationship between fMRI MVPA and the underlying neural population activity remains unexamined. Here, we performed MVPA of fMRI data and single-unit data in the same species, the macaque monkey. Facial recognition in the macaque is subserved by a well characterized system of cortical patches, which provided the test bed for our comparison. We showed that neural population information about face viewpoint was readily accessible with fMRI MVPA from all face patches, in agreement with single-unit data. Information about face identity, although it was very strongly represented in the populations of units of the anterior face patches, could not be retrieved from the same data. The discrepancy was especially striking in patch AL, where neurons encode both the identity and viewpoint of human faces. From an analysis of the characteristics of the neural representations for viewpoint and identity, we conclude that fMRI MVPA cannot decode information contained in the weakly clustered neuronal responses responsible for coding the identity of human faces in the macaque brain. Although further studies are needed to elucidate the relationship between information decodable from fMRI multivoxel patterns versus single-unit populations for other variables in other brain regions, our result has important implications for the interpretation of negative findings in fMRI multivoxel pattern analyses. PMID:25673866

  17. Design and Fabrication of an MRI-Compatible, Autonomous Incubation System.

    PubMed

    Khalilzad-Sharghi, Vahid; Xu, Huihui

    2015-10-01

    Tissue engineers have long sought access to an autonomous, imaging-compatible tissue incubation system that, with minimum operator handling, can provide real-time visualization and quantification of cells, tissue constructs, and organs. This type of screening system, capable of operating noninvasively to validate tissue, can overcome current limitations like temperature shock, unsustainable cellular environments, sample contamination, and handling/stress. However, this type of system has been a major challenge, until now. Here, we describe the design, fabrication, and characterization of an innovative, autonomous incubation system that is compatible with a 9.4 T magnetic resonance imaging (MRI) scanner. Termed the e-incubator (patent pending; application number: 13/953,984), this microcontroller-based system is integrated into an MRI scanner and noninvasively screens cells and tissue cultures in an environment where temperature, pH, and media/gas handling are regulated. The 4-week study discussed herein details the continuous operation of the e-incubator for a tissue-engineered osteogenic construct, validated by LIVE/DEAD(®) cell assays and histology. The evolving MR quantitative parameters of the osteogenic construct were used as biomarkers for bone tissue engineering and to further validate the quality of the product noninvasively before harvesting. Importantly, the e-incubator reliably facilitates culturing cells and tissue constructs to create engineered tissues and/or investigate disease therapies. PMID:25749975

  18. Extraction of the human cerebral ventricular system from MRI: inclusion of anatomical knowledge and clinical perspective

    NASA Astrophysics Data System (ADS)

    Aziz, Aamer; Hu, Qingmao; Nowinski, Wieslaw L.

    2004-04-01

    The human cerebral ventricular system is a complex structure that is essential for the well being and changes in which reflect disease. It is clinically imperative that the ventricular system be studied in details. For this reason computer assisted algorithms are essential to be developed. We have developed a novel (patent pending) and robust anatomical knowledge-driven algorithm for automatic extraction of the cerebral ventricular system from MRI. The algorithm is not only unique in its image processing aspect but also incorporates knowledge of neuroanatomy, radiological properties, and variability of the ventricular system. The ventricular system is divided into six 3D regions based on the anatomy and its variability. Within each ventricular region a 2D region of interest (ROI) is defined and is then further subdivided into sub-regions. Various strict conditions that detect and prevent leakage into the extra-ventricular space are specified for each sub-region based on anatomical knowledge. Each ROI is processed to calculate its local statistics, local intensity ranges of cerebrospinal fluid and grey and white matters, set a seed point within the ROI, grow region directionally in 3D, check anti-leakage conditions and correct growing if leakage occurs and connects all unconnected regions grown by relaxing growing conditions. The algorithm was tested qualitatively and quantitatively on normal and pathological MRI cases and worked well. In this paper we discuss in more detail inclusion of anatomical knowledge in the algorithm and usefulness of our approach from clinical perspective.

  19. Automatic Brachytherapy Seed Placement Under MRI Guidance

    PubMed Central

    Patriciu, Alexandru; Petrisor, Doru; Muntener, Michael; Mazilu, Dumitru; Schär, Michael; Stoianovici, Dan

    2011-01-01

    The paper presents a robotic method of performing low dose rate prostate brachytherapy under magnetic resonance imaging (MRI) guidance. The design and operation of a fully automated MR compatible seed injector is presented. This is used with the MrBot robot for transperineal percutaneous prostate access. A new image-registration marker and algorithms are also presented. The system is integrated and tested with a 3T MRI scanner. Tests compare three different registration methods, assess the precision of performing automated seed deployment, and use the seeds to assess the accuracy of needle targeting under image guidance. Under the ideal conditions of the in vitro experiments, results show outstanding image-guided needle and seed placement accuracy. PMID:17694871

  20. A multichannel, real-time MRI RF power monitor for independent SAR determination

    PubMed Central

    El-Sharkawy, AbdEl-Monem M.; Qian, Di; Bottomley, Paul A.; Edelstein, William A.

    2012-01-01

    Purpose: Accurate measurements of the RF power delivered during clinical MRI are essential for safety and regulatory compliance, avoiding inappropriate restrictions on clinical MRI sequences, and for testing the MRI safety of peripheral and interventional devices at known RF exposure levels. The goal is to make independent RF power measurements to test the accuracy of scanner-reported specific absorption rate (SAR) over the extraordinary range of operating conditions routinely encountered in MRI. Methods: A six channel, high dynamic range, real-time power profiling system was designed and built for monitoring power delivery during MRI up to 440 MHz. The system was calibrated and used in two 3 T scanners to measure power applied to human subjects during MRI scans. The results were compared with the scanner-reported SAR. Results: The new power measurement system has highly linear performance over a 90 dB dynamic range and a wide range of MRI duty cycles. It has about 0.1 dB insertion loss that does not interfere with scanner operation. The measurements of whole-body SAR in volunteers showed that scanner-reported SAR was significantly overestimated by up to about 2.2 fold. Conclusions: The new power monitor system can accurately and independently measure RF power deposition over the wide range of conditions routinely encountered during MRI. Scanner-reported SAR values are not appropriate for setting exposure limits during device or pulse sequence testing. PMID:22559603

  1. A multichannel, real-time MRI RF power monitor for independent SAR determination

    SciTech Connect

    El-Sharkawy, AbdEl-Monem M.; Qian Di; Bottomley, Paul A.; Edelstein, William A.

    2012-05-15

    Purpose: Accurate measurements of the RF power delivered during clinical MRI are essential for safety and regulatory compliance, avoiding inappropriate restrictions on clinical MRI sequences, and for testing the MRI safety of peripheral and interventional devices at known RF exposure levels. The goal is to make independent RF power measurements to test the accuracy of scanner-reported specific absorption rate (SAR) over the extraordinary range of operating conditions routinely encountered in MRI. Methods: A six channel, high dynamic range, real-time power profiling system was designed and built for monitoring power delivery during MRI up to 440 MHz. The system was calibrated and used in two 3 T scanners to measure power applied to human subjects during MRI scans. The results were compared with the scanner-reported SAR. Results: The new power measurement system has highly linear performance over a 90 dB dynamic range and a wide range of MRI duty cycles. It has about 0.1 dB insertion loss that does not interfere with scanner operation. The measurements of whole-body SAR in volunteers showed that scanner-reported SAR was significantly overestimated by up to about 2.2 fold. Conclusions: The new power monitor system can accurately and independently measure RF power deposition over the wide range of conditions routinely encountered during MRI. Scanner-reported SAR values are not appropriate for setting exposure limits during device or pulse sequence testing.

  2. Malformations of cortical development: 3T magnetic resonance imaging features

    PubMed Central

    Battal, Bilal; Ince, Selami; Akgun, Veysel; Kocaoglu, Murat; Ozcan, Emrah; Tasar, Mustafa

    2015-01-01

    Malformation of cortical development (MCD) is a term representing an inhomogeneous group of central nervous system abnormalities, referring particularly to embriyological aspect as a consequence of any of the three developmental stages, i.e., cell proliferation, cell migration and cortical organization. These include cotical dysgenesis, microcephaly, polymicrogyria, schizencephaly, lissencephaly, hemimegalencephaly, heterotopia and focal cortical dysplasia. Since magnetic resonance imaging is the modality of choice that best identifies the structural anomalies of the brain cortex, we aimed to provide a mini review of MCD by using 3T magnetic resonance scanner images. PMID:26516429

  3. Focal Cortical Lesion Detection in Multiple Sclerosis: 3T DIR versus 7T FLASH-T2*

    PubMed Central

    Nielsen, A. Scott; Kinkel, R. Philip; Tinelli, Emanuele; Benner, Thomas; Cohen-Adad, Julien; Mainero, Caterina

    2014-01-01

    Purpose To evaluate the inter-rater agreement of cortical lesion detection using 7T FLASH-T2* and 3T DIR sequences. Materials and Methods Twenty-six patients with multiple sclerosis were scanned on a human 7T (Sidemen’s) and 3T MRI (TIM Trio, Sidemen’s) to acquire 3T DIR/MEMPR and 7T FLASH-T2* sequences. Four independent reviewers scored and categorized cortical lesions in the bilateral pre-central gyri (motor strips) as leukocortical, intracortical, or subpial. Inter-rater agreement was assessed according to lesion category using the kappa statistic. The sensitivity of recent MAGNIMS consensus guidelines for cortical lesion detection using 3T DIR was assessed with 7T FLASH-T2* as the reference gold standard. Results Inter-rater agreement at 7T was excellent compared to 3T (k=0.97 vs. 0.12). FLASH-T2* at 7T detected subpial lesions while 3T DIR did not. The predicted sensitivity of 3T DIR sequence for cortical lesions in vivo is modest (range of 13.6 to 18.3%). Conclusion 7T FLASH-T2* detects more cortical—particularly subpial—lesions compared to 3T DIR. In the absence of DIR/post-mortem data, 7T FLASH-T2* is a suitable gold-standard instrument and should be incorporated into future consensus guidelines. PMID:22045554

  4. Systemic inflammation alters central 5-HT function as determined by pharmacological MRI.

    PubMed

    Couch, Yvonne; Martin, Chris J; Howarth, Clare; Raley, Josie; Khrapitchev, Alexandre A; Stratford, Michael; Sharp, Trevor; Sibson, Nicola R; Anthony, Daniel C

    2013-07-15

    Considerable evidence indicates a link between systemic inflammation and central 5-HT function. This study used pharmacological magnetic resonance imaging (phMRI) to study the effects of systemic inflammatory events on central 5-HT function. Changes in blood oxygenation level dependent (BOLD) contrast were detected in selected brain regions of anaesthetised rats in response to intravenous administration of the 5-HT-releasing agent, fenfluramine (10 mg/kg). Further groups of rats were pre-treated with the bacterial lipopolysaccharide (LPS; 0.5 mg/kg), to induce systemic inflammation, or the selective 5-HT2A receptor antagonist MDL100907 prior to fenfluramine. The resultant phMRI data were investigated further through measurements of cortical 5-HT release (microdialysis), and vascular responsivity, as well as a more thorough investigation of the role of the 5-HT2A receptor in sickness behaviour. Fenfluramine evoked a positive BOLD response in the motor cortex (+15.9±2%) and a negative BOLD response in the dorsal raphe nucleus (-9.9±4.2%) and nucleus accumbens (-7.7±5.3%). In all regions, BOLD responses to fenfluramine were significantly attenuated by pre-treatment with LPS (p<0.0001), but neurovascular coupling remained intact, and fenfluramine-evoked 5-HT release was not affected. However, increased expression of the 5-HT2A receptor mRNA and decreased 5-HT2A-dependent behaviour (wet-dog shakes) was a feature of the LPS treatment and may underpin the altered phMRI signal. MDL100907 (0.5 mg/kg), 5-HT2A antagonist, significantly reduced the BOLD responses to fenfluramine in all three regions (p<0.0001) in a similar manner to LPS. Together these results suggest that systemic inflammation decreases brain 5-HT activity as assessed by phMRI. However, these effects do not appear to be mediated by changes in 5-HT release, but are associated with changes in 5-HT2A-receptor-mediated downstream signalling pathways. PMID:23473937

  5. A practical MRI grading system for cervical foraminal stenosis based on oblique sagittal images

    PubMed Central

    Park, H-J; Kim, S S; Lee, S-Y; Chung, E-C; Rho, M-H; Kwon, H-J; Kook, S-H

    2013-01-01

    Objective: To propose a new and practical MRI grading method for cervical neural foraminal stenosis and to evaluate its reproducibility. Methods: We evaluated 50 patients (37 males and 13 females, mean age 49 years) who visited our institution and underwent oblique sagittal MRI of the cervical spine. A total of 300 foramina and corresponding nerve roots in 50 patients were qualitatively analysed from C4–5 to C6–7. We assessed the grade of cervical foraminal stenosis at the maximal narrowing point according to the new grading system based on T2 weighted oblique sagittal images. The incidence of each of the neural foraminal stenosis grades according to the cervical level was analysed by χ2 tests. Intra- and interobserver agreements between two radiologists were analysed using kappa statistics. Kappa value interpretations were poor (κ<0.1), slight (0.1≤κ≤0.2), fair (0.2<κ≤0.4), moderate (0.4<κ≤0.6), substantial (0.6<κ≤0.8) and almost perfect (0.8<κ≤1.0). Results: Significant stenoses (Grades 2 and 3) were rarely found at the C4–5 level. The incidence of Grade 3 at the C5–6 level was higher than that at other levels, a difference that was statistically significant. The overall intra-observer agreement according to the cervical level was almost perfect. The agreement at each level was almost perfect, except for only substantial agreement at the right C6–7 by Reader 2. No statistically significant differences were seen according to the cervical level. Overall kappa values of interobserver agreement according to the cervical level were almost perfect. In addition, the agreement of each level was almost perfect. Overall intra- and interobserver agreement for the presence of foraminal stenosis (Grade 0 vs Grades 1, 2 and 3) and for significant stenosis (Grades 0 and 1 vs Grades 2 and 3) showed similar results and were almost perfect. However, only substantial agreement was seen in the right C6–7. Conclusion: A new grading system for cervical

  6. Systemic inflammation alters central 5-HT function as determined by pharmacological MRI

    PubMed Central

    Couch, Yvonne; Martin, Chris J.; Howarth, Clare; Raley, Josie; Khrapitchev, Alexandre A.; Stratford, Michael; Sharp, Trevor; Sibson, Nicola R.; Anthony, Daniel C.

    2013-01-01

    Considerable evidence indicates a link between systemic inflammation and central 5-HT function. This study used pharmacological magnetic resonance imaging (phMRI) to study the effects of systemic inflammatory events on central 5-HT function. Changes in blood oxygenation level dependent (BOLD) contrast were detected in selected brain regions of anaesthetised rats in response to intravenous administration of the 5-HT-releasing agent, fenfluramine (10 mg/kg). Further groups of rats were pre-treated with the bacterial lipopolysaccharide (LPS; 0.5 mg/kg), to induce systemic inflammation, or the selective 5-HT2A receptor antagonist MDL100907 prior to fenfluramine. The resultant phMRI data were investigated further through measurements of cortical 5-HT release (microdialysis), and vascular responsivity, as well as a more thorough investigation of the role of the 5-HT2A receptor in sickness behaviour. Fenfluramine evoked a positive BOLD response in the motor cortex (+ 15.9 ± 2%) and a negative BOLD response in the dorsal raphe nucleus (− 9.9 ± 4.2%) and nucleus accumbens (− 7.7 ± 5.3%). In all regions, BOLD responses to fenfluramine were significantly attenuated by pre-treatment with LPS (p < 0.0001), but neurovascular coupling remained intact, and fenfluramine-evoked 5-HT release was not affected. However, increased expression of the 5-HT2A receptor mRNA and decreased 5-HT2A-dependent behaviour (wet-dog shakes) was a feature of the LPS treatment and may underpin the altered phMRI signal. MDL100907 (0.5 mg/kg), 5-HT2A antagonist, significantly reduced the BOLD responses to fenfluramine in all three regions (p < 0.0001) in a similar manner to LPS. Together these results suggest that systemic inflammation decreases brain 5-HT activity as assessed by phMRI. However, these effects do not appear to be mediated by changes in 5-HT release, but are associated with changes in 5-HT2A-receptor-mediated downstream signalling pathways. PMID:23473937

  7. Use of Exotic Coordinate Systems in the Design of RF Resonators for High-Field MRI

    NASA Astrophysics Data System (ADS)

    Butterworth, Edward

    2008-10-01

    High field human MRI (11.7 Tesla is FDC approved for human research) renders standard RF coil design inadequate because the resonant wavelength in human soft tissue (about 8 cm at 500 MHz) is significantly smaller than the physical size of the human body. I propose optimizing the design of such RF coils using coordinate systems appropriate to human body parts, as has been done with ellipticalootnotetextCrozier et al, Concepts Magn Reson 1997; 9:195-210. and Cassinian ovalootnotetextDe Zanche et al, Magn Reson Med 2005; 53:201-211. cross sections. I have computed analytically the magnetic fields produced by a device of toroidal cross section using a cascade of conformal transformations.ootnotetextButterworth & Gore, J Magn Reson 2005; 175:114-123. Building upon these efforts, I will use the eleven coordinate systems of Moon & Spencer,ootnotetextMoon & Spencer, Field Theory Handbook, Berlin: Springer-Verlag; 1971. along with other possible coordinate systems and conformal transformations, to identify a small number of configurations that have the highest probability of being useful as RF coil designs for ultrahigh-field MRI.

  8. Force sensing system for automated assessment of motor performance during fMRI.

    PubMed

    Rogers, Bill; Zhang, Wei; Narayana, Shalini; Lancaster, Jack L; Robin, Donald A; Fox, Peter T

    2010-06-30

    Finger tapping sequences are a commonly used measure of motor learning in functional imaging studies. Subjects repeat a defined sequence of finger taps as fast as possible for a set period of time. The number of sequences completed per unit time is the measure of performance. Assessment of speed and accuracy is generally accomplished by video recording the session then replaying in slow motion to assess rate and accuracy. This is a time consuming and error prone process. Keyboards and instrumented gloves have also been used for task assessment though they are relatively expensive and not usually compatible in a magnetic resonance imaging (MRI) scanner. To address these problems, we developed a low cost system using MRI compatible force sensitive resistors (FSR) to assess the performance during a finger sequence task. This system additionally provides information on finger coordination including time between sequences, intervals between taps, and tap duration. The method was validated by comparing the FSR system results with results obtained by video analysis during the same session. PMID:20417235

  9. Travelling wave magnetic resonance imaging at 3 T

    NASA Astrophysics Data System (ADS)

    Vazquez, F.; Martin, R.; Marrufo, O.; Rodriguez, A. O.

    2013-08-01

    Waveguides have been successfully used to generate magnetic resonance images at 7 T with whole-body systems. The bore diameter limits the magnetic resonance signal transmitted because its specific cut-off frequency is greater than the majority of resonant frequencies in magnetic resonance imaging and spectroscopy. This restriction can be overcome by using a parallel-plate waveguide whose cut-off frequency is zero for the transverse electromagnetic modes and it can propagate any frequency. To study the potential benefits of travelling-wave excitation for whole-body imaging at 3 T, we compare numerical simulations of the principal mode propagation for a parallel-plate waveguide filled with a cylindrical phantom and two surface coils for all simulations at 1.5 T, 3 T, 4.7, 7 T, and 9.4 T. The principal mode shows very little variation of the field magnitude along the propagation direction at 3 T when compared to other higher resonant frequencies. Unlike the standard method for travelling-wave magnetic resonance imaging, a parallel-plate waveguide prototype was built and used together with a whole-body birdcage coil for signal transmission and a pair of circular coils for reception. Experimental B1 mapping was computed to investigate the feasibility of this approach and, the point spread function method was used to measure the imager performance. Human leg images were acquired to experimentally validate this approach. The numerical magnetic field and specific absorption rate of a simulated leg were computed and results are within the safety limits. The B1 mapping and point spread function results showed that it is possible to conduct travelling-wave imaging experiments with good imager performance. Human leg images were also obtained with the whole-body birdcage coil for comparison purposes. The simulated and in vivo travelling-wave results of the human leg correspond very well for the signal received. A similar image signal-to-noise ratio was observed for the

  10. Prototype positron emission tomography insert with electro-optical signal transmission for simultaneous operation with MRI

    NASA Astrophysics Data System (ADS)

    Olcott, Peter; Kim, Ealgoo; Hong, Keyjo; Lee, Brian J.; Grant, Alexander M.; Chang, Chen-Ming; Glover, Gary; Levin, Craig S.

    2015-05-01

    The simultaneous acquisition of PET and MRI data shows promise to provide powerful capabilities to study disease processes in human subjects, guide the development of novel treatments, and monitor therapy response and disease progression. A brain-size PET detector ring insert for an MRI system is being developed that, if successful, can be inserted into any existing MRI system to enable simultaneous PET and MRI images of the brain to be acquired without mutual interference. The PET insert uses electro-optical coupling to relay all the signals from the PET detectors out of the MRI system using analog modulated lasers coupled to fiber optics. Because the fibers use light instead of electrical signals, the PET detector can be electrically decoupled from the MRI making it partially transmissive to the RF field of the MRI. The SiPM devices and low power lasers were powered using non-magnetic MRI compatible batteries. Also, the number of laser-fiber channels in the system was reduced using techniques adapted from the field of compressed sensing. Using the fact that incoming PET data is sparse in time and space, electronic circuits implementing constant weight codes uniquely encode the detector signals in order to reduce the number of electro-optical readout channels by 8-fold. Two out of a total of sixteen electro-optical detector modules have been built and tested with the entire RF-shielded detector gantry for the PET ring insert. The two detectors have been tested outside and inside of a 3T MRI system to study mutual interference effects and simultaneous performance with MRI. Preliminary results show that the PET insert is feasible for high resolution simultaneous PET/MRI imaging for applications in the brain.

  11. Prototype positron emission tomography insert with electro-optical signal transmission for simultaneous operation with MRI.

    PubMed

    Olcott, Peter; Kim, Ealgoo; Hong, Keyjo; Lee, Brian J; Grant, Alexander M; Chang, Chen-Ming; Glover, Gary; Levin, Craig S

    2015-05-01

    The simultaneous acquisition of PET and MRI data shows promise to provide powerful capabilities to study disease processes in human subjects, guide the development of novel treatments, and monitor therapy response and disease progression. A brain-size PET detector ring insert for an MRI system is being developed that, if successful, can be inserted into any existing MRI system to enable simultaneous PET and MRI images of the brain to be acquired without mutual interference. The PET insert uses electro-optical coupling to relay all the signals from the PET detectors out of the MRI system using analog modulated lasers coupled to fiber optics. Because the fibers use light instead of electrical signals, the PET detector can be electrically decoupled from the MRI making it partially transmissive to the RF field of the MRI. The SiPM devices and low power lasers were powered using non-magnetic MRI compatible batteries. Also, the number of laser-fiber channels in the system was reduced using techniques adapted from the field of compressed sensing. Using the fact that incoming PET data is sparse in time and space, electronic circuits implementing constant weight codes uniquely encode the detector signals in order to reduce the number of electro-optical readout channels by 8-fold. Two out of a total of sixteen electro-optical detector modules have been built and tested with the entire RF-shielded detector gantry for the PET ring insert. The two detectors have been tested outside and inside of a 3T MRI system to study mutual interference effects and simultaneous performance with MRI. Preliminary results show that the PET insert is feasible for high resolution simultaneous PET/MRI imaging for applications in the brain. PMID:25856511

  12. MRI-based microrobotic system for the propulsion and navigation of ferromagnetic microcapsules.

    PubMed

    Belharet, Karim; Folio, David; Ferreira, Antoine

    2010-06-01

    This paper presents real-time MRI-based control of a ferromagnetic microcapsule for endovascular navigation. The concept was studied for future development of microdevices designed to perform minimally invasive interventions in remote sites accessible through the human cardiovascular system. A system software architecture is presented illustrating the different software modules to allow 3-D navigation of a microdevice in blood vessels, namely: (i) vessel path planner, (ii) magnetic gradient steering, (iii) tracking and (iv) closed-loop navigation control. First, the position recognition of the microrobot into the blood vessel is extracted using Frangi vesselness filtering from the pre-operation images (3-D MRI imaging). Then, a set of minimal trajectories is predefined, using path-planning algorithms, to guide the microrobot from the injection point to the tumor area through the anarchic vessel network. Based on the pre-computed path, a Generalized Predictive Controller (GPC) is proposed for robust time-multiplexed navigation along a two-dimensional (2D) path in presence of pulsative flow. PMID:20497068

  13. MRI dynamic range and its compatibility with signal transmission media

    NASA Astrophysics Data System (ADS)

    Gabr, Refaat E.; Schär, Michael; Edelstein, Arthur D.; Kraitchman, Dara L.; Bottomley, Paul A.; Edelstein, William A.

    2009-06-01

    As the number of MRI phased array coil elements grows, interactions among cables connecting them to the system receiver become increasingly problematic. Fiber optic or wireless links would reduce electromagnetic interference, but their dynamic range (DR) is generally less than that of coaxial cables. Raw MRI signals, however, have a large DR because of the high signal amplitude near the center of k-space. Here, we study DR in MRI in order to determine the compatibility of MRI multicoil imaging with non-coaxial cable signal transmission. Since raw signal data are routinely discarded, we have developed an improved method for estimating the DR of MRI signals from conventional magnitude images. Our results indicate that the DR of typical surface coil signals at 3 T for human subjects is less than 88 dB, even for three-dimensional acquisition protocols. Cardiac and spine coil arrays had a maximum DR of less than 75 dB and head coil arrays less than 88 dB. The DR derived from magnitude images is in good agreement with that measured from raw data. The results suggest that current analog fiber optic links, with a spurious-free DR of 60-70 dB at 500 kHz bandwidth, are not by themselves adequate for transmitting MRI data from volume or array coils with DR ˜90 dB. However, combining analog links with signal compression might make non-coaxial cable signal transmission viable.

  14. MRI-Compatible Pneumatic Robot for Transperineal Prostate Needle Placement.

    PubMed

    Fischer, Gregory S; Iordachita, Iulian; Csoma, Csaba; Tokuda, Junichi; Dimaio, Simon P; Tempany, Clare M; Hata, Nobuhiko; Fichtinger, Gabor

    2008-06-01

    Magnetic resonance imaging (MRI) can provide high-quality 3-D visualization of prostate and surrounding tissue, thus granting potential to be a superior medical imaging modality for guiding and monitoring prostatic interventions. However, the benefits cannot be readily harnessed for interventional procedures due to difficulties that surround the use of high-field (1.5T or greater) MRI. The inability to use conventional mechatronics and the confined physical space makes it extremely challenging to access the patient. We have designed a robotic assistant system that overcomes these difficulties and promises safe and reliable intraprostatic needle placement inside closed high-field MRI scanners. MRI compatibility of the robot has been evaluated under 3T MRI using standard prostate imaging sequences and average SNR loss is limited to 5%. Needle alignment accuracy of the robot under servo pneumatic control is better than 0.94 mm rms per axis. The complete system workflow has been evaluated in phantom studies with accurate visualization and targeting of five out of five 1 cm targets. The paper explains the robot mechanism and controller design, the system integration, and presents results of preliminary evaluation of the system. PMID:21057608

  15. MRI-Compatible Pneumatic Robot for Transperineal Prostate Needle Placement

    PubMed Central

    Fischer, Gregory S.; Iordachita, Iulian; Csoma, Csaba; Tokuda, Junichi; DiMaio, Simon P.; Tempany, Clare M.; Hata, Nobuhiko; Fichtinger, Gabor

    2010-01-01

    Magnetic resonance imaging (MRI) can provide high-quality 3-D visualization of prostate and surrounding tissue, thus granting potential to be a superior medical imaging modality for guiding and monitoring prostatic interventions. However, the benefits cannot be readily harnessed for interventional procedures due to difficulties that surround the use of high-field (1.5T or greater) MRI. The inability to use conventional mechatronics and the confined physical space makes it extremely challenging to access the patient. We have designed a robotic assistant system that overcomes these difficulties and promises safe and reliable intraprostatic needle placement inside closed high-field MRI scanners. MRI compatibility of the robot has been evaluated under 3T MRI using standard prostate imaging sequences and average SNR loss is limited to 5%. Needle alignment accuracy of the robot under servo pneumatic control is better than 0.94 mm rms per axis. The complete system workflow has been evaluated in phantom studies with accurate visualization and targeting of five out of five 1 cm targets. The paper explains the robot mechanism and controller design, the system integration, and presents results of preliminary evaluation of the system. PMID:21057608

  16. The development of an MRI lesion quantifying system for multiple sclerosis patients undergoing treatment

    NASA Astrophysics Data System (ADS)

    Moin, Paymann; Ma, Kevin; Amezcua, Lilyana; Gertych, Arkadiusz; Liu, Brent

    2009-02-01

    Multiple sclerosis (MS) is a demyelinating disease of the central nervous system that affects approximately 2.5 million people worldwide. Magnetic resonance imaging (MRI) is an established tool for the assessment of disease activity, progression and response to treatment. The progression of the disease is variable and requires routine follow-up imaging studies. Currently, MRI quantification of multiple sclerosis requires a manual approach to lesion measurement and yields an estimate of lesion volume and interval change. In the setting of several prior studies and a long treatment history, trends related to treatment change quickly become difficult to extrapolate. Our efforts seek to develop an imaging informatics based MS lesion computer aided detection (CAD) package to quantify and track MS lesions including lesion load, volume, and location. Together, with select clinical parameters, this data will be incorporated into an MS specific e- Folder to provide decision support to evaluate and assess treatment options for MS in a manner tailored specifically to an individual based on trends in MS presentation and progression.

  17. Mn Enhancement and Respiratory Gating for In Utero MRI of the Embryonic Mouse Central Nervous System

    PubMed Central

    Deans, Abby E.; Wadghiri, Youssef Zaim; Berrios-Otero, César A.; Turnbull, Daniel H.

    2009-01-01

    The mouse is the preferred model organism for genetic studies of mammalian brain development. MRI has potential for in utero studies of mouse brain development, but has been limited previously by challenges of maximizing image resolution and contrast while minimizing artifacts due to physiological motion. Manganese (Mn)-enhanced MRI (MEMRI) studies have demonstrated central nervous system (CNS) contrast enhancement in mice from the earliest postnatal stages. The purpose of this study was to expand MEMRI to in utero studies of the embryonic CNS in combination with respiratory gating to decrease motion artifacts. We investigated MEMRI-facilitated CNS segmentation and three-dimensional (3D) analysis in wild-type mouse embryos from midgestation, and explored effects of Mn on embryonic survival and image contrast. Motivated by observations that MEMRI provided an effective method for visualization and volumetric analysis of embryonic CNS structures, especially in ventral regions, we used MEMRI to examine Nkx2.1 mutant mice that were previously reported to have ventral forebrain defects. Quantitative MEMRI analysis of Nkx2.1 knockout mice demonstrated volumetric changes in septum (SE) and basal ganglia (BG), as well as alterations in hypothalamic structures. This method may provide an effective means for in utero analysis of CNS phenotypes in a variety of mouse mutants. PMID:18506798

  18. A CAD system for assessment of MRI findings to track the progression of multiple sclerosis

    NASA Astrophysics Data System (ADS)

    Wong, Alexis; Gertych, Arkadiusz; Zee, Chi-Shing; Guo, Bing; Liu, Brent J.

    2007-03-01

    Multiple sclerosis (MS) is a progressive neurological disease affecting myelin pathways. MRI has become the medical imaging study of choice both for the diagnosis and for the follow-up and monitoring of multiple sclerosis. The progression of the disease is variable, and requires routine follow-up to document disease exacerbation, improvement, or stability of the characteristic MS lesions or plaques. The difficulties with using MRI as a monitoring tool are the significant quantities of time needed by the radiologist to actually measure the size of the lesions, and the poor reproducibility of these manual measurements. A CAD system for automatic image analysis improves clinical efficiency and standardizes the lesion measurements. Multiple sclerosis is a disease well suited for automated analysis. The segmentation algorithm devised classifies normal and abnormal brain structures and measures the volume of multiple sclerosis lesions using fuzzy c-means clustering with incorporated spatial (sFCM) information. First, an intracranial structures mask in T1 image data is localized and then superimposed in FLAIR image data. Next, MS lesions are identified by sFCM and quantified within a predefined volume. The initial validation process confirms a satisfactory comparison of automatic segmentation to manual outline by a neuroradiologist and the results will be presented.

  19. Interventional CT and MRI: a challenge for safety and cost reduction in the health care system

    NASA Astrophysics Data System (ADS)

    Groenemeyer, Dietrich H.; Seibel, Rainer M.

    1995-10-01

    For increasing safety in guidance techniques of endoscopes and instruments, fast radiologic imaging should be integrated. Magnetic resonance imaging (MRI), computer tomography (CT) and electron beam tomography (EBT) scanners permit transparency of the operative field; CT and EBT can be combined with fluoroscopy and ultrasound units. MRI avoids x ray exposure, but entails the possibility for 3 D localization. Open access and keyhole imaging allows nearly real time guidance of instruments. Combining minimally invasive techniques using endoscopes and tomographic guidance these technologies improve surgical access and reduce complications. This offers a safe access into the body and leads to the new field of interventional and surgical tomography. Important cost reduction for health care systems is possible, especially in the outpatient treatment of common diseases like disk herniation, back and tumor pain, metastasis, or arteriosclerosis. For realizing a long term cost reduction effect, these techniques have to be integrated in a quality management combining prevention, modern diagnosis, minimal access techniques and, if necessary, hospital stay with maximal access treatments as well as rehabilitation and secondary/tertiary prevention.

  20. Development of a Comprehensive Osteochondral Allograft MRI Scoring System (OCAMRISS) With Histopathologic, Micro–Computed Tomography, and Biomechanical Validation

    PubMed Central

    Pallante-Kichura, Andrea L.; Bae, Won C.; Du, Jiang; Statum, Sheronda; Wolfson, Tanya; Gamst, Anthony C.; Cory, Esther; Amiel, David; Bugbee, William D.; Sah, Robert L.; Chung, Christine B.

    2014-01-01

    Objective: To describe and apply a semiquantitative MRI scoring system for multifeature analysis of cartilage defect repair in the knee by osteochondral allografts and to correlate this scoring system with histopathologic, micro–computed tomography (µCT), and biomechanical reference standards using a goat repair model. Design: Fourteen adult goats had 2 osteochondral allografts implanted into each knee: one in the medial femoral condyle and one in the lateral trochlea. At 12 months, goats were euthanized and MRI was performed. Two blinded radiologists independently rated 9 primary features for each graft, including cartilage signal, fill, edge integration, surface congruity, calcified cartilage integrity, subchondral bone plate congruity, subchondral bone marrow signal, osseous integration, and presence of cystic changes. Four ancillary features of the joint were also evaluated, including opposing cartilage, meniscal tears, synovitis, and fat-pad scarring. Comparison was made with histologic and µCT reference standards as well as biomechanical measures. Interobserver agreement and agreement with reference standards was assessed. Cohen’s κ, Spearman’s correlation, and Kruskal-Wallis tests were used as appropriate. Results: There was substantial agreement (κ > 0.6, P < 0.001) for each MRI feature and with comparison against reference standards, except for cartilage edge integration (κ = 0.6). There was a strong positive correlation between MRI and reference standard scores (ρ = 0.86, P < 0.01). Osteochondral allograft MRI scoring system was sensitive to differences in outcomes between the types of allografts. Conclusions: We have described a comprehensive MRI scoring system for osteochondral allografts and have validated this scoring system with histopathologic and µCT reference standards as well as biomechanical indentation testing. PMID:24489999

  1. An Automated and Intelligent Medical Decision Support System for Brain MRI Scans Classification.

    PubMed

    Siddiqui, Muhammad Faisal; Reza, Ahmed Wasif; Kanesan, Jeevan

    2015-01-01

    A wide interest has been observed in the medical health care applications that interpret neuroimaging scans by machine learning systems. This research proposes an intelligent, automatic, accurate, and robust classification technique to classify the human brain magnetic resonance image (MRI) as normal or abnormal, to cater down the human error during identifying the diseases in brain MRIs. In this study, fast discrete wavelet transform (DWT), principal component analysis (PCA), and least squares support vector machine (LS-SVM) are used as basic components. Firstly, fast DWT is employed to extract the salient features of brain MRI, followed by PCA, which reduces the dimensions of the features. These reduced feature vectors also shrink the memory storage consumption by 99.5%. At last, an advanced classification technique based on LS-SVM is applied to brain MR image classification using reduced features. For improving the efficiency, LS-SVM is used with non-linear radial basis function (RBF) kernel. The proposed algorithm intelligently determines the optimized values of the hyper-parameters of the RBF kernel and also applied k-fold stratified cross validation to enhance the generalization of the system. The method was tested by 340 patients' benchmark datasets of T1-weighted and T2-weighted scans. From the analysis of experimental results and performance comparisons, it is observed that the proposed medical decision support system outperformed all other modern classifiers and achieves 100% accuracy rate (specificity/sensitivity 100%/100%). Furthermore, in terms of computation time, the proposed technique is significantly faster than the recent well-known methods, and it improves the efficiency by 71%, 3%, and 4% on feature extraction stage, feature reduction stage, and classification stage, respectively. These results indicate that the proposed well-trained machine learning system has the potential to make accurate predictions about brain abnormalities from the

  2. An Automated and Intelligent Medical Decision Support System for Brain MRI Scans Classification

    PubMed Central

    Siddiqui, Muhammad Faisal; Reza, Ahmed Wasif; Kanesan, Jeevan

    2015-01-01

    A wide interest has been observed in the medical health care applications that interpret neuroimaging scans by machine learning systems. This research proposes an intelligent, automatic, accurate, and robust classification technique to classify the human brain magnetic resonance image (MRI) as normal or abnormal, to cater down the human error during identifying the diseases in brain MRIs. In this study, fast discrete wavelet transform (DWT), principal component analysis (PCA), and least squares support vector machine (LS-SVM) are used as basic components. Firstly, fast DWT is employed to extract the salient features of brain MRI, followed by PCA, which reduces the dimensions of the features. These reduced feature vectors also shrink the memory storage consumption by 99.5%. At last, an advanced classification technique based on LS-SVM is applied to brain MR image classification using reduced features. For improving the efficiency, LS-SVM is used with non-linear radial basis function (RBF) kernel. The proposed algorithm intelligently determines the optimized values of the hyper-parameters of the RBF kernel and also applied k-fold stratified cross validation to enhance the generalization of the system. The method was tested by 340 patients’ benchmark datasets of T1-weighted and T2-weighted scans. From the analysis of experimental results and performance comparisons, it is observed that the proposed medical decision support system outperformed all other modern classifiers and achieves 100% accuracy rate (specificity/sensitivity 100%/100%). Furthermore, in terms of computation time, the proposed technique is significantly faster than the recent well-known methods, and it improves the efficiency by 71%, 3%, and 4% on feature extraction stage, feature reduction stage, and classification stage, respectively. These results indicate that the proposed well-trained machine learning system has the potential to make accurate predictions about brain abnormalities from the

  3. On (2,3,t)-generations for the Conway group Co1

    NASA Astrophysics Data System (ADS)

    Ali, Faryad

    2013-09-01

    It is well known that all sporadic simple groups are (2,3,t)-generated, with the exception of M11, M22, M23 and McL. A group G is said to be (2,3,t)-generated if it can be generated by an involution x and an element y of order 3 such that o(xy) = t. In the present article, we investigate all (2,3,t)-generations for the Conway's first sporadic simple group Co1, where t is any odd divisor of |Co1|. Computations are carried out with the aid of computer algebra system GAP-Groups, Algorithms and Programming.

  4. Simultaneous fMRI-PET of the Opioidergic Pain System in Human Brain

    PubMed Central

    Wey, Hsiao-Ying; Catana, Ciprian; Hooker, Jacob M.; Dougherty, Darin D.; Knudsen, Gitte M.; Wang, Danny JJ.; Chonde, Daniel B; Rosen, Bruce R.; Gollub, Randy L.; Kong, Jian

    2015-01-01

    MRI and PET provide complementary information for studying brain function. While the potential use of simultaneous MRI/PET for clinical diagnostic and disease staging has been demonstrated recently; the biological relevance of concurrent functional MRI-PET brain imaging to dissect neurochemically distinct components of the blood oxygenation level dependent (BOLD) fMRI signal has not yet been shown. We obtained sixteen fMRI-PET data sets from eight healthy volunteers. Each subject participated in randomized order in a pain scan and a control (nonpainful pressure) scan on the same day. Dynamic PET data were acquired with an opioid radioligand, [11C]Diprenorphine, to detect endogenous opioid releases in response to pain. BOLD fMRI data were collected at the same time to capture hemodynamic responses. In this simultaneous human fMRI-PET imaging study, we show co-localized responses in thalamus and striatum related to pain processing, while modality specific brain networks were also found. Co-localized fMRI and PET signal changes in the thalamus were positively correlated suggesting pain-induced changes in opioid neurotransmission contribute a significant component of the fMRI signal change in this region. Simultaneous fMRI-PET provides unique opportunities allowing us to relate specific neurochemical events to functional hemodynamic activation and to investigate the impacts of neurotransmission on neurovascular coupling of the human brain in vivo. PMID:25107855

  5. Combining optogenetic stimulation and fMRI to validate a multivariate dynamical systems model for estimating causal brain interactions

    PubMed Central

    Ryali, Srikanth; Ian Shih, Yen-Yu; Chen, Tianwen; Kochalka, John; Albaugh, Daniel; Fang, Zhongnan; Supekar, Kaustubh; Lee, Jin Hyung; Menon, Vinod

    2016-01-01

    State-space multivariate dynamical systems (MDS) (Ryali et al., 2011) and other causal estimation models are being increasingly used to identify directed functional interactions between brain regions. However, the validity and accuracy of such methods is poorly understood. Performance evaluation based on computer simulations of small artificial causal networks can address this problem to some extent, but they often involve simplifying assumptions that reduce biological validity of the resulting data. Here, we use a novel approach taking advantage of recently developed optogenetic fMRI (ofMRI) techniques to selectively stimulate brain regions while simultaneously recording high-resolution whole-brain fMRI data. ofMRI allows for a more direct investigation of causal influences from the stimulated site to brain regions activated downstream and is therefore ideal for evaluating causal estimation methods in vivo. We used ofMRI to investigate whether MDS models for fMRI can accurately estimate causal functional interactions between brain regions. Two cohorts of ofMRI data were acquired, one at Stanford University and the University of California Los Angeles (Cohort 1) and the other at the University of North Carolina Chapel Hill (Cohort 2). In each cohort optical stimulation was delivered to the right primary motor cortex (M1). General linear model analysis revealed prominent downstream thalamic activation in Cohort 1, and caudate-putamen (CPu) activation in Cohort 2. MDS accurately estimated causal interactions from M1 to thalamus and from M1 to CPu in Cohort 1 and Cohort 2, respectively. As predicted, no causal influences were found in the reverse direction. Additional control analyses demonstrated the specificity of causal interactions between stimulated and target sites. Our findings suggest that MDS state-space models can accurately and reliably estimate causal interactions in ofMRI data and further validate their use for estimating causal interactions in fMRI. More

  6. Combining optogenetic stimulation and fMRI to validate a multivariate dynamical systems model for estimating causal brain interactions.

    PubMed

    Ryali, Srikanth; Shih, Yen-Yu Ian; Chen, Tianwen; Kochalka, John; Albaugh, Daniel; Fang, Zhongnan; Supekar, Kaustubh; Lee, Jin Hyung; Menon, Vinod

    2016-05-15

    State-space multivariate dynamical systems (MDS) (Ryali et al. 2011) and other causal estimation models are being increasingly used to identify directed functional interactions between brain regions. However, the validity and accuracy of such methods are poorly understood. Performance evaluation based on computer simulations of small artificial causal networks can address this problem to some extent, but they often involve simplifying assumptions that reduce biological validity of the resulting data. Here, we use a novel approach taking advantage of recently developed optogenetic fMRI (ofMRI) techniques to selectively stimulate brain regions while simultaneously recording high-resolution whole-brain fMRI data. ofMRI allows for a more direct investigation of causal influences from the stimulated site to brain regions activated downstream and is therefore ideal for evaluating causal estimation methods in vivo. We used ofMRI to investigate whether MDS models for fMRI can accurately estimate causal functional interactions between brain regions. Two cohorts of ofMRI data were acquired, one at Stanford University and the University of California Los Angeles (Cohort 1) and the other at the University of North Carolina Chapel Hill (Cohort 2). In each cohort, optical stimulation was delivered to the right primary motor cortex (M1). General linear model analysis revealed prominent downstream thalamic activation in Cohort 1, and caudate-putamen (CPu) activation in Cohort 2. MDS accurately estimated causal interactions from M1 to thalamus and from M1 to CPu in Cohort 1 and Cohort 2, respectively. As predicted, no causal influences were found in the reverse direction. Additional control analyses demonstrated the specificity of causal interactions between stimulated and target sites. Our findings suggest that MDS state-space models can accurately and reliably estimate causal interactions in ofMRI data and further validate their use for estimating causal interactions in fMRI

  7. The Interconnection of MRI Scanner and MR-Compatible Robotic Device: Synergistic Graphical User Interface to Form a Mechatronic System.

    PubMed

    Ozcan, Alpay; Tsekos, Nikolaos

    2008-06-01

    MRI scanner and magnetic resonance (MR)-compatible robotic devices are mechatronic systems. Without an interconnecting component, these two devices cannot be operated synergetically for medical interventions. In this paper, the design and properties of a graphical user interface (GUI) that accomplishes the task is presented. The GUI interconnects the two devices to obtain a larger mechatronic system by providing command and control of the robotic device based on the visual information obtained from the MRI scanner. Ideally, the GUI should also control imaging parameters of the MRI scanner. Its main goal is to facilitate image-guided interventions by acting as the synergistic component between the physician, the robotic device, the scanner, and the patient. PMID:21544216

  8. Mindreading in individuals with an empathizing versus systemizing cognitive style: an fMRI study

    PubMed Central

    Steven, Megan; Vanneste, Sven; Doron, Karl; Platek, Steven M.

    2010-01-01

    Our fMRI study compares the neural correlates of face-based mindreading in healthy individuals with an empathizing (n=12) versus systemizing cognitive style (n=12). The empathizing group consists of individuals that score high on empathizing and low on systemizing, while the systemizing group consists of individuals with an opposite cognitive pattern. We hypothesize that the empathizing group will show stronger simulation-type neural activity (e.g., in mirror neuron areas, medial prefrontal cortex, anterior cingulate cortex) or simulation-related neural activity (e.g., in areas involved in perspective taking and experiential processing) compared to the systemizing group. As hypothesized, our study reveals that the empathizing group shows significantly stronger activity in mirror neuron areas of the brain, such as the left inferior frontal gyrus and inferior parietal lobe, and in temporal areas involved in perspective taking and autobiographical memory. Moreover, the empathizing group, but not the systemizing group, shows activity in the medial prefrontal cortex and anterior cingulate cortex which have been related to simulation-type neural activity in the brain and are central to mindreading. Also, the systemizing group shows significantly stronger activity in the left parahippocampal gyrus. In conclusion, both the empathizing and systemizing individuals show simulation-type and simulation-related neural activity during face-based mindreading. However, more neural activity indicative of simulation-based processing is seen in the empathizing individuals, while more neural activity indicative of non-simulation-based processing is seen in the systemizing individuals. PMID:20728511

  9. Advances in multimodal neuroimaging: Hybrid MR-PET and MR-PET-EEG at 3 T and 9.4 T

    NASA Astrophysics Data System (ADS)

    Shah, N. Jon; Oros-Peusquens, Ana-Maria; Arrubla, Jorge; Zhang, Ke; Warbrick, Tracy; Mauler, Jörg; Vahedipour, Kaveh; Romanzetti, Sandro; Felder, Jörg; Celik, Avdo; Rota-Kops, Elena; Iida, Hidehiro; Langen, Karl-Josef; Herzog, Hans; Neuner, Irene

    2013-04-01

    Multi-modal MR-PET-EEG data acquisition in simultaneous mode confers a number of advantages at 3 T and 9.4 T. The three modalities complement each other well; structural-functional imaging being the domain of MRI, molecular imaging with specific tracers is the strength of PET, and EEG provides a temporal dimension where the other two modalities are weak. The utility of hybrid MR-PET at 3 T in a clinical setting is presented and critically discussed. The potential problems and the putative gains to be accrued from hybrid imaging at 9.4 T, with examples from the human brain, are outlined. Steps on the road to 9.4 T multi-modal MR-PET-EEG are also illustrated. From an MR perspective, the potential for ultra-high resolution structural imaging is discussed and example images of the cerebellum with an isotropic resolution of 320 μm are presented, setting the stage for hybrid imaging at ultra-high field. Further, metabolic imaging is discussed and high-resolution images of the sodium distribution are presented. Examples of tumour imaging on a 3 T MR-PET system are presented and discussed. Finally, the perspectives for multi-modal imaging are discussed based on two on-going studies, the first comparing MR and PET methods for the measurement of perfusion and the second which looks at tumour delineation based on MRI contrasts but the knowledge of tumour extent is based on simultaneously acquired PET data.

  10. An Optically-Coupled System for Quantitative Monitoring of MRI-Induced RF Currents into Long Conductors

    PubMed Central

    Zanchi, Marta G.; Venook, Ross; Pauly, John M.; Scott, Greig C.

    2010-01-01

    The currents induced in long conductors such as guidewires by the radio frequency (RF) field in magnetic resonance imaging (MRI) are responsible for potentially dangerous heating of surrounding media, such as tissue. This paper presents an optically-coupled system with the potential to quantitatively measure the RF currents induced on these conductors. The system uses a self shielded toroid transducer and active circuitry to modulate a high speed LED transmitter. Plastic fiber guides the light to a photodiode receiver and transimpedance amplifier. System validation included a series of experiments with bare wires that compared wire tip heating by fluoroptic thermometers with the RF current sensor response. Validations were performed on a custom whole body 64 MHz birdcage test platform and on a 1.5T MRI scanner. With this system, a variety of phenomena were demonstrated including cable trap current attenuation, lossy dielectric Q-spoiling and even transverse electromagnetic wave node patterns. This system should find applications in studies of MRI RF safety for interventional devices such as pacemaker leads, and guidewires. In particular, variations of this device could potentially act as a realtime safety monitor during MRI guided interventions. PMID:19758855

  11. Ultra-sensitive molecular MRI of cerebrovascular cell activation enables early detection of chronic central nervous system disorders.

    PubMed

    Montagne, Axel; Gauberti, Maxime; Macrez, Richard; Jullienne, Amandine; Briens, Aurélien; Raynaud, Jean-Sébastien; Louin, Gaelle; Buisson, Alain; Haelewyn, Benoit; Docagne, Fabian; Defer, Gilles; Vivien, Denis; Maubert, Eric

    2012-11-01

    Since endothelial cells can be targeted by large contrast-carrying particles, molecular imaging of cerebrovascular cell activation is highly promising to evaluate the underlying inflammation of the central nervous system (CNS). In this study, we aimed to demonstrate that molecular magnetic resonance imaging (MRI) of cerebrovascular cell activation can reveal CNS disorders in the absence of visible lesions and symptoms. To this aim, we optimized contrast carrying particles targeting vascular cell adhesion molecule-1 and MRI protocols through both in vitro and in vivo experiments. Although, pre-contrast MRI images failed to reveal the ongoing pathology, contrast-enhanced MRI revealed hypoperfusion-triggered CNS injury in vascular dementia, unmasked amyloid-induced cerebrovascular activation in Alzheimer's disease and allowed monitoring of disease activity during experimental autoimmune encephalomyelitis. Moreover, contrast-enhanced MRI revealed the cerebrovascular cell activation associated with known risk factors of CNS disorders such as peripheral inflammation, ethanol consumption, hyperglycemia and aging. By providing a dramatically higher sensitivity than previously reported methods and molecular contrast agents, the technology described in the present study opens new avenues of investigation in the field of neuroinflammation. PMID:22813950

  12. A medical software system for volumetric analysis of cerebral pathologies in magnetic resonance imaging (MRI) data.

    PubMed

    Egger, Jan; Kappus, Christoph; Freisleben, Bernd; Nimsky, Christopher

    2012-08-01

    In this contribution, a medical software system for volumetric analysis of different cerebral pathologies in magnetic resonance imaging (MRI) data is presented. The software system is based on a semi-automatic segmentation algorithm and helps to overcome the time-consuming process of volume determination during monitoring of a patient. After imaging, the parameter settings-including a seed point-are set up in the system and an automatic segmentation is performed by a novel graph-based approach. Manually reviewing the result leads to reseeding, adding seed points or an automatic surface mesh generation. The mesh is saved for monitoring the patient and for comparisons with follow-up scans. Based on the mesh, the system performs a voxelization and volume calculation, which leads to diagnosis and therefore further treatment decisions. The overall system has been tested with different cerebral pathologies-glioblastoma multiforme, pituitary adenomas and cerebral aneurysms- and evaluated against manual expert segmentations using the Dice Similarity Coefficient (DSC). Additionally, intra-physician segmentations have been performed to provide a quality measure for the presented system. PMID:21384268

  13. A multimodal MRI approach to identify and characterize microstructural brain changes in neuropsychiatric systemic lupus erythematosus

    PubMed Central

    Ercan, Ece; Ingo, Carson; Tritanon, Oranan; Magro-Checa, Cesar; Smith, Alex; Smith, Seth; Huizinga, Tom; van Buchem, Mark A.; Ronen, Itamar

    2015-01-01

    Systemic lupus erythematosus (SLE) is an autoimmune disease with multi-organ involvement and results in neurological and psychiatric (NP) symptoms in up to 40% of the patients. To date, the diagnosis of neuropsychiatric systemic lupus erythematosus (NPSLE) poses a challenge due to the lack of neuroradiological gold standards. In this study, we aimed to better localize and characterize normal appearing white matter (NAWM) changes in NPSLE by combining data from two quantitative MRI techniques, diffusion tensor imaging (DTI) and magnetization transfer imaging (MTI). 9 active NPSLE patients (37 ± 13 years, all females), 9 SLE patients without NP symptoms (44 ± 11 years, all females), and 14 healthy controls (HC) (40 ± 9 years, all females) were included in the study. MTI, DTI and fluid attenuated inversion recovery (FLAIR) images were collected from all subjects on a 3 T MRI scanner. Magnetization transfer ratio (MTR), mean diffusivity (MD), fractional anisotropy (FA), radial diffusivity (RD), axial diffusivity (AD) maps and white matter lesion maps based on the FLAIR images were created for each subject. MTR and DTI data were then co-analyzed using tract-based spatial statistics and a cumulative lesion map to exclude lesions. Significantly lower MTR and FA and significantly higher AD, RD and MD were found in NPSLE compared to HC in NAWM regions. The differences in DTI measures and in MTR, however, were only moderately co-localized. Additionally, significant differences in DTI measures, but not in MTR, were found between NPSLE and SLE patients, suggesting that the underlying microstructural changes detected by MD are linked to the onset of NPSLE. The co-analysis of the anatomical distribution of MTI and DTI measures can potentially improve the diagnosis of NPSLE and contribute to the understanding of the underlying microstructural damage. PMID:26106559

  14. Development of a combined multifrequency MRI-DOT system for human breast imaging using a priori information

    NASA Astrophysics Data System (ADS)

    Thayer, David; Liu, Ning; Unlu, Burcin; Chen, Jeon-Hor; Su, Min-Ying; Nalcioglu, Orhan; Gulsen, Gultekin

    2010-02-01

    Breast cancer is a significant cause of mortality and morbidity among women with early diagnosis being vital to successful treatment. Diffuse Optical Tomography (DOT) is an emerging medical imaging modality that provides information that is complementary to current screening modalities such as MRI and mammography, and may improve the specificity in determining cancer malignancy. Using high-resolution anatomic images as a priori information improves the accuracy of DOT. Measurements are presented characterizing the performance of our system. Preliminary data is also shown illustrating the use of a priori MRI data in phantom studies.ä

  15. An MRI-compatible three-axis focused ultrasound system for performing drug delivery studies in small animal models

    NASA Astrophysics Data System (ADS)

    Waspe, Adam C.; Chau, Anthony; Kukic, Aleksandra; Chopra, Rajiv; Hynynen, Kullervo

    2010-03-01

    MRI-guided focused-ultrasound is a non-invasive technique that can enhance the delivery of therapeutic agents. The objective of this work was to develop a focused-ultrasound system for preclinical research in small animals that is capable of sonicating with high spatial precision within a closed-bore MRI. The system features a computer-controlled, non-magnetic, three-axis positioning system that uses piezoelectric actuators and linear optical encoders to position a focused-ultrasound transducer to targeted tissues under MRI guidance. The actuator and encoder signals are transmitted through low-pass-filtered connectors on a grounded RF-penetration panel to prevent artifacts during image acquisition. The transducer is attached to the positioning system by a rigid arm and is submerged within a closed water tank. The arm passes into the tank through flexible bellows to ensure that the system remains sealed. An RF coil acquires high-resolution images in the vicinity of the target tissue. An aperture on the water tank, centered about the RF coil, provides an access point for target sonication. Registration between ultrasound and MRI coordinates involves sonicating a temperature-sensitive phantom and measuring the centroid of the thermal focal zone in 3D with MR thermometry. Linear distances of 5 cm with a positioning resolution of 0.05 mm can be achieved for each axis. The system was operated successfully on MRI scanners from different vendors at both 1.5 and 3.0 T, and simultaneous motion and imaging was possible without any mutual interference or imaging artifacts. This system is used for high-throughput small-animal experiments to study the efficacy of ultrasound-enhanced drug delivery.

  16. Implementation of a semi-automated post-processing system for parametric MRI mapping of human breast cancer.

    PubMed

    Lee, Robert E; Welch, E Brian; Cobb, Jared G; Sinha, Tuhin; Gore, John C; Yankeelov, Thomas E

    2009-08-01

    Magnetic resonance imaging (MRI) investigations of breast cancer incorporate computationally intense techniques to develop parametric maps of pathophysiological tissue characteristics. Common approaches employ, for example, quantitative measurements of T (1), the apparent diffusion coefficient, and kinetic modeling based on dynamic contrast-enhanced MRI (DCE-MRI). In this paper, an integrated medical image post-processing and archive system (MIPAS) is presented. MIPAS demonstrates how image post-processing and user interface programs, written in the interactive data language (IDL) programming language with data storage provided by a Microsoft Access database, and the file system can reduce turnaround time for creating MRI parametric maps and provide additional organization for clinical trials. The results of developing the MIPAS are discussed including potential limitations of the use of IDL for the application framework and how the MIPAS design supports extension to other programming languages and imaging modalities. We also show that network storage of images and metadata has a significant (p < 0.05) increase in data retrieval time compared to collocated storage. The system shows promise for becoming both a robust research picture archival and communications system working with the standard hospital PACS and an image post-processing environment that extends to other medical image modalities. PMID:18446412

  17. A new MRI rating scale for progressive supranuclear palsy and multiple system atrophy: validity and reliability

    PubMed Central

    Rolland, Yan; Vérin, Marc; Payan, Christine A; Duchesne, Simon; Kraft, Eduard; Hauser, Till K; Jarosz, Josef; Deasy, Neil; Defevbre, Luc; Delmaire, Christine; Dormont, Didier; Ludolph, Albert C; Bensimon, Gilbert

    2011-01-01

    Aim To evaluate a standardised MRI acquisition protocol and a new image rating scale for disease severity in patients with progressive supranuclear palsy (PSP) and multiple systems atrophy (MSA) in a large multicentre study. Methods The MRI protocol consisted of two-dimensional sagittal and axial T1, axial PD, and axial and coronal T2 weighted acquisitions. The 32 item ordinal scale evaluated abnormalities within the basal ganglia and posterior fossa, blind to diagnosis. Among 760 patients in the study population (PSP=362, MSA=398), 627 had per protocol images (PSP=297, MSA=330). Intra-rater (n=60) and inter-rater (n=555) reliability were assessed through Cohen's statistic, and scale structure through principal component analysis (PCA) (n=441). Internal consistency and reliability were checked. Discriminant and predictive validity of extracted factors and total scores were tested for disease severity as per clinical diagnosis. Results Intra-rater and inter-rater reliability were acceptable for 25 (78%) of the items scored (≥0.41). PCA revealed four meaningful clusters of covarying parameters (factor (F) F1: brainstem and cerebellum; F2: midbrain; F3: putamen; F4: other basal ganglia) with good to excellent internal consistency (Cronbach α 0.75–0.93) and moderate to excellent reliability (intraclass coefficient: F1: 0.92; F2: 0.79; F3: 0.71; F4: 0.49). The total score significantly discriminated for disease severity or diagnosis; factorial scores differentially discriminated for disease severity according to diagnosis (PSP: F1–F2; MSA: F2–F3). The total score was significantly related to survival in PSP (p<0.0007) or MSA (p<0.0005), indicating good predictive validity. Conclusions The scale is suitable for use in the context of multicentre studies and can reliably and consistently measure MRI abnormalities in PSP and MSA. Clinical Trial Registration Number The study protocol was filed in the open clinical trial registry (http://www.clinicaltrials.gov) with

  18. Altered neural response of the appetitive emotional system in cocaine addiction: an fMRI Study.

    PubMed

    Asensio, Samuel; Romero, Maria J; Palau, Carmina; Sanchez, Amparo; Senabre, Isabel; Morales, Julia L; Carcelen, Raquel; Romero, Francisco J

    2010-10-01

    Research on addiction suggests that emotional alterations play an essential role in the development, maintenance, relapse and treatment outcome of substance abuse disorders. Although many neuroimaging studies focussed on the neural response to conditioned stimuli, much less is known about the neural response to natural affective stimuli in this pathological population. Previous research has demonstrated an altered emotional experience and autonomic response to emotional stimuli using the International Affective Picture System (IAPS) in drug abusers. Here we aimed, using functional magnetic resonance imaging (fMRI), to study the alterations in the neural responsitivity to pleasant (erotic), unpleasant and neutral IAPS stimuli in cocaine addiction. Thirty-two cocaine-dependent subjects and 26 matched controls completed an fMRI session during the presentation of a set of IAPS pictures as background, while performing a letter discrimination task. Consistent with previous studies, emotional pictures activated an emotional network including amygdala, medial prefrontal cortex, orbitofrontal cortex and occipito-temporal areas in both groups. However, compared with controls, the cocaine group showed a significant hypoactivation of the dorsal and ventral striatum (including the nucleus accumbens), thalamus, parietal cortex and dorso-medial prefrontal cortex (dmPFC) when processing pleasant pictures. The analysis of pleasant versus unpleasant stimuli suggested that between-group differences in the dmPFC and striatal activation may be attributed to arousal processing rather than valence. These results could reflect the neural basis for the reduced ability of cocaine-dependent subjects to experience pleasure by daily natural reinforcers, suggesting that these alterations in the emotion processing may play an important role in drug dependence, treatment and relapse. PMID:20579005

  19. Effects of haloperidol and aripiprazole on the human mesolimbic motivational system: A pharmacological fMRI study.

    PubMed

    Bolstad, Ingeborg; Andreassen, Ole A; Groote, Inge; Server, Andres; Sjaastad, Ivar; Kapur, Shitij; Jensen, Jimmy

    2015-12-01

    The atypical antipsychotic drug aripiprazole is a partial dopamine (DA) D2 receptor agonist, which differentiates it from most other antipsychotics. This study compares the brain activation characteristic produced by aripiprazole with that of haloperidol, a typical D2 receptor antagonist. Healthy participants received an acute oral dose of haloperidol, aripiprazole or placebo, and then performed an active aversive conditioning task with aversive and neutral events presented as sounds, while blood-oxygen-level-dependent (BOLD) functional magnetic resonance imaging (fMRI) was carried out. The fMRI task, targeting the mesolimbic motivational system that is thought to be disturbed in psychosis, was based on the conditioned avoidance response (CAR) animal model - a widely used test of therapeutic potential of antipsychotic drugs. In line with the CAR animal model, the present results show that subjects given haloperidol were not able to avoid more aversive than neutral task trials, even though the response times were shorter during aversive events. In the aripiprazole and placebo groups more aversive than neutral events were avoided. Accordingly, the task-related BOLD-fMRI response in the mesolimbic motivational system was diminished in the haloperidol group compared to the placebo group, particularly in the ventral striatum, whereas the aripiprazole group showed task-related activations intermediate of the placebo and haloperidol groups. The current results show differential effects on brain function by aripiprazole and haloperidol, probably related to altered DA transmission. This supports the use of pharmacological fMRI to study antipsychotic properties in humans. PMID:26476705

  20. Dynamic MRI-based computer aided diagnostic systems for early detection of kidney transplant rejection: A survey

    NASA Astrophysics Data System (ADS)

    Mostapha, Mahmoud; Khalifa, Fahmi; Alansary, Amir; Soliman, Ahmed; Gimel'farb, Georgy; El-Baz, Ayman

    2013-10-01

    Early detection of renal transplant rejection is important to implement appropriate medical and immune therapy in patients with transplanted kidneys. In literature, a large number of computer-aided diagnostic (CAD) systems using different image modalities, such as ultrasound (US), magnetic resonance imaging (MRI), computed tomography (CT), and radionuclide imaging, have been proposed for early detection of kidney diseases. A typical CAD system for kidney diagnosis consists of a set of processing steps including: motion correction, segmentation of the kidney and/or its internal structures (e.g., cortex, medulla), construction of agent kinetic curves, functional parameter estimation, diagnosis, and assessment of the kidney status. In this paper, we survey the current state-of-the-art CAD systems that have been developed for kidney disease diagnosis using dynamic MRI. In addition, the paper addresses several challenges that researchers face in developing efficient, fast and reliable CAD systems for the early detection of kidney diseases.

  1. Initial tests of a prototype MRI-compatible PET imager

    NASA Astrophysics Data System (ADS)

    Raylman, Raymond R.; Majewski, Stan; Lemieux, Susan; Velan, S. Sendhil; Kross, Brain; Popov, Vladimir; Smith, Mark F.; Weisenberger, Andrew G.; Wojcik, Randy

    2006-12-01

    Multi-modality imaging is rapidly becoming a valuable tool in the diagnosis of disease and in the development of new drugs. Functional images produced with PET fused with anatomical structure images created by MRI, will allow the correlation of form with function. Our group (a collaboration of West Virginia University and Jefferson Lab) is developing a system to acquire MRI and PET images contemporaneously. The prototype device consists of two opposed detector heads, operating in coincidence mode with an active FOV of 5×5×4 cm 3. Each MRI-PET detector module consists of an array of LSO detector elements (2.5×2.5×15 mm 3) coupled through a long fiber optic light guide to a single Hamamatsu flat panel PSPMT. The fiber optic light guide is made of a glued assembly of 2 mm diameter acrylic fibers with a total length of 2.5 m. The use of a light guides allows the PSPMTs to be positioned outside the bore of the 3 T General Electric MRI scanner used in the tests. Photon attenuation in the light guides resulted in an energy resolution of ˜60% FWHM, interaction of the magnetic field with PSPMT further reduced energy resolution to ˜85% FWHM. Despite this effect, excellent multi-plane PET and MRI images of a simple disk phantom were acquired simultaneously. Future work includes improved light guides, optimized magnetic shielding for the PSPMTs, construction of specialized coils to permit high-resolution MRI imaging, and use of the system to perform simultaneous PET and MRI or MR-spectroscopy .

  2. Diffuse Axonal Injury at Ultra-High Field MRI

    PubMed Central

    Moenninghoff, Christoph; Kraff, Oliver; Maderwald, Stefan; Umutlu, Lale; Theysohn, Jens M.; Ringelstein, Adrian; Wrede, Karsten H.; Deuschl, Cornelius; Altmeppen, Jan; Ladd, Mark E.; Forsting, Michael; Quick, Harald H.; Schlamann, Marc

    2015-01-01

    Objective Diffuse axonal injury (DAI) is a specific type of traumatic brain injury caused by shearing forces leading to widespread tearing of axons and small vessels. Traumatic microbleeds (TMBs) are regarded as a radiological marker for DAI. This study aims to compare DAI-associated TMBs at 3 Tesla (T) and 7 T susceptibility weighted imaging (SWI) to evaluate possible diagnostic benefits of ultra-high field (UHF) MRI. Material and Methods 10 study participants (4 male, 6 female, age range 20-74 years) with known DAI were included. All MR exams were performed with a 3 T MR system (Magnetom Skyra) and a 7 T MR research system (Magnetom 7 T, Siemens AG, Healthcare Sector, Erlangen, Germany) each in combination with a 32-channel-receive coil. The average time interval between trauma and imaging was 22 months. Location and count of TMBs were independently evaluated by two neuroradiologists on 3 T and 7 T SWI images with similar and additionally increased spatial resolution at 7 T. Inter- and intraobserver reliability was assessed using the interclass correlation coefficient (ICC). Count and diameter of TMB were evaluated with Wilcoxon signed rank test. Results Susceptibility weighted imaging revealed a total of 485 TMBs (range 1-190, median 25) at 3 T, 584 TMBs (plus 20%, range 1-262, median 30.5) at 7 T with similar spatial resolution, and 684 TMBs (plus 41%, range 1-288, median 39.5) at 7 T with 10-times higher spatial resolution. Hemorrhagic DAI appeared significantly larger at 7 T compared to 3 T (p = 0.005). Inter- and intraobserver correlation regarding the counted TMB was high and almost equal 3 T and 7 T. Conclusion 7 T SWI improves the depiction of small hemorrhagic DAI compared to 3 T and may be supplementary to lower field strengths for diagnostic in inconclusive or medicolegal cases. PMID:25793614

  3. MRI Scans

    MedlinePlus

    Magnetic resonance imaging (MRI) uses a large magnet and radio waves to look at organs and structures inside your body. Health care professionals use MRI scans to diagnose a variety of conditions, from torn ...

  4. Heart MRI

    MedlinePlus

    ... severe kidney problems. People have been harmed in MRI machines when they did not remove metal objects from their clothes or when metal objects were left in the room by others. MRI is most often not recommended for traumatic injuries. ...

  5. High performance MRI simulations of motion on multi-GPU systems

    PubMed Central

    2014-01-01

    Background MRI physics simulators have been developed in the past for optimizing imaging protocols and for training purposes. However, these simulators have only addressed motion within a limited scope. The purpose of this study was the incorporation of realistic motion, such as cardiac motion, respiratory motion and flow, within MRI simulations in a high performance multi-GPU environment. Methods Three different motion models were introduced in the Magnetic Resonance Imaging SIMULator (MRISIMUL) of this study: cardiac motion, respiratory motion and flow. Simulation of a simple Gradient Echo pulse sequence and a CINE pulse sequence on the corresponding anatomical model was performed. Myocardial tagging was also investigated. In pulse sequence design, software crushers were introduced to accommodate the long execution times in order to avoid spurious echoes formation. The displacement of the anatomical model isochromats was calculated within the Graphics Processing Unit (GPU) kernel for every timestep of the pulse sequence. Experiments that would allow simulation of custom anatomical and motion models were also performed. Last, simulations of motion with MRISIMUL on single-node and multi-node multi-GPU systems were examined. Results Gradient Echo and CINE images of the three motion models were produced and motion-related artifacts were demonstrated. The temporal evolution of the contractility of the heart was presented through the application of myocardial tagging. Better simulation performance and image quality were presented through the introduction of software crushers without the need to further increase the computational load and GPU resources. Last, MRISIMUL demonstrated an almost linear scalable performance with the increasing number of available GPU cards, in both single-node and multi-node multi-GPU computer systems. Conclusions MRISIMUL is the first MR physics simulator to have implemented motion with a 3D large computational load on a single computer

  6. MRI scanner variability studies using a semi-automated analysis system.

    PubMed

    Hyde, R J; Ellis, J H; Gardner, E A; Zhang, Y; Carson, P L

    1994-01-01

    Due to the unique design of the Parallel Rod Test Object (PRoTO) and the associated semi-automated analysis program, it was necessary to test it extensively for precision and accuracy, and preliminarily for utility, before its distribution for wider use in MRI system quality control (QC). The test object and analysis program measured the desired quantities reproducibly and they accurately measured predicted changes from intentionally adjusted imaging system parameters, yielding sensitivity of the various test measures to deviation in the system operating parameters. From a single scan of the most recent revision of the test object, multiple quantitative quality control measures were obtained throughout the scanning volume on two MR imaging systems over periods of six and twelve months, respectively. From these and earlier trials, an initial indication was obtained of which performance measures are worth monitoring for QC. This experience suggests that signal-to-noise ratio (SNR) and distortion (including display scale) should be monitored but not necessarily the resolution. The latter was only found to alter at the same time or later than other parameters such as SNR had changed. Slice thickness was found to vary on some units and this measure was also used in normalizing the SNR by voxel volume. SNR, distortion, and resolution measurements using field-echo sequences were less stable than those using spin-echo sequences. Use of this QC program to test a wide variety of image quality measures allowed timely assessment of the long-term variability of the units tested. Long-term variability may become among the most important measures for comparison of system performance and maintenance.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7997096

  7. The Safety of Using Body-Transmit MRI in Patients with Implanted Deep Brain Stimulation Devices

    PubMed Central

    Kahan, Joshua; Papadaki, Anastasia; White, Mark; Mancini, Laura; Yousry, Tarek; Zrinzo, Ludvic; Limousin, Patricia; Hariz, Marwan; Foltynie, Tom; Thornton, John

    2015-01-01

    Background Deep brain stimulation (DBS) is an established treatment for patients with movement disorders. Patients receiving chronic DBS provide a unique opportunity to explore the underlying mechanisms of DBS using functional MRI. It has been shown that the main safety concern with MRI in these patients is heating at the electrode tips – which can be minimised with strict adherence to a supervised acquisition protocol using a head-transmit/receive coil at 1.5T. MRI using the body-transmit coil with a multi-channel receive head coil has a number of potential advantages including an improved signal-to-noise ratio. Study outline We compared the safety of cranial MRI in an in vitro model of bilateral DBS using both head-transmit and body-transmit coils. We performed fibre-optic thermometry at a Medtronic ActivaPC device and Medtronic 3389 electrodes during turbo-spin echo (TSE) MRI using both coil arrangements at 1.5T and 3T, in addition to gradient-echo echo-planar fMRI exposure at 1.5T. Finally, we investigated the effect of transmit-coil choice on DBS stimulus delivery during MRI. Results Temperature increases were consistently largest at the electrode tips. Changing from head- to body-transmit coil significantly increased the electrode temperature elevation during TSE scans with scanner-reported head SAR 0.2W/kg from 0.45°C to 0.79°C (p<0.001) at 1.5T, and from 1.25°C to 1.44°C (p<0.001) at 3T. The position of the phantom relative to the body coil significantly impacted on electrode heating at 1.5T; however, the greatest heating observed in any position tested remained <1°C at this field strength. Conclusions We conclude that (1) with our specific hardware and SAR-limited protocol, body-transmit cranial MRI at 1.5T does not produce heating exceeding international guidelines, even in cases of poorly positioned patients, (2) cranial MRI at 3T can readily produce heating exceeding international guidelines, (3) patients with ActivaPC Medtronic systems are safe

  8. Co-Registration of MEG and ULF MRI using a 7 channel low-Tc SQUID system

    SciTech Connect

    Magnelind, Per E; Sandin, Jan H; Volegov, Petr L; Matlashov, Andrei N; Owens, Tuba; Gomez, John J; Espy, Michelle A

    2010-01-01

    In human brain imaging, e.g. pre-surgical mapping, it is highly desired to obtain images with high spatial and temporal resolution. However, no single imaging device is capable of producing both a high spatial resolution anatomical image and a high temporal resolution functional image. During the last couple of years significant efforts have been directed towards magnetic resonance imaging (MRI) in fields comparable to the Earth's field, i.e. microtesla fields, or lower fields. The fields in this range are called ultra-low fields (ULF). Interestingly, the idea of magnetic resonance at microtesla fields is more than 50 years old. In ULF MR it is essential to use pre-polarization to increase the signal-to-noise ratio of the signal from the precessing spins, since the magnetization from the measurement field alone is very small. Even with the present level of prepolarization the ULF images are not as highly resolved as their high-field counterparts. By using a 7 channel system equipped with low transition temperature (T{sub c}) Superconducting QUantum Interference Devices (SQUIDs) to perform both ULF MRI and magnetoencephalography (MEG), it is possible to coregister a lower resolution ULF MR image and an MEG image obtained during one run. Thereby, the MEG data is aligned to the ULF MR image after performing a calibration run with a phantom. The ULF MR image can then be used to align the MEG data onto a high-field MR image. Recently, our group presented the first brain images obtained by ULF MRI. The MR imaging was combined with an MEG session performed a posteriori. The subject's head was moved in between the MRI run and the MEG run and no reference coils were used to quantify the translation. The main reason for the translation of the head was to improve the coverage of the auditory evoked response. In this paper, we report interleaved ULF MRI and MEG measurements co-registered in the same system.

  9. Dopaminergic system and dream recall: An MRI study in Parkinson's disease patients.

    PubMed

    De Gennaro, Luigi; Lanteri, Olimpia; Piras, Fabrizio; Scarpelli, Serena; Assogna, Francesca; Ferrara, Michele; Caltagirone, Carlo; Spalletta, Gianfranco

    2016-03-01

    We investigated the role of the dopamine system [i.e., subcortical-medial prefrontal cortex (mPFC) network] in dreaming, by studying patients with Parkinson's Disease (PD) as a model of altered dopaminergic transmission. Subcortical volumes and cortical thickness were extracted by 3T-MR images of 27 PD patients and 27 age-matched controls, who were asked to fill out a dream diary upon morning awakening for one week. PD patients do not substantially differ from healthy controls with respect to the sleep, dream, and neuroanatomical measures. Multivariate correlational analyses in PD patients show that dopamine agonist dosage is associated to qualitatively impoverished dreams, as expressed by lower bizarreness and lower emotional load values. Visual vividness (VV) of their dream reports positively correlates with volumes of both the amygdalae and with thickness of the left mPFC. Emotional load also positively correlates with hippocampal volume. Beside the replication of our previous finding on the role of subcortical nuclei in dreaming experience of healthy subjects, this represents the first evidence of a specific role of the amygdala-mPFC dopaminergic network system in dream recall. The association in PD patients between higher dopamine agonist dosages and impoverished dream reports, however, and the significant correlations between VV and mesolimbic regions, however, provide an empirical support to the hypothesis that a dopamine network plays a key role in dream generation. The causal relation is however precluded by the intrinsic limitation of assuming the dopamine agonist dosage as a measure of the hypodopaminergic state in PD. Periodicals, Inc. PMID:26704150

  10. Transformation of human cells by DNAs ineffective in transformation of NIH 3T3 cells

    SciTech Connect

    Sutherland, B.M.; Bennett, P.B.; Freeman, A.G.; Moore, S.P.; Strickland, P.T.

    1985-04-01

    Neonatal human foreskin fibroblasts can be transformed to anchorage-independent growth by transfection with DNAs inefficient in transforming NIH 3T3 cells. Human cells transfected with DNA from GM 1312, a multiple myeloma cell line, or MOLT-4, a permanent lymphoblast line, grow without anchorage at a much higher frequency than do the parental cells and their DNAs can transform human cell recipients to anchorage-independent growth; they have extended but not indefinite life spans and are nontumorigenic. Human fibroblasts are also transformed by DNAs from two multiple myeloma lines that also transform 3T3 cells; however, restriction analysis suggests that different transforming genes in this DNA are acting in the human and murine systems. These results indicate that the human cell transfection system allows detection of transforming genes not effective in the 3T3 system and points out the possibility of detection of additional transforming sequences even in DNAs that do transform murine cells.

  11. Design of a Teleoperated Needle Steering System for MRI-guided Prostate Interventions

    PubMed Central

    Seifabadi, Reza; Iordachita, Iulian; Fichtinger, Gabor

    2013-01-01

    Accurate needle placement plays a key role in success of prostate biopsy and brachytherapy. During percutaneous interventions, the prostate gland rotates and deforms which may cause significant target displacement. In these cases straight needle trajectory is not sufficient for precise targeting. Although needle spinning and fast insertion may be helpful, they do not entirely resolve the issue. We propose robot-assisted bevel-tip needle steering under MRI guidance as a potential solution to compensate for the target displacement. MRI is chosen for its superior soft tissue contrast in prostate imaging. Due to the confined workspace of the MRI scanner and the requirement for the clinician to be present inside the MRI room during the procedure, we designed a MRI-compatible 2-DOF haptic device to command the needle steering slave robot which operates inside the scanner. The needle steering slave robot was designed to be integrated with a previously developed pneumatically actuated transperineal robot for MRI-guided prostate needle placement. We describe design challenges and present the conceptual design of the master and slave robots and the associated controller. PMID:24649480

  12. Tracing and quantification of pharmaceuticals using MR imaging and spectroscopy at clinical MRI system

    NASA Astrophysics Data System (ADS)

    Jeong, Eun-Kee; Liu, Xin; Shi, Xianfeng; Yu, Y. Bruce; Lu, Zeng-Rong

    2012-10-01

    Magnetic resonance imaging (MRI) and spectroscopy (MRS) is very powerful modality for imaging and localized investigation of biological tissue. Medical MRI measures nuclear magnetization of the water protons, which consists of 70 % of our body. MRI provides superior contrast among different soft tissues to all other existing medical imaging modalities, including ultrasound, X-ray CT, PET, and SPECT. In principle, MRI/S may be an ideal non-invasive tool for drug delivery research. However, because of its low sensitivity, a large dose is required for tracing pharmaceuticals. Therefore, its use for imaging of pharmaceuticals is very limited mostly to molecules that contain a paramagnetic metal ion, such as gadolinium (Gd3+) and manganese (Mn2+). The paramagnetic metal ion provides a large fluctuating magnetic field at the proton in the water molecule via a coordinate site. The measurement of local drug concentration is the first step for further quantification. Local concentration of the paramagnetic-ion based MRI contrast agent can be indirectly measured via the change in the water signal intensity. 19F MRI/S of fluorinated complex may be an option for drug delivery and tracing agent, because the fluorinated molecule may be directly detected due to its large magnetic moment (94 % of proton) and 100 % abundance.

  13. Activation of Visuomotor Systems during Visually Guided Movements: A Functional MRI Study

    NASA Astrophysics Data System (ADS)

    Ellermann, Jutta M.; Siegal, Joel D.; Strupp, John P.; Ebner, Timothy J.; Ugurbil, Kâmil

    1998-04-01

    The dorsal stream is a dominant visuomotor pathway that connects the striate and extrastriate cortices to posterior parietal areas. In turn, the posterior parietal areas send projections to the frontal primary motor and premotor areas. This cortical pathway is hypothesized to be involved in the transformation of a visual input into the appropriate motor output. In this study we used functional magnetic resonance imaging (fMRI) of the entire brain to determine the patterns of activation that occurred while subjects performed a visually guided motor task. In nine human subjects, fMRI data were acquired on a 4-T whole-body MR system equipped with a head gradient coil and a birdcage RF coil using aT*2-weighted EPI sequence. Functional activation was determined for three different tasks: (1) a visuomotor task consisting of moving a cursor on a screen with a joystick in relation to various targets, (2) a hand movement task consisting of moving the joystick without visual input, and (3) a eye movement task consisting of moving the eyes alone without visual input. Blood oxygenation level-dependent (BOLD) contrast-based activation maps of each subject were generated using period cross-correlation statistics. Subsequently, each subject's brain was normalized to Talairach coordinates, and the individual maps were compared on a pixel by pixel basis. Significantly activated pixels common to at least four out of six subjects were retained to construct the final functional image. The pattern of activation during visually guided movements was consistent with the flow of information from striate and extrastriate visual areas, to the posterior parietal complex, and then to frontal motor areas. The extensive activation of this network and the reproducibility among subjects is consistent with a role for the dorsal stream in transforming visual information into motor behavior. Also extensively activated were the medial and lateral cerebellar structures, implicating the cortico

  14. Monitoring fractional anisotropy in developing rabbit brain using MR diffusion tensor imaging at 3T

    NASA Astrophysics Data System (ADS)

    Jao, Jo-Chi; Yang, Yu-Ting; Hsiao, Chia-Chi; Chen, Po-Chou

    2016-03-01

    The aim of this study was to investigate the factional anisotropy (FA) in various regions of developing rabbit brain using magnetic resonance diffusion tensor imaging (MR DTI) at 3 T. A whole-body clinical MR imaging (MRI) scanner with a 15-channel high resolution knee coil was used. An echo-planar-imaging (EPI)-DTI pulse sequence was performed. Five 5 week-old New Zealand white (NZW) rabbits underwent MRI once per week for 24 weeks. After scanning, FA maps were obtained. ROIs (regions of interests) in the frontal lobe, parietal & temporal lobe, and occipital lobe were measured. FA changes with time were evaluated with a linear regression analysis. The results show that the FA values in all lobes of the brain increased linearly with age. The ranking of FA values was FA(frontal lobe) < FA(parietal & temporal lobe) > FA(occipital lobe). There was significant difference (p < 0.05) among these lobes. FA values are associated with the nerve development and brain functions. The FA change rate could be a biomarker to monitor the brain development. Understanding the FA values of various lobes during development could provide helpful information to diagnosis the abnormal syndrome earlier and have a better treatment and prognosis. This study established a brain MR-DTI protocol for rabbits to investigate the brain anatomy during development using clinical MRI. This technique can be further applied to the pre-clinical diagnosis, treatment, prognosis and follow-up of brain lesions.

  15. The helmet head restraint system: a viable solution for resting state fMRI in awake monkeys.

    PubMed

    Hadj-Bouziane, Fadila; Monfardini, Elisabetta; Guedj, Carole; Gardechaux, Gislène; Hynaux, Clément; Farnè, Alessandro; Meunier, Martine

    2014-02-01

    In monkey neuroimaging, head restraint is currently achieved via surgical implants. Eradicating such invasive head restraint from otherwise non-invasive monkey studies could represent a substantial progress in terms of Reduction and Refinement. Two non-invasive helmet-based methods are available but they are used exclusively by the pioneering research groups who designed them. In the absence of independent replication, they have had little impact in replacing the surgical implants. Here, we built a modified version of the helmet system proposed by Srihasam et al. (2010 NeuroImage, 51(1), 267-73) and tested it for resting state fMRI in awake monkeys. Extremely vulnerable to motion artifacts, resting state fMRI represents a decisive test for non-invasive head restraint systems. We compared two monkeys restrained with the helmet to one monkey with a surgically implanted head post using both a seed-based approach and an independent component analysis. Technically, the helmet system proved relatively easy to develop. Scientifically, although it allowed more extensive movements than the head post system, the helmet proved viable for resting state fMRI, in particular when combined with the independent component analysis that deals more effectively with movement-related noise than the seed-based approach. We also discuss the pros and cons of such device in light of the European Union new 2013 regulation on non-human primate research and its firm Reduction and Refinement requests. PMID:24121168

  16. WE-G-17A-09: Novel Magnetic Shielding Design for Inline and Perpendicular Integrated 6 MV Linac and 1.0 T MRI Systems

    SciTech Connect

    Li, X; Ma, B; Kuang, Y; Diao, X

    2014-06-15

    Purpose: The influence of fringe magnetic fields delivered by magnetic resonance imaging (MRI) on the beam generation and transportation in Linac is still a major challenge for the integration of linear accelerator and MRI (Linac-MRI). In this study, we investigated an optimal magnetic shielding design for Linac-MRI and further characterized the beam trajectory in electron gun. Methods: Both inline and perpendicular configurations were analyzed in this study. The configurations, comprising a Linac-MRI with a 100cm SAD and an open 1.0 T superconductive magnet, were simulated by the 3D finite element method (FEM). The steel shielding around the Linac was included in the 3D model, the thickness of which was varied from 1mm to 20mm, and magnetic field maps were acquired with and without additional shielding. The treatment beam trajectory in electron gun was evaluated using OPERA 3d SCALA with and without shielding cases. Results: When Linac was not shielded, the uniformity of diameter sphere volume (DSV) (30cm) was about 5 parts per million (ppm) and the fringe magnetic fields in electron gun were more than 0.3 T. With shielding, the magnetic fields in electron gun were reduced to less than 0.01 T. For the inline configuration, the radial magnetic fields in the Linac were about 0.02T. A cylinder steel shield used (5mm thick) altered the uniformity of DSV to 1000 ppm. For the perpendicular configuration, the Linac transverse magnetic fields were more than 0.3T, which altered the beam trajectory significantly. A 8mm-thick cylinder steel shield surrounding the Linac was used to compensate the output losses of Linac, which shifted the magnetic fields' uniformity of DSV to 400 ppm. Conclusion: For both configurations, the Linac shielding was used to ensure normal operation of the Linac. The effect of magnetic fields on the uniformity of DSV could be modulated by the shimming technique of the MRI magnet. NIH/NIGMS grant U54 GM104944, Lincy Endowed Assistant Professorship.

  17. Validation of an automated punctate mechanical stimuli delivery system designed for fMRI studies in rodents.

    PubMed

    Governo, Ricardo Jose Moylan; Prior, Malcolm John William; Morris, Peter Gordon; Marsden, Charles Alexander; Chapman, Victoria

    2007-06-15

    Functional magnetic resonance imaging (fMRI) is increasingly being used for animal studies studying the transmission of nociceptive information. Application of noxious mechanical stimuli is widely used for animal and human assessment of pain processing. Any accessory hardware used in animal imaging studies must, however, be sufficiently small to fit in the magnet bore diameter and be non-magnetic. We have developed a system that can apply mechanical stimuli simultaneously with fMRI. This system consists of a standardized instrument to deliver mechanical stimuli (VonFrey monofilament) and a gas-pressured mechanical transducer. These components were integrated with a computer console that controlled the period of stimuli to match acquisition scans. Preliminary experiments demonstrated that the force-stimulus transducer did not influence MRI signal to noise ratio. Mechanical stimulation of the hindpaw significantly increased blood oxygen level dependent (BOLD) signal intensity in several midbrain regions involved in the processing of nociceptive information in the rat (p<0.001, uncorrected for multiple comparisons). This system can be applied to both animal and human imaging studies and has a wide range of applications for studies of nociceptive processing. PMID:17368787

  18. A motorized ultrasound system for MRI-ultrasound fusion guided prostatectomy

    NASA Astrophysics Data System (ADS)

    Seifabadi, Reza; Xu, Sheng; Pinto, Peter; Wood, Bradford J.

    2016-03-01

    Purpose: This study presents MoTRUS, a motorized transrectal ultrasound system, to enable remote navigation of a transrectal ultrasound (TRUS) probe during da Vinci assisted prostatectomy. MoTRUS not only provides a stable platform to the ultrasound probe, but also allows the physician to navigate it remotely while sitting on the da Vinci console. This study also presents phantom feasibility study with the goal being intraoperative MRI-US image fusion capability to bring preoperative MR images to the operating room for the best visualization of the gland, boundaries, nerves, etc. Method: A two degree-of-freedom probe holder is developed to insert and rotate a bi-plane transrectal ultrasound transducer. A custom joystick is made to enable remote navigation of MoTRUS. Safety features have been considered to avoid inadvertent risks (if any) to the patient. Custom design software has been developed to fuse pre-operative MR images to intraoperative ultrasound images acquired by MoTRUS. Results: Remote TRUS probe navigation was evaluated on a patient after taking required consents during prostatectomy using MoTRUS. It took 10 min to setup the system in OR. MoTRUS provided similar capability in addition to remote navigation and stable imaging. No complications were observed. Image fusion was evaluated on a commercial prostate phantom. Electromagnetic tracking was used for the fusion. Conclusions: Motorized navigation of the TRUS probe during prostatectomy is safe and feasible. Remote navigation provides physician with a more precise and easier control of the ultrasound image while removing the burden of manual manipulation of the probe. Image fusion improved visualization of the prostate and boundaries in a phantom study.

  19. Hemodynamic Characteristics of the Vertebrobasilar System Analyzed Using MRI-Based Models

    PubMed Central

    Wake-Buck, Amanda K.; Gatenby, J. Christopher; Gore, John C.

    2012-01-01

    The vertebrobasilar system (VBS) is unique in human anatomy in that two arteries merge into a single vessel, and it is especially important because it supplies the posterior circulation of the brain. Atherosclerosis develops in this region, and atherosclerotic plaques in the vertebrobasilar confluence can progress with catastrophic consequences, including artery occlusion. Quantitative assessments of the flow characteristics in the VBS could elucidate the factors that influence flow patterns in this confluence, and deviations from normal patterns might then be used to predict locations to monitor for potential pathological changes, to detect early signs of disease, and to evaluate treatment options and efficacy. In this study, high-field MRI was used in conjunction with computational fluid dynamics (CFD) modeling to investigate the hemodynamics of subject-specific confluence models (n = 5) and to identify different geometrical classes of vertebrobasilar systems (n = 12) of healthy adult subjects. The curvature of the vessels and their mutual orientation significantly affected flow parameters in the VBS. The basilar artery geometry strongly influenced both skewing of the velocity profiles and the wall shear stress distributions in the VBS. All five subjects modeled possessed varying degrees of vertebral asymmetry, and helical flow was observed in four cases, suggesting that factors other than vertebral asymmetry influence mixing of the vertebral artery flow contributions. These preliminary studies verify that quantitative, MR imaging techniques in conjunction with subject-specific CFD models of healthy adult subjects may be used to characterize VBS hemodynamics and to predict flow features that have been related to the initiation and development of atherosclerosis in large arteries. This work represents an important first step towards applying this approach to study disease initiation and progression in the VBS. PMID:23251503

  20. ROBUST FAT SUPPRESSION AT 3T IN HIGH-RESOLUTION DIFFUSION-WEIGHTED SINGLE-SHOT EPI OF HUMAN BRAIN

    PubMed Central

    Sarlls, Joelle E.; Pierpaoli, Carlo; Talagala, S. Lalith; Luh, Wen-Ming

    2011-01-01

    Single-shot EPI is the most common acquisition technique for whole-brain diffusion tensor imaging (DTI) studies in vivo. Higher field MRI systems are readily available and advantageous for acquiring DTI due to increased signal. One of the practical issues for DTI with single-shot EPI at high field is incomplete fat suppression resulting in a chemically-shifted fat artifact within the brain image. Unsuppressed fat is especially detrimental in DTI because the diffusion coefficient of fat is two orders of magnitude lower than that of parenchyma, producing brighter appearing fat artifacts with greater diffusion weighting. In this work, several fat suppression techniques were tested alone and in combination with the goal of finding a method that provides robust fat suppression and can be utilized in high-resolution single-shot EPI DTI studies. Combination of chemical shift saturation with slice-select gradient reversal within a dual-spin-echo diffusion preparation period was found to provide robust fat suppression at 3T. PMID:21604298

  1. Visual Cortex Plasticity Following Peripheral Damage To The Visual System: fMRI Evidence.

    PubMed

    Lemos, João; Pereira, Daniela; Castelo-Branco, Miguel

    2016-10-01

    Over the last two decades, functional magnetic resonance imaging (fMRI) has become a powerful research method to investigate cortical visual plasticity. Abnormal fMRI response patterns have been occasionally detected in the visually deprived cortex of patients with bilateral retinal diseases. Controversy remains whether these observations indicate structural reorganization of the visual cortex or unmasking of previously silent cortico-cortical connections. In optic nerve diseases, there is weak evidence showing that early visual cortex seems to lack reorganization, while higher-order visual areas undergo plastic changes which may contribute to optimise visual function. There is however accumulating imaging evidence demonstrating trans-synaptic degeneration of the visual cortex in patients with disease of the anterior visual pathways. This may preclude the use of restorative treatments in these patients. Here, we review and update the body of fMRI evidence on visual cortical plasticity. PMID:27542799

  2. MRI diffusion tensor tracking of a new amygdalo-fusiform and hippocampo-fusiform pathway system in humans

    PubMed Central

    Smith, Charles D.; Lori, Nicolas F.; Akbudak, Erbil; Sorar, Ertugrul; Gultepe, Eren; Shimony, Joshua S.; McKinstry, Robert C.; Conturo, Thomas E.

    2009-01-01

    Purpose To use MRI diffusion-tensor tracking (DTT) to test for the presence of unknown neuronal fiber pathways interconnecting mid-fusiform cortex and anteromedial temporal lobe in humans. Such pathways are hypothesized to exist because these regions co-activate in functional MRI (fMRI) studies of emotion-valued faces and words, suggesting a functional link that could be mediated by neuronal connections. Materials and Methods 15 normal human subjects were studied using unbiased DTT approaches designed for probing unknown pathways, including whole-brain seeding and large pathway-selection volumes. Several quality-control steps verified the results. Results Parallel amygdalo-fusiform and hippocampo-fusiform pathways were found in all subjects. The pathways begin/end at mid-fusiform gyrus above the lateral occipitotemporal sulcus bilaterally. The superior pathway ends/begins at the superolateral amygdala. The inferior pathway crosses medially and ends/begins at the hippocampal head. The pathways are left-lateralized, with consistently larger cross-sectional area, higher anisotropy, and lower minimum eigenvalue (D-min) on the left, where D-min assesses intrinsic cross-fiber diffusivity independent of curvature. Conclusion A previously-undescribed pathway system interconnecting mid-fusiform region with amygdala/hippocampus has been revealed. This pathway system may be important for recognition, memory consolidation, and emotional modulation of face, object, and lexical information, which may be disrupted in conditions such as Alzheimer's disease. PMID:19418556

  3. RF Head Coil Design with Improved RF Magnetic Near-Fields Uniformity for Magnetic Resonance Imaging (MRI) Systems

    PubMed Central

    Sohn, Sung-Min; DelaBarre, Lance; Gopinath, Anand; Vaughan, John Thomas

    2015-01-01

    Higher magnetic field strength in magnetic resonance imaging (MRI) systems offers higher signal-to-noise ratio (SNR), contrast, and spatial resolution in MR images. However, the wavelength in ultra-high fields (7 tesla and beyond) becomes shorter than the human body at the Larmor frequency with increasing static magnetic field (B0) of MRI system. At short wavelengths, interference effect appears resulting in non- uniformity of the RF magnetic near-field (B1) over the subject and MR images may have spatially anomalous contrast. The B1 near-field generated by the transverse electromagnetic (TEM) RF coil’s microstrip line element has a maximum near the center of its length and falls off towards both ends. In this study, a double trapezoidal shaped microstrip transmission line element is proposed to obtain uniform B1 field distribution by gradual impedance variation. Two multi-channel RF head coils with uniform and trapezoidal shape elements were built and tested with a phantom at 7T MRI scanner for comparison. The simulation and experimental results show stronger and more uniform B1+ near-field with the trapezoidal shape. PMID:25892746

  4. An Open-Access, Very-Low-Field MRI System for Posture-Dependent 3He Human Lung Imaging

    PubMed Central

    Tsai, L. L.; Mair, R. W.; Rosen, M. S.; Patz, S.; Walsworth, R. L.

    2008-01-01

    We describe the design and operation of an open-access, very-low-field, magnetic resonance imaging (MRI) system for in-vivo hyperpolarized 3He imaging of the human lungs. This system permits the study of lung function in both horizontal and upright postures, a capability with important implications in pulmonary physiology and clinical medicine, including asthma and obesity. The imager uses a bi-planar B0 coil design that produces an optimized 65 G (6.5 mT) magnetic field for 3He MRI at 210 kHz. Three sets of bi-planar coils produce the x, y, and z magnetic field gradients while providing a 79-cm inter-coil gap for the imaging subject. We use solenoidal Q-spoiled RF coils for operation at low frequencies, and are able to exploit insignificant sample loading to allow for pre-tuning/matching schemes and for accurate pre-calibration of flip angles. We obtain sufficient SNR to acquire 2D 3He images with up to 2.8 mm resolution, and present initial 2D and 3D 3He images of human lungs in both supine and upright orientations. 1H MRI can also be performed for diagnostic and calibration reasons. PMID:18550402

  5. An open-access, very-low-field MRI system for posture-dependent 3He human lung imaging

    NASA Astrophysics Data System (ADS)

    Tsai, L. L.; Mair, R. W.; Rosen, M. S.; Patz, S.; Walsworth, R. L.

    2008-08-01

    We describe the design and operation of an open-access, very-low-field, magnetic resonance imaging (MRI) system for in vivo hyperpolarized 3He imaging of the human lungs. This system permits the study of lung function in both horizontal and upright postures, a capability with important implications in pulmonary physiology and clinical medicine, including asthma and obesity. The imager uses a bi-planar B0 coil design that produces an optimized 65 G (6.5 mT) magnetic field for 3He MRI at 210 kHz. Three sets of bi-planar coils produce the x, y, and z magnetic field gradients while providing a 79-cm inter-coil gap for the imaging subject. We use solenoidal Q-spoiled RF coils for operation at low frequencies, and are able to exploit insignificant sample loading to allow for pre-tuning/matching schemes and for accurate pre-calibration of flip angles. We obtain sufficient SNR to acquire 2D 3He images with up to 2.8 mm resolution, and present initial 2D and 3D 3He images of human lungs in both supine and upright orientations. 1H MRI can also be performed for diagnostic and calibration reasons.

  6. Epac, not PKA catalytic subunit, is required for 3T3-L1 preadipocyte differentiation.

    PubMed

    Ji, Zhenyu; Mei, Fang C; Cheng, Xiaodong

    2010-01-01

    Cyclic AMP plays a critical role in adipocyte differentiation and maturation. However, it is not clear which of the two intracellular cAMP receptors, exchange protein directly activated by cAMP/cAMP-regulated guanine nucleotide exchange factor or protein kinase A/cAMP-dependent protein kinase, is essential for cAMP-mediated adipocyte differentiation. In this study, we utilized a well-defined adipose differentiation model system, the murine preadipocyte line 3T3-L1, to address this issue. We showed that knocking down Epac expression in 3T3-L1 cells using lentiviral based small hairpin RNAs down-regulated peroxisome proliferator-activated receptor gamma expression and dramatically inhibited adipogenic conversion of 3T3-L1 cells while inhibiting PKA catalytic subunit activity by two mechanistically distinct inhibitors, heat stable protein kinase inhibitor and H89, had no effect on 3T3-L1 adipocyte differentiation. Moreover, cAMP analog selectively activating Epac was not able to stimulate adipogenic conversion. Our study demonstrated that while PKA catalytic activity is dispensable, activation of Epac is necessary but not sufficient for adipogenic conversion of 3T3-L1 cells. PMID:20036887

  7. Breast dosimetry in transverse and longitudinal field MRI-Linac radiotherapy systems

    SciTech Connect

    Mahdavi, S. R.; Esmaeeli, A. D.; Pouladian, M.; Sardari, D.; Bagheri, S.; Monfared, A. S.

    2015-02-15

    Purpose: In the framework of developing the integration of a MRI-Linac system, configurations of MRI-Linac units were simulated in order to improve the dose distribution in tangential breast radiotherapy using transverse and longitudinal magnetic field geometries of Lorentz force for both medial and lateral tangential fields. Methods: In this work, the GEANT4 Monte Carlo (MC) code was utilized to compare dose distributions in breast radiotherapy for Linac-MR systems in the transverse and longitudinal geometries within humanoid phantoms across a range of magnetic field strengths of 0.5 and 1.5 T. The dose increment due to scattering from the coils was investigated for both geometries as well. Computed tomography images of two patients were used for MC simulations. One patient had intact breast while the other was mastectomized. In the simulations, planning and methods of chest wall irradiation were similar to the actual clinical planning. Results: In a longitudinal geometry, the magnetic field is shown to restrict the lateral spread of secondary electrons to the lung, heart, and contralateral organs, which reduced the mean dose of the ipsilateral lung and heart by means of 17.2% and 6% at 1.5 T, respectively. The transverse configuration exhibits a significant increase in tissue interface effects, which increased dose buildup in the entrance regions of the lateral and medial tangent beams to the planning target volume (PTV) and improved dose homogeneity within the PTV. The improved relative average homogeneity index for two patients to the PTV at magnetic field strength of 1.5 T with respect to no magnetic field case evaluated was 11.79% and 34.45% in the LRBP and TRBP geometries, respectively. In both geometries, the simulations show significant mean dose reductions in the contralateral breast and chest wall skin, respectively, by a mean of 16.6% and 24.9% at 0.5 T and 17.2% and 28.1% at 1.5 T in the transverse geometry, and 10.56% and 14.6% at 0.5 T and 11.3% and

  8. A canine model of osteonecrosis of the femoral head induced by MRI guided argon helium cryotherapy system

    PubMed Central

    Wang, Dong; Sun, Lixin; Zhang, Huawu; Jiang, Honglei; Liu, Ming; Tian, Jing; Hu, Na; Sun, Shui

    2015-01-01

    Objective: This study is to identify the reliability of osteonecrosis of the femoral head (ONFH) modeling established by MRI guided argon helium cryotherapy system in beagles. Methods: A total of 15 beagles were used to establish the ONFH model. The left femoral heads of the beagles received two cycles of argon helium freezing-thawing under MRI guidance and were considered as experimental group while the right femoral heads received only one cycle of argon helium freezing-thawing and were considered as the control group. X-ray, MRI, general shape and histological examinations were performed so as to identify the effect of modeling. Results: At 4 week after modeling, MRI showed obvious bilateral hip joint effusion and marked femoral head bone marrow high signal. At 8 week after surgery, abnormal signal appeared in bilateral femoral heads. T1WI showed irregular patchy low signal, T2WI showed irregular mixed signals and the joint capsule effusion showed long T1 and T2 changes. Twelve weeks after operation, T1WI showed a low signal strip with clear boundary and T2WI showed intermediate signal. The changes of the left femoral heads were significant while compared with those of the right sides. The lacunae rates of femoral heads in the experimental group at 4, 8, and 12 week after surgery (40.75 ± 3.77, 57.46 ± 4.01, 50.27 ± 2.98) were higher than those in control group (30.08 ± 3.61, 49.43 ± 2.82, 40.56 ± 2.73). Conclusion: Canine model of ONFH was successfully established using an argon helium cryotherapy system. PMID:26550205

  9. [Experimental evaluation of the occupational exposure to static magnetic fields on a 3 T magnetic resonance scanner].

    PubMed

    Moro, Luca; Alabiso, Francesco; Parisoli, Francesco; Frigerio, Francesco

    2013-01-01

    The recent postponement until 31 October 2013 of the deadline for transposition of the EU Directive 2004/40/EC, concerning the minimum health requirementsfor the exposure of workers to the risks arising from electromagnetic fields between 0 and 300 GHz, keeps on suspending the Italian law which was aimed to implement the EU regulations on the occupational exposure to electromagnetic fields, including those generated by Magnetic Resonance Imaging (MRI) units. Waiting for the revision of the exposure limits proposed by the EU Directive taking into account results from new studies and evolution of knowledge, the time-weighted values of static magnetic field proposed by the Italian Ministry of Health (D.M 02/08/91) still survive as limits for worker's exposure. The comparison between the proposed thresholds and the time required to position patients allows to calculate how long the MRI staff can stay at different values of static magnetic field, i.e. the maximum workload of each worker. In order to evaluate more accurately how many time the members of MRI staff are near the magnet bore and the real value of worker's exposure to the static magnetic field during the handling of patients, a teslameter Metrolab THM1176-PDA was used. Personal exposure measurements on the radiologists and the radiographers who worked on a 3 T GE Healthcare Discovery 750 MR were carried out during the positioning of self-sufficient and collaborative patients. The sensor was worn at the chest level on the side that was nearest to the magnet bore. Results show wide variations occurring between individual working procedures concerning the handling of patients, especially during the initial position phase. The mean values of the time spent by radiographers inside the magnet room (B > 0.5 mT) to place the patient and to take him outside at the end of the exam were respectively 220 and 127 seconds. The mean value of the time spent by radiologists was 162 seconds when they had to insert a peripheral

  10. Coupled circuit numerical analysis of eddy currents in an open MRI system

    NASA Astrophysics Data System (ADS)

    Akram, Md. Shahadat Hossain; Terada, Yasuhiko; Keiichiro, Ishi; Kose, Katsumi

    2014-08-01

    We performed a new coupled circuit numerical simulation of eddy currents in an open compact magnetic resonance imaging (MRI) system. Following the coupled circuit approach, the conducting structures were divided into subdomains along the length (or width) and the thickness, and by implementing coupled circuit concepts we have simulated transient responses of eddy currents for subdomains in different locations. We implemented the Eigen matrix technique to solve the network of coupled differential equations to speed up our simulation program. On the other hand, to compute the coupling relations between the biplanar gradient coil and any other conducting structure, we implemented the solid angle form of Ampere’s law. We have also calculated the solid angle for three dimensions to compute inductive couplings in any subdomain of the conducting structures. Details of the temporal and spatial distribution of the eddy currents were then implemented in the secondary magnetic field calculation by the Biot-Savart law. In a desktop computer (Programming platform: Wolfram Mathematica 8.0®, Processor: Intel(R) Core(TM)2 Duo E7500 @ 2.93 GHz; OS: Windows 7 Professional; Memory (RAM): 4.00 GB), it took less than 3 min to simulate the entire calculation of eddy currents and fields, and approximately 6 min for X-gradient coil. The results are given in the time-space domain for both the direct and the cross-terms of the eddy current magnetic fields generated by the Z-gradient coil. We have also conducted free induction decay (FID) experiments of eddy fields using a nuclear magnetic resonance (NMR) probe to verify our simulation results. The simulation results were found to be in good agreement with the experimental results. In this study we have also conducted simulations for transient and spatial responses of secondary magnetic field induced by X-gradient coil. Our approach is fast and has much less computational complexity than the conventional electromagnetic numerical

  11. Coupled circuit numerical analysis of eddy currents in an open MRI system.

    PubMed

    Akram, Md Shahadat Hossain; Terada, Yasuhiko; Keiichiro, Ishi; Kose, Katsumi

    2014-08-01

    We performed a new coupled circuit numerical simulation of eddy currents in an open compact magnetic resonance imaging (MRI) system. Following the coupled circuit approach, the conducting structures were divided into subdomains along the length (or width) and the thickness, and by implementing coupled circuit concepts we have simulated transient responses of eddy currents for subdomains in different locations. We implemented the Eigen matrix technique to solve the network of coupled differential equations to speed up our simulation program. On the other hand, to compute the coupling relations between the biplanar gradient coil and any other conducting structure, we implemented the solid angle form of Ampere's law. We have also calculated the solid angle for three dimensions to compute inductive couplings in any subdomain of the conducting structures. Details of the temporal and spatial distribution of the eddy currents were then implemented in the secondary magnetic field calculation by the Biot-Savart law. In a desktop computer (Programming platform: Wolfram Mathematica 8.0®, Processor: Intel(R) Core(TM)2 Duo E7500 @ 2.93GHz; OS: Windows 7 Professional; Memory (RAM): 4.00GB), it took less than 3min to simulate the entire calculation of eddy currents and fields, and approximately 6min for X-gradient coil. The results are given in the time-space domain for both the direct and the cross-terms of the eddy current magnetic fields generated by the Z-gradient coil. We have also conducted free induction decay (FID) experiments of eddy fields using a nuclear magnetic resonance (NMR) probe to verify our simulation results. The simulation results were found to be in good agreement with the experimental results. In this study we have also conducted simulations for transient and spatial responses of secondary magnetic field induced by X-gradient coil. Our approach is fast and has much less computational complexity than the conventional electromagnetic numerical simulation

  12. Identifying brain systems for gaze orienting during reading: fMRI investigation of the Landolt paradigm

    PubMed Central

    Hillen, Rebekka; Günther, Thomas; Kohlen, Claudia; Eckers, Cornelia; van Ermingen-Marbach, Muna; Sass, Katharina; Scharke, Wolfgang; Vollmar, Josefine; Radach, Ralph; Heim, Stefan

    2013-01-01

    The Landolt reading paradigm was created in order to dissociate effects of eye movements and attention from lexical, syntactic, and sub-lexical processing. While previous eye-tracking and behavioral findings support the usefulness of the paradigm, it remains to be shown that the paradigm actually relies on the brain networks for occulomotor control and attention, but not on systems for lexical/syntactic/orthographic processing. Here, 20 healthy volunteers underwent fMRI scanning while reading sentences (with syntax) or unconnected lists of written stimuli (no syntax) consisting of words (with semantics) or pseudowords (no semantics). In an additional “Landolt reading” condition, all letters were replaced by closed circles, which should be scanned for targets (Landolt's rings) in a reading-like fashion from left to right. A conjunction analysis of all five conditions revealed the visual scanning network which involved bilateral visual cortex, premotor cortex, and superior parietal cortex, but which did not include regions for semantics, syntax, or orthography. Contrasting the Landolt reading condition with all other regions revealed additional involvement of the right superior parietal cortex (areas 7A/7P/7PC) and postcentral gyrus (area 2) involved in deliberate gaze shifting. These neuroimaging findings demonstrate for the first time that the linguistic and orthographic brain network can be dissociated from a pure gaze-orienting network with the Landolt paradigm. Consequently, the Landolt paradigm may provide novel insights into the contributions of linguistic and non-linguistic factors on reading failure e.g., in developmental dyslexia. PMID:23908615

  13. Advances in hybrid MR-PET at 3 T and 9.4 T in humans

    NASA Astrophysics Data System (ADS)

    Jon Shah, N.; Mauler, Jörg; Neuner, Irene; Oros-Peusquens, Ana-Maria; Romanzetti, Sandro; Vahedipour, Kaveh; Felder, Jörg; Celik, Avdo; Iida, Hidehiro; Langen, Karl-Josef; Herzog, Hans

    2013-02-01

    Hybrid MR-PET data acquisition in simultaneous mode confers a number of advantages at 3 T and 9.4 T. From an MR perspective, the potential for ultra-high resolution structural imaging is discussed and example images of the cerebellum with an isotropic resolution of 320 μm are presented. Further, metabolic imaging is discussed and high-resolution images of the sodium distribution are demonstrated. Examples of tumour imaging on a 3 T MR-PET system are included and discussed.

  14. Quantitative Clinical Evaluation of a Simultaneous PETI MRI Breast Imaging System

    SciTech Connect

    Schlyer D. J.; Schlyer, D.J.

    2013-04-03

    A prototype simultaneous PET-MRI breast scanner has been developed for conducting clinical studies with the goal of obtaining high resolution anatomical and functional information in the same scan which can lead to faster and better diagnosis, reduction of unwanted biopsies, and better patient care.

  15. Auditory Verb Perception Recruits Motor Systems in the Developing Brain: An fMRI Investigation

    ERIC Educational Resources Information Center

    James, Karin Harman; Maouene, Josita

    2009-01-01

    This study investigated neural activation patterns during verb processing in children, using fMRI (functional Magnetic Resonance Imaging). Preschool children (aged 4-6) passively listened to lists of verbs and adjectives while neural activation was measured. Findings indicated that verbs were processed differently than adjectives, as the verbs…

  16. Metal artifacts from titanium and steel screws in CT, 1.5T and 3T MR images of the tibial Pilon: a quantitative assessment in 3D

    PubMed Central

    Radzi, Shairah; Cowin, Gary; Robinson, Mark; Pratap, Jit; Volp, Andrew; Schuetz, Michael A.

    2014-01-01

    Radiographs are commonly used to assess articular reduction of the distal tibia (pilon) fractures postoperatively, but may reveal malreductions inaccurately. While magnetic resonance imaging (MRI) and computed tomography (CT) are potential three-dimensional (3D) alternatives they generate metal-related artifacts. This study aims to quantify the artifact size from orthopaedic screws using CT, 1.5T and 3T MRI data. Three screws were inserted into one intact human cadaver ankle specimen proximal to and along the distal articular surface, then CT, 1.5T and 3T MRI scanned. Four types of screws were investigated: titanium alloy (TA), stainless steel (SS) (Ø =3.5 mm), cannulated TA (CTA) and cannulated SS (CSS) (Ø =4.0 mm, Ø empty core =2.6 mm). 3D artifact models were reconstructed using adaptive thresholding. The artifact size was measured by calculating the perpendicular distance from the central screw axis to the boundary of the artifact in four anatomical directions with respect to the distal tibia. The artifact sizes (in the order of TA, SS, CTA and CSS) from CT were 2.0, 2.6, 1.6 and 2.0 mm; from 1.5T MRI they were 3.7, 10.9, 2.9, and 9 mm; and 3T MRI they were 4.4, 15.3, 3.8, and 11.6 mm respectively. Therefore, CT can be used as long as the screws are at a safe distance of about 2 mm from the articular surface. MRI can be used if the screws are at least 3 mm away from the articular surface except for SS and CSS. Artifacts from steel screws were too large thus obstructed the pilon from being visualised in MRI. Significant differences (P<0.05) were found in the size of artifacts between all imaging modalities, screw types and material types, except 1.5T versus 3T MRI for the SS screws (P=0.063). CTA screws near the joint surface can improve postoperative assessment in CT and MRI. MRI presents a favourable non-ionising alternative when using titanium hardware. Since these factors may influence the quality of postoperative assessment, potential improvements in

  17. Metal artifacts from titanium and steel screws in CT, 1.5T and 3T MR images of the tibial Pilon: a quantitative assessment in 3D.

    PubMed

    Radzi, Shairah; Cowin, Gary; Robinson, Mark; Pratap, Jit; Volp, Andrew; Schuetz, Michael A; Schmutz, Beat

    2014-06-01

    Radiographs are commonly used to assess articular reduction of the distal tibia (pilon) fractures postoperatively, but may reveal malreductions inaccurately. While magnetic resonance imaging (MRI) and computed tomography (CT) are potential three-dimensional (3D) alternatives they generate metal-related artifacts. This study aims to quantify the artifact size from orthopaedic screws using CT, 1.5T and 3T MRI data. Three screws were inserted into one intact human cadaver ankle specimen proximal to and along the distal articular surface, then CT, 1.5T and 3T MRI scanned. Four types of screws were investigated: titanium alloy (TA), stainless steel (SS) (Ø =3.5 mm), cannulated TA (CTA) and cannulated SS (CSS) (Ø =4.0 mm, Ø empty core =2.6 mm). 3D artifact models were reconstructed using adaptive thresholding. The artifact size was measured by calculating the perpendicular distance from the central screw axis to the boundary of the artifact in four anatomical directions with respect to the distal tibia. The artifact sizes (in the order of TA, SS, CTA and CSS) from CT were 2.0, 2.6, 1.6 and 2.0 mm; from 1.5T MRI they were 3.7, 10.9, 2.9, and 9 mm; and 3T MRI they were 4.4, 15.3, 3.8, and 11.6 mm respectively. Therefore, CT can be used as long as the screws are at a safe distance of about 2 mm from the articular surface. MRI can be used if the screws are at least 3 mm away from the articular surface except for SS and CSS. Artifacts from steel screws were too large thus obstructed the pilon from being visualised in MRI. Significant differences (P<0.05) were found in the size of artifacts between all imaging modalities, screw types and material types, except 1.5T versus 3T MRI for the SS screws (P=0.063). CTA screws near the joint surface can improve postoperative assessment in CT and MRI. MRI presents a favourable non-ionising alternative when using titanium hardware. Since these factors may influence the quality of postoperative assessment, potential improvements in

  18. Grey and White Matter Magnetisation Transfer Ratio Measurements in the Lumbosacral Enlargement: A Pilot In Vivo Study at 3T

    PubMed Central

    Ugorji, Chinyere O.; Samson, Rebecca S.; Liechti, Martina D.; Panicker, Jalesh N.; Miller, David H.; Wheeler-Kingshott, Claudia A. M.; Yiannakas, Marios C.

    2015-01-01

    Magnetisation transfer (MT) imaging of the central nervous system has provided further insight into the pathophysiology of neurological disease. However, the use of this method to study the lower spinal cord has been technically challenging, despite the important role of this region, not only for motor control of the lower limbs, but also for the neural control of lower urinary tract, sexual and bowel functions. In this study, the feasibility of obtaining reliable grey matter (GM) and white matter (WM) magnetisation transfer ratio (MTR) measurements within the lumbosacral enlargement (LSE) was investigated in ten healthy volunteers using a clinical 3T MRI system. The mean cross-sectional area of the LSE (LSE-CSA) and the mean GM area (LSE-GM-CSA) were first obtained by means of image segmentation and tissue-specific (i.e. WM and GM) MTR measurements within the LSE were subsequently obtained. The reproducibility of the segmentation method and MTR measurements was assessed from repeated measurements and their % coefficient of variation (%COV). Mean (± SD) LSE-CSA across 10 healthy subjects was 59.3 (± 8.4) mm2 and LSE-GM-CSA was 17.0 (± 3.1) mm2. The mean intra- and inter-rater % COV for measuring the LSE-CSA were 0.8% and 2.3%, respectively and for the LSE-GM-CSA were 3.8% and 5.4%, respectively. Mean (± SD) WM-MTR was 43.2 (± 4.4) and GM-MTR was 40.9 (± 4.3). The mean scan-rescan % COV for measuring WM-MTR was 4.6% and for GM-MTR was 3.8%. Using a paired t-test, a statistically significant difference was identified between WM-MTR and GM-MTR in the LSE (p<0.0001). This pilot study has shown that it is possible to obtain reliable tissue-specific MTR measurements within the LSE using a clinical MR system at 3T. The MTR acquisition and analysis protocol presented in this study can be used in future investigations of intrinsic spinal cord diseases that affect the LSE. PMID:26230729

  19. Teleoperation System with Hybrid Pneumatic-Piezoelectric Actuation for MRI-Guided Needle Insertion with Haptic Feedback

    PubMed Central

    Shang, Weijian; Su, Hao; Li, Gang; Fischer, Gregory S.

    2014-01-01

    This paper presents a surgical master-slave tele-operation system for percutaneous interventional procedures under continuous magnetic resonance imaging (MRI) guidance. This system consists of a piezoelectrically actuated slave robot for needle placement with integrated fiber optic force sensor utilizing Fabry-Perot interferometry (FPI) sensing principle. The sensor flexure is optimized and embedded to the slave robot for measuring needle insertion force. A novel, compact opto-mechanical FPI sensor interface is integrated into an MRI robot control system. By leveraging the complementary features of pneumatic and piezoelectric actuation, a pneumatically actuated haptic master robot is also developed to render force associated with needle placement interventions to the clinician. An aluminum load cell is implemented and calibrated to close the impedance control loop of the master robot. A force-position control algorithm is developed to control the hybrid actuated system. Teleoperated needle insertion is demonstrated under live MR imaging, where the slave robot resides in the scanner bore and the user manipulates the master beside the patient outside the bore. Force and position tracking results of the master-slave robot are demonstrated to validate the tracking performance of the integrated system. It has a position tracking error of 0.318mm and sine wave force tracking error of 2.227N. PMID:25126446

  20. Fast 1.5 T chest MRI for the assessment of interstitial lung disease extent secondary to systemic sclerosis.

    PubMed

    Pinal-Fernandez, Iago; Pineda-Sanchez, Victor; Pallisa-Nuñez, Esther; Simeon-Aznar, Carmen Pilar; Selva-O'Callaghan, Albert; Fonollosa-Pla, Vicente; Vilardell-Tarres, Miquel

    2016-09-01

    This study aims to evaluate the utility of magnetic resonance imaging (MRI) to assess interstitial lung disease (ILD) extent in patients with systemic sclerosis (SSc). Patients with SSc and varying degrees of ILD with a high-resolution computed tomography (HRCT), pulmonary function tests (PFTs), and a chest MRI containing an ultrafast SE sequence performed less than 1 year apart were included in the study. Wells global disease extent and Goh's staging algorithm were used to measure and categorize ILD both for MRI and HRCT. Correlation and diagnostic performance of MRI compared with HRCT and PFTs were calculated. Eighteen SSc patients were studied. MRI showed a good performance to detect ILD (AUC = 0.96) and was correlated with forced vital capacity (r = -0.60, p = 0.01), diffusing capacity of the lung for carbon monoxide (r = -0.79, p = 0.04), and also with HRCT (r = 0.85, p < 0.001), but MRI extent values were consistently lower than HRCT and, thus, not directly comparable. Goh's algorithm using HRCT and transformed to be used with MRI showed a good agreement (kappa = 0.73, p < 0.001) and MRI-measured ILD extent presented good intra-observer (ICC = 0.86) and inter-observer (ICC = 0.90) reliability. In SSc patients, MRI proved to be a good technique to detect and categorize ILD extent compared with HRCT, suggesting that it may be a valuable x-ray sparing technique for selected cases. PMID:27107755

  1. A low-cost and versatile system for projecting wide-field visual stimuli within fMRI scanners.

    PubMed

    Greco, V; Frijia, F; Mikellidou, K; Montanaro, D; Farini, A; D'Uva, M; Poggi, P; Pucci, M; Sordini, A; Morrone, M C; Burr, D C

    2016-06-01

    We have constructed and tested a custom-made magnetic-imaging-compatible visual projection system designed to project on a very wide visual field (~80°). A standard projector was modified with a coupling lens, projecting images into the termination of an image fiber. The other termination of the fiber was placed in the 3-T scanner room with a projection lens, which projected the images relayed by the fiber onto a screen over the head coil, viewed by a participant wearing magnifying goggles. To validate the system, wide-field stimuli were presented in order to identify retinotopic visual areas. The results showed that this low-cost and versatile optical system may be a valuable tool to map visual areas in the brain that process peripheral receptive fields. PMID:26092392

  2. Resting state BOLD functional connectivity at 3T: spin echo versus gradient echo EPI.

    PubMed

    Chiacchiaretta, Piero; Ferretti, Antonio

    2015-01-01

    Previous evidence showed that, due to refocusing of static dephasing effects around large vessels, spin-echo (SE) BOLD signals offer an increased linearity and promptness with respect to gradient-echo (GE) acquisition, even at low field. These characteristics suggest that, despite the reduced sensitivity, SE fMRI might also provide a potential benefit when investigating spontaneous fluctuations of brain activity. However, there are no reports on the application of spin-echo fMRI for connectivity studies at low field. In this study we compared resting state functional connectivity as measured with GE and SE EPI sequences at 3T. Main results showed that, within subject, the GE sensitivity is overall larger with respect to that of SE, but to a less extent than previously reported for activation studies. Noteworthy, the reduced sensitivity of SE was counterbalanced by a reduced inter-subject variability, resulting in comparable group statistical connectivity maps for the two sequences. Furthermore, the SE method performed better in the ventral portion of the default mode network, a region affected by signal dropout in standard GE acquisition. Future studies should clarify if these features of the SE BOLD signal can be beneficial to distinguish subtle variations of functional connectivity across different populations and/or treatments when vascular confounds or regions affected by signal dropout can be a critical issue. PMID:25749359

  3. SU-E-J-205: Dose Distribution Differences Caused by System Related Geometric Distortion in MRI-Guided Radiation Treatment System

    SciTech Connect

    Wang, J; Yang, J; Wen, Z; Marshall, S; Court, L; Ibbott, G

    2015-06-15

    Purpose: MRI has superb soft tissue contrast but is also known for geometric distortions. The concerns and uncertainty about MRI’s geometric distortion have contributed to the hesitation of using only MRI for simulation in radiation therapy. There are two major categories of geometric distortion in MRI; system related and patient related. In this presentation, we studied the impact of system-related geometric distortion on dose distribution in a digital body phantom under an MR-Linac environment. Methods: Residual geometric distortion (after built-in geometric correction) was modeled based on phantom measurements of the system-related geometric distortions of a MRI scanner of a combined MR guided Radiation Therapy (MRgRT) system. A digital oval shaped phantom (40×25 cm) as well as one ellipsoid shaped tumor volume was created to simulate a simplified human body. The simulated tumor volume was positioned at several locations between the isocenter and the body surface. CT numbers in HUs that approximate soft tissue and tumor were assigned to the respective regions in the digital phantom. To study the effect of geometric distortion caused by system imperfections, an IMRT plan was optimized with the distorted image set with the B field. Dose distributions were re-calculated on the undistorted image set with the B field (as in MR-Linac). Results: The maximum discrepancies in both body contour and tumor boundary was less than 2 mm, which leads to small dose distribution change. For the target in the center, coverage was reduced from 98.8% (with distortion) to 98.2%; for the other peripheral target coverage was reduced from 98.4% to 95.9%. Conclusion: System related geometric distortions over the 40×25 area were within 2mm and the resulted dosimetric effects were minor for the two tumor locations in the phantom. Patient study will be needed for further investigation. The authors received a corporate research grant from Elekta.

  4. Gradiometer Using Middle Loops as Sensing Elements in a Low-Field SQUID MRI System

    NASA Technical Reports Server (NTRS)

    Penanen, Konstantin; Hahn, Inseob; Ho Eom, Byeong

    2009-01-01

    A new gradiometer scheme uses middle loops as sensing elements in lowfield superconducting quantum interference device (SQUID) magnetic resonance imaging (MRI). This design of a second order gradiometer increases its sensitivity and makes it more uniform, compared to the conventional side loop sensing scheme with a comparable matching SQUID. The space between the two middle loops becomes the imaging volume with the enclosing cryostat built accordingly.

  5. Real-time image reconstruction and display system for MRI using a high-speed personal computer.

    PubMed

    Haishi, T; Kose, K

    1998-09-01

    A real-time NMR image reconstruction and display system was developed using a high-speed personal computer and optimized for the 32-bit multitasking Microsoft Windows 95 operating system. The system was operated at various CPU clock frequencies by changing the motherboard clock frequency and the processor/bus frequency ratio. When the Pentium CPU was used at the 200 MHz clock frequency, the reconstruction time for one 128 x 128 pixel image was 48 ms and that for the image display on the enlarged 256 x 256 pixel window was about 8 ms. NMR imaging experiments were performed with three fast imaging sequences (FLASH, multishot EPI, and one-shot EPI) to demonstrate the ability of the real-time system. It was concluded that in most cases, high-speed PC would be the best choice for the image reconstruction and display system for real-time MRI. PMID:9740739

  6. Real-Time Image Reconstruction and Display System for MRI Using a High-Speed Personal Computer

    NASA Astrophysics Data System (ADS)

    Haishi, Tomoyuki; Kose, Katsumi

    1998-09-01

    A real-time NMR image reconstruction and display system was developed using a high-speed personal computer and optimized for the 32-bit multitasking Microsoft Windows 95 operating system. The system was operated at various CPU clock frequencies by changing the motherboard clock frequency and the processor/bus frequency ratio. When the Pentium CPU was used at the 200 MHz clock frequency, the reconstruction time for one 128 × 128 pixel image was 48 ms and that for the image display on the enlarged 256 × 256 pixel window was about 8 ms. NMR imaging experiments were performed with three fast imaging sequences (FLASH, multishot EPI, and one-shot EPI) to demonstrate the ability of the real-time system. It was concluded that in most cases, high-speed PC would be the best choice for the image reconstruction and display system for real-time MRI.

  7. Functional MRI localisation of central nervous system regions associated with volitional inspiration in humans

    PubMed Central

    Evans, Karleyton C; Shea, Steven A; Saykin, Andrew J

    1999-01-01

    Functional magnetic resonance imaging (fMRI) provides a means of studying neuronal circuits that control respiratory muscles in humans with better spatial and temporal resolution than in previous positron emission tomography (PET) studies. Whole brain blood oxygenation level-dependent (BOLD) changes determined by fMRI were used to identify areas of neuronal activation associated with volitional inspiration in five healthy men. Four series of scans of each subject were acquired during voluntary breathing (active task) and mechanical ventilation (passive task). Ventilation and end-tidal PCO2 were similar between tasks. Scan data were re-aligned to correct for movement artefacts and cross-referenced breath by breath to respiratory data for selective averaging of inspiratory and expiratory images. Group analysis identified significant increases in the fMRI signal with volitional inspiration in the superior motor cortex, premotor cortex and supplementary motor area at loci similar to those detected in earlier studies that used PET. Additional regions activated by volitional inspiration included inferolateral sensorimotor cortex, prefrontal cortex and striatum (these foci were only revealed by PET under significant inspiratory load). This study represents the first synchronised breath-by-breath analysis of respiratory-related neuronal activity with whole brain imaging in humans. Temporal resolution is sufficient to distinguish individual breaths at a normal breathing frequency. PMID:10523407

  8. Signal changes on MRI and increases in reactive microgliosis, astrogliosis, and iron in the putamen of two patients with multiple system atrophy.

    PubMed Central

    Schwarz, J; Weis, S; Kraft, E; Tatsch, K; Bandmann, O; Mehraein, P; Vogl, T; Oertel, W H

    1996-01-01

    A correlation of clinical, MRI, and neuropathological data is reported in two patients with multiple system atrophy (MSA). On MRI, patient 1 showed striatal atrophy, reduction of T2 relaxation times within most of the putamen, and a band of hyperintense signal changes in the lateral putamen. In patient 2, MRI disclosed only shortening of the T2 signal in the putamen. Immunohistochemistry showed pronounced reactive microgliosis and astrogliosis in the affected brain regions. In patient 1, the area with the most pronounced microgliosis and astrogliosis most likely correlated with the area of hyperintense signal changes on MRI. This area also contained the highest amount of ferric iron, which was increased in the putamen of patient 1 but not patient 2. It is unlikely that the hypointense signal changes in the putamen are due to an increase of iron alone. Reactive microglial and astroglial cells may play a part in the pathogenesis of MSA. Images PMID:8558163

  9. An Open-Source Hardware and Software System for Acquisition and Real-Time Processing of Electrophysiology during High Field MRI

    PubMed Central

    Purdon, Patrick L.; Millan, Hernan; Fuller, Peter L.; Bonmassar, Giorgio

    2008-01-01

    Simultaneous recording of electrophysiology and functional magnetic resonance imaging (fMRI) is a technique of growing importance in neuroscience. Rapidly evolving clinical and scientific requirements have created a need for hardware and software that can be customized for specific applications. Hardware may require customization to enable a variety of recording types (e.g., electroencephalogram, local field potentials, or multi-unit activity) while meeting the stringent and costly requirements of MRI safety and compatibility. Real-time signal processing tools are an enabling technology for studies of learning, attention, sleep, epilepsy, neurofeedback, and neuropharmacology, yet real-time signal processing tools are difficult to develop. We describe an open source system for simultaneous electrophysiology and fMRI featuring low-noise (< 0.6 uV p-p input noise), electromagnetic compatibility for MRI (tested up to 7 Tesla), and user-programmable real-time signal processing. The hardware distribution provides the complete specifications required to build an MRI-compatible electrophysiological data acquisition system, including circuit schematics, print circuit board (PCB) layouts, Gerber files for PCB fabrication and robotic assembly, a bill of materials with part numbers, data sheets, and vendor information, and test procedures. The software facilitates rapid implementation of real-time signal processing algorithms. This system has used in human EEG/fMRI studies at 3 and 7 Tesla examining the auditory system, visual system, sleep physiology, and anesthesia, as well as in intracranial electrophysiological studies of the non-human primate visual system during 3 Tesla fMRI, and in human hyperbaric physiology studies at depths of up to 300 feet below sea level. PMID:18761038

  10. Segmentation of fat in MRI using a preparatory pair of rectangular RF pulses of opposite direction.

    PubMed

    Yee, Seonghwan

    2016-05-01

    A radiofrequency (RF) pulse-based MRI method is introduced as a novel fat (or water) segmentation method that, unlike the mostly used Dixon's method, does not depend on the echo times. A pair of rectangular RF pulses of opposite direction, when the duration of its rectangular pulse and the off-resonance of its carrier frequency are set to specific values, is proposed as a preparatory RF pulse to be used for the quantitative fat segmentation. The optimal duration of its rectangular pulse and its specific off-resonance were first determined theoretically. Then, such pair of rectangular pulses of opposite direction (PROD pulse) was applied in imaging a few phantoms and volunteers. During the imaging experiments, MRI images were dynamically acquired with the PROD pulse while its carrier frequency was varied in a predefined off-resonance range. By analyzing the dynamically acquired signal changes, the theoretical properties of the PROD pulse were confirmed and the utility of the PROD pulse for the fat segmentation was verified. All MRI scans were performed in a clinical 3T system. The PROD pulse, if the duration of each rectangular pulse was set to 1.66ms and its carrier frequency was set to a specific off-resonance (e.g. ±223.5Hz, or -670.5Hz) in 3T, was effective in optimally modulating MRI signals to be used for the fat-water segmentation. Therefore, the PROD pulse can successfully be used as a preparatory RF pulse in MRI to achieve effective fat (or water) segmentation in MRI. PMID:26612077

  11. A CAD system based on multi-parametric analysis for cancer prostate detection on DCE-MRI

    NASA Astrophysics Data System (ADS)

    Mazzetti, Simone; De Luca, Massimo; Bracco, Christian; Vignati, Anna; Giannini, Valentina; Stasi, Michele; Russo, Filippo; Armando, Enrico; Agliozzo, Silvano; Regge, Daniele

    2011-03-01

    Computer-aided diagnosis (CAD) systems using dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) data may be developed to help localize prostate cancer and guide biopsy, avoiding random sampling of the whole gland. The purpose of this study is to present a DCE-MRI CAD system, which calculates the likelihood of malignancy in a given area of the prostate by combining model-based and model-free parameters. The dataset includes 10 patients with prostate cancer, with a total of 13 foci of adenocarcinoma. The post-processing is based on the following steps: testing of registration quality, noise filtering, and extracting the proposed features needed to the CAD. Parameters with the best performance in discriminating between normal and cancer regions are selected by computing the area under the ROC curve, and by evaluating the correlation between pairs of features. A 6-dimensional parameters vector is generated for each pixel and fed into a Bayesian classifier, in which the output is the probability of malignancy. The classification performance is estimated using the leave-one-out method. The resulting area under the ROC curve is 0.899 (95%CI:0.893-0.905); sensitivity and specificity are 82.4% and 82.1% respectively at the best cut-off point (0.352). Preliminary results show that the system is accurate in detecting areas of the gland that are involved by tumor. Further studies will be necessary to confirm these promising preliminary results.

  12. An MRI-compatible three-axis focused ultrasound system for performing drug delivery studies in small animal models

    NASA Astrophysics Data System (ADS)

    Waspe, Adam C.; Chau, Anthony; Kukic, Aleksandra; Chopra, Rajiv; Hynynen, Kullervo

    2010-03-01

    The objective of this work was to develop an MRI-compatible focused-ultrasound system for preclinical research in small animal models capable of delivering exposures with high spatial precision in a closed-bore clinical imager. A computer-controlled, non-magnetic, 3-axis positioning system was developed using ceramic actuators and linear encoders to position a focused-ultrasound transducer within a clinical MR scanner. Registration between ultrasound and MRI coordinates involves sonicating a tissue-mimicking ultrasound phantom and measuring the centroid of the thermal focal zone with MR thermometry. Linear distances of 5 cm with a positioning resolution of 0.1 mm were achieved for each axis. The system was operated successfully in MR imagers from different vendors at both 1.5 and 3.0 T, and simultaneous motion and imaging was possible without any mutual interference or imaging artifacts. Initial experiments involving opening of the blood-brain barrier at specific targets within the brain suggest a targeting accuracy of 0.4 mm.

  13. Musculoskeletal MRI.

    PubMed

    Sage, Jaime E; Gavin, Patrick

    2016-05-01

    MRI has the unique ability to detect abnormal fluid content, and is therefore unparalleled in its role of detection, diagnosis, prognosis, treatment planning and follow-up evaluation of musculoskeletal disease. MRI in companion animals should be considered in the following circumstances: a definitive diagnosis cannot be made on radiographs; a patient is nonresponsive to medical or surgical therapy; prognostic information is desired; assessing surgical margins and traumatic and/or infectious joint and bone disease; ruling out subtle developmental or early aggressive bone lesions. The MRI features of common disorders affecting the shoulder, elbow, stifle, carpal, and tarsal joints are included in this chapter. PMID:26928749

  14. MANTIS-3T: a low-cost light-weight turreted spectral sensor

    NASA Astrophysics Data System (ADS)

    Dirbas, Joseph; Mireles, Tony; Davies, Adam; Schoonmaker, Jon; Lovett, Alexander R.

    2005-05-01

    PAR Government Systems Corporation (PAR) has developed a low-cost, low-weight, low-profile, mission-adaptable multispectral imaging system utilizing mass-produced commercial off-the-shelf (COTS) components, for the purpose of providing continuous real-time multispectral data collection for mine counter measures (MCM), intelligence, surveillance, and reconnaissance study applications aboard low-cost, light manned and unmanned aircraft platforms. The mission adaptable narrowband tunable imaging system (MANTIS) has been integrated into a small 5" turret currently employed on a variety of small UAV platforms. The turreted MANTIS (MANTIS-3T) provides remote operator control to adjust gain, exposure, and pointing commands. The MANTIS-3T sensor will be used to collect imagery over calibration and test targets. Integration strategies and planned data collections are presented.

  15. A DNA hybridization system for labeling of neural stem cells with SPIO nanoparticles for MRI monitoring post-transplantation.

    PubMed

    Egawa, Edgar Y; Kitamura, Narufumi; Nakai, Ryusuke; Arima, Yusuke; Iwata, Hiroo

    2015-06-01

    Neural stem cells (NSCs) demonstrate encouraging results in cell replacement therapy for neurodegenerative disorders and traumatic injury in the central nervous system. Monitor the survival and migration of transplanted cells would provide us important information concerning the performance and integration of the graft during the therapy time course. Magnetic resonance imaging (MRI) allow us to monitor the transplanted cells in a non-invasive way. The only requirement is to use an appropriate contrast agent to label the transplanted cells. Superparamagnetic iron oxide (SPIO) nanoparticles are one of the most commonly used contrast agent for MRI detection of transplanted cells. SPIO nanoparticles demonstrated to be suitable for labeling several types of cells including NSCs. However, the current methods for SPIO labeling are non-specific, depending mostly on electrostatic interactions, demanding relatively high SPIO concentration, and long incubation time, which can affect the viability of cells. In this study, we propose a specific and relatively fast method to label NSCs with SPIO nanoparticles via DNA hybridization. Two short single stranded DNAs (ssDNAs), oligo[dT]20 and oligo[dA]20 were conjugated with a lipid molecule and SPIO nanoparticle respectively. The labeling process comprises two simple steps; first the cells are modified to present oligo[dT]20 ssDNA on the cell surface, then the oligo[dA]20 ssDNA conjugated with SPIO nanoparticles are presented to the modified cells to allow the oligo[dT]20-oligo[dA]20 hybridization. The method showed to be non-toxic at concentrations up to 50 μg/mL oligo[dA]20-SPIO nanoparticles. Presence of SPIO nanoparticles at cell surface and cell cytoplasm was verified by transmission electron microscopy (TEM). SPIO labeling via DNA hybridization demonstrated to not interfere on NSCs proliferation, aggregates formation, and differentiation. NSCs labeled with SPIO nanoparticles via DNA hybridization system were successfully

  16. SU-E-J-210: Characterizing Tissue Equivalent Materials for the Development of a Dual MRI-CT Heterogeneous Anthropomorphic Phantom Designed Specifically for MRI Guided Radiotherapy Systems

    SciTech Connect

    Steinmann, A; Stafford, R; Yung, J; Followill, D

    2015-06-15

    Purpose: MRI guided radiotherapy (MRIgRT) is an emerging technology which will eventually require a proficient quality auditing system. Due to different principles in which MR and CT acquire images, there is a need for a multi-imaging-modality, end-to-end QA phantom for MRIgRT. The purpose of this study is to identify lung, soft tissue, and tumor equivalent substitutes that share similar human-like CT and MR properties (i.e. Hounsfield units and relaxation times). Methods: Materials of interested such as common CT QA phantom materials, and other proprietary gels/silicones from Polytek, SmoothOn, and CompositeOne were first scanned on a GE 1.5T Signa HDxT MR. Materials that could be seen on both T1-weighted and T2-weighted images were then scanned on a GE Lightspeed RT16 CT simulator and a GE Discovery 750HD CT scanner and their HU values were then measured. The materials with matching HU values of lung (−500 to −700HU), muscle (+40HU) and soft tissue (+100 to +300HU) were further scanned on GE 1.5T Signa HDx to measure their T1 and T2 relaxation times from varying parameters of TI and TE. Results: Materials that could be visualized on T1-weighted and T2-weighted images from a 1.5T MR unit and had an appropriate average CT number, −650, −685, 46,169, and 168 HUs were: compressed cork saturated with water, Polytek Platsil™ Gel-00 combined with mini styrofoam balls, radiotherapy bolus material, SmoothOn Dragon-Skin™ and SmoothOn Ecoflex™, respectively. Conclusion: Post processing analysis is currently being performed to accurately map T1 and T2 values for each material tested. From previous MR visualization and CT examinations it is expected that Dragon-Skin™, Ecoflex™ and bolus will have values consistent with tissue and tumor substitutes. We also expect compressed cork statured with water, and Polytek™-styrofoam combination to have approximate T1 and T2 values suitable for lung-equivalent materials.

  17. Heart MRI

    MedlinePlus

    ... an imaging method that uses powerful magnets and radio waves to create pictures of the heart. It does ... radiation involved in MRI. The magnetic fields and radio waves used during the scan have not been shown ...

  18. 3DQRS: A method to obtain reliable QRS complex detection within high field MRI using 12-lead ECG traces

    PubMed Central

    Gregory, T. Stan; Schmidt, Ehud J.; Zhang, Shelley Hualei; Tse, Zion Tsz Ho

    2014-01-01

    Purpose To develop a technique that accurately detects the QRS complex in 1.5T, 3T and 7T MRI scanners.” Theory and Methods During early systole, blood is rapidly ejected into the aortic arch, traveling perpendicular to the MRI’s main field, which produces a strong voltage (VMHD) that eclipses the QRS complex. Greater complexity arises in arrhythmia patients, since VMHD can vary between sinus-rhythm and arrhythmic beats. The 3DQRS method uses a kernel consisting of 6 ECG precordial leads, compiled from a 12-lead ECG performed outside the magnet. The kernel is cross-correlated with signals acquired inside the MRI in order to identify the QRS complex in real time. The 3DQRS method was evaluated against a Vectorcardiogram-based (VCG) approach in 2 Premature Ventricular Contraction (PVC) and 2 Atrial Fibrillation (AF) patients, a healthy exercising athlete and 8 healthy volunteers, within 1.5T and 3T MRIs, using a prototype MRI-conditional 12 lead ECG system. 2 volunteers were recorded at 7T using a Holter recorder. Results For QRS complex detection, 3DQRS subject-averaged sensitivity levels, relative to VCG were: 1.5T (100% vs. 96.7%), 3T (98.9% vs. 92.2%), 7T (96.2% vs. 77.7%). Conclusions The 3DQRS method was shown to be more effective in cardiac gating than a conventional VCG-based method. PMID:24453116

  19. Japan Meteorological Agency/Meteorological Research Institute-Coupled Prediction System version 1 (JMA/MRI-CPS1) for operational seasonal forecasting

    NASA Astrophysics Data System (ADS)

    Takaya, Yuhei; Yasuda, Tamaki; Fujii, Yosuke; Matsumoto, Satoshi; Soga, Taizo; Mori, Hirotoshi; Hirai, Masayuki; Ishikawa, Ichiro; Sato, Hitoshi; Shimpo, Akihiko; Kamachi, Masafumi; Ose, Tomoaki

    2016-04-01

    This paper describes the operational seasonal prediction system of the Japan Meteorological Agency (JMA), the Japan Meteorological Agency/Meteorological Research Institute-Coupled Prediction System version 1 (JMA/MRI-CPS1), which was in operation at JMA during the period between February 2010 and May 2015. The predictive skill of the system was assessed with a set of retrospective seasonal predictions (reforecasts) covering 30 years (1981-2010). JMA/MRI-CPS1 showed reasonable predictive skill for the El Niño-Southern Oscillation, comparable to the skills of other state-of-the-art systems. The one-tiered approach adopted in JMA/MRI-CPS1 improved its overall predictive skills for atmospheric predictions over those of the two-tiered approach of the previous uncoupled system. For 3-month predictions with a 1-month lead, JMA/MRI-CPS1 showed statistically significant skills in predicting 500-hPa geopotential height and 2-m temperature in East Asia in most seasons; thus, it is capable of providing skillful seasonal predictions for that region. Furthermore, JMA/MRI-CPS1 was superior overall to the previous system for atmospheric predictions with longer (4-month) lead times. In particular, JMA/MRI-CPS1 was much better able to predict the Asian Summer Monsoon than the previous two-tiered system. This enhanced performance was attributed to the system's ability to represent atmosphere-ocean coupled variability over the Indian Ocean and the western North Pacific from boreal winter to summer following winter El Niño events, which in turn influences the East Asian summer climate through the Pacific-Japan teleconnection pattern. These substantial improvements obtained by using an atmosphere-ocean coupled general circulation model underpin its success in providing more skillful seasonal forecasts on an operational basis.

  20. SWIFT-MRI imaging and quantitative assessment of IONPs in murine tumors following intra-tumor and systemic delivery

    NASA Astrophysics Data System (ADS)

    Reeves, Russell; Petryk, Alicia A.; Kastner, Elliot J.; Zhang, Jinjin; Ring, Hattie; Garwood, Michael; Hoopes, P. Jack

    2015-03-01

    Although preliminary clinical trials are ongoing, successful the use of iron-oxide magnetic nanoparticles (IONP) for heatbased cancer treatments will depend on advancements in: 1) nanoparticle platforms, 2) delivery of a safe and effective alternating magnetic field (AMF) to the tumor, and 3) development of non-invasive, spatially accurate IONP imaging and quantification technique. This imaging technique must be able to assess tumor and normal tissue anatomy as well as IONP levels and biodistribution. Conventional CT imaging is capable of detecting and quantifying IONPs at tissue levels above 10 mg/gram; unfortunately this level is not clinically achievable in most situations. Conventional MRI is capable of imaging IONPs at tissue levels of 0.05 mg/gm or less, however this level is considered to be below the therapeutic threshold. We present here preliminary in vivo data demonstrating the ability of a novel MRI technique, Sweep Imaging with Fourier Transformation (SWIFT), to accurately image and quantify IONPs in tumor tissue in the therapeutic concentration range (0.1-1.0 mg/gm tissue). This ultra-short, T2 MRI method provides a positive Fe contrast enhancement with a reduced signal to noise ratio. Additional IONP signal enhancement techniques such as inversion recovery spectroscopy and variable flip angle (VFA) are also being studied for potential optimization of SWIFT IONP imaging. Our study demonstrates the use of SWIFT to assess IONP levels and biodistribution, in murine flank tumors, following intra-tumoral and systemic IONP administration. ICP-MS and quantitative histological techniques are used to validate the accuracy and sensitivity of SWIFT-based IONP imaging and quantification.

  1. Osteogenic gene expression of murine osteoblastic (MC3T3-E1) cells under cyclic tension

    NASA Astrophysics Data System (ADS)

    Kao, C. T.; Chen, C. C.; Cheong, U.-I.; Liu, S. L.; Huang, T. H.

    2014-08-01

    Low-level laser therapy (LLLT) can promote cell proliferation. The remodeling ability of the tension side of orthodontic teeth affects post-orthodontic stability. The purpose of the present study was to investigate the osteogenic effects of LLLT on osteoblast-like cells treated with a simulated tension system that provides a mechanical tension regimen. Murine osteoblastic (MC3T3-E1) cells were cultured in a Flexcell strain unit with programmed loads of 12% elongation at a frequency of 0.5 Hz for 24 and 48 h. The cultured cells were treated with a low-level diode laser using powers of 5 J and 10 J. The proliferation of MC3T3-E1 cells was determined using the Alamar Blue assay. The expression of osteogenic genes (type I collagen (Col-1), osteopontin (OPN), osteocalcin (OC), osteoprotegerin (OPG), receptor activator of nuclear factor kappa B ligand (RANKL), bone morphologic protein (BMP-2), and bone morphologic protein (BMP-4)) in MC3T3-E1 cells was analyzed using reverse transcription polymerase chain reaction (RT-PCR). The data were analyzed using one-way analysis of variance. The proliferation rate of tension-cultured MC3T3-E1 cells under 5 J and 10 J LLLT increased compared with that of the control group (p < 0.05). Prominent mineralization of the MC3T3-E1 cells was visible using a von Kossa stain in the 5 J LLLT group. Osteogenic genes (Col-1, OC, OPG and BMP-2) were significantly expressed in the MC3T3-E1 cells treated with 5 J and 10 J LLLT (p < 0.05). LLLT in tension-cultured MC3T3-E1 cells showed synergistic osteogenic effects, including increases in cell proliferation and Col-1, OPN, OC, OPG and BMP-2 gene expression. LLLT might be beneficial for bone remodeling on the tension side of orthodontics.

  2. Demonstration of Brain Tumor-Induced Neurovascular Uncoupling in Resting-State fMRI at Ultrahigh Field.

    PubMed

    Agarwal, Shruti; Sair, Haris I; Airan, Raag; Hua, Jun; Jones, Craig K; Heo, Hye-Young; Olivi, Alessandro; Lindquist, Martin A; Pekar, James J; Pillai, Jay J

    2016-05-01

    To demonstrate in a small case series for the first time the phenomenon of brain tumor-related neurovascular uncoupling (NVU) in resting-state blood oxygen level-dependent (BOLD) functional magnetic resonance imaging (fMRI) at ultrahigh field (7T). Two de novo (i.e., untreated) brain tumor patients underwent both BOLD resting-state fMRI (rsfMRI) on a 7T MRI system and motor task-based BOLD fMRI at 3T. Ipsilesional (i.e., ipsilateral to tumor or IL) and contralesional (i.e., contralateral to tumor or CL) region of interest (ROI) analysis was performed on both 3T motor task-related general linear model-derived activation maps and on 7T rsfMRI independent component analysis (ICA)-derived sensorimotor network maps for each case. Asymmetry scores (ASs) were computed based on numbers of suprathreshold voxels in the IL and CL ROIs. In each patient, ASs derived from ROI analysis of suprathreshold voxels in IL and CL ROIs in task-related activation maps and rsfMRI ICA-derived sensorimotor component maps indicate greater number of suprathreshold voxels in contralesional than ipsilesional sensorimotor cortex in both maps. In patient 1, an AS of 0.2 was obtained from the suprathreshold Z-score spectrum (voxels with Z-scores >5.0) of the task-based activation map and AS of 1.0 was obtained from the suprathreshold Z-score spectrum (Z-scores >5.0) of the ICA-derived sensorimotor component map. Similarly, in patient 2, an AS of 1.0 was obtained from the suprathreshold Z-score spectrum (Z-scores >5.0) of the task-based activation map and an AS of 1.0 was obtained from the suprathreshold Z-score spectrum (Z-scores >5.0) of the ICA-derived sensorimotor component map. Overall, decreased BOLD signal was noted in IL compared with CL ROIs on both task-based activation maps and ultrahigh field resting-state maps, indicating the presence of NVU. We have demonstrated evidence of NVU on ultrahigh field 7T rsfMRI comparable with the findings on standard 3T motor task-based fMRI in both cases

  3. Neural Systems Underlying Lexical Competition: An Eyetracking and fMRI Study

    PubMed Central

    Righi, Giulia; Blumstein, Sheila E.; Mertus, John; Worden, Michael S.

    2010-01-01

    The present study investigated the neural bases of phonological onset competition using an eye tracking paradigm coupled with fMRI. Eighteen subjects were presented with an auditory target (e.g. beaker) and a visual display containing a pictorial representation of the target (e.g. beaker), an onset competitor (e.g. beetle), and two phonologically and semantically unrelated objects (e.g. shoe, hammer). Behavioral results replicated earlier research showing increased looks to the onset competitor compared to the unrelated items. fMRI results showed that lexical competition induced by shared phonological onsets recruits both frontal structures and posterior structures. Specifically, comparison between competitor and no-competitor trials elicited activation in two non-overlapping clusters in the left IFG, one located primarily within BA 44 and the other primarily located within BA 45, and one cluster in the left supramarginal gyrus extending into the posterior-superior temporal gyrus. These results indicate that the left IFG is sensitive to competition driven by phonological similarity and not only to competition among semantic/conceptual factors. Moreover, they indicate that the SMG is not only recruited in tasks requiring access to lexical form but is also recruited in tasks that require access to the conceptual representation of a word. PMID:19301991

  4. Cardiovascular magnetic resonance imaging of isolated perfused pig hearts in a 3T clinical MR scanner

    PubMed Central

    Chiribiri, Amedeo; Ishida, Masaki; Morton, Geraint; Paul, Matthias; Hussain, Shazia T.; Bigalke, Boris; Perera, Divaka; Schaeffter, Tobias; Nagel, Eike

    2012-01-01

    Purpose An isolated perfused pig heart model has recently been proposed for the development of novel methods in standard clinical magnetic resonance (MR) scanners. The original set-up required the electrical system to be within the safe part of the MR-room, which introduced significant background noise. The purpose of the current work was to refine the system to overcome this limitation so that all electrical parts are completely outside the scanner room. Methods Four pig hearts were explanted under terminal anaesthesia from large white cross landrace pigs. All hearts underwent cardiovascular magnetic resonance (CMR) scanning in the MR part of a novel combined 3T MR and x-ray fluoroscopy (XMR) suite. CMR scanning included real-time k-t SENSE functional imaging, k-t SENSE accelerated perfusion imaging and late gadolinium enhancement imaging. Interference with image quality was assessed by spurious echo imaging and compared to noise levels acquired while operating the electrical parts within the scanner room. Results Imaging was performed successfully in all hearts. The system proved suitable for isolated heart perfusion in a novel 3T XMR suite. No significant additional noise was introduced into the scanner room by our set-up. Conclusions We have substantially improved a previous version of an isolated perfused pig heart model and made it applicable for MR imaging in a state of the art clinical 3T XMR imaging suite. The use of this system should aid novel CMR sequence development and translation into clinical practice. PMID:24265875

  5. Standardized quantitative measurements of wrist cartilage in healthy humans using 3T magnetic resonance imaging

    PubMed Central

    Zink, Jean-Vincent; Souteyrand, Philippe; Guis, Sandrine; Chagnaud, Christophe; Fur, Yann Le; Militianu, Daniela; Mattei, Jean-Pierre; Rozenbaum, Michael; Rosner, Itzhak; Guye, Maxime; Bernard, Monique; Bendahan, David

    2015-01-01

    AIM: To quantify the wrist cartilage cross-sectional area in humans from a 3D magnetic resonance imaging (MRI) dataset and to assess the corresponding reproducibility. METHODS: The study was conducted in 14 healthy volunteers (6 females and 8 males) between 30 and 58 years old and devoid of articular pain. Subjects were asked to lie down in the supine position with the right hand positioned above the pelvic region on top of a home-built rigid platform attached to the scanner bed. The wrist was wrapped with a flexible surface coil. MRI investigations were performed at 3T (Verio-Siemens) using volume interpolated breath hold examination (VIBE) and dual echo steady state (DESS) MRI sequences. Cartilage cross sectional area (CSA) was measured on a slice of interest selected from a 3D dataset of the entire carpus and metacarpal-phalangeal areas on the basis of anatomical criteria using conventional image processing radiology software. Cartilage cross-sectional areas between opposite bones in the carpal region were manually selected and quantified using a thresholding method. RESULTS: Cartilage CSA measurements performed on a selected predefined slice were 292.4 ± 39 mm2 using the VIBE sequence and slightly lower, 270.4 ± 50.6 mm2, with the DESS sequence. The inter (14.1%) and intra (2.4%) subject variability was similar for both MRI methods. The coefficients of variation computed for the repeated measurements were also comparable for the VIBE (2.4%) and the DESS (4.8%) sequences. The carpus length averaged over the group was 37.5 ± 2.8 mm with a 7.45% between-subjects coefficient of variation. Of note, wrist cartilage CSA measured with either the VIBE or the DESS sequences was linearly related to the carpal bone length. The variability between subjects was significantly reduced to 8.4% when the CSA was normalized with respect to the carpal bone length. CONCLUSION: The ratio between wrist cartilage CSA and carpal bone length is a highly reproducible standardized

  6. Estimation of minimum miscibility pressure (MMP) of CO2 and liquid n-alkane systems using an improved MRI technique.

    PubMed

    Liu, Yu; Jiang, Lanlan; Song, Yongchen; Zhao, Yuechao; Zhang, Yi; Wang, Dayong

    2016-02-01

    Minimum miscible pressure (MMP) of gas and oil system is a key parameter for the injection system design of CO2 miscible flooding. Some industrial standard approaches such as the experiment using a rising bubble apparatus (RBA), the slim tube tests (STT), the pressure-density diagram (PDD), etc. have been applied for decades to determine the MMP of gas and oil. Some theoretical or experiential calculations of the MMP were also applied to the gas-oil miscible system. In the present work, an improved technique based on our previous research for the estimation of the MMP by using magnetic resonance imaging (MRI) was proposed. This technique was then applied to the CO2 and n-alkane binary and ternary systems to observe the mixing procedure and to study the miscibility. MRI signal intensities, which represent the proton concentration of n-alkane in both the hydrocarbon rich phase and the CO2 rich phase, were plotted as a reference for determining the MMP. The accuracy of the MMP obtained by using this improved technique was enhanced comparing with the data obtained from our previous works. The results also show good agreement with other established techniques (such as the STT) in previous published works. It demonstrates increases of MMPs as the temperature rise from 20 °C to 37.8 °C. The MMPs of CO2 and n-alkane systems are also found to be proportional to the carbon number in the range of C10 to C14. PMID:26523648

  7. The Neurochemical and Microstructural Changes in the Brain of Systemic Lupus Erythematosus Patients: A Multimodal MRI Study

    PubMed Central

    Zhang, Zhiyan; Wang, Yukai; Shen, Zhiwei; Yang, Zhongxian; Li, Li; Chen, Dongxiao; Yan, Gen; Cheng, Xiaofang; Shen, Yuanyu; Tang, Xiangyong; Hu, Wei; Wu, Renhua

    2016-01-01

    The diagnosis and pathology of neuropsychiatric systemic lupus erythematosus (NPSLE) remains challenging. Herein, we used multimodal imaging to assess anatomical and functional changes in brains of SLE patients instead of a single MRI approach generally used in previous studies. Twenty-two NPSLE patients, 21 non-NPSLE patients and 20 healthy controls (HCs) underwent 3.0 T MRI with multivoxel magnetic resonance spectroscopy, T1-weighted volumetric images for voxel based morphometry (VBM) and diffusional kurtosis imaging (DKI) scans. While there were findings in other basal ganglia regions, the most consistent findings were observed in the posterior cingulate gyrus (PCG). The reduction of multiple metabolite concentration was observed in the PCG in the two patient groups, and the NPSLE patients were more prominent. The two patient groups displayed lower diffusional kurtosis (MK) values in the bilateral PCG compared with HCs (p < 0.01) as assessed by DKI. Grey matter reduction in the PCG was observed in the NPSLE group using VBM. Positive correlations among cognitive function scores and imaging metrics in bilateral PCG were detected. Multimodal imaging is useful for evaluating SLE subjects and potentially determining disease pathology. Impairments of cognitive function in SLE patients may be interpreted by metabolic and microstructural changes in the PCG. PMID:26758023

  8. The Neurochemical and Microstructural Changes in the Brain of Systemic Lupus Erythematosus Patients: A Multimodal MRI Study.

    PubMed

    Zhang, Zhiyan; Wang, Yukai; Shen, Zhiwei; Yang, Zhongxian; Li, Li; Chen, Dongxiao; Yan, Gen; Cheng, Xiaofang; Shen, Yuanyu; Tang, Xiangyong; Hu, Wei; Wu, Renhua

    2016-01-01

    The diagnosis and pathology of neuropsychiatric systemic lupus erythematosus (NPSLE) remains challenging. Herein, we used multimodal imaging to assess anatomical and functional changes in brains of SLE patients instead of a single MRI approach generally used in previous studies. Twenty-two NPSLE patients, 21 non-NPSLE patients and 20 healthy controls (HCs) underwent 3.0 T MRI with multivoxel magnetic resonance spectroscopy, T1-weighted volumetric images for voxel based morphometry (VBM) and diffusional kurtosis imaging (DKI) scans. While there were findings in other basal ganglia regions, the most consistent findings were observed in the posterior cingulate gyrus (PCG). The reduction of multiple metabolite concentration was observed in the PCG in the two patient groups, and the NPSLE patients were more prominent. The two patient groups displayed lower diffusional kurtosis (MK) values in the bilateral PCG compared with HCs (p < 0.01) as assessed by DKI. Grey matter reduction in the PCG was observed in the NPSLE group using VBM. Positive correlations among cognitive function scores and imaging metrics in bilateral PCG were detected. Multimodal imaging is useful for evaluating SLE subjects and potentially determining disease pathology. Impairments of cognitive function in SLE patients may be interpreted by metabolic and microstructural changes in the PCG. PMID:26758023

  9. 3-T MR-guided brachytherapy for gynecologic malignancies.

    PubMed

    Kapur, Tina; Egger, Jan; Damato, Antonio; Schmidt, Ehud J; Viswanathan, Akila N

    2012-11-01

    Gynecologic malignancies are a leading cause of death in women worldwide. Standard treatment for many primary and recurrent gynecologic cancer cases includes external-beam radiation followed by brachytherapy. Magnetic resonance (MR) imaging is beneficial in diagnostic evaluation, in mapping the tumor location to tailor radiation dose and in monitoring the tumor response to treatment. Initial studies of MR guidance in gynecologic brachytherapy demonstrate the ability to optimize tumor coverage and reduce radiation dose to normal tissues, resulting in improved outcomes for patients. In this article, we describe a methodology to aid applicator placement and treatment planning for 3 Tesla (3-T) MR-guided brachytherapy that was developed specifically for gynecologic cancers. This methodology has been used in 18 cases from September 2011 to May 2012 in the Advanced Multimodality Image Guided Operating (AMIGO) suite at Brigham and Women's Hospital. AMIGO comprises state-of-the-art tools for MR imaging, image analysis and treatment planning. An MR sequence using three-dimensional (3D)-balanced steady-state free precession in a 3-T MR scanner was identified as the best sequence for catheter identification with ballooning artifact at the tip. 3D treatment planning was performed using MR images. Items in development include software designed to support virtual needle trajectory planning that uses probabilistic bias correction, graph-based segmentation and image registration algorithms. The results demonstrate that 3-T MR image guidance has a role in gynecologic brachytherapy. These novel developments have the potential to improve targeted treatment to the tumor while sparing the normal tissues. PMID:22898699

  10. An MRI guided system for prostate laser ablation with treatment planning and multi-planar temperature monitoring

    NASA Astrophysics Data System (ADS)

    Xu, Sheng; Agarwal, Harsh; Bernardo, Marcelino; Seifabadi, Reza; Turkbey, Baris; Partanen, Ari; Negussie, Ayele; Glossop, Neil; Choyke, Peter; Pinto, Peter; Wood, Bradford J.

    2016-03-01

    Prostate cancer is often over treated with standard treatment options which impact the patients' quality of life. Laser ablation has emerged as a new approach to treat prostate cancer while sparing the healthy tissue around the tumor. Since laser ablation has a small treatment zone with high temperature, it is necessary to use accurate image guidance and treatment planning to enable full ablation of the tumor. Intraoperative temperature monitoring is also desirable to protect critical structures from being damaged in laser ablation. In response to these problems, we developed a navigation platform and integrated it with a clinical MRI scanner and a side firing laser ablation device. The system allows imaging, image guidance, treatment planning and temperature monitoring to be carried out on the same platform. Temperature sensing phantoms were developed to demonstrate the concept of iterative treatment planning and intraoperative temperature monitoring. Retrospective patient studies were also conducted to show the clinical feasibility of the system.

  11. Flagellated Magnetotactic Bacteria as Controlled MRI-trackable Propulsion and Steering Systems for Medical Nanorobots Operating in the Human Microvasculature

    PubMed Central

    Martel, Sylvain; Mohammadi, Mahmood; Felfoul, Ouajdi; Lu, Zhao; Pouponneau, Pierre

    2009-01-01

    Although nanorobots may play critical roles for many applications in the human body such as targeting tumoral lesions for therapeutic purposes, miniaturization of the power source with an effective onboard controllable propulsion and steering system have prevented the implementation of such mobile robots. Here, we show that the flagellated nanomotors combined with the nanometer-sized magnetosomes of a single Magnetotactic Bacterium (MTB) can be used as an effective integrated propulsion and steering system for devices such as nanorobots designed for targeting locations only accessible through the smallest capillaries in humans while being visible for tracking and monitoring purposes using modern medical imaging modalities such as Magnetic Resonance Imaging (MRI). Through directional and magnetic field intensities, the displacement speeds, directions, and behaviors of swarms of these bacterial actuators can be controlled from an external computer. PMID:19890435

  12. Analysis and realization of an active noise control system on DSP hardware using an fMRI bore model.

    PubMed

    Reddy, Rajiv M; Panahi, Issa M S; Briggs, Richard

    2007-01-01

    The performance of Active Noise Control (ANC) Algorithms (epsilon-nLMS and APA) are tested on floating point DSP hardware with high sampling rates to reveal their effectiveness in cancelling noise at high sound pressure levels. The results presented use a realistic primary path of an fMRI bore simulated by a half cylindrical acrylic bore of 0.76m (D) x 1.52m (L). Detailed results of the performance of the ANC system are presented in the paper. The results were obtained by using an automated system, designed to systematically test any frequency range with high precision. Our experiments show that the LMS algorithm gives the best performance over all frequencies with cancellation of over 50dB(A) over a 5kHz frequency band. PMID:18002731

  13. MR-compatibility assessment of the first preclinical PET-MRI insert equipped with digital silicon photomultipliers.

    PubMed

    Wehner, J; Weissler, B; Dueppenbecker, P M; Gebhardt, P; Goldschmidt, B; Schug, D; Kiessling, F; Schulz, V

    2015-03-21

    PET (positron emission tomography) with its high sensitivity in combination with MRI (magnetic resonance imaging) providing anatomic information with good soft-tissue contrast is considered to be a promising hybrid imaging modality. However, the integration of a PET detector into an MRI system is a challenging task since the MRI system is a sensitive device for external disturbances and provides a harsh environment for electronic devices. Consequently, the PET detector has to be transparent for the MRI system and insensitive to electromagnetic disturbances. Due to the variety of MRI protocols imposing a wide range of requirements regarding the MR-compatibility, an extensive study is mandatory to reliably assess worst-case interference phenomena between the PET detector and the MRI scanner. We have built the first preclinical PET insert, designed for a clinical 3 T MRI, using digital silicon photomultipliers (digital SiPM, type DPC 3200-22, Philips Digital Photon Counting). Since no thorough interference investigation with this new digital sensor has been reported so far, we present in this work such a comprehensive MR-compatibility study. Acceptable distortion of the B0 field homogeneity (volume RMS = 0.08 ppm, peak-to-peak value = 0.71 ppm) has been found for the PET detector installed. The signal-to-noise ratio degradation stays between 2-15% for activities up to 21 MBq. Ghosting artifacts were only found for demanding EPI (echo planar imaging) sequences with read-out gradients in Z direction caused by additional eddy currents originated from the PET detector. On the PET side, interference mainly between the gradient system and the PET detector occurred: extreme gradient tests were executed using synthetic sequences with triangular pulse shape and maximum slew rate. Under this condition, a relative degradation of the energy (⩽10%) and timing (⩽15%) resolution was noticed. However, barely measurable performance deterioration occurred when morphological MRI

  14. MR-compatibility assessment of the first preclinical PET-MRI insert equipped with digital silicon photomultipliers

    NASA Astrophysics Data System (ADS)

    Wehner, J.; Weissler, B.; Dueppenbecker, P. M.; Gebhardt, P.; Goldschmidt, B.; Schug, D.; Kiessling, F.; Schulz, V.

    2015-03-01

    PET (positron emission tomography) with its high sensitivity in combination with MRI (magnetic resonance imaging) providing anatomic information with good soft-tissue contrast is considered to be a promising hybrid imaging modality. However, the integration of a PET detector into an MRI system is a challenging task since the MRI system is a sensitive device for external disturbances and provides a harsh environment for electronic devices. Consequently, the PET detector has to be transparent for the MRI system and insensitive to electromagnetic disturbances. Due to the variety of MRI protocols imposing a wide range of requirements regarding the MR-compatibility, an extensive study is mandatory to reliably assess worst-case interference phenomena between the PET detector and the MRI scanner. We have built the first preclinical PET insert, designed for a clinical 3 T MRI, using digital silicon photomultipliers (digital SiPM, type DPC 3200-22, Philips Digital Photon Counting). Since no thorough interference investigation with this new digital sensor has been reported so far, we present in this work such a comprehensive MR-compatibility study. Acceptable distortion of the B0 field homogeneity (volume RMS = 0.08 ppm, peak-to-peak value = 0.71 ppm) has been found for the PET detector installed. The signal-to-noise ratio degradation stays between 2-15% for activities up to 21 MBq. Ghosting artifacts were only found for demanding EPI (echo planar imaging) sequences with read-out gradients in Z direction caused by additional eddy currents originated from the PET detector. On the PET side, interference mainly between the gradient system and the PET detector occurred: extreme gradient tests were executed using synthetic sequences with triangular pulse shape and maximum slew rate. Under this condition, a relative degradation of the energy (⩽10%) and timing (⩽15%) resolution was noticed. However, barely measurable performance deterioration occurred when morphological MRI

  15. MRI endoscopy using intrinsically localized probes

    PubMed Central

    Sathyanarayana, Shashank; Bottomley, Paul A.

    2009-01-01

    Magnetic resonance imaging (MRI) is traditionally performed with fixed externally applied gradient magnetic fields and is hence intrinsically locked to the laboratory frame of reference (FoR). Here a method for high-resolution MRI that employs active, catheter-based, tiny internal probes that utilize the spatial properties of the probe itself for localization is proposed and demonstrated at 3 T. Because these properties are intrinsic to the probe, they move with it, transforming MRI from the laboratory FoR to the FoR of the device itself, analogous to an endoscope. The “MRI endoscope” can utilize loop coils and loopless antennas with modified sensitivity, in combination with adiabatic excitation by the device itself, to restrict the MRI sensitivity to a disk-shaped plane a few mm thick. Excitation with the MRI endoscope limits the eddy currents induced in the sample to an excited volume whose size is orders of magnitude below that excited by a conventional body MRI coil. Heat testing shows maximum local temperature increases of <1 °C during MRI, within regulatory guidelines. The method is demonstrated in a kiwifruit, in intact porcine and rabbit aortas, and in an atherosclerotic human iliac artery specimen, with in-plane resolution as small as 80 μm and 1.5–5 mm slice thickness. PMID:19378751

  16. Nanoparticle-based highly sensitive MRI contrast agents with enhanced relaxivity in reductive milieu.

    PubMed

    Sigg, Severin J; Santini, Francesco; Najer, Adrian; Richard, Pascal U; Meier, Wolfgang P; Palivan, Cornelia G

    2016-08-01

    Current magnetic resonance imaging (MRI) contrast agents often produce insufficient contrast for diagnosis of early disease stages, and do not sense their biochemical environments. Herein, we report a highly sensitive nanoparticle-based MRI probe with r1 relaxivity up to 51.7 ± 1.2 mM(-1) s(-1) (3T). Nanoparticles were co-assembled from Gd(3+) complexed to heparin-poly(dimethylsiloxane) copolymer, and a reduction-sensitive amphiphilic peptide serving to induce responsiveness to environmental changes. The release of the peptide components leads to a r1 relaxivity increase under reducing conditions and increases the MRI contrast. In addition, this MRI probe has several advantages, such as a low cellular uptake, no apparent cellular toxicity (tested up to 1 mM Gd(3+)), absence of an anticoagulation property, and a high shelf stability (no increase in free Gd(3+) over 7 months). Thus, this highly sensitive T1 MRI contrast nanoparticle system represents a promising probe for early diagnosis through possible accumulation and contrast enhancement within reductive extracellular tumour tissue. PMID:27435820

  17. Toward early cancer detection using superparamagnetic relaxometry in a SQUID-based ULF-MRI system

    NASA Astrophysics Data System (ADS)

    Magnelind, P. E.; Kim, Y. J.; Matlashov, A. N.; Newman, S. G.; Volegov, P. L.; Espy, M. A.

    2014-04-01

    To detect cancer at a very early state it is essential to detect a very small quantity of cancerous cells. One very sensitive method relies on targeting the cancer cells using antibody labeled single-core magnetic nanoparticles and detecting the relaxation of the magnetization using instruments based on superconducting quantum interference devices (SQUIDs). However, the localization suffers from inverse-problem issues similar to those found in magnetoencephalography. On the other hand, the same magnetic nanoparticles can also work as contrast agents for magnetic resonance imaging. Through the combination of superparamagnetic relaxometry and ultra-low field magnetic resonance imaging (ULF MRI), in one and the same instrument, the accuracy of the magnetic moment localization can be enhanced and anatomical information can also be obtained. Results on superparamagnetic relaxometry and the dipole localization accuracy in our seven-channel low-Tc SQUID-gradiometer array are reported.

  18. 3T MR Guided in bore transperineal prostate biopsy: A Comparison of robotic and manual needle-guidance templates

    PubMed Central

    Tilak, Gaurie; Tuncali, Kemal; Song, Sang-Eun; Tokuda, Junichi; Olubiyi, Olutayo; Fennessy, Fiona; Fedorov, Andriy; Penzkofer, Tobias; Tempany, Clare; Hata, Nobuhiko

    2014-01-01

    Purpose To demonstrate the utility of a robotic needle-guidance template device as compared to a manual template for in-bore 3T transperineal MR-guided prostate biopsy. Materials and Methods This two-arm mixed retrospective-prospective study included 99 cases of targeted transperineal prostate biopsies. The biopsy needles were aimed at suspicious foci noted on multiparametric 3T MRI using manual template (historical control) as compared with a robotic template. The following data was obtained: the accuracy of average and closest needle placement to the focus, histologic yield, percentage of cancer volume in positive core samples, complication rate, and time to complete the procedure. Results 56 cases were performed using the manual template, and 43 cases were performed using the robotic template. The mean accuracy of the best needle placement attempt was higher in the robotic group (2.39 mm) than the manual group (3.71 mm, p<0.027). The mean core procedure time was shorter in the robotic (90.82min) than the manual group (100.63min, p<0.030). Percentage of cancer volume in positive core samples was higher in robotic group (p<0.001). Cancer yields and complication rates were not statistically different between the two sub-groups (p = 0.557 and p=0.172 respectively). Conclusion The robotic needle-guidance template helps accurate placement of biopsy needles in MRI-guided core biopsy of prostate cancer. PMID:25263213

  19. Cannabidiol promotes browning in 3T3-L1 adipocytes.

    PubMed

    Parray, Hilal Ahmad; Yun, Jong Won

    2016-05-01

    Recruitment of the brown-like phenotype in white adipocytes (browning) and activation of existing brown adipocytes are currently being investigated as a means to combat obesity. Thus, a wide variety of dietary agents that contribute to browning of white adipocytes have been identified. The present study was designed to investigate the effects of cannabidiol (CBD), a major nonpsychotropic phytocannabinoid of Cannabis sativa, on induction of browning in 3T3-L1 adipocytes. CBD enhanced expression of a core set of brown fat-specific marker genes (Ucp1, Cited1, Tmem26, Prdm16, Cidea, Tbx1, Fgf21, and Pgc-1α) and proteins (UCP1, PRDM16, and PGC-1α). Increased expression of UCP1 and other brown fat-specific markers contributed to the browning of 3T3-L1 adipocytes possibly via activation of PPARγ and PI3K. In addition, CBD increased protein expression levels of CPT1, ACSL, SIRT1, and PLIN while down-regulating JNK2, SREBP1, and LPL. These data suggest possible roles for CBD in browning of white adipocytes, augmentation of lipolysis, thermogenesis, and reduction of lipogenesis. In conclusion, the current data suggest that CBD plays dual modulatory roles in the form of inducing the brown-like phenotype as well as promoting lipid metabolism. Thus, CBD may be explored as a potentially promising therapeutic agent for the prevention of obesity. PMID:27067870

  20. MRI: are you playing your system like a fiddle or a Stradivarius? Where we are headed and how to keep up.

    PubMed

    Carroll-Callahan, Catherine M; Andersson, Lars A

    2004-01-01

    Dr. Raymond Damadian performed the first human magnetic resonance imaging (MRI) scan in 1977. Unveiled from behind the research curtain, MRI technology was introduced to the clinical environment by the mid 1980s. Most academic and largehospitals lined up right away and purchased their first scanners as soon as they became available. The race began, and the MRI learning process at radiology departments all over the world started. As with any growing technology, came a surge of competition--manufacturers as well as imaging facilities. MRI technology flooded the medical community, since it provided enormous benefits for patients and doctors. It was like a rocket launching with scientists and original equipment manufacturers (OEMs) researching, creating and contributing to the advancement of clinical science and forever improved diagnoses. Radiologists at UCLA predict that most of today's procedures currently falling under research will flourish in the clinical setting within the next 5 years. The rise of PET technology and the ability to fuse metabolic images with an anatomical MRI map will undoubtedly prove invaluable for staging of pathology, treatment planning and tracking, especially when the disease is present within soft tissue, like the brain. Another sign that MRI is a healthy addition to medical imaging is the increasing number of MRI reimbursement codes. However, Medicare, Medicaid and private insurance companies are also scrutinizing more and paying less today than they did yesterday. There will always be certain myths about how bigger is always better. That's not to say system enhancements and advancements are not essential to medical imaging, but the needs and budgets differ for each facility. Regardless of site needs or budget, it is imperative that all facilities utilize the equipment they have to their maximum potential. The new "bells and whistles" might not be needed to stay competitive. Innovative technology continues to be available as long as

  1. Characterization of hyaluronate binding proteins isolated from 3T3 and murine sarcoma virus transformed 3T3 cells

    SciTech Connect

    Turley, E.A.; Moore, D.; Hayden, L.J.

    1987-06-02

    A hyaluronic acid binding fraction was purified from the supernatant media of both 3T3 and murine sarcoma virus (MSV) transformed 3T3 cultures by hyaluronate and immunoaffinity chromatography. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis resolved the hyaluronate affinity-purified fraction into three major protein bands of estimated molecular weight (M/sub r,e/) 70K, 66K, and 56K which contained hyaluronate binding activity and which were termed hyaluronate binding proteins (HABP). Hyaluronate affinity chromatography combined with immunoaffinity chromatography, using antibody directed against the larger HABP, allowed a 20-fold purification of HABP. Fractions isolated from 3T3 supernatant medium also contained additional binding molecules in the molecular weight range of 20K. This material was present in vanishingly small amounts and was not detected with a silver stain or with (/sup 35/S)methionine label. The three protein species isolated by hyaluronate affinity chromatography (M/sub r,e/ 70K, 66K, and 56K) were related to one another since they shared antigenic determinants and exhibited similar pI values. In isocratic conditions, HABP occurred as aggregates of up to 580 kilodaltons. Their glycoprotein nature was indicated by their incorporation of /sup 3/H-sugars. Enzyme-linked immunoadsorbent assay showed they were antigenically distinct from other hyaluronate binding proteins such as fibronectin, cartilage link protein, and the hyaluronate binding region of chondroitin sulfate proteoglycan. The results are discussed with regard both to the functional significance of hyaluronate-cell surface interactions in transformed as well as normal cells and to the relationship of HABP to other reported hyaluronate binding proteins.

  2. Portable MRI

    SciTech Connect

    Espy, Michelle A.

    2012-06-29

    This project proposes to: (1) provide the power of MRI to situations where it presently isn't available; (2) perform the engineering required to move from lab to a functional prototype; and (3) leverage significant existing infrastructure and capability in ultra-low field MRI. The reasons for doing this: (1) MRI is the most powerful tool for imaging soft-tissue (e.g. brain); (2) Billions don't have access due to cost or safety issues; (3) metal will heat/move in high magnetic fields; (4) Millions of cases of traumatic brain injury in US alone; (5) even more of non-traumatic brain injury; (6) (e.g. stroke, infection, chemical exposure); (7) Need for early diagnostic; (8) 'Signature' wound of recent conflicts; (9) 22% of injuries; (10) Implications for post-traumatic stress disorder; and (11) chronic traumatic encephalopathy.

  3. Pneumatically Operated MRI-Compatible Needle Placement Robot for Prostate Interventions

    PubMed Central

    Fischer, Gregory S.; Iordachita, Iulian; Csoma, Csaba; Tokuda, Junichi; Mewes, Philip W.; Tempany, Clare M.; Hata, Nobuhiko; Fichtinger, Gabor

    2011-01-01

    Magnetic Resonance Imaging (MRI) has potential to be a superior medical imaging modality for guiding and monitoring prostatic interventions. The strong magnetic field prevents the use of conventional mechatronics and the confined physical space makes it extremely challenging to access the patient. We have designed a robotic assistant system that overcomes these difficulties and promises safe and reliable intra-prostatic needle placement inside closed high-field MRI scanners. The robot performs needle insertion under real-time 3T MR image guidance; workspace requirements, MR compatibility, and workflow have been evaluated on phantoms. The paper explains the robot mechanism and controller design and presents results of preliminary evaluation of the system. PMID:21686038

  4. A comparison of 3-T magnetic resonance imaging and computed tomography arthrography to identify structural cartilage defects of the fetlock joint in the horse.

    PubMed

    Hontoir, Fanny; Nisolle, Jean-François; Meurisse, Hubert; Simon, Vincent; Tallier, Max; Vanderstricht, Renaud; Antoine, Nadine; Piret, Joëlle; Clegg, Peter; Vandeweerd, Jean-Michel

    2014-01-01

    Articular cartilage defects are prevalent in metacarpo/metatarsophalangeal (MCP/MTP) joints of horses. The aim of this study was to determine and compare the sensitivity and specificity of 3-Tesla magnetic resonance imaging (3-T MRI) and computed tomography arthrography (CTA) to identify structural cartilage defects in the equine MCP/MTP joint. Forty distal cadaver limbs were imaged by CTA (after injection of contrast medium) and by 3-T MRI using specific sequences, namely, dual-echo in the steady-state (DESS), and sampling perfection with application-optimised contrast using different flip-angle evolutions (SPACE). Gross anatomy was used as the gold standard to evaluate sensitivity and specificity of both imaging techniques. CTA sensitivity and specificity were 0.82 and 0.96, respectively, and were significantly higher than those of MRI (0.41 and 0.93, respectively) in detecting overall cartilage defects (no defect vs. defect). The intra and inter-rater agreements were 0.96 and 0.92, respectively, and 0.82 and 0.88, respectively, for CT and MRI. The positive predictive value for MRI was low (0.57). CTA was considered a valuable tool for assessing cartilage defects in the MCP/MTP joint due to its short acquisition time, its specificity and sensitivity, and it was also more accurate than MRI. However, MRI permits assessment of soft tissues and subchondral bone and is a useful technique for joint evaluation, although clinicians should be aware of the limitations of this diagnostic technique, including reduced accuracy. PMID:24321368

  5. Ultrasound associated uptake of chitosan nanoparticles in MC3T3-E1 cells

    NASA Astrophysics Data System (ADS)

    Wu, Junyi

    Chitosan is a natural linear polysaccharide that has been well known for its applications in drug delivery system due to its unique physicochemical and biological properties. However, challenges still remain for it to become a fully realized therapeutic agent. In this study, we investigated the uptake of chitosan nanoparticles (CNP) under the ultrasound stimulation, using a model cell culture system (MC3T3-E1 mouse pre-osteoblasts). The CNP were fabricated by an ionic gelation method and were lyophilized prior to characterization and delivery to cells. Particle size and zeta potential were measured using Dynamic Light Scattering (DLS); the efficiency of chitosan complexation was measured using the ninhydrin assay. Cytotoxicity was examined by neutral red assay within 48 hours after delivery. The effect of ultrasound (US) on the efficiency of nanoparticle delivery to the MC3T3-E1 cells was examined at 1MHz and at either 1 or 2 W/cm2. Fluorescein isothiocyanate (FITC)-conjugated-CNP were used to visualize the internalized particles within the cytosol. The uptake of FITC-CNP exhibits a dose and time dependent effect, a strong FITC fluorescence was detected at the concentration of 500microg/mL under fluorescence microscope. Ultrasound assisted uptake of FITC-CNP performed a significant positive effect at 2W/cm2 with 60s of ultrasound exposure time. CNP displayed a slightly decrease in cell viability from 25microg/mL to 100microg/mL, while higher concentration of CNP facilitates the proliferation of MC3T3-E1 cells. Less than 10% of reduction in cell viability was observed for US at 1W/cm2 and 2W/cm2 with 30s and 60s of exposure time, which suggest a mild effect of US to MC3T3-E1 cell line.

  6. Technical Note: Building a combined cyclotron and MRI facility: Implications for interference

    SciTech Connect

    Hofman, Mark B. M.; Kuijer, Joost P. A.; Ridder, Jan Willem de; Perk, Lars R.; Verdaasdonk, Rudolf M.

    2013-01-15

    Purpose: With the introduction of hybrid PET/MRI systems, it has become more likely that the cyclotron and MRI systems will be located close to each other. This study considered the interference between a cyclotron and a superconducting MRI system. Methods: Interactions between cyclotrons and MRIs are theoretically considered. The main interference is expected to be the perturbation of the magnetic field in the MRI due to switching on or off the magnetic field of the cyclotron. MR imaging is distorted by a dynamic spatial gradient of an external inplane magnetic field larger than 0.5-0.04 {mu}T/m, depending on the specific MR application. From the design of a cyclotron, it is expected that the magnetic fringe field at large distances behaves as a magnetic dipolar field. This allows estimation of the full dipolar field and its spatial gradients from a single measurement. Around an 18 MeV cyclotron (Cyclone, IBA), magnetic field measurements were performed on 5 locations and compared with calculations based upon a dipolar field model. Results: At the measurement locations the estimated and measured values of the magnetic field component and its spatial gradients of the inplane component were compared, and found to agree within a factor 1.1 for the magnetic field and within a factor of 1.5 for the spatial gradients of the field. In the specific case of the 18 MeV cyclotron with a vertical magnetic field and a 3T superconducting whole body MR system, a minimum distance of 20 m has to be considered to prevent interference. Conclusions: This study showed that a dipole model is sufficiently accurate to predict the interference of a cyclotron on a MRI scanner, for site planning purposes. The cyclotron and a whole body MRI system considered in this study need to be placed more than 20 m apart, or magnetic shielding should be utilized.

  7. The SIENA/FSL whole brain atrophy algorithm is no more reproducible at 3T than 1.5 T for Alzheimer's disease.

    PubMed

    Cover, Keith S; van Schijndel, Ronald A; Popescu, Veronica; van Dijk, Bob W; Redolfi, Alberto; Knol, Dirk L; Frisoni, Giovanni B; Barkhof, Frederik; Vrenken, Hugo

    2014-10-30

    The back-to-back (BTB) acquisition of MP-RAGE MRI scans of the Alzheimer׳s Disease Neuroimaging Initiative (ADNI1) provides an excellent data set with which to check the reproducibility of brain atrophy measures. As part of ADNI1, 131 subjects received BTB MP-RAGEs at multiple time points and two field strengths of 3T and 1.5 T. As a result, high quality data from 200 subject-visit-pairs was available to compare the reproducibility of brain atrophies measured with FSL/SIENA over 12 to 18 month intervals at both 3T and 1.5 T. Although several publications have reported on the differing performance of brain atrophy measures at 3T and 1.5 T, no formal comparison of reproducibility has been published to date. Another goal was to check whether tuning SIENA options, including -B, -S, -R and the fractional intensity threshold (f) had a significant impact on the reproducibility. The BTB reproducibility for SIENA was quantified by the 50th percentile of the absolute value of the difference in the percentage brain volume change (PBVC) for the BTB MP-RAGES. At both 3T and 1.5 T the SIENA option combination of "-B f=0.2", which is different from the default values of f=0.5, yielded the best reproducibility as measured by the 50th percentile yielding 0.28 (0.23-0.39)% and 0.26 (0.20-0.32)%. These results demonstrated that in general 3T had no advantage over 1.5 T for the whole brain atrophy measure - at least for SIENA. While 3T MRI is superior to 1.5 T for many types of measurements, and thus worth the additional cost, brain atrophy measurement does not seem to be one of them. PMID:25089020

  8. Challenging the spin accumulation interpretation of local ``3T'' measurements

    NASA Astrophysics Data System (ADS)

    Tinkey, Holly; Appelbaum, Ian; Li, Pengke

    2015-03-01

    The recent observation of magnetoresistance in local ``three-terminal'' (3T) measurements on ferromagnet/ insulator/ semiconductor junctions have spawned many claims of direct bulk spin injection or ``accumulation''. We present a self-consistent model to rigorously calculate expected voltage changes due to electrochemical potential splitting from spin accumulation driven by pure elastic tunnel injection in such junctions, and find that the experimentally observed magnetoresistance vastly exceeds theoretical predictions in all doping, temperature, and bias voltage regimes. Our own experimental measurements using inelastic electron tunneling spectroscopy reveal that extrinsic impurities and defects within the junctions are responsible for the observed magnetoresistance signals, which cannot possibly be attributed to spin dephasing of polarized bulk electrons from elastic injection as claimed by proponents of the method. Supported by the Maryland Nanocenter, the Office of Naval Research Contract N000141110637, the National Science Foundation contracts ECCS-0901941 and ECCS-1231855 and Graduate Fellowship DGE13221, and the Defense Threat Reduction Agency contract HDTRA1.

  9. Uniform DT 3T burn: computations and sensitivities

    SciTech Connect

    Vold, Erik; Hryniw, Natalia; Hansen, Jon A; Kesler, Leigh A; Li, Frank

    2011-01-27

    A numerical model was developed in C to integrate the nonlinear deutrium-tritium (DT) burn equations in a three temperature (3T) approximation for spatially uniform test problems relevant to Inertial Confinement Fusion (ICF). Base model results are in excellent agreement with standard 3T results. Data from NDI, SESAME, and TOPS databases is extracted to create fits for the reaction rate parameter, the Planck opacity, and the coupling frequencies of the plasma temperatures. The impact of different fits (e.g., TOPS versus SESAME opacity data, higher order polynomial fits ofNDI data for the reaction rate parameter) were explored, and sensitivity to several model inputs are presented including: opacity data base, Coulomb logarithm, and Bremsstrahlung. Sensitivity to numerical integration time step size, and the relative insensitivity to the discretized numerics and numerical integration method was demonstrated. Variations in the IC for densities and temperatures were explored, showing similar DT burn profiles in most cases once ignition occurs. A coefficient multiplying the Compton coupling term (default, A = 1) can be adjusted to approximate results from more sophisticated models. The coefficient was reset (A = 0.4) to match the maximum temperatures resulting from standard multi-group simulations of the base case test problem. Setting the coefficient to a larger value, (A = 0.6) matches maximum ion temperatures in a kinetic simulation of a high density ICF-like regime. Matching peak temperatures does not match entire temperature-time profiles, indicating the Compton coefficient is density and time dependent as the photon distribution evolves. In the early time burn during the ignition of the DT, the present model with modified Compton coupling provides a very simple method to obtain a much improved match to the more accurate solution from the multi-group radiation model for these DT burn regimes.

  10. The 3T3-L1 adipocyte glycogen proteome

    PubMed Central

    2013-01-01

    Background Glycogen is a branched polysaccharide of glucose residues, consisting of α-1-4 glycosidic linkages with α-1-6 branches that together form multi-layered particles ranging in size from 30 nm to 300 nm. Glycogen spatial conformation and intracellular organization are highly regulated processes. Glycogen particles interact with their metabolizing enzymes and are associated with a variety of proteins that intervene in its biology, controlling its structure, particle size and sub-cellular distribution. The function of glycogen in adipose tissue is not well understood but appears to have a pivotal role as a regulatory mechanism informing the cells on substrate availability for triacylglycerol synthesis. To provide new molecular insights into the role of adipocyte glycogen we analyzed the glycogen-associated proteome from differentiated 3T3-L1-adipocytes. Results Glycogen particles from 3T3-L1-adipocytes were purified using a series of centrifugation steps followed by specific elution of glycogen bound proteins using α-1,4 glucose oligosaccharides, or maltodextrins, and tandem mass spectrometry. We identified regulatory proteins, 14-3-3 proteins, RACK1 and protein phosphatase 1 glycogen targeting subunit 3D. Evidence was also obtained for a regulated subcellular distribution of the glycogen particle: metabolic and mitochondrial proteins were abundant. Unlike the recently analyzed hepatic glycogen proteome, no endoplasmic proteins were detected, along with the recently described starch-binding domain protein 1. Other regulatory proteins which have previously been described as glycogen-associated proteins were not detected, including laforin, the AMPK beta-subunit and protein targeting to glycogen (PTG). Conclusions These data provide new molecular insights into the regulation of glycogen-bound proteins that are associated with the maintenance, organization and localization of the adipocyte glycogen particle. PMID:23521774

  11. Imaging of prostate cancer: a platform for 3D co-registration of in-vivo MRI ex-vivo MRI and pathology

    NASA Astrophysics Data System (ADS)

    Orczyk, Clément; Mikheev, Artem; Rosenkrantz, Andrew; Melamed, Jonathan; Taneja, Samir S.; Rusinek, Henry

    2012-02-01

    Objectives: Multi-parametric MRI is emerging as a promising method for prostate cancer diagnosis. prognosis and treatment planning. However, the localization of in-vivo detected lesions and pathologic sites of cancer remains a significant challenge. To overcome this limitation we have developed and tested a system for co-registration of in-vivo MRI, ex-vivo MRI and histology. Materials and Methods: Three men diagnosed with localized prostate cancer (ages 54-72, PSA levels 5.1-7.7 ng/ml) were prospectively enrolled in this study. All patients underwent 3T multi-parametric MRI that included T2W, DCEMRI, and DWI prior to robotic-assisted prostatectomy. Ex-vivo multi-parametric MRI was performed on fresh prostate specimen. Excised prostates were then sliced at regular intervals and photographed both before and after fixation. Slices were perpendicular to the main axis of the posterior capsule, i.e., along the direction of the rectal wall. Guided by the location of the urethra, 2D digital images were assembled into 3D models. Cancer foci, extra-capsular extensions and zonal margins were delineated by the pathologist and included in 3D histology data. A locally-developed software was applied to register in-vivo, ex-vivo and histology using an over-determined set of anatomical landmarks placed in anterior fibro-muscular stroma, central. transition and peripheral zones. The mean root square distance across corresponding control points was used to assess co-registration error. Results: Two specimens were pT3a and one pT2b (negative margin) at pathology. The software successfully fused invivo MRI. ex-vivo MRI fresh specimen and histology using appropriate (rigid and affine) transformation models with mean square error of 1.59 mm. Coregistration accuracy was confirmed by multi-modality viewing using operator-guided variable transparency. Conclusion: The method enables successful co-registration of pre-operative MRI, ex-vivo MRI and pathology and it provides initial evidence

  12. Endoplasmic reticulum stress suppresses lipin-1 expression in 3T3-L1 adipocytes

    SciTech Connect

    Takahashi, Nobuhiko; Hiranaka, Natsumi; Suzuki, Takeshi; Yui, Tomoo; Akanuma, Masayoshi; Kanazawa, Kaoru; Yoshida, Mika; Naito, Sumiyoshi; Fujiya, Mikihiro; Kohgo, Yutaka

    2013-02-01

    Highlights: ► Lipin-1 involves lipid metabolism, adipocyte differentiation, and inflammation. ► Adipose lipin-1 expression is reduced in obesity. ► ER stress suppresses lipin-1 expression in 3T3-L1 adipocytes. ► Activation of PPAR-γ recovers ER stress-induced lipin-1 reduction. -- Abstract: Lipin-1 plays crucial roles in the regulation of lipid metabolism and cell differentiation in adipocytes. In obesity, adipose lipin-1 mRNA expression is decreased and positively correlated with systemic insulin sensitivity. Amelioration of the lipin-1 depletion might be improved dysmetabolism. Although some cytokines such as TNF-α and interleukin-1β reduces adipose lipin-1 expression, the mechanism of decreased adipose lipin-1 expression in obesity remains unclear. Recently, endoplasmic reticulum (ER) stress is implicated in the pathogenesis of obesity. Here we investigated the role of ER stress on the lipin-1 expression in 3T3-L1 adipocytes. We demonstrated that lipin-1 expression was suppressed by the treatment with ER stress inducers (tunicamycin and thapsigargin) at transcriptional level. We also showed that constitutive lipin-1 expression could be maintained by peroxisome proliferator-activated receptor-γ in 3T3-L1 adipocytes. Activation of peroxisome proliferator-activated receptor-γ recovered the ER stress-induced lipin-1 suppression. These results suggested that ER stress might be involved in the pathogenesis of obesity through lipin-1 depletion.

  13. Parallel processing in the brain's visual form system: an fMRI study

    PubMed Central

    Shigihara, Yoshihito; Zeki, Semir

    2014-01-01

    We here extend and complement our earlier time-based, magneto-encephalographic (MEG), study of the processing of forms by the visual brain (Shigihara and Zeki, 2013) with a functional magnetic resonance imaging (fMRI) study, in order to better localize the activity produced in early visual areas when subjects view simple geometric stimuli of increasing perceptual complexity (lines, angles, rhombuses) constituted from the same elements (lines). Our results show that all three categories of form activate all three visual areas with which we were principally concerned (V1–V3), with angles producing the strongest and rhombuses the weakest activity in all three. The difference between the activity produced by angles and rhombuses was significant, that between lines and rhombuses was trend significant while that between lines and angles was not. Taken together with our earlier MEG results, the present ones suggest that a parallel strategy is used in processing forms, in addition to the well-documented hierarchical strategy. PMID:25126064

  14. The distributed neural system for top-down letter processing: an fMRI study

    NASA Astrophysics Data System (ADS)

    Liu, Jiangang; Feng, Lu; Li, Ling; Tian, Jie

    2011-03-01

    This fMRI study used Psychophysiological interaction (PPI) to investigate top-down letter processing with an illusory letter detection task. After an initial training that became increasingly difficult, participant was instructed to detect a letter from pure noise images where there was actually no letter. Such experimental paradigm allowed for isolating top-down components of letter processing and minimizing the influence of bottom-up perceptual input. A distributed cortical network of top-down letter processing was identified by analyzing the functional connectivity patterns of letter-preferential area (LA) within the left fusiform gyrus. Such network extends from the visual cortex to high level cognitive cortexes, including the left middle frontal gyrus, left medial frontal gyrus, left superior parietal gyrus, bilateral precuneus, and left inferior occipital gyrus. These findings suggest that top-down letter processing contains not only regions for processing of letter phonology and appearance, but also those involved in internal information generation and maintenance, and attention and memory processing.

  15. A Fabry-Perot Interferometry Based MRI-Compatible Miniature Uniaxial Force Sensor for Percutaneous Needle Placement

    PubMed Central

    Shang, Weijian; Su, Hao; Li, Gang; Furlong, Cosme; Fischer, Gregory S.

    2014-01-01

    Robot-assisted surgical procedures, taking advantage of the high soft tissue contrast and real-time imaging of magnetic resonance imaging (MRI), are developing rapidly. However, it is crucial to maintain tactile force feedback in MRI-guided needle-based procedures. This paper presents a Fabry-Perot interference (FPI) based system of an MRI-compatible fiber optic sensor which has been integrated into a piezoelectrically actuated robot for prostate cancer biopsy and brachytherapy in 3T MRI scanner. The opto-electronic sensing system design was minimized to fit inside an MRI-compatible robot controller enclosure. A flexure mechanism was designed that integrates the FPI sensor fiber for measuring needle insertion force, and finite element analysis was performed for optimizing the correct force-deformation relationship. The compact, low-cost FPI sensing system was integrated into the robot and calibration was conducted. The root mean square (RMS) error of the calibration among the range of 0–10 Newton was 0.318 Newton comparing to the theoretical model which has been proven sufficient for robot control and teleoperation. PMID:25126153

  16. A Fabry-Perot Interferometry Based MRI-Compatible Miniature Uniaxial Force Sensor for Percutaneous Needle Placement.

    PubMed

    Shang, Weijian; Su, Hao; Li, Gang; Furlong, Cosme; Fischer, Gregory S

    2013-01-01

    Robot-assisted surgical procedures, taking advantage of the high soft tissue contrast and real-time imaging of magnetic resonance imaging (MRI), are developing rapidly. However, it is crucial to maintain tactile force feedback in MRI-guided needle-based procedures. This paper presents a Fabry-Perot interference (FPI) based system of an MRI-compatible fiber optic sensor which has been integrated into a piezoelectrically actuated robot for prostate cancer biopsy and brachytherapy in 3T MRI scanner. The opto-electronic sensing system design was minimized to fit inside an MRI-compatible robot controller enclosure. A flexure mechanism was designed that integrates the FPI sensor fiber for measuring needle insertion force, and finite element analysis was performed for optimizing the correct force-deformation relationship. The compact, low-cost FPI sensing system was integrated into the robot and calibration was conducted. The root mean square (RMS) error of the calibration among the range of 0-10 Newton was 0.318 Newton comparing to the theoretical model which has been proven sufficient for robot control and teleoperation. PMID:25126153

  17. Feasibility of a brain-dedicated PET-MRI system using four-layer DOI detectors integrated with an RF head coil

    NASA Astrophysics Data System (ADS)

    Nishikido, F.; Obata, T.; Shimizu, K.; Suga, M.; Inadama, N.; Tachibana, A.; Yoshida, E.; Ito, H.; Yamaya, T.

    2014-08-01

    We are developing a PET-MRI system which consists of PET detectors integrated with the head coil of the MRI in order to realize high spatial resolution and high sensitivity in simultaneous measurements. In the PET-MRI system, the PET detectors which consist of a scintillator block, photo-detectors and front-end circuits with four-layer depth-of-interaction (DOI) encoding capability are placed close to the measured object. Therefore, the proposed system can achieve high sensitivity without degradation of spatial resolution at the edge of the field-of-view due to parallax error thanks to the four-layer DOI capability. In this paper, we fabricated a prototype system which consists of a prototype four-layer DOI-PET detector, a dummy PET detector and a prototype birdcage type head coil. Then we used the prototype system to evaluate the performance of the four-layer DOI-PET detector and the reciprocal influence between the PET detectors and MRI images. The prototype DOI-PET detector consists of six monolithic multi-pixel photon counter (MPPC) arrays (S11064-050P), a readout circuit board, two scintillator blocks and a copper shielding box. Each scintillator block consists of four layers of Lu1.8Gd0.2SiO5:Ce (LGSO) scintillators and reflectors are inserted between the scintillation crystals. The dummy detector has all these components except the two scintillator blocks. The head coil is dedicated to a 3.0 T MRI (MAGNETOM Verio, Siemens) and the two detectors are mounted in gaps between head coil elements. Energy resolution and crystal identification performance of the prototype four-layer DOI-PET detector were evaluated with and without MRI measurements by the gradient echo and spin echo methods. We identified crystal elements in all four layers from a 2D flood histogram and energy resolution of 15-18% was obtained for single crystal elements in simultaneous measurements. The difference between the average energy resolutions and photo-peak positions with and without MRI

  18. Conduction cooled magnet design for 1.5 T, 3.0 T and 7.0 T MRI systems

    NASA Astrophysics Data System (ADS)

    Baig, Tanvir; Yao, Zhen; Doll, David; Tomsic, Michael; Martens, Michael

    2014-12-01

    Main magnets for magnetic resonance imaging (MRI) are largely constructed with low temperature superconducting material. Most commonly used superconductors for these magnets are niobium-titanium (NbTi). Such magnets are operated at 4.2 K by being immersed in a liquid helium bath for long time operation. As the cost of liquid helium has increased threefold in the last decade and the market for MRI systems is on average increasing by more than 7% every year, there is a growing demand for an alternative to liquid helium. Superconductors such as magnesium-diboride (MgB2) and niobium-tin (Nb3Sn) demonstrate superior current carrying quality at higher critical temperatures than 4.2 K. In this article, electromagnetic designs for conduction cooled main magnets over the range of medium field strengths (1.5 T) to ultrahigh field strengths (7.0 T) are presented. These designs are achieved by an improved functional approach coming from a series of developments by the present research group and using properties of the state-of-the-art second generation MgB2 wires and Nb3Sn wires developed by Hyper Tech Research Inc. The MgB2 magnet designs operated at different field strengths demonstrate excellent homogeneity and shielding properties at an operating temperature of 10 K. At ultrahigh field, the high current density on Nb3Sn allowed by the larger magnetic field on wire helps to reduce the superconductor volume in comparison with high field NbTi magnet designs. This allows for a compact magnet design that can operate at a temperature of 8 K. Overall, the designs created show promise in the development of conduction cooled dry magnets that would reduce dependence on helium.

  19. Improved SNR of magnetic resonance microimaging using a cooled resonance circuit at 0.3T.

    PubMed

    Nakano, Hiroshi; Nakai, Toshiharu

    2011-01-01

    Because it is noninvasive, magnetic resonance microimaging (MRMI) can be used for 3-dimensional measurement of living tissues for cell engineering. Thermal noise in the resonance circuit of the radiofrequency (RF) system of the MRMI cannot become ignored as the signal diminishes in accordance with decreasing sample size, and cooling the RF coil of the receiver circuit can effectively reduce thermal noise. We used a low temperature normal conductor circuit to reduce noise and confirmed improved signal-to-noise ratio for a conventional microimaging system at low B(0) field (0.3T) with low cost. PMID:22214912

  20. Case study of ecstatic meditation: fMRI and EEG evidence of self-stimulating a reward system.

    PubMed

    Hagerty, Michael R; Isaacs, Julian; Brasington, Leigh; Shupe, Larry; Fetz, Eberhard E; Cramer, Steven C

    2013-01-01

    We report the first neural recording during ecstatic meditations called jhanas and test whether a brain reward system plays a role in the joy reported. Jhanas are Altered States of Consciousness (ASC) that imply major brain changes based on subjective reports: (1) external awareness dims, (2) internal verbalizations fade, (3) the sense of personal boundaries is altered, (4) attention is highly focused on the object of meditation, and (5) joy increases to high levels. The fMRI and EEG results from an experienced meditator show changes in brain activity in 11 regions shown to be associated with the subjective reports, and these changes occur promptly after jhana is entered. In particular, the extreme joy is associated not only with activation of cortical processes but also with activation of the nucleus accumbens (NAc) in the dopamine/opioid reward system. We test three mechanisms by which the subject might stimulate his own reward system by external means and reject all three. Taken together, these results demonstrate an apparently novel method of self-stimulating a brain reward system using only internal mental processes in a highly trained subject. PMID:23738149

  1. Contribution of the motor system to the perception of reachable space: an fMRI study.

    PubMed

    Bartolo, Angela; Coello, Yann; Edwards, Martin G; Delepoulle, Samuel; Endo, Satoshi; Wing, Alan M

    2014-12-01

    The present functional magnetic resonance imaging (fMRI) study investigates the neural correlates of reachability judgements. In a block design experiment, 14 healthy participants judged whether a visual target presented at different distances in a virtual environment display was reachable or not with the right hand. In two control tasks, they judged the colour or the relative position of the visual target according to flankers. Contrasting the activations registered in the reachability judgement task and in the control tasks, we found activations in the frontal structures, and in the bilateral inferior and superior parietal lobe, including the precuneus, and the bilateral cerebellum. This fronto-parietal network including the cerebellum overlaps with the brain network usually activated during actual motor production and motor imagery. In a following event-related design experiment, we contrasted brain activations when targets were rated as 'reachable' with those when they were rated as 'unreachable'. We found activations in the left premotor cortex, the bilateral frontal structures, and the left middle temporal gyrus. At a lower threshold, we also found activations in the left motor cortex, and in the bilateral cerebellum. Given that reaction time increased with target distance in reachable space, we performed a subsequent parametric analysis that revealed a related increase of activity in the fronto-parietal network including the cerebellum. Unreachable targets did not show similar activation, and particularly in regions associated to motor production and motor imagery. Taken together, these results suggest that dynamical motor representations used to determine what is reachable are also part of the perceptual process leading to the distinct representation of peripersonal and extrapersonal spaces. PMID:25308823

  2. Neural Response during the Activation of the Attachment System in Patients with Borderline Personality Disorder: An fMRI Study

    PubMed Central

    Buchheim, Anna; Erk, Susanne; George, Carol; Kächele, Horst; Martius, Philipp; Pokorny, Dan; Spitzer, Manfred; Walter, Henrik

    2016-01-01

    Individuals with borderline personality disorder (BPD) are characterized by emotional instability, impaired emotion regulation and unresolved attachment patterns associated with abusive childhood experiences. We investigated the neural response during the activation of the attachment system in BPD patients compared to healthy controls using functional magnetic resonance imaging (fMRI). Eleven female patients with BPD without posttraumatic stress disorder (PTSD) and 17 healthy female controls matched for age and education were telling stories in the scanner in response to the Adult Attachment Projective Picture System (AAP), an eight-picture set assessment of adult attachment. The picture set includes theoretically-derived attachment scenes, such as separation, death, threat and potential abuse. The picture presentation order is designed to gradually increase the activation of the attachment system. Each picture stimulus was presented for 2 min. Analyses examine group differences in attachment classifications and neural activation patterns over the course of the task. Unresolved attachment was associated with increasing amygdala activation over the course of the attachment task in patients as well as controls. Unresolved controls, but not patients, showed activation in the right dorsolateral prefrontal cortex (DLPFC) and the rostral cingulate zone (RCZ). We interpret this as a neural signature of BPD patients’ inability to exert top-down control under conditions of attachment distress. These findings point to possible neural mechanisms for underlying affective dysregulation in BPD in the context of attachment trauma and fear. PMID:27531977

  3. Neural Response during the Activation of the Attachment System in Patients with Borderline Personality Disorder: An fMRI Study.

    PubMed

    Buchheim, Anna; Erk, Susanne; George, Carol; Kächele, Horst; Martius, Philipp; Pokorny, Dan; Spitzer, Manfred; Walter, Henrik

    2016-01-01

    Individuals with borderline personality disorder (BPD) are characterized by emotional instability, impaired emotion regulation and unresolved attachment patterns associated with abusive childhood experiences. We investigated the neural response during the activation of the attachment system in BPD patients compared to healthy controls using functional magnetic resonance imaging (fMRI). Eleven female patients with BPD without posttraumatic stress disorder (PTSD) and 17 healthy female controls matched for age and education were telling stories in the scanner in response to the Adult Attachment Projective Picture System (AAP), an eight-picture set assessment of adult attachment. The picture set includes theoretically-derived attachment scenes, such as separation, death, threat and potential abuse. The picture presentation order is designed to gradually increase the activation of the attachment system. Each picture stimulus was presented for 2 min. Analyses examine group differences in attachment classifications and neural activation patterns over the course of the task. Unresolved attachment was associated with increasing amygdala activation over the course of the attachment task in patients as well as controls. Unresolved controls, but not patients, showed activation in the right dorsolateral prefrontal cortex (DLPFC) and the rostral cingulate zone (RCZ). We interpret this as a neural signature of BPD patients' inability to exert top-down control under conditions of attachment distress. These findings point to possible neural mechanisms for underlying affective dysregulation in BPD in the context of attachment trauma and fear. PMID:27531977

  4. MRI analysis of the ISOBAR TTL internal fixation system for the dynamic fixation of intervertebral discs: a comparison with rigid internal fixation

    PubMed Central

    2014-01-01

    Objectives Using magnetic resonance imaging (MRI), we analyzed the efficacy of the posterior approach lumbar ISOBAR TTL internal fixation system for the dynamic fixation of intervertebral discs, with particular emphasis on its effects on degenerative intervertebral disc disease. Methods We retrospectively compared the MRIs of 54 patients who had previously undergone either rigid internal fixation of the lumbar spine or ISOBAR TTL dynamic fixation for the treatment of lumbar spondylolisthesis. All patients had received preoperative and 6-, 12-, and 24-month postoperative MRI scans of the lumbar spine with acquisition of both routine and diffusion-weighted images (DWI). The upper-segment discs of the fusion were subjected to Pfirrmann grading, and the lumbar intervertebral discs in the DWI sagittal plane were manually drawn; the apparent diffusion coefficient (ADC) value was measured. Results ADC values in the ISOBAR TTL dynamic fixation group measured at the 6-, 12-, and 24-month postoperative MRI studies were increased compared to the preoperative ADC values. The ADC values in the ISOBAR TTL dynamic fixation group at 24 months postoperatively were significantly different from the preoperative values (P < 0.05). At 24 months, the postoperative ADC values were significantly different between the rigid fixation group and the ISOBAR TTL dynamic fixation group (P < 0.05). Conclusion MRI imaging findings indicated that the posterior approach lumbar ISOBAR TTL internal fixation system can prevent or delay the degeneration of intervertebral discs. PMID:24898377

  5. Battlefield MRI

    SciTech Connect

    Espy, Michelle

    2015-06-01

    Magnetic Resonance Imaging is the best method for non-invasive imaging of soft tissue anatomy, saving countless lives each year. It is regarded as the gold standard for diagnosis of mild to moderate traumatic brain injuries. Furthermore, conventional MRI relies on very high, fixed strength magnetic fields (> 1.5 T) with parts-per-million homogeneity, which requires very large and expensive magnets.

  6. MRI driven magnetic microswimmers.

    PubMed

    Kósa, Gábor; Jakab, Péter; Székely, Gábor; Hata, Nobuhiko

    2012-02-01

    Capsule endoscopy is a promising technique for diagnosing diseases in the digestive system. Here we design and characterize a miniature swimming mechanism that uses the magnetic fields of the MRI for both propulsion and wireless powering of the capsule. Our method uses both the static and the radio frequency (RF) magnetic fields inherently available in MRI to generate a propulsive force. Our study focuses on the evaluation of the propulsive force for different swimming tails and experimental estimation of the parameters that influence its magnitude. We have found that an approximately 20 mm long, 5 mm wide swimming tail is capable of producing 0.21 mN propulsive force in water when driven by a 20 Hz signal providing 0.85 mW power and the tail located within the homogeneous field of a 3 T MRI scanner. We also analyze the parallel operation of the swimming mechanism and the scanner imaging. We characterize the size of artifacts caused by the propulsion system. We show that while the magnetic micro swimmer is propelling the capsule endoscope, the operator can locate the capsule on the image of an interventional scene without being obscured by significant artifacts. Although this swimming method does not scale down favorably, the high magnetic field of the MRI allows self propulsion speed on the order of several millimeter per second and can propel an endoscopic capsule in the stomach. PMID:22037673

  7. In Vivo Evaluation of White Matter Integrity and Anterograde Transport in Visual System After Excitotoxic Retinal Injury With Multimodal MRI and OCT

    PubMed Central

    Ho, Leon C.; Wang, Bo; Conner, Ian P.; van der Merwe, Yolandi; Bilonick, Richard A.; Kim, Seong-Gi; Wu, Ed X.; Sigal, Ian A.; Wollstein, Gadi; Schuman, Joel S.; Chan, Kevin C.

    2015-01-01

    Purpose. Excitotoxicity has been linked to the pathogenesis of ocular diseases and injuries and may involve early degeneration of both anterior and posterior visual pathways. However, their spatiotemporal relationships remain unclear. We hypothesized that the effects of excitotoxic retinal injury (ERI) on the visual system can be revealed in vivo by diffusion tensor magnetic resonance imagining (DTI), manganese-enhanced magnetic resonance imagining (MRI), and optical coherence tomography (OCT). Methods. Diffusion tensor MRI was performed at 9.4 Tesla to monitor white matter integrity changes after unilateral N-methyl-D-aspartate (NMDA)-induced ERI in six Sprague-Dawley rats and six C57BL/6J mice. Additionally, four rats and four mice were intravitreally injected with saline to compare with NMDA-injected animals. Optical coherence tomography of the retina and manganese-enhanced MRI of anterograde transport were evaluated and correlated with DTI parameters. Results. In the rat optic nerve, the largest axial diffusivity decrease and radial diffusivity increase occurred within the first 3 and 7 days post ERI, respectively, suggestive of early axonal degeneration and delayed demyelination. The optic tract showed smaller directional diffusivity changes and weaker DTI correlations with retinal thickness compared with optic nerve, indicative of anterograde degeneration. The splenium of corpus callosum was also reorganized at 4 weeks post ERI. The DTI profiles appeared comparable between rat and mouse models. Furthermore, the NMDA-injured visual pathway showed reduced anterograde manganese transport, which correlated with diffusivity changes along but not perpendicular to optic nerve. Conclusions. Diffusion tensor MRI, manganese-enhanced MRI, and OCT provided an in vivo model system for characterizing the spatiotemporal changes in white matter integrity, the eye–brain relationships and structural–physiological relationships in the visual system after ERI. PMID:26066747

  8. Whole-body MRI for the staging and follow-up of patients with metastasis.

    PubMed

    Schmidt, Gerwin P; Reiser, Maximilian F; Baur-Melnyk, Andrea

    2009-06-01

    The advent of whole-body MRI (WB-MRI) has introduced tumor imaging with a systemic approach compared to established sequential, multi-modal diagnostic algorithms. Hardware innovations, such as the introduction of multi-receiver channel whole-body scanners at 1.5 T and recently 3T, combined with acquisition acceleration techniques, have made high resolution WB-MRI clinically feasible. Now, a dedicated assessment of individual organs with various soft tissue contrast, spatial resolution and contrast media dynamics can be combined with whole-body anatomic coverage in a multi-planar imaging approach. More flexible protocols, e.g. including T1-weighted TSE- and STIR-imaging, dedicated lung imaging or dynamic contrast-enhanced studies of the abdomen can be performed within less than 45 min. For initial tumor staging PET-CT as a competing whole-body modality in oncologic imaging has proved more accurate for the definition of T-stage and lymph node assessment, using the additional metabolic information of PET for the assessment of tumor viability and therapy response. However, new applications, such as MR-whole-body diffusion imaging, may significantly increase sensitivity in near future. WB-MRI has shown advantages for the detection of distant metastatic disease, especially from tumors frequently spreading to the liver or brain and it is especially useful as a radiation-free alternative for the surveillance of tumor patients with multiple follow-up exams. Furthermore, it has been introduced as a whole-body bone marrow screening application. Within this context WB-MRI is highly accurate for the detection of skeletal metastases and staging of hematologic diseases, such as multiple myeloma or lymphoma. This article summarizes recent developments and applications of WB-MRI and highlights its performance within the scope of systemic oncologic staging and surveillance. PMID:19457631

  9. Changes in laser-induced fluorescence responses of 3T3 fibroblasts to repetitive thermal stress

    NASA Astrophysics Data System (ADS)

    Beuthan, J.; Dressler, C.; Zabarylo, U.; Minet, O.

    2009-04-01

    The combined experimental use of laser-induced autofluorescence of cellular metabolites and methodological fundamentals of systems biology will provide access to biological thermal stress analysis on a sub cellular level. A test setup incorporating a pulsed nitrogen laser was realized with which autofluorescence of the coenzyme NADH could be measured in living 3T3 cells. The cells were subjected to different temperature stress at repetitive time intervals. When subjected to a simple mathematical analysis, the NADH concentration change measured through autofluorescence in biological cells exhibited approximate concentration-equivalent balance curves. These results add up to the fundamental know-how about the dosimetry of thermally therapeutic methods.

  10. MRI of plants and foods

    NASA Astrophysics Data System (ADS)

    Van As, Henk; van Duynhoven, John

    2013-04-01

    The importance and prospects for MRI as applied to intact plants and to foods are presented in view of one of humanity's most pressing concerns, the sustainable and healthy feeding of a worldwide increasing population. Intact plants and foods have in common that their functionality is determined by complex multiple length scale architectures. Intact plants have an additional level of complexity since they are living systems which critically depend on transport and signalling processes between and within tissues and organs. The combination of recent cutting-edge technical advances and integration of MRI accessible parameters has the perspective to contribute to breakthroughs in understanding complex regulatory plant performance mechanisms. In food science and technology MRI allows for quantitative multi-length scale structural assessment of food systems, non-invasive monitoring of heat and mass transport during shelf-life and processing, and for a unique view on food properties under shear. These MRI applications are powerful enablers of rationally (re)designed food formulations and processes. Limitations and bottlenecks of the present plant and food MRI methods are mainly related to short T2 values and susceptibility artefacts originating from small air spaces in tissues/materials. We envisage cross-fertilisation of solutions to overcome these hurdles in MRI applications in plants and foods. For both application areas we witness a development where MRI is moving from highly specialised equipment to mobile and downscaled versions to be used by a broad user base in the field, greenhouse, food laboratory or factory.

  11. A Novel MRI-compatible Tactile Stimulator for Cortical Mapping of Foot Sole Pressure Stimuli with fMRI

    PubMed Central

    Hao, Ying; Manor, Brad; Liu, Jing; Zhang, Kai; Chai, Yufeng; Lipsitz, Lewis; Peng, Chung-Kang; Novak, Vera; Wang, Xiaoying; Zhang, Jue; Fang, Jing

    2013-01-01

    Foot sole somatosensory feedback is critical to motor control and declines with aging and disease. To enable study of cortical networks underlying foot sole somatosensation we developed a pneumatic tactile stimulator capable of producing 1-DOF oscillations with preset waveform, frequency (≤10 Hz), force magnitude (5-500 N), duty cycle (20%-100%) and contacted surface area over which pressures are applied to the foot sole. Image tests (anatomical/functional/field map) of a phantom demonstrated that the device is compatible with 3T MRI. GRE-EPI images of seven healthy young adults using a typical block-designed 1Hz sinusoidal stimulation protocol revealed significant activation contralaterally within the primary somatosensory cortex and paracentral gyrus, and bilaterally within the secondary somatosensory cortex. The stimulation system may therefore serve as a research tool to study functional brain networks involved in the perception and modulation of foot sole somatosensation and its relationship to motor control. PMID:22678849

  12. Usefulness of an Image Fusion Model Using Three-Dimensional CT and MRI with Indocyanine Green Fluorescence Endoscopy as a Multimodal Assistant System in Endoscopic Transsphenoidal Surgery

    PubMed Central

    Inoue, Akihiro; Ohnishi, Takanori; Kohno, Shohei; Nishida, Naoya; Nakamura, Yawara; Ohtsuka, Yoshihiro; Matsumoto, Shirabe; Ohue, Shiro

    2015-01-01

    Purpose. We investigate the usefulness of multimodal assistant systems using a fusion model of preoperative three-dimensional (3D) computed tomography (CT) and magnetic resonance imaging (MRI) along with endoscopy with indocyanine green (ICG) fluorescence in establishing endoscopic endonasal transsphenoidal surgery (ETSS) as a more effective treatment procedure. Methods. Thirty-five consecutive patients undergoing ETSS in our hospital between April 2014 and March 2015 were enrolled in the study. In all patients, fusion models of 3D-CT and MRI were created by reconstructing preoperative images. In addition, in 10 patients, 12.5 mg of ICG was intravenously administered, allowing visualization of surrounding structures. We evaluated the accuracy and utility of these combined modalities in ETSS. Results. The fusion model of 3D-CT and MRI clearly demonstrated the complicated structures in the sphenoidal sinus and the position of the internal carotid arteries (ICAs), even with extensive tumor infiltration. ICG endoscopy enabled us to visualize the surrounding structures by the phasic appearance of fluorescent signals emitted at specific consecutive elapsed times. Conclusions. Preoperative 3D-CT and MRI fusion models with intraoperative ICG endoscopy allowed distinct visualization of vital structures in cases where tumors had extensively infiltrated the sphenoidal sinus. Additionally, the ICG endoscope was a useful real-time monitoring tool for ETSS. PMID:26339240

  13. MRI Meets MPI: a bimodal MPI-MRI tomograph.

    PubMed

    Vogel, Patrick; Lother, Steffen; Rückert, Martin A; Kullmann, Walter H; Jakob, Peter M; Fidler, Florian; Behr, Volker C

    2014-10-01

    While magnetic particle imaging (MPI) constitutes a novel biomedical imaging technique for tracking superparamagnetic nanoparticles in vivo, unlike magnetic resonance imaging (MRI), it cannot provide anatomical background information. Until now these two modalities have been performed in separate scanners and image co-registration has been hampered by the need to reposition the sample in both systems as similarly as possible. This paper presents a bimodal MPI-MRI-tomograph that combines both modalities in a single system.MPI and MRI images can thus be acquired without moving the sample or replacing any parts in the setup. The images acquired with the presented setup show excellent agreement between the localization of the nanoparticles in MPI and the MRI background data. A combination of two highly complementary imaging modalities has been achieved. PMID:25291350

  14. 26 CFR 54.9802-3T - Additional requirements prohibiting discrimination based on genetic information (temporary).

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 26 Internal Revenue 17 2014-04-01 2014-04-01 false Additional requirements prohibiting discrimination based on genetic information (temporary). 54.9802-3T Section 54.9802-3T Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) MISCELLANEOUS EXCISE TAXES (CONTINUED) PENSION EXCISE TAXES § 54.9802-3T...

  15. 26 CFR 54.9802-3T - Additional requirements prohibiting discrimination based on genetic information (temporary).

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 26 Internal Revenue 17 2012-04-01 2012-04-01 false Additional requirements prohibiting discrimination based on genetic information (temporary). 54.9802-3T Section 54.9802-3T Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) MISCELLANEOUS EXCISE TAXES (CONTINUED) PENSION EXCISE TAXES § 54.9802-3T...

  16. 26 CFR 54.9802-3T - Additional requirements prohibiting discrimination based on genetic information (temporary).

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 26 Internal Revenue 17 2013-04-01 2013-04-01 false Additional requirements prohibiting discrimination based on genetic information (temporary). 54.9802-3T Section 54.9802-3T Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) MISCELLANEOUS EXCISE TAXES (CONTINUED) PENSION EXCISE TAXES § 54.9802-3T...

  17. 26 CFR 1.1471-3T - Identification of payee (temporary).

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 26 Internal Revenue 12 2014-04-01 2014-04-01 false Identification of payee (temporary). 1.1471-3T Section 1.1471-3T Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) INCOME TAX (CONTINUED) INCOME TAXES (CONTINUED) Information Reporting by Foreign Financial Institutions § 1.1471-3T Identification of payee...

  18. 49 CFR 178.45 - Specification 3T seamless steel cylinder.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Specification 3T seamless steel cylinder. 178.45... PACKAGINGS Specifications for Cylinders § 178.45 Specification 3T seamless steel cylinder. (a) Type, size, and service pressure. A DOT 3T cylinder is a seamless steel cylinder with a minimum water capacity...

  19. 49 CFR 178.45 - Specification 3T seamless steel cylinder.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Specification 3T seamless steel cylinder. 178.45... PACKAGINGS Specifications for Cylinders § 178.45 Specification 3T seamless steel cylinder. (a) Type, size, and service pressure. A DOT 3T cylinder is a seamless steel cylinder with a minimum water capacity...

  20. 49 CFR 178.45 - Specification 3T seamless steel cylinder.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Specification 3T seamless steel cylinder. 178.45... PACKAGINGS Specifications for Cylinders § 178.45 Specification 3T seamless steel cylinder. (a) Type, size, and service pressure. A DOT 3T cylinder is a seamless steel cylinder with a minimum water capacity...

  1. 49 CFR 178.45 - Specification 3T seamless steel cylinder.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Specification 3T seamless steel cylinder. 178.45... PACKAGINGS Specifications for Cylinders § 178.45 Specification 3T seamless steel cylinder. (a) Type, size, and service pressure. A DOT 3T cylinder is a seamless steel cylinder with a minimum water capacity...

  2. 26 CFR 1.892-3T - Income of foreign governments (temporary regulations).

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 26 Internal Revenue 9 2011-04-01 2011-04-01 false Income of foreign governments (temporary regulations). 1.892-3T Section 1.892-3T Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) INCOME TAX (CONTINUED) INCOME TAXES (CONTINUED) Miscellaneous Provisions § 1.892-3T Income of foreign governments...

  3. 26 CFR 1.702-3T - 4-Year spread (temporary).

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 26 Internal Revenue 8 2011-04-01 2011-04-01 false 4-Year spread (temporary). 1.702-3T Section 1.702-3T Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) INCOME TAX (CONTINUED) INCOME TAXES (CONTINUED) Partners and Partnerships § 1.702-3T 4-Year spread (temporary). (a) Applicability. This section applies to...

  4. 26 CFR 1.25-3T - Qualified mortgage credit certificate (Temporary).

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 26 Internal Revenue 1 2012-04-01 2012-04-01 false Qualified mortgage credit certificate (Temporary). 1.25-3T Section 1.25-3T Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY INCOME TAX INCOME TAXES Changes in Rates During A Taxable Year § 1.25-3T Qualified mortgage credit certificate (Temporary). (a) Definition of...

  5. 26 CFR 1.108(i)-3T - Rules for the deduction of OID (temporary).

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ....108(i)-3T Section 1.108(i)-3T Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY....108(i)-3T Rules for the deduction of OID (temporary). (a) Deemed debt-for-debt exchanges—(1) In general. For purposes of section 108(i)(2) (relating to deferred OID deductions that arise in certain...

  6. 26 CFR 1.103(n)-3T - Private activity bond limit (temporary).

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 2 2010-04-01 2010-04-01 false Private activity bond limit (temporary). 1.103(n)-3T Section 1.103(n)-3T Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY....103(n)-3T Private activity bond limit (temporary). Q-1: What is the “State ceiling”? A-1: In...

  7. 26 CFR 1.103(n)-3T - Private activity bond limit (temporary).

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 26 Internal Revenue 2 2011-04-01 2011-04-01 false Private activity bond limit (temporary). 1.103(n)-3T Section 1.103(n)-3T Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY....103(n)-3T Private activity bond limit (temporary). Q-1: What is the “State ceiling”? A-1: In...

  8. 26 CFR 1.103(n)-3T - Private activity bond limit (temporary).

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 26 Internal Revenue 2 2013-04-01 2013-04-01 false Private activity bond limit (temporary). 1.103(n)-3T Section 1.103(n)-3T Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY....103(n)-3T Private activity bond limit (temporary). Q-1: What is the “State ceiling”? A-1: In...

  9. 26 CFR 1.103(n)-3T - Private activity bond limit (temporary).

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 26 Internal Revenue 2 2014-04-01 2014-04-01 false Private activity bond limit (temporary). 1.103(n)-3T Section 1.103(n)-3T Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY....103(n)-3T Private activity bond limit (temporary). Q-1: What is the “State ceiling”? A-1: In...

  10. 26 CFR 1.103(n)-3T - Private activity bond limit (temporary).

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 26 Internal Revenue 2 2012-04-01 2012-04-01 false Private activity bond limit (temporary). 1.103(n)-3T Section 1.103(n)-3T Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY....103(n)-3T Private activity bond limit (temporary). Q-1: What is the “State ceiling”? A-1: In...

  11. 26 CFR 1.921-3T - Temporary regulations; Foreign sales corporation general rules.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 10 2010-04-01 2010-04-01 false Temporary regulations; Foreign sales corporation general rules. 1.921-3T Section 1.921-3T Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) INCOME TAX (CONTINUED) INCOME TAXES Earned Income of Citizens of United States § 1.921-3T Temporary regulations;...

  12. 26 CFR 1.132-3T - Qualified employee discount-1985 through 1988 (temporary).

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... (temporary). 1.132-3T Section 1.132-3T Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) INCOME TAX (CONTINUED) INCOME TAXES (CONTINUED) Items Specifically Excluded from Gross Income § 1.132-3T Qualified employee discount—1985 through 1988 (temporary). (a) In general—(1) Definition....

  13. 26 CFR 1.132-3T - Qualified employee discount-1985 through 1988 (temporary).

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... (temporary). 1.132-3T Section 1.132-3T Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) INCOME TAX (CONTINUED) INCOME TAXES (CONTINUED) Items Specifically Excluded from Gross Income § 1.132-3T Qualified employee discount—1985 through 1988 (temporary). (a) In general—(1) Definition....

  14. An approach to probe some neural systems interaction by functional MRI at neural time scale down to milliseconds

    PubMed Central

    Ogawa, Seiji; Lee, Tso-Ming; Stepnoski, Ray; Chen, Wei; Zhu, Xiao-Hong; Ugurbil, Kamil

    2000-01-01

    In this paper, we demonstrate an approach by which some evoked neuronal events can be probed by functional MRI (fMRI) signal with temporal resolution at the time scale of tens of milliseconds. The approach is based on the close relationship between neuronal electrical events and fMRI signal that is experimentally demonstrated in concurrent fMRI and electroencephalographic (EEG) studies conducted in a rat model with forepaw electrical stimulation. We observed a refractory period of neuronal origin in a two-stimuli paradigm: the first stimulation pulse suppressed the evoked activity in both EEG and fMRI signal responding to the subsequent stimulus for a period of several hundred milliseconds. When there was an apparent site–site interaction detected in the evoked EEG signal induced by two stimuli that were primarily targeted to activate two different sites in the brain, fMRI also displayed signal amplitude modulation because of the interactive event. With visual stimulation using two short pulses in the human brain, a similar refractory phenomenon was observed in activated fMRI signals in the primary visual cortex. In addition, for interstimulus intervals shorter than the known latency time of the evoked potential induced by the first stimulus (≈100 ms) in the primary visual cortex of the human brain, the suppression was not present. Thus, by controlling the temporal relation of input tasks, it is possible to study temporal evolution of certain neural events at the time scale of their evoked electrical activity by noninvasive fMRI methodology. PMID:11005873

  15. An RF dosimeter for independent SAR measurement in MRI scanners

    PubMed Central

    Qian, Di; El-Sharkawy, AbdEl-Monem M.; Bottomley, Paul A.; Edelstein, William A.

    2013-01-01

    Purpose: The monitoring and management of radio frequency (RF) exposure is critical for ensuring magnetic resonance imaging (MRI) safety. Commercial MRI scanners can overestimate specific absorption rates (SAR) and improperly restrict clinical MRI scans or the application of new MRI sequences, while underestimation of SAR can lead to tissue heating and thermal injury. Accurate scanner-independent RF dosimetry is essential for measuring actual exposure when SAR is critical for ensuring regulatory compliance and MRI safety, for establishing RF exposure while evaluating interventional leads and devices, and for routine MRI quality assessment by medical physicists. However, at present there are no scanner-independent SAR dosimeters. Methods: An SAR dosimeter with an RF transducer comprises two orthogonal, rectangular copper loops and a spherical MRI phantom. The transducer is placed in the magnet bore and calibrated to approximate the resistive loading of the scanner's whole-body birdcage RF coil for human subjects in Philips, GE and Siemens 3 tesla (3T) MRI scanners. The transducer loop reactances are adjusted to minimize interference with the transmit RF field (B1) at the MRI frequency. Power from the RF transducer is sampled with a high dynamic range power monitor and recorded on a computer. The deposited power is calibrated and tested on eight different MRI scanners. Whole-body absorbed power vs weight and body mass index (BMI) is measured directly on 26 subjects. Results: A single linear calibration curve sufficed for RF dosimetry at 127.8 MHz on three different Philips and three GE 3T MRI scanners. An RF dosimeter operating at 123.2 MHz on two Siemens 3T scanners required a separate transducer and a slightly different calibration curve. Measurement accuracy was ∼3%. With the torso landmarked at the xiphoid, human adult whole‑body absorbed power varied approximately linearly with patient weight and BMI. This indicates that whole-body torso SAR is on average

  16. An RF dosimeter for independent SAR measurement in MRI scanners

    SciTech Connect

    Qian, Di; Bottomley, Paul A.; El-Sharkawy, AbdEl-Monem M.; Edelstein, William A.

    2013-12-15

    Purpose: The monitoring and management of radio frequency (RF) exposure is critical for ensuring magnetic resonance imaging (MRI) safety. Commercial MRI scanners can overestimate specific absorption rates (SAR) and improperly restrict clinical MRI scans or the application of new MRI sequences, while underestimation of SAR can lead to tissue heating and thermal injury. Accurate scanner-independent RF dosimetry is essential for measuring actual exposure when SAR is critical for ensuring regulatory compliance and MRI safety, for establishing RF exposure while evaluating interventional leads and devices, and for routine MRI quality assessment by medical physicists. However, at present there are no scanner-independent SAR dosimeters. Methods: An SAR dosimeter with an RF transducer comprises two orthogonal, rectangular copper loops and a spherical MRI phantom. The transducer is placed in the magnet bore and calibrated to approximate the resistive loading of the scanner's whole-body birdcage RF coil for human subjects in Philips, GE and Siemens 3 tesla (3T) MRI scanners. The transducer loop reactances are adjusted to minimize interference with the transmit RF field (B{sub 1}) at the MRI frequency. Power from the RF transducer is sampled with a high dynamic range power monitor and recorded on a computer. The deposited power is calibrated and tested on eight different MRI scanners. Whole-body absorbed power vs weight and body mass index (BMI) is measured directly on 26 subjects. Results: A single linear calibration curve sufficed for RF dosimetry at 127.8 MHz on three different Philips and three GE 3T MRI scanners. An RF dosimeter operating at 123.2 MHz on two Siemens 3T scanners required a separate transducer and a slightly different calibration curve. Measurement accuracy was ∼3%. With the torso landmarked at the xiphoid, human adult whole‑body absorbed power varied approximately linearly with patient weight and BMI. This indicates that whole-body torso SAR is on

  17. Development and Preliminary Evaluation of a Motorized Needle Guide Template for MRI-guided Targeted Prostate Biopsy

    PubMed Central

    Song, Sang-Eun; Tokuda, Junichi; Tuncali, Kemal; Tempany, Clare; Zhang, Elizabeth; Hata, Nobuhiko

    2013-01-01

    To overcome the problems of limited needle insertion accuracy and human error in the use of a conventional needle guide template in MRI-guided prostate intervention, we developed a motorized MRI-compatible needle guide template that resembles a TRUS-guided prostate template. The motorized template allows automated, gapless needle guidance in a 3T MRI scanner with minimal changes in the current clinical procedure. To evaluate the impact of the motorized template on MRI, signal-to-noise ratio and distortion were measured under various system configurations. A maximum of 44% signal-to-noise ratio decrease was found when the ultrasonic motors were running, and a maximum of 0.4% image distortion was observed due to the presence of the motorized template. To measure needle insertion accuracy, we performed four sets of five random target needle insertions mimicking four biopsy procedures, which resulted in an average in-plane targeting error of 0.94 mm with a standard deviation of 0.34 mm. The evaluation studies indicated that the presence and operation of the motorized template in the MRI bore creates insignificant image degradation, and provides submillimeter targeting accuracy. The automated needle guide that is directly controlled by navigation software eliminates human error so that the safety of the procedure can be improved. PMID:23335658

  18. Leg MRI scan

    MedlinePlus

    ... imaging - leg; Magnetic resonance imaging - lower extremity; MRI - ankle; Magnetic resonance imaging - ankle; MRI - femur; MRI - leg ... or bone scan Birth defects of the leg, ankle, or foot Bone pain and fever Broken bone ...

  19. MRI Safety during Pregnancy

    MedlinePlus

    ... during the exam? Contrast material MRI during pregnancy Magnetic resonance imaging (MRI) If you are pregnant and your doctor wants to perform a magnetic resonance imaging (MRI) exam, there is a possibility that your ...

  20. Design and Application of a New Automated Fluidic Visceral Stimulation Device for Human fMRI Studies of Interoception

    PubMed Central

    Gassert, Roger; Wanek, Johann; Michels, Lars; Mehnert, Ulrich; Kollias, Spyros S.

    2016-01-01

    Mapping the brain centers that mediate the sensory-perceptual processing of visceral afferent signals arising from the body (i.e., interoception) is useful both for characterizing normal brain activity and for understanding clinical disorders related to abnormal processing of visceral sensation. Here, we report a novel closed-system, electrohydrostatically driven master–slave device that was designed and constructed for delivering controlled fluidic stimulations of visceral organs and inner cavities of the human body within the confines of a 3T magnetic resonance imaging (MRI) scanner. The design concept and performance of the device in the MRI environment are described. In addition, the device was applied during a functional MRI (fMRI) investigation of visceral stimulation related to detrusor distention in two representative subjects to verify its feasibility in humans. System evaluation tests demonstrate that the device is MR-compatible with negligible impact on imaging quality [static signal-to-noise ratio (SNR) loss <2.5% and temporal SNR loss <3.5%], and has an accuracy of 99.68% for flow rate and 99.27% for volume delivery. A precise synchronization of the stimulus delivery with fMRI slice acquisition was achieved by programming the proposed device to detect the 5 V transistor–transistor logic (TTL) trigger signals generated by the MRI scanner. The fMRI data analysis using the general linear model analysis with the standard hemodynamic response function showed increased activations in the network of brain regions that included the insula, anterior and mid-cingulate and lateral prefrontal cortices, and thalamus in response to increased distension pressure on viscera. The translation from manually operated devices to an MR-compatible and MR-synchronized device under automatic control represents a useful innovation for clinical neuroimaging studies of human interoception. PMID:27551646

  1. Design and Application of a New Automated Fluidic Visceral Stimulation Device for Human fMRI Studies of Interoception.

    PubMed

    Jarrahi, Behnaz; Gassert, Roger; Wanek, Johann; Michels, Lars; Mehnert, Ulrich; Kollias, Spyros S

    2016-01-01

    Mapping the brain centers that mediate the sensory-perceptual processing of visceral afferent signals arising from the body (i.e., interoception) is useful both for characterizing normal brain activity and for understanding clinical disorders related to abnormal processing of visceral sensation. Here, we report a novel closed-system, electrohydrostatically driven master-slave device that was designed and constructed for delivering controlled fluidic stimulations of visceral organs and inner cavities of the human body within the confines of a 3T magnetic resonance imaging (MRI) scanner. The design concept and performance of the device in the MRI environment are described. In addition, the device was applied during a functional MRI (fMRI) investigation of visceral stimulation related to detrusor distention in two representative subjects to verify its feasibility in humans. System evaluation tests demonstrate that the device is MR-compatible with negligible impact on imaging quality [static signal-to-noise ratio (SNR) loss <2.5% and temporal SNR loss <3.5%], and has an accuracy of 99.68% for flow rate and 99.27% for volume delivery. A precise synchronization of the stimulus delivery with fMRI slice acquisition was achieved by programming the proposed device to detect the 5 V transistor-transistor logic (TTL) trigger signals generated by the MRI scanner. The fMRI data analysis using the general linear model analysis with the standard hemodynamic response function showed increased activations in the network of brain regions that included the insula, anterior and mid-cingulate and lateral prefrontal cortices, and thalamus in response to increased distension pressure on viscera. The translation from manually operated devices to an MR-compatible and MR-synchronized device under automatic control represents a useful innovation for clinical neuroimaging studies of human interoception. PMID:27551646

  2. Advances in Clinical PET/MRI Instrumentation.

    PubMed

    Herzog, Hans; Lerche, Christoph

    2016-04-01

    In 2010, the first whole-body PET/MRI scanners installed for clinical use were the sequential Philips PET/MRI with PMT-based, TOF-capable technology and the integrated simultaneous Siemens PET/MRI. Avalanche photodiodes as non-magneto-sensitive readout electronics allowed PET integrated within the MRI. The experiences with these scanners showed that improvements of software aspects, such as attenuation correction, were necessary and that efficient protocols combining optimally PET and MRI must be still developed. In 2014, General Electric issued an integrated PET/MRI with SiPM-based PET detectors, allowing TOF-PET. Looking at the MRI components of current PET/MR imaging systems, primary improvements come from sequences and new coils. PMID:26952724

  3. Multivariate dynamical systems-based estimation of causal brain interactions in fMRI: Group-level validation using benchmark data, neurophysiological models and human connectome project data

    PubMed Central

    Ryali, Srikanth; Chen, Tianwen; Supekar, Kaustubh; Tu, Tao; Kochlka, John; Cai, Weidong; Menon, Vinod

    2016-01-01

    Background Causal estimation methods are increasingly being used to investigate functional brain networks in fMRI, but there are continuing concerns about the validity of these methods. New Method Multivariate Dynamical Systems (MDS) is a state-space method for estimating dynamic causal interactions in fMRI data. Here we validate MDS using benchmark simulations as well as simulations from a more realistic stochastic neurophysiological model. Finally, we applied MDS to investigate dynamic casual interactions in a fronto-cingulate-parietal control network using Human Connectome Project (HCP) data acquired during performance of a working memory task. Crucially, since the ground truth in experimental data is unknown, we conducted novel stability analysis to determine robust causal interactions within this network. Results MDS accurately recovered dynamic causal interactions with an area under receiver operating characteristic (AUC) above 0.7 for benchmark datasets and AUC above 0.9 for datasets generated using the neurophysiological model. In experimental fMRI data, bootstrap procedures revealed a stable pattern of causal influences from the anterior insula to other nodes of the fronto-cingulate-parietal network. Comparison with Existing Methods MDS is effective in estimating dynamic causal interactions in both the benchmark and neurophysiological model based datasets in terms of AUC, sensitivity and false positive rates. Conclusions Our findings demonstrate that MDS can accurately estimate causal interactions in fMRI data. Neurophysiological models and stability analysis provide a general framework for validating computational methods designed to estimate causal interactions in fMRI. The right anterior insula functions as a causal hub during working memory. PMID:27015792

  4. Posttraumatic Stress Disorder: Structural Characterization with 3-T MR Imaging.

    PubMed

    Li, Shiguang; Huang, Xiaoqi; Li, Lingjiang; Du, Fei; Li, Jing; Bi, Feng; Lui, Su; Turner, Jessica A; Sweeney, John A; Gong, Qiyong

    2016-08-01

    Purpose To explore cerebral alterations related to the emergence of posttraumatic stress disorder (PTSD) by using three-dimensional T1-weighted imaging and also to explore the relationship of gray and white matter abnormalities and the anatomic changes with clinical severity and duration of time since the trauma. Materials and Methods Informed consent was provided, and the prospective study was approved by the ethics committee of the West China Hospital. Recruited were 67 patients with PTSD and 78 adult survivors without PTSD 7-15 months after a devastating earthquake in western China. All participants underwent magnetic resonance (MR) imaging with a 3-T imager to obtain anatomic images. Cortical thickness and volumes of 14 subcortical gray matter structures and five subregions of the corpus callosum were analyzed with software. Statistical differences between patients with PTSD and healthy survivors were evaluated with a general linear model. Averaged data from the regions with volumetric or cortical thickness differences between groups were extracted in each individual to examine correlations between morphometric measures and clinical profiles. Results Patients with PTSD showed greater cortical thickness in the right superior temporal gyrus, inferior parietal lobule, and left precuneus (P < .05; Monte Carlo null-z simulation corrected) and showed reduced volume in the posterior portion of the corpus callosum (F = 6.167; P = .014) compared with healthy survivors of the earthquake. PTSD severity was positively correlated with cortical thickness in the left precuneus (r = 0.332; P = .008). The volumes of posterior corpus callosum were negatively correlated with PTSD ratings in all survivors (r = -0.210; P = .013) and with cortical thickness of the left precuneus in patients with PTSD (r = -0.302; P = .017). Conclusion Results indicate that patients with PTSD had alterations in both cerebral gray matter and white matter compared with individuals who experienced

  5. Occurrence and control of sporadic proliferation in growth arrested Swiss 3T3 feeder cells.

    PubMed

    Chugh, Rishi Man; Chaturvedi, Madhusudan; Yerneni, Lakshmana Kumar

    2015-01-01

    Growth arrested Swiss mouse embryonic 3T3 cells are used as feeders to support the growth of epidermal keratinocytes and several other target cells. The 3T3 cells have been extensively subcultured owing to their popularity and wide distribution in the world and, as a consequence selective inclusion of variants is a strong possibility in them. Inadvertently selected variants expressing innate resistance to mitomycin C may continue to proliferate even after treatment with such growth arresting agents. The failure of growth arrest can lead to a serious risk of proliferative feeder contamination in target cell cultures. In this study, we passaged Swiss 3T3 cells (CCL-92, ATCC) by different seeding densities and incubation periods. We tested the resultant cultures for differences in anchorage-independent growth, resumption of proliferation after mitomycin C treatment and occurrence of proliferative feeder contaminants in an epidermal keratinocyte co-culture system. The study revealed subculture dependent differential responses. The cultures of a particular subculture procedure displayed unique cell size distribution and disintegrated completely in 6 weeks following mitomycin C treatment, but their repeated subculture resulted in feeder regrowth as late as 11 weeks after the growth arrest. In contrast, mitomycin C failed to inhibit cell proliferation in cultures of the other subculture schemes and also in a clone that was established from a transformation focus of super-confluent culture. The resultant proliferative feeder cells contaminated the keratinocyte cultures. The anchorage-independent growth appeared in late passages as compared with the expression of mitomycin C resistance in earlier passages. The feeder regrowth was prevented by identifying a safe subculture protocol that discouraged the inclusion of resistant variants. We advocate routine anchorage-independent growth assay and absolute confirmation of feeder disintegration to qualify feeder batches and

  6. Effect of pycnogenol on glucose transport in mature 3T3-L1 adipocytes.

    PubMed

    Lee, Hee-Hyun; Kim, Kui-Jin; Lee, Ok-Hwan; Lee, Boo-Yong

    2010-08-01

    Pycnogenol, a procyanidins-enriched extract of Pinus maritima bark, possesses antidiabetic properties, which improves the altered parameters of glucose metabolism that are associated with type 2 diabetes mellitus (T2DM). Since the insulin-stimulated antidiabetic activities of natural bioactive compounds are mediated by GLUT4 via the phosphatidylinositol-3-kinase (PI3K) and/or p38 mitogen activated protein kinase (p38-MAPK) pathway, the effects of pycnogenol were examined on the molecular mechanism of glucose uptake by the glucose transport system. 3T3-L1 adipocytes were treated with various concentrations of pycnogenol, and glucose uptake was examined using a non-radioisotope enzymatic assay and by molecular events associated with the glucose transport system using semi-quantitative reverse transcription-polymerase chain reaction (RT-PCR). The results show that pycnogenol increased glucose uptake in fully differentiated 3T3-L1 adipocytes and increased the relative abundance of both GLUT4 and Akt mRNAs through the PI3K pathway in a dose dependent manner. Furthermore, pycnogenol restored the PI3K antagonist-induced inhibition of glucose uptake in the presence of wartmannin, an inhibitor of the PI3K. Overall, these results indicate that pycnogenol may stimulate glucose uptake via the PI3K dependent tyrosine kinase pathways involving Akt. Further the results suggest that pycnogenol might be useful in maintaining blood glucose control. PMID:20658573

  7. Directly detected 55Mn MRI: Application to phantoms for human hyperpolarized 13C MRI development

    PubMed Central

    von Morze, Cornelius; Carvajal, Lucas; Reed, Galen D.; Swisher, Christine Leon; Tropp, James; Vigneron, Daniel B.

    2014-01-01

    In this work we demonstrate for the first time directly detected manganese-55 (55Mn) MRI using a clinical 3T MRI scanner designed for human hyperpolarized 13C clinical studies with no additional hardware modifications. Due to the similar frequency of the 55Mn and 13C resonances, the use of aqueous permanganate for large, signal-dense, and cost-effective “13C” MRI phantoms was investigated, addressing the clear need for new phantoms for these studies. Due to 100% natural abundance, higher intrinsic sensitivity, and favorable relaxation properties, 55Mn MRI of aqueous permanganate demonstrates dramatically increased sensitivity over typical 13C phantom MRI, at greatly reduced cost as compared with large 13C-enriched phantoms. A large sensitivity advantage (22-fold) was demonstrated. A cylindrical phantom (d= 8 cm) containing concentrated aqueous sodium permanganate (2.7M) was scanned rapidly by 55Mn MRI in a human head coil tuned for 13C, using a balanced SSFP acquisition. The requisite penetration of RF magnetic fields into concentrated permanganate was investigated by experiments and high frequency electromagnetic simulations, and found to be sufficient for 55Mn MRI with reasonably sized phantoms. A sub-second slice-selective acquisition yielded mean image SNR of ~60 at 0.5cm3 spatial resolution, distributed with minimum central signal ~40% of the maximum edge signal. We anticipate that permanganate phantoms will be very useful for testing HP 13C coils and methods designed for human studies. PMID:25179135

  8. Primary central nervous system lymphoma with lymphomatosis cerebri in an immunocompetent child: MRI and 18F-FDG PET-CT findings.

    PubMed

    Jain, Tarun K; Sharma, Punit; Suman, Sudhir K C; Faizi, Nauroze A; Bal, Chandrasekhar; Kumar, Rakesh

    2013-01-01

    Primary central nervous system lymphoma (PCNSL) is extremely rare in immunocompetent children. We present the magnetic resonance imaging (MRI) and (18)F-fluorodeoxyglucose ((18)F-FDG) positron emission tomography-computed tomography (PET-CT) findings of such a case in a 14-year old immunocompetent boy. In this patient, PCNSL was associated with lymphomatosis cerebri. Familiarity with the findings of this rare condition will improve the diagnostic confidence of the nuclear radiologist and avoid misdiagnosis. PMID:23743243

  9. SU-E-I-84: MRI Relaxation Properties of a Pre-Clinical Hypoxia-Sensitive MRI Contrast Agent

    SciTech Connect

    Yee, S; Wilson, G; Chavez, F

    2014-06-01

    Purpose: A possible hypoxia-sensitive MRI agent, hexamethyldisiloxane (HMDSO), has been tried to image oxygen level in proton-based MRI (Kodibagkar et al, NMR Biomed, 2008). The induced changes of T1 (or R1) value by the HMDSO as the oxygenation level changes are the principle that the hypoxia agent is based on: the R1 increases as the oxygen level increases. However, as reported previously, the range of R1 values (0.1–0.3 s-1, corresponding to 3–10 s of T1) is not in the range where a regular MRI technique can easily detect the change. In order for this agent to be widely applied in an MRI environment, more relaxation properties of this agent, including T1 in the rotating frame (T1rho) and T2, need to be explored. Here, the relaxation properties of this agent are explored. Methods: A phantom was made with HMDSO, water and mineral oil, each of which was prepared with oxygen and nitrogen, and was imaged in a 3T MRI system. The T1 properties were explored by the inversion recovery (TR=3000ms, TE=65ms) while varying the inversion time (TI), and also by the fast-field-echo (TR=2 ms, TE=2.8ms) while varying the flip angle (FA). T1rho was explored with a 5-pulse spin-locking technique (TR=5000ms, TE=10ms, spin-lock field=500Hz) while varying the spin-lock duration. T2 was explored with multi-shot TSE (TR=2500ms) while varying TE. Results: With the variable FA and TI, the signals of HMDSO with oxygen and nitrogen change in a similar way and do not respond well by the change of oxygen level, which confirms the large T1 value of HMDSO. The T1rho and T2, however, have a better sensitivity. Conclusion: For the possible pre-clinical hypoxia MRI agent (HMDSO), the detection of T1 (or R1) changes may be more challenging than the detection of other relaxation properties, particularly T2, as the oxygen level changes.

  10. Long-Term Left Ventricular Remodelling in Rat Model of Nonreperfused Myocardial Infarction: Sequential MR Imaging Using a 3T Clinical Scanner

    PubMed Central

    Saleh, Muhammad G.; Sharp, Sarah-Kate; Alhamud, Alkathafi; Spottiswoode, Bruce S.; van der Kouwe, Andre J. W.; Davies, Neil H.; Franz, Thomas; Meintjes, Ernesta M.

    2012-01-01

    Purpose. To evaluate whether 3T clinical MRI with a small-animal coil and gradient-echo (GE) sequence could be used to characterize long-term left ventricular remodelling (LVR) following nonreperfused myocardial infarction (MI) using semi-automatic segmentation software (SASS) in a rat model. Materials and Methods. 5 healthy rats were used to validate left ventricular mass (LVM) measured by MRI with postmortem values. 5 sham and 7 infarcted rats were scanned at 2 and 4 weeks after surgery to allow for functional and structural analysis of the heart. Measurements included ejection fraction (EF), end-diastolic volume (EDV), end-systolic volume (ESV), and LVM. Changes in different regions of the heart were quantified using wall thickness analyses. Results. LVM validation in healthy rats demonstrated high correlation between MR and postmortem values. Functional assessment at 4 weeks after MI revealed considerable reduction in EF, increases in ESV, EDV, and LVM, and contractile dysfunction in infarcted and noninfarcted regions. Conclusion. Clinical 3T MRI with a small animal coil and GE sequence generated images in a rat heart with adequate signal-to-noise ratio (SNR) for successful semiautomatic segmentation to accurately and rapidly evaluate long-term LVR after MI. PMID:23118511

  11. An analysis of the gradient-induced electric fields and current densities in human models when situated in a hybrid MRI-LINAC system

    NASA Astrophysics Data System (ADS)

    Liu, Limei; Trakic, Adnan; Sanchez-Lopez, Hector; Liu, Feng; Crozier, Stuart

    2014-01-01

    MRI-LINAC is a new image-guided radiotherapy treatment system that combines magnetic resonance imaging (MRI) with a linear accelerator (LINAC) in a single unit. One drawback is that the pulsing of the split gradient coils of the system induces an electric field and currents in the patient which need to be predicted and evaluated for patient safety. In this novel numerical study the in situ electric fields and associated current densities were evaluated inside tissue-accurate male and female human voxel models when a number of different split-geometry gradient coils were operated. The body models were located in the MRI-LINAC system along the axial and radial directions in three different body positions. Each model had a region of interest (ROI) suitable for image-guided radiotherapy. The simulation results show that the amplitudes and distributions of the field and current density induced by different split x-gradient coils were similar with one another in the ROI of the body model, but varied outside of the region. The fields and current densities induced by a split classic coil with the surface unconnected showed the largest deviation from those given by the conventional non-split coils. Another finding indicated that the distributions of the peak current densities varied when the body position, orientation or gender changed, while the peak electric fields mainly occurred in the skin and fat tissues.

  12. Repeatability and sensitivity of T2* measurements in patients with head and neck squamous cell carcinoma at 3T

    PubMed Central

    Panek, Rafal; Welsh, Liam; Dunlop, Alex; Wong, Kee H.; Riddell, Angela M.; Koh, Dow‐Mu; Schmidt, Maria A.; Doran, Simon; Mcquaid, Dualta; Hopkinson, Georgina; Richardson, Cheryl; Nutting, Christopher M.; Bhide, Shreerang A.; Harrington, Kevin J.; Robinson, Simon P.; Newbold, Kate L.

    2016-01-01

    Purpose To determine whether quantitation of T2* is sufficiently repeatable and sensitive to detect clinically relevant oxygenation levels in head and neck squamous cell carcinoma (HNSCC) at 3T. Materials and Methods Ten patients with newly diagnosed locally advanced HNSCC underwent two magnetic resonance imaging (MRI) scans between 24 and 168 hours apart prior to chemoradiotherapy treatment. A multiple gradient echo sequence was used to calculate T2* maps. A quadratic function was used to model the blood transverse relaxation rate as a function of blood oxygenation. A set of published coefficients measured at 3T were incorporated to account for tissue hematocrit levels and used to plot the dependence of fractional blood oxygenation (Y) on T2* values, together with the corresponding repeatability range. Repeatability of T2* using Bland–Altman analysis, and calculation of limits of agreement (LoA), was used to assess the sensitivity, defined as the minimum difference in fractional blood oxygenation that can be confidently detected. Results T2* LoA for 22 outlined tumor volumes were 13%. The T2* dependence of fractional blood oxygenation increases monotonically, resulting in increasing sensitivity of the method with increasing blood oxygenation. For fractional blood oxygenation values above 0.11, changes in T2* were sufficient to detect differences in blood oxygenation greater than 10% (Δ T2* > LoA for ΔY > 0.1). Conclusion Quantitation of T2* at 3T can detect clinically relevant changes in tumor oxygenation within a wide range of blood volumes and oxygen tensions, including levels reported in HNSCC. J. Magn. Reson. Imaging 2016;44:72–80. PMID:26800280

  13. A hybrid system for the semantic annotation of sulco-gyral anatomy in MRI images.

    PubMed

    Mechouche, Ammar; Morandi, Xavier; Golbreich, Christine; Gibaud, Bernard

    2008-01-01

    This paper presents an interactive system for the annotation of brain anatomical structures in Magnetic Resonance Images. The system is based on hybrid knowledge and techniques. First, it exploits both numerical knowledge from atlases and symbolic knowledge from a rule-extended ontology represented in OWL, the Web ontology language, and combines them with graphical data about cortical sulci, automatically extracted from the images. Second, the annotations of the parts of gyri and of sulci located in a region of interest are obtained with different reasoning techniques: Constraint Satisfaction Solving and Description Logics techniques. Preliminary experiments have been achieved on normal and also pathological data. The results obtained so far are very promising. PMID:18979820

  14. Minimum Field Strength Simulator for Proton Density Weighted MRI

    PubMed Central

    Chen, Weiyi; Nayak, Krishna S.

    2016-01-01

    Objective To develop and evaluate a framework for simulating low-field proton-density weighted MRI acquisitions based on high-field acquisitions, which could be used to predict the minimum B0 field strength requirements for MRI techniques. This framework would be particularly useful in the evaluation of de-noising and constrained reconstruction techniques. Materials and Methods Given MRI raw data, lower field MRI acquisitions can be simulated based on the signal and noise scaling with field strength. Certain assumptions are imposed for the simulation and their validity is discussed. A validation experiment was performed using a standard resolution phantom imaged at 0.35 T, 1.5 T, 3 T, and 7 T. This framework was then applied to two sample proton-density weighted MRI applications that demonstrated estimation of minimum field strength requirements: real-time upper airway imaging and liver proton-density fat fraction measurement. Results The phantom experiment showed good agreement between simulated and measured images. The SNR difference between simulated and measured was ≤ 8% for the 1.5T, 3T, and 7T cases which utilized scanners with the same geometry and from the same vendor. The measured SNR at 0.35T was 1.8- to 2.5-fold less than predicted likely due to unaccounted differences in the RF receive chain. The predicted minimum field strength requirements for the two sample applications were 0.2 T and 0.3 T, respectively. Conclusions Under certain assumptions, low-field MRI acquisitions can be simulated from high-field MRI data. This enables prediction of the minimum field strength requirements for a broad range of MRI techniques. PMID:27136334

  15. Single-Shot Echo-Planar Diffusion-Weighted MR Imaging at 3T and 1.5T for Differentiation of Benign Vertebral Fracture Edema and Tumor Infiltration

    PubMed Central

    Park, Hee Jin; Rho, Myung Ho; Chung, Eun Chul; Kim, Mi Sung; Kwon, Heon Ju; Youn, In Young

    2016-01-01

    Objective To compare the apparent diffusion coefficient (ADC) value using single-shot echo-planar imaging sequences at 3T and 1.5T for differentiation of benign fracture edema and tumor infiltration of the vertebral body. Materials and Methods A total of 46 spinal examinations were included in the 1.5T MRI group, and a total of 40 spinal examinations were included in the 3T MRI group. The ADC values of the lesion were measured and calculated. The diagnostic performance of the conventional MR image containing sagittal T2-weighted fat saturated image and each diffusion weighted image (DWI) with an ADC value with different b values were evaluated. Results The mean ADC value of the benign lesions was higher than that of the malignant lesions on 1.5T and 3T (p < 0.05). The sensitivity of the diagnostic performance was higher with an additional DWI in both 1.5T and 3T, but the sensitivities were similar with the addition of b values of 400 and 1000. The specificities of the diagnostic performances did not show significant differences (p value > 0.05). The diagnostic accuracies were higher when either of the DWIs (b values of 400 and 1000) was added to routine MR image for 1.5T and 3T. Statistical differences between 1.5T and 3T or between b values of 400 and 1000 were not seen. Conclusion The ADC values of the benign lesions were significantly higher than those of the malignant lesions on 1.5T and 3T. There was no statistically significant difference in the diagnostic performances when either of the DWIs (b values of 400 and 1000) was added to the routine MR image for 1.5T and 3T. PMID:27587948

  16. Susceptibility-weighted MR Imaging of Radiation Therapy-induced Cerebral Microbleeds in Patients with Glioma: A Comparison Between 3T and 7T

    PubMed Central

    Bian, Wei; Hess, Christopher P.; Chang, Susan M.; Nelson, Sarah J.; Lupo, Janine M.

    2016-01-01

    Introduction Cerebral microbleeds have been observed in normal-appearing brain tissue of patients with glioma years after receiving radiation therapy. The contrast of these paramagnetic lesions varies with field strength due to differences in the effects of susceptibility. The purpose of this study was to compare 3T and 7T MRI as platforms for detecting cerebral microbleeds in patients treated with radiotherapy using SWI. Methods SWI was performed with both 3T and 7T MR scanners on 10 patients with glioma who had received prior radiotherapy. Imaging sequences were optimized to obtain data within a clinically acceptable scan time. Both T2*-weighted magnitude images and SWI data were reconstructed, minimum-intensity projection was implemented, and microbleeds were manually identified. The number of microbleeds was counted and compared among datasets. Results Significantly more microbleeds were identified on SWI than magnitude images at both 7T (p=0.002) and 3T (p=0.023). 7T SWI detected significantly more microbleeds than 3T SWI for 7 out of 10 patients who had tumors located remote from deep brain regions (p=0.016), but when the additional 3 patients with more inferior tumors were included, the difference was not significant. Conclusion SWI is more sensitive for detecting microbleeds than magnitude images at both 3T and 7T. For areas without heightened susceptibility artifacts, 7T SWI is more sensitive to detecting radiation therapy-induced microbleeds than 3T SWI. Tumor location should be considered in conjunction with field strength when selecting the most appropriate strategy for imaging microbleeds. PMID:24281386

  17. Non-Invasive Evaluation of the GABAergic/Glutamatergic System in Autistic Patients Observed by MEGA-Editing Proton MR Spectroscopy Using a Clinical 3 Tesla Instrument

    ERIC Educational Resources Information Center

    Harada, Masafumi; Taki, Masako M.; Nose, Ayumi; Kubo, Hitoshi; Mori, Kenji; Nishitani, Hiromu; Matsuda, Tsuyoshi

    2011-01-01

    Amino acids related to neurotransmitters and the GABAergic/glutamatergic system were measured using a 3 T-MRI instrument in 12 patients with autism and 10 normal controls. All measurements were performed in the frontal lobe (FL) and lenticular nuclei (LN) using a conventional sequence for n-acetyl aspartate (NAA) and glutamate (Glu), and the…

  18. Conventional kinesin KIF5B mediates adiponectin secretion in 3T3-L1 adipocytes.

    PubMed

    Cui, Ju; Pang, Jing; Lin, Ya-Jun; Jiang, Ping; Gong, Huan; Wang, Zai; Li, Jian; Cai, Jian-Ping; Huang, Jian-Dong; Zhang, Tie-Mei

    2016-08-01

    Insulin stimulates adiponectin secretion and glucose transporter type 4 (GLUT4) translocation in adipocyte to regulate metabolism homeostasis. Similar to GLUT4 translocation, intracellular trafficking and release of adiponectin in adipocytes relies on the trans-Golgi network and endosomal system. Recent studies show that the heavy chain of conventional kinesin (KIF5B) mediates GLUT4 translocation in murine 3T3-L1 adipocytes, however, the motor machinery involved in mediating intracellular trafficking and release of adiponectin is unknown. Here, we examined the role of KIF5B in the regulation of adiponectin secretion. The KIF5B level was up-regulated during 3T3-L1 adipogenesis. This increase in cytosolic KIF5B was synchronized with the induction of adiponectin. Endogenous KIF5B and adiponectin were partially colocalized at the peri-nuclear and cytosolic regions. In addition, adiponectin-containing vesicles were co-immunoprecipitated with KIF5B. Knockdown of KIF5B resulted in a marked inhibition of adiponectin secretion and overexpression of KIF5B enhanced adiponectin release, whereas leptin secretion was not affected by changes in KIF5B expression. These data suggest that the secretion of adiponectin, but not leptin, is dependent on functional KIF5B. PMID:27264953

  19. Micro-MRI-based image acquisition and processing system for assessing the response to therapeutic intervention

    NASA Astrophysics Data System (ADS)

    Vasilić, B.; Ladinsky, G. A.; Saha, P. K.; Wehrli, F. W.

    2006-03-01

    Osteoporosis is the cause of over 1.5 million bone fractures annually. Most of these fractures occur in sites rich in trabecular bone, a complex network of bony struts and plates found throughout the skeleton. The three-dimensional structure of the trabecular bone network significantly determines mechanical strength and thus fracture resistance. Here we present a data acquisition and processing system that allows efficient noninvasive assessment of trabecular bone structure through a "virtual bone biopsy". High-resolution MR images are acquired from which the trabecular bone network is extracted by estimating the partial bone occupancy of each voxel. A heuristic voxel subdivision increases the effective resolution of the bone volume fraction map and serves a basis for subsequent analysis of topological and orientational parameters. Semi-automated registration and segmentation ensure selection of the same anatomical location in subjects imaged at different time points during treatment. It is shown with excerpts from an ongoing clinical study of early post-menopausal women, that significant reduction in network connectivity occurs in the control group while the structural integrity is maintained in the hormone replacement group. The system described should be suited for large-scale studies designed to evaluate the efficacy of therapeutic intervention in subjects with metabolic bone disease.

  20. Simulation and analysis of the interactions between split gradient coils and a split magnet cryostat in an MRI-PET system

    NASA Astrophysics Data System (ADS)

    Liu, Limei; Sanchez-Lopez, Hector; Poole, Michael; Liu, Feng; Crozier, Stuart

    2012-09-01

    Splitting a magnetic resonance imaging (MRI) magnet into two halves can provide a central region to accommodate other modalities, such as positron emission tomography (PET). This approach, however, produces challenges in the design of the gradient coils in terms of gradient performance and fabrication. In this paper, the impact of a central gap in a split MRI system was theoretically studied by analysing the performance of split, actively-shielded transverse gradient coils. In addition, the effects of the eddy currents induced in the cryostat on power loss, mechanical vibration and magnetic field harmonics were also investigated. It was found, as expected, that the gradient performance tended to decrease as the central gap increased. Furthermore, the effects of the eddy currents were heightened as a consequence of splitting the gradient assembly into two halves. An optimal central gap size was found, such that the split gradient coils designed with this central gap size could produce an engineering solution with an acceptable trade-off between gradient performance and eddy current effects. These investigations provide useful information on the inherent trade-offs in hybrid MRI imaging systems.

  1. Magnetic Resonance Imaging (MRI)

    MedlinePlus

    ... How Can I Help a Friend Who Cuts? Magnetic Resonance Imaging (MRI) KidsHealth > For Teens > Magnetic Resonance Imaging (MRI) Print A A A Text Size What's ... Exam Safety Getting Your Results What Is MRI? Magnetic resonance imaging (MRI) is a type of safe, painless testing ...

  2. Scaphotrapezial ligament: normal arthro-CT and arthro-MRI appearance with anatomical and clinical correlation.

    PubMed

    Holveck, A; Wolfram-Gabel, R; Dosch, J C; Sanda, R; Antunes, A B F; Decock, S; Zorn, P; Foessel, L; Bierry, G; Clavert, P; Dietemann, J L; Kahn, J L

    2011-08-01

    The purpose of our study was to demonstrate and describe the MR and arthro-CT anatomic appearance of the scaphotrapezial ligament and illustrate some of the pathologies involving this structure. This ligament consists of two slips that originate from the radiopalmar aspect of the scaphoid tuberosity and extend distally, forming a V shape. The ulnar fibers, which are just radial to the flexor carpi radialis sheath, inserted along the trapezial ridge. The radial fibers were found to be thinner and inserted at the radial aspect of the trapezium. Twelve fresh cadaver wrists were dissected, with close attention paid to the scaphotrapezio-trapezoidal (STT) joint. An osseoligamentous specimen was dissected with removal of all musculotendinous structures around the STT joint and was performed with high-resolution acquisition in a 128-MDCT scanner. Samples of the wrist area were collected from two fetal specimens. A retrospective study of 55 patients with wrist pain that were submitted to arthrography, arthro-CT, and arthro-MRI imaging was performed (10 patients on a 3-T superconducting magnet and 45 patients on a 1.5-T system). Another ten patients had high-resolution images on a 3-T superconducting magnet without arthrographic injection. MR arthrography and arthro-CT improved visualization and provided detailed information about the anatomy of the scaphotrapezial ligament. Knowledge of the appearance of this normal ligament on MRI allows accurate diagnosis of lesions and will aid when surgery is indicated or may have a role in avoiding unnecessary immobilization. PMID:21455837

  3. Targeting Accuracy, Procedure Times and User Experience of 240 Experimental MRI Biopsies Guided by a Clinical Add-On Navigation System

    PubMed Central

    Busse, Harald; Riedel, Tim; Garnov, Nikita; Thörmer, Gregor; Kahn, Thomas; Moche, Michael

    2015-01-01

    Objectives MRI is of great clinical utility for the guidance of special diagnostic and therapeutic interventions. The majority of such procedures are performed iteratively ("in-and-out") in standard, closed-bore MRI systems with control imaging inside the bore and needle adjustments outside the bore. The fundamental limitations of such an approach have led to the development of various assistance techniques, from simple guidance tools to advanced navigation systems. The purpose of this work was to thoroughly assess the targeting accuracy, workflow and usability of a clinical add-on navigation solution on 240 simulated biopsies by different medical operators. Methods Navigation relied on a virtual 3D MRI scene with real-time overlay of the optically tracked biopsy needle. Smart reference markers on a freely adjustable arm ensured proper registration. Twenty-four operators – attending (AR) and resident radiologists (RR) as well as medical students (MS) – performed well-controlled biopsies of 10 embedded model targets (mean diameter: 8.5 mm, insertion depths: 17-76 mm). Targeting accuracy, procedure times and 13 Likert scores on system performance were determined (strong agreement: 5.0). Results Differences in diagnostic success rates (AR: 93%, RR: 88%, MS: 81%) were not significant. In contrast, between-group differences in biopsy times (AR: 4:15, RR: 4:40, MS: 5:06 min:sec) differed significantly (p<0.01). Mean overall rating was 4.2. The average operator would use the system again (4.8) and stated that the outcome justifies the extra effort (4.4). Lowest agreement was reported for the robustness against external perturbations (2.8). Conclusions The described combination of optical tracking technology with an automatic MRI registration appears to be sufficiently accurate for instrument guidance in a standard (closed-bore) MRI environment. High targeting accuracy and usability was demonstrated on a relatively large number of procedures and operators. Between

  4. Lysophosphatidic acid receptor-5 negatively regulates cellular responses in mouse fibroblast 3T3 cells

    SciTech Connect

    Dong, Yan; Hirane, Miku; Araki, Mutsumi; Fukushima, Nobuyuki; Tsujiuchi, Toshifumi

    2014-04-04

    Highlights: • LPA{sub 5} inhibits the cell growth and motile activities of 3T3 cells. • LPA{sub 5} suppresses the cell motile activities stimulated by hydrogen peroxide in 3T3 cells. • Enhancement of LPA{sub 5} on the cell motile activities inhibited by LPA{sub 1} in 3T3 cells. • The expression and activation of Mmp-9 were inhibited by LPA{sub 5} in 3T3 cells. • LPA signaling via LPA{sub 5} acts as a negative regulator of cellular responses in 3T3 cells. - Abstract: Lysophosphatidic acid (LPA) signaling via G protein-coupled LPA receptors (LPA{sub 1}–LPA{sub 6}) mediates a variety of biological functions, including cell migration. Recently, we have reported that LPA{sub 1} inhibited the cell motile activities of mouse fibroblast 3T3 cells. In the present study, to evaluate a role of LPA{sub 5} in cellular responses, Lpar5 knockdown (3T3-L5) cells were generated from 3T3 cells. In cell proliferation assays, LPA markedly stimulated the cell proliferation activities of 3T3-L5 cells, compared with control cells. In cell motility assays with Cell Culture Inserts, the cell motile activities of 3T3-L5 cells were significantly higher than those of control cells. The activity levels of matrix metalloproteinases (MMPs) were measured by gelatin zymography. 3T3-L5 cells stimulated the activation of Mmp-2, correlating with the expression levels of Mmp-2 gene. Moreover, to assess the co-effects of LPA{sub 1} and LPA{sub 5} on cell motile activities, Lpar5 knockdown (3T3a1-L5) cells were also established from Lpar1 over-expressing (3T3a1) cells. 3T3a1-L5 cells increased the cell motile activities of 3T3a1 cells, while the cell motile activities of 3T3a1 cells were significantly lower than those of control cells. These results suggest that LPA{sub 5} may act as a negative regulator of cellular responses in mouse fibroblast 3T3 cells, similar to the case for LPA{sub 1}.

  5. Low Field Squid MRI Devices, Components and Methods

    NASA Technical Reports Server (NTRS)

    Penanen, Konstantin I. (Inventor); Eom, Byeong H. (Inventor); Hahn, Inseob (Inventor)

    2013-01-01

    Low field SQUID MRI devices, components and methods are disclosed. They include a portable low field (SQUID)-based MRI instrument and a portable low field SQUID-based MRI system to be operated under a bed where a subject is adapted to be located. Also disclosed is a method of distributing wires on an image encoding coil system adapted to be used with an NMR or MRI device for analyzing a sample or subject and a second order superconducting gradiometer adapted to be used with a low field SQUID-based MRI device as a sensing component for an MRI signal related to a subject or sample.

  6. Low field SQUID MRI devices, components and methods

    NASA Technical Reports Server (NTRS)

    Penanen, Konstantin I. (Inventor); Eom, Byeong H (Inventor); Hahn, Inseob (Inventor)

    2010-01-01

    Low field SQUID MRI devices, components and methods are disclosed. They include a portable low field (SQUID)-based MRI instrument and a portable low field SQUID-based MRI system to be operated under a bed where a subject is adapted to be located. Also disclosed is a method of distributing wires on an image encoding coil system adapted to be used with an NMR or MRI device for analyzing a sample or subject and a second order superconducting gradiometer adapted to be used with a low field SQUID-based MRI device as a sensing component for an MRI signal related to a subject or sample.

  7. Low Field Squid MRI Devices, Components and Methods

    NASA Technical Reports Server (NTRS)

    Penanen, Konstantin I. (Inventor); Eom, Byeong H. (Inventor); Hahn, Inseob (Inventor)

    2014-01-01

    Low field SQUID MRI devices, components and methods are disclosed. They include a portable low field (SQUID)-based MRI instrument and a portable low field SQUID-based MRI system to be operated under a bed where a subject is adapted to be located. Also disclosed is a method of distributing wires on an image encoding coil system adapted to be used with an NMR or MRI device for analyzing a sample or subject and a second order superconducting gradiometer adapted to be used with a low field SQUID-based MRI device as a sensing component for an MRI signal related to a subject or sample.

  8. Low field SQUID MRI devices, components and methods

    NASA Technical Reports Server (NTRS)

    Penanen, Konstantin I. (Inventor); Eom, Byeong H. (Inventor); Hahn, Inseob (Inventor)

    2011-01-01

    Low field SQUID MRI devices, components and methods are disclosed. They include a portable low field (SQUID)-based MRI instrument and a portable low field SQUID-based MRI system to be operated under a bed where a subject is adapted to be located. Also disclosed is a method of distributing wires on an image encoding coil system adapted to be used with an NMR or MRI device for analyzing a sample or subject and a second order superconducting gradiometer adapted to be used with a low field SQUID-based MRI device as a sensing component for an MRI signal related to a subject or sample.

  9. Integrated speech enhancement for functional MRI environment.

    PubMed

    Pathak, Nishank; Milani, Ali A; Panahi, Issa; Briggs, Richard

    2009-01-01

    This paper presents an integrated speech enhancement (SE) method for the noisy MRI environment. We show that the performance of SE system improves considerably when the speech signal dominated by MRI acoustic noise at very low SNR is enhanced in two successive stages using two-channel SE methods followed by a single-channel post processing SE algorithm. Actual MRI noisy speech data are used in our experiments showing the improved performance of the proposed SE method. PMID:19964964

  10. Novel magnetomechanical MR compatible vibrational device for producing kinesthetic illusion during fMRI

    PubMed Central

    Carr, Sarah J.; Borreggine, Kristin; Heilman, Jeremiah; Griswold, Mark; Walter, Benjamin L.

    2013-01-01

    Purpose: Functional MRI (fMRI) can provide insights into the functioning of the sensorimotor system, which is of particular interest in studying people with movement disorders or chronic pain conditions. This creates a demand for manipulanda that can fit and operate within the environment of a MRI scanner. Here, the authors present a magnetomechanical device that delivers a vibrotactile sensation to the skin with a force of approximately 9 N. Methods: MRI compatibility of the device was tested in a 3 T scanner using a phantom to simulate the head. Preliminary investigation into the effectiveness of the device at producing cortical and subcortical activity was also conducted with a group of seven healthy subjects. The vibration was applied to the right extensor carpi ulnaris tendon to induce a kinesthetic illusion of flexion and extension of the wrist. Results: The MRI compatibility tests showed the device did not produce image artifacts and the generated electromagnetic field did not disrupt the static magnetic field of the scanner or its operation. The subject group results showed activity in the contralateral putamen, premotor cortex, and dorsal lateral prefrontal cortex. Ipsilaterally, there was increased activity in the superior and inferior parietal lobules. Areas that activated bilaterally included the thalamus, anterior cingulate, secondary somatosensory areas (S2), temporal lobes, and visual association areas. Conclusions: This device offers an effective tool with precise control over the vibratory stimulus, delivering higher forces than some other types of devices (e.g., piezoelectric actuators). It can be useful for investigating sensory systems and sensorimotor integration. PMID:24320459

  11. Monte Carlo characterization of skin doses in 6 MV transverse field MRI-linac systems: Effect of field size, surface orientation, magnetic field strength, and exit bolus

    SciTech Connect

    Oborn, B. M.; Metcalfe, P. E.; Butson, M. J.; Rosenfeld, A. B.

    2010-10-15

    Purpose: The main focus of this work is to continue investigations into the Monte Carlo predicted skin doses seen in MRI-guided radiotherapy. In particular, the authors aim to characterize the 70 {mu}m skin doses over a larger range of magnetic field strength and x-ray field size than in the current literature. The effect of surface orientation on both the entry and exit sides is also studied. Finally, the use of exit bolus is also investigated for minimizing the negative effects of the electron return effect (ERE) on the exit skin dose. Methods: High resolution GEANT4 Monte Carlo simulations of a water phantom exposed to a 6 MV x-ray beam (Varian 2100C) have been performed. Transverse magnetic fields of strengths between 0 and 3 T have been applied to a 30x30x20 cm{sup 3} phantom. This phantom is also altered to have variable entry and exit surfaces with respect to the beam central axis and they range from -75 deg. to +75 deg. The exit bolus simulated is a 1 cm thick (water equivalent) slab located on the beam exit side. Results: On the entry side, significant skin doses at the beam central axis are reported for large positive surface angles and strong magnetic fields. However, over the entry surface angle range of -30 deg. to -60 deg., the entry skin dose is comparable to or less than the zero magnetic field skin dose, regardless of magnetic field strength and field size. On the exit side, moderate to high central axis skin dose increases are expected except at large positive surface angles. For exit bolus of 1 cm thickness, the central axis exit skin dose becomes an almost consistent value regardless of magnetic field strength or exit surface angle. This is due to the almost complete absorption of the ERE electrons by the bolus. Conclusions: There is an ideal entry angle range of -30 deg. to -60 deg. where entry skin dose is comparable to or less than the zero magnetic field skin dose. Other than this, the entry skin dose increases are significant, especially at

  12. 26 CFR 1.444-3T - Manner and time of making section 444 election (temporary).

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 26 Internal Revenue 6 2012-04-01 2012-04-01 false Manner and time of making section 444 election (temporary). 1.444-3T Section 1.444-3T Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) INCOME TAX (CONTINUED) INCOME TAXES (CONTINUED) Accounting Periods § 1.444-3T Manner and time of making section 444 election...

  13. In vivo functional connectome of human brainstem nuclei of the ascending arousal, autonomic and motor systems by high spatial resolution 7 Tesla fMRI

    PubMed Central

    Bianciardi, Marta; Toschi, Nicola; Eichner, Cornelius; Polimeni, Jonathan R.; Setsompop, Kawin; Brown, Emery N.; Hamalainen, Matti S.; Rosen, Bruce R.; Wald, Lawrence L.

    2016-01-01

    Object To map the in vivo human functional connectivity of several brainstem nuclei with the rest of the brain by using seed-based correlation of ultra-high magnetic field functional magnetic resonance imaging (fMRI) data. Materials and Methods We used the recently developed template of 11 brainstem nuclei derived from multi-contrast structural MRI at 7 Tesla as seed regions to determine their connectivity to the rest of the brain. To achieve this, we utilized the increased contrast-to-noise ratio of 7 Tesla fMRI compared to 3 Tesla and the time efficient simultaneous multi-slice imaging to cover the brain with high spatial resolution (1.1 mm-isotropic nominal resolution) while maintaining a short repetition time (2.5 s). Results The delineated Pearson’s correlation-based functional connectivity diagrams (connectomes) of 11 brainstem nuclei of the ascending arousal, motor and autonomic systems from 12 controls are presented and discussed in the context of existing histology and animal work. Conclusion Considering that the investigated brainstem nuclei play a crucial role in several vital functions, the delineated preliminary connectomes might prove useful for future in vivo research and clinical studies of human brainstem function and pathology, including disorders of consciousness, sleep disorders, autonomic disorders, Parkinson’s disease and other motor disorders. PMID:27126248

  14. Experience With A Small Scale All Digital CT And MRI Clinical Service Unit: Present Status Of Kyoto University Hospital Image Database And Communication System

    NASA Astrophysics Data System (ADS)

    Minato, K.; Komori, M.; Nakano, Y.

    1988-06-01

    Kyoto University Hospital is currently developing a prototype PAC system named KIDS (Kyoto univ. hosp. Image Database and communication System). The present goal of the system is to achieve the totally digital CT and MRI unit in the radiological department. Because KIDS is designed as a first step of a long-range plan towards a hospital wide system, it includes all of the basic functions required in realizing the PAC system, such as communication networks, a long term archiving unit, a laser film printer and image workstations. The system concept, architecture and current status are described in this paper. Our early experience and evaluations with the system in a clinical environment are also mentioned.

  15. Expression of an exogenous eukaryotic DNA methyltransferase gene induces transformation of NIH 3T3 cells.

    PubMed Central

    Wu, J; Issa, J P; Herman, J; Bassett, D E; Nelkin, B D; Baylin, S B

    1993-01-01

    Abnormal regional increases in DNA methylation, which have potential for causing gene inactivation and chromosomal instability, are consistently found in immortalized and tumorigenic cells. Increased DNA methyltransferase activity, which is also a characteristic of such cells, is a candidate to mediate these abnormal DNA methylation patterns. We now show that, in NIH 3T3 mouse fibroblasts, constitutive overexpression of an exogenous mouse DNA methyltransferase gene results in a marked increase in overall DNA methylation which is accompanied by tumorigenic transformation. These transformation changes can also be elicited by dexamethasone-inducible expression of an exogenous DNA methyltransferase gene. Our findings provide strong evidence that the increase in DNA methyltransferase activity associated with tumor progression could be a key step in carcinogenesis and provide a model system that can be used to further study this possibility. Images Fig. 1 Fig. 2 PMID:8415627

  16. Reduction of 3T3 Fibroblast Adhesion on SS316L by Methyl-Terminated SAMs

    PubMed Central

    Raman, Aparna; Gawalt, Ellen S.

    2010-01-01

    Inhibiting the non-specific adhesion of cells and proteins to biomaterials such as stents, catheters and guide wires is an important interfacial issue that needs to be addressed in order to reduce surface-related implant complications. Medical grade stainless steel 316L was used as a model system to address this issue. To alter the interfacial property of the implant, self assembled monolayers of long chain phosphonic acids with −CH3, −COOH, −OH tail groups were formed on the native oxide surface of medical grade stainless steel 316L. The effect of varying the tail groups on 3T3 fibroblast adhesion was investigated. The methyl terminated phosphonic acid significantly prevented cell adhesion however presentation of hydrophilic tail groups at the interface did not significantly reduce cell adhesion when compared to the control stainless steel 316L. PMID:21461313

  17. Kibizu concentrated liquid suppresses the accumulation of lipid droplets in 3T3-L1 cells.

    PubMed

    Inoue, Chisato; Kozaki, Tomomi; Morita, Yukiko; Shirouchi, Bungo; Fukami, Katsuya; Shimizu, Kuniyoshi; Sato, Masao; Katakura, Yoshinori

    2015-08-01

    Adipocyte size is closely related to the occurrence of diabetes, metabolic syndrome, and insulin resistance. Thus, researchers are searching for active substances that function to reduce adipocyte size. In the present study, we focused on sugar cane vinegar, Kibizu, and evaluated the function of Kibizu to reduce adipocyte size by using an in vitro model system, because people in Amami Oshima famous for longevity regularly consume Kibizu. Results showed that Kibizu treatment significantly reduced the size and number of lipid droplets in 3T3-L1 cells, relative to treatment with Kurozu, another traditional vinegar. Results of an extraction experiment suggest that the active components in Kibizu are lipophilic and hydrophobic. In addition, an in vivo experiment on rats treated with Kibizu showed that the active components were contained in large vein blood. Results of an additional in vivo experiment suggest that metabolites generated by Kibizu-treated rats are primarily contained or modified specifically in the large vein blood. PMID:25672941

  18. Multichannel Compressive Sensing MRI Using Noiselet Encoding

    PubMed Central

    Pawar, Kamlesh; Egan, Gary; Zhang, Jingxin

    2015-01-01

    The incoherence between measurement and sparsifying transform matrices and the restricted isometry property (RIP) of measurement matrix are two of the key factors in determining the performance of compressive sensing (CS). In CS-MRI, the randomly under-sampled Fourier matrix is used as the measurement matrix and the wavelet transform is usually used as sparsifying transform matrix. However, the incoherence between the randomly under-sampled Fourier matrix and the wavelet matrix is not optimal, which can deteriorate the performance of CS-MRI. Using the mathematical result that noiselets are maximally incoherent with wavelets, this paper introduces the noiselet unitary bases as the measurement matrix to improve the incoherence and RIP in CS-MRI. Based on an empirical RIP analysis that compares the multichannel noiselet and multichannel Fourier measurement matrices in CS-MRI, we propose a multichannel compressive sensing (MCS) framework to take the advantage of multichannel data acquisition used in MRI scanners. Simulations are presented in the MCS framework to compare the performance of noiselet encoding reconstructions and Fourier encoding reconstructions at different acceleration factors. The comparisons indicate that multichannel noiselet measurement matrix has better RIP than that of its Fourier counterpart, and that noiselet encoded MCS-MRI outperforms Fourier encoded MCS-MRI in preserving image resolution and can achieve higher acceleration factors. To demonstrate the feasibility of the proposed noiselet encoding scheme, a pulse sequences with tailored spatially selective RF excitation pulses was designed and implemented on a 3T scanner to acquire the data in the noiselet domain from a phantom and a human brain. The results indicate that noislet encoding preserves image resolution better than Fouirer encoding. PMID:25965548

  19. Mobile phone base station radiation does not affect neoplastic transformation in BALB/3T3 cells.

    PubMed

    Hirose, H; Suhara, T; Kaji, N; Sakuma, N; Sekijima, M; Nojima, T; Miyakoshi, J

    2008-01-01

    A large-scale in vitro study focusing on low-level radiofrequency (RF) fields from mobile radio base stations employing the International Mobile Telecommunication 2000 (IMT-2000) cellular system was conducted to test the hypothesis that modulated RF fields affect malignant transformation or other cellular stress responses. Our group previously reported that DNA strand breaks were not induced in human cells exposed to 2.1425 GHz Wideband Code Division Multiple Access (W-CDMA) radiation up to 800 mW/kg from mobile radio base stations employing the IMT-2000 cellular system. In the current study, BALB/3T3 cells were continuously exposed to 2.1425 GHz W-CDMA RF fields at specific absorption rates (SARs) of 80 and 800 mW/kg for 6 weeks and malignant cell transformation was assessed. In addition, 3-methylcholanthrene (MCA)-treated cells were exposed to RF fields in a similar fashion, to assess for effects on tumor promotion. Finally, the effect of RF fields on tumor co-promotion was assessed in BALB/3T3 cells initiated with MCA and co-exposed to 12-O-tetradecanoylphorbol-13-acetate (TPA). At the end of the incubation period, transformation dishes were fixed, stained with Giemsa, and scored for morphologically transformed foci. No significant differences in transformation frequency were observed between the test groups exposed to RF signals and the sham-exposed negative controls in the non-, MCA-, or MCA plus TPA-treated cells. Our studies found no evidence to support the hypothesis that RF fields may affect malignant transformation. Our results suggest that exposure to low-level RF radiation of up to 800 mW/kg does not induce cell transformation, which causes tumor formation. PMID:17694516

  20. The Raven MRI teaching file

    SciTech Connect

    Lufkin, R.B.; Bradley, W.G. Jr.; Brant-Zawadzki, M.

    1990-01-01

    This book presents individually bound guides for each section of the body, the 1,000 concise and clearly illustrated case files cover neoplastic, non-neoplastic, degenerative, inflammatory, congenital, and acquired disease of the brain, head and neck, spine, musculoskeletal system, cardiovascular system, chest, abdomen, and male and female pelvis. It focuses on specific body regions; one is devoted to pediatric MRI; and one reviews the principles of MRI and identifies frequently encountered artifacts. It contains 100 completed case studies, with high-resolution MR images.

  1. MINIPILOT SOLAR SYSTEM: DESIGN/OPERATION OF SYSTEM AND RESULTS OF NON-SOLAR TESTING AT MRI

    EPA Science Inventory

    A Minipilot Solar Reactor System (MSRS) with liquid organic feed was designed, constructed and tested without solar input (the Solar Tests were to be done later at DOE's National Renewable Energy Laboratory). he non-solar tests were done to determine whether use of EPA's sampling...

  2. 26 CFR 1.6042-3T - Dividends subject to reporting (temporary).

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 26 Internal Revenue 13 2014-04-01 2014-04-01 false Dividends subject to reporting (temporary). 1.6042-3T Section 1.6042-3T Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY... paragraph (b)(1)(iii) may be reportable, for purposes of chapter 3 of the Internal Revenue Code...

  3. 26 CFR 1.702-3T - 4-Year spread (temporary).

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 8 2010-04-01 2010-04-01 false 4-Year spread (temporary). 1.702-3T Section 1... (CONTINUED) INCOME TAXES Partners and Partnerships § 1.702-3T 4-Year spread (temporary). (a) Applicability... spread. A partner may elect out of the rules of paragraph (b) of this section by meeting the...

  4. 26 CFR 1.702-3T - 4-Year spread (temporary).

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 26 Internal Revenue 8 2012-04-01 2012-04-01 false 4-Year spread (temporary). 1.702-3T Section 1... (CONTINUED) INCOME TAXES (CONTINUED) Partners and Partnerships § 1.702-3T 4-Year spread (temporary). (a... taxable year for the first taxable year beginning after December 31, 1986 (partnership's year of...

  5. Development of a local electromagnetic shielding for an extremity magnetic resonance imaging system

    NASA Astrophysics Data System (ADS)

    Handa, Shinya; Haishi, Tomoyuki; Kose, Katsumi

    2008-11-01

    A local radio frequency (rf) shielding consisting of a Cu plate and an LC balun circuit has been developed for a compact magnetic resonance imaging (MRI) system with a 0.3 T permanent magnet. Performance of the local rf shielding was evaluated using an artificial external noise source irradiating a human subject whose hand was inserted into the rf coil of the MRI system. Power spectra of the rf signal detected through the rf coil demonstrated that the local rf shield achieved 30.1 dB external noise suppression. With the local rf shielding, a MRI of the subject's hand was performed using a three-dimensional gradient-echo sequence. Anatomical structures of the subject's hand were clearly visualized. It was concluded that the local rf shielding could be used for the compact MRI system instead of a rf shielded room.

  6. fMRI as a molecular imaging procedure for the functional reorganization of motor systems in chronic stroke

    PubMed Central

    LAZARIDOU, ASIMINA; ASTRAKAS, LOUKAS; MINTZOPOULOS, DIONYSSIOS; KHANCHICEH, AZADEH; SINGHAL, ANEESH; MOSKOWITZ, MICHAEL; ROSEN, BRUCE; TZIKA, ARIA

    2013-01-01

    Previous brain imaging studies suggest that stroke alters functional connectivity in motor execution networks. Moreover, current understanding of brain plasticity has led to new approaches in stroke rehabilitation. Recent studies showed a significant role of effective coupling of neuronal activity in the SMA (supplementary motor area) and M1 (primary motor cortex) network for motor outcome in patients after stroke. After a subcortical stroke, functional magnetic resonance imaging (fMRI) during movement reveals cortical reorganization that is associated with the recovery of function. The aim of the present study was to explore connectivity alterations within the motor-related areas combining motor fMRI with a novel MR-compatible hand-induced robotic device (MR_CHIROD) training. Patients completed training at home and underwent serial MR evaluation at baseline and after 8 weeks of training. Training at home consisted of squeezing a gel exercise ball with the paretic hand at ~75% of maximum strength for 1 h/day, 3 days/week. The fMRI analysis revealed alterations in M1, SMA, PMC (premotor cortex) and Cer (cerebellum) in both stroke patients and healthy controls after the training. Findings of the present study suggest that enhancement of SMA activity could benefit M1 dysfunction in stroke survivors. These results also indicate that connectivity alterations between motor areas might assist the counterbalance of a functionally abnormal M1 in chronic stroke survivors and possibly other patients with motor dysfunction. PMID:23900349

  7. MRI-guided focused ultrasound (MRgFUS) system for thermal ablation of prostate cancer: pre-clinical evaluation in canines

    NASA Astrophysics Data System (ADS)

    McDannold, Nathan; Ziso, Hadas; Assif, Benny; Hananel, Arik; Vykhodtseva, Natalia; Gretton, Peri; Pilatou, Magdalini; Haker, Steven; Tempany, Clare

    2009-02-01

    A transrectal MRgFUS system was tested in a canine prostate model. Focal volumes in each half of the prostate were targeted, with high energy in one half of the gland for ablation and in the other with lower-energy sonications to test our ability to localize the focal spot before causing thermal tissue damage. All sonications (n=155) were readily observed with proton resonance frequency (PRF) MR temperature imaging, contrast enhanced MRI and histology. The prostate gland moved during the experiments, demonstrating the need for motion tracking. The resultant focal temperature changes during the experiments were 24.2 +/- 8.2°C.

  8. What Is Chest MRI?

    MedlinePlus

    ... page from the NHLBI on Twitter. What Is Chest MRI? Chest MRI (magnetic resonance imaging) is a safe, noninvasive ... creates detailed pictures of the structures in your chest, such as your chest wall, heart, and blood ...

  9. Arm MRI scan

    MedlinePlus

    ... arm MRI (magnetic resonance imaging) scan uses strong magnets to create pictures of the upper and lower ... in your eyes) Because the MRI contains strong magnets, metal objects are not allowed into the room ...

  10. Breast MRI scan

    MedlinePlus

    ... breast MRI may be done in combination with mammography or ultrasound . It is not a replacement for mammography. ... breast screening with MRI as an adjunct to mammography. CA Cancer J Clin . 2007;57:75-89. ...

  11. Pelvis MRI scan

    MedlinePlus

    ... The table slides into the middle of the MRI machine. Small devices, called coils, may be placed around ... anxious. Or your provider may suggest an open MRI in which the machine is not as close to the body. Before ...

  12. Lumbar MRI scan

    MedlinePlus

    ... resonance imaging (MRI) scan uses energy from strong magnets to create pictures of the lower part of ... in your eyes) Because the MRI contains strong magnets, metal objects are not allowed into the room ...

  13. Cardiovascular MRI with ferumoxytol.

    PubMed

    Finn, J P; Nguyen, K-L; Han, F; Zhou, Z; Salusky, I; Ayad, I; Hu, P

    2016-08-01

    The practice of contrast-enhanced magnetic resonance angiography (CEMRA) has changed significantly in the span of a decade. Concerns regarding gadolinium (Gd)-associated nephrogenic systemic fibrosis in those with severely impaired renal function spurred developments in low-dose CEMRA and non-contrast MRA as well as efforts to seek alternative MR contrast agents. Originally developed for MR imaging use, ferumoxytol (an ultra-small superparamagnetic iron oxide nanoparticle), is currently approved by the US Food and Drug Administration for the treatment of iron deficiency anaemia in adults with renal disease. Since its clinical availability in 2009, there has been rising interest in the scientific and clinical use of ferumoxytol as an MR contrast agent. The unique physicochemical and pharmacokinetic properties of ferumoxytol, including its long intravascular half-life and high r1 relaxivity, support a spectrum of MRI applications beyond the scope of Gd-based contrast agents. Moreover, whereas Gd is not found in biological systems, iron is essential for normal metabolism, and nutritional iron deficiency poses major public health challenges worldwide. Once the carbohydrate shell of ferumoxytol is degraded, the elemental iron at its core is incorporated into the reticuloendothelial system. These considerations position ferumoxytol as a potential game changer in the field of CEMRA and MRI. In this paper, we aim to summarise our experience with the cardiovascular applications of ferumoxytol and provide a brief synopsis of ongoing investigations on ferumoxytol-enhanced MR applications. PMID:27221526

  14. T1 characteristics of interstitial pulmonary fibrosis on 3T MRI—a predictor of early interstitial change?

    PubMed Central

    Tse, Matthew; Kershaw, Lucy; Semple, Scott; Schembri, Nicola; Chin, Calvin; Murchison, John T.; Hirani, Nik; van Beek, Edwin J. R.

    2016-01-01

    Background Computed tomography (CT) is routinely used for diagnosis and characterisation of idiopathic pulmonary fibrosis (IPF). The technique however has limited sensitivity in detection and monitoring of early fibrotic changes. The aim of this study was to evaluate T1 characteristics in the radiologically diseased lung parenchyma in IPF patient compared to apparently normal parenchyma in both interstitial lung disease (ILD) patients and healthy volunteers and to investigate the feasibility of the technique in prediction of early fibrotic lung changes that may not be visible on CT. Methods Ten patients with IPF underwent high resolution computed tomography (HRCT) and magnetic resonance imaging (MRI) on the same day of attendance. 3T MRI was repeated in seven patients with IPF to test the reproducibility of results. The control group included healthy volunteers (n=10). A modified look-locker inversion-recovery (MOLLI) sequence (124×192 acquisition matrix; 8 mm slice) was performed during a 15–20 s breathhold in a single slice. The position of MR slice was pre-selected where there was CT evidence of normal and fibrotic lung. MOLLI imaging was performed prior to the contrast administration, and at 15, 25, 30 and 35 min post Gadolinium. The imaging data were then processed with a curve-fitting technique to estimate T1 values. T1 values of the apparent fibrotic and normal lung in IPF patients and normal lung were compared. Results Fibrotic lung had a higher pre-contrast T1 than either morphologically normal lung in ILD patients or control lung (P=0.02) in healthy volunteers (1309±123, 1069±71, and 1011±172 ms, respectively). Morphologically normal lung T1 and control lung T1 were not significantly different pre-contrast, however, at 10 min after administration of Gadolinium, control lung had a significantly shorter T1 than either fibrotic or morphologically normal lung (494±34, 670±63, and 619±41 ms, respectively; P=0.001). T1 for fibrotic lung continued to

  15. Long-term exposure of 3T3 fibroblast cells to endocrine disruptors alters sensitivity to oxidative injury.

    PubMed

    Nishimura, Yuka; Nakai, Yasuyoshi; Tanaka, Aiko; Nagao, Tetsuji; Fukushima, Nobuyuki

    2014-07-01

    When Swiss 3T3 fibroblasts were exposed to bisphenol A (BPA) or nonylphenol (NP) within a range of 0.1-100 nM for 30-45 days, increased resistance to oxidative injury was found. Western blot analysis indicated concomitant increased expression of bcl-2 protein and reduced histone methylation levels in cells after BPA or NP exposure. Using a heterologous expression system, both chemicals could stimulate G protein-coupled receptor 30 (GPR30), a transmembrane estrogen receptor predominantly expressed in 3T3 cells, at lower concentrations, which gave increased survival. Taken together, these results suggest that BPA or NP exposure might cause alterations in cellular activity against oxidative stress, possibly through GPR30. PMID:24604882

  16. Magnetic Levitation of MC3T3 Osteoblast Cells as a Ground-Based Simulation of Microgravity.

    PubMed

    Hammer, Bruce E; Kidder, Louis S; Williams, Philip C; Xu, Wayne Wenzhong

    2009-11-01

    Diamagnetic samples placed in a strong magnetic field and a magnetic field gradient experience a magnetic force. Stable magnetic levitation occurs when the magnetic force exactly counter balances the gravitational force. Under this condition, a diamagnetic sample is in a simulated microgravity environment. The purpose of this study is to explore if MC3T3-E1 osteoblastic cells can be grown in magnetically simulated hypo-g and hyper-g environments and determine if gene expression is differentially expressed under these conditions. The murine calvarial osteoblastic cell line, MC3T3-E1, grown on Cytodex-3 beads, were subjected to a net gravitational force of 0, 1 and 2 g in a 17 T superconducting magnet for 2 days. Microarray analysis of these cells indicated that gravitational stress leads to up and down regulation of hundreds of genes. The methodology of sustaining long-term magnetic levitation of biological systems are discussed. PMID:20052306

  17. Iron shielded MRI optimization

    NASA Astrophysics Data System (ADS)

    Borghi, C. A.; Fabbri, M.

    1998-09-01

    The design of the main current systems of an actively shielded and of an iron shielded MRI device for nuclear resonance imaging, is considered. The model for the analysis of the magnetic induction produced by the current system, is based on the combination of a Boundary Element technique and of the integration of two Fredholm integral equations of the first and the second kind. The equivalent current magnetization model is used for the calculation of the magnetization produced by the iron shield. High field uniformity in a spherical region inside the device, and a low stray field in the neighborhood of the device are required. In order to meet the design requirements a multi-objective global minimization problem is solved. The minimization method is based on the combination of the filled function technique and the (1+1) evolution strategy algorithm. The multi-objective problem is treated by means of a penalty method. The actively shielded MRI system results to utilize larger amount of conductor and produce higher magnetic energy than the iron shield device. On veut étudier le projet du système des courants principaux d'un MRI à écran en fer et d'un MRI à écran actif. Le modèle d'analyse du champ magnétique produit par le système de courants est basé sur la combinaison d'une technique Boundary Element et de l'intégration de deux équations intégrales de Fredholm de première et de seconde sorte. On utilise pour calculer la magnétisation produite par l'écran en fer le modèle à cou rants de magné ti sa tion équivalents. On exige une élévation uniforme du champ dans une région sphérique au cœur de l'appareil et un bas champ magnétique dispersé à proximité de l'appareil. Dans le but de répondre aux impératifs du projet, on va résoudre un problème multiobjectif de minimisation globale. On utilise une technique de minimisation obtenue par la combinaison des méthodes “Filled Function” et “(1+1) Evolution Strategy”. Le probl

  18. MRI in cranial tuberculosis.

    PubMed

    Just, M; Higer, H P; Betting, O; Bockenheimer, S; Pfannenstiel, P

    1987-11-01

    A case of multiple intracranial tuberculomas is presented. CT and MRI findings are discussed and compared. MRI showed multiple tuberculomas characterised by the same signal intensity as the surrounding brain parenchyma. Differentiation could be achieved only by the perifocal oedema of high signal intensity. Changes of the lesions during chemotherapy were monitored by CT and MRI and the results are presented. PMID:3691545

  19. Active form Notch4 promotes the proliferation and differentiation of 3T3-L1 preadipocytes

    SciTech Connect

    Lai, Peng-Yeh; Tsai, Chong-Bin; Department of Ophthalmology, Chiayi Christian Hospital, Chiayi 600, Taiwan, ROC ; Tseng, Min-Jen

    2013-01-18

    Highlights: ► Notch4IC modulates the ERK pathway and cell cycle to promote 3T3-L1 proliferation. ► Notch4IC facilitates 3T3-L1 differentiation by up-regulating proadipogenic genes. ► Notch4IC promotes proliferation during the early stage of 3T3-L1 adipogenesis. ► Notch4IC enhances differentiation during subsequent stages of 3T3-L1 adipogenesis. -- Abstract: Adipose tissue is composed of adipocytes, which differentiate from precursor cells in a process called adipogenesis. Many signal molecules are involved in the transcriptional control of adipogenesis, including the Notch pathway. Previous adipogenic studies of Notch have focused on Notch1 and HES1; however, the role of other Notch receptors in adipogenesis remains unclear. Q-RT-PCR analyses showed that the augmentation of Notch4 expression during the differentiation of 3T3-L1 preadipocytes was comparable to that of Notch1. To elucidate the role of Notch4 in adipogenesis, the human active form Notch4 (N4IC) was transiently transfected into 3T3-L1 cells. The expression of HES1, Hey1, C/EBPδ and PPARγ was up-regulated, and the expression of Pref-1, an adipogenic inhibitor, was down-regulated. To further characterize the effect of N4IC in adipogenesis, stable cells expressing human N4IC were established. The expression of N4IC promoted proliferation and enhanced differentiation of 3T3-L1 cells compared with those of control cells. These data suggest that N4IC promoted proliferation through modulating the ERK pathway and the cell cycle during the early stage of 3T3-L1 adipogenesis and facilitated differentiation through up-regulating adipogenic genes such as C/EBPα, PPARγ, aP2, LPL and HSL during the middle and late stages of 3T3-L1 adipogenesis.

  20. Electron contamination modeling and skin dose in 6 MV longitudinal field MRIgRT: Impact of the MRI and MRI fringe field

    SciTech Connect

    Oborn, B. M.; Metcalfe, P. E.; Butson, M. J.; Rosenfeld, A. B.; Keall, P. J.

    2012-02-15

    Purpose: In recent times, longitudinal field MRI-linac systems have been proposed for 6 MV MRI-guided radiotherapy (MRIgRT). The magnetic field is parallel with the beam axis and so will alter the transport properties of any electron contamination particles. The purpose of this work is to provide a first investigation into the potential effects of the MR and fringe magnetic fields on the electron contamination as it is transported toward a phantom, in turn, providing an estimate of the expected patient skin dose changes in such a modality. Methods: Geant4 Monte Carlo simulations of a water phantom exposed to a 6 MV x-ray beam were performed. Longitudinal magnetic fields of strengths between 0 and 3 T were applied to a 30 x 30 x 20 cm{sup 3} phantom. Surrounding the phantom there is a region where the magnetic field is at full MRI strength, consistent with clinical MRI systems. Beyond this the fringe magnetic field entering the collimation system is also modeled. The MRI-coil thickness, fringe field properties, and isocentric distance are varied and investigated. Beam field sizes of 5 x 5, 10 x 10, 15 x 15 and 20 x 20 cm{sup 2} were simulated. Central axis dose, 2D virtual entry skin dose films, and 70 {mu}m skin depth doses were calculated using high resolution scoring voxels. Results: In the presence of a longitudinal magnetic field, electron contamination from the linear accelerator is encouraged to travel almost directly toward the patient surface with minimal lateral spread. This results in a concentration of electron contamination within the x-ray beam outline. This concentration is particularly encouraged if the fringe field encompasses the collimation system. Skin dose increases of up to 1000% were observed for certain configurations and increases above Dmax were common. In nonmagnetically shielded cases, electron contamination generated from the jaw faces and air column is trapped and propagated almost directly to the phantom entry region, giving rise to

  1. Fetal MRI: A pictorial essay

    PubMed Central

    Rathee, Sapna; Joshi, Priscilla; Kelkar, Abhimanyu; Seth, Nagesh

    2016-01-01

    Ultrasonography (USG) is the primary method for antenatal fetal evaluation. However, fetal magnetic resonance imaging (MRI) has now become a valuable adjunct to USG in confirming/excluding suspected abnormalities and in the detection of additional abnormalities, thus changing the outcome of pregnancy and optimizing perinatal management. With the development of ultrafast sequences, fetal MRI has made remarkable progress in recent times. In this pictorial essay, we illustrate a spectrum of structural abnormalities affecting the central nervous system, thorax, genitourinary and gastrointestinal tract, as well as miscellaneous anomalies. Anomalies in twin gestations and placental abnormalities have also been included. PMID:27081224

  2. Quantifying fat and lean muscle in the lower legs of women with knee osteoarthritis using two different MRI systems.

    PubMed

    Beattie, Karen; Davison, Michael J; Noseworthy, Michael; Adachi, Jonathan D; Maly, Monica R

    2016-06-01

    Decreased muscle mass and increased fat mass are commonly seen in the thighs of individuals with knee osteoarthritis (OA). Despite the role of calf muscles in activities of daily living and knee mechanics, little work has investigated calf changes in knee OA. Unlike the thigh, muscle and fat in the lower leg can be imaged using a peripheral magnetic resonance imaging (MRI) scanner. We aimed to assess agreement between subcutaneous fat, intermuscular fat (IMF), intramuscular fat (intraMF), and lean muscle volumes acquired using a peripheral 1.0T as compared to a reference whole-body 3.0T MRI scanner. A calf MRI scan from each scanner was acquired from twenty women >55 years with knee OA. The different tissues were segmented on each of ten axial slices for every participant using SliceOmatic 5.0 (Tomovision, Magog, QC). Tissue volumes were determined for each outcome. Agreement between tissue volumes from the two scanners was assessed using intraclass correlation (ICC(2,1)) coefficients, standard error, and Bland-Altman plots. Agreement between tissue volumes was strong to very strong, with ICCs ranging from 0.842 to 0.991 for all outcomes. However, wide confidence intervals for IMF and intraMF suggest there is less confidence in agreement with segmentation of images from the 1.0T scanner generally underestimating fat volume relative to the 3.0T scanner. The 3.0T's superior between-tissue contrast likely resulted in more accurate segmentation of IMF and intraMF compared to the 1.0T scanner. Comparisons of tissue volume between studies using different scanners/sequences should be interpreted cautiously. PMID:26979605

  3. SIMS imaging of gadolinium isotopes in tissue from Nephrogenic Systemic Fibrosis patients: Release of free Gd from magnetic resonance imaging (MRI) contrast agents

    NASA Astrophysics Data System (ADS)

    Abraham, Jerrold L.; Chandra, Subhash; Thakral, Charu; Abraham, Joshua M.

    2008-12-01

    Recently, Gd-based magnetic resonance imaging (MRI) contrast agents (GBMCA) have been linked to a new disease, Nephrogenic Systemic Fibrosis (NSF), with skin and systemic toxicity and death in certain patients with renal failure. Due to widespread use of GBMCA in diagnostic MRI, it is essential to study their excretion, metabolism, and target sites in cells and tissues. A CAMECA IMS-3f SIMS ion microscope and scanning electron microscopy (SEM) with energy dispersive X-ray spectroscopy (EDS) were used for imaging Gd isotopes in relation to calcium distributions in histologic sections of human tissues. SIMS imaging revealed two types of Gd localization in skin biopsies of patients who received GBMCA. The Gd was present in micrometer size deposits in association with calcium, and in detectable amounts in a more diffuse cellular distribution. Only the Gd-containing deposits associated with Ca and P were detectable using SEM/EDS. As only insoluble deposits remain in the biopsy tissues after aqueous and organic solvent processing of the tissue, our observations support release of free Gd from the GBMCA and selective localization of insoluble Gd in the target tissue from patients with NSF. This study opens new novel applications of SIMS for characterization of the safety of GBMCA.

  4. MRI-compatible micromanipulator; design and implementation and MRI-compatibility tests.

    PubMed

    Koseki, Yoshihiko; Tanikawa, Tamio; Chinzei, Kiyoyuki

    2007-01-01

    In this paper, we present a magnetic resonance imaging (MRI)-compatible micromanipulator, which can be employed to provide medical and biological scientists with the ability to concurrently manipulate and observe micron-scale objects inside an MRI gantry. The micromanipulator formed a two-finger micro hand, and it could handle a micron-scale object using a chopstick motion. For performing operations inside the MRI gantry in a manner such that the MRI is not disturbed, the system was designed to be nonmagnetic and electromagnetically compatible with the MRI. The micro-manipulator was implemented with piezoelectric transducers (PZT) as actuators for micro-motion, strain gauges as sensors for closed-loop control, and a flexure parallel mechanism made of acrylic plastic. Its compatibility with a 2-Tesla MRI was preliminarily tested by checking if the MRI obtained with the micromanipulator were similar to those obtained without the micromanipulator. The tests concluded that the micromanipulator caused no distortion but small artifacts on the MRI. The signal-to-noise ratio (SNR) of the MRI significantly deteriorated mainly due to the wiring of the micromanipulator. The MRI caused noise of the order of ones of volts in the strain amplifier. PMID:18001990

  5. Ketoprofen S(+) enantiomer inhibits prostaglandin production and cell growth in 3T6 fibroblast cultures.

    PubMed

    Sánchez, T; Moreno, J J

    1999-04-01

    The ketoprofen S(+) enantiomer inhibits with great stereoselectivity both prostaglandin H synthase isoenzymes. Thus, the biological effects of ketoprofen on inflammation are due almost entirely to the S(+) isomer. Here, we report that the S(+) enantiomer, at doses that inhibit prostaglandin synthesis, is effective in reducing DNA synthesis and 3T6 fibroblast growth. Our data suggest that prostaglandins are involved in the control of 3T6 fibroblast growth and that the effect of the ketoprofen S(+) enantiomer on 3T6 proliferation is correlated with its effects on prostaglandin H synthase and prostaglandin production. PMID:10323281

  6. Optimization of Coronary Whole-Heart MRA Free Breathing Technique at 3T

    PubMed Central

    Gharib, Ahmed M.; Abd-Elmoniem, Khaled Z.; Herzka, Daniel A.; Ho, Vincent B.; Locklin, Julie; Tzatha, Efstathia; Stuber, Matthias; Pettigrew, Roderic I

    2011-01-01

    Four different techniques for 3T whole-heart coronary MRA using free-breathing 3D segmented parallel imaging and adiabatic T2-Prep were assessed. Coronary MRA at 3T is improved by shortening the acquisition window more than employing the highest spatial resolution. Double oblique whole-heart acquisitions result in better overall image quality and allow for better delineation of the LAD. It is possible to attain shorter acquisition windows and a smaller voxel size at 3T than previously reported at 1.5T. PMID:21871751

  7. Analysis of speech-related variance in rapid event-related fMRI using a time-aware acquisition system.

    PubMed

    Mehta, S; Grabowski, T J; Razavi, M; Eaton, B; Bolinger, L

    2006-02-15

    Speech production introduces signal changes in fMRI data that can mimic or mask the task-induced BOLD response. Rapid event-related designs with variable ISIs address these concerns by minimizing the correlation of task and speech-related signal changes without sacrificing efficiency; however, the increase in residual variance due to speech still decreases statistical power and must be explicitly addressed primarily through post-processing techniques. We investigated the timing, magnitude, and location of speech-related variance in an overt picture naming fMRI study with a rapid event-related design, using a data acquisition system that time-stamped image acquisitions, speech, and a pneumatic belt signal on the same clock. Using a spectral subtraction algorithm to remove scanner gradient noise from recorded speech, we related the timing of speech, stimulus presentation, chest wall movement, and image acquisition. We explored the relationship of an extended speech event time course and respiration on signal variance by performing a series of voxelwise regression analyses. Our results demonstrate that these effects are spatially heterogeneous, but their anatomic locations converge across subjects. Affected locations included basal areas (orbitofrontal, mesial temporal, brainstem), areas adjacent to CSF spaces, and lateral frontal areas. If left unmodeled, speech-related variance can result in regional detection bias that affects some areas critically implicated in language function. The results establish the feasibility of detecting and mitigating speech-related variance in rapid event-related fMRI experiments with single word utterances. They further demonstrate the utility of precise timing information about speech and respiration for this purpose. PMID:16412665

  8. Clinical MRI for iron detection in Parkinson's disease.

    PubMed

    Rossi, Maija; Ruottinen, Hanna; Soimakallio, Seppo; Elovaara, Irina; Dastidar, Prasun

    2013-01-01

    We studied nonheme iron in Parkinson's disease (PD) using clinically available MRI in 36 patients and 21 healthy volunteers. The subjects underwent thorough clinical investigation, including 3-T MRI. Quantitative R2* was able to reflect symptoms of PD. In addition, the clinically used susceptibility-weighted imaging differentiated between controls and patients, whereas T2-weighted imaging did not. Disease-related changes were present not only in substantia nigra but also in globus pallidus. Such changes are associated with neurodegeneration, reflecting the severity of motor impairment. PMID:23522789

  9. Quantifiable Imaging Biomarkers for Evaluation of the Posterior Cruciate Ligament Using 3-T Magnetic Resonance Imaging

    PubMed Central

    Wilson, Katharine J.; Surowiec, Rachel K.; Ho, Charles P.; Devitt, Brian M.; Fripp, Jurgen; Smith, W. Sean; Spiegl, Ulrich J.; Dornan, Grant J.; LaPrade, Robert F.

    2016-01-01

    Background: Quantitative magnetic resonance imaging (MRI) techniques, such as T2 and T2 star (T2*) mapping, have been used to evaluate ligamentous tissue in vitro and to identify significant changes in structural integrity of a healing ligament. These studies lay the foundation for a clinical study that uses quantitative mapping to evaluate ligaments in vivo, particularly the posterior cruciate ligament (PCL). To establish quantitative mapping as a clinical tool for identifying and evaluating chronic or acute PCL injuries, T2 and T2* values first must be determined for an asymptomatic population. Purpose: To quantify T2 and T2* mapping properties, including texture variables (entropy, variance, contrast, homogeneity), of the PCL in an asymptomatic population. It was hypothesized that biomarker values would be consistent throughout the ligament, as measured across 3 clinically relevant subregions (proximal, middle, and distal thirds) in the asymptomatic cohort. Study Design: Cross-sectional study; Level of evidence, 4. Methods: Unilateral knee MRI scans were acquired for 25 asymptomatic subjects with a 3.0-T MRI system using T2 and T2* mapping sequences in the sagittal plane. The PCL was manually segmented and divided into thirds (proximal, middle, and distal). Summary statistics for T2 and T2* values were calculated. Intra- and interrater reliability was assessed across 3 raters to 2 time points. Results: The asymptomatic PCL cohort had mean T2 values of 36.7, 29.2, and 29.6 ms in the distal, middle, and proximal regions, respectively. The distal PCL exhibited significantly higher mean, variance, and contrast and lower homogeneity of T2 values than the middle and proximal subregions (P < .05). T2* results exhibited substantial positive skew and were therefore presented as median and quartile (Q) values. Median T2* values were 7.3 ms (Q1-Q3, 6.8-8.9 ms), 7.3 ms (Q1-Q3, 7.0-8.5 ms), and 7.3 ms (Q1-Q3, 6.4-8.2 ms) in the distal, middle, and proximal subregions

  10. Functional expression of 5-HT{sub 2A} receptor in osteoblastic MC3T3-E1 cells

    SciTech Connect

    Hirai, Takao; Kaneshige, Kota; Kurosaki, Teruko; Nishio, Hiroaki

    2010-05-28

    In the previous study, we reported the gene expression for proteins related to the function of 5-hydroxytryptamine (5-HT, serotonin) and elucidated the expression patterns of 5-HT{sub 2} receptor subtypes in mouse osteoblasts. In the present study, we evaluated the possible involvement of 5-HT receptor subtypes and its inactivation system in MC3T3-E1 cells, an osteoblast cell line. DOI, a 5-HT{sub 2A} and 5-HT{sub 2C} receptor selective agonist, as well as 5-HT concentration-dependently increased proliferative activities of MC3T3-E1 cells in their premature period. This effect of 5-HT on cell proliferation were inhibited by ketanserin, a 5-HT{sub 2A} receptor specific antagonist. Moreover, both DOI-induced cell proliferation and phosphorylation of ERK1 and 2 proteins were inhibited by PD98059 and U0126, selective inhibitors of MEK in a concentration-dependent manner. Furthermore, treatment with fluoxetine, a 5-HT specific re-uptake inhibitor which inactivate the function of extracellular 5-HT, significantly increased the proliferative activities of MC3T3-E1 cells in a concentration-dependent manner. Our data indicate that 5-HT fill the role for proliferation of osteoblast cells in their premature period. Notably, 5-HT{sub 2A} receptor may be functionally expressed to regulate mechanisms underlying osteoblast cell proliferation, at least in part, through activation of ERK/MAPK pathways in MC3T3-E1 cells.

  11. Advanced MRI in malignant neoplasms of the uterus.

    PubMed

    Kido, Aki; Fujimoto, Koji; Okada, Tomohisa; Togashi, Kaori

    2013-02-01

    Conventional magnetic resonance imaging (MRI) such as T1-weighted and T2-weighted images of the female pelvis provide morphological information with excellent tissue contrast, which reflects the pathology of malignant diseases of the uterus. Owing to the recent improvement in hardware and software, in combination with extensive research in imaging techniques, not only MRI at higher magnetic field was facilitated, but also insight into tumor pathophysiology was provided. These methods include diffusion-weighted imaging (DWI), dynamic contrast-enhanced MRI (DCE-MRI) with pharmacokinetic analysis, and MR spectroscopy (MRS). The application of these techniques is expanding from the brain to the body because information on the tissue microenvironment and cytoarchitecture is helpful for lesion characterization, evaluation of treatment response after chemotherapy or radiation, differentiating posttherapeutic changes from residual active tumor, and for detecting recurrent cancer. These techniques may provide clues to optimize the treatment of patients with malignant diseases of the uterus. In the first half of this article we provide an overview of the technical aspects of MRI of the female pelvis, especially focusing on the state-of-the-art techniques such as 3 T MRI, DCE-MRI, DWI, etc. For the latter half we review the clinical aspects of these newly developed techniques, focusing on how these techniques are applicable, what has been revealed with respect to clinical impact, and the remaining problems. PMID:23355429

  12. Correlation analysis between S3T and SFT/MTK vector magnetograms

    NASA Astrophysics Data System (ADS)

    Liang, H. F.; Sin, S. A.; Ma, L.

    2008-07-01

    Three components of the vector magnetic field, flux density B, inclination γ and azimuth χ of the active region NOAA10507 are derived from the two-dimensional Stokes spectral data obtained by the S3T at the Yunnan Observatory. The distributions of the longitudinal magnetic field and the transverse magnetic field are contoured on the basis of the three components. The distributions indicate that the active region is a very complicated sunspot group which is mainly composed of five sunspots, including one of negative polarity and four positive ones. Comparing the vector magnetograms obtained by S3T and the SFT/MTK, it is found that there is basic agreement on the longitudinal fields of S3T and SFT/MTK magnetograms with a correlation coefficient ρ=0.842, and the two distributions of transverse magnetic field obtained by S3T and SFT/MTK have correlation coefficients, ρ=0.423 and ρ=0.72.

  13. Simultaneous EEG-fMRI at ultra-high field: artifact prevention and safety assessment.

    PubMed

    Jorge, João; Grouiller, Frédéric; Ipek, Özlem; Stoermer, Robert; Michel, Christoph M; Figueiredo, Patrícia; van der Zwaag, Wietske; Gruetter, Rolf

    2015-01-15

    The simultaneous recording of scalp electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) can provide unique insights into the dynamics of human brain function, and the increased functional sensitivity offered by ultra-high field fMRI opens exciting perspectives for the future of this multimodal approach. However, simultaneous recordings are susceptible to various types of artifacts, many of which scale with magnetic field strength and can seriously compromise both EEG and fMRI data quality in recordings above 3T. The aim of the present study was to implement and characterize an optimized setup for simultaneous EEG-fMRI in humans at 7 T. The effects of EEG cable length and geometry for signal transmission between the cap and amplifiers were assessed in a phantom model, with specific attention to noise contributions from the MR scanner coldheads. Cable shortening (down to 12 cm from cap to amplifiers) and bundling effectively reduced environment noise by up to 84% in average power and 91% in inter-channel power variability. Subject safety was assessed and confirmed via numerical simulations of RF power distribution and temperature measurements on a phantom model, building on the limited existing literature at ultra-high field. MRI data degradation effects due to the EEG system were characterized via B0 and B1(+) field mapping on a human volunteer, demonstrating important, although not prohibitive, B1 disruption effects. With the optimized setup, simultaneous EEG-fMRI acquisitions were performed on 5 healthy volunteers undergoing two visual paradigms: an eyes-open/eyes-closed task, and a visual evoked potential (VEP) paradigm using reversing-checkerboard stimulation. EEG data exhibited clear occipital alpha modulation and average VEPs, respectively, with concomitant BOLD signal changes. On a single-trial level, alpha power variations could be observed with relative confidence on all trials; VEP detection was more limited, although

  14. Directly detected (55)Mn MRI: application to phantoms for human hyperpolarized (13)C MRI development.

    PubMed

    von Morze, Cornelius; Carvajal, Lucas; Reed, Galen D; Swisher, Christine Leon; Tropp, James; Vigneron, Daniel B

    2014-12-01

    In this work we demonstrate for the first time directly detected manganese-55 ((55)Mn) magnetic resonance imaging (MRI) using a clinical 3T MRI scanner designed for human hyperpolarized (13)C clinical studies with no additional hardware modifications. Due to the similar frequency of the (55)Mn and (13)C resonances, the use of aqueous permanganate for large, signal-dense, and cost-effective "(13)C" MRI phantoms was investigated, addressing the clear need for new phantoms for these studies. Due to 100% natural abundance, higher intrinsic sensitivity, and favorable relaxation properties, (55)Mn MRI of aqueous permanganate demonstrates dramatically increased sensitivity over typical (13)C phantom MRI, at greatly reduced cost as compared with large (13)C-enriched phantoms. A large sensitivity advantage (22-fold) was demonstrated. A cylindrical phantom (d=8 cm) containing concentrated aqueous sodium permanganate (2.7 M) was scanned rapidly by (55)Mn MRI in a human head coil tuned for (13)C, using a balanced steady state free precession acquisition. The requisite penetration of radiofrequency magnetic fields into concentrated permanganate was investigated by experiments and high frequency electromagnetic simulations, and found to be sufficient for (55)Mn MRI with reasonably sized phantoms. A sub-second slice-selective acquisition yielded mean image signal-to-noise ratio of ~60 at 0.5 cm(3) spatial resolution, distributed with minimum central signal ~40% of the maximum edge signal. We anticipate that permanganate phantoms will be very useful for testing HP (13)C coils and methods designed for human studies. PMID:25179135

  15. A robust MRI-compatible system to facilitate highly accurate stereotactic administration of therapeutic agents to targets within the brain of a large animal model

    PubMed Central

    White, E.; Woolley, M.; Bienemann, A.; Johnson, D.E.; Wyatt, M.; Murray, G.; Taylor, H.; Gill, S.S.

    2011-01-01

    Achieving accurate intracranial electrode or catheter placement is critical in clinical practice in order to maximise the efficacy of deep brain stimulation and drug delivery respectively as well as to minimise side-effects. We have developed a highly accurate and robust method for MRI-guided, stereotactic delivery of catheters and electrodes to deep target structures in the brain of pigs. This study outlines the development of this equipment and animal model. Specifically this system enables reliable head immobilisation, acquisition of high-resolution MR images, precise co-registration of MRI and stereotactic spaces and overall rigidity to facilitate accurate burr hole-generation and catheter implantation. To demonstrate the utility of this system, in this study a total of twelve catheters were implanted into the putamen of six Large White Landrace pigs. All implants were accurately placed into the putamen. Target accuracy had a mean Euclidean distance of 0.623 mm (standard deviation of 0.33 mm). This method has allowed us to accurately insert fine cannulae, suitable for the administration of therapeutic agents by convection-enhanced delivery (CED), into the brain of pigs. This study provides summary evidence of a robust system for catheter implantation into the brain of a large animal model. We are currently using this stereotactic system, implantation procedure and animal model to develop catheter-based drug delivery systems that will be translated into human clinical trials, as well as to model the distribution of therapeutic agents administered by CED over large volumes of brain. PMID:21074564

  16. Regulatory T Cells in Melanoma Revisited by a Computational Clustering of FOXP3+ T Cell Subpopulations

    PubMed Central

    Fujii, Hiroko; Josse, Julie; Tanioka, Miki; Miyachi, Yoshiki; Husson, François

    2016-01-01

    CD4+ T cells that express the transcription factor FOXP3 (FOXP3+ T cells) are commonly regarded as immunosuppressive regulatory T cells (Tregs). FOXP3+ T cells are reported to be increased in tumor-bearing patients or animals and are considered to suppress antitumor immunity, but the evidence is often contradictory. In addition, accumulating evidence indicates that FOXP3 is induced by antigenic stimulation and that some non-Treg FOXP3+ T cells, especially memory-phenotype FOXP3low cells, produce proinflammatory cytokines. Accordingly, the subclassification of FOXP3+ T cells is fundamental for revealing the significance of FOXP3+ T cells in tumor immunity, but the arbitrariness and complexity of manual gating have complicated the issue. In this article, we report a computational method to automatically identify and classify FOXP3+ T cells into subsets using clustering algorithms. By analyzing flow cytometric data of melanoma patients, the proposed method showed that the FOXP3+ subpopulation that had relatively high FOXP3, CD45RO, and CD25 expressions was increased in melanoma patients, whereas manual gating did not produce significant results on the FOXP3+ subpopulations. Interestingly, the computationally identified FOXP3+ subpopulation included not only classical FOXP3high Tregs, but also memory-phenotype FOXP3low cells by manual gating. Furthermore, the proposed method successfully analyzed an independent data set, showing that the same FOXP3+ subpopulation was increased in melanoma patients, validating the method. Collectively, the proposed method successfully captured an important feature of melanoma without relying on the existing criteria of FOXP3+ T cells, revealing a hidden association between the T cell profile and melanoma, and providing new insights into FOXP3+ T cells and Tregs. PMID:26864030

  17. Dynamic diffusion tensor measurements in muscle tissue using Single Line Multiple Echo Diffusion Tensor Acquisition Technique at 3T

    PubMed Central

    Baete, Steven H.; Cho, Gene; Sigmund, Eric E.

    2015-01-01

    When diffusion biomarkers display transient changes, i.e. in muscle following exercise, traditional diffusion tensor imaging (DTI) methods lack temporal resolution to resolve the dynamics. This paper presents an MRI method for dynamic diffusion tensor acquisitions on a clinical 3T scanner. This method, SL-MEDITATE (Single Line Multiple Echo Diffusion Tensor Acquisition Technique) achieves a high temporal resolution (4s) (1) by rapid diffusion encoding through the acquisition of multiple echoes with unique diffusion sensitization and (2) by limiting the readout to a single line volume. The method is demonstrated in a rotating anisotropic phantom, in a flow phantom with adjustable flow speed, and in in vivo skeletal calf muscle of healthy volunteers following a plantar flexion exercise. The rotating and flow-varying phantom experiments show that SL-MEDITATE correctly identifies the rotation of the first diffusion eigenvector and the changes in diffusion tensor parameter magnitudes, respectively. Immediately following exercise, the in vivo mean diffusivity (MD) time-courses show, before the well-known increase, an initial decrease which is not typically observed in traditional DTI. In conclusion, SL-MEDITATE can be used to capture transient changes in tissue anisotropy in a single line. Future progress might allow for dynamic DTI when combined with appropriate k-space trajectories and compressed sensing reconstruction. PMID:25900166

  18. Reduced Functional Connectivity within the Mesocorticolimbic System in Substance Use Disorders: An fMRI Study of Puerto Rican Young Adults

    PubMed Central

    Posner, Jonathan; Amira, Leora; Algaze, Antonio; Canino, Glorisa; Duarte, Cristiane S.

    2016-01-01

    Studies of the mesocorticolimbic reward system (MCLS) and its relationship with impulsivity and substance use disorders (SUD) have largely focused on individuals from non-minority backgrounds. This represents a significant gap in the literature particularly for minority populations who are disproportionately affected by the consequences of SUD. Using resting-state functional MRI (fMRI), we examined the coherence of neural activity, or functional connectivity, within the brain’s MCLS in 28 young adult Puerto Ricans (ages 25–27) who were part of a population-based cohort study. Half of the sample lived in San Juan, Puerto Rico; the other half lived in the South Bronx, New York. At each of the two sites, half of the sample had a history of a SUD. Relative to those without SUD, individuals with SUD had decreased connectivity between the nucleus accumbens (NAcc) and several regions within the MCLS. This finding was true irrespective of study site (i.e., San Juan or South Bronx). Reduced connectivity within the MCLS was also associated with higher self-reported levels of impulsivity. Path analysis suggested a potential mechanism linking impulsivity, the MCLS, and SUD: impulsivity, potentially by chronically promoting reward seeking behaviors, may contribute to decreased MCLS connectivity, which in turn, may confer vulnerability for SUD. Expanding upon prior studies suggesting that alterations within the MCLS underlie SUD, our findings suggest that such alterations are also related to impulsivity and are present in a high-risk young minority population. PMID:27252633

  19. Identifying effective connectivity parameters in simulated fMRI: a direct comparison of switching linear dynamic system, stochastic dynamic causal, and multivariate autoregressive models

    PubMed Central

    Smith, Jason F.; Chen, Kewei; Pillai, Ajay S.; Horwitz, Barry

    2013-01-01

    The number and variety of connectivity estimation methods is likely to continue to grow over the coming decade. Comparisons between methods are necessary to prune this growth to only the most accurate and robust methods. However, the nature of connectivity is elusive with different methods potentially attempting to identify different aspects of connectivity. Commonalities of connectivity definitions across methods upon which base direct comparisons can be difficult to derive. Here, we explicitly define “effective connectivity” using a common set of observation and state equations that are appropriate for three connectivity methods: dynamic causal modeling (DCM), multivariate autoregressive modeling (MAR), and switching linear dynamic systems for fMRI (sLDSf). In addition while deriving this set, we show how many other popular functional and effective connectivity methods are actually simplifications of these equations. We discuss implications of these connections for the practice of using one method to simulate data for another method. After mathematically connecting the three effective connectivity methods, simulated fMRI data with varying numbers of regions and task conditions is generated from the common equation. This simulated data explicitly contains the type of the connectivity that the three models were intended to identify. Each method is applied to the simulated data sets and the accuracy of parameter identification is analyzed. All methods perform above chance levels at identifying correct connectivity parameters. The sLDSf method was superior in parameter estimation accuracy to both DCM and MAR for all types of comparisons. PMID:23717258

  20. In vivo CEST Imaging of Creatine (CrCEST) in Skeletal Muscle at 3T

    <