Science.gov

Sample records for 30-cm ion thruster

  1. An engineering model 30 cm ion thruster

    NASA Technical Reports Server (NTRS)

    Poeschel, R. L.; King, H. J.; Schnelker, D. E.

    1973-01-01

    Thruster development at Hughes Research Laboratories and NASA Lewis Research Center has brought the 30-cm mercury bombardment ion thruster to the state of an engineering model. This thruster has been designed to have sufficient internal strength for direct mounting on gimbals, to weigh 7.3 kg, to operate with a corrected overall efficiency of 71%, and to have 10,000 hours lifetime. Subassemblies, such as the ion optical system, isolators, etc., have been upgraded to meet launch qualification standards. This paper presents a summary of the design specifications and performance characteristics which define the interface between the thruster module and the remainder of the propulsion system.

  2. NASA 30 Cm Ion Thruster Development Status

    NASA Technical Reports Server (NTRS)

    Patterson, Michael J.; Haag, Thomas W.; Rawlin, Vincent K.; Kussmaul, Michael T.

    1995-01-01

    A 30 cm diameter xenon ion thruster is under development at NASA to provide an ion propulsion option for missions of national interest and it is an element of the NASA Solar Electric Propulsion Technology Applications Readiness (NSTAR) program established to validate ion propulsion for space flight applications. The thruster has been developed to an engineering model level and it incorporates innovations in design, materials, and fabrication techniques compared to those employed to conventional ion thrusters. The performance of both functional and engineering model thrusters has been assessed including thrust stand measurements, over an input power range of 0.5-2.3 kW. Attributes of the engineering model thruster include an overall mass of 6.4 kg, and an efficiency of 65 percent and thrust of 93 mN at 2.3 kW input power. This paper discusses the design, performance, and lifetime expectations of the functional and engineering model thrusters under development at NASA.

  3. The 30-cm ion thruster power processor

    NASA Technical Reports Server (NTRS)

    Herron, B. G.; Hopper, D. J.

    1978-01-01

    A power processor unit for powering and controlling the 30 cm Mercury Electron-Bombardment Ion Thruster was designed, fabricated, and tested. The unit uses a unique and highly efficient transistor bridge inverter power stage in its implementation. The system operated from a 200 to 400 V dc input power bus, provides 12 independently controllable and closely regulated dc power outputs, and has an overall power conditioning capacity of 3.5 kW. Protective circuitry was incorporated as an integral part of the design to assure failure-free operation during transient and steady-state load faults. The implemented unit demonstrated an electrical efficiency between 91.5 and 91.9 at its nominal rated load over the 200 to 400 V dc input bus range.

  4. Ion accelerator systems for high power 30 cm thruster operation

    NASA Technical Reports Server (NTRS)

    Aston, G.

    1982-01-01

    Two and three-grid accelerator systems for high power ion thruster operation were investigated. Two-grid translation tests show that over compensation of the 30 cm thruster SHAG grid set spacing the 30 cm thruster radial plasma density variation and by incorporating grid compensation only sufficient to maintain grid hole axial alignment, it is shown that beam current gains as large as 50% can be realized. Three-grid translation tests performed with a simulated 30 cm thruster discharge chamber show that substantial beamlet steering can be reliably affected by decelerator grid translation only, at net-to-total voltage ratios as low as 0.05.

  5. Status of 30 cm mercury ion thruster development

    NASA Technical Reports Server (NTRS)

    Sovey, J. S.; King, H. J.

    1974-01-01

    Two engineering model 30-cm ion thrusters were assembled, calibrated, and qualification tested. This paper discusses the thruster design, performance, and power system. Test results include documentation of thrust losses due to doubly charged mercury ions and beam divergence by both direct thrust measurements and beam probes. Diagnostic vibration tests have led to improved designs of the thruster backplate structure, feed system, and harness. Thruster durability is being demonstrated over a thrust range of 97 to 113 mN at a specific impulse of about 2900 seconds. As of August 15, 1974, the thruster has successfully operated for over 4000 hours.

  6. Radiated and conducted EMI from a 30-cm ion thruster

    NASA Technical Reports Server (NTRS)

    Whittlesey, A. C.; Peer, W.

    1981-01-01

    In order to properly assess the interaction of a spacecraft with the EMI environment produced by an ion thruster, the EMI environment was characterized. Therefore, radiated and conducted emissions were measured from a 30-cm mercury ion thruster. The ion thruster beam current varied from zero to 2.0 amperes and the emissions were measured from 5 KHz to 200 MHz. Several different types of antennas were used to obtain the measurements. The various measurements that were made included: magnetic field due to neutralizer/beam current loop; radiated electric fields of thruster and plume; and conducted emissions on arc discharge, neutralizer keeper and magnetic baffle lines.

  7. Recycle Requirements for NASA's 30 cm Xenon Ion Thruster

    NASA Technical Reports Server (NTRS)

    Pinero, Luis R.; Rawlin, Vincent K.

    1994-01-01

    Electrical breakdowns have been observed during ion thruster operation. These breakdowns, or arcs, can be caused by several conditions. In flight systems, the power processing unit must be designed to handle these faults autonomously. This has a strong impact on power processor requirements and must be understood fully for the power processing unit being designed for the NASA Solar Electric Propulsion Technology Application Readiness program. In this study, fault conditions were investigated using a NASA 30 cm ion thruster and a power console. Power processing unit output specifications were defined based on the breakdown phenomena identified and characterized.

  8. Direct thrust measurement of a 30-cm ion thruster

    NASA Technical Reports Server (NTRS)

    Banks, B.; Rawlin, V.; Weigand, A.; Walker, J.

    1975-01-01

    A direct thrust measurement of a 30-cm diameter ion thruster was accomplished by means of a laser interferometer thrust stand. The thruster was supported in a pendulum manner by three 3.65-m long wires. Electrical power was provided by means of 18 mercury filled pots. A movable 23-button planar probe rake was used to determine thrust loss due to ion beam divergence. Values of thrust, thrust loss due to ion beam divergence, and thrust loss due to multiple ionization were measured for ion beam currents ranging from 0.5 to 2.5 A. Measured thrust values indicate an accuracy of approximately 1% and are in good agreement with thrust values calculated by indirect measurements.

  9. Direct thrust measurement of a 30-cm ion thruster

    NASA Technical Reports Server (NTRS)

    Banks, B.; Rawlin, V.; Weigand, A. J.; Walker, J.

    1975-01-01

    A direct thrust measurement of a 30-cm diameter ion thruster was accomplished by means of a laser interferometer thrust stand. The thruster was supported in a pendulum manner by three 3.65-m long wires. Electrical power was provided by means of 18 mercury filled pots. A movable 23-button planar probe rake was used to determine thrust loss due to ion beam divergence. Values of thrust, thrust loss due to ion beam divergence, and thrust loss due to multiple ionization were measured for ion beam currents ranging from 0.5 A to 2.5 A. Measured thrust values indicate an accuracy of approximately 1% and are in good agreement with thrust values calculated by indirect measurements.

  10. Retrofit and acceptance test of 30-cm ion thrusters

    NASA Technical Reports Server (NTRS)

    Poeschel, R. L.

    1981-01-01

    Six 30 cm mercury thrusters were modified to the J-series design and evaluated using standardized test procedures. The thruster performance meets the design objectives (lifetime objective requires verification), and documentation (drawings, etc.) for the design is completed and upgraded. The retrofit modifications are described and the test data for the modifications are presented and discussed.

  11. Performance of 30-cm ion thrusters with dished accelerator grids

    NASA Technical Reports Server (NTRS)

    Rawlin, V. K.

    1973-01-01

    Thirteen sets of dished accelerator grids were treated on five different 30 cm diameter bombardment thrusters to evaluate the effects of grid geometry variations on thruster discharge chamber performance. The dished grid parameters varied were: grid-to-grid spacing, screen and accelerator grid hole diameter, screen and accelerator open area fraction, compensation for beam divergence losses, and accelerator grid thickness. The effects on discharge chamber performance of main magnetic field changes, magnetic baffle current, cathode pole piece length and cathode position were also investigated.

  12. Digital computer control of a 30 cm mercury ion thruster

    NASA Technical Reports Server (NTRS)

    Low, C. A., Jr.

    1975-01-01

    The major objective of this program was to define the exact role of an on-board spacecraft computer in the control of ion thrusters. An initial computer control system with accurate high speed capability was designed, programmed, and tested with the computer as the sole control element for an operating ion thruster. The command functions and a code format for a spacecraft digital control system were established. A second computer control system was constructed to operate with these functions and format. A throttle program sequence was established and tested. A two thruster array was tested with these computer control systems and the results reported.

  13. Digital computer control of a 30-cm mercury ion thruster

    NASA Technical Reports Server (NTRS)

    Low, C. A., Jr.

    1975-01-01

    The major objective was to define the exact role of an onboard spacecraft computer in the control of ion thrusters. An initial computer control system with accurate high speed capability was designed, programmed, and tested with the computer as the sole control element for an operating ion thruster. The command functions and a code format for a spacecraft digital control system were established. A second computer control system was constructed to operate with these functions and format. A throttle program sequence was established and tested. A two thruster array was tested with these computer control systems and the results reported.

  14. Studies of dished accelerator grids for 30-cm ion thrusters

    NASA Technical Reports Server (NTRS)

    Rawlin, V. K.

    1973-01-01

    Eighteen geometrically different sets of dished accelerator grids were tested on five 30-cm thrusters. The geometric variation of the grids included the grid-to-grid spacing, the screen and accelerator hole diameters and thicknesses, the screen and accelerator open area fractions, ratio of dish depth to dish diameter, compensation, and aperture shape. In general, the data taken over a range of beam currents for each grid set included the minimum total accelerating voltage required to extract a given beam current and the minimum accelerator grid voltage required to prevent electron backstreaming.

  15. Long lifetime hollow cathodes for 30-cm mercury ion thrusters

    NASA Technical Reports Server (NTRS)

    Mirtich, M. J.; Kerslake, W. R.

    1976-01-01

    An experimental investigation of hollow cathodes for 30-cm Hg bombardment thrusters was carried out. Both main and neutralizer cathode configurations were tested with both rolled foil inserts coated with low work function material and impregnated porous tungsten inserts. Temperature measurements of an impregnated insert at various positions in the cathode were made. These, along with the cathode thermal profile are presented. A theory for rolled foil and impregnated insert operation and lifetime in hollow cathodes is developed. Several endurance tests, as long as 18000 hours at emission currents of up to 12 amps were attained with no degradation in performance.

  16. Studies of dished accelerator grids for 30-cm ion thrusters

    NASA Technical Reports Server (NTRS)

    Rawlin, V. K.

    1973-01-01

    Geometrically different sets of dished accelerator grids were tested on five 30-cm thrusters. The geometric variation of the grids included the grid-to-grid spacing, the screen and accelerator hole diameters and thicknesses, the screen and accelerator open area fractions, ratio of dish depth to the dish diameter, compensation, and aperture shape. In general, the data taken over a range of beam currents for each grid set included the minimum total accelerating voltage required to extract a given beam current and the minimum accelerator grid voltage required to prevent electron backstreaming.

  17. Advanced-technology 30-cm-diameter mercury ion thruster

    NASA Technical Reports Server (NTRS)

    Beattie, J. R.; Kami, S.

    1982-01-01

    An advanced-technology mercury ion thruster designed for operation at high thrust and high thrust-to-power ratio is described. The laboratory-model thruster employs a highly efficient discharge-chamber design that uses high-field-strength samarium-cobalt magnets arranged in a ring-cusp configuration. Ion extraction is achieved using an advanced three-grid ion-optics assembly which utilizes flexible mounts for supporting the screen, accel, and decel electrodes. Performance results are presented for operation at beam currents in the range from 1 to 5 A. The baseline specific discharge power is shown to be about 125 eV/ion, and the acceptable range of net-to-total accelerating-voltage ratio is shown to be in the range of 0.2-0.8 for beam currents in the range of 1-5 A.

  18. Electric prototype power processor for a 30cm ion thruster

    NASA Technical Reports Server (NTRS)

    Biess, J. J.; Inouye, L. Y.; Schoenfeld, A. D.

    1977-01-01

    An electrical prototype power processor unit was designed, fabricated and tested with a 30 cm mercury ion engine for primary space propulsion. The power processor unit used the thyristor series resonant inverter as the basic power stage for the high power beam and discharge supplies. A transistorized series resonant inverter processed the remaining power for the low power outputs. The power processor included a digital interface unit to process all input commands and internal telemetry signals so that electric propulsion systems could be operated with a central computer system. The electrical prototype unit included design improvement in the power components such as thyristors, transistors, filters and resonant capacitors, and power transformers and inductors in order to reduce component weight, to minimize losses, and to control the component temperature rise. A design analysis for the electrical prototype is also presented on the component weight, losses, part count and reliability estimate. The electrical prototype was tested in a thermal vacuum environment. Integration tests were performed with a 30 cm ion engine and demonstrated operational compatibility. Electromagnetic interference data was also recorded on the design to provide information for spacecraft integration.

  19. Performance of 30-cm ion thrusters with dished accelerator grids

    NASA Technical Reports Server (NTRS)

    Rawlin, V. K.

    1973-01-01

    Thirteen sets of dished accelerator grids were tested on five different 30-cm diameter bombardment thrustors to evaluate the effects of grid geometry variations on thrustor discharge chamber performance. The dished grid parameters varied were: grid-to-grid spacing, screen and accelerator grid hole-diameter, screen and accelerator open area fraction, compensation for beam divergence losses, and accelerator grid thickness. Also investigated were the effects on discharge chamber performance of main magnetic field changes, magnetic baffle current cathode pole piece length and cathode position.

  20. Measurement of sputtered efflux from 5-, 8-, and 30-cm diameter mercury ion thrusters

    NASA Technical Reports Server (NTRS)

    Weigand, A. J.; Mirtich, M. J.

    1975-01-01

    A study was undertaken to investigate the sputtered efflux from 5-, 8-, and 30-cm diameter mercury ion thrusters. Quartz crystal microbalances and fused silica samples were used to analyze the sputtered flux. Spectral transmittance measurements and spectrographic analysis of the samples were made after they were exposed to different thruster effluence by operating the thrusters at various conditions and durations of time. These measurements were used to locate the source of the efflux and determine its accumulated effect at various locations near the thruster. Comparisons of in situ and ex situ transmittance measurements of samples exposed to thruster efflux are also presented.

  1. Evolution and status of the 30-cm engineering model ion thruster

    NASA Technical Reports Server (NTRS)

    Masek, T. D.; Poeschel, R. L.; Collett, C. R.; Schnelker, D. E.

    1976-01-01

    In the past five years the 30-cm ion thruster has developed from infancy to maturity through the joint efforts of the NASA Lewis Research Center (LeRC) and the Hughes Research Laboratories (HRL). The evolution of the 30-cm thruster from the 200-series design to the present 900-series is described. This evolution has included both breadboard and engineering model type thrusters. The evolution description includes functional requirements, design, performance, endurance test results, and major features. The major part of the discussion centers on Hughes-built hardware although NASA LeRC contributions are reflected in the designs.

  2. Extended operating range of the 30-cm ion thruster with simplified power processor requirements

    NASA Technical Reports Server (NTRS)

    Rawlin, V. K.

    1981-01-01

    A two grid 30 cm diameter mercury ion thruster was operated with only six power supplies over the baseline J series thruster power throttle range with negligible impact on thruster performance. An analysis of the functional model power processor showed that the component mass and parts count could be reduced considerably and the electrical efficiency increased slightly by only replacing power supplies with relays. The input power, output thrust, and specific impulse of the thruster were then extended, still using six supplies, from 2660 watts, 0.13 newtons, and 2980 seconds to 9130 watts, 0.37 newtons, and 3820 seconds, respectively. Increases in thrust and power density enable reductions in the number of thrusters and power processors required for most missions. Preliminary assessments of the impact of thruster operation at increased thrust and power density on the discharge characteristics, performance, and lifetime of the thruster were also made.

  3. Low voltage 30-cm ion thruster development. [including performance and structural integrity (vibration) tests

    NASA Technical Reports Server (NTRS)

    King, H. J.

    1974-01-01

    The basic goal was to advance the development status of the 30-cm electron bombardment ion thruster from a laboratory model to a flight-type engineering model (EM) thruster. This advancement included the more conventional aspects of mechanical design and testing for launch loads, weight reduction, fabrication process development, reliability and quality assurance, and interface definition, as well as a relatively significant improvement in thruster total efficiency. The achievement of this goal was demonstrated by the successful completion of a series of performance and structural integrity (vibration) tests. In the course of the program, essentially every part and feature of the original 30-cm Thruster was critically evaluated. These evaluations, led to new or improved designs for the ion optical system, discharge chamber, cathode isolator vaporizer assembly, main isolator vaporizer assembly, neutralizer assembly, packaging for thermal control, electrical terminations and structure.

  4. Sensitivity of 30-cm mercury bombardment ion thruster characteristics to accelerator grid design

    NASA Technical Reports Server (NTRS)

    Rawlin, V. K.

    1978-01-01

    The design of ion optics for bombardment thrusters strongly influences overall performance and lifetime. The operation of a 30 cm thruster with accelerator grid open area fractions ranging from 43 to 24 percent, was evaluated and compared with experimental and theoretical results. Ion optics properties measured included the beam current extraction capability, the minimum accelerator grid voltage to prevent backstreaming, ion beamlet diameter as a function of radial position on the grid and accelerator grid hole diameter, and the high energy, high angle ion beam edge location. Discharge chamber properties evaluated were propellant utilization efficiency, minimum discharge power per beam amp, and minimum discharge voltage.

  5. Sputtering phenomena of discharge chamber components in a 30-cm diameter Hg ion thruster

    NASA Technical Reports Server (NTRS)

    Mantenieks, M. A.; Rawlin, V. K.

    1976-01-01

    Sputtering and deposition rates were measured for discharge chamber components of a 30-cm diameter mercury ion thruster. It was found that sputtering rates of the screen grid and cathode baffle were strongly affected by geometry of the baffle holder. Sputtering rates of the baffle and screen grid were reduced to 80 and 125 A/hr, respectively, by combination of appropriate geometry and materials selections. Sputtering rates such as these are commensurate with thruster lifetimes of 15,000 hours or more. A semiempirical sputtering model showed good agreement with the measured values.

  6. Structural and thermal response of 30 cm diameter ion thruster optics

    NASA Technical Reports Server (NTRS)

    Macrae, G. S.; Zavesky, R. J.; Gooder, S. T.

    1989-01-01

    Tabular and graphical data are presented which are intended for use in calibrating and validating structural and thermal models of ion thruster optics. A 30 cm diameter, two electrode, mercury ion thruster was operated using two different electrode assembly designs. With no beam extraction, the transient and steady state temperature profiles and center electrode gaps were measured for three discharge powers. The data showed that the electrode mount design had little effect on the temperatures, but significantly impacted the motion of the electrode center. Equilibrium electrode gaps increased with one design and decreased with the other. Equilibrium displacements in excess of 0.5 mm and gap changes of 0.08 mm were measured at 450 W discharge power. Variations in equilibrium gaps were also found among assemblies of the same design. The presented data illustrate the necessity for high fidelity ion optics models and development of experimental techniques to allow their validation.

  7. Development Status of the NASA 30-cm Ion Thruster and Power Processor

    NASA Technical Reports Server (NTRS)

    Sovey, James S.; Haag, Thomas W.; Hamley, John A.; Mantenieks, Maris A.; Patterson, Michael J.; Pinero, Luis R.; Rawlin, Vincent K.; Kussmaul, Michael T.; Manzella, David H.; Myers, Roger M.

    1994-01-01

    Xenon ion propulsion systems are being developed by NASA Lewis Research Center and the Jet Propulsion Laboratory to provide flight qualification and validation for planetary and earth-orbital missions. In the ground-test element of this program, light-weight (less than 7 kg), 30 cm diameter ion thrusters have been fabricated, and preliminary design verification tests have been conducted. At 2.3 kW, the thrust, specific impulse, and efficiency were 91 mN, 3300 s, and 0.65, respectively. An engineering model thruster is now undergoing a 2000 h wear-test. A breadboard power processor is being developed to operate from an 80 V to 120 V power bus with inverter switching frequencies of 50 kHz. The power processor design is a pathfinder and uses only three power supplies. The projected specific mass of a flight unit is about 5 kg/kW with an efficiency of 0.92 at the full-power of 2.5 kW. Preliminary integration tests of the neutralizer power supply and the ion thruster have been completed. Fabrication and test of the discharge and beam/accelerator power stages are underway.

  8. Performance of Titanium Optics on a NASA 30 Cm Ion Thruster

    NASA Technical Reports Server (NTRS)

    Soulas, George C.; Foster, John E.; Patterson, Michael J.

    2000-01-01

    The results of performance tests with two titanium optics sets are presented and compared to those of molybdenum optics. All tests were conducted on a 30 cm ion thruster that was nearly identical to the NASA Solar Electric Propulsion Technology Application Readiness (NSTAR) thruster design. Optics performance tests were conducted over a thruster input power range of 0.5 to 4.6 kW. Optics performance including impingement-limited total voltages, electron backstreaming limits, screen grid ion transparencies, near-field beam current density profiles, beam divergence angles, and beam divergence thrust correction factors were determined throughout this power range. The impingement-limited total voltages for titanium optics were within 10 to 55 V of those for molybdenum optics. Electron backstreaming limit magnitude as a function of peak beam current density for both molybdenum and titanium optics were within a few volts of each other, indicating similar hot grid gaps for these two grid materials during steady-state operation. Beam divergence half-angles at 90 percent of the total beam current and thrust correction factors for both titanium optics sets were within one degree and one percent, respectively, of those for molybdenum optics. When thruster power was increased to 2.3 kW immediately following discharge ignition, the titanium screen grid came into contact with the accelerator grid within five minutes of ignition. Relative to molybdenum, titanium's larger thermal expansion and smaller thermal conductivity likely caused the screen grid to thermally expand more relative to the accelerator grid during startup.

  9. Fabrication and verification testing of ETM 30 cm diameter ion thrusters

    NASA Technical Reports Server (NTRS)

    Collett, C.

    1977-01-01

    Engineering model designs and acceptance tests are described for the 800 and 900 series 30 cm electron bombardment thrustors. Modifications to the test console for a 1000 hr verification test were made. The 10,000 hr endurance test of the S/N 701 thruster is described, and post test analysis results are included.

  10. Test facility for 6000 hour life test of 30 cm mercury ion thruster

    NASA Technical Reports Server (NTRS)

    Caldwell, J. J.

    1973-01-01

    The environmental and instrumentation requirements for long term testing of electrical propulsion thrusters which impose severe and unusual requirements upon the simulation facility were studied. High speed ions ejected from a mercury thruster erode material from collecting surfaces, which is then scattered and redeposited upon other surfaces, with resultant damage to the chamber and test article. By collecting the thruster plume on a frozen mercury surface damage to the thruster and chamber by back-scattered erosion products was minimized. Provisions for unattended operation, remote data acquisition, personnel safety, and instrumentation for assessing thruster performance are also discussed.

  11. A 30-cm mercury ion thruster performance with a 1 kW capacitor-diode voltage multiplier beam supply

    NASA Technical Reports Server (NTRS)

    Terdan, F. F.; Harrigill, W. T., Jr.

    1978-01-01

    A 1 kW solar array and capacitor-diode voltage multiplier converter (S/A-CDVM) was successfully integrated with a 30 cm diameter mercury ion thruster system to provide ion beam power. Measurements were made to compare steady state and transient response performance of a conventional bridge converter with the S/A-CDVM converter used for the ion beam supply. The ability to recover from screen to accelerator arcs and promptly re-establish stable thruster performance was demonstrated. Solar array transient response to thruster arcing was measured.

  12. Performance Evaluation of Titanium Ion Optics for the NASA 30 cm Ion Thruster

    NASA Technical Reports Server (NTRS)

    Soulas, George C.

    2001-01-01

    The results of performance tests with titanium ion optics were presented and compared to those of molybdenum ion optics. Both titanium and molybdenum ion optics were initially operated until ion optics performance parameters achieved steady state values. Afterwards, performance characterizations were conducted. This permitted proper performance comparisons of titanium and molybdenum ion optics. Ion optics' performance A,as characterized over a broad thruster input power range of 0.5 to 3.0 kW. All performance parameters for titanium ion optics of achieved steady state values after processing 1200 gm of propellant. Molybdenum ion optics exhibited no burn-in. Impingement-limited total voltages for titanium ion optics where up to 55 V greater than those for molybdenum ion optics. Comparisons of electron backstreaming limits as a function of peak beam current density for molybdenum and titanium ion optics demonstrated that titanium ion optics operated with a higher electron backstreaming limit than molybdenum ion optics for a given peak beam current density. Screen grid ion transparencies for titanium ion optics were as much as 3.8 percent lower than those for molybdenum ion optics. Beam divergence half-angles that enclosed 95 percent of the total beam current for titanium ion optics were within 1 to 3 deg. of those for molybdenum ion optics. All beam divergence thrust correction factors for titanium ion optics were within 1 percent of those with molybdenum ion optics.

  13. A structural and thermal packaging approach for power processing units for 30-cm ion thrusters

    NASA Technical Reports Server (NTRS)

    Maloy, J. E.; Sharp, G. R.

    1975-01-01

    Solar Electric Propulsion (SEP) is currently being studied for possible use in a number of near earth and planetary missions. The thruster subsystem for these missions would consist of 30 centimeter ion thrusters with Power Processor Units (PPU) clustered in assemblies of from two to ten units. A preliminary design study of the electronic packaging of the PPU has been completed at Lewis Research Center of NASA. This study evaluates designs meeting the competing requirements of low system weight and overall mission flexibility. These requirements are evaluated regarding structural and thermal design, electrical efficiency, and integration of the electrical circuits into a functional PPU layout.

  14. Thermal Characterization of a NASA 30-cm Ion Thruster Operated up to 5 kW

    NASA Technical Reports Server (NTRS)

    SarverVerhey, Timothy R.; Domonkos, Matthew T.; Patterson, Michael J.

    2001-01-01

    A preliminary thermal characterization of a newly-fabricated NSTAR-derived test-bed thruster has recently been performed. The temperature behavior of the rare-earth magnets are reported because of their critical impact on thruster operation. The results obtained to date showed that the magnet temperatures did not exceed the stabilization Emit during thruster operation up to 4.6 kW. Magnet temperature data were also obtained for two earlier NSTAR Engineering Model Thrusters and are discussed in this report. Comparison between these thrusters suggests that the test-bed engine in its present condition is able to operate safely at higher power because of the lower discharge losses over the entire operating power range of this engine. However, because of the 'burn-in' behavior of the NSTAR thruster, magnet temperatures are expected to increase as discharge losses increase with accumulated thruster operation. Consequently, a new engineering solution may be required to achieve 5-kW operation with acceptable margin.

  15. Performance documentation of the engineering model 30-cm diameter thruster

    NASA Technical Reports Server (NTRS)

    Bechtel, R. T.; Rawlin, V. K.

    1976-01-01

    The results of extensive testing of two 30-cm ion thrusters which are virtually identical to the 900 series Engineering Model Thruster in an ongoing 15,000-hour life test are presented. Performance data for the nominal fullpower (2650 W) operating point; performance sensitivities to discharge voltage, discharge losses, accelerator voltage, and magnetic baffle current; and several power throttling techniques (maximum Isp, maximum thrust/power ratio, and two cases in between are included). Criteria for throttling are specified in terms of the screen power supply envelope, thruster operating limits, and control stability. In addition, reduced requirements for successful high voltage recycles are presented.

  16. A comparison of experimental and computer model results on the charge-exchange plasma flow from a 30 cm mercury ion thruster

    NASA Technical Reports Server (NTRS)

    Gabriel, S. B.; Kaufman, H. R.

    1982-01-01

    Ion thrusters can be used in a variety of primary and auxiliary space-propulsion applications. A thruster produces a charge-exchange plasma which can interact with various systems on the spacecraft. The propagation of the charge-exchange plasma is crucial in determining the interaction of that plasma with the spacecraft. This paper compares experimental measurements with computer model predictions of the propagation of the charge-exchange plasma from a 30 cm mercury ion thruster. The plasma potentials, and ion densities, and directed energies are discussed. Good agreement is found in a region upstream of, and close to, the ion thruster optics. Outside of this region the agreement is reasonable in view of the modeling difficulties.

  17. Extended performance technology study 30-cm thruster

    NASA Technical Reports Server (NTRS)

    Beattie, J. R.

    1983-01-01

    The extended performance technology study was an investigation of advanced discharge chambers and thruster components that were designed to operate under conditions which result in an increase in the thrust and thrust to power ratio of the state of the art J-series thruster. The high level of performance was achieved by a discharge chamber that employs a ring cusp magnetic confinement arrangement and a three grid ion extraction assembly. It is shown that the ring cusp magnetic field geometry confines the plasma to the volume immediately adjacent to the ion extraction assembly. A high emission current hollow cathode that demonstrated operation at an emission current as high as J sub E = 40 A, and measurements which show the breakdown voltage of individual sections of the J-series propellant flow electrical isolator is about 340 V per section are investigated.

  18. Performance mapping of a 30 cm engineering model thruster

    NASA Technical Reports Server (NTRS)

    Poeschel, R. L.; Vahrenkamp, R. P.

    1975-01-01

    A 30 cm thruster representative of the engineering model design has been tested over a wide range of operating parameters to document performance characteristics such as electrical and propellant efficiencies, double ion and beam divergence thrust loss, component equilibrium temperatures, operational stability, etc. Data obtained show that optimum power throttling, in terms of maximum thruster efficiency, is not highly sensitive to parameter selection. Consequently, considerations of stability, discharge chamber erosion, thrust losses, etc. can be made the determining factors for parameter selection in power throttling operations. Options in parameter selection based on these considerations are discussed.

  19. A mechanical, thermal and electrical packaging design for a prototype power management and control system for the 30 cm mercury ion thruster

    NASA Technical Reports Server (NTRS)

    Sharp, G. R.; Gedeon, L.; Oglebay, J. C.; Shaker, F. S.; Siegert, C. E.

    1978-01-01

    A prototype electric power management and thruster control system for a 30 cm ion thruster is described. The system meets all of the requirements necessary to operate a thruster in a fully automatic mode. Power input to the system can vary over a full two to one dynamic range (200 to 400 V) for the solar array or other power source. The power management and control system is designed to protect the thruster, the flight system and itself from arcs and is fully compatible with standard spacecraft electronics. The system is easily integrated into flight systems which can operate over a thermal environment ranging from 0.3 to 5 AU. The complete power management and control system measures 45.7 cm (18 in.) x 15.2 cm (6 in.) x 114.8 cm (45.2 in.) and weighs 36.2 kg (79.7 lb). At full power the overall efficiency of the system is estimated to be 87.4 percent. Three systems are currently being built and a full schedule of environmental and electrical testing is planned.

  20. A mechanical, thermal and electrical packaging design for a prototype power management and control system for the 30 cm mercury ion thruster

    NASA Technical Reports Server (NTRS)

    Sharp, G. R.; Gedeon, L.; Oglebay, J. C.; Shaker, F. S.; Siegert, C. E.

    1978-01-01

    A prototype Electric Power Management and Thruster Control System for a 30 cm ion thruster has been built and is ready to support a first mission application. The system meets all of the requirements necessary to operate a thruster in a fully automatic mode. Power input to the system can vary over a full two to one dynamic range (200 to 400 V) for the solar array or other power source. The Power Management and Control system is designed to protect the thruster, the flight system and itself from arcs and is fully compatible with standard spacecraft electronics. The system is designed to be easily integrated into flight systems which can operate over a thermal environment ranging from 0.3 to 5 AU. The complete Power Management and Control system measures 45.7 cm x 15.2 cm x 114.8 cm and weighs 36.2 kg. At full power the overall efficiency of the system is estimated to be 87.4 percent. Three systems are currently being built and a full schedule of environmental and electrical testing is planned.

  1. Control of a 30 cm diameter mercury bombardment thruster

    NASA Technical Reports Server (NTRS)

    Terdan, F. F.; Bechtel, R. T.

    1973-01-01

    Increased thruster performance has made closed-loop automatic control more difficult than previously. Specifically, high perveance optics tend to make reliable recycling more difficult. Control logic functions were established for three automatic modes of operation of a 30-cm thruster using a power conditioner console with flight-like characteristics. The three modes provide (1) automatic startup to reach thermal stability, (2) steady-state closed-loop control, and (3) the reliable recycling of the high voltages following an arc breakdown to reestablish normal operation. Power supply impedance characteristics necessary for stable operation and the effect of the magnetic baffle on the reliable recycling was studied.

  2. Control of a 30 cm diameter mercury bombardment thruster

    NASA Technical Reports Server (NTRS)

    Terdan, F. F.; Bechtel, R. T.

    1973-01-01

    Control logic functions were established for three automatic modes of operation of a 30-cm thruster using a power conditioner console with flight-like characteristics. The three modes provide: (1) automatic startup to reach thermal stability, (2) steady-state closed-loop control, and (3) the reliable recycling of the high voltages following an arc breakdown to reestablish normal operation. Power supply impedance characteristics necessary for stable operation and the effect of the magnetic baffle on the reliable recycling was studied.

  3. Translation Optics for 30 cm Ion Engine Thrust Vector Control

    NASA Technical Reports Server (NTRS)

    Haag, Thomas

    2002-01-01

    Data were obtained from a 30 cm xenon ion thruster in which the accelerator grid was translated in the radial plane. The thruster was operated at three different throttle power levels, and the accelerator grid was incrementally translated in the X, Y, and azimuthal directions. Plume data was obtained downstream from the thruster using a Faraday probe mounted to a positioning system. Successive probe sweeps revealed variations in the plume direction. Thruster perveance, electron backstreaming limit, accelerator current, and plume deflection angle were taken at each power level, and for each accelerator grid position. Results showed that the thruster plume could easily be deflected up to six degrees without a prohibitive increase in accelerator impingement current. Results were similar in both X and Y direction.

  4. Thermal-environment testing of a 30-cm engineering model thruster

    NASA Technical Reports Server (NTRS)

    Mirtich, M. J.

    1976-01-01

    An experimental test program was carried out to document all 30-cm electron bombardment Hg ion bombardment thruster functions and characteristics over the thermal environment of several proposed missions. An engineering model thruster was placed in a thermal test facility equipped with -196 C walls and solar simulation. The thruster was cold soaked and exposed to simulated eclipses lasting in duration from 17 to 72 minutes. The thruster was operated at quarter, to full beam power in various thermal configurations which simulated multiple thruster operation, and was also exposed to 1 and 2 suns solar simulation. Thruster control characteristics and constraints; performance, including thrust magnitude and direction; and structural integrity were evaluated over the range of thermal environments tested.

  5. The Use of Laser-Induced Fluorescence to Characterize Discharge Cathode Erosion in a 30 cm Ring-Cusp Ion Thruster

    NASA Technical Reports Server (NTRS)

    Sovey, James S. (Technical Monitor); Williams, George J., Jr.

    2004-01-01

    Relative erosion rates and impingement ion production mechanisms have been identified for the discharge cathode of a 30 cm ion engine using laser-induced fluorescence (LIF). Mo and W erosion products as well as neutral and singly ionized xenon were interrogated. The erosion increased with both discharge current and voltage and spatially resolved measurements agreed with observed erosion patters. Ion velocity mapping identified back-flowing ions near the regions of erosion with energies potentially sufficient to generate the level of observed erosion. Ion production regions downstream of the cathode were indicated and were suggested as possible sources of the erosion causing ions.

  6. Preliminary results of the mission profile life test of a 30 cm Hg bombardment thruster

    NASA Technical Reports Server (NTRS)

    Bechtel, R. T.; James, E. L.

    1979-01-01

    Long term tests were performed on a 30 cm Hg bombardment thruster and a power processing unit to determine lifetime characteristics. The thruster performance data and other operational characteristics taken at various times during the test segment are presented and evaluated with the life limiting mechanisms: discharge chamber erosion, deposition and spalling, external erosion, cathode degradation, and propellant isolator leakage. The control algorithms for thruster start up, steady state operation, throttle, detection and correction of off normal conditions, and shutdown are discussed.

  7. Mercury ion thruster technology

    NASA Technical Reports Server (NTRS)

    Beattie, J. R.; Matossian, J. N.

    1989-01-01

    The Mercury Ion Thruster Technology program was an investigation for improving the understanding of state-of-the-art mercury ion thrusters. Emphasis was placed on optimizing the performance and simplifying the design of the 30 cm diameter ring-cusp discharge chamber. Thruster performance was improved considerably; the baseline beam-ion production cost of the optimized configuration was reduced to Epsilon (sub i) perspective to 130 eV/ion. At a discharge propellant-utilization efficiency of 95 percent, the beam-ion production cost was reduced to about 155 eV/ion, representing a reduction of about 40 eV/ion over the corresponding value for the 30 cm diameter J-series thruster. Comprehensive Langmuir-probe surveys were obtained and compared with similar measurements for a J-series thruster. A successful volume-averaging scheme was developed to correlate thruster performance with the dominant plasma processes that prevail in the two thruster designs. The average Maxwellian electron temperature in the optimized ring-cusp design is as much as 1 eV higher than it is in the J-series thruster. Advances in ion-extraction electrode fabrication technology were made by improving materials selection criteria, hydroforming and stress-relieving tooling, and fabrications procedures. An ion-extraction performance study was conducted to assess the effect of screen aperture size on ion-optics performance and to verify the effectiveness of a beam-vectoring model for three-grid ion optics. An assessment of the technology readiness of the J-series thruster was completed, and operation of an 8 cm IAPS thruster using a simplified power processor was demonstrated.

  8. Ion thruster design and analysis

    NASA Technical Reports Server (NTRS)

    Kami, S.; Schnelker, D. E.

    1976-01-01

    Questions concerning the mechanical design of a thruster are considered, taking into account differences in the design of an 8-cm and a 30-cm model. The components of a thruster include the thruster shell assembly, the ion extraction electrode assembly, the cathode isolator vaporizer assembly, the neutralizer isolator vaporizer assembly, ground screen and mask, and the main isolator vaporizer assembly. Attention is given to the materials used in thruster fabrication, the advanced manufacturing methods used, details of thruster performance, an evaluation of thruster life, structural and thermal design considerations, and questions of reliability and quality assurance.

  9. Fabrication and Vibration Results of 30-cm Pyrolytic Graphite Ion Optics

    NASA Technical Reports Server (NTRS)

    DePano, Michael K.; Hart, Stephen L.; Hanna, Andrew A.; Schneider, Analyn C.

    2004-01-01

    Boeing Electron Dynamic Devices, Inc. is currently developing pyrolytic graphite (PG) grids designed to operate on 30-cm NSTAR-type thrusters for the Carbon Based Ion Optics (CBIO) program. The PG technology effort of the CBIO program aims to research PG as a flightworthy material for use in dished ion optics by designing, fabricating, and performance testing 30-cm PG grids. As such, PG grid fabrication results will be discussed as will PG design considerations and how they must differ from the NSTAR molybdenum grid design. Surface characteristics and surface processing of PG will be explored relative to effects on voltage breakdown. Part of the CBIO program objectives is to understand the erosion of PG due to Xenon ion bombardment. Discussion of PG and CC sputter yields will be presented relative to molybdenum. These sputter yields will be utilized in the life modeling of carbon-based grids. Finally, vibration results of 30-cm PG grids will be presented and compared to a first-order model generated at Boeing EDD. Performance testing results of the PG grids will not be discussed in this paper as it has yet to be completed.

  10. Krypton ion thruster performance

    NASA Technical Reports Server (NTRS)

    Patterson, Michael J.; Williams, George J., Jr.

    1992-01-01

    Preliminary data were obtained from a 30 cm ion thruster operating on krypton propellant over the input power range of 0.4-5.5 kW. The data are presented, and compared and contrasted to those obtained with xenon propellant over the same input power envelope. Typical krypton thruster efficiency was 70 percent at a specific impulse of approximately 5000 s, with a maximum demonstrated thrust-to-power ratio of approximately 42 mN/kW at 2090 s specific impulse and 1580 watts input power. Critical thruster performance and component lifetime issues were evaluated. Order-of-magnitude power throttling was demonstrated using a simplified power-throttling strategy.

  11. Krypton Ion Thruster Performance

    NASA Technical Reports Server (NTRS)

    Patterson, Michael J.; Williams, George J.

    1992-01-01

    Preliminary data were obtained from a 30 cm ion thruster operating on krypton propellant over the input power range of 0.4 to 5.5 kW. The data presented are compared and contrasted to the data obtained with xenon propellant over the same input power envelope. Typical krypton thruster efficiency was 70 percent at a specific impulse of approximately 5000 s, with a maximum demonstrated thrust to power ratio of approximately 42 mN/kW at 2090 s specific impulse and 1580 watts input power. Critical thruster performance and component lifetime issues were evaluated. Order of magnitude power throttling was demonstrated using a simplified power-throttling strategy.

  12. Discharge Chamber Plasma Structure of a 30-cm NSTAR-Type Ion Engine

    NASA Technical Reports Server (NTRS)

    Herman, Daniel A.; Gallimore, Alec D.

    2006-01-01

    Single Langmuir probe measurements are presented over a two-dimensional array of locations in the near Discharge Cathode Assembly (DCA) region of a 30-cm diameter ring cusp ion thruster over a range of thruster operating conditions encompassing the high-power half of the NASA throttling table. The Langmuir probe data were analyzed with two separate methods. All data were analyzed initially assuming an electron population consisting of Maxwellian electrons only. The on-axis data were then analyzed assuming both Maxwellian and primary electrons. Discharge plasma data taken with beam extraction exhibit a broadening of the higher electron temperature plume boundary compared to similar discharge conditions without beam extraction. The opposite effect is evident with the electron/ion number density as the data without began, extraction appears to be more collimated than the corresponding data with beam extraction. Primary electron energy and number densities are presented for one operating condition giving an order of magnitude of their value and the error associated with this calculation.

  13. Derated ion thruster design issues

    NASA Technical Reports Server (NTRS)

    Patterson, Michael J.; Rawlin, Vincent K.

    1991-01-01

    Preliminary activities to develop and refine a lightweight 30 cm engineering model ion thruster are discussed. The approach is to develop a 'derated' ion thruster capable of performing both auxiliary and primary propulsion roles over an input power range of at least 0.5 to 5.0 kilo-W. Design modifications to a baseline thruster to reduce mass and volume are discussed. Performance data over an order of magnitude input power range are presented, with emphasis on the performance impact of engine throttling. Thruster design modifications to optimize performance over specific power envelopes are discussed. Additionally, lifetime estimates based on wear test measurements are made for the operation envelope of the engine.

  14. Status of structural analysis of 30 cm diameter ion optics

    NASA Technical Reports Server (NTRS)

    Macrae, Gregory S.; Hering, Gary T.

    1990-01-01

    Three structural finite element programs are compared with theory, experimental data, and each other to evaluate their usefulness for modeling the thermomechanical deflection of ion engine electrodes. Two programs, NASTRAN and MARC, used a Cray XMP and the third, Algor, used an IBM compatible personal computer. The shape of the applied temperature gradient greatly affects off-axis displacement, implying that an accurate temperature distribution is required to analyze new designs. The use of bulk material constants to model the perforated electrodes was investigated. The stress and displacement predictions are shown to be sensitive to the temperature gradient and the Young's modulus, and insensitive to number of nodes, above some minimum value, and the Poisson ratio used. The models are shown to be useful tools for evaluating designs. Experimental measurements of temperatures and displacements was identified as the most critical area.

  15. Near Discharge Cathode Assembly Plasma Potential Measurements in a 30-cm NSTAR Type Ion Engine During Beam Extraction

    NASA Technical Reports Server (NTRS)

    Herman, Daniel A.; Gallimore, Alec D.

    2006-01-01

    Floating emissive probe plasma potential data are presented over a two-dimensional array of locations in the near Discharge Cathode Assembly (DCA) region of a 30-cm diameter ring-cusp ion thruster. Discharge plasma data are presented with beam extraction at throttling conditions comparable to the NASA TH Levels 8, 12, and 15. The operating conditions of the Extended Life Test (ELT) of the Deep Space One (DS1) flight spare ion engine, where anomalous discharge keeper erosion occurred, were TH 8 and TH 12 consequently they are of specific interest in investigating discharge keeper erosion phenomena. The data do not validate the presence of a potential hill plasma structure downstream of the DCA, which has been proposed as a possible erosion mechanism. The data are comparable in magnitude to data taken by other researchers in ring-cusp electron-bombardment ion thrusters. The plasma potential structures are insensitive to thruster throttling level with a minimum as low as 14 V measured at the DCA exit plane and increasing gradually in the axial direction. A sharp increase in plasma potential to the bulk discharge value of 26 to 28 volts, roughly 10 mm radially from DCA centerline, was observed. Plasma potential measurements indicate a low-potential plume structure that is roughly 20 mm in diameter emanating from the discharge cathode that may be attributed to a free-standing plasma double layer.

  16. Ion beam thruster shield

    NASA Technical Reports Server (NTRS)

    Power, J. L. (Inventor)

    1976-01-01

    An ion thruster beam shield is provided that comprises a cylindrical housing that extends downstream from the ion thruster and a plurality of annular vanes which are spaced along the length of the housing, and extend inwardly from the interior wall of the housing. The shield intercepts and stops all charge exchange and beam ions, neutral propellant, and sputter products formed due to the interaction of beam and shield emanating from the ion thruster outside of a fixed conical angle from the thruster axis. Further, the shield prevents the sputter products formed during the operation of the engine from escaping the interior volume of the shield.

  17. Charged particle measurements on a 30-CM diameter mercury ion engine thrust beam

    NASA Technical Reports Server (NTRS)

    Sellen, J. M., Jr.; Komatsu, G. K.; Hoffmaster, D. K.; Kemp, R. F.

    1974-01-01

    Measurements of both thrust ions and charge exchange ions were made in the beam of a 30 centimeter diameter electron bombardment mercury ion thruster. A qualitative model is presented which describes magnitudes of charge exchange ion formation and motions of these ions in the weak electric field structure of the neutralized thrust beam plasma. Areas of agreement and discrepancy between observed and modeled charge exchange properties are discussed.

  18. Ion thruster performance model

    NASA Technical Reports Server (NTRS)

    Brophy, J. R.

    1984-01-01

    A model of ion thruster performance is developed for high flux density, cusped magnetic field thruster designs. This model is formulated in terms of the average energy required to produce an ion in the discharge chamber plasma and the fraction of these ions that are extracted to form the beam. The direct loss of high energy (primary) electrons from the plasma to the anode is shown to have a major effect on thruster performance. The model provides simple algebraic equations enabling one to calculate the beam ion energy cost, the average discharge chamber plasma ion energy cost, the primary electron density, the primary-to-Maxwellian electron density ratio and the Maxwellian electron temperature. Experiments indicate that the model correctly predicts the variation in plasma ion energy cost for changes in propellant gas (Ar, Kr and Xe), grid transparency to neutral atoms, beam extraction area, discharge voltage, and discharge chamber wall temperature. The model and experiments indicate that thruster performance may be described in terms of only four thruster configuration dependent parameters and two operating parameters. The model also suggests that improved performance should be exhibited by thruster designs which extract a large fraction of the ions produced in the discharge chamber, which have good primary electron and neutral atom containment and which operate at high propellant flow rates.

  19. High-Power Ion Thruster Technology

    NASA Technical Reports Server (NTRS)

    Beattie, J. R.; Matossian, J. N.

    1996-01-01

    Performance data are presented for the NASA/Hughes 30-cm-diam 'common' thruster operated over the power range from 600 W to 4.6 kW. At the 4.6-kW power level, the thruster produces 172 mN of thrust at a specific impulse of just under 4000 s. Xenon pressure and temperature measurements are presented for a 6.4-mm-diam hollow cathode operated at emission currents ranging from 5 to 30 A and flow rates of 4 sccm and 8 sccm. Highly reproducible results show that the cathode temperature is a linear function of emission current, ranging from approx. 1000 C to 1150 C over this same current range. Laser-induced fluorescence (LIF) measurements obtained from a 30-cm-diam thruster are presented, suggesting that LIF could be a valuable diagnostic for real-time assessment of accelerator-arid erosion. Calibration results of laminar-thin-film (LTF) erosion badges with bulk molybdenum are presented for 300-eV xenon, krypton, and argon sputtering ions. Facility-pressure effects on the charge-exchange ion current collected by 8-cm-diam and 30-cm-diam thrusters operated on xenon propellant are presented to show that accel current is nearly independent of facility pressure at low pressures, but increases rapidly under high-background-pressure conditions.

  20. Titanium Optics for Ion Thrusters

    NASA Technical Reports Server (NTRS)

    Soulas, George C.; Haag, Thomas W.; Patterson, Michael J.; Rawlin, Vincent K.

    1999-01-01

    Ion thruster total impulse capability is limited, in part, by accelerator grid sputter erosion. A development effort was initiated to identify a material with a lower accelerator grid volumetric sputter erosion rate than molybdenum, but that could utilize the present NSTAR thruster grid design and fabrication techniques to keep development costs low, and perform as well as molybdenum optics. After comparing the sputter erosion rates of several atomic materials to that of molybdenum at accelerator voltages, titanium was found to offer a 45% reduction in volumetric erosion rates. To ensure that screen grid sputter erosion rates are not higher at discharge chamber potentials, titanium and molybdenum sputter erosion rates were measured at these potentials. Preliminary results showed only a slightly higher volumetric erosion rate for titanium, so that screen grid erosion is insignificant. A number of material, thermal, and mechanical properties were also examined to identify any fabrication, launch environment, and thruster operation issues. Several titanium grid sets were successfully fabricated. A titanium grid set was mounted onto an NSTAR 30 cm engineering model ion thruster and tested to determine optics performance. The titanium optics operated successfully over the entire NSTAR power range of 0.5 to 2.3 kW. Differences in impingement-limited perveances and electron backstreaming limits were found to be due to a larger cold gap for the titanium optics. Discharge losses for titanium grids were lower than those for molybdenum, likely due to a slightly larger titanium screen grid open area fraction. Radial distributions of beam current density with titanium optics were very similar to those with molybdenum optics at all power levels. Temporal electron backstreaming limit measurements showed that titanium optics achieved thermal equilibrium faster than molybdenum optics.

  1. High reliability cathode heaters for ion thrusters

    NASA Technical Reports Server (NTRS)

    Mueller, L. A.

    1976-01-01

    A number of space missions were proposed which utilize 30-cm mercury bombardment ion thrusters and also require a large number of thruster restarts. A test program was carried out to determine thermal cycle life of several different cathode heater designs. Plasma/flame sprayed heaters and swaged type heaters were tested. Four of the five plasma/flame sprayed heaters tested failed in a comparatively short time. Four tantalum swaged heaters that were brazed to the tantalum cathode tube were successfully tested and met the goals that were set at the start of the test.

  2. High reliability cathode heaters for ion thrusters

    NASA Technical Reports Server (NTRS)

    Mueller, L. A.

    1976-01-01

    A number of space missions have been proposed which will utilize 30-cm mercury bombardment ion thrusters and also will require a large number of thruster restarts. A test program was carried out to determine thermal cycle life of several different cathode heater designs. Plasma/flame sprayed heaters and swaged type heaters were tested. Four of the five plasma/flame sprayed heaters tested failed in a comparatively short time. Four tantalum swaged heaters that were brazed to the tantalum cathode tube were successfully tested and met the goals that were set at the start of the test.

  3. Plasma properties in electron-bombardment ion thrusters

    NASA Technical Reports Server (NTRS)

    Matossian, J. N.; Beattie, J. R.

    1987-01-01

    The paper describes a technique for computing volume-averaged plasma properties within electron-bombardment ion thrusters, using spatially varying Langmuir-probe measurements. Average values of the electron densities are defined by integrating the spatially varying Maxwellian and primary electron densities over the ionization volume, and then dividing by the volume. Plasma properties obtained in the 30-cm-diameter J-series and ring-cusp thrusters are analyzed by the volume-averaging technique. The superior performance exhibited by the ring-cusp thruster is correlated with a higher average Maxwellian electron temperature. The ring-cusp thruster maintains the same fraction of primary electrons as does the J-series thruster, but at a much lower ion production cost. The volume-averaged predictions for both thrusters are compared with those of a detailed thruster performance model.

  4. Performance of 10-kW class xenon ion thrusters

    NASA Technical Reports Server (NTRS)

    Patterson, Michael J.; Rawlin, Vincent K.

    1988-01-01

    Presented are performance data for laboratory and engineering model 30 cm-diameter ion thrusters operated with xenon propellant over a range of input power levels from approximately 2 to 20 kW. Also presented are preliminary performance results obtained from laboratory model 50 cm-diameter cusp- and divergent-field ion thrusters operating with both 30 cm- amd 50 cm-diameter ion optics up to a 20 kW input power. These data include values of discharge chamber propellant and power efficiencies, as well as values of specific impulse, thruster efficiency, thrust and power. The operation of the 30 cm- and 50 cm-diameter ion optics are also discussed.

  5. Measurement of Doubly Charged Ions in Ion Thruster Plumes

    NASA Technical Reports Server (NTRS)

    Williams, George J., Jr.; Domonkos, Matthew T.; Chavez, Joy M.

    2002-01-01

    The ratio of doubly to singly charged ions was measured in the plumes of a 30 cm and of a 40 cm ion thruster. The measured ratio was correlated with observed erosion rates and thruster operating conditions. The measured and calculated erosion rates paralleled variation in the j(sup ++)/j(sup +) ratio and indicated that the erosion was dominated by Xe III. Simple models of cathode potential surfaces which were developed in support of this work were in agreement with this conclusion and provided a predictive capability of the erosion given the ratio of doubly to singly charged ion currents.

  6. A 5-kW xenon ion thruster lifetest

    NASA Technical Reports Server (NTRS)

    Patterson, Michael J.; Verhey, Timothy R.

    1990-01-01

    The results of the first life test of a high power ring-cusp ion thruster are presented. A 30-cm laboratory model thruster was operated steady-state at a nominal beam power of 5 kW on xenon propellant for approximately 900 hours. This test was conducted to identify life-timing erosion modifications, and to demonstrate operation using simplified power processing. The results from this test are described including the conclusions derived from extensive post-test analyses of the thruster. Modifications to the thruster and ground support equipment, which were incorporated to solve problems identified by the lifetest, are also described.

  7. Inert gas ion thruster development

    NASA Technical Reports Server (NTRS)

    Ramsey, W. D.

    1980-01-01

    Two 12 cm magneto-electrostatic containment (MESC) ion thrusters were performance mapped with argon and xenon. The first, hexagonal, thruster produced optimized performance of 48.5to 79 percent argon mass utilization efficiencies at discharge energies of 240 to 425 eV/ion, respectively, Xenon mass utilization efficiencies of 78 to 95 percent were observed at discharge energies of 220 to 290 eV/ion with the same optimized hexagonal thruster. Changes to the cathode baffle reduced the discharge anode potential during xenon operation from approximately 40 volts to about 30 volts. Preliminary tests conducted with the second, hemispherical, MESC thruster showed a nonuniform anode magnetic field adversely affected thruster performance. This performance degradation was partially overcome by changes in the boundary anode placement. Conclusions drawn the hemispherical thruster tests gave insights into the plasma processes in the MESC discharge that will aid in the design of future thrusters.

  8. Performance and optimization of a derated ion thruster for auxiliary propulsion

    NASA Technical Reports Server (NTRS)

    Patterson, Michael J.; Foster, John E.

    1991-01-01

    The characteristics and implications of use of a derated ion thruster for north-south stationkeeping (NSSK) propulsion are discussed. A derated thruster is a 30 cm diameter primary propulsion ion thruster operated at highly throttled conditions appropriate to NSSK functions. The performance characteristics of a 30 cm ion thruster are presented, emphasizing throttled operation at low specific impulse and high thrust-to-power ratio. Performance data and component erosion are compared to other NSSK ion thrusters. Operations benefits derived from the performance advantages of the derated approach are examined assuming an INTELSAt 7-type spacecraft. Minimum ground test facility pumping capabilities required to maintain facility enhanced accelerator grid erosion at acceptable levels in a lifetest are quantified as a function of thruster operating condition. Approaches to reducing the derated thruster mass and volume are also discussed.

  9. Advanced ion thruster research

    NASA Technical Reports Server (NTRS)

    Wilbur, P. J.

    1985-01-01

    A series of experiments conducted on a ring cusp magnetic field ion thruster; in which the anode, cathode and discharge chamber backplate were moved relative to the magnetic cusp; are described. Optimum locations for the anode, cathode and backplate which yield the lowest energy cost per plasma ion and highest extracted ion fraction are identified. The results are discussed in terms of simple physical models. The results of preliminary experiments into the operation of hollow cathodes on nitrogen and xenon over a large pressure range (0.1 to 100 Torr) are presented. They show that the cathode discharge transfers from the cathode insert to the exterior edge of the orifice plate as the interelectrode pressure is increased. Experimental evidence showing that a new ion extractor grid concept can be used to stabilize the plasma sheath at the screen grid is presented. This concept, identified by the term constrained sheath optics, is shown to hold ion beamlet divergence and impingement characteristics to stable values as the beamlet current and the net and total accelerating voltages are changed. The current status of a study of beamlet vectoring induced by displacing the accelerator and/or decelerator grids of a three grid ion extraction system relative to the screen grid is discussed.

  10. Advanced ion thruster research

    NASA Technical Reports Server (NTRS)

    Wilbur, P. J.

    1984-01-01

    A simple model describing the discharge chamber performance of high strength, cusped magnetic field ion thrusters is developed. The model is formulated in terms of the energy cost of producing ions in the discharge chamber and the fraction of ions produced in the discharge chamber that are extracted to form the ion beam. The accuracy of the model is verified experimentally in a series of tests wherein the discharge voltage, propellant, grid transparency to neutral atoms, beam diameter and discharge chamber wall temperature are varied. The model is exercised to demonstrate what variations in performance might be expected by varying discharge chamber parameters. The results of a study of xenon and argon orificed hollow cathodes are reported. These results suggest that a hollow cathode model developed from research conducted on mercury cathodes can also be applied to xenon and argon. Primary electron mean free paths observed in argon and xenon cathodes that are larger than those found in mercury cathodes are identified as a cause of performance differences between mercury and inert gas cathodes. Data required as inputs to the inert gas cathode model are presented so it can be used as an aid in cathode design.

  11. Electrostatic thrusters.

    NASA Technical Reports Server (NTRS)

    Kaufman, H. R.; Reader, P. D.

    1972-01-01

    The current status of research and development programs on electrostatic thrusters is reviewed. Current programs that utilize mercury electron-bombardment thrusters range from 5- to 30-cm in diameter. Recent progress on the 5-cm thruster has emphasized durability, with accelerator time exceeding 6300 hours and total time on the rest of the thruster exceeding 8300 hours. Recent progress on the 30-cm thruster has been outstanding in dished-grid accelerator systems. Ion beams up to 5 amperes have been obtained for short periods with 1000 volts net accelerating potential difference. The cesium electron-bombardment and cesium contact programs are also described.

  12. Development of advanced inert-gas ion thrusters

    NASA Technical Reports Server (NTRS)

    Poeschel, R. L.

    1983-01-01

    Inert gas ion thruster technology offers the greatest potential for providing high specific impulse, low thrust, electric propulsion on large, Earth orbital spacecraft. The development of a thruster module that can be operated on xenon or argon propellant to produce 0.2 N of thrust at a specific impulse of 3000 sec with xenon propellant and at 6000 sec with argon propellant is described. The 30 cm diameter, laboratory model thruster is considered to be scalable to produce 0.5 N thrust. A high efficiency ring cusp discharge chamber was used to achieve an overall thruster efficiency of 77% with xenon propellant and 66% with argon propellant. Measurements were performed to identify ion production and loss processes and to define critical design criteria (at least on a preliminary basis).

  13. NSTAR Ion Thruster Plume Impact Assessments

    NASA Technical Reports Server (NTRS)

    Myers, Roger M.; Pencil, Eric J.; Rawlin, Vincent K.; Kussmaul, Michael; Oden, Katessha

    1995-01-01

    Tests were performed to establish 30-cm ion thruster plume impacts, including plume characterizations via near and farfield ion current measurements, contamination, and sputtering assessments. Current density measurements show that 95% of the beam was enclosed within a 22 deg half-angle and that the thrust vector shifted by less than 0.3 deg during throttling from 2.3 to 0.5 kW. The beam flatness parameter was found to be 0.47, and the ratio of doubly charged to singly charged ion current density decreased from 15% at 2.3 kW to 5% at 0.5 kW. Quartz sample erosion measurements showed that the samples eroded at a rate of between 11 and 13 pm/khr at 25 deg from the thruster axis, and that the rate dropped by a factor of four at 40 deg. Good agreement was obtained between extrapolated current densities and those calculated from tantalum target erosion measurements. Quartz crystal microbalance and witness plate measurements showed that ion beam sputtering of the tank resulted in a facility material backflux rate of -10 A/hr in a large space simulation chamber.

  14. Miniature Bipolar Electrostatic Ion Thruster

    NASA Technical Reports Server (NTRS)

    Hartley, Frank T.

    2006-01-01

    The figure presents a concept of a bipolar miniature electrostatic ion thruster for maneuvering a small spacecraft. The ionization device in the proposed thruster would be a 0.1-micron-thick dielectric membrane with metal electrodes on both sides. Small conical holes would be micromachined through the membrane and electrodes. An electric potential of the order of a volt applied between the membrane electrodes would give rise to an electric field of the order of several mega-volts per meter in the submicron gap between the electrodes. An electric field of this magnitude would be sufficient to ionize all the molecules that enter the holes. In a thruster-based on this concept, one or more propellant gases would be introduced into such a membrane ionizer. Unlike in larger prior ion thrusters, all of the propellant molecules would be ionized. This thruster would be capable of bipolar operation. There would be two accelerator grids - one located forward and one located aft of the membrane ionizer. In one mode of operation, which one could denote the forward mode, positive ions leaving the ionizer on the backside would be accelerated to high momentum by an electric field between the ionizer and an accelerator grid. Electrons leaving the ionizer on the front side would be ejected into free space by a smaller accelerating field. The equality of the ion and electron currents would eliminate the need for an additional electron- or ion-emitting device to keep the spacecraft charge-neutral. In another mode of operation, which could denote the reverse mode, the polarities of the voltages applied to the accelerator grids and to the electrodes of the membrane ionizer would be the reverse of those of the forward mode. The reversal of electric fields would cause the ion and electrons to be ejected in the reverse of their forward mode directions, thereby giving rise to thrust in the direction opposite that of the forward mode.

  15. High power ion thruster performance

    NASA Technical Reports Server (NTRS)

    Rawlin, Vincent K.; Patterson, Michael J.

    1987-01-01

    The ion thruster is one of several forms of space electric propulsion being considered for use on future SP-100-based missions. One possible major mission ground rule is the use of a single Space Shuttle launch. Thus, the mass in orbit at the reactor activation altitude would be limited by the Shuttle mass constraints. When the spacecraft subsystem masses are subtracted from this available mass limit, a maximum propellant mass may be calculated. Knowing the characteristics of each type of electric thruster allows maximum values of total impulse, mission velocity increment, and thrusting time to be calculated. Because ion thrusters easily operate at high values of efficiency (60 to 70%) and specific impulse (3000 to 5000 sec), they can impart large values of total impulse to a spacecraft. They also can be operated with separate control of the propellant flow rate and exhaust velocity. This paper presents values of demonstrated and projected performance of high power ion thrusters used in an analysis of electric propulsion for an SP-100 based mission.

  16. NEXT Ion Thruster Thermal Model

    NASA Technical Reports Server (NTRS)

    VanNoord, Jonathan L.

    2010-01-01

    As the NEXT ion thruster progresses towards higher technology readiness, it is necessary to develop the tools that will support its implementation into flight programs. An ion thruster thermal model has been developed for the latest prototype model design to aid in predicting thruster temperatures for various missions. This model is comprised of two parts. The first part predicts the heating from the discharge plasma for various throttling points based on a discharge chamber plasma model. This model shows, as expected, that the internal heating is strongly correlated with the discharge power. Typically, the internal plasma heating increases with beam current and decreases slightly with beam voltage. The second is a model based on a finite difference thermal code used to predict the thruster temperatures. Both parts of the model will be described in this paper. This model has been correlated with a thermal development test on the NEXT Prototype Model 1 thruster with most predicted component temperatures within 5 to 10 C of test temperatures. The model indicates that heating, and hence current collection, is not based purely on the footprint of the magnet rings, but follows a 0.1:1:2:1 ratio for the cathode-to-conical-to-cylindrical-to-front magnet rings. This thermal model has also been used to predict the temperatures during the worst case mission profile that is anticipated for the thruster. The model predicts ample thermal margin for all of its components except the external cable harness under the hottest anticipated mission scenario. The external cable harness will be re-rated or replaced to meet the predicted environment.

  17. Miniature Electrostatic Ion Thruster With Magnet

    NASA Technical Reports Server (NTRS)

    Hartley, Frank T.

    2006-01-01

    A miniature electrostatic ion thruster is proposed that, with one exception, would be based on the same principles as those of the device described in the previous article, "Miniature Bipolar Electrostatic Ion Thruster". The exceptional feature of this thruster would be that, in addition to using electric fields for linear acceleration of ions and electrons, it would use a magnetic field to rotationally accelerate slow electrons into the ion stream to neutralize the ions.

  18. Advanced electrostatic ion thruster for space propulsion

    NASA Technical Reports Server (NTRS)

    Masek, T. D.; Macpherson, D.; Gelon, W.; Kami, S.; Poeschel, R. L.; Ward, J. W.

    1978-01-01

    The suitability of the baseline 30 cm thruster for future space missions was examined. Preliminary design concepts for several advanced thrusters were developed to assess the potential practical difficulties of a new design. Useful methodologies were produced for assessing both planetary and earth orbit missions. Payload performance as a function of propulsion system technology level and cost sensitivity to propulsion system technology level are among the topics assessed. A 50 cm diameter thruster designed to operate with a beam voltage of about 2400 V is suggested to satisfy most of the requirements of future space missions.

  19. Extended Performance 8-cm Mercury Ion Thruster

    NASA Technical Reports Server (NTRS)

    Mantenieks, M. A.

    1981-01-01

    A slightly modified 8-cm Hg ion thruster demonstrated significant increase in performance. Thrust was increased by almost a factor of five over that of the baseline thruster. Thruster operation with various three grid ion optics configurations; thruster performance as a function of accelerator grid open area, cathode baffle, and cathode orifice size; and a life test of 614 hours at a beam current of 250 mA (17.5 mN thrust) are discussed. Highest thruster efficiency was obtained with the smallest open area accelerator grid. The benefits in efficiency from the low neutral loss grids were mitigated, however, by the limitation such grids place on attainable ion beam current densities. The thruster components suffered negligible weight losses during a life test, which indicated that operation of the 8-cm thruster at extended levels of thrust and power is possible with no significant loss of lifetime.

  20. Ion Thruster Support and Positioning System

    NASA Technical Reports Server (NTRS)

    Haag, Thomas W. (Inventor)

    1998-01-01

    A system for supporting and selectively positioning an ion thruster relative to a surface of a spacecraft includes three angularly spaced thruster support assemblies. Each thruster support assembly includes a frame which has a rotary actuator mounted thereon. The rotary actuator is connected to an actuator member which is rotatably connected to a thruster attachment member connected to a body of the thruster. A stabilizer member is rotatably mounted to the frame and to the thruster attachment member. The thruster is selectively movable in the pitch and yaw directions responsive to movement of the actuator members by the actuators on the thruster support assemblies. A failure of any one actuator on a thruster support assembly will generally still enable limited thruster positioning capability in two directions. In a retracted position the thruster attachment members are held in nested relation in saddles supported on the frames of the thruster support assemblies. The thruster is securely held in the retracted position during periods of high loading such as during launch of the spacecraft.

  1. Status of 30-centimeter-diameter mercury ion thruster isolator development

    NASA Technical Reports Server (NTRS)

    Mantenieks, M. A.

    1976-01-01

    Results are presented of several 30 cm diameter mercury ion thruster isolator life tests that show that the onset and exponential increase of leakage current problems observed in earlier thruster operations and isolator tests have been solved. A 10,006 hour life test of a main isolator vaporizer operated with no mercury flow at 320 C and 1500 volts was found to have no onset of leakage current during the test. A cathode-isolator vaporizer operated with a mercury discharge at 340 to 360 C and 1200 volts for 18,000 hours, was found to have a small increase of leakage current with time. A 10,000 hour thruster life test exhibited no increase of leakage current during the life test. Isolators have been developed which will satisfy 30 cm mercury ion thruster mission requirements.

  2. Lifetime Assessment of the NEXT Ion Thruster

    NASA Technical Reports Server (NTRS)

    VanNoord, Jonathan L.

    2010-01-01

    Ion thrusters are low thrust, high specific impulse devices with required operational lifetimes on the order of 10,000 to 100,000 hr. The NEXT ion thruster is the latest generation of ion thrusters under development. The NEXT ion thruster currently has a qualification level propellant throughput requirement of 450 kg of xenon, which corresponds to roughly 22,000 hr of operation at the highest throttling point. Currently, a NEXT engineering model ion thruster with prototype model ion optics is undergoing a long duration test to determine wear characteristics and establish propellant throughput capability. The NEXT thruster includes many improvements over previous generations of ion thrusters, but two of its component improvements have a larger effect on thruster lifetime. These include the ion optics with tighter tolerances, a masked region and better gap control, and the discharge cathode keeper material change to graphite. Data from the NEXT 2000 hr wear test, the NEXT long duration test, and further analysis is used to determine the expected lifetime of the NEXT ion thruster. This paper will review the predictions for all of the anticipated failure mechanisms. The mechanisms will include wear of the ion optics and cathode s orifice plate and keeper from the plasma, depletion of low work function material in each cathode s insert, and spalling of material in the discharge chamber leading to arcing. Based on the analysis of the NEXT ion thruster, the first failure mode for operation above a specific impulse of 2000 sec is expected to be the structural failure of the ion optics at 750 kg of propellant throughput, 1.7 times the qualification requirement. An assessment based on mission analyses for operation below a specific impulse of 2000 sec indicates that the NEXT thruster is capable of double the propellant throughput required by these missions.

  3. High Frequency Plasma Generators for Ion Thrusters

    NASA Technical Reports Server (NTRS)

    Divergilio, W. F.; Goede, H.; Fosnight, V. V.

    1981-01-01

    The results of a one year program to experimentally adapt two new types of high frequency plasma generators to Argon ion thrusters and to analytically study a third high frequency source concept are presented. Conventional 30 cm two grid ion extraction was utilized or proposed for all three sources. The two plasma generating methods selected for experimental study were a radio frequency induction (RFI) source, operating at about 1 MHz, and an electron cyclotron heated (ECH) plasma source operating at about 5 GHz. Both sources utilize multi-linecusp permanent magnet configurations for plasma confinement. The plasma characteristics, plasma loading of the rf antenna, and the rf frequency dependence of source efficiency and antenna circuit efficiency are described for the RFI Multi-cusp source. In a series of tests of this source at Lewis Research Center, minimum discharge losses of 220+/-10 eV/ion were obtained with propellant utilization of .45 at a beam current of 3 amperes. Possible improvement modifications are discussed.

  4. Characteristics of 30-centimeter mercury ion thrusters

    NASA Technical Reports Server (NTRS)

    Maloy, J. E.; Poeschel, R. L.; Dugeroff, C. R.

    1981-01-01

    The technology development of the 30 centimeter J series mercury ion thruster for prime propulsion application in solar electric propulsion systems is described. Thruster design is reviewed. A standardized set of test and data recording procedures formulated to allow for the characterization of the J series thruster is described. Characteristics measured are the magnetic baffle characterization, the neutralizer characterization, perveance, the minimum eV/ion measurement, and the electrical and propellant utilization efficiency measurements. Test results are presented.

  5. The 2.3 kW Ion Thruster Wear Test

    NASA Technical Reports Server (NTRS)

    Parkes, James; Rawlin, Vincent K.; Sovey, James S.; Kussmaul, Michael J.; Patterson, Michael J.

    1995-01-01

    A 30-cm diameter xenon ion thruster is under development at NASA to provide an ion propulsion option for auxiliary and primary propulsion on missions of national interest. Specific efforts include thruster design optimizations, component life testing and validation, and performance characterizations. Under this program, the ion thruster will be brought to engineering model development status. This paper describes the results of a 2.3-kW 2000-hour wear test performed to identify life limiting phenomena, measure the performance and characterize the operation of the thruster, and obtain wear, erosion, and surface contamination data. These data are being using as a data base for proceeding with additional life validation tests, and to provide input to flight thruster design requirements.

  6. A review of studies on ion thruster beam and charge-exchange plasmas

    NASA Technical Reports Server (NTRS)

    Carruth, M. R., Jr.

    1982-01-01

    Various experimental and analytical studies of the primary beam and charge-exchange plasmas of ion thrusters are reviewed. The history of plasma beam research is recounted, emphasizing experiments on beam neutralization, expansion of the beam, and determination of beam parameters such as electron temperature, plasma density, and plasma potential. The development of modern electron bombardment ion thrusters is treated, detailing experimental results. Studies on charge-exchange plasma are discussed, showing results such as the relationship between neutralizer emission current and plasma beam potential, ion energies as a function of neutralizer bias, charge-exchange ion current collected by an axially moving Faraday cup-RPA for 8-cm and 30-cm ion thrusters, beam density and potential data from a 15-cm ion thruster, and charge-exchange ion flow around a 30-cm thruster. A 20-cm thruster electrical configuration is depicted and facility effects are discussed. Finally, plasma modeling is covered in detail for plasma beam and charge-exchange plasma.

  7. Ion accelerator system mounting design and operating characteristics for a 5 kW 30-cm xenon ion engine

    NASA Technical Reports Server (NTRS)

    Aston, Graeme; Brophy, John R.

    1987-01-01

    Results from a series of experiments to determine the effect of accelerator grid mount geometry on the performance of the J-series ion optics assembly are described. Three mounting schemes, two flexible and one rigid, are compared for their relative ion extraction capability over a range of total accelerating voltages. The largest ion beam current, for the maximum total voltage investigated, is shown to occur using one of the flexible grid mounting geometries. However, at lower total voltages and reduced engine input power levels, the original rigid J-series ion optics accelerator grid mounts result in marginally better grid system performance at the same cold interelectrode gap.

  8. Ion thruster charge-exchange plasma flow

    NASA Technical Reports Server (NTRS)

    Carruth, M. R., Jr.; Gabriel, S. B.; Kitamura, S.

    1982-01-01

    The electron bombardment ion thruster has been under development for a number of years and during this time, studies of the plasmas produced by the thrusters and their interactions with spacecraft have been evaluated, based on available data. Due to diagnostic techniques used and facility effects, there is uncertainty as to the reliability of data from these early studies. This paper presents data on the flow of the charge-exchange plasma produced just downstream of the thruster's ion optics. The 'end-effect' of a cylindrical Langmuir probe is used to determine ion density and directed ion velocity. Results are compared with data obtained from a retarding potential analyzer-Faraday cup.

  9. Rapid evaluation of ion thruster lifetime using optical emission spectroscopy

    NASA Technical Reports Server (NTRS)

    Rock, B. A.; Mantenieks, M. A.; Parsons, M. L.

    1985-01-01

    A major life-limiting phenomenon of electric thrusters is the sputter erosion of discharge chamber components. Thrusters for space propulsion are required to operate for extended periods of time, usually in excess of 10,000 hr. Lengthy and very costly life-tests in high-vacuum facilities have been required in the past to determine the erosion rates of thruster components. Alternative methods for determining erosion rates which can be performed in relatively short periods of time at considerably lower costs are studied. An attempt to relate optical emission intensity from an ion bombarded surface (screen grid) to the sputtering rate of that surface is made. The model used a kinetic steady-state (KSS) approach, balancing the rates of population and depopulation of ten low-lying excited states of the sputtered molybdenum atom (MoI) with those of the ground state to relate the spectral intensities of the various transitions of the MoI to the population densities. Once this is accomplished, the population density can be related to the sputtering rate of the target. Radiative and collisional modes of excitation and decay are considered. Since actual data has not been published for MoI excitation rate and decay constants, semiempirical equations are used. The calculated sputtering rate and intensity is compared to the measured intensity and sputtering rates of the 8 and 30 cm ion thrusters.

  10. Rapid evaluation of ion thruster lifetime using optical emission spectroscopy

    NASA Technical Reports Server (NTRS)

    Rock, B. A.; Parsons, M. L.; Mantenieks, M. A.

    1985-01-01

    A major life-limiting phenomenon of electric thrusters is the sputter erosion of discharge chamber components. Thrusters for space propulsion are required to operate for extended periods of time, usually in excess of 10,000 hr. Lengthy and very costly life-tests in high-vacuum facilities have been required in the past to determine the erosion rates of thruster components. Alternative methods for determining erosion rates which can be performed in relatively short periods of time at considerably lower costs are studied. An attempt to relate optical emission intensity from an ion bombarded surface (screen grid) to the sputtering rate of that surface is made. The model used a kinetic steady-state (KSS) approach, balancing the rates of population and depopulation of ten low-lying excited states of the sputtered molybdenum atom (MoI) with those of the ground state to relate the spectral intensities of the various transitions of the MoI to the population densities. Once this is accomplished, the population density can be related to the sputting rate of the target. Radiative and collisional modes of excitation and decay are considered. Since actual data has not been published for MoI excitation rate and decay constants, semiempirical equations are used. The calculated sputtering rate and intensity is compared to the measured intensity and sputtering rates of the 8 and 30 cm ion thrusters.

  11. Ion thruster plume effects on spacecraft surfaces

    NASA Technical Reports Server (NTRS)

    Carruth, M. R., Jr.; Kuo, Y. S.

    1981-01-01

    A charge-exchange plasma, generated by an ion thruster, is capable of flowing upstream from the ion thruster and therefore represents a source of contamination to a spacecraft. An analytical model of the charge-exchange plasma density around a spacecraft was used to estimate the contamination which various spacecraft materials may be exposed to. Measurements of plasma density around an ion thruster were compared to this model. Results of experimental studied regarding the effects on various spacecraft materials' properties due to exposure to expected mercury contamination levels are presented.

  12. Performance of large area xenon ion thrusters for orbit transfer missions

    NASA Technical Reports Server (NTRS)

    Rawlin, Vincent K.

    1989-01-01

    Studies have indicated that xenon ion propulsion systems can enable the use of smaller Earth-launch vehicles for satellite placement which results in significant cost savings. These analyses have assumed the availability of advanced, high power ion thrusters operating at about 10 kW or higher. A program was initiated to explore the viability of operating 50 cm diameter ion thrusters at this power level. Operation with several discharge chamber and ion extraction grid set combinations has been demonstrated and data were obtained at power levels to 16 kW. Fifty cm diameter thrusters using state of the art 30 cm diameter grids or advanced technology 50 cm diameter grids allow discharge power and beam current densities commensurate with long life at power levels up to 10 kW. In addition, 50 cm diameter thrusters are shown to have the potential for growth in thrust and power levels beyond 10 KW.

  13. Performance of Large Area Xenon Ion Thrusters for Orbit Transfer Missions

    NASA Technical Reports Server (NTRS)

    Rawlin, Vincent K.

    1989-01-01

    Studies have indicated that xenon ion propulsion systems can enable the use of smaller earth-launch vehicles for satellite placement which results in significant cost savings. These analyses have assumed the availability of advanced, high power ion thrusters-operating at about 10 kW or higher. A program was initiated to explore the viability of operating 50 cm diameter ion thrusters at this power level. Operation with several discharge chamber and ion extraction grid set combinations was demonstrated and data were obtained at power levels to 16 kW. Fifty cm diameter thrusters using state of the art 30 cm diameter grids or advanced technology 50 cm diameter grids allow discharge power and beam current densities commensurate with long life at power levels up to 10 kW. In addition, 50 cm diameter thrusters are shown to have potential for growth in thrust and power levels beyond 10 kW.

  14. Eight-cm mercury ion thruster system technology

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The technology status of 8 cm diameter electron bombardment ion thrusters is presented. Much of the technology resulting from the 5 cm diameter thruster has been adapted and improved upon to increase the reliability, durability, and efficiency of the 8 cm thruster. Technology discussed includes: dependence of neutralizer tip erosion upon neutralizer flow rate; impregnated and rolled-foil insert cathode performance and life testing; neutralizer position studies; thruster ion beam profile measurements; high voltage pulse ignition; high utilization ion machined accelerator grids; deposition internal and external to the thruster; thruster vectoring systems; thruster cycling life testing and thruster system weights for typical mission applications.

  15. Ion Thruster Discharge Performance Per Magnetic Field Topography

    NASA Technical Reports Server (NTRS)

    Wirz, Richard E.; Goebel, Dan

    2006-01-01

    DC-ION is a detailed computational model for predicting the plasma characteristics of rain-cusp ion thrusters. The advanced magnetic field meshing algorithm used by DC-ION allows precise treatment of the secondary electron flow. This capability allows self-consistent estimates of plasma potential that improves the overall consistency of the results of the discharge model described in Reference [refJPC05mod1]. Plasma potential estimates allow the model to predict the onset of plasma instabilities, and important shortcoming of the previous model for optimizing the design of discharge chambers. A magnetic field mesh simplifies the plasma flow calculations, for both the ions and the secondary electrons, and significantly reduces numerical diffusion that can occur with meshes not aligned with the magnetic field. Comparing the results of this model to experimental data shows that the behavior of the primary electrons, and the precise manner of their confinement, dictates the fundamental efficiency of ring-cusp. This correlation is evident in simulations of the conventionally sized NSTAR thruster (30 cm diameter) and the miniature MiXI thruster (3 cm diameter).

  16. Mercury ion thruster research, 1977. [plasma acceleration

    NASA Technical Reports Server (NTRS)

    Wilbur, P. J.

    1977-01-01

    The measured ion beam divergence characteristics of two and three-grid, multiaperture accelerator systems are presented. The effects of perveance, geometry, net-to-total accelerating voltage, discharge voltage and propellant are examined. The applicability of a model describing doubly-charged ion densities in mercury thrusters is demonstrated for an 8-cm diameter thruster. The results of detailed Langmuir probing of the interior of an operating cathode are given and used to determine the ionization fraction as a function of position upstream of the cathode orifice. A mathematical model of discharge chamber electron diffusion and collection processes is presented along with scaling laws useful in estimating performance of large diameter and/or high specific impluse thrusters. A model describing the production of ionized molecular nitrogen in ion thrusters is included.

  17. Improvement of ion thruster design

    NASA Technical Reports Server (NTRS)

    Carpenter, R. T.

    1986-01-01

    Two types of measurements were performed on ion thrustors equipped with SmCo magnets in either ring cusp or line cusp arrangements. Langmuir probes were used to measure plasma potential, electron density, and electron temperture in all regions inside the thruster. Loss fluxes to various surfaces were determined by measuring the currents to foils attached to or imbedded in the surface. Data were obtained for several sets of discharge voltages and currents. The loss currents were determined from current vs voltage characteristics observed on a transistor curve tracer oscilloscope. Both ion and electron currents were measured to all parts of the walls and to all parts of the cathode assembly using collecting plates. These measurement were also made for various parameter sets. In line cusp configuration the plasma density is essentially as predicted by existing calculations. In the ring cusp arrangement the interior of the plasma contains an inhomogeneous and relatively large magnetic field so the geometry is decidely two-dimensional and the models of Self (1967) and of Kino and Sham (1966) do not agree.

  18. Optical properties of mercury ion thruster exhausts and implications for science instruments

    NASA Technical Reports Server (NTRS)

    Monahan, K. M.; Goldstein, R.

    1974-01-01

    Emission from the exhaust plume of a 30 cm mercury ion thruster was measured from 160 to 600 nm as a function of axial and radial distance from the thruster discharge chamber. The spectrally dispersed absolute intensities were used to construct an empirical volume rate function. The function was integrated along a typical instrument field of view, and the resulting apparent brightness was compared with instrument sensitivities to evaluate the extent of optical interference. Most of the emitted radiation came from UV lines of excited mercury atoms and ions, with no observable continuum emission. The intensity levels degraded rapidly with distance from the thruster so that optical interference was negligible for fields of view not intercepting the beam axis. The operation of only one instrument, a zodiacal photopolarimeter, was considered incompatible with simultaneous thruster operation.

  19. Physical phenomena in mercury ion thrusters

    NASA Technical Reports Server (NTRS)

    Wilbur, P. J.

    1979-01-01

    Experimental tests results demonstrating that reductions in screen grid thickness enhance the performance of ion thruster grids are presented. Shaping of the screen hole cross section is shown on the other hand not to affect performance substantially. The effect of the magnetic field in the vicinity of the hollow cathode on cathode performance is studied and test results are presented that show reductions in keeper voltages of a few volts can be realized by judicious applications of fields on the order of 100 gauss. The plasma downstream of a SERT 2 thruster operating without high voltage is studied. A model describing electron escape from the thruster under these conditions is discussed. A model defining the performance of the baffle aperture of an ion thruster is refined and experimental verification of the model is undertaken.

  20. The ion-optics of a two-grid electron-bombardment thruster. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Aston, G.

    1976-01-01

    A detailed experimental investigation was performed to determine the ion-optical performance of an electron-bombardment ion thruster as a function of grid geometry changes. The results show that each geometrical grid parameter independently affects one aspect of ion-optical performance. These observations are used in developing a graphical technique to predict the ion-optical performance of an arbitrary ion source and grid geometry combination. The usefulness of this technique is demonstrated by comparing predicted ion-optical performance of the 30-cm diameter engineering model ion thruster with independent experimental determinations. Good agreement is shown between predicted and experimental results.

  1. Miniature Free-Space Electrostatic Ion Thrusters

    NASA Technical Reports Server (NTRS)

    Hartley, Frank T.; Stephens, James B.

    2006-01-01

    A miniature electrostatic ion thruster is proposed for maneuvering small spacecraft. In a thruster based on this concept, one or more propellant gases would be introduced into an ionizer based on the same principles as those of the device described in an earlier article, "Miniature Bipolar Electrostatic Ion Thruster". On the front side, positive ions leaving an ionizer element would be accelerated to high momentum by an electric field between the ionizer and an accelerator grid around the periphery of the concave laminate structure. On the front side, electrons leaving an ionizer element would be ejected into free space by a smaller accelerating field. The equality of the ion and electron currents would eliminate the need for an additional electron- or ion-emitting device to keep the spacecraft charge-neutral. In a thruster design consisting of multiple membrane ionizers in a thin laminate structure with a peripheral accelerator grid, the direction of thrust could then be controlled (without need for moving parts in the thruster) by regulating the supply of gas to specific ionizer.

  2. The 15 cm diameter ion thruster research

    NASA Technical Reports Server (NTRS)

    Wilbur, P. J.

    1974-01-01

    The startup reliability of a 15 cm diameter mercury bombardment ion thruster which employs a pulsed high voltage tickler electrode on the main and neutralizer cathodes is examined. Startup of the thruster is achieved 100% of the time on the main cathode and 98.7% of the time on the neutralizer cathode over a 3640 cycle test. The thruster was started from a 20 C initial condition and operated for an hour at a 600 mA beam current. An energy efficiency of 75% and a propellant utilization efficiency of 77% was achieved over the complete cycle. The effect of a single cusp magnetic field thruster length on its performance is discussed. Guidelines are formulated for the shaping of magnetic field lines in thrusters. A model describing double ion production in mercury discharges is presented. The production route is shown to occur through the single ionic ground state. Photographs of the interior of an operating-hollow cathode are presented. A cathode spot is shown to be present if the cathode is free of low work-function surfaces. The spot is observed if a low work-function oxide coating is applied to the cathode insert. Results show that low work-function oxide coatings tend to migrate during thruster operation.

  3. Mercury ion thruster research, 1978

    NASA Technical Reports Server (NTRS)

    Wilbur, P. J.

    1978-01-01

    The effects of 8 cm thruster main and neutralizer cathode operating conditions on cathode orifice plate temperatures were studied. The effects of cathode operating conditions on insert temperature profiles and keeper voltages are presented for three different types of inserts. The bulk of the emission current is generally observed to come from the downstream end of the insert rather than from the cathode orifice plate. Results of a test in which the screen grid plasma sheath of a thruster was probed as the beam current was varied are shown. Grid performance obtained with a grid machined from glass ceramic is discussed. The effects of copper and nitrogen impurities on the sputtering rates of thruster materials are measured experimentally and a model describing the rate of nitrogen chemisorption on materials in either the beam or the discharge chamber is presented. The results of optimization of a radial field thruster design are presented. Performance of this device is shown to be comparable to that of a divergent field thruster and efficient operation with the screen grid biased to floating potential, where its susceptibility to sputter erosion damage is reduced, is demonstrated.

  4. Status of the NEXT Ion Thruster Long Duration Test

    NASA Technical Reports Server (NTRS)

    Frandina, Michael M.; Arrington, Lynn A.; Soulas, George C.; Hickman, Tyler A.; Patterson, Michael J.

    2005-01-01

    The status of NASA's Evolutionary Xenon Thruster (NEXT) Long Duration Test (LDT) is presented. The test will be conducted with a 36 cm diameter engineering model ion thruster, designated EM3, to validate and qualify the NEXT thruster propellant throughput capability of 450 kg xenon. The ion thruster will be operated at various input powers from the NEXT throttle table. Pretest performance assessments demonstrated that EM3 satisfies all thruster performance requirements. As of June 26, 2005, the ion thruster has accumulated 493 hours of operation and processed 10.2 kg of xenon at a thruster input power of 6.9 kW. Overall ion thruster performance, which includes thrust, thruster input power, specific impulse, and thrust efficiency, has been steady to date with very little variation in performance parameters.

  5. A 2.5 kW advanced technology ion thruster

    NASA Technical Reports Server (NTRS)

    Poeschel, R. L.

    1974-01-01

    A program has been conducted in order to improve the performance characteristics of 30 cm thrusters. This program was divided into three distinct, but related tasks: (1) the discharge chamber and component design modifications proposed for inclusion in the engineering model thruster were evaluated and engineering specifications were verified; (2) thrust losses which result from the contributions of double charged ions and nonaxial ion trajectories to the ion beam current were measured and (3) the specification and verification of power processor and control requirements of the engineering model thruster design were demonstrated. Proven design modifications which provide improved efficiencies are incorporated into the engineering model thruster during a structural re-design without introducing additional delay in schedule or new risks. In addition, a considerable amount of data is generated on the relation of double ion production and beam divergence to thruster parameters. Overall thruster efficiency is increased from 68% to 71% at full power, including corrections for double ion and beam divergence thrust losses.

  6. Charge-exchange plasma generated by an ion thruster

    NASA Technical Reports Server (NTRS)

    Kaufman, H. R.

    1977-01-01

    The charge exchange plasma generated by an ion thruster was investigated experimentally using both 5 cm and 15 cm thrusters. Results are shown for wide ranges of radial distance from the thruster and angle from the beam direction. Considerations of test environment, as well as distance from the thruster, indicate that a valid simulation of a thruster on a spacecraft was obtained. A calculation procedure and a sample calculation of charge exchange plasma density and saturation electron current density are included.

  7. High Power ECR Ion Thruster Discharge Characterization

    NASA Technical Reports Server (NTRS)

    Foster, John E.; Kamhawi, Hani; Haag, Thomas; Carpenter, Christian; Williams, George W.

    2006-01-01

    Electron cyclotron resonance (ECR) based ion thrusters with carbon based ion optics can potentially satisfy lifetime requirements for long duration missions (approximately 10 years) because grid erosion and cathode insert depletion issues are virtually eliminated. Though the ECR plasma discharge has been found to typically operate at slightly higher discharge losses than conventional DC ion thrusters (for high total thruster power applications), the discharge power fraction is small (less than 1 percent at 25 kW). In this regard, the benefits of increased life, low discharge plasma potentials, and reduced complexity are welcome tradeoffs for the associated discharge efficiency decrease. Presented here are results from discharge characterization of a large area ECR plasma source for gridded ion thruster applications. These measurements included load matching efficacy, bulk plasma properties via Langmuir probe, and plasma uniformity as measured using current probes distributed at the exit plane. A high degree of plasma uniformity was observed (flatness greater than 0.9). Additionally, charge state composition was qualitatively evaluated using emission spectroscopy. Plasma induced emission was dominated by xenon ion lines. No doubly charged xenon ions were detected.

  8. Plasma particle simulation of electrostatic ion thrusters

    NASA Technical Reports Server (NTRS)

    Peng, Xiaohang; Keefer, Dennis; Ruyten, Wilhelmus

    1990-01-01

    Charge exchange collisons between beam ions and neutral propellant gas can result in erosion of the accelerator grid surfaces of an ion engine. A particle in cell (PIC) is developed along with a Monte Carlo method to simulate the ion dynamics and charge exchange processes in the grid region of an ion thruster. The simulation is two-dimensional axisymmetric and uses three velocity components (2d3v) to investigate the influence of charge exchange collisions on the ion sputtering of the accelerator grid surfaces. An example calculation has been performed for an ion thruster operated on xenon propellant. The simulation shows that the greatest sputtering occurs on the downstream surface of the grid, but some sputtering can also occur on the upstream surface as well as on the interior of the grid aperture.

  9. NEXT Propellant Management System Integration With Multiple Ion Thrusters

    NASA Technical Reports Server (NTRS)

    Sovey, James S.; Soulas, George C.; Herman, Daniel A.

    2011-01-01

    As a critical part of the NEXT test validation process, a multiple-string integration test was performed on the NEXT propellant management system and ion thrusters. The objectives of this test were to verify that the PMS is capable of providing stable flow control to multiple thrusters operating over the NEXT system throttling range and to demonstrate to potential users that the NEXT PMS is ready for transition to flight. A test plan was developed for the sub-system integration test for verification of PMS and thruster system performance and functionality requirements. Propellant management system calibrations were checked during the single and multi-thruster testing. The low pressure assembly total flow rates to the thruster(s) were within 1.4 percent of the calibrated support equipment flow rates. The inlet pressures to the main, cathode, and neutralizer ports of Thruster PM1R were measured as the PMS operated in 1-thruster, 2-thruster, and 3-thruster configurations. It was found that the inlet pressures to Thruster PM1R for 2-thruster and 3-thruster operation as well as single thruster operation with the PMS compare very favorably indicating that flow rates to Thruster PM1R were similar in all cases. Characterizations of discharge losses, accelerator grid current, and neutralizer performance were performed as more operating thrusters were added to the PMS. There were no variations in these parameters as thrusters were throttled and single and multiple thruster operations were conducted. The propellant management system power consumption was at a fixed voltage to the DCIU and a fixed thermal throttle temperature of 75 C. The total power consumed by the PMS was 10.0, 17.9, and 25.2 W, respectively, for single, 2-thruster, and 3-thruster operation with the PMS. These sub-system integration tests of the PMS, the DCIU Simulator, and multiple thrusters addressed, in part, the NEXT PMS and propulsion system performance and functionality requirements.

  10. Development of an Ion Thruster and Power Processor for New Millennium's Deep Space 1 Mission

    NASA Technical Reports Server (NTRS)

    Sovey, James S.; Hamley, John A.; Haag, Thomas W.; Patterson, Michael J.; Pencil, Eric J.; Peterson, Todd T.; Pinero, Luis R.; Power, John L.; Rawlin, Vincent K.; Sarmiento, Charles J.; Anderson, John R.; Bond, Thomas A.; Cardwell, G. I.; Christensen, Jon A.

    1997-01-01

    The NASA Solar Electric Propulsion Technology Applications Readiness Program (NSTAR) will provide a single-string primary propulsion system to NASA's New Millennium Deep Space 1 Mission which will perform comet and asteroid flybys in the years 1999 and 2000. The propulsion system includes a 30-cm diameter ion thruster, a xenon feed system, a power processing unit, and a digital control and interface unit. A total of four engineering model ion thrusters, three breadboard power processors, and a controller have been built, integrated, and tested. An extensive set of development tests has been completed along with thruster design verification tests of 2000 h and 1000 h. An 8000 h Life Demonstration Test is ongoing and has successfully demonstrated more than 6000 h of operation. In situ measurements of accelerator grid wear are consistent with grid lifetimes well in excess of the 12,000 h qualification test requirement. Flight hardware is now being assembled in preparation for integration, functional, and acceptance tests.

  11. High-power and 2.5 kW advanced-technology ion thruster

    NASA Technical Reports Server (NTRS)

    Poeschel, R. L.

    1977-01-01

    Investigations for improving ion thruster components in the 30 cm engineering model thruster (EMT) resulted in the demonstration of useful techniques for grid short removal and discharge chamber erosion monitoring, establishment of relationships between double ion production and thruster operating parameters, verification of satisfactory specifications on porous tungsten vaporizer material and barium impregnated porous tungsten inserts, demonstration of a new hollow cathode configuration, and specification of magnetic circuit requirements for reproducing desired magnetic mappings. The capacity of a 30 cm EMT to operate at higher beam voltages and currents (higher power) was determined. Operation at 2 A beam current and higher beam voltage is shown to be essentially equivalent to operation at 1.1 kV with regard to efficiency, lifetime and operating conditions. The only additional requirement is an improvement in high voltage insulation and propellant isolator capacity. Operation at minimum voltage and higher beam currents is shown to increase thruster discharge chamber erosion in proportion to beam current. Studies to find alternatives to molybdenum for manufacturing ion optics grids are also reported.

  12. The 8-CM ion thruster characterization. [mercury ion engine

    NASA Technical Reports Server (NTRS)

    Wessel, F. J.; Williamson, W. S.

    1983-01-01

    The performance capabilities of the 8 cm diameter mercury ion thruster were increased by modifying the thruster operating parameters and component hardware. The initial performance levels, representative of the Hughes/NASA Lewis Research Center Ion Auxiliary Propulsion Subsystem (IAPS) thruster, were raised from the baseline values of thrust, T = 5 mN, and specific impulse, I sub sp = 2,900s, to thrust, T = 25 mN and specific impulse, I sub sp = 4,300 s. Performance characteristics including estmates of the erosion rates of various component surfaces are presented.

  13. Electron Backstreaming Determination for Ion Thrusters

    NASA Technical Reports Server (NTRS)

    Wirz, Richard E.; Katz, Ira; Goebel, Dan M.; Anderson, John R.

    2008-01-01

    Electron backstreaming in ion thrusters is caused by the random flux of beam electrons past a potential barrier established by the accel grid. A technique that integrates this flux over the radial extent of the barrier reveals important aspects of electron backstreaming phenomena for individual beamlets, across the thruster beam, and throughout thruster life. For individual beamlets it was found that over 99% of the electron backstreaming occurs in a small annulus at the center of the beamlet that is less than 20% the area of the beamlet at the potential barrier established by the accel grid. For the thruster beam it was found that over 99% of the backstreaming current occurs inside of r = 6 cm for the over 28 cm diameter NSTAR grid. Initial validation against ELT data shows that the technique provides the correct behavior and magnitude of electron backstreaming limit, V(sub ebs). From the sensitivity analyses it is apparent that accel grid chamfering may be the dominant mechanism contributing to the sharp rise in the absolute value of V(sub ebs) observed in the ELT but does not explain the rise in ion transparency. Grid gap change also contributes to the absolute value of V(sub ebs) rise and large rises in ion transparency with thruster life for the center gridlet. Screen grid erosion contributes generally to rises in the absolute value of V(sub ebs) and ion transparency, but for the assumptions used herein, it appears to not have as much of an effect chamfering or grid gap change. Overall, it is apparent that accel grid chamfering, grid gap change, and screen grid erosion are important to the increase in electron backstreaming observed during the ELT.

  14. Ion Thruster Development at NASA Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Sovey, James S.; Hamley, John A.; Patterson, Michael J.; Rawlin, Vincent K.; Sarver-Verhey, Timothy R.

    1992-01-01

    Recent ion propulsion technology efforts at NASA's Lewis Research Center including development of kW-class xenon ion thrusters, high power xenon and krypton ion thrusters, and power processors are reviewed. Thruster physical characteristics, performance data, life projections, and power processor component technology are summarized. The ion propulsion technology program is structured to address a broad set of mission applications from satellite stationkeeping and repositioning to primary propulsion using solar or nuclear power systems.

  15. Experimental and analytical evaluation of ion thruster/spacecraft interactions

    NASA Technical Reports Server (NTRS)

    Carruth, M. R., Jr. (Editor)

    1981-01-01

    Studies were conducted to both identify the environment produced by ion thrusters and to assess the interaction of this environment on a typical spacecraft and typical science instruments. Spacecraft charging and the charge exchange that accompanies it is discussed in detail. Electromagnetic interference was characterized for ion engines. The electromagnetic compatibility of ion thrusters with spacecraft instruments was determined. The effects of ion thruster plumes on spacecraft were studied with particular emphasis on external surface currents.

  16. Numerical Simulation of Ion Thruster Optics

    NASA Technical Reports Server (NTRS)

    Rawlin, Vincent K. (Technical Monitor); Farnell, Cody C.; Williams, John D.; Wilbur, Paul J.

    2003-01-01

    A three-dimensional simulation code (ffx) designed to analyze ion thruster optics is described. It is an extension of an earlier code and includes special features like the ability to model a wide range of grid geometries, cusp details, and mis-aligned aperture pairs to name a few. However, the principle reason for advancing the code was in the study of ion optics erosion. Ground based testing of ion thruster optics, essential to the understanding of the processes of grid erosion, can be time consuming and costly. Simulation codes that can accurately predict grid lifetimes and the physical mechanisms of grid erosion can be of great utility in the development of future ion thruster optics designed for more ambitious applications. Results of simulations are presented that describe wear profiles for several standard and nonstandard aperture geometries, such as those grid sets with square- or slotted-hole layout patterns. The goal of this paper will be to introduce the methods employed in the ffx code and to briefly demonstrate their use.

  17. Ion Thruster and Power Processor Developed for the Deep Space 1 Mission

    NASA Technical Reports Server (NTRS)

    Sovey, James S.

    1999-01-01

    The NASA Solar Electric Propulsion Technology Applications Readiness (NSTAR) Program has provided a single-string primary propulsion system to NASA's Deep Space 1 spacecraft. This spacecraft will carry about 81 kg of xenon propellant for the ion thruster, which can be throttled down from 2.3 to 0.5 kW as the spacecraft moves away from the Sun. The propellant load will provide about 20 months of propulsion at the one-half power throttle setpoint of 1.2 kW. This mission will validate the 2.5-kW ion propulsion system and will fly by the asteroid 1992 KD in 1999. If funding permits, Deep Space 1 also will encounter comets Wilson-Harrington and Borrelly in 2001. NASA Lewis Research Center's On-Board Propulsion Branch was responsible for the development of the 30-cm-diameter ion thruster, the 2.5-kW power processor unit (PPU), and the Digital Control and Interface Unit (DCIU) that controls the PPU/thruster/feed system and provides data and recovery from fault conditions. Lewis transferred the thruster and PPU technologies to the Hughes Electron Dynamics Division, which was selected to build two sets of flight thrusters, as well as the PPU's and DCIU's. Hughes subcontracted the DCIU development to Spectrum Astro Incorporated. The Jet Propulsion Laboratory (JPL) was primarily responsible for the NSTAR project management, thruster lifetests, the feed system, diagnostics, and the propulsion subsystem integration. A total of four engineering model thrusters and three breadboard PPU's were built, integrated, and tested. More than 50 development tests were conducted along with thruster design verification tests of 2000 and 1000 hours. In addition, an 8000-hr life demonstration test was successfully completed and demonstrated wear-rates consistent with full-power lifetimes in excess of 12,000 hours.

  18. 15 cm multipole gas ion thruster

    NASA Technical Reports Server (NTRS)

    Isaacson, G. C.; Kaufman, H. R.

    1976-01-01

    A 15-cm multipole thruster was operated on argon and xenon. The multipole approach used has been shown capable of low discharge losses and flat ion beam profiles with a minimum of redesign. This approach employs low magnetic field strengths and flat or cylindrical sheet-metal parts, hence is suited to rapid optimization and scaling. Only refractory metal cathodes were used in this investigation.

  19. Sputtering erosion in ion and plasma thrusters

    NASA Technical Reports Server (NTRS)

    Ray, Pradosh K.

    1995-01-01

    An experimental set-up to measure low-energy (below 1 keV) sputtering of materials is described. The materials to be bombarded represent ion thruster components as well as insulators used in the stationary plasma thruster. The sputtering takes place in a 9 inch diameter spherical vacuum chamber. Ions of argon, krypton and xenon are used to bombard the target materials. The sputtered neutral atoms are detected by a secondary neutral mass spectrometer (SNMS). Samples of copper, nickel, aluminum, silver and molybdenum are being sputtered initially to calibrate the spectrometer. The base pressure of the chamber is approximately 2 x 10(exp -9) Torr. the primary ion beam is generated by an ion gun which is capable of delivering ion currents in the range of 20 to 500 nA. The ion beam can be focused to a size approximately 1 mm in diameter. The mass spectrometer is positioned 10 mm from the target and at 90 deg angle to the primary ion beam direction. The ion beam impinges on the target at 45 deg. For sputtering of insulators, charge neutralization is performed by flooding the sample with electrons generated from an electron gun. Preliminary sputtering results, methods of calculating the instrument response function of the spectrometer and the relative sensitivity factors of the sputtered elements will be discussed.

  20. Advanced ion thruster and electrochemical launcher research

    NASA Technical Reports Server (NTRS)

    Wilbur, P. J.

    1983-01-01

    The theoretical model of orificed hollow cathode operation predicted experimentally observed cathode performance with reasonable accuracy. The deflection and divergence characteristics of ion beamlets emanating from a two grid optics system as a function of the relative offset of screen and accel grids hole axes were described. Ion currents associated with discharge chamber operation were controlled to improve ion thruster performance markedly. Limitations imposed by basic physical laws on reductions in screen grid hole size and grid spacing for ion optics systems were described. The influence of stray magnetic fields in the vicinity of a neutralizer on the performance of that neutralizer was demonstrated. The ion current density extracted from a thruster was enhanced by injecting electrons into the region between its ion accelerating grids. Theoretical analysis of the electrothermal ramjet concept of launching space bound payloads at high acceleration levels is described. The operation of this system is broken down into two phases. In the light gas gun phase the payload is accelerated to the velocity at which the ramjet phase can commence. Preliminary models of operation are examined and shown to yield overall energy efficiences for a typical Earth escape launch of 60 to 70%. When shock losses are incorporated these efficiencies are still observed to remain at the relatively high values of 40 to 50%.

  1. A multiple-cathode, high-power, rectangular ion thruster discharge chamber of increasing thruster lifetime

    NASA Astrophysics Data System (ADS)

    Rovey, Joshua Lucas

    Ion thrusters are high-efficiency, high-specific impulse space propulsion systems proposed for deep space missions requiring thruster operational lifetimes of 7--14 years. One of the primary ion thruster components is the discharge cathode assembly (DCA). The DCA initiates and sustains ion thruster operation. Contemporary ion thrusters utilize one molybdenum keeper DCA that lasts only ˜30,000 hours (˜3 years), so single-DCA ion thrusters are incapable of satisfying the mission requirements. The aim of this work is to develop an ion thruster that sequentially operates multiple DCAs to increase thruster lifetime. If a single-DCA ion thruster can operate 3 years, then perhaps a triple-DCA thruster can operate 9 years. Initially, a multiple-cathode discharge chamber (MCDC) is designed and fabricated. Performance curves and grid-plane current uniformity indicate operation similar to other thrusters. Specifically, the configuration that balances both performance and uniformity provides a production cost of 194 W/A at 89% propellant efficiency with a flatness parameter of 0.55. One of the primary MCDC concerns is the effect an operating DCA has on the two dormant cathodes. Multiple experiments are conducted to determine plasma properties throughout the MCDC and near the dormant cathodes, including using "dummy" cathodes outfitted with plasma diagnostics and internal plasma property mapping. Results are utilized in an erosion analysis that suggests dormant cathodes suffer a maximum pre-operation erosion rate of 5--15 mum/khr (active DCA maximum erosion is 70 mum/khr). Lifetime predictions indicate that triple-DCA MCDC lifetime is approximately 2.5 times longer than a single-DCA thruster. Also, utilization of new keeper materials, such as carbon graphite, may significantly decrease both active and dormant cathode erosion, leading to a further increase in thruster lifetime. Finally, a theory based on the near-DCA plasma potential structure and propellant flow rate effects

  2. NSTAR Ion Thrusters and Power Processors

    NASA Technical Reports Server (NTRS)

    Bond, T. A.; Christensen, J. A.

    1999-01-01

    The purpose of the NASA Solar Electric Propulsion Technology Applications Readiness (NSTAR) project is to validate ion propulsion technology for use on future NASA deep space missions. This program, which was initiated in September 1995, focused on the development of two sets of flight quality ion thrusters, power processors, and controllers that provided the same performance as engineering model hardware and also met the dynamic and environmental requirements of the Deep Space 1 Project. One of the flight sets was used for primary propulsion for the Deep Space 1 spacecraft which was launched in October 1998.

  3. Electrostatic ion thruster optics calculations

    NASA Technical Reports Server (NTRS)

    Whealton, John H.; Kirkman, David A.; Raridon, R. J.

    1992-01-01

    Calculations have been performed which encompass both a self-consistent ion source extraction plasma sheath and the primary ion optics including sheath and electrode-induced aberrations. Particular attention is given to the effects of beam space charge, accelerator geometry, and properties of the downstream plasma sheath on the position of the electrostatic potential saddle point near the extractor electrode. The electron blocking potential blocking is described as a function of electrode thickness and secondary plasma processes.

  4. Design and Preliminary Testing Plan of Electronegative Ion Thruster

    NASA Technical Reports Server (NTRS)

    Schloeder, Natalie R.; Liu, Thomas M.; Walker, Mitchell L. R.; Polzin, Kurt A.; Dankanich, John W.; Aanesland, Ane

    2014-01-01

    Electronegative ion thrusters are a new iteration of existing gridded ion thruster technology differentiated by their ability to produce and accelerate both positive and negative ions. The primary motivations for electronegative ion thruster development include the elimination of lifetime-limiting cathodes from a thruster system and the ability to generate appreciable thrust through the acceleration of both positive or negative-charged ions. Proof-of-concept testing of the PEGASES (Plasma Propulsion with Electronegative GASES) thruster demonstrated the production of positively and negatively-charged ions (argon and sulfur hexafluoride, respectively) in an RF discharge and the subsequent acceleration of each charge species through the application of a time-varying electric field to a pair of metallic grids similar to those found in gridded ion thrusters. Leveraging the knowledge gained through experiments with the PEGASES I and II prototypes, the MINT (Marshall's Ion-ioN Thruster) is being developed to provide a platform for additional electronegative thruster proof-of-concept validation testing including direct thrust measurements. The design criteria used in designing the MINT are outlined and the planned tests that will be used to characterize the performance of the prototype are described.

  5. The 15 cm mercury ion thruster research 1975

    NASA Technical Reports Server (NTRS)

    Wilbur, P. J.

    1975-01-01

    Doubly charged ion current measurements in the beam of a SERT II thruster are shown to introduce corrections which bring its calculated thrust into close agreement with that measured during flight testing. A theoretical model of doubly charged ion production and loss in mercury electron bombardment thrusters is discussed and is shown to yield doubly-to-singly charged ion density ratios that agree with experimental measurements obtained on a 15 cm diameter thruster over a range of operating conditions. Single cusp magnetic field thruster operation is discussed and measured ion beam profiles, performance data, doubly charged ion densities, and discharge plasma characteristics are presented for a range of operating conditions and thruster geometries. Variations in the characteristics of this thruster are compared to those observed in the divergent field thruster and the cusped field thruster is shown to yield flatter ion beam profiles at about the same discharge power and propellant utilization operating point. An ion optics test program is described and the measured effects of grid system dimensions on ion beamlet half angle and diameter are examined. The effectiveness of hollow cathode startup using a thermionically emitting filament within the cathode is examined over a range of mercury flow rates and compared to results obtained with a high voltage tickler startup technique. Results of cathode plasma property measurement tests conducted within the cathode are presented.

  6. Increasing the Life of a Xenon-Ion Spacecraft Thruster

    NASA Technical Reports Server (NTRS)

    Goebel, Dan; Polk, James; Sengupta, Anita; Wirz, Richard

    2007-01-01

    A short document summarizes the redesign of a xenon-ion spacecraft thruster to increase its operational lifetime beyond a limit heretofore imposed by nonuniform ion-impact erosion of an accelerator electrode grid. A peak in the ion current density on the centerline of the thruster causes increased erosion in the center of the grid. The ion-current density in the NSTAR thruster that was the subject of this investigation was characterized by peak-to-average ratio of 2:1 and a peak-to-edge ratio of greater than 10:1. The redesign was directed toward distributing the same beam current more evenly over the entire grid andinvolved several modifications of the magnetic- field topography in the thruster to obtain more nearly uniform ionization. The net result of the redesign was to reduce the peak ion current density by nearly a factor of two, thereby halving the peak erosion rate and doubling the life of the thruster.

  7. Initial Thrust Measurements of Marshall's Ion-ioN Thruster

    NASA Technical Reports Server (NTRS)

    Schloeder, Natalie R.; Scogin, Tyler; Liu, Thomas M.; Walker, Mitchell L. R.; Polzin, Kurt A.; Dankanich, John W.; Aanesland, Ane

    2015-01-01

    Electronegative ion thrusters are a variation of tradition gridded ion thruster technology differentiated by the production and acceleration of both positive and negative ions. Benefits of electronegative ion thrusters include the elimination of lifetime-limiting cathodes from the thruster architecture and the ability to generate appreciable thrust from both charge species. Following the continued development of electronegative ion thruster technology as exhibited by the PEGASES (Plasma Propulsion with Electronegative GASES) thruster, direct thrust measurements are required to push interest in electronegative ion thruster technology forward. For this work, direct thrust measurements of the MINT (Marshall's Ion-ioN Thruster) will be taken on a hanging pendulum thrust stand for propellant mixtures of Sulfur Hexafluoride and Argon at volumetric flow rates of 5-25 sccm at radio frequency power levels of 100-600 watts at a radio frequency of 13.56 MHz. Acceleration grid operation is operated using a square waveform bias of +/-300 volts at a frequency of 25 kHz.

  8. Next-Generation Ion Thruster Design Tool

    NASA Technical Reports Server (NTRS)

    Stolz, Peter

    2015-01-01

    Computational tools that accurately predict the performance of electric propulsion devices are highly desirable and beneficial to NASA and the broader electric propulsion community. The current state of the art in electric propulsion modeling relies heavily on empirical data and numerous computational "knobs." In Phase I of this project, Tech-X Corporation developed the most detailed ion engine discharge chamber model that currently exists. This kinetic model simulates all particles in the discharge chamber along with a physically correct simulation of the electric fields. In addition, kinetic erosion models are included for modeling the ion-impingement effects on thruster component erosion. In Phase II, Tech-X developed a user-friendly computer program for NASA and other governmental and industry customers. Tech-X has implemented a number of advanced numerical routines to bring the computational time down to a commercially acceptable level. NASA now has a highly sophisticated, user-friendly ion engine discharge chamber modeling tool.

  9. Internal erosion rates of a 10-kW xenon ion thruster

    NASA Technical Reports Server (NTRS)

    Rawlin, Vincent K.

    1988-01-01

    A 30 cm diameter divergent magnetic field ion thruster, developed for mercury operation at 2.7 kW, was modified and operated with xenon propellant at a power level of 10 kW for 567 h to evaluate thruster performance and lifetime. The major differences between this thruster and its baseline configuration were elimination of the three mercury vaporizers, use of a main discharge cathode with a larger orifice, reduction in discharge baffle diameter, and use of an ion accelerating system with larger acceleration grid holes. Grid thickness measurement uncertainties, combined with estimates of the effects of reactive residual facility background gases gave a minimum screen grid lifetime of 7000 h. Discharge cathode orifice erosion rates were measured with three different cathodes with different initial orifice diameters. Three potential problems were identified during the wear test: the upstream side of the discharge baffle eroded at an unacceptable rate; two of the main cathode tubes experienced oxidation, deformation, and failure; and the accelerator grid impingement current was more than an order of magnitude higher than that of the baseline mercury thruster. The charge exchange ion erosion was not quantified in this test. There were no measurable changes in the accelerator grid thickness or the accelerator grid hole diameters.

  10. Evolution of the 1-mlb mercury ion thruster subsystem

    NASA Technical Reports Server (NTRS)

    Kerslake, W. R.; Banks, B. A.

    1978-01-01

    The developmental history, performance, and major lifetests of each component of the present 1-mlb (4.5 mN) thruster system are traced over the past 10 years. The 1-mlb thruster subsystem consists of an 8 cm diameter ion thruster mounted on 2 axis gimbals, a mercury propellant tank, a power electronics unit, a controller/digital interface unit, and necessary electrical harnesses plus propellant tankage and feed lines.

  11. Cusped magnetic field mercury ion thruster. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Beattie, J. R.

    1976-01-01

    The importance of a uniform current density profile in the exhaust beam of an electrostatic ion thruster is discussed in terms of thrust level and accelerator system lifetime. A residence time approach is used to explain the nonuniform beam current density profile of the divergent magnetic field thruster. Mathematical expressions are derived which relate the thruster discharge power loss, propellant utilization, and double to single ion density ratio to the geometry and plasma properties of the discharge chamber. These relationships are applied to a cylindrical discharge chamber model of the thruster. Experimental results are presented for a wide range of the discharge chamber length. The thruster designed for this investigation was operated with a cusped magnetic field as well as a divergent field geometry, and the cusped field geometry is shown to be superior from the standpoint of beam profile uniformity, performance, and double ion population.

  12. A high power ion thruster for deep space missions

    NASA Astrophysics Data System (ADS)

    Polk, James E.; Goebel, Dan M.; Snyder, John S.; Schneider, Analyn C.; Johnson, Lee K.; Sengupta, Anita

    2012-07-01

    The Nuclear Electric Xenon Ion System ion thruster was developed for potential outer planet robotic missions using nuclear electric propulsion (NEP). This engine was designed to operate at power levels ranging from 13 to 28 kW at specific impulses of 6000-8500 s and for burn times of up to 10 years. State-of-the-art performance and life assessment tools were used to design the thruster, which featured 57-cm-diameter carbon-carbon composite grids operating at voltages of 3.5-6.5 kV. Preliminary validation of the thruster performance was accomplished with a laboratory model thruster, while in parallel, a flight-like development model (DM) thruster was completed and two DM thrusters fabricated. The first thruster completed full performance testing and a 2000-h wear test. The second successfully completed vibration tests at the full protoflight levels defined for this NEP program and then passed performance validation testing. The thruster design, performance, and the experimental validation of the design tools are discussed in this paper.

  13. A high power ion thruster for deep space missions.

    PubMed

    Polk, James E; Goebel, Dan M; Snyder, John S; Schneider, Analyn C; Johnson, Lee K; Sengupta, Anita

    2012-07-01

    The Nuclear Electric Xenon Ion System ion thruster was developed for potential outer planet robotic missions using nuclear electric propulsion (NEP). This engine was designed to operate at power levels ranging from 13 to 28 kW at specific impulses of 6000-8500 s and for burn times of up to 10 years. State-of-the-art performance and life assessment tools were used to design the thruster, which featured 57-cm-diameter carbon-carbon composite grids operating at voltages of 3.5-6.5 kV. Preliminary validation of the thruster performance was accomplished with a laboratory model thruster, while in parallel, a flight-like development model (DM) thruster was completed and two DM thrusters fabricated. The first thruster completed full performance testing and a 2000-h wear test. The second successfully completed vibration tests at the full protoflight levels defined for this NEP program and then passed performance validation testing. The thruster design, performance, and the experimental validation of the design tools are discussed in this paper.

  14. High-Power, High-Thrust Ion Thruster (HPHTion)

    NASA Technical Reports Server (NTRS)

    Peterson, Peter Y.

    2015-01-01

    Advances in high-power photovoltaic technology have enabled the possibility of reasonably sized, high-specific power solar arrays. At high specific powers, power levels ranging from 50 to several hundred kilowatts are feasible. Ion thrusters offer long life and overall high efficiency (typically greater than 70 percent efficiency). In Phase I, the team at ElectroDynamic Applications, Inc., built a 25-kW, 50-cm ion thruster discharge chamber and fabricated a laboratory model. This was in response to the need for a single, high-powered engine to fill the gulf between the 7-kW NASA's Evolutionary Xenon Thruster (NEXT) system and a notional 25-kW engine. The Phase II project matured the laboratory model into a protoengineering model ion thruster. This involved the evolution of the discharge chamber to a high-performance thruster by performance testing and characterization via simulated and full beam extraction testing. Through such testing, the team optimized the design and built a protoengineering model thruster. Coupled with gridded ion thruster technology, this technology can enable a wide range of missions, including ambitious near-Earth NASA missions, Department of Defense missions, and commercial satellite activities.

  15. The High Power Electric Propulsion (HiPEP) Ion Thruster

    NASA Technical Reports Server (NTRS)

    Foster, John E.; Haag, Tom; Patterson, Michael; Williams, George J., Jr.; Sovey, James S.; Carpenter, Christian; Kamhawi, Hani; Malone, Shane; Elliot, Fred

    2004-01-01

    Practical implementation of the proposed Jupiter Icy Moon Orbiter (JIMO) mission, which would require a total delta V of approximately 38 km/s, will require the development of a high power, high specific impulse propulsion system. Initial analyses show that high power gridded ion thrusters could satisfy JIMO mission requirements. A NASA GRC-led team is developing a large area, high specific impulse, nominally 25 kW ion thruster to satisfy both the performance and the lifetime requirements for this proposed mission. The design philosophy and development status as well as a thruster performance assessment are presented.

  16. Ion Beam Characterization of a NEXT Multi-Thruster Array Plume

    NASA Technical Reports Server (NTRS)

    Pencil, Eric J.; Foster, John E.; Patterson, Michael J.; Diaz, Esther M.; Van Noord, Jonathan L.; McEwen, Heather K.

    2006-01-01

    Three operational, engineering model, 7-kW ion thrusters and one instrumented, dormant thruster were installed in a cluster array in a large vacuum facility at NASA Glenn Research Center. A series of engineering demonstration tests were performed to evaluate the system performance impacts of operating various multiple-thruster configurations in an array. A suite of diagnostics was installed to investigate multiple-thruster operation impact on thruster performance and life, thermal interactions, and alternative system modes and architectures. The ion beam characterization included measuring ion current density profiles and ion energy distribution with Faraday probes and retarding potential analyzers, respectively. This report focuses on the ion beam characterization during single thruster operation, multiple thruster operation, various neutralizer configurations, and thruster gimbal articulation. Comparison of beam profiles collected during single and multiple thruster operation demonstrated the utility of superimposing single engine beam profiles to predict multi-thruster beam profiles. High energy ions were detected in the region 45 off the thruster axis, independent of thruster power, number of operating thrusters, and facility background pressure, which indicated that the most probable ion energy was not effected by multiple-thruster operation. There were no significant changes to the beam profiles collected during alternate thruster-neutralizer configurations, therefore supporting the viability of alternative system configuration options. Articulation of one thruster shifted its beam profile, whereas the beam profile of a stationary thruster nearby did not change, indicating there were no beam interactions which was consistent with the behavior of a collisionless beam expansion.

  17. Experimental Results of the Impact of an Ion Thruster Plasma on Microwave Propagation

    NASA Technical Reports Server (NTRS)

    Zaman, Afroz J.; Lambert, Kevin M.

    2000-01-01

    Laboratory at the NASA Glenn Research Center. This facility utilizes a cylindrical, stainless steel, vacuum chamber, which is 18.3 m long and 4.6 m in diameter. For the tests being described here a 30 cm diameter, xenon ion thruster was used. The thruster provided between 500 W and 2.3 kW of operating power. The thruster was mounted on a stand along the axis of the chamber near one of its ends.

  18. Experimental Results of the Impact of an Ion Thruster Plasma on Microwave Propagation

    NASA Technical Reports Server (NTRS)

    Zaman, Afroz J.; Lambert, Kevin M.

    2000-01-01

    Laboratory at the NASA Glenn Research Center. This facility utilizes a cylindrical, stainless steel, vacuum chamber, which is 18.3 m long and 4.6 m in diameter. For the tests being described here a 30 cm diameter, xenon ion thruster was used. The thruster provided between 500 W and 2.3 kW of operating power. The thruster was mounted on a stand along the axis of the chamber near one of its ends and could be moved axially.

  19. Scaling relationships for mercury and gaseous propellant ion thrusters

    NASA Technical Reports Server (NTRS)

    Wilbur, P. J.; Kaufman, H. R.

    1978-01-01

    A model describing the doubly charged ion densities in argon and xenon ion thrusters is presented. Doubly charged ions are shown to be produced in significant numbers from both the neutral and singly ionized states. Doubly-to-singly charged ion density ratios calculated using this model are compared to experimental values of this ratio measured in the 15 cm multipole thruster using both propellants. Agreement between theory and experiment is shown to be good. Using this doubly charged ion model, and a similar one obtained previously for mercury, together with the constant neutral loss rate theory, Child's current density law and accelerator grid fabrication limitations, a set of scaling relationships are developed. These relationships show the propellant utilizations, thrust densities and discharge power levels that can be expected as thruster diameter and/or specific impulse are increased and doubly charged ion densities are held at acceptably low values.

  20. Ion thruster system (8-cm) cyclic endurance test

    NASA Technical Reports Server (NTRS)

    Dulgeroff, C. R.; Beattie, J. R.; Poeschel, R. L.; Hyman, J., Jr.

    1984-01-01

    This report describes the qualification test of an Engineering-Model 5-mN-thrust 8-cm-diameter mercury ion thruster which is representative of the Ion Auxiliary Propulsion System (IAPS) thrusters. Two of these thrusters are scheduled for future flight test. The cyclic endurance test described herein was a ground-based test performed in a vacuum facility with a liquid-nitrogen-cooled cryo-surface and a frozen mercury target. The Power Electronics Unit, Beam Shield, Gimal, and Propellant Tank that were used with the thruster in the endurance test are also similar to those of the IAPS. The IAPS thruster that will undergo the longest beam-on-time during the actual space test will be subjected to 7,055 hours of beam-on-time and 2,557 cycles during the flight test. The endurance test was successfully concluded when the mercury in the IAPS Propellant Tank was consumed. At that time, 8,471 hours of beam-on-time and 599 cycles had been accumulated. Subsequent post-test-evaluation operations were performed (without breaking vacuum) which extended the test values to 652 cycles and 9,489 hours of beam-on-time. The Power Electronic Unit (PEU) and thruster were in the same vacuum chamber throughout the test. The PEU accumulated 10,268 hr of test time with high voltage applied to the operating thruster or dummy load.

  1. Performance Evaluation of the Prototype Model NEXT Ion Thruster

    NASA Technical Reports Server (NTRS)

    Herman, Daniel A.; Soulas, George C.; Patterson, Michael J.

    2008-01-01

    The performance testing results of the first prototype model NEXT ion engine, PM1, are presented. The NEXT program has developed the next generation ion propulsion system to enhance and enable Discovery, New Frontiers, and Flagship-type NASA missions. The PM1 thruster exhibits operational behavior consistent with its predecessors, the engineering model thrusters, with substantial mass savings, enhanced thermal margins, and design improvements for environmental testing compliance. The dry mass of PM1 is 12.7 kg. Modifications made in the thruster design have resulted in improved performance and operating margins, as anticipated. PM1 beginning-of-life performance satisfies all of the electric propulsion thruster mission-derived technical requirements. It demonstrates a wide range of throttleability by processing input power levels from 0.5 to 6.9 kW. At 6.9 kW, the PM1 thruster demonstrates specific impulse of 4190 s, 237 mN of thrust, and a thrust efficiency of 0.71. The flat beam profile, flatness parameters vary from 0.66 at low-power to 0.88 at full-power, and advanced ion optics reduce localized accelerator grid erosion and increases margins for electron backstreaming, impingement-limited voltage, and screen grid ion transparency. The thruster throughput capability is predicted to exceed 750 kg of xenon, an equivalent of 36,500 hr of continuous operation at the full-power operating condition.

  2. Thruster endurance test

    NASA Technical Reports Server (NTRS)

    Collett, C.

    1976-01-01

    A test system was built and several short term tests were completed. The test system included, in addition to the 30-cm ion thruster, a console for powering the thruster and monitoring performance, a vacuum facility for simulating a space environment, and a storage and feed system for the thruster propellant. This system was used to perform three short term tests (one 100-hour and two 500-hour tests), an 1108-hour endurance test which was aborted by a vacuum facility failure, and finally the 10,000-hour endurance test. In addition to the two 400 series thrusters which were used in the short term and 1100-hour tests, four more 400 series thrusters were fabricated, checked out, and delivered to NASA. Three consoles similar to the one used in the test program were also fabricated and delivered.

  3. An ion thruster internal discharge chamber electrostatic probe diagnostic technique using a high-speed probe positioning system

    SciTech Connect

    Herman, Daniel A.; Gallimore, Alec D.

    2008-01-15

    Extensive resources have been allocated to diagnose and minimize lifetime-limiting factors in gridded ion thrusters. While most of this effort has focused on grid erosion, results from wear tests indicate that discharge cathode erosion may also play an important role in limiting the lifetime of ring-cusp ion thrusters proposed for future large flagship missions. The detailed characterization of the near-cathode discharge plasma is essential for mitigating discharge cathode erosion. However, severe difficulty is encountered when attempting to measure internal discharge plasma parameters during thruster operation with conventional probing techniques. These difficulties stem from the high-voltage, high-density discharge cathode plume, which is a hostile environment for probes. A method for interrogating the discharge chamber plasma of a working ion thruster over a two-dimensional grid is demonstrated. The high-speed axial reciprocating probe positioning system is used to minimize thruster perturbation during probe insertion and to reduce heating of the probe. Electrostatic probe measurements from a symmetric double Langmuir probe are presented over a two-dimensional spatial array in the near-discharge cathode assembly region of a 30-cm-diameter ring-cusp ion thruster. Electron temperatures, 2-5 eV, and number density contours, with a maximum of 8x10{sup 12} cm{sup -3} on centerline, are measured. These data provide detailed electron temperature and number density contours which, when combined with plasma potential measurements, may shed light on discharge cathode erosion processes and the effect of thruster operating conditions on erosion rates.

  4. Ion and advanced electric thruster research

    NASA Technical Reports Server (NTRS)

    Wilbur, P. J.

    1980-01-01

    A phenomenological model of the orificed, hollow cathode based on the field enhanced, thermionic mechanism of electron emission is presented. High frequency oscillations associated with the orificed, hollow cathode are shown to be a consequence of current flow through the cathode orifice. A procedure for Langmuir probing of the hollow cathode discharge and analyzing the resulting probe characteristics is discussed. The results of sputter yield measurements made for molybdenum, tantalum, type 304 stainless steel and copper surfaces being bombarded by low energy argon or mercury ions are also given. The effects of nitrogen and alternated copper layers on the sputter yields of molybdenum, tantalum and 304 stainless steel are also discussed. A dynamic model of electrothermal rocket and ramjet thrusters is developed. The gross performance of these devices is compared to that of an electromagnetic gun for the case of a high acceleration, Earth launch mission. The theoretical performance of electrothermal rockets and ramjets is shown to be comparable to that of the electromagnetic gun.

  5. Correlation of ion and beam current densities in Kaufman thrusters.

    NASA Technical Reports Server (NTRS)

    Wilbur, P. J.

    1973-01-01

    In the absence of direct impingement erosion, electrostatic thruster accelerator grid lifetime is defined by the charge exchange erosion that occurs at peak values of the ion beam current density. In order to maximize the thrust from an engine with a specified grid lifetime, the ion beam current density profile should therefore be as flat as possible. Knauer (1970) has suggested this can be achieved by establishing a radial plasma uniformity within the thruster discharge chamber; his tests with the radial field thruster provide an example of uniform plasma properties within the chamber and a flat ion beam profile occurring together. It is shown that, in particular, the ion density profile within the chamber determines the beam current density profile, and that a uniform ion density profile at the screen grid end of the discharge chamber should lead to a flat beam current density profile.

  6. Double ion production in mercury thrusters. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Peters, R. R.

    1976-01-01

    The development of a model which predicts doubly charged ion density is discussed. The accuracy of the model is shown to be good for two different thruster sizes and a total of 11 different cases. The model indicates that in most cases more than 80% of the doubly charged ions are produced from singly charged ions. This result can be used to develop a much simpler model which, along with correlations of the average plasma properties, can be used to determine the doubly charged ion density in ion thrusters with acceptable accuracy. Two different techniques which can be used to reduce the doubly charged ion density while maintaining good thruster operation, are identified as a result of an examination of the simple model. First, the electron density can be reduced and the thruster size then increased to maintain the same propellant utilization. Second, at a fixed thruster size, the plasma density, temperature and energy can be reduced and then to maintain a constant propellant utilization the open area of the grids to neutral propellant loss can be reduced through the use of a small hole accelerator grid.

  7. Numerical Simulation of Ion Thruster Plume Backflow for Spacecraft Contamination Assessment.

    NASA Astrophysics Data System (ADS)

    Samanta Roy, Robie I.

    1995-01-01

    A study is presented of the induced environment produced by an ion thruster, and its interactions with spacecraft. Axisymmetric and fully three-dimensional physical and numerical models of an ion thruster plume are developed and utilized to understand the physical processes involved, as well as to make useful predictions of spacecraft contamination. Components included in the model are primary beam ions, neutral propellant efflux, slow propellant ions created mainly by charge-exchange (CEX) collisions, non-propellant efflux (NPE) such as sputtered molybdenum grid metal, and neutralizing electrons. Primary focus is on the creation and transport of both the CEX propellant ions created from the beam ions and neutral propellant, and charged NPE from the thruster plume into the backflow region. The numerical model utilizes the hybrid plasma particle-in-cell (PIC) method, and the fully three-dimensional implementation is designed for multi -computer environments. Computational results of the CEX ion density and flow angles show good qualitative and quantitative agreement with experimental data. It is shown that the CEX ions created in the beam accelerate outwards and form two distinct energy populations, one with a significant backstreaming component. The effect of the background tank pressure in ground experiments, and the accelerator grid impingement current is examined. The backflow contamination from NASA's current 30 cm xenon ion thruster is investigated over the operating envelope of the thruster, and predictions for space operation are made. Scaling relationships for the backflow previously identified are confirmed. Issues regarding the electron temperature in the plume are explored, and it is shown that backflow contamination increases with electron temperature. Fully three-dimensional results with up to 17.5 million particles are presented. It is shown that the spacecraft geometry plays a strong role in the expansion of the CEX plasma. The contamination from the

  8. Ion Engine and Hall Thruster Development at the NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Domonkos, Matthew T.; Patterson, Michael J.; Jankovsky, Robert S.

    2002-01-01

    NASA's Glenn Research Center has been selected to lead development of NASA's Evolutionary Xenon Thruster (NEXT) system. The central feature of the NEXT system is an electric propulsion thruster (EPT) that inherits the knowledge gained through the NSTAR thruster that successfully propelled Deep Space 1 to asteroid Braille and comet Borrelly, while significantly increasing the thruster power level and making improvements in performance parameters associated with NSTAR. The EPT concept under development has a 40 cm beam diameter, twice the effective area of the Deep-Space 1 thruster, while maintaining a relatively-small volume. It incorporates mechanical features and operating conditions to maximize the design heritage established by the flight NSTAR 30 cm engine, while incorporating new technology where warranted to extend the power and throughput capability. The NASA Hall thruster program currently supports a number of tasks related to high power thruster development for a number of customers including the Energetics Program (formerly called the Space-based Program), the Space Solar Power Program, and the In-space Propulsion Program. In program year 2002, two tasks were central to the NASA Hall thruster program: 1.) the development of a laboratory Hall thruster capable of providing high thrust at high power; 2.) investigations into operation of Hall thrusters at high specific impulse. In addition to these two primary thruster development activities, there are a number of other on-going activities supported by the NASA Hall thruster program, These additional activities are related to issues such as thruster lifetime and spacecraft integration.

  9. Ion Engine and Hall Thruster Development at the NASA Glenn Research Center

    NASA Astrophysics Data System (ADS)

    Domonkos, Matthew T.; Patterson, Michael J.; Jankovsky, Robert S.

    2002-10-01

    NASA's Glenn Research Center has been selected to lead development of NASA's Evolutionary Xenon Thruster (NEXT) system. The central feature of the NEXT system is an electric propulsion thruster (EPT) that inherits the knowledge gained through the NSTAR thruster that successfully propelled Deep Space 1 to asteroid Braille and comet Borrelly, while significantly increasing the thruster power level and making improvements in performance parameters associated with NSTAR. The EPT concept under development has a 40 cm beam diameter, twice the effective area of the Deep-Space 1 thruster, while maintaining a relatively-small volume. It incorporates mechanical features and operating conditions to maximize the design heritage established by the flight NSTAR 30 cm engine, while incorporating new technology where warranted to extend the power and throughput capability. The NASA Hall thruster program currently supports a number of tasks related to high power thruster development for a number of customers including the Energetics Program (formerly called the Space-based Program), the Space Solar Power Program, and the In-space Propulsion Program. In program year 2002, two tasks were central to the NASA Hall thruster program: 1.) the development of a laboratory Hall thruster capable of providing high thrust at high power; 2.) investigations into operation of Hall thrusters at high specific impulse. In addition to these two primary thruster development activities, there are a number of other on-going activities supported by the NASA Hall thruster program, These additional activities are related to issues such as thruster lifetime and spacecraft integration.

  10. Initial Thrust Measurements of Marshall's Ion-ioN Thruster

    NASA Technical Reports Server (NTRS)

    Caruso, Natalie R. S.; Scogin, Tyler; Liu, Thomas M.; Walker, Mitchell L. R.; Polzin, Kurt A.; Dankanich, John W.

    2015-01-01

    Electronegative ion thrusters are a variation of traditional gridded ion thruster technology differentiated by the production and acceleration of both positive and negative ions. Benefits of electronegative ion thrusters include the elimination of lifetime-limiting cathodes from the thruster architecture and the ability to generate appreciable thrust from both charge species. While much progress has been made in the development of electronegative ion thruster technology, direct thrust measurements are required to unambiguously demonstrate the efficacy of the concept and support continued development. In the present work, direct thrust measurements of the thrust produced by the MINT (Marshall's Ion-ioN Thruster) are performed using an inverted-pendulum thrust stand in the High-Power Electric Propulsion Laboratory's Vacuum Test Facility-1 at the Georgia Institute of Technology with operating pressures ranging from 4.8 x 10(exp -5) and 5.7 x 10(exp -5) torr. Thrust is recorded while operating with a propellant volumetric mixture ratio of 5:1 argon to nitrogen with total volumetric flow rates of 6, 12, and 24 sccm (0.17, 0.34, and 0.68 mg/s). Plasma is generated using a helical antenna at 13.56 MHz and radio frequency (RF) power levels of 150 and 350 W. The acceleration grid assembly is operated using both sinusoidal and square waveform biases of +/-350 V at frequencies of 4, 10, 25, 125, and 225 kHz. Thrust is recorded for two separate thruster configurations: with and without the magnetic filter. No thrust is discernable during thruster operation without the magnetic filter for any volumetric flow rate, RF forward Power level, or acceleration grid biasing scheme. For the full thruster configuration, with the magnetic filter installed, a brief burst of thrust of approximately 3.75 mN +/- 3 mN of error is observed at the start of grid operation for a volumetric flow rate of 24 sccm at 350 W RF power using a sinusoidal waveform grid bias at 125 kHz and +/- 350 V

  11. Prediction of plasma properties in mercury ion thrusters

    NASA Technical Reports Server (NTRS)

    Longhurst, G. R.

    1978-01-01

    A simplified theoretical model was developed which obtains to first order the plasma properties in the discharge chamber of a mercury ion thruster from basic thruster design and controllable operating parameters. The basic operation and design of ion thrusters is discussed, and the important processes which influence the plasma properties are described in terms of the design and control parameters. The conservation for mass, charge and energy were applied to the ion production region, which was defined as the region of the discharge chamber having as its outer boundary the surface of revolution of the innermost field line to intersect the anode. Mass conservation and the equations describing the various processes involved with mass addition and removal from the ion production region are satisfied by a Maxwellian electron density spatial distribution in that region.

  12. Modeling Neutral Densities Downstream of a Gridded Ion Thruster

    NASA Technical Reports Server (NTRS)

    Soulas, George C.

    2010-01-01

    The details of a model for determining the neutral density downstream of a gridded ion thruster are presented. An investigation of the possible sources of neutrals emanating from and surrounding a NEXT ion thruster determined that the most significant contributors to the downstream neutral density include discharge chamber neutrals escaping through the perforated grids, neutrals escaping from the neutralizer, and vacuum facility background neutrals. For the neutral flux through the grids, near- and far-field equations are presented for rigorously determining the neutral density downstream of a cylindrical aperture. These equations are integrated into a spherically-domed convex grid geometry with a hexagonal array of apertures for determining neutral densities downstream of the ion thruster grids. The neutrals escaping from an off-center neutralizer are also modeled assuming diffuse neutral emission from the neutralizer keeper orifice. Finally, the effect of the surrounding vacuum facility neutrals is included and assumed to be constant. The model is used to predict the neutral density downstream of a NEXT ion thruster with and without neutralizer flow and a vacuum facility background pressure. The impacts of past simplifying assumptions for predicting downstream neutral densities are also examined for a NEXT ion thruster.

  13. Hollow cathode restartable 15 cm diameter ion thruster

    NASA Technical Reports Server (NTRS)

    Wilbur, P. J.

    1973-01-01

    The effects of substituting high perveance dished grids for low perveance flat ones on performance variables and plasma properties within a 15 cm modified SERT II thruster are discussed. Results suggest good performance may be achieved as an ion thruster is throttled if the screen grid transparency is decreased with propellant flow rate. Thruster startup tests, which employ a pulsed high voltage tickler electrode between the keeper and the cathode to initiate the discharge, are described. High startup reliability at cathode tip temperatures of about 500 C without excessive component wear over 2000 startup cycles is demonstrated. Testing of a single cusp magnetic field concept of discharge plasma containment is discussed. A theory which explains the observed behavior of the device is presented and proposed thruster modifications and future testing plans are discussed.

  14. An Innovative Manufacturing of CCC Ion Thruster Grids by North Carolina A&T's RTM Carbon/Carbon Process

    NASA Technical Reports Server (NTRS)

    Haag, Thomas W. (Technical Monitor); Shivakumar, Kunigal N.

    2003-01-01

    Electric ion thrusters are the preferred engines for deep space missions, because of very high specific impulse. The ion engine consists of screen and accelerator grids containing thousands of concentric very small holes. The xenon gas accelerates between the two grids, thus developing the impulse force. The dominant life-limiting mechanism in the state-of-the-art molybdenum thrusters is the xenon ion sputter erosion of the accelerator grid. Carbon/carbon composites (CCC) have shown to be have less than 1/7 the erosion rates than the molybdenum, thus for interplanetary missions CCC engines are inevitable. Early effort to develop CCC composite thrusters had a limited success because of limitations of the drilling technology and the damage caused by drilling. The proposed is an in-situ manufacturing of holes while the CCC is made. Special low CTE molds will be used along with the NC A&T s patented resin transfer molding (RTM) technology to manufacture the CCC grids. First, a manufacture process for 10-cm diameter thruster grids will be developed and verified. Quality of holes, density, CTE, tension, flexure, transverse fatigue and sputter yield properties will be measured. After establishing the acceptable quality and properties, the process will be scaled to manufacture 30-cm diameter grids. The properties of the two grid sizes are compared with each other.

  15. Ion Thruster Used to Propel the Deep Space 1 Spacecraft to Comet Encounters

    NASA Technical Reports Server (NTRS)

    Sovey, James S.

    2000-01-01

    The NASA Solar Electric Propulsion Technology Applications Readiness (NSTAR) Project provided a xenon ion propulsion system to the Deep Space 1 (DS1) spacecraft to validate the propulsion system as well as perform primary propulsion for asteroid and comet encounters. The On-Board Propulsion Branch of the NASA Glenn Research Center at Lewis Field developed engineering model versions of the 30-cm-diameter ion thruster and the 2.5-kW power processor unit (PPU). Glenn then transferred the thruster and PPU technologies to Hughes Electron Dynamics and managed the contract, which supplied two flight sets of thrusters and PPU s to the Deep Space 1 spacecraft and to a ground-based life verification test at the Jet Propulsion Laboratory (JPL). In addition to managing the DS1 spacecraft development, JPL was responsible for the NSTAR Project management, thruster life tests, the feed system, diagnostics, and propulsion subsystem integration. The ion propulsion development team included NASA Glenn, JPL, Hughes Electronics, Moog Inc., and Spectrum Astro Inc. The overall NSTAR subsystem dry mass, including thruster, PPU, controller, cables, and the xenon storage and feed system, is 48 kg. The mass of the xenon stored onboard DS1 was about 81 kg, and the spacecraft wet mass was approximately 500 kg.The DS1 spacecraft was launched on October 24, 1998, and on July 29, 1999, it flew within 16 miles of the small asteroid Braille (formerly 1992KD) at a relative speed of 35,000 mph. As of November 1999, the ion propulsion system had performed flawlessly for nearly 149 days of thrusting. NASA has approved an extension to the mission, which will allow DS1 to continue thrusting to encounters with two comets in 2001. The DS1 optical and plasma diagnostic instruments will be used to investigate the comet and space environments. The spacecraft is scheduled to fly past the dormant comet Wilson- Harrington in January 2001 and the very active comet Borrelly in September 2001, at which time

  16. Thermal Environmental Testing of NSTAR Engineering Model Ion Thrusters

    NASA Technical Reports Server (NTRS)

    Rawlin, Vincent K.; Patterson, Michael J.; Becker, Raymond A.

    1999-01-01

    NASA's New Millenium program will fly a xenon ion propulsion system on the Deep Space 1 Mission. Tests were conducted under NASA's Solar Electric Propulsion Technology Applications Readiness (NSTAR) Program with 3 different engineering model ion thrusters to determine thruster thermal characteristics over the NSTAR operating range in a variety of thermal environments. A liquid nitrogen-cooled shroud was used to cold-soak the thruster to -120 C. Initial tests were performed prior to a mature spacecraft design. Those results and the final, severe, requirements mandated by the spacecraft led to several changes to the basic thermal design. These changes were incorporated into a final design and tested over a wide range of environmental conditions.

  17. Analysis and design of ion thrusters for large space systems

    NASA Technical Reports Server (NTRS)

    James, E. L.

    1980-01-01

    This study undertakes the analysis and conceptual design of a 0.5 Newton electrostatic ion thruster suitable for use on large space system missions in the next decade. Either argon or xenon gas shall be used as propellant. A 50 cm diameter discharge chamber was selected to meet stipulated performance goals. The discharge plasma is contained at the boundary by a periodic structure of alternating permanent magnets generating a series of line cusps. Anode strips between the magnets collect Maxwellian electrons generated by a central cathode. Ion extraction utilizes either two or three grid optics at the user's choice. An extensive analysis was undertaken to investigate optics behavior in the high power environment of this large thruster. A plasma bridge neutralizer operating on inert gas provides charge neutralizing electrons to complete the design. The resulting conceptual thruster and the necessary power management and control requirements are described.

  18. Investigation of Keeper Erosion in the NSTAR Ion Thruster

    NASA Technical Reports Server (NTRS)

    Domonkos, Matthew T.; Foster, John E.; Patterson, Michael J.; Williams, George J., Jr.

    2001-01-01

    The goal of the present investigation was to determine the cause for the difference in the observed discharge keeper erosion between the 8200 hr wear test of a NASA Solar Electric Propulsion Technology Applications Readiness (NSTAR) engineering model thruster and the ongoing extended life test (ELT) of the NSTAR flight spare thruster. During the ELT, the NSTAR flight spare ion thruster experienced unanticipated erosion of the discharge cathode keeper. Photographs of the discharge keeper show that the orifice has enlarged to slightly more than twice the original diameter. Several differences between the ELT and the 8200 hr wear test were initially identified to determine any effects which could lead to the erosion in the ELT. In order to identify the cause of the ELT erosion, emission spectra from an engineering model thruster were collected to assess the dependence of keeper erosion on operating conditions. Keeper ion current was measured to estimate wear. Additionally, post-test inspection of both a copper keeper-cap was conducted, and the results are presented. The analysis indicated that the bulk of the ion current was collected within 2-mm radially of the orifice. The estimated volumetric wear in the ELT was comparable to previous wear tests. Redistribution of the ion current on the discharge keeper was determined to be the most likely cause of the ELT erosion. The change in ion current distribution was hypothesized to caused by the modified magnetic field of the flight assemblies.

  19. Inert gas thrusters

    NASA Technical Reports Server (NTRS)

    Kaufman, H. R.; Robinson, R. S.

    1980-01-01

    Some advances in component technology for inert gas thrusters are described. The maximum electron emission of a hollow cathode with Ar was increased 60-70% by the use of an enclosed keeper configuration. Operation with Ar, but without emissive oxide, was also obtained. A 30 cm thruster operated with Ar at moderate discharge voltages give double-ion measurements consistent with a double ion correlation developed previously using 15 cm thruster data. An attempt was made to reduce discharge losses by biasing anodes positive of the discharge plasma. The reason this attempt was unsuccessful is not yet clear. The performance of a single-grid ion-optics configuration was evaluated. The ion impingement on the single grid accelerator was found to approach the value expected from the projected blockage when the sheath thickness next to the accelerator was 2-3 times the aperture diameter.

  20. NASA's Evolutionary Xenon Thruster (NEXT) Ion Propulsion System Information Summary

    NASA Technical Reports Server (NTRS)

    Pencil, Eirc S.; Benson, Scott W.

    2008-01-01

    This document is a guide to New Frontiers mission proposal teams. The document describes the development and status of the NASA's Evolutionary Xenon Thruster (NEXT) ion propulsion system (IPS) technology, its application to planetary missions, and the process anticipated to transition NEXT to the first flight mission.

  1. Interactions between a spacecraft and an ion thruster produced environment

    NASA Technical Reports Server (NTRS)

    Carruth, M. R., Jr.; Pawlik, E. V.

    1981-01-01

    The electron bombardment ion thruster is a candidate propulsion device for several proposed interplanetary missions. A comet rendezvous mission is expected to be the first use of a Solar Electric Propulsion System (SEPS). Because this is the first use of such a system, it is necessary to understand the interactions between the spacecraft and the environment produced by the SEPS. A preliminary assessment of the interactions between a thruster produced environment and the Comet Rendezvous spacecraft, including its science instruments, is presented which concludes that compatibility between the SEPS and the spacecraft can be obtained.

  2. Electric arc discharge damage to ion thruster grids

    NASA Technical Reports Server (NTRS)

    Beebe, D. D.; Nakanishi, S.; Finke, R. C.

    1974-01-01

    Arcs representative of those occurring between the grids of a mercury ion thruster were simulated. Parameters affecting an arc and the resulting damage were studied. The parameters investigated were arc energy, arc duration, and grid geometry. Arc attenuation techniques were also investigated. Potentially serious damage occurred at all energy levels representative of actual thruster operating conditions. Of the grids tested, the lowest open-area configuration sustained the least damage for given conditions. At a fixed energy level a long duration discharge caused greater damage than a short discharge. Attenuation of arc current using various impedances proved to be effective in reducing arc damage. Faults were also deliberately caused using chips of sputtered materials formed during the operation of an actual thruster. These faults were cleared with no serious grid damage resulting using the principles and methods developed in this study.

  3. A preliminary model of ion beam neutralization. [in thruster plasmas

    NASA Technical Reports Server (NTRS)

    Parks, D. E.; Katz, I.

    1979-01-01

    A theoretical model of neutralized thruster ion beam plasmas has been developed. The basic premise is that the beam forms an electrostatic trap for the neutralizing electrons. A Maxwellian spectrum of electron energies is maintained by collisions between trapped electrons and by collective randomization of velocities of electrons injected from the neutralizer into the surrounding plasma. The theory contains the observed barometric law relationship between electron density and electron temperatures and ion beam spreading in good agreement with measured results.

  4. Magnetic Field Would Reduce Electron Backstreaming in Ion Thrusters

    NASA Technical Reports Server (NTRS)

    Foster, John E.

    2003-01-01

    The imposition of a magnetic field has been proposed as a means of reducing the electron backstreaming problem in ion thrusters. Electron backstreaming refers to the backflow of electrons into the ion thruster. Backstreaming electrons are accelerated by the large potential difference that exists between the ion-thruster acceleration electrodes, which otherwise accelerates positive ions out of the engine to develop thrust. The energetic beam formed by the backstreaming electrons can damage the discharge cathode, as well as other discharge surfaces upstream of the acceleration electrodes. The electron-backstreaming condition occurs when the center potential of the ion accelerator grid is no longer sufficiently negative to prevent electron diffusion back into the ion thruster. This typically occurs over extended periods of operation as accelerator-grid apertures enlarge due to erosion. As a result, ion thrusters are required to operate at increasingly negative accelerator-grid voltages in order to prevent electron backstreaming. These larger negative voltages give rise to higher accelerator grid erosion rates, which in turn accelerates aperture enlargement. Electron backstreaming due to accelerator-gridhole enlargement has been identified as a failure mechanism that will limit ionthruster service lifetime. The proposed method would make it possible to not only reduce the electron backstreaming current at and below the backstreaming voltage limit, but also reduce the backstreaming voltage limit itself. This reduction in the voltage at which electron backstreaming occurs provides operating margin and thereby reduces the magnitude of negative voltage that must be placed on the accelerator grid. Such a reduction reduces accelerator- grid erosion rates. The basic idea behind the proposed method is to impose a spatially uniform magnetic field downstream of the accelerator electrode that is oriented transverse to the thruster axis. The magnetic field must be sufficiently

  5. Stationary Plasma Thruster Ion Velocity Distribution

    NASA Technical Reports Server (NTRS)

    Manzella, David H.

    1994-01-01

    A nonintrusive velocity diagnostic based on laser induced fluorescence of the 5d4F(5/2)-6p4D(5/2) singly ionized xenon transition was used to interrogate the exhaust of a 1.5 kW Stationary Plasma Thruster (SPT). A detailed map of plume velocity vectors was obtained using a simplified, cost-effective, nonintrusive, semiconductor laser based scheme. Circumferential velocities on the order of 250 m/s were measured which implied induced momentum torques of approximately 5 x 10(exp -2) N-cm. Axial and radial velocities were evaluated one mm downstream of the cathode at several locations across the width of the annular acceleration channel. Radial velocities varied linearly with radial distance. A maximum radial velocity of 7500 m/s was measured 8 mm from the center of the channel. Axial velocities as large as 16,500 m/s were measured.

  6. Grid Erosion Modeling of the NEXT Ion Thruster Optics

    NASA Technical Reports Server (NTRS)

    Ernhoff, Jerold W.; Boyd, Iain D.; Soulas, George (Technical Monitor)

    2003-01-01

    Results from several different computational studies of the NEXT ion thruster optics are presented. A study of the effect of beam voltage on accelerator grid aperture wall erosion shows a non-monotonic, complex behavior. Comparison to experimental performance data indicates improvements in simulation of the accelerator grid current, as well as very good agreement with other quantities. Also examined is the effect of ion optics choice on the thruster life, showing that TAG optics provide better margin against electron backstreaming than NSTAR optics. The model is used to predict the change in performance with increasing accelerator grid voltage, showing that although the current collected on the accel grid downstream face increases, the erosion rate decreases. A study is presented for varying doubly-ionized Xenon current fraction. The results show that performance data is not extremely sensitive to the current fraction.

  7. 15 cm cusped magnetic field mercury ion thruster research

    NASA Technical Reports Server (NTRS)

    Beattie, J. R.; Wilbur, P. J.

    1975-01-01

    The importance of achieving a uniform current density in the exhaust beam of an electrostatic ion thruster is discussed in terms of thrust level and accelerator grid lifetime. A neutral residence time approach is used to propose a magnetic field geometry which should produce a highly uniform beam current density. The discharge chamber length to diameter ratio is shown to be an important optimization parameter and experimental evaluation of the cusped field thruster over a wide range of this parameter is presented. Beam profile measurements 5 cm downstream of the accelerator grid indicate a beam profile flatness parameter which is 25% greater than the SERT II value. Flatness parameters extrapolated to the plane of the accelerator grid are demonstrated to be as high as 0.9.

  8. An approach to the parametric design of ion thrusters

    NASA Technical Reports Server (NTRS)

    Wilbur, Paul J.; Beattie, John R.; Hyman, Jay, Jr.

    1988-01-01

    A methodology that can be used to determine which of several physical constraints can limit ion thruster power and thrust, under various design and operating conditions, is presented. The methodology is exercised to demonstrate typical limitations imposed by grid system span-to-gap ratio, intragrid electric field, discharge chamber power per unit beam area, screen grid lifetime, and accelerator grid lifetime constraints. Limitations on power and thrust for a thruster defined by typical discharge chamber and grid system parameters when it is operated at maximum thrust-to-power are discussed. It is pointed out that other operational objectives such as optimization of payload fraction or mission duration can be substituted for the thrust-to-power objective and that the methodology can be used as a tool for mission analysis.

  9. Microwave ECR Ion Thruster Development Activities at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Foster, John E.; Patterson, Michael J.

    2002-01-01

    Outer solar system missions will have propulsion system lifetime requirements well in excess of that which can be satisfied by ion thrusters utilizing conventional hollow cathode technology. To satisfy such mission requirements, other technologies must be investigated. One possible approach is to utilize electrodeless plasma production schemes. Such an approach has seen low power application less than 1 kW on earth-space spacecraft such as ARTEMIS which uses the rf thruster the RIT 10 and deep space missions such as MUSES-C which will use a microwave ion thruster. Microwave and rf thruster technologies are compared. A microwave-based ion thruster is investigated for potential high power ion thruster systems requiring very long lifetimes.

  10. Characterization of ion accelerating systems on NASA LeRC's ion thrusters

    NASA Technical Reports Server (NTRS)

    Rawlin, Vincent K.

    1992-01-01

    An investigation is conducted regarding ion-accelerating systems for two NASA thrusters to study the limits of ion-extraction capability or perveance. A total of nine two-grid ion-accelerating systems are tested with the 30- and 50-cm-diam ring-cusp inert-gas ion thrusters emphasizing the extension of ion-extraction. The vacuum-tank testing is described using xenon, krypton, and argon propellants, and thruster performance is computed with attention given to theoretical design considerations. Reductions in perveance are noted with decreasing accelerator-hole-to-screen-hole diameter ratios. Perveance values vary indirectly with the ratio of discharge voltage to total accelerating voltage, and screen/accelerator electrode hole-pair alignment is also found to contribute to perveance values.

  11. Thomson Scattering Diagnostics in the Plasma of an Ion Thruster

    NASA Astrophysics Data System (ADS)

    Yamamoto, Naoji; Hiraoka, Yoshiaki; Sugita, Kensaku; Kurita, Tomoaki; Tomita, Kentaro; Uchino, Kiichiro; Nakashima, Hideki

    In order to validate the grid erosion evaluation code for the lifetime validation of ion thrusters, the electron number density/temperature in the vicinity of a screen gird in a 30 W class microwave discharge ion thruster were measured by means of laser Thomson scattering (LTS) technique. A photon counting method and a triple grating spectrometer were used against a small Thomson scattering signal and a strong stray laser light. Observed Thomson scattering spectrum tells that the electron energy distribution function was Maxwellian. From this spectrum and the Rayleigh scattering calibration using nitrogen gas, electron number density and electron temperature were calculated to be (3.8±0.2)×1017m-3 and 6.2±0.1 eV, respectively at incident microwave power of 8 W and krypton mass flow rate of 6.2 μg/s. The ion saturation currents estimated from the LTS measurement are in good agreement with ion beam currents through the screen grid for several conditions. These results show that LTS technique is a useful non-intrusive tool for measuring plasma property in the vicinity of the screen grid.

  12. Qualification of Commercial XIPS(R) Ion Thrusters for NASA Deep Space Missions

    NASA Technical Reports Server (NTRS)

    Goebel, Dan M.; Polk, James E.; Wirz, Richard E.; Snyder, J.Steven; Mikellides, Ioannis G.; Katz, Ira; Anderson, John

    2008-01-01

    Electric propulsion systems based on commercial ion and Hall thrusters have the potential for significantly reducing the cost and schedule-risk of Ion Propulsion Systems (IPS) for deep space missions. The large fleet of geosynchronous communication satellites that use solar electric propulsion (SEP), which will approach 40 satellites by year-end, demonstrates the significant level of technical maturity and spaceflight heritage achieved by the commercial IPS systems. A program to delta-qualify XIPS(R) ion thrusters for deep space missions is underway at JPL. This program includes modeling of the thruster grid and cathode life, environmental testing of a 25-centimeter electromagnetic (EM) thruster over DAWN-like vibe and temperature profiles, and wear testing of the thruster cathodes to demonstrate the life and benchmark the model results. This paper will present the delta-qualification status of the XIPS thruster and discuss the life and reliability with respect to known failure mechanisms.

  13. Magnetic shielding of walls from the unmagnetized ion beam in a Hall thruster

    SciTech Connect

    Mikellides, Ioannis G.; Katz, Ira; Hofer, Richard R.; Goebel, Dan M.

    2013-01-14

    We demonstrate by numerical simulations and experiments that the unmagnetized ion beam formed in a Hall thruster can be controlled by an applied magnetic field in a manner that reduces by 2-3 orders of magnitude deleterious ion bombardment of the containing walls. The suppression of wall erosion in Hall thrusters to such low levels has remained elusive for decades.

  14. Ring-cusp ion thruster with shell anode

    NASA Technical Reports Server (NTRS)

    Sovey, J. S.; Rawlin, V. K.; Roman, R. F. (Inventor)

    1984-01-01

    An improved ion thruster for low specific impulse operation in the 1500 sec to 6000 sec range has a multicusp boundary field provided by high strength magnets on an iron anode shell which lengthens the paths of electrons from a hollow cathode assembly. A downstream anode pole piece in the form of an iron ring supports a ring of magnets to provide a more uniform beam profile. A cylindrical cathode magnet can be moved selectively in an axial direction along a feed tube to produce the desired magnetic field at the cathode tip.

  15. Simplification of power electronics for ion thruster neutralizers

    NASA Technical Reports Server (NTRS)

    Gruber, R. P.

    1982-01-01

    A need exists for less complex and lower cost ion thruster systems. Design approaches and the demonstration of neutralizer power electronics for relaxed neutralizer keeper, tip heater, and vaporizer requirements are discussed. The neutralizer circuitry is operated from a 200 to 400 V bus and demonstrates an order of magnitude reduction in parts count. Furthermore, a new technique is described for regulating tip heater power and automatically switching over to provide keeper power with only four additional components. A new design to control the flow rate of the neutralizer with one integrated circuit is also presented.

  16. Simplified Ion Thruster Xenon Feed System for NASA Science Missions

    NASA Technical Reports Server (NTRS)

    Snyder, John Steven; Randolph, Thomas M.; Hofer, Richard R.; Goebel, Dan M.

    2009-01-01

    The successful implementation of ion thruster technology on the Deep Space 1 technology demonstration mission paved the way for its first use on the Dawn science mission, which launched in September 2007. Both Deep Space 1 and Dawn used a "bang-bang" xenon feed system which has proven to be highly successful. This type of feed system, however, is complex with many parts and requires a significant amount of engineering work for architecture changes. A simplified feed system, with fewer parts and less engineering work for architecture changes, is desirable to reduce the feed system cost to future missions. An attractive new path for ion thruster feed systems is based on new components developed by industry in support of commercial applications of electric propulsion systems. For example, since the launch of Deep Space 1 tens of mechanical xenon pressure regulators have successfully flown on commercial spacecraft using electric propulsion. In addition, active proportional flow controllers have flown on the Hall-thruster-equipped Tacsat-2, are flying on the ion thruster GOCE mission, and will fly next year on the Advanced EHF spacecraft. This present paper briefly reviews the Dawn xenon feed system and those implemented on other xenon electric propulsion flight missions. A simplified feed system architecture is presented that is based on assembling flight-qualified components in a manner that will reduce non-recurring engineering associated with propulsion system architecture changes, and is compared to the NASA Dawn standard. The simplified feed system includes, compared to Dawn, passive high-pressure regulation, a reduced part count, reduced complexity due to cross-strapping, and reduced non-recurring engineering work required for feed system changes. A demonstration feed system was assembled using flight-like components and used to operate a laboratory NSTAR-class ion engine. Feed system components integrated into a single-string architecture successfully operated

  17. A thruster sub-system module /TSSM/ for solar electric propulsion

    NASA Technical Reports Server (NTRS)

    Sharp, G. R.

    1975-01-01

    The thruster subsystem module (TSSM) considered for solar electric propulsion (SEP) missions is to consist of a 30-cm ion thruster, a thruster gimbal system, a propellant storage and feed system, a power processing unit, a modular thermal control system, and a modular support structure. TSSM design requirements are considered along with a TSSM general design approach. It is pointed out that a TSSM for SEP missions can be designed and built based on existing technology.

  18. Theoretical investigations of plasma processes in the ion bombardment thruster

    NASA Technical Reports Server (NTRS)

    Wilhelm, H. E.

    1975-01-01

    A physical model for a thruster discharge was developed, consisting of a spatially diverging plasma sustained electrically between a small ring cathode and a larger ring anode in a cylindrical chamber with an axial magnetic field. The associated boundary-value problem for the coupled partial differential equations with mixed boundary conditions, which describe the electric potential and the plasma velocity fields, was solved in closed form. By means of quantum-mechanical perturbation theory, a formula for the number S(E) of atoms sputtered on the average by an ion of energy E was derived from first principles. The boundary-value problem describing the diffusion of the sputtered atoms through the surrounding rarefied electron-ion plasma to the system surfaces of ion propulsion systems was formulated and treated analytically. It is shown that outer boundary-value problems of this type lead to a complex integral equation, which requires numerical resolution.

  19. The effects of an ion-thruster exhaust plume on S-band carrier transmission

    NASA Technical Reports Server (NTRS)

    Ackerknecht, W. E.; Stanton, P. H.

    1976-01-01

    The study reported here was undertaken (1) to develop models of the effects of an ion-thruster exhaust plume on S-band signals, and (2) to measure the effects. The results show that an S-band signal passing through an ion-thruster plume is reduced in amplitude and advanced in phase. The mathematical models gave reasonable estimates of the average signal attenuation and phase shift. Negligible fluctuations in the signal amplitude and phase were measured during steady-state thruster operation. However, large jumps in phase occurred when changes were made in the thruster operating state. This study confirms that the thruster plume can have a significant effect on S-band communication link performance; hence the plume effects must be considered in S-band link calculations when electric thrusters are used for spacecraft propulsion.

  20. Xenon Sputter Yield Measurements for Ion Thruster Materials

    NASA Technical Reports Server (NTRS)

    Williams, John D.; Gardner, Michael M.; Johnson, Mark L.; Wilbur, Paul J.

    2003-01-01

    In this paper, we describe a technique that was used to measure total and differential sputter yields of materials important to high specific impulse ion thrusters. The heart of the technique is a quartz crystal monitor that is swept at constant radial distance from a small target region where a high current density xenon ion beam is aimed. Differential sputtering yields were generally measured over a full 180 deg arc in a plane that included the beam centerline and the normal vector to the target surface. Sputter yield results are presented for a xenon ion energy range from 0.5 to 10 keV and an angle of incidence range from 0 deg to 70 deg from the target surface normal direction for targets consisting of molybdenum, titanium, solid (Poco) graphite, and flexible graphite (grafoil). Total sputter yields are calculated using a simple integration procedure and comparisons are made to sputter yields obtained from the literature. In general, the agreement between the available data is good. As expected for heavy xenon ions, the differential and total sputter yields are found to be strong functions of angle of incidence. Significant under- and over-cosine behavior is observed at low- and high-ion energies, respectively. In addition, strong differences in differential yield behavior are observed between low-Z targets (C and Ti) and high-Z targets (Mo). Curve fits to the differential sputter yield data are provided. They should prove useful to analysts interested in predicting the erosion profiles of ion thruster components and determining where the erosion products re-deposit.

  1. Development Efforts Expanded in Ion Propulsion: Ion Thrusters Developed With Higher Power Levels

    NASA Technical Reports Server (NTRS)

    Patterson, Michael J.; Rawlin, Vincent K.; Sovey, James S.

    2003-01-01

    The NASA Glenn Research Center was the major contributor of 2-kW-class ion thruster technology to the Deep Space 1 mission, which was successfully completed in early 2002. Recently, NASA s Office of Space Science awarded approximately $21 million to Glenn to develop higher power xenon ion propulsion systems for large flagship missions such as outer planet explorers and sample return missions. The project, referred to as NASA's Evolutionary Xenon Thruster (NEXT), is a logical follow-on to the ion propulsion system demonstrated on Deep Space 1. The propulsion system power level for NEXT is expected to be as high as 25 kW, incorporating multiple ion thrusters, each capable of being throttled over a 1- to 6-kW power range. To date, engineering model thrusters have been developed, and performance and plume diagnostics are now being documented. The project team-Glenn, the Jet Propulsion Laboratory, General Dynamics, Boeing Electron Dynamic Devices, the Applied Physics Laboratory, the University of Michigan, and Colorado State University-is in the process of developing hardware for a ground demonstration of the NEXT propulsion system, which comprises a xenon feed system, controllers, multiple thrusters, and power processors. The development program also will include life assessments by tests and analyses, single-string tests of ion thrusters and power systems, and finally, multistring thruster system tests in calendar year 2005. In addition, NASA's Office of Space Science selected Glenn to lead the development of a 25-kW xenon thruster to enable NASA to conduct future missions to the outer planets of Jupiter and beyond, under the High Power Electric Propulsion (HiPEP) program. The development of a 100-kW-class ion propulsion system and power conversion systems are critical components to enable future nuclear-electric propulsion systems. In fiscal year 2003, a team composed of Glenn, the Boeing Company, General Dynamics, the Applied Physics Laboratory, the Naval Research

  2. Design of an ion thruster movable grid thrust vectoring system

    NASA Astrophysics Data System (ADS)

    Kural, Aleksander; Leveque, Nicolas; Welch, Chris; Wolanski, Piotr

    2004-08-01

    Several reasons justify the development of an ion propulsion system thrust vectoring system. Spacecraft launched to date have used ion thrusters mounted on gimbals to control the thrust vector within a range of about ±5°. Such devices have large mass and dimensions, hence the need exists for a more compact system, preferably mounted within the thruster itself. Since the 1970s several thrust vectoring systems have been developed, with the translatable accelerator grid electrode being considered the most promising. Laboratory models of this system have already been built and successfully tested, but there is still room for improvement in their mechanical design. This work aims to investigate possibilities of refining the design of such movable grid thrust vectoring systems. Two grid suspension designs and three types of actuators were evaluated. The actuators examined were a micro electromechanical system, a NanoMuscle shape memory alloy actuator and a piezoelectric driver. Criteria used for choosing the best system included mechanical simplicity (use of the fewest mechanical parts), accuracy, power consumption and behaviour in space conditions. Designs of systems using these actuators are proposed. In addition, a mission to Mercury using the system with piezoelectric drivers has been modelled and its performance presented.

  3. Discharge Hollow Cathode and Extraction Grid Analysis for the MiXI Ion Thruster

    NASA Technical Reports Server (NTRS)

    Wirz, Richard; Sullivan, Regina; Przybylowski, JoHanna; Silva, Mike

    2006-01-01

    Miniature ion thrusters are well-suited future space missions such as Terrestrial Planet Finder - Interferometer (TPF-I), where high efficiency thrusters using non-contaminating noble gas propellant are desirable. Transient dynamic and orbital analyses have shown that the low-noise, continuous thrust of the Miniature Xenon Ion (MiXI) thruster is desirable for TPF-I formation rotation maneuvers when compared with other thruster options [1], [2]. The 3cm diameter MiXI thruster, Figure 1, was originally designed using experimental methods and is capable of high Isp (> 3,000 sec), propellant efficiency > 80%, and thrust from <0.1 mN to >1.5 mN [3]. The MiXI thruster must demonstrate high levels of thrust resolution and a low minimum impulse bit to ensure it meets the precision formation flying needs of missions such as TPF-I. A novel concept for controlling the ion extraction voltages yields the necessary thrust characteristics for the MiXI thruster. Experiments verify these techniques and two dimensional computational models show that such techniques should have minimal effect on the lifetime of the thruster. During this effort, the MiXI thruster incorporates, for the first time, flight like hollow cathodes for both the discharge chamber and beam neutralization.

  4. High performance auxiliary-propulsion ion thruster with ion-machined accelerator grid

    NASA Technical Reports Server (NTRS)

    Hudson, W. R.; Banks, B. A.

    1975-01-01

    An improvement in thruster performance was achieved by reducing the diameter of the accelerator grid holes. The smaller accelerator grid holes resulted in a reduction in neutral mercury atoms escaping the discharge chamber, which in turn enhanced the discharge propellant utilization from approximately 68 percent to 92 percent. The accelerator grids were fabricated by ion machining with an 8-centimeter-diameter thruster, and the screen grid holes individually focused ion beamlets onto the blank accelerator grid. The resulting accelerator grid holes are less than 1.12 millimeters in diameter, while previously used accelerator grids had hole diameters of 1.69 millimeters. The thruster could be operated with the small-hole accelerator grid at neutralizer potential.

  5. Ion velocities in a micro-cathode arc thruster

    SciTech Connect

    Zhuang Taisen; Shashurin, Alexey; Keidar, Michael; Beilis, Isak

    2012-06-15

    Ion velocities in the plasma jet generated by the micro-cathode arc thruster are studied by means of time-of-flight method using enhanced ion detection system (EIDS). The EIDS triggers perturbations (spikes) on arc current waveform, and the larger current in the spike generates denser plasma bunches propagating along with the mainstream plasma. The EIDS utilizes double electrostatic probes rather than single probes. The average Ti ion velocity is measured to be around 2 Multiplication-Sign 10{sup 4} m/s without a magnetic field. It was found that the application of a magnetic field does not change ion velocities in the interelectrode region while leads to ion acceleration in the free expanding plasma plume by a factor of about 2. Ion velocities of about 3.5 Multiplication-Sign 10{sup 4} m/s were detected for the magnetic field of about 300 mT at distance of about 100-200 mm from the cathode. It is proposed that plasma is accelerated due to Lorentz force. The average thrust is calculated using the ion velocity measurements and the cathode mass consumption rate, and its increase with the magnetic field is demonstrated.

  6. Ion velocities in a micro-cathode arc thruster

    NASA Astrophysics Data System (ADS)

    Zhuang, Taisen; Shashurin, Alexey; Beilis, Isak; Keidar, Michael

    2012-06-01

    Ion velocities in the plasma jet generated by the micro-cathode arc thruster are studied by means of time-of-flight method using enhanced ion detection system (EIDS). The EIDS triggers perturbations (spikes) on arc current waveform, and the larger current in the spike generates denser plasma bunches propagating along with the mainstream plasma. The EIDS utilizes double electrostatic probes rather than single probes. The average Ti ion velocity is measured to be around 2×104 m/s without a magnetic field. It was found that the application of a magnetic field does not change ion velocities in the interelectrode region while leads to ion acceleration in the free expanding plasma plume by a factor of about 2. Ion velocities of about 3.5×104 m/s were detected for the magnetic field of about 300 mT at distance of about 100-200 mm from the cathode. It is proposed that plasma is accelerated due to Lorentz force. The average thrust is calculated using the ion velocity measurements and the cathode mass consumption rate, and its increase with the magnetic field is demonstrated.

  7. Performance optimized, small structurally integrated ion thruster system

    NASA Technical Reports Server (NTRS)

    Hyman, J., Jr.

    1973-01-01

    A 5-cm structurally integrated ion thruster has been developed for attitude control and stationkeeping of synchronous satellites. As optimized with a conventional ion extraction system, the system demonstrates a thrust T = 0.47 mlb at a beam voltage of 1600 V, total mass efficiency of 76%, and electrical efficiency of 56%. Under the subject contract effort, no significant performance change was noted for operation with two dimensional electrostatic thrust-vectoring grids. Structural integrity with the vectoring grids was demonstrated for shock (+ or - 30 G), sinusoidal (9 G), and random (19.9 G rms) accelerations. System envelope is 31.2 cm long by 13.4 cm flange bolt circle, with a mass of 9.0 Kg, including 6.8 Kg mercury propellant.

  8. Evaluation of the Influence of Beam Ions Exhausted from Ion Thrusters on Earth's Environment and Communication

    NASA Astrophysics Data System (ADS)

    Yamagiwa, Yoshiki; Kumatani, Yasuhiro; Miyamoto, Shigehiro; Otsu, Hirotaka

    The influence of exhausted beam ions from ion thrusters on Earth's environment and communication was analyzed by the detailed modeling of the exhausted ions' and electrons' motion and the energy exchange process between the exhausted ions and the circumferential particles. The analytical results showed that the density distribution of plasma components near the earth will change locally by the energy input of exhausted ions trapped by the geomagnetic field if the large scale operation of ion thrusters is performed, but its influence on earth's environment will be small compared with that by the natural phenomena such a magnetic storm. However, the influence on GPS communication will be large and the electrical charge of spacecraft will be progressed.

  9. Plasma generation near an Ion thruster disharge chamber hollow cathode

    NASA Technical Reports Server (NTRS)

    Katz, Ira; Anderson, John R.; Goebel, Dan M.; Wirz, Richard; Sengupta, Anita

    2003-01-01

    In gridded electrostatic thrusters, ions are produced by electron bombardment in the discharge chamber. In most of these thrusters, a single, centrally located hollow cathode supplies the ionizing electrons. An applied magnetic field in the discharge chamber restricts the electrons leaving the hollow cathode to a very narrow channel. In this channel, the high electron current density ionizes both propellant gas flowing from the hollow cathode, and other neutrals from the main propellant flow from the plenum. The processes that occur just past the hollow cathode exit are very important. In recent engine tests, several cases of discharge cathode orifice place and keeper erosion have been reported. In this paper we present results from a new 1-D, variable area model of the plasma processes in the magnetized channel just downstream of the hollow cathode keeper. The model predicts plasma densities, and temperatures consistent with those reported in the literature for the NSTAR engine, and preliminary results from the model show a potential maximum just downstream of the cathode.

  10. A north-south stationkeeping ion thruster system for ATS-F.

    NASA Technical Reports Server (NTRS)

    Worlock, R.; James, E.; Ramsey, W.; Trump, G.; Gant, G.; Jan, L.; Bartlett, R.

    1972-01-01

    An ion thruster system is being developed for the ATS-F satellite to demonstrate the application of ion thruster technology to the synchronous satellite north-south stationkeeping mission. The cesium bombardment ion thruster develops one millipound thrust at 2600 seconds specific impulse and provides thrust vectoring by accelerator electrode displacement. The propellant system is sized for two years operation at 25 percent duty cycle. Power conditioning circuitry is based on transistor inverters switching at 10 kHz. Thirteen command channels allow flexibility in operation; 12 telemetry channels provide information on system performance. Input power is less than 150 watts.

  11. Electric field measurement in microwave discharge ion thruster with electro-optic probe

    SciTech Connect

    Ise, Toshiyuki; Tsukizaki, Ryudo; Koizumi, Hiroyuki; Togo, Hiroyoshi; Kuninaka, Hitoshi

    2012-12-15

    In order to understand the internal phenomena in a microwave discharge ion thruster, it is important to measure the distribution of the microwave electric field inside the discharge chamber, which is directly related to the plasma production. In this study, we proposed a novel method of measuring a microwave electric field with an electro-optic (EO) probe based on the Pockels effect. The probe, including a cooling system, contains no metal and can be accessed in the discharge chamber with less disruption to the microwave distribution. This method enables measurement of the electric field profile under ion beam acceleration. We first verified the measurement with the EO probe by a comparison with a finite-difference time domain numerical simulation of the microwave electric field in atmosphere. Second, we showed that the deviations of the reflected microwave power and the beam current were less than 8% due to inserting the EO probe into the ion thruster under ion beam acceleration. Finally, we successfully demonstrated the measurement of the electric-field profile in the ion thruster under ion beam acceleration. These measurements show that the electric field distribution in the thruster dramatically changes in the ion thruster under ion beam acceleration as the propellant mass flow rate increases. These results indicate that this new method using an EO probe can provide a useful guide for improving the propulsion of microwave discharge ion thrusters.

  12. Performance Evaluation of an Expanded Range XIPS Ion Thruster System for NASA Science Missions

    NASA Technical Reports Server (NTRS)

    Oh, David Y.; Goebel, Dan M.

    2006-01-01

    This paper examines the benefit that a solar electric propulsion (SEP) system based on the 5 kW Xenon Ion Propulsion System (XIPS) could have for NASA's Discovery class deep space missions. The relative cost and performance of the commercial heritage XIPS system is compared to NSTAR ion thruster based systems on three Discovery class reference missions: 1) a Near Earth Asteroid Sample Return, 2) a Comet Rendezvous and 3) a Main Belt Asteroid Rendezvous. It is found that systems utilizing a single operating XIPS thruster provides significant performance advantages over a single operating NSTAR thruster. In fact, XIPS performs as well as systems utilizing two operating NSTAR thrusters, and still costs less than the NSTAR system with a single operating thruster. This makes XIPS based SEP a competitive and attractive candidate for Discovery class science missions.

  13. Ion velocity and plasma potential measurements of a cylindrical cusped field thruster

    SciTech Connect

    MacDonald, N. A.; Young, C. V.; Cappelli, M. A.; Hargus, W. A. Jr.

    2012-05-01

    Measurements of the most probable time-averaged axial ion velocities and plasma potential within the acceleration channel and in the plume of a straight-channeled cylindrical cusped field thruster operating on xenon are presented. Ion velocities for the thruster are derived from laser-induced fluorescence measurements of the 5d[4]{sub 7/2}-6p[3]{sub 5/2} xenon ion excited state transition centered at {lambda}=834.72nm. Plasma potential measurements are made using a floating emissive probe with a thoriated-tungsten filament. The thruster is operated in a power matched condition with 300 V applied anode potential for comparison to previous krypton plasma potential measurements, and a low power condition with 150 V applied anode potential. Correlations are seen between the plasma potential drop outside of the thruster and kinetic energy contours of the accelerating ions.

  14. Sputter erosion and deposition in the discharge chamber of a small mercury ion thruster

    NASA Technical Reports Server (NTRS)

    Power, J. L.

    1973-01-01

    A 5 cm diameter mercury ion thruster similar to one tested for 9715 hours was operated approximately 400 hrs each at discharge voltages of 36.6, 39.6, and 42.6 V, with corresponding discharge propellant utilizations of 58, 68, and 70 percent. The observed sputter erosion rates of the internal thruster parts and the anode weight gain rate all rose rapidly with discharge voltage and were roughly in the ratio of 1:3:5 for the three voltages. The combined weight loss of the internal thruster parts nearly balanced the anode weight gain. Hg(+2) ion apparently caused most of the observed erosion.

  15. Eight cm technology thruster development. [structurally integrated ion thruster for attitude control and stationkeeping of synchronous satellites

    NASA Technical Reports Server (NTRS)

    Hyman, J., Jr.

    1974-01-01

    A structural integrated ion thruster with 8-cm beam diameter (SIT-8) was developed for attitude control and stationkeeping of synchronous satellites. As optimized, the system demonstrates a thrust T=1.14 mlb (not corrected for beam V sub B = 1200 V (I sub sp = 2200 sec) total propellant utilization efficiency nu sub u = 59.8% (is approximately 72% without auxiliary pulse-igniter electrode), and electrical efficiency n sub E 61.9%. The thruster incorporates a wire-mesh anode and tantalum cover surfaces to control discharge chamber flake formation and employs an auxiliary pulse-igniter electrode for hollow-cathode ignition. When the SIT-8 is integrated with the compatible SIT-5 propellant tankage, the system envelope is 35 cm long by 13 cm flange bolt circle with a mass of 9.8 kg including 6.8 kg of mercury propellant. Two thrust vectoring systems which generate beam deflections in two orthogonal directions were also developed under the program and tested with the 8-cm thruster. One system vectors the beam over + or - 10 degrees by gimbaling of the entire thruster (not including tankage), while the other system vectors the beam over + or - 7 degrees by translating the accel electrode relative to the screen electrode.

  16. Solar array maximum power tracking with closed-loop control of a 30-centimeter ion thruster

    NASA Technical Reports Server (NTRS)

    Gruber, R. P.

    1977-01-01

    A new solar array/ion thruster system control concept has been developed and demonstrated. An ion thruster beam load is used to automatically and continuously operate an unregulated solar array at its maximum power point independent of variations in solar array voltage and current. Preliminary tests were run which verified that this method of control can be implemented with a few, physically small, signal level components dissipating less than two watts.

  17. Performance capabilities of the 8-cm mercury ion thruster

    NASA Technical Reports Server (NTRS)

    Mantenieks, M. A.

    1981-01-01

    A preliminary characterization of the performance capabilities of the 8-cm thruster in order to initiate an evaluation of its application to LSS propulsion requirements is presented. With minor thruster modifications, the thrust was increased by about a factor of four while the discharge voltage was reduced from 39 to 22 volts. The thruster was operated over a range of specific impulse of 1950 to 3040 seconds and a maximum total efficiency of about 54 percent was attained. Preliminary analysis of component lifetimes, as determined by temperature and spectroscopic line intensity measurements, indicated acceptable thruster lifetimes are anticipated at the high power level operation.

  18. Ion and Electron Transport in an Nstar-derivative Ion Thruster. Revised

    NASA Technical Reports Server (NTRS)

    Foster, John E.

    2001-01-01

    Diffusion of electrons and ions to anode surfaces between the magnetic cusps of a NASA Solar Electric Propulsion Technology Application Readiness ion thruster has been characterized. Ion flux measurements were made at the anode and at the screen grid electrode. The measurements indicated that the average ion current density at the anode and at the screen grid were approximately equal. Additionally, it was found that the electron flux to the anode between cusps is best described by the classical cross-field diffusion coefficient.

  19. Inter-cusp Ion and Electron Transport in a Nstar-derivative Ion Thruster

    NASA Technical Reports Server (NTRS)

    Foster, John E.

    2001-01-01

    Diffusion of electrons and ions to anode surfaces between the magnetic cusps of a NASA Solar Electric Propulsion Technology Application Readiness ion thruster has been characterized. Ion flux measurements were made at the anode and at the screen grid electrode. The measurements indicated that the average ion current density at the anode and at the screen grid were approximately equal. Additionally, it was found that the electron flux to the anode between cusps is best described by the classical cross-field diffusion coefficient.

  20. Production of High Energy Ions Near an Ion Thruster Discharge Hollow Cathode

    NASA Technical Reports Server (NTRS)

    Katz, Ira; Mikellides, I. G.; Goebel, D. M.; Jameson, K. K.; Wirz, R.; Polk, James E.

    2006-01-01

    Several researchers have measured ions leaving ion thruster discharge chambers with energies far greater than measured discharge chamber potentials. Presented in this paper is a new mechanism for the generation of high energy ions and a comparison with measured ion spectra. The source of high energy ions has been a puzzle because they not only have energies in excess of measured steady state potentials, but as reported by Goebel et. al. [1], their flux is independent of the amplitude of time dependent plasma fluctuations. The mechanism relies on the charge exchange neutralization of xenon ions accelerated radially into the potential trough in front of the discharge cathode. Previous researchers [2] have identified the importance of charge exchange in this region as a mechanism for protecting discharge cathode surfaces from ion bombardment. This paper is the first to identify how charge exchange in this region can lead to ion energy enhancement.

  1. Use of an ions thruster to dispose of type II long-lived fission products into outer space

    SciTech Connect

    Takahashi, H.; Yu, A.

    1997-04-01

    To dispose of long-lived fission products (LLFPs) into outer space, an ions thruster can be used instead of a static accelerator. The specifications of the ions thrusters which are presently studies for space propulsion are presented, and their usability discussed. Using of a rocket with an ions thruster for disposing of the LLFPs directly into the sun required a larger amount of energy than does the use of an accelerator.

  2. Design, fabrication and testing of porous tungsten vaporizers for mercury ion thrusters

    NASA Technical Reports Server (NTRS)

    Zavesky, R.; Kroeger, E.; Kami, S.

    1983-01-01

    The dispersions in the characteristics, performance and reliability of vaporizers for early model 30-cm thrusters were investigated. The purpose of the paper is to explore the findings and to discuss the approaches that were taken to reduce the observed dispersion and present the results of a program which validated those approaches. The information that is presented includes porous tungsten materials specifications, a discussion of assembly procedures, and a description of a test program which screens both material and fabrication processes. There are five appendices providing additional detail in the areas of vaporizer contamination, nitrogen flow testing, bubble testing, porosimeter testing, and mercury purity. Four neutralizers, seven cathodes and five main vaporizers were successfully fabricated, tested, and operated on thrusters. Performance data from those devices is presented and indicates extremely repeatable results from using the design and fabrication procedures.

  3. Improved High-Voltage Gas Isolator for Ion Thruster

    NASA Technical Reports Server (NTRS)

    Banks, Bruce

    2007-01-01

    A report describes an improved high-voltage isolator for preventing electrical discharge along the flow path of a propellant gas being fed from a supply at a spacecraft chassis electrical potential to an ion thruster at a potential as high as multiple kilovolts. The isolator must survive launch vibration and must remain electrically nonconductive for thousands of hours under conditions that, in the absence of proper design, would cause formation of electrically conductive sputtered metal, carbon, and/or decomposed hydrocarbons on its surfaces. The isolator includes an alumina cylinder containing a spiral channel filled with a porous medium made from alumina microbeads fired together with an alumina slurry. Connections to gas-transport tubes are made at both ends of the alumina cylinder by means of metal caps containing fine-mesh screens to prevent passage of loose alumina particles. The outer surface of the alumina cylinder is convoluted to lengthen the electrical path between the metal caps and to afford shadow shielding to minimize the probability of formation of a continuous deposit that would electrically connect the ends. A flanged cylindrical metal cap that surrounds the alumina cylinder without touching one of the ends provides additional shadow shielding.

  4. Magnetic flux density environment of several electron-bombardment ion thrusters

    NASA Technical Reports Server (NTRS)

    Danilowicz, R. L.

    1973-01-01

    Measurements of the external magnetic field of several electron-bombardment mercury ion thrusters were made using a single axis fluxgate magnetometer. The axial dipole moment accounted for most of the external field. In addition, residual fields from an electromagnet thruster were approximately 20 percent of the initial field. Simple degaussing of the axial magnets reduced the residual fields to 1 to 2 percent of the initial field.

  5. Ion energy measurements near a dormant cathode in a multiple-cathode gridded ion thruster

    SciTech Connect

    Rovey, Joshua L.; Gallimore, Alec D.

    2007-03-15

    A rectangular ion thruster discharge chamber was investigated for operation with multiple discharge cathode assemblies (DCAs). The multiple cathode approach attempts to increase thruster throughput and lifetime by operating three DCAs sequentially, possibly providing a threefold increase in discharge life. Previous multiple-cathode electric propulsion devices, such as the SPT-100, have shown dormant cathode erosion to be a life-limiting phenomenon. Similar results in a multiple-cathode discharge chamber may decrease the anticipated gain in discharge lifetime. In order to assess possible dormant cathode sputtering erosion, a diagnostic canister (DC) was designed and utilized to measure bombarding ion energy at the dormant cathode locations. The DC appeared similar to the active DCA, but was outfitted with a retarding potential analyzer. Most probable ion energy measurements show ions with energy of 27-35 eV ({+-}10%) with respect to cathode common and ion energy increases with increasing magnetic field strength. These results are consistent with an ion falling from the plasma potential to cathode common. A simple sputtering erosion model shows that, if doubly charged ions are present, these energies are enough to cause sputtering erosion of the dormant units.

  6. Electron Transport and Ion Acceleration in a Low-power Cylindrical Hall Thruster

    SciTech Connect

    A. Smirnov; Y. Raitses; N.J. Fisch

    2004-06-24

    Conventional annular Hall thrusters become inefficient when scaled to low power. Cylindrical Hall thrusters, which have lower surface-to-volume ratio, are therefore more promising for scaling down. They presently exhibit performance comparable with conventional annular Hall thrusters. Electron cross-field transport in a 2.6 cm miniaturized cylindrical Hall thruster (100 W power level) has been studied through the analysis of experimental data and Monte Carlo simulations of electron dynamics in the thruster channel. The numerical model takes into account elastic and inelastic electron collisions with atoms, electron-wall collisions, including secondary electron emission, and Bohm diffusion. We show that in order to explain the observed discharge current, the electron anomalous collision frequency {nu}{sub B} has to be on the order of the Bohm value, {nu}{sub B} {approx} {omega}{sub c}/16. The contribution of electron-wall collisions to cross-field transport is found to be insignificant. The plasma density peak observed at the axis of the 2.6 cm cylindrical Hall thruster is likely to be due to the convergent flux of ions, which are born in the annular part of the channel and accelerated towards the thruster axis.

  7. Specific spacecraft evaluation: Special report. [charged particle transport from a mercury ion thruster to spacecraft surfaces

    NASA Technical Reports Server (NTRS)

    Sellen, J. M., Jr.

    1978-01-01

    Charged and neutral particle transport from an 8 cm mercury ion thruster to the surfaces of the P 80-1 spacecraft and to the Teal Ruby sensor and the ECOM-501 sensor of that spacecraft were investigated. Laboratory measurements and analyses were used to examine line-of-sight and nonline-of sight particle transport modes. The recirculation of Hg(+) ions in the magnetic field of the earth was analyzed for spacecraft velocity and Earth magnetic field vector configurations which are expected to occur in near Earth, circular, high inclination orbits. For these magnetic field and orbit conditions and for expected ion release distribution functions, in both angles and energies, the recirculation/re-interception of ions on spacecraft surfaces was evaluated. The refraction of weakly energetic ions in the electric fields of the thruster plasma plume and in the electric fields between this plasma plume and the material boundaries of the thruster, the thruster sputter shield, and the various spacecraft surfaces were examined. The neutral particle transport modes of interest were identified as sputtered metal atoms from the thruster beam shield. Results, conclusions, and future considerations are presented.

  8. Diagnostic evaluations of a beam-shielded 8-cm mercury ion thruster

    NASA Technical Reports Server (NTRS)

    Nakanishi, S.

    1978-01-01

    An engineering model thruster fitted with a remotely actuated graphite fiber polyimide composite beam shield was tested in a 3- by 6.5-meter vacuum facility for in-situ assessment of beam shield effects on thruster performance. Accelerator drain current neutralizer floating potential and ion beam floating potential increased slightly when the shield was moved into position. A target exposed to the low density regions of the ion beam was used to map the boundaries of energetic fringe ions capable of sputtering. The particle efflux was evaluated by measurement of film deposits on cold, heated, bare, and enclosed glass slides.

  9. Mission Benefits of Gridded Ion and Hall Thruster Hybrid Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Dankanich, John W.; Polsgrove, Tara

    2006-01-01

    The NASA In-Space Propulsion Technology (ISPT) Project Office has been developing the NEXT gridded ion thruster system and is planning to procure a low power Hall system. The new ion propulsion systems will join NSTAR as NASA's primary electric propulsion system options. Studies have been performed to show mission benefits of each of the stand alone systems. A hybrid ion propulsion system (IPS) can have the advantage of reduced cost, decreased flight time and greater science payload delivery over comparable homogeneous systems. This paper explores possible advantages of combining various thruster options for a single mission.

  10. Transport of Sputtered Carbon During Ground-Based Life Testing of Ion Thrusters

    NASA Technical Reports Server (NTRS)

    Marker, Colin L.; Clemons, Lucas A.; Banks, Bruce A.; Miller, Sharon; Snyder, Aaron; Hung, Ching-Cheh; Karniotis, Christina A.; Waters, Deborah L.

    2005-01-01

    High voltage, high power electron bombardment ion thrusters needed for deep space missions will be required to be operated for long durations in space as well as during ground laboratory life testing. Carbon based ion optics are being considered for such thrusters. The sputter deposition of carbon and arc vaporized carbon flakes from long duration operation of ion thrusters can result in deposition on insulating surfaces, causing them to become conducting. Because the sticking coefficient is less than one, secondary deposition needs to be considered to assure that shorting of critical components does not occur. The sticking coefficient for sputtered carbon and arc vaporized carbon is measured as well as directional ejection distribution data for carbon that does not stick upon first impact.

  11. A 20000-hour endurance test of a structurally and thermally integrated 5-cm diameter ion thruster main cathode

    NASA Technical Reports Server (NTRS)

    Wintucky, E. G.

    1975-01-01

    A 5-cm diameter mercury ion thruster main cathode has completed over 20,000 hours of operation in an ongoing lifetime endurance test. The cathode operating parameters remained at acceptable performance levels throughout the test, the first 9175 hours of which were part of a thruster endurance test. After 20,000 hours, the cathode discharge was easily restarted, the tip orifice indicated negligible erosion and the tip heater showed no degradation. The cathode-isolator- vaporizer assembly, a major thruster subsystem, has thus successfully demonstrated an operational lifetime capability of 20,000 hours, which is the lifetime goal of the 8-cm diameter auxiliary propulsion ion thruster.

  12. Performance of a magnetic multipole line-cusp argon ion thruster

    NASA Technical Reports Server (NTRS)

    Sovey, J. S.

    1981-01-01

    A 17 cm diameter line cusp ion thruster was evaluated with inert gases which are candidate propellants for on orbit and orbit transfer propulsion functions for Large Space Systems. A semiempirical relationship was generated to predict thruster beam current in terms of plasma parameters which would allow initial thruster optimization without ion extraction and the associated large vacuum facilities. The sensitivity of performance to changes in discharge electrode configurations and magnetic circuit was evaluated and is presented. After final optimization a propellant utilization efficiency of 0.9 at a discharge chamber power expenditure of about 260 w per beam ampere was obtained. These performance parameters are the highest yet achieved with argon propellant.

  13. Charge-exchange erosion studies of accelerator grids in ion thrusters

    NASA Technical Reports Server (NTRS)

    Peng, Xiaohang; Ruyten, Wilhelmus M.; Keefer, Dennis

    1993-01-01

    A particle simulation model is developed to study the charge-exchange grid erosion in ion thrusters for both ground-based and space-based operations. Because the neutral gas downstream from the accelerator grid is different for space and ground operation conditions, the charge-exchange erosion processes are also different. Based on an assumption of now electric potential hill downstream from the ion thruster, the calculations show that the accelerator grid erosion rate for space-based operating conditions should be significantly less than experimentally observed erosion rates from the ground-based tests conducted at NASA Lewis Research Center (LeRC) and NASA Jet Propulsion Laboratory (JPL). To resolve this erosion issue completely, we believe that it is necessary to accurately measure the entire electric potential field downstream from the thruster.

  14. Ion ejection from a permanent-magnet mini-helicon thruster

    SciTech Connect

    Chen, Francis F.

    2014-09-15

    A small helicon source, 5 cm in diameter and 5 cm long, using a permanent magnet (PM) to create the DC magnetic field B, is investigated for its possible use as an ion spacecraft thruster. Such ambipolar thrusters do not require a separate electron source for neutralization. The discharge is placed in the far-field of the annular PM, where B is fairly uniform. The plasma is ejected into a large chamber, where the ion energy distribution is measured with a retarding-field energy analyzer. The resulting specific impulse is lower than that of Hall thrusters but can easily be increased to relevant values by applying to the endplate of the discharge a small voltage relative to spacecraft ground.

  15. Ion optics for high power 50-cm-diam ion thrusters

    NASA Technical Reports Server (NTRS)

    Rawlin, Vincent K.; Millis, Marc G.

    1989-01-01

    The process used at the NASA-Lewis to fabricate 30 and 50-cm-diameter ion optics is described. The ion extraction capabilities of the 30 and 50-cm diameter ion optics were evaluated on divergent field and ring-cusp discharge chambers and compared. Perveance was found to be sensitive to the effects of the type and power of the discharge chamber and to the accelerator electrode hole diameter. Levels of up to 0.64 N and 20 kW for thrust and input power, respectively, were demonstrated with the divergent-field discharge chamber. Thruster efficiencies and specific impulse values up to 79 percent and 5000 sec., respectively, were achieved with the ring-cusp discharge chamber.

  16. Multi-Thruster Propulsion Apparatus

    NASA Technical Reports Server (NTRS)

    Patterson, Michael J. (Inventor)

    2016-01-01

    An electric propulsion machine includes an ion thruster having a discharge chamber housing a large surface area anode. The ion thruster includes flat annular ion optics with a small span to gap ratio. Optionally, at least a second thruster may be disposed radially offset from the ion thruster.

  17. Structural Analysis of Pyrolytic Graphite Optics for the HiPEP Ion Thruster

    NASA Technical Reports Server (NTRS)

    Meckel, Nicole; Polaha, Jonathan; Juhlin, Nils

    2006-01-01

    The long lifetime requirements of interplanetary exploration missions is driving the need to develop long-life components for the electric propulsion thrusters that are being targeted for these missions. One of the primary life-limiting components of ion thrusters are the optics, which are continuously eroded during the operation of the thruster. Pyrolytic graphite optics are being considered for the High Power Electric Propulsion (HiPEP) ion thruster because of their very high resistance to erosion. This paper describes the structural analysis of the HiPEP pyrolytic graphite. A description of the development of the grid model, as well as the development of the effective properties and stress concentrations in the apertured area of the grids is included. An evaluation of the use of curved grids shows that the increased stiffness (compared to flat grids) prevents intergrid impact during launch, however, the residual stresses introduced by curving the grids pushes the resulting peak stresses beyond the critical stress. As a result, flat grids are recommended as the design solution. Thermally induced grid displacements during normal thruster operation are also presented.

  18. Propagation of charge-exchange plasma produced by an ion thruster

    NASA Technical Reports Server (NTRS)

    Carruth, M. R., Jr.; Brady, M. E.

    1981-01-01

    Under the proper conditions there is an end-effect of a long, cylindrical Langmuir probe which allows a significant increase in collected ion current when the probe is aligned with a flowing plasma. This effect was used to determine the charge-exchange plasma flow direction at various locations relative to the ion thruster. The ion current collected by the probe as a function of its angle with respect to the plasma flow allows determination of the plasma density and plasma flow velocity at the probe's location upstream of the ion thruster optics. The density values obtained from the ion current agreed to within a factor of two of density values obtained by typical voltage-current Langmuir probe characteristics.

  19. Assessment Of C60 As A Propellant Material For Ion Thrusters

    NASA Technical Reports Server (NTRS)

    Rapp, Don; Leifer, Stephanie D.

    1995-01-01

    Report presents analyses and data to support proposed use of C60 (buckminsterfullerene) as alternative to Xe, current propellent material of choice for use in ion thrusters. Concept of using C60 for this purpose described in "Electrostatic Propulsion Using C60 Molecules" (NPO-18526).

  20. Ion Emission Characteristics of a Forward Laser Accelerated Plasma Thruster

    SciTech Connect

    Oyaizu, Keishi; Izumi, Masaya; Horisawa, Hideyuki; Kimura, Itsuro

    2005-04-27

    A fundamental study of a forward laser accelerated plasma thruster was conducted. In order to evaluate thrust performances of the thruster, a time-of-flight measurement was conducted for an Al-foil target irradiated with an Nd:YAG laser of 1J/pulse with pulse-width of 10nsec. From the measurement, the average plasma speed was about 53 km/sec. Time-gated imaging of the plasma with an ICCD camera was also conducted. From the observation, rapid plasmas were observed on both sides of the target. Each image from the ICCD camera was processed by an image processing software into an emission intensity distribution of the plasma at every 10nsec. Axial velocity of the plasma was estimated from the temporal evolution of the plasma edge. The average and maximum plasma expansion velocities in a forward direction were estimated about 40 km/s and 160 km/sec, respectively.

  1. The physics, performance and predictions of the PEGASES ion-ion thruster

    NASA Astrophysics Data System (ADS)

    Aanesland, Ane

    2014-10-01

    Electric propulsion (EP) is now used systematically in space applications (due to the fuel and lifetime economy) to the extent that EP is now recognized as the next generation space technology. The uses of EP systems have though been limited to attitude control of GEO-stationary satellites and scientific missions. Now, the community envisages the use of EP for a variety of other applications as well; such as orbit transfer maneuvers, satellites in low altitudes, space debris removal, cube-sat control, challenging scientific missions close to and far from earth etc. For this we need a platform of EP systems providing much more variety in performance than what classical Hall and Gridded thrusters can provide alone. PEGASES is a gridded thruster that can be an alternative for some new applications in space, in particular for space debris removal. Unlike classical ion thrusters, here positive and negative ions are alternately accelerated to produce thrust. In this presentation we will look at the fundamental aspects of PEGASES. The emphasis will be put on our current understanding, obtained via analytical models, PIC simulations and experimental measurements, of the alternate extraction and acceleration process. We show that at low grid bias frequencies (10 s of kHz), the system can be described as a sequence of negative and positive ions accelerated as packets within a classical DC mode. Here secondary electrons created in the downstream chamber play an important role in the beam space charge compensation. At higher frequencies (100 s of kHz) the transit time of the ions in the grid gap becomes comparable to the bias period, leading to an ``AC acceleration mode.'' Here the beam is fully space charge compensated and the ion energy and current are functions of the applied frequency and waveform. A generalization of the Child-Langmuir space charge limited law is developed for pulsed voltages and allows evaluating the optimal parameter space and performance of PEGASES

  2. Ion properties in a Hall current thruster operating at high voltage

    NASA Astrophysics Data System (ADS)

    Garrigues, L.

    2016-04-01

    Operation of a 5 kW-class Hall current Thruster for various voltages from 400 V to 800 V and a xenon mass flow rate of 6 mg s-1 have been studied with a quasi-neutral hybrid model. In this model, anomalous electron transport is fitted from ion mean velocity measurements, and energy losses due to electron-wall interactions are used as a tuned parameter to match expected electron temperature strength for same class of thruster. Doubly charged ions production has been taken into account and detailed collisions between heavy species included. As the electron temperature increases, the main channel of Xe2+ ion production becomes stepwise ionization of Xe+ ions. For an applied voltage of 800 V, the mass utilization efficiency is in the range of 0.8-1.1, and the current fraction of doubly charged ions varies between 0.1 and 0.2. Results show that the region of ion production of each species is located at the same place inside the thruster channel. Because collision processes mean free path is larger than the acceleration region, each type of ions experiences same potential drop, and ion energy distributions of singly and doubly charged are very similar.

  3. Plume and Discharge Plasma Measurements of an NSTAR-type Ion Thruster

    NASA Technical Reports Server (NTRS)

    Foster, John E; Soulas, George C.; Patterson, Michael J.

    2000-01-01

    The success of the NASA Deep Space I spacecraft has demonstrated that ion propulsion is a viable option for deep space science missions. More aggressive missions such as Comet Nuclear Sample Return and Europa lander will require higher power, higher propellant throughput and longer thruster lifetime than the NASA Solar Electric Propulsion Technology Application Readiness (NSTAR) engine. Presented here are thruster plume and discharge plasma measurements of an NSTAR-type thruster operated from 0.5 kW to 5 kW. From Faraday plume sweeps, beam divergence was determined. From Langmuir probe plume measurements on centerline, low energy ion production on axis due to charge-exchange and direct ionization was assessed. Additionally, plume plasma potential measurements made on axis were used to determine the upper energy limits at which ions created on centerline could be radially accelerated. Wall probes flush-mounted to the thruster discharge chamber anode were used to assess plasma conditions. Langmuir probe measurements at the wall indicated significant differences in the electron temperature in the cylindrical and conical sections of the discharge chamber.

  4. Hall-Effect Thruster Simulations with 2-D Electron Transport and Hydrodynamic Ions

    NASA Technical Reports Server (NTRS)

    Mikellides, Ioannis G.; Katz, Ira; Hofer, Richard H.; Goebel, Dan M.

    2009-01-01

    A computational approach that has been used extensively in the last two decades for Hall thruster simulations is to solve a diffusion equation and energy conservation law for the electrons in a direction that is perpendicular to the magnetic field, and use discrete-particle methods for the heavy species. This "hybrid" approach has allowed for the capture of bulk plasma phenomena inside these thrusters within reasonable computational times. Regions of the thruster with complex magnetic field arrangements (such as those near eroded walls and magnets) and/or reduced Hall parameter (such as those near the anode and the cathode plume) challenge the validity of the quasi-one-dimensional assumption for the electrons. This paper reports on the development of a computer code that solves numerically the 2-D axisymmetric vector form of Ohm's law, with no assumptions regarding the rate of electron transport in the parallel and perpendicular directions. The numerical challenges related to the large disparity of the transport coefficients in the two directions are met by solving the equations in a computational mesh that is aligned with the magnetic field. The fully-2D approach allows for a large physical domain that extends more than five times the thruster channel length in the axial direction, and encompasses the cathode boundary. Ions are treated as an isothermal, cold (relative to the electrons) fluid, accounting for charge-exchange and multiple-ionization collisions in the momentum equations. A first series of simulations of two Hall thrusters, namely the BPT-4000 and a 6-kW laboratory thruster, quantifies the significance of ion diffusion in the anode region and the importance of the extended physical domain on studies related to the impact of the transport coefficients on the electron flow field.

  5. Ion Current Density Study of the NASA-300M and NASA-457Mv2 Hall Thrusters

    NASA Technical Reports Server (NTRS)

    Huang, Wensheng; Shastry, Rohit; Herman, Daniel A.; Soulas, George C.; Kamhawi, Hani

    2012-01-01

    NASA Glenn Research Center is developing a Hall thruster in the 15-50 kW range to support future NASA missions. As a part of the process, the performance and plume characteristics of the NASA-300M, a 20-kW Hall thruster, and the NASA-457Mv2, a 50-kW Hall thruster, were evaluated. The collected data will be used to improve the fidelity of the JPL modeling tool, Hall2De, which will then be used to aid the design of the 15-50 kW Hall thruster. This paper gives a detailed overview of the Faraday probe portion of the plume characterization study. The Faraday probe in this study is a near-field probe swept radially at many axial locations downstream of the thruster exit plane. Threshold-based integration limits with threshold values of 1/e, 1/e2, and 1/e3 times the local peak current density are tried for the purpose of ion current integration and divergence angle calculation. The NASA-300M is operated at 7 conditions and the NASA-457Mv2 at 14 conditions. These conditions span discharge voltages of 200 to 500 V and discharge power of 10 to 50 kW. The ion current density profiles of the near-field plume originating from the discharge channel are discovered to strongly resemble Gaussian distributions. A novel analysis approach involving a form of ray tracing is used to determine an effective point of origin for the near-field plume. In the process of performing this analysis, definitive evidence is discovered that showed the near-field plume is bending towards the thruster centerline.

  6. Ion Current Density Study of the NASA-300M and NASA-457Mv2 Hall Thrusters

    NASA Technical Reports Server (NTRS)

    Huang, Wensheng; Shastry, Rohit; Herman, Daniel A.; Soulas, George C.; Kamhawi, Hani

    2012-01-01

    NASA Glenn Research Center is developing a Hall thruster in the 15-50 kW range to support future NASA missions. As a part of the process, the performance and plume characteristics of the NASA-300M, a 20-kW Hall thruster, and the NASA-457Mv2, a 50-kW Hall thruster, were evaluated. The collected data will be used to improve the fidelity of the JPL modeling tool, Hall2De, which will then be used to aid the design of the 15-50 kW Hall thruster. This paper gives a detailed overview of the Faraday probe portion of the plume characterization study. The Faraday probe in this study is a near-field probe swept radially at many axial locations downstream of the thruster exit plane. Threshold-based integration limits with threshold values of 1/e, 1/e(sup 2), and 1/e(sup 3) times the local peak current density are tried for the purpose of ion current integration and divergence angle calculation. The NASA-300M is operated at 7 conditions and the NASA-457Mv2 at 14 conditions. These conditions span discharge voltages of 200 to 500 V and discharge power of 10 to 50 kW. The ion current density profiles of the near-field plume originating from the discharge channel are discovered to strongly resemble Gaussian distributions. A novel analysis approach involving a form of ray tracing is used to determine an effective point of origin for the near-field plume. In the process of performing this analysis, definitive evidence is discovered that showed the near-field plume is bending towards the thruster centerline.

  7. NASA's Evolutionary Xenon Thruster: The NEXT Ion Propulsion System for Solar System Exploration

    NASA Technical Reports Server (NTRS)

    Pencil, Eric J.; Benson, Scott W.

    2008-01-01

    This viewgraph presentation reviews NASA s Evolutionary Xenon Thruster (NEXT) Ion Propulsion system. The NEXT project is developing a solar electric ion propulsion system. The NEXT project is advancing the capability of ion propulsion to meet NASA robotic science mission needs. The NEXT system is planned to significantly improve performance over the state of the art electric propulsion systems, such as NASA Solar Electric Propulsion Technology Application Readiness (NSTAR). The status of NEXT development is reviewed, including information on the NEXT Thruster, the power processing unit, the propellant management system (PMS), the digital control interface unit, and the gimbal. Block diagrams NEXT system are presented. Also a review of the lessons learned from the Dawn and NSTAR systems is provided. In summary the NEXT project activities through 2007 have brought next-generation ion propulsion technology to a sufficient maturity level.

  8. Status of the extended life test of the Deep Space 1 flight spare ion engine after 30,352 hours of operation

    NASA Technical Reports Server (NTRS)

    Sengupta, Anita; Brophy, John R.; Goodfellow, Keith D.

    2003-01-01

    The extended life test (ELT) of the Deep Space 1 (DS1) spare flight ion thruster (FT2) was voluntarily terminated June 26th 2003. The test was started in Cotober of 1998, just prior to the launch of the DS1 spacecraft, with the primary purpose of determining the ultimate service life capability of the NASA 30-cm-ion thruster technology.

  9. Modeling of surface-dominated plasmas: From electric thruster to negative ion source

    SciTech Connect

    Taccogna, F.; Schneider, R.; Longo, S.; Capitelli, M.

    2008-02-15

    This contribution shows two important applications of the particle-in-cell/monte Carlo technique on ion sources: modeling of the Hall thruster SPT-100 for space propulsion and of the rf negative ion source for ITER neutral beam injection. In the first case translational degrees of freedom are involved, while in the second case inner degrees of freedom (vibrational levels) are excited. Computational results show how in both cases, plasma-wall and gas-wall interactions play a dominant role. These are secondary electron emission from the lateral ceramic wall of SPT-100 and electron capture from caesiated surfaces by positive ions and atoms in the rf negative ion source.

  10. Recent Investigations, Development and Industrial Applications of RF-ion Thrusters in Germany

    NASA Astrophysics Data System (ADS)

    Bassner, H.; Killinger, R.; Kukies, R.; Mueller, J.

    2002-01-01

    R &D work on ion thrusters using radio frequency propellant ionisation has been done at Giessen University since 1962. Engines with ionizer diameters from 4 cm to 35 cm have been designed, built, and tested. Plasma and beam diagnostics have been done and several application studies were carried out. The present work at the 1. Institute of Physics is mainly focussed on two topics: First: The RF-plasma is being modelled in detail in order to establish scaling laws which will allow to scale the existing hardware and save D &Q work. Determination of basic plasma effects shall allow to find the optimum geometry and working parameters (e.g. the discharge vessel length, the best rf-frequency and the necessary discharge pressure). Then, reliable thrust, power, flow rate and efficiency data of different sized RIT-systems can be predicted. Second: The large Giessen test facility "P100,000" (with 30 m3 of chamber volume) has been completely refurbished, to allow the operation of Astriums new 22 cm diam thruster RIT-XT: The oil diffusion pumps were replaced by several cryopumps and two additional turbomolecular pumps. The conical beam target (stainless steel) has been replaced by inclined carbon collector strips. A new beam scanning system has been installed, which can be moved during operation in y- and z- direction. The scanner consists of 160 specially designed Faraday cups. Other diagnostic elements like calorimetric systems, small mass spectrometers etc. can be installed on the scanner, too. The development in the industry did start at Astrium (former MBB) in 1970 with the investigation of the 10 cm discharge chamber diameter laboratory thruster (RIT 10) manufactured in Giessen, using Mercury as the propellant. A first vibration test and a 1000-h lifetime test was performed and did show that the thruster can be used in space. The first 10 years of industrial development were filled with development of electronics, propellant feed system, thruster design and additional

  11. The 2.5 kW advanced technology ion thruster. [design analysis and performance tests

    NASA Technical Reports Server (NTRS)

    Poeschel, R. L.

    1976-01-01

    A representative thruster was extensively documented with respect to performance parameters and characteristics at selected ion beam currents in the 0.5 to 2.75 A range, including measurements of thrust losses resulting from doubly-charged ions and ion beam divergence. Corrected total efficiency was shown to be relatively insensitive to operating parameter selection at any given power level. Factors affecting doubly-charged ionization were studied and it was found that the fraction of doubly-charged ions is directly proportional to the discharge chamber propellant utilization. The parameter that most affects this proportionality is the accel aperture diameter (which controls neutral atom loss). Thruster-power conditioner interactions were studied with the result that previous power supply specifications remain satisfactory. Options for reducing the number of power supplies required were demonstrated to be feasible. Gimbal actuator designs were studied with the goal of selecting a particular approach for design and development. The conclusion drawn was that optimum gimbal actuator design depends heavily on the thruster application and consequently the effort was concluded by developing a computer program to aid in specifying the gimbal requirements for the thrust vectoring required in a specific application.

  12. Ion Species Fractions in the Far-Field Plume of a High-Specific Impulse Hall Thruster

    NASA Technical Reports Server (NTRS)

    Hofer, Richard R.; Gallimore, Alec D.

    2003-01-01

    An ExB probe was used to measure the ion species fractions of Xe(+), Xe(2+), and Xe(3+) in the far-field plume of the NASA-173Mv2 laboratory-model Hall thruster. The thruster was operated at a constant xenon flow rate of 10 milligrams per second and discharge voltages of 300 to 900 V. The ExB probe was placed two meters downstream of the thruster exit plane on the thruster centerline. At a discharge voltage of 300 V, the species fractions of Xe(2+) and Xe(3+) were lower, but still consistent with, previous Hall thruster studies using other mass analyzers. Over discharge voltages of 300 to 900 V, the Xe(2+) species fractions increased from 0.04 to 0.12 and the Xe(3+) species fraction increased from 0.01 to 0.02.

  13. Accelerated life test of sputtering and anode deposit spalling in a small mercury ion thruster

    NASA Technical Reports Server (NTRS)

    Power, J. L.

    1975-01-01

    Tantalum and molybdenum sputtered from discharge chamber components during operation of a 5 centimeter diameter mercury ion thruster adhered much more strongly to coarsely grit blasted anode surfaces than to standard surfaces. Spalling of the sputtered coating did occur from a coarse screen anode surface but only in flakes less than a mesh unit long. The results were obtained in a 200 hour accelerated life test conducted at an elevated discharge potential of 64.6 volts. The test approximately reproduced the major sputter erosion and deposition effects that occur under normal operation but at approximately 75 times the normal rate. No discharge chamber component suffered sufficient erosion in the test to threaten its structural integrity or further serviceability. The test indicated that the use of tantalum-surfaced discharge chamber components in conjunction with a fine wire screen anode surface should cure the problems of sputter erosion and sputtered deposits spalling in long term operation of small mercury ion thrusters.

  14. Experimental Investigations from the Operation of a 2 Kw Brayton Power Conversion Unit and a Xenon Ion Thruster

    NASA Technical Reports Server (NTRS)

    Mason, Lee; Birchenough, Arthur; Pinero, Luis

    2004-01-01

    A 2 kW Brayton Power Conversion Unit (PCU) and a xenon ion thruster were integrated with a Power Management and Distribution (PMAD) system as part of a Nuclear Electric Propulsion (NEP) Testbed at NASA's Glenn Research Center. Brayton converters and ion thrusters are potential candidates for use on future high power NEP missions such as the proposed Jupiter Icy Moons Orbiter (JIMO). The use of existing lower power test hardware provided a cost-effective means to investigate the critical electrical interface between the power conversion system and ion propulsion system. The testing successfully demonstrated compatible electrical operations between the converter and the thruster, including end-to-end electric power throughput, high efficiency AC to DC conversion, and thruster recycle fault protection. The details of this demonstration are reported herein.

  15. Assessment of Spectroscopic, Real-time Ion Thruster Grid Erosion-rate Measurements

    NASA Technical Reports Server (NTRS)

    Domonkos, Matthew T.; Stevens, Richard E.

    2000-01-01

    The success of the ion thruster on the Deep Space One mission has opened the gate to the use of primary ion propulsion. Many of the projected planetary missions require throughput and specific impulse beyond those qualified to date. Spectroscopic, real-time ion thruster grid erosion-rate measurements are currently in development at the NASA Glenn Research Center. A preliminary investigation of the emission spectra from an NSTAR derivative thruster with titanium grid was conducted. Some titanium lines were observed in the discharge chamber; however, the signals were too weak to estimate the erosion of the screen grid. Nevertheless, this technique appears to be the only non-intrusive real-time means to evaluate screen grid erosion, and improvement of the collection optics is proposed. Direct examination of the erosion species using laser-induced fluorescence (LIF) was determined to be the best method for a real-time accelerator grid erosion diagnostic. An approach for a quantitative LIF diagnostic was presented.

  16. Ultra High Voltage Propellant Isolators and Insulators for JIMO Ion Thrusters

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; Gaier, James R.; Hung, Ching-Cheh; Walters, Patty A.; Sechkar, Ed; Panko, Scott; Kamiotis, Christina A.

    2004-01-01

    Within NASA's Project Prometheus, high specific impulse ion thrusters for electric propulsion of spacecraft for the proposed Jupiter Icy Moon Orbiter (JIMO) mission to three of Jupiter's moons: Callisto, Ganymede and Europa will require high voltage operation to meet mission propulsion. The anticipated approx.6,500 volt net ion energy will require electrical insulation and propellant isolation which must exceed that used successfully by the NASA Solar Electric Propulsion Technology Readiness (NSTAR) Deep Space 1 mission thruster by a factor of approx.6. Xenon propellant isolator prototypes that operate at near one atmosphere and prototypes that operate at low pressures (<100 Torr) have been designed and are being tested for suitability to the JIMO mission requirements. Propellant isolators must be durable to Paschen breakdown, sputter contamination, high temperature, and high voltage while operating for factors longer duration than for the Deep Space 1 Mission. Insulators used to mount the thrusters as well as those needed to support the ion optics have also been designed and are under evaluation. Isolator and insulator concepts, design issues, design guidelines, fabrication considerations and performance issues are presented. The objective of the investigation was to identify candidate isolators and insulators that are sufficiently robust to perform durably and reliably during the proposed JIMO mission.

  17. Simulated Beam Extraction Performance Characterization of a 50-cm Ion Thruster Discharge

    NASA Technical Reports Server (NTRS)

    Foster, John E.; Hubble, Aimee; Nowak-Gucker, Sarah; Davis, Chris; Peterson, Peter; Viges, Eric; Chen, Dave

    2013-01-01

    A 50 cm ion thruster is being developed to operate at >65 percent total efficiency at 11 kW, 2700 s Isp and over 25 kW, 4500 s Isp at a total efficiency of >75 percent. The engine is being developed to address the need for a multimode system that can provide a range of thrust-to- power to service national and commercial near-earth onboard propulsion needs such as station-keeping and orbit transfer. Operating characteristics of the 50 cm ion thruster were measured under simulated beam extraction. The discharge current distribution at the various magnet rings was measured over a range of operating conditions. The relationship between the anode current distribution and the resulting plasma uniformity and ion flux measured at the thruster exit plane is discussed. The thermal envelope will also be investigated through the monitoring of magnet temperatures over the range of discharge powers investigated. Discharge losses as a function of propellant utilization was also characterized at multiple simulated beam currents. Bulk plasma conditions such as electron temperature and electron density near engine centerline was measured over a range of operating conditions using an internal Langmuir probe. Sensitivity of discharge performance to chamber length is also discussed. This data acquired from this discharge study will be used in the refinement of a throttle table in anticipation for eventual beam extraction testing.

  18. Additional application of the NASCAP code. Volume 2: SEPS, ion thruster neutralization and electrostatic antenna model

    NASA Technical Reports Server (NTRS)

    Katz, I.; Cassidy, J. J.; Mandell, M. J.; Parks, D. E.; Schnuelle, G. W.; Stannard, P. R.; Steen, P. G.

    1981-01-01

    The interactions of spacecraft systems with the surrounding plasma environment were studied analytically for three cases of current interest: calculating the impact of spacecraft generated plasmas on the main power system of a baseline solar electric propulsion stage (SEPS), modeling the physics of the neutralization of an ion thruster beam by a plasma bridge, and examining the physical and electrical effects of orbital ambient plasmas on the operation of an electrostatically controlled membrane mirror. In order to perform these studies, the NASA charging analyzer program (NASCAP) was used as well as several other computer models and analytical estimates. The main result of the SEPS study was to show how charge exchange ion expansion can create a conducting channel between the thrusters and the solar arrays. A fluid-like model was able to predict plasma potentials and temperatures measured near the main beam of an ion thruster and in the vicinity of a hollow cathode neutralizer. Power losses due to plasma currents were shown to be substantial for several proposed electrostatic antenna designs.

  19. NASA's Evolutionary Xenon Thruster (NEXT) Prototype Model 1R (PM1R) Ion Thruster and Propellant Management System Wear Test Results

    NASA Technical Reports Server (NTRS)

    VanNoord, Jonathan L.; Soulas, George C.; Sovey, James S.

    2010-01-01

    The results of the NEXT wear test are presented. This test was conducted with a 36-cm ion engine (designated PM1R) and an engineering model propellant management system. The thruster operated with beam extraction for a total of 1680 hr and processed 30.5 kg of xenon during the wear test, which included performance testing and some operation with an engineering model power processing unit. A total of 1312 hr was accumulated at full power, 277 hr at low power, and the remainder was at intermediate throttle levels. Overall ion engine performance, which includes thrust, thruster input power, specific impulse, and thrust efficiency, was steady with no indications of performance degradation. The propellant management system performed without incident during the wear test. The ion engine and propellant management system were also inspected following the test with no indication of anomalous hardware degradation from operation.

  20. Magnetically filtered Faraday probe for measuring the ion current density profile of a Hall thruster

    SciTech Connect

    Rovey, Joshua L.; Walker, Mitchell L.R.; Gallimore, Alec D.; Peterson, Peter Y.

    2006-01-15

    The ability of a magnetically filtered Faraday probe (MFFP) to obtain the ion current density profile of a Hall thruster is investigated. The MFFP is designed to eliminate the collection of low-energy, charge-exchange (CEX) ions by using a variable magnetic field as an ion filter. In this study, a MFFP, Faraday probe with a reduced acceptance angle (BFP), and nude Faraday probe are used to measure the ion current density profile of a 5 kW Hall thruster operating over the range of 300-500 V and 5-10 mg/s. The probes are evaluated on a xenon propellant Hall thruster in the University of Michigan Large Vacuum Test Facility at operating pressures within the range of 4.4x10{sup -4} Pa Xe (3.3x10{sup -6} Torr Xe) to 1.1x10{sup -3} Pa Xe (8.4x10{sup -6} Torr Xe) in order to study the ability of the Faraday probe designs to filter out CEX ions. Detailed examination of the results shows that the nude probe measures a greater ion current density profile than both the MFFP and BFP over the range of angular positions investigated for each operating condition. The differences between the current density profiles obtained by each probe are attributed to the ion filtering systems employed. Analysis of the results shows that the MFFP, operating at a +5 A solenoid current, provides the best agreement with flight-test data and across operating pressures.

  1. Experimental Investigation from the Operation of a 2 kW Brayton Power Conversion Unit and a Xenon Ion Thruster

    NASA Technical Reports Server (NTRS)

    Hervol, David; Mason, Lee; Birchenough, Art; Pinero, Luis

    2004-01-01

    A 2kW Brayton Power Conversion Unit (PCU) and a xenon ion thruster were integrated with a Power Management and Distribution (PMAD) system as part of a Nuclear Electric Propulsion (NEP) Testbed at NASA's Glenn Research Center. Brayton Converters and ion thrusters are potential candidates for use on future high power NEP mission such as the proposed Jupiter Icy Moons Orbiter (JIMO). The use of a existing lower power test hardware provided a cost effective means to investigate the critical electrical interface between the power conversion system and the propulsion system. The testing successfully demonstrated compatible electrical operations between the converter and the thruster, including end-to-end electric power throughput, high efficiency AC to DC conversion, and thruster recycle fault protection. The details of this demonstration are reported herein.

  2. Plasma Emission Characteristics from a High Current Hollow Cathode in an Ion Thruster Discharge Chamber

    NASA Technical Reports Server (NTRS)

    Foster, John E.; Patterson, Michael J.

    2002-01-01

    The presence of energetic ions produced by a hollow cathodes operating at high emission currents (greater than 5A) has been documented in the literature. In order to further elucidate these findings, an investigation of a high current cathode operating in an ion thruster discharge chamber has been undertaken. Using Langmuir probes, a low energy charged particle analyzer and emission spectroscopy, the behavior of the near-cathode plasma and the emitted ion energy distribution was characterized. The presence of energetic ions was confirmed. It was observed that these ions had energies in excess of the discharge voltage and thus cannot be simply explained by ions falling out of plasma through a potential difference of this order. Additionally, evidence provided by Langmuir probes suggests the existence of a double layer essentially separating the hollow cathode plasma column from the main discharge. The radial potential difference associated with this double layer was measured to be of order the ionization potential.

  3. Simulation of charge exchange plasma propagation near an ion thruster propelled spacecraft

    NASA Technical Reports Server (NTRS)

    Robinson, R. S.; Kaufman, H. R.; Winder, D. R.

    1981-01-01

    A model describing the charge exchange plasma and its propagation is discussed, along with a computer code based on the model. The geometry of an idealized spacecraft having an ion thruster is outlined, with attention given to the assumptions used in modeling the ion beam. Also presented is the distribution function describing charge exchange production. The barometric equation is used in relating the variation in plasma potential to the variation in plasma density. The numerical methods and approximations employed in the calculations are discussed, and comparisons are made between the computer simulation and experimental data. An analytical solution of a simple configuration is also used in verifying the model.

  4. Plasma thrusters from Russia

    SciTech Connect

    Lerner, E.J.

    1992-09-01

    A report on the Russian stationary plasma thrusters having plasma accelerated to high velocities by electrical and magnetic forces is described. For specific impulses of 15-20 km/sec, optimal for such applications as satellite station keeping and orbital transfer, a unit supplying 0.05 N from a 2-kW input has a 30-cm-diameter nozzle.

  5. Pickup ion processes associated with spacecraft thrusters: Implications for solar probe plus

    NASA Astrophysics Data System (ADS)

    Clemens, Adam; Burgess, David

    2016-03-01

    Chemical thrusters are widely used in spacecraft for attitude control and orbital manoeuvres. They create an exhaust plume of neutral gas which produces ions via photoionization and charge exchange. Measurements of local plasma properties will be affected by perturbations caused by the coupling between the newborn ions and the plasma. A model of neutral expansion has been used in conjunction with a fully three-dimensional hybrid code to study the evolution and ionization over time of the neutral cloud produced by the firing of a mono-propellant hydrazine thruster as well as the interactions of the resulting ion cloud with the ambient solar wind. Results are presented which show that the plasma in the region near to the spacecraft will be perturbed for an extended period of time with the formation of an interaction region around the spacecraft, a moderate amplitude density bow wave bounding the interaction region and evidence of an instability at the forefront of the interaction region which causes clumps of ions to be ejected from the main ion cloud quasi-periodically.

  6. Power processor for a 20CM ion thruster

    NASA Technical Reports Server (NTRS)

    Biess, J. J.; Schoenfeld, A. D.; Cohen, E.

    1973-01-01

    A power processor breadboard for the JPL 20CM Ion Engine was designed, fabricated, and tested to determine compliance with the electrical specification. The power processor breadboard used the silicon-controlled rectifier (SCR) series resonant inverter as the basic power stage to process all the power to the ion engine. The breadboard power processor was integrated with the JPL 20CM ion engine and complete testing was performed. The integration tests were performed without any silicon-controlled rectifier failure. This demonstrated the ruggedness of the series resonant inverter in protecting the switching elements during arcing in the ion engine. A method of fault clearing the ion engine and returning back to normal operation without elaborate sequencing and timing control logic was evolved. In this method, the main vaporizer was turned off and the discharge current limit was reduced when an overload existed on the screen/accelerator supply. After the high voltage returned to normal, both the main vaporizer and the discharge were returned to normal.

  7. Status of the NEXT Ion Thruster Long-Duration Test After 10,100 hr and 207 kg Demonstrated

    NASA Technical Reports Server (NTRS)

    Herman, Daniel A.; Soulas, George C.; Patterson, Michael J.

    2008-01-01

    The NASA s Evolutionary Xenon Thruster (NEXT) program is developing the next-generation ion propulsion system with significant enhancements beyond the state-of-the-art in ion propulsion to provide future NASA science missions with enhanced mission capabilities at a low total development cost. As part of a comprehensive thruster service life assessment utilizing both testing and analyses, a Long-Duration Test (LDT) was initiated to validate and qualify the NEXT propellant throughput capability to a qualification-level of 450 kg, 1.5 times the mission-derived throughput requirement of 300 kg. This wear test is being conducted with a modified, flight-representative NEXT engineering model ion thruster, designated EM3. As of June 21, 2007, the thruster has accumulated 10,100 hr of operation at the thruster full-input-power of 6.9 kW with 3.52 A beam current and 1800 V beam power supply voltage. The thruster has processed 207 kg of xenon and demonstrated a total impulse of 8.5 106 N-s; the highest total impulse ever demonstrated by an ion thruster in the history of space propulsion. Thruster performance tests are conducted periodically over the entire NEXT throttle table with input power ranging 0.5 to 6.9 kW. Overall ion thruster performance parameters including thrust, input power, specific impulse, and thruster efficiency have been nominal with little variation to date. Lifetime-limiting component erosion rates have been consistent with the NEXT service life assessment, which predicts the earliest failure sometime after 750 kg of xenon propellant throughput; well beyond the mission-derived lifetime requirement. The NEXT wear test data confirm that the erosion of the discharge keeper orifice, enlarging of nominal-current-density accelerator grid aperture cusps, and the decrease in cold grid-gap observed during the NSTAR Extended Life Test have been mitigated. This paper presents the status of the NEXT LDT to date.

  8. Development of a miniature microwave electron cyclotron resonance plasma ion thruster for exospheric micro-propulsion

    SciTech Connect

    Dey, Indranuj; Toyoda, Yuji; Yamamoto, Naoji; Nakashima, Hideki

    2015-12-15

    A miniature microwave electron cyclotron resonance plasma source [(discharge diameter)/(microwave cutoff diameter) < 0.3] has been developed at Kyushu University to be used as an ion thruster in micro-propulsion applications in the exosphere. The discharge source uses both radial and axial magnetostatic field confinement to facilitate electron cyclotron resonance and increase the electron dwell time in the volume, thereby enhancing plasma production efficiency. Performance of the ion thruster is studied at 3 microwave frequencies (1.2 GHz, 1.6 GHz, and 2.45 GHz), for low input powers (<15 W) and small xenon mass flow rates (<40 μg/s), by experimentally measuring the extracted ion beam current through a potential difference of ≅1200 V. The discharge geometry is found to operate most efficiently at an input microwave frequency of 1.6 GHz. At this frequency, for an input power of 8 W, and propellant (xenon) mass flow rate of 21 μg/s, 13.7 mA of ion beam current is obtained, equivalent to an calculated thrust of 0.74 mN.

  9. Experimental validation of the dual positive and negative ion beam acceleration in the plasma propulsion with electronegative gases thruster

    SciTech Connect

    Rafalskyi, Dmytro Popelier, Lara; Aanesland, Ane

    2014-02-07

    The PEGASES (Plasma Propulsion with Electronegative Gases) thruster is a gridded ion thruster, where both positive and negative ions are accelerated to generate thrust. In this way, additional downstream neutralization by electrons is redundant. To achieve this, the thruster accelerates alternately positive and negative ions from an ion-ion plasma where the electron density is three orders of magnitude lower than the ion densities. This paper presents a first experimental study of the alternate acceleration in PEGASES, where SF{sub 6} is used as the working gas. Various electrostatic probes are used to investigate the source plasma potential and the energy, composition, and current of the extracted beams. We show here that the plasma potential control in such system is key parameter defining success of ion extraction and is sensitive to both parasitic electron current paths in the source region and deposition of sulphur containing dielectric films on the grids. In addition, large oscillations in the ion-ion plasma potential are found in the negative ion extraction phase. The oscillation occurs when the primary plasma approaches the grounded parts of the main core via sub-millimetres technological inputs. By controlling and suppressing the various undesired effects, we achieve perfect ion-ion plasma potential control with stable oscillation-free operation in the range of the available acceleration voltages (±350 V). The measured positive and negative ion currents in the beam are about 10 mA for each component at RF power of 100 W and non-optimized extraction system. Two different energy analyzers with and without magnetic electron suppression system are used to measure and compare the negative and positive ion and electron fluxes formed by the thruster. It is found that at alternate ion-ion extraction the positive and negative ion energy peaks are similar in areas and symmetrical in position with +/− ion energy corresponding to the amplitude of the applied

  10. A single axis electrostatic beam deflection system for a 5-cm diameter ion thruster

    NASA Technical Reports Server (NTRS)

    Lathem, W. C.

    1972-01-01

    A single-axis electrostatic beam deflection system has been tested on a 5-cm diameter mercury ion thruster at a thrust level of about 0.43 mlb (25 mA beam current at 1400 volts). The accelerator voltage was 500 volts. Beam deflection capability of plus or minus 10 deg was demonstrated. A life test of 1367 hours was run at the above conditions. Results of the test indicated that the system could possibly perform for upwards of 10,000 hours.

  11. Integral electrical characteristics and local plasma parameters of a RF ion thruster.

    PubMed

    Masherov, P E; Riaby, V A; Godyak, V A

    2016-02-01

    Comprehensive diagnostics has been carried out for a RF ion thruster based on inductively coupled plasma (ICP) source with an external flat antenna coil enhanced by ferrite core. The ICP was confined within a cylindrical chamber with low aspect ratio to minimize plasma loss to the chamber wall. Integral diagnostics of the ICP electrical parameters (RF power balance and coil current) allowed for evaluation of the antenna coils, matching networks, and eddy current loss and the true RF power deposited to plasma. Spatially resolved electron energy distribution functions, plasma density, electron temperatures, and plasma potentials were measured with movable Langmuir probes. PMID:26932098

  12. Three-dimensional simulation of atom and ion dynamics in a stationary plasma thruster

    SciTech Connect

    Lazurenko, A.; Kim, V.; Bishaev, A.; Auweter-Kurtz, M.

    2005-08-15

    A three-dimensional model of atom and ion dynamics in the accelerating channel of a stationary plasma thruster (SPT) is based on the model kinetic equations. Electron dynamics is described based on available experimental data. The expression for the electric field was obtained from the equation of electron impulse conservation law with the use of 'thermalized potential' assumption. The simulation was performed for a particular SPT with a thrust vector deviation. A quantitative agreement with the experimental results was obtained on thrust and thrust vector deviation angles for two different SPT operation modes. Calculated distributions of macroparameters demonstrate azimuthally asymmetrical ionization and acceleration processes in this particular SPT.

  13. Facility produced charge-exchange ions

    NASA Technical Reports Server (NTRS)

    Carruth, M. R., Jr.

    1981-01-01

    These facility produced ions are created by charge-exchange collisions between neutral atoms and energetic thruster beam ions. The result of the electron transfer is an energetic neutral atom and an ion of only thermal energy. There are true charge-exchange ions produced by collisions with neutrals escaping from the ion thruster and being charge-exchange ionized before the neutral intercepts the tank wall. The facility produced charge-exchange ions will not exist in space and therefore, represent a source of error where measurements involving ion thruster plasmas and their density are involved. The quantity of facility produced ions in a test chamber with a 30 cm mercury ion thruster was determined.

  14. Impingement-Current-Erosion Characteristics of Accelerator Grids on Two-Grid Ion Thrusters

    NASA Technical Reports Server (NTRS)

    Barker, Timothy

    1996-01-01

    Accelerator grid sputter erosion resulting from charge-exchange-ion impingement is considered to be a primary cause of failure for electrostatic ion thrusters. An experimental method was developed and implemented to measure erosion characteristics of ion-thruster accel-grids for two-grid systems as a function of beam current, accel-grid potential, and facility background pressure. Intricate accelerator grid erosion patterns, that are typically produced in a short time (a few hours), are shown. Accelerator grid volumetric and depth-erosion rates are calculated from these erosion patterns and reported for each of the parameters investigated. A simple theoretical volumetric erosion model yields results that are compared to experimental findings. Results from the model and experiments agree to within 10%, thereby verifying the testing technique. In general, the local distribution of erosion is concentrated in pits between three adjacent holes and trenches that join pits. The shapes of the pits and trenches are shown to be dependent upon operating conditions. Increases in beam current and the accel-grid voltage magnitude lead to deeper pits and trenches. Competing effects cause complex changes in depth-erosion rates as background pressure is increased. Shape factors that describe pits and trenches (i.e. ratio of the average erosion width to the maximum possible width) are also affected in relatively complex ways by changes in beam current, ac tel-grid voltage magnitude, and background pressure. In all cases, however, gross volumetric erosion rates agree with theoretical predictions.

  15. A hollow cathode neutralizer for a 30-cm diameter bombardment thruster

    NASA Technical Reports Server (NTRS)

    Bechtel, R. T.

    1973-01-01

    Recent improvements in overall thrustor performance have imposed new constraints on neutralizer performance. The use of compensated grid extraction system requires a re-evaluation of neutralizer position. In addition a suitable control logic for the neutralizer has proven difficult. A series of tests were conducted to determine what effect neutralizer cathode geometry has on performance. The parameters investigated included orifice diameter and length, and cathode diameter. Similar tests investigated open and enclosed keeper geometries. Neutralizer position tests with compensated grids suggest positions approximately 10 cm from the accelerator and radially out of the beam envelope should result in satisfactory performance and long life. Finally operation at keeper currents of 1.5 amp has resulted in lower total neutralizer power, the elimination of tip heater power, and suitable closed loop control of the neutralizer vaporizer.

  16. Measurement of ion thruster exhaust characteristics and interaction with simulated ATS-F spacecraft

    NASA Technical Reports Server (NTRS)

    Worlock, R.; Trump, G.; Sellen, J. M., Jr.; Kemp, R. F.

    1973-01-01

    The ATS-F ion engine was mounted on a simulated spacecraft and was operated in a 22 by 35 foot vacuum chamber, using the same neutralizer control point as in earlier small chamber tests. The control point was in the middle of a range of 16 steps and, thus, the range should be adequate for transition to space flight. Measurement of the near- and far-field ions showed that the ion beam was well defined in a cone of 18-degrees half-angle. The material deposition experiment indicated that the ATS-F solar array would accumulate less than 0.2 A of aluminum per thousand hours of thruster operation, so that the corresponding power loss could be considered negligible. An interesting result was that the coupling between the beam and spacecraft was strong enough to require relatively large increases in the beam potential as the neutralizer bias was increased.

  17. Development of a multikilowatt ion thruster power processor

    NASA Technical Reports Server (NTRS)

    Schoenfeld, A. D.; Goldin, D. S.; Biess, J. J.

    1972-01-01

    A feasibility study was made of the application of silicon-controlled, rectifier series, resonant inverter, power conditioning technology to electric propulsion power processing operating from a 200 to 400 Vdc solar array bus. A power system block diagram was generated to meet the electrical requirements of a 20 CM hollow cathode, mercury bombardment, ion engine. The SCR series resonant inverter was developed as a primary means of power switching and conversion, and the analog signal-to-discrete-time-interval converter control system was applied to achieve good regulation. A complete breadboard was designed, fabricated, and tested with a resistive load bank, and critical power processor areas relating to efficiency, weight, and part count were identified.

  18. Diagnostic system design for the Ion Auxiliary Propulsion System /IAPS/ - Flight test of two 8 cm mercury ion thrusters

    NASA Technical Reports Server (NTRS)

    Hurst, E. B.; Thomas, G. Z.

    1981-01-01

    The experimental design of a Diagnostic Subsystem (DSS) as part of an Ion Auxiliary Propulsion System (IAPS) to be flown on P80-1 spacecraft in May 1983, is discussed. The DSS is composed of several detectors measuring thruster efflux, material deposition and spacecraft potential relative to the local space plasma in the vicinity of two 8 cm mercury ion thrusters. The detectors consist of two QCM units measuring frequency in the range of two to 65 KHz. Nine solar cell arrays have the capability of measuring current and voltage from 0-600 mA and 0-0.9 V. Seven ion collectors can measure ion currents with bias voltages of 0, 25, 55 and 96 V. The potential probe can measure current at 16 different commandible levels varying from one to 5 K microamperes within a voltage range of -25 to 175 V. The analysis of the ground-based data indicates that the hardware is qualified for flight, with the detectors and electronic units having passed all functional and environmental tests. Block diagrams are given and the functional parameters of the different design configurations are described.

  19. Ion Voltage Diagnostics in the Far-Field Plume of a High-Specific Impulse Hall Thruster

    NASA Technical Reports Server (NTRS)

    Hofer, Richard R.; Haas, James M.; Gallimore, Alec D.

    2003-01-01

    The effects of the magnetic field and discharge voltage on the far-field plume of the NASA 173Mv2 laboratory-model Hall thruster were investigated. A cylindrical Langmuir probe was used to measure the plasma potential and a retarding potential analyzer was employed to measure the ion voltage distribution. The plasma potential was affected by relatively small changes in the external magnetic field, which suggested a means to control the plasma surrounding the thruster. As the discharge voltage increased, the ion voltage distribution showed that the acceleration efficiency increased and the dispersion efficiency decreased. This implied that the ionization zone was growing axially and moving closer to the anode, which could have affected thruster efficiency and lifetime due to higher wall losses. However, wall losses may have been reduced by improved focusing efficiency since the total efficiency increased and the plume divergence decreased with discharge voltage.

  20. Note: An advanced in situ diagnostic system for characterization of electric propulsion thrusters and ion beam sources

    NASA Astrophysics Data System (ADS)

    Bundesmann, C.; Tartz, M.; Scholze, F.; Leiter, H. J.; Scortecci, F.; Gnizdor, R. Y.; Neumann, H.

    2010-04-01

    We present an advanced diagnostic system for in situ characterization of electric propulsion thrusters and ion beam sources. The system uses a high-precision five-axis positioning system with a modular setup and the following diagnostic tools: a telemicroscopy head for optical imaging, a triangular laser head for surface profile scanning, a pyrometer for temperature scanning, a Faraday probe for current density mapping, and an energy-selective mass spectrometer for beam characterization (energy and mass distribution, composition). The capabilities of our diagnostic system are demonstrated with a Hall effect thruster SPT-100D EM1.

  1. Note: An advanced in situ diagnostic system for characterization of electric propulsion thrusters and ion beam sources.

    PubMed

    Bundesmann, C; Tartz, M; Scholze, F; Leiter, H J; Scortecci, F; Gnizdor, R Y; Neumann, H

    2010-04-01

    We present an advanced diagnostic system for in situ characterization of electric propulsion thrusters and ion beam sources. The system uses a high-precision five-axis positioning system with a modular setup and the following diagnostic tools: a telemicroscopy head for optical imaging, a triangular laser head for surface profile scanning, a pyrometer for temperature scanning, a Faraday probe for current density mapping, and an energy-selective mass spectrometer for beam characterization (energy and mass distribution, composition). The capabilities of our diagnostic system are demonstrated with a Hall effect thruster SPT-100D EM1. PMID:20441379

  2. Implementation and verification of a hybrid performance and impedance model of gridded radio-frequency ion thrusters

    NASA Astrophysics Data System (ADS)

    Volkmar, Chris; Ricklefs, Ubbo

    2015-10-01

    In this paper, we show the development steps for an iterative performance and impedance model of gridded radio-frequency (RF) ion thrusters. The input parameters are equivalent to those of the real propulsion system; i.e., coil current, propellant mass flow, and extraction grid voltages. Therefore, the model is easily validated and verified by experimental data and can furthermore be used to optimize the overall thruster performance. The model predicts volume-averaged plasma parameters such as electron temperature, conductivity, total pressure, and ionization fraction as well as thruster performance data like generated thrust, specific impulse, and mass and electrical efficiency. The above mentioned plasma parameters are obtained as functions of the discharge chamber's geometry by using a charge balance equation that relates generated ions to ions lost at the chamber's walls. The plasma related quantities influence the electromagnetic field penetration which is here evaluated by means of a diffusion equation for the vector potential. The vector potential is obtained by a 3D Finite-Difference-Method on a cubic and rectangular grid which, in principle, offers the opportunity to have arbitrary plasma chamber and coil geometries. An actual ion thruster geometry is evaluated in this study in favor of experimental verification of the numerically obtained data. The thruster's coil generates highly asymmetric electromagnetic fields which motivates the use of a three-dimensional solver. A dissipation model based on Ohm's law and Poynting's theorem is used to determine the absorbed power within the discharge. To obtain a stable solution, the electromagnetically absorbed power is equated to the power lost due to elastic and inelastic collisions and electron wall flux. This whole process is iteratively repeated until the degree of ionization converges within a given threshold. To relate the stable discharge parameters to the thruster performance an extraction model based on a

  3. Closed Loop solar array-ion thruster system with power control circuitry

    NASA Technical Reports Server (NTRS)

    Gruber, R. P. (Inventor)

    1979-01-01

    A power control circuit connected between a solar array and an ion thruster receives voltage and current signals from the solar array. The control circuit multiplies the voltage and current signals together to produce a power signal which is differentiated with respect to time. The differentiator output is detected by a zero crossing detector and, after suitable shaping, the detector output is phase compared with a clock in a phase demodulator. An integrator receives no output from the phase demodulator when the operating point is at the maximum power but is driven toward the maximum power point for non-optimum operation. A ramp generator provides minor variations in the beam current reference signal produced by the integrator in order to obtain the first derivative of power.

  4. Optimized electrode placement along the channel of a Hall thruster for ion focusing

    SciTech Connect

    Qing, Shaowei; E, Peng; Xia, Guangqing; Tang, Ming-Chun; Duan, Ping

    2014-01-21

    An optimal placement of the segmented electrode for increasing the lifetime of the Aton-type Hall thruster, i.e., reducing the plume divergence, is demonstrated using a 2D3V fully kinetic Particle-in-Cell method. Segmented electrodes, embedded near the ionization region of non-segmented case and biased above anode potential, lead to an increased separation between the ionization and acceleration regions and the formation of an efficient acceleration electric field configuration as potential lens. Due to this electrode placement, the sheath near the ceramic walls of the acceleration region is collapsed and an excellent ion beam focusing is demonstrated. The potential contour pockets around the electrodes and the sheath collapse phenomenon are also discussed.

  5. Pulse ignition characterization of mercury ion thruster hollow cathode using an improved pulse ignitor

    NASA Technical Reports Server (NTRS)

    Wintucky, E. G.; Gruber, R. P.

    1978-01-01

    An investigation of the high voltage pulse ignition characteristics of the 8 cm mercury ion thruster neutralizer cathode identified a low rate of voltage rise and long pulse duration as desirable factors for reliable cathode starting. Cathode starting breakdown voltages were measured over a range of mercury flow rates and tip heater powers for pulses with five different rates of voltage rise. Breakdown voltage requirements for the fastest rising pulse (2.5 to 3.0 kV/micro sec) were substantially higher (2 kV or more) than for the slowest rising pulse (0.3 to 0.5 kV/micro sec) for the same starting conditions. Also described is an improved, low impedance pulse ignitor circuit which reduces power losses and eliminates problems with control and packaging associated with earlier designs.

  6. Solutions for discharge chamber sputtering and anode deposit spalling in small mercury ion thrusters

    NASA Technical Reports Server (NTRS)

    Power, J. L.; Hiznay, D. J.

    1975-01-01

    Proposed solutions to the problems of sputter erosion and sputtered material spalling in the discharge chamber of small mercury ion thrusters are presented. The accelerated life test evaluated three such proposed solutions: (1) the use of tantalum as a single low sputter yield material for the exposed surfaces of the discharge chamber components subject to sputtering, (2) the use of a severely roughened anode surface to improve the adhesion of the sputter-deposited coating, and (3) the use of a wire cloth anode surface in order to limit the size of any coating flakes which might spall from it. Because of the promising results obtained in the accelerated life test with anode surfaces roughened by grit-blasting, experiments were carried out to optimize the grit-blasting procedure. The experimental results and an optimal grit-blasting procedure are presented.

  7. Transport of ion beam in an annular magnetically expanding helicon double layer thruster

    SciTech Connect

    Zhang, Yunchao Charles, Christine; Boswell, Rod

    2014-06-15

    An ion beam generated by an annular double layer has been measured in a helicon thruster, which sustains a magnetised low-pressure (5.0 × 10{sup −4} Torr) argon plasma at a constant radio-frequency (13.56 MHz) power of 300 W. After the ion beam exits the annular structure, it merges into a solid centrally peaked structure in the diffusion chamber. As the annular ion beam moves towards the inner region in the diffusion chamber, a reversed-cone plasma wake (with a half opening angle of about 30°) is formed. This process is verified by measuring both the radial and axial distributions of the beam potential and beam current. The beam potential changes from a two-peak radial profile (maximum value ∼ 30 V, minimum value ∼ 22.5 V) to a flat (∼28 V) along the axial direction; similarly, the beam current changes from a two-peak to one-peak radial profile and the maximum value decreases by half. The inward cross-magnetic-field motion of the beam ions is caused by a divergent electric field in the source. Cross-field diffusion of electrons is also observed in the inner plume and is determined as being of non-ambipolar origin.

  8. Operating a magnetic nozzle helicon thruster with strong magnetic field

    NASA Astrophysics Data System (ADS)

    Takahashi, Kazunori; Komuro, Atsushi; Ando, Akira

    2016-03-01

    A pulsed axial magnetic field up to ˜2.8 kG is applied to a 26-mm-inner-diameter helicon plasma thruster immersed in a vacuum chamber, and the thrust is measured using a pendulum target. The pendulum is located 30-cm-downstream of the thruster, and the thruster rf power and argon flow rate are fixed at 1 kW and 70 sccm (which gives a chamber pressure of 0.7 mTorr). The imparted thrust increases as the applied magnetic field is increased and saturates at a maximum value of ˜9.5 mN for magnetic field above ˜2 kG. At the maximum magnetic field, it is demonstrated that the normalized plasma density, and the ion flow energy in the magnetic nozzle, agree within ˜50% and of 10%, respectively, with a one-dimensional model that ignores radial losses from the nozzle. This magnetic nozzle model is combined with a simple global model of the thruster source that incorporates an artificially controlled factor α, to account for radial plasma losses to the walls, where α = 0 and 1 correspond to zero losses and no magnetic field, respectively. Comparison between the experiments and the model implies that the radial losses in the thruster source are experimentally reduced by the applied magnetic field to about 10% of that obtained from the no magnetic field model.

  9. A box corer 30 cm square and 4 m long

    NASA Astrophysics Data System (ADS)

    Foster Johnson, Richard

    1988-08-01

    To collect long, large-volume cores of diatomaceous sediment on the continental shelf off Namibia, we built a box corer that is 30 cm square and 4 m long. This paper describes the corer and the tools and procedures for sampling the covers. In terms of volume of sediment recovered in a single penetration, the corer may be among the largest ever used. The corer itself consists of a barrel with segments 20 cm long, a release mechanism at top and a thin fiberglass curtain at bottom. To support the large load of sediment without distortion, the curtain follows a semi-circular track, concave upward. During assembly and disassembly, the corer hangs vertically over the side, enabling it to operate from a relatively small ship. To sample the core, an extruding device pushes the sediment from each segment into boxes made of polyurethane foam. Ashore a specially designed jig helps slice these boxes into vertical slabs as thin as 1 cm. In the 6 days at sea that we had to test the corer and collect samples for the project, we took 9 cores, the longest of which was 3 m.

  10. The Investigation Of Carbon Contamination And Sputtering Effects Of Xenon Ion Thrusters

    NASA Technical Reports Server (NTRS)

    Prak, Moline K.

    2004-01-01

    The Electro-Physics Branch of the NASA Glenn Research Center investigates the effect of atomic oxygen, environmental durability of high performance power materials and surfaces, and low earth orbit. One of its current projects involves the analysis of ion thrusters. Ion thrusters are devices that initiate a beam of ions to a target area. The type of ion thruster that I have been working with this Summer of 2004 emits positively charged Xenon (Xe(+)) atoms through two grids, the screen grid and the accelerator grid, after it enters an ionization chamber. Insulators are used to mechanically hold and separate these two grids. A propellant isolator, an instrument that closely resembles insulators, is placed in front of the ionization chamber. Both the insulator and isolator are made with a ceramic compound and filled with insulating beads. The main difference between the two devices is that the propellant isolator allows gas to flow through, in this case, the gas is Xe(+) and the insulators do not. In order to avoid carbon deposits and other contaminating chemicals to settle on the insulators and propellant isolator, a metal shadow shield is placed around them. These shadow shields function as a protectant and can be shaped in numerous configurations. Part of my job responsibility this summer is to investigate the effectiveness of different shadow shields that are utilized on three different ion engines: the NSTAR (NASA Solar Electric Propulsion Technology Application Readiness), JIMO (Jupiter Icy Moons Orbiter), and NEXIS (Nuclear Electric Xenon Ion System). Using calculus and other mathematical tactics, I was asked to find the total flux of carbon contamination that was able to pass the protectant shadow shield. I familiarized myself with the software program, MathCad2004, to help perform some mathematical computations such as complex integration. Another method of studying the probability of contamination is by experimental simulation. After attaining the precise

  11. Cylindrical geometry hall thruster

    DOEpatents

    Raitses, Yevgeny; Fisch, Nathaniel J.

    2002-01-01

    An apparatus and method for thrusting plasma, utilizing a Hall thruster with a cylindrical geometry, wherein ions are accelerated in substantially the axial direction. The apparatus is suitable for operation at low power. It employs small size thruster components, including a ceramic channel, with the center pole piece of the conventional annular design thruster eliminated or greatly reduced. Efficient operation is accomplished through magnetic fields with a substantial radial component. The propellant gas is ionized at an optimal location in the thruster. A further improvement is accomplished by segmented electrodes, which produce localized voltage drops within the thruster at optimally prescribed locations. The apparatus differs from a conventional Hall thruster, which has an annular geometry, not well suited to scaling to small size, because the small size for an annular design has a great deal of surface area relative to the volume.

  12. Ion beamlet steering for two-grid electrostatic thrusters. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Homa, J. M.

    1984-01-01

    An experimental study of ion beamlet steering in which the direction of beamlets emitted from a two grid aperture system is controlled by relative translation of the grids, is described. The results can be used to design electrostatic accelerating devices for which the direction and focus of emerging beamlets are important. Deflection and divergence angle data are presented for two grid systems as a function of the relative lateral displacement of the holes in these grids. At large displacements, accelerator grid impingements become excessive and this determines the maximum allowable displacement and as a result the useful range of beamlet deflection. Beamlet deflection is shown to vary linearly with grid offset angle over this range. The divergence of the beamlets is found to be unaffected by deflection over the useful range of beamlet deflection. The grids of a typical dished grid ion thruster are examined to determine the effects of thermally induced grid distortion and prescribed offsets of grid hole centerlines on the characteristics of the emerging beamlets. The results are used to determine the region on the grid surface where ion beamlet deflections exceed the useful range. Over this region high accelerator grid impingement currents and rapid grid erosion are predicted.

  13. Study of Ion Beam Forming Process in Electric Thruster Using 3D FEM Simulation

    NASA Astrophysics Data System (ADS)

    Huang, Tao; Jin, Xiaolin; Hu, Quan; Li, Bin; Yang, Zhonghai

    2015-11-01

    There are two algorithms to simulate the process of ion beam forming in electric thruster. The one is electrostatic steady state algorithm. Firstly, an assumptive surface, which is enough far from the accelerator grids, launches the ion beam. Then the current density is calculated by theory formula. Secondly these particles are advanced one by one according to the equations of the motions of ions until they are out of the computational region. Thirdly, the electrostatic potential is recalculated and updated by solving Poisson Equation. At the end, the convergence is tested to determine whether the calculation should continue. The entire process will be repeated until the convergence is reached. Another one is time-depended PIC algorithm. In a global time step, we assumed that some new particles would be produced in the simulation domain and its distribution of position and velocity were certain. All of the particles that are still in the system will be advanced every local time steps. Typically, we set the local time step low enough so that the particle needs to be advanced about five times to move the distance of the edge of the element in which the particle is located.

  14. Interaction of a solar array with an ion thruster due to the charge-exchange plasma

    NASA Technical Reports Server (NTRS)

    Kaufman, H. R.

    1976-01-01

    The generation of a charge exchange plasma by a thruster, the transport of this plasma to the solar array, and the interaction of the solar array with the plasma after it arrives are all described. The generation of this plasma is described accurately from thruster geometry and operating conditions. The transport of the charge exchange plasma was studied experimentally with a 15 cm thruster. A model was developed for simple thruster array configurations. A variety of experiments were surveyed for the interaction of the plasma at the solar array.

  15. Optimization of Cylindrical Hall Thrusters

    SciTech Connect

    Yevgeny Raitses, Artem Smirnov, Erik Granstedt, and Nathaniel J. Fi

    2007-07-24

    The cylindrical Hall thruster features high ionization efficiency, quiet operation, and ion acceleration in a large volume-to-surface ratio channel with performance comparable with the state-of-the-art annular Hall thrusters. These characteristics were demonstrated in low and medium power ranges. Optimization of miniaturized cylindrical thrusters led to performance improvements in the 50-200W input power range, including plume narrowing, increased thruster efficiency, reliable discharge initiation, and stable operation. __________________________________________________

  16. Optimization of Cylindrical Hall Thrusters

    SciTech Connect

    Yevgeny Raitses, Artem Smirnov, Erik Granstedt, and Nathaniel J. Fisch

    2007-11-27

    The cylindrical Hall thruster features high ionization efficiency, quiet operation, and ion acceleration in a large volume-to-surface ratio channel with performance comparable with the state-of-the-art annular Hall thrusters. These characteristics were demonstrated in low and medium power ranges. Optimization of miniaturized cylindrical thrusters led to performance improvements in the 50-200W input power range, including plume narrowing, increased thruster efficiency, reliable discharge initiation, and stable operation.

  17. A 15,000-hour cyclic endurance test of an 8-centimeter-diameter electron bombardment mercury ion thruster

    NASA Technical Reports Server (NTRS)

    Nakanishi, S.

    1976-01-01

    A laboratory model 8 cm thruster with improvements to minimize ion chamber erosion and peeling of sputtered metal was subjected to a cyclic endurance test for 15,040 hours and 460 restarts. A charted history of several thruster operating variables and off-normal events are shown in 600-hour segments at three points in the test. The transient behavior of these variables during a typical start-stop cycle is presented. Finding of the post-test inspection confirmed most of the expected results. Charge exchange ions caused normal accelerator grid erosion. The workability of the various design features was substantiated, and attainable improvements in propellant utilization efficiency should significantly reduce accelerator erosion.

  18. Development of Power Electronics for a 0.2kW-Class Ion Thruster

    NASA Technical Reports Server (NTRS)

    Pinero, Luis R.; Patterson, Michael J.; Bowers, Glen E.

    1997-01-01

    Applications that might benefit from low power ion propulsion systems include Earth-orbit magnetospheric mapping satellite constellations, low Earth-orbit satellites, geosynchronous Earth-orbit satellite north-south stationkeeping, and asteroid orbiters. These spacecraft are likely to have masses on the order of 50 to 500 kg with up to 0.5 kW of electrical power available. A power processing unit for a 0.2 kW-class ion thruster is currently under development for these applications. The first step in this effort is the development and testing of a 0.24 kW beam power supply. The design incorporates a 20 kHz full bridge topology with multiple secondaries connected in series to obtain outputs of up to 1200 V(sub DC). A current-mode control pulse width modulation circuit built using discrete components was selected for this application. An input voltage of 28 +/- 4 V(sub DC) was assumed, since the small spacecraft for which this system is targeted are anticipated to have unregulated low voltage busses. Efficiencies in excess of 91 percent were obtained at maximum output power. The total mass of the breadboard was less than 1.0 kg and the component mass was 0.53 kg. It is anticipated that a complete flight power processor could weigh about 2.0 kg.

  19. Measurement of xenon plasma properties in an ion thruster using laser Thomson scattering technique

    SciTech Connect

    Yamamoto, N.; Tomita, K.; Sugita, K.; Kurita, T.; Nakashima, H.; Uchino, K.

    2012-07-15

    This paper reports on the development of a method for measuring xenon plasma properties using the laser Thomson scattering technique, for application to ion engine system design. The thresholds of photo-ionization of xenon plasma were investigated and the number density of metastable atoms, which are photo-ionized by a probe laser, was measured using laser absorption spectroscopy, for several conditions. The measured threshold energy of the probe laser using a plano-convex lens with a focal length of 200 mm was 150 mJ for a xenon mass flow rate of 20 {mu}g/s and incident microwave power of 6 W; the probe laser energy was therefore set as 80 mJ. Electron number density was found to be (6.2 {+-} 0.4) Multiplication-Sign 10{sup 17} m{sup -3} and electron temperature was found to be 2.2 {+-} 0.4 eV at a xenon mass flow rate of 20 {mu}g/s and incident microwave power of 6 W. The threshold of the probe laser intensity against photo-ionization in a miniature xenon ion thruster is almost constant for various mass flow rates, since the ratio of population of the metastable atoms to the electron number density is little changed.

  20. Evaluation of High-Power Solar Electric Propulsion using Advanced Ion, Hall, MPD, and PIT Thrusters for Lunar and Mars Cargo Missions

    NASA Technical Reports Server (NTRS)

    Frisbee, Robert H.

    2006-01-01

    This paper presents the results of mission analyses that expose the advantages and disadvantages of high-power (MWe-class) Solar Electric Propulsion (SEP) for Lunar and Mars Cargo missions that would support human exploration of the Moon and Mars. In these analyses, we consider SEP systems using advanced Ion thrusters (the Xenon [Xe] propellant Herakles), Hall thrusters (the Bismuth [Bi] propellant Very High Isp Thruster with Anode Layer [VHITAL], magnetoplasmadynamic (MPD) thrusters (the Lithium [Li] propellant Advanced Lithium-Fed, Applied-field Lorentz Force Accelerator (ALFA2), and pulsed inductive thruster (PIT) (the Ammonia [NH3] propellant Nuclear-PIT [NuPIT]). The analyses include comparison of the advanced-technology propulsion systems (VHITAL, ALFA2, and NuPIT) relative to state-of-theart Ion (Herakles) propulsion systems and quantify the unique benefits of the various technology options such as high power-per-thruster (and/or high power-per-thruster packaging volume), high specific impulse (Isp), high-efficiency, and tankage mass (e.g., low tankage mass due to the high density of bismuth propellant). This work is based on similar analyses for Nuclear Electric Propulsion (NEP) systems.

  1. Observation of a high-energy tail in ion energy distribution in the cylindrical Hall thruster plasma

    SciTech Connect

    Lim, Youbong; Kim, Holak; Choe, Wonho Lee, Seung Hun; Seon, Jongho; Lee, Hae June

    2014-10-15

    A novel method is presented to determine populations and ion energy distribution functions (IEDFs) of individual ion species having different charge states in an ion beam from the measured spectrum of an E × B probe. The inversion of the problem is performed by adopting the iterative Tikhonov regularization method with the characteristic matrices obtained from the calculated ion trajectories. In a cylindrical Hall thruster plasma, an excellent agreement is observed between the IEDFs by an E × B probe and those by a retarding potential analyzer. The existence of a high-energy tail in the IEDF is found to be mainly due to singly charged Xe ions, and is interpreted in terms of non-linear ion acceleration.

  2. Observation of a high-energy tail in ion energy distribution in the cylindrical Hall thruster plasma

    NASA Astrophysics Data System (ADS)

    Lim, Youbong; Kim, Holak; Choe, Wonho; Lee, Seung Hun; Seon, Jongho; Lee, Hae June

    2014-10-01

    A novel method is presented to determine populations and ion energy distribution functions (IEDFs) of individual ion species having different charge states in an ion beam from the measured spectrum of an E × B probe. The inversion of the problem is performed by adopting the iterative Tikhonov regularization method with the characteristic matrices obtained from the calculated ion trajectories. In a cylindrical Hall thruster plasma, an excellent agreement is observed between the IEDFs by an E × B probe and those by a retarding potential analyzer. The existence of a high-energy tail in the IEDF is found to be mainly due to singly charged Xe ions, and is interpreted in terms of non-linear ion acceleration.

  3. Measurements of electron density and temperature in a miniature microwave discharge ion thruster using laser Thomson scattering technique

    NASA Astrophysics Data System (ADS)

    Yamamoto, N.; Tomita, K.; Yamasaki, N.; Tsuru, T.; Ezaki, T.; Kotani, Y.; Uchino, K.; Nakashima, H.

    2010-08-01

    In order to improve the thrust performance of a miniature microwave discharge ion thruster, the relationship between electron number density/temperature and operational conditions, mass flow rate, incident microwave power and magnetic field strength were measured by means of laser Thomson scattering. A photon counting method and a triple grating spectrometer were used against a small Thomson scattering signal and a strong stray laser light. Electron number density increased with incident microwave power and was saturated at critical incident microwave power; it was about 1.2 × 1018 m-3 at incident microwave power >8 W. In addition, electron number density increased with mass flow rate and became saturated; it was about 1.7 × 1018 m-3 at mass flow rate > 0.04 mg s-1. The electron number density gradually increased with an increase in the number of magnets, i.e. magnetic field strength. There was a sudden jump at thirteen magnets, although the thruster failed to ignite at fourteen magnets. This is because there is an optimum distance between the antenna and the electron cyclotron resonance layer. These results suggest that future improvement in thrust efficiency in miniature microwave discharge ion thrusters may come from the fine adjustment of the magnetic field configuration inside the discharge chamber.

  4. Electron temperature measurement in Maxwellian non-isothermal beam plasma of an ion thruster

    SciTech Connect

    Zhang, Zun; Tang, Haibin Kong, Mengdi; Zhang, Zhe; Ren, Junxue

    2015-02-15

    Published electron temperature profiles of the beam plasma from ion thrusters reveal many divergences both in magnitude and radial variation. In order to know exactly the radial distributions of electron temperature and understand the beam plasma characteristics, we applied five different experimental approaches to measure the spatial profiles of electron temperature and compared the agreement and disagreement of the electron temperature profiles obtained from these techniques. Experimental results show that the triple Langmuir probe and adiabatic poly-tropic law methods could provide more accurate space-resolved electron temperature of the beam plasma than other techniques. Radial electron temperature profiles indicate that the electrons in the beam plasma are non-isothermal, which is supported by a radial decrease (∼2 eV) of electron temperature as the plume plasma expands outward. Therefore, the adiabatic “poly-tropic law” is more appropriate than the isothermal “barometric law” to be used in electron temperature calculations. Moreover, the calculation results show that the electron temperature profiles derived from the “poly-tropic law” are in better agreement with the experimental data when the specific heat ratio (γ) lies in the range of 1.2-1.4 instead of 5/3.

  5. Electron temperature measurement in Maxwellian non-isothermal beam plasma of an ion thruster

    NASA Astrophysics Data System (ADS)

    Zhang, Zun; Tang, Haibin; Kong, Mengdi; Zhang, Zhe; Ren, Junxue

    2015-02-01

    Published electron temperature profiles of the beam plasma from ion thrusters reveal many divergences both in magnitude and radial variation. In order to know exactly the radial distributions of electron temperature and understand the beam plasma characteristics, we applied five different experimental approaches to measure the spatial profiles of electron temperature and compared the agreement and disagreement of the electron temperature profiles obtained from these techniques. Experimental results show that the triple Langmuir probe and adiabatic poly-tropic law methods could provide more accurate space-resolved electron temperature of the beam plasma than other techniques. Radial electron temperature profiles indicate that the electrons in the beam plasma are non-isothermal, which is supported by a radial decrease (˜2 eV) of electron temperature as the plume plasma expands outward. Therefore, the adiabatic "poly-tropic law" is more appropriate than the isothermal "barometric law" to be used in electron temperature calculations. Moreover, the calculation results show that the electron temperature profiles derived from the "poly-tropic law" are in better agreement with the experimental data when the specific heat ratio (γ) lies in the range of 1.2-1.4 instead of 5/3.

  6. Electron temperature measurement in Maxwellian non-isothermal beam plasma of an ion thruster.

    PubMed

    Zhang, Zun; Tang, Haibin; Kong, Mengdi; Zhang, Zhe; Ren, Junxue

    2015-02-01

    Published electron temperature profiles of the beam plasma from ion thrusters reveal many divergences both in magnitude and radial variation. In order to know exactly the radial distributions of electron temperature and understand the beam plasma characteristics, we applied five different experimental approaches to measure the spatial profiles of electron temperature and compared the agreement and disagreement of the electron temperature profiles obtained from these techniques. Experimental results show that the triple Langmuir probe and adiabatic poly-tropic law methods could provide more accurate space-resolved electron temperature of the beam plasma than other techniques. Radial electron temperature profiles indicate that the electrons in the beam plasma are non-isothermal, which is supported by a radial decrease (∼2 eV) of electron temperature as the plume plasma expands outward. Therefore, the adiabatic "poly-tropic law" is more appropriate than the isothermal "barometric law" to be used in electron temperature calculations. Moreover, the calculation results show that the electron temperature profiles derived from the "poly-tropic law" are in better agreement with the experimental data when the specific heat ratio (γ) lies in the range of 1.2-1.4 instead of 5/3. PMID:25725841

  7. The evolutionary development of high specific impulse electric thruster technology

    NASA Technical Reports Server (NTRS)

    Sovey, James S.; Hamley, John A.; Patterson, Michael J.; Rawlin, Vincent K.; Myers, Roger M.

    1992-01-01

    Electric propulsion flight and technology demonstrations conducted in the USA, Europe, Japan, China, and USSR are reviewed with reference to the major flight qualified electric propulsion systems. These include resistojets, ion thrusters, ablative pulsed plasma thrusters, stationary plasma thrusters, pulsed magnetoplasmic thrusters, and arcjets. Evolutionary mission applications are presented for high specific impulse electric thruster systems. The current status of arcjet, ion, and magnetoplasmadynamic thrusters and their associated power processor technologies are summarized.

  8. A 2000-Hour Durability Test of a 5-Centimeter Diameter Mercury Bombardment Ion Thruster

    NASA Technical Reports Server (NTRS)

    Nakanishi, S.; Finke, R. G.

    1972-01-01

    A 2000-hour durability test of a modified Hughes SIT-5 (Structurally Integrated Thruster, 5 cm) was conducted at the Lewis Research Center. The thruster operated with a translating screen thrust vector grid locked in position for 10 deg beam deflection. The test was essentially continuous except for seven stoppages of beam current. The neutralizer keeper voltage and thruster floating potential increased slightly with time. Performance profiles and maps of thruster characteristics were obtained at 453 and 2023 hours into the test. Overall efficiency was nearly constant at 31 - 32 percent, and operating characteristics were similar at both points in the test. A post-shutdown inspection showed negligible erosion damage to the accelerator and cathode baffle. Some erosion was found in the aperture of the neutralizer cathode.

  9. Effect of magnetic field configuration on the multiply charged ion and plume characteristics in Hall thruster plasmas

    SciTech Connect

    Kim, Holak; Lim, Youbong; Choe, Wonho Park, Sanghoo; Seon, Jongho

    2015-04-13

    Multiply charged ions and plume characteristics in Hall thruster plasmas are investigated with regard to magnetic field configuration. Differences in the plume shape and the fraction of ions with different charge states are demonstrated by the counter-current and co-current magnetic field configurations, respectively. The significantly larger number of multiply charged and higher charge state ions including Xe{sup 4+} are observed in the co-current configuration than in the counter-current configuration. The large fraction of multiply charged ions and high ion currents in this experiment may be related to the strong electron confinement, which is due to the strong magnetic mirror effect in the co-current magnetic field configuration.

  10. Characterization of 8-cm engineering model thruster

    NASA Technical Reports Server (NTRS)

    Williamson, W. S.

    1984-01-01

    Development of 8 cm ion thruster technology which was conducted in support of the Ion Auxiliary Propulsion System (IAPS) flight contract (Contract NAS3-21055) is discussed. The work included characterization of thruster performance, stability, and control; a study of the effects of cathode aging; environmental qualification testing; and cyclic lifetesting of especially critical thruster components.

  11. The 5200 cycle test of an 8-cm diameter Hg ion thruster

    NASA Technical Reports Server (NTRS)

    Mantenieks, M. A.; Wintucky, E. G.

    1978-01-01

    An accelerated cycle test was conducted in which an 8-cm Engineering Model Thruster (EMT) prototype successfully completed 5200 on-off cycles and a total of more than 1300hours of thruster operation at a 4.5 mN thrust level. Cathode tip heater powers required for starting and keeper voltages remained well within acceptable limits. The discharge chamber utilization and electrical efficiency were nearly constant over the duration of the test. It was concluded that on-off cyclic operation by itself does not appreciably degrade starting capability or performance of the 8-cm EMT.

  12. Hall Thruster Technology for NASA Science Missions

    NASA Technical Reports Server (NTRS)

    Manzella, David; Oh, David; Aadland, Randall

    2005-01-01

    The performance of a prototype Hall thruster designed for Discovery-class NASA science mission applications was evaluated at input powers ranging from 0.2 to 2.9 kilowatts. These data were used to construct a throttle profile for a projected Hall thruster system based on this prototype thruster. The suitability of such a Hall thruster system to perform robotic exploration missions was evaluated through the analysis of a near Earth asteroid sample return mission. This analysis demonstrated that a propulsion system based on the prototype Hall thruster offers mission benefits compared to a propulsion system based on an existing ion thruster.

  13. Electric thruster research

    NASA Technical Reports Server (NTRS)

    Kaufman, H. R.; Robinson, R. S.

    1982-01-01

    It has been customary to assume that ions flow nearly equally in all directions from the ion production region within an electron-bombardment discharge chamber. In general, the electron current through a magnetic field can alter the electron density, and hence the ion density, in such a way that ions tend to be directed away from the region bounded by the magnetic field. When this mechanism is understood, it becomes evident that many past discharge chamber designs have operated with a preferentially directed flow of ions. Thermal losses were calculated for an oxide-free hollow cathode. At low electron emissions, the total of the radiation and conduction losses agreed with the total discharge power. At higher emissions, though, the plasma collisions external to the cathode constituted an increasingly greater fraction of the discharge power. Experimental performance of a Hall-current thruster was adversely affected by nonuniformities in the magnetic field, produced by the cathode heating current. The technology of closed-drift thrusters was reviewed. The experimental electron diffusion in the acceleration channel was found to be within about a factor of 3 of the Bohm value for the better thruster designs at most operating conditions. Thruster efficiencies of about 0.5 appear practical for the 1000 to 2000 s range of specific impulse. Lifetime information is limited, but values of several thousands of hours should be possible with anode layer thrusters operated or = to 2000 s.

  14. Measurement of axial neutral density profiles in a microwave discharge ion thruster by laser absorption spectroscopy with optical fiber probes.

    PubMed

    Tsukizaki, Ryudo; Koizumi, Hiroyuki; Nishiyama, Kazutaka; Kuninaka, Hitoshi

    2011-12-01

    In order to reveal the physical processes taking place within the "μ10" microwave discharge ion thruster, internal plasma diagnosis is indispensable. However, the ability of metallic probes to access microwave plasmas biased at a high voltage is limited from the standpoints of the disturbance created in the electric field and electrical isolation. In this study, the axial density profiles of excited neutral xenon were successfully measured under ion beam acceleration by using a novel laser absorption spectroscopy system. The target of the measurement was metastable Xe I 5p(5)((2)P(0) (3/2))6s[3/2](0) (2) which absorbed a wavelength of 823.16 nm. Signals from laser absorption spectroscopy that swept a single-mode optical fiber probe along the line of sight were differentiated and converted into axial number densities of the metastable neutral particles in the plasma source. These measurements revealed a 10(18) m(-3) order of metastable neutral particles situated in the waveguide, which caused two different modes during the operation of the μ10 thruster. This paper reports a novel spectroscopic measurement system with axial resolution for microwave plasma sources utilizing optical fiber probes.

  15. Measurement of axial neutral density profiles in a microwave discharge ion thruster by laser absorption spectroscopy with optical fiber probes

    SciTech Connect

    Tsukizaki, Ryudo; Koizumi, Hiroyuki; Nishiyama, Kazutaka; Kuninaka, Hitoshi

    2011-12-15

    In order to reveal the physical processes taking place within the ''{mu}10'' microwave discharge ion thruster, internal plasma diagnosis is indispensable. However, the ability of metallic probes to access microwave plasmas biased at a high voltage is limited from the standpoints of the disturbance created in the electric field and electrical isolation. In this study, the axial density profiles of excited neutral xenon were successfully measured under ion beam acceleration by using a novel laser absorption spectroscopy system. The target of the measurement was metastable Xe I 5p{sup 5}({sup 2}P{sup 0}{sub 3/2})6s[{sup 3}/{sub 2}]{sup 0}{sub 2} which absorbed a wavelength of 823.16 nm. Signals from laser absorption spectroscopy that swept a single-mode optical fiber probe along the line of sight were differentiated and converted into axial number densities of the metastable neutral particles in the plasma source. These measurements revealed a 10{sup 18} m{sup -3} order of metastable neutral particles situated in the waveguide, which caused two different modes during the operation of the {mu}10 thruster. This paper reports a novel spectroscopic measurement system with axial resolution for microwave plasma sources utilizing optical fiber probes.

  16. Experimental Demonstration of Microwave Signal/Electric Thruster Plasma Interaction Effects

    NASA Technical Reports Server (NTRS)

    Zaman, Afroz J.; Lambert, Kevin M.; Curran, Frank M.

    1995-01-01

    An experiment was designed and conducted in the Electric Propulsion Laboratory of NASA Lewis Research Center to assess the impact of ion thruster exhaust plasma plume on electromagnetic signal propagation. A microwave transmission experiment was set up inside the propulsion test bed using a pair of broadband horn antennas and a 30 cm 2.3 kW ion thruster. Frequency of signal propagation covered from 6.5 to 18 GHz range. The stainless steel test bed when enclosed can be depressurized to simulate a near vacuum environment. A pulsed CW system with gating hardware was utilized to eliminate multiple chamber reflections from the test signal. Microwave signal was transmitted and received between the two hours when the thruster was operating at a given power level in such a way that the signal propagation path crossed directly through the plume volume. Signal attenuation and phase shift due to the plume was measured for the entire frequency band. Results for this worst case configuration simulation indicate that the effects of the ion thruster plume on microwave signals is a negligible attenuation (within 0.15 dB) and a small phase shift (within 8 deg.). This paper describes the detailed experiment and presents some of the results.

  17. Fast Camera Imaging of Hall Thruster Ignition

    SciTech Connect

    C.L. Ellison, Y. Raitses and N.J. Fisch

    2011-02-24

    Hall thrusters provide efficient space propulsion by electrostatic acceleration of ions. Rotating electron clouds in the thruster overcome the space charge limitations of other methods. Images of the thruster startup, taken with a fast camera, reveal a bright ionization period which settles into steady state operation over 50 μs. The cathode introduces azimuthal asymmetry, which persists for about 30 μs into the ignition. Plasma thrusters are used on satellites for repositioning, orbit correction and drag compensation. The advantage of plasma thrusters over conventional chemical thrusters is that the exhaust energies are not limited by chemical energy to about an electron volt. For xenon Hall thrusters, the ion exhaust velocity can be 15-20 km/s, compared to 5 km/s for a typical chemical thruster

  18. 6 GHz Microwave Power-Beaming Demonstration with 6-kV Rectenna and Ion-Breeze Thruster

    NASA Astrophysics Data System (ADS)

    Cummings, T.; Janssen, J.; Karnesky, J.; Laks, D.; Santillo, M.; Strause, B.; Myrabo, L. N.; Alden, A.; Bouliane, P.; Zhang, M.

    2004-03-01

    On 14 April 2003 at the Communications Research Center (CRC) in Ottawa, Ontario, a 5.85-GHz transmitter beamed 3-kW of microwave power to a remote rectifying antenna (i.e., rectenna) that delivered 6-kV to a special `Ion-Breeze' Engine (IBE). Three of CRC's 26.5-cm by 31-cm rectennas were connected in series to provide the ~6-kV output. RPI's low-voltage IBE thrusters performed well in a ``world's first'' power-beaming demonstration with rectennas and endoatmospheric ion-propulsion engines. The successful tests were a low-tech, proof-of-concept demonstration for the future full-sized MicroWave Lightcraft (MWLC) and its air breathing `loiter' propulsion mode. Additional IBE experiments investigated the feasibility of producing flight control forces on the MWLC. The objective was to torque the charged hull for `pitch' or `roll' maneuvers. The torquing demonstration was entirely successful.

  19. Further study of the effect of the downstream plasma condition on accelerator grid erosion in an ion thruster

    NASA Technical Reports Server (NTRS)

    Peng, Xiaohang; Ruyten, Wilhelmus M.; Keefer, Dennis

    1992-01-01

    Further numerical results are presented of earlier particle-in-cell/Monte Carlo calculations of accelerator grid erosion in an ion thruster. A comparison between numerical and experimental results suggests that the accelerator grid impingement is primarily due to ions created far downstream from the accelerator grid. In particular, for the same experimental conditions as those of Monheiser and Wilbur at Colorado State University, it is found that a downstream plasma density of 2 x 10 exp 14/cu m is required to give the same ratio of accelerator grid impingement current to beam current (5 percent). For this condition, a potential hill is found in the downstream region of 2.5 V.

  20. A mercury flow meter for ion thruster testing. [response time, thermal sensitivity

    NASA Technical Reports Server (NTRS)

    Wilbur, P. J.

    1973-01-01

    The theory of operation of the thermal flow meter is presented, and a theoretical model is used to determine design parameters for a device capable of measuring mercury flows in the range of 0 to 5 gm/hr. Flow meter construction is described. Tests performed using a positive displacement mercury pump as well as those performed with the device in the feed line of an operating thruster are discussed. A flow meter response time of about a minute and a sensitivity of about 10 mv/gm/hr are demonstrated. Additional work to relieve a sensitivity of the device to variations in ambient temperature is indicated to improve its quantitative performance.

  1. Baffle aperture design study of hollow cathode equipped ion thrusters. M.S. Thesis Technical Report, 1 Dec. 1979 - 1 Oct. 1980

    NASA Technical Reports Server (NTRS)

    Brophy, J. R., Jr.; Wilbur, P. J.

    1980-01-01

    A simple theoretical model which can be used as an aid in the design of the baffle aperture region of a hollow cathode equipped ion thruster was developed. An analysis of the ion and electron currents in both the main and cathode discharge chambers is presented. From this analysis a model of current flow through the aperture, which is required as an input to the design model, was developed. This model was verified experimentally. The dominant force driving electrons through the aperture was the force due to the electrical potential gradient. The diffusion process was modeled according to the Bolm diffusion theory. A number of simplifications were made to limit the amount of detailed plasma information required as input to the model to facilitate the use of the model in thruster design. This simplified model gave remarkably consistant results with experimental results obtained with a given thruster geometry over substantial changes in operating conditions. The model was uncertain to about a factor of two for different thruster cathode region geometries. The design usefulness was limited by this factor of two uncertainty and by the accuracy to which the plasma parameters required as inputs to the model were specified.

  2. Fifteen cm mercury ion thruster research, 1976. [performance as effected by the use of shag optics at 33 v discharge voltage

    NASA Technical Reports Server (NTRS)

    Wilbur, P. J.

    1976-01-01

    Improvements in 15 cm diameter, SERT II, mercury ion thruster performance effected by the use of SHAG optics at 33 V discharge voltage were discussed. At a 200 eV/ion discharge power, 90 percent propellant utilization and 660 mA beam current condition a doubly-to-singly charged ion current ratio of about 4 percent was measured. Performance of the 15 cm multipole mercury thruster (optimized for length and the point of electron injection) was compared to that of divergent (SERT II) and cusped field designs and found to be comparable. The need for a magnetic baffle in the multipole thruster was identified and the preferred point of electron injection was at the upstream end of the discharge chamber. Results of preliminary tests on the effects of discharge voltage and total accelerating voltage on perveance and beam divergence characteristics of two grid ion optics were examined. Experimental data showing the effect of target temperature on sputtering rates in a mercury discharge environment were presented and a deficiency in the tests procedure was identified.

  3. Ion plume/S-band carrier interaction study

    NASA Technical Reports Server (NTRS)

    Stanton, P.

    1981-01-01

    A study was performed to determine the effects of a mercury ion thruster plume on an S-band telecommunication carrier. Experiments were carried out on a 30 cm thruster in a JPL test chamber. Results from simple analytical models were compared with the above measurements and major discrepancies were discovered. Modifications to the electron density model provided a qualitative explanation, but further work is necessary for a quantitative answer. The results indicate the effects of the plume, on S and X Band telecommunications will be minor, with the possible exception of critical angle blockage.

  4. Very high delta-V missions to the edge of the solar system and beyond enabled by the dual-stage 4-grid ion thruster concept

    NASA Astrophysics Data System (ADS)

    Bramanti, C.; Izzo, D.; Samaraee, T.; Walker, R.; Fearn, D.

    2009-04-01

    A new and innovative type of gridded ion thruster, the "Dual-Stage 4-Grid" or DS4G concept, has been proposed and its predicted high performance validated under an ESA research, development and test programme. The DS4G concept is able to operate at very high specific impulse and thrust density values well in excess of conventional 3-grid ion thrusters at the expense of a higher power-to-thrust ratio. This makes it a possible candidate for ambitious missions requiring very high delta-V capability and high power. Such missions include 100 kW-level multi-ton probes based on nuclear and solar electric propulsion (SEP) to distant Kuiper Belt Object and inner Oort cloud objects, and to the Local Interstellar medium. In this paper, the DS4G concept is introduced and its application to this mission class is investigated. Benefits of using the DS4G over conventional thrusters include reduced transfer time and increased payload mass, if suitably advanced lightweight power system technologies are developed. A mission-level optimisation is performed (launch, spacecraft system design and low-thrust trajectory combined) in order to find design solutions with minimum transfer time, maximum scientific payload mass, and to explore the influence of power system specific mass. It is found that the DS4G enables an 8-ton spacecraft with a payload mass of 400 kg, equipped with a 65 kW nuclear reactor with specific mass 25 kg/kW (e.g. Topaz-type with Brayton cycle conversion) to reach 200 AU in 23 years after an Earth escape launch by Ariane 5. In this scenario, the optimum specific impulse for the mission is over 10,000 s, which is well within the capabilities of a single 65 kW DS4G thruster. It is also found that an interstellar probe mission to 200 AU could be accomplished in 25 years using a "medium-term" SEP system with a lightweight 155 kW solar array (2 kg/kW specific mass) and thruster PPU (3.7 kg/kW) and an Earth escape launch on Ariane 5. In this case, the optimum specific

  5. Design and Performance of 40 cm Ion Optics

    NASA Technical Reports Server (NTRS)

    Soulas, George C.

    2001-01-01

    A 40 cm ion thruster is being developed at the NASA Glenn Research Center to obtain input power and propellant throughput capabilities of 10 kW and 550 kg. respectively. The technical approach here is a continuation of the "derating" technique used for the NSTAR ion thruster. The 40 cm ion thruster presently utilizes the NSTAR ion optics aperture geometry to take advantage of the large database of lifetime and performance data already available. Dome-shaped grids were chosen for the design of the 40 cm ion optics because this design is naturally suited for large-area ion optics. Ion extraction capabilities and electron backstreaming limits for the 40 cm ion optics were estimated by utilizing NSTAR 30 cm ion optics data. A preliminary service life assessment showed that the propellant throughput goal of 550 kg of xenon may be possible with molybdenum 40 cm ion optics. One 40 cm ion optics' set has been successfully fabricated to date. Additional ion optics' sets are presently being fabricated. Preliminary performance tests were conducted on a laboratory model 40 cm ion thruster.

  6. Modeling of life limiting phenomena in the discharge chamber of an electron bombardment ion thruster

    NASA Technical Reports Server (NTRS)

    Handoo, Arvind K.; Ray, Pradosh K.

    1991-01-01

    An experimental facility to study the low energy sputtering of metal surfaces with ions produced by an ion gun is described. The energy of the ions ranged from 10 to 500 eV. Cesium ions with energies from 100 to 500 eV were used initially to characterize the operation of the ion gun. Next, argon and xenon ions were used to measure the sputtering yields of cobalt (Co), Cadmium (Cd), and Chromium (Cr) at an operating temperature of 2x10(exp -5) Torr. The ion current ranged from 0.0135 micro-A at 500 eV. The targets were electroplated on a copper substrate. The surface density of the electroplated material was approx. 50 micro-g/sq cm. The sputtered atoms were collected on an aluminum foil surrounding the target. Radioactive tracers were used to measure the sputtering yields. The sputtering yields of Cr were found to be much higher than those of Co and Cd. The yields of Co and Cd were comparable, with Co providing the higher yields. Co and Cd targets were observed to sputter at energies as low as 10 eV for both argon and xenon ions. The Cr yields could not be measured below 20 eV for argon ions and 15 eV for xenon ions. On a linear scale the yield energy curves near the threshold energies exhibit a concave nature.

  7. The Impact of Back-Sputtered Carbon on the Accelerator Grid Wear Rates of the NEXT and NSTAR Ion Thrusters

    NASA Technical Reports Server (NTRS)

    Soulas, George C.

    2013-01-01

    A study was conducted to quantify the impact of back-sputtered carbon on the downstream accelerator grid erosion rates of the NEXT (NASA's Evolutionary Xenon Thruster) Long Duration Test (LDT1). A similar analysis that was conducted for the NSTAR (NASA's Solar Electric Propulsion Technology Applications Readiness Program) Life Demonstration Test (LDT2) was used as a foundation for the analysis developed herein. A new carbon surface coverage model was developed that accounted for multiple carbon adlayers before complete surface coverage is achieved. The resulting model requires knowledge of more model inputs, so they were conservatively estimated using the results of past thin film sputtering studies and particle reflection predictions. In addition, accelerator current densities across the grid were rigorously determined using an ion optics code to determine accelerator current distributions and an algorithm to determine beam current densities along a grid using downstream measurements. The improved analysis was applied to the NSTAR test results for evaluation. The improved analysis demonstrated that the impact of back-sputtered carbon on pit and groove wear rate for the NSTAR LDT2 was negligible throughout most of eroded grid radius. The improved analysis also predicted the accelerator current density for transition from net erosion to net deposition considerably more accurately than the original analysis. The improved analysis was used to estimate the impact of back-sputtered carbon on the accelerator grid pit and groove wear rate of the NEXT Long Duration Test (LDT1). Unlike the NSTAR analysis, the NEXT analysis was more challenging because the thruster was operated for extended durations at various operating conditions and was unavailable for measurements because the test is ongoing. As a result, the NEXT LDT1 estimates presented herein are considered preliminary until the results of future posttest analyses are incorporated. The worst-case impact of carbon back

  8. The Impact of Back-Sputtered Carbon on the Accelerator Grid Wear Rates of the NEXT and NSTAR Ion Thrusters

    NASA Technical Reports Server (NTRS)

    Soulas, George C.

    2013-01-01

    A study was conducted to quantify the impact of back-sputtered carbon on the downstream accelerator grid erosion rates of the NASA's Evolutionary Xenon Thruster (NEXT) Long Duration Test (LDT1). A similar analysis that was conducted for the NASA's Solar Electric Propulsion Technology Applications Readiness Program (NSTAR) Life Demonstration Test (LDT2) was used as a foundation for the analysis developed herein. A new carbon surface coverage model was developed that accounted for multiple carbon adlayers before complete surface coverage is achieved. The resulting model requires knowledge of more model inputs, so they were conservatively estimated using the results of past thin film sputtering studies and particle reflection predictions. In addition, accelerator current densities across the grid were rigorously determined using an ion optics code to determine accelerator current distributions and an algorithm to determine beam current densities along a grid using downstream measurements. The improved analysis was applied to the NSTAR test results for evaluation. The improved analysis demonstrated that the impact of back-sputtered carbon on pit and groove wear rate for the NSTAR LDT2 was negligible throughout most of eroded grid radius. The improved analysis also predicted the accelerator current density for transition from net erosion to net deposition considerably more accurately than the original analysis. The improved analysis was used to estimate the impact of back-sputtered carbon on the accelerator grid pit and groove wear rate of the NEXT Long Duration Test (LDT1). Unlike the NSTAR analysis, the NEXT analysis was more challenging because the thruster was operated for extended durations at various operating conditions and was unavailable for measurements because the test is ongoing. As a result, the NEXT LDT1 estimates presented herein are considered preliminary until the results of future post-test analyses are incorporated. The worst-case impact of carbon

  9. Improving the Total Impulse Capability of the NSTAR Ion Thruster With Thick-Accelerator-Grid Ion Optics

    NASA Technical Reports Server (NTRS)

    Soulas, George C.

    2001-01-01

    The results of performance tests with thick-accelerator-grid (TAG) ion optics are presented. TAG ion optics utilize a 50 percent thicker accelerator grid to double ion optics' service life. NSTAR ion optics were also tested to provide a baseline performance for comparison. Impingement-limited total voltages for the TAG ion optics were only 0 to 15 V higher than those of the NSTAR ion optics. Electron backstreaming limits for the TAG ion optics were 3 to 9 V higher than those for the NSTAR optics due to the increased accelerator grid thickness for the TAG ion optics. Screen grid ion transparencies for the TAG ion optics were only about 2 percent lower than those for the NSTAR optics, reflecting the lower physical screen grid open area fraction of the TAG ion optics. Accelerator currents for the TAG ion optics were 19 to 43 percent greater than those for the NSTAR ion optics due, in part, to a sudden increase in accelerator current during TAG ion optics' performance tests for unknown reasons and to the lower-than-nominal accelerator aperture diameters. Beam divergence half-angles that enclosed 95 percent of the total beam current and beam divergence thrust correction factors for the TAG ion optics were within 2 degrees and 1 percent, respectively, of those for the NSTAR ion optics.

  10. Inert gas thrusters

    NASA Technical Reports Server (NTRS)

    Kaufman, H. R.; Robinson, R. S.

    1979-01-01

    Inert gas thrusters considered for space propulsion systems were investigated. Electron diffusion across a magnetic field was examined utilizing a basic model. The production of doubly charged ions was correlated using only overall performance parameters. The use of this correlation is therefore possible in the design stage of large gas thrusters, where detailed plasma properties are not available. Argon hollow cathode performance was investigated over a range of emission currents, with the positions of the inert, keeper, and anode varied. A general trend observed was that the maximum ratio of emission to flow rate increased at higher propellant flow rates. It was also found that an enclosed keeper enhances maximum cathode emission at high flow rates. The maximum cathode emission at a given flow rate was associated with a noisy high voltage mode. Although this mode has some similarities to the plume mode found at low flows and emissions, it is encountered by being initially in the spot mode and increasing emission. A detailed analysis of large, inert-gas thruster performance was carried out. For maximum thruster efficiency, the optimum beam diameter increases from less than a meter at under 2000 sec specific impulse to several meters at 10,000 sec. The corresponding range in input power ranges from several kilowatts to megawatts.

  11. Helical plasma thruster

    SciTech Connect

    Beklemishev, A. D.

    2015-10-15

    A new scheme of plasma thruster is proposed. It is based on axial acceleration of rotating magnetized plasmas in magnetic field with helical corrugation. The idea is that the propellant ionization zone can be placed into the local magnetic well, so that initially the ions are trapped. The E × B rotation is provided by an applied radial electric field that makes the setup similar to a magnetron discharge. Then, from the rotating plasma viewpoint, the magnetic wells of the helically corrugated field look like axially moving mirror traps. Specific shaping of the corrugation can allow continuous acceleration of trapped plasma ions along the magnetic field by diamagnetic forces. The accelerated propellant is expelled through the expanding field of magnetic nozzle. By features of the acceleration principle, the helical plasma thruster may operate at high energy densities but requires a rather high axial magnetic field, which places it in the same class as the VASIMR{sup ®} rocket engine.

  12. Helical plasma thruster

    NASA Astrophysics Data System (ADS)

    Beklemishev, A. D.

    2015-10-01

    A new scheme of plasma thruster is proposed. It is based on axial acceleration of rotating magnetized plasmas in magnetic field with helical corrugation. The idea is that the propellant ionization zone can be placed into the local magnetic well, so that initially the ions are trapped. The E × B rotation is provided by an applied radial electric field that makes the setup similar to a magnetron discharge. Then, from the rotating plasma viewpoint, the magnetic wells of the helically corrugated field look like axially moving mirror traps. Specific shaping of the corrugation can allow continuous acceleration of trapped plasma ions along the magnetic field by diamagnetic forces. The accelerated propellant is expelled through the expanding field of magnetic nozzle. By features of the acceleration principle, the helical plasma thruster may operate at high energy densities but requires a rather high axial magnetic field, which places it in the same class as the VASIMR® rocket engine.

  13. SERT 2 1979 extended flight thruster system performance

    NASA Technical Reports Server (NTRS)

    Kerslake, W. R.; Ignaczak, L. R.

    1979-01-01

    Steady state tests of the thruster 2 system on the SERT 2 spacecraft are presented. A direct thrust measurement was obtained for the ion thruster during operations to increase the spacecraft spin rate to maintain spacecraft attitude stability. The continued restart tests of thruster 1 and a report on the general status of all spacecraft systems including the main solar array are presented.

  14. Theoretical investigations on plasma processes in the Kaufman thruster. [electron and ion velocity distribution

    NASA Technical Reports Server (NTRS)

    Wilhelm, H. E.

    1974-01-01

    An analysis of the sputtering of metal surfaces and grids by ions of medium energies is given and it is shown that an exact, nonlinear, hyperbolic wave equation for the temperature field describes the transient transport of heat in metals. Quantum statistical and perturbation theoretical analysis of surface sputtering by low energy ions are used to develop the same expression for the sputtering rate. A transport model is formulated for the deposition of sputtered atoms on system components. Theoretical efforts in determining the potential distribution and the particle velocity distributions in low pressure discharges are briefly discussed.

  15. Cylindrical Hall Thrusters with Permanent Magnets

    SciTech Connect

    Raitses, Yevgeny; Merino, Enrique; Fisch, Nathaniel J.

    2010-10-18

    The use of permanent magnets instead of electromagnet coils for low power Hall thrusters can offer a significant reduction of both the total electric power consumption and the thruster mass. Two permanent magnet versions of the miniaturized cylindrical Hall thruster (CHT) of different overall dimensions were operated in the power range of 50W-300 W. The discharge and plasma plume measurements revealed that the CHT thrusters with permanent magnets and electromagnet coils operate rather differently. In particular, the angular ion current density distribution from the permanent magnet thrusters has an unusual halo shape, with a majority of high energy ions flowing at large angles with respect to the thruster centerline. Differences in the magnetic field topology outside the thruster channel and in the vicinity of the channel exit are likely responsible for the differences in the plume characteristics measured for the CHTs with electromagnets and permanent magnets. It is shown that the presence of the reversing-direction or cusp-type magnetic field configuration inside the thruster channel without a strong axial magnetic field outside the thruster channel does not lead to the halo plasma plume from the CHT. __________________________________________________

  16. Electron dynamics in Hall thruster

    NASA Astrophysics Data System (ADS)

    Marini, Samuel; Pakter, Renato

    2015-11-01

    Hall thrusters are plasma engines those use an electromagnetic fields combination to confine electrons, generate and accelerate ions. Widely used by aerospace industries those thrusters stand out for its simple geometry, high specific impulse and low demand for electric power. Propulsion generated by those systems is due to acceleration of ions produced in an acceleration channel. The ions are generated by collision of electrons with propellant gas atoms. In this context, we can realize how important is characterizing the electronic dynamics. Using Hamiltonian formalism, we derive the electron motion equation in a simplified electromagnetic fields configuration observed in hall thrusters. We found conditions those must be satisfied by electromagnetic fields to have electronic confinement in acceleration channel. We present configurations of electromagnetic fields those maximize propellant gas ionization and thus make propulsion more efficient. This work was supported by CNPq.

  17. Influence of Triply-Charged Ions and Ionization Cross-Sections in a Hybrid-PIC Model of a Hall Thruster Discharge

    NASA Technical Reports Server (NTRS)

    Smith, Brandon D.; Boyd, Iain D.; Kamhawi, Hani

    2014-01-01

    The sensitivity of xenon ionization rates to collision cross-sections is studied within the framework of a hybrid-PIC model of a Hall thruster discharge. A revised curve fit based on the Drawin form is proposed and is shown to better reproduce the measured crosssections at high electron energies, with differences in the integrated rate coefficients being on the order of 10% for electron temperatures between 20 eV and 30 eV. The revised fit is implemented into HPHall and the updated model is used to simulate NASA's HiVHAc EDU2 Hall thruster at discharge voltages of 300, 400, and 500 V. For all three operating points, the revised cross-sections result in an increase in the predicted thrust and anode efficiency, reducing the error relative to experimental performance measurements. Electron temperature and ionization reaction rates are shown to follow the trends expected based on the integrated rate coefficients. The effects of triply-charged xenon are also assessed. The predicted thruster performance is found to have little or no dependence on the presence of triply-charged ions. The fraction of ion current carried by triply-charged ions is found to be on the order of 1% and increases slightly with increasing discharge voltage. The reaction rates for the 0?III, I?III, and II?III ionization reactions are found to be of similar order of magnitude and are about one order of magnitude smaller than the rate of 0?II ionization in the discharge channel.

  18. Constrained sheath optics for high thrust density, low specific impulse ion thrusters

    NASA Technical Reports Server (NTRS)

    Wilbur, Paul J.; Han, Jian-Zhang

    1987-01-01

    The results of an experimental study showing that a contoured, fine wire mesh attached to the screen grid can be used to control the divergence characteristics of ion beamlets produced at low net-to-total accelerating voltage ratios are presented. The influence of free and constrained-sheath optics systems on beamlet divergence characteristics are found to be similar in the operating regime investigated, but it was found that constrained-sheath optics systems can be operated at higher perveance levels than free-sheath ones. The concept of a fine wire interference probe that can be used to study ion beamlet focusing behavior is introduced. This probe is used to demonstrate beamlet focusing to a diameter about one hundreth of the screen grid extraction aperture diameter. Additional testing is suggested to define an optimally contoured mesh that could yield well focused beamlets at net-to-total accelerating voltage ratios below about 0.1.

  19. Radiation hardness of 30 cm long CsI(Tl) crystals

    NASA Astrophysics Data System (ADS)

    Longo, S.; Roney, J. M.

    2016-08-01

    Measurements of the degradation in performance of 30 cm long CsI(Tl) scintillation crystals exposed to 1 MeV photon doses of 2, 10, 35, 100 and 1000 Gy are presented. The light yield, light yield longitudinal non-uniformity, scintillation decay times, energy resolution and timing resolution of a set of spare crystals from the BABAR and Belle experiments are studied as a function of these doses. In addition, a model that describes the plateau observed in the light output loss as a function of dose in terms of increase in concentrations of absorption centres with irradiation is presented.

  20. Development Status of a Power Processing Unit for Low Power Ion Thrusters

    NASA Technical Reports Server (NTRS)

    Pinero, Luis R.; Bowers, Glen E.; Lafontaine, Eric M.

    2000-01-01

    An advanced breadboard Power Processing Unit (PPU) for a low power ion propulsion system incorporating mass reduction techniques was designed and fabricated. As a result of similar output current requirements, the discharge supply was also used to provide the neutralizer heater and discharge heater functions by using three relays to switch the output connections. This multi-function supply reduces to four the number of power converters needed to produce the required six electrical outputs. Switching frequencies of 20 and 50 kHz were chosen as a compromise between the size of the magnetic components and switching losses. The advanced breadboard PPU is capable of a maximum total output power of 0.47 kW. Its component mass is 0.65 kg and its total mass 1.9 kg. The total efficiency at full power is 0.89.

  1. Electric thruster research

    NASA Technical Reports Server (NTRS)

    Kaufman, H. R.; Robinson, R. S.

    1981-01-01

    The multipole discharge chamber of an electrostatic ion thruster is discussed. No reductions in discharge losses were obtained, despite repeated demonstration of anode potentials more positive than the bulk of the discharge plasma. The penalty associated with biased anode operation was reduced as the magnetic integral above the biased anodes was increased. The hollow cathode is discussed. The experimental configuration of the Hall current thruster had a uniform field throughout the ion generation and acceleration regions. To obtain reliable ion generation, it was necessary to reduce the magnetic field strength, to the point where excessive electron backflow was required to establish ion acceleration. The theoretical study of ion acceleration with closed electron drift paths resulted in two classes of solutions. One class has the continuous potential variation in the acceleration region that is normally associated with a Hall current accelerator. The other class has an almost discontinuous potential step near the anode end of the acceleration region. This step includes a significant fraction of the total acceleration potential difference.

  2. Stationary Plasma Thruster Plume Characteristics

    NASA Technical Reports Server (NTRS)

    Myers, Roger M.; Manzella, David H.

    1994-01-01

    Stationary Plasma Thrusters (SPT's) are being investigated for application to a variety of near-term missions. This paper presents the results of a preliminary study of the thruster plume characteristics which are needed to assess spacecraft integration requirements. Langmuir probes, planar probes, Faraday cups, and a retarding potential analyzer were used to measure plume properties. For the design operating voltage of 300 V the centerline electron density was found to decrease from approximately 1.8 x 10 exp 17 cubic meters at a distance of 0.3 m to 1.8 X 10 exp 14 cubic meters at a distance of 4 m from the thruster. The electron temperature over the same region was between 1.7 and 3.5 eV. Ion current density measurements showed that the plume was sharply peaked, dropping by a factor of 2.6 within 22 degrees of centerline. The ion energy 4 m from the thruster and 15 degrees off-centerline was approximately 270 V. The thruster cathode flow rate and facility pressure were found to strongly affect the plume properties. In addition to the plume measurements, the data from the various probe types were used to assess the impact of probe design criteria

  3. Pulsed Plasma Thruster Contamination

    NASA Technical Reports Server (NTRS)

    Myers, Roger M.; Arrington, Lynn A.; Pencil, Eric J.; Carter, Justin; Heminger, Jason; Gatsonis, Nicolas

    1996-01-01

    Pulsed Plasma Thrusters (PPT's) are currently baselined for the Air Force Mightysat II.1 flight in 1999 and are under consideration for a number of other missions for primary propulsion, precision positioning, and attitude control functions. In this work, PPT plumes were characterized to assess their contamination characteristics. Diagnostics included planar and cylindrical Langmuir probes and a large number of collimated quartz contamination sensors. Measurements were made using a LES 8/9 flight PPT at 0.24, 0.39, 0.55, and 1.2 m from the thruster, as well as in the backflow region behind the thruster. Plasma measurements revealed a peak centerline ion density and velocity of approx. 6 x 10(exp 12) cm(exp -3) and 42,000 m/s, respectively. Optical transmittance measurements of the quartz sensors after 2 x 10(exp 5) pulses showed a rapid decrease in plume contamination with increasing angle from the plume axis, with a barely measurable transmittance decrease in the ultraviolet at 90 deg. No change in optical properties was detected for sensors in the backflow region.

  4. Biocrusts serve as biomarkers for the upper 30 cm soil water content

    NASA Astrophysics Data System (ADS)

    Kidron, Giora J.; Benenson, Itzhak

    2014-02-01

    Knowledge regarding the spatial distribution of moisture in soil is of great importance especially in arid regions where water is scarce. Following a previous research that showed a significant relationship between daylight surface wetness duration and the average chlorophyll content of 5 biocrusts in the Negev Desert (Israel), and the resultant outcome that pointed to the possible use of biocrusts as biomarkers for surface wetness duration, we hypothesize that biocrusts may also serve as biomarkers for the moisture content of the upper soil layer. Toward this end, daylight surface wetness duration was measured at 5 crust types following rain events during 1993-1995 along with periodical soil sampling of the upper 30 cm (at 5 cm intervals) of the soil profiles underlying these biocrusts. The findings showed a positive linear relationship between daylight surface wetness duration and the chlorophyll content of the crusts (r2 = 0.96-0.97). High correlations were also found between daylight surface wetness duration and the available water content (r2 = 0.96) and duration (r2 = 0.85-0.88) of the upper 30 cm soil and between the chlorophyll content of the crust and the available water content (r2 = 0.93-0.96) and duration (r2 = 0.78-0.84). Topography-induced shading and slope position (which determined additional water either by runoff or subsurface flow) are seen responsible for the clear link between subsurface moisture content, daylight surface wetness duration and chlorophyll content of the crust. This link points to the possible use of biocrusts as biomarkers for subsurface water content and highlights the importance of crust typology and mapping for the study of the spatial distribution of water and their potential use for the study of ecosystem structure and function.

  5. Cathode Effects in Cylindrical Hall Thrusters

    SciTech Connect

    Granstedt, E.M.; Raitses, Y.; Fisch, N. J.

    2008-09-12

    Stable operation of a cylindrical Hall thruster (CHT) has been achieved using a hot wire cathode, which functions as a controllable electron emission source. It is shown that as the electron emission from the cathode increases with wire heating, the discharge current increases, the plasma plume angle reduces, and the ion energy distribution function shifts toward higher energies. The observed effect of cathode electron emission on thruster parameters extends and clarifies performance improvements previously obtained for the overrun discharge current regime of the same type of thruster, but using a hollow cathode-neutralizer. Once thruster discharge current saturates with wire heating, further filament heating does not affect other discharge parameters. The saturated values of thruster discharge parameters can be further enhanced by optimal placement of the cathode wire with respect to the magnetic field.

  6. Evaluation of performance and characteristics of long-pulse Hall-ion thrusters utilizing a power source based on CDL capacitor technology

    NASA Astrophysics Data System (ADS)

    Hrbud, Ivana

    1997-09-01

    In 1994, NASA initiated the New Millennium Program to identify, promote, and to fund research and development of specific advanced technologies for space and Earth exploration in the 21st century. NASA proposes the frequent launch of affordable missions to be accomplished by small, low-cost spacecraft which will employ the advantages of high-power, high-efficiency thrusters without producing excessive demand on the spacecraft's power train. Since the power systems of these spacecraft will be power limited, more efficient propulsion may be achieved by pulsed mode operation of a Hall-ion thruster. The goals of this research are (1) to prove the concept feasibility of a direct-drive electric propulsion system, and (2) to evaluate the performance and characteristics of a Russian TAL (Thruster with Anode Layer) operating in a long-pulse mode, powered by a capacitor-based power source developed at Space Power Institute. The TAL, designated D-55, is characterized by an external acceleration zone and is powered by a unique chemical double layer (CDL) capacitor bank with a capacitance of 4 F at a charge voltage of 400 V. Performance testing of this power supply on the TAL was conducted at NASA Lewis Research Center in Cleveland, OH. Direct thrust measurements of the TAL were obtained at CDL power levels ranging from 450 to 1750 W. The specific impulse encompassed a range from 1150 s to 2200 s, yielding thruster system efficiencies between 50 and 60%. Preliminary mission analysis of the CDL direct-drive concept and other electric propulsion options was performed for the ORACLE spacecraft in 6am/6pm and 12am/12pm, 300 km sun-synchronous orbits. The direct-drive option was competitive with the other systems by increasing available net mass between 5 and 42% and reducing two-year system wet mass between 18 and 63%. Overall, the electric propulsion power requirements for the satellite were reduced between 57 and 91% depending on the orbit evaluated. The direct-drive, CDL

  7. Thruster Options for Microspacecraft: A Review and Evaluation of State-of-the-Art and Emerging Technologies

    NASA Astrophysics Data System (ADS)

    Mueller, Juergen

    Introduction Recent Microspacecraft Developments Background and Motivation Recent Microspacecraft Design Trends Preliminary Set of Micropropulsion Requirements for Microspacecraft System Integration Requirements Minimum Impulse Bit and Thrust Requirements Review of Chemical Propulsion Technologies Bipropellant Engines Monopropellant Thrusters: Hydrazine Monopropellant Thrusters: HAN-Based Monopropellant Thrusters: Hydrogen Peroxide Cold Gas Thrusters Tripropellant and Other Warm Gas Thrusters Solid Rocket Motors Hybrid Rocket Motors Review of Electric Propulsion Technologies Ion Engines Hall Thrusters FEEP Colloid Thrusters Pulsed Plasma Thrusters (PPTs) Resistojets Emerging Technologies: MEMS and MEMS-Hybrid Propulsion Concepts Case for MEMS Propulsion and Its Challenges Brief History of MEMS Propulsion MEMS-Based FEEP and Colloid Thruster Concepts Micro-Ion Engine Concepts MEMS-Based Microresistojet Concepts MEMS-Based Subliming Solid Microthruster Concept MEMS-Based Cold Gas Thruster Concept MEMS-Based Bipropellant Thruster Concept Digital Microthruster Array Concepts Evaluation of Existing Propulsion Technologies and Identification - of Future Technology Needs Evaluation of Existing Propulsion Technologies Identification of Technology Needs Conclusions References

  8. A Preliminary Investigation of Hall Thruster Technology

    NASA Technical Reports Server (NTRS)

    Gallimore, Alec D.

    1997-01-01

    A three-year, NASA/BMDO-sponsored experimental program to conduct performance and plume plasma property measurements on two Russian Stationary Plasma Thrusters (SPTs) has been completed. The program utilized experimental facilitates at the University of Michigan's Plasmadynamics and Electric Propulsion Laboratory (PEPL). The main features of the proposed effort were as follows: We Characterized Hall thruster [and arcjet] performance by measuring ion exhaust velocity with probes at various thruster conditions. Used a variety of probe diagnostics in the thruster plume to measure plasma properties and flow properties including T(sub e) and n(sub e), ion current density and ion energy distribution, and electric fields by mapping plasma potential. Used emission spectroscopy to identify species within the plume and to measure electron temperatures.

  9. Direct Drive for Low Power Hall Thrusters

    NASA Technical Reports Server (NTRS)

    Dankanich, John W.

    2005-01-01

    Due to recent studies, NASA has initiated the development of a low power Hall thruster for discovery class missions. The potential advantages of a low power Hall thruster is primarily due to its high efficiency operation at low power and its lower complexity compared to ion engines. Direct drive is another method of reducing the complexity of a Hall thruster system while improving its efficiency. The technical challenges associated with this technology are reported. Additionally, the benefits of this technology are discussed based on parametric studies and mission analysis.

  10. Performance Evaluation of 40 cm Ion Optics for the NEXT Ion Engine

    NASA Technical Reports Server (NTRS)

    Soulas, George C.; Haag, Thomas W.; Patterson, Michael J.

    2002-01-01

    The results of performance tests with two 40 cm ion optics sets are presented and compared to those of 30 cm ion optics with similar aperture geometries. The 40 cm ion optics utilized both NSTAR and TAG (Thick-Accelerator-Grid) aperture geometries. All 40 cm ion optics tests were conducted on a NEXT (NASA's Evolutionary Xenon Thruster) laboratory model ion engine. Ion optics performance tests were conducted over a beam current range of 1.20 to 3.52 A and an engine input power range of 1.1 to 6.9 kW. Measured ion optics' performance parameters included near-field radial beam current density profiles, impingement-limited total voltages, electron backstreaming limits, screen grid ion transparencies, beam divergence angles, and start-up transients. Impingement-limited total voltages for 40 cm ion optics with the NSTAR aperture geometry were 60 to 90 V lower than those with the TAG aperture geometry. This difference was speculated to be due to an incomplete burn-in of the TAG ion optics. Electron backstreaming limits for the 40 cm ion optics with the TAG aperture geometry were 8 to 19 V higher than those with the NSTAR aperture geometry due to the thicker accelerator grid of the TAG geometry. Because the NEXT ion engine provided beam flatness parameters that were 40 to 63 percent higher than those of the NSTAR ion engine, the 40 cm ion optics outperformed the 30 cm ion optics.

  11. NASA's Evolutionary Xenon Thruster (NEXT) Project Qualification Propellant Throughput Milestone: Performance, Erosion, and Thruster Service Life Prediction After 450 kg

    NASA Technical Reports Server (NTRS)

    Herman, Daniel A.

    2010-01-01

    The NASA s Evolutionary Xenon Thruster (NEXT) program is tasked with significantly improving and extending the capabilities of current state-of-the-art NSTAR thruster. The service life capability of the NEXT ion thruster is being assessed by thruster wear test and life-modeling of critical thruster components, such as the ion optics and cathodes. The NEXT Long-Duration Test (LDT) was initiated to validate and qualify the NEXT thruster propellant throughput capability. The NEXT thruster completed the primary goal of the LDT; namely to demonstrate the project qualification throughput of 450 kg by the end of calendar year 2009. The NEXT LDT has demonstrated 28,500 hr of operation and processed 466 kg of xenon throughput--more than double the throughput demonstrated by the NSTAR flight-spare. Thruster performance changes have been consistent with a priori predictions. Thruster erosion has been minimal and consistent with the thruster service life assessment, which predicts the first failure mode at greater than 750 kg throughput. The life-limiting failure mode for NEXT is predicted to be loss of structural integrity of the accelerator grid due to erosion by charge-exchange ions.

  12. Predicting Hall Thruster Operational Lifetime

    NASA Technical Reports Server (NTRS)

    Manzella, David; Yim, John; Boyd, Iain

    2004-01-01

    A simple analytic model predicted Hall thruster channel erosion based on thruster geometry, operating conditions, and magnetic field configuration. This model relied on a one-dimensional representation of the plasma with a fixed ionization fraction and variable ion energies based on the magnetic field distribution. Sputtering was modeled as the result of elastic scattering of ions by neutrals within the channel. Not all scattered ions and neutrals were assumed to reach the channel walls as a result of additional subsequent scattering events. Incorporating this phenomenon resulted in a greater predicted decrease in erosion rate with time than predicted based only on geometric effects. Results from this model were compared to SPT 100 experimental erosion data.

  13. Second Magnetoplasmadynamic Thruster Workshop

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The meeting focused on progress made in establishing performance and lifetime expectations of magnetoplasmadynamic (MPD) thrusters as functions of power, propellant, and design; models for the plasma flow and electrode components; viability and transportability of quasi-steady thruster testing; engineering requirements for high power, long life thrusters; and facilities and their requirements for performance and life testing.

  14. Ion Engine Grid Gap Measurements

    NASA Technical Reports Server (NTRS)

    Soulas, Gerge C.; Frandina, Michael M.

    2004-01-01

    A simple technique for measuring the grid gap of an ion engine s ion optics during startup and steady-state operation was demonstrated with beam extraction. The grid gap at the center of the ion optics assembly was measured with a long distance microscope that was focused onto an alumina pin that protruded through the center accelerator grid aperture and was mechanically attached to the screen grid. This measurement technique was successfully applied to a 30 cm titanium ion optics assembly mounted onto an NSTAR engineering model ion engine. The grid gap and each grid s movement during startup from room temperature to both full and low power were measured. The grid gaps with and without beam extraction were found to be significantly different. The grid gaps at the ion optics center were both significantly smaller than the cold grid gap and different at the two power levels examined. To avoid issues associated with a small grid gap during thruster startup with titanium ion optics, a simple method was to operate the thruster initially without beam extraction to heat the ion optics. Another possible method is to apply high voltage to the grids prior to igniting the discharge because power deposition to the grids from the plasma is lower with beam extraction than without. Further testing would be required to confirm this approach.

  15. Characteristics of the optical radiation from Kaufman thrusters

    NASA Technical Reports Server (NTRS)

    Milder, N. L.; Sovey, J. S.

    1971-01-01

    The optical radiation from plasma discharges of electron-bombardment mercury-ion thrusters was investigated. Spectrographic measurements indicated that the discharge was composed primarily of mercury atoms and singly charged ions. Excitation spectra of doubly charged mercury ions was measured to obtain the fraction of such ions in the discharge. Accomplishments of spectroscopic measurements of a hollow cathode thruster included the identification of two diagnostic lines in the mercury spectrum and the interpretation of the spectral amplitudes in terms of a superposition of primary and Maxwellian electron distributions. Potential application of optical techniques to thruster control applications was also suggested by the measurements.

  16. A Preliminary Investigation of Hall Thruster Technology

    NASA Technical Reports Server (NTRS)

    Gallimore, Alec D.

    1997-01-01

    A three-year NASA/BMDO-sponsored experimental program to conduct performance and plume plasma property measurements on two Russian Stationary Plasma Thrusters (SPTs) has been completed. The program utilized experimental facilitates at the University of Michigan's Plasmadynamics and Electric Propulsion Laboratory (PEPL). The main features of the proposed effort were as follows: (1) Characterized Hall thruster (and arcjet) performance by measuring ion exhaust velocity with probes at various thruster conditions; (2) Used a variety of probe diagnostics in the thruster plume to measure plasma properties and flow properties including T(sub e) and n(sub e) ion current density and ion energy distribution, and electric fields by mapping plasma potential; (3) Used emission spectroscopy to identify species within the plume and to measure electron temperatures. A key and unique feature of our research was our collaboration with Russian Hall thruster researcher Dr. Sergey A Khartov, Deputy Dean of International Relations at the Moscow Aviation Institute (MAI). His activities in this program included consulting on and participation in research at PEPL through use of a MAI-built SPT and ion energy probe.

  17. Los Alamos NEP research in advanced plasma thrusters

    NASA Technical Reports Server (NTRS)

    Schoenberg, Kurt; Gerwin, Richard

    1991-01-01

    Research was initiated in advanced plasma thrusters that capitalizes on lab capabilities in plasma science and technology. The goal of the program was to examine the scaling issues of magnetoplasmadynamic (MPD) thruster performance in support of NASA's MPD thruster development program. The objective was to address multi-megawatt, large scale, quasi-steady state MPD thruster performance. Results to date include a new quasi-steady state operating regime which was obtained at space exploration initiative relevant power levels, that enables direct coaxial gun-MPD comparisons of thruster physics and performance. The radiative losses are neglible. Operation with an applied axial magnetic field shows the same operational stability and exhaust plume uniformity benefits seen in MPD thrusters. Observed gun impedance is in close agreement with the magnetic Bernoulli model predictions. Spatial and temporal measurements of magnetic field, electric field, plasma density, electron temperature, and ion/neutral energy distribution are underway. Model applications to advanced mission logistics are also underway.

  18. The evolutionary development of high specific impulse electric thruster technology

    NASA Technical Reports Server (NTRS)

    Sovey, James S.; Hamley, John A.; Patterson, Michael J.; Rawlin, Vincent K.; Myers, Roger M.

    1992-01-01

    Electric propulsion flight and technology demonstrations conducted primarily by Europe, Japan, China, the U.S., and the USSR are reviewed. Evolutionary mission applications for high specific impulse electric thruster systems are discussed, and the status of arcjet, ion, and magnetoplasmadynamic thrusters and associated power processor technologies are summarized.

  19. Electric thruster models for multimegawatt nuclear electric propulsion mission design

    NASA Technical Reports Server (NTRS)

    Leifer, Stephanie D.; Blandino, John J.; Sercel, Joel C.

    1991-01-01

    Three types of electric thrusters currently under development at JPL have potential to support future missions which utilize multimegawatt nuclear electric propulsion. These electric thrusters are the electron bombardment ion thruster, the magnetoplasmadynamic (MPD) thruster, and the electron-cyclotron-resonance (ECR) thruster. The electron bombardment ion thruster is a relatively mature technology which has been developed for operation at kilowatt power levels but will require new development for application in the multimegawatt regime. The MPD engine represents a technology which may be very well suited to steady-state multimegawatt applications but which has been limited to sub-scale (100's of kW) and pulsed (MW) testing thus far. The ECR plasma engine represents a class of very promising new concepts which are still in the basic research phase of development, but which may possess important fundamental advantages over other electric thruster technologies. Models of these thrusters are described and used to make projections of thrusters specific mass, efficiency, and power handling capacity for operation in the multimegawatt regime.

  20. Advanced space propulsion thruster research

    NASA Technical Reports Server (NTRS)

    Wilbur, P. J.

    1981-01-01

    Experiments showed that stray magnetic fields can adversely affect the capacity of a hollow cathode neutralizer to couple to an ion beam. Magnetic field strength at the neutralizer cathode orifice is a crucial factor influencing the coupling voltage. The effects of electrostatic accelerator grid aperture diameters on the ion current extraction capabilities were examined experimentally to describe the divergence, deflection, and current extraction capabilities of grids with the screen and accelerator apertures displaced relative to one another. Experiments performed in orificed, mercury hollow cathodes support the model of field enhanced thermionic electron mission from cathode inserts. Tests supported the validity of a thermal model of the cathode insert. A theoretical justification of a Saha equation model relating cathode plasma properties is presented. Experiments suggest that ion loss rates to discharge chamber walls can be controlled. A series of new discharge chamber magnetic field configurations were generated in the flexible magnetic field thruster and their effect on performance was examined. A technique used in the thruster to measure ion currents to discharge chamber walls is described. Using these ion currents the fraction of ions produced that are extracted from the discharge chamber and the energy cost of plasma ions are computed.

  1. Pulsed hall thruster system

    NASA Technical Reports Server (NTRS)

    Hruby, Vladimir J. (Inventor); Pote, Bruce M. (Inventor); Gamero-Castano, Manuel (Inventor)

    2004-01-01

    A pulsed Hall thruster system includes a Hall thruster having an electron source, a magnetic circuit, and a discharge chamber; a power processing unit for firing the Hall thruster to generate a discharge; a propellant storage and delivery system for providing propellant to the discharge chamber and a control unit for defining a pulse duration .tau.<0.1d.sup.3.rho./m, where d is the characteristic size of the thruster, .rho. is the propellant density at standard conditions, and m is the propellant mass flow rate for operating either the power processing unit to provide to the Hall thruster a power pulse of a pre-selected duration, .tau., or operating the propellant storage and delivery system to provide a propellant flow pulse of duration, .tau., or providing both as pulses, synchronized to arrive coincidentally at the discharge chamber to enable the Hall thruster to produce a discreet output impulse.

  2. High Power Hall Thrusters

    NASA Technical Reports Server (NTRS)

    Jankovsky, Robert; Tverdokhlebov, Sergery; Manzella, David

    1999-01-01

    The development of Hall thrusters with powers ranging from tens of kilowatts to in excess of one hundred kilowatts is considered based on renewed interest in high power. high thrust electric propulsion applications. An approach to develop such thrusters based on previous experience is discussed. It is shown that the previous experimental data taken with thrusters of 10 kW input power and less can be used. Potential mass savings due to the design of high power Hall thrusters are discussed. Both xenon and alternate thruster propellant are considered, as are technological issues that will challenge the design of high power Hall thrusters. Finally, the implications of such a development effort with regard to ground testing and spacecraft intecrati'on issues are discussed.

  3. Investigation of mercury thruster isolators

    NASA Technical Reports Server (NTRS)

    Mantenieks, M. A.

    1973-01-01

    Mercury ion thruster isolator lifetime tests were performed using different isolator materials and geometries. Tests were performed with and without the flow of mercury through the isolators in an oil diffusion pumped vacuum facility and cryogenically pumped bell jar. The onset of leakage current in isolators occurred in time intervals ranging from a few hours to many hundreds of hours. In all cases, surface contamination was responsible for the onset of leakage current and subsequent isolator failure. Rate of increase of leakage current and the leakage current level increased approximately exponentially with isolator temperature. Careful attention to shielding techniques and the elimination of sources of metal oxides appear to have eliminated isolator failures as a thruster life limiting mechanism.

  4. MPD thruster technology

    NASA Technical Reports Server (NTRS)

    Myers, Roger M.

    1991-01-01

    Inhouse magnetoplasmadynamic (MPD) thruster technology is discussed. The study focussed on steady state thrusters at powers of less than 1 MW. Performance measurement and diagnostics technologies were developed for high power thrusters. Also developed was a MPD computer code. The stated goals of the program are to establish: performance and life limitation; influence of applied fields; propellant effects; and scaling laws. The presentation is mostly through graphs and charts.

  5. Oxygen-Methane Thruster

    NASA Technical Reports Server (NTRS)

    Pickens, Tim

    2012-01-01

    An oxygen-methane thruster was conceived with integrated igniter/injector capable of nominal operation on either gaseous or liquid propellants. The thruster was designed to develop 100 lbf (approximately 445 N) thrust at vacuum conditions and use oxygen and methane as propellants. This continued development included refining the design of the thruster to minimize part count and manufacturing difficulties/cost, refining the modeling tools and capabilities that support system design and analysis, demonstrating the performance of the igniter and full thruster assembly with both gaseous and liquid propellants, and acquiring data from this testing in order to verify the design and operational parameters of the thruster. Thruster testing was conducted with gaseous propellants used for the igniter and thruster. The thruster was demonstrated to work with all types of propellant conditions, and provided the desired performance. Both the thruster and igniter were tested, as well as gaseous propellants, and found to provide the desired performance using the various propellant conditions. The engine also served as an injector testbed for MSFC-designed refractory combustion chambers made of rhenium.

  6. Dependence of an ion current on a working voltage for Hall thruster TAL-WSF/D-55. Simple theory and experiment

    NASA Astrophysics Data System (ADS)

    Shumilin, Nikolay; Shumilin, Vladimir; Shumilin, Alexander

    2014-10-01

    In paper the simple model for the definition of interrelation between integral characteristics of Hall thrusters with an anode layer is offered. Concrete calculations were made for one of most often used Hall thrusters - TAL-WSF/D-55. While analysing the received theoretical dependences an attempt of comparison with results of an experimental research of thruster TAL-WSF/D-55 was made. With this purpose experimental dependence of specific impulse of Hall thruster TAL-WSF/D-55 on working voltage in range from 150 up to 350 V resulted in was used. It appeared, that these data contain some serious mistake and there is no reference to original works in this paper. In present report this mistake is corrected using original works. It is shown, that the offered simple model gives results close to a reality both qualitatively and quantitatively.

  7. Stationary Plasma Thruster Plume Emissions

    NASA Technical Reports Server (NTRS)

    Manzella, David H.

    1994-01-01

    The emission spectrum from a xenon plasma produced by a Stationary Plasma Thruster provided by the Ballistic Missile Defense Organization (BMDO) was measured. Approximately 270 individual Xe I, Xe II, and XE III transitions were identified. A total of 250 mW of radiated optical emission was estimated from measurements taken at the thruster exit plane. There was no evidence of erosion products in the emission signature. Ingestion and ionization of background gas at elevated background pressure was detected. The distribution of excited states could be described by temperatures ranging from fractions of 1 eV to 4 eV with a high degree of uncertainty due to the nonequilibrium nature of this plasma. The plasma was over 95 percent ionized at the thruster exit plane. Between 10 and 20 percent of the ions were doubly charged. Two modes of operation were identified. The intensity of plasma emission increased by a factor of two during operation in an oscillatory mode. The transfer between the two modes of operation was likely related to unidentified phenomena occurring on a time scale of minutes.

  8. NASA's Hall Thruster Program

    NASA Technical Reports Server (NTRS)

    Jankovsky, Robert S.; Jacobson, David T.; Rawlin, Vincent K.; Mason, Lee S.; Mantenieks, Maris A.; Manzella, David H.; Hofer, Richard R.; Peterson, Peter Y.

    2001-01-01

    NASA's Hall thruster program has base research and focused development efforts in support of the Advanced Space Transportation Program, Space-Based Program, and various other programs. The objective of the base research is to gain an improved understanding of the physical processes and engineering constraints of Hall thrusters to enable development of advanced Hall thruster designs. Specific technical questions that are current priorities of the base effort are: (1) How does thruster life vary with operating point? (2) How can thruster lifetime and wear rate be most efficiently evaluated? (3) What are the practical limitations for discharge voltage as it pertains to high specific impulse operation (high discharge voltage) and high thrust operation (low discharge voltage)? (4) What are the practical limits for extending Hall thrusters to very high input powers? and (5) What can be done during thruster design to reduce cost and integration concerns? The objective of the focused development effort is to develop a 50 kW-class Hall propulsion system, with a milestone of a 50 kW engineering model thruster/system by the end of program year 2006. Specific program wear 2001 efforts, along with the corporate and academic participation, are described.

  9. Diagnostics Systems for Permanent Hall Thrusters Development

    NASA Astrophysics Data System (ADS)

    Ferreira, Jose Leonardo; Soares Ferreira, Ivan; Santos, Jean; Miranda, Rodrigo; Possa, M. Gabriela

    This work describes the development of Permanent Magnet Hall Effect Plasma Thruster (PHALL) and its diagnostic systems at The Plasma Physics Laboratory of University of Brasilia. The project consists on the construction and characterization of plasma propulsion engines based on the Hall Effect. Electric thrusters have been employed in over 220 successful space missions. Two types stand out: the Hall-Effect Thruster (HET) and the Gridded Ion Engine (GIE). The first, which we deal with in this project, has the advantage of greater simplicity of operation, a smaller weight for the propulsion subsystem and a longer shelf life. It can operate in two configurations: magnetic layer and anode layer, the difference between the two lying in the positioning of the anode inside the plasma channel. A Hall-Effect Thruster-HET is a type of plasma thruster in which the propellant gas is ionized and accelerated by a magneto hydrodynamic effect combined with electrostatic ion acceleration. So the essential operating principle of the HET is that it uses a J x B force and an electrostatic potential to accelerate ions up to high speeds. In a HET, the attractive negative charge is provided by electrons at the open end of the Thruster instead of a grid, as in the case of the electrostatic ion thrusters. A strong radial magnetic field is used to hold the electrons in place, with the combination of the magnetic field and the electrostatic potential force generating a fast circulating electron current, the Hall current, around the axis of the Thruster, mainly composed by drifting electrons in an ion plasma background. Only a slow axial drift towards the anode occurs. The main attractive features of the Hall-Effect Thruster are its simple design and operating principles. Most of the Hall-Effect Thrusters use electromagnet coils to produce the main magnetic field responsible for plasma generation and acceleration. In this paper we present a different new concept, a Permanent Magnet Hall

  10. Hollow cathode and thruster discharge chamber plasma measurements

    NASA Technical Reports Server (NTRS)

    Jameson, Kristina K.; Goebel, Dan M.; Watkins, Ron M.

    2005-01-01

    Due to the successful performance of the NSTAR ion thruster in Deep Space 1 mission, coupled with the recently completed 30,352 hour extended life test (ELT) of the NSTAR flight spare thruster, ion thrusters have become a viable option for future NASA missions. In this paper, detailed measurements of the plasma parameters internal and external to the cathode will presented for the NSTAR cathode up to 13.1A of discharge current and for the NEXIS cathode up to 30A of discharge current.

  11. Gimballing Spacecraft Thruster

    NASA Technical Reports Server (NTRS)

    Pickens, Tim; Bossard, John

    2010-01-01

    A gimballing spacecraft reaction-control-system thruster was developed that consists of a small hydrogen/oxygen-burning rocket engine integrated with a Canfield joint. (Named after its inventor, a Canfield joint is a special gimbal mount that is strong and stable yet allows a wide range of motion.) One especially notable aspect of the design of this thruster is integration, into both the stationary legs and the moving arms of the Canfield joint, of the passages through which the hydrogen and oxygen flow to the engine. The thruster was assembled and subjected to tests in which the engine was successfully fired both with and without motion in the Canfield joint.

  12. Design and Preliminary Performance Testing of Electronegative Gas Plasma Thruster

    NASA Technical Reports Server (NTRS)

    Liu, Thomas M.; Schloeder, Natalie R.; Walker, Mitchell L. R.; Polzin, Kurt A.; Dankanich, John W.; Aanesland, Ane

    2014-01-01

    In classical gridded electrostatic ion thrusters, positively charged ions are generated from a plasma discharge of noble gas propellant and accelerated to provide thrust. To maintain overall charge balance on the propulsion system, a separate electron source is required to neutralize the ion beam as it exits the thruster. However, if high-electronegativity propellant gases (e.g., sulfur hexafluoride) are instead used, a plasma discharge can result consisting of both positively and negatively charged ions. Extracting such electronegative plasma species for thrust generation (e.g., with time-varying, bipolar ion optics) would eliminate the need for a separate neutralizer cathode subsystem. In addition for thrusters utilizing a RF plasma discharge, further simplification of the ion thruster power system may be possible by also using the RF power supply to bias the ion optics. Recently, the PEGASES (Plasma propulsion with Electronegative gases) thruster prototype successfully demonstrated proof-of-concept operations in alternatively accelerating positively and negatively charged ions from a RF discharge of a mixture of argon and sulfur hexafluoride.i In collaboration with NASA Marshall Space Flight Center (MSFC), the Georgia Institute of Technology High-Power Electric Propulsion Laboratory (HPEPL) is applying the lessons learned from PEGASES design and testing to develop a new thruster prototype. This prototype will incorporate design improvements and undergo gridless operational testing and diagnostics checkout at HPEPL in April 2014. Performance mapping with ion optics will be conducted at NASA MSFC starting in May 2014. The proposed paper discusses the design and preliminary performance testing of this electronegative gas plasma thruster prototype.

  13. Low-Power Magnetically Shielded Hall Thrusters

    NASA Astrophysics Data System (ADS)

    Conversano, Ryan William

    This dissertation presents an investigation of the applicability of magnetic shielding to low-power Hall thrusters as a means to significantly improve operational lifetime. The key life-limiting factors of conventional Hall thrusters, including ion-bombardment sputter erosion of the discharge channel and high-energy electron power deposition to the channel walls, have been investigated extensively for a wide range of thruster scales. As thruster power is reduced to the "miniature" (i.e. sub-500 W) power regime, the increased surface-to-volume ratio of the discharge channel and decreased thruster component sizes promotes increased plasma-wall interactions and susceptibility to overheating, thereby reducing thruster operational lifetime and performance. Although methods for compensating for these issues have been investigated, unshielded miniature Hall thrusters are generally limited to sub-45% anode efficiencies and maximum lifetimes on the order of 1,000 h. A magnetically shielded magnetic field topology aims to maintain a low electron temperature along the channel surfaces and a plasma potential near that of the discharge voltage along the entire surface of the discharge channel along its axial length. These features result in a reduction of the kinetic energy of ions that impact the channel surfaces to near to or below the sputtering threshold, thus preventing significant ion-bombardment erosion of the discharge channel. Improved confinement of high-energy electrons is another byproduct of the field structure, aiding in the reduction of electron power deposition to the channel. Magnetic shielding has been shown to dramatically reduce plasma-wall interactions on 4--6 kW Hall thrusters, resulting in significant increases in projected operational lifetimes with minimal effects to thruster performance. In an effort to explore the scalability of magnetic shielding to low-power devices, two magnetically shielded miniature Hall thrusters were designed, fabricated and

  14. Integrated thruster assembly program

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The program is reported which has provided technology for a long life, high performing, integrated ACPS thruster assembly suitable for use in 100 typical flights of a space shuttle vehicle over a ten year period. The four integrated thruster assemblies (ITA) fabricated consisted of: propellant injector; a capacitive discharge, air gap torch type igniter assembly; fast response igniter and main propellant valves; and a combined regen-dump film cooled chamber. These flightweight 6672 N (1500 lb) thruster assemblies employed GH2/GO2 as propellants at a chamber pressure of 207 N/sq cm (300 psia). Test data were obtained on thrusted performance, thermal and hydraulic characteristics, dynamic response in pulsing, and cycle life. One thruster was fired in excess of 42,000 times.

  15. MPD thruster technology

    NASA Technical Reports Server (NTRS)

    Myers, Roger M.; Mantenieks, Maris A.; Lapointe, Michael R.

    1991-01-01

    MPD (MagnetoPlasmaDynamic) thrusters demonstrated between 2000 and 7000 seconds specific impulse at efficiencies approaching 40 percent, and were operated continuously at power levels over 500 kW. These demonstrated capabilities, combined with the simplicity and robustness of the thruster, make them attractive candidates for application to both unmanned and manned orbit raising, lunar, and planetary missions. To date, however, only a limited number of thruster configurations, propellants, and operating conditions were studied. The present status of MPD research is reviewed, including developments in the measured performance levels and electrode erosion rates. Theoretical studies of the thruster dynamics are also described. Significant progress was made in establishing empirical scaling laws, performance and lifetime limitations and in the development of numerical codes to simulate the flow field and electrode processes.

  16. Metallic Wall Hall Thrusters

    NASA Technical Reports Server (NTRS)

    Goebel, Dan Michael (Inventor); Hofer, Richard Robert (Inventor); Mikellides, Ioannis G. (Inventor)

    2016-01-01

    A Hall thruster apparatus having walls constructed from a conductive material, such as graphite, and having magnetic shielding of the walls from the ionized plasma has been demonstrated to operate with nearly the same efficiency as a conventional non-magnetically shielded design using insulators as wall components. The new design is believed to provide the potential of higher power and uniform operation over the operating life of a thruster device.

  17. Global model of an iodine gridded plasma thruster

    NASA Astrophysics Data System (ADS)

    Grondein, P.; Lafleur, T.; Chabert, P.; Aanesland, A.

    2016-03-01

    Most state-of-the-art electric space propulsion systems such as gridded and Hall effect thrusters use xenon as the propellant gas. However, xenon is very rare, expensive to produce, and used in a number of competing industrial applications. Alternatives to xenon are currently being investigated, and iodine has emerged as a potential candidate. Its lower cost and larger availability, its solid state at standard temperature and pressure, its low vapour pressure and its low ionization potential make it an attractive option. In this work, we compare the performances of a gridded ion thruster operating separately with iodine and xenon, under otherwise identical conditions using a global model. The thruster discharge properties such as neutral, ion, and electron densities and electron temperature are calculated, as well as the thruster performance parameters such as thrust, specific impulse, and system efficiencies. For similar operating conditions, representative of realistic thrusters, the model predicts similar thrust levels and performances for both iodine and xenon. The thruster efficiency is however slightly higher for iodine compared with xenon, due to its lower ionization potential. This demonstrates that iodine could be a viable alternative propellant for gridded plasma thrusters.

  18. Diagnostics Systems for Permanent Hall Thrusters Development

    NASA Astrophysics Data System (ADS)

    Ferreira, Jose Leonardo; Soares Ferreira, Ivan; Santos, Jean; Miranda, Rodrigo; Possa, M. Gabriela

    This work describes the development of Permanent Magnet Hall Effect Plasma Thruster (PHALL) and its diagnostic systems at The Plasma Physics Laboratory of University of Brasilia. The project consists on the construction and characterization of plasma propulsion engines based on the Hall Effect. Electric thrusters have been employed in over 220 successful space missions. Two types stand out: the Hall-Effect Thruster (HET) and the Gridded Ion Engine (GIE). The first, which we deal with in this project, has the advantage of greater simplicity of operation, a smaller weight for the propulsion subsystem and a longer shelf life. It can operate in two configurations: magnetic layer and anode layer, the difference between the two lying in the positioning of the anode inside the plasma channel. A Hall-Effect Thruster-HET is a type of plasma thruster in which the propellant gas is ionized and accelerated by a magneto hydrodynamic effect combined with electrostatic ion acceleration. So the essential operating principle of the HET is that it uses a J x B force and an electrostatic potential to accelerate ions up to high speeds. In a HET, the attractive negative charge is provided by electrons at the open end of the Thruster instead of a grid, as in the case of the electrostatic ion thrusters. A strong radial magnetic field is used to hold the electrons in place, with the combination of the magnetic field and the electrostatic potential force generating a fast circulating electron current, the Hall current, around the axis of the Thruster, mainly composed by drifting electrons in an ion plasma background. Only a slow axial drift towards the anode occurs. The main attractive features of the Hall-Effect Thruster are its simple design and operating principles. Most of the Hall-Effect Thrusters use electromagnet coils to produce the main magnetic field responsible for plasma generation and acceleration. In this paper we present a different new concept, a Permanent Magnet Hall

  19. Acceleration Mechanism Of Pulsed Laser-Electromagnetic Hybrid Thruster

    NASA Astrophysics Data System (ADS)

    Horisawa, Hideyuki; Mashima, Yuki; Yamada, Osamu

    2011-11-01

    A fundamental study of a newly developed rectangular pulsed laser-electromagnetic hybrid thruster was conducted. Laser-ablation plasma in the thruster was induced through laser beam irradiation onto a solid target and accelerated by electrical means instead of direct acceleration only by using a laser beam. The performance of the thrusters was evaluated by measuring the ablated mass per pulse and impulse bit. As results, significantly high specific impulses up to 7,200 s were obtained at charge energies of 8.6 J. Moreover, from the Faraday cup measurement, it was confirmed that the speed of ions was accelerated with addition of electric energy.

  20. 43. Bow thruster room. Bow thruster engine not used for ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    43. Bow thruster room. Bow thruster engine not used for powering hydraulics to boom as in some other tenders in same class. - U.S. Coast Guard Cutter BRAMBLE, Waterfront at Lincoln Avenue, Port Huron, St. Clair County, MI

  1. Mode Transitions in Hall Effect Thrusters

    NASA Technical Reports Server (NTRS)

    Sekerak, Michael J.; Longmier, Benjamin W.; Gallimore, Alec D.; Brown, Daniel L.; Hofer, Richard R.; Polk, James E.

    2013-01-01

    Mode transitions have been commonly observed in Hall Effect Thruster (HET) operation where a small change in a thruster operating parameter such as discharge voltage, magnetic field or mass flow rate causes the thruster discharge current mean value and oscillation amplitude to increase significantly. Mode transitions in a 6-kW-class HET called the H6 are induced by varying the magnetic field intensity while holding all other operating parameters constant and measurements are acquired with ion saturation probes and ultra-fast imaging. Global and local oscillation modes are identified. In the global mode, the entire discharge channel oscillates in unison and azimuthal perturbations (spokes) are either absent or negligible. Downstream azimuthally spaced probes show no signal delay between each other and are very well correlated to the discharge current signal. In the local mode, signals from the azimuthally spaced probes exhibit a clear delay indicating the passage of "spokes" and are not well correlated to the discharge current. These spokes are localized oscillations propagating in the ExB direction that are typically 10-20% of the mean value. In contrast, the oscillations in the global mode can be 100% of the mean value. The transition between global and local modes occurs at higher relative magnetic field strengths for higher mass flow rates or higher discharge voltages. The thrust is constant through mode transition but the thrust-to-power decreased by 25% due to increasing discharge current. The plume shows significant differences between modes with the global mode significantly brighter in the channel and the near-field plasma plume as well as exhibiting a luminous spike on thruster centerline. Mode transitions provide valuable insight to thruster operation and suggest improved methods for thruster performance characterization.

  2. Iodine Hall Thruster

    NASA Technical Reports Server (NTRS)

    Szabo, James

    2015-01-01

    Iodine enables dramatic mass and cost savings for lunar and Mars cargo missions, including Earth escape and near-Earth space maneuvers. The demonstrated throttling ability of iodine is important for a singular thruster that might be called upon to propel a spacecraft from Earth to Mars or Venus. The ability to throttle efficiently is even more important for missions beyond Mars. In the Phase I project, Busek Company, Inc., tested an existing Hall thruster, the BHT-8000, on iodine propellant. The thruster was fed by a high-flow iodine feed system and supported by an existing Busek hollow cathode flowing xenon gas. The Phase I propellant feed system was evolved from a previously demonstrated laboratory feed system. Throttling of the thruster between 2 and 11 kW at 200 to 600 V was demonstrated. Testing showed that the efficiency of iodine fueled BHT-8000 is the same as with xenon, with iodine delivering a slightly higher thrust-to-power (T/P) ratio. In Phase II, a complete iodine-fueled system was developed, including the thruster, hollow cathode, and iodine propellant feed system. The nominal power of the Phase II system is 8 kW; however, it can be deeply throttled as well as clustered to much higher power levels. The technology also can be scaled to greater than 100 kW per thruster to support megawatt-class missions. The target thruster efficiency for the full-scale system is 65 percent at high specific impulse (Isp) (approximately 3,000 s) and 60 percent at high thrust (Isp approximately 2,000 s).

  3. NASA's Hall Thruster Program 2002

    NASA Technical Reports Server (NTRS)

    Jankovsky, Robert S.; Jacobson, David T.; Pinero, Luis R.; Manzella, David H.; Hofer, Richard R.; Peterson, Peter Y.

    2002-01-01

    The NASA Hall thruster program currently supports a number of tasks related to high power thruster development for a number of customers including the Energetics Program (formerly called the Space-based Program), the Space Solar Power Program, and the In-space Propulsion Program. In program year 2002, two tasks were central to the NASA Hall thruster program: 1) the development of a laboratory Hall thruster capable of providing high thrust at high power-, and 2) investigations into operation of Hall thrusters at high specific impulse. In addition to these two primary thruster development activities, there are a number of other on-going activities supported by the NASA Hall thruster program. These additional activities are related to issues such as high-power power processor architecture, thruster lifetime, and spacecraft integration.

  4. Plasma inside a small Hall thruster for satellites

    NASA Astrophysics Data System (ADS)

    Dabiri, Maziar; Dudeck, Michel; Claudé, Pierre; Guyot, Marcel; Denise, Stéphane; Kurzyna, Jacek

    2014-05-01

    The plasma properties inside the channel of a small Hall effect thruster (petit propulseur innovant) equipped with permanent magnets are analysed by the fluid numerical code HETMAn. The local variables of electron density, electron and ion currents, and parallel and perpendicular electron temperatures are calculated as functions of time. The time-dependent and averaged values of the thruster performance (thrust: 13 mN, specific impulse: 1328 s) are obtained. The global efficiency is 34%.

  5. Magnesium Hall Thruster

    NASA Technical Reports Server (NTRS)

    Szabo, James J.

    2015-01-01

    This Phase II project is developing a magnesium (Mg) Hall effect thruster system that would open the door for in situ resource utilization (ISRU)-based solar system exploration. Magnesium is light and easy to ionize. For a Mars- Earth transfer, the propellant mass savings with respect to a xenon Hall effect thruster (HET) system are enormous. Magnesium also can be combusted in a rocket with carbon dioxide (CO2) or water (H2O), enabling a multimode propulsion system with propellant sharing and ISRU. In the near term, CO2 and H2O would be collected in situ on Mars or the moon. In the far term, Mg itself would be collected from Martian and lunar regolith. In Phase I, an integrated, medium-power (1- to 3-kW) Mg HET system was developed and tested. Controlled, steady operation at constant voltage and power was demonstrated. Preliminary measurements indicate a specific impulse (Isp) greater than 4,000 s was achieved at a discharge potential of 400 V. The feasibility of delivering fluidized Mg powder to a medium- or high-power thruster also was demonstrated. Phase II of the project evaluated the performance of an integrated, highpower Mg Hall thruster system in a relevant space environment. Researchers improved the medium power thruster system and characterized it in detail. Researchers also designed and built a high-power (8- to 20-kW) Mg HET. A fluidized powder feed system supporting the high-power thruster was built and delivered to Busek Company, Inc.

  6. NASA's 2004 Hall Thruster Program

    NASA Technical Reports Server (NTRS)

    Jacobson, David T.; Manzella, David H.; Hofer, Richard R.; Peterson, Peter Y.

    2004-01-01

    An overview of NASA's Hall thruster research and development tasks conducted during fiscal year 2004 is presented. These tasks focus on: raising the technology readiness level of high power Hall thrusters, developing a moderate-power/ moderate specific impulse Hall thruster, demonstrating high-power/high specific impulse Hall thruster operation, and addressing the fundamental technical challenges of emerging Hall thruster concepts. Programmatic background information, technical accomplishments and out year plans for each program element performed under the sponsorship of the In-Space Transportation Program, Project Prometheus, and the Energetics Project are provided.

  7. Magnetoplasmadynamic Thruster Workshop

    NASA Technical Reports Server (NTRS)

    1991-01-01

    On May 16, 1991, the NASA Headquarters Propulsion, Power, and Energy Division and the NASA Lewis Research Center Low Thrust Propulsion Branch hosted a workshop attended by key experts in magnetoplasmadynamic (MPD) thrusters and associated sciences. The scope was limited to high power MPD thrusters suitable for major NASA space exploration missions, and its purpose was to initiate the process of increasing the expectations and prospects for MPD research, primarily by increasing the level of cooperation, interaction, and communication between parties within the MPD community.

  8. Optimization of a wall-less Hall thruster

    NASA Astrophysics Data System (ADS)

    Vaudolon, Julien; Mazouffre, Stéphane; Hénaux, Carole; Harribey, Dominique; Rossi, Alberto

    2015-10-01

    An experimental optimization of a Hall thruster in wall-less operation mode is performed with the PPS-Flex, a 1.5 kW class thruster capable of modifying the magnetic field topology over a broad range of configurations. The anode geometry and the magnetic topology have been modified to avoid interaction between the magnetic field lines and the anode surface, compared to the first wall-less Hall thruster prototype. The measurements of the thrust and far-field ion properties reveal that a satisfactory performance level can be obtained once the magnetic barrier is restored, and pave the way towards the development of a high-efficiency wall-less Hall thruster.

  9. Performance of a Low-Power Cylindrical Hall Thruster

    NASA Technical Reports Server (NTRS)

    Polzin, Kurt A.; Markusic, Thomas E.; Stanojev, Boris J.; Dehoyos, Amado; Raitses, Yevgeny; Smirnov, Artem; Fisch, Nathaniel J.

    2007-01-01

    Recent mission studies have shown that a Hall thruster which operates at relatively constant thrust efficiency (45-55%) over a broad power range (300W - 3kW) is enabling for deep space science missions when compared with slate-of-the-art ion thrusters. While conventional (annular) Hall thrusters can operate at high thrust efficiency at kW power levels, it is difficult to construct one that operates over a broad power envelope down to 0 (100 W) while maintaining relatively high efficiency. In this note we report the measured performance (I(sub sp), thrust and efficiency) of a cylindrical Hall thruster operating at 0 (100 W) input power.

  10. Low Cost Electric Propulsion Thruster for Deep Space Robotic Science Missions

    NASA Technical Reports Server (NTRS)

    Manzella, David

    2008-01-01

    Electric Propulsion (EP) has found widespread acceptance by commercial satellite providers for on-orbit station keeping due to the total life cycle cost advantages these systems offer. NASA has also sought to benefit from the use of EP for primary propulsion onboard the Deep Space-1 and DAWN spacecraft. These applications utilized EP systems based on gridded ion thrusters, which offer performance unequaled by other electric propulsion thrusters. Through the In-Space Propulsion Project, a lower cost thruster technology is currently under development designed to make electric propulsion intended for primary propulsion applications cost competitive with chemical propulsion systems. The basis for this new technology is a very reliable electric propulsion thruster called the Hall thruster. Hall thrusters, which have been flown by the Russians dating back to the 1970s, have been used by the Europeans on the SMART-1 lunar orbiter and currently employed by 15 other geostationary spacecraft. Since the inception of the Hall thruster, over 100 of these devices have been used with no known failures. This paper describes the latest accomplishments of a development task that seeks to improve Hall thruster technology by increasing its specific impulse, throttle-ability, and lifetime to make this type of electric propulsion thruster applicable to NASA deep space science missions. In addition to discussing recent progress on this task, this paper describes the performance and cost benefits projected to result from the use of advanced Hall thrusters for deep space science missions.

  11. Pulsed Plasma Thruster

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Dr. Tom Markusic, a propulsion research engineer at the Marshall Space Flight Center (MSFC), adjusts a diagnostic laser while a pulsed plasma thruster (PPT) fires in a vacuum chamber in the background. NASA/MSFC's Propulsion Research Center (PRC) is presently investigating plasma propulsion for potential use on future nuclear-powered spacecraft missions, such as human exploration of Mars.

  12. Design of a Laboratory Hall Thruster with Magnetically Shielded Channel Walls, Phase I: Numerical Simulations

    NASA Technical Reports Server (NTRS)

    Mikellides, Ioannis G.; Katz, Ira; Hofer, Richard R.

    2011-01-01

    In a proof-of-principle effort to demonstrate the feasibility of magnetically shielded (MS) Hall thrusters, an existing laboratory thruster has been modified with the guidance of physics-based numerical simulation. When operated at a discharge power of 6-kilowatts the modified thruster has been designed to reduce the total energy and flux of ions to the channel insulators by greater than 1 and greater than 3 orders of magnitude, respectively. The erosion rates in this MS thruster configuration are predicted to be at least 2-4 orders of magnitude lower than those in the baseline (BL) configuration. At such rates no detectable erosion is expected to occur.

  13. Primary electric propulsion technology study. [for thruster wear-out mechanisms

    NASA Technical Reports Server (NTRS)

    Poeschel, R. L.; Beattie, J. R.

    1979-01-01

    An investigation of the 30-cm engineering-model-thruster technology with emphasis placed on the development of models for understanding and predicting the operational characteristics and wear-out mechanisms of the thruster as a function of operating or design parameters is presented. The task studies include: (1) the wear mechanisms and wear rates that determine the useful lifetime of the thruster discharge chamber; (2) cathode lifetime as determined by the depletion of barium from the barium-aluminate-impregnated-porous-tungsten insert that serves as a barium reservoir; (3) accelerator-grid-system technology; (4) a verification of the high-voltage propellant-flow-electrical-isolator design developed under NASA contract NAS3-20395 for operation at 10-kV applied voltage and 10-A equivalent propellant flow with mercury and argon propellants. A model was formulated for predicting performance.

  14. Extended performance solar electric propulsion thrust system study. Volume 4: Thruster technology evaluation

    NASA Technical Reports Server (NTRS)

    Poeschel, R. L.; Hawthorne, E. I.; Weisman, Y. C.; Frisman, M.; Benson, G. C.; Mcgrath, R. J.; Martinelli, R. M.; Linsenbardt, T. L.; Beattie, J. R.

    1977-01-01

    Several thrust system design concepts were evaluated and compared using the specifications of the most advanced 30 cm engineering model thruster as the technology base. Emphasis was placed on relatively high power missions (60 to 100 kW) such as a Halley's comet rendezvous. The extensions in thruster performance required for the Halley's comet mission were defined and alternative thrust system concepts were designed in sufficient detail for comparing mass, efficiency, reliability, structure, and thermal characteristics. Confirmation testing and analysis of thruster and power processing components were performed, and the feasibility of satisfying extended performance requirements was verified. A baseline design was selected from the alternatives considered, and the design analysis and documentation were refined. The baseline thrust system design features modular construction, conventional power processing, and a concentrator solar array concept and is designed to interface with the Space Shuttle.

  15. A bibliography of electrothermal thruster technology, 1984

    NASA Technical Reports Server (NTRS)

    Sovey, J. S.; Hardy, T. L.; Englehart, M.

    1986-01-01

    Electrothermal propulsion concepts are briefly discussed as an introduction to a bibliography and author index. Nearly 700 citations are given for resistojets, thermal arcjets, pulsed electrothermal thrusters, microwave heated devices, solar thermal thrusters, and laser thermal thrusters.

  16. Electronegative Gas Thruster - Direct Thrust Measurement Project

    NASA Technical Reports Server (NTRS)

    Dankanich, John (Principal Investigator); Aanesland, Ane; Polzin, Kurt; Walker, Mitchell

    2015-01-01

    This effort is an international collaboration and academic partnership to mature an innovative electric propulsion (EP) thruster concept to TRL 3 through direct thrust measurement. The initial target application is for Small Satellites, but can be extended to higher power. The Plasma propulsion with Electronegative GASES (PEGASES) concept simplifies ion thruster operation, eliminates a neutralizer requirement and should yield longer life capabilities and lower cost implementation over conventional gridded ion engines. The basic proof-of concept has been demonstrated and matured to TRL 2 over the past several years by researchers at the Laboratoire de Physique des Plasma in France. Due to the low maturity of the innovation, there are currently no domestic investments in electronegative gas thrusters anywhere within NASA, industry or academia. The end product of this Center Innovation Fund (CIF) project will be a validation of the proof-of-concept, maturation to TRL 3 and technology assessment report to summarize the potential for the PEGASES concept to supplant the incumbent technology. Information exchange with the foreign national will be one-way with the exception of the test results. Those test results will first go through a standard public release ITAR/export control review, and the results will be presented in a public technical forum, and the results will be presented in a public technical forum.

  17. Status of the NASA's Evolutionary Xenon Thruster (NEXT) Long-Duration Test After 30,352 Hours of Operation

    NASA Technical Reports Server (NTRS)

    Herman, Daniel A.

    2010-01-01

    The NASA s Evolutionary Xenon Thruster (NEXT) program is tasked with significantly improving and extending the capabilities of current state-of-the-art NSTAR thruster. The service life capability of the NEXT ion thruster is being assessed by thruster wear test and life-modeling of critical thruster components, such as the ion optics and cathodes. The NEXT Long-Duration Test (LDT) was initiated to validate and qualify the NEXT thruster propellant throughput capability. The NEXT thruster completed the primary goal of the LDT; namely to demonstrate the project qualification throughput of 450 kg by the end of calendar year 2009. The NEXT LDT has demonstrated 30,352 hr of operation and processed 490 kg of xenon throughput--surpassing the NSTAR Extended Life Test hours demonstrated and more than double the throughput demonstrated by the NSTAR flight-spare. Thruster performance changes have been consistent with a priori predictions. Thruster erosion has been minimal and consistent with the thruster service life assessment, which predicts the first failure mode at greater than 750 kg throughput. The life-limiting failure mode for NEXT is predicted to be loss of structural integrity of the accelerator grid due to erosion by charge-exchange ions.

  18. Testing of the Qinetiq T6 Thruster in Support of the ESA BepiColombo Mercury Mission for the ESA BepiColombo Mission

    NASA Astrophysics Data System (ADS)

    Wallace, N.

    2004-10-01

    This paper presents the results of two test programmes. The first involved a series of simultaneous thruster firing tests performed at QinetiQ in the QinetiQ LEEP 2 (2nd Large European Electric Propulsion) vacuum test facility using 2 T6 thrusters operating between 50 and 230 mN at a specific impulse above 4500s. The test configuration allowed the simultaneous operation of 2 thrusters at a range of thrust levels and thruster spacings. The spacing between thrusters could be varied between 800 mm and 10 mm with the thrusters operating. One of the thrusters, designated the Primary, was suspended from a pendulum thrust balance and was aligned with a large diameter ion beam probe array. These diagnostics allowed the thrust to be directly measured and the ion beam plume to be characterised, allowing comparisons to be made between single and simultaneous operation at different thruster spacings. Testing was also performed with different combinations of neutralisers to determine the potential effects of dual thruster operation with a single neutraliser. The second series of tests involved the operation of a single T6 thruster at a thrust level of 208 mN at the elevated thermal conditions predicted for Mercury. Thermal and mechanical analyses of the T6 (including additional thrusters in close proximity) indicated the worst case thermal conditions occur when the thruster assembly was illuminated from the side, producing the most severe temperatures and thermal gradients across the thruster structure. A 500 hour test was performed in which thruster performance was assessed using electrical operating parameters, thrust balance and beam probe array measurements taken with the thruster operating at both nominal and simulated Mercury thermal conditions. The latter was produced using a metal collar equipped with electrical heaters, placed in close proximity to the thruster structure. The heater collar could be positioned and withdrawn without the need to vent the chamber and

  19. Investigation of mercury thruster isolators. [service life

    NASA Technical Reports Server (NTRS)

    Mantenieks, M. A.

    1973-01-01

    Mercury ion thruster isolator lifetime tests were performed using different isolator materials and geometries. Tests were performed with and without the flow of mercury through the isolators in an oil diffusion pumped vacuum facility and cryogenically pumped bell jar. The onset of leakage current in isolators tested occurred in time intervals ranging from a few hours to many hundreds of hours. In all cases, surface contamination was responsible for the onset of leakage current and subsequent isolator failure. Rate of increase of leakage current and the leakage current level increased approximately exponentially with isolator temperature. Careful attention to shielding techniques and the elimination of sources of metal oxides appear to have eliminated isolator failures as a thruster life limiting mechanism.

  20. The Plasmoid Thruster Experiment (PTX)

    NASA Technical Reports Server (NTRS)

    Eskridge, R.; Martin, Adam; Lee, Michael; Smith, James; Koelfgen, Syri

    2003-01-01

    This viewgraph presentation describes the overall Plasma Thruster Experiment (PTX), it's purpose and design, compact toroid propulsion, advantages and requirements of a plasmoid thruster, the projected efficiency, theta-pinch formation, a simulation of the PTX Coil/Bank Circuit using SPICE, the test firing of the PTX Capacitor Bank, PTX diagnostics, the excluded flux array, thruster simulations using MOQUI, and future work on the PTX.

  1. NASA's Evolutionary Xenon Thruster (NEXT) Long-Duration Test as of 736 kg of Propellant Throughput

    NASA Technical Reports Server (NTRS)

    Shastry, Rohit; Herman, Daniel A.; Soulas, George C.; Patterson, Michael J.

    2012-01-01

    The NASA s Evolutionary Xenon Thruster (NEXT) program is developing the next-generation solar-electric ion propulsion system with significant enhancements beyond the state-of-the-art NASA Solar Electric Propulsion Technology Application Readiness (NSTAR) ion propulsion system to provide future NASA science missions with enhanced mission capabilities. A Long-Duration Test (LDT) was initiated in June 2005 to validate the thruster service life modeling and to qualify the thruster propellant throughput capability. The thruster has set electric propulsion records for the longest operating duration, highest propellant throughput, and most total impulse demonstrated. At the time of this publication, the NEXT LDT has surpassed 42,100 h of operation, processed more than 736 kg of xenon propellant, and demonstrated greater than 28.1 MN s total impulse. Thruster performance has been steady with negligible degradation. The NEXT thruster design has mitigated several lifetime limiting mechanisms encountered in the NSTAR design, including the NSTAR first failure mode, thereby drastically improving thruster capabilities. Component erosion rates and the progression of the predicted life-limiting erosion mechanism for the thruster compare favorably to pretest predictions based upon semi-empirical ion thruster models used in the thruster service life assessment. Service life model validation has been accomplished by the NEXT LDT. Assuming full-power operation until test article failure, the models and extrapolated erosion data predict penetration of the accelerator grid grooves after more than 45,000 hours of operation while processing over 800 kg of xenon propellant. Thruster failure due to degradation of the accelerator grid structural integrity is expected after groove penetration.

  2. NASA's Evolutionary Xenon Thruster (NEXT) Long-Duration Test as of 736 kg of Propellant Throughput

    NASA Technical Reports Server (NTRS)

    Shastry, Rohit; Herman, Daniel A.; Soulas, George C.; Patterson, Michael J.

    2012-01-01

    The NASA s Evolutionary Xenon Thruster (NEXT) program is developing the next-generation solar-electric ion propulsion system with significant enhancements beyond the state-of-the-art NASA Solar Electric Propulsion Technology Application Readiness (NSTAR) ion propulsion system to provide future NASA science missions with enhanced mission capabilities. A Long-Duration Test (LDT) was initiated in June 2005 to validate the thruster service life modeling and to qualify the thruster propellant throughput capability. The thruster has set electric propulsion records for the longest operating duration, highest propellant throughput, and most total impulse demonstrated. At the time of this publication, the NEXT LDT has surpassed 42,100 h of operation, processed more than 736 kg of xenon propellant, and demonstrated greater than 28.1 MN s total impulse. Thruster performance has been steady with negligible degradation. The NEXT thruster design has mitigated several lifetime limiting mechanisms encountered in the NSTAR design, including the NSTAR first failure mode, thereby drastically improving thruster capabilities. Component erosion rates and the progression of the predicted life-limiting erosion mechanism for the thruster compare favorably to pretest predictions based upon semi-empirical ion thruster models used in the thruster service life assessment. Service life model validation has been accomplished by the NEXT LDT. Assuming full-power operation until test article failure, the models and extrapolated erosion data predict penetration of the accelerator grid grooves after more than 45,000 hours of operation while processing over 800 kg of xenon propellant. Thruster failure due to degradation of the accelerator grid structural integrity is expected after

  3. Thermal Modeling for Pulsed Inductive FRC Plasmoid Thrusters

    NASA Astrophysics Data System (ADS)

    Pfaff, Michael

    Due to the rising importance of space based infrastructure, long-range robotic space missions, and the need for active attitude control for spacecraft, research into Electric Propulsion is becoming increasingly important. Electric Propulsion (EP) systems utilize electric power to accelerate ions in order to produce thrust. Unlike traditional chemical propulsion, this means that thrust levels are relatively low. The trade-off is that EP thrusters have very high specific impulses (Isp), and can therefore make do with far less onboard propellant than cold gas, monopropellant, or bipropellant engines. As a consequence of the high power levels used to accelerate the ionized propellant, there is a mass and cost penalty in terms of solar panels and a power processing unit. Due to the large power consumption (and waste heat) from electric propulsion thrusters, accurate measurements and predictions of thermal losses are needed. Excessive heating in sensitive locations within a thruster may lead to premature failure of vital components. Between the fixed cost required to purchase these components, as well as the man-hours needed to assemble (or replace) them, attempting to build a high-power thruster without reliable thermal modeling can be expensive. This paper will explain the usage of FEM modeling and experimental tests in characterizing the ElectroMagnetic Plasmoid Thruster (EMPT) and the Electrodeless Lorentz Force (ELF) thruster at the MSNW LLC facility in Redmond, Washington. The EMPT thruster model is validated using an experimental setup, and steady state temperatures are predicted for vacuum conditions. Preliminary analysis of the ELF thruster indicates possible material failure in absence of an active cooling system for driving electronics and for certain power levels.

  4. Thruster sealing system and apparatus

    NASA Technical Reports Server (NTRS)

    Svejkovsky, Paul A. (Inventor)

    1992-01-01

    A thruster nozzle sealing system and apparatus is provided for protection of spacecraft thruster motors. The system includes a sealing plug, a sealing plug insertion tool, an outer cover, an outer cover attachment, and a ferry flight attachment. The sealing plug prevents moisture from entering the thruster engine so as to prevent valve failure. The attachments are interchangeably connectable with the sealing plug. The ferry flight attachment is used during air transportation of the spacecraft, and the outer cover attachment is used during storage and service of the spacecraft. The outer cover provides protection to the thruster nozzle from mechanical damage.

  5. Deflagration plasma thruster

    NASA Technical Reports Server (NTRS)

    Cheng, D. Y.; Chang, C. N.

    1984-01-01

    This paper introduces the application of the magnetized plasma deflagration process to space propulsion. The deflagration process has the unique capability of efficiently converting input energy into kinetic energy in the accelerating direction. To illustrate the totally divergent characters of 'snowplow' detonation and deflagration discharges, examples of the differences between deflagration and detonation 'snowplow' discharges are expressed in terms of current densities, temperature, and particle velocities. Magnetic field profiles of the deflagration mode of discharges are measured. Typical attainable plasma characteristics are described in terms of velocity, electron temperature, and density, as well as measurement techniques. Specific impulses measured by piezo-electric probe and pendulum methods are presented. The influence of the transmission line in the discharge circuits on plasma velocity is measured by means of a microwave time-of-flight method. The results for the deflagration thruster are compared with other space thrusters. Further research areas are identified.

  6. Green Liquid Monopropellant Thruster

    NASA Technical Reports Server (NTRS)

    Joshi, Prakash B.

    2015-01-01

    Physical Sciences, Inc. (PSI), and Orbital Technologies Corporation (ORBITEC) are developing a unique chemical propulsion system for next-generation NASA science spacecraft and missions. The system is compact, lightweight, and can operate with high reliability over extended periods of time and under a wide range of thermal environments. The system uses a new storable, low-toxicity liquid monopropellant as its working fluid. In Phase I, the team demonstrated experimentally the critical ignition and combustion processes for the propellant and used the data to develop thruster design concepts. In Phase II, the team developed and demonstrated in the laboratory a proof-of-concept prototype thruster. A Phase III project is envisioned to develop a full-scale protoflight propulsion system applicable to a class of NASA missions.

  7. Low Frequency Plasma Oscillations in a 6-kW Magnetically Shielded Hall Thruster

    NASA Technical Reports Server (NTRS)

    Jorns, Benjamin A.; Hofery, Richard R.

    2013-01-01

    The oscillations from 0-100 kHz in a 6-kW magnetically shielded thruster are experimen- tally characterized. Changes in plasma parameters that result from the magnetic shielding of Hall thrusters have the potential to significantly alter thruster transients. A detailed investigation of the resulting oscillations is necessary both for the purpose of determin- ing the underlying physical processes governing time-dependent behavior in magnetically shielded thrusters as well as for improving thruster models. In this investigation, a high speed camera and a translating ion saturation probe are employed to examine the spatial extent and nature of oscillations from 0-100 kHz in the H6MS thruster. Two modes are identified at 8 kHz and 75-90 kHz. The low frequency mode is azimuthally uniform across the thruster face while the high frequency oscillation is concentrated close to the thruster centerline with an m = 1 azimuthal dependence. These experimental results are discussed in the context of wave theory as well as published observations from an unshielded variant of the H6MS thruster.

  8. Proposal for Testing and Validation of Vacuum Ultra-Violet Atomic Laser-Induced Fluorescence as a Method to Analyze Carbon Grid Erosion in Ion Thrusters

    NASA Technical Reports Server (NTRS)

    Stevens, Richard

    2003-01-01

    Previous investigation under award NAG3-25 10 sought to determine the best method of LIF to determine the carbon density in a thruster plume. Initial reports from other groups were ambiguous as to the number of carbon clusters that might be present in the plume of a thruster. Carbon clusters would certainly affect the ability to LIF; if they were the dominant species, then perhaps the LIF method should target clusters. The results of quadrupole mass spectroscopy on sputtered carbon determined that minimal numbers of clusters were sputtered from graphite under impact from keV Krypton. There were some investigations in the keV range by other groups that hinted at clusters, but at the time the proposal was presented to NASA, there was no data from low-energy sputtering available. Thus, the proposal sought to develop a method to characterize the population only of atoms sputtered from a graphite target in a test cell. Most of the ground work had been established by the previous two years of investigation. The proposal covering 2003 sought to develop an anti-Stokes Raman shifting cell to generate VUW light and test this cell on two different laser systems, ArF and YAG- pumped dye. The second goal was to measure the lowest detectable amounts of carbon atoms by 156.1 nm and 165.7 nm LIF. If equipment was functioning properly, it was expected that these goals would be met easily during the timeframe of the proposal, and that is the reason only modest funding was requested. The PI was only funded at half- time by Glenn during the summer months. All other work time was paid for by Whitworth College. The college also funded a student, Charles Shawley, who worked on the project during the spring.

  9. Engineering model 8-cm thruster subsystem

    NASA Technical Reports Server (NTRS)

    Herron, B. G.; Hyman, J.; Hopper, D. J.; Williamson, W. S.; Dulgeroff, C. R.; Collett, C. R.

    1978-01-01

    An Engineering Model (EM) 8 cm Ion Thruster Propulsion Subsystem was developed for operation at a thrust level 5 mN (1.1 mlb) at a specific impulse 1 sub sp = 2667 sec with a total system input power P sub in = 165 W. The system dry mass is 15 kg with a mercury-propellant-reservoir capacity of 8.75 kg permitting uninterrupted operation for about 12,500 hr. The subsystem can be started from a dormant condition in a time less than or equal to 15 min. The thruster has a design lifetime of 20,000 hr with 10,000 startup cycles. A gimbal unit is included to provide a thrust vector deflection capability of + or - 10 degrees in any direction from the zero position. The EM subsystem development program included thruster optimization, power-supply circuit optimization and flight packaging, subsystem integration, and subsystem acceptance testing including a cyclic test of the total propulsion package.

  10. Electron Transport in Hall Thrusters

    NASA Astrophysics Data System (ADS)

    McDonald, Michael Sean

    Despite high technological maturity and a long flight heritage, computer models of Hall thrusters remain dependent on empirical inputs and a large part of thruster development to date has been heavily experimental in nature. This empirical approach will become increasingly unsustainable as new high-power thrusters tax existing ground test facilities and more exotic thruster designs stretch and strain the boundaries of existing design experience. The fundamental obstacle preventing predictive modeling of Hall thruster plasma properties and channel erosion is the lack of a first-principles description of electron transport across the strong magnetic fields between the cathode and anode. In spite of an abundance of proposed transport mechanisms, accurate assessments of the magnitude of electron current due to any one mechanism are scarce, and comparative studies of their relative influence on a single thruster platform simply do not exist. Lacking a clear idea of what mechanism(s) are primarily responsible for transport, it is understandably difficult for the electric propulsion scientist to focus his or her theoretical and computational tools on the right targets. This work presents a primarily experimental investigation of collisional and turbulent Hall thruster electron transport mechanisms. High-speed imaging of the thruster discharge channel at tens of thousands of frames per second reveals omnipresent rotating regions of elevated light emission, identified with a rotating spoke instability. This turbulent instability has been shown through construction of an azimuthally segmented anode to drive significant cross-field electron current in the discharge channel, and suggestive evidence points to its spatial extent into the thruster near-field plume as well. Electron trajectory simulations in experimentally measured thruster electromagnetic fields indicate that binary collisional transport mechanisms are not significant in the thruster plume, and experiments

  11. Pulsed Plasma Thruster Technology

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The continuing emphasis on reducing costs and downsizing spacecraft is forcing increased emphasis on reducing the subsystem mass and integration costs. For many commercial, scientific, and Department of Defense space missions, onboard propulsion is either the predominant spacecraft mass or it limits the spacecraft lifetime. Electromagnetic-pulsed-plasma thrusters (PPT's) offer the combined benefits of extremely low average electric power requirements (1 to 150 W), high specific impulse (approx. 1000 sec), and system simplicity derived from the use of an inert solid propellant. Potential applications range from orbit insertion and maintenance of small satellites to attitude control for large geostationary communications satellites.

  12. Electrodeless Experimental Thruster

    SciTech Connect

    Brainerd, Jerome J.; Reisz, Al

    2009-03-16

    An electrodeless experimental electric thruster has been built and tested at the NASA Marshall Space Flight Center (MSFC). The plasma is formed by Electron-Cyclotron Resonance (ECR) absorption of RF waves (microwaves). The RF source operates in the 1 to 2 kW range. The plasma is overdense and is confined radially by an applied axial dc magnetic field. The field is shaped by a strong magnetic mirror on the upstream end and a magnetic nozzle on the downstream end. Argon is used as the propellant. The velocity profile in the exhaust plume has been measured with Laser Induced Fluorescence (LIF). An unusual bimodal velocity profile has been measured.

  13. Inert gas thrusters

    NASA Technical Reports Server (NTRS)

    Kaufman, H. R.

    1978-01-01

    Inert gas thrusters have continued to be of interest for space propulsion applications. Xenon is of interest in that its physical characteristics are well suited to propulsion. High atomic weight and low tankage fraction were major factors in this choice. If a large amount of propellant was required, so that cryogenic storage was practical, argon is a more economical alternative. Argon was also the preferred propellant for ground applications of thruster technology, such as sputter etching and deposition. Additional magnetic field measurements are reported. These measurements should be of use in magnetic field design. The diffusion of electrons through the magnetic field above multipole anodes was studied in detail. The data were consistent with Bohm diffusion across a magnetic field. The theory based on Bohm diffusion was simple and easily used for diffusion calculations. Limited startup data were obtained for multipole discharge chambers. These data were obtained with refractory cathodes, but should be useful in predicting the upper limits for starting with hollow cathodes.

  14. Temperature Gradient in Hall Thrusters

    SciTech Connect

    D. Staack; Y. Raitses; N.J. Fisch

    2003-11-24

    Plasma potentials and electron temperatures were deduced from emissive and cold floating probe measurements in a 2 kW Hall thruster, operated in the discharge voltage range of 200-400 V. An almost linear dependence of the electron temperature on the plasma potential was observed in the acceleration region of the thruster both inside and outside the thruster. This result calls into question whether secondary electron emission from the ceramic channel walls plays a significant role in electron energy balance. The proportionality factor between the axial electron temperature gradient and the electric field is significantly smaller than might be expected by models employing Ohmic heating of electrons.

  15. Performance of a Permanent-Magnet Cylindrical Hall-Effect Thruster

    NASA Technical Reports Server (NTRS)

    Polzin, K. A.; Sooby, E. S.; Kimberlin, A. C.; Raites, Y.; Merino, E.; Fisch, N. J.

    2009-01-01

    The performance of a low-power cylindrical Hall thruster, which more readily lends itself to miniaturization and low-power operation than a conventional (annular) Hall thruster, was measured using a planar plasma probe and a thrust stand. The field in the cylindrical thruster was produced using permanent magnets, promising a power reduction over previous cylindrical thruster iterations that employed electromagnets to generate the required magnetic field topology. Two sets of ring-shaped permanent magnets are used, and two different field configurations can be produced by reorienting the poles of one magnet relative to the other. A plasma probe measuring ion flux in the plume is used to estimate the current utilization for the two magnetic topologies. The measurements indicate that electron transport is impeded much more effectively in one configuration, implying higher thrust efficiency. Thruster performance measurements on this configuration were obtained over a power range of 70-350 W and with the cathode orifice located at three different axial positions relative to the thruster exit plane. The thrust levels over this power range were 1.25-6.5 mN, with anode efficiencies and specific impulses spanning 4-21% and 400-1950 s, respectively. The anode efficiency of the permanent-magnet thruster compares favorable with the efficiency of the electromagnet thruster when the power consumed by the electromagnets is taken into account.

  16. Contamination control and plume assessment of low-energy thrusters

    NASA Technical Reports Server (NTRS)

    Scialdone, John J.

    1993-01-01

    Potential contamination of a spacecraft cryogenic surface by a xenon (Xe) ion generator was evaluated. The analysis involves the description of the plume exhausted from the generator with its relative component fluxes on the spacecraft surfaces, and verification of the conditions for condensation, adsorption, and sputtering at those locations. The data describing the plume fluxes and their effects on surfaces were obtained from two sources: the tests carried out with the Xe generator in a small vacuum chamber to indicate deposits and sputter on monitor slides; and the extensive tests with a mercury (Hg) ion thruster in a large vacuum chamber. The Hg thruster tests provided data on the neutrals, on low-energy ion fluxes, on high-energy ion fluxes, and on sputtered materials at several locations within the plume.

  17. Azimuthal Spoke Propagation in Hall Effect Thrusters

    NASA Technical Reports Server (NTRS)

    Sekerak, Michael J.; Longmier, Benjamin W.; Gallimore, Alec D.; Brown, Daniel L.; Hofer, Richard R.; Polk, James E.

    2013-01-01

    Spokes are azimuthally propagating perturbations in the plasma discharge of Hall Effect Thrusters (HETs) that travel in the E x B direction and have been observed in many different systems. The propagation of azimuthal spokes are investigated in a 6 kW HET known as the H6 using ultra-fast imaging and azimuthally spaced probes. A spoke surface is a 2-D plot of azimuthal light intensity evolution over time calculated from 87,500 frames/s videos. The spoke velocity has been determined using three methods with similar results: manual fitting of diagonal lines on the spoke surface, linear cross-correlation between azimuthal locations and an approximated dispersion relation. The spoke velocity for three discharge voltages (300, 400 and 450 V) and three anode mass flow rates (14.7, 19.5 and 25.2 mg/s) yielded spoke velocities between 1500 and 2200 m/s across a range of normalized magnetic field settings. The spoke velocity was inversely dependent on magnetic field strength for low B-field settings and asymptoted at B-field higher values. The velocities and frequencies are compared to standard drifts and plasma waves such as E x B drift, electrostatic ion cyclotron, magnetosonic and various drift waves. The empirically approximated dispersion relation yielded a characteristic velocity that matched the ion acoustic speed for 5 eV electrons that exist in the near-anode and near-field plume regions of the discharge channel based on internal measurements. Thruster performance has been linked to operating mode where thrust-to-power is maximized when azimuthal spokes are present so investigating the underlying mechanism of spokes will benefit thruster operation.

  18. Laser-heated thruster

    NASA Technical Reports Server (NTRS)

    Kemp, N. H.; Lewis, P. F.

    1980-01-01

    The development of a computer program for the design of the thrust chamber for a CW laser heated thruster was examined. Hydrodgen was employed as the propellant gas and high temperature absorber. The laser absorption coefficient of the mixture/laser radiation combination is given in temperature and species densities. Radiative and absorptive properties are given to determine radiation from such gas mixtures. A computer code for calculating the axisymmetric channel flow of a gas mixture in chemical equilibrium, and laser energy absorption and convective and radiative heating is described. It is concluded that: (1) small amounts of cesium seed substantially increase the absorption coefficient of hydrogen; (2) cesium is a strong radiator and contributes greatly to radiation of cesium seeded hydrogen; (3) water vapor is a poor absorber; and (4) for 5.3mcm radiation, both H2O/CO and NO/CO seeded hydrogen mixtures are good absorbers.

  19. Laser-heated thruster

    NASA Technical Reports Server (NTRS)

    Kemp, N. H.; Krech, R. H.

    1980-01-01

    The development of computer codes for the thrust chamber of a rocket of which the propellant gas is heated by a CW laser beam was investigated. The following results are presented: (1) simplified models of laser heated thrusters for approximate parametric studies and performance mapping; (3) computer programs for thrust chamber design; and (3) shock tube experiment to measure absorption coefficients. Two thrust chamber design programs are outlined: (1) for seeded hydrogen, with both low temperature and high temperature seeds, which absorbs the laser radiation continuously, starting at the inlet gas temperature; and (2) for hydrogen seeded with cesium, in which a laser supported combustion wave stands near the gas inlet, and heats the gas up to a temperature at which the gas can absorb the laser energy.

  20. Performance of a quasi-steady, multi megawatt, coaxial plasma thruster

    NASA Technical Reports Server (NTRS)

    Scheuer, Jay T.; Schoenberg, Kurt F.; Henins, Ivars; Gerwin, Richard A.; Moses, Ronald W., Jr.; Garcia, Jose A.; Gribble, Robert F.; Hoyt, Robert P.; Black, Dorwin C.; Mayo, Robert M.

    1994-01-01

    The Los Alamos National Laboratory Coaxial Thruster Experiment (CTX) has been upgraded to enable the quasisteady operation of magnetoplasmadynamic (MPD) type thrusters at power levels from 2 to 40 MW for 10 ms. Diagnostics include an eight position, three axis magnetic field probe to measure magnetic field fluctuations during the pulse; a triple Langmuir probe to measure ion density, electron temperature, and plasma potential; and a time-of-flight neutral particle spectrometer to measure specific impulse. Here we report on the experimental observations and associated analysis and interpretation of long-pulse, quasisteady, coaxial thruster performance in the CTX device.

  1. Plume characteristics of MPD thrusters: A preliminary examination

    NASA Technical Reports Server (NTRS)

    Myers, Roger M.

    1989-01-01

    A diagnostics facility for MPD thruster plume measurements was built and is currently undergoing testing. The facility includes electrostatic probes for electron temperature and density measurements, Hall probes for magnetic field and current distribution mapping, and an imaging system to establish the global distribution of plasma species. Preliminary results for MPD thrusters operated at power levels between 30 and 60 kW with solenoidal applied magnetic fields show that the electron density decreases exponentially from 1x10(2) to 2x10(18)/cu m over the first 30 cm of the expansion, while the electron temperature distribution is relatively uniform, decreasing from approximately 2.5 eV to 1.5 eV over the same distance. The radiant intensity of the ArII 4879 A line emission also decays exponentially. Current distribution measurements indicate that a significant fraction of the discharge current is blown into the plume region, and that its distribution depends on the magnitudes of both the discharge current and the applied magnetic field.

  2. Development And Testing Of The Inertial Electrostatic Confinement Diffusion Thruster

    NASA Technical Reports Server (NTRS)

    Becnel, Mark D.; Polzin, Kurt A.

    2013-01-01

    The Inertial Electrostatic Confinement (IEC) diffusion thruster is an experiment in active development that takes advantage of physical phenomenon that occurs during operation of an IEC device. The IEC device has been proposed as a fusion reactor design that relies on traditional electrostatic ion acceleration and is typically arranged in a spherical geometry. The design incorporates two radially-symmetric spherical electrodes. Often the inner electrode utilizes a grid of wire shaped in a sphere with a radius 15 to 50 percent of the radius of the outer electrode. The inner electrode traditionally has 90 percent or more transparency to allow particles (ions) to pass to the center of the spheres and collide/recombine in the dense plasma core at r=0. When operating the IEC, an unsteady plasma leak is typically observed passing out one of the gaps in the lattice grid of the inner electrode. The IED diffusion thruster is based upon the idea that this plasma leak can be used for propulsive purposes. The IEC diffusion thruster utilizes the radial symmetry found in the IEC device. A cylindrical configuration is employed here as it will produce a dense core of plasma the length of the cylindrical grid while promoting the plasma leak to exhaust through an electromagnetic nozzle at one end of the apparatus. A proof-of-concept IEC diffusion thruster is operational and under testing using argon as propellant (Figure 1).

  3. Deep Space Mission Applications for NEXT: NASA's Evolutionary Xenon Thruster

    NASA Technical Reports Server (NTRS)

    Oh, David; Benson, Scott; Witzberger, Kevin; Cupples, Michael

    2004-01-01

    NASA's Evolutionary Xenon Thruster (NEXT) is designed to address a need for advanced ion propulsion systems on certain future NASA deep space missions. This paper surveys seven potential missions that have been identified as being able to take advantage of the unique capabilities of NEXT. Two conceptual missions to Titan and Neptune are analyzed, and it is shown that ion thrusters could decrease launch mass and shorten trip time, to Titan compared to chemical propulsion. A potential Mars Sample return mission is described, and compassion made between a chemical mission and a NEXT based mission. Four possible near term applications to New Frontiers and Discovery class missions are described, and comparisons are made to chemical systems or existing NSTAR ion propulsion system performance. The results show that NEXT has potential performance and cost benefits for missions in the Discovery, New Frontiers, and larger mission classes.

  4. Challenges to computing plasma thruster dynamics

    SciTech Connect

    Smith, G.A. )

    1992-01-01

    This paper describes computational challenges in describing high thrust and I[sub sp] expected from the proposed ion-compressed antimatter nuclear (ICAN) propulsion system. This concept uses antiprotons to induce fission reactions that jump start a microfission/fusion process in a target compressed by low-energy ion beams. The ICAN system could readily provide the high energy density required for interplanetary space missions of short duration. In conventional rocket design, thrust is obtained by expelling a propellant under high pressure through a nozzle. A larger I[sub sp] can be achieved by operating the system at a higher temperature. Full ionization of propellant at high temperature introduces new and challenging questions in the design of plasma thrusters.

  5. What We Have Learned By Studying The P5 Hall Thruster

    NASA Astrophysics Data System (ADS)

    Gallimore, Alec D.

    2003-05-01

    The Hall thruster is an advanced spacecraft propulsion system that uses electrical power provided by the spacecraft to generate thrust by ionizing and accelerating ions to high velocities. While Hall thrusters have been tested in laboratories for nearly forty years and first flew in space some thirty years ago, little is known about the plasma within these devices. This lack of knowledge has led to the expensive trial-and-error approach practiced in Hall thruster development over the years. The difficulty in collecting interior plasma data stems from the intense heat flux a probe receives. While optical measurements can give some information about the plasma, probes provide data about the plasma that are not accessible with optical approaches. Discharge channel plasma data are vital for extending our understanding of Hall thruster physical processes, for validating thruster models, and for developing advanced, next-generation engines for high ΔV missions. The paper summarizes the results of research aimed at using probes to characterize the internal plasma structure of a laboratory Hall thruster developed specifically for this purpose. Internal plasma parameter measurements were accomplished by using the unique High-speed Axial Reciprocating Probe (HARP) system, which enabled, for the first time, the insertion and removal of probes from the Hall thruster discharge channel while minimizing perturbation to thruster operation. The system was used with an emissive probe to map plasma potential, and a double Langmuir probe to map electron temperature and ion number density. Thruster perturbation, determined by monitoring discharge current, was less than 10% for the majority of measurements.

  6. High-Power Electromagnetic Thruster Being Developed

    NASA Technical Reports Server (NTRS)

    LaPointe, Michael R.; Mikellides, Pavlos G.

    2001-01-01

    High-power electromagnetic thrusters have been proposed as primary in-space propulsion options for several bold new interplanetary and deep-space missions. As the lead center for electric propulsion, the NASA Glenn Research Center designs, develops, and tests high-power electromagnetic technologies to meet these demanding mission requirements. Two high-power thruster concepts currently under investigation by Glenn are the magnetoplasmadynamic (MPD) thruster and the Pulsed Inductive Thruster (PIT).

  7. Direct Drive Hall Thruster System Development

    NASA Technical Reports Server (NTRS)

    Hoskins, W. Andrew; Homiak, Daniel; Cassady, R. Joseph; Kerslake, Tom; Peterson, Todd; Ferguson, Dale; Snyder, Dave; Mikellides, Ioannis; Jongeward, Gary; Schneider, Todd

    2003-01-01

    The sta:us of development of a Direct Drive Ha!! Thruster System is presented. 13 the first part. a s:udy of the impacts to spacecraft systems and mass benefits of a direct-drive architecture is reviewed. The study initially examines four cases of SPT-100 and BPT-4000 Hall thrusters used for north-south station keeping on an EXPRESS-like geosynchronous spacecraft and for primary propulsion for a Deep Space- 1 based science spacecraft. The study is also extended the impact of direct drive on orbit raising for higher power geosynchronous spacecraft and on other deep space missions as a function of power and delta velocity. The major system considerations for accommodating a direct drive Hall thruster are discussed, including array regulation, system grounding, distribution of power to the spacecraft bus, and interactions between current-voltage characteristics for the arrays and thrusters. The mass benefit analysis shows that, for the initial cases, up to 42 kg of dry mass savings is attributable directly to changes in the propulsion hardware. When projected mass impacts of operating the arrays and the electric power system at 300V are included, up to 63 kg is saved for the four initial cases. Adoption of high voltage lithium ion battery technology is projected to further improve these savings. Orbit raising of higher powered geosynchronous spacecraft, is the mission for which direct drive provides the most benefit, allowing higher efficiency electric orbit raising to be accomplished in a limited period of time, as well as nearly eliminating significant power processing heat rejection mass. The total increase in useful payload to orbit ranges up to 278 kg for a 25 kW spacecraft, launched from an Atlas IIA. For deep space missions, direct drive is found to be most applicable to higher power missions with delta velocities up to several km/s , typical of several Discovery-class missions. In the second part, the status of development of direct drive propulsion power

  8. High-Power Hall Thruster Technology Evaluated for Primary Propulsion Applications

    NASA Technical Reports Server (NTRS)

    Manzella, David H.; Jankovsky, Robert S.; Hofer, Richard R.

    2003-01-01

    High-power electric propulsion systems have been shown to be enabling for a number of NASA concepts, including piloted missions to Mars and Earth-orbiting solar electric power generation for terrestrial use (refs. 1 and 2). These types of missions require moderate transfer times and sizable thrust levels, resulting in an optimized propulsion system with greater specific impulse than conventional chemical systems and greater thrust than ion thruster systems. Hall thruster technology will offer a favorable combination of performance, reliability, and lifetime for such applications if input power can be scaled by more than an order of magnitude from the kilowatt level of the current state-of-the-art systems. As a result, the NASA Glenn Research Center conducted strategic technology research and development into high-power Hall thruster technology. During program year 2002, an in-house fabricated thruster, designated the NASA-457M, was experimentally evaluated at input powers up to 72 kW. These tests demonstrated the efficacy of scaling Hall thrusters to high power suitable for a range of future missions. Thrust up to nearly 3 N was measured. Discharge specific impulses ranged from 1750 to 3250 sec, with discharge efficiencies between 46 and 65 percent. This thruster is the highest power, highest thrust Hall thruster ever tested.

  9. IEC Thrusters for Space Probe Applications and Propulsion

    SciTech Connect

    Miley, George H.; Momota, Hiromu; Wu Linchun; Reilly, Michael P.; Teofilo, Vince L.; Burton, Rodney; Dell, Richard; Dell, Dick; Hargus, William A.

    2009-03-16

    Earlier conceptual design studies (Bussard, 1990; Miley et al., 1998; Burton et al., 2003) have described Inertial Electrostatic Confinement (IEC) fusion propulsion to provide a high-power density fusion propulsion system capable of aggressive deep space missions. However, this requires large multi-GW thrusters and a long term development program. As a first step towards this goal, a progression of near-term IEC thrusters, stating with a 1-10 kWe electrically-driven IEC jet thruster for satellites are considered here. The initial electrically-powered unit uses a novel multi-jet plasma thruster based on spherical IEC technology with electrical input power from a solar panel. In this spherical configuration, Xe ions are generated and accelerated towards the center of double concentric spherical grids. An electrostatic potential well structure is created in the central region, providing ion trapping. Several enlarged grid opening extract intense quasi-neutral plasma jets. A variable specific impulse in the range of 1000-4000 seconds is achieved by adjusting the grid potential. This design provides high maneuverability for satellite and small space probe operations. The multiple jets, combined with gimbaled auxiliary equipment, provide precision changes in thrust direction. The IEC electrical efficiency can match or exceed efficiencies of conventional Hall Current Thrusters (HCTs) while offering advantages such as reduced grid erosion (long life time), reduced propellant leakage losses (reduced fuel storage), and a very high power-to-weight ratio. The unit is ideally suited for probing missions. The primary propulsive jet enables delicate maneuvering close to an object. Then simply opening a second jet offset 180 degrees from the propulsion one provides a 'plasma analytic probe' for interrogation of the object.

  10. IEC Thrusters for Space Probe Applications and Propulsion

    NASA Astrophysics Data System (ADS)

    Miley, George H.; Momota, Hiromu; Wu, Linchun; Reilly, Michael P.; Teofilo, Vince L.; Burton, Rodney; Dell, Richard; Dell, Dick; Hargus, William A.

    2009-03-01

    Earlier conceptual design studies (Bussard, 1990; Miley et al., 1998; Burton et al., 2003) have described Inertial Electrostatic Confinement (IEC) fusion propulsion to provide a high-power density fusion propulsion system capable of aggressive deep space missions. However, this requires large multi-GW thrusters and a long term development program. As a first step towards this goal, a progression of near-term IEC thrusters, stating with a 1-10 kWe electrically-driven IEC jet thruster for satellites are considered here. The initial electrically-powered unit uses a novel multi-jet plasma thruster based on spherical IEC technology with electrical input power from a solar panel. In this spherical configuration, Xe ions are generated and accelerated towards the center of double concentric spherical grids. An electrostatic potential well structure is created in the central region, providing ion trapping. Several enlarged grid opening extract intense quasi-neutral plasma jets. A variable specific impulse in the range of 1000-4000 seconds is achieved by adjusting the grid potential. This design provides high maneuverability for satellite and small space probe operations. The multiple jets, combined with gimbaled auxiliary equipment, provide precision changes in thrust direction. The IEC electrical efficiency can match or exceed efficiencies of conventional Hall Current Thrusters (HCTs) while offering advantages such as reduced grid erosion (long life time), reduced propellant leakage losses (reduced fuel storage), and a very high power-to-weight ratio. The unit is ideally suited for probing missions. The primary propulsive jet enables delicate maneuvering close to an object. Then simply opening a second jet offset 180 degrees from the propulsion one provides a "plasma analytic probe" for interrogation of the object.

  11. Magnetic shielding of a laboratory Hall thruster. II. Experiments

    SciTech Connect

    Hofer, Richard R. Goebel, Dan M.; Mikellides, Ioannis G.; Katz, Ira

    2014-01-28

    The physics of magnetic shielding in Hall thrusters were validated through laboratory experiments demonstrating essentially erosionless, high-performance operation. The magnetic field near the walls of a laboratory Hall thruster was modified to effectively eliminate wall erosion while maintaining the magnetic field topology away from the walls necessary to retain efficient operation. Plasma measurements at the walls validate our understanding of magnetic shielding as derived from the theory. The plasma potential was maintained very near the anode potential, the electron temperature was reduced by a factor of two to three, and the ion current density was reduced by at least a factor of two. Measurements of the carbon backsputter rate, wall geometry, and direct measurement of plasma properties at the wall indicate that the wall erosion rate was reduced by a factor of 1000 relative to the unshielded thruster. These changes effectively eliminate wall erosion as a life limitation in Hall thrusters, enabling a new class of deep-space missions that could not previously be attempted.

  12. NASA GRC High Power Electromagnetic Thruster Program

    NASA Technical Reports Server (NTRS)

    LaPointe, Michael R.; Pensil, Eric J.

    2004-01-01

    High-power electromagnetic thrusters have been proposed as primary in-space propulsion options for several bold new interplanetary and deep-space missions. As the lead center for electric propulsion, the NASA Glenn Research Center designs, develops, and tests high-power electromagnetic technologies to meet these demanding mission requirements. Two high-power thruster concepts currently under investigation by Glenn are the magnetoplasmadynamic (MPD) thruster and the Pulsed Inductive Thruster (PIT). This paper describes the MPD thruster and the test facility.

  13. Effect of a Magnetic Nozzle in an MPD Thruster

    NASA Astrophysics Data System (ADS)

    Izawa, Yuuki; Suzuki, Kiyotaka; Takahashi, Kazunori; Ando, Akira

    Thrust imparted from a Magneto-Plasma-Dynamic thruster is directly measured by using a pendulum type thrust target and is successfully increased twice by applying a magnetic nozzle. The presently obtained thrust performance shows a thrust of ~6 N and a specific impulse of ~9000 sec for the discharge current of 6 kA. The plasma axial flow velocity is increased up to 40 km/sec near the thruster exit when increasing the magnetic nozzle field strength. Further downstream region the plasma flow is decelerated and an increase in an ion temperature is simultaneously detected. The results suggest that the axial flow energy is converted into the thermal ion energy.

  14. Improvement of the low frequency oscillation model for Hall thrusters

    NASA Astrophysics Data System (ADS)

    Wang, Chunsheng; Wang, Huashan

    2016-08-01

    The low frequency oscillation of the discharge current in Hall thrusters is a major aspect of these devices that requires further study. While the existing model captures the ionization mechanism of the low frequency oscillation, it unfortunately fails to express the dynamic characteristics of the ion acceleration. The analysis in this paper shows this is because of the simplification of the electron equation, which affects both the electric field distribution and the ion acceleration process. Additionally, the electron density equation is revised and a new model that is based on the physical properties of ion movement is proposed.

  15. Hall Thruster Plume Measurements On-Board the Russian Express Satellites

    NASA Technical Reports Server (NTRS)

    Manzella, David; Jankovsky, Robert; Elliott, Frederick; Mikellides, Ioannis; Jongeward, Gary; Allen, Doug

    2001-01-01

    The operation of North-South and East-West station-keeping Hall thruster propulsion systems on-board two Russian Express-A geosynchronous communication satellites were investigated through a collaborative effort with the manufacturer of the spacecraft. Over 435 firings of 16 different thrusters with a cumulative run time of over 550 hr were reported with no thruster failures. Momentum transfer due to plume impingement was evaluated based on reductions in the effective thrust of the SPT-100 thrusters and induced disturbance torques determined based on attitude control system data and range data. Hall thruster plasma plume effects on the transmission of C-band and Ku-band communication signals were shown to be negligible. On-orbit ion current density measurements were made and subsequently compared to predictions and ground test data. Ion energy, total pressure, and electric field strength measurements were also measured on-orbit. The effect of Hall thruster operation on solar array performance over several months was investigated. A subset of these data is presented.

  16. A review of electron bombardment thruster systems/spacecraft field and particle interfaces

    NASA Technical Reports Server (NTRS)

    Byers, D. C.

    1978-01-01

    Information on the field and particle interfaces of electron bombardment ion thruster systems was summarized. Major areas discussed were the nonpropellant particles, neutral propellant, ion beam, low energy plasma, and fields. Spacecraft functions and subsystems reviewed were solar arrays, thermal control systems, optical sensors, communications, science, structures and materials, and potential control.

  17. A Small Modular Laboratory Hall Effect Thruster

    NASA Astrophysics Data System (ADS)

    Lee, Ty Davis

    Electric propulsion technologies promise to revolutionize access to space, opening the door for mission concepts unfeasible by traditional propulsion methods alone. The Hall effect thruster is a relatively high thrust, moderate specific impulse electric propulsion device that belongs to the class of electrostatic thrusters. Hall effect thrusters benefit from an extensive flight history, and offer significant performance and cost advantages when compared to other forms of electric propulsion. Ongoing research on these devices includes the investigation of mechanisms that tend to decrease overall thruster efficiency, as well as the development of new techniques to extend operational lifetimes. This thesis is primarily concerned with the design and construction of a Small Modular Laboratory Hall Effect Thruster (SMLHET), and its operation on argon propellant gas. Particular attention was addressed at low-cost, modular design principles, that would facilitate simple replacement and modification of key thruster parts such as the magnetic circuit and discharge channel. This capability is intended to facilitate future studies of device physics such as anomalous electron transport and magnetic shielding of the channel walls, that have an impact on thruster performance and life. Preliminary results demonstrate SMLHET running on argon in a manner characteristic of Hall effect thrusters, additionally a power balance method was utilized to estimate thruster performance. It is expected that future thruster studies utilizing heavier though more expensive gases like xenon or krypton, will observe increased efficiency and stability.

  18. Krypton charge exchange cross sections for Hall effect thruster models

    SciTech Connect

    Hause, Michael L.; Prince, Benjamin D.; Bemish, Raymond J.

    2013-04-28

    Following discharge from a Hall effect thruster, charge exchange occurs between ions and un-ionized propellant atoms. The low-energy cations produced can disturb operation of onboard instrumentation or the thruster itself. Charge-exchange cross sections for both singly and doubly charged propellant atoms are required to model these interactions. While xenon is the most common propellant currently used in Hall effect thrusters, other propellants are being considered, in particular, krypton. We present here guided-ion beam measurements and comparisons to semiclassical calculations for Kr{sup +} + Kr and Kr{sup 2+} + Kr cross sections. The measurements of symmetric Kr{sup +} + Kr charge exchange are in good agreement with both the calculations including spin-orbit effects and previous measurements. For the symmetric Kr{sup 2+} + Kr reaction, we present cross section measurements for center-of-mass energies between 1 eV and 300 eV, which spans energies not previously examined experimentally. These cross section measurements compare well with a simple one-electron transfer model. Finally, cross sections for the asymmetric Kr{sup 2+} + Kr {yields} Kr{sup +} + Kr{sup +} reaction show an onset near 12 eV, reaching cross sections near constant value of 1.6 A{sup 2} with an exception near 70-80 eV.

  19. Design of an ICRF plasma thruster antenna by TOPICA

    NASA Astrophysics Data System (ADS)

    Vecchi, Giuseppe; Lancellotti, Vito; Maggiora, Riccardo

    2006-10-01

    A typical RF plasma thruster is comprised of an RF plasma source, an open-ended magnetic confinement device, an RF acceleration unit and a magnetic nozzle. The usual choice for the acceleration is to employ the Ion-Cyclotron resonance frequency (ICRF), a well established technology in fusion experiments for transferring large RF powers to magnetized plasmas. To help design RF thruster ICRF antennas, TOPICA (Torino Polytechnic Ion Cyclotron Antenna) code [1] has been recently extended to handle cylindrically symmetric plasmas. The latter entailed developing a wholly new module of TOPICA charged with the task of solving Maxwell's equations in cylindrical magnetized warm plasmas and yielding the Green's functionY (m,kz), i.e. the relationship at the air-plasma interface between the transverse magnetic and electric fields in the spectral (wavenumber) domain. The approach to the problem of determining the antenna input impedance relies on an integral-equation formulation for the self-consistent evaluation of the current distribution on the conductors. This work reports on TOPICA evolution and presents the design of an RF thruster ICRF antenna. *V. Lancellotti et al., Nucl. Fusion, 46 (2006) S476-S499

  20. Comparison of hybrid Hall thruster model to experimental measurements

    NASA Astrophysics Data System (ADS)

    Scharfe, Michelle K.; Gascon, Nicolas; Cappelli, Mark A.; Fernandez, Eduardo

    2006-08-01

    A two-dimensional hybrid particle-in-cell numerical model has been constructed in the radial-axial plane with the intent of examining the physics governing Hall thruster operation. The electrons are treated as a magnetized quasi-one-dimensional fluid and the ions are treated as collisionless, unmagnetized discrete particles. The anomalously high electron conductivity experimentally observed in Hall thrusters is accounted for using experimental measurements of electron mobility in the Stanford Hall Thruster. While an experimental mobility results in improved simulation of electron temperature and electric potential relative to a Bohm-type model, results suggest that energy losses due to electron wall interactions may also be an important factor in accurately simulating plasma properties. Using a simplified electron wall damping model modified to produce general agreement with experimental measurements, an evaluation is made of differing treatments of electron mobility, background gas, neutral wall interactions, and charge exchange collisions. Although background gas results in two populations of neutrals, the increased neutral density has little effect on other plasma properties. Diffuse neutral wall interactions are in better agreement with experimental measurements than specular scattering. Also, charge exchange collisions result in an increase in average neutral velocity of 11% and a decrease in average ion velocity of 4% near the exit plane. The momentum exchange that occurs during charge exchange collisions is found to be negligible.

  1. A Microwave Thruster for Spacecraft Propulsion

    SciTech Connect

    Chiravalle, Vincent P

    2012-07-23

    This presentation describes how a microwave thruster can be used for spacecraft propulsion. A microwave thruster is part of a larger class of electric propulsion devices that have higher specific impulse and lower thrust than conventional chemical rocket engines. Examples of electric propulsion devices are given in this presentation and it is shown how these devices have been used to accomplish two recent space missions. The microwave thruster is then described and it is explained how the thrust and specific impulse of the thruster can be measured. Calculations of the gas temperature and plasma properties in the microwave thruster are discussed. In addition a potential mission for the microwave thruster involving the orbit raising of a space station is explored.

  2. Performance characteristics according to the channel length and magnetic fields of cylindrical Hall thrusters

    NASA Astrophysics Data System (ADS)

    Lee, Jongsub; Seo, Mihui; Seon, Jongho; June Lee, Hae; Choe, Wonho

    2011-09-01

    Performance characteristics of low power cylindrical Hall thrusters are investigated in terms of the length of the discharge channel. Thrust, efficiency, discharge current, and propellant utilization are evaluated for different channel lengths of 19, 22, and 25 mm. It is found that the propellant utilization and ion energy distribution function are strongly associated with the channel length. Increase of thrust and efficiency are also found with increasing channel lengths. These characteristics of the thruster are interpreted with possible generation of multi-charged ions due to increased residing time within the extended space inside the channel.

  3. Hybrid-PIC Modeling of a High-Voltage, High-Specific-Impulse Hall Thruster

    NASA Technical Reports Server (NTRS)

    Smith, Brandon D.; Boyd, Iain D.; Kamhawi, Hani; Huang, Wensheng

    2013-01-01

    The primary life-limiting mechanism of Hall thrusters is the sputter erosion of the discharge channel walls by high-energy propellant ions. Because of the difficulty involved in characterizing this erosion experimentally, many past efforts have focused on numerical modeling to predict erosion rates and thruster lifespan, but those analyses were limited to Hall thrusters operating in the 200-400V discharge voltage range. Thrusters operating at higher discharge voltages (V(sub d) >= 500 V) present an erosion environment that may differ greatly from that of the lower-voltage thrusters modeled in the past. In this work, HPHall, a well-established hybrid-PIC code, is used to simulate NASA's High-Voltage Hall Accelerator (HiVHAc) at discharge voltages of 300, 400, and 500V as a first step towards modeling the discharge channel erosion. It is found that the model accurately predicts the thruster performance at all operating conditions to within 6%. The model predicts a normalized plasma potential profile that is consistent between all three operating points, with the acceleration zone appearing in the same approximate location. The expected trend of increasing electron temperature with increasing discharge voltage is observed. An analysis of the discharge current oscillations shows that the model predicts oscillations that are much greater in amplitude than those measured experimentally at all operating points, suggesting that the differences in oscillation amplitude are not strongly associated with discharge voltage.

  4. An Overview of the VHITAL Program: A Two-Stage Bismuth Fed Very High Specific Impulse Thruster with Anode Layer

    NASA Technical Reports Server (NTRS)

    Sengupta, Anita; Marrese-Reading, Colleen; Capelli, Mark; Scharfe, David; Tverdokhlebov, Sergey; Semenkin, Sasha; Tverdokhlebov, Oleg; Boyd, Ian; Keidar, Michael; Yalin, Azer; Markusic, Tom; Polzin, Kurt

    2005-01-01

    The Very High Isp Thruster with Anode Layer (VHITAL) is a two stage Hall thruster program that is a part of NASA's Prometheus Program in NASA's New Exploration Systems Mission Directorate (ESMD). It is a potentially viable low-cost alternative to ion engines for near-term NEP applications with the growth potential to support mid-term and far-term NEP missions... This paper will present an overview of the thruster fabrication, pre-existing TAL 160 demonstration, feed system development, lifetime assessment, contamination assessment, and mission study activities performed to date.

  5. Solar electric propulsion thruster interactions with solar arrays

    NASA Technical Reports Server (NTRS)

    Parks, D. E.; Katz, I.

    1977-01-01

    The effect of interactions of spacecraft-generated and naturally occurring plasmas with high voltage solar array components on an advanced solar electric propulsion system proposed for the Halley's Comet rendezvous mission was investigated. The spacecraft-generated plasma consists of mercury ions and neutralizing electrons resulting from the operation of ion thrusters (the charge-exchange plasma) and associated hollow cathode neutralizers. Quantitative results are given for the parasitic currents and power coupled into solar arrays with voltage fixed as a function of position on the array.

  6. Characterisation of Electrical Propulsion Thrusters as a Load for Electronic Power Supplies

    NASA Astrophysics Data System (ADS)

    Gollor, Matthias; Herty, Frank

    2008-09-01

    For European space missions the importance of electrical propulsion is growing strongly. Many different types of electrical thrusters have been developed in the past years. Often the specification of electrical power supplies suffers from lack of dedicated electrical measurements or misinterpretation of the load behaviour especially under dynamic conditions. As a result, the Power Supply and Control Unit might not be optimally matched to the thrusters and in worst case may react with instabilities during operation.Analyzing the different types of electric thrusters a broad variety of different load characteristics have to be taken into account: non-linear I/V curves, constant voltage and constant current equivalent loads, but except for auxiliary magnet circuits, the loads typically do not show significant inductive or capacitive components. However, the majority of the thrusters show significant load oscillations due to plasma effects, typically in a frequency range of a few ten kHz. Most thrusters are affected by spurious flashovers (sparking, beam-outs, and plasma instabilities).In order to achieve a good definition of the interface between power supplies and the EP thrusters as a load, it is recommended to perform measurements of the current-voltage curve under static and dynamic conditions already in early development phases. For thrusters with complex power supplies the possible coupling between the power sources through the plasma might be considered, too. Examples for such measurements and the transfer of the results into simple electrical models are given for an anode supply of a Kaufmann type ion thruster and a Neutralizer/Keeper supply.

  7. Hall Effect Thruster Plume Contamination and Erosion Study

    NASA Technical Reports Server (NTRS)

    Jaworske, Donald A.

    2000-01-01

    The objective of the Hall effect thruster plume contamination and erosion study was to evaluate the impact of a xenon ion plume on various samples placed in the vicinity of a Hall effect thruster for a continuous 100 hour exposure. NASA Glenn Research Center was responsible for the pre- and post-test evaluation of three sample types placed around the thruster: solar cell cover glass, RTV silicone, and Kapton(R). Mass and profilometer), were used to identify the degree of deposition and/or erosion on the solar cell cover glass, RTV silicone, and Kapton@ samples. Transmittance, reflectance, solar absorptance, and room temperature emittance were used to identify the degree of performance degradation of the solar cell cover glass samples alone. Auger spectroscopy was used to identify the chemical constituents found on the surface of the exposed solar cell cover glass samples. Chemical analysis indicated some boron nitride contamination on the samples, from boron nitride insulators used in the body of the thruster. However, erosion outweighted contamination. All samples exhibited some degree of erosion. with the most erosion occurring near the centerline of the plume and the least occurring at the +/- 90 deg positions. For the solar cell cover glass samples, erosion progressed through the antireflective coating and into the microsheet glass itself. Erosion occurred in the solar cell cover glass, RTV silicone and Kapton(R) at different rates. All optical properties changed with the degree of erosion, with solar absorptance and room temperature emittance increasing with erosion. The transmittance of some samples decreased while the reflectance of some samples increased and others decreased. All results are consistent with an energetic plume of xenon ions serving as a source for erosion.

  8. High Power MPD Thruster Performance Measurements

    NASA Technical Reports Server (NTRS)

    LaPointe, Michael R.; Strzempkowski, Eugene; Pencil, Eric

    2004-01-01

    High power magnetoplasmadynamic (MPD) thrusters are being developed as cost effective propulsion systems for cargo transport to lunar and Mars bases, crewed missions to Mars and the outer planets, and robotic deep space exploration missions. Electromagnetic MPD thrusters have demonstrated, at the laboratory level, the ability to process megawatts of electrical power while providing significantly higher thrust densities than electrostatic electric propulsion systems. The ability to generate higher thrust densities permits a reduction in the number of thrusters required to perform a given mission, and alleviates the system complexity associated with multiple thruster arrays. The specific impulse of an MPD thruster can be optimized to meet given mission requirements, from a few thousand seconds with heavier gas propellants up to 10,000 seconds with hydrogen propellant. In support of programs envisioned by the NASA Office of Exploration Systems, Glenn Research Center is developing and testing quasi-steady MW-class MPD thrusters as a prelude to steady state high power thruster tests. This paper provides an overview of the GRC high power pulsed thruster test facility, and presents preliminary performance data for a quasi-steady baseline MPD thruster geometry.

  9. Laser-heated rocket thruster

    NASA Technical Reports Server (NTRS)

    Shoji, J. M.

    1977-01-01

    A space vehicle application using 5,000-kw input laser power was conceptually evaluated. A detailed design evaluation of a 10-kw experimental thruster including plasma size, chamber size, cooling, and performance analyses, was performed for 50 psia chamber pressure and using hydrogen as a propellant. The 10-kw hardware fabricated included a water cooled chamber, an uncooled copper chamber, an injector, igniters, and a thrust stand. A 10-kw optical train was designed.

  10. Arcjet thruster research and technology

    NASA Technical Reports Server (NTRS)

    Makel, Darby B.; Cann, Gordon L.

    1988-01-01

    The design, analysis, and performance testing of an advanced lower power arcjet is described. A high impedance, vortex stabilized 1-kw class arcjet has been studied. A baseline research thruster has been built and endurance and performance tested. This advanced arcjet has demonstrated long lifetime characteristics, but lower than expected performance. Analysis of the specific design has identified modifications which should improve performance and maintain the long life time shown by the arcjet.

  11. Plasma thrusters development in France

    NASA Astrophysics Data System (ADS)

    Rolfo, André; Cadiou, Anne; Secheresse, O.; Dumazert, P.; Gounot, V.; Ragot, X.; Mattei, N.; Grassin, T.; Garnero, P.

    2002-07-01

    This paper presents an overview of the FRENCH plasma propulsion activities. The main existing and future projects are described. The field of application of plasma propulsion is the station keeping and the orbit raising of geostationary telecommunication satellites (STENTOR) and the transfer of interplanetary vehicles such as Mars Sample Return. The works done in the frame of the preparation of the first commercial spacecraft as well as the preparation of the future and the associated Research and Technology program are described. The scientific activity supporting the development of Hall thrusters is on-going in the frame of the GDR (Groupement de Recherche) CNRS/CNES/Snecma Moteurs /ONERA on Plasma Propulsion. Several Russian entities are also involved: the MIREA (Moscow Institute of Radioelectronics and Automatics), of the RIAME MAI (Research Institute of Applied Mechanics and Electrodynamics - Moscow Aviation Institute) and of the SPT « father å Professor MOROZOV The industrial development activities are jointly conducted by Snecma Moteurs and Russian manufacturer FAKEL. The future developments are mainly dedicated to the use of electric propulsion for the orbit raising of telecommunications satellites which leads to the development of thrusters with higher thrust than those existing today. Works are also performed to develop and improve the tools necessary to evaluate the plume effects of plasma thrusters.

  12. Effect of Background Pressure on the Performance and Plume of the HiVHAc Hall Thruster

    NASA Technical Reports Server (NTRS)

    Huang, Wensheng; Kamhawi, Hani; Haag, Thomas

    2013-01-01

    During the Single String Integration Test of the NASA HiVHAc Hall thruster, a number of plasma diagnostics were implemented to study the effect of varying facility background pressure on thruster operation. These diagnostics include thrust stand, Faraday probe, ExB probe, and retarding potential analyzer. The test results indicated a rise in thrust and discharge current with background pressure. There was also a decrease in ion energy per charge, an increase in multiply-charged species production, a decrease in plume divergence, and a decrease in ion beam current with increasing background pressure. A simplified ingestion model was applied to determine the maximum acceptable background pressure for thrust measurement. The maximum acceptable ingestion percentage was found to be around 1%. Examination of the diagnostics results suggest the ionization and acceleration zones of the thruster were shifting upstream with increasing background pressure.

  13. Stationary plasma thruster evaluation in Russia

    NASA Technical Reports Server (NTRS)

    Brophy, John R.

    1992-01-01

    A team of electric propulsion specialists from U.S. government laboratories experimentally evaluated the performance of a 1.35-kW Stationary Plasma Thruster (SPT) at the Scientific Research Institute of Thermal Processes in Moscow and at 'Fakel' Enterprise in Kaliningrad, Russia. The evaluation was performed using a combination of U.S. and Russian instrumentation and indicated that the actual performance of the thruster appears to be close to the claimed performance. The claimed performance was a specific impulse of 16,000 m/s, an overall efficiency of 50 percent, and an input power of 1.35 kW, and is superior to the performance of western electric thrusters at this specific impulse. The unique performance capabilities of the stationary plasma thruster, along with claims that more than fifty of the 660-W thrusters have been flown in space on Russian spacecraft, attracted the interest of western spacecraft propulsion specialists. A two-phase program was initiated to evaluate the stationary plasma thruster performance and technology. The first phase of this program, to experimentally evaluate the performance of the thruster with U.S. instrumentation in Russia, is described in this report. The second phase objective is to determine the suitability of the stationary plasma thruster technology for use on western spacecraft. This will be accomplished by bringing stationary plasma thrusters to the U.S. for quantification of thruster erosion rates, measurements of the performance variation as a function of long-duration operation, quantification of the exhaust beam divergence angle, and determination of the non-propellant efflux from the thruster. These issues require quantification in order to maximize the probability for user application of the SPT technology and significantly increase the propulsion capabilities of U.S. spacecraft.

  14. Experimental Investigation of Thruster Cathode Physics

    NASA Astrophysics Data System (ADS)

    Crofton, Mark

    2004-11-01

    Advanced ion propulsion technologies are being developed under the Nuclear Electric Xenon Ion System (NEXIS) program for use in outer planet exploration. A revolutionary approach to thruster cathode design is dictated by the very high lifetime and propellant throughput requirements for nuclear electric applications. In conventional dispenser hollow cathodes used in thrusters, processes leading to depletion, inadequate transport, or insufficient production of barium are among those limiting the lifetime. A reservoir hollow cathode is being developed to address each of these failure mechanisms, exploiting four design variables - matrix material, source material, geometry, and thermal design - to essentially eliminate established failure modes. The very long anticipated lifetime necessitates new life validation methods to augment or replace the conventional lifetest approach. One important tool for quickly evaluating design changes is the ability to measure barium density inside a hollow cathode and/or in the plume. The dependence of barium density on temperature and other factors is an extremely important indicator of cathode health, particularly if the ratio Ba:BaO is also obtained. Comparison of barium production for reservoir and conventional cathodes will enable an assessment of the efficacy of reservoir designs and the goal of reducing barium consumption at a given emission current level. This study describes benchmark measurements made on a conventional cathode previously operated in a 20-kW NEXIS laboratory engine. Data on cathode operation and life-limiting processes were obtained through direct, real-time monitoring of atoms and molecules. A high-resolution, tunable laser system was employed to detect absorption of the low-density barium atoms inside the cathode. The plume was monitored also, using a quadrupole mass spectrometer to monitor multiple species and measure ion charge ratios. Data obtained with retarding potential analyzers or other means are

  15. Preliminary Results of Performance Measurements on a Cylindrical Hall-Effect Thruster with Magnetic Field Generated by Permanent Magnets

    NASA Technical Reports Server (NTRS)

    Polzin, K. A.; Raitses, Y.; Merino, E.; Fisch, N. J.

    2008-01-01

    The performance of a low-power cylindrical Hall thruster, which more readily lends itself to miniaturization and low-power operation than a conventional (annular) Hall thruster, was measured using a planar plasma probe and a thrust stand. The field in the cylindrical thruster was produced using permanent magnets, promising a power reduction over previous cylindrical thruster iterations that employed electromagnets to generate the required magnetic field topology. Two sets of ring-shaped permanent magnets are used, and two different field configurations can be produced by reorienting the poles of one magnet relative to the other. A plasma probe measuring ion flux in the plume is used to estimate the current utilization for the two magnetic configurations. The measurements indicate that electron transport is impeded much more effectively in one configuration, implying a higher thrust efficiency. Preliminary thruster performance measurements on this configuration were obtained over a power range of 100-250 W. The thrust levels over this power range were 3.5-6.5 mN, with anode efficiencies and specific impulses spanning 14-19% and 875- 1425 s, respectively. The magnetic field in the thruster was lower for the thrust measurements than the plasma probe measurements due to heating and weakening of the permanent magnets, reducing the maximum field strength from 2 kG to roughly 750-800 G. The discharge current levels observed during thrust stand testing were anomalously high compared to those levels measured in previous experiments with this thruster.

  16. NASA's Evolutionary Xenon Thruster (NEXT) Component Verification Testing

    NASA Technical Reports Server (NTRS)

    Herman, Daniel A.; Pinero, Luis R.; Sovey, James S.

    2009-01-01

    Component testing is a critical facet of the comprehensive thruster life validation strategy devised by the NASA s Evolutionary Xenon Thruster (NEXT) program. Component testing to-date has consisted of long-duration high voltage propellant isolator and high-cycle heater life validation testing. The high voltage propellant isolator, a heritage design, will be operated under different environmental condition in the NEXT ion thruster requiring verification testing. The life test of two NEXT isolators was initiated with comparable voltage and pressure conditions with a higher temperature than measured for the NEXT prototype-model thruster. To date the NEXT isolators have accumulated 18,300 h of operation. Measurements indicate a negligible increase in leakage current over the testing duration to date. NEXT 1/2 in. heaters, whose manufacturing and control processes have heritage, were selected for verification testing based upon the change in physical dimensions resulting in a higher operating voltage as well as potential differences in thermal environment. The heater fabrication processes, developed for the International Space Station (ISS) plasma contactor hollow cathode assembly, were utilized with modification of heater dimensions to accommodate a larger cathode. Cyclic testing of five 1/22 in. diameter heaters was initiated to validate these modified fabrication processes while retaining high reliability heaters. To date two of the heaters have been cycled to 10,000 cycles and suspended to preserve hardware. Three of the heaters have been cycled to failure giving a B10 life of 12,615 cycles, approximately 6,000 more cycles than the established qualification B10 life of the ISS plasma contactor heaters.

  17. Effects of wall electrodes on Hall effect thruster plasma

    SciTech Connect

    Langendorf, S. Walker, M.; Xu, K.

    2015-02-15

    This paper investigates the physical mechanisms that cause beneficial and detrimental performance effect observed to date in Hall effect thrusters with wall electrodes. It is determined that the wall electrode sheath can reduce ion losses to the wall if positioned near the anode (outside the dense region of the plasma) such that an ion-repelling sheath is able to form. The ability of the wall electrode to form an ion-repelling sheath is inversely proportional to the current drawn—if the wall electrode becomes the dominant sink for the thruster discharge current, increases in wall electrode bias result in increased local plasma potential rather than an ion-repelling sheath. A single-fluid electron flow model gives results that mimic the observed potential structures and the current-sharing fractions between the anode and wall electrodes, showing that potential gradients in the presheath and bulk plasma come at the expense of current draw to the wall electrodes. Secondary electron emission from the wall electrodes (or lack thereof) is inferred to have a larger effect if the electrodes are positioned near the exit plane than if positioned near the anode, due to the difference in energy deposition from the plasma.

  18. Sputtering Holes with Ion Beamlets

    NASA Technical Reports Server (NTRS)

    Byers, D. C.; Banks, B. A.

    1974-01-01

    Ion beamlets of predetermined configurations are formed by shaped apertures in the screen grid of an ion thruster having a double grid accelerator system. A plate is placed downstream from the screen grid holes and attached to the accelerator grid. When the ion thruster is operated holes having the configuration of the beamlets formed by the screen grid are sputtered through the plate at the accelerator grid.

  19. Development of the Plasma Thruster Particle-in-Cell Simulator to Complement Empirical Studies of a Low-Power Cusped-Field Thruster

    NASA Astrophysics Data System (ADS)

    Gildea, Stephen Robert

    conical jet of fast ions in the near plume region. The influences guiding the formation of the simulated beam in low-current mode are described in detail. A module for predicting erosion rates on dielectric surfaces has also been incorporated into PTpic and applied to simulations of both DCFT operational modes. Two data sets from high---current mode simulations successfully reproduce elevated erosion profiles in each of the three magnetic ring-cusps present in the DCFT. Discrepancies between the simulated and experimental data do exist, however, and are once again attributable to the misplacement of the primary acceleration region of the thruster. Having successfully captured the most significant erosion profile features observed in high-current mode, a simulation of erosion in low-current mode indicates substantially reduced erosion in comparison to the more oscillatory mode. These findings further motivate the completion of low-current mode erosion measurements, and continued numerical studies of the DCFT. Additionally, PTpic has proven to be a useful simulation tool for this project, and has been developed with adaptability in mind to facilitate its application to a variety of thruster designs---including Hall thrusters. (Copies available exclusively from MIT Libraries, libraries.mit.edu/docs - docs mit.edu)

  20. The Plasmoid Thruster Experiment (PTX)

    NASA Technical Reports Server (NTRS)

    Eskridge, Richard; Martin, Adam; Koelfgen, Syri; Lee, Mike; Smith, James W.

    2003-01-01

    A plasmoid is a compact plasma structure with an integral magnetic field. They have been studied extensively in controlled fusion research and are categorized according to the relative strength of the poloidal and toroidal magnetic field (B(phi), and B(tau), respectively). An object with B(phi)/B(tau) >> 1 is classified as a Field Reverse Configuration (FRC); if B(phi) = B(tau), it is called a Spheromak. There are a number of possible advantages to using accelerated plasmoids for in-space propulsion. A thruster based on this concept would operate by repetitively producing plasmoids and ejecting them from the device at high velocity. The plasmoid is formed inside of a single turn conical theta-pinch coil; as this process is inductive, there are no life-limiting electrodes. Similar experiments have yielded plasmoid velocities of at least 50 km/s (l), and calculations indicate that velocities in excess of 100 km/s are possible. A thruster based on this concept would be capable of producing an I(sp) in the range of 5,000 - 10,OOO s, with thrust densities of order 10(exp 5) N/m(exp 2). The current experiment is designed to produce jet powers in the range of 5-10 kW, although the concept should be scalable to higher power. The purpose of this experiment is to determine the feasibility of this plasma propulsion concept. To accomplish this, it will be necessary to determine: a.) specific impulse and thrust, b.) efficiency and mass utilization, c.) which type of plasmoid (FRC-like or Spheromak-like) gives the best performance, and d.) the characteristics required of actual thruster components (i.e., switch and capacitor technology). The plasmoid mass and velocity will be measured with a variety of diagnostics, including internal and external B-dot probes, flux loops, Langmuir probes, high-speed cameras, and an interferometer. Simulations of the plasmoid thruster using MOQUI, a time dependent MHD code, will be carried out concurrently with experimental testing. The PTX

  1. Skylab thruster attitude control system

    NASA Technical Reports Server (NTRS)

    Wilmer, G. E., Jr.

    1974-01-01

    Preflight activities and the Skylab mission support effort for the thruster attitude control system (TACS) are documented. The preflight activities include a description of problems and their solutions encountered in the development, qualification, and flight checkout test programs. Mission support effort is presented as it relates to system performance assessment, real-time problem solving, flight anomalies, and the daily system evaluation. Finally, the detailed flight evaluation is presented for each phase of the mission using system telemetry data. Data assert that the TACS met or exceeded design requirements and fulfilled its assigned mission objectives.

  2. Coil system for plasmoid thruster

    NASA Technical Reports Server (NTRS)

    Eskridge, Richard H. (Inventor); Lee, Michael H. (Inventor); Martin, Adam K. (Inventor); Fimognari, Peter J. (Inventor)

    2010-01-01

    A coil system for a plasmoid thruster includes a bias coil, a drive coil and field coils. The bias and drive coils are interleaved with one another as they are helically wound about a conical region. A first field coil defines a first passage at one end of the conical region, and is connected in series with the bias coil. A second field coil defines a second passage at an opposing end of the conical region, and is connected in series with the bias coil.

  3. High-Power Magnetoplasmadynamic Thruster Being Developed

    NASA Technical Reports Server (NTRS)

    LaPointe, Michael R.

    2001-01-01

    High-power electromagnetic thrusters have been proposed as primary in-space propulsion options for several of the bold new interplanetary and deep space missions envisioned by the Human Exploration and Development of Space (HEDS) Strategic Enterprise. As the lead center for electric propulsion, the NASA Glenn Research Center is actively involved in the design, development, and testing of high-power electromagnetic technologies to meet these demanding mission requirements. One concept of particular interest is the magnetoplasmadynamic (MPD) thruster, shown schematically in the preceding figure. In its basic form, the MPD thruster consists of a central cathode surrounded by a concentric cylindrical anode. A high-current arc is struck between the anode and cathode, which ionizes and accelerates a gas (plasma) propellant. In the self-field version of the thruster, an azimuthal magnetic field generated by the current returning through the cathode interacts with the radial discharge current flowing through the plasma to produce an axial electromagnetic body force, providing thrust. In applied field-versions of the thruster, a magnetic field coil surrounding the anode is used to provide additional radial and axial magnetic fields that can help stabilize and accelerate the plasma propellant. The following figure shows an experimental megawatt-class MPD thruster developed at Glenn. The MPD thruster is fitted inside a magnetic field coil, which in turn is mounted on a thrust stand supported by thin metal flexures. A calibrated position transducer is used to determine the force provided by the thruster as a function of thrust stand displacement. Power to the thruster is supplied by a 250-kJ capacitor bank, which provides up to 30- MW to the thruster for a period of 2 msec. This short period of time is sufficient to establish thruster performance similar to steady-state operation, and it allows a number of thruster designs to be quickly and economically evaluated. In concert

  4. Direct thrust measurement of a permanent magnet helicon double layer thruster

    SciTech Connect

    Takahashi, K.; Lafleur, T.; Charles, C.; Alexander, P.; Boswell, R. W.; Perren, M.; Laine, R.; Pottinger, S.; Lappas, V.; Harle, T.; Lamprou, D.

    2011-04-04

    Direct thrust measurements of a permanent magnet helicon double layer thruster have been made using a pendulum thrust balance and a high sensitivity laser displacement sensor. At the low pressures used (0.08 Pa) an ion beam is detected downstream of the thruster exit, and a maximum thrust force of about 3 mN is measured for argon with an rf input power of about 700 W. The measured thrust is proportional to the upstream plasma density and is in good agreement with the theoretical thrust based on the maximum upstream electron pressure.

  5. Direct thrust measurement of a permanent magnet helicon double layer thruster

    NASA Astrophysics Data System (ADS)

    Takahashi, K.; Lafleur, T.; Charles, C.; Alexander, P.; Boswell, R. W.; Perren, M.; Laine, R.; Pottinger, S.; Lappas, V.; Harle, T.; Lamprou, D.

    2011-04-01

    Direct thrust measurements of a permanent magnet helicon double layer thruster have been made using a pendulum thrust balance and a high sensitivity laser displacement sensor. At the low pressures used (0.08 Pa) an ion beam is detected downstream of the thruster exit, and a maximum thrust force of about 3 mN is measured for argon with an rf input power of about 700 W. The measured thrust is proportional to the upstream plasma density and is in good agreement with the theoretical thrust based on the maximum upstream electron pressure.

  6. Experimental Investigation of the Near-Wall Region in the NASA HiVHAc EDU2 Hall Thruster

    NASA Technical Reports Server (NTRS)

    Shastry, Rohit; Kamhawi, Hani; Huang, Wensheng; Haag, Thomas W.

    2015-01-01

    The HiVHAc propulsion system is currently being developed to support Discovery-class NASA science missions. Presently, the thruster meets the required operational lifetime by utilizing a novel discharge channel replacement mechanism. As a risk reduction activity, an alternative approach is being investigated that modifies the existing magnetic circuit to shift the ion acceleration zone further downstream such that the magnetic components are not exposed to direct ion impingement during the thruster's lifetime while maintaining adequate thruster performance and stability. To measure the change in plasma properties between the original magnetic circuit configuration and the modified, "advanced" configuration, six Langmuir probes were flush-mounted within each channel wall near the thruster exit plane. Plasma potential and electron temperature were measured for both configurations across a wide range of discharge voltages and powers. Measurements indicate that the upstream edge of the acceleration zone shifted downstream by as much as 0.104 channel lengths, depending on operating condition. The upstream edge of the acceleration zone also appears to be more insensitive to operating condition in the advanced configuration, remaining between 0.136 and 0.178 channel lengths upstream of the thruster exit plane. Facility effects studies performed on the original configuration indicate that the plasma and acceleration zone recede further upstream into the channel with increasing facility pressure. These results will be used to inform further modifications to the magnetic circuit that will provide maximum protection of the magnetic components without significant changes to thruster performance and stability.

  7. Mission Advantages of NEXT: Nasa's Evolutionary Xenon Thruster

    NASA Technical Reports Server (NTRS)

    Oleson, Steven; Gefert, Leon; Benson, Scott; Patterson, Michael; Noca, Muriel; Sims, Jon

    2002-01-01

    With the demonstration of the NSTAR propulsion system on the Deep Space One mission, the range of the Discovery class of NASA missions can now be expanded. NSTAR lacks, however, sufficient performance for many of the more challenging Office of Space Science (OSS) missions. Recent studies have shown that NASA's Evolutionary Xenon Thruster (NEXT) ion propulsion system is the best choice for many exciting potential OSS missions including outer planet exploration and inner solar system sample returns. The NEXT system provides the higher power, higher specific impulse, and higher throughput required by these science missions.

  8. Investigation of a repetitive pulsed electrothermal thruster

    NASA Technical Reports Server (NTRS)

    Burton, R. L.; Fleischer, D.; Goldstein, S. A.; Tidman, D. A.; Winsor, N. K.

    1986-01-01

    A pulsed electrothermal (PET) thruster with 1000:1 ratio nozzle is tested in a repetitive mode on water propellant. The thruster is driven by a 60J pulse forming network at repetition rates up to 10 Hz (600W). The pulse forming network has a .31 ohm impedance, well matched to the capillary discharge resistance of .40 ohm, and is directly coupled to the thruster electrodes without a switch. The discharge is initiated by high voltage breakdown, typically at 2500V, through the water vapor in the interelectrode gap. Water is injected as a jet through a .37 mm orifice on the thruster axis. Thruster voltage, current and impulse bit are recorded for several seconds at various power supply currents. Thruster to power ratio is typically T/P = .07 N/kW. Tank background pressure precludes direct measurement of exhaust velocity which is inferred from calculated pressure and temperature in the discharge to be about 14 km/sec. Efficiency, based on this velocity and measured T/P is .54 + or - .07. Thruster ablation is zero at the throat and becomes measurable further upstream, indicating that radiative ablation is occurring late in the pulse.

  9. Helicon thruster plasma modeling: Two-dimensional fluid-dynamics and propulsive performances

    SciTech Connect

    Ahedo, Eduardo; Navarro-Cavalle, Jaume

    2013-04-15

    An axisymmetric macroscopic model of the magnetized plasma flow inside the helicon thruster chamber is derived, assuming that the power absorbed from the helicon antenna emission is known. Ionization, confinement, subsonic flows, and production efficiency are discussed in terms of design and operation parameters. Analytical solutions and simple scaling laws for ideal plasma conditions are obtained. The chamber model is then matched with a model of the external magnetic nozzle in order to characterize the whole plasma flow and assess thruster performances. Thermal, electric, and magnetic contributions to thrust are evaluated. The energy balance provides the power conversion between ions and electrons in chamber and nozzle, and the power distribution among beam power, ionization losses, and wall losses. Thruster efficiency is assessed, and the main causes of inefficiency are identified. The thermodynamic behavior of the collisionless electron population in the nozzle is acknowledged to be poorly known and crucial for a complete plasma expansion and good thrust efficiency.

  10. Status of NASA's Evolutionary Xenon Thruster (NEXT) Long-Duration Test as of 50,000 h and 900 kg Throughput

    NASA Technical Reports Server (NTRS)

    Shastry, Rohit; Herman, Daniel A.; Soulas, George C.; Patterson, Michael J.

    2013-01-01

    The NASA's Evolutionary Xenon Thruster (NEXT) project is developing the next-generation solar electric propulsion ion propulsion system with significant enhancements beyond the state-of-the-art NASA Solar Electric Propulsion Technology Application Readiness (NSTAR) ion propulsion system in order to provide future NASA science missions with enhanced propulsion capabilities. As part of a comprehensive thruster service life assessment, the NEXT Long-Duration Test (LDT) was initiated in June 2005 to demonstrate throughput capability and validate thruster service life modeling. The NEXT LDT exceeded its original qualification throughput requirement of 450 kg in December 2009. To date, the NEXT LDT has set records for electric propulsion lifetime and has demonstrated 50,170 hours of operation, processed 902 kg of propellant, and delivered 34.9 MN-s of total impulse. The NEXT thruster design mitigated several life-limiting mechanisms encountered in the NSTAR design, dramatically increasing service life capability. Various component erosion rates compare favorably to the pretest predictions based upon semi-empirical ion thruster models. The NEXT LDT either met or exceeded all of its original goals regarding lifetime demonstration, performance and wear characterization, and modeling validation. In light of recent budget constraints and to focus on development of other components of the NEXT ion propulsion system, a voluntary termination procedure for the NEXT LDT began in April 2013. As part of this termination procedure, a comprehensive post-test performance characterization was conducted across all operating conditions of the NEXT throttle table. These measurements were found to be consistent with prior data that show minimal degradation of performance over the thruster's 50 kh lifetime. Repair of various diagnostics within the test facility is presently planned while keeping the thruster under high vacuum conditions. These diagnostics will provide additional critical

  11. Status of NASA's Evolutionary Xenon Thruster (NEXT) Long-Duration Test as of 50,000 h and 900 kg Throughput

    NASA Technical Reports Server (NTRS)

    Shastry, Rohit; Herman, Daniel A.; Soulas, George C.; Patterson, Michael J.

    2015-01-01

    The NASA's Evolutionary Xenon Thruster (NEXT) project is developing the next-generation solar electric propulsion ion propulsion system with significant enhancements beyond the state-of-the-art NASA Solar Electric Propulsion Technology Application Readiness (NSTAR) ion propulsion system in order to provide future NASA science missions with enhanced propulsion capabilities. As part of a comprehensive thruster service life assessment, the NEXT Long-Duration Test (LDT) was initiated in June 2005 to demonstrate throughput capability and validate thruster service life modeling. The NEXT LDT exceeded its original qualification throughput requirement of 450 kg in December 2009. To date, the NEXT LDT has set records for electric propulsion lifetime and has demonstrated 50,170 h of operation, processed 902 kg of propellant, and delivered 34.9 MN-s of total impulse. The NEXT thruster design mitigated several life-limiting mechanisms encountered in the NSTAR design, dramatically increasing service life capability. Various component erosion rates compare favorably to the pretest predictions based upon semi-empirical ion thruster models. The NEXT LDT either met or exceeded all of its original goals regarding lifetime demonstration, performance and wear characterization, and modeling validation. In light of recent budget constraints and to focus on development of other components of the NEXT ion propulsion system, a voluntary termination procedure for the NEXT LDT began in April 2013. As part of this termination procedure, a comprehensive post-test performance characterization was conducted across all operating conditions of the NEXT throttle table. These measurements were found to be consistent with prior data that show minimal degradation of performance over the thruster's 50 kh lifetime. Repair of various diagnostics within the test facility is presently planned while keeping the thruster under high vacuum conditions. These diagnostics will provide additional critical

  12. Current technology in ion and electrothermal propulsion

    NASA Technical Reports Server (NTRS)

    Finke, R. C.; Murch, C. K.

    1973-01-01

    High performance propulsion devices, such as electrostatic ion engines and electrothermal thrusters, are achieving wide user acceptance. The current technology and projected development trends in the areas of ion and electrothermal propulsion systems and components are surveyed.

  13. Duration test of an annular colloid thruster.

    NASA Technical Reports Server (NTRS)

    Perel, J.; Mahoney, J. F.; Daley, H. L.

    1972-01-01

    An annular colloid thruster was continuously operated for 1023 hours. Performance was stable with no sparking and negligible drain currents observed. An average thrust of 25.1 micropounds and an average specific impulse of 1160 seconds were obtained at an accelerating voltage of 15 k he thruster exhaust beam was continuously neutralized using electrons and electrostatic vectoring was demonstrated periodically. The only clear trend with time was an increase in specific impulse during the last third of the test period. From these results the thruster lifetime was estimated to be over an order of magnitude greater than the test duration.

  14. Evaluation of Low Power Hall Thruster Propulsion

    NASA Technical Reports Server (NTRS)

    Manzella, David; Oleson, Steve; Sankovic, John; Haag, Tom; Semenkin, Alexander; Kim, Vladimir

    1996-01-01

    Hall thruster systems based on the SPT-50 and the TAL D-38 were evaluated and mission studies were performed. The 0.3 kilowatt SPT-50 operated with a specific impulse of 1160 seconds and an efficiency of 0.32. The 0.8 kilowatt D-38 provided a specific impulse above 1700 seconds at an efficiency of 0.5. The D-38 system was shown to offer a 56 kilogram propulsion system mass savings over a 101 kilogram hydrazine monopropellant system designed to perform North-South station keeping maneuvers on board a 430 kilogram geostationary satellite. The SPIT-50 system offered a greater than 50% propulsion system mass reduction in comparison to the chemical system on board a 200 kilogram low Earth orbit spacecraft performing two orbit raises and drag makeup over two years. The performance characteristics of the SPF-50 were experimentally evaluated at a number of operating conditions. The ion current density distribution of this engine was measured. The performance and system mass benefits of advanced systems based on both engines were considered.

  15. Recent Progress in Silicon-Based MEMS Field Emission Thrusters

    NASA Astrophysics Data System (ADS)

    Lenard, Roger X.; Kravitz, Stanley H.; Tajmar, Martin

    2005-02-01

    The Indium Field Emission Thruster (In-FET) is a highly characterized and space-proven device based on space-qualified liquid metal ion sources. There is also extensive experience with liquid metal ion sources for high-brightness semiconductor fabrications and inspection Like gridded ion engines, In-FETs efficiently accelerate ions through a series of high voltage electrodes. Instead of a plasma discharge to generate ions, which generates a mixture of singly and doubly charged ions as well as neutrals, indium metal is melted (157°C) and fed to the tip of a capillary tube where very high local electric fields perform more-efficient field emission ionization, providing nearly 100% singly charged species. In-FETs do not have the associated losses or lifetime concerns of a magnetically confined discharge and hollow cathode in ion thrusters. For In-FETs, propellant efficiencies ˜100% stipulate single-emitter currents ⩽10μA, perhaps as low as 5μA of current. This low emitter current results in ⩽0.5 W/emitter. Consequently, if the In-FET is to be used for future Human and Robotic missions under President Bush's Exploration plan, a mechanism to generate very high power levels is necessary. Efficient high-power operation requires many emitter/extractor pairs. Conventional fabrication techniques allow 1-10 emitters in a single module, with pain-staking precision required. Properly designed and fabricated In-FETs possess electric-to-jet efficiency >90% and a specific mass <0.25 kg/kWe. MEMS techniques allow reliable batch processing with ˜160,000 emitters in a 10×10-cm array. Developing a 1.5kW 10×10-cm module is a necessary stepping-stone for >500 kWe systems where groups of 9 or 16 modules, with a single PPU/feed system, form the building blocks for even higher-power exploration systems. In 2003, SNL and ARCS produced a MEMS-based In-FET 5×5 emitter module with individually addressable emitter/extractor pairs on a 15×15mm wafer. The first MEMS thruster

  16. Plasma plume characterization of a vacuum arc thruster

    NASA Astrophysics Data System (ADS)

    Sekerak, Michael James

    A Vacuum Arc Thruster (VAT) is a thruster that uses the plasma created in a vacuum arc, an electrical discharge in a vacuum that creates high velocity and highly ionized plasmas, as the propellant without additional acceleration. A VAT would be a small and inexpensive low thrust ion thruster, ideal for small satellites and formation flying spacecraft. The purpose of this thesis was to quantitatively and qualitatively examine the VAT plasma plume to determine operating characteristics and limitations. A VAT with a titanium cathode was operated in two regimes: (A) single ˜100mus pulse, discharge current JD=510A, and (B) multiple ˜1500mus pulses at f=40.8Hz, JD=14A. The cathode was 3.18mm diameter Ti rod, surrounded by a 0.80mm thick alumina insulator, set in a molybdenum anode. Three Configurations were tested: Cfg1 (Regime A, cathode recessed 3.00mm from anode), Cfg2 (Regime A, cathode and anode flush), Cfg3 (Regime B, cathode recessed 3.00mm). A semi-empirical model was derived for VAT performance based on the MHD equation of motion using data for ion velocity, ion charge state distribution, ion current fraction (F), and ion current density distribution (ICDD). Additional performance parameters were a2, the peak ion current density angular offset from the cathode normal, and a3, the width of the ion current distribution. Measurements were taken at 162 points on a plane in the plasma plume using a custom faraday probe, and the ICDD empirical form was determined to be a Gaussian. The discharge voltage (VD) and F were Cfg1: VD=25.5V, F=0.025-0.035; Cfg2: VD=40.7V, F=0.08-0.10; Cfg3: VD=14.9V, F=0.006-0.021. For Cfg1, a2 started 15° off-axis while a2˜0 for Cfg2 and 3. In Cfg1, a 3=0.7-0.6, and in Cfg2 a3=1.0-1.1, so the recessed cathode focused the plasma more. However, F is more important for VAT performance because upper and lower bounds for thrust, specific impulse, thrust-to-power, and efficiency were calculated and Cfg2 had the highest performance. High

  17. Thruster models for NEP system analysis

    NASA Technical Reports Server (NTRS)

    Gilland, Jim

    1993-01-01

    There are currently no thruster modeling codes that can be integrated with power system codes for full propulsion system modeling. Most existing thruster models were written from a 'stand alone' viewpoint, assuming the user is performing analyses on thruster performance alone. The goal of the present modeling effort is to develop thruster codes that model performance and scaling as a function of mission and system inputs, rather than in terms of more elemental physical parameters. System level parameters of interest are as follows: performance, such as specific impulse and efficency; terminal characteristics, such as voltage or current; and mass. Specific impulse and efficiency couple with mission analyses, while terminal characteristics allow integration with power systems. Additional information on lifetime and operation may be required for detailed designs.

  18. The MPD thruster program at JPL

    NASA Astrophysics Data System (ADS)

    Goodfellow, Keith; Pivirotto, Tom; Polk, Jay

    The topics covered are presented in viewgraph form and include the following: engine lifetime assessment; lithium magnetoplasmadynamic (MPD) thruster development; and radiation-cooled, applied-field engine testing.

  19. The NASA GSFC MEMS Colloidal Thruster

    NASA Technical Reports Server (NTRS)

    Cardiff, Eric H.; Jamieson, Brian G.; Norgaard, Peter C.; Chepko, Ariane B.

    2004-01-01

    A number of upcoming missions require different thrust levels on the same spacecraft. A highly scaleable and efficient propulsion system would allow substantial mass savings. One type of thruster that can throttle from high to low thrust while maintaining a high specific impulse is a Micro-Electro-Mechanical System (MEMS) colloidal thruster. The NASA GSFC MEMS colloidal thruster has solved the problem of electrical breakdown to permit the integration of the electrode on top of the emitter by a novel MEMS fabrication technique. Devices have been successfully fabricated and the insulation properties have been tested to show they can support the required electric field. A computational finite element model was created and used to verify the voltage required to successfully operate the thruster. An experimental setup has been prepared to test the devices with both optical and Time-Of-Flight diagnostics.

  20. Study of monopropellants for electrothermal thrusters

    NASA Technical Reports Server (NTRS)

    Kuenzly, J. D.

    1974-01-01

    A 333 mN electrothermal thruster designed to use MIL-grade hydrazine was demonstrated to be suitable for operation with low freezing point monopropellants containing hydrazine azide, monomethylhydrazine, unsymmetrical-dimethylhydrazine and ammonia. The steady-state specific impulse was greater than 200 sec for all propellants. The pulsed-mode specific impulse for an azide blend exceeded 175 sec for pulse widths greater than 50 msec; propellants containing carbonaceous species delivered 175 sec pulsed-mode specific impulses for pulse widths greater than 100 msec. Longer thrust chamber residence times were required for the carbonaceous propellants; the original thruster design was modified by increasing the characteristic chamber length and screen packing density. Specific recommendations were made for the work required to design and develop flight worthy thrusters, including methods to increase propellant dispersal at injection, thruster geometry changes to reduce holding power levels and methods to initiate the rapid decomposition of the carbonaceous propellants.

  1. Recent Results From Internal and Very-Near-Field Plasma Diagnostics of a High Specific Impulse Hall Thruster

    NASA Technical Reports Server (NTRS)

    Hofer, Richard R.; Gallimore, Alec D.; Jacobson, David (Technical Monitor)

    2003-01-01

    Floating potential and ion current density measurements were taken on the laboratory model NASA-173Mv2 in order to improve understanding of the physical processes affecting Hall thruster performance at high specific impulse. Floating potential was measured on discharge chamber centerline over axial positions spanning 10 mm from the anode to 100 mm downstream of the exit plane. Ion current density was mapped radially up to 300 mm from thruster centerline over axial positions in the very-near-field (10 to 250 mm from the exit plane). All data were collected using a planar probe in conjunction with a high-speed translation stage to minimize probe-induced thruster perturbations. Measurements of floating potential at a xenon flow rate of 10 mg/s have shown that the acceleration layer moved upstream 3 1 mm when the voltage increased from 300 to 600 V. The length of the acceleration layer was 14 2 mm and was approximately constant with voltage and magnetic field. Ion current density measurements indicated the annular ion beam crossed the thruster centerline 163 mm downstream of the exit plane. Radial integration of the ion current density at the cathode plane provided an estimate of the ion current fraction. At 500 V and 5 mg/s, the ion current fraction was calculated as 0.77.

  2. Magnetic shielding of a laboratory Hall thruster. I. Theory and validation

    SciTech Connect

    Mikellides, Ioannis G. Katz, Ira; Hofer, Richard R.; Goebel, Dan M.

    2014-01-28

    We demonstrate a technique by which erosion of the acceleration channel in Hall thrusters can be reduced by at least a few orders of magnitude. The first principles of the technique, now known as “magnetic shielding,” have been derived based on the findings of 2-D numerical simulations. The simulations, in turn, guided the modification of an existing 6-kW laboratory Hall thruster to test the theory and are the main subject of this Part I article. Part II expands on the results of the experiments. Near the walls of the magnetically shielded (MS) thruster theory and experiment agree that (1) the plasma potential has been sustained at values near the discharge voltage, and (2) the electron temperature has been lowered compared to the unshielded thruster. Erosion rates deduced directly from the wall probes show reductions of at least ∼3 orders of magnitude at the MS inner wall when an ion energy threshold of 30.5 V is used in the sputtering yield model of the channel material. At the outer wall the probes reveal that the ion energy was below the assumed threshold. Using a threshold of 25 V, the simulations predict a minimum reduction of ∼600 at the MS inner wall. At the MS outer wall ion energies are found to be below 25 V. When a 50-V threshold is used the computed ion energies are below the threshold at both sides of the channel. Uncertainties, sensitivities, and differences between theory and experiment are also discussed. The elimination of wall erosion in Hall thrusters solves a problem that has remained unsettled for more than five decades.

  3. Low perturbation interrogation of the internal and near-field plasma structure of a Hall thruster using a high-speed probe positioning system

    NASA Astrophysics Data System (ADS)

    Haas, James Matthew

    This thesis presents research aimed at characterizing the internal and near field plasma structure of a Hall thruster. This information is vital to extending our understanding of the physical processes in the Hall thruster. In turn, this aids in the design of next generation Hall thrusters with improved performance both directly and through the validation of thruster models. Internal plasma parameter measurements were accomplished using a unique High-speed Axial Reciprocating Probe (HARP) system. The HARP system enabled, for the first time, the insertion and removal of probes from the Hall thruster discharge channel while minimizing perturbation to thruster operation. The system was used with an emissive probe to map plasma potential and with a double Langmuir probe to map electron temperature and ion number density. Thruster perturbation, determined by monitoring discharge current, was less than 10% for the majority of measurements. Using the data obtained with the HARP, a number of thruster parameters were investigated on a PEPL designed and built Hall thruster, the P5. The magnitude and spatial structure of the Hall current is presented and its contribution to propellant ionization and self magnetic fields discussed. The classical Hall parameter is compared to that inferred from the generalized Ohm's law. Thrust and beam current are computed and compared to direct measurements from a thrust stand and Faraday probe, respectively. Ion number density profiles are compared with results from a two dimensional numerical model, which predicted similar qualitative profiles. Combining data from the P5, SPT-140 and the model, it was surmised that a radially symmetric magnetic field would provide increased performance by generating a more collimated ion beam.

  4. Liquid-Metal-Fed Pulsed Plasma Thrusters

    NASA Technical Reports Server (NTRS)

    Markusic, Thomas

    2003-01-01

    Liquid metal propellants may provide a path toward more reliable and efficient pulsed plasma thrusters (PPTs). Conceptual thruster designs which eliminate the need for high current switches and propellant metering valves are described. Propellant loading techniques are suggested that, at least in principle, show promise to increase propellant utilization, dynamic, and electrical efficiency. Experimental results from a prototype electromagnetically-pumped propellant feed system, and experiments in the initiation of arc discharges in liquid metal droplets, are presented.

  5. MPD thruster research issues, activities, strategies

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The following activities and plans in the MPD thruster development are summarized: (1) experimental and theoretical research (magnetic nozzles at present and high power levels, MPD thrusters with applied fields extending into the thrust chamber, and improved electrode performance); and (2) tools (MACH2 code for MPD and nozzle flow calculation, laser diagnostics and spectroscopy for non-intrusive measurements of flow conditions, and extension to higher power). National strategies are also outlined.

  6. Electrothermal thruster diagnostics. Volume 2: Technical

    NASA Technical Reports Server (NTRS)

    Zafran, S.; Jackson, B.

    1983-01-01

    Test data taken with nitrogen, hydrogen, and ammonia propellants are presented over a wide range of operating conditions at thrust levels up to 225 mN (50 mlb). The design adaptation of a flight-qualified thruster for operation with gaseous propellant inlet is described. Post-test analysis includes evaluation of thruster performance and efficiency, and shows the effects of propellant contamination on an immersed heating element.

  7. Electrothermal thruster diagnostics. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    Zafran, S.; Jackson, B.

    1983-01-01

    A flight-qualified electrothermal thruster demonstrated its adaptability to a variety of propellants. Originally qualified for operation with hydrazine propellant, it was operated with nitrogen, hydrogen, and ammonia propellants, demonstrating 73, 61, and 52 percent overall efficiency with these propellants, respectively, when tested over a wide range of operating conditions. By introducing a preheater to admit hot, rather than cold, propellant inlet gases to the thruster's augmentation heat exchanger, delivered specific impulse closer to theoretical performance limits should be achieved.

  8. End-of-Test Performance and Wear Characterization of NASA's Evolutionary Xenon Thruster (NEXT) Long-Duration Test

    NASA Technical Reports Server (NTRS)

    Shastry, Rohit; Herman, Daniel A.; Soulas, George C.; Patterson, Michael J.

    2014-01-01

    The NASA's Evolutionary Xenon Thruster (NEXT) program is developing the next-generation solar electric ion propulsion system with significant enhancements beyond the state-of-the-art NASA Solar Electric Propulsion Technology Application Readiness (NSTAR) ion propulsion system to provide future NASA science missions with enhanced capabilities. A Long-Duration Test (LDT) was initiated in June 2005 to validate the thruster service life modeling and to quantify the thruster propellant throughput capability. Testing was recently completed in February 2014, with the thruster accumulating 51,184 hours of operation, processing 918 kg of xenon propellant, and delivering 35.5 MN-s of total impulse.As part of the test termination procedure, a comprehensive performance characterization was performed across the entire NEXT throttle table. This was performed prior to planned repairs of numerous diagnostics that had become inoperable over the course of the test. After completion of these diagnostic repairs in November 2013, a comprehensive end-of-test performance and wear characterization was performed on the test article prior to exposure to atmosphere. These data have confirmed steady thruster performance with minimal degradation as well as mitigation of numerous life limiting mechanisms encountered in the NSTAR design. Component erosion rates compare favorably to pretest predictions based on semi-empirical models used for the thruster service life assessment. Additional data relating to ion beam density profiles, facility backsputter rates, facility backpressure effects on thruster telemetry, and modulation of the neutralizer keeper current are presented as part of the end-of-test characterization. Presently the test article for the NEXT LDT has been exposed to atmosphere and placed within a clean room environment, with post-test disassembly and inspection underway.

  9. Dawn Ion Propulsion System - Initial Checkout After Launch

    NASA Technical Reports Server (NTRS)

    Brophy, John R.; Garner, Charles E.; Mikes, Steven

    2008-01-01

    The first 80 days after launch of the Dawn mission were dedicated to the checkout of the spacecraft with a major emphasis on the ion propulsion system. All three ion thrusters, all three thruster-gimbal assemblies, both power processor units, both digital interface and control units, and the entire xenon feed system were completely checked out and every component was found to be in good health. Direct thrust measurements agreed well with preflight expected values for all three thrusters over the entire throttle range. Thruster electrical operating parameters and power processor units efficiencies also agreed well with preflight expected values based on acceptance test data. Two of the three ion thrusters were fully checked out within 30 days after launch. Checkout of all three thrusters was completed 64 days after launch. Deterministic thrusting with the IPS began on December 17, 2007.

  10. Low power arcjet thruster pulse ignition

    NASA Technical Reports Server (NTRS)

    Sarmiento, Charles J.; Gruber, Robert P.

    1987-01-01

    An investigation of the pulse ignition characteristics of a 1 kW class arcjet using an inductive energy storage pulse generator with a pulse width modulated power converter identified several thruster and pulse generator parameters that influence breakdown voltage including pulse generator rate of voltage rise. This work was conducted with an arcjet tested on hydrogen-nitrogen gas mixtures to simulate fully decomposed hydrazine. Over all ranges of thruster and pulser parameters investigated, the mean breakdown voltages varied from 1.4 to 2.7 kV. Ignition tests at elevated thruster temperatures under certain conditions revealed occasional breakdowns to thruster voltages higher than the power converter output voltage. These post breakdown discharges sometimes failed to transition to the lower voltage arc discharge mode and the thruster would not ignite. Under the same conditions, a transition to the arc mode would occur for a subsequent pulse and the thruster would ignite. An automated 11 600 cycle starting and transition to steady state test demonstrated ignition on the first pulse and required application of a second pulse only two times to initiate breakdown.

  11. Maximizing ion current by space-charge neutralization using negative ions and dust particles

    SciTech Connect

    Smirnov, A.; Raitses, Y.; Fisch, N.J.

    2005-05-15

    Ion current extracted from an ion source (ion thruster) can be increased above the Child-Langmuir limit if the ion space charge is neutralized. Similarly, the limiting kinetic energy density of the plasma flow in a Hall thruster might be exceeded if additional mechanisms of space-charge neutralization are introduced. Space-charge neutralization with high-mass negative ions or negatively charged dust particles seems, in principle, promising for the development of a high current or high energy density source of positive light ions. Several space-charge neutralization schemes that employ heavy negatively charged particles are considered. It is shown that the proposed neutralization schemes can lead, at best, only to a moderate but nonetheless possibly important increase of the ion current in the ion thruster and the thrust density in the Hall thruster.

  12. Assessment of Pole Erosion in a Magnetically Shielded Hall Thruster

    NASA Technical Reports Server (NTRS)

    Mikellides, Ioannis G.; Ortega, Alejandro L.

    2014-01-01

    Numerical simulations of a 6-kW laboratory Hall thruster called H6 have been performed to quantify the erosion rate at the inner pole. The assessments have been made in two versions of the thruster, namely the unshielded (H6US) and magnetically shielded (H6MS) configurations. The simulations have been performed with the 2-D axisymmetric code Hall2De which employs a new multi-fluid ion algorithm to capture the presence of low-energy ions in the vicinity of the poles. It is found that the maximum computed erosion rate at the inner pole of the H6MS exceeds the measured rate of back-sputtered deposits by 4.5 times. This explains only part of the surface roughening that was observed after a 150-h wear test, which covered most of the pole area exposed to the plasma. For the majority of the pole surface the computed erosion rates are found to be below the back-sputter rate and comparable to those in the H6US which exhibited little to no sputtering in previous tests. Possible explanations for the discrepancy are discussed.

  13. The PIT MkV pulsed inductive thruster

    NASA Technical Reports Server (NTRS)

    Dailey, C. Lee; Lovberg, Ralph H.

    1993-01-01

    The pulsed inductive thruster (PIT) is an electrodeless, magnetic rocket engine that can operate with any gaseous propellant. A puff of gas injected against the face of a flat (spiral) coil is ionized and ejected by the magnetic field of a fast-rising current pulse from a capacitor bank discharge. Single shot operation on an impulse balance has provided efficiency and I(sub sp) data that characterize operation at any power level (pulse rate). The 1-m diameter MkV thruster concept offers low estimated engine mass at low powers, together with power capability up to more than 1 MW for the 1-m diameter design. A 20 kW design estimate indicates specific mass comparable to Ion Engine specific mass for 10,000 hour operation, while a 100,000 hour design would have a specific mass 1/3 that of the Ion Engine. Performance data are reported for ammonia and hydrazine. With ammonia, at 32 KV coil voltage, efficiency is a little more than 50 percent from 4000 to more than 8000 seconds I(sub sp). Comparison with data at 24 and 28 kV indicates that a wider I(sub sp) range could be achieved at higher coil voltages, if required for deep space missions.

  14. Hall-effect thruster--Cathode coupling: The effect of cathode position and magnetic field topology

    NASA Astrophysics Data System (ADS)

    Sommerville, Jason D.

    2009-12-01

    Hall-effect thruster (HET) cathodes are responsible for the generation of the free electrons necessary to initiate and sustain the main plasma discharge and to neutralize the ion beam. The position of the cathode relative to the thruster strongly affects the efficiency of thrust generation. However, the mechanisms by which the position affects the efficiency are not well understood. This dissertation explores the effect of cathode position on HET efficiency. Magnetic field topology is shown to play an important role in the coupling between the cathode plasma and the main discharge plasma. The position of the cathode within the magnetic field affects the ion beam and the plasma properties of the near-field plume, which explains the changes in efficiency of the thruster. Several experiments were conducted which explored the changes of efficiency arising from changes in cathode coupling. In each experiment, the thrust, discharge current, and cathode coupling voltage were monitored while changes in the independent variables of cathode position, cathode mass flow and magnetic field topology were made. From the telemetry data, the efficiency of the HET thrust generation was calculated. Furthermore, several ion beam and plasma properties were measured including ion energy distribution, beam current density profile, near-field plasma potential, electron temperature, and electron density. The ion beam data show how the independent variables affected the quality of ion beam and therefore the efficiency of thrust generation. The measurements of near-field plasma properties partially explain how the changes in ion beam quality arise. The results of the experiments show that cathode position, mass flow, and field topology affect several aspects of the HET operation, especially beam divergence and voltage utilization efficiencies. Furthermore, the experiments show that magnetic field topology is important in the cathode coupling process. In particular, the magnetic field

  15. Manual modification and plasma exposure of boron nitride ceramic to study Hall effect thruster plasma channel material erosion

    NASA Astrophysics Data System (ADS)

    Satonik, Alexander J.

    Worn Hall effect thrusters (HET) show a variety of unique microstructures and elemental compositions in the boron nitride thruster channel walls. Worn thruster channels are typically created by running test thrusters in vacuum chambers for hundreds of hours. Studies were undertaken to manually modify samples of boron nitride without the use of a hall effect thruster. Samples were manually abraded with an abrasive blaster and sandpaper, in addition to a vacuum heater. Some of these samples were further exposed to a xenon plasma in a magnetron sputter device. Sandpaper and abrasive blaster tests were used to modify surface roughness values of the samples from 10,000 A to 150,000 A, matching worn thruster values. Vacuum heat treatments were performed on samples. These treatments showed the ability to modify chemical compositions of boron nitride samples, but not in a manner matching changes seen in worn thruster channels. Plasma erosion rate was shown to depend on the grade of the BN ceramic and the preparation of the surface prior to plasma exposure. Abraded samples were shown to erode 43% more than their pristine counterparts. Unique surface features and elemental compositions on the worn thruster channel samples were overwritten by new surface features on the ceramic grains. The microscope images of the ceramic surface show that the magnetron plasma source rounded the edges of the ceramic grains to closely match the worn HET surface. This effect was not as pronounced in studies of ion beam bombardment of the surface and appears to be a result of the quasi-neutral plasma environment.

  16. Perturbations induced by electrostatic probe in the discharge of Hall thrusters.

    PubMed

    Grimaud, L; Pétin, A; Vaudolon, J; Mazouffre, S

    2016-04-01

    Emissive and Langmuir probes are two widely used plasma diagnostic techniques that, when used properly, give access to a wide range of information on the plasma's ions and electrons. We show here that their use in small and medium power Hall thrusters produces large perturbations in the discharge characteristics. Potential measurements performed by both probes and non-invasive Laser Induced Fluorescence (LIF) spectroscopy highlight significant discrepancies in the discharge profile. This phenomenon is observed both in the 200 W and the 1.5 kW-class thrusters. In order to have a better understanding of these perturbations, ion velocity distribution functions are acquired by LIF spectroscopy at different positions in the smaller thruster, with and without the probes. Emissive probes are shown to produce the biggest perturbation, shifting the acceleration region upstream. The probe insertion is also shown to have significant effect on both the average discharge current, increasing it by as much as 30%, and its harmonic content in both amplitude and spectrum. These perturbations appear as the probe tip passes a threshold located between 0 and 5 mm downstream of the thruster exit plane.

  17. Perturbations induced by electrostatic probe in the discharge of Hall thrusters

    NASA Astrophysics Data System (ADS)

    Grimaud, L.; Pétin, A.; Vaudolon, J.; Mazouffre, S.

    2016-04-01

    Emissive and Langmuir probes are two widely used plasma diagnostic techniques that, when used properly, give access to a wide range of information on the plasma's ions and electrons. We show here that their use in small and medium power Hall thrusters produces large perturbations in the discharge characteristics. Potential measurements performed by both probes and non-invasive Laser Induced Fluorescence (LIF) spectroscopy highlight significant discrepancies in the discharge profile. This phenomenon is observed both in the 200 W and the 1.5 kW-class thrusters. In order to have a better understanding of these perturbations, ion velocity distribution functions are acquired by LIF spectroscopy at different positions in the smaller thruster, with and without the probes. Emissive probes are shown to produce the biggest perturbation, shifting the acceleration region upstream. The probe insertion is also shown to have significant effect on both the average discharge current, increasing it by as much as 30%, and its harmonic content in both amplitude and spectrum. These perturbations appear as the probe tip passes a threshold located between 0 and 5 mm downstream of the thruster exit plane.

  18. Reduced Toxicity Fuel Satellite Propulsion System Including Axial Thruster and ACS Thruster Combination

    NASA Technical Reports Server (NTRS)

    Schneider, Steven J. (Inventor)

    2001-01-01

    A reduced toxicity fuel satellite propulsion system including a reduced toxicity propellant supply for consumption in an axial class thruster and an ACS class thruster. The system includes suitable valves and conduits for supplying the reduced toxicity propellant to the ACS decomposing element of an ACS thruster. The ACS decomposing element is operative to decompose the reduced toxicity propellant into hot propulsive gases. In addition the system includes suitable valves and conduits for supplying the reduced toxicity propellant to an axial decomposing element of the axial thruster. The axial decomposing element is operative to decompose the reduced toxicity propellant into hot gases. The system further includes suitable valves and conduits for supplying a second propellant to a combustion chamber of the axial thruster, whereby the hot gases and the second propellant auto-ignite and begin the combustion process for producing thrust.

  19. Ion Emissive Membranes for Propulsion Applications

    NASA Astrophysics Data System (ADS)

    Williams, John D.; Wilbur, Paul J.; Farnell, Cody C.; Farnell, Casey C.; Wilson, Merrill; Hutchings, Kent

    2009-03-01

    Experiments show electrostatic thrusters with components such as the discharge chamber or acceleration channel, solenoid or permanent magnets, hollow cathode, and keeper can be replaced by a simple, propellant-selective, solid-state, ion-conducting membrane (Wilbur et al., 2007; Wilbur, Wilson, and Williams, 2005). In addition, analyzes show these membranes can be shaped, structured, and assembled into integrated thruster systems that will operate at much greater thrust densities and thruster efficiencies than those for state-of-the-art, Hall and ion thrusters (Wilbur, Farnell, and Williams, 2005). The implications of these findings are revolutionary and promise an electrostatic propulsion system much less massive, more reliable, and less costly than ion and Hall thruster systems as they can be fabricated readily using traditional ceramic manufacturing techniques. The status of the Emissive Membrane Ion Thruster (EMIT) concept is described and recent measurements are used to estimate the performance of a propulsion system based on this concept. Estimates are also provided for the specific masses of various components required for it to perform typical satellite missions and comparisons are made to conventional electric propulsion systems currently in use. The emissive membrane thruster is shown to enable operation at 20% to 50% greater thrust-to-power ratios at specific impulses from 1000 s to 5000 s. Related performance advantages will also be discussed and analyses will be presented that show why an EMIT system is less expensive, more reliable, easily scalable, and simpler compared to existing electric thruster systems.

  20. Sputtering Erosion Measurement on Boron Nitride as a Hall Thruster Material

    NASA Technical Reports Server (NTRS)

    Britton, Melissa; Waters, Deborah; Messer, Russell; Sechkar, Edward; Banks, Bruce

    2002-01-01

    The durability of a high-powered Hall thruster may be limited by the sputter erosion resistance of its components. During normal operation, a small fraction of the accelerated ions will impact the interior of the main discharge channel, causing its gradual erosion. A laboratory experiment was conducted to simulate the sputter erosion of a Hall thruster. Tests of sputter etch rate were carried out using 300 to 1000 eV Xenon ions impinging on boron nitride substrates with angles of attack ranging from 30 to 75 degrees from horizontal. The erosion rates varied from 3.41 to 14.37 Angstroms/[sec(mA/sq cm)] and were found to depend on the ion energy and angle of attack, which is consistent with the behavior of other materials.

  1. Transient phenomena in closed electron drift plasma thrusters: insights obtained in a French cooperative program

    NASA Astrophysics Data System (ADS)

    Bouchoule, A.; Philippe-Kadlec, Ch; Prioul, M.; Darnon, F.; Lyszyk, M.; Magne, L.; Pagnon, D.; Roche, S.; Touzeau, M.; Béchu, S.; Lasgorceix, P.; Sadeghi, N.; Dorval, N.; Marque, J.-P.; Bonnet, J.

    2001-05-01

    This paper presents some aspects of the research developed in the frame of a coordinated program launched in France in 1996 and devoted to plasma thrusters for space technologies. Relevant results of physical studies have been selected from the literature with the addition of recent original results. The thrusters within the scope of this research are diagnostic equipped versions of industrial realizations, in a thrust level range of 0.1 N and electrical power 1.5 kW. The optical and electrical diagnostics concern studies of the thruster plasma and of the thruster plume. Transient phenomena in these two regions, related to discharge current fluctuations or oscillations on a typical time scale of 40 µs, have been space-time characterized. This has been achieved by developing a large panel of diagnostics including RFEA, Langmuir probes, OES, fast camera imaging and electron drift Hall current probe. They lead to a coherent representation of these phenomena , in rather good qualitative agreement with 1D modelling. But they emphasize also the importance of 2D effects. Insights obtained through combined LIF (on Xe+ ions) and OES diagnostics are also presented. They concern the ionization-acceleration region in the thruster plasma, where intrusive diagnostics are disturbing in nature, and open a new step for a significant improvement of the detailed understanding of these thrusters. Such improvements are required when looking at the final goal of a predicable modelling simulation able to help the design of optimized structures at various thrust levels, in spite of the important work devoted to these devices in the former USSR and by Russian teams in Moscow at the MIREA, MAI-RIAME and KOURCHATOV Institutes.

  2. Coaxial plasma thrusters for high specific impulse propulsion

    NASA Technical Reports Server (NTRS)

    Schoenberg, Kurt F.; Gerwin, Richard A.; Barnes, Cris W.; Henins, Ivars; Mayo, Robert; Moses, Ronald, Jr.; Scarberry, Richard; Wurden, Glen

    1991-01-01

    A fundamental basis for coaxial plasma thruster performance is presented and the steady-state, ideal MHD properties of a coaxial thruster using an annular magnetic nozzle are discussed. Formulas for power usage, thrust, mass flow rate, and specific impulse are acquired and employed to assess thruster performance. The performance estimates are compared with the observed properties of an unoptimized coaxial plasma gun. These comparisons support the hypothesis that ideal MHD has an important role in coaxial plasma thruster dynamics.

  3. Investigations of Probe Induced Perturbations in a Hall Thruster

    SciTech Connect

    D. Staack; Y. Raitses; N.J. Fisch

    2002-08-12

    An electrostatic probe used to measure spatial plasma parameters in a Hall thruster generates perturbations of the plasma. These perturbations are examined by varying the probe material, penetration distance, residence time, and the nominal thruster conditions. The study leads us to recommendations for probe design and thruster operating conditions to reduce discharge perturbations, including metal shielding of the probe insulator and operation of the thruster at lower densities.

  4. Factors Affecting the Efficiency of Krypton Hall Thrusters

    NASA Technical Reports Server (NTRS)

    Hofer, Richard R.; Peterson, Peter Y.; Jacobson, David T.; Manzella, David M.

    2004-01-01

    The krypton-fueled Hall thruster offers the possibility of high-specific impulse and long lifetime. NASA's series of Hall thrusters have demonstrated krypton efficiencies only 5 - 15% less than xenon. Larger thrusters have smaller differences in efficiency. Plasma measurements have demonstrated that efficiency is reduced due to a decrease in mass utilization. Current efforts are considering the implications of these results, and how design changes can be made to increase the efficiency of krypton Hall thrusters.

  5. Parametric Investigations of Non-Conventional Hall Thruster

    SciTech Connect

    Raitses, Y.; Fisch, N.J.

    2001-01-12

    Hall thrusters might better scale to low power with non-conventional geometry. A 9 cm cylindrical, ceramic-channel, Hall thruster with a cusp-type magnetic field distribution has been investigated. It exhibits discharge characteristics similar to conventional coaxial Hall thrusters, but does not expose as much channel surface. Significantly, its operation is not accompanied by large amplitude discharge low frequency oscillations.

  6. Liquid-Metal-Fed Pulsed Plasma Thrusters

    NASA Technical Reports Server (NTRS)

    Markusic, Thomas

    2004-01-01

    A short document proposes liquid-metal-fed pulsed plasma thrusters for small spacecraft. The propellant liquid for such a thruster would be a low-melting-temperature metal that would be stored molten in an unpressurized, heated reservoir and would be pumped to the thruster by a magnetohydrodynamic coupler. The liquid would enter the thruster via a metal tube inside an electrically insulating ceramic tube. A capacitor would be connected between the outlet of the metal tube and the outer electrode of the thruster. The pumping would cause a drop of liquid to form at the outlet, eventually growing large enough to make contact with the outer electrode. Contact would close the circuit through the capacitor, causing the capacitor to discharge through the drop. The capacitor would have been charged with enough energy that the discharge would vaporize, ionize, and electromagnetically accelerate the contents of the metal drop. The resulting plasma would be ejected at a speed of about 50 km/s. The vaporization of the drop would reopen the circuit through the capacitor, enabling recharging of the capacitor. As pumping continued, a new drop would grow and the process would repeat.

  7. Investigation of a pulsed electrothermal thruster system

    NASA Technical Reports Server (NTRS)

    Burton, R. L.; Goldstein, S. A.; Hilko, B. K.; Tidman, D. A.; Winsor, N. K.

    1984-01-01

    The performance of an ablative wall Pulsed Electrothermal (PET) thruster is accurately characterized on a calibrated thrust stand, using polyethylene propellant. The thruster is tested for four configurations of capillary length and pulse length. The exhaust velocity is determined with twin time-of-flight photodiode stagnation probes, and the ablated mass is measured from the loss over ten shots. Based on the measured thrust impulse and the ablated mass, the specific impulse varies from 1000 to 1750 seconds. The thrust to power varies from .05 N/kW (quasi-steady mode) to .10 N/kW (unsteady mode). The thruster efficiency varies from .56 at 1000 seconds to .42 at 1750 seconds. A conceptual design is presented for a 40 kW PET propulsion system. The point design system performance is .62 system efficiency at 1000 seconds specific impulse. The system's reliability is enhanced by incorporating 20, 20 kW thruster modules which are fired in pairs. The thruster design is non-ablative, and uses water propellant, from a central storage tank, injected through the cathode.

  8. Nonequilibrium diagnostics of plasma thrusters

    SciTech Connect

    Eddy, T.L.; Grandy, J.D.

    1990-01-01

    This paper describes possible techniques by which the state of plasma thruster operation for space propulsion can be determined from a minimum set of experimental data in the laboratory. The kinetic properties of the nonequilibrium plasma plume usually can not be directly related to the observed radiation; hence, appropriate nonequilibrium diagnostic techniques must be employed. A newly developed multithermal, multichemical equilibrium method is discussed that uses measured line emission intensities and N equations to solve for N unknowns. The effect of arbitrarily changing the number of selected N unknowns and how one determines the optimum (minimum) number to be used for a given composition is also presented. The chemical nonequilibrium aspects and the application to molecular species have not yet been published. The important conclusions are that (1) complete thermodynamic systems in nonequilibrium can be described by relatively few variables if appropriate choices and filtering methods are used, (2) a few radiation measurements can yield valid kinetic properties, and (3) the major question in the relations to be used is in the form of the law of mass action. The results are substantiated in the laboratory by additional alternative methods of measurement of some of the kinetic properties. 13 refs., 1 fig.

  9. The Plasmoid Thruster Experiment (PTX)

    NASA Technical Reports Server (NTRS)

    Martin, Adam; Eskridge, Richard; Fimognan, Peter; Koelfgen, Syri J.; Lee, Mike

    2004-01-01

    A plasmoid is a compact plasma structure with an integral magnetic field, that may be categorized according to the relative strength of the poloidal and toroidal magnetic fields. If B(sup p)/B(sub t) is much greater than 1, it is an FRC; if B(sub p) approximately equals B(sub t), it is a Spheromak. A plasmoid thruster would operate by repetitively producing plasmoids that are accelerated to high velocity. The process is inductive, and the magnetic structure of the plasmoid suppresses thermal and mass losses, and improves detachment of the exhaust. This concept should be capable of producing an Isp in the range of 5,000 - 10,OOO seconds, with high thrust density. PTX is a device designed to study this concept. The plasmoid is formed inside of a single turn conical theta-pinch coil, driven by a 560 nF, 35 kV capacitor bank. Experiments conducted with a static-fill of propellant gas (6% H2 in He) demonstrated reliable ionization over a pressure range of 40 - 200 mTorr. A fast gas-puff valve to inject propellant has since been added, and a ringing pre-ionization circuit to independently control ionization has been tested. Hydrogen, deuterium, argon, and an N2/H2 mixture have been tried as propellants. Measurements of the plasmoid shape, mass, and velocity, using a variety of diagnostics will be presented,

  10. The Plasmoid Thruster Experiment (PTX)

    NASA Technical Reports Server (NTRS)

    Martin, Adam; Eskridge, Richard; Lee, Mike; Fimohnsti, Peter; Koelfgen, Syri J.

    2005-01-01

    A plasmoid is a compact plasma structure with an integral magnetic field, that may be categorized according to the relative strength of the poloidal and toroidal magnetic fields. If B(sub p/B(sub t) much greater than 1 it is an FRC; if B(sub p) approximately equal to B(sub t), it is a Spheromak. A plasmoid thruster would operate by repetitively producing plasmoids that are accelerated to high velocity. The process is inductive, and the magnetic structure of the plasmoid suppresses thermal and mass losses, and improves detachment of the exhaust, This concept should be capable of producing an Isp in the range of 5,000 - l0,000 seconds, with high thrust density. PTX is a device designed to study this concept. The plasmoid is formed inside of a single turn conical theta-pinch coil, driven by a 560 nF, 35 kV capacitor bank. Experiments conducted with a static-fill of propellant gas (6% H2 in He) demonstrated liable ionization over a pressure range of 40 - 200 mTorr. A fast gas-puff valve to inject propellant has since been added, and a ringing preionization circuit to independently control ionization has been tested, hydrogen, deuterium, argon, and an N2 / H2 mixture have been tried as propellants. Measurements of the plasmoid shape, mass, and velocity, using a variety of diagnostics will be presented.

  11. Magnetic shielding of Hall thrusters at high discharge voltages

    SciTech Connect

    Mikellides, Ioannis G. Hofer, Richard R.; Katz, Ira; Goebel, Dan M.

    2014-08-07

    A series of numerical simulations and experiments have been performed to assess the effectiveness of magnetic shielding in a Hall thruster operating in the discharge voltage range of 300–700 V (I{sub sp} ≈ 2000–2700 s) at 6 kW, and 800 V (I{sub sp} ≈ 3000) at 9 kW. At 6 kW, the magnetic field topology with which highly effective magnetic shielding was previously demonstrated at 300 V has been retained for all other discharge voltages; only the magnitude of the field has been changed to achieve optimum thruster performance. It is found that magnetic shielding remains highly effective for all discharge voltages studied. This is because the channel is long enough to allow hot electrons near the channel exit to cool significantly upon reaching the anode. Thus, despite the rise of the maximum electron temperature in the channel with discharge voltage, the electrons along the grazing lines of force remain cold enough to eliminate or reduce significantly parallel gradients of the plasma potential near the walls. Computed maximum erosion rates in the range of 300–700 V are found not to exceed 10{sup −2} mm/kh. Such rates are ∼3 orders of magnitude less than those observed in the unshielded version of the same thruster at 300 V. At 9 kW and 800 V, saturation of the magnetic circuit did not allow for precisely the same magnetic shielding topology as that employed during the 6-kW operation since this thruster was not designed to operate at this condition. Consequently, the maximum erosion rate at the inner wall is found to be ∼1 order of magnitude higher (∼10{sup −1} mm/kh) than that at 6 kW. At the outer wall, the ion energy is found to be below the sputtering yield threshold so no measurable erosion is expected.

  12. Magnetohydrodynamic MACH Code Used to Simulate Magnetoplasmadynamic Thrusters

    NASA Technical Reports Server (NTRS)

    Mikellides, Pavlos G.; LaPointe, Michael R.

    2002-01-01

    The On-Board Propulsion program at the NASA Glenn Research Center is utilizing a state of-the-art numerical simulation to model the performance of high-power electromagnetic plasma thrusters. Such thrusters are envisioned for use in lunar and Mars cargo transport, piloted interplanetary expeditions, and deep-space robotic exploration of the solar system. The experimental portion of this program is described in reference 1. This article describes the numerical modeling program used to guide the experimental research. The synergistic use of numerical simulations and experimental research has spurred the rapid advancement of high-power thruster technologies for a variety of bold new NASA missions. From its inception as a U.S. Department of Defense code in the mid-1980's, the Multiblock Arbitrary Coordinate Hydromagnetic (MACH) simulation tool has been used by the plasma physics community to model a diverse range of plasma problems--including plasma opening switches, inertial confinement fusion concepts, compact toroid formation and acceleration, z-pinch implosion physics, laser-target interactions, and a variety of plasma thrusters. The MACH2 code used at Glenn is a time-dependent, two-dimensional, axisymmetric, multimaterial code with a multiblock structure. MACH3, a more recent three-dimensional version of the code, is currently undergoing beta tests. The MACH computational mesh moves in an arbitrary Lagrangian-Eulerian (ALE) fashion that allows the simulation of diffusive-dominated and dispersive-dominated problems, and the mesh can be refined via a variety of adaptive schemes to capture regions of varying characteristic scale. The mass continuity and momentum equations model a compressible viscous fluid, and three energy equations are used to simulate nonthermal equilibrium between electrons, ions, and the radiation field. Magnetic fields are modeled by an induction equation that includes resistive diffusion, the Hall effect, and a thermal source for magnetic

  13. Engineering Risk Assessment of Space Thruster Challenge Problem

    NASA Technical Reports Server (NTRS)

    Mathias, Donovan L.; Mattenberger, Christopher J.; Go, Susie

    2014-01-01

    The Engineering Risk Assessment (ERA) team at NASA Ames Research Center utilizes dynamic models with linked physics-of-failure analyses to produce quantitative risk assessments of space exploration missions. This paper applies the ERA approach to the baseline and extended versions of the PSAM Space Thruster Challenge Problem, which investigates mission risk for a deep space ion propulsion system with time-varying thruster requirements and operations schedules. The dynamic mission is modeled using a combination of discrete and continuous-time reliability elements within the commercially available GoldSim software. Loss-of-mission (LOM) probability results are generated via Monte Carlo sampling performed by the integrated model. Model convergence studies are presented to illustrate the sensitivity of integrated LOM results to the number of Monte Carlo trials. A deterministic risk model was also built for the three baseline and extended missions using the Ames Reliability Tool (ART), and results are compared to the simulation results to evaluate the relative importance of mission dynamics. The ART model did a reasonable job of matching the simulation models for the baseline case, while a hybrid approach using offline dynamic models was required for the extended missions. This study highlighted that state-of-the-art techniques can adequately adapt to a range of dynamic problems.

  14. Control of the Electric Field Profile in the Hall Thruster

    SciTech Connect

    A. Fruchtman; N. J. Fisch; Y. Raitses

    2000-10-05

    Control of the electric field profile in the Hall Thruster through the positioning of an additional electrode along the channel is shown theoretically to enhance the efficiency. The reduction of the potential drop near the anode by use of the additional electrode increases the plasma density there, through the increase of the electron and ion transit times, causing the ionization in the vicinity of the anode to increase. The resulting separation of the ionization and acceleration regions increases the propellant and energy utilizations. An abrupt sonic transition is forced to occur at the axial location of the additional electrode, accompanied by the generation of a large (theoretically infinite) electric field. This ability to generate a large electric field at a specific location along the channel, in addition to the ability to specify the electric potential there, allows one further control of the electric field profile in the thruster. In particular, when the electron temperature is high, a large abrupt voltage drop is induced at the vicinity of the additional electrode, a voltage drop that can comprise a significant part of the applied voltage.

  15. Hall Thruster Satellite Communication Impact Analysis

    NASA Astrophysics Data System (ADS)

    Hallock, G. A.; Wiley, J. C.; Khanna, A.; Spencer, E. A.

    1999-11-01

    A critical issue which arises in the integration of Hall thruster technology for communication satellite stationkeeping is refraction of the microwave signals caused by the highly ionized plasma plume. This can cause pointing error, sidelobe degradation, and other changes to the antenna pattern. We have developed vector ray tracing codes, which track the trajectory, amplitude, phase, and polarization of a bundle of rays from the antenna reflector or feed. Shaped reflectors are used in modern satellites to tailor the antenna pattern to the desired receiving area. We are investigating the distortion to these patterns caused by thrusters located at various orientations. Hall thrusters exhibit several plasma instabilities, such as drift waves and transit time oscillations. This can introduce phase noise in the communication signals, which is highly undesirable, especially for digital signals. We are modeling these instabilities, which will be added to our simulations. Our codes make use of client/server software, allowing easy configuration setup and web access.

  16. Applied-field MPD thruster geometry effects

    NASA Technical Reports Server (NTRS)

    Myers, Roger M.

    1991-01-01

    Eight MPD thruster configurations were used to study the effects of applied field strength, propellant, and facility pressure on thruster performance. Vacuum facility background pressures higher than approx. 0.12 Pa were found to greatly influence thruster performance and electrode power deposition. Thrust efficiency and specific impulse increased monotonically with increasing applied field strength. Both cathode and anode radii fundamentally influenced the efficiency specific impulse relationship, while their lengths influence only the magnitude of the applied magnetic field required to reach a given performance level. At a given specific impulse, large electrode radii result in lower efficiencies for the operating conditions studied. For all test conditions, anode power deposition was the largest efficiency loss, and represented between 50 and 80 pct. of the input power. The fraction of the input power deposited into the anode decreased with increasing applied field and anode radii. The highest performance measured, 20 pct. efficiency at 3700 seconds specific impulse, was obtained using hydrogen propellant.

  17. Iridium-coated rhenium thrusters by CVD

    NASA Technical Reports Server (NTRS)

    Harding, J. T.; Kazaroff, J. M.; Appel, M. A.

    1989-01-01

    Operation of spacecraft thrusters at increased temperature reduces propellant requirements. Inasmuch as propellant comprises the bulk of a satellite's mass, even a small percentage reduction makes possible a significant enhancement of the mission in terms of increased payload. Because of its excellent high temperature strength, rhenium is often the structural material of choice. It can be fabricated into free-standing shapes by chemical vapor deposition (CVD) onto an expendable mandrel. What rhenium lacks is oxidation resistance, but this can be provided by a coating of iridium, also by CVD. This paper describes the process used by Ultramet to fabricate 22-N (5-lbf) and, more recently, 445-N (100-lbf) Ir/Re thrusters; characterizes the CVD-deposited materials; and summarizes the materials effects of firing these thrusters. Optimal propellant mixture ratios can be employed because the materials withstand an oxidizing environment up to the melting temperature of iridium, 2400 C (4350 F).

  18. Iridium-coated rhenium thrusters by CVD

    NASA Technical Reports Server (NTRS)

    Harding, John T.; Kazaroff, John M.; Appel, Marshall A.

    1988-01-01

    Operation of spacecraft thrusters at increased temperature reduces propellant requirements. Inasmuch as propellant comprises the bulk of a satellite's mass, even a small percentage reduction makes possible a significant enhancement of the mission in terms of increased payload. Because of its excellent high temperature strength, rhenium is often the structural material of choice. It can be fabricated into free-standing shapes by chemical vapor deposition (CVD) onto an expendable mandrel. What rhenium lacks is oxidation resistance, but this can be provided by a coating of iridium, also by CVD. This paper describes the process used by Ultramet to fabricate 22-N (5-lbf) and, more recently, 445-N (100-lbf) Ir/Re thrusters; characterizes the CVD-deposited materials; and summarizes the materials effects of firing these thrusters. Optimal propellant mixture ratios can be employed because the materials withstand an oxidizing environment up to the meltimg temperature of iridium, 2400 C (4350 F).

  19. 50 KW Class Krypton Hall Thruster Performance

    NASA Technical Reports Server (NTRS)

    Jacobson, David T.; Manzella, David H.

    2003-01-01

    The performance of a 50-kilowatt-class Hall thruster designed for operation on xenon propellant was measured using kryton propellant. The thruster was operated at discharge power levels ranging from 6.4 to 72.5 kilowatts. The device produced thrust ranging from 0.3 to 2.5 newtons. The thruster was operated at discharge voltages between 250 and 1000 volts. At the highest anode mass flow rate and discharge voltage and assuming a 100 percent singly charged condition, the discharge specific impulse approached the theoretical value. Discharge specific impulse of 4500 seconds was demonstrated at a discharge voltage of 1000 volts. The peak discharge efficiency was 64 percent at 650 volts.

  20. Experimentally Study of Micro-Cathode Arc Thruster (μCAT)

    NASA Astrophysics Data System (ADS)

    Zhuang, Taisen; Shashurin, Alexey; Chiu, Dereck; Teel, George; Beilis, Isak; Keidar, Michael

    2012-10-01

    A micro-Newton level cathode arc thruster (μCAT) with magnetically enhanced system has been proposed to address the long-time operation of micro-thruster for the nano-satellite propulsion. One important parameter governing the thrust force is velocity of the ions. In this work, we present the methodology of the Ti ion velocities measurement produced by μCAT and especially address the influence of magnetic field on the ion motion. The ion velocities are studied by means of time-of-flight (TOF) method equipped with enhanced ion detection system (EIDS). The EIDS method consists of perturbations (spikes) on arc discharge current waveform to generate denser plasma bunches and following detection of moments of time when perturbations arrives at the detectors. The novel double probes ion detection system could overcome the problem of noise generation simultaneously with the arc current perturbation associated with utilization of conventional single probe detector. When plasma bunch crosses each of the double probes, the spike on the probe current is detected following variation of plasma density. By measuring the delay times between the neighbor probes the average ion velocity can be determined. The Ni ion velocities are measured to compare with Ti ion velocities.