Science.gov

Sample records for 30-m spatial resolution

  1. Methodology to obtain 30 m resolution of snow cover area from FSCA MODIS and NDSI Landsat

    NASA Astrophysics Data System (ADS)

    Cepeda, Javier; Vargas, Ximena

    2016-04-01

    In the last years numerous free images and product satellites have been released, with different spatial and temporal resolution. Out of them, the most commonly used to describe the snow area are MODIS and Landsat. Fractional snow cover area (FSCA) is a daily MODIS product with a 500 m spatial resolution; Landsat images have around 16 days and 30 m respectively. In this work we use both images to obtain a new daily 30 m resolution snow distribution product based in probabilistic and geospatial information. This can be useful because a higher resolution can be used to improve the estimation of the accuracy of a physically-based distributed model to represent the snow cover distribution. We choose three basins in central Chile, with an important snow and glacier presence, to analyze the spatial and temporal distribution of snow using (1) the mean value between MOD10A1 (terra) and MYD10A1 (aqua) and (2) the corrected images by topography and atmosphere from Landsat 5 and Landsat 8 computing the normalized difference snow index (NDSI). When both satellites data are available in the same day, each MODIS pixel is studied considering the Landsat pixels contained in it. A new matrix is created, covering all MODIS pixels, using a 30 m spatial resolution, where each pixel value represents the probability of snow presence in time from Landsat images, and then each pixel is corrected by its neighbour's pixels, elevation, slope and aspect. Then snow is distributed, for each MODIS pixel, considering the corrected probability matrix and sorted between pixels with high probability until the area from FSCA is completed.

  2. Global land cover mapping at 30 m resolution: A POK-based operational approach

    NASA Astrophysics Data System (ADS)

    Chen, Jun; Chen, Jin; Liao, Anping; Cao, Xin; Chen, Lijun; Chen, Xuehong; He, Chaoying; Han, Gang; Peng, Shu; Lu, Miao; Zhang, Weiwei; Tong, Xiaohua; Mills, Jon

    2015-05-01

    Global Land Cover (GLC) information is fundamental for environmental change studies, land resource management, sustainable development, and many other societal benefits. Although GLC data exists at spatial resolutions of 300 m and 1000 m, a 30 m resolution mapping approach is now a feasible option for the next generation of GLC products. Since most significant human impacts on the land system can be captured at this scale, a number of researchers are focusing on such products. This paper reports the operational approach used in such a project, which aims to deliver reliable data products. Over 10,000 Landsat-like satellite images are required to cover the entire Earth at 30 m resolution. To derive a GLC map from such a large volume of data necessitates the development of effective, efficient, economic and operational approaches. Automated approaches usually provide higher efficiency and thus more economic solutions, yet existing automated classification has been deemed ineffective because of the low classification accuracy achievable (typically below 65%) at global scale at 30 m resolution. As a result, an approach based on the integration of pixel- and object-based methods with knowledge (POK-based) has been developed. To handle the classification process of 10 land cover types, a split-and-merge strategy was employed, i.e. firstly each class identified in a prioritized sequence and then results are merged together. For the identification of each class, a robust integration of pixel-and object-based classification was developed. To improve the quality of the classification results, a knowledge-based interactive verification procedure was developed with the support of web service technology. The performance of the POK-based approach was tested using eight selected areas with differing landscapes from five different continents. An overall classification accuracy of over 80% was achieved. This indicates that the developed POK-based approach is effective and feasible

  3. Mapping Impervious Surfaces Globally at 30m Resolution Using Global Land Survey Data

    NASA Technical Reports Server (NTRS)

    DeColstoun, Eric Brown; Huang, Chengquan; Tan, Bin; Smith, Sarah Elizabeth; Phillips, Jacqueline; Wang, Panshi; Ling, Pui-Yu; Zhan, James; Li, Sike; Taylor, Michael P.; Wolfe, Robert E.; Tilton, James C.

    2013-01-01

    Impervious surfaces, mainly artificial structures and roads, cover less than 1% of the world's land surface (1.3% over USA). Regardless of the relatively small coverage, impervious surfaces have a significant impact on the environment. They are the main source of the urban heat island effect, and affect not only the energy balance, but also hydrology and carbon cycling, and both land and aquatic ecosystem services. In the last several decades, the pace of converting natural land surface to impervious surfaces has increased. Quantitatively monitoring the growth of impervious surface expansion and associated urbanization has become a priority topic across both the physical and social sciences. The recent availability of consistent, global scale data sets at 30m resolution such as the Global Land Survey from the Landsat satellites provides an unprecedented opportunity to map global impervious cover and urbanization at this resolution for the first time, with unprecedented detail and accuracy. Moreover, the spatial resolution of Landsat is absolutely essential to accurately resolve urban targets such a buildings, roads and parking lots. With long term GLS data now available for the 1975, 1990, 2000, 2005 and 2010 time periods, the land cover/use changes due to urbanization can now be quantified at this spatial scale as well. In the Global Land Survey - Imperviousness Mapping Project (GLS-IMP), we are producing the first global 30 m spatial resolution impervious cover data set. We have processed the GLS 2010 data set to surface reflectance (8500+ TM and ETM+ scenes) and are using a supervised classification method using a regression tree to produce continental scale impervious cover data sets. A very large set of accurate training samples is the key to the supervised classifications and is being derived through the interpretation of high spatial resolution (approx. 2 m or less) commercial satellite data (Quickbird and Worldview2) available to us through the unclassified

  4. Mapping Impervious Surfaces Globally at 30m Resolution Using Landsat Global Land Survey Data

    NASA Astrophysics Data System (ADS)

    Brown de Colstoun, E.; Huang, C.; Wolfe, R. E.; Tan, B.; Tilton, J.; Smith, S.; Phillips, J.; Wang, P.; Ling, P.; Zhan, J.; Xu, X.; Taylor, M. P.

    2013-12-01

    Impervious surfaces, mainly artificial structures and roads, cover less than 1% of the world's land surface (1.3% over USA). Regardless of the relatively small coverage, impervious surfaces have a significant impact on the environment. They are the main source of the urban heat island effect, and affect not only the energy balance, but also hydrology and carbon cycling, and both land and aquatic ecosystem services. In the last several decades, the pace of converting natural land surface to impervious surfaces has increased. Quantitatively monitoring the growth of impervious surface expansion and associated urbanization has become a priority topic across both the physical and social sciences. The recent availability of consistent, global scale data sets at 30m resolution such as the Global Land Survey from the Landsat satellites provides an unprecedented opportunity to map global impervious cover and urbanization at this resolution for the first time, with unprecedented detail and accuracy. Moreover, the spatial resolution of Landsat is absolutely essential to accurately resolve urban targets such a buildings, roads and parking lots. With long term GLS data now available for the 1975, 1990, 2000, 2005 and 2010 time periods, the land cover/use changes due to urbanization can now be quantified at this spatial scale as well. In the Global Land Survey - Imperviousness Mapping Project (GLS-IMP), we are producing the first global 30 m spatial resolution impervious cover data set. We have processed the GLS 2010 data set to surface reflectance (8500+ TM and ETM+ scenes) and are using a supervised classification method using a regression tree to produce continental scale impervious cover data sets. A very large set of accurate training samples is the key to the supervised classifications and is being derived through the interpretation of high spatial resolution (~2 m or less) commercial satellite data (Quickbird and Worldview2) available to us through the unclassified

  5. Spaceborne SAR data for global urban mapping at 30 m resolution using a robust urban extractor

    NASA Astrophysics Data System (ADS)

    Ban, Yifang; Jacob, Alexander; Gamba, Paolo

    2015-05-01

    With more than half of the world population now living in cities and 1.4 billion more people expected to move into cities by 2030, urban areas pose significant challenges on local, regional and global environment. Timely and accurate information on spatial distributions and temporal changes of urban areas are therefore needed to support sustainable development and environmental change research. The objective of this research is to evaluate spaceborne SAR data for improved global urban mapping using a robust processing chain, the KTH-Pavia Urban Extractor. The proposed processing chain includes urban extraction based on spatial indices and Grey Level Co-occurrence Matrix (GLCM) textures, an existing method and several improvements i.e., SAR data preprocessing, enhancement, and post-processing. ENVISAT Advanced Synthetic Aperture Radar (ASAR) C-VV data at 30 m resolution were selected over 10 global cities and a rural area from six continents to demonstrate the robustness of the improved method. The results show that the KTH-Pavia Urban Extractor is effective in extracting urban areas and small towns from ENVISAT ASAR data and built-up areas can be mapped at 30 m resolution with very good accuracy using only one or two SAR images. These findings indicate that operational global urban mapping is possible with spaceborne SAR data, especially with the launch of Sentinel-1 that provides SAR data with global coverage, operational reliability and quick data delivery.

  6. A global, 30-m resolution land-surface water body dataset for 2000

    NASA Astrophysics Data System (ADS)

    Feng, M.; Sexton, J. O.; Huang, C.; Song, D. X.; Song, X. P.; Channan, S.; Townshend, J. R.

    2014-12-01

    Inland surface water is essential to terrestrial ecosystems and human civilization. The distribution of surface water in space and its change over time are related to many agricultural, environmental and ecological issues, and are important factors that must be considered in human socioeconomic development. Accurate mapping of surface water is essential for both scientific research and policy-driven applications. Satellite-based remote sensing provides snapshots of Earth's surface and can be used as the main input for water mapping, especially in large areas. Global water areas have been mapped with coarse resolution remotely sensed data (e.g., the Moderate Resolution Imaging Spectroradiometer (MODIS)). However, most inland rivers and water bodies, as well as their changes, are too small to map at such coarse resolutions. Landsat TM (Thematic Mapper) and ETM+ (Enhanced Thematic Mapper Plus) imagery has a 30m spatial resolution and provides decades of records (~40 years). Since 2008, the opening of the Landsat archive, coupled with relatively lower costs associated with computing and data storage, has made comprehensive study of the dynamic changes of surface water over large even global areas more feasible. Although Landsat images have been used for regional and even global water mapping, the method can hardly be automated due to the difficulties on distinguishing inland surface water with variant degrees of impurities and mixing of soil background with only Landsat data. The spectral similarities to other land cover types, e.g., shadow and glacier remnants, also cause misidentification. We have developed a probabilistic based automatic approach for mapping inland surface water bodies. Landsat surface reflectance in multiple bands, derived water indices, and data from other sources are integrated to maximize the ability of identifying water without human interference. The approach has been implemented with open-source libraries to facilitate processing large

  7. Mapping irrigated areas of Ghana using fusion of 30 m and 250 m resolution remote-sensing data

    USGS Publications Warehouse

    Gumma, M.K.; Thenkabail, P.S.; Hideto, F.; Nelson, A.; Dheeravath, V.; Busia, D.; Rala, A.

    2011-01-01

    Maps of irrigated areas are essential for Ghana's agricultural development. The goal of this research was to map irrigated agricultural areas and explain methods and protocols using remote sensing. Landsat Enhanced Thematic Mapper (ETM+) data and time-series Moderate Resolution Imaging Spectroradiometer (MODIS) data were used to map irrigated agricultural areas as well as other land use/land cover (LULC) classes, for Ghana. Temporal variations in the normalized difference vegetation index (NDVI) pattern obtained in the LULC class were used to identify irrigated and non-irrigated areas. First, the temporal variations in NDVI pattern were found to be more consistent in long-duration irrigated crops than with short-duration rainfed crops due to more assured water supply for irrigated areas. Second, surface water availability for irrigated areas is dependent on shallow dug-wells (on river banks) and dug-outs (in river bottoms) that affect the timing of crop sowing and growth stages, which was in turn reflected in the seasonal NDVI pattern. A decision tree approach using Landsat 30 m one time data fusion with MODIS 250 m time-series data was adopted to classify, group, and label classes. Finally, classes were tested and verified using ground truth data and national statistics. Fuzzy classification accuracy assessment for the irrigated classes varied between 67 and 93%. An irrigated area derived from remote sensing (32,421 ha) was 20-57% higher than irrigated areas reported by Ghana's Irrigation Development Authority (GIDA). This was because of the uncertainties involved in factors such as: (a) absence of shallow irrigated area statistics in GIDA statistics, (b) non-clarity in the irrigated areas in its use, under-development, and potential for development in GIDA statistics, (c) errors of omissions and commissions in the remote sensing approach, and (d) comparison involving widely varying data types, methods, and approaches used in determining irrigated area statistics

  8. Particle detector spatial resolution

    DOEpatents

    Perez-Mendez, V.

    1992-12-15

    Method and apparatus for producing separated columns of scintillation layer material, for use in detection of X-rays and high energy charged particles with improved spatial resolution is disclosed. A pattern of ridges or projections is formed on one surface of a substrate layer or in a thin polyimide layer, and the scintillation layer is grown at controlled temperature and growth rate on the ridge-containing material. The scintillation material preferentially forms cylinders or columns, separated by gaps conforming to the pattern of ridges, and these columns direct most of the light produced in the scintillation layer along individual columns for subsequent detection in a photodiode layer. The gaps may be filled with a light-absorbing material to further enhance the spatial resolution of the particle detector. 12 figs.

  9. How Attention Affects Spatial Resolution

    PubMed Central

    Carrasco, Marisa; Barbot, Antoine

    2015-01-01

    We summarize and discuss a series of psychophysical studies on the effects of spatial covert attention on spatial resolution, our ability to discriminate fine patterns. Heightened resolution is beneficial in most, but not all, visual tasks. We show how endogenous attention (voluntary, goal driven) and exogenous attention (involuntary, stimulus driven) affect performance on a variety of tasks mediated by spatial resolution, such as visual search, crowding, acuity, and texture segmentation. Exogenous attention is an automatic mechanism that increases resolution regardless of whether it helps or hinders performance. In contrast, endogenous attention flexibly adjusts resolution to optimize performance according to task demands. We illustrate how psychophysical studies can reveal the underlying mechanisms of these effects and allow us to draw linking hypotheses with known neurophysiological effects of attention. PMID:25948640

  10. Variability in Surface BRDF at Different Spatial Scales (30 m-500 m) Over a Mixed Agricultural Landscape as Retrieved from Airborne and Satellite Spectral Measurements

    NASA Technical Reports Server (NTRS)

    Roman, Miguel O.; Gatebe, Charles K.; Schaaf, Crystal B.; Poudyal, Rajesh; Wang, Zhousen; King, Michael D.

    2011-01-01

    Over the past decade, the role of multiangle remote sensing has been central to the development of algorithms for the retrieval of global land surface properties including models of the bidirectional reflectance distribution function (BRDF), albedo, land cover/dynamics, burned area extent, as well as other key surface biophysical quantities represented by the anisotropic reflectance characteristics of vegetation. In this study, a new retrieval strategy for fine-to-moderate resolution multiangle observations was developed, based on the operational sequence used to retrieve the Moderate Resolution Imaging Spectroradiometer (MODIS) Collection 5 reflectance and BRDF/albedo products. The algorithm makes use of a semiempirical kernel-driven bidirectional reflectance model to provide estimates of intrinsic albedo (i.e., directional-hemispherical reflectance and bihemispherical reflectance), model parameters describing the BRDF, and extensive quality assurance information. The new retrieval strategy was applied to NASA's Cloud Absorption Radiometer (CAR) data acquired during the 2007 Cloud and Land Surface Interaction Campaign (CLASIC) over the well-instrumented Atmospheric Radiation Measurement Program (ARM) Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) site in Oklahoma, USA. For the case analyzed, we obtained approx.1.6 million individual surface bidirectional reflectance factor (BRF) retrievals, from nadir to 75 off-nadir, and at spatial resolutions ranging from 3 m - 500 m. This unique dataset was used to examine the interaction of the spatial and angular characteristics of a mixed agricultural landscape; and provided the basis for detailed assessments of: (1) the use of a priori knowledge in kernel-driven BRDF model inversions; (2) the interaction between surface reflectance anisotropy and instrument spatial resolution; and (3) the uncertain ties that arise when sub-pixel differences in the BRDF are aggregated to a moderate resolution satellite pixel

  11. Variability in Surface BRDF at Different Spatial Scales (30m-500m) Over a Mixed Agricultural Landscape as Retrieved from Airborne and Satellite Spectral Measurements

    NASA Technical Reports Server (NTRS)

    Roman, Miguel O.; Gatebe, Charles K.; Schaaf, Crystal B.; Poudyal, Rajesh; Wang, Zhuosen; King, Michael D.

    2012-01-01

    Over the past decade, the role of multiangle 1 remote sensing has been central to the development of algorithms for the retrieval of global land surface properties including models of the bidirectional reflectance distribution function (BRDF), albedo, land cover/dynamics, burned area extent, as well as other key surface biophysical quantities represented by the anisotropic reflectance characteristics of vegetation. In this study, a new retrieval strategy for fine-to-moderate resolution multiangle observations was developed, based on the operational sequence used to retrieve the Moderate Resolution Imaging Spectroradiometer (MODIS) Collection 5 reflectance and BRDF/albedo products. The algorithm makes use of a semiempirical kernel-driven bidirectional reflectance model to provide estimates of intrinsic albedo (i.e., directional-hemispherical reflectance and bihemispherical reflectance), model parameters describing the BRDF, and extensive quality assurance information. The new retrieval strategy was applied to NASA's Cloud Absorption Radiometer (CAR) data acquired during the 2007 Cloud and Land Surface Interaction Campaign (CLASIC) over the well-instrumented Atmospheric Radiation Measurement Program (ARM) Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) site in Oklahoma, USA. For the case analyzed, we obtained approx.1.6 million individual surface bidirectional reflectance factor (BRF) retrievals, from nadir to 75deg off-nadir, and at spatial resolutions ranging from 3 m - 500 m. This unique dataset was used to examine the interaction of the spatial and angular 18 characteristics of a mixed agricultural landscape; and provided the basis for detailed assessments of: (1) the use of a priori knowledge in kernel-driven BRDF model inversions; (2) the interaction between surface reflectance anisotropy and instrument spatial resolution; and (3) the uncertainties that arise when sub-pixel differences in the BRDF are aggregated to a moderate resolution satellite

  12. Ameliorating the spatial resolution of Hyperion hyperspectral data

    NASA Astrophysics Data System (ADS)

    Nikolakopoulos, Konstantinos G.; Tsombos, Panagiotis I.; Skianis, George A.; Vaiopoulos, Dimitrios A.

    2009-09-01

    In this study seven fusion techniques and more especially the Ehlers, Gram-Schmidt, High Pass Filter, Local Mean Matching (LMM), Local Mean and Variance Matching (LMVM), Pansharp and PCA, were used for the fusion of Hyperion hyperspectral data with ALI panchromatic data. Both sensors are onboard on EO-1 satellite and the data are collected simultaneously. The panchromatic data has a spatial resolution of 10m while the hyperspectral data has a spatial resolution of 30m. All the fusion techniques are designed for use with classical multispectral data. Thus, it is quite interesting to investigate the assessment of the common used fusion algorithms with the hyperspectral data. The area of study is the broader area of North Western Athens near to Thrakomakedones village.

  13. Using remote sensing products to classify landscape. A multi-spatial resolution approach

    NASA Astrophysics Data System (ADS)

    García-Llamas, Paula; Calvo, Leonor; Álvarez-Martínez, José Manuel; Suárez-Seoane, Susana

    2016-08-01

    The European Landscape Convention encourages the inventory and characterization of landscapes for environmental management and planning actions. Among the range of data sources available for landscape classification, remote sensing has substantial applicability, although difficulties might arise when available data are not at the spatial resolution of operational interest. We evaluated the applicability of two remote sensing products informing on land cover (the categorical CORINE map at 30 m resolution and the continuous NDVI spectral index at 1 km resolution) in landscape classification across a range of spatial resolutions (30 m, 90 m, 180 m, 1 km), using the Cantabrian Mountains (NW Spain) as study case. Separate landscape classifications (using topography, urban influence and land cover as inputs) were accomplished, one per each land cover dataset and spatial resolution. Classification accuracy was estimated through confusion matrixes and uncertainty in terms of both membership probability and confusion indices. Regarding landscape classifications based on CORINE, both typology and number of landscape classes varied across spatial resolutions. Classification accuracy increased from 30 m (the original resolution of CORINE) to 90m, decreasing towards coarser resolutions. Uncertainty followed the opposite pattern. In the case of landscape classifications based on NDVI, the identified landscape patterns were geographically structured and showed little sensitivity to changes across spatial resolutions. Only the change from 1 km (the original resolution of NDVI) to 180 m improved classification accuracy. The value of confusion indices increased with resolution. We highlight the need for greater effort in selecting data sources at the suitable spatial resolution, matching regional peculiarities and minimizing error and uncertainty.

  14. SPATIAL AND SPECTRAL RESOLUTION IN GEOBOTANY.

    USGS Publications Warehouse

    Milton, Nancy M.; Mouat, D.A.

    1984-01-01

    Remotely sensed data are now available from a wide variety of instruments, each data set having a particular spectral and spatial resolution. The changes in vegetation associated with changes in lithology or the presence of mineral deposits can also occur at different scales. The task of geobotanical remote sensing is to choose or adapt the remotely sensed data to the appropriate geobotanical technique to solve the geological problem of interest. Examples are given of a number of applications of data sets of different spectral and spatial resolution. The relative importance of spectral and spatial resolution is discussed.

  15. Fundamental Limits of Spatial Resolution in PET

    PubMed Central

    Moses, William W.

    2010-01-01

    The fundamental limits of spatial resolution in positron emission tomography (PET) have been understood for many years. The physical size of the detector element usually plays the dominant role in determining resolution, but the combined contributions from acollinearity, positron range, penetration into the detector ring, and decoding errors in the detector modules often combine to be of similar size. In addition, the sampling geometry and statistical noise further degrade the effective resolution. This paper describes quantitatively describes these effects, discusses potential methods for reducing the magnitude of these effects, and computes the ultimately achievable spatial resolution for clinical and pre-clinical PET cameras. PMID:21804677

  16. Spatial resolution requirements for urban land cover mapping from space

    NASA Technical Reports Server (NTRS)

    Todd, William J.; Wrigley, Robert C.

    1986-01-01

    Very low resolution (VLR) satellite data (Advanced Very High Resolution Radiometer, DMSP Operational Linescan System), low resolution (LR) data (Landsat MSS), medium resolution (MR) data (Landsat TM), and high resolution (HR) satellite data (Spot HRV, Large Format Camera) were evaluated and compared for interpretability at differing spatial resolutions. VLR data (500 m - 1.0 km) is useful for Level 1 (urban/rural distinction) mapping at 1:1,000,000 scale. Feature tone/color is utilized to distinguish generalized urban land cover using LR data (80 m) for 1:250,000 scale mapping. Advancing to MR data (30 m) and 1:100,000 scale mapping, confidence in land cover mapping is greatly increased, owing to the element of texture/pattern which is now evident in the imagery. Shape and shadow contribute to detailed Level II/III urban land use mapping possible if the interpreter can use HR (10-15 m) satellite data; mapping scales can be 1:25,000 - 1:50,000.

  17. Mapping seagrass coverage and spatial patterns with high spatial resolution IKONOS imagery

    NASA Astrophysics Data System (ADS)

    Pu, Ruiliang; Bell, Susan

    2017-02-01

    Seagrass habitats in subtidal coastal waters provide a variety of ecosystem functions and services and there is an increasing need to acquire information on spatial and temporal dynamics of this resource. Here, we explored the capability of IKONOS (IKO) data of high resolution (4 m) for mapping seagrass cover [submerged aquatic vegetation (%SAV) cover] along the mid-western coast of Florida, USA. We also compared seagrass maps produced with IKO data with that obtained using the Landsat TM sensor with lower resolution (30 m). Both IKO and TM data, collected in October 2009, were preprocessed to calculate water depth invariant bands to normalize the effect of varying depth on bottom spectra recorded by the two satellite sensors and further the textural information was extracted from IKO data. Our results demonstrate that the high resolution IKO sensor produced a higher accuracy than the TM sensor in a three-class % SAV cover classification. Of note is that the OA of %SAV cover mapping at our study area created with IKO data was 5-20% higher than that from other studies published. We also examined the spatial distribution of seagrass over a spatial range of 4-240 m using the Ripley's K function [L(d)] and IKO data that represented four different grain sizes [4 m (one IKO pixel), 8 m (2 × 2 IKO pixels), 12 m (3 × 3 IKO pixels), and 16 m (4 × 4 IKO pixels)] from moderate-dense seagrass cover along a set of six transects. The Ripley's K metric repeatedly indicated that seagrass cover representing 4 m × 4 m pixels displayed a dispersed (or slightly dispersed) pattern over distances of <4-8 m, and a random or slightly clustered pattern of cover over 9-240 m. The spatial pattern of seagrass cover created with the three additional grain sizes (i.e., 2 × 24 m IKO pixels, 3 × 34 m IKO pixels, and 4 × 4 m IKO pixels) show a dispersed (or slightly dispersed) pattern across 4-32 m and a random or slightly clustered pattern across 33-240 m. Given the first report on using

  18. High Spatial Resolution Thermal Satellite Technologies

    NASA Technical Reports Server (NTRS)

    Ryan, Robert

    2003-01-01

    This document in the form of viewslides, reviews various low-cost alternatives to high spatial resolution thermal satellite technologies. There exists no follow-on to Landsat 7 or ASTER high spatial resolution thermal systems. This document reviews the results of the investigation in to the use of new technologies to create a low-cost useful alternative. Three suggested technologies are examined. 1. Conventional microbolometer pushbroom modes offers potential for low cost Landsat Data Continuity Mission (LDCM) thermal or ASTER capability with at least 60-120 ground sampling distance (GSD). 2. Backscanning could produce MultiSpectral Thermal Imager performance without cooled detectors. 3. Cooled detector could produce hyperspectral thermal class system or extremely high spatial resolution class instrument.

  19. Spatial resolution considerations for urban hydrological modelling

    NASA Astrophysics Data System (ADS)

    Krebs, G.; Kokkonen, T.; Valtanen, M.; Setälä, H.; Koivusalo, H.

    2014-05-01

    Hydrological model simulations can be applied to evaluate the performance of low impact development (LID) tools in urban areas. However, the assessment for large-scale urban areas remains a challenge due to the required high spatial resolution and limited availability of field measurements for model calibration. This study proposes a methodology to parameterize a hydrological model (SWMM) with sufficiently high spatial resolution and direct accessibility of model parameters for LID performance simulation applicable to a large-scale ungauged urban area. Based on calibrated high-resolution models for three small-scale study catchments (6-12 ha), we evaluated how constraints implied by large-scale urban modelling, such as data limitations, affect the model results. The high-resolution surface representation, resulting in subcatchments of uniform surface types, reduced the number of calibration parameters. Calibration conducted independently for all catchments yielded similar parameter values for same surface types in each study catchment. These results suggest the applicability of the parameter values calibrated for high resolution models to be regionalized to larger, ungauged urban areas. The accessibility of surface specific model parameters for LID simulation is then also retained. Conducted perturbations in spatial resolution through sewer network truncation showed that while the runoff volume was mostly unaffected by resolution perturbations, lower resolutions resulted in over-simulation of peak flows due to excessively rapid catchment response to storm events. Our results suggest that a hydrological model where parameter values are adopted from high-resolution models and that is developed based on a minimum conduit diameter of 300 mm provides good simulation performance and is applicable to large-scale urban areas with reasonable effort.

  20. Developing a 30-m grassland productivity estimation map for central Nebraska using 250-m MODIS and 30-m Landsat-8 observations

    USGS Publications Warehouse

    Gu, Yingxin; Wylie, Bruce K.

    2015-01-01

    Accurately estimating aboveground vegetation biomass productivity is essential for local ecosystem assessment and best land management practice. Satellite-derived growing season time-integrated Normalized Difference Vegetation Index (GSN) has been used as a proxy for vegetation biomass productivity. A 250-m grassland biomass productivity map for the Greater Platte River Basin had been developed based on the relationship between Moderate Resolution Imaging Spectroradiometer (MODIS) GSN and Soil Survey Geographic (SSURGO) annual grassland productivity. However, the 250-m MODIS grassland biomass productivity map does not capture detailed ecological features (or patterns) and may result in only generalized estimation of the regional total productivity. Developing a high or moderate spatial resolution (e.g., 30-m) productivity map to better understand the regional detailed vegetation condition and ecosystem services is preferred. The 30-m Landsat data provide spatial detail for characterizing human-scale processes and have been successfully used for land cover and land change studies. The main goal of this study is to develop a 30-m grassland biomass productivity estimation map for central Nebraska, leveraging 250-m MODIS GSN and 30-m Landsat data. A rule-based piecewise regression GSN model based on MODIS and Landsat (r = 0.91) was developed, and a 30-m MODIS equivalent GSN map was generated. Finally, a 30-m grassland biomass productivity estimation map, which provides spatially detailed ecological features and conditions for central Nebraska, was produced. The resulting 30-m grassland productivity map was generally supported by the SSURGO biomass production map and will be useful for regional ecosystem study and local land management practices.

  1. Effects of Spatial Resolution on Image Registration

    PubMed Central

    Zhao, Can; Carass, Aaron; Jog, Amod; Prince, Jerry L.

    2016-01-01

    This paper presents a theoretical analysis of the effect of spatial resolution on image registration. Based on the assumption of additive Gaussian noise on the images, the mean and variance of the distribution of the sum of squared differences (SSD) were estimated. Using these estimates, we evaluate a distance between the SSD distributions of aligned images and non-aligned images. The experimental results show that by matching the resolutions of the moving and fixed images one can get a better image registration result. The results agree with our theoretical analysis of SSD, but also suggest that it may be valid for mutual information as well. PMID:27773960

  2. Effect of positron range on spatial resolution.

    PubMed

    Phelps, M E; Hoffman, E J; Huang, S C; Ter-Pogossian, M M

    1975-07-01

    The effect of beta+ range on spatial resolution of imaging systems employing the detection of 511-keV annihilation radiation was determined by measuring the variation in the line-spread functions (LSFs) of positron-emitting radionuclides of 64Cu, 11C, and 15O as compared with the 514-keV gamma-ray emitter 85Sr. These radionuclides have maximum beta+ energies of 0.656, 0.960, and 1.72 MeV, respectively. The LSFs were measured in a tissue-equivalent phantom with high-resolution (approximately 2.4 mm FWHM) and low-resolution (approximately 8.8 mm FWHM) straightbore collimators coupled to a NaI(Tl) detector. Theoretical LSFs for the beta+ ranges were also calculated and convolved with the 85Sr LSF to yield the predicted LSFs for 11C and 15O. The high-resolution study showed a 0% and 2.3% increase in the full-width half-maximum (FWHM) and full-width tenth-maximum (FWO.1M) for the low-energy beta+ of 64Cu and a 37% (FWHM) and 52% (FWO.1M) increase for the high energy beta+ of 15O as compared with 85Sr. However, when the system resolution was decreased to 8.8 mm FWHM, the 64Cu showed no change at FWHM or FWO.1M and the 15O showed a 2.3% (FWHM) and 7.8% (FWO.1M) relative to 85Sr. The predicted LSFs were in good agreement with the experimental. These data indicate that the effect of beta+ range on spatial resolution is minimal unless the beta+ energy is larger than or equal to 1.5 MeV and the system resolution is on the order of a few millimeters.

  3. Using multi-satellite data fusion to estimate daily high spatial resolution evapotranspiration over a forested site in North Carolina

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Atmosphere-Land Exchange Inverse model and associated disaggregation scheme (ALEXI/DisALEXI). Satellite-based ET retrievals from both the Moderate Resolution Imaging Spectoradiometer (MODIS; 1km, daily) and Landsat (30m, bi-weekly) are fused with The Spatial and Temporal Adaptive Reflective Fusion ...

  4. A Comparison of Spatial and Spectral Image Resolution for Mapping Invasive Plants in Coastal California

    NASA Astrophysics Data System (ADS)

    Underwood, Emma C.; Ustin, Susan L.; Ramirez, Carlos M.

    2007-01-01

    We explored the potential of detecting three target invasive species: iceplant ( Carpobrotus edulis), jubata grass ( Cortaderia jubata), and blue gum ( Eucalyptus globulus) at Vandenberg Air Force Base, California. We compared the accuracy of mapping six communities (intact coastal scrub, iceplant invaded coastal scrub, iceplant invaded chaparral, jubata grass invaded chaparral, blue gum invaded chaparral, and intact chaparral) using four images with different combinations of spatial and spectral resolution: hyperspectral AVIRIS imagery (174 wavebands, 4 m spatial resolution), spatially degraded AVIRIS (174 bands, 30 m), spectrally degraded AVIRIS (6 bands, 4 m), and both spatially and spectrally degraded AVIRIS (6 bands, 30 m, i.e., simulated Landsat ETM data). Overall success rates for classifying the six classes was 75% (kappa 0.7) using full resolution AVIRIS, 58% (kappa 0.5) for the spatially degraded AVIRIS, 42% (kappa 0.3) for the spectrally degraded AVIRIS, and 37% (kappa 0.3) for the spatially and spectrally degraded AVIRIS. A true Landsat ETM image was also classified to illustrate that the results from the simulated ETM data were representative, which provided an accuracy of 50% (kappa 0.4). Mapping accuracies using different resolution images are evaluated in the context of community heterogeneity (species richness, diversity, and percent species cover). Findings illustrate that higher mapping accuracies are achieved with images possessing high spectral resolution, thus capturing information across the visible and reflected infrared solar spectrum. Understanding the tradeoffs in spectral and spatial resolution can assist land managers in deciding the most appropriate imagery with respect to target invasives and community characteristics.

  5. A comparison of spatial and spectral image resolution for mapping invasive plants in coastal california.

    PubMed

    Underwood, Emma C; Ustin, Susan L; Ramirez, Carlos M

    2007-01-01

    We explored the potential of detecting three target invasive species: iceplant (Carpobrotus edulis), jubata grass (Cortaderia jubata), and blue gum (Eucalyptus globulus) at Vandenberg Air Force Base, California. We compared the accuracy of mapping six communities (intact coastal scrub, iceplant invaded coastal scrub, iceplant invaded chaparral, jubata grass invaded chaparral, blue gum invaded chaparral, and intact chaparral) using four images with different combinations of spatial and spectral resolution: hyperspectral AVIRIS imagery (174 wavebands, 4 m spatial resolution), spatially degraded AVIRIS (174 bands, 30 m), spectrally degraded AVIRIS (6 bands, 4 m), and both spatially and spectrally degraded AVIRIS (6 bands, 30 m, i.e., simulated Landsat ETM data). Overall success rates for classifying the six classes was 75% (kappa 0.7) using full resolution AVIRIS, 58% (kappa 0.5) for the spatially degraded AVIRIS, 42% (kappa 0.3) for the spectrally degraded AVIRIS, and 37% (kappa 0.3) for the spatially and spectrally degraded AVIRIS. A true Landsat ETM image was also classified to illustrate that the results from the simulated ETM data were representative, which provided an accuracy of 50% (kappa 0.4). Mapping accuracies using different resolution images are evaluated in the context of community heterogeneity (species richness, diversity, and percent species cover). Findings illustrate that higher mapping accuracies are achieved with images possessing high spectral resolution, thus capturing information across the visible and reflected infrared solar spectrum. Understanding the tradeoffs in spectral and spatial resolution can assist land managers in deciding the most appropriate imagery with respect to target invasives and community characteristics.

  6. Classification of High Spatial Resolution, Hyperspectral ...

    EPA Pesticide Factsheets

    EPA announced the availability of the final report,Spatial Resolution, Hyperspectral Remote Sensing Imagery of the Little Miami River Watershed in Southwest Ohio, USA . This report and associated land use/land cover (LULC) coverage is the result of a collaborative effort among an interdisciplinary team of scientists with the U.S. Environmental Protection Agency's (U.S. EPA's) Office of Research and Development in Cincinnati, Ohio. A primary goal of this project is to enhance the use of geography and spatial analytic tools in risk assessment, and to improve the scientific basis for risk management decisions affecting drinking water and water quality. The land use/land cover classification is derived from 82 flight lines of Compact Airborne Spectrographic Imager (CASI) hyperspectral imagery acquired from July 24 through August 9, 2002 via fixed-wing aircraft.

  7. High Spatial Resolution Commercial Satellite Imaging Product Characterization

    NASA Technical Reports Server (NTRS)

    Ryan, Robert E.; Pagnutti, Mary; Blonski, Slawomir; Ross, Kenton W.; Stnaley, Thomas

    2005-01-01

    NASA Stennis Space Center's Remote Sensing group has been characterizing privately owned high spatial resolution multispectral imaging systems, such as IKONOS, QuickBird, and OrbView-3. Natural and man made targets were used for spatial resolution, radiometric, and geopositional characterizations. Higher spatial resolution also presents significant adjacency effects for accurate reliable radiometry.

  8. Spatial resolution in plantar pressure measurement revisited.

    PubMed

    Pataky, Todd C

    2012-08-09

    Plantar pressures are typically measured using sensors of finite area, so the accuracy with which one can measure true maximum pressure is dependent on sensor size. Measurement accuracy has been modeled previously for one patient's metatarsals (Lord, 1997), but has not been modeled either for general subjects or for other parts of the foot. The purposes of this study were (i) to determine whether Lord's (1997) model is also valid for heel and hallux pressures, and (ii) to examine how sensor size relates to measurement accuracy in the context of four factors common to many measurement settings: pressure pulse size, foot positioning, pressure change quantification, and gross pressure redistribution. Lord's (1997) model was first generalized and was then validated using 10 healthy walking subjects, with relatively low RMSE values on the order of 20 kPa. Next, postural data were used to show that gross pressure redistributions can be accurately quantified (p<0.002), even with rather gross sensor sizes of 30 mm. Finally, numerical analyses revealed that the relation between sensor size and measurement accuracy is highly complex, with deep dependency on the measurement context. In particular, the critical sensor widths required to achieve 90% accuracy ranged from 1.7 mm to 17.4 mm amongst the presently investigated scenarios. Since measurement accuracy varies so extensively with so many factors, the current results cannot yield specific recommendations regarding spatial resolution. It is concluded simply that no particular spatial resolution can yield a constant measurement accuracy across common plantar pressure measurement tasks.

  9. Positron Emission Tomography with improved spatial resolution

    SciTech Connect

    Drukier, A.K.

    1990-04-01

    Applied Research Corporation (ARC) proposed the development of a new class of solid state detectors called Superconducting Granular Detectors (SGD). These new detectors permit considerable improvements in medical imaging, e.g. Positron Emission Tomography (PET). The biggest impact of this technique will be in imaging of the brain. It should permit better clinical diagnosis of such important diseases as Altzheimer's or schizophrenia. More specifically, we will develop an improved PET-imager; a spatial resolution 2 mm may be achievable with SGD. A time-of-flight capability(t {approx} 100 psec) will permit better contrast and facilitate 3D imaging. In the following, we describe the results of the first 9 months of the development.

  10. High Spatial Resolution Spectroscopy of Semiconductor Nanostructures

    NASA Astrophysics Data System (ADS)

    Harris, Timothy D.; Gershoni, David; Pfeiffer, Loren N.

    1996-03-01

    Several recent reports employing high spatial resolution have revealed the dominance of exciton localization in the low temperature luminescence of semiconductor quantum structures.^[1-3] Understanding this localization is of critical importance for the reliable studies of low dimensional structures such as quantum wells, quantum wires and quantum dots. We report on low temperature and high spatial resolution photoluminescence and photoluminescence excitation studies of cleaved edge overgrown (CEO) single quantum wires. These samples permit the direct and unambiguous comparison between the optical properties of a (100) oriented quantum well, a (110) oriented quantum well, and the quantum wire which is formed at their intersection. Using low temperature near field optical spectroscopy, and a novel diffraction limited far field apparatus, we determine the carrier diffusion length dependence on pump wavelength and sample temperature in both the 2d systems and the genuinely 1D wire system. We also measure the absorption strength of the 1D system and find it to be a factor of 3 stronger than the absorption of the associated 2D systems.^[2] Using low temperature near field optical spectroscopy, and a novel diffraction limited far field apparatus, we also determine the carrier diffusion length dependence on pump wavelength and sample temperature. ^[1] H. F. Hess, E. Betzig, T. D. Harris, L. N. Pfeiffer, and K. W. West, Science 264, 1740 (1994). ^[2] T. D. Harris, D. Gershoni, R. D. Grober, L. Pfeiffer, K. West, and N. Chand, Appl. Phys. Lett, in press (1996) ^[3] D. Gammon, E. S. Snow, and D. S. Katzer, Appl. Phys. Lett. 67, 2391 (1995)

  11. Effects of spatial resolution ratio in image fusion

    USGS Publications Warehouse

    Ling, Y.; Ehlers, M.; Usery, E.L.; Madden, M.

    2008-01-01

    In image fusion, the spatial resolution ratio can be defined as the ratio between the spatial resolution of the high-resolution panchromatic image and that of the low-resolution multispectral image. This paper attempts to assess the effects of the spatial resolution ratio of the input images on the quality of the fused image. Experimental results indicate that a spatial resolution ratio of 1:10 or higher is desired for optimal multisensor image fusion provided the input panchromatic image is not downsampled to a coarser resolution. Due to the synthetic pixels generated from resampling, the quality of the fused image decreases as the spatial resolution ratio decreases (e.g. from 1:10 to 1:30). However, even with a spatial resolution ratio as small as 1:30, the quality of the fused image is still better than the original multispectral image alone for feature interpretation. In cases where the spatial resolution ratio is too small (e.g. 1:30), to obtain better spectral integrity of the fused image, one may downsample the input high-resolution panchromatic image to a slightly lower resolution before fusing it with the multispectral image.

  12. Global 30m Height Above the Nearest Drainage

    NASA Astrophysics Data System (ADS)

    Donchyts, Gennadii; Winsemius, Hessel; Schellekens, Jaap; Erickson, Tyler; Gao, Hongkai; Savenije, Hubert; van de Giesen, Nick

    2016-04-01

    Variability of the Earth surface is the primary characteristics affecting the flow of surface and subsurface water. Digital elevation models, usually represented as height maps above some well-defined vertical datum, are used a lot to compute hydrologic parameters such as local flow directions, drainage area, drainage network pattern, and many others. Usually, it requires a significant effort to derive these parameters at a global scale. One hydrological characteristic introduced in the last decade is Height Above the Nearest Drainage (HAND): a digital elevation model normalized using nearest drainage. This parameter has been shown to be useful for many hydrological and more general purpose applications, such as landscape hazard mapping, landform classification, remote sensing and rainfall-runoff modeling. One of the essential characteristics of HAND is its ability to capture heterogeneities in local environments, difficult to measure or model otherwise. While many applications of HAND were published in the academic literature, no studies analyze its variability on a global scale, especially, using higher resolution DEMs, such as the new, one arc-second (approximately 30m) resolution version of SRTM. In this work, we will present the first global version of HAND computed using a mosaic of two DEMS: 30m SRTM and Viewfinderpanorama DEM (90m). The lower resolution DEM was used to cover latitudes above 60 degrees north and below 56 degrees south where SRTM is not available. We compute HAND using the unmodified version of the input DEMs to ensure consistency with the original elevation model. We have parallelized processing by generating a homogenized, equal-area version of HydroBASINS catchments. The resulting catchment boundaries were used to perform processing using 30m resolution DEM. To compute HAND, a new version of D8 local drainage directions as well as flow accumulation were calculated. The latter was used to estimate river head by incorporating fixed and

  13. High spatial resolution probes for neurobiology applications

    NASA Astrophysics Data System (ADS)

    Gunning, D. E.; Kenney, C. J.; Litke, A. M.; Mathieson, K.

    2009-06-01

    Position-sensitive biological neural networks, such as the brain and the retina, require position-sensitive detection methods to identify, map and study their behavior. Traditionally, planar microelectrodes have been employed to record the cell's electrical activity with device limitations arising from the electrode's 2-D nature. Described here is the development and characterization of an array of electrically conductive micro-needles aimed at addressing the limitations of planar electrodes. The capability of this array to penetrate neural tissue improves the electrode-cell electrical interface and allows more complicated 3-D networks of neurons, such as those found in brain slices, to be studied. State-of-the-art semiconductor fabrication techniques were used to etch and passivate conformally the metal coat and fill high aspect ratio holes in silicon. These are subsequently transformed into needles with conductive tips. This process has enabled the fabrication of arrays of unprecedented dimensions: 61 hexagonally close-packed electrodes, ˜200 μm tall with 60 μm spacing. Electroplating the tungsten tips with platinum ensure suitable impedance values (˜600 kΩ at 1 kHz) for the recording of neuronal signals. Without compromising spatial resolution of the neuronal recordings, this array adds a new and exciting dimension to the study of biological neural networks.

  14. Automated Verification of Spatial Resolution in Remotely Sensed Imagery

    NASA Technical Reports Server (NTRS)

    Davis, Bruce; Ryan, Robert; Holekamp, Kara; Vaughn, Ronald

    2011-01-01

    Image spatial resolution characteristics can vary widely among sources. In the case of aerial-based imaging systems, the image spatial resolution characteristics can even vary between acquisitions. In these systems, aircraft altitude, speed, and sensor look angle all affect image spatial resolution. Image spatial resolution needs to be verified with estimators that include the ground sample distance (GSD), the modulation transfer function (MTF), and the relative edge response (RER), all of which are key components of image quality, along with signal-to-noise ratio (SNR) and dynamic range. Knowledge of spatial resolution parameters is important to determine if features of interest are distinguishable in imagery or associated products, and to develop image restoration algorithms. An automated Spatial Resolution Verification Tool (SRVT) was developed to rapidly determine the spatial resolution characteristics of remotely sensed aerial and satellite imagery. Most current methods for assessing spatial resolution characteristics of imagery rely on pre-deployed engineered targets and are performed only at selected times within preselected scenes. The SRVT addresses these insufficiencies by finding uniform, high-contrast edges from urban scenes and then using these edges to determine standard estimators of spatial resolution, such as the MTF and the RER. The SRVT was developed using the MATLAB programming language and environment. This automated software algorithm assesses every image in an acquired data set, using edges found within each image, and in many cases eliminating the need for dedicated edge targets. The SRVT automatically identifies high-contrast, uniform edges and calculates the MTF and RER of each image, and when possible, within sections of an image, so that the variation of spatial resolution characteristics across the image can be analyzed. The automated algorithm is capable of quickly verifying the spatial resolution quality of all images within a data

  15. Study of the spatial resolution for binary readout detectors

    NASA Astrophysics Data System (ADS)

    Yonamine, R.; Maerschalk, T.; Lentdecker, G. De

    2016-07-01

    Often the binary readout is proposed for high granularity detectors to reduce the generated data volume to be readout at the price of a somewhat reduced spatial resolution compared to an analogue readout. We have been studying single hit resolutions obtained with a binary readout using simulations as well as analytical approaches. In this note we show that the detector geometry could be optimized to offer an equivalent spatial resolution than with an analogue readout.

  16. Using high spatial resolution satellite imagery to map forest burn severity across spatial scales in a Pine Barrens ecosystem

    DOE PAGES

    Meng, Ran; Wu, Jin; Schwager, Kathy L.; ...

    2017-01-21

    As a primary disturbance agent, fire significantly influences local processes and services of forest ecosystems. Although a variety of remote sensing based approaches have been developed and applied to Landsat mission imagery to infer burn severity at 30 m spatial resolution, forest burn severity have still been seldom assessed at fine spatial scales (≤ 5 m) from very-high-resolution (VHR) data. Here we assessed a 432 ha forest fire that occurred in April 2012 on Long Island, New York, within the Pine Barrens region, a unique but imperiled fire-dependent ecosystem in the northeastern United States. The mapping of forest burn severitymore » was explored here at fine spatial scales, for the first time using remotely sensed spectral indices and a set of Multiple Endmember Spectral Mixture Analysis (MESMA) fraction images from bi-temporal — pre- and post-fire event — WorldView-2 (WV-2) imagery at 2 m spatial resolution. We first evaluated our approach using 1 m by 1 m validation points at the sub-crown scale per severity class (i.e. unburned, low, moderate, and high severity) from the post-fire 0.10 m color aerial ortho-photos; then, we validated the burn severity mapping of geo-referenced dominant tree crowns (crown scale) and 15 m by 15 m fixed-area plots (inter-crown scale) with the post-fire 0.10 m aerial ortho-photos and measured crown information of twenty forest inventory plots. Our approach can accurately assess forest burn severity at the sub-crown (overall accuracy is 84% with a Kappa value of 0.77), crown (overall accuracy is 82% with a Kappa value of 0.76), and inter-crown scales (89% of the variation in estimated burn severity ratings (i.e. Geo-Composite Burn Index (CBI)). Lastly, this work highlights that forest burn severity mapping from VHR data can capture heterogeneous fire patterns at fine spatial scales over the large spatial extents. This is important since most ecological processes associated with fire effects vary at the < 30 m scale and

  17. Scanning SQUID susceptometers with sub-micron spatial resolution

    NASA Astrophysics Data System (ADS)

    Kirtley, John R.; Paulius, Lisa; Rosenberg, Aaron J.; Palmstrom, Johanna C.; Holland, Connor M.; Spanton, Eric M.; Schiessl, Daniel; Jermain, Colin L.; Gibbons, Jonathan; Fung, Y.-K.-K.; Huber, Martin E.; Ralph, Daniel C.; Ketchen, Mark B.; Gibson, Gerald W.; Moler, Kathryn A.

    2016-09-01

    Superconducting QUantum Interference Device (SQUID) microscopy has excellent magnetic field sensitivity, but suffers from modest spatial resolution when compared with other scanning probes. This spatial resolution is determined by both the size of the field sensitive area and the spacing between this area and the sample surface. In this paper we describe scanning SQUID susceptometers that achieve sub-micron spatial resolution while retaining a white noise floor flux sensitivity of ≈2μΦ0/Hz1/2. This high spatial resolution is accomplished by deep sub-micron feature sizes, well shielded pickup loops fabricated using a planarized process, and a deep etch step that minimizes the spacing between the sample surface and the SQUID pickup loop. We describe the design, modeling, fabrication, and testing of these sensors. Although sub-micron spatial resolution has been achieved previously in scanning SQUID sensors, our sensors not only achieve high spatial resolution but also have integrated modulation coils for flux feedback, integrated field coils for susceptibility measurements, and batch processing. They are therefore a generally applicable tool for imaging sample magnetization, currents, and susceptibilities with higher spatial resolution than previous susceptometers.

  18. ROLE OF SPATIAL RESOLUTION AND SPECTRAL CONTENT IN CHANGE DETECTION.

    USGS Publications Warehouse

    Milazzo, Valerie A.

    1984-01-01

    Summary form only given, as follows. Advancements in remote sensing technology have brought improvements and sophistication to modern remote sensor systems, especially those aboard earth resources satellites. These improvements have considerbly expanded the capabilities of the newer sensor systems, particularly the capability to achieve greatly increased spatial and spectral resolution levels. The debate still lingers, however, over whether future systems should maximize spatial resolution or spectral information, or both. As yet, the high costs and large volumes of data associated with even modest incremental improvements in spatial and spectral content have precluded the design of a single system that attempts to fully optimize both. Thus, the user is faced with having to choose between those systems providing high spatial resolutions but limited spectral information and those which offer a broad range of spectral data but hold spatial resolution to a less than optimum level. In this study, the contribution of both spatial resolution and spectral content to land cover change detection is examined. Ten-meter SPOT simulation imagery is compared with multispectral images acquired by the Thematic Mapper sensor system for use in the visual interpretation and mapping of changes. Several image processing and enhancement techniques are utilized to maximize the spatial and spectral data content offered by each system. Results indicate that when using visual image interpretation techniques to detect change, higher spatial resolutions are generally preferred over increased spectral content.

  19. Solar system events at high spatial resolution

    SciTech Connect

    Baines, K H; Gavel, D T; Getz, A M; Gibbartd, S G; MacIntosh, B; Max, C E; McKay, C P; Young, E F; de Pater, I

    1999-02-19

    Until relatively recent advances in technology, astronomical observations from the ground were limited in image resolution by the blurring effects of earth's atmosphere. The blur extent, ranging typically from 0.5 to 2 seconds of arc at the best astronomical sights, precluded ground-based observations of the details of the solar system's moons, asteroids, and outermost planets. With the maturing of a high resolution image processing technique called speckle imaging the resolution limitation of the atmosphere can now be largely overcome. Over the past three years they have used speckle imaging to observe Titan, a moon of Saturn with an atmospheric density comparable to Earth's, Io, the volcanically active innermost moon of Jupiter, and Neptune, a gas giant outer planet which has continually changing planet-encircling storms. These observations were made at the world's largest telescope, the Keck telescope in Hawaii and represent the highest resolution infrared images of these objects ever taken.

  20. Estimating Carbon Storage and Sequestration by Urban Trees at Multiple Spatial Resolutions

    NASA Astrophysics Data System (ADS)

    Wu, J.; Tran, A.; Liao, A.

    2010-12-01

    Urban forests are an important component of urban-suburban environments. Urban trees provide not only a full range of social and psychological benefits to city dwellers, but also valuable ecosystem services to communities, such as removing atmospheric carbon dioxide, improving air quality, and reducing storm water runoff. There is an urgent need for developing strategic conservation plans for environmentally sustainable urban-suburban development based on the scientific understanding of the extent and function of urban forests. However, several challenges remain to accurately quantify various environmental benefits provided by urban trees, among which is to deal with the effect of changing spatial resolution and/or scale. In this study, we intended to examine the uncertainties of carbon storage and sequestration associated with the tree canopy coverage of different spatial resolutions. Multi-source satellite imagery data were acquired for the City of Fullerton, located in Orange County of California. The tree canopy coverage of the study area was classified at three spatial resolutions, ranging from 30 m (Landsat-5 Thematic Mapper), 15 m (Advanced Spaceborne Thermal Emission and Reflection Radiometer), to 2.5 m (QuickBird). We calculated the amount of carbon stored in the trees represented on the individual tree coverage maps and the annual carbon taken up by the trees with a model (i.e., CITYgreen) developed by the U.S. Forest Service. The results indicate that urban trees account for significant proportions of land cover in the study area even with the low spatial resolution data. The estimated carbon fixation benefits vary greatly depending on the details of land use and land cover classification. The extrapolation of estimation from the fine-resolution stand-level to the low-resolution landscape-scale will likely not preserve reasonable accuracy.

  1. Analysis of DOA estimation spatial resolution using MUSIC algorithm

    NASA Astrophysics Data System (ADS)

    Guo, Yue; Wang, Hongyuan; Luo, Bin

    2005-11-01

    This paper presents a performance analysis of the spatial resolution of the direction of arrival (DOA) estimates attained by the multiple signal classification (MUSIC) algorithm for uncorrelated sources. The confidence interval of estimation angle which is much more intuitionistic will be considered as the new evaluation standard for the spatial resolution. Then, based on the statistic method, the qualitative analysis reveals the factors influencing the performance of the MUSIC algorithm. At last, quantitative simulations prove the theoretical analysis result exactly.

  2. High spatial resolution passive microwave sounding systems

    NASA Technical Reports Server (NTRS)

    Staelin, D. H.; Rosenkranz, P. W.; Bonanni, P. G.; Gasiewski, A. W.

    1986-01-01

    Two extensive series of flights aboard the ER-2 aircraft were conducted with the MIT 118 GHz imaging spectrometer together with a 53.6 GHz nadir channel and a TV camera record of the mission. Other microwave sensors, including a 183 GHz imaging spectrometer were flown simultaneously by other research groups. Work also continued on evaluating the impact of high-resolution passive microwave soundings upon numerical weather prediction models.

  3. Improving Nano-MRI Spatial Resolution with Phase Multiplexing

    NASA Astrophysics Data System (ADS)

    Moores, Brad; Eichler, Alex; Degen, Christian

    2015-03-01

    Magnetic resonance force microscopy (MRFM) is a scanning probe technique that allows measuring nuclear spin densities with resolution better than 10nm. Detecting such small volumes of spins (less than (10nm)3 corresponds to approximately 20,000 spins) requires long averaging of signals from statistically polarized nuclei. For instance, previous work demonstrated that imaging a single isotope (1H) of a Tobacco Mosaic Virus required averaging for 2 weeks, and therefore the chemical contrast abilities of MRFM had to be forfeited to enable higher spatial resolution. In order to reconcile the chemical selectivity of MRFM along with the proven high spatial resolution, we have developed a phase multiplexing technique capable of simultaneously acquiring spin signals from multiple isotopes and from up to six spatial locations. We have demonstrated this method using a nanowire test sample, and have achieved one-dimensional imaging resolution of less than 5 nm and subnanometer positional accuracy.

  4. A Very High Spatial Resolution Detector for Small Animal PET

    SciTech Connect

    Kanai Shah, M.S.

    2007-03-06

    Positron Emission Tomography (PET) is an in vivo analog of autoradiography and has the potential to become a powerful new tool in imaging biological processes in small laboratory animals. PET imaging of small animals can provide unique information that can help in advancement of human disease models as well as drug development. Clinical PET scanners used for human imaging are bulky, expensive and do not have adequate spatial resolution for small animal studies. Hence, dedicated, low cost instruments are required for conducting small animal studies with higher spatial resolution than what is currently achieved with clinical as well as dedicated small animal PET scanners. The goal of the proposed project is to investigate a new all solid-state detector design for small animal PET imaging. Exceptionally high spatial resolution, good timing resolution, and excellent energy resolution are expected from the proposed detector design. The Phase I project was aimed at demonstrating the feasibility of producing high performance solid-state detectors that provide high sensitivity, spatial resolution, and timing characteristics. Energy resolution characteristics of the new detector were also investigated. The goal of the Phase II project is to advance the promising solid-state detector technology for small animal PET and determine its full potential. Detectors modules will be built and characterized and finally, a bench-top small animal PET system will be assembled and evaluated.

  5. Full Spatial Resolution Infrared Sounding Application in the Preconvection Environment

    NASA Astrophysics Data System (ADS)

    Liu, C.; Liu, G.; Lin, T.

    2013-12-01

    Advanced infrared (IR) sounders such as the Atmospheric Infrared Sounder (AIRS) and Infrared Atmospheric Sounding Interferometer (IASI) provide atmospheric temperature and moisture profiles with high vertical resolution and high accuracy in preconvection environments. The derived atmospheric stability indices such as convective available potential energy (CAPE) and lifted index (LI) from advanced IR soundings can provide critical information 1 ; 6 h before the development of severe convective storms. Three convective storms are selected for the evaluation of applying AIRS full spatial resolution soundings and the derived products on providing warning information in the preconvection environments. In the first case, the AIRS full spatial resolution soundings revealed local extremely high atmospheric instability 3 h ahead of the convection on the leading edge of a frontal system, while the second case demonstrates that the extremely high atmospheric instability is associated with the local development of severe thunderstorm in the following hours. The third case is a local severe storm that occurred on 7-8 August 2010 in Zhou Qu, China, which caused more than 1400 deaths and left another 300 or more people missing. The AIRS full spatial resolution LI product shows the atmospheric instability 3.5 h before the storm genesis. The CAPE and LI from AIRS full spatial resolution and operational AIRS/AMSU soundings along with Geostationary Operational Environmental Satellite (GOES) Sounder derived product image (DPI) products were analyzed and compared. Case studies show that full spatial resolution AIRS retrievals provide more useful warning information in the preconvection environments for determining favorable locations for convective initiation (CI) than do the coarser spatial resolution operational soundings and lower spectral resolution GOES Sounder retrievals. The retrieved soundings are also tested in a regional data assimilation WRF 3D-var system to evaluate the

  6. Improved spatial resolution in PET scanners using sampling techniques

    PubMed Central

    Surti, Suleman; Scheuermann, Ryan; Werner, Matthew E.; Karp, Joel S.

    2009-01-01

    Increased focus towards improved detector spatial resolution in PET has led to the use of smaller crystals in some form of light sharing detector design. In this work we evaluate two sampling techniques that can be applied during calibrations for pixelated detector designs in order to improve the reconstructed spatial resolution. The inter-crystal positioning technique utilizes sub-sampling in the crystal flood map to better sample the Compton scatter events in the detector. The Compton scatter rejection technique, on the other hand, rejects those events that are located further from individual crystal centers in the flood map. We performed Monte Carlo simulations followed by measurements on two whole-body scanners for point source data. The simulations and measurements were performed for scanners using scintillators with Zeff ranging from 46.9 to 63 for LaBr3 and LYSO, respectively. Our results show that near the center of the scanner, inter-crystal positioning technique leads to a gain of about 0.5-mm in reconstructed spatial resolution (FWHM) for both scanner designs. In a small animal LYSO scanner the resolution improves from 1.9-mm to 1.6-mm with the inter-crystal technique. The Compton scatter rejection technique shows higher gains in spatial resolution but at the cost of reduction in scanner sensitivity. The inter-crystal positioning technique represents a modest acquisition software modification for an improvement in spatial resolution, but at a cost of potentially longer data correction and reconstruction times. The Compton scatter rejection technique, while also requiring a modest acquisition software change with no increased data correction and reconstruction times, will be useful in applications where the scanner sensitivity is very high and larger improvements in spatial resolution are desirable. PMID:19779586

  7. Spatiotemporal downscaling approaches for monitoring 8-day 30 m actual evapotranspiration

    NASA Astrophysics Data System (ADS)

    Ke, Yinghai; Im, Jungho; Park, Seonyoung; Gong, Huili

    2017-04-01

    Continuous monitoring of actual evapotranspiration (ET) is critical for water resources management at both regional and local scales. Although the MODIS ET product (MOD16A2) provides viable sources for ET monitoring at 8-day intervals, the spatial resolution (1 km) is too coarse for local scale applications. In this study, we propose a machine learning and spatial temporal fusion (STF)-integrated approach in order to generate 8-day 30 m ET based on both MOD16A2 and Landsat 8 data with three schemes. Random forest machine learning was used to downscale MODIS 1 km ET to 30 m resolution based on nine Landsat-derived indicators including vegetation indices (VIs) and land surface temperature (LST). STF-based models including Spatial and Temporal Adaptive Reflectance Fusion Model and Spatio-Temporal Image Fusion Model were used to derive synthetic Landsat surface reflectance (scheme 1)/VIs (scheme 2)/ET (scheme 3) on Landsat-unavailable dates. The approach was tested over two study sites in the United States. The results showed that fusion of Landsat VIs produced the best accuracy of predicted ET (R2 = 0.52-0.97, RMSE = 0.47-3.0 mm/8 days and rRMSE = 6.4-37%). High density of cloud-clear Landsat image acquisitions and low spatial heterogeneity of Landsat VIs benefit the ET prediction. The downscaled 30 m ET had good agreement with MODIS ET (RMSE = 0.42-3.4 mm/8 days, rRMSE = 3.2-26%). Comparison with the in situ ET measurements showed that the downscaled ET had higher accuracy than MODIS ET.

  8. Effect of spatial resolution on remote sensing estimation of total evaporation in the uMngeni catchment, South Africa

    NASA Astrophysics Data System (ADS)

    Shoko, Cletah; Clark, David; Mengistu, Michael; Dube, Timothy; Bulcock, Hartley

    2015-01-01

    This study evaluated the effect of two readily available multispectral sensors: the newly launched 30 m spatial resolution Landsat 8 and the long-serving 1000 m moderate resolution imaging spectroradiometer (MODIS) datasets in the spatial representation of total evaporation in the heterogeneous uMngeni catchment, South Africa, using the surface energy balance system model. The results showed that sensor spatial resolution plays a critical role in the accurate estimation of energy fluxes and total evaporation across a heterogeneous catchment. Landsat 8 estimates showed better spatial representation of the biophysical parameters and total evaporation for different land cover types, due to the relatively higher spatial resolution compared to the coarse spatial resolution MODIS sensor. Moreover, MODIS failed to capture the spatial variations of total evaporation estimates across the catchment. Analysis of variance (ANOVA) results showed that MODIS-based total evaporation estimates did not show any significant differences across different land cover types (one-way ANOVA; F1.924=1.412, p=0.186). However, Landsat 8 images yielded significantly different estimates between different land cover types (one-way ANOVA; F1.993=5.185, p<0.001). The validation results showed that Landsat 8 estimates were more comparable to eddy covariance (EC) measurements than the MODIS-based total evaporation estimates. EC measurement on May 23, 2013, was 3.8 mm/day, whereas the Landsat 8 estimate on the same day was 3.6 mm/day, with MODIS showing significantly lower estimates of 2.3 mm/day. The findings of this study underscore the importance of spatial resolution in estimating spatial variations of total evaporation at the catchment scale, thus, they provide critical information on the relevance of the readily available remote sensing products in water resources management in data-scarce environments.

  9. High spatial resolution measurements of ram accelerator gas dynamic phenomena

    NASA Technical Reports Server (NTRS)

    Hinkey, J. B.; Burnham, E. A.; Bruckner, A. P.

    1992-01-01

    High spatial resolution experimental tube wall pressure measurements of ram accelerator gas dynamic phenomena are presented. The projectile resembles the centerbody of a ramjet and travels supersonically through a tube filled with a combustible gaseous mixture, with the tube acting as the outer cowling. Pressure data are recorded as the projectile passes by sensors mounted in the tube wall at various locations along the tube. Data obtained by using a special highly instrumented section of tube has allowed the recording of gas dynamic phenomena with a spatial resolution on the order of one tenth the projectile length. High spatial resolution tube wall pressure data from the three regimes of propulsion studied to date (subdetonative, transdetonative, and superdetonative) are presented and reveal the 3D character of the flowfield induced by projectile fins and the canting of the projectile body relative to the tube wall. Also presented for comparison to the experimental data are calculations made with an inviscid, 3D CFD code.

  10. Duality between noise and spatial resolution in linear systems.

    PubMed

    Gureyev, Timur E; Nesterets, Yakov I; de Hoog, Frank; Schmalz, Gerd; Mayo, Sheridan C; Mohammadi, Sara; Tromba, Giuliana

    2014-04-21

    It is shown that in a broad class of linear systems, including general linear shift-invariant systems, the spatial resolution and the noise satisfy a duality relationship, resembling the uncertainty principle in quantum mechanics. The product of the spatial resolution and the standard deviation of output noise in such systems represents a type of phase-space volume that is invariant with respect to linear scaling of the point-spread function, and it cannot be made smaller than a certain positive absolute lower limit. A corresponding intrinsic "quality" characteristic is introduced and then evaluated for the cases of some popular imaging systems, including computed tomography, generic image convolution and phase-contrast imaging. It is shown that in the latter case the spatial resolution and the noise can sometimes be decoupled, potentially leading to a substantial increase in the imaging quality.

  11. Temporal and spatial resolution of HF ocean radars

    NASA Astrophysics Data System (ADS)

    Heron, Malcom L.; Atwater, Daniel P.

    2013-03-01

    The spatial and temporal resolutions of the two main types of HF radar are compared, with reference to the phasedarray and the crossed-loop direction-finding systems which make up the Australian Coastal Ocean radar Network. Both genres use a swept frequency "chirp" modulation to define the range of a pixel being observed but the method for determining the azimuth direction of the pixel is a strong point of differentiation. The phased-array systems produce independent maps of surface currents in about 1/7 of the time for the crossed-loop systems because of contrasting noise performance of the antennas. The use of beam-forming analysis in the phased-arrays is shown to give spatial resolutions, for vector currents, of about 10 km close to the shore, and 25 km at ranges of 150 km. The corresponding vector current spatial resolutions for the crossed-loop systems are 40 km and 60 km respectively.

  12. Modeling Spatial Dependencies in High-Resolution Overhead Imagery

    SciTech Connect

    Cheriyadat, Anil M; Bright, Eddie A; Vatsavai, Raju

    2011-01-01

    Human settlement regions with different physical and socio-economic attributes exhibit unique spatial characteristics that are often illustrated in high-resolution overhead imageries. For example- size, shape and spatial arrangements of man-made structures are key attributes that vary with respect to the socioeconomic profile of the neighborhood. Successfully modeling these attributes is crucial in developing advanced image understanding systems for interpreting complex aerial scenes. In this paper we present three different approaches to model the spatial context in the overhead imagery. First, we show that the frequency domain of the image can be used to model the spatial context [1]. The shape of the spectral energy contours characterize the scene context and can be exploited as global features. Secondly, we explore a discriminative framework based on the Conditional Random Fields (CRF) [2] to model the spatial context in the overhead imagery. The features derived from the edge orientation distribution calculated for a neighborhood and the associated class labels are used as input features to model the spatial context. Our third approach is based on grouping spatially connected pixels based on the low-level edge primitives to form support-regions [3]. The statistical parameters generated from the support-region feature distributions characterize different geospatial neighborhoods. We apply our approaches on high-resolution overhead imageries. We show that proposed approaches characterize the spatial context in overhead imageries.

  13. Solar Flares at High Spatial and Temporal Resolution

    DTIC Science & Technology

    2012-11-01

    AFRL-AFOSR-UK-TR-2012-0055 Solar Flares at High Spatial and Temporal Resolution Professor Mihalis Mathioudakis Queen’s...2012 2. REPORT TYPE Final Report 3. DATES COVERED (From – To) 20 July 2009 – 19 July 2012 4. TITLE AND SUBTITLE Solar Flares at High Spatial and...Distribution A: Approved for public release; distribution is unlimited. 13. SUPPLEMENTARY NOTES 14. ABSTRACT Solar flares vary in

  14. Spatially adaptive regularized iterative high-resolution image reconstruction algorithm

    NASA Astrophysics Data System (ADS)

    Lim, Won Bae; Park, Min K.; Kang, Moon Gi

    2000-12-01

    High resolution images are often required in applications such as remote sensing, frame freeze in video, military and medical imaging. Digital image sensor arrays, which are used for image acquisition in many imaging systems, are not dense enough to prevent aliasing, so the acquired images will be degraded by aliasing effects. To prevent aliasing without loss of resolution, a dense detector array is required. But it may be very costly or unavailable, thus, many imaging systems are designed to allow some level of aliasing during image acquisition. The purpose of our work is to reconstruct an unaliased high resolution image from the acquired aliased image sequence. In this paper, we propose a spatially adaptive regularized iterative high resolution image reconstruction algorithm for blurred, noisy and down-sampled image sequences. The proposed approach is based on a Constrained Least Squares (CLS) high resolution reconstruction algorithm, with spatially adaptive regularization operators and parameters. These regularization terms are shown to improve the reconstructed image quality by forcing smoothness, while preserving edges in the reconstructed high resolution image. Accurate sub-pixel motion registration is the key of the success of the high resolution image reconstruction algorithm. However, sub-pixel motion registration may have some level of registration error. Therefore, a reconstruction algorithm which is robust against the registration error is required. The registration algorithm uses a gradient based sub-pixel motion estimator which provides shift information for each of the recorded frames. The proposed algorithm is based on a technique of high resolution image reconstruction, and it solves spatially adaptive regularized constrained least square minimization functionals. In this paper, we show that the reconstruction algorithm gives dramatic improvements in the resolution of the reconstructed image and is effective in handling the aliased information. The

  15. Spatial resolution requirements for automated cartographic road extraction

    USGS Publications Warehouse

    Benjamin, S.; Gaydos, L.

    1990-01-01

    Ground resolution requirements for detection and extraction of road locations in a digitized large-scale photographic database were investigated. A color infrared photograph of Sunnyvale, California was scanned, registered to a map grid, and spatially degraded to 1- to 5-metre resolution pixels. Road locations in each data set were extracted using a combination of image processing and CAD programs. These locations were compared to a photointerpretation of road locations to determine a preferred pixel size for the extraction method. Based on road pixel omission error computations, a 3-metre pixel resolution appears to be the best choice for this extraction method. -Authors

  16. Quantifying mangrove chlorophyll from high spatial resolution imagery

    NASA Astrophysics Data System (ADS)

    Heenkenda, Muditha K.; Joyce, Karen E.; Maier, Stefan W.; de Bruin, Sytze

    2015-10-01

    Lower than expected chlorophyll concentration of a plant can directly limit photosynthetic activity, and resultant primary production. Low chlorophyll concentration may also indicate plant physiological stress. Compared to other terrestrial vegetation, mangrove chlorophyll variations are poorly understood. This study quantifies the spatial distribution of mangrove canopy chlorophyll variation using remotely sensed data and field samples over the Rapid Creek mangrove forest in Darwin, Australia. Mangrove leaf samples were collected and analyzed for chlorophyll content in the laboratory. Once the leaf area index (LAI) of sampled trees was estimated using the digital cover photography method, the canopy chlorophyll contents were calculated. Then, the nonlinear random forests regression algorithm was used to describe the relationship between canopy chlorophyll content and remotely sensed data (WorldView-2 satellite image bands and their spectral transformations), and to estimate the spatial distribution of canopy chlorophyll variation. The imagery was evaluated at full 2 m spatial resolution, as well as at decreased resampled resolutions of 5 m and 10 m. The root mean squared errors with validation samples were 0.82, 0.64 and 0.65 g/m2 for maps at 2 m, 5 m and 10 m spatial resolution respectively. The correlation coefficient was analyzed for the relationship between measured and predicted chlorophyll values. The highest correlation: 0.71 was observed at 5 m spatial resolution (R2 = 0.5). We therefore concluded that estimating mangrove chlorophyll content from remotely sensed data is possible using red, red-edge, NIR1 and NIR2 bands and their spectral transformations as predictors at 5 m spatial resolution.

  17. Research Relative to High Spatial Resolution Passive Microwave Sounding Systems

    NASA Technical Reports Server (NTRS)

    Staelin, D. H.; Rosenkranz, P. W.

    1984-01-01

    Methods to obtain high resolution passive microwave weather observations, and understanding of their probable impact on numerical weather prediction accuracy were investigated. The development of synthetic aperture concepts for geosynchronous passive microwave sounders were studied. The effects of clouds, precipitation, surface phenomena, and atmospheric thermal fine structure on a scale of several kilometers were examined. High resolution passive microwave sounders (e.g., AMSU) with an increased number of channels will produce initialization data for numerical weather prediction (NWP) models with both increased spatial resolution and coverage. The development of statistical models for error growth in high resolution primitive equation NWP models which permit the consequences of various observing system alternatives, including sensors and assimilation times and procedures is discussed. A high resolution three dimensional primitive equation NWP model to determine parameters in an error growth model similar to that formulated by Lorenz, but with more degrees of freedom is utilized.

  18. Spatial Resolution Characterization for AWiFS Multispectral Images

    NASA Technical Reports Server (NTRS)

    Blonski, Slawomir; Ryan, Robert E.; Pagnutti, Mary; Stanley, Thomas

    2007-01-01

    This viewgraph presentation describes the spatial resolution of the AWiFS multispectral images characterized by an estimation of the Modulation Transfer Function (MTF) at Nyquist frequency. The contents include: 1) MTF Analysis; 2) Target Analysis; 3) "Pulse Target"; 4) "Pulse" Method; 5) Target Images; 6) Bridge Profiles; 7) MTF Calculation; 8) MTF Results; and 9) Results Summary.

  19. Improved Spatial Resolution for Reflection Mode Infrared Microscopy

    SciTech Connect

    Bechtel, Hans A.; Martin, Michael C.; May, T.E.; Lerch, Philippe

    2009-10-09

    Standard commercial infrared microscopes operating in reflection mode use a mirror to direct the reflected light from the sample to the detector. This mirror blocks about half of the incident light, however, and thus degrades the spatial resolution by reducing the umerical aperture of the objective. Here, we replace the mirror with a 50% beamsplitter to allow full illumination of the objective and retain a way to direct the reflected light to the detector. The improved spatial resolution is demonstrated using two different microscopes apable of diffraction-limited resolution: the first microscope is coupled to a synchrotron source and utilizes a single point detector, whereas the second microscope has a standard blackbody source and uses a focal planetarray (FPA) detector.

  20. Spatial Resolution Requirements for MODIS-N. [Polar Platform Moderate Resolution Imaging Spectrometer (MODIS)

    NASA Technical Reports Server (NTRS)

    Townshend, J. R. G.; Justice, C. O.; Markham, B. L.; Briggs, S. A.

    1988-01-01

    An empirical investigation of the required spatial resolution for MODIS-N is outlined. It is based on 5 LANDSAT multispectral scanner system images of the normalized difference vegetation index degraded to resolutions between 250 m and 4000 m. Pairs of images from different dates were registered and difference images were generated. Fourier analysis indicates that resolutions finer than 1 km are highly desirable for change detection. A sensor with a resolution of 500 m is recommended as providing the best compromise between detail of changes detected and the size of the resultant data volume, but other options are also suggested.

  1. Evolution of spatial resolution in breast CT at UC Davis

    SciTech Connect

    Gazi, Peymon M.; Yang, Kai; Burkett, George W.; Aminololama-Shakeri, Shadi; Anthony Seibert, J.; Boone, John M.

    2015-04-15

    Purpose: Dedicated breast computed tomography (bCT) technology for the purpose of breast cancer screening has been a focus of research at UC Davis since the late 1990s. Previous studies have shown that improvement in spatial resolution characteristics of this modality correlates with greater microcalcification detection, a factor considered a potential limitation of bCT. The aim of this study is to improve spatial resolution as characterized by the modulation transfer function (MTF) via changes in the scanner hardware components and operational schema. Methods: Four prototypes of pendant-geometry, cone-beam breast CT scanners were designed and developed spanning three generations of design evolution. To improve the system MTF in each bCT generation, modifications were made to the imaging components (x-ray tube and flat-panel detector), system geometry (source-to-isocenter and detector distance), and image acquisition parameters (technique factors, number of projections, system synchronization scheme, and gantry rotational speed). Results: Characterization of different generations of bCT systems shows these modifications resulted in a 188% improvement of the limiting MTF properties from the first to second generation and an additional 110% from the second to third. The intrinsic resolution degradation in the azimuthal direction observed in the first generation was corrected by changing the acquisition from continuous to pulsed x-ray acquisition. Utilizing a high resolution detector in the third generation, along with modifications made in system geometry and scan protocol, resulted in a 125% improvement in limiting resolution. An additional 39% improvement was obtained by changing the detector binning mode from 2 × 2 to 1 × 1. Conclusions: These results underscore the advancement in spatial resolution characteristics of breast CT technology. The combined use of a pulsed x-ray system, higher resolution flat-panel detector and changing the scanner geometry and image

  2. Parameter Transferability Across Spatial and Temporal Resolutions in Hydrological Modelling

    NASA Astrophysics Data System (ADS)

    Melsen, L. A.; Teuling, R.; Torfs, P. J.; Zappa, M.; Mizukami, N.; Clark, M. P.; Uijlenhoet, R.

    2015-12-01

    Improvements in computational power and data availability provided new opportunities for hydrological modeling. The increased complexity of hydrological models, however, also leads to time consuming optimization procedures. Moreover, observations are still required to calibrate the model. Both to decrease calculation time of the optimization and to be able to apply the model in poorly gauged basins, many studies have focused on transferability of parameters. We adopted a probabilistic approach to systematically investigate parameter transferability across both temporal and spatial resolution. A Variable Infiltration Capacity model for the Thur basin (1703km2, Switzerland) was set-up and run at four different spatial resolutions (1x1, 5x5, 10x10km, lumped) and three different temporal resolutions (hourly, daily, monthly). Three objective functions were used to evaluate the model: Kling-Gupta Efficiency (KGE(Q)), Nash-Sutcliffe Efficiency (NSE(Q)) and NSE(logQ). We used a Hierarchical Latin Hypercube Sample (Vorechovsky, 2014) to efficiently sample the most sensitive parameters. The model was run 3150 times and the best 1% of the runs was selected as behavioral. The overlap in selected behavioral sets for different spatial and temporal resolutions was used as indicators for parameter transferability. There was a large overlap in selected sets for the different spatial resolutions, implying that parameters were to a large extent transferable across spatial resolutions. The temporal resolution, however, had a larger impact on the parameters; it significantly affected the parameter distributions for at least four out of seven parameters. The parameter values for the monthly time step were found to be substantially different from those for daily and hourly time steps. This suggests that the output from models which are calibrated on a monthly time step, cannot be interpreted or analysed on an hourly or daily time step. It was also shown that the selected objective

  3. Spatial resolution of a hard x-ray CCD detector

    SciTech Connect

    Seely, John F.; Pereira, Nino R.; Weber, Bruce V.; Schumer, Joseph W.; Apruzese, John P.; Hudson, Lawrence T.; Szabo, Csilla I.; Boyer, Craig N.; Skirlo, Scott

    2010-08-10

    The spatial resolution of an x-ray CCD detector was determined from the widths of the tungsten x-ray lines in the spectrum formed by a crystal spectrometer in the 58 to 70 keV energy range. The detector had 20{mu}m pixel, 1700 by 1200 pixel format, and a CsI x-ray conversion scintillator. The spectral lines from a megavolt x-ray generator were focused on the spectrometer's Rowland circle by a curved transmission crystal. The line shapes were Lorentzian with an average width after removal of the natural and instrumental line widths of 95{mu}m (4.75 pixels). A high spatial frequency background, primarily resulting from scattered gamma rays, was removed from the spectral image by Fourier analysis. The spectral lines, having low spatial frequency in the direction perpendicular to the dispersion, were enhanced by partially removing the Lorentzian line shape and by fitting Lorentzian curves to broad unresolved spectral features. This demonstrates the ability to improve the spectral resolution of hard x-ray spectra that are recorded by a CCD detector with well-characterized intrinsic spatial resolution.

  4. High-spatial-resolution nanoparticle x-ray fluorescence tomography

    NASA Astrophysics Data System (ADS)

    Larsson, Jakob C.; Vâgberg, William; Vogt, Carmen; Lundström, Ulf; Larsson, Daniel H.; Hertz, Hans M.

    2016-03-01

    X-ray fluorescence tomography (XFCT) has potential for high-resolution 3D molecular x-ray bio-imaging. In this technique the fluorescence signal from targeted nanoparticles (NPs) is measured, providing information about the spatial distribution and concentration of the NPs inside the object. However, present laboratory XFCT systems typically have limited spatial resolution (>1 mm) and suffer from long scan times and high radiation dose even at high NP concentrations, mainly due to low efficiency and poor signal-to-noise ratio. We have developed a laboratory XFCT system with high spatial resolution (sub-100 μm), low NP concentration and vastly decreased scan times and dose, opening up the possibilities for in-vivo small-animal imaging research. The system consists of a high-brightness liquid-metal-jet microfocus x-ray source, x-ray focusing optics and an energy-resolving photon-counting detector. By using the source's characteristic 24 keV line-emission together with carefully matched molybdenum nanoparticles the Compton background is greatly reduced, increasing the SNR. Each measurement provides information about the spatial distribution and concentration of the Mo nanoparticles. A filtered back-projection method is used to produce the final XFCT image.

  5. Spatially resolved and observer-free experimental quantification of spatial resolution in tomographic images

    SciTech Connect

    Tsekenis, S. A.; McCann, H.; Tait, N.

    2015-03-15

    We present a novel framework and experimental method for the quantification of spatial resolution of a tomography system. The framework adopts the “black box” view of an imaging system, considering only its input and output. The tomography system is locally stimulated with a step input, viz., a sharp edge. The output, viz., the reconstructed images, is analysed by Fourier decomposition of their spatial frequency components, and the local limiting spatial resolution is determined using a cut-off threshold. At no point is an observer involved in the process. The framework also includes a means of translating the quantification region in the imaging space, thus creating a spatially resolved map of objectively quantified spatial resolution. As a case-study, the framework is experimentally applied using a gaseous propane phantom measured by a well-established chemical species tomography system. A spatial resolution map consisting of 28 regions is produced. In isolated regions, the indicated performance is 4-times better than that suggested in the literature and varies by 57% across the imaging space. A mechanism based on adjacent but non-interacting beams is hypothesised to explain the observed behaviour. The mechanism suggests that, as also independently concluded by other methods, a geometrically regular beam array maintains maximum objectivity in reconstructions. We believe that the proposed framework, methodology, and findings will be of value in the design and performance evaluation of tomographic imaging arrays and systems.

  6. A Climate Record of Enhanced Spatial Resolution Radiometer Data (Invited)

    NASA Astrophysics Data System (ADS)

    Paget, A. C.; Long, D. G.; Brodzik, M.

    2013-12-01

    Satellite radiometers, such SMMR, SSM/I, SSMIS, and AMSR, provide a multi-decadal time series of observations of the globe to support studies of climate change. Unfortunately, spatial resolution and sampling characteristics differ between sensors, which complicate compiling a single climate record. Resolution concerns can be ameliorated by reconstructing radiometer brightness temperature measurement (Tb) data onto daily-averaged compatible grids. We consider and contrast two widely used methods for image reconstruction: a radiometer version of the scatterometer image reconstruction (SIR) algorithm and Backus-Gilbert (BG). Both require detailed information about the spatial response function (antenna gain pattern) and the sampling geometry. We discuss considerations for an optimum gridding scheme based on the EASE-Grid 2.0 map projection. The EASE-Grid 2.0 simplifies the application of the Tb images in derived products since the reconstruction for each radiometer channel is implement on the same grid. This has the effect of optimally interpolating low-resolution measurements to locations of the highest resolution measurements. By employing reconstruction techniques rather than 'drop in the bucket' (dib) gridding, the effective resolution of the images is spatially enhanced compared to dib images, at the expense of additional computation required for the reconstruction processing. We evaluate the sensitivity of the radiometric accuracy of the resulting Tb images to uncertainties in the antenna gain pattern as well as variations in local-time-of-day. We briefly consider a number of applications of reconstructed Tb images. As part of the NASA-MEASUREs project 'An improved, enhanced-resolution, gridded passive microwave ESDR for monitoring cryospheric and hydrologic time series' we are processing all available satellite radiometer data to generate a consistently calibrated and processed time series of gridded images spanning from the 1970's to the present.

  7. Improving PET spatial resolution and detectability for prostate cancer imaging

    NASA Astrophysics Data System (ADS)

    Bal, H.; Guerin, L.; Casey, M. E.; Conti, M.; Eriksson, L.; Michel, C.; Fanti, S.; Pettinato, C.; Adler, S.; Choyke, P.

    2014-08-01

    Prostate cancer, one of the most common forms of cancer among men, can benefit from recent improvements in positron emission tomography (PET) technology. In particular, better spatial resolution, lower noise and higher detectability of small lesions could be greatly beneficial for early diagnosis and could provide a strong support for guiding biopsy and surgery. In this article, the impact of improved PET instrumentation with superior spatial resolution and high sensitivity are discussed, together with the latest development in PET technology: resolution recovery and time-of-flight reconstruction. Using simulated cancer lesions, inserted in clinical PET images obtained with conventional protocols, we show that visual identification of the lesions and detectability via numerical observers can already be improved using state of the art PET reconstruction methods. This was achieved using both resolution recovery and time-of-flight reconstruction, and a high resolution image with 2 mm pixel size. Channelized Hotelling numerical observers showed an increase in the area under the LROC curve from 0.52 to 0.58. In addition, a relationship between the simulated input activity and the area under the LROC curve showed that the minimum detectable activity was reduced by more than 23%.

  8. Subcell resolution in simplex stochastic collocation for spatial discontinuities

    NASA Astrophysics Data System (ADS)

    Witteveen, Jeroen A. S.; Iaccarino, Gianluca

    2013-10-01

    Subcell resolution has been used in the Finite Volume Method (FVM) to obtain accurate approximations of discontinuities in the physical space. Stochastic methods are usually based on local adaptivity for resolving discontinuities in the stochastic dimensions. However, the adaptive refinement in the probability space is ineffective in the non-intrusive uncertainty quantification framework, if the stochastic discontinuity is caused by a discontinuity in the physical space with a random location. The dependence of the discontinuity location in the probability space on the spatial coordinates then results in a staircase approximation of the statistics, which leads to first-order error convergence and an underprediction of the maximum standard deviation. To avoid these problems, we introduce subcell resolution into the Simplex Stochastic Collocation (SSC) method for obtaining a truly discontinuous representation of random spatial discontinuities in the interior of the cells discretizing the probability space. The presented SSC-SR method is based on resolving the discontinuity location in the probability space explicitly as function of the spatial coordinates and extending the stochastic response surface approximations up to the predicted discontinuity location. The applications to a linear advection problem, the inviscid Burgers' equation, a shock tube problem, and the transonic flow over the RAE 2822 airfoil show that SSC-SR resolves random spatial discontinuities with multiple stochastic and spatial dimensions accurately using a minimal number of samples.

  9. HIGH SPATIAL RESOLUTION OBSERVATIONS OF LOOPS IN THE SOLAR CORONA

    SciTech Connect

    Brooks, David H.; Ugarte-Urra, Ignacio; Warren, Harry P.; Winebarger, Amy R.

    2013-08-01

    Understanding how the solar corona is structured is of fundamental importance to determine how the Sun's upper atmosphere is heated to high temperatures. Recent spectroscopic studies have suggested that an instrument with a spatial resolution of 200 km or better is necessary to resolve coronal loops. The High Resolution Coronal Imager (Hi-C) achieved this performance on a rocket flight in 2012 July. We use Hi-C data to measure the Gaussian widths of 91 loops observed in the solar corona and find a distribution that peaks at about 270 km. We also use Atmospheric Imaging Assembly data for a subset of these loops and find temperature distributions that are generally very narrow. These observations provide further evidence that loops in the solar corona are often structured at a scale of several hundred kilometers, well above the spatial scale of many proposed physical mechanisms.

  10. Imaging metals in biology: balancing sensitivity, selectivity and spatial resolution.

    PubMed

    Hare, Dominic J; New, Elizabeth J; de Jonge, Martin D; McColl, Gawain

    2015-10-07

    Metal biochemistry drives a diverse range of cellular processes associated with development, health and disease. Determining metal distribution, concentration and flux defines our understanding of these fundamental processes. A comprehensive analysis of biological systems requires a balance of analytical techniques that inform on metal quantity (sensitivity), chemical state (selectivity) and location (spatial resolution) with a high degree of certainty. A number of approaches are available for imaging metals from whole tissues down to subcellular organelles, as well as mapping metal turnover, protein association and redox state within these structures. Technological advances in micro- and nano-scale imaging are striving to achieve multi-dimensional and in vivo measures of metals while maintaining the native biochemical environment and physiological state. This Tutorial Review discusses state-of-the-art imaging technology as a guide to obtaining novel insight into the biology of metals, with sensitivity, selectivity and spatial resolution in focus.

  11. Sub-pixel spatial resolution wavefront phase imaging

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip (Inventor); Mooney, James T. (Inventor)

    2012-01-01

    A phase imaging method for an optical wavefront acquires a plurality of phase images of the optical wavefront using a phase imager. Each phase image is unique and is shifted with respect to another of the phase images by a known/controlled amount that is less than the size of the phase imager's pixels. The phase images are then combined to generate a single high-spatial resolution phase image of the optical wavefront.

  12. Optimising the spatial resolution of WorldView-2 pan-sharpened imagery for predicting levels of Gonipterus scutellatus defoliation in KwaZulu-Natal, South Africa

    NASA Astrophysics Data System (ADS)

    Lottering, Romano; Mutanga, Onisimo

    2016-02-01

    Gonipterus scutellatus Gyllenhal is a leaf feeding weevil that is a major defoliator of the genus Eucalyptus. Understanding the relationship between levels of weevil induced vegetation defoliation and the optimal spatial resolution of satellite images is essential for effective management of plantation resources. The objective of this study was to identify appropriate spatial resolutions for predicting levels of weevil induced defoliation. We resampled the Normalized Difference Vegetation Index (NDVI), Simple Ratio (SR) and Enhanced Vegetation Index (EVI) images computed from a WorldView-2 pan-sharpened image, which is characterised with a 0.5 m spatial resolution and 8 spectral bands. Within each plantation compartment 30 × 30 m plots were established, representing different levels of defoliation. From the centre of each plot, the spatial resolution of the original image was progressively resampled from 1.5 to 8.5 m, with 1 m increments. The minimal variance for each level of defoliation was then established and used as an indicator for quantitatively selecting the optimal spatial resolution. Results indicate that an appropriate spatial resolution was established at 1.25, 1.25, 1.75 and 2.25 m for low, medium, high and severe levels of defoliation, respectively. In addition, an Artificial Neural Network was run to determine the relationship between the appropriate spatial resolution and levels of Gonipterus scutellatus induced defoliation. The model yielded an R2 of 0.80, with an RMSE of 1.28 (2.45% of the mean measured defoliation) based on an independent test dataset. We then compared this model to a model developed using the original 0.5 m image spatial resolution. Our results suggest that optimising the spatial resolution of remotely sensed imagery essentially improves the prediction of vegetation defoliation. In essence, this study provides the foundation for multi-scale defoliation mapping using high spatial resolution imagery.

  13. Spatial and spectral resolution necessary for remotely sensed vegetation studies

    NASA Technical Reports Server (NTRS)

    Rock, B. N.

    1982-01-01

    An outline is presented of the required spatial and spectral resolution needed for accurate vegetation discrimination and mapping studies as well as for determination of state of health (i.e., detection of stress symptoms) of actively growing vegetation. Good success was achieved in vegetation discrimination and mapping of a heterogeneous forest cover in the ridge and valley portion of the Appalachians using multispectral data acquired with a spatial resolution of 15 m (IFOV). A sensor system delivering 10 to 15 m spatial resolution is needed for both vegetation mapping and detection of stress symptoms. Based on the vegetation discrimination and mapping exercises conducted at the Lost River site, accurate products (vegetation maps) are produced using broad-band spectral data ranging from the .500 to 2.500 micron portion of the spectrum. In order of decreasing utility for vegetation discrimination, the four most valuable TM simulator VNIR bands are: 6 (1.55 to 1.75 microns), 3 (0.63 to 0.69 microns), 5 (1.00 to 1.30 microns) and 4 (0.76 to 0.90 microns).

  14. Science with High Spatial Resolution Far-Infrared Data

    NASA Technical Reports Server (NTRS)

    Terebey, Susan (Editor); Mazzarella, Joseph M. (Editor)

    1994-01-01

    The goal of this workshop was to discuss new science and techniques relevant to high spatial resolution processing of far-infrared data, with particular focus on high resolution processing of IRAS data. Users of the maximum correlation method, maximum entropy, and other resolution enhancement algorithms applicable to far-infrared data gathered at the Infrared Processing and Analysis Center (IPAC) for two days in June 1993 to compare techniques and discuss new results. During a special session on the third day, interested astronomers were introduced to IRAS HIRES processing, which is IPAC's implementation of the maximum correlation method to the IRAS data. Topics discussed during the workshop included: (1) image reconstruction; (2) random noise; (3) imagery; (4) interacting galaxies; (5) spiral galaxies; (6) galactic dust and elliptical galaxies; (7) star formation in Seyfert galaxies; (8) wavelet analysis; and (9) supernova remnants.

  15. Ameliorating the spatial resolution of GeoEye data

    NASA Astrophysics Data System (ADS)

    Nikolakopoulos, Konstantinos G.; Vaiopoulos, A. D.; Tsombos, P. I.

    2010-10-01

    GeoEye-1 is the first commercial satellite that collects images at nadir with 0.41m panchromatic and 1.65m multispectral resolution (panchromatic imagery sold to commercial customers is resampled to 0.5m resolution). In this study nine fusion techniques and more especially the Ehlers, Gram-Schmidt, High Pass Filter, Local Mean Matching (LMM), Local Mean and Variance Matching (LMVM), Modified IHS (ModIHS), Pansharp, PCA and Wavelet were used for the fusion of Geoeye panchromatic and multispectral data. The panchromatic data have a spatial resolution of 0.5m while the multispectral data have a spatial resolution of 2.0m. The optical result, the statistical parameters and different quality indexes such as ERGAS, Q and entropy were examined and the results are presented. The broader area of Agrinio city in Western Greece was selected for this comparison. It has a complex geomorphology. At the west the area is flat and the elevation ranges between 5 and 20 meters. At the east there are many hills and the elevation rises to more than 450 meters. The area combines at the same time the characteristics of an urban and a rural area thus it is suitable for a comparison of different fusion algorithms.

  16. Photoacoustic lymphatic imaging with high spatial-temporal resolution

    NASA Astrophysics Data System (ADS)

    Martel, Catherine; Yao, Junjie; Huang, Chih-Hsien; Zou, Jun; Randolph, Gwendalyn J.; Wang, Lihong V.

    2014-11-01

    Despite its critical function in coordinating the egress of inflammatory and immune cells out of tissues and maintaining fluid balance, the causative role of lymphatic network dysfunction in pathological settings is still understudied. Engineered-animal models and better noninvasive high spatial-temporal resolution imaging techniques in both preclinical and clinical studies will help to improve our understanding of different lymphatic-related pathologic disorders. Our aim was to take advantage of our newly optimized noninvasive wide-field fast-scanning photoacoustic (PA) microcopy system to coordinately image the lymphatic vasculature and its flow dynamics, while maintaining high resolution and detection sensitivity. Here, by combining the optical-resolution PA microscopy with a fast-scanning water-immersible microelectromechanical system scanning mirror, we have imaged the lymph dynamics over a large field-of-view, with high spatial resolution and advanced detection sensitivity. Depending on the application, lymphatic vessels (LV) were spectrally or temporally differentiated from blood vessels. Validation experiments were performed on phantoms and in vivo to identify the LV. Lymphatic flow dynamics in nonpathological and pathological conditions were also visualized. These results indicate that our newly developed PA microscopy is a promising tool for lymphatic-related biological research.

  17. Spatial resolution effects of CARS in turbulent premixed combustion thermometry

    SciTech Connect

    Shepherd, I.G. . Applied Science Div.); Porter, F.M.; Greenhalgh, D.A. )

    1990-10-01

    Coherent Anti-Stokes Raman Scattering CARS nitrogen thermometry has proved to be a successful technique to obtain point temperature measurements with high temporal resolution in hot reactive gases. It has significant advantages over other probe methods, such as thermocouples, where access, physical and/or chemical perturbation and a lack of sufficient temperature range may create problems. The longitudinal or axial resolution of a CARS measurement, in the preferred BOXCARS geometry, is determined by the zone of perfect overlap of the intersecting laser beams (typically 1-5 mm). The length squared dependence of the CARS signal, however, can limit the spatial resolution if usable signal-to-noise rations are to be obtained. This can be a particular problem when probing systems where steep temperature gradients exist. In this numerical study of a premixed turbulent flame zone the effect of spatial resolution on CARS temperature probability density functions (pdfs) and mean temperature profile measurements is assessed, and possible means to overcome this problem are presented.

  18. Spatial Classification of Orchards and Vineyards with High Spatial Resolution Panchromatic Imagery

    SciTech Connect

    Warner, Timothy; Steinmaus, Karen L.

    2005-02-01

    New high resolution single spectral band imagery offers the capability to conduct image classifications based on spatial patterns in imagery. A classification algorithm based on autocorrelation patterns was developed to automatically extract orchards and vineyards from satellite imagery. The algorithm was tested on IKONOS imagery over Granger, WA, which resulted in a classification accuracy of 95%.

  19. High spatial resolution measurements in a single stage ram accelerator

    NASA Technical Reports Server (NTRS)

    Hinkey, J. B.; Burnham, E. A.; Bruckner, A. P.

    1992-01-01

    High spatial resolution experimental tube wall pressure measurements of ram accelerator gas dynamic phenomena are presented in this paper. The ram accelerator is a ramjet-in-tube device which operates in a manner similar to that of a conventional ramjet. The projectile resembles the centerbody of a ramjet and travels supersonically through a tube filled with a combustible gaseous mixture, with the tube acting as the outer cowling. Pressure data are recorded as the projectile passes by sensors mounted in the tube wall at various locations along the tube. Utilization of special highly instrumented sections of tube has allowed the recording of gas dynamic phenomena with high resolution. High spatial resolution tube wall pressure data from the three regimes of propulsion studied to date (subdetonative, transdetonative, and superdetonative) in a single stage gas mixture are presented and reveal the three-dimensional character of the flow field induced by projectile fins and the canting of the fins and the canting of the projectile body relative to the tube wall. Also presented for comparison to the experimental data are calculations made with an inviscid, three-dimensional CFD code. The knowledge gained from these experiments and simulations is useful in understanding the underlying nature of ram accelerator propulsive regimes, as well as assisting in the validation of three-dimensional CFD coded which model unsteady, chemically reactive flows.

  20. Spatial-temperature high resolution map for early cancer diagnosis

    NASA Astrophysics Data System (ADS)

    Gavriloaia, Gheorghe V.; Hurduc, Anca; Ghimigean, Ana-Maria; Fumarel, Radu

    2009-02-01

    Heat is one of the most important parameters of living beings. Skin temperature is not the same on the entire body and so, a thermal signature can be got. Infrared map on serial imaging can constitute an early sign of an abnormality. Thermography detects changes in tissue that appear before and accompany many diseases including cancer. As this map has a better resolution an early cancer diagnosis can be done. The temperature of neoplasic tissue is different up to 1.5 °C than that of the healthy tissue as a result of the specific metabolic rate. The infrared camera images show very quickly the heat transferred by radiation. A lot of factors disturb the temperature conversion to pixel intensity. A sensitive temperature sensor with a 10 Mpixels video camera, showing its spatial position, and a computer fusion program were used for the map with high spatial-temperature resolution. A couple of minutes are necessary to get a high resolution map. The asymmetry and borders were the main parameters analyzed. The right cancer diagnosis was for about 78.4% of patients with thyroid cancer, and more than 89.6% from patients with breast cancer. In the near future, the medical prognosis will be improved by fractal analysis.

  1. High resolution spatial map imaging of a gaseous target

    NASA Astrophysics Data System (ADS)

    Stei, Martin; von Vangerow, Johannes; Otto, Rico; Kelkar, Aditya H.; Carrascosa, Eduardo; Best, Thorsten; Wester, Roland

    2013-06-01

    Electrostatic ion imaging with the velocity map imaging mode is a widely used method in atomic and molecular physics and physical chemistry. In contrast, the spatial map imaging (SMI) mode has received very little attention, despite the fact that it has been proposed earlier [A. T. J. B. Eppink and D. H. Parker, Rev. Sci. Instrum. 68, 3477 (1997)], 10.1063/1.1148310. Here, we present a detailed parametric characterization of SMI both by simulation and experiment. One-, two- and three-dimensional imaging modes are described. The influence of different parameters on the imaging process is described by means of a Taylor expansion. To experimentally quantify elements of the Taylor expansion and to infer the spatial resolution of our spectrometer, photoionization of toluene with a focused laser beam has been carried out. A spatial resolution of better than 4 μm out of a focal volume of several mm in diameter has been achieved. Our results will be useful for applications of SMI to the characterization of laser beams, the overlap control of multiple particle or light beams, and the determination of absolute collision cross sections.

  2. Proceedings of the 2004 High Spatial Resolution Commercial Imagery Workshop

    NASA Technical Reports Server (NTRS)

    2006-01-01

    Topics covered include: NASA Applied Sciences Program; USGS Land Remote Sensing: Overview; QuickBird System Status and Product Overview; ORBIMAGE Overview; IKONOS 2004 Calibration and Validation Status; OrbView-3 Spatial Characterization; On-Orbit Modulation Transfer Function (MTF) Measurement of QuickBird; Spatial Resolution Characterization for QuickBird Image Products 2003-2004 Season; Image Quality Evaluation of QuickBird Super Resolution and Revisit of IKONOS: Civil and Commercial Application Project (CCAP); On-Orbit System MTF Measurement; QuickBird Post Launch Geopositional Characterization Update; OrbView-3 Geometric Calibration and Geopositional Accuracy; Geopositional Statistical Methods; QuickBird and OrbView-3 Geopositional Accuracy Assessment; Initial On-Orbit Spatial Resolution Characterization of OrbView-3 Panchromatic Images; Laboratory Measurement of Bidirectional Reflectance of Radiometric Tarps; Stennis Space Center Verification and Validation Capabilities; Joint Agency Commercial Imagery Evaluation (JACIE) Team; Adjacency Effects in High Resolution Imagery; Effect of Pulse Width vs. GSD on MTF Estimation; Camera and Sensor Calibration at the USGS; QuickBird Geometric Verification; Comparison of MODTRAN to Heritage-based Results in Vicarious Calibration at University of Arizona; Using Remotely Sensed Imagery to Determine Impervious Surface in Sioux Falls, South Dakota; Estimating Sub-Pixel Proportions of Sagebrush with a Regression Tree; How Do YOU Use the National Land Cover Dataset?; The National Map Hazards Data Distribution System; Recording a Troubled World; What Does This-Have to Do with This?; When Can a Picture Save a Thousand Homes?; InSAR Studies of Alaska Volcanoes; Earth Observing-1 (EO-1) Data Products; Improving Access to the USGS Aerial Film Collections: High Resolution Scanners; Improving Access to the USGS Aerial Film Collections: Phoenix Digitizing System Product Distribution; System and Product Characterization: Issues Approach

  3. Regional spatially adaptive total variation super-resolution with spatial information filtering and clustering.

    PubMed

    Yuan, Qiangqiang; Zhang, Liangpei; Shen, Huanfeng

    2013-06-01

    Total variation is used as a popular and effective image prior model in the regularization-based image processing fields. However, as the total variation model favors a piecewise constant solution, the processing result under high noise intensity in the flat regions of the image is often poor, and some pseudoedges are produced. In this paper, we develop a regional spatially adaptive total variation model. Initially, the spatial information is extracted based on each pixel, and then two filtering processes are added to suppress the effect of pseudoedges. In addition, the spatial information weight is constructed and classified with k-means clustering, and the regularization strength in each region is controlled by the clustering center value. The experimental results, on both simulated and real datasets, show that the proposed approach can effectively reduce the pseudoedges of the total variation regularization in the flat regions, and maintain the partial smoothness of the high-resolution image. More importantly, compared with the traditional pixel-based spatial information adaptive approach, the proposed region-based spatial information adaptive total variation model can better avoid the effect of noise on the spatial information extraction, and maintains robustness with changes in the noise intensity in the super-resolution process.

  4. A Global Scale 30m Water Surface Detection Optimized and Validated for Landsat 8

    NASA Astrophysics Data System (ADS)

    Pekel, J. F.; Cottam, A.; Clerici, M.; Belward, A.; Dubois, G.; Bartholome, E.; Gorelick, N.

    2014-12-01

    Life on Earth as we know it is impossible without water. Its importance to biological diversity, human well-being and the very functioning of the Earth-system cannot be overstressed, but we have remarkably little detailed knowledge concerning the spatial and temporal distribution of this vital resource. Earth observing satellites operating with high temporal revisits yet moderate spatial resolution have provided global datasets documenting spatial and temporal changes to water bodies on the Earth's surface. Landsat 8 has a data acquisition strategy such that global coverage of all land surfaces now occurs more frequently than from any preceding Landsat mission and provides 30 m resolution data. Whilst not the last word in temporal sampling this presents a basis for mapping and monitoring changes to global surface water resources at unprecedented levels of spatial detail. In this paper we provide a first 30 m resolution global synthesis of surface water occurrence, we document permanent water surfaces, seasonal water surfaces and always-dry surfaces. These products have been derived by optimizing a methodology previously developed for use with moderate resolution MODIS imagery for use with Landsat 8. The approach is based on a transformation of RGB color space into HSV combined with a sequence of cloud, topographic and temperature masks. Analysis at the global scale used the Google Earth Engine platform applied to all Landsat 8 acquisitions between June 2013 and June 2014. Systematic validation is done and demonstrated our ability to map surface water. Our method can be applied to other Landsat missions offering the potential to document changes in surface water over three decades; our study shows examples illustrating the capacity to map new water surfaces and ephemeral water surfaces in addition to the three previous classes. Thanks to an optimized data acquisition strategy, a full-free and open data policy and the processing capacity of the GEE global land

  5. High spatial resolution soft-x-ray microscopy

    SciTech Connect

    Meyer-Ilse, W.; Medecki, H.; Brown, J.T.

    1997-04-01

    A new soft x-ray microscope (XM-1) with high spatial resolution has been constructed by the Center for X-ray Optics. It uses bending magnet radiation from beamline 6.1 at the Advanced Light Source, and is used in a variety of projects and applications in the life and physical sciences. Most of these projects are ongoing. The instrument uses zone plate lenses and achieves a resolution of 43 nm, measured over 10% to 90% intensity with a knife edge test sample. X-ray microscopy permits the imaging of relatively thick samples, up to 10 {mu}m thick, in water. XM-1 has an easy to use interface, that utilizes visible light microscopy to precisely position and focus the specimen. The authors describe applications of this device in the biological sciences, as well as in studying industrial applications including structured polymer samples.

  6. EBSD spatial resolution for detecting sigma phase in steels.

    PubMed

    Bordín, S Fernandez; Limandri, S; Ranalli, J M; Castellano, G

    2016-12-01

    The spatial resolution of the electron backscatter diffraction signal is explored by Monte Carlo simulation for the sigma phase in steel at a typical instrumental set-up. In order to estimate the active volume corresponding to the diffracted electrons, the fraction of the backscattered electrons contributing to the diffraction signal was inferred by extrapolating the Kikuchi pattern contrast measured by other authors, as a function of the diffracted electron energy. In the resulting estimation, the contribution of the intrinsic incident beam size and the software capability to deconvolve patterns were included. A strong influence of the beam size on the lateral resolution was observed, resulting in 20nm for the aperture considered. For longitudinal and depth directions the resolutions obtained were 75nm and 16nm, respectively. The reliability of this last result is discussed in terms of the survey of the last large-angle deflection undergone by the backscattered electrons involved in the diffraction process. Bearing in mind the mean transversal resolution found, it was possible to detect small area grains of sigma phase by EBSD measurements, for a stabilized austenitic AISI 347 stainless steel under heat treatments, simulating post welding (40h at 600°C) and aging (284h at 484°C) effects-as usually occurring in nuclear reactor pressure vessels.

  7. Metadevice for intensity modulation with sub-wavelength spatial resolution

    PubMed Central

    Cencillo-Abad, Pablo; Zheludev, Nikolay I.; Plum, Eric

    2016-01-01

    Effectively continuous control over propagation of a beam of light requires light modulation with pixelation that is smaller than the optical wavelength. Here we propose a spatial intensity modulator with sub-wavelength resolution in one dimension. The metadevice combines recent advances in reconfigurable nanomembrane metamaterials and coherent all-optical control of metasurfaces. It uses nanomechanical actuation of metasurface absorber strips placed near a mirror in order to control their interaction with light from perfect absorption to negligible loss, promising a path towards dynamic diffraction and focusing of light as well as holography without unwanted diffraction artefacts. PMID:27857221

  8. Landsat-derived Patterns of Snow Covered Area (SCA) and the Potential for Enhancing the Spatial Resolution of MODIS-derived SCA Estimates

    NASA Astrophysics Data System (ADS)

    Selkowitz, D.

    2011-12-01

    Seasonal snow cover is dynamic and exhibits a high degree of spatial and temporal heterogeneity, making remote sensing a key component of any successful snow cover monitoring strategy. While the availability of daily snow covered area (SCA) extent at 500 m spatial resolution from MODIS represents a major leap forward for snow cover monitoring, many applications require or would benefit from snow cover data available at a finer spatial resolution. The Landsat Thematic Mapper (TM) and Enhanced Thematic Mapper (ETM+) instruments are suitable for SCA mapping and can provide SCA maps at 30 m spatial resolution from 1984 to present. With the opening of the Landsat archive, all scenes acquired by the TM and ETM+ sensors are now available at no cost, with more than 800 scenes available for many locations in the conterminous United States. The nearly 30 years of TM and ETM+ imagery can be used to identify landscape snow cover patterns, the degree of interannual consistency of these patterns, and can ultimately help illuminate the complex processes responsible for these patterns. However, the 16-day return interval of Landsat is typically insufficient to capture the inter- and intra-annual evolution of SCA on the landscape. While the timing of the seasonal evolution of fine to medium resolution SCA patterns may vary substantially from year to year, for many regions, the spatial distribution of SCA patterns remains consistent across most years. As a result, it may be possible to exploit the information contained in multiple years of Landsat SCA patterns to enhance the spatial resolution of existing moderate resolution SCA products such as those available from MODIS. In this study, Landsat TM and ETM+ data from path 42, row 34 (covering a 185 km x 175 km area in the central Sierra Nevada mountains of California) are used to develop 30 m snow cover relative probability distributions for 500 m MODIS-like grid cells. We demonstrate that these relative probability distributions

  9. Fourier domain design of microgrid imaging polarimeters with improved spatial resolution

    NASA Astrophysics Data System (ADS)

    Hirakawa, Keigo; LeMaster, Daniel A.

    2014-05-01

    Microgrid polarimetric imagers sacrifice spatial resolution for sensitivity to states of linear polarization. We have recently shown that a 2 × 4 microgrid analyzer pattern sacrifices less spatial resolution than the conventional 2× 2 case without compromising polarization sensitivity. In this paper, we discuss the design strategy that uncovered the spatial resolution benefits of the 2 × 4 array.

  10. A method of spatial mapping and reclassification for high-spatial-resolution remote sensing image classification.

    PubMed

    Wang, Guizhou; Liu, Jianbo; He, Guojin

    2013-01-01

    This paper presents a new classification method for high-spatial-resolution remote sensing images based on a strategic mechanism of spatial mapping and reclassification. The proposed method includes four steps. First, the multispectral image is classified by a traditional pixel-based classification method (support vector machine). Second, the panchromatic image is subdivided by watershed segmentation. Third, the pixel-based multispectral image classification result is mapped to the panchromatic segmentation result based on a spatial mapping mechanism and the area dominant principle. During the mapping process, an area proportion threshold is set, and the regional property is defined as unclassified if the maximum area proportion does not surpass the threshold. Finally, unclassified regions are reclassified based on spectral information using the minimum distance to mean algorithm. Experimental results show that the classification method for high-spatial-resolution remote sensing images based on the spatial mapping mechanism and reclassification strategy can make use of both panchromatic and multispectral information, integrate the pixel- and object-based classification methods, and improve classification accuracy.

  11. Spatial Resolution Characterization for AWiFS Multispectral Images

    NASA Technical Reports Server (NTRS)

    Blonski, Slawomir; Ryan, Robert E.; Pagnutti, Mary; Stanley, Thomas

    2006-01-01

    Within the framework of the Joint Agency Commercial Imagery Evaluation program, the National Aeronautics and Space Administration, the National Geospatial-Intelligence Agency, and the U.S. Geological Survey cooperate in the characterization of high-to-moderate-resolution commercial imagery of mutual interest. One of the systems involved in this effort is the Advanced Wide Field Sensor (AWiFS) onboard the Indian Remote Sensing (IRS) Reourcesat-1 satellite, IRS-P6. Spatial resolution of the AWiFS multispectral images was characterized by estimating the value of the system Modulation Transfer Function (MTF) at the Nyquist spatial frequency. The Nyquist frequency is defined as half the sampling frequency, and the sampling frequency is equal to the inverse of the ground sample distance. The MTF was calculated as a ratio of the Fourier transform of a profile across an AWiFS image of the Lake Pontchartrain Causeway Bridge and the Fourier transform of a profile across an idealized model of the bridge for each spectral band evaluated. The mean MTF value for the AWiFS imagery evaluated was estimated to be 0.1.

  12. Efficiency and spatial resolution of the CASCADE thermal neutron detector

    NASA Astrophysics Data System (ADS)

    Köhli, M.; Allmendinger, F.; Häußler, W.; Schröder, T.; Klein, M.; Meven, M.; Schmidt, U.

    2016-08-01

    We report on the CASCADE project - a detection system, which has been designed for the purposes of neutron Spin Echo spectroscopy and which is continuously further developed and adapted to various applications. It features 2D spatially resolved detection of thermal neutrons at high rates. The CASCADE detector is composed of a stack of solid 10B coated Gas Electron Multiplier foils, which serve both as a neutron converter and as an amplifier for the primary ionization deposited in the standard counting gas environment. This multi-layer setup efficiently increases the detection efficiency and by extracting the signal of the charge traversing the stack the conversion layer can be identified allowing a precise determination of the time-of-flight. The spatial resolution is found by optical contrast determination to be σ =(1.39 ± 0.05) mm and by divergence corrected aperture measurements σ =(1.454 ± 0.007) mm , which is in agreement with the simulated detector model. Furthermore this enabled to investigate and describe the non-Gaussian resolution function. At the HEiDi diffractometer the absolute detection efficiency has been studied. At 0.6 Å for the 6 layer detector, which is currently part of the RESEDA spectrometer, an efficiency of 7.8% has been measured, which by means of Monte Carlo simulations translates to (21.0±1.5)% for thermal neutrons at 1.8 Å and (46.9±3.3)% at 5.4 Å.

  13. Spatial and temporal resolution of fluid flows: LDRD final report

    SciTech Connect

    Tieszen, S.R.; O`Hern, T.J.; Schefer, R.W.; Perea, L.D.

    1998-02-01

    This report describes a Laboratory Directed Research and Development (LDRD) activity to develop a diagnostic technique for simultaneous temporal and spatial resolution of fluid flows. The goal is to obtain two orders of magnitude resolution in two spatial dimensions and time simultaneously. The approach used in this study is to scale up Particle Image Velocimetry (PIV) and Planar Laser Induced Fluorescence (PLIF) to acquire meter-size images at up to 200 frames/sec. Experiments were conducted in buoyant, fully turbulent, non-reacting and reacting plumes with a base diameter of one meter. The PIV results were successful in the ambient gas for all flows, and in the plume for non-reacting helium and reacting methane, but not reacting hydrogen. No PIV was obtained in the hot combustion product region as the seed particles chosen vaporized. Weak signals prevented PLIF in the helium. However, in reacting methane flows, PLIF images speculated to be from Poly-Aromatic-Hydrocarbons were obtained which mark the flame sheets. The results were unexpected and very insightful. A natural fluorescence from the seed particle vapor was also noted in the hydrogen tests.

  14. Contrast and spatial resolution in MREIT using low amplitude current.

    PubMed

    Birgul, Ozlem; Hamamura, Mark J; Muftuler, L Tugan; Nalcioglu, Orhan

    2006-10-07

    Magnetic resonance-electrical impedance tomography employs low amplitude currents injected or induced inside an object. The additional magnetic field due to these currents results in a phase in the MR images. In this study, a modified fast spin-echo sequence was used to measure this magnetic field, which is obtained by scaling the MR phase image. A finite element method with first order triangular elements was used for the solution of the forward problem. An iterated sensitivity matrix-based algorithm was developed for the inverse problem. The resulting ill-conditioned matrix equation was regularized using the Tikhonov method and solved using a conjugate gradient solver. The spatial and contrast resolution of the technique was tested using agarose gel phantoms. A circular phantom with 7 cm diameter and 1 cm thickness is used in the phantom experiments. The amplitude of the injected current was 1 mA. 3, 5 and 8 mm diameter insulators and high conductor objects are used for the spatial resolution study and an average full-width half-maximum value of 4.7 mm is achieved for the 3 mm insulator case. For the contrast analysis, the conductivity of a 15 mm object is varied between 44% and 500% with respect to the background and results are compared to the ideal reconstruction.

  15. Using a high spatial resolution tactile sensor for intention detection.

    PubMed

    Castellini, Claudio; Koiva, Risto

    2013-06-01

    Intention detection is the interpretation of biological signals with the aim of automatically, reliably and naturally understanding what a human subject desires to do. Although intention detection is not restricted to disabled people, such methods can be crucial in improving a patient's life, e.g., aiding control of a robotic wheelchair or of a self-powered prosthesis. Traditionally, intention detection is done using, e.g., gaze tracking, surface electromyography and electroencephalography. In this paper we present exciting initial results of an experiment aimed at intention detection using a high-spatial-resolution, high-dynamic-range tactile sensor. The tactile image of the ventral side of the forearm of 9 able-bodied participants was recorded during a variable-force task stimulated at the fingertip. Both the forces at the fingertip and at the forearm were synchronously recorded. We show that a standard dimensionality reduction technique (Principal Component Analysis) plus a Support Vector Machine attain almost perfect detection accuracy of the direction and the intensity of the intended force. This paves the way for high spatial resolution tactile sensors to be used as a means for intention detection.

  16. Progress toward accurate high spatial resolution actinide analysis by EPMA

    NASA Astrophysics Data System (ADS)

    Jercinovic, M. J.; Allaz, J. M.; Williams, M. L.

    2010-12-01

    High precision, high spatial resolution EPMA of actinides is a significant issue for geochronology, resource geochemistry, and studies involving the nuclear fuel cycle. Particular interest focuses on understanding of the behavior of Th and U in the growth and breakdown reactions relevant to actinide-bearing phases (monazite, zircon, thorite, allanite, etc.), and geochemical fractionation processes involving Th and U in fluid interactions. Unfortunately, the measurement of minor and trace concentrations of U in the presence of major concentrations of Th and/or REEs is particularly problematic, especially in complexly zoned phases with large compositional variation on the micro or nanoscale - spatial resolutions now accessible with modern instruments. Sub-micron, high precision compositional analysis of minor components is feasible in very high Z phases where scattering is limited at lower kV (15kV or less) and where the beam diameter can be kept below 400nm at high current (e.g. 200-500nA). High collection efficiency spectrometers and high performance electron optics in EPMA now allow the use of lower overvoltage through an exceptional range in beam current, facilitating higher spatial resolution quantitative analysis. The U LIII edge at 17.2 kV precludes L-series analysis at low kV (high spatial resolution), requiring careful measurements of the actinide M series. Also, U-La detection (wavelength = 0.9A) requires the use of LiF (220) or (420), not generally available on most instruments. Strong peak overlaps of Th on U make highly accurate interference correction mandatory, with problems compounded by the ThMIV and ThMV absorption edges affecting peak, background, and interference calibration measurements (especially the interference of the Th M line family on UMb). Complex REE bearing phases such as monazite, zircon, and allanite have particularly complex interference issues due to multiple peak and background overlaps from elements present in the activation

  17. COMPLEX ORGANIC MOLECULES AT HIGH SPATIAL RESOLUTION TOWARD ORION-KL. I. SPATIAL SCALES

    SciTech Connect

    Widicus Weaver, Susanna L.; Friedel, Douglas N. E-mail: friedel@astro.illinois.edu

    2012-08-01

    Here we present high spatial resolution (<1'') observations of molecular emission in Orion-KL conducted using the Combined Array for Research in Millimeter-wave Astronomy. This work was motivated by recent millimeter continuum imaging studies of this region conducted at a similarly high spatial resolution, which revealed that the bulk of the emission arises from numerous compact sources, rather than the larger-scale extended structures typically associated with the Orion Hot Core and Compact Ridge. Given that the spatial extent of molecular emission greatly affects the determination of molecular abundances, it is important to determine the true spatial scale for complex molecules in this region. Additionally, it has recently been suggested that the relative spatial distributions of complex molecules in a source might give insight into the chemical mechanisms that drive complex chemistry in star-forming regions. In order to begin to address these issues, this study seeks to determine the spatial distributions of ethyl cyanide [C{sub 2}H{sub 5}CN], dimethyl ether [(CH{sub 3}){sub 2}O], methyl formate [HCOOCH{sub 3}], formic acid [HCOOH], acetone [(CH{sub 3}){sub 2}CO], SiO, methanol [CH{sub 3}OH], and methyl cyanide [CH{sub 3}CN] in Orion-KL at {lambda} = 3 mm. We find that for all observed molecules, the molecular emission arises from multiple components of the cloud that include a range of spatial scales and physical conditions. Here, we present the results of these observations and discuss the implications for studies of complex molecules in star-forming regions.

  18. High Spatial Resolution Fe XII Observations of Solar Active Regions

    NASA Astrophysics Data System (ADS)

    Testa, Paola; De Pontieu, Bart; Hansteen, Viggo

    2016-08-01

    We use UV spectral observations of active regions with the Interface Region Imaging Spectrograph (IRIS) to investigate the properties of the coronal Fe xii 1349.4 Å emission at unprecedented high spatial resolution (˜0.33″). We find that by using appropriate observational strategies (i.e., long exposures, lossless compression), Fe xii emission can be studied with IRIS at high spatial and spectral resolution, at least for high-density plasma (e.g., post-flare loops and active region moss). We find that upper transition region (TR; moss) Fe xii emission shows very small average Doppler redshifts ({v}{{D}} ˜ 3 km s-1) as well as modest non-thermal velocities (with an average of ˜24 km s-1 and the peak of the distribution at ˜15 km s-1). The observed distribution of Doppler shifts appears to be compatible with advanced three-dimensional radiative MHD simulations in which impulsive heating is concentrated at the TR footpoints of a hot corona. While the non-thermal broadening of Fe xii 1349.4 Å peaks at similar values as lower resolution simultaneous Hinode Extreme Ultraviolet Imaging Spectrometer (EIS) measurements of Fe xii 195 Å, IRIS observations show a previously undetected tail of increased non-thermal broadening that might be suggestive of the presence of subarcsecond heating events. We find that IRIS and EIS non-thermal line broadening measurements are affected by instrumental effects that can only be removed through careful analysis. Our results also reveal an unexplained discrepancy between observed 195.1/1349.4 Å Fe xii intensity ratios and those predicted by the CHIANTI atomic database.

  19. Mapping Spatial Variability in Health and Wealth Indicators in Accra, Ghana Using High Spatial Resolution Imagery

    NASA Astrophysics Data System (ADS)

    Engstrom, R.; Ashcroft, E.

    2014-12-01

    There has been a tremendous amount of research conducted that examines disparities in health and wealth of persons between urban and rural areas however, relatively little research has been undertaken to examine variations within urban areas. A major limitation to elucidating differences with urban areas is the lack of social and demographic data at a sufficiently high spatial resolution to determine these differences. Generally the only available data that contain this information are census data which are collected at most every ten years and are often difficult to obtain at a high enough spatial resolution to allow for examining in depth variability in health and wealth indicators at high spatial resolutions, especially in developing countries. High spatial resolution satellite imagery may be able to provide timely and synoptic information that is related to health and wealth variability within a city. In this study we use two dates of Quickbird imagery (2003 and 2010) classified into the vegetation-impervious surface-soil (VIS) model introduced by Ridd (1995). For 2003 we only have partial coverage of the city, while for 2010 we have a mosaic, which covers the entire city of Accra, Ghana. Variations in the VIS values represent the physical variations within the city and these are compared to variations in economic, and/or sociodemographic data derived from the 2000 Ghanaian census at two spatial resolutions, the enumeration area (approximately US Census Tract) and the neighborhood for the city. Results indicate a significant correlation between both vegetation and impervious surface to type of cooking fuel used in the household, population density, housing density, availability of sewers, cooking space usage, and other variables. The correlations are generally stronger at the neighborhood level and the relationships are stable through time and space. Overall, the results indicate that information derived from high resolution satellite data is related to

  20. High resolution autofocus for spatial temporal biomedical research

    NASA Astrophysics Data System (ADS)

    Li, Sihong; Cui, Xiaodong; Huang, Wei

    2013-11-01

    Maintaining focus has been a critical but challenging issue in optical microscopy, particularly for microscopic imaging systems currently used in biomedical research. During live cell imaging, environmental temperature fluctuations and other factors contribute to the unavoidable focus drift. For single molecular imaging and super resolution, focus drift can be significant even over short durations. The current commercial and experimental solutions are either optically complicated, expensive, or with limited axial resolution. Here, we present a simple autofocus solution based on low cost solid state laser and imaging sensor. By improving the optical train design and using real-time data analysis, improvement in axial resolution by approximately two orders of magnitudes over the focal depth of microscope objectives can be achieved. This solution has been tested for prolonged live cell imaging for fast ramping up in environmental chamber temperature and large daily swing in room temperature. In addition, this system can be used to spatial-temporally measure the surface for three-dimensional cell culture and tissue engineering, with flexibility that exceeds commercially available systems.

  1. Spectral sensitivity, spatial resolution and temporal resolution and their implications for conspecific signalling in cleaner shrimp.

    PubMed

    Caves, Eleanor M; Frank, Tamara M; Johnsen, Sönke

    2016-02-01

    Cleaner shrimp (Decapoda) regularly interact with conspecifics and client reef fish, both of which appear colourful and finely patterned to human observers. However, whether cleaner shrimp can perceive the colour patterns of conspecifics and clients is unknown, because cleaner shrimp visual capabilities are unstudied. We quantified spectral sensitivity and temporal resolution using electroretinography (ERG), and spatial resolution using both morphological (inter-ommatidial angle) and behavioural (optomotor) methods in three cleaner shrimp species: Lysmata amboinensis, Ancylomenes pedersoni and Urocaridella antonbruunii. In all three species, we found strong evidence for only a single spectral sensitivity peak of (mean ± s.e.m.) 518 ± 5, 518 ± 2 and 533 ± 3 nm, respectively. Temporal resolution in dark-adapted eyes was 39 ± 1.3, 36 ± 0.6 and 34 ± 1.3 Hz. Spatial resolution was 9.9 ± 0.3, 8.3 ± 0.1 and 11 ± 0.5 deg, respectively, which is low compared with other compound eyes of similar size. Assuming monochromacy, we present approximations of cleaner shrimp perception of both conspecifics and clients, and show that cleaner shrimp visual capabilities are sufficient to detect the outlines of large stimuli, but not to detect the colour patterns of conspecifics or clients, even over short distances. Thus, conspecific viewers have probably not played a role in the evolution of cleaner shrimp appearance; rather, further studies should investigate whether cleaner shrimp colour patterns have evolved to be viewed by client reef fish, many of which possess tri- and tetra-chromatic colour vision and relatively high spatial acuity.

  2. Assessment of the Effects of Spatial Resolutions on Daily Water Flux Simulations

    SciTech Connect

    Liang, Xu; Guo, Jianzhong; Leung, Lai R.

    2004-10-01

    Impacts of spatially distributed precipitation and soil heterogeneity on modeling water fluxes at different spatial resolutions are investigated using the Three-layer Variable Infiltration Capacity (VIC-3L) land surface model at the Blue River watershed in Oklahoma. In this study, hourly grid-based NEXRAD (Next Generation Radar) Stage III radar precipitation data approximately at 4 x 4 km2 resolution are used to compute daily precipitation at spatial resolutions of 1/32, 1/16, 1/8, 1/4, 1/2 and 1 degree based on an area weighted average method. Soil parameters at the corresponding six spatial resolutions are derived from the State Soil Geographic (STATSGO) soil data. The forcing data of daily maximum and minimum temperature, wind speed, and vegetation parameters are disaggregated/aggregated directly to finer/coarser spatial resolutions based on the University of Washington (UW) data, which are gridded at 1/8 degree spatial resolution. Our study suggests that a critical spatial resolution for the VIC-3L model may exist for the study watershed. For spatial resolutions finer than the critical resolution, one does not necessarily obtain better model performance in terms of runoff, evapotranspiration, and total zone soil moisture with increasing spatial resolution if the VIC-3L model parameters are calibrated at each spatial resolution. Also, model parameters calibrated at a coarse resolution can be applied to finer resolutions to obtain generally comparable results. However, model parameters calibrated at finer resolutions cannot result in comparable results when applied to resolutions coarser than the identified critical resolution. In addition, while soil moisture of the total zone is more sensitive to the spatial distributions of soil properties, runoff and evaporation are more sensitive to the spatial distribution of daily precipitation at the watershed being studied.

  3. [Resolution of spatial constraints during replication of peripheral chromatin].

    PubMed

    Zhironkina, O A; Kurchashova, S Yu; Bratseva, A L; Cherepanynets, V D; Strelkova, O S; Belmont, A S; Kireev, I I

    2014-01-01

    Tight association of peripheral chromatin with nuclear lamina unavoidably creates topological constraints during replication. Additional complications are associated with high stability of lamina meshwork, which may hinder an access of replication factors to the sites of DNA synthesis in highly condensed template with limited mobility. In the current work we studied structural organization and dynamics of lamina as a function of replicative status of associated peripheral heterochromatin. The studies of molecular mobility of laminas at various stages of S-phase in vivo and using super-resolution microscopy showed no correlation between lamina dynamics and replicative status of attached heterochromatin. These data support the hypothesis that lamina-chromatin interactions during S-phase are regulated at the level of adapter proteins. Ultrastructural studies have demonstrated that temporal break of lamina-chromatin connections during replication does not cause noticeable spatial separation of replicating domains from nuclear periphery.

  4. Tactile Feedback Display with Spatial and Temporal Resolutions

    NASA Astrophysics Data System (ADS)

    Vishniakou, Siarhei; Lewis, Brian W.; Niu, Xiaofan; Kargar, Alireza; Sun, Ke; Kalajian, Michael; Park, Namseok; Yang, Muchuan; Jing, Yi; Brochu, Paul; Sun, Zhelin; Li, Chun; Nguyen, Truong; Pei, Qibing; Wang, Deli

    2013-08-01

    We report the electronic recording of the touch contact and pressure using an active matrix pressure sensor array made of transparent zinc oxide thin-film transistors and tactile feedback display using an array of diaphragm actuators made of an interpenetrating polymer elastomer network. Digital replay, editing and manipulation of the recorded touch events were demonstrated with both spatial and temporal resolutions. Analog reproduction of the force is also shown possible using the polymer actuators, despite of the high driving voltage. The ability to record, store, edit, and replay touch information adds an additional dimension to digital technologies and extends the capabilities of modern information exchange with the potential to revolutionize physical learning, social networking, e-commerce, robotics, gaming, medical and military applications.

  5. Tactile feedback display with spatial and temporal resolutions.

    PubMed

    Vishniakou, Siarhei; Lewis, Brian W; Niu, Xiaofan; Kargar, Alireza; Sun, Ke; Kalajian, Michael; Park, Namseok; Yang, Muchuan; Jing, Yi; Brochu, Paul; Sun, Zhelin; Li, Chun; Nguyen, Truong; Pei, Qibing; Wang, Deli

    2013-01-01

    We report the electronic recording of the touch contact and pressure using an active matrix pressure sensor array made of transparent zinc oxide thin-film transistors and tactile feedback display using an array of diaphragm actuators made of an interpenetrating polymer elastomer network. Digital replay, editing and manipulation of the recorded touch events were demonstrated with both spatial and temporal resolutions. Analog reproduction of the force is also shown possible using the polymer actuators, despite of the high driving voltage. The ability to record, store, edit, and replay touch information adds an additional dimension to digital technologies and extends the capabilities of modern information exchange with the potential to revolutionize physical learning, social networking, e-commerce, robotics, gaming, medical and military applications.

  6. The Role of a High-Resolution Spatial Sensor in an Educational Setting.

    ERIC Educational Resources Information Center

    Kay, Leslie; And Others

    1984-01-01

    A pilot study involving 16 visually handicapped children (6-14 years old) suggested that a new high-resolution acoustic sensory aid may be useful as a training aid for developing spatial perception. Tasks in spatial location, spatial orientation, and spatial transfer were executed using the spatial sensor in a classroom program. (Author/CL)

  7. The Need for High Spatial Resolution Multispectral Thermal Remote Sensing Data In Urban Heat Island Research

    NASA Technical Reports Server (NTRS)

    Quattrochi, Dale A.; Luvall, Jeffrey C.

    2006-01-01

    (e.g., rooftops, pavements) interact from a surface-lower atmosphere energy flux perspective, to force the development of the UHI. Moreover, the airborne TIR sensor we used in our UHI studies was a multispectral sensor that had six channels in the 8-12pm range. The advantages of collecting multispectral TIR data became readily evident as a valuable tool for better calculation of unique surface thermal energy responses for urban materials over the 8-12 micrometer region, and also for getting a better handle on surface emissivity characteristics for these discrete surfaces. In this presentation, we will provide evidence on the virtues of how high spatial resolution multispectral TIR data can provide for better analysis of the UHI that cannot now be attained via TIR data obtained from satellites. Furthermore, we wish to provide compelling evidence on why future TIR satellite sensors should collect data at fine spatial resolutions (e.g. less than or equal to 30m) to better allow for measurement of surface thermal energy fluxes from discrete urban surfaces, and to better understand how surface fluxes from different urban materials in cities around the world in different climatic regimes, affect development of the UHI characteristics.

  8. The Need for High Spatial Resolution Multispectral Thermal Remote Sensing Data In Urban Heat Island Research

    NASA Astrophysics Data System (ADS)

    Quattrochi, D. A.; Luvall, J. C.

    2006-12-01

    (e.g., rooftops, pavements) interact from a surface-lower atmosphere energy flux perspective, to force the development of the UHI. Moreover, the airborne TIR sensor we used in our UHI studies was a multispectral sensor that had six channels in the 8-12mm range. The advantages of collecting multispectral TIR data became readily evident as a valuable tool for better calculation of unique surface thermal energy responses for urban materials over the 8- 12mm region, and also for getting a better handle on surface emissivity characteristics for these discrete surfaces. In this presentation, we will provide evidence on the virtues of how high spatial resolution multispectral TIR data can provide for better analysis of the UHI that cannot now be attained via TIR data obtained from satellites. Furthermore, we wish to provide compelling evidence on why future TIR satellite sensors should collect data at fine spatial resolutions (e.g. <30m) to better allow for measurement of surface thermal energy fluxes from discrete urban surfaces, and to better understand how surface fluxes from different urban materials in cities around the world in different climatic regimes, affect development of the UHI characteristics.

  9. VLBI observations of single stars, spatial resolution and astrometry

    NASA Astrophysics Data System (ADS)

    Pestalozzi, M.; Benz, A. O.; Conway, J. E.; Gudel, M.; Smith, K.

    VLBI studies can both spatially resolve single dMe stars and measure their positions at submilliarcsecond accuracy. The spatial resolution gives the brightness temperature and allows us to draw co nclusions about the nature of the emitting processes. In particular it is possib le to distinguish between thermal or non-thermal emission. The position accuracy gives better knowledge about the astrometric properties (like proper motion and parallax) especially for nearby stars. In this contribution recent results of c ontinuum VLBI observations towards two dMe stars (YZ CMi and AD Leo) at 8.4 GHz are presented. For YZ CMi an estimate of the size of the coronal emission is giv en (0.98 mas in diameter or 0.7 ±0.3 Rstar above the photosphere where Rstar refers to the photospheric radius). For AD Leo an upper limit is gi ven, i.e. the emitting region is shown to be < 0.8 Rstar. The position o f YZ CMi is found to differ by 32 mas form the Hipparcos catalogue, a discrepanc y mostly due to large errors in the listed proper motion (Pestalozzi et al. 2000 ).

  10. Development of an Objective High Spatial Resolution Soil Moisture Index

    NASA Astrophysics Data System (ADS)

    Zavodsky, B.; Case, J.; White, K.; Bell, J. R.

    2015-12-01

    Drought detection, analysis, and mitigation has become a key challenge for a diverse set of decision makers, including but not limited to operational weather forecasters, climatologists, agricultural interests, and water resource management. One tool that is heavily used is the United States Drought Monitor (USDM), which is derived from a complex blend of objective data and subjective analysis on a state-by-state basis using a variety of modeled and observed precipitation, soil moisture, hydrologic, and vegetation and crop health data. The NASA Short-term Prediction Research and Transition (SPoRT) Center currently runs a real-time configuration of the Noah land surface model (LSM) within the NASA Land Information System (LIS) framework. The LIS-Noah is run at 3-km resolution for local numerical weather prediction (NWP) and situational awareness applications at select NOAA/National Weather Service (NWS) forecast offices over the Continental U.S. (CONUS). To enhance the practicality of the LIS-Noah output for drought monitoring and assessing flood potential, a 30+-year soil moisture climatology has been developed in an attempt to place near real-time soil moisture values in historical context at county- and/or watershed-scale resolutions. This LIS-Noah soil moisture climatology and accompanying anomalies is intended to complement the current suite of operational products, such as the North American Land Data Assimilation System phase 2 (NLDAS-2), which are generated on a coarser-resolution grid that may not capture localized, yet important soil moisture features. Daily soil moisture histograms are used to identify the real-time soil moisture percentiles at each grid point according to the county or watershed in which the grid point resides. Spatial plots are then produced that map the percentiles as proxies to the different USDM categories. This presentation will highlight recent developments of this gridded, objective soil moisture index, comparison to subjective

  11. Optoelectronic image scanning with high spatial resolution and reconstruction fidelity

    NASA Astrophysics Data System (ADS)

    Craubner, Siegfried I.

    2002-02-01

    In imaging systems the detector arrays deliver at the output time-discrete signals, where the spatial frequencies of the object scene are mapped into the electrical signal frequencies. Since the spatial frequency spectrum cannot be bandlimited by the front optics, the usual detector arrays perform a spatial undersampling and as a consequence aliasing occurs. A means to partially suppress the backfolded alias band is bandwidth limitation in the reconstruction low-pass, at the price of resolution loss. By utilizing a bilinear detector array in a pushbroom-type scanner, undersampling and aliasing can be overcome. For modeling the perception, the theory of discrete systems and multirate digital filter banks is applied, where aliasing cancellation and perfect reconstruction play an important role. The discrete transfer function of a bilinear array can be imbedded into the scheme of a second-order filter bank. The detector arrays already build the analysis bank and the overall filter bank is completed with the synthesis bank, for which stabilized inverse filters are proposed, to compensate for the low-pass characteristics and to approximate perfect reconstruction. The synthesis filter branch can be realized in a so-called `direct form,' or the `polyphase form,' where the latter is an expenditure-optimal solution, which gives advantages when implemented in a signal processor. This paper attempts to introduce well-established concepts of the theory of multirate filter banks into the analysis of scanning imagers, which is applicable in a much broader sense than for the problems addressed here. To the author's knowledge this is also a novelty.

  12. Forest Classification Accuracy as Influenced by Multispectral Scanner Spatial Resolution. [Sam Houston National Forest, Texas

    NASA Technical Reports Server (NTRS)

    Nalepka, R. F. (Principal Investigator); Sadowski, F. E.; Sarno, J. E.

    1976-01-01

    The author has identified the following significant results. A supervised classification within two separate ground areas of the Sam Houston National Forest was carried out for two sq meters spatial resolution MSS data. Data were progressively coarsened to simulate five additional cases of spatial resolution ranging up to 64 sq meters. Similar processing and analysis of all spatial resolutions enabled evaluations of the effect of spatial resolution on classification accuracy for various levels of detail and the effects on area proportion estimation for very general forest features. For very coarse resolutions, a subset of spectral channels which simulated the proposed thematic mapper channels was used to study classification accuracy.

  13. Device for high spatial resolution chemical analysis of a sample and method of high spatial resolution chemical analysis

    DOEpatents

    Van Berkel, Gary J.

    2015-10-06

    A system and method for analyzing a chemical composition of a specimen are described. The system can include at least one pin; a sampling device configured to contact a liquid with a specimen on the at least one pin to form a testing solution; and a stepper mechanism configured to move the at least one pin and the sampling device relative to one another. The system can also include an analytical instrument for determining a chemical composition of the specimen from the testing solution. In particular, the systems and methods described herein enable chemical analysis of specimens, such as tissue, to be evaluated in a manner that the spatial-resolution is limited by the size of the pins used to obtain tissue samples, not the size of the sampling device used to solubilize the samples coupled to the pins.

  14. An approach for mapping large-area impervious surfaces: Synergistic use of Landsat-7 ETM+ and high spatial resolution imagery

    USGS Publications Warehouse

    Yang, L.; Huang, C.; Homer, C.G.; Wylie, B.K.; Coan, M.J.

    2003-01-01

    A wide range of urban ecosystem studies, including urban hydrology, urban climate, land use planning, and resource management, require current and accurate geospatial data of urban impervious surfaces. We developed an approach to quantify urban impervious surfaces as a continuous variable by using multisensor and multisource datasets. Subpixel percent impervious surfaces at 30-m resolution were mapped using a regression tree model. The utility, practicality, and affordability of the proposed method for large-area imperviousness mapping were tested over three spatial scales (Sioux Falls, South Dakota, Richmond, Virginia, and the Chesapeake Bay areas of the United States). Average error of predicted versus actual percent impervious surface ranged from 8.8 to 11.4%, with correlation coefficients from 0.82 to 0.91. The approach is being implemented to map impervious surfaces for the entire United States as one of the major components of the circa 2000 national land cover database.

  15. Oil slick morphology derived from AVIRIS measurements of the Deepwater Horizon oil spill: Implications for spatial resolution requirements of remote sensors

    USGS Publications Warehouse

    Sun, Shaojie; Hu, Chuanmin; Feng, Lian; Swayze, Gregg A.; Holmes, Jamie; Graettinger, George; MacDonald, Ian R.; Garcia, Oscar; Leifer, Ira

    2016-01-01

    Using fine spatial resolution (~ 7.6 m) hyperspectral AVIRIS data collected over the Deepwater Horizon oil spill in the Gulf of Mexico, we statistically estimated slick lengths, widths and length/width ratios to characterize oil slick morphology for different thickness classes. For all AVIRIS-detected oil slicks (N = 52,100 continuous features) binned into four thickness classes (≤ 50 μm but thicker than sheen, 50–200 μm, 200–1000 μm, and > 1000 μm), the median lengths, widths, and length/width ratios of these classes ranged between 22 and 38 m, 7–11 m, and 2.5–3.3, respectively. The AVIRIS data were further aggregated to 30-m (Landsat resolution) and 300-m (MERIS resolution) spatial bins to determine the fractional oil coverage in each bin. Overall, if 50% fractional pixel coverage were to be required to detect oil with thickness greater than sheen for most oil containing pixels, a 30-m resolution sensor would be needed.

  16. Oil slick morphology derived from AVIRIS measurements of the Deepwater Horizon oil spill: Implications for spatial resolution requirements of remote sensors.

    PubMed

    Sun, Shaojie; Hu, Chuanmin; Feng, Lian; Swayze, Gregg A; Holmes, Jamie; Graettinger, George; MacDonald, Ian; Garcia, Oscar; Leifer, Ira

    2016-02-15

    Using fine spatial resolution (~7.6m) hyperspectral AVIRIS data collected over the Deepwater Horizon oil spill in the Gulf of Mexico, we statistically estimated slick lengths, widths and length/width ratios to characterize oil slick morphology for different thickness classes. For all AVIRIS-detected oil slicks (N=52,100 continuous features) binned into four thickness classes (≤50 μm but thicker than sheen, 50-200 μm, 200-1000 μm, and >1000 μm), the median lengths, widths, and length/width ratios of these classes ranged between 22 and 38 m, 7-11 m, and 2.5-3.3, respectively. The AVIRIS data were further aggregated to 30-m (Landsat resolution) and 300-m (MERIS resolution) spatial bins to determine the fractional oil coverage in each bin. Overall, if 50% fractional pixel coverage were to be required to detect oil with thickness greater than sheen for most oil containing pixels, a 30-m resolution sensor would be needed.

  17. Analysis of spatial inhomogeneities in cumulus clouds using high spatial resolution Landsat data

    NASA Technical Reports Server (NTRS)

    Parker, Lindsay; Welch, R. M.; Musil, D. J.

    1986-01-01

    Aircraft observations and high resolution Landsat MSS digital data are used to determine the sizes of spatial inhomogeneities ('holes') in cumulus clouds. The majority of holes are found near cloud edges, but the larger holes tend to be found in cloud interiors. Aircraft measurements show these cloud spatial inhomogeneities in the range of 100 to 500 m, while Landsat data show them in the range of 100 m to 3 km. The number of holes per cloud decreases exponentially with increasing hole diameter. Small clouds not only have smaller holes, but also fewer holes than large clouds. Large clouds have large holes in them, as well as large numbers of the smaller holes. The total cloud area occupied by holes increases with increasing cloud size.

  18. Global anthropogenic heat flux database with high spatial resolution

    NASA Astrophysics Data System (ADS)

    Dong, Y.; Varquez, A. C. G.; Kanda, M.

    2017-02-01

    This study developed a top-down method for estimating global anthropogenic heat emission (AHE), with a high spatial resolution of 30 arc-seconds and temporal resolution of 1 h. Annual average AHE was derived from human metabolic heating and primary energy consumption, which was further divided into three components based on consumer sector. The first and second components were heat loss and heat emissions from industrial sectors equally distributed throughout the country and populated areas, respectively. The third component comprised the sum of emissions from commercial, residential, and transportation sectors (CRT). Bulk AHE from the CRT was proportionally distributed using a global population dataset, with a radiance-calibrated nighttime lights adjustment. An empirical function to estimate monthly fluctuations of AHE based on gridded monthly temperatures was derived from various Japanese and American city measurements. Finally, an AHE database with a global coverage was constructed for the year 2013. Comparisons between our proposed AHE and other existing datasets revealed that the problem of overestimation of AHE intensity in previous top-down models was mitigated by the separation of energy consumption sectors; furthermore, the problem of AHE underestimation at central urban areas was solved by the nighttime lights adjustment. A strong agreement in the monthly profiles of AHE between our database and other bottom-up datasets further proved the validity of the current methodology. Investigations of AHE for the 29 largest urban agglomerations globally highlighted that the share of heat emissions from CRT sectors to the total AHE at the city level was 40-95%; whereas that of metabolic heating varied with the city's level of development by a range of 2-60%. A negative correlation between gross domestic product (GDP) and the share of metabolic heating to a city's total AHE was found. Globally, peak AHE values were found to occur between December and February, while

  19. Methods of photoelectrode characterization with high spatial and temporal resolution

    DOE PAGES

    Esposito, Daniel V.; Baxter, Jason B.; John, Jimmy; ...

    2015-06-19

    Here, materials and photoelectrode architectures that are highly efficient, extremely stable, and made from low cost materials are required for commercially viable photoelectrochemical (PEC) water-splitting technology. A key challenge is the heterogeneous nature of real-world materials, which often possess spatial variation in their crystal structure, morphology, and/or composition at the nano-, micro-, or macro-scale. Different structures and compositions can have vastly different properties and can therefore strongly influence the overall performance of the photoelectrode through complex structure–property relationships. A complete understanding of photoelectrode materials would also involve elucidation of processes such as carrier collection and electrochemical charge transfer that occurmore » at very fast time scales. We present herein an overview of a broad suite of experimental and computational tools that can be used to define the structure–property relationships of photoelectrode materials at small dimensions and on fast time scales. A major focus is on in situ scanning-probe measurement (SPM) techniques that possess the ability to measure differences in optical, electronic, catalytic, and physical properties with nano- or micro-scale spatial resolution. In situ ultrafast spectroscopic techniques, used to probe carrier dynamics involved with processes such as carrier generation, recombination, and interfacial charge transport, are also discussed. Complementing all of these experimental techniques are computational atomistic modeling tools, which can be invaluable for interpreting experimental results, aiding in materials discovery, and interrogating PEC processes at length and time scales not currently accessible by experiment. In addition to reviewing the basic capabilities of these experimental and computational techniques, we highlight key opportunities and limitations of applying these tools for the development of PEC materials.« less

  20. Methods of photoelectrode characterization with high spatial and temporal resolution

    SciTech Connect

    Esposito, Daniel V.; Baxter, Jason B.; John, Jimmy; Lewis, Nathan S.; Moffat, Thomas P.; Ogitsu, Tadashi; O'Neil, Glen D.; Pham, Tuan Anh; Talin, A. Alec; Velazquez, Jesus M.; Wood, Brandon C.

    2015-06-19

    Here, materials and photoelectrode architectures that are highly efficient, extremely stable, and made from low cost materials are required for commercially viable photoelectrochemical (PEC) water-splitting technology. A key challenge is the heterogeneous nature of real-world materials, which often possess spatial variation in their crystal structure, morphology, and/or composition at the nano-, micro-, or macro-scale. Different structures and compositions can have vastly different properties and can therefore strongly influence the overall performance of the photoelectrode through complex structure–property relationships. A complete understanding of photoelectrode materials would also involve elucidation of processes such as carrier collection and electrochemical charge transfer that occur at very fast time scales. We present herein an overview of a broad suite of experimental and computational tools that can be used to define the structure–property relationships of photoelectrode materials at small dimensions and on fast time scales. A major focus is on in situ scanning-probe measurement (SPM) techniques that possess the ability to measure differences in optical, electronic, catalytic, and physical properties with nano- or micro-scale spatial resolution. In situ ultrafast spectroscopic techniques, used to probe carrier dynamics involved with processes such as carrier generation, recombination, and interfacial charge transport, are also discussed. Complementing all of these experimental techniques are computational atomistic modeling tools, which can be invaluable for interpreting experimental results, aiding in materials discovery, and interrogating PEC processes at length and time scales not currently accessible by experiment. In addition to reviewing the basic capabilities of these experimental and computational techniques, we highlight key opportunities and limitations of applying these tools for the development of PEC materials.

  1. Spatially Regularized Compressed Sensing for High Angular Resolution Diffusion Imaging

    PubMed Central

    Rathi, Yogesh; Dolui, Sudipto

    2013-01-01

    Despite the relative recency of its inception, the theory of compressive sampling (aka compressed sensing) (CS) has already revolutionized multiple areas of applied sciences, a particularly important instance of which is medical imaging. Specifically, the theory has provided a different perspective on the important problem of optimal sampling in magnetic resonance imaging (MRI), with an ever-increasing body of works reporting stable and accurate reconstruction of MRI scans from the number of spectral measurements which would have been deemed unacceptably small as recently as five years ago. In this paper, the theory of CS is employed to palliate the problem of long acquisition times, which is known to be a major impediment to the clinical application of high angular resolution diffusion imaging (HARDI). Specifically, we demonstrate that a substantial reduction in data acquisition times is possible through minimization of the number of diffusion encoding gradients required for reliable reconstruction of HARDI scans. The success of such a minimization is primarily due to the availability of spherical ridgelet transformation, which excels in sparsifying HARDI signals. What makes the resulting reconstruction procedure even more accurate is a combination of the sparsity constraints in the diffusion domain with additional constraints imposed on the estimated diffusion field in the spatial domain. Accordingly, the present paper describes an original way to combine the diffusion-and spatial-domain constraints to achieve a maximal reduction in the number of diffusion measurements, while sacrificing little in terms of reconstruction accuracy. Finally, details are provided on an efficient numerical scheme which can be used to solve the aforementioned reconstruction problem by means of standard and readily available estimation tools. The paper is concluded with experimental results which support the practical value of the proposed reconstruction methodology. PMID:21536524

  2. Global Food Security-support data at 30 m (GFSAD30)

    NASA Astrophysics Data System (ADS)

    Thenkabail, P. S.

    2013-12-01

    Monitoring global croplands (GCs) is imperative for ensuring sustainable water and food security to the people of the world in the Twenty-first Century. However, the currently available cropland products suffer from major limitations such as: (1) Absence of precise spatial location of the cropped areas; (b) Coarse resolution nature of the map products with significant uncertainties in areas, locations, and detail; (b) Uncertainties in differentiating irrigated areas from rainfed areas; (c) Absence of crop types and cropping intensities; and (e) Absence of a dedicated webdata portal for the dissemination of cropland products. Therefore, our project aims to close these gaps through a Global Food Security-support data at 30 m (GFSAD30) with 4 distinct products: 1. Cropland extentarea, 2. Crop types with focus on 8 crops that occupy 70% of the global cropland areas, 3. Irrigated versus rainfed, and 4. Cropping intensities: single, double, triple, and continuous cropping. The above 4 products will be generated for GFSAD for nominal year 2010 (GFSAD2010) based on Landsat 30m Global Land Survey 2010 (GLS2010) fused with Moderate Resolution Imaging Spectroradiometer (MODIS) 250m NDVI monthly maximum value composites (MVC) of 2009-2011 data, and suite of secondary data (e.g., long-term precipitation, temperature, GDEM elevation). GFSAD30 will be produced using three mature cropland mapping algorithms (CMAs): 1. Spectral matching techniques; 2. A cropland classification algorithm (ACCA) that is rule-based; and 3. Hierarchical segmentation (HSeg) algorithm. Funded by NASA MEaSUREs, GFSAD30 will make significant contributions to Earth System Data Records (ESDRs), Group on Earth Observations (GEO) Agriculture and Water Societal Beneficial Areas (GEO Ag. SBAs), GEO Global Agricultural Monitoring Initiative (GEO GLAM), and the recent 'Big Data' initiative by the White House. The project has the support of USGS Working Group on Global Croplands (https://powellcenter.usgs.gov/globalcroplandwater/).

  3. Development of a large-area Multigap RPC with adequate spatial resolution for muon tomography

    NASA Astrophysics Data System (ADS)

    Wang, J.; Wang, Y.; Wang, X.; Zeng, M.; Xie, B.; Han, D.; Lyu, P.; Wang, F.; Li, Y.

    2016-11-01

    We study the performance of a large-area 2-D Multigap Resistive Plate Chamber (MRPC) designed for muon tomography with high spatial resolution. An efficiency up to 98% and a spatial resolution of around 270 μ m are obtained in cosmic ray and X-ray tests. The performance of the MRPC is also investigated for two working gases: standard gas and pure Freon. The result shows that the MRPC working in pure Freon can provide higher efficiency and better spatial resolution.

  4. Analysis of the impact of spatial resolution on land/water classifications using high-resolution aerial imagery

    USGS Publications Warehouse

    Enwright, Nicholas M.; Jones, William R.; Garber, Adrienne L.; Keller, Matthew J.

    2014-01-01

    Long-term monitoring efforts often use remote sensing to track trends in habitat or landscape conditions over time. To most appropriately compare observations over time, long-term monitoring efforts strive for consistency in methods. Thus, advances and changes in technology over time can present a challenge. For instance, modern camera technology has led to an increasing availability of very high-resolution imagery (i.e. submetre and metre) and a shift from analogue to digital photography. While numerous studies have shown that image resolution can impact the accuracy of classifications, most of these studies have focused on the impacts of comparing spatial resolution changes greater than 2 m. Thus, a knowledge gap exists on the impacts of minor changes in spatial resolution (i.e. submetre to about 1.5 m) in very high-resolution aerial imagery (i.e. 2 m resolution or less). This study compared the impact of spatial resolution on land/water classifications of an area dominated by coastal marsh vegetation in Louisiana, USA, using 1:12,000 scale colour-infrared analogue aerial photography (AAP) scanned at four different dot-per-inch resolutions simulating ground sample distances (GSDs) of 0.33, 0.54, 1, and 2 m. Analysis of the impact of spatial resolution on land/water classifications was conducted by exploring various spatial aspects of the classifications including density of waterbodies and frequency distributions in waterbody sizes. This study found that a small-magnitude change (1–1.5 m) in spatial resolution had little to no impact on the amount of water classified (i.e. percentage mapped was less than 1.5%), but had a significant impact on the mapping of very small waterbodies (i.e. waterbodies ≤ 250 m2). These findings should interest those using temporal image classifications derived from very high-resolution aerial photography as a component of long-term monitoring programs.

  5. Monte Carlo code for high spatial resolution ocean color simulations.

    PubMed

    D'Alimonte, Davide; Zibordi, Giuseppe; Kajiyama, Tamito; Cunha, José C

    2010-09-10

    A Monte Carlo code for ocean color simulations has been developed to model in-water radiometric fields of downward and upward irradiance (E(d) and E(u)), and upwelling radiance (L(u)) in a two-dimensional domain with a high spatial resolution. The efficiency of the code has been optimized by applying state-of-the-art computing solutions, while the accuracy of simulation results has been quantified through benchmark with the widely used Hydrolight code for various values of seawater inherent optical properties and different illumination conditions. Considering a seawater single scattering albedo of 0.9, as well as surface waves of 5 m width and 0.5 m height, the study has shown that the number of photons required to quantify uncertainties induced by wave focusing effects on E(d), E(u), and L(u) data products is of the order of 10(6), 10(9), and 10(10), respectively. On this basis, the effects of sea-surface geometries on radiometric quantities have been investigated for different surface gravity waves. Data products from simulated radiometric profiles have finally been analyzed as a function of the deployment speed and sampling frequency of current free-fall systems in view of providing recommendations to improve measurement protocols.

  6. An evaluation of the spatial resolution of soil moisture information

    NASA Technical Reports Server (NTRS)

    Hardy, K. R.; Cohen, S. H.; Rogers, L. K.; Burke, H. H. K.; Leupold, R. C.; Smallwood, M. D.

    1981-01-01

    Rainfall-amount patterns in the central regions of the U.S. were assessed. The spatial scales of surface features and their corresponding microwave responses in the mid western U.S. were investigated. The usefulness for U.S. government agencies of soil moisture information at scales of 10 km and 1 km. was ascertained. From an investigation of 494 storms, it was found that the rainfall resulting from the passage of most types of storms produces patterns which can be resolved on a 10 km scale. The land features causing the greatest problem in the sensing of soil moisture over large agricultural areas with a radiometer are bodies of water. Over the mid-western portions of the U.S., water occupies less than 2% of the total area, the consequently, the water bodies will not have a significant impact on the mapping of soil moisture. Over most of the areas, measurements at a 10-km resolution would adequately define the distribution of soil moisture. Crop yield models and hydrological models would give improved results if soil moisture information at scales of 10 km was available.

  7. Monitoring of vegetation impact due to trampling on Cadillac Mountain summit using high spatial resolution remote sensing data sets.

    PubMed

    Kim, Min-Kook; Daigle, John J

    2012-11-01

    Cadillac Mountain--the highest peak along the eastern seaboard of the United States--is a major tourist destination in Acadia National Park, Maine. Managing vegetation impact due to trampling on the Cadillac Mountain summit is extremely challenging because of the large number of visitors and the general open nature of landscape in this fragile subalpine environmental setting. Since 2000, more intensive management strategies--based on placing physical barriers and educational messages for visitors--have been employed to protect threatened vegetation, decrease vegetation impact, and enhance vegetation recovery in the vicinity of the summit loop trail. The primary purpose of this study was to evaluate the effect of the management strategies employed. For this purpose, vegetation cover changes between 2001 and 2007 were detected using multispectral high spatial resolution remote sensing data sets. A normalized difference vegetation index was employed to identify the rates of increase and decrease in the vegetation areas. Three buffering distances (30, 60, and 90 m) from the edges of the trail were used to define multiple spatial extents of the site, and the same spatial extents were employed at a nearby control site that had no visitors. No significant differences were detected between the mean rates of vegetation increase and decrease at the experimental site compared with a nearby control site in the case of a small spatial scale (≤30 m) comparison (in all cases P > 0.05). However, in the medium (≤60 m) and large (≤90 m) spatial scales, the rates of increased vegetation were significantly greater and rates of decreased vegetation significantly lower at the experimental site compared with the control site (in all cases P < 0.001). Research implications are explored that relate to the spatial extent of the radial patterns of impact of trampling on vegetation at the site level. Management implications are explored in terms of the spatial strategies used to

  8. High spatial resolution mid-infrared studies of planetary systems

    NASA Astrophysics Data System (ADS)

    Skemer, Andrew

    I present the results of six papers related the formation and evolution of planets and planetary systems, all of which are based on high-resolution, ground-based, mid-infrared observations. The first three chapters are studies of T Tauri binaries. T Tauri stars are young, low mass stars, whose disks form the building blocks of extrasolar planets. The first chapter is a study of the 0.68"/0.12" triple system, T Tauri. Our spatially resolved N-band photometry reveals silicate absorption towards one component, T Tau Sa, indicating the presence of an edge-on disk, which is in contrast to the other components. The second chapter is an adaptive optics fed N-band spectroscopy study of the 0.88" binary, UY Aur. We find that the dust grains around UY Aur A are ISM-like, while the mineralogy of the dust around UY Aur B is more uncertain, due to self-extinction. The third chapter presents a survey of spatially resolved silicate spectroscopy for nine T Tauri binaries. We find with 90%-95% confidence that the silicate features of the binaries are more similar than those of randomly paired single stars. This implies that a shared binary property, such as age or composition, is an important parameter in dust grain evolution. The fourth chapter is a study of the planetary system, 2MASS 1207. We explore the source of 2MASS 1207 b's under-luminosity, which has typically been explained as the result of an edge-on disk of large, grey-extincting dust grains. We find that the edge-on disk theory is incompatible with several lines of evidence, and suggest that 2MASS 1207 b's appearance can be explained by a thick cloudy atmosphere, which might be typical among young, planetary systems. The fifth chapter is a study of the white dwarf, Sirius B, which in the context of this thesis is being studied as a post-planetary system. Our N-band imaging demonstrates that Sirius B does not have an infrared excess, in contrast to previous results. The sixth chapter is a study of mid

  9. Trade-off between angular and spatial resolutions in in vivo fiber tractography.

    PubMed

    Vos, Sjoerd B; Aksoy, Murat; Han, Zhaoying; Holdsworth, Samantha J; Maclaren, Julian; Viergever, Max A; Leemans, Alexander; Bammer, Roland

    2016-04-01

    Tractography is becoming an increasingly popular method to reconstruct white matter connections in vivo. The diffusion MRI data that tractography is based on requires a high angular resolution to resolve crossing fibers whereas high spatial resolution is required to distinguish kissing from crossing fibers. However, scan time increases with increasing spatial and angular resolutions, which can become infeasible in clinical settings. Here we investigated the trade-off between spatial and angular resolutions to determine which of these factors is most worth investing scan time in. We created a unique diffusion MRI dataset with 1.0 mm isotropic resolution and a high angular resolution (100 directions) using an advanced 3D diffusion-weighted multi-slab EPI acquisition. This dataset was reconstructed to create subsets of lower angular (75, 50, and 25 directions) and lower spatial (1.5, 2.0, and 2.5 mm) resolution. Using all subsets, we investigated the effects of angular and spatial resolutions in three fiber bundles-the corticospinal tract, arcuate fasciculus and corpus callosum-by analyzing the volumetric bundle overlap and anatomical correspondence between tracts. Our results indicate that the subsets of 25 and 50 directions provided inferior tract reconstructions compared with the datasets with 75 and 100 directions. Datasets with spatial resolutions of 1.0, 1.5, and 2.0 mm were comparable, while the lowest resolution (2.5 mm) datasets had discernible inferior quality. In conclusion, we found that angular resolution appeared to be more influential than spatial resolution in improving tractography results. Spatial resolutions higher than 2.0 mm only appear to benefit multi-fiber tractography methods if this is not at the cost of decreased angular resolution.

  10. Breast density estimation from high spectral and spatial resolution MRI.

    PubMed

    Li, Hui; Weiss, William A; Medved, Milica; Abe, Hiroyuki; Newstead, Gillian M; Karczmar, Gregory S; Giger, Maryellen L

    2016-10-01

    A three-dimensional breast density estimation method is presented for high spectral and spatial resolution (HiSS) MR imaging. Twenty-two patients were recruited (under an Institutional Review Board--approved Health Insurance Portability and Accountability Act-compliant protocol) for high-risk breast cancer screening. Each patient received standard-of-care clinical digital x-ray mammograms and MR scans, as well as HiSS scans. The algorithm for breast density estimation includes breast mask generating, breast skin removal, and breast percentage density calculation. The inter- and intra-user variabilities of the HiSS-based density estimation were determined using correlation analysis and limits of agreement. Correlation analysis was also performed between the HiSS-based density estimation and radiologists' breast imaging-reporting and data system (BI-RADS) density ratings. A correlation coefficient of 0.91 ([Formula: see text]) was obtained between left and right breast density estimations. An interclass correlation coefficient of 0.99 ([Formula: see text]) indicated high reliability for the inter-user variability of the HiSS-based breast density estimations. A moderate correlation coefficient of 0.55 ([Formula: see text]) was observed between HiSS-based breast density estimations and radiologists' BI-RADS. In summary, an objective density estimation method using HiSS spectral data from breast MRI was developed. The high reproducibility with low inter- and low intra-user variabilities shown in this preliminary study suggest that such a HiSS-based density metric may be potentially beneficial in programs requiring breast density such as in breast cancer risk assessment and monitoring effects of therapy.

  11. Comparison of alternative spatial resolutions in the application of a spatially distributed biogeochemical model over complex terrain

    USGS Publications Warehouse

    Turner, D.P.; Dodson, R.; Marks, D.

    1996-01-01

    Spatially distributed biogeochemical models may be applied over grids at a range of spatial resolutions, however, evaluation of potential errors and loss of information at relatively coarse resolutions is rare. In this study, a georeferenced database at the 1-km spatial resolution was developed to initialize and drive a process-based model (Forest-BGC) of water and carbon balance over a gridded 54976 km2 area covering two river basins in mountainous western Oregon. Corresponding data sets were also prepared at 10-km and 50-km spatial resolutions using commonly employed aggregation schemes. Estimates were made at each grid cell for climate variables including daily solar radiation, air temperature, humidity, and precipitation. The topographic structure, water holding capacity, vegetation type and leaf area index were likewise estimated for initial conditions. The daily time series for the climatic drivers was developed from interpolations of meteorological station data for the water year 1990 (1 October 1989-30 September 1990). Model outputs at the 1-km resolution showed good agreement with observed patterns in runoff and productivity. The ranges for model inputs at the 10-km and 50-km resolutions tended to contract because of the smoothed topography. Estimates for mean evapotranspiration and runoff were relatively insensitive to changing the spatial resolution of the grid whereas estimates of mean annual net primary production varied by 11%. The designation of a vegetation type and leaf area at the 50-km resolution often subsumed significant heterogeneity in vegetation, and this factor accounted for much of the difference in the mean values for the carbon flux variables. Although area wide means for model outputs were generally similar across resolutions, difference maps often revealed large areas of disagreement. Relatively high spatial resolution analyses of biogeochemical cycling are desirable from several perspectives and may be particularly important in the

  12. Cumulus cloud field morphology and spatial patterns derived from high spatial resolution Landsat imagery

    NASA Technical Reports Server (NTRS)

    Sengupta, S. K.; Welch, R. M.; Navar, M. S.; Berendes, T. A.; Chen, D. W.

    1990-01-01

    Using high-spatial-resolution Landsat MSS imagery, the cumulus cloud morphology, cloud nearest-neighbor distributions, and cloud clumping scales were investigated. It is shown that the cloud-size distribution can be represented by a mixture of two power laws; clouds of diameters less than 1 km have power-law slope range of 1.4-2.3, while larger clouds have slopes from 2.1 to 4.75. The break in power-law slope occurs at the cloud size that makes the largest contribution to cloud cover. Results suggest that larger clouds grow at the expense of smaller clouds. It was also found that the cloud inhomogeneities have significant impact on radiative fluxes.

  13. Error Estimation in an Optimal Interpolation Scheme for High Spatial and Temporal Resolution SST Analyses

    NASA Technical Reports Server (NTRS)

    Rigney, Matt; Jedlovec, Gary; LaFontaine, Frank; Shafer, Jaclyn

    2010-01-01

    Heat and moisture exchange between ocean surface and atmosphere plays an integral role in short-term, regional NWP. Current SST products lack both spatial and temporal resolution to accurately capture small-scale features that affect heat and moisture flux. NASA satellite is used to produce high spatial and temporal resolution SST analysis using an OI technique.

  14. Improvement of spatial resolution in the longitudinal direction for isotropic imaging in helical CT

    NASA Astrophysics Data System (ADS)

    Tsukagoshi, Shinsuke; Ota, Takamasa; Fujii, Misako; Kazama, Masahiro; Okumura, Miwa; Johkoh, Takeshi

    2007-02-01

    Experiments were conducted to confirm the isotropic spatial resolution of multislice CT with a 0.5 mm slice thickness. Isotropic spatial resolution means that the spatial resolution in the transaxial plane (X-Y plane) and that in the longitudinal direction (Z direction) are equivalent. To obtain point spread function (PSF) values in the X-Y-Z directions, three-dimensional voxel data were obtained by helical scanning of a bead phantom. The modulation transfer function (MTF) values were then obtained by three-dimensional Fourier transform of the PSF. Evaluation of the spatial resolution in the X-Y-Z directions by the MTF values showed that the spatial resolution in the Z direction does not depend on the reconstruction kernel used. It was also found that the spatial resolution in the Z direction, as compared with that in the X-Y plane, is superior with the standard kernel for the abdomen and is inferior with the high-definition kernel for the ears/bones. By performing sharpening filter processing in the Z direction with a high-definition kernel, comparable spatial resolution could be obtained in the X-Y-Z directions. It was confirmed that adjusting the spatial resolution in the Z direction with the reconstruction kernel used is an effective method for isotropic imaging.

  15. Spatial resolution in CBCT machines for dental/maxillofacial applications-what do we know today?

    PubMed

    Brüllmann, D; Schulze, R K W

    2015-01-01

    Spatial resolution is one of the most important parameters objectively defining image quality, particularly in dental imaging, where fine details often have to be depicted. Here, we review the current status on assessment parameters for spatial resolution and on published data regarding spatial resolution in CBCT images. The current concepts of visual [line-pair (lp) measurements] and automated [modulation transfer function (MTF)] assessment of spatial resolution in CBCT images are summarized and reviewed. Published measurement data on spatial resolution in CBCT are evaluated and analysed. Effective (i.e. actual) spatial resolution available in CBCT images is being influenced by the two-dimensional detector, the three-dimensional reconstruction process, patient movement during the scan and various other parameters. In the literature, the values range between 0.6 and 2.8 lp mm(-1) (visual assessment; median, 1.7 lp mm(-1)) vs MTF (range, 0.5-2.3 cycles per mm; median, 2.1 lp mm(-1)). Spatial resolution of CBCT images is approximately one order of magnitude lower than that of intraoral radiographs. Considering movement, scatter effects and other influences in real-world scans of living patients, a realistic spatial resolution of just above 1 lp mm(-1) could be expected.

  16. High-resolution full-field spatial coherence gated optical tomography using monochromatic light source

    NASA Astrophysics Data System (ADS)

    Srivastava, Vishal; Nandy, Sreyankar; Singh Mehta, Dalip

    2013-09-01

    We demonstrate dispersion free, high-resolution full-field spatial coherence gated optical tomography using spatially incoherent monochromatic light source. Spatial coherence properties of light source were synthesized by means of combining a static diffuser and vibrating multi mode fiber bundle. Due to low spatial coherence of light source, the axial resolution of the system was achieved similar to that of conventional optical coherence tomography which utilizes low temporal coherence. Experimental results of fringe visibility versus optical path difference are presented for varying numerical apertures objective lenses. High resolution optically sectioned images of multilayer onion skin, and red blood cells are presented.

  17. Selecting a spatial resolution for estimation of per-field green leaf area index

    NASA Technical Reports Server (NTRS)

    Curran, Paul J.; Williamson, H. Dawn

    1988-01-01

    For any application of multispectral scanner (MSS) data, a user is faced with a number of choices concerning the characteristics of the data; one of these is their spatial resolution. A pilot study was undertaken to determine the spatial resolution that would be optimal for the per-field estimation of green leaf area index (GLAI) in grassland. By reference to empirically-derived data from three areas of grassland, the suitable spatial resolution was hypothesized to lie in the lower portion of a 2-18 m range. To estimate per-field GLAI, airborne MSS data were collected at spatial resolutions of 2 m, 5 m and 10 m. The highest accuracies of per-field GLAI estimation were achieved using MSS data with spatial resolutions of 2 m and 5 m.

  18. Evaluating the Value of High Spatial Resolution in National Capacity Expansion Models using ReEDS

    SciTech Connect

    Krishnan, Venkat; Cole, Wesley

    2016-11-14

    Power sector capacity expansion models (CEMs) have a broad range of spatial resolutions. This paper uses the Regional Energy Deployment System (ReEDS) model, a long-term national scale electric sector CEM, to evaluate the value of high spatial resolution for CEMs. ReEDS models the United States with 134 load balancing areas (BAs) and captures the variability in existing generation parameters, future technology costs, performance, and resource availability using very high spatial resolution data, especially for wind and solar modeled at 356 resource regions. In this paper we perform planning studies at three different spatial resolutions--native resolution (134 BAs), state-level, and NERC region level--and evaluate how results change under different levels of spatial aggregation in terms of renewable capacity deployment and location, associated transmission builds, and system costs. The results are used to ascertain the value of high geographically resolved models in terms of their impact on relative competitiveness among renewable energy resources.

  19. Achieving High Spatial Resolution Surface Plasmon Resonance Microscopy with Image Reconstruction.

    PubMed

    Yu, Hui; Shan, Xiaonan; Wang, Shaopeng; Tao, Nongjian

    2017-03-07

    Surface plasmon resonance microscopy (SPRM) is a powerful platform for biomedical imaging and molecular binding kinetics analysis. However, the spatial resolution of SPRM along the plasmon propagation direction (longitudinal) is determined by the decaying length of the plasmonic wave, which can be as large as tens of microns. Different methods have been proposed to improve the spatial resolution, but each at the expense of decreased sensitivity or temporal resolution. Here we present a method to achieve high spatial resolution SPRM based on deconvolution of complex field. The method does not require additional optical setup and improves the spatial resolution in the longitudinal direction. We applied the method to image nanoparticles and achieved close-to-diffraction limit resolution in both longitudinal and transverse directions.

  20. An effect of spatial resolution of remotely sensed data for vegetation analysis over an arid zone

    NASA Astrophysics Data System (ADS)

    Oguro, Y.; Tsuchiya, K.; Setoguchi, R.

    1997-05-01

    One of the recent trends in the development of an optical sensor of earth observation satellite is a great importance of spatial resolution and the order of 1 - 2 meter resolution sensor is under development. To cope with this trend analyses are made on the effect of extremely fine spatial resolution of land cover classification accuracy utilizing spatial resolution of 20 cm and 1 meter aerial multi-sensor data of an arid reddish land where desertification is taking place in small spatial scale. Applied methods are supervised classification with combination of multi-level slice(pallarelpiped classification) and the Mahalanobis distance. The result of analysis indicates that the difference is within several percentage for 3 categories of bare land, vegetation and shadow. It was also found that small dried sparse grass land which can be recognized in 20 cm resolution image is difficult to extract in 1 meter resolution image.

  1. Selecting the spatial resolution of satellite sensors required for global monitoring of land transformations

    NASA Technical Reports Server (NTRS)

    Townshend, J. R. G.; Justice, C. O.

    1988-01-01

    The paper provides preliminary evidence for the spatial resolutions required to monitor land transformations at broad scales. This is obtained from simulations of imagery at various spatial resolutions between 125 and 4000 m derived from Landsat MSS imagery. Consideration is given to the various types of spatial images detectable by remotely-sensed systems, as well as to the difficulties associated in disentangling permanent land transformations from shorter term changes such as phenological and interannual changes.

  2. Use of UAS remote sensing data to estimate crop ET at high spatial resolution

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Estimation of the spatial distribution of evapotranspiration (ET) based on remotely sensed imagery has become useful for managing water in irrigated agricultural at various spatial scales. However, data acquired by conventional satellites (Landsat, ASTER, etc.) lack the spatial resolution to capture...

  3. Spatially adaptive block-based super-resolution.

    PubMed

    Su, Heng; Tang, Liang; Wu, Ying; Tretter, Daniel; Zhou, Jie

    2012-03-01

    Super-resolution technology provides an effective way to increase image resolution by incorporating additional information from successive input images or training samples. Various super-resolution algorithms have been proposed based on different assumptions, and their relative performances can differ in regions of different characteristics within a single image. Based on this observation, an adaptive algorithm is proposed in this paper to integrate a higher level image classification task and a lower level super-resolution process, in which we incorporate reconstruction-based super-resolution algorithms, single-image enhancement, and image/video classification into a single comprehensive framework. The target high-resolution image plane is divided into adaptive-sized blocks, and different suitable super-resolution algorithms are automatically selected for the blocks. Then, a deblocking process is applied to reduce block edge artifacts. A new benchmark is also utilized to measure the performance of super-resolution algorithms. Experimental results with real-life videos indicate encouraging improvements with our method.

  4. VizieR Online Data Catalog: IRAM 30m CO-observations in W43 (Carlhoff+, 2013)

    NASA Astrophysics Data System (ADS)

    Carlhoff, P.; Nguyen Luong, Q.; Schilke, P.; Motte, F.; Schneider, N.; Beuther, H.; Bontemps, S.; Heitsch, F.; Hill, T.; Kramer, C.; Ossenkopf, V.; Schuller, F.; Simon, R.; Wyrowski, F.

    2013-10-01

    We observed molecular clouds in the giant star forming region W43. For this project we used the IRAM 30m telescope to observe the molecular emission lines 13CO (2-1) and C18O (2-1), that trace the mid-density (n~103cm-3) molecular gas. The lines were observed with the HERA receiver and the VESPA backend. At the observed frequencies the IRAM 30m has a beam size of 11.7". We include two FITS files containing the data-cubes (pos-pos-vel) of the 13CO and C18O emission lines of the W43 complex. We used equatorial coordinates for the spatial dimensions and vlsr for the spectral dimension. The pixel size is 5.9" in spatial dimension and the spectral resolution is 0.16km/s. All values are in K. The data-cubes span an area of about 1x1.5° (RAxDec) around the center of the maps at 18:46:54.4 -02:14:11 (EQ=J2000) and the velocity range from 30 to 130km/s and include the complete W43 complex and several fore- and background clouds. (2 data files).

  5. Sub-pixel spatial resolution micro-roughness measurements with interlaced stitching

    NASA Astrophysics Data System (ADS)

    Mooney, James T.; Stahl, H. Philip

    2005-08-01

    In this paper we describe a method to increase the spatial resolution of surface micro-roughness measurements. As the surface specifications for precision optics become more demanding, the metrology instruments must cover a broad spatial frequency range. Generally, multiple instruments are used to cover the full range of the specifications. For example, an interferometer (Fizeau, Michelson, etc.) would be used to test low spatial frequency surface errors, an interferometric microscope (such as a white light interferomenter) would be used for higher spatial frequency errors, and an AFM would be used for even higher spatial frequency errors. For some precision optics, three or more instruments would be necessary. However, an increase in the resolvable spatial frequency bandwidth of a metrology instrument could reduce the number of instruments necessary to characterize the optical surface over the spatial frequency bands defined by the optical specifications. A solution to increase the resolvable spatial frequency bandwidth of micro-roughness measurements will be presented. This will be accomplished by implementing an interferometric microscope and a process called "sub-pixel spatial resolution interferometry" (SSRI) with interlaced stitching. In this process, multiple interferometric measurements are made as the optic under test (or the CCD array) is laterally shifted at sub-pixel increments. The measurements are then combined to construct a measurement with higher spatial resolution. Initial results obtained implementing a similar process used to increase the spatial resolution of measurements made with a commercially available Fizeau interferometer will be presented.

  6. Sub-pixel Spatial Resolution Micro-roughness Measurements with Interlaced Stitching

    NASA Technical Reports Server (NTRS)

    Mooney, James T.; Stahl, H. Philip

    2005-01-01

    In this paper we describe a method to increase the spatial resolution of surface micro-roughness measurements. As the surface specifications for precision optics become more demanding, the metrology instruments must cover a broad spatial frequency range. Generally, multiple instruments are used to cover the full range of the specifications. For example, a Fizeau interferometer would be used to test low spatial frequency surface errors, a white light interferometer would be used for mid spatial frequency errors, and an AFM would be used for high spatial frequency errors. For some precision optics, three instruments would be necessary. However, in many applications, an increase in the spatial resolution of a metrology instrument could negate the need for multiple instruments. A solution to increase the spatial resolution of micro-roughness measurements obtained using white light interferometry with "interlaced stitching" will be presented. In "interlaced stitching", multiple interferometric measurements are made as the optic under test (or the CCD array) is laterally shifted at sub-pixel increments. The measurements are then combined to construct a measurement with higher spatial resolution. Initial results obtained while implementing a similar process used to increase the spatial resolution of measurements made with a commercially available Fizeau interferometer will be presented.

  7. Spatial resolution and information transfer in scanning transmission electron microscopy.

    PubMed

    Peng, Yiping; Oxley, Mark P; Lupini, Andrew R; Chisholm, Matthew F; Pennycook, Stephen J

    2008-02-01

    The relation between image resolution and information transfer is explored. It is shown that the existence of higher frequency transfer in the image is just a necessary but not sufficient condition for the achievement of higher resolution. Adopting a two-point resolution criterion, we suggest that a 10% contrast level between two features in an image should be used as a practical definition of resolution. In the context of scanning transmission electron microscopy, it is shown that the channeling effect does not have a direct connection with image resolution because sharp channeling peaks do not move with the scanning probe. Through a quantitative comparison between experimental image and simulation, a Fourier-space approach is proposed to estimate defocus and sample thickness. The effective atom size in Z-contrast imaging depends on the annular detector's inner angle. Therefore, an optimum angle exists for the highest resolution as a trade-off between reduced atom size and reduced signal with limited information transfer due to noise.

  8. High spatial resolution magnetic resonance imaging of cystic adventitial disease of the popliteal artery.

    PubMed

    Maged, Ismaeel M; Turba, Ulku C; Housseini, Ahmed M; Kern, John A; Kron, Irving L; Hagspiel, Klaus D

    2010-02-01

    High spatial resolution magnetic resonance imaging (MRI) of patients with cystic adventitial disease can demonstrate connections between cysts in the adventitia and the adjacent joint, which is important for successful treatment. The inability to identify these during surgery can lead to a recurrence; thus, high spatial resolution MRI has the potential to affect therapy. This article presents the high spatial resolution MRI findings of cystic adventitial disease in a series of three consecutive patients and discusses the relevance of these findings to the etiology and therapy.

  9. Spatial Resolution and Refractive Index Contrast of Resonant Photonic Crystal Surfaces for Biosensing

    PubMed Central

    Triggs, G. J.; Fischer, M.; Stellinga, D.; Scullion, M. G.; Evans, G. J. O.; Krauss, T. F.

    2015-01-01

    By depositing a resolution test pattern on top of a Si3N4 photonic crystal resonant surface, we have measured the dependence of spatial resolution on refractive index contrast Δn. Our experimental results and finite-difference time-domain (FDTD) simulations at different refractive index contrasts show that the spatial resolution of our device reduces with reduced contrast, which is an important consideration in biosensing, where the contrast may be of order 10−2. We also compare 1-D and 2-D gratings, taking into account different incidence polarizations, leading to a better understanding of the excitation and propagation of the resonant modes in these structures, as well as how this contributes to the spatial resolution. At Δn = 0.077, we observe resolutions of 2 and 6 μm parallel to and perpendicular to the grooves of a 1-D grating, respectively, and show that for polarized illumination of a 2-D grating, resolution remains asymmetrical. Illumination of a 2-D grating at 45° results in symmetric resolution. At very low index contrast, the resolution worsens dramatically, particularly for Δn < 0.01, where we observe a resolution exceeding 10 μm for our device. In addition, we measure a reduction in the resonance linewidth as the index contrast becomes lower, corresponding to a longer resonant mode propagation length in the structure and contributing to the change in spatial resolution. PMID:26356353

  10. Exploring the spatial resolution of position-sensitive microchannel plate detectors

    NASA Astrophysics Data System (ADS)

    Wiggins, Blake; Siwal, Davinder; Desouza, Romualdo

    2016-03-01

    High amplification and excellent timing make microchannel plate (MCP) detectors excellent devices for detection of photons, electrons, and ions. In addition to providing sub-nanosecond time resolution MCP detectors can also provide spatial resolution, thus making them useful in imaging applications. Use of a resistive anode (RA) is a routinely used approach to make an MCP position-sensitive. The spatial resolution of the RA associated with detection of a single incident electron was determined. Factors impacting the spatial resolution obtained with the RA will be discussed and the achieved spatial resolution of 64 μm (FWHM) will be presented. Recently, a novel approach has been developed to provide position-sensitivity for an MCP detector. In this approach, namely the induced signal approach, the position of the incident particle is determined by sensing the electron cloud emanating from a MCP stack. By utilizing the zero-crossing point of the inherently bipolar signals, a spatial resolution of 466 μm (FWHM) has been achieved. Work to improve the spatial resolution of the induced signal approach further will be presented. Supported by the US DOE NNSA under Award No. DE-NA0002012.

  11. Zoom lens design for a novel imaging spectrometer that controls spatial and spectral resolution individually.

    PubMed

    Choi, Jin; Kim, T H; Kong, H J; Lee, Jong Ung

    2006-05-20

    A novel imaging spectrometer can individually control spatial and spectral resolution by using zoom lenses as the foreoptics of the system and a focusing lens. By varying the focal length we can use the focusing lens to change the spatial and spectral dimensions; with the foreoptics, however, we can change only the spatial dimension. Therefore the spectral resolution and the spectral range are affected by the zoom ratio of the focusing lens, whereas the spatial resolution and the field of view are affected by the multiplication of the zoom ratios of the foreoptics and the focusing lens. By properly combining two zoom ratios, we can control the spectral resolution with a fixed spatial resolution or the spatial resolution with a fixed spectral resolution. For an imaging spectrometer with this novel zooming function, we used the lens module method and third-order aberration theory to design an initial four-group zoom system with an external entrance pupil for the focusing lens. Furthermore, using the optical design software CODE V, we obtained an optimized zoom lens with a focal-length range of 50 to 150 mm. Finally, the zoom system with its transmission grating in the Littrow configuration performs satisfactorily as the focusing lens of an imaging spectrometer in the wavelength range 450-900 nm.

  12. Additional studies of forest classification accuracy as influenced by multispectral scanner spatial resolution

    NASA Technical Reports Server (NTRS)

    Sadowski, F. E.; Sarno, J. E.

    1976-01-01

    First, an analysis of forest feature signatures was used to help explain the large variation in classification accuracy that can occur among individual forest features for any one case of spatial resolution and the inconsistent changes in classification accuracy that were demonstrated among features as spatial resolution was degraded. Second, the classification rejection threshold was varied in an effort to reduce the large proportion of unclassified resolution elements that previously appeared in the processing of coarse resolution data when a constant rejection threshold was used for all cases of spatial resolution. For the signature analysis, two-channel ellipse plots showing the feature signature distributions for several cases of spatial resolution indicated that the capability of signatures to correctly identify their respective features is dependent on the amount of statistical overlap among signatures. Reductions in signature variance that occur in data of degraded spatial resolution may not necessarily decrease the amount of statistical overlap among signatures having large variance and small mean separations. Features classified by such signatures may thus continue to have similar amounts of misclassified elements in coarser resolution data, and thus, not necessarily improve in classification accuracy.

  13. TDDA technology for high spatial resolution SWIR InGaAs imaging

    NASA Astrophysics Data System (ADS)

    Jia, Jianxin; Wang, Yueming; Zhuang, Xiaoqiong; Yao, Yi; Wang, Shengwei; Zhao, Ding; Shu, Rong; Wang, Jianyu

    2016-11-01

    With the development of remote sensing technology, shortwave infrared (SWIR) imaging technology has got more and more attention because of its ability through the fog and high spatial resolution. High spatial resolution SWIR imaging often requires high frame frequency. If the frame frequency is too high, it could cause the shortage of the image's signal to noise ratio (SNR), seriously affecting image quality. In order to solve the contradiction between high spatial resolution and sensitivity, time delay and digital accumulation (TDDA) technology is proposed in this paper to improve system's SNR and image quality. A prototype of SWIR imaging system based on a large format area InGaAs detector is designed, which demonstrates TDDA technology. The experiment results indicate that TDDA technology can increase system's SNR of the square root of accumulative stage and improve image's uniformity. The results in this paper are helpful for the improvement and application of high spatial resolution SWIR imaging technology.

  14. Multiwavelength fiber lasers based on spatial mode beating for high resolution linear and angular displacement sensing

    NASA Astrophysics Data System (ADS)

    Chen, Nan-Kuang; Chang, Yung-Hsiang; Cheng, Wood-Hi; Guo, Tuan; Guan, Bai-Ou

    2014-05-01

    We demonstrate multiwavelength fiber lasers by incorporating the micro Michelson interferometer with spatial mode beating phenomenon, which comes from the interferences among cladding modes, into ring cavity for high resolution linear and angular displacement sensing.

  15. Definition of the Spatial Resolution of X-Ray Microanalysis in Thin Foils

    NASA Technical Reports Server (NTRS)

    Williams, D. B.; Michael, J. R.; Goldstein, J. I.; Romig, A. D., Jr.

    1992-01-01

    The spatial resolution of X-ray microanalysis in thin foils is defined in terms of the incident electron beam diameter and the average beam broadening. The beam diameter is defined as the full width tenth maximum of a Gaussian intensity distribution. The spatial resolution is calculated by a convolution of the beam diameter and the average beam broadening. This definition of the spatial resolution can be related simply to experimental measurements of composition profiles across interphase interfaces. Monte Carlo calculations using a high-speed parallel supercomputer show good agreement with this definition of the spatial resolution and calculations based on this definition. The agreement is good over a range of specimen thicknesses and atomic number, but is poor when excessive beam tailing distorts the assumed Gaussian electron intensity distributions. Beam tailing occurs in low-Z materials because of fast secondary electrons and in high-Z materials because of plural scattering.

  16. Action-video-game experience alters the spatial resolution of vision.

    PubMed

    Green, C S; Bavelier, D

    2007-01-01

    Playing action video games enhances several different aspects of visual processing; however, the mechanisms underlying this improvement remain unclear. Here we show that playing action video games can alter fundamental characteristics of the visual system, such as the spatial resolution of visual processing across the visual field. To determine the spatial resolution of visual processing, we measured the smallest distance a distractor could be from a target without compromising target identification. This approach exploits the fact that visual processing is hindered as distractors are brought close to the target, a phenomenon known as crowding. Compared with nonplayers, action-video-game players could tolerate smaller target-distractor distances. Thus, the spatial resolution of visual processing is enhanced in this population. Critically, similar effects were observed in non-video-game players who were trained on an action video game; this result verifies a causative relationship between video-game play and augmented spatial resolution.

  17. Imaging at high spatial resolution: Soft x-ray microscopy to 15nm

    SciTech Connect

    Attwood, D.; Chao, W.; Anderson, E.; Liddle, J.A.; Harteneck, B.; Fischer, P.; Schneider, G.; Le Gros, M.; Larabell, C.

    2006-04-05

    Soft x-ray microscopy has now achieved 15 nm spatial resolution with new zone plates and bending magnet radiation. Combined with elemental sensitivity and flexible sample environment (applied magnetic or electric fields, wet samples, windows, overcoatings) this emerges as a valuable tool for nanoscience and nanotechnology, complimenting common electron and scanning tip microscopies. In this presentation we describe recent advances in spatial resolution, expectations for the near future, and applications to magnetic materials, bio-tomography, etc.

  18. Atmospheric Correction Prototype Algorithm for High Spatial Resolution Multispectral Earth Observing Imaging Systems

    NASA Technical Reports Server (NTRS)

    Pagnutti, Mary

    2006-01-01

    This viewgraph presentation reviews the creation of a prototype algorithm for atmospheric correction using high spatial resolution earth observing imaging systems. The objective of the work was to evaluate accuracy of a prototype algorithm that uses satellite-derived atmospheric products to generate scene reflectance maps for high spatial resolution (HSR) systems. This presentation focused on preliminary results of only the satellite-based atmospheric correction algorithm.

  19. Study of satellite retrieved aerosol optical depth spatial resolution effect on particulate matter concentration prediction

    NASA Astrophysics Data System (ADS)

    Strandgren, J.; Mei, L.; Vountas, M.; Burrows, J. P.; Lyapustin, A.; Wang, Y.

    2014-10-01

    The Aerosol Optical Depth (AOD) spatial resolution effect is investigated for the linear correlation between satellite retrieved AOD and ground level particulate matter concentrations (PM2.5). The Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm was developed for the Moderate Resolution Imaging Spectroradiometer (MODIS) for obtaining AOD with a high spatial resolution of 1 km and provides a good dataset for the study of the AOD spatial resolution effect on the particulate matter concentration prediction. 946 Environmental Protection Agency (EPA) ground monitoring stations across the contiguous US have been used to investigate the linear correlation between AOD and PM2.5 using AOD at different spatial resolutions (1, 3 and 10 km) and for different spatial scales (urban scale, meso-scale and continental scale). The main conclusions are: (1) for both urban, meso- and continental scale the correlation between PM2.5 and AOD increased significantly with increasing spatial resolution of the AOD, (2) the correlation between AOD and PM2.5 decreased significantly as the scale of study region increased for the eastern part of the US while vice versa for the western part of the US, (3) the correlation between PM2.5 and AOD is much more stable and better over the eastern part of the US compared to western part due to the surface characteristics and atmospheric conditions like the fine mode fraction.

  20. Impact of spatial resolution of ocean models in depicting climate change patterns of the North Sea.

    NASA Astrophysics Data System (ADS)

    Narayan, Nikesh; Klein, Birgit; Mathis, Moritz; Klein, Holger; Mikolajewicz, Uwe

    2016-04-01

    The impact of enhanced spatial resolution of models in simulating large scale climate change has been of interest for the modeling community for quite some time. It has been noticed in previous studies that the pattern of Sea Surface Temperature anomalies are better captured by higher resolution models. Significant changes in simulating sea-ice loss associated with global warming was also noticed when the spatial resolution of climate models were enhanced. Spatial resolution is a particular important issue in climate change scenarios of shelf seas such as the North Sea. The North Sea is strongly influenced by its water mass exchanges with North Atlantic to the west and north and Baltic Sea to east. Furthermore, local forcing and changes in advected water masses significantly affect the thermodynamics and stratification patterns in the North Sea, making it a challenging area to study. Under the newly started RACE2 project we are looking at global simulations of Representative Concentration Pathway (RCP) scenarios 4.5 and 8.5 at lower and higher resolutions, performed using the Max Planck Institute Earth System Model (MPIESM). The model resolution is non uniform and achieves the highest resolution over the European Seas by shifting the model poles over Chicago and Central Europe. In the high resolution run, the grid reaches up to a spatial resolution of up to 4 km in part of the German Bight and close to 20 km in the Northern part of North Sea. The placement of model poles at specific locations enables the global model to obtain higher resolution at regional scales (North Sea), without the inherent complications of open boundary conditions. High and low resolution simulations will be compared to determine differences in spatial and temporal pattern of temperature anomalies, fresh water intrusion from the Baltic Sea to North Sea etc. Also taken into consideration will be the changes in simulating local sea level change and response to basin scale oscillations like NAO.

  1. Spatial Covariance Reconstructive (SCORE) Super-Resolution Fluorescence Microscopy

    PubMed Central

    Deng, Yi; Sun, Mingzhai; Lin, Pei-Hui; Ma, Jianjie; Shaevitz, Joshua W.

    2014-01-01

    Super-resolution fluorescence microscopy has become a powerful tool to resolve structural information that is not accessible to traditional diffraction-limited imaging techniques such as confocal microscopy. Stochastic optical reconstruction microscopy (STORM) and photoactivation localization microscopy (PALM) are promising super-resolution techniques due to their relative ease of implementation and instrumentation on standard microscopes. However, the application of STORM is critically limited by its long sampling time. Several recent works have been focused on improving the STORM imaging speed by making use of the information from emitters with overlapping point spread functions (PSF). In this work, we present a fast and efficient algorithm that takes into account the blinking statistics of independent fluorescence emitters. We achieve sub-diffraction lateral resolution of 100 nm from 5 to 7 seconds of imaging. Our method is insensitive to background and can be applied to different types of fluorescence sources, including but not limited to the organic dyes and quantum dots that we demonstrate in this work. PMID:24788039

  2. Super Resolution from Hyperview Image Stack by Spatial Multiplexing

    NASA Astrophysics Data System (ADS)

    Grasnick, Armin

    2016-09-01

    An image stack for a hyperview representation could contain millions of different perspective views with extreme image similarity. The recording of all views from a computational 3d model implicates a lateral displacement of the virtual camera. Because of the huge number of views, the offset in between two adjoining camera positions can be very minor. If such a virtual setup reproduces a real hyperview screen setup, the offset can be below the wavelength of the visible light. But even with such small changes, there is an intrinsic probability for a measurable difference in between two neighbour images. Such image dissimilarity can be proofed successfully also in very basic 3d scenes. By using a quantity of juxtapositional images from the hyperview image stack, the resolution of the rendered images can be considerably improved, which is commonly known as super resolution. The utilisation of super resolution images in hyperview could cut the necessity of full frame computing and will reduce the effective render time.

  3. Spatial covariance reconstructive (SCORE) super-resolution fluorescence microscopy.

    PubMed

    Deng, Yi; Sun, Mingzhai; Lin, Pei-Hui; Ma, Jianjie; Shaevitz, Joshua W

    2014-01-01

    Super-resolution fluorescence microscopy has become a powerful tool to resolve structural information that is not accessible to traditional diffraction-limited imaging techniques such as confocal microscopy. Stochastic optical reconstruction microscopy (STORM) and photoactivation localization microscopy (PALM) are promising super-resolution techniques due to their relative ease of implementation and instrumentation on standard microscopes. However, the application of STORM is critically limited by its long sampling time. Several recent works have been focused on improving the STORM imaging speed by making use of the information from emitters with overlapping point spread functions (PSF). In this work, we present a fast and efficient algorithm that takes into account the blinking statistics of independent fluorescence emitters. We achieve sub-diffraction lateral resolution of 100 nm from 5 to 7 seconds of imaging. Our method is insensitive to background and can be applied to different types of fluorescence sources, including but not limited to the organic dyes and quantum dots that we demonstrate in this work.

  4. Spatial resolution limits for the isotropic-3D PET detector X’tal cube

    NASA Astrophysics Data System (ADS)

    Yoshida, Eiji; Tashima, Hideaki; Hirano, Yoshiyuki; Inadama, Naoko; Nishikido, Fumihiko; Murayama, Hideo; Yamaya, Taiga

    2013-11-01

    Positron emission tomography (PET) has become a popular imaging method in metabolism, neuroscience, and molecular imaging. For dedicated human brain and small animal PET scanners, high spatial resolution is needed to visualize small objects. To improve the spatial resolution, we are developing the X’tal cube, which is our new PET detector to achieve isotropic 3D positioning detectability. We have shown that the X’tal cube can achieve 1 mm3 uniform crystal identification performance with the Anger-type calculation even at the block edges. We plan to develop the X’tal cube with even smaller 3D grids for sub-millimeter crystal identification. In this work, we investigate spatial resolution of a PET scanner based on the X’tal cube using Monte Carlo simulations for predicting resolution performance in smaller 3D grids. For spatial resolution evaluation, a point source emitting 511 keV photons was simulated by GATE for all physical processes involved in emission and interaction of positrons. We simulated two types of animal PET scanners. The first PET scanner had a detector ring 14.6 cm in diameter composed of 18 detectors. The second PET scanner had a detector ring 7.8 cm in diameter composed of 12 detectors. After the GATE simulations, we converted the interacting 3D position information to digitalized positions for realistic segmented crystals. We simulated several X’tal cubes with cubic crystals from (0.5 mm)3 to (2 mm)3 in size. Also, for evaluating the effect of DOI resolution, we simulated several X’tal cubes with crystal thickness from (0.5 mm)3 to (9 mm)3. We showed that sub-millimeter spatial resolution was possible using cubic crystals smaller than (1.0 mm)3 even with the assumed physical processes. Also, the weighted average spatial resolutions of both PET scanners with (0.5 mm)3 cubic crystals were 0.53 mm (14.6 cm ring diameter) and 0.48 mm (7.8 cm ring diameter). For the 7.8 cm ring diameter, spatial resolution with 0.5×0.5×1.0 mm3 crystals

  5. Spatial resolution is dependent on image content for SPECT with iterative reconstruction incorporating distance dependent resolution (DDR) correction.

    PubMed

    Badger, Daniel; Barnden, Leighton

    2014-09-01

    The aim of this study is to determine the dependence of single photon emission computed tomography (SPECT) spatial resolution on the content of images for iterative reconstruction with distance dependent resolution (DDR) correction. An experiment was performed using a perturbation technique to measure change in resolution of line sources in simple and complex images with iterative reconstruction with increasing iteration. Projections of the line sources were reconstructed alone and again after the addition of projections of a uniform flood or a complex phantom. An alternative experiment used images of a realistic brain phantom and evaluated an effective spatial resolution by matching the images to the digital version of the phantom convolved with 3D Gaussian kernels. The experiments were performed using ordered subset expectation maximisation iterative reconstruction with and without the use of DDR correction. The results show a significant difference in reconstructed resolution between images of line sources depending on the content of the added image. The full width at half maximum of images of a line source reconstructed using DDR correction increased by 20-30 % when the added image was complex. Without DDR this difference was much smaller and disappeared with increasing iteration. Reported SPECT resolution should be taken as indicative only with regard to clinical imaging if the measurement is made using a point or line source alone and an iterative reconstruction algorithm is used.

  6. Spatial Resolution, Grayscale, and Error Diffusion Trade-offs: Impact on Display System Design

    NASA Technical Reports Server (NTRS)

    Gille, Jennifer L. (Principal Investigator)

    1996-01-01

    We examine technology trade-offs related to grayscale resolution, spatial resolution, and error diffusion for tessellated display systems. We present new empirical results from our psychophysical study of these trade-offs and compare them to the predictions of a model of human vision.

  7. LiDAR-Landsat data fusion for large-area assessment of urban land cover: Balancing spatial resolution, data volume and mapping accuracy

    NASA Astrophysics Data System (ADS)

    Singh, Kunwar K.; Vogler, John B.; Shoemaker, Douglas A.; Meentemeyer, Ross K.

    2012-11-01

    The structural characteristics of Light Detection and Ranging (LiDAR) data are increasingly used to classify urban environments at fine scales, but have been underutilized for distinguishing heterogeneous land covers over large urban regions due to high cost, limited spectral information, and the computational difficulties posed by inherently large data volumes. Here we explore tradeoffs between potential gains in mapping accuracy with computational costs by integrating structural and intensity surface models extracted from LiDAR data with Landsat Thematic Mapper (TM) imagery and evaluating the degree to which TM, LiDAR, and LiDAR-TM fusion data discriminated land covers in the rapidly urbanizing region of Charlotte, North Carolina, USA. Using supervised maximum likelihood (ML) and classification tree (CT) methods, we classified TM data at 30 m and LiDAR data and LiDAR-TM fusions at 1 m, 5 m, 10 m, 15 m and 30 m resolutions. We assessed the relative contributions of LiDAR structural and intensity surface models to classification map accuracy and identified optimal spatial resolution of LiDAR surface models for large-area assessments of urban land cover. ML classification of 1 m LiDAR-TM fusions using both structural and intensity surface models increased total accuracy by 32% compared to LiDAR alone and by 8% over TM at 30 m. Fusion data using all LiDAR surface models improved class discrimination of spectrally similar forest, farmland, and managed clearings and produced the highest total accuracies at 1 m, 5 m, and 10 m resolutions (87.2%, 86.3% and 85.4%, respectively). At all resolutions of fusion data and using either ML or CT classifier, the relative contribution of the LiDAR structural surface models (canopy height and normalized digital surface model) to classification accuracy is greater than the intensity surface. Our evaluation of tradeoffs between data volume and thematic map accuracy for this study system suggests that a spatial resolution of 5 m for Li

  8. Spatial resolution estimation of LANDSAT-4 TM and MSS data

    NASA Technical Reports Server (NTRS)

    Mcgillem, C. D.; Anuta, P. E.; Yu, K. B.

    1983-01-01

    In order to verify that the LANDSAT-4 sensors are operating within specifications, it is useful to estimate the system parameters by analysis of the measured data. One parameter of particular interest is the sensor point-spread function (PSF) which determines the resolution of the system. A method of estimating the PSF is described that utilizes data obtained during scanning of ground elements having identifiable geometric and radiometric structure. These data are then processed in such a manner as to recover either the PSF itself or to estimate the parameters of an assumed functional representation of the PSF.

  9. Local Optical Spectroscopies for Subnanometer Spatial Resolution Chemical Imaging

    SciTech Connect

    Weiss, Paul

    2014-01-20

    The evanescently coupled photon scanning tunneling microscopes (STMs) have special requirements in terms of stability and optical access. We have made substantial improvements to the stability, resolution, and noise floor of our custom-built visible-photon STM, and will translate these advances to our infrared instrument. Double vibration isolation of the STM base with a damping system achieved increased rigidity, giving high tunneling junction stability for long-duration and high-power illumination. Light frequency modulation with an optical chopper and phase-sensitive detection now enhance the signal-to-noise ratio of the tunneling junction during irradiation.

  10. Note: Spatial resolution of Fuji BAS-TR and BAS-SR imaging plates

    SciTech Connect

    Fiksel, G.; Marshall, F. J.; Mileham, C.; Stoeckl, C.

    2012-08-15

    The spatial resolution of two types of imaging plates, Fuji BAS-TR and Fuji BAS-SR, has been measured using a knife-edge x-ray source of 8-keV Cu K{sub {alpha}} radiation. The values for the spatial resolution, defined as the distance between 10% and 90% levels of the edge spread function, are 94 {mu}m and 109 {mu}m, respectively. The resolution values are important for quantitative analysis of x-ray and particle imaging and spectroscopic diagnostics.

  11. Spatializing vineyard hydric status within heterogeneous Mediterranean watershed from high spatial resolution optical remote sensing.

    NASA Astrophysics Data System (ADS)

    Galleguillos, M.; Jacob, F.; Prevot, L.; Lagacherie, P.

    2009-04-01

    Land surface evapotranspiration is one of key hydrological inputs that determine hydric status within Mediterranean vineyards. Its knowledge in a spatially distributed manner is of interest for the monitoring of vine activity throughout the cultural cycle, and for the acquainting of hydrological modeling as upper boundary conditions. Due to vineyard landscape structures, mostly including small fields, the use of remote sensing has not been extensively investigated, apart from airborne observations. Spaceborne ASTER data, collected over the optical domain at high spatial resolution, are of strong interest for the mapping of vineyard hydric status in relation with surface and soil properties, provided vine thermal and hydric status are strongly linked. The objective of this study is to assess the performances of two spatialized approaches devoted to the mapping of instantaneous surface energy fluxes from optical remote sensing. Amongst the candidate methods to be foreseen for the mapping of vineyard water status from remote sensing, we consider two single layer methods characterized by their simplicities and feasibilities, in terms of implementation and input requirements. The first method is the Simplified Surface Energy Balance Index (S-SEBI, proposed by Roerink et al., 2000) and the second is the Water Deficit Index (WDI, designed by Moran et al., 1994). They differ by the way they use the spatial information captured over the solar and thermal domains, for the differentiating based retrieving of water status and evapotranspiration. First, the spatial information can be characterized through the temperature - vegetation index triangle that is controlled by soil moisture (WDI), or through the temperature - albedo diagram that is controlled by radiative and evaporative processes (S-SEBI). Second, evaporative extremes can be determined according to theoretical considerations and related formalisms (WDI), or assigned according to variabilities captured through thermal

  12. Virtual electrode design for increasing spatial resolution in retinal prosthesis.

    PubMed

    Loizos, Kyle; Cela, Carlos; Marc, Robert; Lazzi, Gianluca

    2016-06-01

    Retinal prostheses systems are currently used to restore partial vision to patients blinded by degenerative diseases by electrically stimulating surviving retinal cells. To obtain likely maximum resolution, electrode size is minimised, allowing for a large quantity on an array and localised stimulation regions. Besides the small size leading to fabrication difficulties and higher electrochemical charge density, there are challenges associated with the number of drivers needed for a large electrode count as well as the strategies to deliver sufficient power to these drivers wirelessly. In hopes to increase electrode resolution while avoiding these issues, the authors propose a new 'virtual electrode' design to increase locations of likely stimulation. Passive metallisation strategically placed between disk electrodes, combined with alternating surrounding stimuli, channel current into a location between electrodes, producing a virtual stimulation site. A computational study was conducted to optimise the passive metal element geometry, quantify the expected current density output, and simulate retinal ganglion cell activity due to virtual electrode stimulation. Results show that this procedure leads to array geometry that focuses injected current and achieves retinal ganglion cell stimulation in a region beneath the 'virtual electrode,' creating an alternate stimulation site without additional drivers.

  13. The Fundamental Structure of UV-Irradiated Cloud Edges: Combined ALMA and IRAM-30m Observations of the Orion Bar

    NASA Astrophysics Data System (ADS)

    Goicoechea, J.; Cuadrado, S.; Pety, J.; Ag'undez, M.; Cernicharo, J.; Chapillon, E.; Dumas, G.; Fuente, A.; Gerin, M.; Joblin, C.; Marcelino, N.; Müller, H. S. P.; Pilleri, P.

    2015-12-01

    The Orion Bar is the prototypical photodissociation region (PDR) exposed to a far-UV radiation field (FUV) of a few 104 times the mean interstellar field. Because of its proximity and nearly edge-on orientation, it provides a unique laboratory to study the physical and chemical gradients of a strongly FUV-illuminated molecular cloud. Using ALMA at ˜350 GHz, we have observed a field-of-view of ˜40”×40” toward the Orion Bar PDR consisting of a mosaic of 27 Nyquist-sampled pointings. These observations provide an unprecedented high angular resolution view (˜1” or ˜414 AU at the distance to Orion) of the most exposed molecular cloud edge. In addition, ACA and IRAM-30m maps were used to produce the short-spacing visibilities filtered out by the ALMA array. These interferometric observations complement a complete line survey we have carried out using the IRAM-30m telescope between ˜80 GHz and ˜360 GHz. Despite being a harsh environment, over 60 species with up to 6 atoms have been identified, including main isotopologues (D, 13C, 18O, 17O, 34S, 33S, and 15N). The first molecular line images of the Orion Bar obtained with ALMA at ˜1” resolution reveal the fundamental structure in density and temperature of the molecular gas as well as its complex kinematics at an unprecedented spatial resolution. This early data set also allowed us to compute corrected line frequencies for SH+, an interesting hydride tracing reactions of S+ with vibrationally excited H2 in the PDR edge.

  14. Estimation of Orbital Neutron Detector Spatial Resolution by Systematic Shifting of Differential Topographic Masks

    NASA Technical Reports Server (NTRS)

    McClanahan, T. P.; Mitrofanov, I. G.; Boynton, W. V.; Chin, G.; Livengood, T.; Starr, R. D.; Evans, L. G.; Mazarico, E.; Smith, D. E.

    2012-01-01

    We present a method and preliminary results related to determining the spatial resolution of orbital neutron detectors using epithermal maps and differential topographic masks. Our technique is similar to coded aperture imaging methods for optimizing photonic signals in telescopes [I]. In that approach photon masks with known spatial patterns in a telescope aperature are used to systematically restrict incoming photons which minimizes interference and enhances photon signal to noise. Three orbital neutron detector systems with different stated spatial resolutions are evaluated. The differing spatial resolutions arise due different orbital altitudes and the use of neutron collimation techniques. 1) The uncollimated Lunar Prospector Neutron Spectrometer (LPNS) system has spatial resolution of 45km FWHM from approx. 30km altitude mission phase [2]. The Lunar Rennaissance Orbiter (LRO) Lunar Exploration Neutron Detector (LEND) with two detectors at 50km altitude evaluated here: 2) the collimated 10km FWHM spatial resolution detector CSETN and 3) LEND's collimated Sensor for Epithermal Neutrons (SETN). Thus providing two orbital altitudes to study factors of: uncollimated vs collimated and two average altitudes for their effect on fields-of-view.

  15. Hyperspectral Imagery Super-Resolution by Compressive Sensing Inspired Dictionary Learning and Spatial-Spectral Regularization

    PubMed Central

    Huang, Wei; Xiao, Liang; Liu, Hongyi; Wei, Zhihui

    2015-01-01

    Due to the instrumental and imaging optics limitations, it is difficult to acquire high spatial resolution hyperspectral imagery (HSI). Super-resolution (SR) imagery aims at inferring high quality images of a given scene from degraded versions of the same scene. This paper proposes a novel hyperspectral imagery super-resolution (HSI-SR) method via dictionary learning and spatial-spectral regularization. The main contributions of this paper are twofold. First, inspired by the compressive sensing (CS) framework, for learning the high resolution dictionary, we encourage stronger sparsity on image patches and promote smaller coherence between the learned dictionary and sensing matrix. Thus, a sparsity and incoherence restricted dictionary learning method is proposed to achieve higher efficiency sparse representation. Second, a variational regularization model combing a spatial sparsity regularization term and a new local spectral similarity preserving term is proposed to integrate the spectral and spatial-contextual information of the HSI. Experimental results show that the proposed method can effectively recover spatial information and better preserve spectral information. The high spatial resolution HSI reconstructed by the proposed method outperforms reconstructed results by other well-known methods in terms of both objective measurements and visual evaluation. PMID:25608212

  16. Full field spatially-variant image-based resolution modelling reconstruction for the HRRT.

    PubMed

    Angelis, Georgios I; Kotasidis, Fotis A; Matthews, Julian C; Markiewicz, Pawel J; Lionheart, William R; Reader, Andrew J

    2015-03-01

    Accurate characterisation of the scanner's point spread function across the entire field of view (FOV) is crucial in order to account for spatially dependent factors that degrade the resolution of the reconstructed images. The HRRT users' community resolution modelling reconstruction software includes a shift-invariant resolution kernel, which leads to transaxially non-uniform resolution in the reconstructed images. Unlike previous work to date in this field, this work is the first to model the spatially variant resolution across the entire FOV of the HRRT, which is the highest resolution human brain PET scanner in the world. In this paper we developed a spatially variant image-based resolution modelling reconstruction dedicated to the HRRT, using an experimentally measured shift-variant resolution kernel. Previously, the system response was measured and characterised in detail across the entire FOV of the HRRT, using a printed point source array. The newly developed resolution modelling reconstruction was applied on measured phantom, as well as clinical data and was compared against the HRRT users' community resolution modelling reconstruction, which is currently in use. Results demonstrated improvements both in contrast and resolution recovery, particularly for regions close to the edges of the FOV, with almost uniform resolution recovery across the entire transverse FOV. In addition, because the newly measured resolution kernel is slightly broader with wider tails, compared to the deliberately conservative kernel employed in the HRRT users' community software, the reconstructed images appear to have not only improved contrast recovery (up to 20% for small regions), but also better noise characteristics.

  17. High spatial resolution distributed sensing in optical fibers by Brillouin gain-profile tracing.

    PubMed

    Sperber, Tom; Eyal, Avishay; Tur, Moshe; Thévenaz, Luc

    2010-04-12

    A novel BOTDA technique for distributed sensing of the Brillouin frequency in optical fibers with cm-order spatial resolution is proposed. The technique is based upon a simple modulation scheme, requiring only a single long pump pulse for acoustic excitation, and no subsequent interrogating pulse. Instead, the desired spatial mapping of the Brillouin response is extracted by taking the derivative of the probe signal. As a result, the spatial resolution is limited by the fall-time of the pump modulation, and the phenomena of secondary "echo" signals, typically appearing in BOTDA sensing methods based upon pre-excitation, is mitigated. Experimental demonstration of the detection of a Brillouin frequency variation significantly smaller than the natural Brillouin linewidth, with a 2cm spatial resolution, is presented.

  18. SAPHIRE (scintillator avalanche photoconductor with high resolution emitter readout) for low dose x-ray imaging: Spatial resolution

    SciTech Connect

    Li Dan; Zhao Wei

    2008-07-15

    An indirect flat panel imager (FPI) with programmable avalanche gain and field emitter array (FEA) readout is being investigated for low-dose and high resolution x-ray imaging. It is made by optically coupling a structured x-ray scintillator, e.g., thallium (Tl) doped cesium iodide (CsI), to an amorphous selenium (a-Se) avalanche photoconductor called high-gain avalanche rushing amorphous photoconductor (HARP). The charge image created by the scintillator/HARP (SHARP) combination is read out by the electron beams emitted from the FEA. The proposed detector is called scintillator avalanche photoconductor with high resolution emitter readout (SAPHIRE). The programmable avalanche gain of HARP can improve the low dose performance of indirect FPI while the FEA can be made with pixel sizes down to 50 {mu}m. Because of the avalanche gain, a high resolution type of CsI (Tl), which has not been widely used in indirect FPI due to its lower light output, can be used to improve the high spatial frequency performance. The purpose of the present article is to investigate the factors affecting the spatial resolution of SAPHIRE. Since the resolution performance of the SHARP combination has been well studied, the focus of the present work is on the inherent resolution of the FEA readout method. The lateral spread of the electron beam emitted from a 50 {mu}mx50 {mu}m pixel FEA was investigated with two different electron-optical designs: mesh-electrode-only and electrostatic focusing. Our results showed that electrostatic focusing can limit the lateral spread of electron beams to within the pixel size of down to 50 {mu}m. Since electrostatic focusing is essentially independent of signal intensity, it will provide excellent spatial uniformity.

  19. Super-resolution reconstruction to increase the spatial resolution of diffusion weighted images from orthogonal anisotropic acquisitions

    PubMed Central

    Scherrer, Benoit; Gholipour, Ali; Warfield, Simon K.

    2012-01-01

    Diffusion-weighted imaging (DWI) enables non-invasive investigation and characterization of the white matter but suffers from a relatively poor spatial resolution. Increasing the spatial resolution in DWI is challenging with a single-shot EPI acquisition due to the decreased signal-to-noise ratio and T2* relaxation effect amplified with increased echo time. In this work we propose a super-resolution reconstruction (SRR) technique based on the acquisition of multiple anisotropic orthogonal DWI scans. DWI scans acquired in different planes are not typically closely aligned due to the geometric distortion introduced by magnetic susceptibility differences in each phase-encoding direction. We compensate each scan for geometric distortion by acquisition of a dual echo gradient echo field map, providing an estimate of the field inhomogeneity. We address the problem of patient motion by aligning the volumes in both space and q-space. The SRR is formulated as a maximum a posteriori problem. It relies on a volume acquisition model which describes how the acquired scans are observations of an unknown high-resolution image which we aim to recover. Our model enables the introduction of image priors that exploit spatial homogeneity and enables regularized solutions. We detail our SRR optimization procedure and report experiments including numerical simulations, synthetic SRR and real world SRR. In particular, we demonstrate that combining distortion compensation and SRR provides better results than acquisition of a single isotropic scan for the same acquisition duration time. Importantly, SRR enables DWI with resolution beyond the scanner hardware limitations. This work provides the first evidence that SRR, which employs conventional single shot EPI techniques, enables resolution enhancement in DWI, and may dramatically impact the role of DWI in both neuroscience and clinical applications. PMID:22770597

  20. SAPHIRE (scintillator avalanche photoconductor with high resolution emitter readout) for low dose x-ray imaging: spatial resolution.

    PubMed

    Li, Dan; Zhao, Wei

    2008-07-01

    An indirect flat panel imager (FPI) with programmable avalanche gain and field emitter array (FEA) readout is being investigated for low-dose and high resolution x-ray imaging. It is made by optically coupling a structured x-ray scintillator, e.g., thallium (Tl) doped cesium iodide (CsI), to an amorphous selenium (a-Se) avalanche photoconductor called high-gain avalanche rushing amorphous photoconductor (HARP). The charge image created by the scintillator/HARP (SHARP) combination is read out by the electron beams emitted from the FEA. The proposed detector is called scintillator avalanche photoconductor with high resolution emitter readout (SAPHIRE). The programmable avalanche gain of HARP can improve the low dose performance of indirect FPI while the FEA can be made with pixel sizes down to 50 microm. Because of the avalanche gain, a high resolution type of CsI (Tl), which has not been widely used in indirect FPI due to its lower light output, can be used to improve the high spatial frequency performance. The purpose of the present article is to investigate the factors affecting the spatial resolution of SAPHIRE. Since the resolution performance of the SHARP combination has been well studied, the focus of the present work is on the inherent resolution of the FEA readout method. The lateral spread of the electron beam emitted from a 50 microm x 50 microm pixel FEA was investigated with two different electron-optical designs: mesh-electrode-only and electrostatic focusing. Our results showed that electrostatic focusing can limit the lateral spread of electron beams to within the pixel size of down to 50 microm. Since electrostatic focusing is essentially independent of signal intensity, it will provide excellent spatial uniformity.

  1. BOREAS TE-18, 30-m, Radiometrically Rectified Landsat TM Imagery

    NASA Technical Reports Server (NTRS)

    Hall, Forrest G. (Editor); Knapp, David

    2000-01-01

    The BOREAS TE-18 team used a radiometric rectification process to produce standardized DN values for a series of Landsat TM images of the BOREAS SSA and NSA in order to compare images that were collected under different atmospheric conditions. The images for each study area were referenced to an image that had very clear atmospheric qualities. The reference image for the SSA was collected on 02-Sep-1994, while the reference image for the NSA was collected on 21-Jun-1995. the 23 rectified images cover the period of 07-Jul-1985 to 18 Sep-1994 in the SSA and from 22-Jun-1984 to 09-Jun-1994 in the NSA. Each of the reference scenes had coincident atmospheric optical thickness measurements made by RSS-11. The radiometric rectification process is described in more detail by Hall et al. (199 1). The original Landsat TM data were received from CCRS for use in the BOREAS project. The data are stored in binary image-format files. Due to the nature of the radiometric rectification process and copyright issues, these full-resolution images may not be publicly distributed. However, a spatially degraded 60-m resolution version of the images is available on the BOREAS CD-ROM series. See Sections 15 and 16 for information about how to possibly acquire the full resolution data. Information about the full-resolution images is provided in an inventory listing on the CD-ROMs. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distributed Activity Archive Center (DAAC).

  2. Impact of spatial resolution of the precipitation data on hydrological Forecast

    NASA Astrophysics Data System (ADS)

    Davis, M.; Bardossy, A.; Sudheer, K.

    2013-05-01

    Flooding is a devastating problem for many countries all over the world. Real time forecasting is a necessary non-structural measure to fight against the damage. Adequate quantitative forecasting of the flood is necessary to provide enough precaution for the affected population. Time lead in the forecast is also a matter of concern considering its significance in the preparedness. The time-lead of forecast depends on the computational time along with the various other issues. The computation time depends on the whether the model is data intensive or process intensive. Considering the use of spatially distributed models in the forecast, the main dynamic data involved in the rainfall runoff models are the precipitation measurement. The data intensity of that depends on the spatial and temporal resolution of the precipitation data. The spatial resolution of the precipitation has the significance in the spatially distributed hydrological models. Neither should the resolution be so less that the quantitative prediction is disturbed nor too much to affect the time lead considerably. Finer spatial resolution of precipitation data may not even yield better forecast (A.Bardossy and T.Das, 2008). So the current study focuses on the impact of spatial and temporal resolution of the hydrological forecast. The spatially distributed model of HBV and HYMOD is being used for the analysis. Spatial resolutions from 1, 4, 9 and 25 square kilometers and a temporal resolution of daily to hourly time-series is also being analysed for their respective effects on prediction. The data from rain gauges are interpolated using the External Drift Kriging Method (EDK). The calibrations of the models are carried out using the Robust Parameter Estimation (ROPE) algorithm (S.K Singh and A. Bardossy, 2010). The framework is illustrated on the Upper Neckar catchment with 13 sub-catchments located in South West Germany. Preliminary results are encouraging. The optimum spatial resolution can be

  3. Redox and speciation mapping of rock thin sections using high spatial resolution full-field imaging technique

    NASA Astrophysics Data System (ADS)

    de Andrade, V.; Susini, J.; Salomé, M.; Beraldin, O.; Heymes, T.; Lewin, E.

    2009-04-01

    Because of their complex genesis, natural rocks are the most often heterogeneous systems, with various scale-level heterogeneities for both chemistry and structure. In the last decade, the dramatic improvements of hyperspectral imaging techniques provided new tools for accurate material characterisation. Most of these micro- and nano- analytical techniques rely on scanning instruments, which offer high spatial resolution but suffer from long acquisition times imposing practical limits on the field of view. Conversely, full-field imaging techniques rely on a fast parallel acquisition but have limited resolution. Although soft X-ray full-field microscopes based on Fresnel zone plates are commonly used for high resolution imaging, its combination with spectroscopy is challenging and 2D chemical mapping still difficult. For harder X-rays, lensless X-ray microscope based on simple propagation geometry is easier and can be readily used for 2D spectro-microscopy. A full-field experimental setup was optimized at the ESRF-ID21 beamline to image iron redox and speciation distributions in rocks thin sections. The setup comprises a Si111 or Si220 (E = 0.4 eV) monochromator, a special sample stage and a sensitive camera associated with a brand new GGG:Eu light conversion scintillator and high magnification visible light optics. The pixel size ranges from 1.6 to 0.16 m according to the optic used. This instrument was used to analyse phyllosilicates and oxides of metamorphic sediments coming from the Aspromonte nappes-pile in Calabria. Iron chemical state distributions were derived - from images of 1000 Ã- 2000 Ã- 30 m3 rock thin sections - by subtraction of absorption images above and below the Fe K-edge. Using an automatic stitching reconstruction, a wide field image (4Ã-3 mm2 with a 1 m2 resolution for a total of about 12 millions pixels) of Fetotal elemental distribution was produced. Moreover, -XANES analyses (more than 1 million individual -XANES spectra) were performed

  4. Advanced Extraction of Spatial Information from High Resolution Satellite Data

    NASA Astrophysics Data System (ADS)

    Pour, T.; Burian, J.; Miřijovský, J.

    2016-06-01

    In this paper authors processed five satellite image of five different Middle-European cities taken by five different sensors. The aim of the paper was to find methods and approaches leading to evaluation and spatial data extraction from areas of interest. For this reason, data were firstly pre-processed using image fusion, mosaicking and segmentation processes. Results going into the next step were two polygon layers; first one representing single objects and the second one representing city blocks. In the second step, polygon layers were classified and exported into Esri shapefile format. Classification was partly hierarchical expert based and partly based on the tool SEaTH used for separability distinction and thresholding. Final results along with visual previews were attached to the original thesis. Results are evaluated visually and statistically in the last part of the paper. In the discussion author described difficulties of working with data of large size, taken by different sensors and different also thematically.

  5. Practical Considerations for High Spatial and Temporal Resolution Dynamic Transmission Electron Microscopy

    SciTech Connect

    Armstrong, M; Boyden, K; Browning, N D; Campbell, G H; Colvin, J D; DeHope, B; Frank, A M; Gibson, D J; Hartemann, F; Kim, J S; King, W E; LaGrange, T B; Pyke, B J; Reed, B W; Shuttlesworth, R M; Stuart, B C; Torralva, B R

    2006-05-01

    Although recent years have seen significant advances in the spatial resolution possible in the transmission electron microscope (TEM), the temporal resolution of most microscopes is limited to video rate at best. This lack of temporal resolution means that our understanding of dynamic processes in materials is extremely limited. High temporal resolution in the TEM can be achieved, however, by replacing the normal thermionic or field emission source with a photoemission source. In this case the temporal resolution is limited only by the ability to create a short pulse of photoexcited electrons in the source, and this can be as short as a few femtoseconds. The operation of the photo-emission source and the control of the subsequent pulse of electrons (containing as many as 5 x 10{sup 7} electrons) create significant challenges for a standard microscope column that is designed to operate with a single electron in the column at any one time. In this paper, the generation and control of electron pulses in the TEM to obtain a temporal resolution <10{sup -6} s will be described and the effect of the pulse duration and current density on the spatial resolution of the instrument will be examined. The potential of these levels of temporal and spatial resolution for the study of dynamic materials processes will also be discussed.

  6. Impact of rainfall spatial distribution and resolution on flash floods response

    NASA Astrophysics Data System (ADS)

    Zoccatelli, Davide; Marra, Francesco; Nikolopoulos, Efthymios

    2013-04-01

    Uncertainty in flash flood forecasting critically depends on the space-time monitoring resolution of the flood-triggering rainfall. Hence, it is important to better understand at what space-time scales rainfall has to be monitored, given certain catchment and storm characteristics, and what are the effects of space-time aggregations on model simulations and forecasts. This work exploits the concept of spatial moments of catchment rainfall to quantify the dependence between rainfall spatial distribution, rainfall resolution, catchment morphology, and runoff response. The spatial moments of catchment rainfall describe rainfall organization in terms of concentration and dispersion along the flow distance coordinate. Assuming that rainfall distribution at equal flow distance is averaged by runoff propagation, these statistics provide a useful metric to examine how the catchment filters out rainfall spatial variability into runoff response. The effect of a variation in spatial rainfall resolution on spatial moments of catchment rainfall should therefore explain, at least partially, the pattern of runoff model sensitivity to spatial rainfall resolution. Since these statistics can capture the interactions between rainfall distribution and basin morphology, they can also be useful to compare its influence across scales and events. High resolution radar observations and a distributed hydrological model have been used to apply these statistics in five extreme flash floods occurred in various European regions in the period 2002-2007. This application allowed to verify the assumptions and to quantify how effective are these statistics in describing the role of spatial rainfall organization and of spatial resolution for flash flood modeling. The size of the study catchments ranges between 36 to 982 km2. The timing error introduced by neglecting the rainfall spatial variability, that ranges between -30% to 72% of the corresponding catchment response time, is well explained by

  7. Spatial resolution of subsurface anthropogenic heat fluxes in cities

    NASA Astrophysics Data System (ADS)

    Benz, Susanne; Bayer, Peter; Menberg, Kathrin; Blum, Philipp

    2015-04-01

    Urban heat islands in the subsurface contain large quantities of energy in the form of elevated groundwater temperatures caused by anthropogenic heat fluxes (AHFS) into the subsurface. Hence, the objective of this study is to exemplarily quantify these AHFS and the generated thermal powers in two German cities, Karlsruhe and Cologne. A two-dimensional (2D) statistical analytical model of the vertical subsurface anthropogenic heat fluxes across the unsaturated zone was developed. The model consists of a so-called Local Monte Carlo approach that introduces a spatial representation of the following sources of AHFS: (1) elevated ground surface temperatures, (2) basements, (3) sewage systems, (4) sewage leakage, (5) subway tunnels, and (6) district heating networks. The results show that district heating networks induce the largest local AHFS with values larger than 60 W/m2 and one order of magnitude higher than the other evaluated heat sources. Only sewage pipes and basements reaching into the groundwater cause equally high heat fluxes, with maximal values of 40.37 W/m2 and 13.60 W/m2, respectively. While dominating locally, the district heating network is rather insignificant for the citywide energy budget in both urban subsurfaces. Heat from buildings (1.51 ± 1.36 PJ/a in Karlsruhe; 0.31 ± 0.14 PJ/a in Cologne) and elevated GST (0.34 ± 0.10 PJ/a in Karlsruhe; 0.42 ± 0.13 PJ/a in Cologne) are dominant contributors to the anthropogenic thermal power of the urban aquifer. In Karlsruhe, buildings are the source of 70% of the annual heat transported into the groundwater, which is mainly caused by basements reaching into the groundwater. A variance analysis confirms these findings: basement depth is the most influential factor to citywide thermal power in the studied cities with high groundwater levels. The spatial distribution of fluxes, however, is mostly influenced by the prevailing thermal gradient across the unsaturated zone. A relatively cold groundwater

  8. Ultrashort microwave-induced thermoacoustic imaging: a breakthrough in excitation efficiency and spatial resolution.

    PubMed

    Lou, Cunguang; Yang, Sihua; Ji, Zhong; Chen, Qun; Xing, Da

    2012-11-21

    With theoretical prediction and experimental validation, we propose a novel approach to significantly enhance the conversion efficiency of thermoacoustic (TA) imaging by using an ultrashort microwave pulse. The implementation of the ultrashort microwave pulse leads to orders of magnitude enhancement in excitation efficiency and spatial resolution, compared to that from existing TA imaging techniques. This allows high-resolution (~ 100 micron resolution) TA imaging to be acquired noninvasively. The present work represents a major breakthrough in the conversion efficiency of the TA effect and the resolution of TA imaging, which can potentially be used for clinical imaging.

  9. Effect of spatial resolution of radar-based inundation maps on the calibration of a spatial inundation model

    NASA Astrophysics Data System (ADS)

    Gobeyn, Sacha; Vernieuwe, Hilde; De Baets, Bernard; Bates, Paul; Verhoest Niko E., C.

    2013-04-01

    With advances in both flood mapping with satellite radar and computational science, the use of real-time spatial flood data holds the potential to support decision making during flood events. With recent improvements in satellite radar technology, current and future radar images are/will be delivered with higher spatial resolution. It is expected that these higher resolutions should improve the accuracy of the calibration and the prediction through data assimilation as more detailed information is available. However, these finer resolution data will result in an increased computational cost. Still, radar data of coarser resolution will remain available, and the question may then arise whether the calibration of a 2D-hydraulic model is significantly influenced by the resolution of the remotely-sensed inundation map. In order to answer this question, the raster-based inundation model, LISFLOOD-FP (Bates et al., 2000) is calibrated using a high resolution synthetic aperture radar image (ERS-2 SAR) of a flood event of the river Dee, Wales, in December 2006. Different radar resolutions are simulated through coarsening this image to different resolutions and retrieving the flood extent maps for the different resolutions. These flood maps are then used for calibrating the hydraulic model using the generalized likelihood uncertainty estimation (GLUE) framework presented by Aronica et al. (2002) as well as alternative calibration methods (e.g. Particle Swarm Optimization, PSO) to assess the possible impact of spatial resolution of the observed flood extent on the floodplain and channel Manning coefficient. Furthermore, the sensitivity of the calibration surface to error sources in radar measurement is evaluated by applying different magnitudes of noise to the radar image. References Aronica, G., Bates, P. D. and Horritt, M. S. (2002). Assessing the uncertainty in distributed model predictions using observed binary pattern information within GLUE. Hydrological Processes, 16

  10. High-spatial-resolution passive microwave sounding systems

    NASA Technical Reports Server (NTRS)

    Staelin, David H.; Barrett, J. W.; Bonanni, Pierino Gianni; Chiarchiaro, W. J., II; Rosenkranz, P. W.

    1991-01-01

    During this period the emphasis was on the following: (1) further design, construction, and testing of the improved 54-GHz portion of the 54-118 GHz microwave temperature sounder (MTS) aircraft radiometer system in preparation for ER-2 observations in July 1991; and (2) final analysis and documentation of procedures for detecting and analyzing thermal waves in our 118-GHz MTS imagery. In addition, we have new unpublished measurements of dry-air attenuation at frequencies of 54 to 66 GHz and over a temperature range of 280K to 326K; these measurements should enable us to improve further our atmospheric transmittance models. It was further noted that the proposed SSMIS conical-scanning microwave spectrometer on the military DMSP Block 5D-3 spacecraft designed to measure stratospheric and mesospheric temperature profiles will be observing the Zeeman-split oxygen lines with sufficient spectral resolution that the changing Doppler shifts with view angle will substantially degrade the potential system performance unless remedied; this was briefly studied and documented.

  11. The Importance of High Spatial and Appropriate Spectral Resolution Spectroscopy

    NASA Technical Reports Server (NTRS)

    Gull, Theodore

    2007-01-01

    Many diverse astronomical sources are resolved with diffraction-limited large telescopes. Application of appropriate dispersion spectroscopy unveils much information on the physics of these objects ranging from gamma ray bursters in host galaxies, star-formation regions and central engines in nearby galaxies, structures in galactic nebulae, resolved binaries with mass exchange, extended winds of massive stars, protoplanetary systems, and comets, asteroids and planets within our own solar system. Active optics and interferometers coupled with spectrographs can provide near-diffraction-limited spectroscopy from the ground but only longward of one micron. Below one micron, and certainly below 6000A, we must turn to space-based large telescopes equipped with spectrographs capable of providing spatially diffraction-limited spectroscopy of astronomical sources. Examples will be presented from the HST/STIS, ground-based and other instruments on science that has been accomplished. Suggestions will be made of what might be possible, and limitations thereof, with future large monolithic, multiple mirror or interferometric telescopes equipped with spectrographs that would be matched to the diffraction limit of the telescope.

  12. Spatial resolution of a spherical x-ray crystal spectrometer at various magnifications

    NASA Astrophysics Data System (ADS)

    Gao, Lan; Hill, K. W.; Bitter, M.; Efthimion, P. C.; Delgado-Aparicio, L.; Pablant, N. A.; Baronova, E. O.; Pereira, N. R.

    2016-11-01

    A high spatial resolution of a few μm is often required for probing small-scale high-energy-density plasmas using high resolution x-ray imaging spectroscopy. This resolution can be achieved by adjusting system magnification to overcome the inherent limitation of the detector pixel size. Laboratory experiments on investigating the relation between spatial resolution and system magnification for a spherical crystal spectrometer are presented. Tungsten Lβ2 rays from a tungsten-target micro-focus x-ray tube were diffracted by a Ge 440 crystal, which was spherically bent to a radius of 223 mm, and imaged onto an x-ray CCD with 13-μm pixel size. The source-to-crystal (p) and crystal-to-detector (q) distances were varied to produce spatial magnifications (M = q/p) ranging from 2 to 10. The inferred instrumental spatial width reduces with increasing system magnification M. However, the experimental measurement at each M is larger than the theoretical value of pixel size divided by M. Future work will focus on investigating possible broadening mechanisms that limit the spatial resolution.

  13. Evaluating the Value of High Spatial Resolution in National Capacity Expansion Models using ReEDS

    SciTech Connect

    Krishnan, Venkat; Cole, Wesley

    2016-07-18

    This poster is based on the paper of the same name, presented at the IEEE Power & Energy Society General Meeting, July18, 2016. Power sector capacity expansion models (CEMs) have a broad range of spatial resolutions. This paper uses the Regional Energy Deployment System (ReEDS) model, a long-term national scale electric sector CEM, to evaluate the value of high spatial resolution for CEMs. ReEDS models the United States with 134 load balancing areas (BAs) and captures the variability in existing generation parameters, future technology costs, performance, and resource availability using very high spatial resolution data, especially for wind and solar modeled at 356 resource regions. In this paper we perform planning studies at three different spatial resolutions - native resolution (134 BAs), state-level, and NERC region level - and evaluate how results change under different levels of spatial aggregation in terms of renewable capacity deployment and location, associated transmission builds, and system costs. The results are used to ascertain the value of high geographically resolved models in terms of their impact on relative competitiveness among renewable energy resources.

  14. The effect of spatial resolution upon cloud optical property retrievals. I - Optical thickness

    NASA Technical Reports Server (NTRS)

    Feind, Rand E.; Christopher, Sundar A.; Welch, Ronald M.

    1992-01-01

    High spectral and spatial resolution Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) imagery is used to study the effects of spatial resolution upon fair weather cumulus cloud optical thickness retrievals. As a preprocessing step, a variation of the Gao and Goetz three-band ratio technique is used to discriminate clouds from the background. The combination of the elimination of cloud shadow pixels and using the first derivative of the histogram allows for accurate cloud edge discrimination. The data are progressively degraded from 20 m to 960 m spatial resolution. The results show that retrieved cloud area increases with decreasing spatial resolution. The results also show that there is a monotonic decrease in retrieved cloud optical thickness with decreasing spatial resolution. It is also demonstrated that the use of a single, monospectral reflectance threshold is inadequate for identifying cloud pixels in fair weather cumulus scenes and presumably in any inhomogeneous cloud field. Cloud edges have a distribution of reflectance thresholds. The incorrect identification of cloud edges significantly impacts the accurate retrieval of cloud optical thickness values.

  15. Impact of spatial resolution on correlation between segmentation evaluation metrics and forest classification accuracy

    NASA Astrophysics Data System (ADS)

    Švab Lenarčič, Andreja; Ritlop, Klemen; Äńurić, Nataša.; Čotar, Klemen; Oštir, Krištof

    2015-10-01

    Slovenia is one of the most forested countries in Europe. Its forest management authorities need information about the forest extent and state, as their responsibility lies in forest observation and preservation. Together with appropriate geographic information system mapping methods the remotely sensed data represent essential tool for an effective and sustainable forest management. Despite the large data availability, suitable mapping methods still present big challenge in terms of their speed which is often affected by the huge amount of data. The speed of the classification method could be maximised, if each of the steps in object-based classification was automated. However, automation is hard to achieve, since segmentation requires choosing optimum parameter values for optimal classification results. This paper focuses on the analysis of segmentation and classification performance and their correlation in a range of segmentation parameter values applied in the segmentation step. In order to find out which spatial resolution is still suitable for forest classification, forest classification accuracies obtained by using four images with different spatial resolutions were compared. Results of this study indicate that all high or very high spatial resolutions are suitable for optimal forest segmentation and classification, as long as appropriate scale and merge parameters combinations are used in the object-based classification. If computation interval includes all segmentation parameter combinations, all segmentation-classification correlations are spatial resolution independent and are generally high. If computation interval includes over- or optimal-segmentation parameter combinations, most segmentation-classification correlations are spatial resolution dependent.

  16. Study of spatial resolution of coordinate detectors based on Gas Electron Multipliers

    NASA Astrophysics Data System (ADS)

    Kudryavtsev, V. N.; Maltsev, T. V.; Shekhtman, L. I.

    2017-02-01

    Spatial resolution of GEM-based tracking detectors is determined in the simulation and measured in the experiments. The simulation includes GEANT4 implemented transport of high energy electrons with careful accounting of atomic relaxation processes including emission of fluorescent photons and Auger electrons and custom post-processing with accounting of diffusion, gas amplification fluctuations, distribution of signals on readout electrodes, electronics noise and particular algorithm of final coordinate calculation (center of gravity). The simulation demonstrates that the minimum of spatial resolution of about 10 μm can be achieved with a gas mixture of Ar -CO2 (75-25 %) at a strips pitch from 250 μm to 300 μm. At a larger pitch the resolution quickly degrades reaching 80-100 μm at a pitch of 460-500 μm. Spatial resolution of low-material triple-GEM detectors for the DEUTERON facility at the VEPP-3 storage ring is measured at the extracted beam facility of the VEPP-4 M collider. One-coordinate resolution of the DEUTERON detector is measured with electron beam of 500 MeV, 1 GeV and 3.5 GeV energies. The determined value of spatial resolution varies in the range from approximately 35 μm to 50 μm for orthogonal tracks in the experiments.

  17. Effects of configural processing on the perceptual spatial resolution for face features.

    PubMed

    Namdar, Gal; Avidan, Galia; Ganel, Tzvi

    2015-11-01

    Configural processing governs human perception across various domains, including face perception. An established marker of configural face perception is the face inversion effect, in which performance is typically better for upright compared to inverted faces. In two experiments, we tested whether configural processing could influence basic visual abilities such as perceptual spatial resolution (i.e., the ability to detect spatial visual changes). Face-related perceptual spatial resolution was assessed by measuring the just noticeable difference (JND) to subtle positional changes between specific features in upright and inverted faces. The results revealed robust inversion effect for spatial sensitivity to configural-based changes, such as the distance between the mouth and the nose, or the distance between the eyes and the nose. Critically, spatial resolution for face features within the region of the eyes (e.g., the interocular distance between the eyes) was not affected by inversion, suggesting that the eye region operates as a separate 'gestalt' unit which is relatively immune to manipulations that would normally hamper configural processing. Together these findings suggest that face orientation modulates fundamental psychophysical abilities including spatial resolution. Furthermore, they indicate that classic psychophysical methods can be used as a valid measure of configural face processing.

  18. High-spatial-resolution passive microwave sounding systems

    NASA Technical Reports Server (NTRS)

    Staelin, D. H.; Rosenkranz, P. W.

    1994-01-01

    The principal contributions of this combined theoretical and experimental effort were to advance and demonstrate new and more accurate techniques for sounding atmospheric temperature, humidity, and precipitation profiles at millimeter wavelengths, and to improve the scientific basis for such soundings. Some of these techniques are being incorporated in both research and operational systems. Specific results include: (1) development of the MIT Microwave Temperature Sounder (MTS), a 118-GHz eight-channel imaging spectrometer plus a switched-frequency spectrometer near 53 GHz, for use on the NASA ER-2 high-altitude aircraft, (2) conduct of ER-2 MTS missions in multiple seasons and locations in combination with other instruments, mapping with unprecedented approximately 2-km lateral resolution atmospheric temperature and precipitation profiles, atmospheric transmittances (at both zenith and nadir), frontal systems, and hurricanes, (3) ground based 118-GHz 3-D spectral images of wavelike structure within clouds passing overhead, (4) development and analysis of approaches to ground- and space-based 5-mm wavelength sounding of the upper stratosphere and mesosphere, which supported the planning of improvements to operational weather satellites, (5) development of improved multidimensional and adaptive retrieval methods for atmospheric temperature and humidity profiles, (6) development of combined nonlinear and statistical retrieval techniques for 183-GHz humidity profile retrievals, (7) development of nonlinear statistical retrieval techniques for precipitation cell-top altitudes, and (8) numerical analyses of the impact of remote sensing data on the accuracy of numerical weather predictions; a 68-km gridded model was used to study the spectral properties of error growth.

  19. The variation of intrinsic spatial resolution across the UFOV of scintillation cameras.

    PubMed

    Papanastassiou, Emmanouil K; Psarrakos, Kyriakos; Sioundas, Anastasios; Ballas, Apostolos; Koufogiannis, Dimitrios; Hatziioannou, Konstantinos

    2006-12-01

    The aim of the present study was to investigate in detail the variation of the intrinsic spatial resolution across the useful field of view (UFOV) of gamma-cameras and to explore whether this variation could lead to observable effects in clinical images. Two gamma-cameras were used, without their collimators, to acquire 560 (99m)Tc point source images at different points across their UFOVs, in order to measure the intrinsic spatial resolution at each point. Possible clinical effects of the resolution variation were examined on images of a thyroid phantom using a LEHR collimator, acquired at different locations on the UFOV and at various distances from the collimator. The gamma-camera intrinsic resolution varied significantly across the UFOV, being generally lower at the central region and deteriorating at the edges. Pronounced local maxima and minima were found at points corresponding to the centers of the photomultiplier tubes (PMTs) and halfway in between. Maximum differences of more than 50% were observed between the points presenting the best and worst intrinsic resolution. Differences between neighboring points reached 17%. The effects of resolution variation were clearly observable on the thyroid phantom images. It was concluded that an appropriate correction algorithm might be necessary in order to correct for the variation of the intrinsic spatial resolution across the UFOV of gamma-cameras.

  20. Multimodality hard-x-ray imaging of a chromosome with nanoscale spatial resolution

    NASA Astrophysics Data System (ADS)

    Yan, Hanfei; Nazaretski, Evgeny; Lauer, Kenneth; Huang, Xiaojing; Wagner, Ulrich; Rau, Christoph; Yusuf, Mohammed; Robinson, Ian; Kalbfleisch, Sebastian; Li, Li; Bouet, Nathalie; Zhou, Juan; Conley, Ray; Chu, Yong S.

    2016-02-01

    We developed a scanning hard x-ray microscope using a new class of x-ray nano-focusing optic called a multilayer Laue lens and imaged a chromosome with nanoscale spatial resolution. The combination of the hard x-ray’s superior penetration power, high sensitivity to elemental composition, high spatial-resolution and quantitative analysis creates a unique tool with capabilities that other microscopy techniques cannot provide. Using this microscope, we simultaneously obtained absorption-, phase-, and fluorescence-contrast images of Pt-stained human chromosome samples. The high spatial-resolution of the microscope and its multi-modality imaging capabilities enabled us to observe the internal ultra-structures of a thick chromosome without sectioning it.

  1. Multimodality hard-x-ray imaging of a chromosome with nanoscale spatial resolution

    PubMed Central

    Yan, Hanfei; Nazaretski, Evgeny; Lauer, Kenneth; Huang, Xiaojing; Wagner, Ulrich; Rau, Christoph; Yusuf, Mohammed; Robinson, Ian; Kalbfleisch, Sebastian; Li, Li; Bouet, Nathalie; Zhou, Juan; Conley, Ray; Chu, Yong S.

    2016-01-01

    We developed a scanning hard x-ray microscope using a new class of x-ray nano-focusing optic called a multilayer Laue lens and imaged a chromosome with nanoscale spatial resolution. The combination of the hard x-ray’s superior penetration power, high sensitivity to elemental composition, high spatial-resolution and quantitative analysis creates a unique tool with capabilities that other microscopy techniques cannot provide. Using this microscope, we simultaneously obtained absorption-, phase-, and fluorescence-contrast images of Pt-stained human chromosome samples. The high spatial-resolution of the microscope and its multi-modality imaging capabilities enabled us to observe the internal ultra-structures of a thick chromosome without sectioning it. PMID:26846188

  2. Multimodality hard-x-ray imaging of a chromosome with nanoscale spatial resolution

    DOE PAGES

    Yan, Hanfei; Nazaretski, Evgeny; Lauer, Kenneth R.; ...

    2016-02-05

    Here, we developed a scanning hard x-ray microscope using a new class of x-ray nano-focusing optic called a multilayer Laue lens and imaged a chromosome with nanoscale spatial resolution. The combination of the hard x-ray's superior penetration power, high sensitivity to elemental composition, high spatial-resolution and quantitative analysis creates a unique tool with capabilities that other microscopy techniques cannot provide. Using this microscope, we simultaneously obtained absorption-, phase-, and fluorescence-contrast images of Pt-stained human chromosome samples. The high spatial-resolution of the microscope and its multi-modality imaging capabilities enabled us to observe the internal ultra-structures of a thick chromosome without sectioningmore » it.« less

  3. Multimodality hard-x-ray imaging of a chromosome with nanoscale spatial resolution

    SciTech Connect

    Yan, Hanfei; Nazaretski, Evgeny; Lauer, Kenneth R.; Huang, Xiaojing; Wagner, Ulrich; Rau, Christoph; Yusuf, Mohammed; Robinson, Ian K.; Kalbfleisch, Sebastian; Li, Li; Bouet, Nathalie; Zhou, Juan; Conley, Ray; Chu, Yong S.

    2016-02-05

    Here, we developed a scanning hard x-ray microscope using a new class of x-ray nano-focusing optic called a multilayer Laue lens and imaged a chromosome with nanoscale spatial resolution. The combination of the hard x-ray's superior penetration power, high sensitivity to elemental composition, high spatial-resolution and quantitative analysis creates a unique tool with capabilities that other microscopy techniques cannot provide. Using this microscope, we simultaneously obtained absorption-, phase-, and fluorescence-contrast images of Pt-stained human chromosome samples. The high spatial-resolution of the microscope and its multi-modality imaging capabilities enabled us to observe the internal ultra-structures of a thick chromosome without sectioning it.

  4. Direct Imaging of Single Cells and Tissue at Subcellular Spatial Resolution Using Transmission Geometry MALDI MS

    PubMed Central

    Zavalin, Andre; Todd, Erik M.; Rawhouser, Patrick D.; Yang, Junhai; Norris, Jeremy L.; Caprioli, Richard M.

    2012-01-01

    The need of cellular and sub-cellular spatial resolution in LDI / MALDI Imaging Mass Spectrometry (IMS) necessitates micron and sub-micron laser spot sizes at biologically relevant sensitivities, introducing significant challenges for MS technology. To this end we have developed a transmission geometry vacuum ion source that allows the laser beam to irradiate the back side of the sample. This arrangement obviates the mechanical / ion optic complications in the source by completely separating the optical lens and ion optic structures. We have experimentally demonstrated the viability of transmission geometry MALDI MS for imaging biological tissues and cells with sub-cellular spatial resolution. Furthermore, we demonstrate that in conjunction with new sample preparation protocols, the sensitivity of this instrument is sufficient to obtain molecular images at sub-micron spatial resolution. PMID:23147833

  5. Differential pulse-width pair BOTDA for high spatial resolution sensing.

    PubMed

    Li, Wenhai; Bao, Xiaoyi; Li, Yun; Chen, Liang

    2008-12-22

    A differential pulse-width pair Brillouin optical time domain analysis (DPP-BOTDA) for centimeter spatial resolution sensing using meter equivalent pulses is proposed. This scheme uses the time domain waveform subtraction at the same scanned Brillouin frequency obtained from pulse lights with different pulse-widths (e.g. 50ns and 49ns) to form the differential Brillouin gain spectrum (BGS) at each fiber location. The spatial resolution is defined by the average of the rise and fall time equivalent fiber length for a small stress section rather than the pulse-width difference equivalent length. The spatial resolution of 0.18m for the 50/49ns pulse pair and 0.15m for 20/19ns pulse pair over 1km sensing length with Brillouin frequency shift accuracy of 2.6MHz are demonstrated.

  6. Sensitivity of ecosystem models to the spatial resolution of the NCAR Community Climate Model CCM2

    NASA Astrophysics Data System (ADS)

    Ciret, C.; Henderson-Sellers, A.

    This study evaluates the sensitivity of ecosystem models to changes in the horizontal resolution of version 2 of the National Centre for Atmospheric Research Community Climate Model (CCM2). A previous study has shown that the distributions of natural ecosystems predicted by vegetation models using coarse resolution present-day climate simulations are poorly simulated. It is usually assumed that increasing the spatial resolution of general circulation models (GCMs) will improve the simulation of climate, and hence will increase our level of confidence in the use of GCM output for impacts studies. The principal goals of this study is to investigate this hypothesis and to identify which biomes are more affected by the changes in spatial resolution of the forcing climate. The ecosystem models used are the BIOME-1 model and a version of the Holdridge scheme. The climate simulations come from a set of experiments in which CCM2 was run with increasing horizontal resolutions. The biome distributions predicted using CCM2 climates are compared against biome distributions predicted using observed climate datasets. Results show that increasing the resolution of CCM2 produces a significant improvement of the global-scale vegetation prediction, indicating that a higher level of confidence can be vested in the global-scale prediction of natural ecosystems using medium and high resolution GCMs. However, not all biomes are equally affected by the increased spatial resolution, and although certain biome distributions are improved (e.g. hot desert, tropical seasonal forest), others remain globally poorly predicted even at high resolution (e.g. grasses and xerophytic woods). In addition, these results show that some climatic biases are enhanced with increasing resolution (e.g. in mountain ranges), resulting in the inadequate prediction of biomes.

  7. Performance and characterization of the prototype nm-scale spatial resolution scanning multilayer Laue lenses microscope

    NASA Astrophysics Data System (ADS)

    Nazaretski, E.; Kim, Jungdae; Yan, H.; Lauer, K.; Eom, D.; Shu, D.; Maser, J.; Pešić, Z.; Wagner, U.; Rau, C.; Chu, Y. S.

    2013-03-01

    Synchrotron based x-ray microscopy established itself as a prominent tool for noninvasive investigations in many areas of science and technology. Many facilities around the world routinely achieve sub-micrometer resolution with a few instruments capable of imaging with the spatial resolution better than 100 nm. With an ongoing effort to push the 2D/3D resolution down to 10 nm in the hard x-ray regime both fabrication of the nano-focusing optics and stability of a microscope become extremely challenging. In this work we present our approach to overcome technical challenges on the path towards high spatial resolution hard x-ray microscopy and demonstrate the performance of a scanning fluorescence microscope equipped with the multilayer Laue lenses focusing optics.

  8. An Algorithm for the Retrieval of 30-m Snow-Free Albedo from Landsat Surface Reflectance and MODIS BRDF

    NASA Technical Reports Server (NTRS)

    Shuai, Yanmin; Masek, Jeffrey G.; Gao, Feng; Schaaf, Crystal B.

    2011-01-01

    We present a new methodology to generate 30-m resolution land surface albedo using Landsat surface reflectance and anisotropy information from concurrent MODIS 500-m observations. Albedo information at fine spatial resolution is particularly useful for quantifying climate impacts associated with land use change and ecosystem disturbance. The derived white-sky and black-sky spectral albedos maybe used to estimate actual spectral albedos by taking into account the proportion of direct and diffuse solar radiation arriving at the ground. A further spectral-to-broadband conversion based on extensive radiative transfer simulations is applied to produce the broadband albedos at visible, near infrared, and shortwave regimes. The accuracy of this approach has been evaluated using 270 Landsat scenes covering six field stations supported by the SURFace RADiation Budget Network (SURFRAD) and Atmospheric Radiation Measurement Southern Great Plains (ARM/SGP) network. Comparison with field measurements shows that Landsat 30-m snow-free shortwave albedos from all seasons generally achieve an absolute accuracy of +/-0.02 - 0.05 for these validation sites during available clear days in 2003-2005,with a root mean square error less than 0.03 and a bias less than 0.02. This level of accuracy has been regarded as sufficient for driving global and regional climate models. The Landsat-based retrievals have also been compared to the operational 16-day MODIS albedo produced every 8-days from MODIS on Terra and Aqua (MCD43A). The Landsat albedo provides more detailed landscape texture, and achieves better agreement (correlation and dynamic range) with in-situ data at the validation stations, particularly when the stations include a heterogeneous mix of surface covers.

  9. Fundamental x-ray interaction limits in diagnostic imaging detectors: Spatial resolution

    SciTech Connect

    Hajdok, G.; Battista, J. J.; Cunningham, I. A.

    2008-07-15

    The practice of diagnostic x-ray imaging has been transformed with the emergence of digital detector technology. Although digital systems offer many practical advantages over conventional film-based systems, their spatial resolution performance can be a limitation. The authors present a Monte Carlo study to determine fundamental resolution limits caused by x-ray interactions in four converter materials: Amorphous silicon (a-Si), amorphous selenium, cesium iodide, and lead iodide. The ''x-ray interaction'' modulation transfer function (MTF) was determined for each material and compared in terms of the 50% MTF spatial frequency and Wagner's effective aperture for incident photon energies between 10 and 150 keV and various converter thicknesses. Several conclusions can be drawn from their Monte Carlo study. (i) In low-Z (a-Si) converters, reabsorption of Compton scatter x rays limits spatial resolution with a sharp MTF drop at very low spatial frequencies (<0.3 cycles/mm), especially above 60 keV; while in high-Z materials, reabsorption of characteristic x rays plays a dominant role, resulting in a mid-frequency (1-5 cycles/mm) MTF drop. (ii) Coherent scatter plays a minor role in the x-ray interaction MTF. (iii) The spread of energy due to secondary electron (e.g., photoelectrons) transport is significant only at very high spatial frequencies. (iv) Unlike the spread of optical light in phosphors, the spread of absorbed energy from x-ray interactions does not significantly degrade spatial resolution as converter thickness is increased. (v) The effective aperture results reported here represent fundamental spatial resolution limits of the materials tested and serve as target benchmarks for the design and development of future digital x-ray detectors.

  10. Fundamental x-ray interaction limits in diagnostic imaging detectors: spatial resolution.

    PubMed

    Hajdok, G; Battista, J J; Cunningham, I A

    2008-07-01

    The practice of diagnostic x-ray imaging has been transformed with the emergence of digital detector technology. Although digital systems offer many practical advantages over conventional film-based systems, their spatial resolution performance can be a limitation. The authors present a Monte Carlo study to determine fundamental resolution limits caused by x-ray interactions in four converter materials: Amorphous silicon (a-Si), amorphous selenium, cesium iodide, and lead iodide. The "x-ray interaction" modulation transfer function (MTF) was determined for each material and compared in terms of the 50% MTF spatial frequency and Wagner's effective aperture for incident photon energies between 10 and 150 keV and various converter thicknesses. Several conclusions can be drawn from their Monte Carlo study. (i) In low-Z (a-Si) converters, reabsorption of Compton scatter x rays limits spatial resolution with a sharp MTF drop at very low spatial frequencies (< 0.3 cycles/mm), especially above 60 keV; while in high-Z materials, reabsorption of characteristic x rays plays a dominant role, resulting in a mid-frequency (1-5 cycles/mm) MTF drop. (ii) Coherent scatter plays a minor role in the x-ray interaction MTF. (iii) The spread of energy due to secondary electron (e.g., photoelectrons) transport is significant only at very high spatial frequencies. (iv) Unlike the spread of optical light in phosphors, the spread of absorbed energy from x-ray interactions does not significantly degrade spatial resolution as converter thickness is increased. (v) The effective aperture results reported here represent fundamental spatial resolution limits of the materials tested and serve as target benchmarks for the design and development of future digital x-ray detectors.

  11. Large-scale proton radiography with micrometer spatial resolution using femtosecond petawatt laser system

    SciTech Connect

    Wang, W. P.; Shen, B. F. Zhang, H.; Lu, X. M.; Wang, C.; Liu, Y. Q.; Yu, L. H.; Chu, Y. X.; Li, Y. Y.; Xu, T. J.; Zhang, H.; Zhai, S. H.; Leng, Y. X.; Liang, X. Y.; Li, R. X.; Xu, Z. Z.

    2015-10-15

    An image of dragonfly with many details is obtained by the fundamental property of the high-energy proton source on a femtosecond petawatt laser system. Equal imaging of the dragonfly and high spatial resolution on the micrometer scale are simultaneously obtained. The head, wing, leg, tail, and even the internal tissue structures are clearly mapped in detail by the proton beam. Experiments show that image blurring caused by multiple Coulomb scattering can be reduced to a certain extent and the spatial resolution can be increased by attaching the dragonfly to the RCFs, which is consistent with theoretical assumptions.

  12. Iterative algorithm for reconstructing rotationally asymmetric surface deviation with pixel-level spatial resolution

    NASA Astrophysics Data System (ADS)

    Quan, Haiyang; Wu, Fan; Hou, Xi

    2015-10-01

    New method for reconstructing rotationally asymmetric surface deviation with pixel-level spatial resolution is proposed. It is based on basic iterative scheme and accelerates the Gauss-Seidel method by introducing an acceleration parameter. This modified Successive Over-relaxation (SOR) is effective for solving the rotationally asymmetric components with pixel-level spatial resolution, without the usage of a fitting procedure. Compared to the Jacobi and Gauss-Seidel method, the modified SOR method with an optimal relaxation factor converges much faster and saves more computational costs and memory space without reducing accuracy. It has been proved by real experimental results.

  13. [Spatial resolution standardization of payload on board of remote sensing satellite based on application requirements].

    PubMed

    Wei, Xiang-qin; Gu, Xing-fa; Yu, Tao; Meng, Qing-yan; Li, Bin; Guo, Hong

    2012-03-01

    Remote sensing application requirements are the starting point for design of payload on board earth observation satellite. The generalization, standardization and serialization of payload are the future development trend for payload design. In the present paper, based on the analysis of remote sensing application requirements, the spatial resolution standardization of satellite remote sensing payload, which is the main concerned indicator, was investigated. The design standards of national payload spatial resolution of earth observation satellite are presented, which are important to the promotion of satellite payload production and saving in design cost.

  14. Electron-Beam Mapping of Vibrational Modes with Nanometer Spatial Resolution.

    PubMed

    Dwyer, C; Aoki, T; Rez, P; Chang, S L Y; Lovejoy, T C; Krivanek, O L

    2016-12-16

    We demonstrate that a focused beam of high-energy electrons can be used to map the vibrational modes of a material with a spatial resolution of the order of one nanometer. Our demonstration is performed on boron nitride, a polar dielectric which gives rise to both localized and delocalized electron-vibrational scattering, either of which can be selected in our off-axial experimental geometry. Our experimental results are well supported by our calculations, and should reconcile current controversy regarding the spatial resolution achievable in vibrational mapping with focused electron beams.

  15. Electron-Beam Mapping of Vibrational Modes with Nanometer Spatial Resolution

    NASA Astrophysics Data System (ADS)

    Dwyer, C.; Aoki, T.; Rez, P.; Chang, S. L. Y.; Lovejoy, T. C.; Krivanek, O. L.

    2016-12-01

    We demonstrate that a focused beam of high-energy electrons can be used to map the vibrational modes of a material with a spatial resolution of the order of one nanometer. Our demonstration is performed on boron nitride, a polar dielectric which gives rise to both localized and delocalized electron-vibrational scattering, either of which can be selected in our off-axial experimental geometry. Our experimental results are well supported by our calculations, and should reconcile current controversy regarding the spatial resolution achievable in vibrational mapping with focused electron beams.

  16. Ultrafast laser induced breakdown spectroscopy for high spatial resolution chemical analysis

    NASA Astrophysics Data System (ADS)

    Zorba, Vassilia; Mao, Xianglei; Russo, Richard E.

    2011-02-01

    Femtosecond laser induced breakdown spectroscopy (LIBS) was used to identify the spatial resolution limitations and assess the minimal detectable mass restrictions in laser-ablation based chemical analysis. The atomic emission of sodium (Na) and potassium (K) dopants in transparent dielectric Mica matrices was studied, to find that both these elements could be detected from 450 nm diameter ablation craters, full-width-at-half-maximum (FWHM). Under optimal conditions, mass as low as 220 ag was measured, demonstrating the feasibility of using laser-ablation based chemical analysis to achieve high spatial resolution elemental analysis in real-time and at atmospheric pressure conditions.

  17. Simulations of the temporal and spatial resolution for a compact time-resolved electron diffractometer

    NASA Astrophysics Data System (ADS)

    Robinson, Matthew S.; Lane, Paul D.; Wann, Derek A.

    2016-02-01

    A novel compact electron gun for use in time-resolved gas electron diffraction experiments has recently been designed and commissioned. In this paper we present and discuss the extensive simulations that were performed to underpin the design in terms of the spatial and temporal qualities of the pulsed electron beam created by the ionisation of a gold photocathode using a femtosecond laser. The response of the electron pulses to a solenoid lens used to focus the electron beam has also been studied. The simulated results show that focussing the electron beam affects the overall spatial and temporal resolution of the experiment in a variety of ways, and that factors that improve the resolution of one parameter can often have a negative effect on the other. A balance must, therefore, be achieved between spatial and temporal resolution. The optimal experimental time resolution for the apparatus is predicted to be 416 fs for studies of gas-phase species, while the predicted spatial resolution of better than 2 nm-1 compares well with traditional time-averaged electron diffraction set-ups.

  18. Detection efficiency, spatial and timing resolution of thermal and cold neutron counting MCP detectors

    NASA Astrophysics Data System (ADS)

    Tremsin, A. S.; McPhate, J. B.; Vallerga, J. V.; Siegmund, O. H. W.; Hull, J. S.; Feller, W. B.; Lehmann, E.

    2009-06-01

    Neutron counting detectors with boron or gadolinium doped microchannel plates (MCPs) have very high detection efficiency, spatial and temporal resolution, and have a very low readout noise. In this paper we present the results of both theoretical predictions and experimental evaluations of detection efficiency and spatial resolution measured at cold and thermal neutron beamlines. The quantum detection efficiency of a detector (not fully optimized) was measured to be 43% and 16% for the cold and thermal beamlines, respectively. The experiments also demonstrate that the spatial resolution can be better than 15 μm—highest achievable with the particular MCP pore dimension used in the experiment, although more electronics development is required in order to increase the counting rate capabilities of those <15 μm resolution devices. The timing accuracy of neutron detection is on the scale of few μs and is limited by the neutron absorption depth in the detector. The good agreement between the predicted and measured performance allows the optimization of the detector parameters in order to achieve the highest spatial resolution and detection efficiency in future devices.

  19. Arranging optical fibres for the spatial resolution improvement of topographical images

    NASA Astrophysics Data System (ADS)

    Yamamoto, Tsuyoshi; Maki, Atsushi; Kadoya, Takuma; Tanikawa, Yukari; Yamada, Yukio; Okada, Eiji; Koizumi, Hideaki

    2002-09-01

    Optical topography is a method for visualization of cortical activity. Ways of improving the spatial resolution of the topographical image with three arrangements of optical fibres are discussed. A distribution of sensitivity is obtained from the phantom experiment, and used to reconstruct topographical images of an activation area of the brain with the fibres in each arrangement. The correlations between the activated area and the corresponding topographical images are obtained, and the effective arrangement of the optical fibres for improved resolution is discussed.

  20. Spatial perception of sound fields recorded by spherical microphone arrays with varying spatial resolution.

    PubMed

    Avni, Amir; Ahrens, Jens; Geier, Matthias; Spors, Sascha; Wierstorf, Hagen; Rafaely, Boaz

    2013-05-01

    The area of sound field synthesis has significantly advanced in the past decade, facilitated by the development of high-quality sound-field capturing and re-synthesis systems. Spherical microphone arrays are among the most recently developed systems for sound field capturing, enabling processing and analysis of three-dimensional sound fields in the spherical harmonics domain. In spite of these developments, a clear relation between sound fields recorded by spherical microphone arrays and their perception with a re-synthesis system has not yet been established, although some relation to scalar measures of spatial perception was recently presented. This paper presents an experimental study of spatial sound perception with the use of a spherical microphone array for sound recording and headphone-based binaural sound synthesis. Sound field analysis and processing is performed in the spherical harmonics domain with the use of head-related transfer functions and simulated enclosed sound fields. The effect of several factors, such as spherical harmonics order, frequency bandwidth, and spatial sampling, are investigated by applying the repertory grid technique to the results of the experiment, forming a clearer relation between sound-field capture with a spherical microphone array and its perception using binaural synthesis regarding space, frequency, and additional artifacts. The experimental study clearly shows that a source will be perceived more spatially sharp and more externalized when represented by a binaural stimuli reconstructed with a higher spherical harmonics order. This effect is apparent from low spherical harmonics orders. Spatial aliasing, as a result of sound field capturing with a finite number of microphones, introduces unpleasant artifacts which increased with the degree of aliasing error.

  1. The Role of Shallow Convection in Tropical Climate via Impacts of the Model Spatial Resolution

    NASA Astrophysics Data System (ADS)

    Bui, H. X.; Chou, C.

    2014-12-01

    We examine the role of shallow convection in tropical climate, using different spatial resolutions as sensitivity studies. After examining the vertical structure and spatial distribution of tropical convection, we found that a coarser resolution produces less partition of shallow convection, while a finer resolution tends to produce greater one in convective regions. We further examine the influence of shallow convection strength on precipitation by comparing the western and eastern Pacific ITCZ. In the western Pacific ITCZ, where is dominated by deep convection, the variation of precipitation among the spatial-resolution experiments is mainly due to the contribution of thermodynamic processes. The warmer climate found in coarser resolutions enhances precipitation frequency and intensity, and then the corresponding precipitation amount. In the eastern Pacific ITCZ, which has more shallow convection, shallow convection becomes the dominant factor to determine the variation of precipitation. More partition of shallow convection found in finer resolutions tends to enhance precipitation frequency and intensity, and the total precipitation amount. This provides potential evidence that shallow convection first affects the occurrence and intensity of precipitation, and then the total amount of precipitation in the region.

  2. Evaluation of eight high spatial resolution gridded precipitation products in Adige Basin (Italy) at multiple temporal and spatial scales.

    PubMed

    Duan, Zheng; Liu, Junzhi; Tuo, Ye; Chiogna, Gabriele; Disse, Markus

    2016-12-15

    This study provides a comprehensive evaluation of eight high spatial resolution gridded precipitation products in Adige Basin located in Italy within 45-47.1°N. The Adige Basin is characterized by a complex topography, and independent ground data are available from a network of 101 rain gauges during 2000-2010. The eight products include the Version 7 TRMM (Tropical Rainfall Measuring Mission) Multi-satellite Precipitation Analysis 3B42 product, three products from CMORPH (the Climate Prediction Center MORPHing technique), i.e., CMORPH_RAW, CMORPH_CRT and CMORPH_BLD, PCDR (Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks-Climate Data Record), PGF (Global Meteorological Forcing Dataset for land surface modelling developed by Princeton University), CHIRPS (Climate Hazards Group InfraRed Precipitation with Station data) and GSMaP_MVK (Global Satellite Mapping of Precipitation project Moving Vector with Kalman-filter product). All eight products are evaluated against interpolated rain gauge data at the common 0.25° spatial resolution, and additional evaluations at native finer spatial resolution are conducted for CHIRPS (0.05°) and GSMaP_MVK (0.10°). Evaluation is performed at multiple temporal (daily, monthly and annual) and spatial scales (grid and watershed). Evaluation results show that in terms of overall statistical metrics the CHIRPS, TRMM and CMORPH_BLD comparably rank as the top three best performing products, while the PGF performs worst. All eight products underestimate and overestimate the occurrence frequency of daily precipitation for some intensity ranges. All products tend to show higher error in the winter months (December-February) when precipitation is low. Very slight difference can be observed in the evaluation metrics and aspects between at the aggregated 0.25° spatial resolution and at the native finer resolutions (0.05°) for CHIRPS and (0.10°) for GSMaP_MVK products. This study has implications

  3. On the sensitivity of urban hydrodynamic modelling to rainfall spatial and temporal resolution

    NASA Astrophysics Data System (ADS)

    Bruni, G.; Reinoso, R.; van de Giesen, N. C.; Clemens, F. H. L. R.; ten Veldhuis, J. A. E.

    2015-02-01

    Cities are increasingly vulnerable to floods generated by intense rainfall, because of urbanisation of flood-prone areas and ongoing urban densification. Accurate information of convective storm characteristics at high spatial and temporal resolution is a crucial input for urban hydrological models to be able to simulate fast runoff processes and enhance flood prediction in cities. In this paper, a detailed study of the sensitivity of urban hydrodynamic response to high resolution radar rainfall was conducted. Rainfall rates derived from X-band dual polarimetric weather radar were used as input into a detailed hydrodynamic sewer model for an urban catchment in the city of Rotterdam, the Netherlands. The aim was to characterise how the effect of space and time aggregation on rainfall structure affects hydrodynamic modelling of urban catchments, for resolutions ranging from 100 to 2000 m and from 1 to 10 min. Dimensionless parameters were derived to compare results between different storm conditions and to describe the effect of rainfall spatial resolution in relation to storm characteristics and hydrodynamic model properties: rainfall sampling number (rainfall resolution vs. storm size), catchment sampling number (rainfall resolution vs. catchment size), runoff and sewer sampling number (rainfall resolution vs. runoff and sewer model resolution respectively). Results show that for rainfall resolution lower than half the catchment size, rainfall volumes mean and standard deviations decrease as a result of smoothing of rainfall gradients. Moreover, deviations in maximum water depths, from 10 to 30% depending on the storm, occurred for rainfall resolution close to storm size, as a result of rainfall aggregation. Model results also showed that modelled runoff peaks are more sensitive to rainfall resolution than maximum in-sewer water depths as flow routing has a damping effect on in-sewer water level variations. Temporal resolution aggregation of rainfall inputs led to

  4. The Sun at high spatial resolution: The physics of small spatial structures in a magnetized medium

    NASA Technical Reports Server (NTRS)

    Rosner, R. T.

    1986-01-01

    An attempt is made to provide a perspective on the problem of spatial structuring on scales smaller than can presently be directly and regularly observed from the ground or with which current space-based instrumentation can be anticipated. There is abundant evidence from both observations and theory that such spatial structuring of the solar outer atmosphere is ubiquitous not only on the observed scales, but also on spatial scales down to (at least) the subarcsecond range. This is not to say that the results to be obtained from observations on these small scales can be anticipated: quite the opposite. What is clear instead is that many of the classic problems of coronal and chromospheric activity - involving the basic dissipative nature of magnetized plasmas - will be seen from a novel perspective at these scales, and that there are reasons for believing that dynamical processes of importance to activity on presently-resolved scales will themselves begin to be resolved on the sub-arcsecond level. Since the Sun is the only astrophysical laboratory for which there is any hope of studying these processes in any detail, this observatioinal opportunity is an exciting prospect for any student of magnetic activity in astrophysics.

  5. Numerical analysis of single pulse and differential pulse-width pair BOTDA systems in the high spatial resolution regime.

    PubMed

    Minardo, Aldo; Bernini, Romeo; Zeni, Luigi

    2011-09-26

    A numerical analysis of conventional and differential pulse-width pair Brillouin optical time domain analysis systems is reported. The tests are focused on determining the performance of these systems especially in terms of spatial resolution, as a function of the pulse characteristics. A new definition of spatial resolution is given, based on analysis of the shape of the Brillouin gain spectrum. The influence of the rise/fall time of the pulse light to the spatial resolution is also studied.

  6. Noise Removal with Maintained Spatial Resolution in Raman Images of Cells Exposed to Submicron Polystyrene Particles

    PubMed Central

    Ahlinder, Linnea; Wiklund Lindström, Susanne; Lejon, Christian; Geladi, Paul; Österlund, Lars

    2016-01-01

    The biodistribution of 300 nm polystyrene particles in A549 lung epithelial cells has been studied with confocal Raman spectroscopy. This is a label-free method in which particles and cells can be imaged without using dyes or fluorescent labels. The main drawback with Raman imaging is the comparatively low spatial resolution, which is aggravated in heterogeneous systems such as biological samples, which in addition often require long measurement times because of their weak Raman signal. Long measurement times may however induce laser-induced damage. In this study we use a super-resolution algorithm with Tikhonov regularization, intended to improve the image quality without demanding an increased number of collected pixels. Images of cells exposed to polystyrene particles have been acquired with two different step lengths, i.e., the distance between pixels, and compared to each other and to corresponding images treated with the super-resolution algorithm. It is shown that the resolution after application of super-resolution algorithms is not significantly improved compared to the theoretical limit for optical microscopy. However, to reduce noise and artefacts in the hyperspectral Raman images while maintaining the spatial resolution, we show that it is advantageous to use short mapping step lengths and super-resolution algorithms with appropriate regularization. The proposed methodology should be generally applicable for Raman imaging of biological samples and other photo-sensitive samples.

  7. Resolution and Brightness Characteristics of Short-Lag Spatial Coherence (SLSC) Images

    PubMed Central

    Lediju Bell, Muyinatu A.; Dahl, Jeremy J.; Trahey, Gregg E.

    2016-01-01

    We previously described a novel beamforming method that images the spatial correlation of an echo wave field with demonstrated applications to clutter reduction in high-noise environments. In this paper, several characteristics of the resolution and brightness of short-lag spatial coherence (SLSC) images formed by this method are compared with B-mode images formed by conventional delay-and-sum beamforming methods. Point target widths were measured to estimate resolution, the autocorrelation of image texture was measured to estimate texture size, and the contrast (i.e., brightness ratio) of clinically relevant targets was assessed. SLSC images demonstrate improved resolution and contrast with increasing values of channel noise and clutter, whereas B-mode resolution was degraded in the presence of high noise (i.e., > −12 dB channel noise-to-signal ratios) and high clutter magnitudes (i.e., > −21 dB relative to point target magnitude). Lateral resolution in SLSC images was improved with increasing lag value, whereas axial resolution was degraded with increasing correlation kernel length. The texture size of SLSC images was smaller than that of matched B-mode images. Results demonstrate that the resolution and contrast of coherence-based images depend on a range of parameters, but are generally superior to those of matched B-mode images under challenging imaging conditions. PMID:26168173

  8. Fast Vascular Ultrasound Imaging with Enhanced Spatial Resolution and Background Rejection.

    PubMed

    Bar-Zion, Avinoam; Tremblay-Darveau, Charles; Solomon, Oren; Adam, Dan; Eldar, Yonina

    2016-08-15

    Ultrasound super-localization microscopy techniques presented in the last few years enable non-invasive imaging of vascular structures at the capillary level by tracking the flow of ultrasound contrast agents (gas microbubbles). However, these techniques are currently limited by low temporal resolution and long acquisition times. Super-resolution optical fluctuation imaging (SOFI) is a fluorescence microscopy technique enabling sub-diffraction limit imaging with high temporal resolution by calculating high order statistics of the fluctuating optical signal. The aim of this work is to achieve fast acoustic imaging with enhanced resolution by applying the tools used in SOFI to contrast-enhance ultrasound (CEUS) plane-wave scans. The proposed method was tested using numerical simulations and evaluated using two in-vivo rabbit models: scans of healthy kidneys and VX-2 tumor xenografts. Improved spatial resolution was observed with a reduction of up to 50% in the full width half max of the point spread function. In addition, substantial reduction in the background level was achieved compared to standard mean amplitude persistence images, revealing small vascular structures within tumors. The scan duration of the proposed method is less than a second while current superlocalization techniques require acquisition duration of several minutes. As a result, the proposed technique may be used to obtain scans with enhanced spatial resolution and high temporal resolution, facilitating flow-dynamics monitoring. Our method can also be applied during a breath-hold, reducing the sensitivity to motion artifacts.

  9. Fast Vascular Ultrasound Imaging With Enhanced Spatial Resolution and Background Rejection.

    PubMed

    Bar-Zion, Avinoam; Tremblay-Darveau, Charles; Solomon, Oren; Adam, Dan; Eldar, Yonina C

    2017-01-01

    Ultrasound super-localization microscopy techniques presented in the last few years enable non-invasive imaging of vascular structures at the capillary level by tracking the flow of ultrasound contrast agents (gas microbubbles). However, these techniques are currently limited by low temporal resolution and long acquisition times. Super-resolution optical fluctuation imaging (SOFI) is a fluorescence microscopy technique enabling sub-diffraction limit imaging with high temporal resolution by calculating high order statistics of the fluctuating optical signal. The aim of this work is to achieve fast acoustic imaging with enhanced resolution by applying the tools used in SOFI to contrast-enhance ultrasound (CEUS) plane-wave scans. The proposed method was tested using numerical simulations and evaluated using two in-vivo rabbit models: scans of healthy kidneys and VX-2 tumor xenografts. Improved spatial resolution was observed with a reduction of up to 50% in the full width half max of the point spread function. In addition, substantial reduction in the background level was achieved compared to standard mean amplitude persistence images, revealing small vascular structures within tumors. The scan duration of the proposed method is less than a second while current super-localization techniques require acquisition duration of several minutes. As a result, the proposed technique may be used to obtain scans with enhanced spatial resolution and high temporal resolution, facilitating flow-dynamics monitoring. Our method can also be applied during a breath-hold, reducing the sensitivity to motion artifacts.

  10. Spatial Distribution of Attentional Modulation at Columnar Resolution in Macaque Area V4

    PubMed Central

    Tanigawa, Hisashi; Chen, Gang; Roe, Anna W.

    2016-01-01

    Attention to a location in a visual scene affects neuronal responses in visual cortical areas in a retinotopically specific manner. Optical imaging studies have revealed that cortical responses consist of two components of different sizes: the stimulus-nonspecific global signal and the stimulus-specific mapping signal (domain activity). It remains unclear whether either or both of these components are modulated by spatial attention. In this study, to determine the spatial distribution of attentional modulation at columnar resolution, we performed cerebral blood volume (CBV)-based optical imaging in area V4 of monkeys performing a color change detection task in which spatial attention was manipulated. We found that spatial attention enhanced global signals of the hemodynamic responses, but did not affect stimulus-selective domain activities. These results indicate the involvement of global signals in neural processing of spatial attention. We propose that global signals reflect the neural substrate of the normalization pool in normalization models of attention. PMID:28018181

  11. Improving the quantification at high spatial resolution using a field emission electron microprobe

    NASA Astrophysics Data System (ADS)

    Pinard, P. T.; Richter, S.

    2014-03-01

    The capabilities of field emitter electron microprobes to perform quantitative measurements at high spatial resolution are discussed. Using Fe-Cr-C particles in a bearing steel (SAE 52100) as example, a generic procedure was established to find the optimal analytical conditions (beam energy, beam current and acquisition time). The influence of these parameters on the accuracy, precision and spatial resolution was evaluated using experimental measurements and Monte Carlo simulations. A quantification procedure was developed for soft X-ray lines, taking into account the overlap of high order X-ray lines and background anomalies. The accuracy of Ka- and La-lines was verified using reference materials. A relationship between experimental and simulated X-ray intensities was determined to evaluate the measurement precision. The spatial resolution of each X-ray line was calculated from the simulated lateral and depth X-ray intensity distribution using simulations integrating experimentally measured beam diameters. The optimal analytical conditions for the studied sample were found to be 5 keV, 10 nA and 10 s acquisition time. Further specialized techniques to improve the spatial resolution are presented: focused ion beam preparation of thin lamella and wedge, and Monte Carlo based reconstruction. The feasibility of the latter to quantify features smaller than the X-ray emission volume was demonstrated.

  12. High spatial resolution X-ray and gamma ray imaging system using diffraction crystals

    DOEpatents

    Smither, Robert K.

    2011-05-17

    A method and a device for high spatial resolution imaging of a plurality of sources of x-ray and gamma-ray radiation are provided. The device comprises a plurality of arrays, with each array comprising a plurality of elements comprising a first collimator, a diffracting crystal, a second collimator, and a detector.

  13. Spatial resolution of tip-enhanced Raman spectroscopy - DFT assessment of the chemical effect

    NASA Astrophysics Data System (ADS)

    Latorre, Federico; Kupfer, Stephan; Bocklitz, Thomas; Kinzel, Daniel; Trautmann, Steffen; Gräfe, Stefanie; Deckert, Volker

    2016-05-01

    Experimental evidence of extremely high spatial resolution of tip-enhanced Raman scattering (TERS) has been recently demonstrated. Here, we present a full quantum chemical description (at the density functional level of theory) of the non-resonant chemical effects on the Raman spectrum of an adenine molecule mapped by a tip, modeled as a single silver atom or a small silver cluster. We show pronounced changes in the Raman pattern and its intensities depending on the conformation of the nanoparticle-substrate system, concluding that the spatial resolution of the chemical contribution of TERS can be in the sub-nm range.Experimental evidence of extremely high spatial resolution of tip-enhanced Raman scattering (TERS) has been recently demonstrated. Here, we present a full quantum chemical description (at the density functional level of theory) of the non-resonant chemical effects on the Raman spectrum of an adenine molecule mapped by a tip, modeled as a single silver atom or a small silver cluster. We show pronounced changes in the Raman pattern and its intensities depending on the conformation of the nanoparticle-substrate system, concluding that the spatial resolution of the chemical contribution of TERS can be in the sub-nm range. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr00093b

  14. Scaling field data to calibrate and validate moderate spatial resolution remote sensing models

    USGS Publications Warehouse

    Baccini, A.; Friedl, M.A.; Woodcock, C.E.; Zhu, Z.

    2007-01-01

    Validation and calibration are essential components of nearly all remote sensing-based studies. In both cases, ground measurements are collected and then related to the remote sensing observations or model results. In many situations, and particularly in studies that use moderate resolution remote sensing, a mismatch exists between the sensor's field of view and the scale at which in situ measurements are collected. The use of in situ measurements for model calibration and validation, therefore, requires a robust and defensible method to spatially aggregate ground measurements to the scale at which the remotely sensed data are acquired. This paper examines this challenge and specifically considers two different approaches for aggregating field measurements to match the spatial resolution of moderate spatial resolution remote sensing data: (a) landscape stratification; and (b) averaging of fine spatial resolution maps. The results show that an empirically estimated stratification based on a regression tree method provides a statistically defensible and operational basis for performing this type of procedure. 

  15. A system for optically controlling neural circuits with very high spatial and temporal resolution

    PubMed Central

    Pandarinath, Chethan; Carlson, Eric T.; Nirenberg, Sheila

    2015-01-01

    Optogenetics offers a powerful new approach for controlling neural circuits. It has a vast array of applications in both basic and clinical science. For basic science, it opens the door to unraveling circuit operations, since one can perturb specific circuit components with high spatial (single cell) and high temporal (millisecond) resolution. For clinical applications, it allows new kinds of selective treatments, because it provides a method to inactivate or activate specific components in a malfunctioning circuit and bring it back into a normal operating range [1–3]. To harness the power of optogenetics, though, one needs stimulating tools that work with the same high spatial and temporal resolution as the molecules themselves, the channelrhodopsins. To date, most stimulating tools require a tradeoff between spatial and temporal precision and are prohibitively expensive to integrate into a stimulating/recording setup in a laboratory or a device in a clinical setting [4, 5]. Here we describe a Digital Light Processing (DLP)-based system capable of extremely high temporal resolution (sub-millisecond), without sacrificing spatial resolution. Furthermore, it is constructed using off-the-shelf components, making it feasible for a broad range of biology and bioengineering labs. Using transgenic mice that express channelrhodopsin-2 (ChR2), we demonstrate the system’s capability for stimulating channelrhodopsin-expressing neurons in tissue with single cell and sub-millisecond precision. PMID:25699292

  16. Real space soft x-ray imaging at 10 nm spatial resolution

    SciTech Connect

    Chao, Weilun; Fischer, Peter; Tyliszczak, T.; Rekawa, Senajith; Anderson, Erik; Naulleau, Patrick

    2011-04-24

    Using Fresnel zone plates made with our robust nanofabrication processes, we have successfully achieved 10 nm spatial resolution with soft x-ray microscopy. The result, obtained with both a conventional full-field and scanning soft x-ray microscope, marks a significant step forward in extending the microscopy to truly nanoscale studies.

  17. Spatial and temporal resolution effects on urban catchments with different imperviousness degrees

    NASA Astrophysics Data System (ADS)

    Cristiano, Elena; ten Veldhuis, Marie-Claire; van de Giesen, Nick C.

    2015-04-01

    One of the main problems in urban hydrological analysis is to measure the rainfall at urban scale with high resolution and use these measurements to model urban runoff processes to predict flows and reduce flood risk. With the aim of building a semi-distribute hydrological sewer model for an urban catchment, high resolution rainfall data are required as input. In this study, the sensitivity of hydrological response to high resolution precipitation data for hydrodynamic models at urban scale is evaluated with different combinations of spatial and temporal resolutions. The aim is to study sensitivity in relation to catchment characteristics, especially drainage area size, imperviousness degree and hydraulic properties such as special structures (weirs, pumping stations). Rainfall data of nine storms are considered with 4 different spatial resolutions (3000m, 1000m, 500m and 100m) combined with 4 different temporal resolutions (10min, 5min, 3min and 1min). The dual polarimetric X-band weather radar, located in the Cabauw Experimental Site for Atmospheric Research (CESAR) provided the high resolution rainfall data of these rainfall events, used to improve the sewer model. The effects of spatial-temporal rainfall input resolution on response is studied in three Districts of Rotterdam (NL): Kralingen, Spaanse Polder and Centrum district. These catchments have different average drainage area size (from 2km2 to 7km2), and different general characteristics. Centrum district and Kralingen are, indeed, more various and include residential and commercial areas, big green areas and a small industrial area, while Spaanse Polder is a industrial area, densely urbanized, and presents a high percentage of imperviousness.

  18. Multi-storm, multi-catchment investigation of rainfall spatial resolution requirements for urban hydrological applications

    NASA Astrophysics Data System (ADS)

    Ochoa Rodriguez, Susana; ten Veldhuis, Marie-Claire; Bruni, Guendalina; Gires, Auguste; van Assel, Johan; Wang, Lipen; Reinoso-Rodinel, Ricardo; Ichiba, Abdellah; Kroll, Stefan; Schertzer, Daniel; Onof, Christian; Willems, Patrick

    2014-05-01

    Rainfall estimates of the highest possible resolution are required for urban hydrological applications, given the small size and fast response which characterise urban catchments. While significant progress has been made over the last few decades in high resolution measurement of rainfall at urban scales and in the modelling of urban runoff processes, a number of questions as to the actual resolution requirements for input data and models remain to be answered. With the aim of answering some of these questions, this work investigates the impact of rainfall estimates of different spatial resolutions and structures on the hydraulic outputs of models of several urban catchments with different characteristics. For this purpose multiple storm events, including convective and stratiform ones, measured by a polarimetric X-band radar located in Cabauw (NL) were selected for analysis. The original radar estimates, at 100 m and 1 min resolutions, were aggregated to coarser spatial resolutions of up to 1000 m. These estimates were then applied to the high-resolution semi distributed hydraulic models of four urban catchments of similar size (approx. 7 km2), but different morphological and land use characteristics; these are: the Herent catchment (Belgium), the Cranbrook catchment (UK), the Morée Sausset catchment (France) and the Kralingen District of Rotterdam (The Netherlands). When doing so, methodologies for standardising rainfall inputs and making results comparable were implemented. Moreover, the results were analysed considering different points at each catchment, while also taking into account the particular storm and catchment characteristics. The results obtained for the storms used in this study show that flat and less compact catchments (e.g. polder areas) may be more sensitive to the spatial resolution of rainfall estimates, as compared to catchments with higher slopes and compactness, which in general show little sensitivity to changes in spatial resolution

  19. High spatial resolution brain functional MRI using submillimeter balanced steady-state free precession acquisition

    SciTech Connect

    Wu, Pei-Hsin; Chung, Hsiao-Wen; Tsai, Ping-Huei; Wu, Ming-Long; Chuang, Tzu-Chao; Shih, Yi-Yu; Huang, Teng-Yi

    2013-12-15

    Purpose: One of the technical advantages of functional magnetic resonance imaging (fMRI) is its precise localization of changes from neuronal activities. While current practice of fMRI acquisition at voxel size around 3 × 3 × 3 mm{sup 3} achieves satisfactory results in studies of basic brain functions, higher spatial resolution is required in order to resolve finer cortical structures. This study investigated spatial resolution effects on brain fMRI experiments using balanced steady-state free precession (bSSFP) imaging with 0.37 mm{sup 3} voxel volume at 3.0 T. Methods: In fMRI experiments, full and unilateral visual field 5 Hz flashing checkerboard stimulations were given to healthy subjects. The bSSFP imaging experiments were performed at three different frequency offsets to widen the coverage, with functional activations in the primary visual cortex analyzed using the general linear model. Variations of the spatial resolution were achieved by removing outerk-space data components. Results: Results show that a reduction in voxel volume from 3.44 × 3.44 × 2 mm{sup 3} to 0.43 × 0.43 × 2 mm{sup 3} has resulted in an increase of the functional activation signals from (7.7 ± 1.7)% to (20.9 ± 2.0)% at 3.0 T, despite of the threefold SNR decreases in the original images, leading to nearly invariant functional contrast-to-noise ratios (fCNR) even at high spatial resolution. Activation signals aligning nicely with gray matter sulci at high spatial resolution would, on the other hand, have possibly been mistaken as noise at low spatial resolution. Conclusions: It is concluded that the bSSFP sequence is a plausible technique for fMRI investigations at submillimeter voxel widths without compromising fCNR. The reduction of partial volume averaging with nonactivated brain tissues to retain fCNR is uniquely suitable for high spatial resolution applications such as the resolving of columnar organization in the brain.

  20. High-Spatial-Resolution Thermal Infrared Satellite Images for Lake Studies

    NASA Astrophysics Data System (ADS)

    Steissberg, T. E.; Hook, S. J.; Schladow, G.

    2006-12-01

    Thermal infrared (TIR) satellite images can be used to study transport processes in lakes, such as wind-driven upwelling and surface circulation, providing a measure of spatial variability and horizontal distribution of water temperature that conventional field-based measurements cannot provide. High-spatial-resolution TIR images provide a detailed view of fine-scale processes, such as surface jets, that cannot be clearly resolved in moderate-resolution images, and they enable the accurate measurement of surface transport and circulation patterns. The surface temperature maps derived from high-resolution thermal infrared ASTER and Landsat ETM+ images, in conjunction with moderate-resolution TIR images acquired by MODIS, enabled the characterization of wind-driven upwelling and the measurement of surface currents and circulation at Lake Tahoe, California-Nevada, USA. The images, paired with in situ surface temperature and meteorological data, have shown that wind-driven partial upwelling events occur at least twice monthly throughout the spring and summer stratified period, transporting water from intermediate depths to the surface. These are important events that contribute to the patchiness and heterogeneity that characterize natural aquatic systems. The high spatial resolution of ASTER and ETM+ and the small time separation between their subsequent overpasses allow the surface currents and general circulation in lakes and coastal environments to be accurately quantified using the maximum cross-correlation method. The surface currents and circulation at Lake Tahoe were measured using a pair of cross-platform high-resolution TIR images acquired 38 minutes apart by ETM+ and ASTER. Mean currents of 5--10 cm/s were measured, with maximum currents approaching 35 cm/s. The eastward transport of a surface jet extending from an upwelling front was clearly apparent, with 15--30 cm/s currents. The vector field delineated three gyres, consistent with surface drifter

  1. Evaluation of charge -sharing effects on the spatial resolution of the PICASSO detector

    NASA Astrophysics Data System (ADS)

    Rigon, L.; Arfelli, F.; Bergamaschi, A.; Chen, R. C.; Dreossi, D.; Longo, R.; Menk, R.-H.; Schmitt, B.; Vallazza, E.; Castelli, E.

    2010-05-01

    A double -layer "edge-on" silicon microstrip detector has been designed and realized in the frame of the PICASSO (Phase Imaging for Clinical Application with Silicon detector and Synchrotron radiatiOn) project at the SYRMEP (SYnchrotron Radiation for MEdical Physics) beamline of Elettra (Trieste, Italy). The detector meets the requirements for synchrotron radiation mammography with patients inregarding: (a) size, since it covers the full beam width (210 mm); (b) spatial resolution, determined by the 0.05 mm strip pitch; (c) single-photon counting capabilities, because it is able to handle more than 10 6 photons/(pixel×s); (d) contrast resolution, thanks to a threshold trim DAC that equalizes the channel sensitivity; (e) efficiency, due to the high absorption in the 15-20 mm sensor depth. Experimental measurements evidence charge sharing, though not compromising the spatial resolution.

  2. Spatial and frequency-based super-resolution of ultrasound images.

    PubMed

    Wu, Mon-Ju; Karls, Joseph; Duenwald-Kuehl, Sarah; Vanderby, Ray; Sethares, William

    2014-07-01

    Modern ultrasound systems can output video images containing more spatial and temporal information than still images. Super-resolution techniques can exploit additional information but face two challenges: image registration and complex motion. In addition, information from multiple available frequencies is unexploited. Herein, we utilised these information sources to create better ultrasound images and videos, extending existing technologies for image capture. Spatial and frequency-based super-resolution processing using multiple motion estimation and frequency combination was applied to ultrasound videos of deforming models. Processed images are larger, have greater clarity and detail, and less variability in intensity between frames. Significantly, strain measurements are more accurate and precise than those from raw videos, and have a higher contrast ratio between 'tumour' and 'surrounding tissue' in a phantom model. We attribute improvements to reduced noise and increased resolution in processed images. Our methods can significantly improve quantitative and qualitative assessments of ultrasound images when compared assessments of standard images.

  3. Photoelectron range limitations to the spatial resolution for x-rays in gas proportional chambers

    SciTech Connect

    Smith, G.C.; Fischer, J.; Radeka, V.

    1983-11-01

    Measurements have been made, for x-ray energies from a few keV to 18 keV, of the limiting spatial resolution caused by the finite range of the photoelectron, or electrons, created when an x-ray is absorbed in the gas of a proportional chamber. In hydrocarbon gases such as methane and ethane, where the photoelectron receives the bulk of the x-ray energy, the limiting spatial resolution is found to vary as a power law of x-ray energy. In argon and xenon, at an x-ray energy approximately twice that of the A/sub K/ edge and the Xe/sub L/ edge respectively, the measured limiting resolution is better than expected from an equivalent power law behavior.

  4. High-resolution measurements of the spatial and temporal scalar structure of a turbulent plume

    NASA Astrophysics Data System (ADS)

    Crimaldi, J. P.; Koseff, J. R.

    Two techniques are described for measuring the scalar structure of turbulent flows. A planar laser-induced fluorescence technique is used to make highly resolved measurements of scalar spatial structure, and a single-point laser-induced fluorescence probe is used to make highly resolved measurements of scalar temporal structure. The techniques are used to measure the spatial and temporal structure of an odor plume released from a low-momentum, bed-level source in a turbulent boundary layer. For the experimental setup used in this study, a spatial resolution of 150μm and a temporal resolution of 1,000Hz are obtained. The results show a wide range of turbulent structures in rich detail; the nature of the structure varies significantly in different regions of the plume.

  5. Cyclical thinning of black phosphorus with high spatial resolution for heterostructure devices.

    PubMed

    Robbins, Matthew C; Namgung, Seon; Oh, Sang-Hyun; Koester, Steven J

    2017-03-13

    A high-spatial resolution, cyclical thinning method for realizing black phosphorus (BP) heterostructures is reported. This process utilizes a cyclic technique involving BP surface oxidation and vacuum annealing to create BP flakes as thin as 1.6 nm. The process also utilizes a spatially patternable mask created by evaporating Al that oxidizes to form Al2O3 which stabilizes the unetched BP regions and enables the formation of lateral heterostructures with spatial resolution as small as 150 nm. This thinning/patterning technique has also been used to create the first ever lateral heterostructure BP MOSFET in which half of a BP flake was thinned in order to increase its band gap. This heterostructure MOSFET showed an on-to-off current ratio improvement of 1000× compared to homojunction MOSFETs.

  6. Fusing Multi-Source Urban Maps Under Consideration of Spatial Resolution and Environmental Characteristics

    NASA Astrophysics Data System (ADS)

    Salentinig, Andreas; Gamba, Paolo

    2016-08-01

    In this work a decision level fusion algorithm incorporating multispectral- and SAR- based urban maps from different spatial resolutions is presented. A variety of urban maps from SAR as well optical EO data with spatial resolutions ranging between 12 and 75 meters are combined in order to produce accurate urban area extractions of the Chinese 'Megacities' of Beijing and Guangzhou. The influence of spatial posting of the data, climate region and season at image acquisition has been evaluated and reflected in optimized weights of the input data in the fusion process. Therefore, the weights are determined based on the assumption that the usability and reliability of EO data products depends on the intended scale of analysis as well as on the fact that their sensor-specific advantages and limitations are strongly connected to the environmental characteristics of the area under investigation. Results show that improved built-up area extractions can be achieved with the proposed method.

  7. Spatial Resolution Characterization for QuickBird Image Products 2003-2004 Season

    NASA Technical Reports Server (NTRS)

    Blonski, Slawomir

    2006-01-01

    This presentation focuses on spatial resolution characterization for QuickBird panochromatic images in 2003-2004 and presents data measurements and analysis of SSC edge target deployment and edge response extraction and modeling. The results of the characterization are shown as values of the Modulation Transfer Function (MTF) at the Nyquist spatial frequency and as the Relative Edge Response (RER) components. The results show that RER is much less sensitive to accuracy of the curve fitting than the value of MTF at Nyquist frequency. Therefore, the RER/edge response slope is a more robust estimator of the digital image spatial resolution than the MTF. For the QuickBird panochromatic images, the RER is consistently equal to 0.5 for images processed with the Cubic Convolution resampling and to 0.8 for the MTF resampling.

  8. On the sensitivity of urban hydrodynamic modelling to rainfall spatial and temporal resolution

    NASA Astrophysics Data System (ADS)

    Bruni, G.; Reinoso, R.; van de Giesen, N. C.; Clemens, F. H. L. R.; ten Veldhuis, J. A. E.

    2014-06-01

    Cities are increasingly vulnerable to floods generated by intense rainfall, because of their high degree of imperviousness, implementation of infrastructures, and changes in precipitation patterns due to climate change. Accurate information of convective storm characteristics at high spatial and temporal resolution is a crucial input for urban hydrological models to be able to simulate fast runoff processes and enhance flood prediction. In this paper, a detailed study of the sensitivity of urban hydrological response to high resolution radar rainfall was conducted. Rainfall rates derived from X-band dual polarimetric weather radar for four rainstorms were used as input into a detailed hydrodynamic sewer model for an urban catchment in Rotterdam, the Netherlands. Dimensionless parameters were derived to compare results between different storm conditions and to describe the effect of rainfall spatial resolution in relation to storm and hydrodynamic model properties: rainfall sampling number (rainfall resolution vs. storm size), catchment sampling number (rainfall resolution vs. catchment size), runoff and sewer sampling number (rainfall resolution vs. runoff and sewer model resolution respectively). Results show catchment smearing effect for rainfall resolution approaching half the catchment size, i.e. for catchments sampling numbers greater than 0.5 averaged rainfall volumes decrease about 20%. Moreover, deviations in maximum water depths, form 10 to 30% depending on the storm, occur for rainfall resolution close to storm size, describing storm smearing effect due to rainfall coarsening. Model results also show the sensitivity of modelled runoff peaks and maximum water depths to the resolution of the runoff areas and sewer density respectively. Sensitivity to temporal resolution of rainfall input seems low compared to spatial resolution, for the storms analysed in this study. Findings are in agreement with previous studies on natural catchments, thus the sampling

  9. Spatially adaptive probabilistic computation of a sub-kilometre resolution lightning climatology for New Zealand

    NASA Astrophysics Data System (ADS)

    Etherington, Thomas R.; Perry, George L. W.

    2017-01-01

    Lightning is a key component of the Earth's atmosphere and climate systems, and there is a potential positive feedback between a warming climate and increased lightning activity. In the biosphere, lightning is important as the main natural ignition source for wildfires and because of its contribution to the nitrogen cycle. Therefore, it is important to develop lightning climatologies to characterise and monitor lightning activity. While traditional methods for constructing lightning climatologies are suitable for examining lightning's influence on atmospheric processes, they are less well suited for examining questions about biosphere-lightning interactions. For example, examining the interaction between lightning and wildfires requires linking atmospheric processes to finer scale terrestrial processes and patterns. Most wildfires ignited by lightning are less than one hectare in size, and so require lightning climatologies at a comparable spatial resolution. However, such high resolution lightning climatologies cannot be derived using the traditional cell-count methodology. Here we present a novel geocomputational approach for analysing lightning data at high spatial resolutions. Our approach is based on probabilistic computational methods and is capable of producing a sub-kilometre lightning climatology that honours the spatial accuracy of the strike locations and is adaptive to underlying spatial patterns. We demonstrate our methods by applying them to the mid-latitude oceanic landmass of New Zealand, an area with geographic conditions that are under-represented in existing lightning climatologies. Our resulting lightning climatology has unparalleled spatial resolution, and the spatial and temporal patterns we observe in it are consistent with other continental and tropical lightning climatologies. To encourage further use and development of our probabilistic approach, we provide Python scripts that demonstrate the method alongside our resulting New Zealand

  10. Improving the spatial resolution of magnetic resonance inverse imaging via the blipped-CAIPI acquisition scheme.

    PubMed

    Chang, Wei-Tang; Setsompop, Kawin; Ahveninen, Jyrki; Belliveau, John W; Witzel, Thomas; Lin, Fa-Hsuan

    2014-05-01

    Using simultaneous acquisition from multiple channels of a radio-frequency (RF) coil array, magnetic resonance inverse imaging (InI) achieves functional MRI acquisitions at a rate of 100ms per whole-brain volume. InI accelerates the scan by leaving out partition encoding steps and reconstructs images by solving under-determined inverse problems using RF coil sensitivity information. Hence, the correlated spatial information available in the coil array causes spatial blurring in the InI reconstruction. Here, we propose a method that employs gradient blips in the partition encoding direction during the acquisition to provide extra spatial encoding in order to better differentiate signals from different partitions. According to our simulations, this blipped-InI (bInI) method can increase the average spatial resolution by 15.1% (1.3mm) across the whole brain and from 32.6% (4.2mm) in subcortical regions, as compared to the InI method. In a visual fMRI experiment, we demonstrate that, compared to InI, the spatial distribution of bInI BOLD response is more consistent with that of a conventional echo-planar imaging (EPI) at the level of individual subjects. With the improved spatial resolution, especially in subcortical regions, bInI can be a useful fMRI tool for obtaining high spatiotemporal information for clinical and cognitive neuroscience studies.

  11. Spatial Resolution Versus Data Acquisition Efficiency in Mapping an Inhomogeneous System with Species Diffusion

    SciTech Connect

    Chen, Fengxiang; Zhang, Yong; Gfroerer, T. H.; Finger, A. N.; Mark W. Wanlass

    2015-06-02

    Traditionally, spatially-resolved photoluminescence (PL) has been performed using a point-by-point scan mode with both excitation and detection occurring at the same spatial location. But with the availability of high quality detector arrays like CCDs, an imaging mode has become popular for performing spatially-resolved PL. By illuminating the entire area of interest and collecting the data simultaneously from all spatial locations, the measurement efficiency can be greatly improved. However, this new approach has proceeded under the implicit assumption of comparable spatial resolution. We show here that when carrier diffusion is present, the spatial resolution can actually differ substantially between the two modes, with the less efficient scan mode being far superior. We apply both techniques in investigation of defects in a GaAs epilayer – where isolated singlet and doublet dislocations can be identified. A superposition principle is developed for solving the diffusion equation to extract the intrinsic carrier diffusion length, which can be applied to a system with arbitrarily distributed defects. The understanding derived from this work is significant for a broad range of problems in physics and beyond (for instance biology) – whenever the dynamics of generation, diffusion, and annihilation of species can be probed with either measurement mode.

  12. Spatial resolution versus data acquisition efficiency in mapping an inhomogeneous system with species diffusion.

    PubMed

    Chen, Fengxiang; Zhang, Yong; Gfroerer, T H; Finger, A N; Wanlass, M W

    2015-06-02

    Traditionally, spatially-resolved photoluminescence (PL) has been performed using a point-by-point scan mode with both excitation and detection occurring at the same spatial location. But with the availability of high quality detector arrays like CCDs, an imaging mode has become popular for performing spatially-resolved PL. By illuminating the entire area of interest and collecting the data simultaneously from all spatial locations, the measurement efficiency can be greatly improved. However, this new approach has proceeded under the implicit assumption of comparable spatial resolution. We show here that when carrier diffusion is present, the spatial resolution can actually differ substantially between the two modes, with the less efficient scan mode being far superior. We apply both techniques in investigation of defects in a GaAs epilayer - where isolated singlet and doublet dislocations can be identified. A superposition principle is developed for solving the diffusion equation to extract the intrinsic carrier diffusion length, which can be applied to a system with arbitrarily distributed defects. The understanding derived from this work is significant for a broad range of problems in physics and beyond (for instance biology) - whenever the dynamics of generation, diffusion, and annihilation of species can be probed with either measurement mode.

  13. Spatial Resolution Versus Data Acquisition Efficiency in Mapping an Inhomogeneous System with Species Diffusion

    DOE PAGES

    Chen, Fengxiang; Zhang, Yong; Gfroerer, T. H.; ...

    2015-06-02

    Traditionally, spatially-resolved photoluminescence (PL) has been performed using a point-by-point scan mode with both excitation and detection occurring at the same spatial location. But with the availability of high quality detector arrays like CCDs, an imaging mode has become popular for performing spatially-resolved PL. By illuminating the entire area of interest and collecting the data simultaneously from all spatial locations, the measurement efficiency can be greatly improved. However, this new approach has proceeded under the implicit assumption of comparable spatial resolution. We show here that when carrier diffusion is present, the spatial resolution can actually differ substantially between the twomore » modes, with the less efficient scan mode being far superior. We apply both techniques in investigation of defects in a GaAs epilayer – where isolated singlet and doublet dislocations can be identified. A superposition principle is developed for solving the diffusion equation to extract the intrinsic carrier diffusion length, which can be applied to a system with arbitrarily distributed defects. The understanding derived from this work is significant for a broad range of problems in physics and beyond (for instance biology) – whenever the dynamics of generation, diffusion, and annihilation of species can be probed with either measurement mode.« less

  14. Improving the spatial resolution of Magnetic Resonance Inverse Imaging via the blipped-CAIPI acquisition scheme

    PubMed Central

    Chang, Wei-Tang; Setsompop, Kawin; Ahveninen, Jyrki; Belliveau, John W.; Witzel, Thomas; Lin, Fa-Hsuan

    2014-01-01

    Using simultaneous acquisition from multiple channels of a radio-frequency (RF) coil array, magnetic resonance inverse imaging (InI) achieves functional MRI acquisitions at a rate of 100 ms per whole-brain volume. InI accelerates the scan by leaving out partition encoding steps and reconstructs images by solving under-determined inverse problems using RF coil sensitivity information. Hence, the correlated spatial information available in the coil array causes spatial blurring in the InI reconstruction. Here, we propose a method that employs gradient blips in the partition encoding direction during the acquisition to provide extra spatial encoding in order to better differentiate signals from different partitions. According to our simulations, this blipped-InI (bInI) method can increase the average spatial resolution by 15.1% (1.3 mm) across the whole brain and from 32.6% (4.2 mm) in subcortical regions, as compared to the InI method. In a visual fMRI experiment, we demonstrate that, compared to InI, the spatial distribution of bInI BOLD response is more consistent with that of a conventional echo-planar imaging (EPI) at the level of individual subjects. With the improved spatial resolution, especially in subcortical regions, bInI can be a useful fMRI tool for obtaining high spatiotemporal information for clinical and cognitive neuroscience studies. PMID:24374076

  15. Large scale IRAM 30 m CO-observations in the giant molecular cloud complex W43

    NASA Astrophysics Data System (ADS)

    Carlhoff, P.; Nguyen Luong, Q.; Schilke, P.; Motte, F.; Schneider, N.; Beuther, H.; Bontemps, S.; Heitsch, F.; Hill, T.; Kramer, C.; Ossenkopf, V.; Schuller, F.; Simon, R.; Wyrowski, F.

    2013-12-01

    We aim to fully describe the distribution and location of dense molecular clouds in the giant molecular cloud complex W43. It was previously identified as one of the most massive star-forming regions in our Galaxy. To trace the moderately dense molecular clouds in the W43 region, we initiated W43-HERO, a large program using the IRAM 30 m telescope, which covers a wide dynamic range of scales from 0.3 to 140 pc. We obtained on-the-fly-maps in 13CO (2-1) and C18O (2-1) with a high spectral resolution of 0.1 km s-1 and a spatial resolution of 12''. These maps cover an area of ~1.5 square degrees and include the two main clouds of W43 and the lower density gas surrounding them. A comparison to Galactic models and previous distance calculations confirms the location of W43 near the tangential point of the Scutum arm at approximately 6 kpc from the Sun. The resulting intensity cubes of the observed region are separated into subcubes, which are centered on single clouds and then analyzed in detail. The optical depth, excitation temperature, and H2 column density maps are derived out of the 13CO and C18O data. These results are then compared to those derived from Herschel dust maps. The mass of a typical cloud is several 104 M⊙ while the total mass in the dense molecular gas (>102 cm-3) in W43 is found to be ~1.9 × 106 M⊙. Probability distribution functions obtained from column density maps derived from molecular line data and Herschel imaging show a log-normal distribution for low column densities and a power-law tail for high densities. A flatter slope for the molecular line data probability distribution function may imply that those selectively show the gravitationally collapsing gas. Appendices are available in electronic form at http://www.aanda.orgThe final datacubes (13CO and C18O) for the entire survey are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/560/A24

  16. High spatial resolution upgrade of the electron cyclotron emission radiometer for the DIII-D tokamak

    SciTech Connect

    Truong, D. D.; Austin, M. E.

    2014-11-01

    The 40-channel DIII-D electron cyclotron emission (ECE) radiometer provides measurements of Te(r,t) at the tokamak midplane from optically thick, second harmonic X-mode emission over a frequency range of 83-130 GHz. Heterodyning divides this frequency range into three 2-18 GHz intermediate frequency (IF) bands. The frequency spacing of the radiometer’s channels results in a spatial resolution of ~1-3 cm, depending on local magnetic field and electron temperature. A new high resolution subsystem has been added to the DIII-D ECE radiometer to make sub-centimeter (0.6-0.8 cm) resolution Te measurements. The high resolution subsystem branches off from the regular channels’ IF bands and consists of a microwave switch to toggle between IF bands, a switched filter bank for frequency selectivity, an adjustable local oscillator and mixer for further frequency down-conversion, and a set of eight microwave filters in the 2-4 GHz range. We achieved a higher spatial resolution through the use of a narrower (200 MHz) filter bandwidth and closer spacing between the filters’ center frequencies (250 MHz). This configuration allows for full coverage of the 83-130 GHz frequency range in 2 GHz bands. Depending on the local magnetic field, this translates into a “zoomed-in” analysis of a ~2-4 cm radial region. These high resolution channels will be most useful in the low-field side edge region where modest Te values (1-2 keV) result in a minimum of relativistic broadening. Some expected uses of these channels include mapping the spatial dependence of Alfven eigenmodes, geodesic acoustic modes, and externally applied magnetic perturbations. Initial Te measurements, which demonstrate that the desired resolution is achieved, is presented.

  17. High spatial resolution upgrade of the electron cyclotron emission radiometer for the DIII-D tokamak

    DOE PAGES

    Truong, D. D.; Austin, M. E.

    2014-11-01

    The 40-channel DIII-D electron cyclotron emission (ECE) radiometer provides measurements of Te(r,t) at the tokamak midplane from optically thick, second harmonic X-mode emission over a frequency range of 83-130 GHz. Heterodyning divides this frequency range into three 2-18 GHz intermediate frequency (IF) bands. The frequency spacing of the radiometer’s channels results in a spatial resolution of ~1-3 cm, depending on local magnetic field and electron temperature. A new high resolution subsystem has been added to the DIII-D ECE radiometer to make sub-centimeter (0.6-0.8 cm) resolution Te measurements. The high resolution subsystem branches off from the regular channels’ IF bands andmore » consists of a microwave switch to toggle between IF bands, a switched filter bank for frequency selectivity, an adjustable local oscillator and mixer for further frequency down-conversion, and a set of eight microwave filters in the 2-4 GHz range. We achieved a higher spatial resolution through the use of a narrower (200 MHz) filter bandwidth and closer spacing between the filters’ center frequencies (250 MHz). This configuration allows for full coverage of the 83-130 GHz frequency range in 2 GHz bands. Depending on the local magnetic field, this translates into a “zoomed-in” analysis of a ~2-4 cm radial region. These high resolution channels will be most useful in the low-field side edge region where modest Te values (1-2 keV) result in a minimum of relativistic broadening. Some expected uses of these channels include mapping the spatial dependence of Alfven eigenmodes, geodesic acoustic modes, and externally applied magnetic perturbations. Initial Te measurements, which demonstrate that the desired resolution is achieved, is presented.« less

  18. High-spatial-resolution microwave and related observations as diagnostics of coronal loops

    NASA Technical Reports Server (NTRS)

    Holman, Gordon D.

    1986-01-01

    High spatial resolution microwave observations of coronal loops, together with theoretical models for the loop emission, can provide detailed information about the temperature, density, and magnetic field within the loop, as well as the environment around the loop. The capability for studying magnetic fields is particularly important, since there is no comparable method for obtaining direct information about coronal magnetic fields. Knowledge of the magnetic field strength and structure in coronal loops is important for understanding both coronal heating and flares. With arc-second-resolution microwave observations from the Very Large Array (VLA), supplemental high-spectral-resolution microwave data from a facility such as the Owens Valley frequency-agile interferometer, and the ability to obtain second-of-arc resolution EUV aor soft X ray images, the capability already exists for obtaining much more detailed information about coronal plasma and magnetic structures than is presently available. This capability is discussed.

  19. Enhancing spatial resolution of infrared imagery using overlap of sequence images

    NASA Astrophysics Data System (ADS)

    Cao, Jiahao; Li, Chunlai; Jin, Jian; Ji, Hongzhen; Zhang, Xudong; Wang, Jianyu

    2016-05-01

    The high-resolution thermal infrared image, by which the information of a scene can be described in details, is extensively used in many fields including computer vision process, medicine, and remote sensing, etc. This paper introduces a super-resolution reconstruction algorithm in combination of phase related motion estimating algorithm and iterative back-projecting algorithm. Continuous frames of the thermal infrared image aerially shot are extracted, the subpixel displacement of each frame of image relative to the reference image is estimated with the phase related motion estimating algorithm, and then the subpixel displacement data acquired is combined with the iterative back-projecting algorithm to actualize the super-resolution reconstruction of thermal infrared image aerially shot. The thermal infrared images were aerially shot above Zhoushan. The experimental result has proven the image spatial resolution can be effectively improved by this algorithm.

  20. Investigation of LANDSAT follow-on thematic mapper spatial, radiometric and spectral resolution

    NASA Technical Reports Server (NTRS)

    Nalepka, R. F. (Principal Investigator); Morgenstern, J. P.; Kent, E. R.; Erickson, J. D.

    1976-01-01

    The author has identified the following significant results. Fine resolution M7 multispectral scanner data collected during the Corn Blight Watch Experiment in 1971 served as the basis for this study. Different locations and times of year were studied. Definite improvement using 30-40 meter spatial resolution over present LANDSAT 1 resolution and over 50-60 meter resolution was observed, using crop area mensuration as the measure. Simulation studies carried out to extrapolate the empirical results to a range of field size distributions confirmed this effect, showing the improvement to be most pronounced for field sizes of 1-4 hectares. Radiometric sensitivity study showed significant degradation of crop classification accuracy immediately upon relaxation from the nominally specified values of 0.5% noise equivalent reflectance. This was especially the case for data which were spectrally similar such as that collected early in the growing season and also when attempting to accomplish crop stress detection.

  1. Long-distance super-resolution imaging assisted by enhanced spatial Fourier transform.

    PubMed

    Tang, Heng-He; Liu, Pu-Kun

    2015-09-07

    A new gradient-index (GRIN) lens that can realize enhanced spatial Fourier transform (FT) over optically long distances is demonstrated. By using an anisotropic GRIN metamaterial with hyperbolic dispersion, evanescent wave in free space can be transformed into propagating wave in the metamaterial and then focused outside due to negative-refraction. Both the results based on the ray tracing and the finite element simulation show that the spatial frequency bandwidth of the spatial FT can be extended to 2.7k(0) (k(0) is the wave vector in free space). Furthermore, assisted by the enhanced spatial FT, a new long-distance (in the optical far-field region) super-resolution imaging scheme is also proposed and the super resolved capability of λ/5 (λ is the wavelength in free space) is verified. The work may provide technical support for designing new-type high-speed microscopes with long working distances.

  2. Compressed sensing for super-resolution spatial and temporal laser detection and ranging

    NASA Astrophysics Data System (ADS)

    Laurenzis, Martin; Schertzer, Stephane; Christnacher, Frank

    2016-10-01

    In the past decades, laser aided electro-optical sensing has reached high maturity and several commercial systems are available at the market for various but specific applications. These systems can be used for detection i.e. imaging as well as ranging. They cover laser scanning devices like LiDAR and staring full frame imaging systems like laser gated viewing or LADAR. The sensing capabilities of these systems is limited by physical parameter (like FPA array size, temporal band width, scanning rate, sampling rate) and is adapted to specific applications. Change of system parameter like an increase of spatial resolution implies the setup of a new sensing device with high development cost or the purchase and installation of a complete new sensor unit. Computational imaging approaches can help to setup sensor devices with flexible or adaptable sensing capabilities. Especially, compressed sensing is an emerging computational method which is a promising candidate to realize super-resolution sensing with the possibility to adapt its performance to various sensing tasks. It is possible to increase sensing capabilities with compressed sensing to gain either higher spatial and/or temporal resolution. Then, the sensing capabilities depend no longer only on the physical performance of the device but also on the computational effort and can be adapted to the application. In this paper, we demonstrate and discuss laser aided imaging using CS for super-resolution tempo-spatial imaging and ranging.

  3. Effect of microscope parameter and specimen thickness of spatial resolution of transmission electron backscatter diffraction.

    PubMed

    Wang, Y Z; Kong, M G; Liu, Z W; Lin, C C; Zeng, Y

    2016-10-01

    The spatial resolution of transmission electron backscatter diffraction (t-EBSD) with a standard conventional EBSD detector was evaluated quantitatively based on the calculation of the correlation coefficient of transmission patterns which were acquired across a twin boundary in the sample of austenitic steel. The results showed that the resolution of t-EBSD improved from tens of nanometres to below 10 nm with increasing accelerating voltage and thinning of specimen thickness. High voltage could enhance the penetration depth and reduce the scattering angle. And the thinning of specimen thickness would result in decreasing of the scattering events according to the theory of thermal diffuse scattering (TDS). In addition, the transmission patterns were found to be weak and noisy if the specimen was too thin, because of the decreasing intensity detected by the screen. Consequently, in this work, the best spatial resolution of 7 nm was achieved at 30 kV and 41 nm thickness. Moreover, the specimen thickness range was also discussed using Monte-Carlo simulation. This approach was helpful to account for the differences of measured spatial resolutions, by t-EBSD, of lamellas with different thickness.

  4. High Spatial Resolution Auger Spectroscopy and Nucleation and Growth Studies of SILVER/SILICON(100)

    NASA Astrophysics Data System (ADS)

    Luo, Frank C. H.

    1990-01-01

    The ability to analyse the composition of a sample at high spatial resolution using Auger Electron Spectroscopy is very desirable for both industrial and academic research. The spatial resolution of the traditional Auger instrument is typically limited by the incident beam size to the range of 0.1-1 mum. This dissertation reports the efforts of construction, testing and utilizing a new Auger spectrometer with a nanometer incident probe in a scanning transmission electron microscopy (STEM). In order to use the 100 keV electron beam of the STEM for the Auger experiment, a low energy electron beam deflection system was designed and constructed. The testing of such deflection system and the spectrometer, both in a test chamber with different hardware configuration and in the microscope, was very extensive. Both Auger spectra and images can be obtained in the microscope with excellent energy resolution in a relatively short time. Quantitative analysis of the data showed a spatial resolution of less than 10 nm was achieved with a good collection efficiency. More quantitative work was carried on the Silver/Silicon(100) system as the application of the Auger instrument. Nucleation and growth phenomena of Ag on Si at both room and elevated temperatures was studied with the microscope operating both in Auger and scanning electron microscopy (SEM) mode. Suggestions for the further improvement of the Auger instrument and the Ag/Si(100) case study are made.

  5. Low-Cost Ultra-High Spatial and Temporal Resolution Mapping of Intertidal Rock Platforms

    NASA Astrophysics Data System (ADS)

    Bryson, M.; Johnson-Roberson, M.; Murphy, R.

    2012-07-01

    Intertidal ecosystems have primarily been studied using field-based sampling; remote sensing offers the ability to collect data over large areas in a snapshot of time which could compliment field-based sampling methods by extrapolating them into the wider spatial and temporal context. Conventional remote sensing tools (such as satellite and aircraft imaging) provide data at relatively course, sub-meter resolutions or with limited temporal resolutions and relatively high costs for small-scale environmental science and ecology studies. In this paper, we describe a low-cost, kite-based imaging system and photogrammetric pipeline that was developed for constructing highresolution, 3D, photo-realistic terrain models of intertidal rocky shores. The processing pipeline uses automatic image feature detection and matching, structure-from-motion and photo-textured terrain surface reconstruction algorithms that require minimal human input and only a small number of ground control points and allow the use of cheap, consumer-grade digital cameras. The resulting maps combine colour and topographic information at sub-centimeter resolutions over an area of approximately 100m, thus enabling spatial properties of the intertidal environment to be determined across a hierarchy of spatial scales. Results of the system are presented for an intertidal rock platform at Cape Banks, Sydney, Australia. Potential uses of this technique include mapping of plant (micro- and macro-algae) and animal (e.g. gastropods) assemblages at multiple spatial and temporal scales.

  6. Spatial resolution effect on the simulated results of watershed scale models

    NASA Astrophysics Data System (ADS)

    Epelde, Ane; Antiguedad, Iñaki; Brito, David; Jauch, Eduardo; Neves, Ramiro; Sauvage, Sabine; Sánchez-Pérez, José Miguel

    2016-04-01

    Numerical models are useful tools for water resources planning, development and management. Currently, their use is being spread and more complex modeling systems are being employed for these purposes. The adding of complexity allows the simulation of water quality related processes. Nevertheless, this implies a considerable increase on the computational requirements, which usually is compensated on the models by a decrease on their spatial resolution. The spatial resolution of the models is known to affect the simulation of hydrological processes and therefore, also the nutrient exportation and cycling processes. However, the implication of the spatial resolution on the simulated results is rarely assessed. In this study, we examine the effect of the change in the grid size on the integrated and distributed results of the Alegria River watershed model (Basque Country, Northern Spain). Variables such as discharge, water table level, relative water content of soils, nitrogen exportation and denitrification are analyzed in order to quantify the uncertainty involved in the spatial discretization of the watershed scale models. This is an aspect that needs to be carefully considered when numerical models are employed in watershed management studies or quality programs.

  7. A comparison of two downscaling procedures to increase the spatial resolution of mapping actual evapotranspiration

    NASA Astrophysics Data System (ADS)

    Mahour, Milad; Tolpekin, Valentyn; Stein, Alfred; Sharifi, Ali

    2017-04-01

    This research addressed the effects of downscaling cokriging Land Surface Temperature (LST) on estimation of Actual Evapotranspiration (AET) from remote sensing images. Two procedures were followed. We first applied downscaling cokriging to a coarse resolution LST product of MODIS at 1000 m. With its outcome, daily AET of a medium spatial resolution (250 m) was obtained using the Surface Energy Balance System (SEBS). Second, we downscaled a coarse AET map to medium spatial resolution (250 m). For both procedures, the 250 m resolution MODIS NDVI product was used as a co-variable. Validation was carried out using Landsat 8 images, from which LST was derived from the thermal bands. The two procedures were applied to an agricultural area with a traditional irrigation network in Iran. We obtained an average LST value of 305.8 K as compared to a downscaled LST value of 307.0 K. Reference AET estimated with SEBS using Landsat 8 data was equal to 5.756 mm day-1, as compared with a downscaled AET value of 5.571 mm day-1. The RMSE between reference AET and downscaled AET was equal to 1.26 mm day-1 (r = 0.49) and between reference and downscaled LST to 3.67 K (r = 0.48). The study showed that AET values obtained with the two downscaling procedures were similar to each other, but that AET showed a higher spatial variability if obtained with downscaled LST. We concluded that LST had a large effect on producing AET maps from Remote Sensing (RS) images, and that downscaling cokriging was helpful to provide daily AET maps at medium spatial resolution.

  8. In-Flight Edge Response Measurements for High Spatial Resolution Remote Sensing Systems

    NASA Technical Reports Server (NTRS)

    Blonski, Slawomir; Pagnutti, Mary; Ryan, Robert; Zanoni, Vicki

    2001-01-01

    In-flight measurement of spatial resolution were conducted as part of the ASA Scientific Data Purchase (SDP) Validation and Verification (V&V) process. Characterization included remote sensing systems with ground sample distance (GSD) of 1 meter or less, such as the panchromatic imager on-board the ICONOS satellite and the airborne ADAR System 5500 multispectral instrument. Final image products were used to evaluate the effect of both the image acquisition system (e.g., optics, electronics, motion, jitter, atmosphere) and image post-processing (e.g., resampling, modulation trasfer function (MTF) compensator). Spatial resolution was characterized by full width at half maximum (FWHM) of an edge response-derived line spread function. This was found to be a more robust measure of spatial resolution than the value of NTF at Nyquist frequency The edge responses were analysed using the tilted-edge technique that ovecomes the spatial sampling limitations of the digital imaging systems. As an enhancement to existing algorithms, the slope of the edge response and the orientation of the edge target were determined by a single computational process. Adjacent black and white square panels, either painted on a flat surface or deployed as traps, formed the ground-based edge targets used in the tests. Orientation of the deployable tarps was optimized beforehand, based on simulations of the imaging system. Numerous edge target images were analyzed for each of the tested sensors. The effect of such factors as acquisition geometry, temporal variability, MTF compensation, and GSD on spatial resolution were investigated.

  9. Ultra-High Spatial Resolution, Multi-Energy CT using Photon Counting Detector Technology

    PubMed Central

    Leng, S.; Gutjahr, R.; Ferrero, A.; Kappler, S.; Henning, A.; Halaweish, A.; Zhou, W.; Montoya, J.; McCollough, C.

    2017-01-01

    Two ultra-high-resolution (UHR) imaging modes, each with two energy thresholds, were implemented on a research, whole-body photon-counting-detector (PCD) CT scanner, referred to as sharp and UHR, respectively. The UHR mode has a pixel size of 0.25 mm at iso-center for both energy thresholds, with a collimation of 32 × 0.25 mm. The sharp mode has a 0.25 mm pixel for the low-energy threshold and 0.5 mm for the high-energy threshold, with a collimation of 48 × 0.25 mm. Kidney stones with mixed mineral composition and lung nodules with different shapes were scanned using both modes, and with the standard imaging mode, referred to as macro mode (0.5 mm pixel and 32 × 0.5 mm collimation). Evaluation and comparison of the three modes focused on the ability to accurately delineate anatomic structures using the high-spatial resolution capability and the ability to quantify stone composition using the multi-energy capability. The low-energy threshold images of the sharp and UHR modes showed better shape and texture information due to the achieved higher spatial resolution, although noise was also higher. No noticeable benefit was shown in multi-energy analysis using UHR compared to standard resolution (macro mode) when standard doses were used. This was due to excessive noise in the higher resolution images. However, UHR scans at higher dose showed improvement in multi-energy analysis over macro mode with regular dose. To fully take advantage of the higher spatial resolution in multi-energy analysis, either increased radiation dose, or application of noise reduction techniques, is needed. PMID:28392615

  10. High spatial resolution upgrade of the electron cyclotron emission radiometer for the DIII-D tokamak

    SciTech Connect

    Truong, D. D.; Austin, M. E.

    2014-11-15

    The 40-channel DIII-D electron cyclotron emission (ECE) radiometer provides measurements of T{sub e}(r,t) at the tokamak midplane from optically thick, second harmonic X-mode emission over a frequency range of 83–130 GHz. The frequency spacing of the radiometer's channels results in a spatial resolution of ∼1–3 cm, depending on local magnetic field and electron temperature. A new high resolution subsystem has been added to the DIII-D ECE radiometer to make sub-centimeter (0.6–0.8 cm) resolution T{sub e} measurements. The high resolution subsystem branches off from the regular channels’ IF bands and consists of a microwave switch to toggle between IF bands, a switched filter bank for frequency selectivity, an adjustable local oscillator and mixer for further frequency down-conversion, and a set of eight microwave filters in the 2–4 GHz range. Higher spatial resolution is achieved through the use of a narrower (200 MHz) filter bandwidth and closer spacing between the filters’ center frequencies (250 MHz). This configuration allows for full coverage of the 83–130 GHz frequency range in 2 GHz bands. Depending on the local magnetic field, this translates into a “zoomed-in” analysis of a ∼2–4 cm radial region. Expected uses of these channels include mapping the spatial dependence of Alfven eigenmodes, geodesic acoustic modes, and externally applied magnetic perturbations. Initial T{sub e} measurements, which demonstrate that the desired resolution is achieved, are presented.

  11. Ultra-High Spatial Resolution, Multi-Energy CT using Photon Counting Detector Technology.

    PubMed

    Leng, S; Gutjahr, R; Ferrero, A; Kappler, S; Henning, A; Halaweish, A; Zhou, W; Montoya, J; McCollough, C

    2017-02-11

    Two ultra-high-resolution (UHR) imaging modes, each with two energy thresholds, were implemented on a research, whole-body photon-counting-detector (PCD) CT scanner, referred to as sharp and UHR, respectively. The UHR mode has a pixel size of 0.25 mm at iso-center for both energy thresholds, with a collimation of 32 × 0.25 mm. The sharp mode has a 0.25 mm pixel for the low-energy threshold and 0.5 mm for the high-energy threshold, with a collimation of 48 × 0.25 mm. Kidney stones with mixed mineral composition and lung nodules with different shapes were scanned using both modes, and with the standard imaging mode, referred to as macro mode (0.5 mm pixel and 32 × 0.5 mm collimation). Evaluation and comparison of the three modes focused on the ability to accurately delineate anatomic structures using the high-spatial resolution capability and the ability to quantify stone composition using the multi-energy capability. The low-energy threshold images of the sharp and UHR modes showed better shape and texture information due to the achieved higher spatial resolution, although noise was also higher. No noticeable benefit was shown in multi-energy analysis using UHR compared to standard resolution (macro mode) when standard doses were used. This was due to excessive noise in the higher resolution images. However, UHR scans at higher dose showed improvement in multi-energy analysis over macro mode with regular dose. To fully take advantage of the higher spatial resolution in multi-energy analysis, either increased radiation dose, or application of noise reduction techniques, is needed.

  12. Spatial resolution recovery utilizing multi-ray tracing and graphic processing unit in PET image reconstruction.

    PubMed

    Liang, Yicheng; Peng, Hao

    2015-02-07

    Depth-of-interaction (DOI) poses a major challenge for a PET system to achieve uniform spatial resolution across the field-of-view, particularly for small animal and organ-dedicated PET systems. In this work, we implemented an analytical method to model system matrix for resolution recovery, which was then incorporated in PET image reconstruction on a graphical processing unit platform, due to its parallel processing capacity. The method utilizes the concepts of virtual DOI layers and multi-ray tracing to calculate the coincidence detection response function for a given line-of-response. The accuracy of the proposed method was validated for a small-bore PET insert to be used for simultaneous PET/MR breast imaging. In addition, the performance comparisons were studied among the following three cases: 1) no physical DOI and no resolution modeling; 2) two physical DOI layers and no resolution modeling; and 3) no physical DOI design but with a different number of virtual DOI layers. The image quality was quantitatively evaluated in terms of spatial resolution (full-width-half-maximum and position offset), contrast recovery coefficient and noise. The results indicate that the proposed method has the potential to be used as an alternative to other physical DOI designs and achieve comparable imaging performances, while reducing detector/system design cost and complexity.

  13. Investigation of the Intrinsic Spatial Resolution of an Intensified EMCCD Scintillation Camera

    PubMed Central

    Meng, L. J.; Fu, G.

    2016-01-01

    In this paper, we present an experimental and Monte Carlo investigation of the intrinsic spatial resolution that can be achieved with the intensified electron-multiplying charge-coupled device (I-EMCCD) gamma camera [1]–[4]. This detector has a very low readout noise, an ultra-high spatial resolution and a large active area of ~ 80 mm diameter, which is well-suited for small animal imaging applications. The intrinsic detector resolutions achieved with different scintillators and under different experimental conditions were compared. In this study, the simple centroiding method was compared with two model-fitting approaches for finding the locations of gamma ray interactions. The results from Monte Carlo simulation have demonstrated that with an appropriate detector configuration, it is possible to achieve an intrinsic resolution of ~ 30 µm FWHM for detecting 27–35 keV gamma rays. The I-EMCCD scintillation camera offers a promising candidate for future ultra-high resolution SPECT imaging applications. PMID:27660372

  14. High cognitive reserve is associated with a reduced age-related deficit in spatial conflict resolution

    PubMed Central

    Puccioni, Olga; Vallesi, Antonino

    2012-01-01

    Several studies support the existence of a specific age-related difficulty in suppressing potentially distracting information. The aim of the present study is to investigate whether spatial conflict resolution is selectively affected by aging. The way aging affects individuals could be modulated by many factors determined by the socieconomic status: we investigated whether factors such as cognitive reserve (CR) and years of education may play a compensatory role against age-related deficits in the spatial domain. A spatial Stroop task with no feature repetitions was administered to a sample of 17 non-demented older adults (69–79 years-old) and 18 younger controls (18–34 years-old) matched for gender and years of education. The two age groups were also administered with measures of intelligence and CR. The overall spatial Stroop effect did not differ according to age, neither for speed nor for accuracy. The two age groups equally showed sequential effects for congruent trials: reduced response times (RTs) if another congruent trial preceded them, and accuracy at ceiling. For incongruent trials, older adults, but not younger controls, were influenced by congruency of trialn−1, since RTs increased with preceding congruent trials. Interestingly, such an age-related modulation negatively correlated with CR. These findings suggest that spatial conflict resolution in aging is predominantly affected by general slowing, rather than by a more specific deficit. However, a high level of CR seems to play a compensatory role for both factors. PMID:23248595

  15. Minimum detection limit and spatial resolution of thin-sample field-emission electron probe microanalysis.

    PubMed

    Kubo, Yugo; Hamada, Kotaro; Urano, Akira

    2013-12-01

    The minimum detection limit and spatial resolution for a thinned semiconductor sample were determined by electron probe microanalysis (EPMA) using a Schottky field emission (FE) electron gun and wavelength dispersive X-ray spectrometry. Comparison of the FE-EPMA results with those obtained using energy dispersive X-ray spectrometry in conjunction with scanning transmission electron microscopy, confirmed that FE-EPMA is largely superior in terms of detection sensitivity. Thin-sample FE-EPMA is demonstrated as a very effective method for high resolution, high sensitivity analysis in a laboratory environment because a high probe current and high signal-to-noise ratio can be achieved.

  16. A versatile fluorescence lifetime imaging system for scanning large areas with high time and spatial resolution

    NASA Astrophysics Data System (ADS)

    Bernardo, César; Belsley, Michael; de Matos Gomes, Etelvina; Gonçalves, Hugo; Isakov, Dmitry; Liebold, Falk; Pereira, Eduardo; Pires, Vladimiro; Samantilleke, Anura; Vasilevskiy, Mikhail; Schellenberg, Peter

    2014-08-01

    We present a flexible fluorescence lifetime imaging device which can be employed to scan large sample areas with a spatial resolution adjustable from many micrometers down to sub-micrometers and a temporal resolution of 20 picoseconds. Several different applications of the system will be presented including protein microarrays analysis, the scanning of historical samples, evaluation of solar cell surfaces and nanocrystalline organic crystals embedded in electrospun polymeric nanofibers. Energy transfer processes within semiconductor quantum dot superstructures as well as between dye probes and graphene layers were also investigated.

  17. A new method for spatial resolution enhancement of hyperspectral images using sparse coding and linear spectral unmixing

    NASA Astrophysics Data System (ADS)

    Hashemi, Nezhad Z.; Karami, A.

    2015-10-01

    Hyperspectral images (HSI) have high spectral and low spatial resolutions. However, multispectral images (MSI) usually have low spectral and high spatial resolutions. In various applications HSI with high spectral and spatial resolutions are required. In this paper, a new method for spatial resolution enhancement of HSI using high resolution MSI based on sparse coding and linear spectral unmixing (SCLSU) is introduced. In the proposed method (SCLSU), high spectral resolution features of HSI and high spatial resolution features of MSI are fused. In this case, the sparse representation of some high resolution MSI and linear spectral unmixing (LSU) model of HSI and MSI is simultaneously used in order to construct high resolution HSI (HRHSI). The fusion process of HSI and MSI is formulated as an ill-posed inverse problem. It is solved by the Split Augmented Lagrangian Shrinkage Algorithm (SALSA) and an orthogonal matching pursuit (OMP) algorithm. Finally, the proposed algorithm is applied to the Hyperion and ALI datasets. Compared with the other state-of-the-art algorithms such as Coupled Nonnegative Matrix Factorization (CNMF) and local spectral unmixing, the SCLSU has significantly increased the spatial resolution and in addition the spectral content of HSI is well maintained.

  18. Evaluating the Value of High Spatial Resolution in National Capacity Expansion Models using ReEDS: Preprint

    SciTech Connect

    Krishnan, Venkat; Cole, Wesley

    2016-07-01

    Power sector capacity expansion models (CEMs) have a broad range of spatial resolutions. This paper uses the Regional Energy Deployment System (ReEDS) model, a long-term national scale electric sector CEM, to evaluate the value of high spatial resolution for CEMs. ReEDS models the United States with 134 load balancing areas (BAs) and captures the variability in existing generation parameters, future technology costs, performance, and resource availability using very high spatial resolution data, especially for wind and solar modeled at 356 resource regions. In this paper we perform planning studies at three different spatial resolutions--native resolution (134 BAs), state-level, and NERC region level--and evaluate how results change under different levels of spatial aggregation in terms of renewable capacity deployment and location, associated transmission builds, and system costs. The results are used to ascertain the value of high geographically resolved models in terms of their impact on relative competitiveness among renewable energy resources.

  19. Atmospheric Moisture Budget and Spatial Resolution Dependence of Precipitation Extremes in Aquaplanet Simulations

    SciTech Connect

    Yang, Qing; Leung, Lai-Yung R.; Rauscher, Sara; Ringler, Todd; Taylor, Mark

    2014-05-01

    data aggregation effect in omega, thermodynamic changes become relatively significant in offsetting the effect of dynamics leading to reduce differences between the simulated and aggregated results. Compared to MPAS, the simulated stronger vertical motion with HOMME also results in larger resolution dependency. Compared to the simulation at fine resolution, the vertical motion during extremes is insufficiently resolved/parameterized at the coarser resolution even after accounting for the natural reduction in variability with coarser resolution, and this is more distinct in the simulation with HOMME. To reduce uncertainties in simulated precipitation extremes, future development in cloud parameterizations must address their sensitivity to spatial resolution as well as dynamical cores.

  20. 3D high spectral and spatial resolution imaging of ex vivo mouse brain

    SciTech Connect

    Foxley, Sean Karczmar, Gregory S.; Domowicz, Miriam; Schwartz, Nancy

    2015-03-15

    Purpose: Widely used MRI methods show brain morphology both in vivo and ex vivo at very high resolution. Many of these methods (e.g., T{sub 2}{sup *}-weighted imaging, phase-sensitive imaging, or susceptibility-weighted imaging) are sensitive to local magnetic susceptibility gradients produced by subtle variations in tissue composition. However, the spectral resolution of commonly used methods is limited to maintain reasonable run-time combined with very high spatial resolution. Here, the authors report on data acquisition at increased spectral resolution, with 3-dimensional high spectral and spatial resolution MRI, in order to analyze subtle variations in water proton resonance frequency and lineshape that reflect local anatomy. The resulting information compliments previous studies based on T{sub 2}{sup *} and resonance frequency. Methods: The proton free induction decay was sampled at high resolution and Fourier transformed to produce a high-resolution water spectrum for each image voxel in a 3D volume. Data were acquired using a multigradient echo pulse sequence (i.e., echo-planar spectroscopic imaging) with a spatial resolution of 50 × 50 × 70 μm{sup 3} and spectral resolution of 3.5 Hz. Data were analyzed in the spectral domain, and images were produced from the various Fourier components of the water resonance. This allowed precise measurement of local variations in water resonance frequency and lineshape, at the expense of significantly increased run time (16–24 h). Results: High contrast T{sub 2}{sup *}-weighted images were produced from the peak of the water resonance (peak height image), revealing a high degree of anatomical detail, specifically in the hippocampus and cerebellum. In images produced from Fourier components of the water resonance at −7.0 Hz from the peak, the contrast between deep white matter tracts and the surrounding tissue is the reverse of the contrast in water peak height images. This indicates the presence of a shoulder in

  1. Prioritizing spatial accuracy in high-resolution fMRI data using multivariate feature weight mapping

    PubMed Central

    Buschmann, Tilo; Lohmann, Gabriele; Margulies, Daniel S.; Trampel, Robert; Turner, Robert

    2014-01-01

    Although ultra-high-field fMRI at field strengths of 7T or above provides substantial gains in BOLD contrast-to-noise ratio, when very high-resolution fMRI is required such gains are inevitably reduced. The improvement in sensitivity provided by multivariate analysis techniques, as compared with univariate methods, then becomes especially welcome. Information mapping approaches are commonly used, such as the searchlight technique, which take into account the spatially distributed patterns of activation in order to predict stimulus conditions. However, the popular searchlight decoding technique, in particular, has been found to be prone to spatial inaccuracies. For instance, the spatial extent of informative areas is generally exaggerated, and their spatial configuration is distorted. We propose the combination of a non-parametric and permutation-based statistical framework with linear classifiers. We term this new combined method Feature Weight Mapping (FWM). The main goal of the proposed method is to map the specific contribution of each voxel to the classification decision while including a correction for the multiple comparisons problem. Next, we compare this new method to the searchlight approach using a simulation and ultra-high-field 7T experimental data. We found that the searchlight method led to spatial inaccuracies that are especially noticeable in high-resolution fMRI data. In contrast, FWM was more spatially precise, revealing both informative anatomical structures as well as the direction by which voxels contribute to the classification. By maximizing the spatial accuracy of ultra-high-field fMRI results, global multivariate methods provide a substantial improvement for characterizing structure-function relationships. PMID:24795548

  2. Measurement Sets and Sites Commonly Used for High Spatial Resolution Image Product Characterization

    NASA Technical Reports Server (NTRS)

    Pagnutti, Mary

    2006-01-01

    Scientists within NASA's Applied Sciences Directorate have developed a well-characterized remote sensing Verification & Validation (V&V) site at the John C. Stennis Space Center (SSC). This site has enabled the in-flight characterization of satellite high spatial resolution remote sensing system products form Space Imaging IKONOS, Digital Globe QuickBird, and ORBIMAGE OrbView, as well as advanced multispectral airborne digital camera products. SSC utilizes engineered geodetic targets, edge targets, radiometric tarps, atmospheric monitoring equipment and their Instrument Validation Laboratory to characterize high spatial resolution remote sensing data products. This presentation describes the SSC characterization capabilities and techniques in the visible through near infrared spectrum and examples of calibration results.

  3. Laser beam filtration for high spatial resolution MALDI imaging mass spectrometry.

    PubMed

    Zavalin, Andre; Yang, Junhai; Caprioli, Richard

    2013-07-01

    We describe an easy and inexpensive way to provide a highly defined Gaussian shaped laser spot on target of 5 μm diameter for imaging mass spectrometry using a commercial MALDI TOF instrument that is designed to produce a 20 μm diameter laser beam on target at its lowest setting. A 25 μm pinhole filter on a swivel arm was installed in the laser beam optics outside the vacuum ion source chamber so it is easily flipped into or out of the beam as desired by the operator. The resulting ion images at 5 μm spatial resolution are sharp since the satellite secondary laser beam maxima have been removed by the filter. Ion images are shown to demonstrate the performance and are compared with the method of oversampling to achieve higher spatial resolution when only a larger laser beam spot on target is available.

  4. Are long stimulus pulse durations the answer to improving spatial resolution in retinal prostheses?

    PubMed Central

    Petoe, Matthew A.

    2016-01-01

    Retinal prostheses can provide artificial vision to patients with degenerate retinae by electrically stimulating the remaining inner retinal neurons. The evoked perception is generally adequate for light localization, but of limited spatial resolution owing to the indiscriminate activation of multiple retinal cell types, leading to distortions in the perceived image. Here we present a perspective on a recent work by Weitz and colleagues who demonstrate a focal confinement of retinal ganglion cell (RGC) activation when using extended pulse durations in the stimulation waveform. Using real-time calcium imaging, they provide evidence that long pulse durations selectively stimulate inner retinal neurons, whilst avoiding unwanted axonal activations. The application of this stimulation technique may provide enhanced spatial resolution for retinal prosthesis users. These experiments provide a robust analysis of the effects of increasing pulse duration and introduce the potential for alternative stimulation paradigms in retinal prostheses. PMID:27942525

  5. Laser Beam Filtration for High Spatial Resolution MALDI Imaging Mass Spectrometry

    PubMed Central

    Zavalin, Andre; Yang, Junhai; Caprioli, Richard

    2013-01-01

    We describe an easy and inexpensive way to provide a highly defined Gaussian shaped laser spot on target of 5 μm diameter for Imaging Mass Spectrometry using a commercial MALDI TOF instrument that is designed to produce a 20 μm diameter laser beam on target at its lowest setting. A 25 μm pinhole filter on a swivel arm was installed in the laser beam optics outside the vacuum ion source chamber so it is easily flipped into or out of the beam as desired by the operator. The resulting ion images at 5 μm spatial resolution are sharp since the satellite secondary laser beam maxima have been removed by the filter. Ion images are shown to demonstrate the performance and are compared to the method of oversampling to achieve higher spatial resolution when only a larger laser beam spot on target is available. PMID:23661425

  6. Matrix Sublimation/Recrystallization for Imaging Proteins by Mass Spectrometry at High Spatial Resolution

    PubMed Central

    Yang, Junhai; Caprioli, Richard M.

    2011-01-01

    We have employed matrix deposition by sublimation for protein image analysis on tissue sections using a hydration/recrystallization process that produces high quality MALDI mass spectra and high spatial resolution ion images. We systematically investigated different washing protocols, the effect of tissue section thickness, the amount of sublimated matrix per unit area and different recrystallization conditions. The results show that an organic solvent rinse followed by ethanol/water rinses substantially increased sensitivity for the detection of proteins. Both the thickness of tissue section and amount of sinapinic acid sublimated per unit area have optimal ranges for maximal protein signal intensity. Ion images of mouse and rat brain sections at 50, 20 and 10 µm spatial resolution are presented and are correlated with H&E stained optical images. For targeted analysis, histology directed imaging can be performed using this protocol where MS analysis and H&E staining are performed on the same section. PMID:21639088

  7. Spatial resolution of imaging plate with flash X-rays and its utilization for radiography

    SciTech Connect

    Shaikh, A. M.; Romesh, C.; Kolage, T. S.; Sharma, Archana

    2015-06-24

    A flash X-ray source developed using pulsed electron accelerator with electron energy range of 400keV to 1030keV and a field emission cathode is characterized using X-ray imaging plates. Spatial resolution of the imaging system is measured using edge spread function fitted to data obtained from radiograph of Pb step wedge. A spatial resolution of 150±6 µm is obtained. The X-ray beam size is controlled by the anode-cathode configuration. Optimum source size of ∼13±2 mm diameter covering an area with intensity of ∼27000 PSL/mm{sup 2} is obtained on the imaging plate kept at a distance of ∼200 mm from the tip of the anode. It is used for recording radiographs of objects like satellite cable cutter, aero-engine turbine blade and variety of pyro-devices used in aerospace industry.

  8. Experimental Estimation of CLASP Spatial and Spectral Resolutions: Results of the Instrument's Optical Alignment

    NASA Technical Reports Server (NTRS)

    Giono, G.; Katsukawa, Y.; Ishikawa, R.; Narukage, N.; Bando, T.; Kano, R.; Suematsu, Y.; Winebarger, A.; Kobayashi, K.; Auchere, F.

    2015-01-01

    The Chromospheric Lyman-Alpha SpectroPolarimeter is a sounding rocket experiment design to measure for the first time the polarization signal of the Lyman-Alpha line (121.6nm), emitted in the solar upper-chromosphere and transition region. This instrument aims to detect the Hanle effect's signature hidden in the Ly-alpha polarization, as a tool to probe the chromospheric magnetic field. Hence, an unprecedented polarization accuracy is needed ((is) less than 10 (exp -3). Nevertheless, spatial and spectral resolutions are also crucial to observe chhromospheric feature such as spicules, and to have precise measurement of the Ly-alpha line core and wings. Hence, this poster will present how the telescope and the spectrograph were separately aligned, and their combined spatial and spectral resolutions.

  9. Impulse Response Estimation for Spatial Resolution Enhancement in Ultrasonic NDE Imaging

    SciTech Connect

    Clark, G A

    2004-06-25

    This report describes a signal processing algorithm and MATLAB software for improving spatial resolution in ultrasonic nondestructive evaluation (NDE) imaging of materials. Given a measured reflection signal and an associated reference signal, the algorithm produces an optimal least-squares estimate of the impulse response of the material under test. This estimated impulse response, when used in place of the raw reflection signal, enhances the spatial resolution of the ultrasonic measurements by removing distortion caused by the limited-bandwidth transducers and the materials under test. The theory behind the processing algorithms is briefly presented, while the reader is referred to the bibliography for details. The main focus of the report is to describe how to use the MATLAB software. Two processing examples using actual ultrasonic measurements are provided for tutorial purposes.

  10. High Spatial Resolution STXM at 6.2 keV Photon Energy

    SciTech Connect

    Vila-Comamala, Joan; Kewish, Cameron M.; Thibault, Pierre; Guzenko, Vitaliy; Gorelick, Sergey; Menzel, Andreas; Bunk, Oliver; David, Christian; Dierolf, Martin; Pfeiffer, Franz; Pilvi, Tero; Faerm, Elina; Ritala, Mikko

    2010-04-06

    We report on a zone-doubling technique that bypasses the electron-beam lithography limitations for the production of X-ray diffractive optics and enables the fabrication of Fresnel zone plates with smaller outermost zone widths than other well-established approaches. We have applied this method to manufacture hard X-ray Fresnel zone plates with outermost zone widths of 25 and 20 nm. These lenses have been tested in scanning transmission X-ray microscopy (STXM) at energies up to 6.2 keV, producing images of test structures that demonstrate a spatial resolution of 25 nm. High spatial resolution STXM images of several biological specimens have been acquired in transmission, dark-field and differential phase contrast modes.

  11. Theoretical study of the effect of slow light on BOTDA spatial resolution.

    PubMed

    Ravet, Fabien; Chen, Liang; Bao, Xiaoyi; Zou, Lufan; Kalosha, V P

    2006-10-30

    Due to the resonant nature of Brillouin scattering, delay occurs while pulse is propagating in an optical fiber. This effect influences the location accuracy of distributed Brillouin sensors. The maximum delay in sensing fibers depends on length, position, pump and Stokes powers. Considering pump depletion, we have obtained integral solutions for the coupled amplitude equations under steady state conditions and then calculated the group delay. The results show that moderate pump depletion (which is the optimized sensor working range) mitigates significantly the delay, and the maximum delay induced at resonance is only a fraction of Brillouin Optical Time Domain (BOTDA) spatial resolution, which means that the use of pulse width to define the spatial resolution is valid when Brillouin slow light is considered. We have shown that uniform strain and temperature distribution in a fiber gives the maximum delay induced uncertainty.

  12. High spatial resolution BOTDA using simultaneously launched gain and loss pump pulses

    NASA Astrophysics Data System (ADS)

    Motil, A.; Danon, O.; Peled, Y.; Tur, M.

    2013-05-01

    We report a 10cm spatial resolution in a Brillouin-based distributed sensing system using two simultaneously launched gain and loss pump pulses, having slightly different durations. Post-recording subtraction of the probe signal, excited by the shorter pulse, from the corresponding one, obtained from the longer pump pulse, is no longer required, since it is done automatically by the overlapping parts of the gain and loss pump pulses. Using a 30ns gain pump pulse and a 29ns loss pump pulse we were able to improve upon previously published results, achieving a distributed strain measurement along a standard single mode optical fiber with a spatial resolution of ~10cm. This technique does not broaden the involved Brillouin gain spectra so that the strain/temperature sensitivity is not compromised.

  13. Distinguishing and quantification of the human visual pathways using high spatial resolution diffusion tensor tractography

    PubMed Central

    Kamali, Arash; Hasan, Khader M.; Adapa, Pavani; Razmandi, Azadeh; Keser, Zafer; Lincoln, John; Kramer, Larry A.

    2014-01-01

    Quantification of the living human visual system using MRI methods has been challenging, but several applications demand a reliable and time-efficient data acquisition protocol. In this study, we demonstrate the utility of high spatial resolution diffusion tensor fiber tractography (DTT) in reconstructing and quantifying the human visual pathways. Five healthy males, age range 24–37 years, were studied after approval of the Institutional Review Board (IRB) at The University of Texas Health Science Center at Houston. We acquired diffusion tensor imaging (DTI) data with 1-mm slice thickness on a 3.0 Tesla clinical MRI scanner and analyzed the data using DTT with the fiber assignment by continuous tractography (FACT) algorithm. By utilizing the high spatial resolution DTI protocol with FACT algorithm, we were able to reconstruct and quantify bilateral optic pathways including the optic chiasm, optic tract, optic radiations free of contamination from neighboring white matter tracts. PMID:24856625

  14. The sensitivity of landscape evolution models to spatial and temporal rainfall resolution

    NASA Astrophysics Data System (ADS)

    Coulthard, Tom J.; Skinner, Christopher J.

    2016-09-01

    Climate is one of the main drivers for landscape evolution models (LEMs), yet its representation is often basic with values averaged over long time periods and frequently lumped to the same value for the whole basin. Clearly, this hides the heterogeneity of precipitation - but what impact does this averaging have on erosion and deposition, topography, and the final shape of LEM landscapes? This paper presents results from the first systematic investigation into how the spatial and temporal resolution of precipitation affects LEM simulations of sediment yields and patterns of erosion and deposition. This is carried out by assessing the sensitivity of the CAESAR-Lisflood LEM to different spatial and temporal precipitation resolutions - as well as how this interacts with different-size drainage basins over short and long timescales. A range of simulations were carried out, varying rainfall from 0.25 h × 5 km to 24 h × Lump resolution over three different-sized basins for 30-year durations. Results showed that there was a sensitivity to temporal and spatial resolution, with the finest leading to > 100 % increases in basin sediment yields. To look at how these interactions manifested over longer timescales, several simulations were carried out to model a 1000-year period. These showed a systematic bias towards greater erosion in uplands and deposition in valley floors with the finest spatial- and temporal-resolution data. Further tests showed that this effect was due solely to the data resolution, not orographic factors. Additional research indicated that these differences in sediment yield could be accounted for by adding a compensation factor to the model sediment transport law. However, this resulted in notable differences in the topographies generated, especially in third-order and higher streams. The implications of these findings are that uncalibrated past and present LEMs using lumped and time-averaged climate inputs may be under-predicting basin sediment

  15. Radiometric Calibration Assessment of Commercial High Spatial Resolution Multispectral Image Products

    NASA Technical Reports Server (NTRS)

    Thome, Kurt; Leisso, Nathan; Buchanan, John

    2007-01-01

    This paper describes the results of commercial high spatial resolution sensors. The topics include: 1) Reflectance-based approach; 2) U of A test sites; 3) Test Site Selection; 4) Resort Living; 5) Aerosol parameters; 6) Surface reflectance retrieval; 7) Accuracy/precision; 8) Data sets; 9) June 23, 2005 for Ikonos; 10) QuickBird Results; 11) Ikonos results; 12) Orbview results; 13) Ikonos redux; and 14) Overall results.

  16. Improving detector spatial resolution using pixelated scintillators with a barrier rib structure

    NASA Astrophysics Data System (ADS)

    Liu, Langechuan; Lu, Minghui; Cao, Wanqing; Peng, Luke; Chen, Arthur

    2016-03-01

    Indirect conversion flat panel detectors (FPDs) based on amorphous silicon (a-Si) technology are widely used in digital X-ray imaging. In such FPDs a scintillator layer is used for converting X-rays into visible light photons. However, the lateral spread of these photons inside the scintillator layer reduces spatial resolution of the FPD. In this study, FPDs incorporating pixelated scintillators with a barrier rib structure were developed to limit lateral spread of light photons thereby improving spatial resolution. For the pixelated scintillator, a two-dimensional barrier rib structure was first manufactured on a substrate layer, coated with reflective materials, and filled to the rim with the scintillating material of gadolinium oxysulfide (GOS). Several scintillator samples were fabricated, with pitch size varying from 160 to 280 μm and rib height from 200 to 280 μm. The samples were directly coupled to an a-Si flat panel photodiode array with a pitch of 200 μm to convert optical photons to electronic signals. With the pixelated scintillator, the detector modulation transfer function was shown to improve significantly (by 94% at 2 cycle/mm) compared to a detector using an unstructured GOS layer. However, the prototype does show lower sensitivity due to the decrease in scintillator fill factor. The preliminary results demonstrated the feasibility of using the barrier-rib structure to improve the spatial resolution of FPDs. Such an improvement would greatly benefit nondestructive testing applications where the spatial resolution is the most important parameter. Further investigation will focus on improving the detector sensitivity and exploring its medical applications.

  17. Quantitative metrics for assessment of chemical image quality and spatial resolution

    DOE PAGES

    Kertesz, Vilmos; Cahill, John F.; Van Berkel, Gary J.

    2016-02-28

    Rationale: Currently objective/quantitative descriptions of the quality and spatial resolution of mass spectrometry derived chemical images are not standardized. Development of these standardized metrics is required to objectively describe chemical imaging capabilities of existing and/or new mass spectrometry imaging technologies. Such metrics would allow unbiased judgment of intra-laboratory advancement and/or inter-laboratory comparison for these technologies if used together with standardized surfaces. Methods: We developed two image metrics, viz., chemical image contrast (ChemIC) based on signal-to-noise related statistical measures on chemical image pixels and corrected resolving power factor (cRPF) constructed from statistical analysis of mass-to-charge chronograms across features of interest inmore » an image. These metrics, quantifying chemical image quality and spatial resolution, respectively, were used to evaluate chemical images of a model photoresist patterned surface collected using a laser ablation/liquid vortex capture mass spectrometry imaging system under different instrument operational parameters. Results: The calculated ChemIC and cRPF metrics determined in an unbiased fashion the relative ranking of chemical image quality obtained with the laser ablation/liquid vortex capture mass spectrometry imaging system. These rankings were used to show that both chemical image contrast and spatial resolution deteriorated with increasing surface scan speed, increased lane spacing and decreasing size of surface features. Conclusions: ChemIC and cRPF, respectively, were developed and successfully applied for the objective description of chemical image quality and spatial resolution of chemical images collected from model surfaces using a laser ablation/liquid vortex capture mass spectrometry imaging system.« less

  18. Quantitative metrics for assessment of chemical image quality and spatial resolution

    SciTech Connect

    Kertesz, Vilmos; Cahill, John F.; Van Berkel, Gary J.

    2016-02-28

    Rationale: Currently objective/quantitative descriptions of the quality and spatial resolution of mass spectrometry derived chemical images are not standardized. Development of these standardized metrics is required to objectively describe chemical imaging capabilities of existing and/or new mass spectrometry imaging technologies. Such metrics would allow unbiased judgment of intra-laboratory advancement and/or inter-laboratory comparison for these technologies if used together with standardized surfaces. Methods: We developed two image metrics, viz., chemical image contrast (ChemIC) based on signal-to-noise related statistical measures on chemical image pixels and corrected resolving power factor (cRPF) constructed from statistical analysis of mass-to-charge chronograms across features of interest in an image. These metrics, quantifying chemical image quality and spatial resolution, respectively, were used to evaluate chemical images of a model photoresist patterned surface collected using a laser ablation/liquid vortex capture mass spectrometry imaging system under different instrument operational parameters. Results: The calculated ChemIC and cRPF metrics determined in an unbiased fashion the relative ranking of chemical image quality obtained with the laser ablation/liquid vortex capture mass spectrometry imaging system. These rankings were used to show that both chemical image contrast and spatial resolution deteriorated with increasing surface scan speed, increased lane spacing and decreasing size of surface features. Conclusions: ChemIC and cRPF, respectively, were developed and successfully applied for the objective description of chemical image quality and spatial resolution of chemical images collected from model surfaces using a laser ablation/liquid vortex capture mass spectrometry imaging system.

  19. Simplex-coded BOTDA fiber sensor with 1 m spatial resolution over a 50 km range.

    PubMed

    Soto, Marcelo A; Bolognini, Gabriele; Di Pasquale, Fabrizio; Thévenaz, Luc

    2010-01-15

    In this Letter, we propose the use of optical pulse coding techniques for long-range distributed sensors based on Brillouin optical time-domain analysis (BOTDA). Compared to conventional BOTDA sensors, optical coding provides a significant sensing-range enhancement, allowing for temperature and strain measurements with 1 m spatial resolution over 50 km of standard single-mode fiber, with an accuracy of 2.2 degrees C/44 muepsilon, respectively.

  20. Quantifying the Effect of 3D Spatial Resolution on the Accuracy of Microstructural Distributions (PREPRINT)

    DTIC Science & Technology

    2012-08-01

    Michael D. Uchic and Michael Groeber Metals Branch Structural Materials Division Megna Shah UES, Inc. Gregory Loughnane, Raghavan Srinivasan...AUTHOR(S) Michael D. Uchic and Michael Groeber (AFRL/RXCM) Megna Shah (UES, Inc.) Gregory Loughnane, Raghavan Srinivasan, and Ramana Grandhi (Wright...effect of 3D spatial resolution on the accuracy of microstructural distributions Gregory Loughnane 1 , Michael Groeber 2 , Michael Uchic 2 , Matthew

  1. Influence of Elevation Data Resolution on Spatial Prediction of Colluvial Soils in a Luvisol Region

    PubMed Central

    Penížek, Vít; Zádorová, Tereza; Kodešová, Radka; Vaněk, Aleš

    2016-01-01

    The development of a soil cover is a dynamic process. Soil cover can be altered within a few decades, which requires updating of the legacy soil maps. Soil erosion is one of the most important processes quickly altering soil cover on agriculture land. Colluvial soils develop in concave parts of the landscape as a consequence of sedimentation of eroded material. Colluvial soils are recognised as important soil units because they are a vast sink of soil organic carbon. Terrain derivatives became an important tool in digital soil mapping and are among the most popular auxiliary data used for quantitative spatial prediction. Prediction success rates are often directly dependent on raster resolution. In our study, we tested how raster resolution (1, 2, 3, 5, 10, 20 and 30 meters) influences spatial prediction of colluvial soils. Terrain derivatives (altitude, slope, plane curvature, topographic position index, LS factor and convergence index) were calculated for the given raster resolutions. Four models were applied (boosted tree, neural network, random forest and Classification/Regression Tree) to spatially predict the soil cover over a 77 ha large study plot. Models training and validation was based on 111 soil profiles surveyed on a regular sampling grid. Moreover, the predicted real extent and shape of the colluvial soil area was examined. In general, no clear trend in the accuracy prediction was found without the given raster resolution range. Higher maximum prediction accuracy for colluvial soil, compared to prediction accuracy of total soil cover of the study plot, can be explained by the choice of terrain derivatives that were best for Colluvial soils differentiation from other soil units. Regarding the character of the predicted Colluvial soils area, maps of 2 to 10 m resolution provided reasonable delineation of the colluvial soil as part of the cover over the study area. PMID:27846230

  2. Effect of Spatial Resolution for Characterizing Soil Properties from Imaging Spectrometer Data

    NASA Astrophysics Data System (ADS)

    Dutta, D.; Kumar, P.; Greenberg, J. A.

    2015-12-01

    The feasibility of quantifying soil constituents over large areas using airborne hyperspectral data [0.35 - 2.5 μm] in an ensemble bootstrapping lasso algorithmic framework has been demonstrated previously [1]. However the effects of coarsening the spatial resolution of hyperspectral data on the quantification of soil constituents are unknown. We use Airborne Visible Infrared Imaging Spectrometer (AVIRIS) data collected at 7.6m resolution over Birds Point New Madrid (BPNM) floodway for up-scaling and generating multiple coarser resolution datasets including the 60m Hyperspectral Infrared Imager (HyspIRI) like data. HyspIRI is a proposed visible shortwave/thermal infrared mission, which will provide global data over a spectral range of 0.35 - 2.5μm at a spatial resolution of 60m. Our results show that the lasso method, which is based on point scale observational data, is scalable. We found consistent good model performance (R2) values (0.79 < R2 < 0.82) and correct classifications as per USDA soil texture classes at multiple spatial resolutions. The results further demonstrate that the attributes of the pdf for different soil constituents across the landscape and the within-pixel variance are well preserved across scales. Our analysis provides a methodological framework with a sufficient set of metrics for assessing the performance of scaling up analysis from point scale observational data and may be relevant for other similar remote sensing studies. [1] Dutta, D.; Goodwell, A.E.; Kumar, P.; Garvey, J.E.; Darmody, R.G.; Berretta, D.P.; Greenberg, J.A., "On the Feasibility of Characterizing Soil Properties From AVIRIS Data," Geoscience and Remote Sensing, IEEE Transactions on, vol.53, no.9, pp.5133,5147, Sept. 2015. doi: 10.1109/TGRS.2015.2417547.

  3. Generation of remotely sensed reference data using low altitude, high spatial resolution hyperspectral imagery

    NASA Astrophysics Data System (ADS)

    Williams, McKay D.; van Aardt, Jan; Kerekes, John P.

    2016-05-01

    Exploitation of imaging spectroscopy (hyperspectral) data using classification and spectral unmixing algorithms is a major research area in remote sensing, with reference data required to assess algorithm performance. However, we are limited by our inability to generate rapid, accurate, and consistent reference data, thus making quantitative algorithm analysis difficult. As a result, many investigators present either limited quantitative results, use synthetic imagery, or provide qualitative results using real imagery. Existing reference data typically classify large swaths of imagery pixel-by-pixel, per cover type. While this type of mapping provides a first order understanding of scene composition, it is not detailed enough to include complexities such as mixed pixels, intra-end-member variability, and scene anomalies. The creation of more detailed ground reference data based on field work, on the other hand, is complicated by the spatial scale of common hyperspectral data sets. This research presents a solution to this challenge via classification of low altitude, high spatial resolution (1m GSD) National Ecological Observatory Network (NEON) hyperspectral imagery, on a pixel-by-pixel basis, to produce sub-pixel reference data for high altitude, lower spatial resolution (15m GSD) AVIRIS imagery. This classification is performed using traditional classification techniques, augmented by (0.3m GSD) NEON RGB data. This paper provides a methodology for generating large scale, sub-pixel reference data for AVIRIS imagery using NEON imagery. It also addresses challenges related to the fusion of multiple remote sensing modalities (e.g., different sensors, sensor look angles, spatial registration, varying scene illumination, etc.). A new algorithm for spatial registration of hyperspectral imagery with disparate resolutions is presented. Several versions of reference data results are compared to each other and to direct spectral unmixing of AVIRIS data. Initial results are

  4. Fourier transform infrared absorption spectroscopy characterization of gaseous atmospheric pressure plasmas with 2 mm spatial resolution

    SciTech Connect

    Laroche, G.; Vallade, J.; Bazinette, R.; Hernandez, E.; Hernandez, G.; Massines, F.; Nijnatten, P. van

    2012-10-15

    This paper describes an optical setup built to record Fourier transform infrared (FTIR) absorption spectra in an atmospheric pressure plasma with a spatial resolution of 2 mm. The overall system consisted of three basic parts: (1) optical components located within the FTIR sample compartment, making it possible to define the size of the infrared beam (2 mm Multiplication-Sign 2 mm over a path length of 50 mm) imaged at the site of the plasma by (2) an optical interface positioned between the spectrometer and the plasma reactor. Once through the plasma region, (3) a retro-reflector module, located behind the plasma reactor, redirected the infrared beam coincident to the incident path up to a 45 Degree-Sign beamsplitter to reflect the beam toward a narrow-band mercury-cadmium-telluride detector. The antireflective plasma-coating experiments performed with ammonia and silane demonstrated that it was possible to quantify 42 and 2 ppm of these species in argon, respectively. In the case of ammonia, this was approximately three times less than this gas concentration typically used in plasma coating experiments while the silane limit of quantification was 35 times lower. Moreover, 70% of the incoming infrared radiation was focused within a 2 mm width at the site of the plasma, in reasonable agreement with the expected spatial resolution. The possibility of reaching this spatial resolution thus enabled us to measure the gaseous precursor consumption as a function of their residence time in the plasma.

  5. Compact hybrid real-time hyperspectral imaging system with high effective spatial, spectral, and temporal resolution

    NASA Astrophysics Data System (ADS)

    Roth, Filip; Abbadi, Ahmad; Herman, Ondrej; Pavelek, Martin; Prenosil, Vaclav

    2016-10-01

    Medical endoscopes for image-guided surgery commonly use standard color image sensors, discarding any more detailed spectral information. Medical spectroscopy devices with various spectral working ranges are specialized to specific medical procedures and in general are not usable for image-guided surgery due to limitations in spatial or temporal resolution. In this paper, we present an initial demonstrator of hyperspectral endoscope, composed of two image sensors with complementing parameters. Using this hybrid approach, combining sensors with different spatial and spectral resolutions and spectral ranges, we obtain improved coverage of all the respective parameters. After digitally processing and merging the video streams, while maintaining the better features of both, we obtain an imaging system providing high effective spatial, spectral, and temporal resolution. The system is based on field programmable gate arrays. It provides real-time video output (60 Hz), which is usable for navigation during image-guided surgery. The flexible system architecture allows for an easy extension of the processing algorithms and enables minimal video signal latency. Physical dimensions and portability of the system are comparable to standard off-the-shelf medical endoscope cameras. The device can output both processed video and standard visible light video signals on one or more video outputs of the system. The resulting processed video signal obtained from the combined image sensor data greatly increases the amount of useful information available to the end user.

  6. A Simple Method for Improving the Spatial Resolution in Infrared Laser Ablation Mass Spectrometry Imaging

    NASA Astrophysics Data System (ADS)

    Hieta, Juha-Pekka; Vaikkinen, Anu; Auno, Samuli; Räikkönen, Heikki; Haapala, Markus; Scotti, Gianmario; Kopra, Jaakko; Piepponen, Petteri; Kauppila, Tiina J.

    2017-01-01

    In mass spectrometry imaging of tissues, the size of structures that can be distinguished is determined by the spatial resolution of the imaging technique. Here, the spatial resolution of IR laser ablation is markedly improved by increasing the distance between the laser and the focusing lens. As the distance between the laser and the lens is increased from 1 to 18 m, the ablation spot size decreases from 440 to 44 μm. This way, only the collimated center of the divergent laser beam is directed on the focusing lens, which results in better focusing of the beam. Part of the laser energy is lost at longer distance, but this is compensated by focusing of the radiation to a smaller area on the sample surface. The long distance can also be achieved by a set of mirrors, between which the radiation travels before it is directed to the focusing lens and the sample. This method for improving the spatial resolution can be utilized in mass spectrometry imaging of tissues by techniques that utilize IR laser ablation, such as laser ablation electrospray ionization, laser ablation atmospheric pressure photoionization, and matrix-assisted laser desorption electrospray ionization.

  7. Resolution of spatial and temporal visual attention in infants with fragile X syndrome.

    PubMed

    Farzin, Faraz; Rivera, Susan M; Whitney, David

    2011-11-01

    Fragile X syndrome is the most common cause of inherited intellectual impairment and the most common single-gene cause of autism. Individuals with fragile X syndrome present with a neurobehavioural phenotype that includes selective deficits in spatiotemporal visual perception associated with neural processing in frontal-parietal networks of the brain. The goal of the current study was to examine whether reduced resolution of spatial and/or temporal visual attention may underlie perceptual deficits related to fragile X syndrome. Eye tracking was used to psychophysically measure the limits of spatial and temporal attention in infants with fragile X syndrome and age-matched neurotypically developing infants. Results from these experiments revealed that infants with fragile X syndrome experience drastically reduced resolution of temporal attention in a genetic dose-sensitive manner, but have a spatial resolution of attention that is not impaired. Coarse temporal attention could have significant knock-on effects for the development of perceptual, cognitive and motor abilities in individuals with the disorder.

  8. High spatial resolution shortwave infrared imaging technology based on time delay and digital accumulation method

    NASA Astrophysics Data System (ADS)

    Jia, Jianxin; Wang, Yueming; Zhuang, Xiaoqiong; Yao, Yi; Wang, Shengwei; Zhao, Ding; Shu, Rong; Wang, Jianyu

    2017-03-01

    Shortwave infrared (SWIR) imaging technology attracts more and more attention by its fascinating ability of penetrating haze and smoke. For application of spaceborne remote sensing, spatial resolution of SWIR is lower compared with that of visible light (VIS) wavelength. It is difficult to balance between the spatial resolution and signal to noise ratio (SNR). Some conventional methods, such as enlarging aperture of telescope, image motion compensation, and analog time delay and integration (TDI) technology are used to gain SNR. These techniques bring in higher cost of satellite, complexity of system or other negative factors. In this paper, time delay and digital accumulation (TDDA) method is proposed to achieve higher spatial resolution. The method can enhance the SNR and non-uniformity of system theoretically. A prototype of SWIR imager consists of opto-mechanical, 1024 × 128 InGaAs detector, and electronics is designed and integrated to prove TDDA method. Both of measurements and experimental results indicate TDDA method can promote SNR of system approximated of the square root of accumulative stage. The results exhibit that non-uniformity of system is also improved by this approach to some extent. The experiment results are corresponded with the theoretical analysis. Based on the experiments results, it is proved firstly that the goal of 1 m ground sample distance (GSD) in orbit of 500 km is feasible with the TDDA stage of 30 for SWIR waveband (0.9-1.7 μm).

  9. Fourier transform infrared absorption spectroscopy characterization of gaseous atmospheric pressure plasmas with 2 mm spatial resolution.

    PubMed

    Laroche, G; Vallade, J; Bazinette, R; van Nijnatten, P; Hernandez, E; Hernandez, G; Massines, F

    2012-10-01

    This paper describes an optical setup built to record Fourier transform infrared (FTIR) absorption spectra in an atmospheric pressure plasma with a spatial resolution of 2 mm. The overall system consisted of three basic parts: (1) optical components located within the FTIR sample compartment, making it possible to define the size of the infrared beam (2 mm × 2 mm over a path length of 50 mm) imaged at the site of the plasma by (2) an optical interface positioned between the spectrometer and the plasma reactor. Once through the plasma region, (3) a retro-reflector module, located behind the plasma reactor, redirected the infrared beam coincident to the incident path up to a 45° beamsplitter to reflect the beam toward a narrow-band mercury-cadmium-telluride detector. The antireflective plasma-coating experiments performed with ammonia and silane demonstrated that it was possible to quantify 42 and 2 ppm of these species in argon, respectively. In the case of ammonia, this was approximately three times less than this gas concentration typically used in plasma coating experiments while the silane limit of quantification was 35 times lower. Moreover, 70% of the incoming infrared radiation was focused within a 2 mm width at the site of the plasma, in reasonable agreement with the expected spatial resolution. The possibility of reaching this spatial resolution thus enabled us to measure the gaseous precursor consumption as a function of their residence time in the plasma.

  10. High-spatial-resolution mapping of catalytic reactions on single particles

    NASA Astrophysics Data System (ADS)

    Wu, Chung-Yeh; Wolf, William J.; Levartovsky, Yehonatan; Bechtel, Hans A.; Martin, Michael C.; Toste, F. Dean; Gross, Elad

    2017-01-01

    The critical role in surface reactions and heterogeneous catalysis of metal atoms with low coordination numbers, such as found at atomic steps and surface defects, is firmly established. But despite the growing availability of tools that enable detailed in situ characterization, so far it has not been possible to document this role directly. Surface properties can be mapped with high spatial resolution, and catalytic conversion can be tracked with a clear chemical signature; however, the combination of the two, which would enable high-spatial-resolution detection of reactions on catalytic surfaces, has rarely been achieved. Single-molecule fluorescence spectroscopy has been used to image and characterize single turnover sites at catalytic surfaces, but is restricted to reactions that generate highly fluorescing product molecules. Herein the chemical conversion of N-heterocyclic carbene molecules attached to catalytic particles is mapped using synchrotron-radiation-based infrared nanospectroscopy with a spatial resolution of 25 nanometres, which enabled particle regions that differ in reactivity to be distinguished. These observations demonstrate that, compared to the flat regions on top of the particles, the peripheries of the particles—which contain metal atoms with low coordination numbers—are more active in catalysing oxidation and reduction of chemically active groups in surface-anchored N-heterocyclic carbene molecules.

  11. fMRI at High Spatial Resolution: Implications for BOLD-Models

    PubMed Central

    Goense, Jozien; Bohraus, Yvette; Logothetis, Nikos K.

    2016-01-01

    As high-resolution functional magnetic resonance imaging (fMRI) and fMRI of cortical layers become more widely used, the question how well high-resolution fMRI signals reflect the underlying neural processing, and how to interpret laminar fMRI data becomes more and more relevant. High-resolution fMRI has shown laminar differences in cerebral blood flow (CBF), volume (CBV), and neurovascular coupling. Features and processes that were previously lumped into a single voxel become spatially distinct at high resolution. These features can be vascular compartments such as veins, arteries, and capillaries, or cortical layers and columns, which can have differences in metabolism. Mesoscopic models of the blood oxygenation level dependent (BOLD) response therefore need to be expanded, for instance, to incorporate laminar differences in the coupling between neural activity, metabolism and the hemodynamic response. Here we discuss biological and methodological factors that affect the modeling and interpretation of high-resolution fMRI data. We also illustrate with examples from neuropharmacology and the negative BOLD response how combining BOLD with CBF- and CBV-based fMRI methods can provide additional information about neurovascular coupling, and can aid modeling and interpretation of high-resolution fMRI. PMID:27445782

  12. Spatial resolution improvement for Lamb wave-based damage detection using frequency dependency compensation

    NASA Astrophysics Data System (ADS)

    Zeng, Liang; Lin, Jing; Bao, Jingjing; Joseph, Roshan Prakash; Huang, Liping

    2017-04-01

    In Lamb wave inspection systems, the transfer functions of the transmitter and receiver, and the attenuation as Lamb wave propagates through the structure, result in frequency dependency in the amplitude of Lamb modes. This frequency dependency in amplitude also influences the testing resolution and complicates the damage evaluation. With the goal of spatial resolution improving, a frequency dependency compensation method is proposed. In this method, an accurate estimation of the frequency-dependent amplitude is firstly obtained, then a refined inverse filter is designed and applied to the raw Lamb mode signals to compensate the frequency dependency. An experimental example is introduced to illustrate the process of the proposed method. Besides, its sensitivity to the propagation distance and Taylor expansion order is thoroughly investigated. Finally, the proposed method is employed for damage detection. Its effectiveness in testing resolution improvement and damage identification could be obviously demonstrated by the imaging result of the damage.

  13. Spatial resolution analysis for time-domain diffuse optical tomography based on a perturbation model

    NASA Astrophysics Data System (ADS)

    Konovalov, Alexander B.; Vlasov, Vitaly V.

    2014-01-01

    We estimate a limit to spatial resolution in time-domain diffuse optical tomography (DOT) based on a perturbation model by Lyubimov. In the context of structure reconstruction accuracy we consider and compare three approaches to the inverse DOT problem. The first reconstructs diffuse tomograms from straight lines; the second does it from curvilinear average trajectories of photons; and the third uses the total banana-like distributions of photon trajectories. For getting estimates to resolution, we derive analytical expressions for the point spread function and the modulation transfer function, and perform a numerical experiment to reconstruct rectangular scattering objects with circular absorbing inhomogeneities. It is shown that reconstruction with photon trajectory distributions instead of straight lines gives a gain of about order of magnitude in resolution and attains the accuracy of multistep nonlinear DOT algorithms.

  14. Theoretical limit of spatial resolution in diffuse optical tomography using a perturbation model

    NASA Astrophysics Data System (ADS)

    Konovalov, A. B.; Vlasov, V. V.

    2014-03-01

    We have assessed the limit of spatial resolution of timedomain diffuse optical tomography (DOT) based on a perturbation reconstruction model. From the viewpoint of the structure reconstruction accuracy, three different approaches to solving the inverse DOT problem are compared. The first approach involves reconstruction of diffuse tomograms from straight lines, the second - from average curvilinear trajectories of photons and the third - from total banana-shaped distributions of photon trajectories. In order to obtain estimates of resolution, we have derived analytical expressions for the point spread function and modulation transfer function, as well as have performed a numerical experiment on reconstruction of rectangular scattering objects with circular absorbing inhomogeneities. It is shown that in passing from reconstruction from straight lines to reconstruction using distributions of photon trajectories we can improve resolution by almost an order of magnitude and exceed the accuracy of reconstruction of multi-step algorithms used in DOT.

  15. A targeted contrast agent for magnetic resonance imaging of thrombus: implications of spatial resolution.

    PubMed

    Johansson, L O; Bjørnerud, A; Ahlström, H K; Ladd, D L; Fujii, D K

    2001-04-01

    A preparation of ultra-small superparamagnetic iron oxide (USPIO) particles coupled to an RGD peptide (RGD-USPIO) was investigated as an MR contrast agent, targeted to activated platelets, in both ex vivo and in vivo thrombus models. Thrombus visualization ex vivo was compared using RGD-USPIO and a non-targeted UPSIO. The influence of thrombus visualization on thrombus exposure time to RGD-USPIO (ex vivo) and on the spatial resolution of the MR image (ex vivo and in vivo) was assessed. RGD-USPIO resulted in better thrombus visualization than non-targeted USPIO ex vivo, and maximum enhancement was achieved after approximately one hour exposure time of the thrombus to RGD-USPIO. The ability to visualize the clots was highly dependent on the spatial resolution of the image. In vivo, an in-plane resolution of less than 0.2 x 0.2 mm(2) was required for good clot visualization after contrast enhancement. It is concluded that the achievable resolution and sensitivity is a potential limitation to the usefulness of active vascular targeting in MRI.

  16. Application of spatially resolved high resolution crystal spectrometry to inertial confinement fusion plasmas

    SciTech Connect

    Hill, K. W.; Bitter, M.; Delgado-Aparacio, L.; Pablant, N. A.; Beiersdorfer, P.; Schneider, M.; Widmann, K.; Sanchez del Rio, M.; Zhang, L.

    2012-10-15

    High resolution ({lambda}/{Delta}{lambda}{approx} 10 000) 1D imaging x-ray spectroscopy using a spherically bent crystal and a 2D hybrid pixel array detector is used world wide for Doppler measurements of ion-temperature and plasma flow-velocity profiles in magnetic confinement fusion plasmas. Meter sized plasmas are diagnosed with cm spatial resolution and 10 ms time resolution. This concept can also be used as a diagnostic of small sources, such as inertial confinement fusion plasmas and targets on x-ray light source beam lines, with spatial resolution of micrometers, as demonstrated by laboratory experiments using a 250-{mu}m {sup 55}Fe source, and by ray-tracing calculations. Throughput calculations agree with measurements, and predict detector counts in the range 10{sup -8}-10{sup -6} times source x-rays, depending on crystal reflectivity and spectrometer geometry. Results of the lab demonstrations, application of the technique to the National Ignition Facility (NIF), and predictions of performance on NIF will be presented.

  17. Beyond spicule dynamics: spicule and fibril spectroscopy at high spatial and temporal resolution

    NASA Astrophysics Data System (ADS)

    Mendes Domingos Pereira, T.; Rouppe van der Voort, L.

    2015-12-01

    Solar spicules are chromospheric fibrils observed at the solar limb. They are observed everywhere in the Sun, but their origin is not yet understood. Much of our understanding of spicules has been obtained through filtergram observations and/or focused on the dynamics of spicules. Spectroscopic studies have been usually limited by spatial extent/resolution, temporal resolution, or variable seeing. In this work we make use of a unique time series of imaging spectroscopy at high spatial and temporal resolution, obtained with the Swedish Solar Telescope under excellent seeing and coordinated with the IRIS mission. With these data we characterize the evolution of spectra along quiet Sun fibrils and spicules, and discuss what makes them visible in filtergrams and sets them apart from other chromospheric fibrils. With combined H-alpha and Ca II H high-resolution observations we also discuss how spicules appear in these two lines, a long standing issue that has been interpreted in conflicting ways. Finally, using the wide range of IRIS diagnostics we put together the spectral evolution of spicules through the chromosphere and transition region.

  18. High-resolution heteronuclear multi-dimensional NMR spectroscopy in magnetic fields with unknown spatial variations.

    PubMed

    Zhang, Zhiyong; Huang, Yuqing; Smith, Pieter E S; Wang, Kaiyu; Cai, Shuhui; Chen, Zhong

    2014-05-01

    Heteronuclear NMR spectroscopy is an extremely powerful tool for determining the structures of organic molecules and is of particular significance in the structural analysis of proteins. In order to leverage the method's potential for structural investigations, obtaining high-resolution NMR spectra is essential and this is generally accomplished by using very homogeneous magnetic fields. However, there are several situations where magnetic field distortions and thus line broadening is unavoidable, for example, the samples under investigation may be inherently heterogeneous, and the magnet's homogeneity may be poor. This line broadening can hinder resonance assignment or even render it impossible. We put forth a new class of pulse sequences for obtaining high-resolution heteronuclear spectra in magnetic fields with unknown spatial variations based on distant dipolar field modulations. This strategy's capabilities are demonstrated with the acquisition of high-resolution 2D gHSQC and gHMBC spectra. These sequences' performances are evaluated on the basis of their sensitivities and acquisition efficiencies. Moreover, we show that by encoding and decoding NMR observables spatially, as is done in ultrafast NMR, an extra dimension containing J-coupling information can be obtained without increasing the time necessary to acquire a heteronuclear correlation spectrum. Since the new sequences relax magnetic field homogeneity constraints imposed upon high-resolution NMR, they may be applied in portable NMR sensors and studies of heterogeneous chemical and biological materials.

  19. FREND neutron telescope for mapping the Martian water with fine spatial resolution

    NASA Astrophysics Data System (ADS)

    Mitrofanov, Igor; Malakhov, Alexey; Mokrousov, Maxim; Golovin, Dmitry; Fedosov, Fedor; Kozyrev, Alexandr; Lisov, Denis; Litvak, Maxim; Nikiforov, Sergey; Sanin, Anton; Tret'yakov, Vlad; Vostrukhin, Andrey

    2016-04-01

    The concept of Fine Resolution Exploration Neutron Detector (FREND) is presented, as the Russian contributed instrument for the first element of ESA ExoMars mission, the TGO. FREND is the neutron collimated telescope, which is capable to measure the prompt neutron radiation of Mars from the 400 km orbit with the spatial resolution of about 40 km. The flux of epithermal neutrons is known to depend on the content of water in the shallow subsurface about 1 meter, so such measurements could allow to study the ground water distribution with fine spatial resolution over the entire martian surface from 70 degrees of the north latitude down to 70 degree of the south latitude. The resolution of tens of km is necessary to characterize the particular relief features on the surface by the content of water in the soil. Such mapping data should resolve the water distribution within the Gale crater, which is necessary to explain the paradoxic difefrence between the estimated contents of water in this crater, as about 5% by HEND on the Mars Odyssy and the ground data about 2 -3 % by DAN on the Curiosity. Also, the FREND mapping data of the ground water should be useful for the landing site selection of future Mars rovers, such as ExoMars or Mars 2020.

  20. Drought planning and management: using high spatial resolution as part of the solution.

    PubMed

    Duncan, Leslie Lyons; Perrone, Debra; Jacobi, John H; Hornberger, George M

    2015-03-03

    Water scarcity is intensified by drought, a phenomenon that impacts many sectors of society and affects virtually all climate zones. The Palmer drought indices are widely used by scientists and policy makers to understand drought and model its components. Despite the spatial heterogeneity and variability in variables required by the Palmer model, regional index values are most commonly used for real-time drought assessment. Local stakeholders charged with developing flexible and tailored water management policies have articulated the need for drought indices calculated at finer spatial resolutions than a regional scale. We use the Pacific Northwest United States (U.S.) as a study area to demonstrate the differences between drought indices calculated for U.S. climate divisions with those calculated at a 0.5° by 0.5° latitude/longitude resolution. Our results indicate that regional values of the two cumulative Palmer drought indices do not represent finer-resolution values well. For half of the study area, the pictures of drought (as determined by regional and finer-resolution values) are drastically different more than 30% of the time. Thus, quite often water managers do not have a clear understanding of the relative severity of drought in their area, which can have serious implications for drought mitigation and adaptation.

  1. Mapping urban and peri-urban agriculture using high spatial resolution satellite data

    NASA Astrophysics Data System (ADS)

    Forster, Dionys; Buehler, Yves; Kellenberger, Tobias W.

    2009-03-01

    In rapidly changing peri-urban environments where biophysical and socio-economic processes lead to spatial fragmentation of agricultural land, remote sensing offers an efficient tool to collect land cover/land use (LCLU) data for decision-making. Compared to traditional pixel-based approaches, remote sensing with object-based classification methods is reported to achieve improved classification results in complex heterogeneous landscapes. This study assessed the usefulness of object-oriented analysis of Quickbird high spatial resolution satellite data to classify urban and peri-urban agriculture in a limited peri-urban area of Hanoi, Vietnam. The results revealed that segmentation was essential in developing the object-oriented classification approach. Accurate segmentation of shape and size of an object enhanced classification with spectral, textural, morphological, and topological features. A qualitative, visual comparison of the classification results showed successful localisation and identification of most LCLU classes. Quantitative evaluation was conducted with a classification error matrix reaching an overall accuracy of 67% and a kappa coefficient of 0.61. In general, object-oriented classification of high spatial resolution satellite data proved the promising approach for LCLU analysis at village level. Capturing small-scale urban and peri-urban agricultural diversity offers a considerable potential for environmental monitoring. Challenges remain with the delineation of field boundaries and LCLU diversity on more spatially extensive datasets.

  2. THE INFLUENCE OF SPATIAL RESOLUTION ON NONLINEAR FORCE-FREE MODELING

    SciTech Connect

    DeRosa, M. L.; Schrijver, C. J.; Leka, K. D.; Barnes, G.; Amari, T.; Canou, A.; Thalmann, J. K.; Wiegelmann, T.; Malanushenko, A.; Sun, X.; Régnier, S.

    2015-10-01

    The nonlinear force-free field (NLFFF) model is often used to describe the solar coronal magnetic field, however a series of earlier studies revealed difficulties in the numerical solution of the model in application to photospheric boundary data. We investigate the sensitivity of the modeling to the spatial resolution of the boundary data, by applying multiple codes that numerically solve the NLFFF model to a sequence of vector magnetogram data at different resolutions, prepared from a single Hinode/Solar Optical Telescope Spectro-Polarimeter scan of NOAA Active Region 10978 on 2007 December 13. We analyze the resulting energies and relative magnetic helicities, employ a Helmholtz decomposition to characterize divergence errors, and quantify changes made by the codes to the vector magnetogram boundary data in order to be compatible with the force-free model. This study shows that NLFFF modeling results depend quantitatively on the spatial resolution of the input boundary data, and that using more highly resolved boundary data yields more self-consistent results. The free energies of the resulting solutions generally trend higher with increasing resolution, while relative magnetic helicity values vary significantly between resolutions for all methods. All methods require changing the horizontal components, and for some methods also the vertical components, of the vector magnetogram boundary field in excess of nominal uncertainties in the data. The solutions produced by the various methods are significantly different at each resolution level. We continue to recommend verifying agreement between the modeled field lines and corresponding coronal loop images before any NLFFF model is used in a scientific setting.

  3. Effect of Electric Field Gradient on Sub-nanometer Spatial Resolution of Tip-enhanced Raman Spectroscopy

    PubMed Central

    Meng, Lingyan; Yang, Zhilin; Chen, Jianing; Sun, Mengtao

    2015-01-01

    Tip-enhanced Raman spectroscopy (TERS) with sub-nanometer spatial resolution has been recently demonstrated experimentally. However, the physical mechanism underlying is still under discussion. Here we theoretically investigate the electric field gradient of a coupled tip-substrate system. Our calculations suggest that the ultra-high spatial resolution of TERS can be partially attributed to the electric field gradient effect owning to its tighter spatial confinement and sensitivity to the infrared (IR)-active of molecules. Particularly, in the case of TERS of flat-lying H2TBPP molecules,we find the electric field gradient enhancement is the dominating factor for the high spatial resolution, which qualitatively coincides with previous experimental report. Our theoretical study offers a new paradigm for understanding the mechanisms of the ultra-high spatial resolution demonstrated in tip-enhanced spectroscopy which is of importance but neglected. PMID:25784161

  4. Flexible hydrological modeling - Disaggregation from lumped catchment scale to higher spatial resolutions

    NASA Astrophysics Data System (ADS)

    Tran, Quoc Quan; Willems, Patrick; Pannemans, Bart; Blanckaert, Joris; Pereira, Fernando; Nossent, Jiri; Cauwenberghs, Kris; Vansteenkiste, Thomas

    2015-04-01

    Based on an international literature review on model structures of existing rainfall-runoff and hydrological models, a generalized model structure is proposed. It consists of different types of meteorological components, storage components, splitting components and routing components. They can be spatially organized in a lumped way, or on a grid, spatially interlinked by source-to-sink or grid-to-grid (cell-to-cell) routing. The grid size of the model can be chosen depending on the application. The user can select/change the spatial resolution depending on the needs and/or the evaluation of the accuracy of the model results, or use different spatial resolutions in parallel for different applications. Major research questions addressed during the study are: How can we assure consistent results of the model at any spatial detail? How can we avoid strong or sudden changes in model parameters and corresponding simulation results, when one moves from one level of spatial detail to another? How can we limit the problem of overparameterization/equifinality when we move from the lumped model to the spatially distributed model? The proposed approach is a step-wise one, where first the lumped conceptual model is calibrated using a systematic, data-based approach, followed by a disaggregation step where the lumped parameters are disaggregated based on spatial catchment characteristics (topography, land use, soil characteristics). In this way, disaggregation can be done down to any spatial scale, and consistently among scales. Only few additional calibration parameters are introduced to scale the absolute spatial differences in model parameters, but keeping the relative differences as obtained from the spatial catchment characteristics. After calibration of the spatial model, the accuracies of the lumped and spatial models were compared for peak, low and cumulative runoff total and sub-flows (at downstream and internal gauging stations). For the distributed models, additional

  5. Increasing spatial resolution of CHIRPS rainfall datasets for Cyprus with artificial neural networks

    NASA Astrophysics Data System (ADS)

    Tymvios, Filippos; Michaelides, Silas; Retalis, Adrianos; Katsanos, Dimitrios; Lelieveld, Jos

    2016-08-01

    The use of high resolution rainfall datasets is an alternative way of studying climatological regions where conventional rain measurements are sparse or not available. Starting in 1981 to near-present, the CHIRPS (Climate Hazards Group InfraRed Precipitation with Station data) dataset incorporates a 5km×5km resolution satellite imagery with in-situ station data to create gridded rainfall time series for trend analysis, severe events and seasonal drought monitoring. The aim of this work is to further increase the resolution of the rainfall dataset for Cyprus to 1km×1km, by correlating the CHIRPS dataset with elevation information, the NDVI index (Normalized Difference Vegetation Index) from satellite images at 1km×1km and precipitation measurements from the official raingauge network of the Cyprus' Department of Meteorology, utilizing Artificial Neural Networks. The Artificial Neural Networks' architecture that was implemented is the Multi-Layer Perceptron (MLP) trained with the back propagation method, which is widely used in environmental studies. Seven different network architectures were tested, all with two hidden layers. The number of neurons ranged from 3 to10 in the first hidden layer and from 5 to 25 in the second hidden layer. The dataset was separated into a randomly selected training set, a validation set and a testing set; the latter is independently used for the final assessment of the models' performance. Using the Artificial Neural Network approach, a new map of the spatial analysis of rainfall is constructed which exhibits a considerable increase in its spatial resolution. A statistical assessment of the new spatial analysis was made using the rainfall ground measurements from the raingauge network. The assessment indicates that the methodology is promising for several applications.

  6. Spatial resolution dependence on spectral frequency in human speech cortex electrocorticography

    NASA Astrophysics Data System (ADS)

    Muller, Leah; Hamilton, Liberty S.; Edwards, Erik; Bouchard, Kristofer E.; Chang, Edward F.

    2016-10-01

    Objective. Electrocorticography (ECoG) has become an important tool in human neuroscience and has tremendous potential for emerging applications in neural interface technology. Electrode array design parameters are outstanding issues for both research and clinical applications, and these parameters depend critically on the nature of the neural signals to be recorded. Here, we investigate the functional spatial resolution of neural signals recorded at the human cortical surface. We empirically derive spatial spread functions to quantify the shared neural activity for each frequency band of the electrocorticogram. Approach. Five subjects with high-density (4 mm center-to-center spacing) ECoG grid implants participated in speech perception and production tasks while neural activity was recorded from the speech cortex, including superior temporal gyrus, precentral gyrus, and postcentral gyrus. The cortical surface field potential was decomposed into traditional EEG frequency bands. Signal similarity between electrode pairs for each frequency band was quantified using a Pearson correlation coefficient. Main results. The correlation of neural activity between electrode pairs was inversely related to the distance between the electrodes; this relationship was used to quantify spatial falloff functions for cortical subdomains. As expected, lower frequencies remained correlated over larger distances than higher frequencies. However, both the envelope and phase of gamma and high gamma frequencies (30-150 Hz) are largely uncorrelated (<90%) at 4 mm, the smallest spacing of the high-density arrays. Thus, ECoG arrays smaller than 4 mm have significant promise for increasing signal resolution at high frequencies, whereas less additional gain is achieved for lower frequencies. Significance. Our findings quantitatively demonstrate the dependence of ECoG spatial resolution on the neural frequency of interest. We demonstrate that this relationship is consistent across patients and

  7. Why Is Non-thermal Line Broadening of Lower Transition Region Lines Independent of Spatial Resolution?

    NASA Astrophysics Data System (ADS)

    De Pontieu, B.; Mcintosh, S. W.; Martínez-Sykora, J.; Peter, H.; Pereira, T. M. D.

    2014-12-01

    Spectral observations of the solar transition region (TR) and corona typically show broadening of the spectral lines beyond what is expected from thermal and instrumental broadening. The remaining non-thermal broadening is significant (10-30 km/s), correlated with the intensity, and has been attributed to waves, macro and micro turbulence, nanoflares, etc... Here we study spectra of the low TR Si IV 1403 Angstrom line obtained at high spatial and spectral resolution with the Interface Region Imaging Spectrograph (IRIS). We find that the large improvement in spatial resolution (0.33 arcsec) of IRIS compared to previous spectrographs (2 arcsec) does not resolve the non-thermal line broadening which remains at pre-IRIS levels of 20 km/s. This surprising invariance to spatial resolution indicates that the physical processes behind the non-thermal line broadening either occur along the line-of-sight (LOS) and/or on spatial scales (perpendicular to the LOS) smaller than 250 km. Both effects appear to play a role. Comparison with IRIS chromospheric observations shows that, in regions where the LOS is more parallel to the field, magneto-acoustic shocks driven from below impact the low TR leading to strong non-thermal line broadening from line-of-sight integration across the shock at the time of impact. This scenario is confirmed by advanced MHD simulations. In regions where the LOS is perpendicular to the field, the prevalence of small-scale twist is likely to play a significant role in explaining the invariance and the correlation with intensity.

  8. A new vehicle emission inventory for China with high spatial and temporal resolution

    NASA Astrophysics Data System (ADS)

    Zheng, B.; Huo, H.; Zhang, Q.; Yao, Z. L.; Wang, X. T.; Yang, X. F.; Liu, H.; He, K. B.

    2013-12-01

    This study is the first in a series of papers that aim to develop high-resolution emission databases for different anthropogenic sources in China. Here we focus on on-road transportation. Because of the increasing impact of on-road transportation on regional air quality, developing an accurate and high-resolution vehicle emission inventory is important for both the research community and air quality management. This work proposes a new inventory methodology to improve the spatial and temporal accuracy and resolution of vehicle emissions in China. We calculate, for the first time, the monthly vehicle emissions (CO, NMHC, NOx, and PM2.5) for 2008 in 2364 counties (an administrative unit one level lower than city) by developing a set of approaches to estimate vehicle stock and monthly emission factors at county-level, and technology distribution at provincial level. We then introduce allocation weights for the vehicle kilometers traveled to assign the county-level emissions onto 0.05° × 0.05° grids based on the China Digital Road-network Map (CDRM). The new methodology overcomes the common shortcomings of previous inventory methods, including neglecting the geographical differences between key parameters and using surrogates that are weakly related to vehicle activities to allocate vehicle emissions. The new method has great advantages over previous methods in depicting the spatial distribution characteristics of vehicle activities and emissions. This work provides a better understanding of the spatial representation of vehicle emissions in China and can benefit both air quality modeling and management with improved spatial accuracy.

  9. Optical lens-shift design for increasing spatial resolution of 3D ToF cameras

    NASA Astrophysics Data System (ADS)

    Lietz, Henrik; Hassan, M. Muneeb; Eberhardt, Jörg

    2017-02-01

    Sensor resolution of 3D time-of-flight (ToF) outdoor-capable cameras is strongly limited because of its large pixel dimensions. Computational imaging permits enhancement of the optical system's resolving power without changing physical sensor properties. Super-resolution (SR) algorithms superimpose several sub-pixel-shifted low-resolution (LR) images to overcome the system's limited spatial sampling rate. In this paper, we propose a novel opto-mechanical system to implement sub-pixel shifts by moving an optical lens. This method is more flexible in terms of implementing SR techniques than current sensor-shift approaches. In addition, we describe a SR observation model that has been optimized for the use of LR 3D ToF cameras. A state-of-the-art iteratively reweighted minimization algorithm executes the SR process. It is proven that our method achieves nearly the same resolution increase as if the pixel area would be halved physically. Resolution enhancement is measured objectively for amplitude images of a static object scene.

  10. Applications of Full-Field X-ray Microscopy for High Spatial Resolution Magnetic Imaging

    NASA Astrophysics Data System (ADS)

    Denbeaux, Gregory; Chao, Weilun; Fischer, Peter; Kusinski, Greg; Le Gros, Mark; Pearson, Angelic; Schneider, Gerd

    2001-03-01

    The XM-1 soft x-ray microscope, located at the Advanced Light Source at Lawrence Berkeley National Laboratory has recently been established as a tool for high-resolution imaging of magnetic domains. It is a "conventional" full-field transmission microscope which is able to achieve a resolution of 25 nm by using high-precision zone plates. It uses off-axis bend magnet radiation to illuminate samples with elliptically polarized light. When the illumination energy is tuned to absorption edges of specific elements, it can be used as an element-specific probe of magnetism on a 25 nm scale with a contrast provided by magnetic circular dichroism. The illumination energy can be tuned between 250-850 eV. This allows imaging of specific elements including chromium, iron and cobalt. The spectral resolution has been shown to be E/DE = 500-700. This spectral resolution allows a high sensitivity so that magnetization has been imaged within layers as thin as 3 nm. Since this is a photon based magnetic microscopy, fields can be applied to the sample even during imaging without affect ng the spatial resolution. Recent magnetic imaging results will be shown.

  11. Perceptual quality measurement for scalable video at low spatial resolution in mobile environments

    NASA Astrophysics Data System (ADS)

    Sohn, Hosik; Yoo, Hana; Kim, Cheon Seog; De Neve, Wesley; Ro, Yong Man

    2009-02-01

    Environments for the delivery and consumption of multimedia are often very heterogeneous, due to the use of various terminals in varying network conditions. One example of such an environment is a wireless network providing connectivity to a plethora of mobile devices. H.264/AVC Scalable Video Coding (SVC) can be utilized to deal with diverse usage environments. However, in order to optimally tailor scalable video content along the temporal, spatial, or perceptual quality axes, a quality metric is needed that reliably models subjective quality. The major contribution of this paper is the development of a novel quality metric for scalable video bit streams having a low spatial resolution, targeting consumption in wireless video applications. The proposed quality metric allows modeling the temporal, spatial, and perceptual quality characteristics of SVC bit streams. This is realized by taking into account several properties of the compressed bit streams, such as the temporal and spatial variation of the video content, the frame rate, and PSNR values. An extensive number of subjective experiments have been conducted to construct and verify the reliability of our quality metric. The experimental results show that the proposed quality metric is able to efficiently reflect subjective quality. Moreover, the performance of the quality metric is uniformly high for video sequences with different temporal and spatial characteristics.

  12. Enhanced Spatial Resolution During Locomotion and Heightened Attention in Mouse Primary Visual Cortex

    PubMed Central

    Mineault, Patrick J.; Tring, Elaine; Trachtenberg, Joshua T.

    2016-01-01

    -frequency selectivity. This means that, during a state of locomotion and heightened attention, the population activity in primary visual cortex can support better spatial acuity, a phenomenon that parallels the improved spatial resolution observed in human subjects during the allocation of spatial attention. PMID:27307228

  13. Experimental results of a 30 m, 3-core HTSC cable

    NASA Astrophysics Data System (ADS)

    Masuda, Takato; Kato, Takeshi; Yumura, Hiroyasu; Hirose, Masayuki; Isojima, Shigeki; Honjo, Shoichi; Matsuo, Kimiyoshi; Mimura, Tomoo; Takahashi, Yoshihisa

    2002-08-01

    A high temperature superconducting (HTSC) cable is expected to transport large electric power with a compact size because of its high critical current density. We have been developing a 3-core 66 kV class HTSC cable, which is applied to the ∅150 mm duct, and is composed of a conductor and a shield wound with Ag-Mn sheathed Bi-2223 tapes, electrical insulation with polypropylene laminated paper impregnated with liquid nitrogen and thermal insulation with co-axial corrugated pipes. A 30 m, 3-core cable system has been constructed to verify the 3-core performance after its production, laying and cooling. The cable had good performance to mechanical stress in the factory process. The critical current of the cable was more than 2.4 kA at 77 K. The AC loss of the conductor part was 0.5 W/m/phase at 1 kA rms, which agreed well with the calculated value of the spiral pitch adjustment technique. A 130 kV rms AC was successfully applied without any change in tan δ and capacitance. As a next step, a 100 m HTSC cable has been designed and developed based on these experimental results.

  14. The importance of high spatial resolution for the performance of atmospheric chemistry-transport models

    NASA Astrophysics Data System (ADS)

    Mantzius Hansen, Kaj

    2010-05-01

    We have investigated the importance of spatial resolution for the performance of the Danish Eulerian Hemispheric Model (DEHM), a state-of-the-art atmospheric chemistry-transport model covering the majority of the Northern Hemisphere with a horizontal grid resolution of 150 km X 150 km. DEHM has 29 vertical layers in terrain-following sigma-coordinates extending up to a height of 100 hPa. Two-way nesting options with a nesting factor of three can be applied with higher resolution over a limited area of the model. At present the model can be run without nests or with one, two or three nests, each with resolutions of 50 km X 50 km, 16.7 km X 16.7 km, and 5.6 km X 5.6 km, respectively. The model includes a comprehensive chemistry scheme with more than 100 reactions and 67 atmospheric constituents, of which 4 relate to primary particulates (PM2.5, PM10, TSP and sea salt), other species are SOx, NOx, NHx, VOCs, and secondary inorganic particulates. DEHM is driven by meteorological data from the numerical weather prediction model MM5v3. Three simulations were performed with DEHM: one simulation with only the mother domain, one simulation with one nest over Europe, and one simulation with an additional nest covering Denmark and surrounding countries. All three simulations cover the period from 1989 to 2006. The predicted concentrations were evaluated against measurements from the EMEP monitoring network. Only sites within the innermost nest were included in the evaluation and the evaluations of the three simulations were compared to test the influence of spatial resolution on the performance of the model.

  15. HIGH SPATIAL RESOLUTION IMAGING OF INERTIAL FUSION TARGET PLASMAS USING BUBBLE NEWTRON DETECTORS

    SciTech Connect

    FISHER,RK

    2002-10-01

    OAK B202 HIGH SPATIAL RESOLUTION IMAGING OF INERTIAL FUSION TARGET PLASMAS USING BUBBLE NEWTRON DETECTORS. Bubble detectors, which can detect neutrons with a spatial resolution of 5 to 30 {micro}, are a promising approach to high-resolution imaging of NIF target plasmas. Gel bubble detectors were used in successful proof-of-principle imaging experiments on OMEGA. Until recently, bubble detectors appeared to be the only approach capable of achieving neutron images of NIF targets with the desired 5 {micro} spatial resolution in the target plane. In 2001, NIF reduced the required standoff distance from the target, so that diagnostic components can now be placed as close as 10 cm to the target plasma. This will allow neutron imaging with higher magnification and may make it possible to obtain 5 {micro}m resolution images on NIF using deuterated scintillators. Having accomplished all that they can hope to on OMEGA using gel detectors, they suggested that the 2002 NLUF shots be used to allow experimental tests of the spatial resolution of the CEA-built deuterated scintillators. The preliminary CEA data from the June 2002 run appears to show the spatial resolution using the deuterated scintillator detector array is improved over that obtained in earlier experiments using the proton-based scintillators. Gel detectors, which consist of {approx} 10 {micro}m diameter drops of bubble detector liquid suspended in an inactive support gel that occupies {approx} 99% of the detector volume, were chosen for the initial tests on OMEGA since they are easy to use. The bubbles could be photographed several hours after the neutron exposure. Imaging NIF target plasmas at neutron yields of 10{sup 15} will require a higher detection efficiency detector. Using a liquid bubble chamber detector should result in {approx} 1000 times higher neutron detection efficiency which is comparable to that possible using scintillation detectors. A pressure-cycled liquid bubble detector will require a light

  16. Nanoscale Spatial Organization of Prokaryotic Cells Studied by Super-Resolution Optical Microscopy

    NASA Astrophysics Data System (ADS)

    McEvoy, Andrea Lynn

    All cells spatially organize their interiors, and this arrangement is necessary for cell viability. Until recently, it was believed that only eukaryotic cells spatially segregate their components. However, it is becoming increasingly clear that bacteria also assemble their proteins into complex patterns. In eukaryotic cells, spatial organization arises from membrane bound organelles as well as motor transport proteins which can move cargos within the cell. To date, there are no known motor transport proteins in bacteria and most microbes lack membrane bound organelles, so it remains a mystery how bacterial spatial organization emerges. In hind-sight it is not surprising that bacteria also exhibit complex spatial organization considering much of what we have learned about the basic processes that take place in all cells, such as transcription and translation was first discovered in prokaryotic cells. Perhaps the fundamental principles that govern spatial organization in prokaryotic cells may be applicable in eukaryotic cells as well. In addition, bacteria are attractive model organism for spatial organization studies because they are genetically tractable, grow quickly and much biochemical and structural data is known about them. A powerful tool for observing spatial organization in cells is the fluorescence microscope. By specifically tagging a protein of interest with a fluorescent probe, it is possible to examine how proteins organize and dynamically assemble inside cells. A significant disadvantage of this technology is its spatial resolution (approximately 250 nm laterally and 500 nm axially). This limitation on resolution causes closely spaced proteins to look blurred making it difficult to observe the fine structure within the complexes. This resolution limit is especially problematic within small cells such as bacteria. With the recent invention of new optical microscopies, we now can surpass the existing limits of fluorescence imaging. In some cases, we can

  17. Ultrahigh-spatial-resolution chemical and magnetic imaging by laser-based photoemission electron microscopy

    SciTech Connect

    Taniuchi, Toshiyuki Kotani, Yoshinori; Shin, Shik

    2015-02-15

    We report the first experiments carried out on a new chemical and magnetic imaging system, which combines the high spatial resolution of a photoemission electron microscope (PEEM) with a continuous-wave deep-ultraviolet laser. Threshold photoemission is sensitive to the chemical and magnetic structures of the surface of materials. The spatial resolution of PEEM is limited by space charging when using pulsed photon sources as well as aberrations in the electron optics. We show that the use of a continuous-wave laser enabled us to overcome such a limit by suppressing the space-charge effect, allowing us to obtain a resolution of approximately 2.6 nm. With this system, we demonstrated the imaging of surface reconstruction domains on Si(001) by linear dichroism with normal incidence of the laser beam. We also succeeded in magnetic imaging of thin films with the use of magnetic circular dichroism near the Fermi level. The unique features of the ultraviolet laser will give us fast switching of the incident angles and polarizations of the photon source, which will be useful for the characterization of antiferromagnetic materials as well as ferromagnetic materials.

  18. Increasing spatial resolution and comparison of MR imaging sequences for the inner ear

    NASA Astrophysics Data System (ADS)

    Snyder, Carl J.; Bolinger, Lizann; Rubinstein, Jay T.; Wang, Ge

    2002-04-01

    The size and location of the cochlea and cochlear nerve are needed to assess the feasibility of cochlea implantation, provide information for surgical planning, and aid in construction of cochlear models. Models of implant stimulation incorporating anatomical and physiological information are likely to provide a better understanding of the biophysics of information transferred with cochlear implants and aid in electrode design and arrangement on cochlear implants. Until recently MR did not provide the necessary image resolution and suffered from long acquisition times. The purpose of this study was to optimize both Fast Spin Echo (FSE) and Steady State Free Precession (FIESTA) imaging scan parameters for the inner ear and comparatively examine both for improved image quality and increased spatial resolution. Image quality was determined by two primary measurements, signal to noise ratio (SNR), and image sharpness. Optimized parameters for FSE were 120ms, 3000ms, 64, and 32.25kHz for the TE, TR, echo train length, and bandwidth, respectively. FIESTA parameters were optimized to 2.7, 5.5ms, 70 degree(s), and 62.5kHz, for TE, TR, flip angle, and bandwidth, respectively. While both had the same in-plane spatial resolution, 0.625mm, FIESTA data shows higher SNR per acquisition time and better edge sharpness.

  19. A Compact "Water Window" Microscope with 60 nm Spatial Resolution for Applications in Biology and Nanotechnology.

    PubMed

    Wachulak, Przemyslaw; Torrisi, Alfio; Nawaz, Muhammad F; Bartnik, Andrzej; Adjei, Daniel; Vondrová, Šárka; Turňová, Jana; Jančarek, Alexandr; Limpouch, Jiří; Vrbová, Miroslava; Fiedorowicz, Henryk

    2015-10-01

    Short illumination wavelength allows an extension of the diffraction limit toward nanometer scale; thus, improving spatial resolution in optical systems. Soft X-ray (SXR) radiation, from "water window" spectral range, λ=2.3-4.4 nm wavelength, which is particularly suitable for biological imaging due to natural optical contrast provides better spatial resolution than one obtained with visible light microscopes. The high contrast in the "water window" is obtained because of selective radiation absorption by carbon and water, which are constituents of the biological samples. The development of SXR microscopes permits the visualization of features on the nanometer scale, but often with a tradeoff, which can be seen between the exposure time and the size and complexity of the microscopes. Thus, herein, we present a desk-top system, which overcomes the already mentioned limitations and is capable of resolving 60 nm features with very short exposure time. Even though the system is in its initial stage of development, we present different applications of the system for biology and nanotechnology. Construction of the microscope with recently acquired images of various samples will be presented and discussed. Such a high resolution imaging system represents an interesting solution for biomedical, material science, and nanotechnology applications.

  20. Prospects for higher spatial resolution quantitative X-ray analysis using transition element L-lines

    NASA Astrophysics Data System (ADS)

    Statham, P.; Holland, J.

    2014-03-01

    Lowering electron beam kV reduces electron scattering and improves spatial resolution of X-ray analysis. However, a previous round robin analysis of steels at 5 - 6 kV using Lα-lines for the first row transition elements gave poor accuracies. Our experiments on SS63 steel using Lα-lines show similar biases in Cr and Ni that cannot be corrected with changes to self-absorption coefficients or carbon coating. The inaccuracy may be caused by different probabilities for emission and anomalous self-absorption for the La-line between specimen and pure element standard. Analysis using Ll(L3-M1)-lines gives more accurate results for SS63 plausibly because the M1-shell is not so vulnerable to the atomic environment as the unfilled M4,5-shell. However, Ll-intensities are very weak and WDS analysis may be impractical for some applications. EDS with large area SDD offers orders of magnitude faster analysis and achieves similar results to WDS analysis with Lα-lines but poorer energy resolution precludes the use of Ll-lines in most situations. EDS analysis of K-lines at low overvoltage is an alternative strategy for improving spatial resolution that could give higher accuracy. The trade-off between low kV versus low overvoltage is explored in terms of sensitivity for element detection for different elements.

  1. Effects of spatial resolution and spectral purity on transvenous coronary angiography images

    SciTech Connect

    Chapman, D.; Thomlinson, W.; Gumer, N.F.

    1994-11-01

    Measurements have been made on the National Synchrotron Light Source (NSLS) Coronary Angiography X17B2 beamline under ideal and real imaging conditions to investigate the optimal imaging conditions for spatial resolution and spectral purity. The spatial resolution tests were performed using two multielement Si(Li) detectors (600 element, 0.5mm, pixel-pixel spacing; 1200 element, 0.25mm pixel-pixel spacing. Images were taken of phantoms containing iodine contrast agent over a wide range of incident beam absorption conditions. Patient images were also obtained using the same viewing projection with both detectors. Harmonics present in the imaging beam can be reduced by operating the superconducting wiggler source at reduced field strength. At regions of high absorption in the patient, the harmonics present can contribute to the detected signal. Iodine phantom images were obtained at a wiggler field strength of 3 Tesla (E{sub c}=13.3keV) and 4 Tesla (E{sub c}= I 7.8keV) for comparison. As before, patient images were obtained using the same projection at both wiggler fields. Results of the detector resolution and wiggler eld measurements will be presented for the phantoms as well as the patient scans.

  2. The influence of spectral and spatial resolution in classification approaches: Landsat TM data vs. Hyperspectral data

    NASA Astrophysics Data System (ADS)

    Rodríguez-Galiano, Víctor; Garcia-Soldado, Maria José; Chica-Olmo, Mario

    The importance of accurate and timely information describing the nature and extent of land and natural resources is increasing especially in rapidly growing metropolitan areas. While metropolitan area decision makers are in constant need of current geospatial information on patterns and trends in land cover and land use, relatively little researchers has investigated the influence of the satellite data resolution for monitoring geo-enviromental information. In this research a suite of remote sensing and GIS techniques is applied in a land use mapping study. The main task is to asses the influence of the spatial and spectral resolution in the separability between classes and in the classificatiońs accuracy. This study has been focused in a very dynamical area with respect to land use, located in the province of Granada (SE of Spain). The classifications results of the Airborne Hyperspectral Scanner (AHS, Daedalus Enterprise Inc., WA, EEUU) at different spatial resolutions: 2, 4 and 6 m and Landsat 5 TM data have been compared.

  3. Evaluation of ERTS-1 image sensor spatial resolution in photographic form

    NASA Technical Reports Server (NTRS)

    Slater, P. N. (Principal Investigator); Schowengerdt, R. A.

    1973-01-01

    The author has identified the following significant results. A coherent optical system was used to display the spatial frequency content of the amplitude image of one area of the ground as obtained in the four wavelength bands of the multispectral scanner. This enabled a rapid comparison to be made between the four bands, from which it was clear that bands 5 and 7 were preferred to the others in terms of image definition, and thus mapping and acreage estimation, for the particular agricultural area imaged. With suitable scaling it was also possible to compare the modulation, as a function of spatial frequency, of MSS bands 4 and 5 with the green (BB) and red (DD) bands of the same area from the Apollo 9, SO65 experiment. A significant result is that the modulation in the MSS amplitude imagery is 65%-90% of that in the Apollo 9 amplitude imagery. In addition, the ratio of spatial frequencies for the ERTS-1 and Apollo imagery, at which the same modulation occurs, lies between 0.55 and 0.75 for the red band. This ratio is closely related to the ratio of resolutions for the two sensors. These values corroborate statements that the resolution of the MSS imagery is better than anticipated by pre-flight predictions.

  4. Evaluation of spatial resolution of satellite data on snow cover estimates

    NASA Astrophysics Data System (ADS)

    Porhemmat, J.; Saghafian, B.

    2003-04-01

    Snow cover area is one of the most important components in snowmelt runoff modelling. Snow cover extent and its variation can not be reasonably detected by ground survey. Therefore, remote sensing is an important alternative for snow cover extent estimates and its spatial and temporal variation. Despite having many satellites scanning earth surface, most do not meet the needs of producing time series of daily snow cover needed in hydrology and water resources planning. The satellites such as SPOT and Landsat with high spatial resolution (28.5 and 10-15 meters per pixel) pass over earth every 16 and 26 days, respectively. This means that if a pass was affected by cloudy condition, the time interval of receiving a suitable image could be more than one month. However, the pass made by NOAA is every 12 hours with a nominal resolution of 1100 meters per pixel. Thus the effect of spatial resolution of remotely sensed data on accuracy of snow cover area must be assessed. This research involves selection of a high-resolution and a low-resolution sensor, which are respectively Landsat TM (Thematic Mapper) and NOAA AVHRR (Advanced Very High Resolution Radiometers). Landsat can detect small parcels of snow, which may not be detected by NOAA AVHRR. Zagross high lands, upstream of Karun river basin in southwest of Iran, is a seasonally covered by snow and are selected for the study area. Two simultaneous passes of Landsat and NOAA are chosen for evaluation of snow cover. The dates of these passes are 13 April 1997 and 18 May 1998. The first one corresponds to the early stage of snowmelt period and the second one to the end stage of snowmelt period. The whole study area corresponds to a full scene of Landsat, which cover an area of about 34000 Km2. There were many scattered and separate snow parcels on both dates. Snow area was detected by two methods. First method was interpretation and digitizing snow line on monitor screen and the second one was supervised classification

  5. Cherenkov telescopes as optical telescopes for bright sources: today's specialized 30-m telescopes?

    NASA Astrophysics Data System (ADS)

    Lacki, Brian C.

    2011-10-01

    Imaging Atmospheric Cherenkov Telescopes (IACTs) use large-aperture (3-30 m) optical telescopes with arcminute angular resolution to detect TeV gamma-rays in the atmosphere. I show that IACTs are well suited for optical observations of bright sources (V≲ 8-10), because these sources are brighter than the sky background. Their advantages are especially great on rapid time-scales. Thus, IACTs might study many phenomena optically, including transiting exoplanets and the brightest gamma-ray bursts. In principle, an IACT could achieve millimagnitude photometry of these objects with second-long exposures. I also consider the potential for optical spectroscopy with IACTs, finding that their poor angular resolution limits their usefulness for high spectral resolutions, unless complex instruments are developed. The high photon collection rate of IACTs is potentially useful for precise polarimetry. Finally, I briefly discuss the broader possibilities of extremely large, low-resolution telescopes, including a 10 arcsec resolution telescope and space-borne telescopes.

  6. The millimeter IRAM-30 m line survey toward IK Tauri

    NASA Astrophysics Data System (ADS)

    Velilla Prieto, L.; Sánchez Contreras, C.; Cernicharo, J.; Agúndez, M.; Quintana-Lacaci, G.; Bujarrabal, V.; Alcolea, J.; Balança, C.; Herpin, F.; Menten, K. M.; Wyrowski, F.

    2017-01-01

    Aims: We aim to investigate the physical and chemical properties of the molecular envelope of the oxygen-rich AGB star IK Tau. Methods: We carried out a millimeter wavelength line survey between 79 and 356 GHz with the IRAM-30 m telescope. We analysed the molecular lines detected in IK Tau using the population diagram technique to derive rotational temperatures and column densities. We conducted a radiative transfer analysis of the SO2 lines, which also helped us to verify the validity of the approximated method of the population diagram for the rest of the molecules. Results: For the first time in this source we detected rotational lines in the ground vibrational state of HCO+, NS, NO, and H2CO, as well as several isotopologues of molecules previously identified, namely, C18O, Si17O, Si18O, 29SiS, 30SiS, Si34S, H13CN, 13CS, C34S, H234S, 34SO, and 34SO2. We also detected several rotational lines in vibrationally excited states of SiS and SiO isotopologues, as well as rotational lines of H2O in the vibrationally excited state ν2 = 2. We have also increased the number of rotational lines detected of molecules that were previously identified toward IK Tau, including vibrationally excited states, enabling a detailed study of the molecular abundances and excitation temperatures. In particular, we highlight the detection of NS and H2CO with fractional abundances of f(NS) 10-8 and f(H2CO) [10-7-10-8]. Most of the molecules display rotational temperatures between 15 and 40 K. NaCl and SiS isotopologues display rotational temperatures higher than the average ( 65 K). In the case of SO2 a warm component with Trot 290 K is also detected. Conclusions: With a total of 350 lines detected of 34 different molecular species (including different isotopologues), IK Tau displays a rich chemistry for an oxygen-rich circumstellar envelope. The detection of carbon bearing molecules like H2CO, as well as the discrepancies found between our derived abundances and the predictions from

  7. High-spatial resolution multispectral and panchromatic satellite imagery for mapping perennial desert plants

    NASA Astrophysics Data System (ADS)

    Alsharrah, Saad A.; Bruce, David A.; Bouabid, Rachid; Somenahalli, Sekhar; Corcoran, Paul A.

    2015-10-01

    The use of remote sensing techniques to extract vegetation cover information for the assessment and monitoring of land degradation in arid environments has gained increased interest in recent years. However, such a task can be challenging, especially for medium-spatial resolution satellite sensors, due to soil background effects and the distribution and structure of perennial desert vegetation. In this study, we utilised Pleiades high-spatial resolution, multispectral (2m) and panchromatic (0.5m) imagery and focused on mapping small shrubs and low-lying trees using three classification techniques: 1) vegetation indices (VI) threshold analysis, 2) pre-built object-oriented image analysis (OBIA), and 3) a developed vegetation shadow model (VSM). We evaluated the success of each approach using a root of the sum of the squares (RSS) metric, which incorporated field data as control and three error metrics relating to commission, omission, and percent cover. Results showed that optimum VI performers returned good vegetation cover estimates at certain thresholds, but failed to accurately map the distribution of the desert plants. Using the pre-built IMAGINE Objective OBIA approach, we improved the vegetation distribution mapping accuracy, but this came at the cost of over classification, similar to results of lowering VI thresholds. We further introduced the VSM which takes into account shadow for further refining vegetation cover classification derived from VI. The results showed significant improvements in vegetation cover and distribution accuracy compared to the other techniques. We argue that the VSM approach using high-spatial resolution imagery provides a more accurate representation of desert landscape vegetation and should be considered in assessments of desertification.

  8. Implications of high-spatial-resolution thermal infrared (Termoskan) data for Mars landing site selection

    NASA Technical Reports Server (NTRS)

    Betts, Bruce H.

    1994-01-01

    Thermal infrared observations of Mars from spacecraft provide physical information about the upper thermal skin depth of the surface, which is on the order of a few centimeters in depth and thus very significant for lander site selection. The Termoskan instrument onboard the Soviet Phobos '88 spacecraft acquired the highest spatial-resolution thermal infrared data obtained for Mars, ranging in resolution from 300 m to 3 km per pixel. It simultaneously obtained broadband reflected solar flux data. Although the 6 deg N - 30 deg S Termoskan coverage only slightly overlaps the nominal Mars Pathfinder target range, the implications of Termoskan data for that overlap region and the extrapolations that can be made to other regions give important clues for optimal landing site selection.

  9. THERMAL EFFECTS ON MASS AND SPATIAL RESOLUTION DURING LASER PULSE ATOM PROBE TOMOGRAPHY OF CERIUM OXIDE

    SciTech Connect

    Rita Kirchhofer; Melissa C. Teague; Brian P. Gorman

    2013-05-01

    Cerium oxide (CeO2) is an ideal surrogate material for trans-uranic elements and fission products found in nuclear fuels due to similarities in their thermal properties; therefore, cerium oxide was used to determine the best run condition for atom probe tomography (APT). Laser pulse APT is a technique that allows for spatial resolution in the nm scale and isotopic/elemental chemical identification. A systematic study of the impact of laser pulse energy and specimen base temperature on the mass resolution, measurement of stoichiometry, multiples, and evaporation mechanisms are reported in this paper. It was demonstrated that using laser pulse APT stoichiometric field evaporation of cerium oxide was achieved at 1 pJ laser pulse energy and 20 K specimen base temperature.

  10. Current source imaging for high spatial resolution magnetocardiography in normal and abnormal rat cardiac muscles

    NASA Astrophysics Data System (ADS)

    Uchida, S.; Iramina, K.; Goto, K.; Ueno, S.

    2000-05-01

    The purpose of our study was to identify the current source produced by acute ischemia and infarction. We measured magnetocardiograms (MCG) and electrocardiograms (ECG) of five male rats using a high-resolution dc superconducting quantum interference device gradiometer in a magnetically shielded room after performing coronary artery occlusion. The spatial resolution of the detecting magnetic field of our system is higher than the typical system, thus permitting the measurement of magnetic fields in small animals. Distribution of the magnetic fields B(t) and distribution of |rot B(t)|, which corresponded to the distribution of the current source, were imaged by 12-channel MCGs. As a result, the distribution of current source changes in the affected area of the myocardium during the ST segment, and amplitude of the peak significantly increased after occlusion. Our system can be used to help clarify the mechanism of the ST shift related to severe heart disease.

  11. High spatial resolution observations of 137Cs in northern Britain and Ireland from airborne geophysical survey.

    PubMed

    Scheib, Cathy; Beamish, David

    2010-09-01

    This study reports the (137)Cs data derived from three regional and national scale High Resolution Airborne Resource and Environmental Surveys (HiRES) in northern Britain and Ireland. The detailed spatial resolution, combined with the large areas these surveys collectively cover, gives insight into large-scale deposition patterns and possible subsequent re-distribution of (137)Cs on a level that was previously not possible. The largest survey area considered covers the whole of Northern Ireland. All three data sets display some clustering of higher (137)Cs activities on high ground together with regional scale NNW-SSE and NW-SE banding features. We interpret these as representing a series of rainfall interceptions of the repeated passage of the Chernobyl plume. Our observations, obtained at 200 m flight line intervals, appear to provide significant detail in relation to existing knowledge of large scale along-wind deposition of (137)Cs.

  12. Continuous monitoring of snowpack displacement at high spatial and temporal resolution with terrestrial radar interferometry

    NASA Astrophysics Data System (ADS)

    Caduff, Rafael; Wiesmann, Andreas; Bühler, Yves; Pielmeier, Christine

    2015-02-01

    Terrestrial radar interferometry is used in geotechnical applications for monitoring hazardous Earth or rock movements. In this study, we use it to continuously monitor snowpack displacements. As test site, the Dorfberg slope at Davos, Switzerland, was measured continuously during March 2014. The line of sight displacement was retrieved at a spatial resolution of millimeter to centimeter and a temporal resolution of up to 1 min independent of visibility. The results reveal several temperature-driven diurnal acceleration and deceleration cycles. The initiation of a small full-depth glide avalanche was observed after 50 cm total differential displacement. The maximum measured displacement of another differential glide area reached 43 cm/h without resulting in a full-depth avalanche even after a total measured differential displacement of 4.5 m. In regard of the difficulty to predict full-depth glide avalanches on the regional scale, the presented method has big potential for operational snow glide monitoring on critical slopes.

  13. High-Resolution Cortical Dipole Imaging Using Spatial Inverse Filter Based on Filtering Property

    PubMed Central

    2016-01-01

    Cortical dipole imaging has been developed to visualize brain electrical activity in high spatial resolution. It is necessary to solve an inverse problem to estimate the cortical dipole distribution from the scalp potentials. In the present study, the accuracy of cortical dipole imaging was improved by focusing on filtering property of the spatial inverse filter. We proposed an inverse filter that optimizes filtering property using a sigmoid function. The ability of the proposed method was compared with the traditional inverse techniques, such as Tikhonov regularization, truncated singular value decomposition (TSVD), and truncated total least squares (TTLS), in a computer simulation. The proposed method was applied to human experimental data of visual evoked potentials. As a result, the estimation accuracy was improved and the localized dipole distribution was obtained with less noise. PMID:27688747

  14. High spatial and temporal resolution photon/electron counting detector for synchrotron radiation research

    NASA Astrophysics Data System (ADS)

    Tremsin, A. S.; Lebedev, G. V.; Siegmund, O. H. W.; Vallerga, J. V.; Hull, J. S.; McPhate, J. B.; Jozwiak, C.; Chen, Y.; Guo, J. H.; Shen, Z. X.; Hussain, Z.

    2007-10-01

    This paper reports on the development of a high resolution electron/photon/ion imaging system which detects events with a timing accuracy of <160 ps FWHM and a two-dimensional spatial accuracy of ˜50 μm FWHM. The event counting detector uses microchannel plates for signal amplification and can sustain counting rates exceeding 1.5 MHz for evenly distributed events (0.4 MHz with 10% dead time for randomly distributed events). The detector combined with a time-of-flight angular resolved photoelectron energy analyzer was tested at a synchrotron beamline. The results of these measurements illustrate the unique capabilities of the analytical system, allowing simultaneous imaging of photoelectrons in momentum space and measurement of the energy spectrum, as well as filtering the data in user defined temporal and/or spatial windows.

  15. Optical Trapping Enabled Parallel Delivery of Biological Stimuli with High Spatial and Temporal Resolution

    PubMed Central

    Burnham, Daniel R.; Schneider, Thomas; Chiu, Daniel T.

    2013-01-01

    We have developed a method that employs nanocapsules, optical trapping, and single-pulse laser photolysis for delivering bioactive molecules to cells with both high spatial and temporal resolutions. This method is particularly suitable for a cell-culture setting, in which a single nanocapsule can be optically trapped and positioned at a pre-defined location next to the cell, followed by single-pulse laser photolysis to release the contents of the nanocapsule onto the cell. To parallelize this method such that a large array of nanocapsules can be manipulated, positioned, and photolyzed simultaneously, we have turned to the use of spatial light modulators and holographic beam shaping techniques. This paper outlines the progress we have made so far and details the issues we had to address in order to achieve efficient parallel optical manipulations of nanocapsules and particles. PMID:24465114

  16. Evaluation of high spatial resolution imaging of magnetic stray fields for early damage detection

    NASA Astrophysics Data System (ADS)

    Stegemann, Robert; Cabeza, Sandra; Pelkner, Matthias; Lyamkin, Viktor; Sonntag, Nadja; Bruno, Giovanni; Skrotzki, Birgit; Kreutzbruck, Marc

    2017-02-01

    The paper discusses the evaluation of elastic and plastic strain states in two low-carbon steels of the same steel group with high spatial resolution GMR (giant magneto resistance) sensors. The residual stress distributions of tungsten inert gas welded plates were determined by means of neutron diffraction as a reference. The normal component of local residual magnetic stray fields arise in the vicinity of the positions of maximum stress. The experiments performed on flat tensile specimen indicate that the boundaries of plastic deformations are a source of stray fields. The spatial variations of magnetic stray fields for both the weld and the tensile samples are in the order of the earths magnetic field.

  17. High-Resolution Spatial Distribution and Estimation of Access to Improved Sanitation in Kenya

    PubMed Central

    Jia, Peng; Anderson, John D.; Leitner, Michael; Rheingans, Richard

    2016-01-01

    Background Access to sanitation facilities is imperative in reducing the risk of multiple adverse health outcomes. A distinct disparity in sanitation exists among different wealth levels in many low-income countries, which may hinder the progress across each of the Millennium Development Goals. Methods The surveyed households in 397 clusters from 2008–2009 Kenya Demographic and Health Surveys were divided into five wealth quintiles based on their national asset scores. A series of spatial analysis methods including excess risk, local spatial autocorrelation, and spatial interpolation were applied to observe disparities in coverage of improved sanitation among different wealth categories. The total number of the population with improved sanitation was estimated by interpolating, time-adjusting, and multiplying the surveyed coverage rates by high-resolution population grids. A comparison was then made with the annual estimates from United Nations Population Division and World Health Organization /United Nations Children's Fund Joint Monitoring Program for Water Supply and Sanitation. Results The Empirical Bayesian Kriging interpolation produced minimal root mean squared error for all clusters and five quintiles while predicting the raw and spatial coverage rates of improved sanitation. The coverage in southern regions was generally higher than in the north and east, and the coverage in the south decreased from Nairobi in all directions, while Nyanza and North Eastern Province had relatively poor coverage. The general clustering trend of high and low sanitation improvement among surveyed clusters was confirmed after spatial smoothing. Conclusions There exists an apparent disparity in sanitation among different wealth categories across Kenya and spatially smoothed coverage rates resulted in a closer estimation of the available statistics than raw coverage rates. Future intervention activities need to be tailored for both different wealth categories and nationally

  18. Investigation of spatial resolution and temporal performance of SAPHIRE (scintillator avalanche photoconductor with high resolution emitter readout) with integrated electrostatic focusing

    NASA Astrophysics Data System (ADS)

    Scaduto, David A.; Lubinsky, Anthony R.; Rowlands, John A.; Kenmotsu, Hidenori; Nishimoto, Norihito; Nishino, Takeshi; Tanioka, Kenkichi; Zhao, Wei

    2014-03-01

    We have previously proposed SAPHIRE (scintillator avalanche photoconductor with high resolution emitter readout), a novel detector concept with potentially superior spatial resolution and low-dose performance compared with existing flat-panel imagers. The detector comprises a scintillator that is optically coupled to an amorphous selenium photoconductor operated with avalanche gain, known as high-gain avalanche rushing photoconductor (HARP). High resolution electron beam readout is achieved using a field emitter array (FEA). This combination of avalanche gain, allowing for very low-dose imaging, and electron emitter readout, providing high spatial resolution, offers potentially superior image quality compared with existing flat-panel imagers, with specific applications to fluoroscopy and breast imaging. Through the present collaboration, a prototype HARP sensor with integrated electrostatic focusing and nano- Spindt FEA readout technology has been fabricated. The integrated electron-optic focusing approach is more suitable for fabricating large-area detectors. We investigate the dependence of spatial resolution on sensor structure and operating conditions, and compare the performance of electrostatic focusing with previous technologies. Our results show a clear dependence of spatial resolution on electrostatic focusing potential, with performance approaching that of the previous design with external mesh-electrode. Further, temporal performance (lag) of the detector is evaluated and the results show that the integrated electrostatic focusing design exhibits comparable or better performance compared with the mesh-electrode design. This study represents the first technical evaluation and characterization of the SAPHIRE concept with integrated electrostatic focusing.

  19. HIGH-RESOLUTION SPATIAL MODELING OF DAILY WEATHER ELEMENTS FOR A CATCHMENT IN THE OREGON CASCADE MOUNTAINS, UNITED STATES

    EPA Science Inventory

    High-quality, daily meteorological data at high spatial resolution are essential for a variety of hydrologic and ecological modeling applications that support environmental risk assessments and decision making. This paper describes the development, application, and assessment of ...

  20. High spatial resolution photographs of the sun in L alpha radiation.

    NASA Technical Reports Server (NTRS)

    Prinz, D. K.

    1973-01-01

    Photographs of the sun in predominantly L alpha radiation (centered at 1215.67 A) with 3-sec spatial resolution were taken from an Aerobee rocket shortly after fourth contact by the moon on the eclipse day of July 10, 1972. This preliminary reporting of the results describes the instrument and shows two of the photographs taken. The supergranulation is manifest, and active regions and filaments are well resolved over the entire disk. Densitometer traces across the disk are presented, giving the flux incident on the earth from active regions, cell boundaries, and filaments.

  1. Matrix recrystallization for MALDI-MS imaging of maize lipids at high-spatial resolution

    SciTech Connect

    Duenas, Maria Emilia; Carlucci, Laura; Lee, Young Jin

    2016-06-27

    Matrix recrystallization is optimized and applied to improve lipid ion signals in maize embryos and leaves. A systematic study was performed varying solvent and incubation time. During this study, unexpected side reactions were found when methanol was used as a recrystallization solvent, resulting in the formation of a methyl ester of phosphatidic acid. Furthermore, using an optimum recrystallization condition with isopropanol, there is no apparent delocalization demonstrated with a transmission electron microscopy (TEM) pattern and maize leaf images obtained at 10 μm spatial resolution.

  2. Radiometric Calibration Assessment of Commercial High Spatial Resolution Multispectral Image Products

    NASA Technical Reports Server (NTRS)

    Holekamp, Kara; Aaron, David; Thome, Kurtis

    2006-01-01

    Radiometric calibration of commercial imaging satellite products is required to ensure that science and application communities can better understand their properties. Inaccurate radiometric calibrations can lead to erroneous decisions and invalid conclusions and can limit intercomparisons with other systems. To address this calibration need, satellite at-sensor radiance values were compared to those estimated by each independent team member to determine the sensor's radiometric accuracy. The combined results of this evaluation provide the user community with an independent assessment of these commercially available high spatial resolution sensors' absolute calibration values.

  3. Extraction Of Hydrological Parameters Using High Spatial Resolution Remote Sensing For KINEROS2 Model

    NASA Astrophysics Data System (ADS)

    Sadeh, Yuval; Blumberg, Dan G.; Cohen, Hai; Morin, Efrat; Maman, Shimrit

    2016-04-01

    Arid and semi-arid environments cover more than one-third of Earth's land surface; these environments are especially vulnerable to flash flood hazards due to the poor understanding of the phenomenon and the lack of meteorological, geomorphological, and hydrological data. For many years, catchment characteristics have been observed using point-based measurements such as rain gauges and soil sample analysis. Furthermore, flood modeling techniques are not always available in ungauged catchments or in regions where data are sparse. In comparison to point-based observations, using remote sensing technologies can provide continuous spatial hydrological parameters and variables. The advances in remote sensing technologies including weather radar-based quantitative precipitation estimation (QPE) and Earth observing satellites, provide new geo-spatial data using high spatial and temporal resolution for basin-scale geomorphological analysis and hydrological models. This study used high spatial resolution remote sensing to extract some of the main input parameters of Kinematic Runoff and Erosion Model (KINEROS2), for the arid medium size Rahaf watershed (76 km^2}), located in the Judean Desert, Israel. During the research a high resolution land cover map of Rahaf basin was created using WorldView-2 multispectral satellite imageries; surface roughness was estimated using SIR-C and COSMO-SkyMed Synthetic Aperture Radar (SAR) spaceborne sensors; and rainstorm characteristics were extracted from ground-based meteorological radar. Finally, all the remotely sensed extracted data were used as inputs for the KINEROS2 through Automated Geospatial Watershed Assessment (AGWA) tool. The model-simulated peak flow and volume were then compared to runoff measurements from the watershed's pouring point. This research demonstrates the ability of using remotely sensed extracted data as inputs for the KINEROS2 model. Using AGWA, each simulated storm was successfully calibrated, when the average

  4. Cumulus cloud base height estimation from high spatial resolution Landsat data - A Hough transform approach

    NASA Technical Reports Server (NTRS)

    Berendes, Todd; Sengupta, Sailes K.; Welch, Ron M.; Wielicki, Bruce A.; Navar, Murgesh

    1992-01-01

    A semiautomated methodology is developed for estimating cumulus cloud base heights on the basis of high spatial resolution Landsat MSS data, using various image-processing techniques to match cloud edges with their corresponding shadow edges. The cloud base height is then estimated by computing the separation distance between the corresponding generalized Hough transform reference points. The differences between the cloud base heights computed by these means and a manual verification technique are of the order of 100 m or less; accuracies of 50-70 m may soon be possible via EOS instruments.

  5. Properties of Be Star Disks at High Spatial Resolution Invited Review

    NASA Astrophysics Data System (ADS)

    Schaefer, G. H.

    2016-11-01

    This paper presents an observational overview of the properties of Be star disks. The presence of circumstellar gas around Be stars can be inferred from observations of the double-peaked emission line profiles, infrared excesses, and linear polarization. High spatial resolution interferometric observations have confirmed that the gas exists in a flattened disk. The geometry and angular size of the disks at different wavelengths can be used to probe the density structure. The combination of spectroscopy and interferometry can be used to study the kinematics of the rotating disks and investigate asymmetries that arise from one-armed density waves in the circumstellar material.

  6. Matrix Recrystallization for MALDI-MS Imaging of Maize Lipids at High-Spatial Resolution.

    PubMed

    Dueñas, Maria Emilia; Carlucci, Laura; Lee, Young Jin

    2016-09-01

    Matrix recrystallization is optimized and applied to improve lipid ion signals in maize embryos and leaves. A systematic study was performed varying solvent and incubation time. During this study, unexpected side reactions were found when methanol was used as a recrystallization solvent, resulting in the formation of a methyl ester of phosphatidic acid. Using an optimum recrystallization condition with isopropanol, there is no apparent delocalization demonstrated with a transmission electron microscopy (TEM) pattern and maize leaf images obtained at 10 μm spatial resolution. Graphical Abstract ᅟ.

  7. Matrix Recrystallization for MALDI-MS Imaging of Maize Lipids at High-Spatial Resolution

    NASA Astrophysics Data System (ADS)

    Dueñas, Maria Emilia; Carlucci, Laura; Lee, Young Jin

    2016-09-01

    Matrix recrystallization is optimized and applied to improve lipid ion signals in maize embryos and leaves. A systematic study was performed varying solvent and incubation time. During this study, unexpected side reactions were found when methanol was used as a recrystallization solvent, resulting in the formation of a methyl ester of phosphatidic acid. Using an optimum recrystallization condition with isopropanol, there is no apparent delocalization demonstrated with a transmission electron microscopy (TEM) pattern and maize leaf images obtained at 10 μm spatial resolution.

  8. Implementation of a Gaussian Beam Laser and Aspheric Optics for High Spatial Resolution MALDI Imaging MS

    PubMed Central

    Zavalin, Andre; Yang, Junhai; Haase, Andreas; Holle, Armin; Caprioli, Richard

    2014-01-01

    We have investigated the use of a Gaussian beam laser for MALDI Imaging Mass Spectrometry to provide a precisely defined laser spot of 5 µm diameter on target using a commercial MALDI TOF instrument originally designed to produce a 20 µm diameter laser beam spot at its smallest setting. A Gaussian beam laser was installed in the instrument in combination with an aspheric focusing lens. This ion source produced sharp ion images at 5 µm spatial resolution with signals of high intensity as shown for images from thin tissue sections of mouse brain. PMID:24692046

  9. Soft X-ray microscope with nanometer spatial resolution and its applications

    NASA Astrophysics Data System (ADS)

    Wachulak, P. W.; Torrisi, A.; Bartnik, A.; Wegrzynski, L.; Fok, T.; Patron, Z.; Fiedorowicz, H.

    2016-12-01

    A compact size microscope based on nitrogen double stream gas puff target soft X-ray source, which emits radiation in water-window spectral range at the wavelength of λ = 2.88 nm is presented. The microscope employs ellipsoidal grazing incidence condenser mirror for sample illumination and silicon nitride Fresnel zone plate objective for object magnification and imaging. The microscope is capable of capturing water-window images of objects with 60 nm spatial resolution and exposure time as low as a few seconds. Details about the microscopy system as well as some examples of different applications from various fields of science, are presented and discussed.

  10. The beauty of resolution: The SN Ib factory NGC 2770 spatially resolved

    NASA Astrophysics Data System (ADS)

    Thöne, C. C.; Christensen, L.; Gorosabel, J.; de Ugarte Postigo, A.

    2015-02-01

    The late-type spiral NGC 2770 hosted 3 Type Ib supernovae (SNe) in or next to star-forming regions in its outer spiral arms. We study the properties of the SN sites and the galaxy at different spatial resolutions to infer propeties of the SN progenitors and the SF history of the galaxy. Several 3D techniques are used and, for the first time, we present images of metallicity, shocks and stellar population ages from OSIRIS/GTC imaging with tunable narrowband filters.

  11. A high spatial resolution Stokes polarimeter for motional Stark effect imaging

    SciTech Connect

    Thorman, Alex; Michael, Clive; Howard, John

    2013-06-15

    We describe an enhanced temporally switched interfero-polarimeter that has been successfully deployed for high spatial resolution motional Stark effect imaging on the KSTAR superconducting tokamak. The system utilizes dual switching ferroelectric liquid crystal waveplates to image the full Stokes vector of elliptically polarized and Doppler-shifted Stark-Zeeman Balmer-alpha emission from high energy neutral beams injected into the magnetized plasma. We describe the optical system and compare its performance against a Mueller matrix model that takes account of non-ideal performance of the switching ferro-electric liquid crystal waveplates and other polarizing components.

  12. Multi-resolution analysis of high density spatial and temporal cloud inhomogeneity fields from HOPE campaign

    NASA Astrophysics Data System (ADS)

    Lakshmi Madhavan, Bomidi; Deneke, Hartwig; Macke, Andreas

    2015-04-01

    Clouds are the most complex structures in both spatial and temporal scales of the Earth's atmosphere that effect the downward surface reaching fluxes and thus contribute to large uncertainty in the global radiation budget. Within the framework of High Definition Clouds and Precipitation for advancing Climate Prediction (HD(CP)2) Observational Prototype Experiment (HOPE), a high density network of 99 pyranometer stations was set up around Jülich, Germany (~ 10 × 12 km2 area) during April to July 2013 to capture the small-scale variability in cloud induced radiation fields at the surface. In this study, we perform multi-resolution analysis of the downward solar irradiance variability at the surface from the pyranometer network to investigate the dependence of temporal and spatial averaging scales on the variance and spatial correlation for different cloud regimes. Preliminary results indicate that correlation is strongly scale-dependent where as the variance is dependent on the length of averaging period. Implications of our findings will be useful for quantifying the effect of spatial collocation while validating the satellite inferred solar irradiance estimates, and also to explore the link between cloud structure and radiation. We will present the details of our analysis and results.

  13. Recent advances in the determination of a high spatial resolution geopotential model using chronometric geodesy

    NASA Astrophysics Data System (ADS)

    Lion, Guillaume; Guerlin, Christine; Bize, Sébastien; Wolf, Peter; Delva, Pacôme; Panet, Isabelle

    2016-04-01

    Current methods to determine the geopotential are mainly based on indirect approaches using gravimetric, gradiometric and topographic data. Satellite missions (GRACE, GOCE) have contributed significantly to improve the knowledge of the Earth's gravity field with a spatial resolution of about 90 km, but it is not enough to access, for example, to the geoid variation in hilly regions. While airborne and ground-based gravimeters provide the high resolution, the problem of these technics is that the accuracy is hampered by the heterogeneous coverage of gravity data (ground and offshore). Recent technological advances in atomic clocks are opening new perspectives in the determination of the geopotential. To date, the best of them reach a stability of 1.6×10-18 (NIST, RIKEN + Univ. Tokyo) in just 7 hours of integration, an accuracy of 2.0×10-18 (JILA). Using the relation of the relativistic gravitational redshift, this corresponds to a determination of geopotential differences at the 0.1 m²/s² level (or 1 cm in geoid height). In this context, the present work aims at evaluating the contribution of optical atomic clocks for the determination of the geopotential at high spatial resolution. To do that, we have studied a test area surrounding the Massif Central in the middle of southern of France. This region, consists in low mountain ranges and plateaus, is interesting because, the gravitational field strength varies greatly from place to place at high resolution due to the relief. Here, we present the synthetic tests methodology: generation of synthetic gravity and potential data, then estimation of the potential from these data using the least-squares collocation and assessment of the clocks contribution. We shall see how the coverage of the data points (realistic or not) can affect the results, and discuss how to quantify the trade-off between the noise level and the number of data points used.

  14. COMPLEX ORGANIC MOLECULES AT HIGH SPATIAL RESOLUTION TOWARD ORION-KL. II. KINEMATICS

    SciTech Connect

    Friedel, D. N.; Widicus Weaver, S. L. E-mail: susanna.widicus.weaver@emory.edu

    2012-08-01

    It has recently been suggested that chemical processing can shape the spatial distributions of complex molecules in the Orion-KL region and leads to the nitrogen-oxygen 'chemical differentiation' seen in previous observations of this source. Orion-KL is a very dynamic region, and it is therefore also possible that physical conditions can shape the molecular distributions in this source. Only high spatial resolution observations can provide the information needed to disentangle these effects. Here, we present millimeter imaging studies of Orion-KL at various beam sizes using the Combined Array for Research in Millimeter-wave Astronomy. We compare molecular images with high spatial resolution images that trace the temperature, density, and kinematics of the source in order to investigate the effects of physical conditions on molecular distributions. These observations were conducted at {lambda} = 3 mm and included transitions of ethyl cyanide [C{sub 2}H{sub 5}CN], methyl formate [HCOOCH{sub 3}], formic acid [HCOOH], acetone [(CH{sub 3}){sub 2}CO], SiO, and methanol [CH{sub 3}OH]. We find differences in the molecular distributions as a function of each of the aforementioned physical factors. These results indicate that acetone may be produced by chemical processing and is robust to large changes in physical conditions, while formic acid is readily destroyed by gas-phase processing in warm and dense regions. We also find that while the spatial distributions of ethyl cyanide and methyl formate are not distinct as is suggested by the concept of 'chemical differentiation', local physical conditions shape the small-scale emission structure for these species.

  15. Use of UAS Remote Sensing Data (AggieAir) to Estimate Crop ET at High Spatial Resolution

    NASA Astrophysics Data System (ADS)

    ELarab, M.; Torres, A.; Nieto Solana, H.; Kustas, W. P.; Song, L.; Alfieri, J. G.; Prueger, J. H.; McKee, L.; Anderson, M. C.; Jensen, A.; McKee, M.; Alsina, M. M.

    2015-12-01

    Estimation of the spatial distribution of evapotranspiration (ET) based on remotely sensed imagery has become useful for managing water in irrigated agricultural at various spatial scales. Currently, data acquired by conventional satellites (Landsat, ASTER, etc.) lack the needed spatial resolution to capture variability of interest to support evapotranspiration estimates. In this study, an unmanned aerial system (UAS), called AggieAirTM, was used to acquire high-resolution imagery in the visual, near infrared (0.15m resolution) and thermal infrared spectra (0.6m resolution). AggieAir flew over two study sites in Utah and Central Valley of California. The imagery was used as input to a surface energy balance model based on the Mapping Evapotranspiration with Internalized Calibration (METRIC) modeling approach. The discussion will highlight the ET estimation methodologies and the implications of having high resolution ET maps.

  16. Delineation of river bed-surface patches by clustering high-resolution spatial grain size data

    NASA Astrophysics Data System (ADS)

    Nelson, Peter A.; Bellugi, Dino; Dietrich, William E.

    2014-01-01

    The beds of gravel-bed rivers commonly display distinct sorting patterns, which at length scales of ~ 0.1 - 1 channel widths appear to form an organization of patches or facies. This paper explores alternatives to traditional visual facies mapping by investigating methods of patch delineation in which clustering analysis is applied to a high-resolution grid of spatial grain-size distributions (GSDs) collected during a flume experiment. Specifically, we examine four clustering techniques: 1) partitional clustering of grain-size distributions with the k-means algorithm (assigning each GSD to a type of patch based solely on its distribution characteristics), 2) spatially-constrained agglomerative clustering ("growing" patches by merging adjacent GSDs, thus generating a hierarchical structure of patchiness), 3) spectral clustering using Normalized Cuts (using the spatial distance between GSDs and the distribution characteristics to generate a matrix describing the similarity between all GSDs, and using the eigenvalues of this matrix to divide the bed into patches), and 4) fuzzy clustering with the fuzzy c-means algorithm (assigning each GSD a membership probability to every patch type). For each clustering method, we calculate metrics describing how well-separated cluster-average GSDs are and how patches are arranged in space. We use these metrics to compute optimal clustering parameters, to compare the clustering methods against each other, and to compare clustering results with patches mapped visually during the flume experiment.All clustering methods produced better-separated patch GSDs than the visually-delineated patches. Although they do not produce crisp cluster assignment, fuzzy algorithms provide useful information that can characterize the uncertainty of a location on the bed belonging to any particular type of patch, and they can be used to characterize zones of transition from one patch to another. The extent to which spatial information influences

  17. Effects of decreasing resolution on spectral and spatial information content in an agricultural area. [Pottawatmie study site, Iowa and Nebraska

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The effects of decreasing spatial resolution from 6 1/4 miles square to 50 miles square are described. The effects of increases in cell size is studied on; the mean and variance of spectral data; spatial trends; and vegetative index numbers. Information content changes on cadastral, vegetal, soil, water and physiographic information are summarized.

  18. Improving urban land use and land cover classification from high-spatial-resolution hyperspectral imagery using contextual information

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this paper, we propose approaches to improve the pixel-based support vector machine (SVM) classification for urban land use and land cover (LULC) mapping from airborne hyperspectral imagery with high spatial resolution. Class spatial neighborhood relationship is used to correct the misclassified ...

  19. Spatial Resolution Effects of Remote Sensing Informed Soil Nutrient Models Based on Landsat 8, RapidEye, WorldView-2 and GeoEye-1 Images

    NASA Astrophysics Data System (ADS)

    Xu, Y.; Grunwald, S.; Smith, S. E.; Abd-Elrahman, A.; Clingensmith, C. M.; Wani, S.

    2015-12-01

    Soil nutrient storage is essential and important to maintain food security and soil security in smallholder farm settings. The objective of this research was to analyze the spatial resolution effects of different remote sensing images on soil prediction models in Kothapally, India. We utilized Bayesian kriging (BK) to characterize the spatial pattern of total nitrogen (TN) and exchangeable potassium (Kex) in the topsoil (0-15 cm) at different spatial resolutions by incorporating spectral indices from Landsat 8 (30m), RapidEye (5m) and WorldView-2/GeoEye-1 images (2m). The band ratio of red to green, red to blue and green to blue, Crust Index and Atmospherically Resistant Vegetation Index from multiple images generally had high linear correlations with TN and Kex. The BK model of TN based on WorldView-2 and GeoEye-1 attained the highest model fit (R2=0.41) and lowest prediction error (RMSE=171.35 mg kg-1) compared with the BK models of TN based on Landsat 8 (R2=0.30; RMSE=182.26 mg kg-1) and RapidEye (R2=0.28; RMSE=183.52 mg kg-1). The BK model of Kex based on Landsat 8 had the highest model fit (R2=0.55) and the second lowest prediction error (RMSE=79.57 mg kg-1) compared with the BK models of Kex based on WorldView-2 and GeoEye-1 (R2=0.52; RMSE=79.42 mg kg-1) and RapidEye (R2=0.47; RMSE=83.91 mg kg-1). The lowest prediction fit and highest prediction error of soil TN and Kex models based on RapidEye suggest that the effect of fine spatial remote sensing spectral data inputs do not always lead to an increase of model fit. Soil maps based on WorldView-2 and GeoEye-1 have significant advantages in characterizing the variation of soil TN and Kex spatial pattern in smallholder farm settings compared with coarser maps. This research suggests that Digital Soil Mapping utilizing remote sensing spectral data from WorldView-2 and GeoEye-1 has high potential to be widely applied in smallholder farm settings and help smallholder farmers manage their soils and attain soil

  20. Large patch convolutional neural networks for the scene classification of high spatial resolution imagery

    NASA Astrophysics Data System (ADS)

    Zhong, Yanfei; Fei, Feng; Zhang, Liangpei

    2016-04-01

    The increase of the spatial resolution of remote-sensing sensors helps to capture the abundant details related to the semantics of surface objects. However, it is difficult for the popular object-oriented classification approaches to acquire higher level semantics from the high spatial resolution remote-sensing (HSR-RS) images, which is often referred to as the "semantic gap." Instead of designing sophisticated operators, convolutional neural networks (CNNs), a typical deep learning method, can automatically discover intrinsic feature descriptors from a large number of input images to bridge the semantic gap. Due to the small data volume of the available HSR-RS scene datasets, which is far away from that of the natural scene datasets, there have been few reports of CNN approaches for HSR-RS image scene classifications. We propose a practical CNN architecture for HSR-RS scene classification, named the large patch convolutional neural network (LPCNN). The large patch sampling is used to generate hundreds of possible scene patches for the feature learning, and a global average pooling layer is used to replace the fully connected network as the classifier, which can greatly reduce the total parameters. The experiments confirm that the proposed LPCNN can learn effective local features to form an effective representation for different land-use scenes, and can achieve a performance that is comparable to the state-of-the-art on public HSR-RS scene datasets.

  1. Image quality phantom and parameters for high spatial resolution small-animal SPECT

    NASA Astrophysics Data System (ADS)

    Visser, Eric P.; Harteveld, Anita A.; Meeuwis, Antoi P. W.; Disselhorst, Jonathan A.; Beekman, Freek J.; Oyen, Wim J. G.; Boerman, Otto C.

    2011-10-01

    At present, generally accepted standards to characterize small-animal single photon emission tomographs (SPECT) do not exist. Whereas for small-animal positron emission tomography (PET), the NEMA NU 4-2008 guidelines are available, such standards are still lacking for small-animal SPECT. More specifically, a dedicated image quality (IQ) phantom and corresponding IQ parameters are absent. The structures of the existing PET IQ phantom are too large to fully characterize the sub-millimeter spatial resolution of modern multi-pinhole SPECT scanners, and its diameter will not fit into all scanners when operating in high spatial resolution mode. We therefore designed and constructed an adapted IQ phantom with smaller internal structures and external diameter, and a facility to guarantee complete filling of the smallest rods. The associated IQ parameters were adapted from NEMA NU 4. An additional parameter, effective whole-body sensitivity, was defined since this was considered relevant in view of the variable size of the field of view and the use of multiple bed positions as encountered in modern small-animal SPECT scanners. The usefulness of the phantom was demonstrated for 99mTc in a USPECT-II scanner operated in whole-body scanning mode using a multi-pinhole mouse collimator with 0.6 mm pinhole diameter.

  2. The design of an animal PET: flexible geometry for achieving optimal spatial resolution or high sensitivity.

    PubMed

    Weber, S; Terstegge, A; Herzog, H; Reinartz, R; Reinhart, P; Rongen, F; Müller-Gärtner, H W; Halling, H

    1997-10-01

    We present the design of a positron emission tomograph (PET) with flexible geometry dedicated to in vivo studies of small animals (TierPET). The scanner uses two pairs of detectors. Each detector consists of 400 small individual yttrium aluminum perovskite (YAP) scintillator crystals of dimensions 2 x 2 x 15 mm3, optically isolated and glued together, which are coupled to position-sensitive photomultiplier tubes (PSPMT's). The detector modules can be moved in a radial direction so that the detector-to-detector spacing can be varied. Special hardware has been built for coincidence detection, position detection, and real-time data acquisition, which is performed by a PC. The single-event data are transferred to workstations where the radioactivity distribution is reconstructed. The dimensions of the crystals and the detector layout are the result of extensive simulations which are described in this report, taking into account sensitivity, spatial resolution and additional parameters like parallax error or scatter effects. For the three-dimensional (3-D) reconstruction a genuine 3-D expectation-maximization (EM)-algorithm which can include the characteristics of the detector system has been implemented. The reconstruction software is flexible and matches the different detector configurations. The main advantage of the proposed animal PET scanner is its high flexibility, allowing the realization of various detector-system configurations. By changing the detector-to-detector spacing, the system is capable of either providing good spatial resolution or high sensitivity for dynamic studies of pharmacokinetics.

  3. High spatial resolution two-dimensional position sensitive detector for the performance of coincidence experiments

    SciTech Connect

    Ceolin, D.; Chaplier, G.; Lemonnier, M.; Garcia, G.A.; Miron, C.; Nahon, L.; Simon, M.; Leclercq, N.; Morin, P.

    2005-04-01

    A position sensitive detector (PSD) adapted to the technical and mechanical specifications of our angle and energy resolved electron-ion(s) coincidence experiments is described in this article. The device, whose principle is very similar to the one detailed by J. H. D. Eland [Meas. Sci. Technol. 5, 1501 (1994)], is composed by a set of microchannel plates and a delay line anode. The originality comes from the addition in front of the encoding surface of a ceramic disk covered by a resistive surface. The capacitive coupling between the anode and the resistive plane has the double advantage of eliminating the spatial modulations due to the lattice of the anode and also of sensitizing a greater number of electrodes, increasing thus considerably the accuracy of the position measurements. The tests carried out with a time to digital conversion module of 250 ps resolution showed that a spatial resolution better than 50 {mu}m and a dead time of 160 ns can be achieved. Typical images obtained with the help of the EPICEA and DELICIOUS coincidence setups are also shown.

  4. Overview of LBTI: a multipurpose facility for high spatial resolution observations

    NASA Astrophysics Data System (ADS)

    Hinz, P. M.; Defrère, D.; Skemer, A.; Bailey, V.; Stone, J.; Spalding, E.; Vaz, A.; Pinna, E.; Puglisi, A.; Esposito, S.; Montoya, M.; Downey, E.; Leisenring, J.; Durney, O.; Hoffmann, W.; Hill, J.; Millan-Gabet, R.; Mennesson, B.; Danchi, W.; Morzinski, K.; Grenz, P.; Skrutskie, M.; Ertel, S.

    2016-08-01

    The Large Binocular Telescope Interferometer (LBTI) is a high spatial resolution instrument developed for coherent imaging and nulling interferometry using the 14.4 m baseline of the 2×8.4 m LBT. The unique telescope design, comprising of the dual apertures on a common elevation-azimuth mount, enables a broad use of observing modes. The full system is comprised of dual adaptive optics systems, a near-infrared phasing camera, a 1-5 μm camera (called LMIRCam), and an 8-13 μm camera (called NOMIC). The key program for LBTI is the Hunt for Observable Signatures of Terrestrial planetary Systems (HOSTS), a survey using nulling interferometry to constrain the typical brightness from exozodiacal dust around nearby stars. Additional observations focus on the detection and characterization of giant planets in the thermal infrared, high spatial resolution imaging of complex scenes such as Jupiter's moon, Io, planets forming in transition disks, and the structure of active Galactic Nuclei (AGN). Several instrumental upgrades are currently underway to improve and expand the capabilities of LBTI. These include: Improving the performance and limiting magnitude of the parallel adaptive optics systems; quadrupling the field of view of LMIRcam (increasing to 20"x20"); adding an integral field spectrometry mode; and implementing a new algorithm for path length correction that accounts for dispersion due to atmospheric water vapor. We present the current architecture and performance of LBTI, as well as an overview of the upgrades.

  5. Mediterranean Land Use and Land Cover Classification Assessment Using High Spatial Resolution Data

    NASA Astrophysics Data System (ADS)

    Elhag, Mohamed; Boteva, Silvena

    2016-10-01

    Landscape fragmentation is noticeably practiced in Mediterranean regions and imposes substantial complications in several satellite image classification methods. To some extent, high spatial resolution data were able to overcome such complications. For better classification performances in Land Use Land Cover (LULC) mapping, the current research adopts different classification methods comparison for LULC mapping using Sentinel-2 satellite as a source of high spatial resolution. Both of pixel-based and an object-based classification algorithms were assessed; the pixel-based approach employs Maximum Likelihood (ML), Artificial Neural Network (ANN) algorithms, Support Vector Machine (SVM), and, the object-based classification uses the Nearest Neighbour (NN) classifier. Stratified Masking Process (SMP) that integrates a ranking process within the classes based on spectral fluctuation of the sum of the training and testing sites was implemented. An analysis of the overall and individual accuracy of the classification results of all four methods reveals that the SVM classifier was the most efficient overall by distinguishing most of the classes with the highest accuracy. NN succeeded to deal with artificial surface classes in general while agriculture area classes, and forest and semi-natural area classes were segregated successfully with SVM. Furthermore, a comparative analysis indicates that the conventional classification method yielded better accuracy results than the SMP method overall with both classifiers used, ML and SVM.

  6. Exact two-dimensional zonal wavefront reconstruction with high spatial resolution in lateral shearing interferometry

    NASA Astrophysics Data System (ADS)

    Dai, Fengzhao; Li, Jie; Wang, Xiangzhao; Bu, Yang

    2016-05-01

    A novel zonal method is proposed for exact discrete reconstruction of a two-dimensional wavefront with high spatial resolution for lateral shearing interferometry. Four difference wavefronts measured in the x and y shear directions are required. Each of the two shear directions is measured twice with different shear amounts. The shear amounts of the second measurements of the x and y directions are Sx+1 pixels and Sy+1 pixels, where Sx pixels and Sy pixels are the shear amounts of the first measurements in the x and y directions, respectively. The shear amount in each direction can be chosen freely, provided that it is below a maximum value determined by the pupil shape and the number of samples N in that direction; thus, the choices are not limited by the more stringent condition required by previous methods, namely, that the shear amounts must be divisors of N. This method can exactly reconstruct any wavefront at evaluation points up to an arbitrary constant if the data is noiseless, and high spatial resolution can be achieved even with large shear amounts. The method is applicable not only to square pupils, but also to general pupil shapes if a sufficient number of Gerchberg iterations are employed. In this study, the validity and capability of the method were confirmed by numerical experiments. In addition, the experiments demonstrated that the method is stable with respect to noise in the difference wavefronts.

  7. Enhanced Sensitivity for High Spatial Resolution Lipid Analysis by Negative Ion Mode MALDI Imaging Mass Spectrometry

    PubMed Central

    Angel, Peggi M.; Spraggins, Jeffrey M.; Baldwin, H. Scott; Caprioli, Richard

    2012-01-01

    We have achieved enhanced lipid imaging to a ~10 μm spatial resolution using negative ion mode matrix assisted laser desorption ionization (MALDI) imaging mass spectrometry, sublimation of 2,5-dihydroxybenzoic acid as the MALDI matrix and a sample preparation protocol that uses aqueous washes. We report on the effect of treating tissue sections by washing with volatile buffers at different pHs prior to negative ion mode lipid imaging. The results show that washing with ammonium formate, pH 6.4, or ammonium acetate, pH 6.7, significantly increases signal intensity and number of analytes recorded from adult mouse brain tissue sections. Major lipid species measured were glycerophosphoinositols, glycerophosphates, glycerolphosphoglycerols, glycerophosphoethanolamines, glycerophospho-serines, sulfatides, and gangliosides. Ion images from adult mouse brain sections that compare washed and unwashed sections are presented and show up to fivefold increases in ion intensity for washed tissue. The sample preparation protocol has been found to be applicable across numerous organ types and significantly expands the number of lipid species detectable by imaging mass spectrometry at high spatial resolution. PMID:22243218

  8. The Galactic Centre at infrared wavelengths: towards the highest spatial resolution

    NASA Astrophysics Data System (ADS)

    Clénet, Yann; Rouan, Daniel; Léna, Pierre; Gendron, Eric; Lacombe, François

    2007-01-01

    We now know that our Galaxy harbors at its centre a supermassive 3.6×10M black hole. This result came after more than 2 decades of infrared studies of the Galactic Centre and important instrumental developments in infrared detectors and in high spatial resolution techniques. Adaptive optics, which allows diffraction-limited infrared observations and enhanced sensitivity, was actually the major breakthrough in this respect. We introduce in the first section of this article what was our knowledge of the Galactic Centre before the advent of adaptive optics. In the second section, after a reminder of the first adaptive optics observations of this region, we highlight the specificities of Galactic Centre adaptive optics observations. In the third and fourth sections, we present the major results obtained from adaptive optics observations of the Galactic Centre: the case of the supermassive black hole and the paradox of youth. In the fifth section, we introduce two main future facilities that will provide even higher spatial resolutions, Gravity—a second generation VLTI instrument—and Extremely Large Telescopes, and the improvements that we expect with these new instruments in our knowledge of the Galactic Centre region. We conclude in the last section. To cite this article: Y. Clénet et al., C. R. Physique 8 (2007).

  9. Ship detection in high spatial resolution remote sensing image based on improved sea-land segmentation

    NASA Astrophysics Data System (ADS)

    Li, Na; Zhang, Qiaochu; Zhao, Huijie; Dong, Chao; Meng, Lingjie

    2016-10-01

    A new method to detect ship target at sea based on improved segmentation algorithm is proposed in this paper, in which the improved segmentation algorithm is applied to precisely segment land and sea. Firstly, mean value is replaced instead of average variance value in Otsu method in order to improve the adaptability. Secondly, Mean Shift algorithm is performed to separate the original high spatial resolution remote sensing image into several homogeneous regions. At last, the final sea-land segmentation result can be located combined with the regions in preliminary sea-land segmentation result. The proposed segmentation algorithm performs well on the segment between water and land with affluent texture features and background noise, and produces a result that can be well used in shape and context analyses. Ships are detected with settled shape characteristics, including width, length and its compactness. Mean Shift algorithm can smooth the background noise, utilize the wave's texture features and helps highlight offshore ships. Mean shift algorithm is combined with improved Otsu threshold method in order to maximizes their advantages. Experimental results show that the improved sea-land segmentation algorithm on high spatial resolution remote sensing image with complex texture and background noise performs well in sea-land segmentation, not only enhances the accuracy of land and sea boarder, but also preserves detail characteristic of ships. Compared with traditional methods, this method can achieve accuracy over 90 percent. Experiments on Worldview images show the superior, robustness and precision of the proposed method.

  10. Investigating the spatial resolution characteristics of a monolithic scintillation detector for pet

    NASA Astrophysics Data System (ADS)

    Kaul, Madhuri

    A key component of a PET system is the detection of the coincident gamma rays associated with positron decay. For most applications, the modern commercial scanners are limited by sensitivity. Although essentially all current commercial PET systems use pixelated designs, there has been a resurgence of the use of continuous crystal designs, particularly for preclinical scanner designs. There has also been a move away from the traditional Anger logic style of position decoding toward implementation of statistical estimation algorithms to locate an event in two or three dimensions. Continuous crystals offer advantages of improved position sampling, reduced dead space, and the ability to calibrate light-spread to measure the depth-of-interaction (DOI) to reduce parallax errors. The aim of this thesis is to study the factors that affect the performance of continuous crystals in an attempt to achieve the best trade-off between light-output, stopping power, light-spread, and sampling, while maintaining high sensitivity and good spatial and energy resolution. The methodology includes a combination of Monte Carlo simulations and experiments with continuous LYSO crystals of various thicknesses, with particular focus on a 25-mm thick crystal, which is on par with the pixels used in clinical scanners. Non-invasive techniques involving the use of sandpaper, paints, and films are used to maximize the light extraction from the crystal, and to reduce the edge effects. The effect of DOI on the light spread is investigated and a DOI calibration technique is implemented, which allows for a 2-level depth separation of events. Lastly, a more invasive technique of cutting slots into the crystal surface is investigated to control the light spread within the crystal to improve the spatial resolution. Combining 8-mm deep slots with selective darkening of the crystal sides we improve the spatial resolution of the 25-mm thick LYSO crystal from 5.3 mm to 3.5 mm (FWHM) using Maximum Likelihood

  11. Experimental Estimation of CLASP Spatial Resolution: Results of the Instrument's Optical Alignment

    NASA Technical Reports Server (NTRS)

    Giono, Gabrial; Katsukawa, Yukio; Ishikawa, Ryoko; Narukage, Noriyuki; Bando, Takamasa; Kano, Ryohei; Suematsu, Yoshinori; Kobayashi, Ken; Winebarger, Amy; Auchere, Frederic

    2015-01-01

    The Chromospheric Lyman-Alpha SpectroPolarimeter (CLASP) is a sounding-rocket experiment currently being built at the National Astronomical Observatory of Japan. This instrument aims to probe for the first time the magnetic field strength and orientation in the solar upper-chromosphere and lower-transition region. CLASP will measure the polarization of the Lyman-Alpha line (121.6nm) with an unprecedented accuracy, and derive the magnetic field information through the Hanle effect. Although polarization accuracy and spectral resolution are crucial for the Hanle effect detection, spatial resolution is also important to get reliable context image via the slit-jaw camera. As spatial resolution is directly related with the alignment of optics, it is also a good way of ensuring the alignment of the instrument to meet the scientific requirement. This poster will detail the experiments carried out to align CLASP's optics (telescope and spectrograph), as both part of the instrument were aligned separately. The telescope was aligned in double-pass mode, and a laser interferometer (He-Ne) was used to measure the telescope's wavefront error (WFE). The secondary mirror tilt and position were adjusted to remove comas and defocus aberrations from the WFE. Effect of gravity on the WFE measurement was estimated and the final WFE derived in zero-g condition for CLASP telescope will be presented. In addition, an estimation of the spot shape and size derived from the final WFE will also be shown. The spectrograph was aligned with a custom procedure: because Ly-??light is absorbed by air, the spectrograph's off-axis parabolic mirrors were aligned in Visible Light (VL) using a custom-made VL grating instead of the flight Ly-? grating. Results of the alignment in Visible Light will be shown and the spot shape recorded with CCDs at various position along the slit will be displayed. Results from both alignment experiment will be compared to the design requirement, and will be combined in

  12. On the effects of spatial and spectral resolution on spatial-spectral target detection in SHARE 2012 and Bobcat 2013 hyperspectral imagery

    NASA Astrophysics Data System (ADS)

    Kaufman, Jason R.; Eismann, Michael T.; Ratliff, Bradley M.; Celenk, Mehmet

    2015-05-01

    Previous work with the Bobcat 2013 data set1 showed that spatial-spectral feature extraction on visible to near infrared (VNIR) hyperspectral imagery (HSI) led to better target detection and discrimination than spectral-only techniques; however, the aforementioned study could not consider the possible benefits of the shortwaveinfrared (SWIR) portion of the spectrum due to data limitations. In addition, the spatial resolution of the Bobcat 2013 imagery was fixed at 8cm without exploring lower spatial resolutions. In this work, we evaluate the tradeoffs in spatial and spectral resolution and spectral coverage between for a common set of targets in terms of their effects on spatial-spectral target detection performance. We show that for our spatial-spectral target detection scheme and data sets, the adaptive cosine estimator (ACE) applied to S-DAISY and pseudo Zernike moment (PZM) spatial-spectral features can distinguish between targets better than ACE applied only to the spectral imagery. In particular, S-DAISY operating on bands uniformly selected from the SWIR portion of ProSpecTIR-VS sensor imagery in conjunction with bands closely corresponding to the Airborne Real-time Cueing Hyperspectral Reconnaissance (ARCHER) sensor's VNIR bands (80 total) led to the best overall average performance in both target detection and discrimination.

  13. Predicting spatial variations of tree species richness in tropical forests from high-resolution remote sensing.

    PubMed

    Fricker, Geoffrey A; Wolf, Jeffrey A; Saatchi, Sassan S; Gillespie, Thomas W

    2015-10-01

    There is an increasing interest in identifying theories, empirical data sets, and remote-sensing metrics that can quantify tropical forest alpha diversity at a landscape scale. Quantifying patterns of tree species richness in the field is time consuming, especially in regions with over 100 tree species/ha. We examine species richness in a 50-ha plot in Barro Colorado Island in Panama and test if biophysical measurements of canopy reflectance from high-resolution satellite imagery and detailed vertical forest structure and topography from light detection and ranging (lidar) are associated with species richness across four tree size classes (>1, 1-10, >10, and >20 cm dbh) and three spatial scales (1, 0.25, and 0.04 ha). We use the 2010 tree inventory, including 204,757 individuals belonging to 301 species of freestanding woody plants or 166 ± 1.5 species/ha (mean ± SE), to compare with remote-sensing data. All remote-sensing metrics became less correlated with species richness as spatial resolution decreased from 1.0 ha to 0.04 ha and tree size increased from 1 cm to 20 cm dbh. When all stems with dbh > 1 cm in 1-ha plots were compared to remote-sensing metrics, standard deviation in canopy reflectance explained 13% of the variance in species richness. The standard deviations of canopy height and the topographic wetness index (TWI) derived from lidar were the best metrics to explain the spatial variance in species richness (15% and 24%, respectively). Using multiple regression models, we made predictions of species richness across Barro Colorado Island (BCI) at the 1-ha spatial scale for different tree size classes. We predicted variation in tree species richness among all plants (adjusted r² = 0.35) and trees with dbh > 10 cm (adjusted r² = 0.25). However, the best model results were for understory trees and shrubs (dbh 1-10 cm) (adjusted r² = 0.52) that comprise the majority of species richness in tropical forests. Our results indicate that high-resolution

  14. A sensitivity analysis using different spatial resolution terrain models and flood inundation models

    NASA Astrophysics Data System (ADS)

    Papaioannou, George; Aronica, Giuseppe T.; Loukas, Athanasios; Vasiliades, Lampros

    2014-05-01

    The impact of terrain spatial resolution and accuracy on the hydraulic flood modeling can pervade the water depth and the flood extent accuracy. Another significant factor that can affect the hydraulic flood modeling outputs is the selection of the hydrodynamic models (1D,2D,1D/2D). Human mortality, ravaged infrastructures and other damages can be derived by extreme flash flood events that can be prevailed in lowlands at suburban and urban areas. These incidents make the necessity of a detailed description of the terrain and the use of advanced hydraulic models essential for the accurate spatial distribution of the flooded areas. In this study, a sensitivity analysis undertaken using different spatial resolution of Digital Elevation Models (DEMs) and several hydraulic modeling approaches (1D, 2D, 1D/2D) including their effect on the results of river flow modeling and mapping of floodplain. Three digital terrain models (DTMs) were generated from the different elevation variation sources: Terrestrial Laser Scanning (TLS) point cloud data, classic land surveying and digitization of elevation contours from 1:5000 scale topographic maps. HEC-RAS and MIKE 11 are the 1-dimensional hydraulic models that are used. MLFP-2D (Aronica et al., 1998) and MIKE 21 are the 2-dimensional hydraulic models. The last case consist of the integration of MIKE 11/MIKE 21 where 1D-MIKE 11 and 2D-MIKE 21 hydraulic models are coupled through the MIKE FLOOD platform. The validation process of water depths and flood extent is achieved through historical flood records. Observed flood inundation areas in terms of simulated maximum water depth and flood extent were used for the validity of each application result. The methodology has been applied in the suburban section of Xerias river at Volos-Greece. Each dataset has been used to create a flood inundation map for different cross-section configurations using different hydraulic models. The comparison of resulting flood inundation maps indicates

  15. Spatial Structure of a Braided River: Metric Resolution Hydrodynamic Modeling Reveals What SWOT Might See

    NASA Astrophysics Data System (ADS)

    Schubert, J.; Sanders, B. F.; Andreadis, K.

    2013-12-01

    The Surface Water and Ocean Topography (SWOT) mission, currently under study by NASA (National Aeronautics and Space Administration) and CNES (Centre National d'Etudes Spatiales), is designed to provide global spatial measurements of surface water properties at resolutions better than 10 m and with centimetric accuracy. The data produced by SWOT will include irregularly spaced point clouds of the water surface height, with point spacings from roughly 2-50 m depending on a point's location within SWOT's swath. This could offer unprecedented insight into the spatial structure of rivers. Features that may be resolved include backwater profiles behind dams, drawdown profiles, uniform flow sections, critical flow sections, and even riffle-pool flow structures. In the event that SWOT scans a river during a major flood, it becomes possible to delineate the limits of the flood as well as the spatial structure of the water surface elevation, yielding insight into the dynamic interaction of channels and flood plains. The Platte River in Nebraska, USA, is a braided river with a width and slope of approximately 100 m and 100 cm/km, respectively. A 1 m resolution Digital Terrain Model (DTM) of the river basin, based on airborne lidar collected during low-flow conditions, was used to parameterize a two-dimensional, variable resolution, unstructured grid, hydrodynamic model that uses 3 m resolution triangles in low flow channels and 10 m resolution triangles in the floodplain. Use of a fine resolution mesh guarantees that local variability in topography is resolved, and after applying the hydrodynamic model, the effects of topographic variability are expressed as variability in the water surface height, depth-averaged velocity and flow depth. Flow is modeled over a reach length of 10 km for multi-day durations to capture both frequent (diurnal variations associated with regulated flow) and infrequent (extreme flooding) flow phenomena. Model outputs reveal a number of interesting

  16. Statistical model based iterative reconstruction (MBIR) in clinical CT systems. Part II. Experimental assessment of spatial resolution performance

    SciTech Connect

    Li, Ke; Chen, Guang-Hong; Garrett, John; Ge, Yongshuai

    2014-07-15

    Purpose: Statistical model based iterative reconstruction (MBIR) methods have been introduced to clinical CT systems and are being used in some clinical diagnostic applications. The purpose of this paper is to experimentally assess the unique spatial resolution characteristics of this nonlinear reconstruction method and identify its potential impact on the detectabilities and the associated radiation dose levels for specific imaging tasks. Methods: The thoracic section of a pediatric phantom was repeatedly scanned 50 or 100 times using a 64-slice clinical CT scanner at four different dose levels [CTDI{sub vol} =4, 8, 12, 16 (mGy)]. Both filtered backprojection (FBP) and MBIR (Veo{sup ®}, GE Healthcare, Waukesha, WI) were used for image reconstruction and results were compared with one another. Eight test objects in the phantom with contrast levels ranging from 13 to 1710 HU were used to assess spatial resolution. The axial spatial resolution was quantified with the point spread function (PSF), while the z resolution was quantified with the slice sensitivity profile. Both were measured locally on the test objects and in the image domain. The dependence of spatial resolution on contrast and dose levels was studied. The study also features a systematic investigation of the potential trade-off between spatial resolution and locally defined noise and their joint impact on the overall image quality, which was quantified by the image domain-based channelized Hotelling observer (CHO) detectability index d′. Results: (1) The axial spatial resolution of MBIR depends on both radiation dose level and image contrast level, whereas it is supposedly independent of these two factors in FBP. The axial spatial resolution of MBIR always improved with an increasing radiation dose level and/or contrast level. (2) The axial spatial resolution of MBIR became equivalent to that of FBP at some transitional contrast level, above which MBIR demonstrated superior spatial resolution than

  17. Determination of a high spatial resolution geopotential model using atomic clock comparisons

    NASA Astrophysics Data System (ADS)

    Lion, G.; Panet, I.; Wolf, P.; Guerlin, C.; Bize, S.; Delva, P.

    2017-01-01

    Recent technological advances in optical atomic clocks are opening new perspectives for the direct determination of geopotential differences between any two points at a centimeter-level accuracy in geoid height. However, so far detailed quantitative estimates of the possible improvement in geoid determination when adding such clock measurements to existing data are lacking. We present a first step in that direction with the aim and hope of triggering further work and efforts in this emerging field of chronometric geodesy and geophysics. We specifically focus on evaluating the contribution of this new kind of direct measurements in determining the geopotential at high spatial resolution (≈ 10 km). We studied two test areas, both located in France and corresponding to a middle (Massif Central) and high (Alps) mountainous terrain. These regions are interesting because the gravitational field strength varies greatly from place to place at high spatial resolution due to the complex topography. Our method consists in first generating a synthetic high-resolution geopotential map, then drawing synthetic measurement data (gravimetry and clock data) from it, and finally reconstructing the geopotential map from that data using least squares collocation. The quality of the reconstructed map is then assessed by comparing it to the original one used to generate the data. We show that adding only a few clock data points (less than 1% of the gravimetry data) reduces the bias significantly and improves the standard deviation by a factor 3. The effect of the data coverage and data quality on the results is investigated, and the trade-off between the measurement noise level and the number of data points is discussed.

  18. Angular versus spatial resolution trade-offs for diffusion imaging under time constraints.

    PubMed

    Zhan, Liang; Jahanshad, Neda; Ennis, Daniel B; Jin, Yan; Bernstein, Matthew A; Borowski, Bret J; Jack, Clifford R; Toga, Arthur W; Leow, Alex D; Thompson, Paul M

    2013-10-01

    Diffusion weighted magnetic resonance imaging (DW-MRI) are now widely used to assess brain integrity in clinical populations. The growing interest in mapping brain connectivity has made it vital to consider what scanning parameters affect the accuracy, stability, and signal-to-noise of diffusion measures. Trade-offs between scan parameters can only be optimized if their effects on various commonly-derived measures are better understood. To explore angular versus spatial resolution trade-offs in standard tensor-derived measures, and in measures that use the full angular information in diffusion signal, we scanned eight subjects twice, 2 weeks apart, using three protocols that took the same amount of time (7 min). Scans with 3.0, 2.7, 2.5 mm isotropic voxels were collected using 48, 41, and 37 diffusion-sensitized gradients to equalize scan times. A specially designed DTI phantom was also scanned with the same protocols, and different b-values. We assessed how several diffusion measures including fractional anisotropy (FA), mean diffusivity (MD), and the full 3D orientation distribution function (ODF) depended on the spatial/angular resolution and the SNR. We also created maps of stability over time in the FA, MD, ODF, skeleton FA of 14 TBSS-derived ROIs, and an information uncertainty index derived from the tensor distribution function, which models the signal using a continuous mixture of tensors. In scans of the same duration, higher angular resolution and larger voxels boosted SNR and improved stability over time. The increased partial voluming in large voxels also led to bias in estimating FA, but this was partially addressed by using "beyond-tensor" models of diffusion.

  19. Spatial Scaling of Snow Observations and Microwave Emission Modeling During CLPX and Appropriate Satellite Sensor Resolution

    NASA Astrophysics Data System (ADS)

    Kim, E. J.; Tedesco, M.

    2005-12-01

    Accurate estimates of snow water equivalent and other properties play an important role in weather, natural hazard, and hydrological forecasting and climate modeling over a range of scales in space and time. Remote sensing-derived estimates have traditionally been of the 'snapshot' type, but techniques involving models with assimilation are also being explored. In both cases, forward emission models are useful to understand the observed passive microwave signatures and developing retrieval algorithms. However, mismatches between passive microwave sensor resolutions and the scales of processes controlling subpixel heterogeneity can affect the accuracy of the estimates. Improving the spatial resolution of new passive microwave satellite sensors is a major desire in order to (literally) resolve such subpixel heterogeneity, but limited spacecraft and mission resources impose severe constraints and tradeoffs. In order to maximize science return while mitigating risk for a satellite concept, it is essential to understand the scaling behavior of snow in terms of what the sensor sees (brightness temperature) as well as in terms of the actual variability of snow. NASA's Cold Land Processes Experiment-1 (CLPX-1: Colorado, 2002 and 2003) was designed to provide data to measure these scaling behaviors for varying snow conditions in areas with forested, alpine, and meadow/pasture land cover. We will use observations from CLPX-1 ground, airborne, and satellite passive microwave sensors to examine and evaluate the scaling behavior of observed and modeled brightness temperatures and observed and retrieved snow parameters across scales from meters to 10's of kilometers. The conclusions will provide direct examples of the appropriate spatial sampling scales of new sensors for snow remote sensing. The analyses will also illustrate the effects and spatial scales of the underlying phenomena (e.g., land cover) that control subpixel heterogeneity.

  20. Agro-hydrology and multi temporal high resolution remote sensing: toward an explicit spatial processes calibration

    NASA Astrophysics Data System (ADS)

    Ferrant, S.; Gascoin, S.; Veloso, A.; Salmon-Monviola, J.; Claverie, M.; Rivalland, V.; Dedieu, G.; Demarez, V.; Ceschia, E.; Probst, J.-L.; Durand, P.; Bustillo, V.

    2014-07-01

    The recent and forthcoming availability of high resolution satellite image series offers new opportunities in agro-hydrological research and modeling. We investigated the perspective offered by improving the crop growth dynamic simulation using the distributed agro-hydrological model, Topography based Nitrogen transfer and Transformation (TNT2), using LAI map series derived from 105 Formosat-2 (F2) images during the period 2006-2010. The TNT2 model (Beaujouan et al., 2002), calibrated with discharge and in-stream nitrate fluxes for the period 1985-2001, was tested on the 2006-2010 dataset (climate, land use, agricultural practices, discharge and nitrate fluxes at the outlet). A priori agricultural practices obtained from an extensive field survey such as seeding date, crop cultivar, and fertilizer amount were used as input variables. Continuous values of LAI as a function of cumulative daily temperature were obtained at the crop field level by fitting a double logistic equation against discrete satellite-derived LAI. Model predictions of LAI dynamics with a priori input parameters showed an temporal shift with observed LAI profiles irregularly distributed in space (between field crops) and time (between years). By re-setting seeding date at the crop field level, we proposed an optimization method to minimize efficiently this temporal shift and better fit the crop growth against the spatial observations as well as crop production. This optimization of simulated LAI has a negligible impact on water budget at the catchment scale (1 mm yr-1 in average) but a noticeable impact on in-stream nitrogen fluxes (around 12%) which is of interest considering nitrate stream contamination issues and TNT2 model objectives. This study demonstrates the contribution of forthcoming high spatial and temporal resolution products of Sentinel-2 satellite mission in improving agro-hydrological modeling by constraining the spatial representation of crop productivity.

  1. Spatial Scaling of Snow Observations and Microwave Emission Modeling During CLPX and Appropriate Satellite Sensor Resolution

    NASA Technical Reports Server (NTRS)

    Kim, Edward J.; Tedesco, Marco

    2005-01-01

    Accurate estimates of snow water equivalent and other properties play an important role in weather, natural hazard, and hydrological forecasting and climate modeling over a range of scales in space and time. Remote sensing-derived estimates have traditionally been of the "snapshot" type, but techniques involving models with assimilation are also being explored. In both cases, forward emission models are useful to understand the observed passive microwave signatures and developing retrieval algorithms. However, mismatches between passive microwave sensor resolutions and the scales of processes controlling subpixel heterogeneity can affect the accuracy of the estimates. Improving the spatial resolution of new passive microwave satellite sensors is a major desire in order to (literally) resolve such subpixel heterogeneity, but limited spacecraft and mission resources impose severe constraints and tradeoffs. In order to maximize science return while mitigating risk for a satellite concept, it is essential to understand the scaling behavior of snow in terms of what the sensor sees (brightness temperature) as well as in terms of the actual variability of snow. NASA's Cold Land Processes Experiment-1 (CLPX-1: Colorado, 2002 and 2003) was designed to provide data to measure these scaling behaviors for varying snow conditions in areas with forested, alpine, and meadow/pasture land cover. We will use observations from CLPX-1 ground, airborne, and satellite passive microwave sensors to examine and evaluate the scaling behavior of observed and modeled brightness temperatures and observed and retrieved snow parameters across scales from meters to 10's of kilometers. The conclusions will provide direct examples of the appropriate spatial sampling scales of new sensors for snow remote sensing. The analyses will also illustrate the effects and spatial scales of the underlying phenomena (e.g., land cover) that control subpixel heterogeneity.

  2. Estimating babassu palm density using automatic palm tree detection with very high spatial resolution satellite images.

    PubMed

    Dos Santos, Alessio Moreira; Mitja, Danielle; Delaître, Eric; Demagistri, Laurent; de Souza Miranda, Izildinha; Libourel, Thérèse; Petit, Michel

    2017-05-15

    High spatial resolution images as well as image processing and object detection algorithms are recent technologies that aid the study of biodiversity and commercial plantations of forest species. This paper seeks to contribute knowledge regarding the use of these technologies by studying randomly dispersed native palm tree. Here, we analyze the automatic detection of large circular crown (LCC) palm tree using a high spatial resolution panchromatic GeoEye image (0.50 m) taken on the area of a community of small agricultural farms in the Brazilian Amazon. We also propose auxiliary methods to estimate the density of the LCC palm tree Attalea speciosa (babassu) based on the detection results. We used the "Compt-palm" algorithm based on the detection of palm tree shadows in open areas via mathematical morphology techniques and the spatial information was validated using field methods (i.e. structural census and georeferencing). The algorithm recognized individuals in life stages 5 and 6, and the extraction percentage, branching factor and quality percentage factors were used to evaluate its performance. A principal components analysis showed that the structure of the studied species differs from other species. Approximately 96% of the babassu individuals in stage 6 were detected. These individuals had significantly smaller stipes than the undetected ones. In turn, 60% of the stage 5 babassu individuals were detected, showing significantly a different total height and a different number of leaves from the undetected ones. Our calculations regarding resource availability indicate that 6870 ha contained 25,015 adult babassu palm tree, with an annual potential productivity of 27.4 t of almond oil. The detection of LCC palm tree and the implementation of auxiliary field methods to estimate babassu density is an important first step to monitor this industry resource that is extremely important to the Brazilian economy and thousands of families over a large scale.

  3. Development of a high spatial resolution neutron imaging system and performance evaluation

    NASA Astrophysics Data System (ADS)

    Cao, Lei

    The combination of a scintillation screen and a charged coupled device (CCD) camera is a digitized neutron imaging technology that has been widely employed for research and industry application. The maximum of spatial resolution of scintillation screens is in the range of 100 mum and creates a bottleneck for the further improvement of the overall system resolution. In this investigation, a neutron sensitive micro-channel plate (MCP) detector with pore pitch of 11.4 mum is combined with a cooled CCD camera with a pixel size of 6.8 mum to provide a high spatial resolution neutron imaging system. The optical path includes a high reflection front surface mirror for keeping the camera out of neutron beam and a macro lens for achieving the maximum magnification that could be achieved. All components are assembled into an aluminum light tight box with heavy radiation shielding to protect the camera as well as to provide a dark working condition. Particularly, a remote controlled stepper motor is also integrated into the system to provide on-line focusing ability. The best focus is guaranteed through use of an algorithm instead of perceptual observation. An evaluation routine not previously utilized in the field of neutron radiography is developed in this study. Routines like this were never previously required due to the lower resolution of other systems. Use of the augulation technique to obtain presampled MTF addresses the problem of aliasing associated with digital sampling. The determined MTF agrees well with the visual inspection of imaging a testing target. Other detector/camera combinations may be integrated into the system and their performances are also compared. The best resolution achieved by the system at the TRIGA Mark II reactor at the University of Texas at Austin is 16.2 lp/mm, which is equivalent to a minimum resolvable spacing of 30 mum. The noise performance of the device is evaluated in terms of the noise power spectrum (NPS) and the detective quantum

  4. Fragmented Land Cover Types and Estimation of Area with Course Spatial Resolution Imagery

    NASA Technical Reports Server (NTRS)

    Hlavka, Chris; Dungan, Jennifer; Gore, William (Technical Monitor)

    1998-01-01

    Imagery of coarse resolution, such weather satellite imagery with 1 sq km pixels, is increasingly used to monitor dynamic and fragmented types of land surface types, such as scars from recent fires and ponds in wetlands. Accurate estimates of these land cover types at regional to global scales are required to assess the roles of fires and wetlands in global warming, yet difficult to compute when much of the area is accounted for by fragments about the same size as the pixels. In previous research, we found that size distribution of the fragments in several example scenes fit simple two-parameter models and related effects of coarse resolution to errors in area estimates based on pixel counts. We report on progress to develop accurate area estimates based on modelling the size distribution of the fragments, including analysis of size distributions on an expanded set of maps developed from digital imagery and a test of a procedure to correct for effects of coarse spatial resolution.

  5. High Spatial Resolution Europa Coverage by the Galileo Near Infrared Mapping Spectrometer (NIMS)

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The NIMS instrument on the Galileo spacecraft, which is being used to map the mineral and ice properties over the surfaces of the Jovian moons, produces global spectral images at modest spatial resolution and high resolution spectral images for small selected regions on the satellites. This map illustrates the high resolution coverage of Europa obtained by NIMS through the April 1997 G7 orbit.

    The areas covered are displayed on a Voyager-derived map. A good sampling of the dark trailing-side material (180 to 360 degrees) has been obtained, with less coverage of Europa's leading side.

    The false-color composites use red, green and blue to represent the infrared brightnesses at 0.7, 1.51 and 1.82 microns respectively. Considerable variations are evident and are related to the composition and sizes of the surface grains.

    The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC.

    The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC.

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov.

  6. Examination of Tropical Forest Structure Using Field Data and High Spatial Resolution Image Data

    NASA Astrophysics Data System (ADS)

    Palace, M.; Keller, M.; Hunter, M.; Braswell, B.; Hagen, S.; Lefsky, M.

    2007-12-01

    Structural properties of tropical forests are an important component in ecological studies, yet they are difficult to quantify. Remote sensing of forest canopy structure estimation has greatly advanced to due the aid of high resolution satellite images. Field based methods of canopy structure have also improved due to the involvement of handheld laser range finders, which aid in gauging height, width, and depth of tree canopies. Using a handheld laser rangefinder we estimated canopy depth and generated canopy profiles from this data. Previously, we developed a crown characterization algorithm that uses high resolution satellite image data and have applied this algorithm in undisturbed tropical forests with good results. In this work we have further developed the algorithm to examine canopy depth using two allometric equations, developed from field data, that relate crown width to the top of the canopy and bottom of the canopy. Modification of our original algorithm also involved the incorporation of site specific allometric equations developed from field based measurements. Automated analysis of IKONOS imagery was used to estimate the distribution of canopy elements at various heights and their spatial locations. A comparison between the field based data and the estimates derived from remotely sensed images was conducted at four sites throughout Amazonia. We further compared our estimates of canopy structure with results from large footprint LIDAR data from GLAS. Ability to estimate canopy profiles and forest structural properties in vast areas of the Brazilian Amazon using high resolution imagery will help us to understand the regional carbon balance.

  7. Resolving the spatial relationship between intracellular components by dual color super resolution optical fluctuations imaging (SOFI)

    PubMed Central

    Gallina, Maria Elena; Xu, Jianmin; Dertinger, Thomas; Aizer, Adva; Shav-Tal, Yaron; Weiss, Shimon

    2013-01-01

    Background Multi-color super-resolution (SR) imaging microscopy techniques can resolve ultrastructura relationships between- and provide co-localization information of- different proteins inside the cell or even within organelles at a higher resolution than afforded by conventional diffraction-limited imaging. While still very challenging, important SR colocalization results have been reported in recent years using STED, PALM and STORM techniques. Results In this work, we demonstrate dual-color Super Resolution Optical Fluctuations Imaging (SOFI) using a standard far-field fluorescence microscope and different color blinking quantum dots. We define the spatial relationship between hDcp1a, a processing body (P-body, PB) protein, and the tubulin cytoskeletal network. Our finding could open up new perspectives on the role of the cytoskeleton in PB formation and assembly. Further insights into PB internal organization are also reported and discussed. Conclusions Our results demonstrate the suitability and facile use of multi-color SOFI for the investigation of intracellular ultrastructures. PMID:24324919

  8. Spatial disaggregation of satellite-derived irradiance using a high-resolution digital elevation model

    SciTech Connect

    Ruiz-Arias, Jose A.; Tovar-Pescador, Joaquin; Cebecauer, Tomas; Suri, Marcel

    2010-09-15

    Downscaling of the Meteosat-derived solar radiation ({proportional_to}5 km grid resolution) is based on decomposing the global irradiance and correcting the systematic bias of its components using the elevation and horizon shadowing that are derived from the SRTM-3 digital elevation model (3 arc sec resolution). The procedure first applies the elevation correction based on the difference between coarse and high spatial resolution. Global irradiance is split into direct, diffuse circumsolar and diffuse isotropic components using statistical models, and then corrections due to terrain shading and sky-view fraction are applied. The effect of reflected irradiance is analysed only in the theoretical section. The method was applied in the eastern Andalusia, Spain, and the validation was carried out for 22 days on April, July and December 2006 comparing 15-min estimates of the satellite-derived solar irradiance and observations from nine ground stations. Overall, the corrections of the satellite estimates in the studied region strongly reduced the mean bias of the estimates for clear and cloudy days from roughly 2.3% to 0.4%. (author)

  9. Early-photon fluorescence tomography: spatial resolution improvements and noise stability considerations

    PubMed Central

    Leblond, Frederic; Dehghani, Hamid; Kepshire, Dax; Pogue, Brian W.

    2013-01-01

    In vivo tissue imaging using near-infrared light suffers from low spatial resolution and poor contrast recovery because of highly scattered photon transport. For diffuse optical tomography (DOT) and fluorescence molecular tomography (FMT), the resolution is limited to about 5–10% of the diameter of the tissue being imaged, which puts it in the range of performance seen in nuclear medicine. This paper introduces the mathematical formalism explaining why the resolution of FMT can be significantly improved when using instruments acquiring fast time-domain optical signals. This is achieved through singular-value analysis of the time-gated inverse problem based on weakly diffused photons. Simulations relevant to mouse imaging are presented showing that, in stark contrast to steady-state imaging, early time-gated intensities (within 200 ps or 400 ps) can in principle be used to resolve small fluorescent targets (radii from 1.5 to 2.5 mm) separated by less than 1.5 mm. PMID:19488184

  10. Super-Spatial- and -Spectral-Resolution in Vibrational Imaging via Saturated Coherent Anti-Stokes Raman Scattering

    NASA Astrophysics Data System (ADS)

    Yonemaru, Yasuo; Palonpon, Almar F.; Kawano, Shogo; Smith, Nicholas I.; Kawata, Satoshi; Fujita, Katsumasa

    2015-07-01

    We demonstrate a vibrational microscopy technique with subdiffraction spatial resolution by the use of saturation of coherent anti-Stokes Raman scattering (CARS). The saturated CARS signals effectively produce a reduced point-spread function at harmonic frequencies, which is extracted by temporal modulation of the pump beam and demodulation of the CARS signal. An increase in spectral resolution and suppression of the nonresonant background signal accompany the spatial- resolution enhancement. Our simple, enhanced CARS technique promises to be useful in studying molecules in gas and liquid phases as well as soft condensed-matter systems.

  11. Flow Structures and Effects of Spatial Resolution on Turbulence Statistics in Rough Wall Turbulent Channel Flow

    NASA Astrophysics Data System (ADS)

    Katz, Joseph; Hong, Jiarong; Schultz, Michael

    2009-11-01

    PIV data obtained in the roughness sublayer of a turbulent channel flow is used for examining effects of spatial resolution on the magnitude, distribution, and trends of Reynolds stresses. Starting with a vector spacing of 63um (9-12 wall units), for roughness consisting of 0.45mm high pyramids at Reτ=3400-5418, spatial filtering of data causes major reduction in the magnitude of Reynolds stresses in the roughness sublayer. Although these reductions extend to well above the log layer, they increase with decreasing distance from the wall, especially for terms involving the wall-normal velocity fluctuation component, but also for the streamwise component. As expected, these effects increase with filter size, and are much higher for 2D filters in comparison to 1D ones. Consequently, trends of Reynolds stresses, and even mean flow profile vary significantly with filter properties. Spatial energy spectra and distributions of 2D swirling strength show the increasing role of small scale eddies on 2^nd order statistics as the wall is approached, which is attenuated by filtering.

  12. Prediction of brain maturity based on cortical thickness at different spatial resolutions.

    PubMed

    Khundrakpam, Budhachandra S; Tohka, Jussi; Evans, Alan C

    2015-05-01

    Several studies using magnetic resonance imaging (MRI) scans have shown developmental trajectories of cortical thickness. Cognitive milestones happen concurrently with these structural changes, and a delay in such changes has been implicated in developmental disorders such as attention-deficit/hyperactivity disorder (ADHD). Accurate estimation of individuals' brain maturity, therefore, is critical in establishing a baseline for normal brain development against which neurodevelopmental disorders can be assessed. In this study, cortical thickness derived from structural magnetic resonance imaging (MRI) scans of a large longitudinal dataset of normally growing children and adolescents (n=308), were used to build a highly accurate predictive model for estimating chronological age (cross-validated correlation up to R=0.84). Unlike previous studies which used kernelized approach in building prediction models, we used an elastic net penalized linear regression model capable of producing a spatially sparse, yet accurate predictive model of chronological age. Upon investigating different scales of cortical parcellation from 78 to 10,240 brain parcels, we observed that the accuracy in estimated age improved with increased spatial scale of brain parcellation, with the best estimations obtained for spatial resolutions consisting of 2560 and 10,240 brain parcels. The top predictors of brain maturity were found in highly localized sensorimotor and association areas. The results of our study demonstrate that cortical thickness can be used to estimate individuals' brain maturity with high accuracy, and the estimated ages relate to functional and behavioural measures, underscoring the relevance and scope of the study in the understanding of biological maturity.

  13. Neuronal nonlinearity explains greater visual spatial resolution for darks than lights

    PubMed Central

    Kremkow, Jens; Jin, Jianzhong; Komban, Stanley J.; Wang, Yushi; Lashgari, Reza; Li, Xiaobing; Jansen, Michael; Zaidi, Qasim; Alonso, Jose-Manuel

    2014-01-01

    Astronomers and physicists noticed centuries ago that visual spatial resolution is higher for dark than light stimuli, but the neuronal mechanisms for this perceptual asymmetry remain unknown. Here we demonstrate that the asymmetry is caused by a neuronal nonlinearity in the early visual pathway. We show that neurons driven by darks (OFF neurons) increase their responses roughly linearly with luminance decrements, independent of the background luminance. However, neurons driven by lights (ON neurons) saturate their responses with small increases in luminance and need bright backgrounds to approach the linearity of OFF neurons. We show that, as a consequence of this difference in linearity, receptive fields are larger in ON than OFF thalamic neurons, and cortical neurons are more strongly driven by darks than lights at low spatial frequencies. This ON/OFF asymmetry in linearity could be demonstrated in the visual cortex of cats, monkeys, and humans and in the cat visual thalamus. Furthermore, in the cat visual thalamus, we show that the neuronal nonlinearity is present at the ON receptive field center of ON-center neurons and ON receptive field surround of OFF-center neurons, suggesting an origin at the level of the photoreceptor. These results demonstrate a fundamental difference in visual processing between ON and OFF channels and reveal a competitive advantage for OFF neurons over ON neurons at low spatial frequencies, which could be important during cortical development when retinal images are blurred by immature optics in infant eyes. PMID:24516130

  14. Spatial resolution of the pain system: a proximal-to-distal gradient of sensitivity revealed with psychophysical testing.

    PubMed

    Weissman-Fogel, Irit; Brayer-Zwi, Nurit; Defrin, Ruth

    2012-01-01

    The spatial resolution of the pain system has not been studied in depth, and results are contradictory regarding the gradient of spatial resolution. Microneurographic recordings have revealed smaller receptive fields and higher density of nociceptors in more distal than proximal leg regions, whereas histological studies report higher density of C-fibers in more proximal than distal body regions. Due to this controversy, we conducted various psychophysical tests in order to examine the nociceptive spatial resolution and its gradient. Heat-pain threshold (HPT), perceived pain intensity, spatial summation (SS) of pain, two-point discrimination (2PD) of pain, and pain localization were measured in four body regions: upper back, thigh, lower leg, and foot. The highest HPT was demonstrated in the lower leg as compared with more proximal regions (P < 0.0001). SS was observed in all the regions and was found to be smallest in the foot (P < 0.05). The smallest 2PD and localization distances were found in the foot (P < 0.01) as compared with the lower leg and upper back. It appears that the nociceptive spatial resolution has a proximal-to-distal pattern of performance, namely that the spatial resolution of pain is finer in more distal than proximal body regions, similar to that of the touch system.

  15. High spectral and spatial resolution spectroscopy of YSOs with a silicon grism and adaptive optics

    NASA Astrophysics Data System (ADS)

    Ge, J.; Lloyd, J. P.; Gavel, D.; Macintosh, B.; Max, C. E.; Ciarlo, D.; Kuzmenko, P.; Graham, J. R.

    2000-12-01

    We have obtained complete K band spectra of a total of 6 T Tauri and Ae/Be stars and their close companions at a spectral resolution of R ≈ 5000 using a silicon grism at the Lick 3m telescope. These results represent our first scientific observations conducted by the high resolution silicon grisms. Coupled with the LLNL adaptive optics system, a spatial resolution of 0.2 arcsec was achieved to allow observations of the companions with separations between 0.3-1.3 arcsec. The complete wavelength coverage was achieved by placing 16 cross-dispersed echelle orders on a 256x256 HgCdTe array with the silicon grism operating on high diffraction orders and a low dispersing CaF2 grism as a cross-disperser. High spectral resolution observations allow us to characterize each of the companions. Analysis of the spectra of these YSOs will be reported. The observations also allow us to measure the optical performance of the second generation of silicon grisms made with the techniques developed in early 2000. The new silicon grism has a peak efficiency of 45% and scattered light of ~ 8% in the K band. New techniques have been developed at Penn State to further reduce scattered light in the K band (Bernecker et al. this meeting) and are being applied in fabricating the third generation of silicon grisms for scientific observations. Fabrication of the silicon grisms and work on the Lick adaptive optics system was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract W-7405-ENG-48. Graham and Lloyd were also supported by the Center for Adaptive Optics under the STC Program of the National Science Foundation, Agreement No. AST-9876783

  16. Sensitivity of snow models to the spatial and temporal resolution of meteorological forcing

    NASA Astrophysics Data System (ADS)

    Terzago, Silvia; von Hardenberg, Jost; Palazzi, Elisa; Cassardo, Claudio; Balsamo, Gianpaolo; Provenzale, Antonello

    2014-05-01

    The simulation of snowpack dynamics in high elevation environments is facing the problem of the uncertainty and the spatial representativeness of the input data, owing to a high spatial variability of meteorological parameters in complex topography. In this study we evaluate the land-surface model UTOPIA (University of TOrino land Process Interaction in Atmosphere) single-layer snow scheme in order to assess its capability in reproducing the snow dynamics, i.e. the accumulation/melting processes and the snow depth temporal variability, and we compare it to the snow module of the Hydrology-Tiled ECMWF Scheme for Surface Exchange over Land (HTESSEL) of the European Centre for Medium-range Weather Forecasts (ECMWF). The validation is performed using high-quality datasets provided by the two experimental snow-meteorological observation sites in Torgnon (2150 m a.s.l.) and Col de Porte (1325 m a.s.l.), located in the Italian and French Alps respectively. We assess the sensitivity of the models to the spatial and temporal resolution of the input data, comparing the case in which high-quality and high-frequency data are provided by individual stations at specific observation sites, as those employed in this study for validation, to the case in which data are provided by gridded datasets based on the spatial-temporal interpolation of surface station measurements. Interpolation, in its various forms, represents a source of uncertainty in the final gridded product, thus we evaluate the quality of the models estimates in case of increasing uncertainty in the input data.

  17. Developing a CCD camera with high spatial resolution for RIXS in the soft X-ray range

    NASA Astrophysics Data System (ADS)

    Soman, M. R.; Hall, D. J.; Tutt, J. H.; Murray, N. J.; Holland, A. D.; Schmitt, T.; Raabe, J.; Schmitt, B.

    2013-12-01

    The Super Advanced X-ray Emission Spectrometer (SAXES) at the Swiss Light Source contains a high resolution Charge-Coupled Device (CCD) camera used for Resonant Inelastic X-ray Scattering (RIXS). Using the current CCD-based camera system, the energy-dispersive spectrometer has an energy resolution (E/ΔE) of approximately 12,000 at 930 eV. A recent study predicted that through an upgrade to the grating and camera system, the energy resolution could be improved by a factor of 2. In order to achieve this goal in the spectral domain, the spatial resolution of the CCD must be improved to better than 5 μm from the current 24 μm spatial resolution (FWHM). The 400 eV-1600 eV energy X-rays detected by this spectrometer primarily interact within the field free region of the CCD, producing electron clouds which will diffuse isotropically until they reach the depleted region and buried channel. This diffusion of the charge leads to events which are split across several pixels. Through the analysis of the charge distribution across the pixels, various centroiding techniques can be used to pinpoint the spatial location of the X-ray interaction to the sub-pixel level, greatly improving the spatial resolution achieved. Using the PolLux soft X-ray microspectroscopy endstation at the Swiss Light Source, a beam of X-rays of energies from 200 eV to 1400 eV can be focused down to a spot size of approximately 20 nm. Scanning this spot across the 16 μm square pixels allows the sub-pixel response to be investigated. Previous work has demonstrated the potential improvement in spatial resolution achievable by centroiding events in a standard CCD. An Electron-Multiplying CCD (EM-CCD) has been used to improve the signal to effective readout noise ratio achieved resulting in a worst-case spatial resolution measurement of 4.5±0.2 μm and 3.9±0.1 μm at 530 eV and 680 eV respectively. A method is described that allows the contribution of the X-ray spot size to be deconvolved from these

  18. Retrieving Aerosol in a Cloudy Environment: Aerosol Availability as a Function of Spatial and Temporal Resolution

    NASA Technical Reports Server (NTRS)

    Remer, Lorraine A.; Mattoo, Shana; Levy, Robert C.; Heidinger, Andrew; Pierce, R. Bradley; Chin, Mian

    2011-01-01

    The challenge of using satellite observations to retrieve aerosol properties in a cloudy environment is to prevent contamination of the aerosol signal from clouds, while maintaining sufficient aerosol product yield to satisfy specific applications. We investigate aerosol retrieval availability at different instrument pixel resolutions, using the standard MODIS aerosol cloud mask applied to MODIS data and a new GOES-R cloud mask applied to GOES data for a domain covering North America and surrounding oceans. Aerosol availability is not the same as the cloud free fraction and takes into account the technqiues used in the MODIS algorithm to avoid clouds, reduce noise and maintain sufficient numbers of aerosol retrievals. The inherent spatial resolution of each instrument, 0.5x0.5 km for MODIS and 1x1 km for GOES, is systematically degraded to 1x1 km, 2x2 km, 4x4 km and 8x8 km resolutions and then analyzed as to how that degradation would affect the availability of an aerosol retrieval, assuming an aerosol product resolution at 8x8 km. The results show that as pixel size increases, availability decreases until at 8x8 km 70% to 85% of the retrievals available at 0.5 km have been lost. The diurnal pattern of aerosol retrieval availability examined for one day in the summer suggests that coarse resolution sensors (i.e., 4x4 km or 8x8 km) may be able to retrieve aerosol early in the morning that would otherwise be missed at the time of current polar orbiting satellites, but not the diurnal aerosol properties due to cloud cover developed during the day. In contrast finer resolution sensors (i.e., 1x1 km or 2x2 km) have much better opportunity to retrieve aerosols in the partly cloudy scenes and better chance of returning the diurnal aerosol properties. Large differences in the results of the two cloud masks designed for MODIS aerosol and GOES cloud products strongly reinforce that cloud masks must be developed with specific purposes in mind and that a generic cloud mask

  19. High Spatial Resolution Airborne Multispectral Thermal Infrared Remote Sensing Data for Analysis of Urban Landscape Characteristics

    NASA Technical Reports Server (NTRS)

    Quattrochi, Dale A.; Luvall, Jeffrey C.; Estes, Maurice G., Jr.; Arnold, James E. (Technical Monitor)

    2000-01-01

    We have used airborne multispectral thermal infrared (TIR) remote sensing data collected at a high spatial resolution (i.e., 10m) over several cities in the United States to study thermal energy characteristics of the urban landscape. These TIR data provide a unique opportunity to quantify thermal responses from discrete surfaces typical of the urban landscape and to identify both the spatial arrangement and patterns of thermal processes across the city. The information obtained from these data is critical to understanding how urban surfaces drive or force development of the Urban Heat Island (UHI) effect, which exists as a dome of elevated air temperatures that presides over cities in contrast to surrounding non-urbanized areas. The UHI is most pronounced in the summertime where urban surfaces, such as rooftops and pavement, store solar radiation throughout the day, and release this stored energy slowly after sunset creating air temperatures over the city that are in excess of 2-4'C warmer in contrast with non-urban or rural air temperatures. The UHI can also exist as a daytime phenomenon with surface temperatures in downtown areas of cities exceeding 38'C. The implications of the UHI are significant, particularly as an additive source of thermal energy input that exacerbates the overall production of ground level ozone over cities. We have used the Airborne Thermal and Land Applications Sensor (ATLAS), flown onboard a Lear 23 jet aircraft from the NASA Stennis Space Center, to acquire high spatial resolution multispectral TIR data (i.e., 6 bandwidths between 8.2-12.2 (um) over Huntsville, Alabama, Atlanta, Georgia, Baton Rouge, Louisiana, Salt Lake City, Utah, and Sacramento, California. These TIR data have been used to produce maps and other products, showing the spatial distribution of heating and cooling patterns over these cities to better understand how the morphology of the urban landscape affects development of the UHI. In turn, these data have been used

  20. Where should fine-resolution spatial heterogeneity be captured within Earth System Models?

    NASA Astrophysics Data System (ADS)

    Adam, J. C.; Hull, R.; Tague, C.; Reyes, J. J.; Liu, M.

    2015-12-01

    Land-atmosphere interactions impact the environment in many ways, such as through partially driving our climate system, and in changing the availability and usability of our natural resources. Earth System Models (EaSMs) are being used increasingly to explore these coupled dynamics from watershed to global scales. However, many EaSMs do not adequately represent landscape-scale spatial heterogeneity that influences land surface response, as relatively coarse resolution simulations are necessitated by computational limitations. Research is needed to understand which types of spatial heterogeneity, over which biomes and climate types, should be represented such that an EaSM accurately captures the aggregate land surface response to a changing climate. Spatial heterogeneity in a landscape arises due to differences in model forcings; in underlying soil, vegetation, and topographic properties that control moisture, energy and nutrient fluxes; and in land surface responses that arise due to spatially-organized connections. While our long-term goal is to understand how each of these sources should be represented in an EaSM, in this study we focus first on parameter heterogeneity. We apply the Regional Hydro-Ecological Simulation System (RHESSys), a distributed process-based model that was originally developed for catchment-scale applications. We explore the functional form of the hydrologic response of a RHESSys "patch" (a 200-400 m element with homogenous landscape parameters) to an invoked change. According to scale transition theory, a linear response makes it is possible to upscale (or aggregate) the model resolution without biasing the model response. We perform RHESSys simulations for more than 500 individual catchments within the Willamette and Yakima River basins in the Pacific Northwest region of the U.S. Each catchment was imposed with incremental perturbations of temperature and precipitation. The response curves for hydrologic variables such as

  1. Spatiotemporal neurodynamics underlying internally and externally driven temporal prediction: a high spatial resolution ERP study.

    PubMed

    Mento, Giovanni; Tarantino, Vincenza; Vallesi, Antonino; Bisiacchi, Patrizia Silvia

    2015-03-01

    Temporal prediction (TP) is a flexible and dynamic cognitive ability. Depending on the internal or external nature of information exploited to generate TP, distinct cognitive and brain mechanisms are engaged with the same final goal of reducing uncertainty about the future. In this study, we investigated the specific brain mechanisms involved in internally and externally driven TP. To this end, we employed an experimental paradigm purposely designed to elicit and compare externally and internally driven TP and a combined approach based on the application of a distributed source reconstruction modeling on a high spatial resolution electrophysiological data array. Specific spatiotemporal ERP signatures were identified, with significant modulation of contingent negative variation and frontal late sustained positivity in external and internal TP contexts, respectively. These different electrophysiological patterns were supported by the engagement of distinct neural networks, including a left sensorimotor and a prefrontal circuit for externally and internally driven TP, respectively.

  2. Retrieving Crops Green Area Index from High Temporal and Spatial Resolution Remote Sensing Data

    NASA Astrophysics Data System (ADS)

    Veloso, A.; Demarez, V.; Ceschia, E.

    2012-04-01

    This paper aims at firstly evaluating the correspondence between Normalized Difference Vegetation Index (NDVI) products from Formosat-2 (F2) and SPOT sensors and then to perform a comparative analysis of two methods for retrieving Green Area Index from high spatial and temporal resolution satellite data (F2 and SPOT). For this purpose, an empirical approach using NDVI plus field data and a Neural Network approach using the PROSAIL model are compared over four different crops: maize, soybean, sunflower and wheat. The performance of both methods were evaluated and compared with in-situ direct (destructive) and indirect (hemispherical photos) measurements. Results suggest better performances for the empirical approach (R², RMSE). Still the physically-based method leads to good results (R², RMSE). The latter seems to be more promising due to its portability and independence from field measurements. Therefore new perspectives to improve this approach are being envisaged.

  3. Improved mid infrared detector for high spectral or spatial resolution and synchrotron radiation use

    NASA Astrophysics Data System (ADS)

    Faye, Mbaye; Bordessoule, Michel; Kanouté, Brahim; Brubach, Jean-Blaise; Roy, Pascale; Manceron, Laurent

    2016-06-01

    When using bright, small effective size sources, such as synchrotron radiation light beam, for broadband spectroscopy at spectral or spatial high resolution for mid-IR FTIR measurements, a marked detectivity improvement can be achieved by setting up a device matching the detector optical étendue to that of the source. Further improvement can be achieved by reducing the background unmodulated flux and other intrinsic noise sources using a lower temperature cryogen, such as liquid helium. By the combined use of cooled apertures, cold reimaging optics, filters and adapted detector polarization, and preamplification electronics, the sensitivity of a HgCdTe photoconductive IR detector can be improved by a significant factor with respect to standard commercial devices (more than one order of magnitude on average over 6-20 μm region) and the usable spectral range extended to longer wavelengths. The performances of such an optimized detector developed on the AILES Beamline at SOLEIL are presented here.

  4. High spatial resolution IR observations of young stellar objects - A possible disk surrounding HL Tauri

    NASA Technical Reports Server (NTRS)

    Grasdalen, G. L.; Strom, S. E.; Strom, K. M.; Capps, R. W.; Thompson, D.; Castelaz, M.

    1984-01-01

    High spatial resolution images of the T Tauri star HL Tau were obtained at 1.6 microns and 2.2 microns. The original images as well as maximum entropy image reconstructions reveal a circumstellar envelope structure, similar at both wavelenghts, and extended along P.A. = 112 deg; the 10 percent width of the structure is 1.9 sec (300 AU at 160 pc). The extended structure is interpreted as light scattered toward earth by dust in a disk surrounding this young stellar object. Polarization measurements made at 2.2 microns support this hypothesis. The total solid particle mass is, at minimum, 5 x 10 to the -7th solar mass.

  5. Improving the Spatial Resolution of Neutron Imaging at Paul Scherrer Institut - The Neutron Microscope Project

    NASA Astrophysics Data System (ADS)

    Trtik, Pavel; Hovind, Jan; Grünzweig, Christian; Bollhalder, Alex; Thominet, Vincent; David, Christian; Kaestner, Anders; Lehmann, Eberhard H.

    Here we present results stemming from the first prototype of the Neutron Microscope instrument at Paul ScherrerInstitut (PSI). The instrument is based on a very thin gadolinium oxysulfide (Gd2O2S:Tb+) scintillator screen and a magnifying optics. The Neutron Microscope prototype has been tested at the ICON and the BOA beamlines at PSI and sub-10 μm features can be clearly resolved on a focussed ion beam (FIB) enhance test object - a gadolinium-based Siemens star. The spatial resolution of the images of the gadolinium-based Siemensstar assessed by Fourier ring correlation was about 7.6 μm. The outlook for future improvement of the Neutron Microscope system is presented.

  6. Forest cover of insular Southeast Asia mapped from recent satellite images of coarse spatial resolution.

    PubMed

    Stibig, Hans-Jürgen; Malingreau, Jean-Paul

    2003-11-01

    The study provides an example of mapping tropical forest cover from SPOT-Vegetation satellite images of coarse spatial resolution (1 km) for the subregion of insular Southeast Asia. A satellite image mosaic has been generated from satellite images acquired for the period 1998 to 2000. Forest cover has been mapped by unsupervised digital classification. The mapping result has then been compared to selected forest maps from the subregion, demonstrating the potential to provide basic information on forest area extent and distribution, but also on massive forest cover change in the subregional context. Forest area estimates derived from the map for the subregion have been found comparable to those compiled by FAO. The results indicate that many of the remaining tropical forests in Southeast Asia, rich in timber resources and biodiversity, may be lost in the near future if deforestation continues at present or previous rates.

  7. High-spatial-resolution scanning capacitance microscope using all-metal probe with quartz tuning fork

    NASA Astrophysics Data System (ADS)

    Naitou, Yuichi; Ookubo, Norio

    2004-09-01

    The scanning capacitance microscope (SCM) reported here uses a frequency modulation (FM) technique to control the distance between the sample and an all-metal probe. The probe was attached to a quartz tuning fork in a configuration minimizing the perturbation due to the probe. The FM-SCM yields two images of ∂C/∂V and ∂C/∂Z signals, where C is capacitance sensed by the probe, Z the probe-sample distance, and V a bias voltage, respectively. On a cross section of a field effect transistor, the two-dimensional p -n junction locus was observed with a spatial resolution better than 5nm in the ∂C/∂V image. The ∂C/∂Z images of polysilicon gate electrodes and highly doped source/drain regions have higher contrast than the ∂C/∂V images.

  8. Chenge Detection Method for Wetland Surface Conditions using NDVI Values of High Spatial Resolution Satellite Data

    NASA Astrophysics Data System (ADS)

    Takeshita, Shinichi; Suzuki, Kenji

    In this study, a new method has been proposed that can reveal changes of wetland surface condition using high spatial resolution satellite data (IKONOS) for actual wetland managements. The method can detect the wetland surface change based on the NDVI change domain in wetlands using bi-temporal satellite data through analyzing ‘coordinate of NDVI change’. We applied the method to Kawaminami wetland in Miyazaki prefecture for comparing the calculation results and actual state of wetland with observed groundwater level data. As the results, it was able to extract artificial change of the wetland surface precisely and to detect differences of the wetness of the surface in two imageries. For satellite data analysis, it was indicated that utilization of supplementary climate data such as rainfall is important. The proposed method is effective for actual wetland managements, because it is simple and practical.

  9. Spatial resolution limits for the localization of noise sources using direct sound mapping

    NASA Astrophysics Data System (ADS)

    Fernandez Comesaña, D.; Holland, K. R.; Fernandez-Grande, E.

    2016-08-01

    One of the main challenges arising from noise and vibration problems is how to identify the areas of a device, machine or structure that produce significant acoustic excitation, i.e. the localization of main noise sources. The direct visualization of sound, in particular sound intensity, has extensively been used for many years to locate sound sources. However, it is not yet well defined when two sources should be regarded as resolved by means of direct sound mapping. This paper derives the limits of the direct representation of sound pressure, particle velocity and sound intensity by exploring the relationship between spatial resolution, noise level and geometry. The proposed expressions are validated via simulations and experiments. It is shown that particle velocity mapping yields better results for identifying closely spaced sound sources than sound pressure or sound intensity, especially in the acoustic near-field.

  10. High spatial resolution confocal microscope with independent excitation and detection scanning capabilities.

    PubMed

    Marcet, S; Ouellet-Plamondon, C; Francoeur, S

    2009-06-01

    We present the design of a confocal microscope adapted for optical spectroscopy and imaging at cryogenic temperatures. This system is based on the existing approach of partly inserting the optical components of the microscope inside a helium-bath cryostat. It provides a spatial resolution approaching the diffraction limit with a mechanical stability allowing uninterrupted integration times exceeding 10 h and allows keeping track of a single emitter for unlimited periods of time. Furthermore, our design allows scanning the excitation spot and detection area independently of the sample position. This feature provides the means to perform probeless transport experiments on one-dimensional nanostructures. The scanning capabilities of this microscope are fully detailed and characterized using the photoluminescence of single nitrogen dyads at 4.5 K.

  11. Design considerations for a high-spatial-resolution positron camera with dense-drift-space MWPC's

    NASA Astrophysics Data System (ADS)

    Delguerra, A.; Perez-Mendez, V.; Schwartz, G.; Nelson, W. R.

    1982-10-01

    A multiplane Positron Camera is proposed, made of six MWPC modules arranged to form the lateral surface of a hexagonal prism. Each module (50 x 50 sq cm) has a 2 cm thick lead-glass tube converter on both sides of a MWPC pressurized to 2 atm. Experimental measurements are presented to show how to reduce the parallax error by determining in which of the two converter layers the photon has interacted. The results of a detailed Monte Carlo calculation for the efficiency of this type of converter are shown to be in excellent agreement with the experimental measurements. The expected performance of the Positron Camera is presented: a true coincidence rate of 56,000 counts/s (with an equal accidental coincidence rate and a 30% Compton scatter contamination) and a spatial resolution better than 5.0 mm (FWHM) for a 400 micron Ci pointlike source embedded in a 10 cm radius water phantom.

  12. Spatial resolution for feature binding is impaired in peripheral and amblyopic vision.

    PubMed

    Neri, Peter; Levi, Dennis M

    2006-07-01

    We measured spatial resolution for discriminating targets that differed from nearby distractors in either color or orientation or their conjunction. In the fovea of normal human observers, whenever both attributes are big enough to be individually visible, their conjunction is also visible. In the periphery, the two attributes may be visible, but their conjunction may be invisible. We found a similar impairment in resolving conjunctions for the fovea of deprived eyes of humans with abnormal visual development (amblyopia). These results are quantitatively explained by a model of primary visual cortex (V1) in which orientation and color maps are imperfectly co-registered topographically. Our results in persons with amblyopia indicate that the ability of the fovea to compensate for this poor co-registration is consolidated by visual experience during postnatal development.

  13. Improved mid infrared detector for high spectral or spatial resolution and synchrotron radiation use.

    PubMed

    Faye, Mbaye; Bordessoule, Michel; Kanouté, Brahim; Brubach, Jean-Blaise; Roy, Pascale; Manceron, Laurent

    2016-06-01

    When using bright, small effective size sources, such as synchrotron radiation light beam, for broadband spectroscopy at spectral or spatial high resolution for mid-IR FTIR measurements, a marked detectivity improvement can be achieved by setting up a device matching the detector optical étendue to that of the source. Further improvement can be achieved by reducing the background unmodulated flux and other intrinsic noise sources using a lower temperature cryogen, such as liquid helium. By the combined use of cooled apertures, cold reimaging optics, filters and adapted detector polarization, and preamplification electronics, the sensitivity of a HgCdTe photoconductive IR detector can be improved by a significant factor with respect to standard commercial devices (more than one order of magnitude on average over 6-20 μm region) and the usable spectral range extended to longer wavelengths. The performances of such an optimized detector developed on the AILES Beamline at SOLEIL are presented here.

  14. LiF crystals as high spatial resolution neutron imaging detectors

    NASA Astrophysics Data System (ADS)

    Matsubayashi, M.; Faenov, A.; Pikuz, T.; Fukuda, Y.; Kato, Y.; Yasuda, R.; Iikura, H.; Nojima, T.; Sakai, T.

    2011-09-01

    Neutron imaging by color center formation in LiF crystals was applied to a sensitivity indicator (SI) as a standard samples for neutron radiography. The SI was exposed to a 5 mm pinhole-collimated thermal neutron beam with an LiF crystal and a neutron imaging plate (NIP) for 120 min in the JRR-3M thermal neutron radiography facility. The image in the LiF crystal was read out using a laser confocal microscope. All gaps were clearly observed in images for both the LiF crystal and the NIP. The experimental results showed that LiF crystals have excellent characteristics as neutron imaging detectors in areas such as high spatial resolution.

  15. Ratiometric Organic Fibers for Localized and Reversible Ion Sensing with Micrometer‐Scale Spatial Resolution

    PubMed Central

    Moffa, Maria; Rinaldi, Rosaria

    2015-01-01

    A fundamental issue in biomedical and environmental sciences is the development of sensitive and robust sensors able to probe the analyte of interest, under physiological and pathological conditions or in environmental samples, and with very high spatial resolution. In this work, novel hybrid organic fibers that can effectively report the analyte concentration within the local microenvironment are reported. The nanostructured and flexible wires are prepared by embedding fluorescent pH sensors based on seminaphtho‐rhodafluor‐1‐dextran conjugate. By adjusting capsule/polymer ratio and spinning conditions, the diameter of the fibers and the alignment of the reporting capsules are both tuned. The hybrid wires display excellent stability, high sensitivity, as well as reversible response, and their operation relies on effective diffusional kinetic coupling of the sensing regions and the embedding polymer matrix. These devices are believed to be a powerful new sensing platform for clinical diagnostics, bioassays and environmental monitoring. PMID:26539625

  16. Required spatial resolution of hydrological models to evaluate urban flood resilience measures

    NASA Astrophysics Data System (ADS)

    Gires, A.; Giangola-Murzyn, A.; Tchiguirinskaia, I.; Schertzer, D.; Lovejoy, S.

    2012-04-01

    During a flood in urban area, several non-linear processes (rainfall, surface runoff, sewer flow, and sub-surface flow) interact. Fully distributed hydrological models are a useful tool to better understand these complex interactions between natural processes and man built environment. Developing an efficient model is a first step to improve the understanding of flood resilience in urban area. Given that the previously mentioned underlying physical phenomenon exhibit different relevant scales, determining the required spatial resolution of such model is tricky but necessary issue. For instance such model should be able to properly represent large scale effects of local scale flood resilience measures such as stop logs. The model should also be as simple as possible without being simplistic. In this paper we test two types of model. First we use an operational semi-distributed model over a 3400 ha peri-urban area located in Seine-Saint-Denis (North-East of Paris). In this model, the area is divided into sub-catchments of average size 17 ha that are considered as homogenous, and only the sewer discharge is modelled. The rainfall data, whose resolution is 1 km is space and 5 min in time, comes from the C-band radar of Trappes, located in the West of Paris, and operated by Météo-France. It was shown that the spatial resolution of both the model and the rainfall field did not enable to fully grasp the small scale rainfall variability. To achieve this, first an ensemble of realistic rainfall fields downscaled to a resolution of 100 m is generated with the help of multifractal space-time cascades whose characteristic exponents are estimated on the available radar data. Second the corresponding ensemble of sewer hydrographs is simulated by inputting each rainfall realization to the model. It appears that the probability distribution of the simulated peak flow exhibits a power-law behaviour. This indicates that there is a great uncertainty associated with small scale

  17. Mapping ephemeral stream networks in desert environments using very-high-spatial-resolution multispectral remote sensing

    DOE PAGES

    Hamada, Yuki; O'Connor, Ben L.; Orr, Andrew B.; ...

    2016-03-26

    In this paper, understanding the spatial patterns of ephemeral streams is crucial for understanding how hydrologic processes influence the abundance and distribution of wildlife habitats in desert regions. Available methods for mapping ephemeral streams at the watershed scale typically underestimate the size of channel networks. Although remote sensing is an effective means of collecting data and obtaining information on large, inaccessible areas, conventional techniques for extracting channel features are not sufficient in regions that have small topographic gradients and subtle target-background spectral contrast. By using very high resolution multispectral imagery, we developed a new algorithm that applies landscape information tomore » map ephemeral channels in desert regions of the Southwestern United States where utility-scale solar energy development is occurring. Knowledge about landscape features and structures was integrated into the algorithm using a series of spectral transformation and spatial statistical operations to integrate information about landscape features and structures. The algorithm extracted ephemeral stream channels at a local scale, with the result that approximately 900% more ephemeral streams was identified than what were identified by using the U.S. Geological Survey’s National Hydrography Dataset. The accuracy of the algorithm in detecting channel areas was as high as 92%, and its accuracy in delineating channel center lines was 91% when compared to a subset of channel networks that were digitized by using the very high resolution imagery. Although the algorithm captured stream channels in desert landscapes across various channel sizes and forms, it often underestimated stream headwaters and channels obscured by bright soils and sparse vegetation. While further improvement is warranted, the algorithm provides an effective means of obtaining detailed information about ephemeral streams, and it could make a significant contribution

  18. Mapping ephemeral stream networks in desert environments using very-high-spatial-resolution multispectral remote sensing

    SciTech Connect

    Hamada, Yuki; O'Connor, Ben L.; Orr, Andrew B.; Wuthrich, Kelsey K.

    2016-03-26

    In this paper, understanding the spatial patterns of ephemeral streams is crucial for understanding how hydrologic processes influence the abundance and distribution of wildlife habitats in desert regions. Available methods for mapping ephemeral streams at the watershed scale typically underestimate the size of channel networks. Although remote sensing is an effective means of collecting data and obtaining information on large, inaccessible areas, conventional techniques for extracting channel features are not sufficient in regions that have small topographic gradients and subtle target-background spectral contrast. By using very high resolution multispectral imagery, we developed a new algorithm that applies landscape information to map ephemeral channels in desert regions of the Southwestern United States where utility-scale solar energy development is occurring. Knowledge about landscape features and structures was integrated into the algorithm using a series of spectral transformation and spatial statistical operations to integrate information about landscape features and structures. The algorithm extracted ephemeral stream channels at a local scale, with the result that approximately 900% more ephemeral streams was identified than what were identified by using the U.S. Geological Survey’s National Hydrography Dataset. The accuracy of the algorithm in detecting channel areas was as high as 92%, and its accuracy in delineating channel center lines was 91% when compared to a subset of channel networks that were digitized by using the very high resolution imagery. Although the algorithm captured stream channels in desert landscapes across various channel sizes and forms, it often underestimated stream headwaters and channels obscured by bright soils and sparse vegetation. While further improvement is warranted, the algorithm provides an effective means of obtaining detailed information about ephemeral streams, and it could make a significant contribution toward

  19. Mapping the mechanical properties of cholesterol-containing supported lipid bilayers with nanoscale spatial resolution.

    PubMed

    Shamitko-Klingensmith, Nicole; Molchanoff, Kelley M; Burke, Kathleen A; Magnone, George J; Legleiter, Justin

    2012-09-18

    It has been demonstrated that many biological processes are influenced by mechanical changes in membranes comprised of a variety of lipid components. As a result, the ability to map physicomechanical properties of surfaces with high temporal and spatial resolution is desirable. Tapping mode atomic force microscopy (AFM) has proven to be a useful technique for imaging biological surfaces due to its ability to operate in solution; however, access to information concerning the mechanical properties of these surfaces can also be obtained by reconstructing the time-resolved tip/sample force interactions during the imaging process. An advantage of such an approach is the direct correlation of topographical features with mechanical properties. Reconstruction of the tip/sample force is achievable by a technique called scanning probe acceleration microscopy (SPAM), which treats the cantilever as an accelerometer. The acceleration, which is directly related to the tip/sample force, of the cantilever is obtained by taking the second derivative of the cantilever deflection signal during a tapping mode AFM experiment in solution with standard cantilevers. Herein, we describe the applicability of SPAM to study mechanical properties of supported lipid bilayers with nanoscale spatial resolution via numerical simulations and experiment. The maximum and minimum tapping forces respond to changes in specific surface mechanical properties. Furthermore, we demonstrate how these changes can be used to map relative changes in the Young's modulus and adhesive properties of supported total brain lipid extract bilayers containing exogenous cholesterol. Finally, the ability of SPAM to distinguish nanoscale lipid raft domains based on changes in local mechanical properties is demonstrated.

  20. The effect of riverine terrain spatial resolution on flood modeling and mapping

    NASA Astrophysics Data System (ADS)

    Papaioannou, George; Loukas, Athanasios; Georgiadis, Charalambos

    2013-08-01

    Spatial resolution of river and riverine area is an important aspect of hydraulic flood modeling that affects the accuracy of flood extent. This study compares the accuracy of Digital Elevation Models (DEMs) produced from three methods of land surveying measurements and their effect on the results of river flow modeling and mapping of floodplain. Four data sets have been used for the creation of the DEMs: Light Detection and Ranging (LiDAR) point cloud data (raw data and processed), classic land surveying and digitization of elevation contours from 1:5000 scale topographic maps. LiDAR offers advantages over traditional methods for representing a terrain. Optech ILRIS-3D (Intelligent Laser Ranging and Imaging System) is a land based LiDAR system and has been used in this study. Separating LiDAR points into ground and non-ground is the most critical and difficult step for DEM generation from LiDAR data. In this study, geomorphologic filters, GIS operations and expert knowledge have been applied to produce the bare earth DEM. The HEC-GeoRAS and HEC-RAS software have been used as pre- and post-processing tools to prepare model inputs, simulate of river flow, and delineate flood inundation maps. The methodology has been applied in the suburban part of Xerias river at Volos-Greece, where typical hydrologic and hydraulic methods for ungauged watersheds have been used for flood modeling and inundation mapping. The results show that flood inundation area is significantly affected by the accuracy of DEM spatial resolution and could have significant impact on the delineation and mapping of flood hazard areas.

  1. Vegetation index correction to reduce background effects in orchards with high spatial resolution imagery

    NASA Astrophysics Data System (ADS)

    Van Beek, Jonathan; Tits, Laurent; Somers, Ben; Deckers, Tom; Janssens, Pieter; Coppin, Pol

    2014-10-01

    High spatial resolution satellite imagery provides an alternative for time consuming and labor intensive in situ measurements of biophysical variables, such as chlorophyll and water content. However, despite the high spatial resolution of current satellite sensors, mixtures of canopies and backgrounds will be present, hampering the estimation of biophysical variables. Traditional correction methodologies use spectral differences between canopies and backgrounds, but fail with spectrally similar canopies and backgrounds. In this study, the lack of a generic solution to reduce background effects is tackled. Through synthetic imagery, the mixture problem was demonstrated with regards to the estimation of biophysical variables. A correction method was proposed, rescaling vegetation indices based on the canopy cover fraction. Furthermore, the proposed method was compared to traditional background correction methodologies (i.e. soil-adjusted vegetation indices and signal unmixing) for different background scenarios. The results of a soil background scenario showed the inability of soil-adjusted vegetation indices to reduce background admixture effects, while signal unmixing and the proposed method removed background influences for chlorophyll (ΔR2 = ~0.3; ΔRMSE = ~1.6 μg/cm2) and water (ΔR2 = ~0.3; ΔRMSE = ~0.5 mg/cm2) related vegetation indices. For the weed background scenario, signal unmixing was unable to remove the background influences for chlorophyll content (ΔR2 = -0.1; ΔRMSE = -0.6 μg/cm 2 ), while the proposed correction method reduced background effects (ΔR2= 0.1; ΔRMSE = 0.4 μg/cm2). Overall, the proposed vegetation index correction method reduced the background influence irrespective of background type, making useful comparison between management blocks possible.

  2. Assessing the spatial fidelity of resolution-enhanced imagery using Fourier analysis: a proof-of-concept study

    NASA Astrophysics Data System (ADS)

    Civco, Daniel L.; Witharana, Chandi

    2012-10-01

    Pan-sharpening of moderate resolution multispectral remote sensing data with those of a higher spatial resolution is a standard practice in remote sensing image processing. This paper suggests a method by which the spatial properties of resolution merge products can be assessed. Whereas there are several accepted metrics, such as correlation and root mean square error, for quantifying the spectral integrity of fused images, relative to the original multispectral data, there is less agreement on a means by which to assess the spatial properties, relative to the original higher-resolution, pansharpening data. In addition to qualitative, visual, and somewhat subjective evaluation, quantitative measures used have included correlations between high-pass filtered panchromatic and fused images, gradient analysis, wavelet analysis, among others. None of these methods, however, fully exploits the spatial and structural information contained in the original high resolution and fused images. This paper proposes the use of the Fourier transform as a means to quantify the degree to which a fused image preserves the spatial properties of the pan-sharpening high resolution data. A highresolution 8-bit panchromatic image was altered to produce a set of nine different test images, as well as a random image. The Fourier Magnitude (FM) image was calculated for each of the datasets and compared via FM to FM image correlation. Furthermore, the following edge detection algorithms were applied to the original and altered images: (a) Canny; (b) Sobel; and (c) Laplacian. These edge-filtered images were compared, again by way of correlation, with the original edge-filtered panchromatic image. Results indicate that the proposed method of using FTMI as a means of assessing the spatial fidelity of high-resolution imagery used in the data fusion process outperforms the correlations produced by way of comparing edge-enhanced images.

  3. Combination of high spatial resolution and low minimum detection limit using thinned specimens in cutting-edge electron probe microanalysis.

    PubMed

    Kubo, Yugo; Hamada, Kotaro

    2015-10-01

    The effect of sample thickness on the spatial resolution and minimum detection limit (MDL) has been investigated for field-emission electron probe microanalysis with wavelength dispersive X-ray spectroscopy (FE-EPMA-WDX). Indium gallium phosphide samples thinned to thicknesses of about 100, 130, 210, 310, and 430 nm provided effective thin-sample FE-EPMA-WDX in the resolution range of 40-350 nm and MDL range of 13,000-600 ppm (mass). A comparison of the FE-EPMA results for thin and bulk samples demonstrated that thin-sample FE-EPMA can achieve both higher sensitivity and better spatial resolution than is possible using bulk samples. Most of the X-rays that determine the MDL are generated in a surface region of the sample with a depth of approximately 300 nm. The spatial resolution and MDL can be tuned by the sample thickness. Furthermore, analysis of small amounts of Cl in SiO2 indicated that thin-sample FE-EPMA can realize a spatial resolution and MDL of 41 nm and 446 ppm at Iprob=50 nA, respectively, whereas bulk-sample FE-EPMA offers a resolution of only 348 nm and MDL of 426 ppm.

  4. Examining nanoparticle assemblies using high spatial resolution x-ray microtomography

    NASA Astrophysics Data System (ADS)

    Jenneson, P. M.; Luggar, R. D.; Morton, E. J.; Gundogdu, O.; Tüzün, U.

    2004-09-01

    An experimental system has been designed to examine the assembly of nanoparticles in a variety of process engineering applications. These applications include the harvesting from solutions of nanoparticles into green parts, and the subsequent sintering into finished components. The system is based on an x-ray microtomography with a spatial resolution down to 5μm. The theoretical limitations in x-ray imaging are considered to allow experimental optimization. A standard nondestructive evaluation type apparatus with a small focal-spot x-ray tube, high-resolution complementary metal oxide semiconductor flat-panel pixellated detector, and a mechanical rotational stage is used to image the static systems. Dynamic sintering processes are imaged using the same x-ray source and detector but a custom rotational stage which is contained in an environmental chamber where the temperature, atmospheric pressure, and compaction force can be controlled. Three-dimensional tomographic data sets are presented here for samples from the pharmaceutical, nutraceutical, biotechnology, and nanoparticle handling industries and show the microscopic features and defects which can be resolved with the system.

  5. High Spatial Resolution Investigations of Microchannel Plate Imaging Properties for UV Detectors

    NASA Technical Reports Server (NTRS)

    Siegmund, Oswald

    1996-01-01

    Microchannel plate (MCP) photon counting detectors are currently being used with great success on many of the recent NASA/ESA ultraviolet (UV) astrophysics missions that make observations in the 1OO A - 1600 A range. These include HUT, the Wide Field Camera on ROSAT, EUVE, ALEXIS, ORFEUS, and SOHO. These devices have also been chosen to fly on future UV astrophysics missions such as FUSE, FUVITA, IMAGE, and both the HST STIS and Advanced Camera instruments. During the period of this award we have fabricated a dual-chamber vacuum test facility to carry out laboratory testing of detector resolution, image stability and linearity, and flat field performance to enable us to characterize the performance of MCPs and their associated read-out architectures. We have also fabricated and tested a laboratory 'test-bed' delay line detector, which can accommodate MCP's with a wide range of formats and run at high data rates, to continue our studies of MCP image fixed pattern noise, and particularly for new small pore MCP's which have recently come onto the market. These tests were mainly focussed on the assessment of cross delay-line (XDL) and double delay line (DDL) anode read-out schemes, with particular attention being focussed on flat-field and spatial resolution performance.

  6. High-spatial-resolution sub-surface imaging using a laser-based acoustic microscopy technique.

    PubMed

    Balogun, Oluwaseyi; Cole, Garrett D; Huber, Robert; Chinn, Diane; Murray, Todd W; Spicer, James B

    2011-01-01

    Scanning acoustic microscopy techniques operating at frequencies in the gigahertz range are suitable for the elastic characterization and interior imaging of solid media with micrometer-scale spatial resolution. Acoustic wave propagation at these frequencies is strongly limited by energy losses, particularly from attenuation in the coupling media used to transmit ultrasound to a specimen, leading to a decrease in the depth in a specimen that can be interrogated. In this work, a laser-based acoustic microscopy technique is presented that uses a pulsed laser source for the generation of broadband acoustic waves and an optical interferometer for detection. The use of a 900-ps microchip pulsed laser facilitates the generation of acoustic waves with frequencies extending up to 1 GHz which allows for the resolution of micrometer-scale features in a specimen. Furthermore, the combination of optical generation and detection approaches eliminates the use of an ultrasonic coupling medium, and allows for elastic characterization and interior imaging at penetration depths on the order of several hundred micrometers. Experimental results illustrating the use of the laser-based acoustic microscopy technique for imaging micrometer-scale subsurface geometrical features in a 70-μm-thick single-crystal silicon wafer with a (100) orientation are presented.

  7. Compact soft x-ray transmission microscopy with sub-50 nm spatial resolution.

    PubMed

    Kim, Kyong Woo; Kwon, Youngman; Nam, Ki-Yong; Lim, Jong-Hyeok; Kim, Kyu-Gyum; Chon, Kwon Su; Kim, Byoung Hoon; Kim, Dong Eon; Kim, JinGon; Ahn, Byoung Nam; Shin, Hyun Joon; Rah, Seungyu; Kim, Ki-Ho; Chae, Jin Seok; Gweon, Dae Gab; Kang, Dong Woo; Kang, Sung Hoon; Min, Jin Young; Choi, Kyu-Sil; Yoon, Seong Eon; Kim, Eun-A; Namba, Yoshiharu; Yoon, Kwon-Ha

    2006-03-21

    In this paper, the development of compact transmission soft x-ray microscopy (XM) with sub-50 nm spatial resolution for biomedical applications is described. The compact transmission soft x-ray microscope operates at lambda = 2.88 nm (430 eV) and is based on a tabletop regenerative x-ray source in combination with a tandem ellipsoidal condenser mirror for sample illumination, an objective micro zone plate and a thinned back-illuminated charge coupled device to record an x-ray image. The new, compact x-ray microscope system requires the fabrication of proper x-ray optical devices in order to obtain high-quality images. For an application-oriented microscope, the alignment procedure is fully automated via computer control through a graphic user interface. In imaging studies using our compact XM system, a gold mesh image was obtained with 45 nm resolution at x580 magnification and 1 min exposure. Images of a biological sample (Coscinodiscus oculoides) were recorded.

  8. High spatial resolution PIV and CH-PLIF measurements of a Shear Layer Stabilized Flame

    NASA Astrophysics Data System (ADS)

    Foley, Christopher; Chterev, Ianko; Seitzman, Jerry; Lieuwen, Tim

    2014-11-01

    In practical combustors, flames stabilize in thin shear layers with very high strain rates, which alter the flame burning rate - either enhancing or diminishing reaction rates, and even leading to extinction. Therefore, the bulk velocity that provides stable operation in these combustors is limited, presumably due to the associated maximum stretch rate that the flame is able to withstand. The focus of this work is to develop a deeper understanding of the interaction between flow and flame for a shear layer stabilized, premixed flame. This study consists of planar, high resolution, simultaneous PIV and CH-PLIF measurements, in a 8 x 6 mm plane with 0.11 mm and 0.16 mm PIV vector and CH-PLIF image resolution, respectively, of the flame stabilization region in a swirling jet. The hydrodynamic strain induced stretch rate along the high CH concentration layer of the flame front is calculated from these measurements. In addition, this study elucidates the unsteady behavior of the flame in the thin shear layer. The measured flame stretch is highly spatially and temporally dependent, and dominated by contributions from normal and shear strain terms of axial velocity. Although normal strain is much greater than shear, the near horizontal flame orientation results in neither strain term dominating flame stretch. Furthermore, the flame angle changes the sign of the shear strain contributions as observed experimentally, an important implication for reduced order modeling approaches.

  9. High spatial resolution Hall sensor array for edge plasma magnetic field measurements

    SciTech Connect

    Liu Yuhong; Maurer, David A.; Navratil, Gerald A.; Rivera, Nicholas

    2005-09-15

    A one-dimensional, high-spatial resolution, 20-element Hall sensor array has been developed to directly measure the edge plasma perpendicular magnetic field and its fluctuations as a function of radius with 4-mm resolution. The array employs new small-area, high-sensitivity indium antimonide (InSb) Hall probes in combination with a high-density seven-layer printed circuit board to provide for connections to supply Hall current, record the measured Hall voltage output signals, and mitigate inductive pickup. A combination of bench and in situ measurements is described that provides absolute calibration of the diagnostic array in the presence of a strong transverse magnetic field component that is approximately 1000 times greater than the perpendicular fluctuating field needed to be resolved by the diagnostic. The Hall probes calibrated using this method are capable of magnetic field measurements with a sensitivity of 7 V/T over the frequency band from 0 to 20 kHz.

  10. Improve spatial resolutions of ultrasonic phased-array inspection using SAFT

    NASA Astrophysics Data System (ADS)

    Guan, Xuefei; Rasselkorde, El Mahjoub; Zhang, Jingdan; Zhou, S. Kevin; Abbasi, Waheed A.

    2014-02-01

    Ultrasonic Synthetic Aperture Focusing Technique (SAFT) reconstruction method is developed to provide high-resolution images of the inspected areas and volumes. The basic idea of the method is to coherently superimpose multiple A-scan measurements, incorporating the phase information of the sampling points. The method involves two major steps: data mapping according to time-of-flight (ToF), and local normalizing. Data mapping refers to the process of mapping each of the sampling points to a three-dimensional grid that represents the geometry model of the object being inspected. The value for each cell of the grid is a summation of all sampling points mapped into the cell. Local normalizing refers to normalizing a selected region of interest (ROI) for defect visualization and quantification. Lab experiments are performed using a 10MHz phased array ultrasonic probe to collect data from a cylinder material block. The method is used to process the experimental data. Using the developed method, spatial resolution of inspection is significantly improved comparing with traditional reconstruction methods. Results indicate that four closely spaced 0.794mm-diameter flat-bottomed holes are clearly identified.

  11. System for processing of airborne images of forest ecosystems using high spectral and spatial resolution data

    NASA Astrophysics Data System (ADS)

    Kozoderov, V. V.; Dmitriev, E. V.; Kamentsev, V. P.

    2014-12-01

    The developed hardware and software system for the recognition of natural and man-made objects based on the airborne hyperspectral sensing implements flight tasks on selected survey routes and computational procedures for solving applied problems that occur in data processing. The basics of object recognition based on obtained images of high spectral and spatial resolution in mathematical terms of sets of sites and labels and the basics of interrelations between separate resolution elements (pixels) for selected object classes are presented. Features of energy minimization of the processed scene are depicted as a target function of the optimization of computation and regularization of the solution of the considered problems as a theoretical basis for distinguishing between classes of objects in the presence of boundaries between them. Examples of the formation of information layers of recorded spectra for selected "pure species" of pine and birch forests are cited, with the separation of illuminated and shaded pixels, which increases the accuracy of object recognition in the processing of the images.

  12. Polysilicon-based flexible temperature sensor for brain monitoring with high spatial resolution

    NASA Astrophysics Data System (ADS)

    Wu, Zhizhen; Li, Chunyan; Hartings, Jed; Ghosh, Sthitodhi; Narayan, Raj; Ahn, Chong

    2017-02-01

    Temperature is one of the most important variables in brain monitoring, since changes of focal brain temperature are closely coupled to cerebral physiology and pathophysiological phenomena in injured brain. In this work, a highly accurate temperature sensor with polysilicon thermistors has been developed on flexible polyimide for monitoring brain temperature with high spatial resolution. The temperature sensors have a response time of 1.5 s and sensitivity of  -0.0031 °C-1. Thermal hysteresis of the sensor in the physiological temperature range of 30-45 °C was found to be less than 0.1 °C. With silicon nitride as the passivation layer, the temperature sensor exhibits drift of less than 0.3 °C for 3 d in water. In vivo tests of the sensor show a low noise level of 0.025  ±  0.03 °C, and the expected transient increases in cortical temperature associated with cortical spreading depolarization. The temperature sensor developed in this work is suitable for monitoring brain temperature with the desired high sensitivity and resolution.

  13. Practical spatial resolution of electron energy loss spectroscopy in aberration corrected scanning transmission electron microscopy.

    PubMed

    Shah, A B; Ramasse, Q M; Wen, J G; Bhattacharya, A; Zuo, J M

    2011-08-01

    The resolution of electron energy loss spectroscopy (EELS) is limited by delocalization of inelastic electron scattering rather than probe size in an aberration corrected scanning transmission electron microscope (STEM). In this study, we present an experimental quantification of EELS spatial resolution using chemically modulated 2×(LaMnO(3))/2×(SrTiO(3)) and 2×(SrVO(3))/2×(SrTiO(3)) superlattices by measuring the full width at half maxima (FWHM) of integrated Ti M(2,3), Ti L(2,3), V L(2,3), Mn L(2,3), La N(4,5), La N(2,3) La M(4,5) and Sr L(3) edges over the superlattices. The EELS signals recorded using large collection angles are peaked at atomic columns. The FWHM of the EELS profile, obtained by curve-fitting, reveals a systematic trend with the energy loss for the Ti, V, and Mn edges. However, the experimental FWHM of the Sr and La edges deviates significantly from the observed experimental tendency.

  14. [Development of biogenic VOC emissions inventory with high temporal and spatial resolution].

    PubMed

    Hu, Y; Zhang, Y; Xie, S; Zeng, L

    2001-11-01

    A new method was developed to estimate biogenic VOC emissions with high temporal and spatial resolution by use of Mesoscale Meteorology Modeling System Version5 (MM5). In this method, the isoprene and monoterpene standard emission factors for some types of tree in China were given and the standard VOC emission factors and seasonally average densities of leaf biomass for all types of vegetation were determined. A biogenic VOC emissions inventory in South China was established which could meet the requirement of regional air quality modeling. Total biogenic VOC emissions in a typical summer day were estimated to be 1.12 x 10(4) metric tons in an area of 729 km x 729 km of South China. The results showed the temporal and spatial distributions of biogenic VOC emission rates in this area. The results also showed that the geographical distribution of biogenic VOC emission rates depended on vegetation types and their distributions and the diurnal variation mainly depended on the solar radiation and temperature. The uncertainties of estimating biogenic VOC emissions were also discussed.

  15. Improvement of the spatial resolution of MODIS coastal waters thermal mapping

    NASA Astrophysics Data System (ADS)

    Teggi, S.; Despini, F.; Ghermandi, G.; Serafini, M.

    2011-11-01

    Thermal mapping is an highly relevant tool for the assessment of the quality of coastal waters. Remote sensing is an useful technique for monitoring large surfaces in near real time, nevertheless, spatial resolution represents an important limiting factor. In this work it the spatial improvement, from 1km to 250m, of MODIS thermal imagery on coastal water obtained with the SWTI (SharpeningWater Thermal Imagery) is shown. This algorithm is applied, for the first time, to MODIS images acquired on the lagoon of Venice and on the delta of the Po River. The performances of SWTI are evaluated taking as a reference a couple of ASTER images acquired simultaneously to the MODIS images and on the same areas. Moreover, the water temperatures obtained with a simple bilinear interpolation of the MODIS images is also considered. Several statistical parameters, as bias and root mean square difference, are used to quantify the the difference between ASTER and MODIS/SWTI water temperatures along coastlines. In all the the cases these differences are lower than 1K.

  16. High Resolution Spatial Analysis of Habitat Preference of Aedes Albopictus (Diptera: Culicidae) in an Urban Environment.

    PubMed

    Cianci, Daniela; Hartemink, Nienke; Zeimes, Caroline B; Vanwambeke, Sophie O; Ienco, Annamaria; Caputo, Beniamino

    2015-05-01

    Over the past decades, the Asian tiger mosquito (Aedes albopictus (Skuse, 1895)) has emerged in many countries, and it has colonized new environments, including urban areas. The species is a nuisance and a potential vector of several human pathogens, and a better understanding of the habitat preferences of the species is needed for help in successful prevention and control. So far, the habitat preference in urban environments has not been studied in Southern European cities. In this paper, spatial statistical models were used to evaluate the relationship between egg abundances and land cover types on the campus of Sapienza University in Rome, which is taken as an example of a European urban habitat. Predictor variables included land cover types, classified in detail on a high resolution image, as well as solar radiation and month of capture. The models account for repeated measures in the same trap and are adjusted for meteorological circumstances. Vegetation and solar radiation were found to be positively related to the number of eggs. More specifically, trees were positively related to the number of eggs and the relationship with grass was negative. These findings are consistent with the species' known preference for shaded areas. The unexpected positive relationship with solar radiation is amply discussed in the paper. This study represents a first step toward a better understanding of the spatial distribution of Ae. albopictus in urban environments.

  17. High Spatial Resolution Studies of Blastwave Interactions in the Vela Supernova Remnant

    NASA Technical Reports Server (NTRS)

    Craig, William

    1997-01-01

    The report targeted two interaction zones within the Vela supernova remnant for HRI observation and data reduction and analysis. Approximately 40 ksec of HRI integration time was awarded for each of the awarded target regions, one at priority 2 and one at priority 3. The observations have been completed for the priority 2 observation. Some observations have been made of the priority 3 target, however the data have not yet been received by the PI. The priority 2 data have been received and analyzed and the results have been prepared for publication. The chief results are as follows: (1) the radial profile of the X-ray emission from the western rim is characterized by a sudden increase in emission at the blastwave interaction region which is unresolved spatially at HRI resolution. The profile is consistent with the expanding blastwave from the remnant encountering a large, coherent structure in the surrounding ISM; (2) the X-ray emission lags slightly 'behind', approx. 10(exp 16)cm the H(alpha) and OIII optical filaments, consistent with the expected spatial profile of the emission assuming parameters derived from earlier PSPC observations of the region. the combination of the X-ray and optical interference filter data allow us to set limits on the distance to the Vela remnant and the general nature of the blastwave interactions in the remnant.

  18. Quantitative FRET Analysis by Fast Acquisition Time Domain FLIM at High Spatial Resolution in Living Cells

    PubMed Central

    Padilla-Parra, Sergi; Audugé, Nicolas; Coppey-Moisan, Maïté; Tramier, Marc

    2008-01-01

    Quantitative analysis in Förster resonance energy transfer (FRET) experiments in live cells for protein interaction studies is still a challenging issue. In a two-component system (FRET and no FRET donor species), fitting of fluorescence lifetime imaging microscopy (FLIM) data gives the fraction of donor molecules involved in FRET (fD) and the intrinsic transfer efficiency. But when fast FLIM acquisitions are used to monitor dynamic changes in protein-protein interactions at high spatial and temporal resolutions in living cells, photon statistics and time resolution are limited. In this case, fitting procedures are not reliable, even for single lifetime donors. We introduce the new concept of a minimal fraction of donor molecules involved in FRET (mfD), coming from the mathematical minimization of fD. We find particular advantage in the use of mfD because it can be obtained without fitting procedures and it is derived directly from FLIM data. mfD constitutes an interesting quantitative parameter for live cell studies because it is related to the minimal relative concentration of interacting proteins. For multi-lifetime donors, the process of fitting complex fluorescence decays to find at least four reliable lifetimes is a near impossible task. Here, mfD extension for multi-lifetime donors is the only quantitative determinant. We applied this methodology for imaging the interaction between the bromodomains of TAFII250 and acetylated histones H4 in living cells at high resolution. We show the existence of discrete acetylated chromatin domains where the minimal fraction of bromodomain interacting with acetylated H4 oscillates from 0.26 to 0.36 and whose size is smaller than half of one micron cube. We demonstrate that mfD by itself is a useful tool to investigate quantitatively protein interactions in live cells, especially when using fast FRET-FLIM acquisition times. PMID:18539634

  19. Annual evapotranspiration retrieved from satellite vegetation indices for the eastern Mediterranean at 250 m spatial resolution

    NASA Astrophysics Data System (ADS)

    Helman, D.; Givati, A.; Lensky, I. M.

    2015-11-01

    We present a model to retrieve actual evapotranspiration (ET) from satellites' vegetation indices (Parameterization of Vegetation Indices for ET estimation model, or PaVI-E) for the eastern Mediterranean (EM) at a spatial resolution of 250 m. The model is based on the empirical relationship between satellites' vegetation indices (normalized difference vegetation index (NDVI) and enhanced vegetation index (EVI) from MODIS) and total annual ET (ETAnnual) estimated at 16 FLUXNET sites, representing a wide range of plant functional types and ETAnnual. Empirical relationships were first examined separately for (a) annual vegetation systems (i.e. croplands and grasslands) and (b) systems with combined annual and perennial vegetation (i.e. woodlands, forests, savannah and shrublands). Vegetation indices explained most of the variance in ETAnnual in those systems (71 % for annuals, and 88 % for combined annual and perennial systems), while adding land surface temperature data in a multiple-variable regression and a modified version of the Temperature and Greenness model did not result in better correlations (p > 0.1). After establishing empirical relationships, PaVI-E was used to retrieve ETAnnual for the EM from 2000 to 2014. Models' estimates were highly correlated (R = 0.92, p < 0.01) with ETAnnual calculated from water catchment balances along rainfall gradient of the EM. They were also comparable to the coarser-resolution ET products of the Land Surface Analysis Satellite Applications Facility (LSA-SAF MSG ETa, 3.1 km) and MODIS (MOD16, 1 km) at 148 EM basins with R of 0.75 and 0.77 and relative biases of 5.2 and -5.2 %, respectively (p < 0.001 for both). In the absence of high-resolution (< 1 km) ET models for the EM the proposed model is expected to contribute to the hydrological study of this region, assisting in water resource management, which is one of the most valuable resources of this region.

  20. Spatially explicit rangeland erosion moni